WorldWideScience

Sample records for wireless physical layer

  1. Wireless physical layer security

    Science.gov (United States)

    Poor, H. Vincent; Schaefer, Rafael F.

    2017-01-01

    Security in wireless networks has traditionally been considered to be an issue to be addressed separately from the physical radio transmission aspects of wireless systems. However, with the emergence of new networking architectures that are not amenable to traditional methods of secure communication such as data encryption, there has been an increase in interest in the potential of the physical properties of the radio channel itself to provide communications security. Information theory provides a natural framework for the study of this issue, and there has been considerable recent research devoted to using this framework to develop a greater understanding of the fundamental ability of the so-called physical layer to provide security in wireless networks. Moreover, this approach is also suggestive in many cases of coding techniques that can approach fundamental limits in practice and of techniques for other security tasks such as authentication. This paper provides an overview of these developments.

  2. Wireless physical layer security.

    Science.gov (United States)

    Poor, H Vincent; Schaefer, Rafael F

    2017-01-03

    Security in wireless networks has traditionally been considered to be an issue to be addressed separately from the physical radio transmission aspects of wireless systems. However, with the emergence of new networking architectures that are not amenable to traditional methods of secure communication such as data encryption, there has been an increase in interest in the potential of the physical properties of the radio channel itself to provide communications security. Information theory provides a natural framework for the study of this issue, and there has been considerable recent research devoted to using this framework to develop a greater understanding of the fundamental ability of the so-called physical layer to provide security in wireless networks. Moreover, this approach is also suggestive in many cases of coding techniques that can approach fundamental limits in practice and of techniques for other security tasks such as authentication. This paper provides an overview of these developments.

  3. Securing wireless communications at the physical layer

    CERN Document Server

    Liu, Ruoheng

    2009-01-01

    Throughout this book there is an underlying theme that the rich multipath environment that is typical of wireless scenarios supports the establishment of new security services at the physical layer, including new mechanisms that establish cryptographic keys, that support communication with assured confidentiality, and that can authenticate transmitters in mobile environments. The book takes a holistic approach to covering topics related to physical layer security solutions, with contributions ranging from the theoretical underpinnings behind secure communications to practical systems validatio

  4. Wireless Physical Layer Security with CSIT Uncertainty

    KAUST Repository

    Hyadi, Amal

    2017-09-01

    Recent years have been marked by an enormous growth of wireless communication networks and an extensive use of wireless applications. In return, this phenomenal expansion induced more concerns about the privacy and the security of the users. Physical layer security is one of the most promising solutions that were proposed to enhance the security of next generation wireless systems. The fundamental idea behind this technique is to exploit the randomness and the fluctuations of the wireless channel to achieve security without conditional assumptions on the computational capabilities of the eavesdropper. In fact, while these elements have traditionally been associated with signal deterioration, physical layer security uses them to ensure the confidentiality of the users. Nevertheless, these technical virtues rely heavily on perhaps idealistic channel state information assumptions. In that regard, the aim of this thesis is to look at the physical layer security paradigm from the channel uncertainty perspective. In particular, we discuss the ergodic secrecy capacity of different wiretap channels when the transmitter is hampered by the imperfect knowledge of the channel state information (CSI). We consider two prevalent causes of uncertainty for the CSI at transmitter (CSIT); either an error of estimation occurs at the transmitter and he can only base his coding and the transmission strategies on a noisy version of the CSI, or the CSI feedback link has a limited capacity and the legitimate receivers can only inform the transmitter about the quantized CSI. We investigate both the single-user multiple-input multiple-output (MIMO) wiretap channel and the multi-user broadcast wiretap channel. In the latter scenario, we distinguish between two situations: multiple messages transmission and common message transmission. We also discuss the broadcast channel with confidential messages (BCCM) where the transmitter has one common message to be transmitted to two users and one

  5. Physical layer approaches for securing wireless communication systems

    CERN Document Server

    Wen, Hong

    2013-01-01

    This book surveys the outstanding work of physical-layer (PHY) security, including  the recent achievements of confidentiality and authentication for wireless communication systems by channel identification. A practical approach to building unconditional confidentiality for Wireless Communication security by feedback and error correcting code is introduced and a framework of PHY security based on space time block code (STBC) MIMO system is demonstrated.  Also discussed is a scheme which combines cryptographic techniques implemented in the higher layer with the physical layer security approach

  6. Applying Physical-Layer Network Coding in Wireless Networks

    Directory of Open Access Journals (Sweden)

    Liew SoungChang

    2010-01-01

    Full Text Available A main distinguishing feature of a wireless network compared with a wired network is its broadcast nature, in which the signal transmitted by a node may reach several other nodes, and a node may receive signals from several other nodes, simultaneously. Rather than a blessing, this feature is treated more as an interference-inducing nuisance in most wireless networks today (e.g., IEEE 802.11. This paper shows that the concept of network coding can be applied at the physical layer to turn the broadcast property into a capacity-boosting advantage in wireless ad hoc networks. Specifically, we propose a physical-layer network coding (PNC scheme to coordinate transmissions among nodes. In contrast to "straightforward" network coding which performs coding arithmetic on digital bit streams after they have been received, PNC makes use of the additive nature of simultaneously arriving electromagnetic (EM waves for equivalent coding operation. And in doing so, PNC can potentially achieve 100% and 50% throughput increases compared with traditional transmission and straightforward network coding, respectively, in 1D regular linear networks with multiple random flows. The throughput improvements are even larger in 2D regular networks: 200% and 100%, respectively.

  7. Physical Layer Design in Wireless Sensor Networks for Fading Mitigation

    Directory of Open Access Journals (Sweden)

    Nuo Chen

    2013-09-01

    Full Text Available This paper presents the theoretical analysis, simulation results and suggests design in digital technology of a physical layer for wireless sensor networks. The proposed design is able to mitigate fading inside communication channel. To mitigate fading the chip interleaving technique is proposed. For the proposed theoretical model of physical layer, a rigorous mathematical analysis is conducted, where all signals are presented and processed in discrete time domain form which is suitable for further direct processing necessary for devices design in digital technology. Three different channels are used to investigate characteristics of the physical layer: additive white Gaussian noise channel (AWGN, AWG noise and flat fading channel and AWG noise and flat fading channel with interleaver and deinterleaver blocks in the receiver and transmitter respectively. Firstly, the mathematical model of communication system representing physical layer is developed based on the discrete time domain signal representation and processing. In the existing theory, these signals and their processing are represented in continuous time form, which is not suitable for direct implementation in digital technology. Secondly, the expressions for the probability of chip, symbol and bit error are derived. Thirdly, the communication system simulators are developed in MATLAB. The simulation results confirmed theoretical findings.

  8. Physical and Cross-Layer Security Enhancement and Resource Allocation for Wireless Networks

    Science.gov (United States)

    Bashar, Muhammad Shafi Al

    2011-01-01

    In this dissertation, we present novel physical (PHY) and cross-layer design guidelines and resource adaptation algorithms to improve the security and user experience in the future wireless networks. Physical and cross-layer wireless security measures can provide stronger overall security with high efficiency and can also provide better…

  9. Signal processing approaches to secure physical layer communications in multi-antenna wireless systems

    CERN Document Server

    Hong, Y-W Peter; Kuo, C-C Jay

    2013-01-01

    This book introduces various signal processing approaches to enhance physical layer secrecy in multi-antenna wireless systems. Wireless physical layer secrecy has attracted much attention in recent years due to the broadcast nature of the wireless medium and its inherent vulnerability to eavesdropping. While most articles on physical layer secrecy focus on the information-theoretic aspect, we focus specifically on the signal processing aspects, including beamforming and precoding techniques for data transmission and discriminatory training schemes for channel estimation. The discussions will c

  10. Software-Defined Radio Testbed for the Physical Layer of Wireless LANs

    NARCIS (Netherlands)

    Schiphorst, Roelof; Moseley, N.A.; Slump, Cornelis H.

    2005-01-01

    This paper presents a software-defined radio testbed for the physical layer of wireless LAN standards. All baseband physical layer functions have been successfully mapped on a Pentium~4 processor that performs these functions in real-time. This has been tested in combination with a CMOS integrated

  11. Securing Wireless Communications of the Internet of Things from the Physical Layer, An Overview

    Science.gov (United States)

    Zhang, Junqing; Duong, Trung; Woods, Roger; Marshall, Alan

    2017-08-01

    The security of the Internet of Things (IoT) is receiving considerable interest as the low power constraints and complexity features of many IoT devices are limiting the use of conventional cryptographic techniques. This article provides an overview of recent research efforts on alternative approaches for securing IoT wireless communications at the physical layer, specifically the key topics of key generation and physical layer encryption. These schemes can be implemented and are lightweight, and thus offer practical solutions for providing effective IoT wireless security. Future research to make IoT-based physical layer security more robust and pervasive is also covered.

  12. Cooperative Jamming for Physical Layer Security in Wireless Sensor Networks

    DEFF Research Database (Denmark)

    Rohokale, Vandana M.; Prasad, Neeli R.; Prasad, Ramjee

    2012-01-01

    Interference is generally considered as the redundant and unwanted occurrence in wireless communication. This work proposes a novel cooperative jamming mechanism for scalable networks like Wireless Sensor Networks (WSNs) which makes use of friendly interference to confuse the eavesdropper...

  13. Underwater Acoustic Wireless Sensor Networks: Advances and Future Trends in Physical, MAC and Routing Layers

    NARCIS (Netherlands)

    Climent, S.; Sanchez, A.; Capella, J.V.; Meratnia, Nirvana; Serrano, J.J.

    2014-01-01

    This survey aims to provide a comprehensive overview of the current research on underwater wireless sensor networks, focusing on the lower layers of the communication stack, and envisions future trends and challenges. It analyzes the current state-of-the-art on the physical, medium access control

  14. Cooperative Wireless Communications and Physical Layer Security : State of the Art

    DEFF Research Database (Denmark)

    Rohokale, Vandana M.; Prasad, Neeli R.; Prasad, Ramjee

    2012-01-01

    in the mobile equipment is not feasible due to resource constraints. Cooperative wireless communication (CWC) is the upcoming virtual MIMO technique to combat fading and achieve diversity through user cooperation. Physical layer security (PLS) is the imminent security guarantee for the cooperative communication....

  15. Underwater Acoustic Wireless Sensor Networks: Advances and Future Trends in Physical, MAC and Routing Layers

    Directory of Open Access Journals (Sweden)

    Salvador Climent

    2014-01-01

    Full Text Available This survey aims to provide a comprehensive overview of the current researchon underwater wireless sensor networks, focusing on the lower layers of the communicationstack, and envisions future trends and challenges. It analyzes the current state-of-the-art onthe physical, medium access control and routing layers. It summarizes their security threadsand surveys the currently proposed studies. Current envisioned niches for further advances inunderwater networks research range from efficient, low-power algorithms and

  16. Analysis of physical layer performance of hybrid optical-wireless access network

    Science.gov (United States)

    Shaddad, R. Q.; Mohammad, A. B.; Al-hetar, A. M.

    2011-09-01

    The hybrid optical-wireless access network (HOWAN) is a favorable architecture for next generation access network. It is an optimal combination of an optical backhaul and a wireless front-end for an efficient access network. In this paper, the HOWAN architecture is designed based on a wavelengths division multiplexing/time division multiplexing passive optical network (WDM/TDM PON) at the optical backhaul and a wireless fidelity (WiFi) technology at the wireless front-end. The HOWAN is proposed that can provide blanket coverage of broadband and flexible connection for end-users. Most of the existing works, based on performance evaluation are concerned on network layer aspects. This paper reports physical layer performance in terms of the bit error rate (BER), eye diagram, and signal-to-noise ratio (SNR) of the communication system. It accommodates 8 wavelength channels with 32 optical network unit/wireless access points (ONU/APs). It is demonstrated that downstream and upstream of 2 Gb/s can be achieved by optical backhaul for each wavelength channel along optical fiber length of 20 km and a data rate of 54 Mb/s per ONU/AP along a 50 m outdoor wireless link.

  17. A Novel Physical Layer Assisted Authentication Scheme for Mobile Wireless Sensor Networks.

    Science.gov (United States)

    Wang, Qiuhua

    2017-02-04

    Physical-layer authentication can address physical layer vulnerabilities and security threats in wireless sensor networks, and has been considered as an effective complementary enhancement to existing upper-layer authentication mechanisms. In this paper, to advance the existing research and improve the authentication performance, we propose a novel physical layer assisted authentication scheme for mobile wireless sensor networks. In our proposed scheme, we explore the reciprocity and spatial uncorrelation of the wireless channel to verify the identities of involved transmitting users and decide whether all data frames are from the same sender. In our proposed scheme, a new method is developed for the legitimate users to compare their received signal strength (RSS) records, which avoids the information from being disclosed to the adversary. Our proposed scheme can detect the spoofing attack even in a high dynamic environment. We evaluate our scheme through experiments under indoor and outdoor environments. Experiment results show that our proposed scheme is more efficient and achieves a higher detection rate as well as keeping a lower false alarm rate.

  18. Physical Layer Design for Wireless Galvanic Coupled Body Sensors

    OpenAIRE

    Pujol Roig, Joan Sebastià

    2014-01-01

    [ANGLÈS] Rapid advances in miniaturization and automated health control point to the widespread use of implanted micro-scale sensors in the near future, which will measure physiological conditions and report back data without repeated invasive medical procedures. We make use of galvanic coupling that uses weak electrical signals to enable implant communication, which leverages the electrical properties of the body channel. This work presents the development of a 3D multi-layered human forearm...

  19. Power and Subcarrier Allocation for Physical-Layer Security in OFDMA-based Broadband Wireless Networks

    CERN Document Server

    Wang, Xiaowei; Mo, Jianhua; Xu, Youyun

    2011-01-01

    Providing physical-layer security for mobile users in future broadband wireless networks is of both theoretical and practical importance. In this paper, we formulate an analytical framework for resource allocation in a downlink OFDMA-based broadband network with coexistence of secure users (SU) and normal users (NU). The SU's require secure data transmission at the physical layer while the NU's are served with conventional best-effort data traffic. The problem is formulated as joint power and subcarrier allocation with the objective of maximizing average aggregate information rate of all NU's while maintaining an average secrecy rate for each individual SU under a total transmit power constraint for the base station. We solve this problem in an asymptotically optimal manner using dual decomposition. Our analysis shows that an SU becomes a candidate competing for a subcarrier only if its channel gain on this subcarrier is the largest among all and exceeds the second largest by a certain threshold. Furthermore,...

  20. An Overview of Physical Layer Security in Wireless Communication Systems With CSIT Uncertainty

    KAUST Repository

    Hyadi, Amal

    2016-09-21

    The concept of physical layer security builds on the pivotal idea of turning the channel\\'s imperfections, such as noise and fading, into a source of security. This is established through appropriately designed coding techniques and signal processing strategies. In this vein, it has been shown that fading channels can enhance the transmission of confidential information and that a secure communication can be achieved even when the channel to the eavesdropper is better than the main channel. However, to fully benefit from what fading has to offer, the knowledge of the channel state information at the transmitter (CSIT) is of primordial importance. In practical wireless communication systems, CSIT is usually obtained, prior to data transmission, through CSI feedback sent by the receivers. The channel links over which this feedback information is sent can be either noisy, rate-limited, or delayed, leading to CSIT uncertainty. In this paper, we present a comprehensive review of recent and ongoing research works on physical layer security with CSIT uncertainty. We focus on both information theoretic and signal processing approaches to the topic when the uncertainty concerns the channel to the wiretapper or the channel to the legitimate receiver. Moreover, we present a classification of the research works based on the considered channel uncertainty. Mainly, we distinguish between the cases when the uncertainty comes from an estimation error of the CSIT, from a CSI feedback link with limited capacity, or from an outdated CSI.

  1. Wireless Physical Layer Security: On the Performance Limit of Secret-Key Agreement

    KAUST Repository

    Zorgui, Marwen

    2015-05-01

    Physical layer security (PLS) is a new paradigm aiming at securing communications between legitimate parties at the physical layer. Conventionally, achieving confidentiality in communication networks relies on cryptographic techniques such as public-key cryptography, secret-key distribution and symmetric encryption. Such techniques are deemed secure based on the assumption of limited computational abilities of a wiretapper. Given the relentless progress in computational capacities and the dynamic topology and proliferation of modern wireless networks, the relevance of the previous techniques in securing communications is more and more questionable and less and less reliable. In contrast to this paradigm, PLS does not assume a specific computational power at any eavesdropper, its premise to guarantee provable security via employing channel coding techniques at the physical layer exploiting the inherent randomness in most communication systems. In this dissertation, we investigate a particular aspect of PLS, which is secret-key agreement, also known as secret-sharing. In this setup, two legitimate parties try to distill a secret-key via the observation of correlated signals through a noisy wireless channel, in the presence of an eavesdropper who must be kept ignorant of the secret-key. Additionally, a noiseless public channel is made available to the legitimate parties to exchange public messages that are also accessible to the eavesdropper. Recall that key agreement is an important aspect toward realizing secure communications in the sense that the key can be used in a one-time pad scheme to send the confidential message. In the first part, our focus is on secret-sharing over Rayleigh fading quasi-static channels. We study the fundamental relationship relating the probability of error and a given target secret-key rate in the high power regime. This is characterized through the diversity multiplexing tradeoff (DMT) concept, that we define for our model and then

  2. Joint optimization of physical layer parameters and routing in wireless mesh networks

    KAUST Repository

    Tobagi, Fouad A.

    2010-06-01

    Achieving the best performance in a wireless mesh network requires striking the right balance between the performance of links carrying traffic and the extent of spatial reuse of the wireless medium. The performance of a link depends on its transmit power and data rate as well as the level of interference caused by concurrent transmissions in the network; the latter is function of the Energy Detect (ED) threshold that determines when a node may access the medium. Which links in the network carry traffic is determined by the routing function; routing selects paths according to a link metric that reflects the relative performance of links (e.g., the expected transmission time of a packet on the link). In this paper, we seek to maximize end-to-end network throughput by jointly optimizing physical layer parameters and routing. We consider a random topology with a uniform node density. We consider that the signal attenuation between a pair of nodes is determined by a power law path loss model with an exponent equal to 3. Our findings are as follows. Consider first that the same transmit power and same data rate are used on all links. For any transmit power, data rate and ED threshold setting, the highest feasible load is obtained when the level of interference experienced by links used by routing is the highest possible. For a given transmit power and data rate setting, there is an optimum ED threshold that maximizes network performance. At the optimum ED threshold and maximum load, the range of link lengths used by routing is the lowest possible given the topology and routing metric used. With an ED threshold higher than the optimum, the same range of links is used by routing; however, the highest feasible load in this case is lower due to the fact that concurrent transmitters are allowed to be closer. With a lower ED threshold, concurrent transmitters are forced to be farther apart, and thus longer links become more attractive; as a result, the range of link lengths

  3. Improved Wireless Security through Physical Layer Protocol Manipulation and Radio Frequency Fingerprinting

    Science.gov (United States)

    2014-09-18

    deception is reminiscent of firewall-based obstructions to nmap operating system fingerprinting [KS05]. Some arbitrary waveform generators and software... fingerprinting experiments due to their widespread use in critical infrastructure (CI) and supervisory control and data acquistion (SCADA) applications and...IMPROVEDWIRELESS SECURITY THROUGH PHYSICAL LAYER PROTOCOL MANIPULATION AND RADIO FREQUENCY FINGERPRINTING DISSERTATION Benjamin W. Ramsey, Captain

  4. Resource Allocation and Cross Layer Control in Wireless Networks

    National Research Council Canada - National Science Library

    Georgiadis, L; Neely, M; Tassiulas, L

    2006-01-01

    .... In this paper we will present abstract models that capture the cross layer interaction from the physical to transport layer in wireless network architectures including cellular, ad-hoc and sensor...

  5. Physical-Layer Design for Next-Generation Cellular Wireless Systems

    NARCIS (Netherlands)

    Foschini, Gerard J.; Huang, Howard C.; Mullender, Sape J.; Venkatesan, Sivarama; Viswanathan, Harish

    The conventional cellular architecture will remain an integral part of nextgeneration wireless systems, providing high-speed packet data services directly to mobile users and also backhaul service for local area networks. In this paper, we present several proposals addressing the challenges

  6. Information Security of PHY Layer in Wireless Networks

    Directory of Open Access Journals (Sweden)

    Weidong Fang

    2016-01-01

    Full Text Available Since the characteristics of wireless channel are open and broadcasting, wireless networks are very vulnerable to be attacked via eavesdropping, jamming, and interference. As traditional secure technologies are not suitable for PHY layer of wireless networks, physical-layer security issues become a focus of attention. In this paper, we firstly identify and summarize the threats and vulnerabilities in PHY layer of wireless networks. Then, we give a holistic overview of PHY layer secure schemes, which are divided into three categories: spatial domain-based, time domain-based, and frequency domain-based. Along the way, we analyze the pros and cons of current secure technologies in each category. In addition, we also conclude the techniques and methods used in these categories and point out the open research issues and directions in this area.

  7. Improving the physical layer security of wireless communication networks using spread spectrum coding and artificial noise approach

    CSIR Research Space (South Africa)

    Adedeji, K

    2016-09-01

    Full Text Available Recent advances in technologies has led to the use of wireless communication networks for the transmission of information. However, the broadcast nature of wireless channels has made it vulnerable to attacks. In this paper, we present work...

  8. On Cross-Layer Design for Streaming Video Delivery in Multiuser Wireless Environments

    Directory of Open Access Journals (Sweden)

    Kellerer Wolfgang

    2006-01-01

    Full Text Available We exploit the interlayer coupling of a cross-layer design concept for streaming video delivery in a multiuser wireless environment. We propose a cross-layer optimization between application layer, data link layer, and physical layer. Our aim is to optimize the end-to-end quality of the wireless streaming video application as well as efficiently utilizing the wireless resources. A possible architecture for achieving this goal is proposed and formulated. This architecture consists of the process of parameter abstraction, a cross-layer optimizer, and the process of decision distribution. In addition, numerical results obtained with different operating modes are provided. The results demonstrate the potential of this proposed joint optimization.

  9. Physical Layer Network Coding

    DEFF Research Database (Denmark)

    Fukui, Hironori; Yomo, Hironori; Popovski, Petar

    2013-01-01

    Physical layer network coding (PLNC) has the potential to improve throughput of multi-hop networks. However, most of the works are focused on the simple, three-node model with two-way relaying, not taking into account the fact that there can be other neighboring nodes that can cause/receive inter......Physical layer network coding (PLNC) has the potential to improve throughput of multi-hop networks. However, most of the works are focused on the simple, three-node model with two-way relaying, not taking into account the fact that there can be other neighboring nodes that can cause...

  10. Physical layer network coding

    DEFF Research Database (Denmark)

    Fukui, Hironori; Popovski, Petar; Yomo, Hiroyuki

    2014-01-01

    Physical layer network coding (PLNC) has been proposed to improve throughput of the two-way relay channel, where two nodes communicate with each other, being assisted by a relay node. Most of the works related to PLNC are focused on a simple three-node model and they do not take into account...

  11. A Theoretical Framework for Quality-Aware Cross-Layer Optimized Wireless Multimedia Communications

    Directory of Open Access Journals (Sweden)

    Dalei Wu

    2008-04-01

    Full Text Available Although cross-layer has been thought as one of the most effective and efficient ways for multimedia communications over wireless networks and a plethora of research has been done in this area, there is still lacking of a rigorous mathematical model to gain in-depth understanding of cross-layer design tradeoffs, spanning from application layer to physical layer. As a result, many existing cross-layer designs enhance the performance of certain layers at the price of either introducing side effects to the overall system performance or violating the syntax and semantics of the layered network architecture. Therefore, lacking of a rigorous theoretical study makes existing cross-layer designs rely on heuristic approaches which are unable to guarantee sound results efficiently and consistently. In this paper, we attempt to fill this gap and develop a new methodological foundation for cross-layer design in wireless multimedia communications. We first introduce a delay-distortion-driven cross-layer optimization framework which can be solved as a large-scale dynamic programming problem. Then, we present new approximate dynamic programming based on significance measure and sensitivity analysis for high-dimensional nonlinear cross-layer optimization in support of real-time multimedia applications. The major contribution of this paper is to present the first rigorous theoretical modeling for integrated cross-layer control and optimization in wireless multimedia communications, providing design insights into multimedia communications over current wireless networks and throwing light on design optimization of the next-generation wireless multimedia systems and networks.

  12. A cross-layer communication framework for wireless networked control systems

    NARCIS (Netherlands)

    Israr, N.; Scanlon, W.G.; Irwin, G.W.

    2009-01-01

    This paper presents a robust, dynamic cross-layer wireless communication architecture for wireless networked control systems. Each layer in the proposed protocol architecture contributes to the overall goal of reliable, energy efficient communication. The protocol stack also features a

  13. OMNeT++-Based Cross-Layer Simulator for Content Transmission over Wireless Ad Hoc Networks

    Directory of Open Access Journals (Sweden)

    Massin R

    2010-01-01

    Full Text Available Flexbility and deployment simplicity are among the numerous advantages of wireless links when compared to standard wired communications. However, challenges do remain high for wireless communications, in particular due to the wireless medium inherent unreliability, and to the desired flexibility, which entails complex protocol procedures. In that context simulation is an important tool to understand and design the protocols that manage the wireless networks. This paper introduces a new simulation framework based on the OMNeT++ simulator whose goal is to enable the study of data and multimedia content transmission over hybrid wired/wireless ad hoc networks, as well as the design of innovative radio access schemes. To achieve this goal, the complete protocol stack from the application to the physical layer is simulated, and the real bits and bytes of the messages transferred on the radio channel are exchanged. To ensure that this framework is reusable and extensible in future studies and projects, a modular software and protocol architecture has been defined. Although still in progress, our work has already provided some valuable results concerning cross layer HARQ/MAC protocol performance and video transmission over the wireless channel, as illustrated by results examples.

  14. Network coding at different layers in wireless networks

    CERN Document Server

    2016-01-01

    This book focuses on how to apply network coding at different layers in wireless networks – including MAC, routing, and TCP – with special focus on cognitive radio networks. It discusses how to select parameters in network coding (e.g., coding field, number of packets involved, and redundant information ration) in order to be suitable for the varying wireless environments. The book explores how to deploy network coding in MAC to improve network performance and examines joint network coding with opportunistic routing to improve the successful rate of routing. In regards to TCP and network coding, the text considers transport layer protocol working with network coding to overcome the transmission error rate, particularly with how to use the ACK feedback of TCP to enhance the efficiency of network coding. The book pertains to researchers and postgraduate students, especially whose interests are in opportunistic routing and TCP in cognitive radio networks.

  15. Wireless sensor networks architectures and protocols

    CERN Document Server

    Callaway, Jr, Edgar H

    2003-01-01

    Introduction to Wireless Sensor NetworksApplications and MotivationNetwork Performance ObjectivesContributions of this BookOrganization of this BookThe Development of Wireless Sensor NetworksEarly Wireless NetworksWireless Data NetworksWireless Sensor and Related NetworksConclusionThe Physical LayerSome Physical Layer ExamplesA Practical Physical Layer for Wireless Sensor NetworksSimulations and ResultsConclusionThe Data Link LayerMedium Access Control TechniquesThe Mediation DeviceSystem Analysis and SimulationConclusionThe Network LayerSome Network Design ExamplesA Wireless Sensor Network De

  16. Ambient Intelligence Context-Based Cross-Layer Design in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Yang Liu

    2014-10-01

    Full Text Available By exchanging information directly between non-adjacent protocol layers, cross-layer (CL interaction can significantly improve and optimize network performances such as energy efficiency and delay. This is particularly important for wireless sensor networks (WSNs where sensor devices are energy-constrained and deployed for real-time monitoring applications. Existing CL schemes mainly exploit information exchange between physical, medium access control (MAC, and routing layers, with only a handful involving application layer. For the first time, we proposed a framework for CL optimization based on user context of ambient intelligence (AmI application and an ontology-based context modeling and reasoning mechanism. We applied the proposed framework to jointly optimize MAC and network (NET layer protocols for WSNs. Extensive evaluations show that the resulting optimization through context awareness and CL interaction for both MAC and NET layer protocols can yield substantial improvements in terms of throughput, packet delivery, delay, and energy performances.

  17. Ambient intelligence context-based cross-layer design in wireless sensor networks.

    Science.gov (United States)

    Liu, Yang; Seet, Boon-Chong; Al-Anbuky, Adnan

    2014-10-14

    By exchanging information directly between non-adjacent protocol layers, cross-layer (CL) interaction can significantly improve and optimize network performances such as energy efficiency and delay. This is particularly important for wireless sensor networks (WSNs) where sensor devices are energy-constrained and deployed for real-time monitoring applications. Existing CL schemes mainly exploit information exchange between physical, medium access control (MAC), and routing layers, with only a handful involving application layer. For the first time, we proposed a framework for CL optimization based on user context of ambient intelligence (AmI) application and an ontology-based context modeling and reasoning mechanism. We applied the proposed framework to jointly optimize MAC and network (NET) layer protocols for WSNs. Extensive evaluations show that the resulting optimization through context awareness and CL interaction for both MAC and NET layer protocols can yield substantial improvements in terms of throughput, packet delivery, delay, and energy performances.

  18. Holistic Cyber-Physical Management for Dependable Wireless Control Systems

    OpenAIRE

    Ma, Yehan; Gunatilaka, Dolvara; Li, Bo; Gonzalez, Humberto; Lu, Chenyang

    2017-01-01

    Wireless sensor-actuator networks (WSANs) are gaining momentum in industrial process automation as a communication infrastructure for lowering deployment and maintenance costs. In traditional wireless control systems the plant controller and the network manager operate in isolation, which ignore the significant influence of network reliability on plant control performance. To enhance the dependability of industrial wireless control, we propose a holistic cyber-physical management framework th...

  19. Layered Video Transmission on Adaptive OFDM Wireless Systems

    Directory of Open Access Journals (Sweden)

    D. Dardari

    2004-09-01

    Full Text Available Future wireless video transmission systems will consider orthogonal frequency division multiplexing (OFDM as the basic modulation technique due to its robustness and low complexity implementation in the presence of frequency-selective channels. Recently, adaptive bit loading techniques have been applied to OFDM showing good performance gains in cable transmission systems. In this paper a multilayer bit loading technique, based on the so called “ordered subcarrier selection algorithm,” is proposed and applied to a Hiperlan2-like wireless system at 5 GHz for efficient layered multimedia transmission. Different schemes realizing unequal error protection both at coding and modulation levels are compared. The strong impact of this technique in terms of video quality is evaluated for MPEG-4 video transmission.

  20. Rendering Intelligence at Physical Layer for Smart Addressing and Multiple Access

    DEFF Research Database (Denmark)

    Sanyal, Rajarshi; Prasad, Ramjee; Cianca, Ernestina

    2010-01-01

    The primary objective of this work is to propose a technique of wireless communication, where we render intelligence to the physical layer. We aim to realize a physical layer that can take part in some processes which is otherwise confined to higher layer signalling activities, like for example...

  1. Identifying Opportunities for Exploiting Cross-Layer Interactions in Adaptive Wireless Systems

    Directory of Open Access Journals (Sweden)

    Troy Weingart

    2007-01-01

    Full Text Available The flexibility of cognitive and software-defined radio heralds an opportunity for researchers to reexamine how network protocol layers operate with respect to providing quality of service aware transmission among wireless nodes. This opportunity is enhanced by the continued development of spectrally responsive devices—ones that can detect and respond to changes in the radio frequency environment. Present wireless network protocols define reliability and other performance-related tasks narrowly within layers. For example, the frame size employed on 802.11 can substantially influence the throughput, delay, and jitter experienced by an application, but there is no simple way to adapt this parameter. Furthermore, while the data link layer of 802.11 provides error detection capabilities across a link, it does not specify additional features, such as forward error correction schemes, nor does it provide a means for throttling retransmissions at the transport layer (currently, the data link and transport layer can function counterproductively with respect to reliability. This paper presents an analysis of the interaction of physical, data link, and network layer parameters with respect to throughput, bit error rate, delay, and jitter. The goal of this analysis is to identify opportunities where system designers might exploit cross-layer interactions to improve the performance of Voice over IP (VoIP, instant messaging (IM, and file transfer applications.

  2. Trusted communications with physical layer security for 5G and beyond

    CERN Document Server

    Duong, Trung Q; Poor, H Vincent

    2017-01-01

    Securely transferring confidential information over a wireless network is a challenging task. This book addresses security issues, not only for 5G but also beyond, using physical layer security technology and techniques.

  3. A primer on physical-layer network coding

    CERN Document Server

    Liew, Soung Chang; Zhang, Shengli

    2015-01-01

    The concept of physical-layer network coding (PNC) was proposed in 2006 for application in wireless networks. Since then it has developed into a subfield of communications and networking with a wide following. This book is a primer on PNC. It is the outcome of a set of lecture notes for a course for beginning graduate students at The Chinese University of Hong Kong. The target audience is expected to have some prior background knowledge in communication theory and wireless communications, but not working knowledge at the research level. Indeed, a goal of this book/course is to allow the reader

  4. Impact of wireless link quality across communication layers

    NARCIS (Netherlands)

    Zhou, J.

    2010-01-01

    Nowadays, wireless networks are used in most of the applications with radio technologies being used in all kinds of wireless networks. In all wireless links, the transmitted packets can be lost. How to identify the quality of a certain wireless link and achieve the best delivery performance over a

  5. A Protocol Layer Trust-Based Intrusion Detection Scheme for Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Jian Wang

    2017-05-01

    Full Text Available This article proposes a protocol layer trust-based intrusion detection scheme for wireless sensor networks. Unlike existing work, the trust value of a sensor node is evaluated according to the deviations of key parameters at each protocol layer considering the attacks initiated at different protocol layers will inevitably have impacts on the parameters of the corresponding protocol layers. For simplicity, the paper mainly considers three aspects of trustworthiness, namely physical layer trust, media access control layer trust and network layer trust. The per-layer trust metrics are then combined to determine the overall trust metric of a sensor node. The performance of the proposed intrusion detection mechanism is then analyzed using the t-distribution to derive analytical results of false positive and false negative probabilities. Numerical analytical results, validated by simulation results, are presented in different attack scenarios. It is shown that the proposed protocol layer trust-based intrusion detection scheme outperforms a state-of-the-art scheme in terms of detection probability and false probability, demonstrating its usefulness for detecting cross-layer attacks.

  6. A Protocol Layer Trust-Based Intrusion Detection Scheme for Wireless Sensor Networks.

    Science.gov (United States)

    Wang, Jian; Jiang, Shuai; Fapojuwo, Abraham O

    2017-05-27

    This article proposes a protocol layer trust-based intrusion detection scheme for wireless sensor networks. Unlike existing work, the trust value of a sensor node is evaluated according to the deviations of key parameters at each protocol layer considering the attacks initiated at different protocol layers will inevitably have impacts on the parameters of the corresponding protocol layers. For simplicity, the paper mainly considers three aspects of trustworthiness, namely physical layer trust, media access control layer trust and network layer trust. The per-layer trust metrics are then combined to determine the overall trust metric of a sensor node. The performance of the proposed intrusion detection mechanism is then analyzed using the t-distribution to derive analytical results of false positive and false negative probabilities. Numerical analytical results, validated by simulation results, are presented in different attack scenarios. It is shown that the proposed protocol layer trust-based intrusion detection scheme outperforms a state-of-the-art scheme in terms of detection probability and false probability, demonstrating its usefulness for detecting cross-layer attacks.

  7. Wireless avionics for space applications of fundamental physics

    Science.gov (United States)

    Wang, Linna; Zeng, Guiming

    2016-07-01

    Fundamental physics (FP) research in space relies on a strong support of spacecraft. New types of spacecraft including reusable launch vehicles, reentry space vehicles, long-term on-orbit spacecraft or other new type of spacecraft will pave the way for FP missions. In order to test FP theories in space, flight conditions have to be controlled to a very high precision, data collection and handling abilities have to be improved, real-time and reliable communications in critical environments are needed. These challenge the existing avionics of spacecraft. Avionics consists of guidance, navigation & control, TT&C, the vehicle management, etc. Wireless avionics is one of the enabling technologies to address the challenges. Reasons are expatiated of why it is of great advantage. This paper analyses the demands for wireless avionics by reviewing the FP missions and on-board wireless systems worldwide. Main types of wireless communication are presented. Preliminary system structure of wireless avionics are given. The characteristics of wireless network protocols and wireless sensors are introduced. Key technologies and design considerations for wireless avionics in space applications are discussed.

  8. Design and Study of Cognitive Network Physical Layer Simulation Platform

    Directory of Open Access Journals (Sweden)

    Yongli An

    2014-01-01

    Full Text Available Cognitive radio technology has received wide attention for its ability to sense and use idle frequency. IEEE 802.22 WRAN, the first to follow the standard in cognitive radio technology, is featured by spectrum sensing and wireless data transmission. As far as wireless transmission is concerned, the availability and implementation of a mature and robust physical layer algorithm are essential to high performance. For the physical layer of WRAN using OFDMA technology, this paper proposes a synchronization algorithm and at the same time provides a public platform for the improvement and verification of that new algorithm. The simulation results show that the performance of the platform is highly close to the theoretical value.

  9. Wireless data transmission for high energy physics applications

    Directory of Open Access Journals (Sweden)

    Dittmeier Sebastian

    2017-01-01

    The WADAPT group (Wireless Allowing Data and Power Transmission has been formed to study the feasibility of wireless data transmission for future tracking detectors. These proceedings cover current developments focused on communication in the 60 GHz band. This frequency band offers a high bandwidth, a small form factor and an already mature technology. Motivation for wireless data transmission for high energy physics application and the developments towards a demonstrator prototype are summarized. Feasibility studies concerning the construction and operation of a wireless transceiver system have been performed. Data transmission tests with a transceiver prototype operating at even higher frequencies in the 240 GHz band are described. Data transmission at rates up to 10 Gb/s have been obtained successfully using binary phase shift keying.

  10. Safe Cooperating Cyber-Physical Systems using Wireless Communication

    DEFF Research Database (Denmark)

    Pop, Paul; Scholle, Detlef; Sljivo, Irfan

    2017-01-01

    communication, multiple stakeholders, dynamic system definitions (openness), and unpredictable operating environments. SafeCOP will provide an approach to the safety assurance of CO-CPS, enabling thus their certification and development. The project will define a runtime manager architecture for runtime......This paper presents an overview of the ECSEL project entitled ―Safe Cooperating Cyber-Physical Systems using Wireless Communication‖ (SafeCOP), which runs during the period 2016–2019. SafeCOP targets safety-related Cooperating Cyber-Physical Systems (CO-CPS) characterised by use of wireless...

  11. Wireless data transmission for high energy physics applications

    Science.gov (United States)

    Dittmeier, Sebastian; Brenner, Richard; Dancila, Dragos; Dehos, Cedric; De Lurgio, Patrick; Djurcic, Zelimir; Drake, Gary; Gonzalez Gimenez, Jose Luis; Gustafsson, Leif; Kim, Do-Won; Locci, Elizabeth; Pfeiffer, Ullrich; Röhrich, Dieter; Rydberg, Anders; Schöning, André; Siligaris, Alexandre; Soltveit, Hans Kristian; Ullaland, Kjetil; Vincent, Pierre; Rodriguez Vazquez, Pedro; Wiedner, Dirk; Yang, Shiming

    2017-08-01

    Silicon tracking detectors operated at high luminosity collider experiments pose a challenge for current and future readout systems regarding bandwidth, radiation, space and power constraints. With the latest developments in wireless communications, wireless readout systems might be an attractive alternative to commonly used wired optical and copper based readout architectures. The WADAPT group (Wireless Allowing Data and Power Transmission) has been formed to study the feasibility of wireless data transmission for future tracking detectors. These proceedings cover current developments focused on communication in the 60 GHz band. This frequency band offers a high bandwidth, a small form factor and an already mature technology. Motivation for wireless data transmission for high energy physics application and the developments towards a demonstrator prototype are summarized. Feasibility studies concerning the construction and operation of a wireless transceiver system have been performed. Data transmission tests with a transceiver prototype operating at even higher frequencies in the 240 GHz band are described. Data transmission at rates up to 10 Gb/s have been obtained successfully using binary phase shift keying.

  12. Worlds largest particle physics laboratory selects Proxim Wireless Mesh

    CERN Multimedia

    2007-01-01

    "Proxim Wireless has announced that the European Organization for Nuclear Research (CERN), the world's largest particle physics laboratory and the birthplace of the World Wide Web, is using it's ORiNOCO AP-4000 mesh access points to extend the range of the laboratory's Wi-Fi network and to provide continuous monitoring of the lab's calorimeters" (1/2 page)

  13. Cross-Layer Optimal Rate Allocation for Heterogeneous Wireless Multicast

    Directory of Open Access Journals (Sweden)

    Amr Mohamed

    2009-01-01

    Full Text Available Heterogeneous multicast is an efficient communication scheme especially for multimedia applications running over multihop networks. The term heterogeneous refers to the phenomenon when multicast receivers in the same session require service at different rates commensurate with their capabilities. In this paper, we address the problem of resource allocation for a set of heterogeneous multicast sessions over multihop wireless networks. We propose an iterative algorithm that achieves the optimal rates for a set of heterogeneous multicast sessions such that the aggregate utility for all sessions is maximized. We present the formulation of the multicast resource allocation problem as a nonlinear optimization model and highlight the cross-layer framework that can solve this problem in a distributed ad hoc network environment with asynchronous computations. Our simulations show that the algorithm achieves optimal resource utilization, guarantees fairness among multicast sessions, provides flexibility in allocating rates over different parts of the multicast sessions, and adapts to changing conditions such as dynamic channel capacity and node mobility. Our results show that the proposed algorithm not only provides flexibility in allocating resources across multicast sessions, but also increases the aggregate system utility and improves the overall system throughput by almost 30% compared to homogeneous multicast.

  14. Cross-Layer Design of Source Rate Control and Congestion Control for Wireless Video Streaming

    Directory of Open Access Journals (Sweden)

    Peng Zhu

    2007-01-01

    Full Text Available Cross-layer design has been used in streaming video over the wireless channels to optimize the overall system performance. In this paper, we extend our previous work on joint design of source rate control and congestion control for video streaming over the wired channel, and propose a cross-layer design approach for wireless video streaming. First, we extend the QoS-aware congestion control mechanism (TFRCC proposed in our previous work to the wireless scenario, and provide a detailed discussion about how to enhance the overall performance in terms of rate smoothness and responsiveness of the transport protocol. Then, we extend our previous joint design work to the wireless scenario, and a thorough performance evaluation is conducted to investigate its performance. Simulation results show that by cross-layer design of source rate control at application layer and congestion control at transport layer, and by taking advantage of the MAC layer information, our approach can avoid the throughput degradation caused by wireless link error, and better support the QoS requirements of the application. Thus, the playback quality is significantly improved, while good performance of the transport protocol is still preserved.

  15. Cross-Layer Explicit Link Status Notification to Improve TCP Performance in Wireless Networks

    Directory of Open Access Journals (Sweden)

    Yun Ji-Hoon

    2009-01-01

    Full Text Available To alleviate the performance degradation of conventional TCP in wireless networks, many schemes have been proposed so far. One category of such schemes is the Explicit Loss Notification (ELN scheme in which TCP senders are notified of wireless losses so as to avoid congestion control against those losses. Thus the key design factor of the ELN scheme is how to detect wireless losses accurately and rapidly. This paper proposes a new ELN scheme, in which wireless losses are detected by monitoring the operation of the wireless link layer. By exploiting such cross-layer design, the proposed scheme can detect wireless losses without additional transmission over the wireless link and thus achieves accurate detection with minimum delay. The proposed scheme additionally sends new information, that is, Explicit Retransmission Start Notification, in order to prevent spurious timeouts of the TCP senders. Furthermore, in order to handle packet reordering and avoid successive shrinking of a congestion window due to multiple packet drops, a new TCP modification is proposed. Through intensive simulations, it is demonstrated that the proposed scheme outperforms the other ELN schemes, and yields the throughput performance of more than 400% of TCP-Reno and 150% of Snoop in the considered environments.

  16. Cross-layer QoS Support for Multimedia Delivery over Wireless Internet

    Directory of Open Access Journals (Sweden)

    Zhang Qian

    2005-01-01

    Full Text Available Delivering multimedia over wireless Internet is a very challenging task. Multimedia delivery inherently has strict quality of service (QoS requirement on bandwidth, delay, and delay jitter. However, the current Internet can only support best-effort service, which imposes varying network conditions during multimedia delivery. The advent of wireless networks further exacerbates the variance of network conditions and brings greater challenges for multimedia delivery. To improve perceived media quality by end users over wireless Internet, QoS supports can be addressed in different layers, including application layer, transport layer, link layer, and so forth. This paper presents a framework, which provides QoS support, for multimedia delivery over wireless Internet, across different layers. To provide efficient QoS support for different types of media over the best-effort networks, we first propose a cross-layer architecture, which combines the application-level, transport-layer, as well as link-layer controls, and then review recent advances in each individual component. Specifically, dynamic estimation of varying channel and network, adaptive and energy-efficient application and link-level error control, efficient congestion control, header compression, adaptive automatic repeat request (ARQ and priority-based scheduling, as well as QoS-adaptive proxy caching technologies are explicitly reviewed in this paper.

  17. Combined bio-inspired/evolutionary computational methods in cross-layer protocol optimization for wireless ad hoc sensor networks

    Science.gov (United States)

    Hortos, William S.

    2011-06-01

    Published studies have focused on the application of one bio-inspired or evolutionary computational method to the functions of a single protocol layer in a wireless ad hoc sensor network (WSN). For example, swarm intelligence in the form of ant colony optimization (ACO), has been repeatedly considered for the routing of data/information among nodes, a network-layer function, while genetic algorithms (GAs) have been used to select transmission frequencies and power levels, physical-layer functions. Similarly, artificial immune systems (AISs) as well as trust models of quantized data reputation have been invoked for detection of network intrusions that cause anomalies in data and information; these act on the application and presentation layers. Most recently, a self-organizing scheduling scheme inspired by frog-calling behavior for reliable data transmission in wireless sensor networks, termed anti-phase synchronization, has been applied to realize collision-free transmissions between neighboring nodes, a function of the MAC layer. In a novel departure from previous work, the cross-layer approach to WSN protocol design suggests applying more than one evolutionary computational method to the functions of the appropriate layers to improve the QoS performance of the cross-layer design beyond that of one method applied to a single layer's functions. A baseline WSN protocol design, embedding GAs, anti-phase synchronization, ACO, and a trust model based on quantized data reputation at the physical, MAC, network, and application layers, respectively, is constructed. Simulation results demonstrate the synergies among the bioinspired/ evolutionary methods of the proposed baseline design improve the overall QoS performance of networks over that of a single computational method.

  18. Apparatus and method supporting wireless access to multiple security layers in an industrial control and automation system or other system

    Science.gov (United States)

    Chen, Yu-Gene T.

    2013-04-16

    A method includes receiving a message at a first wireless node. The first wireless node is associated with a first wired network, and the first wired network is associated with a first security layer. The method also includes transmitting the message over the first wired network when at least one destination of the message is located in the first security layer. The method further includes wirelessly transmitting the message for delivery to a second wireless node when at least one destination of the message is located in a second security layer. The second wireless node is associated with a second wired network, and the second wired network is associated with the second security layer. The first and second security layers may be associated with different security paradigms and/or different security domains. Also, the message could be associated with destinations in the first and second security layers.

  19. A Cross-Layer Routing Design for Multi-Interface Wireless Mesh Networks

    Directory of Open Access Journals (Sweden)

    Tzu-Chieh Tsai

    2009-01-01

    Full Text Available In recent years, Wireless Mesh Networks (WMNs technologies have received significant attentions. WMNs not only accede to the advantages of ad hoc networks but also provide hierarchical multi-interface architecture. Transmission power control and routing path selections are critical issues in the past researches of multihop networks. Variable transmission power levels lead to different network connectivity and interference. Further, routing path selections among different radio interfaces will also produce different intra-/interflow interference. These features tightly affect the network performance. Most of the related works on the routing protocol design do not consider transmission power control and multi-interface environment simultaneously. In this paper, we proposed a cross-layer routing protocol called M2iRi2 which coordinates transmission power control and intra-/interflow interference considerations as routing metrics. Each radio interface calculates the potential tolerable-added transmission interference in the physical layer. When the route discovery starts, the M2iRi2 will adopt the appropriate power level to evaluate each interface quality along paths. The simulation results demonstrate that our design can enhance both network throughput and end-to-end delay.

  20. Energy-Efficient Link-Layer Jamming Attacks against Wireless Sensor Network MAC Protocols

    NARCIS (Netherlands)

    Law, Y.W.; van Hoesel, L.F.W.; Doumen, J.M.; Hartel, Pieter H.; Havinga, Paul J.M.; Atluri, V.; Samarati, P.; Ning, P.; Du, W.

    2005-01-01

    A typical wireless sensor node has little protection against radio jamming. The situation becomes worse if energy efficient jamming can be achieved by exploiting knowledge of the data link layer. Encrypting the packets may help prevent the jammer from taking actions based on the content of the

  1. Two-layer wireless distributed sensor/control network based on RF

    Science.gov (United States)

    Feng, Li; Lin, Yuchi; Zhou, Jingjing; Dong, Guimei; Xia, Guisuo

    2006-11-01

    A project of embedded Wireless Distributed Sensor/Control Network (WDSCN) based on RF is presented after analyzing the disadvantages of traditional measure and control system. Because of high-cost and complexity, such wireless techniques as Bluetooth and WiFi can't meet the needs of WDSCN. The two-layer WDSCN is designed based on RF technique, which operates in the ISM free frequency channel with low power and high transmission speed. Also the network is low cost, portable and moveable, integrated with the technologies of computer network, sensor, microprocessor and wireless communications. The two-layer network topology is selected in the system; a simple but efficient self-organization net protocol is designed to fit the periodic data collection, event-driven and store-and-forward. Furthermore, adaptive frequency hopping technique is adopted for anti-jamming apparently. The problems about power reduction and synchronization of data in wireless system are solved efficiently. Based on the discussion above, a measure and control network is set up to control such typical instruments and sensors as temperature sensor and signal converter, collect data, and monitor environmental parameters around. This system works well in different rooms. Experiment results show that the system provides an efficient solution to WDSCN through wireless links, with high efficiency, low power, high stability, flexibility and wide working range.

  2. Cross-Layer Techniques for Adaptive Video Streaming over Wireless Networks

    Directory of Open Access Journals (Sweden)

    Yufeng Shan

    2005-02-01

    Full Text Available Real-time streaming media over wireless networks is a challenging proposition due to the characteristics of video data and wireless channels. In this paper, we propose a set of cross-layer techniques for adaptive real-time video streaming over wireless networks. The adaptation is done with respect to both channel and data. The proposed novel packetization scheme constructs the application layer packet in such a way that it is decomposed exactly into an integer number of equal-sized radio link protocol (RLP packets. FEC codes are applied within an application packet at the RLP packet level rather than across different application packets and thus reduce delay at the receiver. A priority-based ARQ, together with a scheduling algorithm, is applied at the application layer to retransmit only the corrupted RLP packets within an application layer packet. Our approach combines the flexibility and programmability of application layer adaptations, with low delay and bandwidth efficiency of link layer techniques. Socket-level simulations are presented to verify the effectiveness of our approach.

  3. Cross-Layer Techniques for Adaptive Video Streaming over Wireless Networks

    Science.gov (United States)

    Shan, Yufeng

    2005-12-01

    Real-time streaming media over wireless networks is a challenging proposition due to the characteristics of video data and wireless channels. In this paper, we propose a set of cross-layer techniques for adaptive real-time video streaming over wireless networks. The adaptation is done with respect to both channel and data. The proposed novel packetization scheme constructs the application layer packet in such a way that it is decomposed exactly into an integer number of equal-sized radio link protocol (RLP) packets. FEC codes are applied within an application packet at the RLP packet level rather than across different application packets and thus reduce delay at the receiver. A priority-based ARQ, together with a scheduling algorithm, is applied at the application layer to retransmit only the corrupted RLP packets within an application layer packet. Our approach combines the flexibility and programmability of application layer adaptations, with low delay and bandwidth efficiency of link layer techniques. Socket-level simulations are presented to verify the effectiveness of our approach.

  4. Mechanically flexible wireless multisensor platform for human physical activity and vitals monitoring.

    Science.gov (United States)

    Chuo, Y; Marzencki, M; Hung, B; Jaggernauth, C; Tavakolian, K; Lin, P; Kaminska, B

    2010-10-01

    Practical usability of the majority of current wearable body sensor systems for multiple parameter physiological signal acquisition is limited by the multiple physical connections between sensors and the data-acquisition modules. In order to improve the user comfort and enable the use of these types of systems on active mobile subjects, we propose a wireless body sensor system that incorporates multiple sensors on a single node. This multisensor node includes signal acquisition, processing, and wireless data transmission fitted on multiple layers of a thin flexible substrate with a very small footprint. Considerations for design include size, form factor, reliable body attachment, good signal coupling, low power consumption, and user convenience. The prototype device measures 55 15 mm and is 3 mm thick. The unit is attached to the patient's chest, and is capable of performing simultaneous measurements of parameters, such as body motion, activity intensity, tilt, respiration, cardiac vibration, cardiac potential (ECG), heart rate, and body surface temperature. In this paper, we discuss the architecture of this system, including the multisensor hardware, the firmware, a mobile-phone receiver unit, and assembly of the first proof-of-concept prototype. Preliminary performance results on key elements of the system, such as power consumption, wireless range, algorithm efficiency, ECG signal quality for heart-rate calculations, as well as synchronous ECG and body activity signals are also presented.

  5. A Study of Application Layer Paradigm for Lower Layer Energy Saving Potentials in Cloud-Edge Social User Wireless Image Sharing

    Directory of Open Access Journals (Sweden)

    Wei Wang

    2015-08-01

    Full Text Available Energy saving becomes critical in modern cloud wireless multimedia and mobile communication systems. In this paper we propose to study a new paradigm named application layer Position-Value diversity for wireless image sharing for cloud-edge communications, which has significant energy saving potentials for modern wireless networking systems. In this new paradigm, saving energy is achieved by looking into application layer imaging traffic, in stead of MAC-PHY protocols at lower layers, and partitioning it into important positions and unimportant values. This paradigm could be integrated to existing wavelet-based tree compression, and truncation of image bit streams could be performed with regards to wireless communication energy budget estimation. Simulation results demonstrated that there are significant potentials of communication energy efficiency gain and Quality of Experience (QoE enhancement in wireless image communication systems.

  6. Double-layer video transmission over decode-and-forward wireless relay networks using hierarchical modulation.

    Science.gov (United States)

    Nguyen, Tu V; Cosman, Pamela C; Milstein, Laurence B

    2014-04-01

    We consider a wireless relay network with a single source, a single destination, and a multiple relay. The relays are half-duplex and use the decode-and-forward protocol. The transmit source is a layered video bitstream, which can be partitioned into two layers, a base layer (BL) and an enhancement layer (EL), where the BL is more important than the EL in terms of the source distortion. The source broadcasts both layers to the relays and the destination using hierarchical 16-QAM. Each relay detects and transmits successfully decoded layers to the destination using either hierarchical 16-QAM or QPSK. The destination can thus receive multiple signals, each of which can include either only the BL or both the BL and the EL. We derive the optimal linear combining method at the destination, where the uncoded bit error rate is minimized. We also present a suboptimal combining method with a closed-form solution, which performs very close to the optimal. We use the proposed double-layer transmission scheme with our combining methods for transmitting layered video bitstreams. Numerical results show that the double-layer scheme can gain 2-2.5 dB in channel signal-to-noise ratio or 5-7 dB in video peak signal-to-noise ratio, compared with the classical single-layer scheme using conventional modulation.

  7. Wireless Monitoring of Induction Machine Rotor Physical Variables

    Directory of Open Access Journals (Sweden)

    Jefferson Doolan Fernandes

    2017-11-01

    Full Text Available With the widespread use of electric machines, there is a growing need to extract information from the machines to improve their control systems and maintenance management. The present work shows the development of an embedded system to perform the monitoring of the rotor physical variables of a squirrel cage induction motor. The system is comprised of: a circuit to acquire desirable rotor variable(s and value(s that send it to the computer; a rectifier and power storage circuit that converts an alternating current in a continuous current but also stores energy for a certain amount of time to wait for the motor’s shutdown; and a magnetic generator that harvests energy from the rotating field to power the circuits mentioned above. The embedded system is set on the rotor of a 5 HP squirrel cage induction motor, making it difficult to power the system because it is rotating. This problem can be solved with the construction of a magnetic generator device to avoid the need of using batteries or collector rings and will send data to the computer using a wireless NRF24L01 module. For the proposed system, initial validation tests were made using a temperature sensor (DS18b20, as this variable is known as the most important when identifying the need for maintenance and control systems. Few tests have shown promising results that, with further improvements, can prove the feasibility of using sensors in the rotor.

  8. Wireless Monitoring of Induction Machine Rotor Physical Variables.

    Science.gov (United States)

    Doolan Fernandes, Jefferson; Carvalho Souza, Francisco Elvis; Cipriano Maniçoba, Glauco George; Salazar, Andrés Ortiz; de Paiva, José Alvaro

    2017-11-18

    With the widespread use of electric machines, there is a growing need to extract information from the machines to improve their control systems and maintenance management. The present work shows the development of an embedded system to perform the monitoring of the rotor physical variables of a squirrel cage induction motor. The system is comprised of: a circuit to acquire desirable rotor variable(s) and value(s) that send it to the computer; a rectifier and power storage circuit that converts an alternating current in a continuous current but also stores energy for a certain amount of time to wait for the motor's shutdown; and a magnetic generator that harvests energy from the rotating field to power the circuits mentioned above. The embedded system is set on the rotor of a 5 HP squirrel cage induction motor, making it difficult to power the system because it is rotating. This problem can be solved with the construction of a magnetic generator device to avoid the need of using batteries or collector rings and will send data to the computer using a wireless NRF24L01 module. For the proposed system, initial validation tests were made using a temperature sensor (DS18b20), as this variable is known as the most important when identifying the need for maintenance and control systems. Few tests have shown promising results that, with further improvements, can prove the feasibility of using sensors in the rotor.

  9. Physical parameters collection based on wireless senor network

    Science.gov (United States)

    Chen, Xin; Wu, Hong; Ji, Lei

    2013-12-01

    With the development of sensor technology, wireless senor network has been applied in the medical, military, entertainment field and our daily life. But the existing available wireless senor networks applied in human monitoring system still have some problems, such as big power consumption, low security and so on. To improve senor network applied in health monitoring system, the paper introduces a star wireless senor networks based on msp430 and DSP. We design a low-cost heart-rate monitor senor node. The communication between senor node and sink node is realized according to the newest protocol proposed by the IEEE 802.15.6 Task Group. This wireless senor network will be more energy-efficient and faster compared to traditional senor networks.

  10. The Balanced Cross-Layer Design Routing Algorithm in Wireless Sensor Networks Using Fuzzy Logic

    Science.gov (United States)

    Li, Ning; Martínez, José-Fernán; Díaz, Vicente Hernández

    2015-01-01

    Recently, the cross-layer design for the wireless sensor network communication protocol has become more and more important and popular. Considering the disadvantages of the traditional cross-layer routing algorithms, in this paper we propose a new fuzzy logic-based routing algorithm, named the Balanced Cross-layer Fuzzy Logic (BCFL) routing algorithm. In BCFL, we use the cross-layer parameters’ dispersion as the fuzzy logic inference system inputs. Moreover, we give each cross-layer parameter a dynamic weight according the value of the dispersion. For getting a balanced solution, the parameter whose dispersion is large will have small weight, and vice versa. In order to compare it with the traditional cross-layer routing algorithms, BCFL is evaluated through extensive simulations. The simulation results show that the new routing algorithm can handle the multiple constraints without increasing the complexity of the algorithm and can achieve the most balanced performance on selecting the next hop relay node. Moreover, the Balanced Cross-layer Fuzzy Logic routing algorithm can adapt to the dynamic changing of the network conditions and topology effectively. PMID:26266412

  11. The Balanced Cross-Layer Design Routing Algorithm in Wireless Sensor Networks Using Fuzzy Logic.

    Science.gov (United States)

    Li, Ning; Martínez, José-Fernán; Hernández Díaz, Vicente

    2015-08-10

    Recently, the cross-layer design for the wireless sensor network communication protocol has become more and more important and popular. Considering the disadvantages of the traditional cross-layer routing algorithms, in this paper we propose a new fuzzy logic-based routing algorithm, named the Balanced Cross-layer Fuzzy Logic (BCFL) routing algorithm. In BCFL, we use the cross-layer parameters' dispersion as the fuzzy logic inference system inputs. Moreover, we give each cross-layer parameter a dynamic weight according the value of the dispersion. For getting a balanced solution, the parameter whose dispersion is large will have small weight, and vice versa. In order to compare it with the traditional cross-layer routing algorithms, BCFL is evaluated through extensive simulations. The simulation results show that the new routing algorithm can handle the multiple constraints without increasing the complexity of the algorithm and can achieve the most balanced performance on selecting the next hop relay node. Moreover, the Balanced Cross-layer Fuzzy Logic routing algorithm can adapt to the dynamic changing of the network conditions and topology effectively.

  12. A cross-layer approach for wireless medical video streaming in robotic teleultrasonography.

    Science.gov (United States)

    Martini, Maria G; Istepanian, Robert S H; Mazzotti, Matteo; Philip, Nada

    2007-01-01

    M-health is an emerging area of research integrating emerging wireless technologies with healthcare systems. One of the key challenges in future research in this area, especially from the communications perspective, is medical video streaming over 3G and 4G systems. In this paper, video streaming in a robotic teleultrasonography system through a cross-layer approach based on tailor made controller structures is presented. Simulation results of the proposed system demonstrate the successful performance of the proposed controller structures in this advanced mobile telemedical environment.

  13. Adaptive Multi-Layered Space-Time Block Coded Systems in Wireless Environments

    KAUST Repository

    Al-Ghadhban, Samir

    2014-12-23

    © 2014, Springer Science+Business Media New York. Multi-layered space-time block coded systems (MLSTBC) strike a balance between spatial multiplexing and transmit diversity. In this paper, we analyze the block error rate performance of MLSTBC. In addition, we propose an adaptive MLSTBC schemes that are capable of accommodating the channel signal-to-noise ratio variation of wireless systems by near instantaneously adapting the uplink transmission configuration. The main results demonstrate that significant effective throughput improvements can be achieved while maintaining a certain target bit error rate.

  14. Layered ACO-OFDM for intensity-modulated direct-detection optical wireless transmission.

    Science.gov (United States)

    Wang, Qi; Qian, Chen; Guo, Xuhan; Wang, Zhaocheng; Cunningham, David G; White, Ian H

    2015-05-04

    Layered asymmetrically clipped optical orthogonal frequency division multiplexing (ACO-OFDM) with high spectral efficiency is proposed in this paper for optical wireless transmission employing intensity modulation with direct detection. In contrast to the conventional ACO-OFDM, which only utilizes odd subcarriers for modulation, leading to an obvious spectral efficiency loss, in layered ACO-OFDM, the subcarriers are divided into different layers and modulated by different kinds of ACO-OFDM, which are combined for simultaneous transmission. In this way, more subcarriers are used for data transmission and the spectral efficiency is improved. An iterative receiver is also proposed for layered ACO-OFDM, where the negative clipping distortion of each layer is subtracted once it is detected so that the signals from different layers can be recovered. Theoretical analysis shows that the proposed scheme can improve the spectral efficiency by up to 2 times compared with conventional ACO-OFDM approaches with the same modulation order. Meanwhile, simulation results confirm a considerable signal-to-noise ratio gain over ACO-OFDM at the same spectral efficiency.

  15. Cross-layer protocol design for QoS optimization in real-time wireless sensor networks

    Science.gov (United States)

    Hortos, William S.

    2010-04-01

    The metrics of quality of service (QoS) for each sensor type in a wireless sensor network can be associated with metrics for multimedia that describe the quality of fused information, e.g., throughput, delay, jitter, packet error rate, information correlation, etc. These QoS metrics are typically set at the highest, or application, layer of the protocol stack to ensure that performance requirements for each type of sensor data are satisfied. Application-layer metrics, in turn, depend on the support of the lower protocol layers: session, transport, network, data link (MAC), and physical. The dependencies of the QoS metrics on the performance of the higher layers of the Open System Interconnection (OSI) reference model of the WSN protocol, together with that of the lower three layers, are the basis for a comprehensive approach to QoS optimization for multiple sensor types in a general WSN model. The cross-layer design accounts for the distributed power consumption along energy-constrained routes and their constituent nodes. Following the author's previous work, the cross-layer interactions in the WSN protocol are represented by a set of concatenated protocol parameters and enabling resource levels. The "best" cross-layer designs to achieve optimal QoS are established by applying the general theory of martingale representations to the parameterized multivariate point processes (MVPPs) for discrete random events occurring in the WSN. Adaptive control of network behavior through the cross-layer design is realized through the parametric factorization of the stochastic conditional rates of the MVPPs. The cross-layer protocol parameters for optimal QoS are determined in terms of solutions to stochastic dynamic programming conditions derived from models of transient flows for heterogeneous sensor data and aggregate information over a finite time horizon. Markov state processes, embedded within the complex combinatorial history of WSN events, are more computationally

  16. An Energy-Efficient Link Layer Protocol for Reliable Transmission over Wireless Networks

    Directory of Open Access Journals (Sweden)

    Iqbal Adnan

    2009-01-01

    Full Text Available In multihop wireless networks, hop-by-hop reliability is generally achieved through positive acknowledgments at the MAC layer. However, positive acknowledgments introduce significant energy inefficiencies on battery-constrained devices. This inefficiency becomes particularly significant on high error rate channels. We propose to reduce the energy consumption during retransmissions using a novel protocol that localizes bit-errors at the MAC layer. The proposed protocol, referred to as Selective Retransmission using Virtual Fragmentation (SRVF, requires simple modifications to the positive-ACK-based reliability mechanism but provides substantial improvements in energy efficiency. The main premise of the protocol is to localize bit-errors by performing partial checksums on disjoint parts or virtual fragments of a packet. In case of error, only the corrupted virtual fragments are retransmitted. We develop stochastic models of the Simple Positive-ACK-based reliability, the previously-proposed Packet Length Optimization (PLO protocol, and the SRVF protocol operating over an arbitrary-order Markov wireless channel. Our analytical models show that SRVF provides significant theoretical improvements in energy efficiency over existing protocols. We then use bit-error traces collected over different real networks to empirically compare the proposed and existing protocols. These experimental results further substantiate that SRVF provides considerably better energy efficiency than Simple Positive-ACK and Packet Length Optimization protocols.

  17. Efficient MAC Protocols for Wireless Sensor Networks Endowed with Directive Antennas: A Cross-Layer Solution

    Directory of Open Access Journals (Sweden)

    Manes Gianfranco

    2007-01-01

    Full Text Available This paper deals with a novel MAC layer protocol, namely, directive synchronous transmission asynchronous reception (D-STAR able to space-time synchronize a wireless sensor network (WSN. To this end, D-STAR integrates directional antennas within the communications framework, while taking into account both sleep/active states, according to a cross-layer design. After characterizing the D-STAR protocol in terms of functional characteristics, the related performance is presented, in terms of network lifetime gain, setup latency, and collision probability. It has shown a remarkable gain in terms of energy consumption reduction with respect to the basic approach endowed with omnidirectional antennas, without increasing the signaling overhead nor affecting the setup latency.

  18. Efficient MAC Protocols for Wireless Sensor Networks Endowed with Directive Antennas: A Cross-Layer Solution

    Directory of Open Access Journals (Sweden)

    Gianfranco Manes

    2007-07-01

    Full Text Available This paper deals with a novel MAC layer protocol, namely, directive synchronous transmission asynchronous reception (D-STAR able to space-time synchronize a wireless sensor network (WSN. To this end, D-STAR integrates directional antennas within the communications framework, while taking into account both sleep/active states, according to a cross-layer design. After characterizing the D-STAR protocol in terms of functional characteristics, the related performance is presented, in terms of network lifetime gain, setup latency, and collision probability. It has shown a remarkable gain in terms of energy consumption reduction with respect to the basic approach endowed with omnidirectional antennas, without increasing the signaling overhead nor affecting the setup latency.

  19. Physical Layer Security for Cooperative NOMA Systems

    KAUST Repository

    Chen, Jianchao

    2018-01-09

    In this correspondence, we investigate the physical layer security for cooperative non-orthogonal multiple access (NOMA) systems, where both amplify-and-forward (AF) and decode-and-forward (DF) protocols are considered. More specifically, some analytical expressions are derived for secrecy outage probability (SOP) and strictly positive secrecy capacity (SPSC). Results show that AF and DF almost achieve the same secrecy performance. Moreover, asymptotic results demonstrate that the SOP tends to a constant at high signal-to-noise ratio (SNR). Finally, our results show that the secrecy performance of considered NOMA systems is independent of the channel conditions between the relay and the poor user.

  20. DEVELOPMENT OF WIRELESS TECHNIQUES IN DATA AND POWER TRANSMISSION APPLICATION FOR PARTICLE-PHYSICS DETECTORS

    CERN Document Server

    Brenner, R; Dehos, C; De Lurgio, P; Djurcic, Z; Drake, G; Gonzales Gimenez, JL; Gustafsson, L; Kim, DW; Locci, E; Pfeiffer, U; Röhrich, D; Rydberg, D; Schöning, A; Siligaris, A; Soltveit, HK; Ullaland, K; Vincent, P; Vasquez, PR; Wiedner, D; Yang, S

    2017-01-01

    In the WADAPT project described in this Letter of Intent, we propose to develop wireless techniques for data and power transmission in particle-physics detectors. Wireless techniques have developed extremely fast over the last decade and are now mature for being considered as a promising alternative to cables and optical links that would revolutionize the detector design. The WADAPT consortium has been formed to identify the specific needs of different projects that might benefit from wireless techniques with the objective of providing a common platform for research and development in order to optimize effectiveness and cost. The proposed R&D will aim at designing and testing wireless demonstrators for large instrumentation systems.

  1. Dynamic Wireless Network Based on Open Physical Layer

    Science.gov (United States)

    2011-02-18

    based on the notion of processing soft information is the basic building block for a large number of multi-terminal communication problems , such as...formulations of communication problems are only suitable for point-to-point communications, and in order to address dynamic network problems, new...formulations are needed. We believe that a geometric view is the key of solving the new dynamic communication problems . However, it is important that such new

  2. Development of Wireless Techniques in Data and Power Transmission - Application for Particle Physics Detectors

    CERN Document Server

    Locci, E.; Dehos, C.; De Lurgio, P.; Djurcic, Z.; Drake, G.; Gimenez, J. L. Gonzalez; Gustafsson, L.; Kim, D.W.; Roehrich, D.; Schoening, A.; Siligaris, A.; Soltveit, H.K.; Ullaland, K.; Vincent, P.; Wiednert, D.; Yang, S.; Brenner, R.

    2015-01-01

    Wireless techniques have developed extremely fast over the last decade and using them for data and power transmission in particle physics detectors is not science- fiction any more. During the last years several research groups have independently thought of making it a reality. Wireless techniques became a mature field for research and new developments might have impact on future particle physics experiments. The Instrumentation Frontier was set up as a part of the SnowMass 2013 Community Summer Study [1] to examine the instrumentation R&D for the particle physics research over the coming decades: {\\guillemotleft} To succeed we need to make technical and scientific innovation a priority in the field {\\guillemotright}. Wireless data transmission was identified as one of the innovations that could revolutionize the transmission of data out of the detector. Power delivery was another challenge mentioned in the same report. We propose a collaboration to identify the specific needs of different projects that m...

  3. Physical Layer Security Using Two-Path Successive Relaying

    Directory of Open Access Journals (Sweden)

    Qian Yu Liau

    2016-06-01

    Full Text Available Relaying is one of the useful techniques to enhance wireless physical-layer security. Existing literature shows that employing full-duplex relay instead of conventional half-duplex relay improves secrecy capacity and secrecy outage probability, but this is at the price of sophisticated implementation. As an alternative, two-path successive relaying has been proposed to emulate operation of full-duplex relay by scheduling a pair of half-duplex relays to assist the source transmission alternately. However, the performance of two-path successive relaying in secrecy communication remains unexplored. This paper proposes a secrecy two-path successive relaying protocol for a scenario with one source, one destination and two half-duplex relays. The relays operate alternately in a time division mode to forward messages continuously from source to destination in the presence of an eavesdropper. Analytical results reveal that the use of two half-duplex relays in the proposed scheme contributes towards a quadratically lower probability of interception compared to full-duplex relaying. Numerical simulations show that the proposed protocol achieves the ergodic achievable secrecy rate of full-duplex relaying while delivering the lowest probability of interception and secrecy outage probability compared to the existing half duplex relaying, full duplex relaying and full duplex jamming schemes.

  4. Physical Layer Security Using Two-Path Successive Relaying.

    Science.gov (United States)

    Liau, Qian Yu; Leow, Chee Yen; Ding, Zhiguo

    2016-06-09

    Relaying is one of the useful techniques to enhance wireless physical-layer security. Existing literature shows that employing full-duplex relay instead of conventional half-duplex relay improves secrecy capacity and secrecy outage probability, but this is at the price of sophisticated implementation. As an alternative, two-path successive relaying has been proposed to emulate operation of full-duplex relay by scheduling a pair of half-duplex relays to assist the source transmission alternately. However, the performance of two-path successive relaying in secrecy communication remains unexplored. This paper proposes a secrecy two-path successive relaying protocol for a scenario with one source, one destination and two half-duplex relays. The relays operate alternately in a time division mode to forward messages continuously from source to destination in the presence of an eavesdropper. Analytical results reveal that the use of two half-duplex relays in the proposed scheme contributes towards a quadratically lower probability of interception compared to full-duplex relaying. Numerical simulations show that the proposed protocol achieves the ergodic achievable secrecy rate of full-duplex relaying while delivering the lowest probability of interception and secrecy outage probability compared to the existing half duplex relaying, full duplex relaying and full duplex jamming schemes.

  5. Cross-Layer Active Predictive Congestion Control Protocol for Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Yinfeng Wu

    2009-10-01

    Full Text Available In wireless sensor networks (WSNs, there are numerous factors that may cause network congestion problems, such as the many-to-one communication modes, mutual interference of wireless links, dynamic changes of network topology and the memory-restrained characteristics of nodes. All these factors result in a network being more vulnerable to congestion. In this paper, a cross-layer active predictive congestion control scheme (CL-APCC for improving the performance of networks is proposed. Queuing theory is applied in the CL-APCC to analyze data flows of a single-node according to its memory status, combined with the analysis of the average occupied memory size of local networks. It also analyzes the current data change trends of local networks to forecast and actively adjust the sending rate of the node in the next period. In order to ensure the fairness and timeliness of the network, the IEEE 802.11 protocol is revised based on waiting time, the number of the node‟s neighbors and the original priority of data packets, which dynamically adjusts the sending priority of the node. The performance of CL-APCC, which is evaluated by extensive simulation experiments. is more efficient in solving the congestion in WSNs. Furthermore, it is clear that the proposed scheme has an outstanding advantage in terms of improving the fairness and lifetime of networks.

  6. The SafeCOP ECSEL Project: Safe Cooperating Cyber-Physical Systems Using Wireless Communication

    DEFF Research Database (Denmark)

    Pop, Paul; Scholle, Detlef; Hansson, Hans

    2016-01-01

    communication, multiple stakeholders, dynamic system definitions (openness), and unpredictable operating environments. SafeCOP will provide an approach to the safety assurance of CO-CPS, enabling thus their certification and development. The project will define a runtime manager architecture for runtime......This paper presents an overview of the ECSEL project entitled "Safe Cooperating Cyber-Physical Systems using Wireless Communication" (SafeCOP), which runs during the period 2016 -- 2019. SafeCOP targets safety-related Cooperating Cyber-Physical Systems (CO-CPS) characterised by use of wireless...

  7. Cross-Layer Control with Worst Case Delay Guarantees in Multihop Wireless Networks

    Directory of Open Access Journals (Sweden)

    Shu Fan

    2016-01-01

    Full Text Available The delay guarantee is a challenge to meet different real-time requirements in applications of backpressure-based wireless multihop networks, and therefore, researchers are interested in the possibility of providing bounded end-to-end delay. In this paper, a new cross-layer control algorithm with worst case delay guarantees is proposed. The utility maximization algorithm is developed using a Lyapunov optimization framework. Virtual queues that ensure the worst case delay of nondropped packets are designed. It is proved through rigorous theoretical analyses and verified by simulations that the time average overall utility achieved by the new algorithm can be arbitrarily close to the optimal solution with finite queue backlogs. The simulation results evaluated with Matlab show that the proposed algorithm achieves higher throughput utility with fewer data dropped compared with the existing work.

  8. Physical Layer Secret-Key Generation Scheme for Transportation Security Sensor Network.

    Science.gov (United States)

    Yang, Bin; Zhang, Jianfeng

    2017-06-28

    Wireless Sensor Networks (WSNs) are widely used in different disciplines, including transportation systems, agriculture field environment monitoring, healthcare systems, and industrial monitoring. The security challenge of the wireless communication link between sensor nodes is critical in WSNs. In this paper, we propose a new physical layer secret-key generation scheme for transportation security sensor network. The scheme is based on the cooperation of all the sensor nodes, thus avoiding the key distribution process, which increases the security of the system. Different passive and active attack models are analyzed in this paper. We also prove that when the cooperative node number is large enough, even when the eavesdropper is equipped with multiple antennas, the secret-key is still secure. Numerical results are performed to show the efficiency of the proposed scheme.

  9. Cross-Layer Support for Energy Efficient Routing in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    N. Chilamkurti

    2009-01-01

    Full Text Available The Dynamic Source Routing (DSR algorithm computes a new route when packet loss occurs. DSR does not have an in-built mechanism to determine whether the packet loss was the result of congestion or node failure causing DSR to compute a new route. This leads to inefficient energy utilization when DSR is used in wireless sensor networks. In this work, we exploit cross-layer optimization techniques that extend DSR to improve its routing energy efficiency by minimizing the frequency of recomputed routes. Our proposed approach enables DSR to initiate a route discovery only when link failure occurs. We conducted extensive simulations to evaluate the performance of our proposed cross-layer DSR routing protocol. The simulation results obtained with our extended DSR routing protocol show that the frequency with which new routes are recomputed is 50% lower compared with the traditional DSR protocol. This improvement is attributed to the fact that, with our proposed cross-layer DSR, we distinguish between congestion and link failure conditions, and new routes are recalculated only for the latter.

  10. A Cross-Layer Duty Cycle MAC Protocol Supporting a Pipeline Feature for Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Young-Chon Kim

    2011-05-01

    Full Text Available Although the conventional duty cycle MAC protocols for Wireless Sensor Networks (WSNs such as RMAC perform well in terms of saving energy and reducing end-to-end delivery latency, they were designed independently and require an extra routing protocol in the network layer to provide path information for the MAC layer. In this paper, we propose a new cross-layer duty cycle MAC protocol with data forwarding supporting a pipeline feature (P-MAC for WSNs. P-MAC first divides the whole network into many grades around the sink. Each node identifies its grade according to its logical hop distance to the sink and simultaneously establishes a sleep/wakeup schedule using the grade information. Those nodes in the same grade keep the same schedule, which is staggered with the schedule of the nodes in the adjacent grade. Then a variation of the RTS/CTS handshake mechanism is used to forward data continuously in a pipeline fashion from the higher grade to the lower grade nodes and finally to the sink. No extra routing overhead is needed, thus increasing the network scalability while maintaining the superiority of duty-cycling. The simulation results in OPNET show that P-MAC has better performance than S-MAC and RMAC in terms of packet delivery latency and energy efficiency.

  11. Frame Transmission Efficiency-Based Cross-Layer Congestion Notification Scheme in Wireless Ad Hoc Networks.

    Science.gov (United States)

    He, Huaguang; Li, Taoshen; Feng, Luting; Ye, Jin

    2017-07-15

    Different from the traditional wired network, the fundamental cause of transmission congestion in wireless ad hoc networks is medium contention. How to utilize the congestion state from the MAC (Media Access Control) layer to adjust the transmission rate is core work for transport protocol design. However, recent works have shown that the existing cross-layer congestion detection solutions are too complex to be deployed or not able to characterize the congestion accurately. We first propose a new congestion metric called frame transmission efficiency (i.e., the ratio of successful transmission delay to the frame service delay), which describes the medium contention in a fast and accurate manner. We further present the design and implementation of RECN (ECN and the ratio of successful transmission delay to the frame service delay in the MAC layer, namely, the frame transmission efficiency), a general supporting scheme that adjusts the transport sending rate through a standard ECN (Explicit Congestion Notification) signaling method. Our method can be deployed on commodity switches with small firmware updates, while making no modification on end hosts. We integrate RECN transparently (i.e., without modification) with TCP on NS2 simulation. The experimental results show that RECN remarkably improves network goodput across multiple concurrent TCP flows.

  12. Wireless communications algorithmic techniques

    CERN Document Server

    Vitetta, Giorgio; Colavolpe, Giulio; Pancaldi, Fabrizio; Martin, Philippa A

    2013-01-01

    This book introduces the theoretical elements at the basis of various classes of algorithms commonly employed in the physical layer (and, in part, in MAC layer) of wireless communications systems. It focuses on single user systems, so ignoring multiple access techniques. Moreover, emphasis is put on single-input single-output (SISO) systems, although some relevant topics about multiple-input multiple-output (MIMO) systems are also illustrated.Comprehensive wireless specific guide to algorithmic techniquesProvides a detailed analysis of channel equalization and channel coding for wi

  13. MESHCHORD: A Location-Aware, Cross-Layer Specialization of Chord for Wireless Mesh Networks

    OpenAIRE

    Burresi, Simone; Canali, Claudia; Renda, Maria Elena; Santi, Paolo

    2007-01-01

    Wireless mesh networks are a promising area for the deployment of new wireless communication and networking technologies. In this paper, we address the problem of enabling effective peer-to-peer resource sharing in this type of networks. Starting from the well-known Chord protocol for resource sharing in wired networks, we propose a specialization (called MESHCHORD) that accounts for peculiar features of wireless mesh networks: namely, the availability of a wireless infrastructure, and the 1-...

  14. The art of wireless sensor networks

    CERN Document Server

    2014-01-01

    During the last one and a half decades, wireless sensor networks have witnessed significant growth and tremendous development in both academia and industry.   “The Art of Wireless Sensor Networks: Volume 1: Fundamentals” focuses on the fundamentals concepts in the design, analysis, and implementation of wireless sensor networks. It covers the various layers of the lifecycle of this type of network from the physical layer up to the application layer. Its rationale is that the first volume covers contemporary design issues, tools, and protocols for radio-based two-dimensional terrestrial sensor networks. All the book chapters in this volume include up-to-date research work spanning various classic facets of the physical properties and functional behavior of wireless sensor networks, including physical layer, medium access control, data routing, topology management, mobility management, localization, task management, data management, data gathering, security, middleware, sensor technology, standards, and ...

  15. Cross-layer optimization for video transmission over multirate GMC-CDMA wireless links.

    Science.gov (United States)

    Bandyopadhyay, Saurav K; Partasides, George; Kondi, Lisimachos P

    2008-06-01

    In this paper, we consider the problem of video transmission over wireless generalized multicarrier code division multiple access (GMC-CDMA) systems. Such systems offer deterministic elimination of multiple access interference. A scalable video source codec is used and a multirate setup is assumed, i.e., each video user is allowed to occupy more than one GMC-CDMA channels. Furthermore, each of these channels can utilize a different number of subcarriers. We propose a cross-layer optimization method to select the source coding rate, channel coding rate, number of subcarriers per GMC-CDMA channel and transmission power per GMC-CDMA channel given a maximum transmission power for each video user and an available chip rate. Universal rate distortion characteristics (URDC) are used to approximate the expected distortion at the receiver. The proposed algorithm is optimal in the operational rate distortion sense, subject to the specific setup used and the approximation caused by the use of the URDC. Experimental results are presented and conclusions are drawn.

  16. Achievable Throughput-Based MAC Layer Handoff in IEEE 802.11 Wireless Local Area Networks

    Directory of Open Access Journals (Sweden)

    Wu Haitao

    2009-01-01

    Full Text Available We propose a MAC layer handoff mechanism for IEEE 802.11 Wireless Local Area Networks (WLAN to give benefit to bandwidth-greedy applications at STAs. The proposed mechanism determines an optimal AP with the maximum achievable throughput rather than the best signal condition by estimating the AP's bandwidth with a new on-the-fly measurement method, Transient Frame Capture (TFC, and predicting the actual throughput could be achieved at STAs. Since the TFC is employed based on the promiscuous mode of WLAN NIC, STAs can avoid the service degradation through the current associated AP. In addition, the proposed mechanism is a client-only solution which does not require any modification of network protocol on APs. To evaluate the performance of the proposed mechanism, we develop an analytic model to estimate reliable and accurate bandwidth of the AP and demonstrate through testbed measurement with various experimental study methods. We also validate the fairness of the proposed mechanism through simulation studies.

  17. Physical layer metrics for vertical handover toward OFDM-based networks

    Directory of Open Access Journals (Sweden)

    Oularbi Mohamed

    2011-01-01

    Full Text Available Abstract The emerging trend to provide users with ubiquitous seamless wireless access leads to the development of multi-mode terminals able to smartly switch between heterogeneous wireless networks. This switching process known as vertical handover requires the terminal to first measure various network metrics relevant to decide whether to trigger a vertical handover (VHO or not. This paper focuses on current and next-generation networks that rely on an OFDM physical layer with either a CSMA/CA or an OFDMA multiple-access technique. Synthesis of several signal feature estimators is presented in a unified way in order to propose a set of complementary metrics (SNR, channel occupancy rate, collision rate relevant as inputs of vertical handover decision algorithms. All the proposed estimators are "non-data aided" and only rely on a physical layer processing so that they do not require multi-mode terminals to be first connected to the handover candidate networks. Results based on a detailed performance study are presented to demonstrate the efficiency of the proposed algorithms. In addition, some experimental results have been performed on a RF platform to validate one of the proposed approaches on real signals.

  18. Physical Layer Authentication Enhancement Using Maximum SNR Ratio Based Cooperative AF Relaying

    Directory of Open Access Journals (Sweden)

    Jiazi Liu

    2017-01-01

    Full Text Available Physical layer authentication techniques developed in conventional macrocell wireless networks face challenges when applied in the future fifth-generation (5G wireless communications, due to the deployment of dense small cells in a hierarchical network architecture. In this paper, we propose a novel physical layer authentication scheme by exploiting the advantages of amplify-and-forward (AF cooperative relaying, which can increase the coverage and convergence of the heterogeneous networks. The essence of the proposed scheme is to select the best relay among multiple AF relays for cooperation between legitimate transmitter and intended receiver in the presence of a spoofer. To achieve this goal, two best relay selection schemes are developed by maximizing the signal-to-noise ratio (SNR of the legitimate link to the spoofing link at the destination and relays, respectively. In the sequel, we derive closed-form expressions for the outage probabilities of the effective SNR ratios at the destination. With the help of the best relay, a new test statistic is developed for making an authentication decision, based on normalized channel difference between adjacent end-to-end channel estimates at the destination. The performance of the proposed authentication scheme is compared with that in a direct transmission in terms of outage and spoofing detection.

  19. Medium access control and network layer design for 60 GHz wireless personal area networks

    NARCIS (Netherlands)

    An, X.

    2010-01-01

    The unlicensed frequency band around 60 GHz is a very promising spectrum due to its potential to provide multiple gigabits per second based data rates for short range wireless communication. Hence, 60 GHz radio is an attractive candidate to enable ultra high rate Wireless Personal Area Networks

  20. Cross-Layer Design of an Energy-Efficient Cluster Formation Algorithm with Carrier-Sensing Multiple Access for Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Buratti Chiara

    2005-01-01

    Full Text Available A new energy-efficient scheme for data transmission in a wireless sensor network (WSN is proposed, having in mind a typical application including a sink, which periodically triggers the WSN, and nodes uniformly distributed over a specified area. Routing, multiple access control (MAC, physical, energy, and propagation aspects are jointly taken into account through simulation; however, the protocol design is based on some analytical considerations reported in the appendix. Information routing is based on a clustered self-organized structure; a carrier-sensing multiple access (CSMA protocol is chosen at MAC layer. Two different scenarios are examined, characterized by different channel fading rates. Four versions of our protocol are presented, suitably oriented to the two different scenarios; two of them implement a cross-layer (CL approach, where MAC parameters influence both the network and physical layers. Performance is measured in terms of network lifetime (related to energy efficiency and packet loss rate (related to network availability. The paper discusses the rationale behind the selection of MAC protocols for WSNs and provides a complete model characterization spanning from the network layer to the propagation channel. The advantages of the CL approach, with respect to an algorithm which belongs to the well-known class of low-energy adaptive clustering hierarchy (LEACH protocols, are shown.

  1. Using Wireless Pedometers to Measure Children’s Physical Activity: How Reliable is the Fitbit Zip?

    Directory of Open Access Journals (Sweden)

    Tingting Xu

    2017-07-01

    Full Text Available The purpose of this study is to examine the reliability of wireless pedometers in measuring elementary school children’s physical activity. Activity measurement using a wireless pedometer Fitbit ZipTM was compared to activity measurement using Yamax Digi-WalkerTM SW701 for a group of randomly selected 25 children in Grades 3, 4, and 5. Fitbit ZipTM wireless pedometers were found to have an appropriate degree (Nunnally & Bernstein, 1994 of accuracy and reliability compared to the Yamax Digi-WalkerTM SW701 pedometer. The Fitbit ZipTM wireless pedometer collected more step counts than the Yamax Digi-WalkerTM SW701 pedometer; however, the difference was not statistically significant. Participants reported that they preferred wearing the Fitbit ZipTM to the Yamax Digi-WalkerTM SW701 because the Fitbit ZipTM was more comfortable to wear and less likely to fall off. Participants also reported being more motivated to move while wearing the Fitbit ZipTM.

  2. Cross-layer Control for Adaptive Video Streaming over Wireless Access Networks

    OpenAIRE

    Abdallah AbouSheaisha, Abdallah Sabry

    2016-01-01

    Over the last decade, the wide deployment of wireless access technologies (e.g. WiFi, 3G, and LTE) and the remarkable growth in the volume of streaming video content have significantly altered the telecommunications field. These developments introduce new challenges to the research community including the need to develop new solutions (e.g. traffic models and transport protocols) to address changing traffic patterns and the characteristics of wireless links and the need for new evaluation me...

  3. The Physical Layer Security Experiments of Cooperative Communication System with Different Relay Behaviors

    Directory of Open Access Journals (Sweden)

    Yishan Su

    2017-04-01

    Full Text Available Physical layer security is an attractive security mechanism, which exploits the randomness characteristics of wireless transmission channel to achieve security. However, it is hampered by the limitation of the channel condition that the main channel must be better than the eavesdropper channel. To alleviate the limitation, cooperative communication is introduced. Few studies have investigated the physical layer security of the relay transmission model. In this paper, we performed some experiments to evaluate the physical layer security of a cooperative communication system, with a relay operating in decode-and-forward (DF cooperative mode, selfish and malicious behavior in real non-ideal transmission environment. Security performance is evaluated in terms of the probability of non-zero secrecy capacity. Experiments showed some different results compared to theoretical simulation: (1 to achieve the maximum secrecy capacity, the optimal relay power according to the experiments result is larger than that of ideal theoretical results under both cooperative and selfish behavior relay; (2 the relay in malicious behavior who forwards noise to deteriorate the main channel may deteriorate the eavesdropper channel more seriously than the main channel; (3 the optimal relay positions under cooperative and selfish behavior relay cases are both located near the destination because of non-ideal transmission.

  4. The Physical Layer Security Experiments of Cooperative Communication System with Different Relay Behaviors.

    Science.gov (United States)

    Su, Yishan; Han, Guangyao; Fu, Xiaomei; Xu, Naishen; Jin, Zhigang

    2017-04-06

    Physical layer security is an attractive security mechanism, which exploits the randomness characteristics of wireless transmission channel to achieve security. However, it is hampered by the limitation of the channel condition that the main channel must be better than the eavesdropper channel. To alleviate the limitation, cooperative communication is introduced. Few studies have investigated the physical layer security of the relay transmission model. In this paper, we performed some experiments to evaluate the physical layer security of a cooperative communication system, with a relay operating in decode-and-forward (DF) cooperative mode, selfish and malicious behavior in real non-ideal transmission environment. Security performance is evaluated in terms of the probability of non-zero secrecy capacity. Experiments showed some different results compared to theoretical simulation: (1) to achieve the maximum secrecy capacity, the optimal relay power according to the experiments result is larger than that of ideal theoretical results under both cooperative and selfish behavior relay; (2) the relay in malicious behavior who forwards noise to deteriorate the main channel may deteriorate the eavesdropper channel more seriously than the main channel; (3) the optimal relay positions under cooperative and selfish behavior relay cases are both located near the destination because of non-ideal transmission.

  5. Structure and physical properties of layered ferrofluids

    Directory of Open Access Journals (Sweden)

    M. Ghominezhad

    2003-06-01

    Full Text Available We have successfully synthesised and studied the bilayer ferrofluids with sodium oleate C18H33O2-Na+ as the first layer and sodium dodecyle sulfate C12H25Na+SO-4 (SDS as the second layer surfactants. The solid phase of the ferromagnetic colloidal system was formed based on quick chemical growth. The adsorption of oleate molecule on the surface of the solid solution has been investigated by IR spectroscopy. The XRD analysis of the oxides and titration by KMnO4 show that the closest stoichiometry of Fe3O4 is achieved by the increase of Fe3+/Fe2+ molar ratio up to 2/3 with extra acidifying for prevention of uncontrolled Fe2+ excitation. The X-ray diffraction and magnetic measurements by VSM were employed for determining the particle magnetic and crystal sizes. The particle size was determined to be 9-13 nm. The magnetisation measurement of the ferrofluid indicate a saturation magnetisation of about 1.5 emu/g and reduced initial susceptibility of 6 10-3 Oe-1, which are the proper values for a superparamagnet. However, the saturation magnetisation shows a local maxima at SDS concentration about 0.07M, which is different from the behaviour presented by the mono-layer ferrofuids.

  6. Visible Light Communication Physical Layer Design for Jist Simulation

    Directory of Open Access Journals (Sweden)

    Tomaš Boris

    2014-12-01

    Full Text Available Current advances in computer networking consider using visible light spectrum to encode and decode digital data. This approach is relatively non expensive. However, designing appropriate MAC or any other upper layer protocol for Visible Light Communication (VLC requires appropriate hardware. This paper proposes and implements such hardware simulation (physical layer that is compatible with existing network stack.

  7. Advent of PHY and MAC Layer Operations in Wireless and Local Personal Area Network

    Directory of Open Access Journals (Sweden)

    Shama B N

    2013-12-01

    Full Text Available Carrier sense multiple access with collision avoidance (CSMA-CA algorithm is implemented on AT86RF230 Trans-receiver, which is done in Physical layer. As the number of nodes is increased, power efficiency of CSMA-CA algorithm is decreased. Power efficiency is improved in terms of Throughput and Block acknowledgement. Fragmentation increases the reliability of correct transmission. Both high and low data rate can be supported through multirate design. Data Scrambler and Data Whitener is implemented. Finally the transmitted and received information is analyzed using Analyzer.

  8. Wireless communications resource management

    CERN Document Server

    Lee, B; Seo, H

    2009-01-01

    Wireless technologies continue to evolve to address the insatiable demand for faster response times, larger bandwidth, and reliable transmission. Yet as the industry moves toward the development of post 3G systems, engineers have consumed all the affordable physical layer technologies discovered to date. This has necessitated more intelligent and optimized utilization of available wireless resources. Wireless Communications Resource Managem ent, Lee, Park, and Seo cover all aspects of this critical topic, from the preliminary concepts and mathematical tools to detailed descriptions of all the resource management techniques. Readers will be able to more effectively leverage limited spectrum and maximize device battery power, as well as address channel loss, shadowing, and multipath fading phenomena.

  9. A wireless body area network of intelligent motion sensors for computer assisted physical rehabilitation

    Directory of Open Access Journals (Sweden)

    Otto Chris

    2005-03-01

    Full Text Available Abstract Background Recent technological advances in integrated circuits, wireless communications, and physiological sensing allow miniature, lightweight, ultra-low power, intelligent monitoring devices. A number of these devices can be integrated into a Wireless Body Area Network (WBAN, a new enabling technology for health monitoring. Methods Using off-the-shelf wireless sensors we designed a prototype WBAN which features a standard ZigBee compliant radio and a common set of physiological, kinetic, and environmental sensors. Results We introduce a multi-tier telemedicine system and describe how we optimized our prototype WBAN implementation for computer-assisted physical rehabilitation applications and ambulatory monitoring. The system performs real-time analysis of sensors' data, provides guidance and feedback to the user, and can generate warnings based on the user's state, level of activity, and environmental conditions. In addition, all recorded information can be transferred to medical servers via the Internet and seamlessly integrated into the user's electronic medical record and research databases. Conclusion WBANs promise inexpensive, unobtrusive, and unsupervised ambulatory monitoring during normal daily activities for prolonged periods of time. To make this technology ubiquitous and affordable, a number of challenging issues should be resolved, such as system design, configuration and customization, seamless integration, standardization, further utilization of common off-the-shelf components, security and privacy, and social issues.

  10. Quality of the wireless electrocardiogram signal during physical exercise in different age groups.

    Science.gov (United States)

    Takalokastari, Tiina; Alasaarela, Esko; Kinnunen, Matti; Jämsä, Timo

    2014-05-01

    Electrocardiographic (ECG) recordings are usually obtained at rest. In many cases, real-time ECG monitoring in the home environment during daily life would be useful, but that requires a wireless device. The purpose of this paper is to evaluate the quality of the wireless ECG signals during physical activities. The test data were collected both in a normal exercise environment and in a radio frequency (RF)-shielded and noiseless environment. 30 test persons performed running, biking, or Nordic walking exercises in normal indoor conditions, while electrical activity of the heart and acceleration of the body were measured by a VitalSens VS100 device (InteleSens). The acceleration data were also acquired with a DogIMU movement sensor (Domuset). Six more persons were measured in an RF-shielded environment, while they followed a specific list of exercises to verify the tests of the first group. The list consisted of exercise movements, thought to introduce disturbance in the ECG signals. The collected data were classified into three quality classes, good (3%), moderate (66%), and poor (31%), based on the recognition of the QRS-complex and R-R intervals as well as the amount of disturbance. The accelerometer data were compared to the amount of noise in the ECG data. A clear correlation was found between increased noise and level of activity. Increasing age also appeared to decrease the ECG signal quality. Careful consideration of the quality of the data versus positive and negative features of wirelessness shows great potential for the wireless ECG in future home healthcare and fitness industries.

  11. Layer-component-based communication stack framework for wireless residential control systems

    DEFF Research Database (Denmark)

    Torbensen, Rune Sonnich; Hjorth, Theis

    2010-01-01

    of nodes such as bridges, controllers, sensor/actuators - as well as secure communication between them. A special messaging system facilitates inter-component communication, and a Virtual Port Service protocol enables resource addressing. The end-devices in the heterogeneous network are made accessible...... on a common IP infrastructure, regardless of individual wireless technology. Legacy home automation devices are also supported. A prototype has been implemented on multiple resource-constrained hardware platforms, to demonstrate that the solution is both feasible for low-cost devices and portable. It has been...... shown how the framework facilitates fast prototyping and makes developing secure wireless control systems less complex....

  12. Layer-component-based communication stack framework for wireless residential control systems

    DEFF Research Database (Denmark)

    Torbensen, R.; Hjorth, Theis S.

    2011-01-01

    of nodes such as bridges, controllers, sensor/actuators – as well as secure communication between them. A special messaging system facilitates inter-component communication, and a Virtual Port Service protocol enables resource addressing. The end-devices in the heterogeneous network are made accessible...... on a common IP infrastructure, regardless of individual wireless technology. Legacy home automation devices are also supported. A prototype has been implemented on multiple resource-constrained hardware platforms, to demonstrate that the solution is both feasible for low-cost devices and portable. It has been...... shown how the framework facilitates fast prototyping and makes developing secure wireless control systems less complex....

  13. Competition at the Wireless Sensor Network MAC Layer: Low Power Probing interfering with X-MAC

    Energy Technology Data Exchange (ETDEWEB)

    Zacharias, Sven; Newe, Thomas, E-mail: Sven.Zacharias@ul.ie [University of Limerick (Ireland)

    2011-08-17

    Wireless Sensor Networks (WSNs) combine sensors with computer networks and enable very dense, in-situ and live measurements of data over a large area. Since this emerging technology has the potential to be embedded almost everywhere for numberless applications, interference between different networks can become a serious issue. For most WSNs, it is assumed today that the network medium access is non-competitive. On the basis of X-MAC interfered by Low Power Probing, this paper shows the danger and the effects of different sensor networks communicating on a single wireless channel of the 2.4 GHz band, which is used by the IEEE 802.15.4 standard.

  14. Atomic Layer Thermopile Materials: Physics and Application

    Directory of Open Access Journals (Sweden)

    P. X. Zhang

    2008-01-01

    Full Text Available New types of thermoelectric materials characterized by highly anisotropic Fermi surfaces and thus anisotropic Seebeck coefficients are reviewed. Early studies revealed that there is an induced voltage in high TC oxide superconductors when the surface of the films is exposed to short light pulses. Subsequent investigations proved that the effect is due to anisotropic components of the Seebeck tensor, and the type of materials is referred to atomic layer thermopile (ALT. Our recent studies indicate that multilayer thin films at the nanoscale demonstrate enhanced ALT properties. This is in agreement with the prediction in seeking the larger figure of merit (ZT thermoelectric materials in nanostructures. The study of ALT materials provides both deep insight of anisotropic transport property of these materials and at the same time potential materials for applications, such as light detector and microcooler. By measuring the ALT properties under various perturbations, it is found that the information on anisotropic transport properties can be provided. The information sometimes is not easily obtained by other tools due to the nanoscale phase coexistence in these materials. Also, some remained open questions and future development in this research direction have been well discussed.

  15. PERFORMANCE STUDY OF DISTRIBUTED COORDINATION FUNCTION OVER IEEE 802.11A PHYSICAL LAYER

    Directory of Open Access Journals (Sweden)

    S. SELVAKENEDDY

    2006-06-01

    Full Text Available IEEE 802.11a is one of the latest standards to be released by the IEEE Project 802 for wireless LANs. It has specified an additional physical layer (PHY to support higher data rates, and is termed as the orthogonal frequency division multiplexing (OFDM. In order to exploit its benefits, one of the medium access control (MAC protocols specified in the IEEE 802.11 specification is called distributed coordination function (DCF. DCF is a carrier sense multiple access with collision avoidance (CSMA/CA scheme with slotted binary exponential backoff. The frames can be transmitted using the basic access scheme or the RTS/CTS scheme in DCF. It was demonstrated previously that the RTS/CTS mechanism works well in most scenarios for the previously specified PHYs. In this work, a simple simulator is developed to verify the scalability of the RTS/CTS mechanism over OFDM PHY, which supports much higher data rates.

  16. Quantum photonic network and physical layer security.

    Science.gov (United States)

    Sasaki, Masahide; Endo, Hiroyuki; Fujiwara, Mikio; Kitamura, Mitsuo; Ito, Toshiyuki; Shimizu, Ryosuke; Toyoshima, Morio

    2017-08-06

    Quantum communication and quantum cryptography are expected to enhance the transmission rate and the security (confidentiality of data transmission), respectively. We study a new scheme which can potentially bridge an intermediate region covered by these two schemes, which is referred to as quantum photonic network. The basic framework is information theoretically secure communications in a free space optical (FSO) wiretap channel, in which an eavesdropper has physically limited access to the main channel between the legitimate sender and receiver. We first review a theoretical framework to quantify the optimal balance of the transmission efficiency and the security level under power constraint and at finite code length. We then present experimental results on channel characterization based on 10 MHz on-off keying transmission in a 7.8 km terrestrial FSO wiretap channel.This article is part of the themed issue 'Quantum technology for the 21st century'. © 2017 The Author(s).

  17. Quantum photonic network and physical layer security

    Science.gov (United States)

    Sasaki, Masahide; Endo, Hiroyuki; Fujiwara, Mikio; Kitamura, Mitsuo; Ito, Toshiyuki; Shimizu, Ryosuke; Toyoshima, Morio

    2017-06-01

    Quantum communication and quantum cryptography are expected to enhance the transmission rate and the security (confidentiality of data transmission), respectively. We study a new scheme which can potentially bridge an intermediate region covered by these two schemes, which is referred to as quantum photonic network. The basic framework is information theoretically secure communications in a free space optical (FSO) wiretap channel, in which an eavesdropper has physically limited access to the main channel between the legitimate sender and receiver. We first review a theoretical framework to quantify the optimal balance of the transmission efficiency and the security level under power constraint and at finite code length. We then present experimental results on channel characterization based on 10 MHz on-off keying transmission in a 7.8 km terrestrial FSO wiretap channel. This article is part of the themed issue 'Quantum technology for the 21st century'.

  18. Cross-layer analyses of QoS parameters in wireless sensor networks

    NARCIS (Netherlands)

    Masoum, Alireza; Meratnia, Nirvana; Dilo, Arta; Taghikhaki, Zahra; Havinga, Paul J.M.

    Providing reliable and timely information is one of the important tasks of wireless sensor networks. To this end, recently quality of service (QoS) satisfying end users and matching WSN constrains, has become an important research topic. However, majority of research in this area has overlooked the

  19. Signalling and detection of parallel triple layer wireless sensor networks with M-ary orthogonal modulation

    NARCIS (Netherlands)

    Mahboob, M.

    2012-01-01

    Recent advances in the underlying technologies of WSNs (Wireless Sensor Networks) have led to its use in different applications, in fields as diverse as battlefield applications, temperature control and healthcare. Research in the different aspects of WSNs is therefore in full swing, in both

  20. A review of protocol implementations and energy efficient cross-layer design for wireless body area networks.

    Science.gov (United States)

    Hughes, Laurie; Wang, Xinheng; Chen, Tao

    2012-11-02

    The issues inherent in caring for an ever-increasing aged population has been the subject of endless debate and continues to be a hot topic for political discussion. The use of hospital-based facilities for the monitoring of chronic physiological conditions is expensive and ties up key healthcare professionals. The introduction of wireless sensor devices as part of a Wireless Body Area Network (WBAN) integrated within an overall eHealth solution could bring a step change in the remote management of patient healthcare. Sensor devices small enough to be placed either inside or on the human body can form a vital part of an overall health monitoring network. An effectively designed energy efficient WBAN should have a minimal impact on the mobility and lifestyle of the patient. WBAN technology can be deployed within a hospital, care home environment or in the patient’s own home. This study is a review of the existing research in the area of WBAN technology and in particular protocol adaptation and energy efficient cross-layer design. The research reviews the work carried out across various layers of the protocol stack and highlights how the latest research proposes to resolve the various challenges inherent in remote continual healthcare monitoring.

  1. A Review of Protocol Implementations and Energy Efficient Cross-Layer Design for Wireless Body Area Networks

    Directory of Open Access Journals (Sweden)

    Tao Chen

    2012-11-01

    Full Text Available The issues inherent in caring for an ever-increasing aged population has been the subject of endless debate and continues to be a hot topic for political discussion. The use of hospital-based facilities for the monitoring of chronic physiological conditions is expensive and ties up key healthcare professionals. The introduction of wireless sensor devices as part of a Wireless Body Area Network (WBAN integrated within an overall eHealth solution could bring a step change in the remote management of patient healthcare. Sensor devices small enough to be placed either inside or on the human body can form a vital part of an overall health monitoring network. An effectively designed energy efficient WBAN should have a minimal impact on the mobility and lifestyle of the patient. WBAN technology can be deployed within a hospital, care home environment or in the patient’s own home. This study is a review of the existing research in the area of WBAN technology and in particular protocol adaptation and energy efficient cross-layer design. The research reviews the work carried out across various layers of the protocol stack and highlights how the latest research proposes to resolve the various challenges inherent in remote continual healthcare monitoring.

  2. A Cross-Layer Key Management Scheme for MIPv6 Fast Handover over IEEE 802.11 Wireless LAN

    Directory of Open Access Journals (Sweden)

    Chang-Seop Park

    2015-01-01

    Full Text Available A new key management and security scheme is proposed to integrate Layer Two (L2 and Layer Three (L3 keys for secure and fast Mobile IPv6 handover over IEEE 802.11 Wireless Local Area Network (WLAN. Unlike the original IEEE 802.11-based Mobile IPv6 Fast Handover (FMIPv6 that requires time-consuming IEEE 802.1x-based Extensible Authentication Protocol (EAP authentication on each L3 handover, the newly proposed key management and security scheme requires only one 802.1x-EAP regardless of how many L3 handovers occur. Therefore, the proposed scheme reduces the handover latency that results from a lengthy 802.1x-based EAP. The proposed key management and security scheme is extensively analyzed in terms of security and performance, and the proposed security scheme is shown to be more secure than those that were previously proposed.

  3. Wireless networks and security issues, challenges and research trends

    CERN Document Server

    Pathan, Al-Sakib

    2013-01-01

     “Wireless Networks and Security” provides a broad coverage of wireless security issues including cryptographic coprocessors, encryption, authentication, key management, attacks and countermeasures, secure routing, secure medium access control, intrusion detection, epidemics, security performance analysis, security issues in applications. The contributions identify various vulnerabilities in the physical layer, MAC layer, network layer, transport layer, and application layer, and focus on ways of strengthening security mechanisms and services throughout the layers. This carefully edited monograph is targeting  for researchers, post-graduate students in universities, academics, and industry practitioners or professionals.  

  4. Deterministic and stochastic channel models implemented in a physical layer simulator for Car-to-X communications

    Science.gov (United States)

    Nuckelt, J.; Schack, M.; Kürner, T.

    2011-08-01

    This paper presents a physical (PHY) layer simulator of the IEEE 802.11p standard for Wireless Access in Vehicular Environments (WAVE). This simulator allows the emulation of data transmission via different radio channels as well as the analysis of the resulting system behavior. The PHY layer simulator is part of an integrated simulation platform including a traffic model to generate realistic mobility of vehicles and a 3D ray-optical model to calculate the multipath propagation channel between transmitter and receiver. Besides deterministic channel modeling by means of ray-optical modeling, the simulator can also be used with stochastic channel models of typical vehicular scenarios. With the aid of this PHY layer simulator and the integrated channel models, the resulting performance of the system in terms of bit and packet error rates of different receiver designs can be analyzed in order to achieve a robust data transmission.

  5. BI-LAYER HYBRID BIOCOMPOSITES: CHEMICAL RESISTANT AND PHYSICAL PROPERTIES

    OpenAIRE

    Mohammad Jawaid,; H. P. S. Abdul Khalil,; Azman Hassan,; Elgorban Abdallah

    2012-01-01

    Bi-layer hybrid biocomposites were fabricated by hand lay-up technique by reinforcing oil palm empty fruit bunch (EFB) and jute fibre mats with epoxy matrix. Hybrid composites were prepared by varying the relative weight fraction of the two fibres. The physical (void content, density, dimensional stability), and chemical resistant properties of hybrid composites were evaluated. When the jute fibre loading increased in hybrid composites, physical and chemical resistant properties of hybrid com...

  6. Protocol design and analysis for cooperative wireless networks

    CERN Document Server

    Song, Wei; Jin, A-Long

    2017-01-01

    This book focuses on the design and analysis of protocols for cooperative wireless networks, especially at the medium access control (MAC) layer and for crosslayer design between the MAC layer and the physical layer. It highlights two main points that are often neglected in other books: energy-efficiency and spatial random distribution of wireless devices. Effective methods in stochastic geometry for the design and analysis of wireless networks are also explored. After providing a comprehensive review of existing studies in the literature, the authors point out the challenges that are worth further investigation. Then, they introduce several novel solutions for cooperative wireless network protocols that reduce energy consumption and address spatial random distribution of wireless nodes. For each solution, the book offers a clear system model and problem formulation, details of the proposed cooperative schemes, comprehensive performance analysis, and extensive numerical and simulation results that validate th...

  7. Random Access with Physical-layer Network Coding

    NARCIS (Netherlands)

    Goseling, J.; Gastpar, M.C.; Weber, J.H.

    2013-01-01

    Leveraging recent progress in compute-and-forward we propose an approach to random access that is based on physical-layer network coding: When packets collide, it is possible to recover a linear combination of the packets at the receiver. Over many rounds of transmission, the receiver can thus

  8. Secure physical layer using dynamic permutations in cognitive OFDMA systems

    DEFF Research Database (Denmark)

    Meucci, F.; Wardana, Satya Ardhy; Prasad, Neeli R.

    2009-01-01

    of the permutations are analyzed for several DSA patterns. Simulations are performed according to the parameters of the IEEE 802.16e system model. The securing mechanism proposed provides intrinsic PHY layer security and it can be easily implemented in the current IEEE 802.16 standard applying almost negligible......This paper proposes a novel lightweight mechanism for a secure Physical (PHY) layer in Cognitive Radio Network (CRN) using Orthogonal Frequency Division Multiplexing (OFDM). User's data symbols are mapped over the physical subcarriers with a permutation formula. The PHY layer is secured...... with a random and dynamic subcarrier permutation which is based on a single pre-shared information and depends on Dynamic Spectrum Access (DSA). The dynamic subcarrier permutation is varying over time, geographical location and environment status, resulting in a very robust protection that ensures...

  9. OFDM systems for wireless communications

    CERN Document Server

    Narasimhamurthy, Adarsh

    2010-01-01

    Orthogonal Frequency Division Multiplexing (OFDM) systems are widely used in the standards for digital audio/video broadcasting, WiFi and WiMax. Being a frequency-domain approach to communications, OFDM has important advantages in dealing with the frequency-selective nature of high data rate wireless communication channels. As the needs for operating with higher data rates become more pressing, OFDM systems have emerged as an effective physical-layer solution.This short monograph is intended as a tutorial which highlights the deleterious aspects of the wireless channel and presents why OFDM is

  10. Microwave energy harvesting based on metamaterial absorbers with multi-layered square split rings for wireless communications

    Science.gov (United States)

    Karaaslan, Muharrem; Bağmancı, Mehmet; Ünal, Emin; Akgol, Oguzhan; Sabah, Cumali

    2017-06-01

    We propose the design of a multiband absorber based on multi-layered square split ring (MSSR) structure. The multi-layered metamaterial structure is designed to be used in the frequency bands such as WIMAX, WLAN and satellite communication region. The absorption levels of the proposed structure are higher than 90% for all resonance frequencies. In addition, the incident angle and polarization dependence of the multi-layered metamaterial absorber and harvester is also investigated and it is observed that the structure has polarization angle independent frequency response with good absorption characteristics in the entire working frequency band. The energy harvesting ratios of the structure is investigated especially for the resonance frequencies at which the maximum absorption occurs. The energy harvesting potential of the proposed MSSRs is as good as those of the structures given in the literature. Therefore, the suggested design having good absorption, polarization and angle independent characteristics with a wide bandwidth is a potential candidate for future energy harvesting applications in commonly used wireless communication bands, namely WIMAX, WLAN and satellite communication bands.

  11. Cross-Layer Resource Scheduling for Video Traffic in the Downlink of OFDMA-Based Wireless 4G Networks

    Directory of Open Access Journals (Sweden)

    2009-03-01

    Full Text Available Designing scheduling algorithms at the medium access control (MAC layer relies on a variety of parameters including quality of service (QoS requirements, resource allocation mechanisms, and link qualities from the corresponding layers. In this paper, we present an efficient cross-layer scheduling scheme, namely, Adaptive Token Bank Fair Queuing (ATBFQ algorithm, which is designed for packet scheduling and resource allocation in the downlink of OFDMA-based wireless 4G networks. This algorithm focuses on the mechanisms of efficiency and fairness in multiuser frequency-selective fading environments. We propose an adaptive method for ATBFQ parameter selection which integrates packet scheduling with resource mapping. The performance of the proposed scheme is compared to that of the round-robin (RR and the score-based (SB schedulers. It is observed from simulation results that the proposed scheme with adaptive parameter selection provides enhanced performance in terms of queuing delay, packet dropping rate, and cell-edge user performance, while the total sector throughput remains comparable. We further analyze and compare achieved fairness of the schemes in terms of different fairness indices available in literature.

  12. Extending Wireless Broadband Network Architectures with Home Gateways, Localization, and Physical Environment Surveillance

    DEFF Research Database (Denmark)

    Jelling Kristoffersen, Kåre; Kjærgaard, Mikkel Baun; Chen, Jianjun

    2005-01-01

    is initially demonstrated in a 52 DECT base station installation covering four office buildings of total 4500 m2 . Finally the paper proposes the application of a commercial off-the-shelf wireless broadband network as a sensor network, without any additional hardware, for physical intrusion detection of e...... on the network. Then the extension of a DECT network into determining the location of DECT terminals, aiming at the design of a location based system is described. The location method is based on the received signal strength measurements in the DECT clients communication with the base stations. The localization.......g. an indoor site. It is demonstrated how it can be used for detecting door opening and person passing, in an environment of 243 m2 with three rooms and a corridor, using three low cost access points....

  13. GPR determination of physical parameters of railway structural layers

    Science.gov (United States)

    Khakiev, Zelimkhan; Shapovalov, Vladimir; Kruglikov, Alexander; Yavna, Victor

    2014-07-01

    The paper studies the possibility of quantitative processing of the GPR data for determining the refractive index and conductivity of motor road and railway constructional layers. The main objective of the work is to develop a method of obtaining quantitative information on chosen physical properties of soil layers from regular GPR surveys. Theoretical study of plane electromagnetic wave propagation is made for the model of layered soil structure. As a result of the study appropriate equation systems are derived for the calculations of refractive index and conductivity of structural layers. Based on these equations the method of quantitative processing of radargrams is proposed. The method includes the GPR data processing algorithm and theoretical techniques for determination of refractive index and conductivity of the structural layers. The applicability of the proposed method was initially validated by lab experiments using radargrams of the soil samples with specified values of moisture and conductivity and reliable results were achieved. The methods were also successfully used while monitoring the long term seasonal changes in structural layers of several Russian railways sections. The contamination of ballast material is also evaluated by this method in addition to the refractive index and conductivity.

  14. MAC-layer protocol for TCP fairness in Wireless Mesh Networks

    KAUST Repository

    Nawab, Faisal

    2012-08-01

    In this paper we study the interactions of TCP and IEEE 802.11 MAC in Wireless Mesh Networks (WMNs). We use a Markov chain to capture the behavior of TCP sessions, particularly the impact on network throughput performance due to the effect of queue utilization and packet relaying. A closed form solution is derived to numerically determine the throughput. Based on the developed model, we propose a distributed MAC protocol to alleviate the unfairness problem in WMNs. Our protocol uses the age of packet as a priority metric for packet scheduling. Simulation is conducted to validate our model and to illustrate the fairness characteristics of our proposed MAC protocol. We conclude that we can achieve fairness with only little impact on network capacity.

  15. Innovative energy resourceful merged layer technique (MLT of node deployment to enhance the lifetime of wireless sensor networks

    Directory of Open Access Journals (Sweden)

    S.G. Susila

    2015-03-01

    Full Text Available A wireless sensor network (WSN is consisting of anthology of large number of small sensor nodes which are deployed in a defined area to observe the surroundings parameters. Since, energy consumption is significant challenge in WSN. As sensor nodes are equipped with battery which has limited energy. Energy efficient information processing is most importance for many routing protocols were proposed to increase the lifetime of WSN. In order to improve the lifetime of WSN, the proposed MLT routing protocol has implemented where the sensor nodes are randomly deployed in the field. The merged layer node deployment pattern of the sensor nodes system operation maximizes the working time of full coverage in a given WSN. MLT provides energy-balancing while selecting cluster head (CH for each round. The cluster head selection mechanism is essential and has same procedure like Low Energy Adaptive Clustering Hierarchy (LEACH in MLT protocol. The main idea of this paper is combine two layers of sensor nodes which are belonging to the same set but in different group to improve the lifetime of WSN. MATLAB simulations are performed to analyze and compare the performance of MLT with LEACH protocol. The obtained simulation output has enhanced results and superfluous lifetime compared to other protocols.

  16. Metglas-Elgiloy bi-layer, stent cell resonators for wireless monitoring of viscosity and mass loading

    KAUST Repository

    Viswanath, Anupam

    2012-12-21

    This paper presents the design and evaluation of magnetoelastic sensors intended for wireless monitoring of tissue accumulation in peripheral artery stents. The sensors are fabricated from 28 μm thick foils of magnetoelastic 2826MB Metglas™, an amorphous Ni-Fe alloy. The sensor layer consists of a frame and an active resonator portion. The frame consists of 150 μm wide struts that are patterned in the same wishbone array pattern as a 12 mm × 1.46 mm Elgiloy stent cell. The active portion is a 10 mm long symmetric leaf shape and is anchored to the frame at mid length. The active portion nests within the stent cell, with a uniform gap separating the two. A gold-indium eutectic bonding process is used to bond Metglas™ and Elgiloy foils, which are subsequently patterned to form bi-layer resonators. The response of the sensor to viscosity changes and mass loading that precede and accompany artery occlusion is tested in vitro. The typical sensitivity to viscosity of the fundamental, longitudinal resonant frequency at 361 kHz is 427 ppm cP -1 over a 1.1-8.6 cP range. The sensitivity to mass loading is typically between 63000 and 65000 ppm mg-1 with the resonant frequency showing a reduction of 8.1% for an applied mass that is 15% of the unloaded mass of the sensor. This is in good agreement with the theoretical response. © 2013 IOP Publishing Ltd.

  17. Cross Layer Adaptation of Check Intervals in Low Power Listening MAC Protocols for Lifetime Improvement in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Maria-Cristina Marinescu

    2012-08-01

    Full Text Available Preamble sampling-based MAC protocols designed forWireless Sensor Networks (WSN are aimed at prolonging the lifetime of the nodes by scheduling their times of activity. This scheduling exploits node synchronization to find the right trade-off between energy consumption and delay. In this paper we consider the problem of node synchronization in preamble sampling protocols. We propose Cross Layer Adaptation of Check intervals (CLAC, a novel protocol intended to reduce the energy consumption of the nodes without significantly increasing the delay. Our protocol modifies the scheduling of the nodes based on estimating the delay experienced by a packet that travels along a multi-hop path. CLAC uses routing and MAC layer information to compute a delay that matches the packet arrival time. We have implemented CLAC on top of well-known routing and MAC protocols for WSN, and we have evaluated our implementation using the Avrora simulator. The simulation results confirm that CLAC improves the network lifetime at no additional packet loss and without affecting the end-to-end delay.

  18. ML-IKE: a multi-layer IKE protocol for TCP performance enhancement in wireless networks

    Science.gov (United States)

    Zhang, Ya-Hang; Cheng, Bo-Wen; Qing, Si-Han; Zou, Guang-Nan; Wen, Wei-Ping

    2009-12-01

    To solve the conflict between TCP accelerating technology based on PEP middle node and IPSec protocol used in the Satellite Network, NASA and the Hughes Research Laboratory (HRL) each independently proposed a solution named Multilayer IPsec protocol which can integrate IPSec with TCP PEPs. The problem is: Traditional IKE protocol can't work with Multilayer IPSec protocol. In this study, the traditional IKE main mode and quick mode are enhanced for layered IPSec protocol, and an improved layered key distribution protocol: ML-IKE is proposed. This key distribution protocol is used for key exchange between peers and middle node, so that different nodes have different security associations (SA), and different security associations correspond to different IP packet fields, so different SA nodes have different authorization to different IP packet fields. ML-IKE protocol is suitable for layered IPSec, thus layered IPSec can be used for automatic key distribution and update.

  19. HyberLoc: Providing Physical Layer Location Privacy in Hybrid Sensor Networks

    CERN Document Server

    El-Badry, Rania; Youssef, Moustafa

    2010-01-01

    In many hybrid wireless sensor networks' applications, sensor nodes are deployed in hostile environments where trusted and un-trusted nodes co-exist. In anchor-based hybrid networks, it becomes important to allow trusted nodes to gain full access to the location information transmitted in beacon frames while, at the same time, prevent un-trusted nodes from using this information. The main challenge is that un-trusted nodes can measure the physical signal transmitted from anchor nodes, even if these nodes encrypt their transmission. Using the measured signal strength, un-trusted nodes can still tri-laterate the location of anchor nodes. In this paper, we propose HyberLoc, an algorithm that provides anchor physical layer location privacy in anchor-based hybrid sensor networks. The idea is for anchor nodes to dynamically change their transmission power following a certain probability distribution, degrading the localization accuracy at un-trusted nodes while maintaining high localization accuracy at trusted node...

  20. High speed optical wireless data transmission system for particle sensors in high energy physics

    Science.gov (United States)

    Ali, W.; Corsini, R.; Ciaramella, E.; Dell'Orso, R.; Messineo, A.; Palla, F.

    2015-08-01

    High speed optical fiber or copper wire communication systems are frequently deployed for readout data links used in particle physics detectors. Future detector upgrades will need more bandwidth for data transfer, but routing requirements for new cables or optical fiber will be challenging due to space limitations. Optical wireless communication (OWC) can provide high bandwidth connectivity with an advantage of reduced material budget and complexity of cable installation and management. In a collaborative effort, Scuola Superiore Sant'Anna and INFN Pisa are pursuing the development of a free-space optical link that could be installed in a future particle physics detector or upgrade. We describe initial studies of an OWC link using the inner tracker of the Compact Muon Solenoid (CMS) detector as a reference architecture. The results of two experiments are described: the first to verify that the laser source transmission wavelength of 1550 nm will not introduce fake signals in silicon strip sensors while the second was to study the source beam diameter and its tolerance to misalignment. For data rates of 2.5 Gb/s and 10 Gb/s over a 10 cm working distance it was observed that a tolerance limit of ±0.25 mm to ±0.8 mm can be obtained for misaligned systems with source beam diameters of 0.38 mm to 3.5 mm, respectively.

  1. Transport capacity of wireless networks: benefits from multi-access computation coding

    NARCIS (Netherlands)

    Goseling, Jasper; Gastpar, Michael; Weber, Jos H.

    2009-01-01

    We consider the effect on the transport capacity of wireless networks of different physical layer coding mechanisms. We compare the performance of traditional channel coding techniques, turning the wireless network in reliable point-to-point channels, with multi-access computation coding, in which

  2. On the Degrees of Freedom for Multi-Hop Wireless Networks under Layered TDD Constraint

    Directory of Open Access Journals (Sweden)

    Feng Liu

    2014-05-01

    Full Text Available Degrees of freedom (DoF of a network build a new scaling law characterizing the scalability of capacity at high signal-to-noise region. In this paper, we extend our recent work from cascaded network to the general K-hop layered network. The main framework is based on the assumption of layered TDD, where all nodes at each layer work with the same on/off status. By this approach we decompose the DoF analysis into two steps: 1 apply the result of cascaded networks; 2 analyze / design the transmission of each hop. The upper and lower bounds on DoF are deduced. By viewing the network as cascaded X channels, we find an inner bound of the DoF region, applicable to many message topologies. The detail of message splitting is demonstrated. Finally ultimate analysis shows if the number of antennas/nodes at each relay layer goes to infinity, the lower bound reaches the upper bound. As a by-product, when K > 2 the network can alleviate the effect of TDD with the increase of relay antennas/nodes.

  3. Cross-layer design for radio resource allocation based on priority scheduling in OFDMA wireless access network

    Directory of Open Access Journals (Sweden)

    Chen Yen-Wen

    2011-01-01

    Full Text Available Abstract The orthogonal frequency-division multiple access (OFDMA system has the advantages of flexible subcarrier allocation and adaptive modulation with respect to channel conditions. However, transmission overhead is required in each frame to broadcast the arrangement of radio resources to all mobile stations within the coverage of the same base station. This overhead greatly affects the utilization of valuable radio resources. In this paper, a cross layer scheme is proposed to reduce the number of traffic bursts at the downlink of an OFDMA wireless access network so that the overhead of the media access protocol (MAP field can be minimized. The proposed scheme considers the priorities and the channel conditions of quality of service (QoS traffic streams to arrange for them to be sent with minimum bursts in a heuristic manner. In addition, the trade-off between the degradation of the modulation level and the reduction of traffic bursts is investigated. Simulation results show that the proposed scheme can effectively reduce the traffic bursts and, therefore, increase resource utilization.

  4. Cross-Layer Handover Scheme for Multimedia Communications in Next Generation Wireless Networks

    Directory of Open Access Journals (Sweden)

    Lin Chun-Cheng

    2010-01-01

    Full Text Available In order to achieve seamless handover for real-time applications in the IP Multimedia Subsystem (IMS of next generation network, a multiprotocol combined handover mechanism is proposed in this paper. We combine SIP (Session Initiation Protocol, FMIP (Fast Mobile IPv6 Protocol, and MIH (Media Independent Handover protocols by cross-layer design and optimize those protocols' signaling flows to improve the performance of vertical handover. Theoretical analysis and simulation results illustrate that our proposed mechanism performs better than the original SIP and MIH combined handover mechanism in terms of service interruption time and packet loss.

  5. Wireless Technician

    Science.gov (United States)

    Tech Directions, 2011

    2011-01-01

    One of the hottest areas in technology is invisible. Wireless communications allow people to transmit voice messages, data, and other signals through the air without physically connecting senders to receivers with cables or wires. And the technology is spreading at lightning speed. Cellular phones, personal digital assistants, and wireless…

  6. Physical modeling of the atmospheric boundary layer in the UNH Flow Physics Facility

    Science.gov (United States)

    Taylor-Power, Gregory; Gilooly, Stephanie; Wosnik, Martin; Klewicki, Joe; Turner, John

    2016-11-01

    The Flow Physics Facility (FPF) at UNH has test section dimensions W =6.0m, H =2.7m, L =72m. It can achieve high Reynolds number boundary layers, enabling turbulent boundary layer, wind energy and wind engineering research with exceptional spatial and temporal instrument resolution. We examined the FPF's ability to experimentally simulate different types of the atmospheric boundary layer (ABL) using upstream roughness arrays. The American Society for Civil Engineers defines standards for simulating ABLs for different terrain types, from open sea to dense city areas (ASCE 49-12). The standards require the boundary layer to match a power law shape, roughness height, and power spectral density criteria. Each boundary layer type has a corresponding power law exponent and roughness height. The exponent and roughness height both increase with increasing roughness. A suburban boundary layer was chosen for simulation and a roughness element fetch was created. Several fetch lengths were experimented with and the resulting boundary layers were measured and compared to standards in ASCE 49-12: Wind Tunnel Testing for Buildings and Other Structures. Pitot tube and hot wire anemometers were used to measure average and fluctuating flow characteristics. Velocity profiles, turbulence intensity and velocity spectra were found to compare favorably.

  7. Joint Schemes for Physical Layer Security and Error Correction

    Science.gov (United States)

    Adamo, Oluwayomi

    2011-01-01

    The major challenges facing resource constraint wireless devices are error resilience, security and speed. Three joint schemes are presented in this research which could be broadly divided into error correction based and cipher based. The error correction based ciphers take advantage of the properties of LDPC codes and Nordstrom Robinson code. A…

  8. Selective Route Based on SNR with Cross-Layer Scheme in Wireless Ad Hoc Network

    Directory of Open Access Journals (Sweden)

    Istikmal

    2017-01-01

    Full Text Available In this study, we developed network and throughput formulation models and proposed new method of the routing protocol algorithm with a cross-layer scheme based on signal-to-noise ratio (SNR. This method is an enhancement of routing protocol ad hoc on-demand distance vector (AODV. This proposed scheme uses selective route based on the SNR threshold in the reverse route mechanism. We developed AODV SNR-selective route (AODV SNR-SR for a mechanism better than AODV SNR, that is, the routing protocol that used average or sum of path SNR, and also better than AODV which is hop-count-based. We also used selective reverse route based on SNR mechanism, replacing the earlier method to avoid routing overhead. The simulation results show that AODV SNR-SR outperforms AODV SNR and AODV in terms of throughput, end-to-end delay, and routing overhead. This proposed method is expected to support Device-to-Device (D2D communications that are concerned with the quality of the channel awareness in the development of the future Fifth Generation (5G.

  9. Optimization of high-definition video coding and hybrid fiber-wireless transmission in the 60 GHz band.

    Science.gov (United States)

    Lebedev, Alexander; Pham, Tien Thang; Beltrán, Marta; Yu, Xianbin; Ukhanova, Anna; Llorente, Roberto; Monroy, Idelfonso Tafur; Forchhammer, Søren

    2011-12-12

    The paper addresses the problem of distribution of high-definition video over fiber-wireless networks. The physical layer architecture with the low complexity envelope detection solution is investigated. We present both experimental studies and simulation of high quality high-definition compressed video transmission over 60 GHz fiber-wireless link. Using advanced video coding we satisfy low complexity and low delay constraints, meanwhile preserving the superb video quality after significantly extended wireless distance. © 2011 Optical Society of America

  10. Mathematical analogies in physics. Thin-layer wave theory

    Directory of Open Access Journals (Sweden)

    José M. Carcione

    2014-03-01

    Full Text Available Field theory applies to elastodynamics, electromagnetism, quantum mechanics, gravitation and other similar fields of physics, where the basic equations describing the phenomenon are based on constitutive relations and balance equations. For instance, in elastodynamics, these are the stress-strain relations and the equations of momentum conservation (Euler-Newton law. In these cases, the same mathematical theory can be used, by establishing appropriate mathematical equivalences (or analogies between material properties and field variables. For instance, the wave equation and the related mathematical developments can be used to describe anelastic and electromagnetic wave propagation, and are extensively used in quantum mechanics. In this work, we obtain the mathematical analogy for the reflection/refraction (transmission problem of a thin layer embedded between dissimilar media, considering the presence of anisotropy and attenuation/viscosity in the viscoelastic case, conductivity in the electromagnetic case and a potential barrier in quantum physics (the tunnel effect. The analogy is mainly illustrated with geophysical examples of propagation of S (shear, P (compressional, TM (transverse-magnetic and TE (transverse-electric waves. The tunnel effect is obtained as a special case of viscoelastic waves at normal incidence.

  11. Wireless communication with chaos.

    Science.gov (United States)

    Ren, Hai-Peng; Baptista, Murilo S; Grebogi, Celso

    2013-05-03

    The modern world fully relies on wireless communication. Because of intrinsic physical constraints of the wireless physical media (multipath, damping, and filtering), signals carrying information are strongly modified, preventing information from being transmitted with a high bit rate. We show that, though a chaotic signal is strongly modified by the wireless physical media, its Lyapunov exponents remain unaltered, suggesting that the information transmitted is not modified by the channel. For some particular chaotic signals, we have indeed proved that the dynamic description of both the transmitted and the received signals is identical and shown that the capacity of the chaos-based wireless channel is unaffected by the multipath propagation of the physical media. These physical properties of chaotic signals warrant an effective chaos-based wireless communication system.

  12. Research Challenges for Wireless Multimedia Sensor Networks

    Science.gov (United States)

    Melodia, Tommaso; Akyildiz, Ian F.

    This chapter discusses the state of the art and the major research challenges in architectures, algorithms, and protocols, for wireless multimedia sensor networks (WMSNs). These are networks of wirelessly interconnected smart devices designed and deployed to retrieve video and audio streams, still images, and scalar sensor data. First, applications and key factors influencing the design of WMSNs are discussed. Then, the existing solutions at the application, transport, network, link, and physical layers of the communication protocol stack are investigated. Finally, fundamental open research issues are discussed and future research trends in this area are outlined.

  13. A Cross-Layer Wireless Sensor Network Energy-Efficient Communication Protocol for Real-Time Monitoring of the Long-Distance Electric Transmission Lines

    Directory of Open Access Journals (Sweden)

    Jun Yu

    2015-01-01

    Full Text Available Optimization of energy consumption in Wireless Sensor Network (WSN nodes has become a critical link that constrains the engineering application of the smart grid due to the fact that the smart grid is characterized by long-distance transmission in a special environment. The paper proposes a linear hierarchical network topological structure specific to WSN energy conservation in environmental monitoring of the long-distance electric transmission lines in the smart grid. Based on the topological structural characteristics and optimization of network layers, the paper also proposes a Topological Structure be Layered Configurations (TSLC routing algorithm to improve the quality of WSN data transmission performance. Coprocessing of the network layer and the media access control (MAC layer is achieved by using the cross-layer design method, accessing the status for the nodes in the network layer and obtaining the status of the network nodes of the MAC layer. It efficiently saves the energy of the whole network, improves the quality of the network service performance, and prolongs the life cycle of the network.

  14. First Principles Investigation of Hydrogen Physical Adsorption on Graphynes' layers

    CERN Document Server

    Bartolomei, Massimiliano; Giorgi, Giacomo

    2015-01-01

    Graphynes are 2D porous structures deriving from graphene featuring triangular and regularly distributed subnanometer pores, which may be exploited to host small gaseous species. First principles adsorption energies of molecular hydrogen (H2) on graphene, graphdiyne and graphtriyne molecular prototypes are obtained at the MP2C level of theory. First, a single layer is investigated and it is found that graphynes are more suited than graphene for H2 physical adsorption since they provide larger binding energies at equilibrium distances much closer to the 2D plane. In particular, for graphtriyne a flat minimum located right in the geometric center of the pore is identified. A novel graphite composed of graphtriyne stacked sheets is then proposed and an estimation of its 3D arrangement is obtained at the DFT level of theory. In contrast to pristine graphite this new carbon material allow both H2 intercalation and out-of-plane diffusion by exploiting the larger volume provided by its nanopores. Related H2 binding ...

  15. Physical Layer Security Game: Interaction between Source, Eavesdropper, and Friendly Jammer

    National Research Council Canada - National Science Library

    Han, Zhu; Marina, Ninoslav; Debbah, Mérouane; Hjørungnes, Are

    Physical layer security is an emerging security area that achieves perfect secrecy data transmission between intended network nodes, while malicious nodes that eavesdrop the communication obtain zero information...

  16. Wireless Intrusion Prevention Systems

    Directory of Open Access Journals (Sweden)

    Jack TIMOFTE

    2008-01-01

    Full Text Available The wireless networks have changed the way organizations work and offered a new range of possibilities, but at the same time they introduced new security threats. While an attacker needs physical access to a wired network in order to launch an attack, a wireless network allows anyone within its range to passively monitor the traffic or even start an attack. One of the countermeasures can be the use of Wireless Intrusion Prevention Systems.

  17. Design of a hybrid (wired/wireless) acquisition data system for monitoring of cultural heritage physical parameters in Smart Cities.

    Science.gov (United States)

    García Diego, Fernando-Juan; Esteban, Borja; Merello, Paloma

    2015-03-25

    Preventive conservation represents a working method and combination of techniques which helps in determining and controlling the deterioration process of cultural heritage in order to take the necessary actions before it occurs. It is acknowledged as important, both in terms of preserving and also reducing the cost of future conservation measures. Therefore, long-term monitoring of physical parameters influencing cultural heritage is necessary. In the context of Smart Cities, monitoring of cultural heritage is of interest in order to perform future comparative studies and load information into the cloud that will be useful for the conservation of other heritage sites. In this paper the development of an economical and appropriate acquisition data system combining wired and wireless communication, as well as third party hardware for increased versatility, is presented. The device allows monitoring a complex network of points with high sampling frequency, with wired sensors in a 1-wire bus and a wireless centralized system recording data for monitoring of physical parameters, as well as the future possibility of attaching an alarm system or sending data over the Internet. This has been possible with the development of three board's designs and more than 5000 algorithm lines. System tests have shown an adequate system operation.

  18. Design of a Hybrid (Wired/Wireless Acquisition Data System for Monitoring of Cultural Heritage Physical Parameters in Smart Cities

    Directory of Open Access Journals (Sweden)

    Fernando-Juan García Diego

    2015-03-01

    Full Text Available Preventive conservation represents a working method and combination of techniques which helps in determining and controlling the deterioration process of cultural heritage in order to take the necessary actions before it occurs. It is acknowledged as important, both in terms of preserving and also reducing the cost of future conservation measures. Therefore, long-term monitoring of physical parameters influencing cultural heritage is necessary. In the context of Smart Cities, monitoring of cultural heritage is of interest in order to perform future comparative studies and load information into the cloud that will be useful for the conservation of other heritage sites. In this paper the development of an economical and appropriate acquisition data system combining wired and wireless communication, as well as third party hardware for increased versatility, is presented. The device allows monitoring a complex network of points with high sampling frequency, with wired sensors in a 1-wire bus and a wireless centralized system recording data for monitoring of physical parameters, as well as the future possibility of attaching an alarm system or sending data over the Internet. This has been possible with the development of three board’s designs and more than 5000 algorithm lines. System tests have shown an adequate system operation.

  19. Cross-Layer Measurement on an IEEE 802.11g Wireless Network Supporting MPEG-2 Video Streaming Applications in the Presence of Interference

    Directory of Open Access Journals (Sweden)

    Alessandro Sona

    2010-01-01

    Full Text Available The performance of wireless local area networks supporting video streaming applications, based on MPEG-2 video codec, in the presence of interference is here dealt with. IEEE 802.11g standard wireless networks, that do not support QoS in according with IEEE 802.11e standard, are, in particular, accounted for and Bluetooth signals, additive white Gaussian noise, and competitive data traffic are considered as sources of interference. The goal is twofold: from one side, experimentally assessing and correlating the values that some performance metrics assume at the same time at different layers of an IEEE 802.11g WLAN delivering video streaming in the presence of in-channel interference; from the other side, deducing helpful and practical hints for designers and technicians, in order to efficiently assess and enhance the performance of an IEEE 802.11g WLAN supporting video streaming in some suitable setup conditions and in the presence of interference. To this purpose, an experimental analysis is planned following a cross-layer measurement approach, and a proper testbed within a semianechoic chamber is used. Valuable results are obtained in terms of signal-to-interference ratio, packet loss ratio, jitter, video quality, and interference data rate; helpful hints for designers and technicians are finally gained.

  20. Cross-Layer Design for Video Transmission over Wireless Rician Slow-Fading Channels Using an Adaptive Multiresolution Modulation and Coding Scheme

    Directory of Open Access Journals (Sweden)

    James W. Modestino

    2007-01-01

    Full Text Available We describe a multilayered video transport scheme for wireless channels capable of adapting to channel conditions in order to maximize end-to-end quality of service (QoS. This scheme combines a scalable H.263+ video source coder with unequal error protection (UEP across layers. The UEP is achieved by employing different channel codes together with a multiresolution modulation approach to transport the different priority layers. Adaptivity to channel conditions is provided through a joint source-channel coding (JSCC approach which attempts to jointly optimize the source and channel coding rates together with the modulation parameters to obtain the maximum achievable end-to-end QoS for the prevailing channel conditions. In this work, we model the wireless links as slow-fading Rician channel where the channel conditions can be described in terms of the channel signal-to-noise ratio (SNR and the ratio of specular-to-diffuse energy ζ2. The multiresolution modulation/coding scheme consists of binary rate-compatible punctured convolutional (RCPC codes used together with nonuniform phase-shift keyed (PSK signaling constellations. Results indicate that this adaptive JSCC scheme employing scalable video encoding together with a multiresolution modulation/coding approach leads to significant improvements in delivered video quality for specified channel conditions. In particular, the approach results in considerably improved graceful degradation properties for decreasing channel SNR.

  1. Cross-Layer Design for Video Transmission over Wireless Rician Slow-Fading Channels Using an Adaptive Multiresolution Modulation and Coding Scheme

    Directory of Open Access Journals (Sweden)

    Modestino James W

    2007-01-01

    Full Text Available We describe a multilayered video transport scheme for wireless channels capable of adapting to channel conditions in order to maximize end-to-end quality of service (QoS. This scheme combines a scalable H.263+ video source coder with unequal error protection (UEP across layers. The UEP is achieved by employing different channel codes together with a multiresolution modulation approach to transport the different priority layers. Adaptivity to channel conditions is provided through a joint source-channel coding (JSCC approach which attempts to jointly optimize the source and channel coding rates together with the modulation parameters to obtain the maximum achievable end-to-end QoS for the prevailing channel conditions. In this work, we model the wireless links as slow-fading Rician channel where the channel conditions can be described in terms of the channel signal-to-noise ratio (SNR and the ratio of specular-to-diffuse energy . The multiresolution modulation/coding scheme consists of binary rate-compatible punctured convolutional (RCPC codes used together with nonuniform phase-shift keyed (PSK signaling constellations. Results indicate that this adaptive JSCC scheme employing scalable video encoding together with a multiresolution modulation/coding approach leads to significant improvements in delivered video quality for specified channel conditions. In particular, the approach results in considerably improved graceful degradation properties for decreasing channel SNR.

  2. Effects of Data Frame Size Distribution on Wireless Lans | Aneke ...

    African Journals Online (AJOL)

    The continuous need to replace cables and deploy mobile devices in the communications industry has led to very active research on the utilization of wireless networks. IEEE 802.11 WLAN is known to achieve relatively small throughput performance compared to the underlying physical layer's transmission rate and this is ...

  3. Ultra wideband technology for wireless sensor networks

    Science.gov (United States)

    Wang, Yue; Xiong, Weiming

    2011-08-01

    Wireless sensor networks (WSNs) have emerged as an important method for planetary surface exploration. To investigate the optimized wireless technology for WSNs, we summarized the key requirements of WSNs and justified ultra wideband (UWB) technology by comparing with other competitive wireless technologies. We also analyzed network topologies as well as physical and MAC layer designs of IEEE 802.15.4a standard, which adopted impulse radio UWB (IR-UWB) technology. Our analysis showed that IR-UWB-based 802.15.4a standard could enable robust communication, precise ranging, and heterogeneous networking for WSNs applications. The result of our present work implies that UWB-based WSNs can be applied to future planetary surface exploration.

  4. Optimization and Verification of the TR-MAC Protocol for Wireless Sensor Networks

    NARCIS (Netherlands)

    Morshed, S.; Heijenk, Geert

    2015-01-01

    Energy-efficiency is an important requirement in the design of communication protocols for wireless sensor networks (WSN). TR-MAC is an energy-efficient medium access control (MAC) layer protocol for low power WSN that exploits transmitted-reference (TR) modulation in the physical layer. The

  5. Performance Evaluation of Survivability Strategies for Elastic Optical Networks under Physical Layer Impairments

    Directory of Open Access Journals (Sweden)

    Jurandir Lacerda Jr

    2017-08-01

    Full Text Available This paper carried out a performance evaluation study that compares two survivability strategies (DPP and SM-RSA for elastic optical networks with and without physical layer impairments. The evaluated scenarios include three representative topologies for elastic optical network, NSFNET, EON and USA. It also analyzes the increase of blocking probability when the survivability strategies are evaluated under the realistic scenario that assumes physical layer impairments. For all studied topologies under physical layer impairments, the survivability strategies achieved blocking probability above 80%.

  6. Investigating physics learning with layered student interaction networks

    DEFF Research Database (Denmark)

    Bruun, Jesper; Traxler, Adrienne

    Centrality in student interaction networks (SINs) can be linked to variables like grades [1], persistence [2], and participation [3]. Recent efforts in the field of network science have been done to investigate layered - or multiplex - networks as mathematical objects [4]. These networks can...

  7. Medium Access Control for Wireless Sensor Networks based on Impulse Radio Ultra Wideband

    OpenAIRE

    Berthe, Abdoulaye; Lecointre, Aubin; Dragomirescu, Daniela; Plana, Robert

    2010-01-01

    This paper describes a detailed performance evaluation of distributed Medium Access Control (MAC) protocols for Wireless Sensor Networks based on Impulse Radio Ultra Wideband (IR-UWB) Physical layer (PHY). Two main classes of Medium Access Control protocol have been considered: Slotted and UnSlotted with reliability. The reliability is based on Automatic Repeat ReQuest (ARQ). The performance evaluation is performed using a complete Wireless Sensor Networks (WSN) simulator built on the Global ...

  8. Resource management in wireless networking

    CERN Document Server

    Cardei, Mihaela; Du, Ding-Zhu

    2005-01-01

    This is the first book that provides readers with a deep technical overview of recent advances in resource management for wireless networks at different layers of the protocol stack. The subject is explored in various wireless networks, such as ad hoc wireless networks, 3G/4G cellular, IEEE 802.11, and Bluetooth personal area networks.Survey chapters give an excellent introduction to key topics in resource management for wireless networks, while experts will be satisfied by the technical depth of the knowledge imparted in chapters exploring hot research topics.The subject area discussed in this book is very relevant today, considering the recent remarkable growth of wireless networking and the convergence of wireless personal communications, internet technologies and real-time multimedia.This volume is a very good companion for practitioners working on implementing solutions for multimedia and Quality of Service - sensitive applications over wireless networks.Written for:Researchers, faculty members, students...

  9. Application-Level and User-Level QoS Assessment of Audio-Video IP Transmission over Cross-Layer Designed Wireless Ad Hoc Networks

    Science.gov (United States)

    Nunome, Toshiro; Tasaka, Shuji; Nakaoka, Ken

    This paper performs application-level QoS and user-level QoS assessment of audio-video streaming in cross-layer designed wireless ad hoc networks. In order to achieve high QoS at the user-level, we employ link quality-based routing in the network layer and media synchronization control in the application layer. We adopt three link quality-based routing protocols: OLSR-SS (Signal Strength), AODV-SS, and LQHR (Link Quality-Based Hybrid Routing). OLSR-SS is a proactive routing protocol, while AODV-SS is a reactive one. LQHR is a hybrid protocol, which is a combination of proactive and reactive routing protocols. For applicationlevel QoS assessment, we performed computer simulation with ns-2 where an IEEE 802.11b mesh topology network with 24 nodes was assumed. We also assessed user-level QoS by a subjective experiment with 30 assessors. From the assessment results, we find AODV-SS the best for networks with long inter-node distances, while LQHR outperforms AODV-SS for short inter-node distances. In addition, we also examine characteristics of the three schemes with respect to the application-level QoS in random topology networks.

  10. The Physics of Boundary-Layer Aero-Optic Effects

    Science.gov (United States)

    2012-09-01

    Mach-number-dependent function, )(1 ∞ MF for the modified model Eq. (23) and [ ] 2/3 222 2 )/(12 11)( − ∞∞∞∞       − − += UUrMMMF c γ for the...model Eq. (20). To calculate )(1 ∞ MF from (24), experimentally-measured velocity profiles for a M = 0.5 boundary layer were used; Figure 17 shows the...Optical Engineering: The Design of Optical Systems, McGraw- Hill, NY, 1966, Chap. 3, pp. 49-71. [16] S. Gordeyev, E. Jumper, T. Ng and A. Cain , "Aero

  11. CWAP Certified Wireless Analysis Professional Official Study Guide Exam PW0-270

    CERN Document Server

    Westcott, David A; Miller, Ben; Mackenzie, Peter

    2011-01-01

    The official study guide for the Certified Wireless Analysis Professional certification from CWNPFour leading wireless experts thoroughly prepare you for the vendor-neutral CWAP exam administered by CWNP, the industry leader for enterprise Wi-Fi training and certification.  This official study guide not only covers all exam objectives for the CWAP exam, it also prepares you to administer and troubleshoot complex enterprise WLAN environments.Covers all exam objectives for the Certified Wireless Analysis Professional (CWAP) examCovers 802.11 physical (PHY) and 802.11 MAC layer frame formats and

  12. Emulation Platform for Cyber Analysis of Wireless Communication Network Protocols

    Energy Technology Data Exchange (ETDEWEB)

    Van Leeuwen, Brian P. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Eldridge, John M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-11-01

    Wireless networking and mobile communications is increasing around the world and in all sectors of our lives. With increasing use, the density and complexity of the systems increase with more base stations and advanced protocols to enable higher data throughputs. The security of data transported over wireless networks must also evolve with the advances in technologies enabling more capable wireless networks. However, means for analysis of the effectiveness of security approaches and implementations used on wireless networks are lacking. More specifically a capability to analyze the lower-layer protocols (i.e., Link and Physical layers) is a major challenge. An analysis approach that incorporates protocol implementations without the need for RF emissions is necessary. In this research paper several emulation tools and custom extensions that enable an analysis platform to perform cyber security analysis of lower layer wireless networks is presented. A use case of a published exploit in the 802.11 (i.e., WiFi) protocol family is provided to demonstrate the effectiveness of the described emulation platform.

  13. Hybrid brain-computer interface for biomedical cyber-physical system application using wireless embedded EEG systems.

    Science.gov (United States)

    Chai, Rifai; Naik, Ganesh R; Ling, Sai Ho; Nguyen, Hung T

    2017-01-07

    One of the key challenges of the biomedical cyber-physical system is to combine cognitive neuroscience with the integration of physical systems to assist people with disabilities. Electroencephalography (EEG) has been explored as a non-invasive method of providing assistive technology by using brain electrical signals. This paper presents a unique prototype of a hybrid brain computer interface (BCI) which senses a combination classification of mental task, steady state visual evoked potential (SSVEP) and eyes closed detection using only two EEG channels. In addition, a microcontroller based head-mounted battery-operated wireless EEG sensor combined with a separate embedded system is used to enhance portability, convenience and cost effectiveness. This experiment has been conducted with five healthy participants and five patients with tetraplegia. Generally, the results show comparable classification accuracies between healthy subjects and tetraplegia patients. For the offline artificial neural network classification for the target group of patients with tetraplegia, the hybrid BCI system combines three mental tasks, three SSVEP frequencies and eyes closed, with average classification accuracy at 74% and average information transfer rate (ITR) of the system of 27 bits/min. For the real-time testing of the intentional signal on patients with tetraplegia, the average success rate of detection is 70% and the speed of detection varies from 2 to 4 s.

  14. Performance Evaluation of Localization Accuracy for a Log-Normal Shadow Fading Wireless Sensor Network under Physical Barrier Attacks

    Science.gov (United States)

    Abdulqader Hussein, Ahmed; Rahman, Tharek A.; Leow, Chee Yen

    2015-01-01

    Localization is an apparent aspect of a wireless sensor network, which is the focus of much interesting research. One of the severe conditions that needs to be taken into consideration is localizing a mobile target through a dispersed sensor network in the presence of physical barrier attacks. These attacks confuse the localization process and cause location estimation errors. Range-based methods, like the received signal strength indication (RSSI), face the major influence of this kind of attack. This paper proposes a solution based on a combination of multi-frequency multi-power localization (C-MFMPL) and step function multi-frequency multi-power localization (SF-MFMPL), including the fingerprint matching technique and lateration, to provide a robust and accurate localization technique. In addition, this paper proposes a grid coloring algorithm to detect the signal hole map in the network, which refers to the attack-prone regions, in order to carry out corrective actions. The simulation results show the enhancement and robustness of RSS localization performance in the face of log normal shadow fading effects, besides the presence of physical barrier attacks, through detecting, filtering and eliminating the effect of these attacks. PMID:26690159

  15. Energy-efficient wireless communication

    NARCIS (Netherlands)

    Havinga, Paul J.M.

    2000-01-01

    In this chapter we present an energy-efficient highly adaptive network interface architecture and a novel data link layer protocol for wireless networks that provides Quality of Service (QoS) support for diverse traffic types. Due to the dynamic nature of wireless networks, adaptations in bandwidth

  16. Adhesion of two physically contacting planar substrates coated with layer-by-layer assembled films.

    Science.gov (United States)

    Matsukuma, Daisuke; Aoyagi, Takao; Serizawa, Takeshi

    2009-09-01

    Adhesives composed of synthetic and low-cost molecules that are based on simple chemical principles are attractive because of their versatility. In this article, we report adhesion between two planar substrates coated with layer-by-layer (LbL) assembled films of cationic poly(diallyldimethylammonium chloride) (PDDA) and anionic poly(sodium styrenesulfonate) (PSS) and perform lap shear measurements of the adhered substrates. Films prepared on the substrates functioned as adhesives when one substrate coated with the PDDA-surface film contacted the other surface coated with the PSS-surface film under adequate pressure in the presence of water droplets, suggesting that two films adhered on the basis of polyion complex formation. Observations suggested that the adhesives failed at the substrate-film interface rather than at the bulk films. The adhesion was compared between film-coated substrates and noncoated ones. Confocal laser scanning microscopic observation of adhesives composed of fluorescently labeled poly(allylamine hydrochloride) (PAH) and poly(acrylic acid) revealed that the labeled PAH assembled on one substrate was well dispersed, even in a nonlabeled film assembled on another substrate. It was therefore confirmed that after adhesion in the presence of the water component, the polyelectrolytes became intermixed between the glassy films, resulting in changes in the adhesive structure at the substrate-film interface.

  17. Channel estimation for physical layer network coding systems

    CERN Document Server

    Gao, Feifei; Wang, Gongpu

    2014-01-01

    This SpringerBrief presents channel estimation strategies for the physical later network coding (PLNC) systems. Along with a review of PLNC architectures, this brief examines new challenges brought by the special structure of bi-directional two-hop transmissions that are different from the traditional point-to-point systems and unidirectional relay systems. The authors discuss the channel estimation strategies over typical fading scenarios, including frequency flat fading, frequency selective fading and time selective fading, as well as future research directions. Chapters explore the performa

  18. Metamaterial apertures for coherent computational imaging on the physical layer.

    Science.gov (United States)

    Lipworth, Guy; Mrozack, Alex; Hunt, John; Marks, Daniel L; Driscoll, Tom; Brady, David; Smith, David R

    2013-08-01

    We introduce the concept of a metamaterial aperture, in which an underlying reference mode interacts with a designed metamaterial surface to produce a series of complex field patterns. The resonant frequencies of the metamaterial elements are randomly distributed over a large bandwidth (18-26 GHz), such that the aperture produces a rapidly varying sequence of field patterns as a function of the input frequency. As the frequency of operation is scanned, different subsets of metamaterial elements become active, in turn varying the field patterns at the scene. Scene information can thus be indexed by frequency, with the overall effectiveness of the imaging scheme tied to the diversity of the generated field patterns. As the quality (Q-) factor of the metamaterial resonators increases, the number of distinct field patterns that can be generated increases-improving scene estimation. In this work we provide the foundation for computational imaging with metamaterial apertures based on frequency diversity, and establish that for resonators with physically relevant Q-factors, there are potentially enough distinct measurements of a typical scene within a reasonable bandwidth to achieve diffraction-limited reconstructions of physical scenes.

  19. Wireless Access

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. Wireless Access. Wireless connect to the Base station. Easy and Convenient access. Costlier as compared to the wired technology. Reliability challenges. We see it as a complementary technology to the DSL.

  20. The wireless internet explained

    CERN Document Server

    Rhoton, John

    2001-01-01

    The Wireless Internet Explained covers the full spectrum of wireless technologies from a wide range of vendors, including initiatives by Microsoft and Compaq. The Wireless Internet Explained takes a practical look at wireless technology. Rhoton explains the concepts behind the physics, and provides an overview that clarifies the convoluted set of standards heaped together under the umbrella of wireless. It then expands on these technical foundations to give a panorama of the increasingly crowded landscape of wireless product offerings. When it comes to actual implementation the book gives abundant down-to-earth advice on topics ranging from the selection and deployment of mobile devices to the extremely sensitive subject of security.Written by an expert on Internet messaging, the author of Digital Press''s successful Programmer''s Guide to Internet Mail and X.400 and SMTP: Battle of the E-mail Protocols, The Wireless Internet Explained describes and evaluates the current state of the fast-growing and crucial...

  1. A Cross-Layer Optimization Approach for Energy Efficient Wireless Sensor Networks: Coalition-Aided Data Aggregation, Cooperative Communication, and Energy Balancing

    Directory of Open Access Journals (Sweden)

    Qinghai Gao

    2007-01-01

    Full Text Available We take a cross-layer optimization approach to study energy efficient data transport in coalition-based wireless sensor networks, where neighboring nodes are organized into groups to form coalitions and sensor nodes within one coalition carry out cooperative communications. In particular, we investigate two network models: (1 many-to-one sensor networks where data from one coalition are transmitted to the sink directly, and (2 multihop sensor networks where data are transported by intermediate nodes to reach the sink. For the many-to-one network model, we propose three schemes for data transmission from a coalition to the sink. In scheme 1, one node in the coalition is selected randomly to transmit the data; in scheme 2, the node with the best channel condition in the coalition transmits the data; and in scheme 3, all the nodes in the coalition transmit in a cooperative manner. Next, we investigate energy balancing with cooperative data transport in multihop sensor networks. Built on the above coalition-aided data transmission schemes, the optimal coalition planning is then carried out in multihop networks, in the sense that unequal coalition sizes are applied to minimize the difference of energy consumption among sensor nodes. Numerical analysis reveals that energy efficiency can be improved significantly by the coalition-aided transmission schemes, and that energy balancing across the sensor nodes can be achieved with the proposed coalition structures.

  2. A Micromachined Capacitive Pressure Sensor Using a Cavity-Less Structure with Bulk-Metal/Elastomer Layers and Its Wireless Telemetry Application

    Directory of Open Access Journals (Sweden)

    Yogesh B. Gianchandani

    2008-04-01

    Full Text Available This paper reports a micromachined capacitive pressure sensor intended for applications that require mechanical robustness. The device is constructed with two micromachined metal plates and an intermediate polymer layer that is soft enough to deform in a target pressure range. The plates are formed of micromachined stainless steel fabricated by batch-compatible micro-electro-discharge machining. A polyurethane roomtemperature- vulcanizing liquid rubber of 38-μm thickness is used as the deformable material. This structure eliminates both the vacuum cavity and the associated lead transfer challenges common to micromachined capacitive pressure sensors. For frequency-based interrogation of the capacitance, passive inductor-capacitor tanks are fabricated by combining the capacitive sensor with an inductive coil. The coil has 40 turns of a 127-μmdiameter copper wire. Wireless sensing is demonstrated in liquid by monitoring the variation in the resonant frequency of the tank via an external coil that is magnetically coupled with the tank. The sensitivity at room temperature is measured to be 23-33 ppm/KPa over a dynamic range of 340 KPa, which is shown to match a theoretical estimation. Temperature dependence of the tank is experimentally evaluated.

  3. Networking wireless sensors

    National Research Council Canada - National Science Library

    Krishnamachari, Bhaskar

    2005-01-01

    ... by networking techniques across multiple layers. The topics covered include network deployment, localization, time synchronization, wireless radio characteristics, medium-access, topology control, routing, data-centric techniques, and transport protocols. Ideal for researchers and designers seeking to create new algorithms and protocols and enginee...

  4. The effect of using waste newspaper in surface layers on physical and mechanical properties of three-layer particleboard

    Directory of Open Access Journals (Sweden)

    vahid vaziri

    2017-02-01

    Full Text Available In this study, physical and mechanical properties of particleboard made from recycled newspaper in the surface layers were investigated. Coarse and fine wood chips and recycled newspaper with dimension of 0.5 × 4 cm2 were used. The variable in this research were the ratio of recycled newspaper to wood chips (at five levels; 0:100, 15:85, 30:70, 45:55, 60:40. Urea formaldehyde resin used at 10% content on dry weight basis of the wood particles and newspaper and ammonium chloride was used as a catalyst to 2% of the dry weight of adhesive. Physical and mechanical properties of panels measured according to EN Standard. The results showed that panels containing recycled newspapers at the level of 45% had the highest bending strength and modulus of elasticity. Internal bonding and screw holding strength decreased with increasing of recycled newspaper and control sample had the highest strength. Water absorption and thickness swelling increased with increasing of recycled newspaper portion. On the basis of results of this study can be concluded that particleboard containing recycled newspapers in the surface layers up to the level of 30% can be used for general purpose boards and interior fitments (including furniture for use in dry conditions.

  5. A Secure Key Establishment Protocol for ZigBee Wireless Sensor Networks

    DEFF Research Database (Denmark)

    Yuksel, Ender; Nielson, Hanne Riis; Nielson, Flemming

    2010-01-01

    ZigBee is a wireless sensor network standard that defines network and application layers on top of IEEE 802.15.4's physical and medium access control layers. In the latest version of ZigBee, enhancements are prescribed for the security sublayer but we show in this paper that problems persist....... In particular, we show that the end-to-end application key establishment protocol is flawed and we propose a secure protocol instead. We do so by using formal verification techniques based on static program analysis and process algebras. We present a way of using formal methods in wireless network security...

  6. A Secure Key Establishment Protocol for ZigBee Wireless Sensor Networks

    DEFF Research Database (Denmark)

    Yuksel, Ender; Nielson, Hanne Riis; Nielson, Flemming

    2009-01-01

    ZigBee is a wireless sensor network standard that defines network and application layers on top of IEEE 802.15.4’s physical and medium access control layers. In the latest version of ZigBee, enhancements are prescribed for the security sublayer but we show in this paper that problems persist....... In particular we show that the End-to-End Application Key Establishment Protocol is flawed and we propose a secure protocol instead. We do so by using formal verification techniques based on static program analysis and process algebras. We present a way of using formal methods in wireless network security...

  7. ``Low Power Wireless Technologies: An Approach to Medical Applications''

    Science.gov (United States)

    Bellido O., Francisco J.; González R., Miguel; Moreno M., Antonio; de La Cruz F, José Luis

    Wireless communication supposed a great both -quantitative and qualitative, jump in the management of the information, allowing the access and interchange of it without the need of a physical cable connection. The wireless transmission of voice and information has remained in constant evolution, arising new standards like BluetoothTM, WibreeTM or ZigbeeTM developed under the IEEE 802.15 norm. These newest wireless technologies are oriented to systems of communication of short-medium distance and optimized for a low cost and minor consume, becoming recognized as a flexible and reliable medium for data communications across a broad range of applications due to the potential that the wireless networks presents to operate in demanding environments providing clear advantages in cost, size, power, flexibility, and distributed intelligence. About the medical applications, the remote health or telecare (also called eHealth) is getting a bigger place into the manufacturers and medical companies, in order to incorporate products for assisted living and remote monitoring of health parameteres. At this point, the IEEE 1073, Personal Health Devices Working Group, stablish the framework for these kind of applications. Particularly, the 1073.3.X describes the physical and transport layers, where the new ultra low power short range wireless technologies can play a big role, providing solutions that allow the design of products which are particularly appropriate for monitor people’s health with interoperability requirements.

  8. Truncated power control for improving TCP/IP performance over CDMA wireless links

    DEFF Research Database (Denmark)

    Cianca, Ernestina; Prasad, Ramjee; De Sanctis, Mauro

    2005-01-01

    The issue of the performance degradation of transmission control protocol/Internet Protocol (TCP/IP) over wireless links due to the presence of noncongestion-related packet losses has been addressed with a physical layer approach. The effectiveness of automatic repeat request techniques in enhanc...

  9. Ad hoc mobile wireless networks principles, protocols, and applications

    CERN Document Server

    Sarkar, Subir Kumar

    2013-01-01

    The military, the research community, emergency services, and industrial environments all rely on ad hoc mobile wireless networks because of their simple infrastructure and minimal central administration. Now in its second edition, Ad Hoc Mobile Wireless Networks: Principles, Protocols, and Applications explains the concepts, mechanism, design, and performance of these highly valued systems. Following an overview of wireless network fundamentals, the book explores MAC layer, routing, multicast, and transport layer protocols for ad hoc mobile wireless networks. Next, it examines quality of serv

  10. Wireless Networks

    OpenAIRE

    Samaka, Mohammed; Khan, Khaled M.D.

    2007-01-01

    Wireless communication is the fastest-growing field in the telecommunication industry. Wireless networks have grown significantly as an important segment of the communications industry. They have become popular networks with the potential to provide high-speed, high-quality information exchange between two or more portable devices without any wire or conductors. Wireless networks can simply be characterized as the technology that provides seamless access to information, anywhere, anyplace, an...

  11. Dynamics of Complex Systems Built as Coupled Physical, Communication and Decision Layers.

    Science.gov (United States)

    Kühnlenz, Florian; Nardelli, Pedro H J

    2016-01-01

    This paper proposes a simple model to capture the complexity of multilayer systems where their constituent layers affect, and are affected by, each other. The physical layer is a circuit composed by a power source and resistors in parallel. Every individual agent aims at maximizing its own delivered power by adding, removing or keeping the resistors it has; the delivered power is in turn a non-linear function that depends on the other agents' behavior, its own internal state, its global state perception, the information received from its neighbors via the communication network and a randomized selfishness. We develop an agent-based simulation to analyze the effects of number of agents (system size), communication network topology, communication errors and the minimum power gain that triggers a behavioral change on the system dynamic. Our results show that a wave-like behavior at macro-level (caused by individual changes in the decision layer) can only emerge for a specific system size. The ratio between cooperators and defectors depends on the minimum gain assumed-lower minimal gains lead to less cooperation, and vice-versa. Different communication network topologies imply different levels of power utilization and fairness at the physical layer, and a certain level of error in the communication layer induces more cooperation.

  12. Dynamics of Complex Systems Built as Coupled Physical, Communication and Decision Layers.

    Directory of Open Access Journals (Sweden)

    Florian Kühnlenz

    Full Text Available This paper proposes a simple model to capture the complexity of multilayer systems where their constituent layers affect, and are affected by, each other. The physical layer is a circuit composed by a power source and resistors in parallel. Every individual agent aims at maximizing its own delivered power by adding, removing or keeping the resistors it has; the delivered power is in turn a non-linear function that depends on the other agents' behavior, its own internal state, its global state perception, the information received from its neighbors via the communication network and a randomized selfishness. We develop an agent-based simulation to analyze the effects of number of agents (system size, communication network topology, communication errors and the minimum power gain that triggers a behavioral change on the system dynamic. Our results show that a wave-like behavior at macro-level (caused by individual changes in the decision layer can only emerge for a specific system size. The ratio between cooperators and defectors depends on the minimum gain assumed-lower minimal gains lead to less cooperation, and vice-versa. Different communication network topologies imply different levels of power utilization and fairness at the physical layer, and a certain level of error in the communication layer induces more cooperation.

  13. Wireless virtualization

    CERN Document Server

    Wen, Heming; Le-Ngoc, Tho

    2013-01-01

    This SpringerBriefs is an overview of the emerging field of wireless access and mobile network virtualization. It provides a clear and relevant picture of the current virtualization trends in wireless technologies by summarizing and comparing different architectures, techniques and technologies applicable to a future virtualized wireless network infrastructure. The readers are exposed to a short walkthrough of the future Internet initiative and network virtualization technologies in order to understand the potential role of wireless virtualization in the broader context of next-generation ubiq

  14. Efficient DV-HOP Localization for Wireless Cyber-Physical Social Sensing System: A Correntropy-Based Neural Network Learning Scheme

    Directory of Open Access Journals (Sweden)

    Yang Xu

    2017-01-01

    Full Text Available Integrating wireless sensor network (WSN into the emerging computing paradigm, e.g., cyber-physical social sensing (CPSS, has witnessed a growing interest, and WSN can serve as a social network while receiving more attention from the social computing research field. Then, the localization of sensor nodes has become an essential requirement for many applications over WSN. Meanwhile, the localization information of unknown nodes has strongly affected the performance of WSN. The received signal strength indication (RSSI as a typical range-based algorithm for positioning sensor nodes in WSN could achieve accurate location with hardware saving, but is sensitive to environmental noises. Moreover, the original distance vector hop (DV-HOP as an important range-free localization algorithm is simple, inexpensive and not related to the environment factors, but performs poorly when lacking anchor nodes. Motivated by these, various improved DV-HOP schemes with RSSI have been introduced, and we present a new neural network (NN-based node localization scheme, named RHOP-ELM-RCC, through the use of DV-HOP, RSSI and a regularized correntropy criterion (RCC-based extreme learning machine (ELM algorithm (ELM-RCC. Firstly, the proposed scheme employs both RSSI and DV-HOP to evaluate the distances between nodes to enhance the accuracy of distance estimation at a reasonable cost. Then, with the help of ELM featured with a fast learning speed with a good generalization performance and minimal human intervention, a single hidden layer feedforward network (SLFN on the basis of ELM-RCC is used to implement the optimization task for obtaining the location of unknown nodes. Since the RSSI may be influenced by the environmental noises and may bring estimation error, the RCC instead of the mean square error (MSE estimation, which is sensitive to noises, is exploited in ELM. Hence, it may make the estimation more robust against outliers. Additionally, the least square

  15. Efficient DV-HOP Localization for Wireless Cyber-Physical Social Sensing System: A Correntropy-Based Neural Network Learning Scheme.

    Science.gov (United States)

    Xu, Yang; Luo, Xiong; Wang, Weiping; Zhao, Wenbing

    2017-01-12

    Integrating wireless sensor network (WSN) into the emerging computing paradigm, e.g., cyber-physical social sensing (CPSS), has witnessed a growing interest, and WSN can serve as a social network while receiving more attention from the social computing research field. Then, the localization of sensor nodes has become an essential requirement for many applications over WSN. Meanwhile, the localization information of unknown nodes has strongly affected the performance of WSN. The received signal strength indication (RSSI) as a typical range-based algorithm for positioning sensor nodes in WSN could achieve accurate location with hardware saving, but is sensitive to environmental noises. Moreover, the original distance vector hop (DV-HOP) as an important range-free localization algorithm is simple, inexpensive and not related to the environment factors, but performs poorly when lacking anchor nodes. Motivated by these, various improved DV-HOP schemes with RSSI have been introduced, and we present a new neural network (NN)-based node localization scheme, named RHOP-ELM-RCC, through the use of DV-HOP, RSSI and a regularized correntropy criterion (RCC)-based extreme learning machine (ELM) algorithm (ELM-RCC). Firstly, the proposed scheme employs both RSSI and DV-HOP to evaluate the distances between nodes to enhance the accuracy of distance estimation at a reasonable cost. Then, with the help of ELM featured with a fast learning speed with a good generalization performance and minimal human intervention, a single hidden layer feedforward network (SLFN) on the basis of ELM-RCC is used to implement the optimization task for obtaining the location of unknown nodes. Since the RSSI may be influenced by the environmental noises and may bring estimation error, the RCC instead of the mean square error (MSE) estimation, which is sensitive to noises, is exploited in ELM. Hence, it may make the estimation more robust against outliers. Additionally, the least square estimation (LSE

  16. Physically Unclonable Cryptographic Primitives by Chemical Vapor Deposition of Layered MoS2.

    Science.gov (United States)

    Alharbi, Abdullah; Armstrong, Darren; Alharbi, Somayah; Shahrjerdi, Davood

    2017-11-27

    Physically unclonable cryptographic primitives are promising for securing the rapidly growing number of electronic devices. Here, we introduce physically unclonable primitives from layered molybdenum disulfide (MoS2) by leveraging the natural randomness of their island growth during chemical vapor deposition (CVD). We synthesize a MoS2 monolayer film covered with speckles of multilayer islands, where the growth process is engineered for an optimal speckle density. Using the Clark-Evans test, we confirm that the distribution of islands on the film exhibits complete spatial randomness, hence indicating the growth of multilayer speckles is a spatial Poisson process. Such a property is highly desirable for constructing unpredictable cryptographic primitives. The security primitive is an array of 2048 pixels fabricated from this film. The complex structure of the pixels makes the physical duplication of the array impossible (i.e., physically unclonable). A unique optical response is generated by applying an optical stimulus to the structure. The basis for this unique response is the dependence of the photoemission on the number of MoS2 layers, which by design is random throughout the film. Using a threshold value for the photoemission, we convert the optical response into binary cryptographic keys. We show that the proper selection of this threshold is crucial for maximizing combination randomness and that the optimal value of the threshold is linked directly to the growth process. This study reveals an opportunity for generating robust and versatile security primitives from layered transition metal dichalcogenides.

  17. Software defined radio for cognitive wireless sensor networks : a reconfigurable IEEE 802.15.4 reconfigurable

    OpenAIRE

    Zitouni, Rafik

    2015-01-01

    The Increasing number of Wireless Sensor Networks (WSNs) applications has led industries to design the physical layer (PHY) of these networks following the IEEE 802.15.4 standard. The traditional design of that layer is on hardware suffering from a lack of flexibility of radio parameters, such as changing both frequency bands and modulations. This problem is emphasized by the scarcity of the radio-frequency spectrum. Software Defined Radio (SDR) is an attracting solution to easily reconfigure...

  18. Wireless Internet

    NARCIS (Netherlands)

    el Zarki, M.; Heijenk, Geert; Lee, Kenneth S.; Bidgoli, H.

    This chapter addresses the topic of wireless Internet, the extension of the wireline Internet architecture to the wireless domain. As such the chapter introduces the reader to the dominant characteristics of the Internet, from its structure to the protocols that control the forwarding of data and

  19. Investigating Wireless Power Transfer

    Science.gov (United States)

    St. John, Stuart A.

    Understanding Physics is a great end in itself, but is also crucial to keep pace with developments in modern technology. Wireless power transfer, known to many only as a means to charge electric toothbrushes, will soon be commonplace in charging phones, electric cars and implanted medical devices. This article outlines how to produce and use a…

  20. Investigating Wireless Power Transfer

    Science.gov (United States)

    St. John, Stuart A.

    2017-01-01

    Understanding Physics is a great end in itself, but is also crucial to keep pace with developments in modern technology. Wireless power transfer, known to many only as a means to charge electric toothbrushes, will soon be commonplace in charging phones, electric cars and implanted medical devices. This article outlines how to produce and use a…

  1. Synthesis of PVA/PVP hydrogels having two-layer by radiation and their physical properties

    Science.gov (United States)

    Park, Kyoung Ran; Nho, Young Chang

    2003-06-01

    In these studies, two-layer hydrogels which consisted of polyurethane membrane and a mixture of polyvinyl alcohol(PVA)/poly- N-vinylpyrrolidone(PVP)/glycerin/chitosan were made for the wound dressing. Polyurethane was dissolved in solvent, the polyurethane solution was poured on the mould, and then dried to make the thin membrane. Hydrophilic polymer solutions were poured on the polyurethane membranes, they were exposed to gamma irradiation or two steps of 'freezing and thawing' and gamma irradiation doses to make the hydrogels. The physical properties such as gelation, water absorptivity, and gel strength were examined to evaluate the hydrogels for wound dressing. The physical properties of hydrogels such as gelation and gel strength was greatly improved when polyurethane membrane was used as a covering layer of hydrogel, and the evaporation speed of water in hydrogel was reduced.

  2. Pervasive wireless environments

    CERN Document Server

    Yang, Jie; Trappe, Wade; Cheng, Jerry

    2014-01-01

    This Springer Brief provides a new approach to prevent user spoofing by using the physical properties associated with wireless transmissions to detect the presence of user spoofing. The most common method, applying cryptographic authentication, requires additional management and computational power that cannot be deployed consistently. The authors present the new approach by offering a summary of the recent research and exploring the benefits and potential challenges of this method. This brief discusses the feasibility of launching user spoofing attacks and their impact on the wireless and sen

  3. A multipath video delivery scheme over diffserv wireless LANs

    Science.gov (United States)

    Man, Hong; Li, Yang

    2004-01-01

    This paper presents a joint source coding and networking scheme for video delivery over ad hoc wireless local area networks. The objective is to improve the end-to-end video quality with the constraint of the physical network. The proposed video transport scheme effectively integrates several networking components including load-aware multipath routing, class based queuing (CBQ), and scalable (or layered) video source coding techniques. A typical progressive video coder, 3D-SPIHT, is used to generate multi-layer source data streams. The coded bitstreams are then segmented into multiple sub-streams, each with a different level of importance towards the final video reconstruction. The underlay wireless ad hoc network is designed to support service differentiation. A contention sensitive load aware routing (CSLAR) protocol is proposed. The approach is to discover multiple routes between the source and the destination, and label each route with a load value which indicates its quality of service (QoS) characteristics. The video sub-streams will be distributed among these paths according to their QoS priority. CBQ is also applied to all intermediate nodes, which gives preference to important sub-streams. Through this approach, the scalable source coding techniques are incorporated with differentiated service (DiffServ) networking techniques so that the overall system performance is effectively improved. Simulations have been conducted on the network simulator (ns-2). Both network layer performance and application layer performance are evaluated. Significant improvements over traditional ad hoc wireless network transport schemes have been observed.

  4. Effects of wireless packet loss in industrial process control systems.

    Science.gov (United States)

    Liu, Yongkang; Candell, Richard; Moayeri, Nader

    2017-05-01

    controller to the burstiness of packet loss is also characterized in different process stages. The performance results indicate that wireless links with redundant bandwidth reservation can meet the requirements of the TE process model under normal operational conditions. When disturbances are introduced in the TE plant model, wireless packet loss during transitions between process stages need further protection in severely impaired links. Techniques such as retransmission scheduling, multipath routing and enhanced physical layer design are discussed and the latest industrial wireless protocols are compared. Published by Elsevier Ltd.

  5. Optimization of high-definition video coding and hybrid fiber-wireless transmission in the 60 GHz band

    DEFF Research Database (Denmark)

    Lebedev, Alexander; Pham, Tien Thang; Beltrán, Marta

    2011-01-01

    The paper addresses the problem of distribution of highdefinition video over fiber-wireless networks. The physical layer architecture with the low complexity envelope detection solution is investigated. We present both experimental studies and simulation of high quality high-definition compressed...

  6. High fidelity wireless network evaluation for heterogeneous cognitive radio networks

    Science.gov (United States)

    Ding, Lei; Sagduyu, Yalin; Yackoski, Justin; Azimi-Sadjadi, Babak; Li, Jason; Levy, Renato; Melodia, Tammaso

    2012-06-01

    We present a high fidelity cognitive radio (CR) network emulation platform for wireless system tests, measure- ments, and validation. This versatile platform provides the configurable functionalities to control and repeat realistic physical channel effects in integrated space, air, and ground networks. We combine the advantages of scalable simulation environment with reliable hardware performance for high fidelity and repeatable evaluation of heterogeneous CR networks. This approach extends CR design only at device (software-defined-radio) or lower-level protocol (dynamic spectrum access) level to end-to-end cognitive networking, and facilitates low-cost deployment, development, and experimentation of new wireless network protocols and applications on frequency- agile programmable radios. Going beyond the channel emulator paradigm for point-to-point communications, we can support simultaneous transmissions by network-level emulation that allows realistic physical-layer inter- actions between diverse user classes, including secondary users, primary users, and adversarial jammers in CR networks. In particular, we can replay field tests in a lab environment with real radios perceiving and learning the dynamic environment thereby adapting for end-to-end goals over distributed spectrum coordination channels that replace the common control channel as a single point of failure. CR networks offer several dimensions of tunable actions including channel, power, rate, and route selection. The proposed network evaluation platform is fully programmable and can reliably evaluate the necessary cross-layer design solutions with configurable op- timization space by leveraging the hardware experiments to represent the realistic effects of physical channel, topology, mobility, and jamming on spectrum agility, situational awareness, and network resiliency. We also provide the flexibility to scale up the test environment by introducing virtual radios and establishing seamless signal

  7. Performance of opportunistic scheduling for physical layer security with transmit antenna selection

    National Research Council Canada - National Science Library

    Shrestha, Anish Prasad; Kwak, Kyung Sup

    2014-01-01

    ...) in multiuser environment. We consider a wireless communication system composed of a single transmitter and multiple legitimate users in the presence of several eavesdroppers with each node having multiple antennas under quasi...

  8. A Novel Secure Transmission Scheme in MIMO Two-Way Relay Channels with Physical Layer Approach

    Directory of Open Access Journals (Sweden)

    Qiao Liu

    2017-01-01

    Full Text Available Security issue has been considered as one of the most pivotal aspects for the fifth-generation mobile network (5G due to the increasing demands of security service as well as the growing occurrence of security threat. In this paper, instead of focusing on the security architecture in the upper layer, we investigate the secure transmission for a basic channel model in a heterogeneous network, that is, two-way relay channels. By exploiting the properties of the transmission medium in the physical layer, we propose a novel secure scheme for the aforementioned channel mode. With precoding design, the proposed scheme is able to achieve a high transmission efficiency as well as security. Two different approaches have been introduced: information theoretical approach and physical layer encryption approach. We show that our scheme is secure under three different adversarial models: (1 untrusted relay attack model, (2 trusted relay with eavesdropper attack model, and (3 untrusted relay with eavesdroppers attack model. We also derive the secrecy capacity of the two different approaches under the three attacks. Finally, we conduct three simulations of our proposed scheme. The simulation results agree with the theoretical analysis illustrating that our proposed scheme could achieve a better performance than the existing schemes.

  9. The Role of Physical Layer Security in IoT: A Novel Perspective

    Directory of Open Access Journals (Sweden)

    Tommaso Pecorella

    2016-08-01

    Full Text Available This paper deals with the problem of securing the configuration phase of an Internet of Things (IoT system. The main drawbacks of current approaches are the focus on specific techniques and methods, and the lack of a cross layer vision of the problem. In a smart environment, each IoT device has limited resources and is often battery operated with limited capabilities (e.g., no keyboard. As a consequence, network security must be carefully analyzed in order to prevent security and privacy issues. In this paper, we will analyze the IoT threats, we will propose a security framework for the device initialization and we will show how physical layer security can effectively boost the security of IoT systems.

  10. Physics of Canopy Boundary Layer Resistance for Better Quantification of Sensitivity of Deforestation Scenarios

    Science.gov (United States)

    Ragi, K. B.; Patel, R.

    2015-12-01

    A great deal of studies focused on deforestation scenarios in the tropical rainforests. Though all these efforts are useful in the understanding of its response to climate, the systematic understanding of uncertainties in representation of physical processes related to vegetation through sensitivity studies is imperative antecedently to understand the real role of vegetation in changing the climate. It is understood that the dense vegetation fluxes energy and moisture to the atmosphere. But, how much a specific process/a group of processes in the surface conditions of a specific area helps flux energy, moisture and tracers is unknown due to lack of process sensitivity studies and uncertain due to malfunctioning of processes. In this presentation, we have found a faulty parameterization, through process sensitivity studies, that would abet in energy and moisture fluxes to the atmosphere. The model we have employed is the Common Land Model2014. The area we have chosen is the Congolese rainforest. We have discovered the flaw in the leaf boundary layer resistance (LBLR), through sensitivity studies in the LSMs, especially in the dense forest regions. This LBLR is over-parameterized with constant heat transfer coefficient and characteristic dimension of leaves; and friction velocity. However, it is too scant because of overlooking of significant complex physics of turbulence and canopy roughness boundary layer to function it realistically. Our sensitivity results show the deficiency of this process and we have formulated canopy boundary layer resistance, instead of LBLR, with depending variables such as LAI, roughness length, vegetation temperature using appropriate thermo-fluid dynamical principles. We are running the sensitivity experiments with new formulations for setting the parameter values for the data not available so far. This effort would lead to better physics for the land-use change studies and demand for the retrieval of new parameters from satellite

  11. Physical-Layer Security with Full-Duplex Transceivers and Multiuser Receiver at Eve

    DEFF Research Database (Denmark)

    Mahmood, Nurul Huda; Shafique Ansari, Imran; Popovski, Petar

    2017-01-01

    Full-duplex communication enables simultaneous transmission from both ends of a communication link, thereby promising significant performance gains. Generally, it has been shown that the throughput and delay gains of full-duplex communication are somewhat limited in realistic network settings......, leading researchers to study other possible applications that can accord higher gains. The potential of full-duplex communication in improving the physical-layer security of a communication link is investigated in this contribution. We specifically present a thorough analysis of the achievable ergodic...

  12. An approach for physical layer security enhancement and PAPR reduction in OFDM-PON

    Science.gov (United States)

    Chen, Junxin; Zhu, Zhi-liang

    2017-07-01

    This work develops a solution for simultaneous physical layer security enhancement and peak-to-average power ratio (PAPR) reduction for orthogonal frequency division multiplexing passive optical network (OFDM-PON) systems. The encryption is carried out within the subcarriers with the help of three-dimensional (3-D) chaotic cat map. Experimental results demonstrate that the OFDM-PON system under the protection of the proposed technique is high sensitive to the secret key, invalid optical network units cannot obtain any useful information from the ciphertext. Besides, the PAPR of the OFDM symbols has also been significantly reduced, and hence the system is more robust against various nonlinear disturbances.

  13. Ion - beam assisted process in the physical deposition of organic thin layers

    Energy Technology Data Exchange (ETDEWEB)

    Dimov, D; Spassova, E; Assa, J; Danev, G [Acad. J .Malinowski Central Laboratory of Photoprocesses, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl.109, 1113 Sofia (Bulgaria); Georgiev, A, E-mail: dean@clf.bas.b [University of Chemical Technology and Metallurgy, 8 Kl. Ohridski Blvd., 1756 Sofia (Bulgaria)

    2010-04-01

    A novel method was developed for physical deposition of thin polyimide layers by applying an argon plasma assisted process. The influence was investigated of the plasma on the combined molecular flux of the two thermally evaporated precursors - oxydianiline and pyromellitic dianhydride. The effects observed on the properties of the deposited films are explained with the increased energy of the precursor molecules resulting from the ion-molecular collisions. As could be expected, molecules with higher energy possess higher mobility and thus determine the modification of the films structure and their electrical properties.

  14. Physical deposition of thin polyimide layers by applying an argon plasma assisted process

    Energy Technology Data Exchange (ETDEWEB)

    Dimov, D; Georgiev, A; Spassova, E; Assa, J; Dineff, P; Danev, G, E-mail: dean@clf.bas.b

    2010-11-01

    A novel method for physical deposition of thin polyimide layers by applying an argon plasma assisted process has been developed. The influence of the plasma on the combined molecular flux of the two thermally evaporated precursors - 4,4'- oxydianiline and pyromellitic dianhydride was investigated. The process parameters were changed in the limlts 0,4 - 2 A for the anode current and 80 - 170 V for the anode voltage. Their influence was studied using FTIR spectroscopy and electron microscopy techniques. It was proposed that the plasma flux crossing the molecular flows of the polyimide precursors enhances the imidization process by partly activating the precursor molecules in the gas phase.

  15. Atomic layer deposition of metal oxide patterns on nonwoven fiber mats using localized physical compression.

    Science.gov (United States)

    Sweet, William J; Oldham, Christopher J; Parsons, Gregory N

    2014-06-25

    Patterning is an essential part of many industrial processes from printing to semiconductor manufacturing. In this work, we demonstrate a new method to pattern and selectively coat nonwoven textiles by atomic layer deposition (ALD) using compressive mask patterning. A physical mask combined with mechanical compression allows lateral definition and fidelity of the ALD coating to be controlled. We produce features of several sizes on different nonwoven fiber materials and demonstrate the ability to limit diffusion effects to within nonwoven mats is investigated by plan-view and cross-sectional imaging. Vertical growth is also analyzed by imaging coating depth into fiber mat stacks. We develop a fully quantitative transport model that describes well the effect of fiber structure and mechanical compression on the extent of coating under the physical mask. This method could be implemented for high-volume patterning for applications including flexible electronics.

  16. Radio frequency identification enabled wireless sensing for intelligent food logistics.

    Science.gov (United States)

    Zou, Zhuo; Chen, Qiang; Chen, Qing; Uysal, Ismail; Zheng, Lirong

    2014-06-13

    Future technologies and applications for the Internet of Things (IoT) will evolve the process of the food supply chain and create added value of business. Radio frequency identifications (RFIDs) and wireless sensor networks (WSNs) have been considered as the key technological enablers. Intelligent tags, powered by autonomous energy, are attached on objects, networked by short-range wireless links, allowing the physical parameters such as temperatures and humidities as well as the location information to seamlessly integrate with the enterprise information system over the Internet. In this paper, challenges, considerations and design examples are reviewed from system, implementation and application perspectives, particularly with focus on intelligent packaging and logistics for the fresh food tracking and monitoring service. An IoT platform with a two-layer network architecture is introduced consisting of an asymmetric tag-reader link (RFID layer) and an ad-hoc link between readers (WSN layer), which are further connected to the Internet via cellular or Wi-Fi. Then, we provide insights into the enabling technology of RFID with sensing capabilities. Passive, semi-passive and active RFID solutions are discussed. In particular, we describe ultra-wideband radio RFID which has been considered as one of the most promising techniques for ultra-low-power and low-cost wireless sensing. Finally, an example is provided in the form of an application in fresh food tracking services and corresponding field testing results.

  17. Fuel Thermo-physical Characterization Project: Evaluation of Models to Calculate Thermal Diffusivity of Layered Composites

    Energy Technology Data Exchange (ETDEWEB)

    Burkes, Douglas [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Casella, Amanda J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Gardner, Levi D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Casella, Andrew M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Huber, Tanja K. [Technische Universität München, Munich (Germany); Breitkreutz, Harald [Technische Universität München, Munich (Germany)

    2015-02-11

    The Office of Material Management and Minimization Fuel Thermo-physical Characterization Project at Pacific Northwest National Laboratory (PNNL) is tasked with using PNNL facilities and processes to receive irradiated low enriched uranium-molybdenum fuel plate samples and perform analyses in support of the Office of Material Management and Minimization Reactor Conversion Program. This work is in support of the Fuel Development Pillar that is managed by Idaho National Laboratory. A key portion of the scope associated with this project was to measure the thermal properties of fuel segments harvested from plates that were irradiated in the Advanced Test Reactor. Thermal diffusivity of samples prepared from the fuel segments was measured using laser flash analysis. Two models, one developed by PNNL and the other developed by the Technische Universität München (TUM), were evaluated to extract the thermal diffusivity of the uranium-molybdenum alloy from measurements made on the irradiated, layered composites. The experimental data of the “TC” irradiated fuel segment was evaluated using both models considering a three-layer and five-layer system. Both models are in acceptable agreement with one another and indicate that the zirconium diffusion barrier has a minimal impact on the overall thermal diffusivity of the monolithic U-Mo fuel.

  18. LS Channel Estimation and Signal Separation for UHF RFID Tag Collision Recovery on the Physical Layer.

    Science.gov (United States)

    Duan, Hanjun; Wu, Haifeng; Zeng, Yu; Chen, Yuebin

    2016-03-26

    In a passive ultra-high frequency (UHF) radio-frequency identification (RFID) system, tag collision is generally resolved on a medium access control (MAC) layer. However, some of collided tag signals could be recovered on a physical (PHY) layer and, thus, enhance the identification efficiency of the RFID system. For the recovery on the PHY layer, channel estimation is a critical issue. Good channel estimation will help to recover the collided signals. Existing channel estimates work well for two collided tags. When the number of collided tags is beyond two, however, the existing estimates have more estimation errors. In this paper, we propose a novel channel estimate for the UHF RFID system. It adopts an orthogonal matrix based on the information of preambles which is known for a reader and applies a minimum-mean-square-error (MMSE) criterion to estimate channels. From the estimated channel, we could accurately separate the collided signals and recover them. By means of numerical results, we show that the proposed estimate has lower estimation errors and higher separation efficiency than the existing estimates.

  19. LS Channel Estimation and Signal Separation for UHF RFID Tag Collision Recovery on the Physical Layer

    Directory of Open Access Journals (Sweden)

    Hanjun Duan

    2016-03-01

    Full Text Available In a passive ultra-high frequency (UHF radio-frequency identification (RFID system, tag collision is generally resolved on a medium access control (MAC layer. However, some of collided tag signals could be recovered on a physical (PHY layer and, thus, enhance the identification efficiency of the RFID system. For the recovery on the PHY layer, channel estimation is a critical issue. Good channel estimation will help to recover the collided signals. Existing channel estimates work well for two collided tags. When the number of collided tags is beyond two, however, the existing estimates have more estimation errors. In this paper, we propose a novel channel estimate for the UHF RFID system. It adopts an orthogonal matrix based on the information of preambles which is known for a reader and applies a minimum-mean-square-error (MMSE criterion to estimate channels. From the estimated channel, we could accurately separate the collided signals and recover them. By means of numerical results, we show that the proposed estimate has lower estimation errors and higher separation efficiency than the existing estimates.

  20. Physical electro-thermal model of resistive switching in bi-layered resistance-change memory.

    Science.gov (United States)

    Kim, Sungho; Kim, Sae-Jin; Kim, Kyung Min; Lee, Seung Ryul; Chang, Man; Cho, Eunju; Kim, Young-Bae; Kim, Chang Jung; Chung, U -In; Yoo, In-Kyeong

    2013-01-01

    Tantalum-oxide-based bi-layered resistance-change memories (RRAMs) have recently improved greatly with regard to their memory performances. The formation and rupture of conductive filaments is generally known to be the mechanism that underlies resistive switching. The nature of the filament has been studied intensively and several phenomenological models have consistently predicted the resistance-change behavior. However, a physics-based model that describes a complete bi-layered RRAM structure has not yet been demonstrated. Here, a complete electro-thermal resistive switching model based on the finite element method is proposed. The migration of oxygen vacancies is simulated by the local temperature and electric field derived from carrier continuity and heat equations fully coupled in a 3-D geometry, which considers a complete bi-layered structure that includes the top and bottom electrodes. The proposed model accurately accounts for the set/reset characteristics, which provides an in-depth understanding of the nature of resistive switching.

  1. Physical Layer Built-In Security Analysis and Enhancement Algorithms for CDMA Systems

    Directory of Open Access Journals (Sweden)

    Li Tongtong

    2007-01-01

    Full Text Available Historically developed for secure communication and military use, CDMA has been identified as a major modulation and multiple-access technique for 3G systems and beyond. In addition to the wide bandwidth and low power-spectrum density which make CDMA signals robust to narrowband jamming and easy to be concealed within the noise floor, the physical layer built-in information privacy of CDMA system is provided by pseudorandom scrambling. In this paper, first, security weakness of the operational and proposed CDMA airlink interfaces is analyzed. Second, based on the advanced encryption standard (AES, we propose to enhance the physical layer built-in security of CDMA systems through secure scrambling. Performance analysis demonstrates that while providing significantly improved information privacy, CDMA systems with secure scrambling have comparable computational complexity and overall system performance with that of conventionally scrambled systems. Moreover, it is shown that by scrambling the training sequence and the message sequence separately with two independent scrambling sequences, both information privacy and system performance can be further improved. The proposed scheme can readily be applied to 3G systems and beyond.

  2. Physical Layer Definition for a Long-Haul HF Antarctica to Spain Radio Link

    Directory of Open Access Journals (Sweden)

    Rosa Ma Alsina-Pagès

    2016-05-01

    Full Text Available La Salle and the Observatori de l’Ebre (OE have been involved in a remote sensing project in Antarctica for the last 11 years. The OE has been monitoring the geomagnetic activity for more than twenty years and also the ionospheric activity of the last ten years in the Spanish Antarctic Station Juan Carlos I (ASJI (62.7 ° S, 299.6 ° E. La Salle is finishing the design and testing of a low-power communication system between the ASJI and Cambrils (41.0 ° N, 1.0 ° E with a double goal: (i the transmission of data from the sensors located at the ASJI and (ii the performance of an oblique ionospheric sounding of a 12,760 km HF link. Previously, La Salle has already performed sounding and modulation tests to describe the channel performance in terms of availability, Signal-to-Noise Ratio (SNR, Doppler spread and delay spread. This paper closes the design of the physical layer, by means of the channel error study and the synchronization performance, and concludes with a new physical layer proposal for the Oblique Ionosphere Sounder. Narrowband and wideband frames have been defined to be used when the oblique sounder performs as an ionospheric sensor. Finally, two transmission modes have been defined for the modem performance: the High Robustness Mode (HRM for low SNR hours and the High Throughput Mode (HTM for the high SNR hours.

  3. Point Defects in Two-Dimensional Layered Semiconductors: Physics and Its Applications

    Science.gov (United States)

    Suh, Joonki

    Recent advances in material science and semiconductor processing have been achieved largely based on in-depth understanding, efficient management and advanced application of point defects in host semiconductors, thus finding the relevant techniques such as doping and defect engineering as a traditional scientific and technological solution. Meanwhile, two- dimensional (2D) layered semiconductors currently draw tremendous attentions due to industrial needs and their rich physics at the nanoscale; as we approach the end of critical device dimensions in silicon-based technology, ultra-thin semiconductors have the potential as next- generation channel materials, and new physics also emerges at such reduced dimensions where confinement of electrons, phonons, and other quasi-particles is significant. It is therefore rewarding and interesting to understand and redefine the impact of lattice defects by investigating their interactions with energy/charge carriers of the host matter. Potentially, the established understanding will provide unprecedented opportunities for realizing new functionalities and enhancing the performance of energy harvesting and optoelectronic devices. In this thesis, multiple novel 2D layered semiconductors, such as bismuth and transition- metal chalcogenides, are explored. Following an introduction of conventional effects induced by point defects in semiconductors, the related physics of electronically active amphoteric defects is revisited in greater details. This can elucidate the complication of a two-dimensional electron gas coexisting with the topological states on the surface of bismuth chalcogenides, recently suggested as topological insulators. Therefore, native point defects are still one of the keys to understand and exploit topological insulators. In addition to from a fundamental science point of view, the effects of point defects on the integrated thermal-electrical transport, as well as the entropy-transporting process in

  4. Insecurity of Wireless Networks

    Energy Technology Data Exchange (ETDEWEB)

    Sheldon, Frederick T [ORNL; Weber, John Mark [Dynetics, Inc.; Yoo, Seong-Moo [University of Alabama, Huntsville; Pan, W. David [University of Alabama, Huntsville

    2012-01-01

    Wireless is a powerful core technology enabling our global digital infrastructure. Wi-Fi networks are susceptible to attacks on Wired Equivalency Privacy, Wi-Fi Protected Access (WPA), and WPA2. These attack signatures can be profiled into a system that defends against such attacks on the basis of their inherent characteristics. Wi-Fi is the standard protocol for wireless networks used extensively in US critical infrastructures. Since the Wired Equivalency Privacy (WEP) security protocol was broken, the Wi-Fi Protected Access (WPA) protocol has been considered the secure alternative compatible with hardware developed for WEP. However, in November 2008, researchers developed an attack on WPA, allowing forgery of Address Resolution Protocol (ARP) packets. Subsequent enhancements have enabled ARP poisoning, cryptosystem denial of service, and man-in-the-middle attacks. Open source systems and methods (OSSM) have long been used to secure networks against such attacks. This article reviews OSSMs and the results of experimental attacks on WPA. These experiments re-created current attacks in a laboratory setting, recording both wired and wireless traffic. The article discusses methods of intrusion detection and prevention in the context of cyber physical protection of critical Internet infrastructure. The basis for this research is a specialized (and undoubtedly incomplete) taxonomy of Wi-Fi attacks and their adaptations to existing countermeasures and protocol revisions. Ultimately, this article aims to provide a clearer picture of how and why wireless protection protocols and encryption must achieve a more scientific basis for detecting and preventing such attacks.

  5. Joint Network Coding for Interfering Wireless Multicast Networks

    CERN Document Server

    Qureshi, Jalaluddin; Cai, Jianfei

    2011-01-01

    Interference in wireless networks is one of the key-capacity limiting factor. The multicast capacity of an ad- hoc wireless network decreases with an increasing number of transmitting and/or receiving nodes within a fixed area. Digital Network Coding (DNC) has been shown to improve the multicast capacity of non-interfering wireless network. However recently proposed Physical-layer Network Coding (PNC) and Analog Network Coding (ANC) has shown that it is possible to decode an unknown packet from the collision of two packet, when one of the colliding packet is known a priori. Taking advantage of such collision decoding scheme, in this paper we propose a Joint Network Coding based Cooperative Retransmission (JNC- CR) scheme, where we show that ANC along with DNC can offer a much higher retransmission gain than that attainable through either ANC, DNC or Automatic Repeat reQuest (ARQ) based retransmission. This scheme can be applied for two wireless multicast groups interfering with each other. Because of the broa...

  6. Analysis Of Packets Delay In Wireless Data Networks

    Directory of Open Access Journals (Sweden)

    Krivchenkov Aleksandr

    2015-12-01

    Full Text Available The networks with wireless links for automation control applications traffic transmission when packets have small size and application payload is predictable are under consideration. Analytical model for packets delay on their propagation path through the network is proposed. Estimations for network architectures based on WiFi and Bluetooth wireless technologies are made. The specifications for physical layer 802.11 a/b/g/n and 802.15.1 are under consideration. Analytical and experimental results for delivered network bandwidth for different network architecture, traffic structure and wireless technologies were compared to validate that basic mechanisms are correctly taken into account in the model. It is shown that basic effects are taken into account and further accuracy “improvement” of the model will give not more than 5%. As a result that is important for automation control applications we have reliably received the lowest possible level for packets delay in one wireless link. For 802.11 it is of order of 0.2 ms, for 802.15.1 it is 1.25 ms and is true when application packet can be transferred by one data frame.

  7. Wireless Communications

    Science.gov (United States)

    1991-01-01

    A technology utilization project led to the commercial adaptation of a Space Shuttle Orbiter wireless infrared voice communications system. The technology was adapted to a LAN system by Wilton Industries, one of the participants. Because the system is cable-free, installation charges are saved, and it can be used where cable is impractical. Resultant products include the IRplex 6000. Transceivers can be located anywhere and can include mobile receivers. The system provides wireless LAN coverage up to 44,000 square feet. applications include stock exchange communications, trade shows, emergency communications, etc.

  8. Physically-based failure analysis of shallow layered soil deposits over large areas

    Science.gov (United States)

    Cuomo, Sabatino; Castorino, Giuseppe Claudio; Iervolino, Aniello

    2014-05-01

    In the last decades, the analysis of slope stability conditions over large areas has become popular among scientists and practitioners (Cascini et al., 2011; Cuomo and Della Sala, 2013). This is due to the availability of new computational tools (Baum et al., 2002; Godt et al., 2008; Baum and Godt, 2012; Salciarini et al., 2012) - implemented in GIS (Geographic Information System) platforms - which allow taking into account the major hydraulic and mechanical issues related to slope failure, even for unsaturated soils, as well as the spatial variability of both topography and soil properties. However, the effectiveness (Sorbino et al., 2010) of the above methods it is still controversial for landslides forecasting especially depending on the accuracy of DTM (Digital Terrain Model) and for the chance that distinct triggering mechanisms may occur over large area. Among the major uncertainties, layering of soil deposits is of primary importance due to soil layer conductivity contrast and differences in shear strength. This work deals with the hazard analysis of shallow landslides over large areas, considering two distinct schematizations of soil stratigraphy, i.e. homogeneous or layered. To this purpose, the physically-based model TRIGRS (Baum et al., 2002) is firstly used, then extended to the case of layered deposit: specifically, a unique set of hydraulic properties is assumed while distinct soil unit weight and shear strength are considered for each soil layer. Both models are applied to a significant study area of Southern Italy, about 4 km2 large, where shallow deposits of air-fall volcanic (pyroclastic) soils have been affected by several landslides, causing victims, damages and economic losses. The achieved results highlight that soil volume globally mobilized over the study area highly depends on local stratigraphy of shallow deposits. This relates to the depth of critical slip surface which rarely corresponds to the bedrock contact where cohesionless coarse

  9. Overview of the "Sea State and Boundary Layer Physics on the Emerging Arctic" experiment

    Science.gov (United States)

    Thomson, J. M.

    2016-02-01

    The goal of the "Sea State and Boundary Layer Physics on the Emerging Arctic" program is to understand how surface conditions are changing in the Beaufort and Chukchi Seas, and in particular to understand the role of surface waves and winds during the fall ice advance. The program is centered on a field campaign aboard R/V Sikuliaq in the fall of 2015. The field campaign will include shipboard measurements, ice stations, autonomous platforms, and moorings. A large suite of remote sensing products, from both satellites and aerial surveys, will be utilized for scientific and logistic support. This abstract will present an overview of the program and a recap of the research cruise, including an assessment of the conditions during the cruise relative to the emerging climatology.

  10. First MCM-D modules for the b-physics layer of the ATLAS Pixel Detector

    CERN Document Server

    Basken, O; Ehrmann, O; Gerlach, P; Grah, C; Gregor, I M; Linder, C; Meuser, S; Richardson, J; Topper, M; Wolf, J

    2000-01-01

    The innermost layer (b-physics layer) of the ATLAS Pixel Detector will consist of modules based on MCM-D technology. Such a module consists of a sensor tile with an active area of 16.4 mm*60.4 mm, 16 read out ICs, each serving 24* 160 pixel unit cells, a module controller chip (MCC), an optical transceiver and the local signal interconnection and power distribution busses. We show a prototype of such a module with additional test pads on both sides. The outer dimensions of the final module will be 21.4 mm*67.8 mm. The extremely high wiring density, which is necessary to interconnect the read-out chips, was achieved using a thin film copper/photo-BCB process on the pixel array. The bumping of the read out chips was done using electroplating PbSn. All dice are then attached by flip-chip assembly to the sensor diodes and the local busses. The focus of this paper is the description of the first results of such MCM-D-type modules. (11 refs).

  11. Coordinated Transmissions to Direct and Relayed Users in Wireless Cellular Systems

    DEFF Research Database (Denmark)

    Thai, Chan; Popovski, Petar; Kaneko, Megumi

    2011-01-01

    the interference. In this paper we use these principles to devise new transmission schemes in wireless cellular systems that feature both users served directly by the base stations (direct users) and users served through relays (relayed users). We present four different schemes for coordinated transmission...... of uplink and downlink traffic in which one direct and one relayed user are served. These schemes are then used as building blocks in multi–user scenarios, where we present several schemes for scheduling pairs of users for coordinated transmissions. The optimal scheme involves exhaustive search of the best......The ideas of wireless network coding at the physical layer promise high throughput gains in wireless systems with relays and multi–way traffic flows. This gain can be ascribed to two principles: (1) joint transmission of multiple communication flows and (2) usage of a priori information to cancel...

  12. Investigating wireless power transfer

    Science.gov (United States)

    St John, Stuart A.

    2017-09-01

    Understanding Physics is a great end in itself, but is also crucial to keep pace with developments in modern technology. Wireless power transfer, known to many only as a means to charge electric toothbrushes, will soon be commonplace in charging phones, electric cars and implanted medical devices. This article outlines how to produce and use a simple set of equipment to both demonstrate and investigate this phenomenon. It presents some initial findings and aims to encourage Physics educators and their students to conduct further research, pushing the bounds of their understanding.

  13. Soil Physical Constraints on Intrinsic Biodegradation of Petroleum Vapors in a Layered Subsurface.

    Science.gov (United States)

    Kristensen, Andreas H; Henriksen, Kaj; Mortensen, Lars; Scow, Kate M; Moldrup, Per

    2010-02-01

    Naturally occurring biodegradation of petroleum hydrocarbons in the vadose zone depends on the physical soil environment influencing field-scale gas exchange and pore-scale microbial metabolism. In this study, we evaluated the effect of soil physical heterogeneity on biodegradation of petroleum vapors in a 16-m-deep, layered vadose zone. Soil slurry experiments (soil/water ratio 10:30 w/w, 25°C) on benzene biodegradation under aerobic and well-mixed conditions indicated that the biodegradation potential in different textured soil samples was related to soil type rather than depth, in the order: sandy loam > fine sand > limestone. Similarly, O(2) consumption rates during in situ respiration tests performed at the site were higher in the sandy loam than in the fine sand, although the difference was less significant than in the slurries. Laboratory and field data generally agreed well and suggested a significant potential for aerobic biodegradation, even with nutrient-poor and deep subsurface conditions. In slurries of the sandy loam, the biodegradation potential declined with increasing in situ water saturation (i.e., decreasing air-filled porosity in the field). This showed a relation between antecedent undisturbed field conditions and the slurry biodegradation potential, and suggested airfilled porosity to be a key factor for the intrinsic biodegradation potential in the field.

  14. Cross-Layer Design and Analysis of Downlink Communications in Cellular CDMA Systems

    Directory of Open Access Journals (Sweden)

    Sun Jin Yuan

    2006-01-01

    Full Text Available A cellular CDMA network with voice and data communications is considered. Focusing on the downlink direction, we seek for the overall performance improvement which can be achieved by cross-layer analysis and design, taking physical layer, link layer, network layer, and transport layer into account. We are concerned with the role of each single layer as well as the interaction among layers, and propose algorithms/schemes accordingly to improve the system performance. These proposals include adaptive scheduling for link layer, priority-based handoff strategy for network admission control, and an algorithm for the avoidance of TCP spurious timeouts at the transport layer. Numerical results show the performance gain of each proposed scheme over independent performance of an individual layer in the wireless mobile network. We conclude that the system performance in terms of capacity, throughput, dropping probability, outage, power efficiency, delay, and fairness can be enhanced by jointly considering the interactions across layers.

  15. Next Generation Intelligent Wireless Infrastructure

    DEFF Research Database (Denmark)

    Toftegaard, Thomas Skjødeberg

    2010-01-01

    could think the wireless revolution is over. However, future connectivity will be wireless and ubiquitous. Therefore the future of wireless infrastructures seems to be in front of a remarkable evolution as this paper will describe. With a vision of creating continuous seamless user connectivity as well...... as having physical devices/things connected through the wide spread usage of sensor and RFID near field communication technologies the network will increase in size with a order of magnitude compared to today. Additionally having the widespread Internet protocol technologies as a fundamental building block...... efficient ways of optimizing the spectrum usage are necessary. The extent of IP-based sensor networks with explode due to the rapid evolution in the relationship between processing power, cost, power consumption and physical size....

  16. Physical and mathematical modeling of transient infiltration through shallow layered pyroclastic deposits

    Science.gov (United States)

    Damiano, Emilia; Greco, Roberto; Guida, Andrea; Olivares, Lucio; Picarelli, Luciano

    2017-04-01

    , small scale physical models of layered slopes, with various geometry and inclination, have been subjected to rainfalls of various intensities. During the infiltration processes and the following water redistribution phases, soil moisture and matric potential have been measured at various locations by means of TDR probes and tensiometers, respectively. The interpretation of the experimental results has been aided by a 2D mathematical model based on the integration of Richards' equation with the finite differences method. The obtained results indicate that a layer of dry pumices may induce lateral redistribution of water through the overlying ashes. In steep sloping deposits, this may favor the establishment of downslope directed subsurface runoff, which drains part of the infiltrating water towards the toe of the slope. In real slopes, depending on local morphology, such a downslope flow may have a beneficial effect on slope stability, as some water is drained out of the slope, or may even contribute to the establishment of triggering conditions, as it can result in flow concentration leading to local failure.

  17. Annual and semiannual variations in the ionospheric F2-layer: II. Physical discussion

    Directory of Open Access Journals (Sweden)

    H. Rishbeth

    2000-08-01

    Full Text Available The companion paper by Zou et al. shows that the annual and semiannual variations in the peak F2-layer electron density (NmF2 at midlatitudes can be reproduced by a coupled thermosphere-ionosphere computational model (CTIP, without recourse to external influences such as the solar wind, or waves and tides originating in the lower atmosphere. The present work discusses the physics in greater detail. It shows that noon NmF2 is closely related to the ambient atomic/molecular concentration ratio, and suggests that the variations of NmF2 with geographic and magnetic longitude are largely due to the geometry of the auroral ovals. It also concludes that electric fields play no important part in the dynamics of the midlatitude thermosphere. Our modelling leads to the following picture of the global three-dimensional thermospheric circulation which, as envisaged by Duncan, is the key to explaining the F2-layer variations. At solstice, the almost continuous solar input at high summer latitudes drives a prevailing summer-to-winter wind, with upwelling at low latitudes and throughout most of the summer hemisphere, and a zone of downwelling in the winter hemisphere, just equatorward of the auroral oval. These motions affect thermospheric composition more than do the alternating day/night (up-and-down motions at equinox. As a result, the thermosphere as a whole is more molecular at solstice than at equinox. Taken in conjunction with the well-known relation of F2-layer electron density to the atomic/molecular ratio in the neutral air, this explains the F2-layer semiannual effect in NmF2 that prevails at low and middle latitudes. At higher midlatitudes, the seasonal behaviour depends on the geographic latitude of the winter downwelling zone, though the effect of the composition changes is modified by the large solar zenith angle at midwinter. The zenith angle effect is especially important in longitudes far from the magnetic poles. Here, the downwelling occurs

  18. Distributed Rate Allocation for Wireless Networks

    CERN Document Server

    Jose, Jubin

    2010-01-01

    This paper describes a distributed algorithm for rate allocation in wireless networks. As the main result, the paper establishes that this algorithm is throughput-optimal for very general class of throughput regions. In contrast to distributed on-off scheduling algorithms, this algorithm enables optimal utilization of physical layer schemes by scheduling multiple rate levels. The algorithm is based on a Markov process on these discrete set of rates with certain transition rates. For dealing with multiple rate levels, the paper introduces an important structure for the transition rates, which enable the design of appropriate update rule for these transition rates. The update uses local queue length information alone, and thus does not require global exchange of queue length information. In addition, the algorithm requires that each link can determine the feasibility of increasing its data-rate from the current value without reducing the data-rates of other links. Determining rate feasibility does not introduce...

  19. A Physics-Based Approach for Power Integrity in Multi-Layered PCBs

    Science.gov (United States)

    Zhao, Biyao

    Developing a power distribution network (PDN) for ASICs and ICs to achieve the low-voltage ripple specifications for current digital designs is challenging with the high-speed and low-voltage ICs. Present methods are typically guided by best engineering practices for low impedance looking into the PDN from the IC. A pre-layout design methodology for power integrity in multi-layered PCB PDN geometry is proposed in the thesis. The PCB PDN geometry is segmented into four parts and every part is modelled using different methods based on the geometry details of the part. Physics-based circuit models are built for every part and the four parts are re-assembled into one model. The influence of geometry details is clearly revealed in this methodology. Based on the physics-based circuit mode, the procedures of using the pre-layout design methodology as a guideline during the PDN design is illustrated. Some common used geometries are used to build design space, and the design curves with the geometry details are provided to be a look up library for engineering use. The pre-layout methodology is based on the resonant cavity model of parallel planes for the cavity structures, and parallel-plane PEEC (PPP) for the irregular shaped plane inductance, and PEEC for the decoupling capacitor connection above the top most or bottom most power-return planes. PCB PDN is analyzed based on the input impedance looking into the PCB from the IC. The pre-layout design methodology can be used to obtain the best possible PCB PDN design. With the switching current profile, the target impedance can be selected to evaluate the PDN performance, and the frequency domain PDN input impedance can be used to obtain the voltage ripple in the time domain to give intuitive insight of the geometry impact on the voltage ripple.

  20. Capacity of Wireless Ad Hoc Networks with Opportunistic Collaborative Communications

    Directory of Open Access Journals (Sweden)

    Simeone O

    2007-01-01

    Full Text Available Optimal multihop routing in ad hoc networks requires the exchange of control messages at the MAC and network layer in order to set up the (centralized optimization problem. Distributed opportunistic space-time collaboration (OST is a valid alternative that avoids this drawback by enabling opportunistic cooperation with the source at the physical layer. In this paper, the performance of OST is investigated. It is shown analytically that opportunistic collaboration outperforms (centralized optimal multihop in case spatial reuse (i.e., the simultaneous transmission of more than one data stream is not allowed by the transmission protocol. Conversely, in case spatial reuse is possible, the relative performance between the two protocols has to be studied case by case in terms of the corresponding capacity regions, given the topology and the physical parameters of network at hand. Simulation results confirm that opportunistic collaborative communication is a promising paradigm for wireless ad hoc networks that deserves further investigation.

  1. Understanding the Flow Physics of Shock Boundary-Layer Interactions Using CFD and Numerical Analyses

    Science.gov (United States)

    Friedlander, David J.

    2013-01-01

    Computational fluid dynamic (CFD) analyses of the University of Michigan (UM) Shock/Boundary-Layer Interaction (SBLI) experiments were performed as an extension of the CFD SBLI Workshop held at the 48th AIAA Aerospace Sciences Meeting in 2010. In particular, the UM Mach 2.75 Glass Tunnel with a semi-spanning 7.75deg wedge was analyzed in attempts to explore key physics pertinent to SBLI's, including thermodynamic and viscous boundary conditions as well as turbulence modeling. Most of the analyses were 3D CFD simulations using the OVERFLOW flow solver, with additional quasi-1D simulations performed with an in house MATLAB code interfacing with the NIST REFPROP code to explore perfect verses non-ideal air. A fundamental exploration pertaining to the effects of particle image velocimetry (PIV) on post-processing data is also shown. Results from the CFD simulations showed an improvement in agreement with experimental data with key contributions including adding a laminar zone upstream of the wedge and the necessity of mimicking PIV particle lag for comparisons. Results from the quasi-1D simulation showed that there was little difference between perfect and non-ideal air for the configuration presented.

  2. Performance Analysis of Physical Layer Security of Opportunistic Scheduling in Multiuser Multirelay Cooperative Networks

    Directory of Open Access Journals (Sweden)

    Kyusung Shim

    2017-02-01

    Full Text Available In this paper, we study the physical layer security (PLS of opportunistic scheduling for uplink scenarios of multiuser multirelay cooperative networks. To this end, we propose a low-complexity, yet comparable secrecy performance source relay selection scheme, called the proposed source relay selection (PSRS scheme. Specifically, the PSRS scheme first selects the least vulnerable source and then selects the relay that maximizes the system secrecy capacity for the given selected source. Additionally, the maximal ratio combining (MRC technique and the selection combining (SC technique are considered at the eavesdropper, respectively. Investigating the system performance in terms of secrecy outage probability (SOP, closed-form expressions of the SOP are derived. The developed analysis is corroborated through Monte Carlo simulation. Numerical results show that the PSRS scheme significantly improves the secure ability of the system compared to that of the random source relay selection scheme, but does not outperform the optimal joint source relay selection (OJSRS scheme. However, the PSRS scheme drastically reduces the required amount of channel state information (CSI estimations compared to that required by the OJSRS scheme, specially in dense cooperative networks.

  3. Performance Analysis of Physical Layer Security of Opportunistic Scheduling in Multiuser Multirelay Cooperative Networks.

    Science.gov (United States)

    Shim, Kyusung; Do, Nhu Tri; An, Beongku

    2017-02-15

    In this paper, we study the physical layer security (PLS) of opportunistic scheduling for uplink scenarios of multiuser multirelay cooperative networks. To this end, we propose a low-complexity, yet comparable secrecy performance source relay selection scheme, called the proposed source relay selection (PSRS) scheme. Specifically, the PSRS scheme first selects the least vulnerable source and then selects the relay that maximizes the system secrecy capacity for the given selected source. Additionally, the maximal ratio combining (MRC) technique and the selection combining (SC) technique are considered at the eavesdropper, respectively. Investigating the system performance in terms of secrecy outage probability (SOP), closed-form expressions of the SOP are derived. The developed analysis is corroborated through Monte Carlo simulation. Numerical results show that the PSRS scheme significantly improves the secure ability of the system compared to that of the random source relay selection scheme, but does not outperform the optimal joint source relay selection (OJSRS) scheme. However, the PSRS scheme drastically reduces the required amount of channel state information (CSI) estimations compared to that required by the OJSRS scheme, specially in dense cooperative networks.

  4. Physical-layer security analysis of PSK quantum-noise randomized cipher in optically amplified links

    Science.gov (United States)

    Jiao, Haisong; Pu, Tao; Xiang, Peng; Zheng, Jilin; Fang, Tao; Zhu, Huatao

    2017-08-01

    The quantitative security of quantum-noise randomized cipher (QNRC) in optically amplified links is analyzed from the perspective of physical-layer advantage. Establishing the wire-tap channel models for both key and data, we derive the general expressions of secrecy capacities for the key against ciphertext-only attack and known-plaintext attack, and that for the data, which serve as the basic performance metrics. Further, the maximal achievable secrecy rate of the system is proposed, under which secrecy of both the key and data is guaranteed. Based on the same framework, the secrecy capacities of various cases can be assessed and compared. The results indicate perfect secrecy is potentially achievable for data transmission, and an elementary principle of setting proper number of photons and bases is given to ensure the maximal data secrecy capacity. But the key security is asymptotically perfect, which tends to be the main constraint of systemic maximal secrecy rate. Moreover, by adopting cascaded optical amplification, QNRC can realize long-haul transmission with secure rate up to Gb/s, which is orders of magnitude higher than the perfect secrecy rates of other encryption systems.

  5. Physical Layer Multi-Core Prototyping A Dataflow-Based Approach for LTE eNodeB

    CERN Document Server

    Pelcat, Maxime; Piat, Jonathan; Nezan, Jean-François

    2013-01-01

    Base stations developed according to the 3GPP Long Term Evolution (LTE) standard require unprecedented processing power. 3GPP LTE enables data rates beyond hundreds of Mbits/s by using advanced technologies, necessitating a highly complex LTE physical layer. The operating power of base stations is a significant cost for operators, and is currently optimized using state-of-the-art hardware solutions, such as heterogeneous distributed systems. The traditional system design method of porting algorithms to heterogeneous distributed systems based on test-and-refine methods is a manual, thus time-expensive, task.   Physical Layer Multi-Core Prototyping: A Dataflow-Based Approach for LTE eNodeB provides a clear introduction to the 3GPP LTE physical layer and to dataflow-based prototyping and programming. The difficulties in the process of 3GPP LTE physical layer porting are outlined, with particular focus on automatic partitioning and scheduling, load balancing and computation latency reduction, specifically in sys...

  6. Performance Assessment of New Land-Surface and Planetary Boundary Layer Physics in the WRF-ARW

    Science.gov (United States)

    The Pleim-Xiu land surface model, Pleim surface layer scheme, and Asymmetric Convective Model (version 2) are now options in version 3.0 of the Weather Research and Forecasting model (WRF) Advanced Research WRF (ARW) core. These physics parameterizations were developed for the f...

  7. Design and implementation of a software defined HiperLAN/2 physical layer model for simulation purposes

    NARCIS (Netherlands)

    van Hoesel, L.F.W.

    2002-01-01

    In this Master of Science thesis a simulation model of the HiperLAN/2 physical layer is designed and implemented. The model should provide insight in the demodulation functions that are necessary in HiperLAN/2 and it should be useful for determining channel selection and computational requirements

  8. The effects of mechanised equipment on physical load among road workers and floor layers in the construction industry

    NARCIS (Netherlands)

    Burdorf, A.; Windhorst, J.; van der Beek, A. J.; van der Molen, H.; Swuste, P. H. J. J.

    2007-01-01

    This study describes the impact of the use of mechanised equipment on physical load and workers' health among road workers and floor layers by comparing the traditional manual work method with frequently occurring scenarios of use of this new equipment. Continuous direct measurements of postures

  9. The impact of an online social network with wireless monitoring devices on physical activity and weight loss.

    Science.gov (United States)

    Greene, Jessica; Sacks, Rebecca; Piniewski, Brigitte; Kil, David; Hahn, Jin S

    2013-07-01

    Online social networks (OSNs) are a new, promising approach for catalyzing health-related behavior change. To date, the empirical evidence on their impact has been limited. Using a randomized trial, we assessed the impact of a health-oriented OSN with accelerometer and scales on participant's physical activity, weight, and clinical indicators. A sample of 349 PeaceHealth Oregon employees and family members were randomized to the iWell OSN or a control group and followed for 6 months in 2010-2011. The iWell OSN enabled participants to connect with "friends," make public postings, view contacts' postings, set goals, download the number of their steps from an accelerometer and their weight from a scale, view trends in physical activity and weight, and compete against others in physical activity. Both control and intervention participants received traditional education material on diet and physical activity. Laboratory data on weight and clinical indicators (triglycerides, high-density lipoprotein, or low-density lipoprotein), and self-reported data on physical activity, were collected at baseline, 3 months, and 6 months. At 6 months, the intervention group increased leisure walking minutes by 164% compared with 47% in the control group. The intervention group also lost more weight than the controls (5.2 pounds compared with 1.5 pounds). There were no observed significant differences in vigorous exercise or clinical indicators between the 2 groups. Among intervention participants, greater OSN use, as measured by number of private messages sent, was associated with a greater increase in leisure walking and greater weight reduction over the study period. The study provides evidence that interventions using OSNs can successfully promote increases in physical activity and weight loss.

  10. Wireless Industrial Monitoring and Control Networks: The Journey So Far and the Road Ahead

    Directory of Open Access Journals (Sweden)

    Paul Havinga

    2012-08-01

    Full Text Available While traditional wired communication technologies have played a crucial role in industrial monitoring and control networks over the past few decades, they are increasingly proving to be inadequate to meet the highly dynamic and stringent demands of today’s industrial applications, primarily due to the very rigid nature of wired infrastructures. Wireless technology, however, through its increased pervasiveness, has the potential to revolutionize the industry, not only by mitigating the problems faced by wired solutions, but also by introducing a completely new class of applications. While present day wireless technologies made some preliminary inroads in the monitoring domain, they still have severe limitations especially when real-time, reliable distributed control operations are concerned. This article provides the reader with an overview of existing wireless technologies commonly used in the monitoring and control industry. It highlights the pros and cons of each technology and assesses the degree to which each technology is able to meet the stringent demands of industrial monitoring and control networks. Additionally, it summarizes mechanisms proposed by academia, especially serving critical applications by addressing the real-time and reliability requirements of industrial process automation. The article also describes certain key research problems from the physical layer communication for sensor networks and the wireless networking perspective that have yet to be addressed to allow the successful use of wireless technologies in industrial monitoring and control networks.

  11. Acemind new indoor full duplex optical wireless communication prototype

    Science.gov (United States)

    Bouchet, Olivier; Perrufel, Micheline; Topsu, Suat; Guan, Hongyu

    2016-09-01

    For over a century and Mr. Guglielmo Marconi invention, systems using radio waves have controlled over wireless telecommunication solutions; from Amplitude Modulation (AM) radio products to satellite communications for instance. But beyond an increasingly negative opinion face to radio waves and radio spectrum availability more and more reduced; there is an unprecedented opportunity with LED installation in displays and lighting to provide optical wireless communication solutions. As a result, technologically mature solutions are already commercially available for services such as Location Based Services (LBS), broadcast diffusion or Intelligent Transport Services (ITS). Pending finalization of the standard review process IEEE 802.15.7 r1, our paper presents the results of the European collaborative project named "ACEMIND". It offers an indoor bilateral optical wireless communication prototype having the following characteristics: use of the existing electrical infrastructure, through judicious combination with Light Fidelity (LiFi), Power Line Communication (PLC) and Ethernet to reduce the implementation cost. We propose a bilateral optical wireless communication even when the light is switched off by using Visible Light Communication (VLC) and Infra-Red Communication (IRC) combined to a remote optical switch. Dimensionally optimized LiFi module is presented in order to offer the possibility for integration inside a laptop. Finally, there is operational mechanism implementation such as OFDM/DMT to increase throughput. After the introduction, we will present the results of a market study from Orange Labs customers about their opinion on LiFi components. Then we will detail the LiFi prototype, from the physical layer aspect to MAC layer before concluding on commercial development prospects.

  12. Body area networks using IEEE 802156 implementing the ultra wide band physical layer

    CERN Document Server

    Hernandez, Marco; Mucchi, Lorenzo

    2014-01-01

    The market of wearable wireless medical sensors is experiencing a rapid growth and the associated telecommunications services for the healthcare sector are forecast to further increase in the next years. Medical body area networks (MBANs) allow the mobility of patients and medical personnel by facilitating the remote monitoring of patients suffering from chronic or risky diseases. Currently, MBANs are being introduced in unlicensed frequency bands, where the risk of mutual interference with other electronic devices radiating in the same band can be high. Thus, coexistence is an issue on which

  13. WIRELESS FOR A NUCLEAR FACILITY

    Energy Technology Data Exchange (ETDEWEB)

    Shull, D; Joe Cordaro, J

    2007-03-28

    The introduction of wireless technology into a government site where nuclear material is processed and stored brings new meaning to the term ''harsh environment''. At SRNL, we are attempting to address not only the harsh RF and harsh physical environment common to industrial facilities, but also the ''harsh'' regulatory environment necessitated by the nature of the business at our site. We will discuss our concepts, processes, and expected outcomes in our attempts to surmount the roadblocks and reap the benefits of wireless in our ''factory''.

  14. Exploring the physical layer frontiers of cellular uplink: The Vienna LTE-A Uplink Simulator.

    Science.gov (United States)

    Zöchmann, Erich; Schwarz, Stefan; Pratschner, Stefan; Nagel, Lukas; Lerch, Martin; Rupp, Markus

    Communication systems in practice are subject to many technical/technological constraints and restrictions. Multiple input, multiple output (MIMO) processing in current wireless communications, as an example, mostly employs codebook-based pre-coding to save computational complexity at the transmitters and receivers. In such cases, closed form expressions for capacity or bit-error probability are often unattainable; effects of realistic signal processing algorithms on the performance of practical communication systems rather have to be studied in simulation environments. The Vienna LTE-A Uplink Simulator is a 3GPP LTE-A standard compliant MATLAB-based link level simulator that is publicly available under an academic use license, facilitating reproducible evaluations of signal processing algorithms and transceiver designs in wireless communications. This paper reviews research results that have been obtained by means of the Vienna LTE-A Uplink Simulator, highlights the effects of single-carrier frequency-division multiplexing (as the distinguishing feature to LTE-A downlink), extends known link adaptation concepts to uplink transmission, shows the implications of the uplink pilot pattern for gathering channel state information at the receiver and completes with possible future research directions.

  15. Wireless Biological Electronic Sensors.

    Science.gov (United States)

    Cui, Yue

    2017-10-09

    The development of wireless biological electronic sensors could open up significant advances for both fundamental studies and practical applications in a variety of areas, including medical diagnosis, environmental monitoring, and defense applications. One of the major challenges in the development of wireless bioelectronic sensors is the successful integration of biosensing units and wireless signal transducers. In recent years, there are a few types of wireless communication systems that have been integrated with biosensing systems to construct wireless bioelectronic sensors. To successfully construct wireless biological electronic sensors, there are several interesting questions: What types of biosensing transducers can be used in wireless bioelectronic sensors? What types of wireless systems can be integrated with biosensing transducers to construct wireless bioelectronic sensors? How are the electrical sensing signals generated and transmitted? This review will highlight the early attempts to address these questions in the development of wireless biological electronic sensors.

  16. Network Challenges for Cyber Physical Systems with Tiny Wireless Devices: A Case Study on Reliable Pipeline Condition Monitoring

    Directory of Open Access Journals (Sweden)

    Salman Ali

    2015-03-01

    Full Text Available The synergy of computational and physical network components leading to the Internet of Things, Data and Services has been made feasible by the use of Cyber Physical Systems (CPSs. CPS engineering promises to impact system condition monitoring for a diverse range of fields from healthcare, manufacturing, and transportation to aerospace and warfare. CPS for environment monitoring applications completely transforms human-to-human, human-to-machine and machine-to-machine interactions with the use of Internet Cloud. A recent trend is to gain assistance from mergers between virtual networking and physical actuation to reliably perform all conventional and complex sensing and communication tasks. Oil and gas pipeline monitoring provides a novel example of the benefits of CPS, providing a reliable remote monitoring platform to leverage environment, strategic and economic benefits. In this paper, we evaluate the applications and technical requirements for seamlessly integrating CPS with sensor network plane from a reliability perspective and review the strategies for communicating information between remote monitoring sites and the widely deployed sensor nodes. Related challenges and issues in network architecture design and relevant protocols are also provided with classification. This is supported by a case study on implementing reliable monitoring of oil and gas pipeline installations. Network parameters like node-discovery, node-mobility, data security, link connectivity, data aggregation, information knowledge discovery and quality of service provisioning have been reviewed.

  17. Network challenges for cyber physical systems with tiny wireless devices: a case study on reliable pipeline condition monitoring.

    Science.gov (United States)

    Ali, Salman; Qaisar, Saad Bin; Saeed, Husnain; Khan, Muhammad Farhan; Naeem, Muhammad; Anpalagan, Alagan

    2015-03-25

    The synergy of computational and physical network components leading to the Internet of Things, Data and Services has been made feasible by the use of Cyber Physical Systems (CPSs). CPS engineering promises to impact system condition monitoring for a diverse range of fields from healthcare, manufacturing, and transportation to aerospace and warfare. CPS for environment monitoring applications completely transforms human-to-human, human-to-machine and machine-to-machine interactions with the use of Internet Cloud. A recent trend is to gain assistance from mergers between virtual networking and physical actuation to reliably perform all conventional and complex sensing and communication tasks. Oil and gas pipeline monitoring provides a novel example of the benefits of CPS, providing a reliable remote monitoring platform to leverage environment, strategic and economic benefits. In this paper, we evaluate the applications and technical requirements for seamlessly integrating CPS with sensor network plane from a reliability perspective and review the strategies for communicating information between remote monitoring sites and the widely deployed sensor nodes. Related challenges and issues in network architecture design and relevant protocols are also provided with classification. This is supported by a case study on implementing reliable monitoring of oil and gas pipeline installations. Network parameters like node-discovery, node-mobility, data security, link connectivity, data aggregation, information knowledge discovery and quality of service provisioning have been reviewed.

  18. Resistance of Terrestrial Microbial Communities to Impack of Physical Conditinos of Subsurface Layers of Martian Regolith

    Science.gov (United States)

    Cheptsov, V. S.; Vorobyova, E. A.

    2017-05-01

    Currently, astrobiology is focused on Mars as one of the most perspective objects in the Solar System to search for microbial life. It was assumed that the putative biosphere of Mars could be cryopreserved and had been stored for billions of years in anabiotic state like microbial communities of Arctic and Antarctic permafrost deposits have been preserved till now for millions of years. In this case microbial cells should be not able to repair the damages or these processes have to be significantly depressed, and the main factor causing cell's death should be ionizing radiation. In a series of experiments we simulated the effects of combination of physical factors known as characteristics of the Martian regolith (and close to the space environment) on the natural microbial communities inhabiting xerophytic harsh habitats with extreme temperature conditions: polar permafrost and desert soils. The aim of the study was to examine the cumulative effect of factors (gamma radiation, low temperature, low pressure) to assess the possibility of metabolic reactions, and to find limits of the viability of natural microbial communities after exposure to the given conditions. It was found that microbial biomarkers could be reliably detected in soil samples after radiation dose accumulation up to 1 MGy (not further investigated) in combination with exposure to low temperature and low pressure. Resistance to extremely high doses of radiation in simulated conditions proves that if there was an Earth-like biosphere on the early Mars microorganisms could survive in the surface or subsurface layers of the Martian regolith for more than tens of millions of years after climate change. The study gives also some new grounds for the approval of transfer of viable microorganisms in space.

  19. Design and Development of Basic Physical Layer WiMAX Network Simulation Models

    Science.gov (United States)

    2009-01-01

    et future quatrieme genenation (4G) de systemes de communications sans fil, Ie groupe Communications Mo- dernes Guerre Electronique (CMGE) de...management message. The MAC layer message also informs the PHY layer on how the DL subframe is to be structured . It specifies the start and end symbols and

  20. The electric double layer put to work : thermal physics at electrochemical interfaces

    NARCIS (Netherlands)

    Janssen, M.A.|info:eu-repo/dai/nl/374662606

    2017-01-01

    Where charged electrode surfaces meet fluids that contain mobile ions, so-called electric double layers (EDLs) form to screen the electric surface charge by a diffuse cloud of counterionic charge in the fluid phase. This double layer has been studied for over a century and is of paramount importance

  1. The layering and physical characteristics of Shaver Brown Hens in a ...

    African Journals Online (AJOL)

    Eggs were collected from 120 Shaver Brown hens for a period of 56 days in order to determine their oviposition time, sequence of laying, lag time, laying intensity and egg weight. The hens were subsequently divided into three classes on the basis of their laying performance namely: good layers, intermediate layers and ...

  2. Analysis of wireless sensor network topology and estimation of optimal network deployment by deterministic radio channel characterization.

    Science.gov (United States)

    Aguirre, Erik; Lopez-Iturri, Peio; Azpilicueta, Leire; Astrain, José Javier; Villadangos, Jesús; Falcone, Francisco

    2015-02-05

    One of the main challenges in the implementation and design of context-aware scenarios is the adequate deployment strategy for Wireless Sensor Networks (WSNs), mainly due to the strong dependence of the radiofrequency physical layer with the surrounding media, which can lead to non-optimal network designs. In this work, radioplanning analysis for WSN deployment is proposed by employing a deterministic 3D ray launching technique in order to provide insight into complex wireless channel behavior in context-aware indoor scenarios. The proposed radioplanning procedure is validated with a testbed implemented with a Mobile Ad Hoc Network WSN following a chain configuration, enabling the analysis and assessment of a rich variety of parameters, such as received signal level, signal quality and estimation of power consumption. The adoption of deterministic radio channel techniques allows the design and further deployment of WSNs in heterogeneous wireless scenarios with optimized behavior in terms of coverage, capacity, quality of service and energy consumption.

  3. Biomonitoring with Wireless Communications

    Energy Technology Data Exchange (ETDEWEB)

    Budinger, Thomas F.

    2003-03-01

    This review is divided into three sections: technologies for monitoring physiological parameters; biosensors for chemical assays and wireless communications technologies including image transmissions. Applications range from monitoring high risk patients for heart, respiratory activity and falls to sensing levels of physical activity in military, rescue, and sports personnel. The range of measurements include, heart rate, pulse wave form, respiratory rate, blood oxygen, tissue pCO2, exhaled carbon dioxide and physical activity. Other feasible measurements will employ miniature chemical laboratories on silicon or plastic chips. The measurements can be extended to clinical chemical assays ranging from common blood assays to protein or specialized protein measurements (e.g., troponin, creatine, and cytokines such as TNF and IL6). Though the feasibility of using wireless technology to communicate vital signs has been demonstrated 32 years ago (1) it has been only recently that practical and portable devices and communications net works have become generally available for inexpensive deployment of comfortable and affordable devices and systems.

  4. Clock- and data-recovery IC with demultiplexer for a 2.5 Gb/s ATM physical layer controller

    DEFF Research Database (Denmark)

    Hansen, Flemming; Salama, C.A.T.

    1996-01-01

    A Clock- and Data-Recovery (CDR) IC for a Physical Layer Controller in an Asynchronous Transfer Mode (ATM) system operating at a bit rate of 2.488 Gb/s is presented. The circuit was designed and fabricated in a 0.8 μm BiCMOS process featuring 13 GHz fT bipolar transistors. Clock-recovery is accom......A Clock- and Data-Recovery (CDR) IC for a Physical Layer Controller in an Asynchronous Transfer Mode (ATM) system operating at a bit rate of 2.488 Gb/s is presented. The circuit was designed and fabricated in a 0.8 μm BiCMOS process featuring 13 GHz fT bipolar transistors. Clock...

  5. Stackelberg Game Based Power Allocation for Physical Layer Security of Device-to-device Communication Underlaying Cellular Networks

    Science.gov (United States)

    Qu, Junyue; Cai, Yueming; Wu, Dan; Chen, Hualiang

    2014-05-01

    The problem of power allocation for device-to-device (D2D) underlay communication to improve physical layer security is addressed. Specifically, to improve the secure communication of the cellular users, we introduce a Stackelberg game for allocating the power of the D2D link under a total power constraint and a rate constraint at the D2D pair. In the introduced Stackelberg game the D2D pair works as a seller and the cellular UEs work as buyers. Firstly, because the interference signals from D2D pair are unknown to both the legitimate receiver and the illegitimate eavesdropper, it is possible that a cellular UE decline to participate in the introduced Stackelberg game. So the condition under which a legitimate user will participate in the introduced Stackelberg game is discussed. Then, based on the Stackelberg game, we propose a semi-distributed power allocation algorithm, which is proved to conclude after finite-time iterations. In the end, some simulations are presented to verify the performance improvement in the physical layer security of cellular UEs using the proposed power allocation algorithm. We can determine that with the proposed algorithm, while the D2D pair's communication demand is met, the physical layer security of cellular UEs can be improved.

  6. A Novel Secure Transmission Scheme in MIMO Two-Way Relay Channels with Physical Layer Approach

    National Research Council Canada - National Science Library

    Qiao Liu; Guang Gong; Yong Wang; Hui Li

    2017-01-01

    .... In this paper, instead of focusing on the security architecture in the upper layer, we investigate the secure transmission for a basic channel model in a heterogeneous network, that is, two-way relay channels...

  7. ZERO: Probabilistic Routing for Deploy and Forget Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Jose Carlos Pacho

    2010-09-01

    Full Text Available As Wireless Sensor Networks are being adopted by industry and agriculture for large-scale and unattended deployments, the need for reliable and energy-conservative protocols become critical. Physical and Link layer efforts for energy conservation are not mostly considered by routing protocols that put their efforts on maintaining reliability and throughput. Gradient-based routing protocols route data through most reliable links aiming to ensure 99% packet delivery. However, they suffer from the so-called ”hot spot” problem. Most reliable routes waste their energy fast, thus partitioning the network and reducing the area monitored. To cope with this ”hot spot” problem we propose ZERO a combined approach at Network and Link layers to increase network lifespan while conserving reliability levels by means of probabilistic load balancing techniques.

  8. A Wireless Sensor Enabled by Wireless Power

    Science.gov (United States)

    Lee, Da-Sheng; Liu, Yu-Hong; Lin, Chii-Ruey

    2012-01-01

    Through harvesting energy by wireless charging and delivering data by wireless communication, this study proposes the concept of a wireless sensor enabled by wireless power (WPWS) and reports the fabrication of a prototype for functional tests. One WPWS node consists of wireless power module and sensor module with different chip-type sensors. Its main feature is the dual antenna structure. Following RFID system architecture, a power harvesting antenna was designed to gather power from a standard reader working in the 915 MHz band. Referring to the Modbus protocol, the other wireless communication antenna was integrated on a node to send sensor data in parallel. The dual antenna structure integrates both the advantages of an RFID system and a wireless sensor. Using a standard UHF RFID reader, WPWS can be enabled in a distributed area with a diameter up to 4 m. Working status is similar to that of a passive tag, except that a tag can only be queried statically, while the WPWS can send dynamic data from the sensors. The function is the same as a wireless sensor node. Different WPWSs equipped with temperature and humidity, optical and airflow velocity sensors are tested in this study. All sensors can send back detection data within 8 s. The accuracy is within 8% deviation compared with laboratory equipment. A wireless sensor network enabled by wireless power should be a totally wireless sensor network using WPWS. However, distributed WPWSs only can form a star topology, the simplest topology for constructing a sensor network. Because of shielding effects, it is difficult to apply other complex topologies. Despite this limitation, WPWS still can be used to extend sensor network applications in hazardous environments. Further research is needed to improve WPWS to realize a totally wireless sensor network. PMID:23443370

  9. Wireless Ad Hoc Networks

    Directory of Open Access Journals (Sweden)

    Hong-Chuan Yang

    2007-01-01

    Full Text Available We study the energy-efficient configuration of multihop paths with automatic repeat request (ARQ mechanism in wireless ad hoc networks. We adopt a cross-layer design approach and take both the quality of each radio hop and the battery capacity of each transmitting node into consideration. Under certain constraints on the maximum tolerable transmission delay and the required packet delivery ratio, we solve optimization problems to jointly schedule the transmitting power of each transmitting node and the retransmission limit over each hop. Numerical results demonstrate that the path configuration methods can either significantly reduce the average energy consumption per packet delivery or considerably extend the average lifetime of the multihop route.

  10. Advanced Signal Processing for Wireless Multimedia Communications

    Directory of Open Access Journals (Sweden)

    Xiaodong Wang

    2000-01-01

    Full Text Available There is at present a worldwide effort to develop next-generation wireless communication systems. It is envisioned that many of the future wireless systems will incorporate considerable signal-processing intelligence in order to provide advanced services such as multimedia transmission. In general, wireless channels can be very hostile media through which to communicate, due to substantial physical impediments, primarily radio-frequency interference and time-arying nature of the channel. The need of providing universal wireless access at high data-rate (which is the aim of many merging wireless applications presents a major technical challenge, and meeting this challenge necessitates the development of advanced signal processing techniques for multiple-access communications in non-stationary interference-rich environments. In this paper, we present some key advanced signal processing methodologies that have been developed in recent years for interference suppression in wireless networks. We will focus primarily on the problem of jointly suppressing multiple-access interference (MAI and intersymbol interference (ISI, which are the limiting sources of interference for the high data-rate wireless systems being proposed for many emerging application areas, such as wireless multimedia. We first present a signal subspace approach to blind joint suppression of MAI and ISI. We then discuss a powerful iterative technique for joint interference suppression and decoding, so-called Turbo multiuser detection, that is especially useful for wireless multimedia packet communications. We also discuss space-time processing methods that employ multiple antennas for interference rejection and signal enhancement. Finally, we touch briefly on the problems of suppressing narrowband interference and impulsive ambient noise, two other sources of radio-frequency interference present in wireless multimedia networks.

  11. User Needs and Advances in Space Wireless Sensing and Communications

    Science.gov (United States)

    Kegege, Obadiah

    2017-01-01

    Decades of space exploration and technology trends for future missions show the need for new approaches in space/planetary sensor networks, observatories, internetworking, and communications/data delivery to Earth. The User Needs to be discussed in this talk includes interviews with several scientists and reviews of mission concepts for the next generation of sensors, observatories, and planetary surface missions. These observatories, sensors are envisioned to operate in extreme environments, with advanced autonomy, whereby sometimes communication to Earth is intermittent and delayed. These sensor nodes require software defined networking capabilities in order to learn and adapt to the environment, collect science data, internetwork, and communicate. Also, some user cases require the level of intelligence to manage network functions (either as a host), mobility, security, and interface data to the physical radio/optical layer. For instance, on a planetary surface, autonomous sensor nodes would create their own ad-hoc network, with some nodes handling communication capabilities between the wireless sensor networks and orbiting relay satellites. A section of this talk will cover the advances in space communication and internetworking to support future space missions. NASA's Space Communications and Navigation (SCaN) program continues to evolve with the development of optical communication, a new vision of the integrated network architecture with more capabilities, and the adoption of CCSDS space internetworking protocols. Advances in wireless communications hardware and electronics have enabled software defined networking (DVB-S2, VCM, ACM, DTN, Ad hoc, etc.) protocols for improved wireless communication and network management. Developing technologies to fulfil these user needs for wireless communications and adoption of standardized communication/internetworking protocols will be a huge benefit to future planetary missions, space observatories, and manned missions

  12. Adaptive Wireless Transceiver Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Many wireless technologies are already available for sensor applications. It is inevitable that many non-interoperable wireless technologies between 400 MHz and 5.8...

  13. Wireless ATM : handover issues

    OpenAIRE

    Jiang, Fan; Käkölä, Timo

    1998-01-01

    Basic aspects of cellular systems and the ATM transmission technology are introduced. Wireless ATM is presented as a combination of radio ATM and mobile ATM. Radio ATM is a wireless extension of an ATM connection while mobile ATM contains the necessary extensions to ATM to support mobility. Because the current ATM technology does not support mobility, handover becomes one of the most important research issues for wireless ATM. Wireless ATM handover requirements are thus analysed. A handover s...

  14. Architecture Design Approaches and Issues in Cross Layer Systems

    DEFF Research Database (Denmark)

    Cattoni, Andrea Fabio; Sørensen, Troels Bundgaard; Mogensen, Preben

    2012-01-01

    , users, and physical medium issues, designers are in the need for new approaches. Cross Layer becomes than a handy solution for coping with such problems. In fact, it allows both tighter optimizations of the existing functionalities, and the introduction of new ones, that do not fit within......Wireless communications are a fast grown part of the telecommunication market. While new types of traffic and challenges related to the wireless medium are appearing, the methodologies for designing system architectures are substantially remaining the same. Under the increasing pressure of market...... the traditional protocol stack design methodology. However, Cross Layer also carries a risk due to possibly unexpected and undesired effects. In this chapter we want to provide architecture designers with a set of tools and recommendations synthesized from an analysis of the state of art, but enriched...

  15. Community Wireless Networks

    Science.gov (United States)

    Feld, Harold

    2005-01-01

    With increasing frequency, communities are seeing the arrival of a new class of noncommercial broadband providers: community wireless networks (CWNs). Utilizing the same wireless technologies that many colleges and universities have used to create wireless networks on campus, CWNs are creating broadband access for free or at costs well below…

  16. Physical and chemical characterizations of nanometric indigo layers as efficient ozone filter for gas sensor devices

    Energy Technology Data Exchange (ETDEWEB)

    Brunet, J., E-mail: brunet@lasmea.univ-bpclermont.fr [Clermont Universite, Universite B. Pascal, LASMEA, F-63000 Clermont-Ferrand (France); CNRS, UMR 6602, LASMEA, F-63177 Aubiere (France); Spinelle, L. [Clermont Universite, Universite B. Pascal, LASMEA, F-63000 Clermont-Ferrand (France); CNRS, UMR 6602, LASMEA, F-63177 Aubiere (France); Clermont Universite, Universite B. Pascal, LMI, F-63000 Clermobnt-Ferrand (France); CNRS, UMR 6002, LMI, F-63177 Aubiere (France); Ndiaye, A. [Clermont Universite, Universite B. Pascal, LASMEA, F-63000 Clermont-Ferrand (France); CNRS, UMR 6602, LASMEA, F-63177 Aubiere (France); Dubois, M. [Clermont Universite, Universite B. Pascal, LMI, F-63000 Clermobnt-Ferrand (France); CNRS, UMR 6002, LMI, F-63177 Aubiere (France); Monier, G.; Varenne, C.; Pauly, A.; Lauron, B. [Clermont Universite, Universite B. Pascal, LASMEA, F-63000 Clermont-Ferrand (France); CNRS, UMR 6602, LASMEA, F-63177 Aubiere (France); Guerin, K.; Hamwi, A. [Clermont Universite, Universite B. Pascal, LMI, F-63000 Clermobnt-Ferrand (France); CNRS, UMR 6002, LMI, F-63177 Aubiere (France)

    2011-11-30

    The relevance of nanometric indigo layers as integrated ozone filters on chemical gas sensors has been established. Indigo can be considered as a selective filter because it ensures a complete removal of ozone in air while being very weakly reactive with CO and NO{sub 2}. The nanometric layers have been realized by thermal evaporation and their chemical structures have been consecutively determined by FT-IR and XPS analyses. Studies about their morphology have been realized by means of SEM and AFM. Results underline the homogeneity and the low roughness of the samples. Electrical characterizations have revealed the high electronic resistivity of nanometric indigo layers. Current-voltage characterizations have put in obviousness that the integration of indigo layer has no effect on the electrical characteristics of sensitive element, even for material exhibiting a very low intrinsic electronic conductivity like metallophthalocyanines. The selective and reproducible measurements of NO{sub 2} concentrations by an original sensing device which takes advantage of on the one hand, the sensitivity and the partial selectivity of copper phthalocyanine (CuPc) to oxidizing gases and on the other hand, the filtering selectivity of indigo toward O{sub 3} have been successfully performed. Optimization of sensing performances as well as the scope of indigo nanolayers will be finally discussed.

  17. Charge transport and device physics of layered-crystalline organic semiconductors (Presentation Recording)

    Science.gov (United States)

    Hasegawa, Tatsuo

    2015-10-01

    Here we present and discuss our recent investigations into the understanding of microscopic charge transport, novel film processing technologies, and a development of layered-crystalline organic semiconductors for high performance OTFTs. We first discuss the microscopic charge transport in the OTFTs, as investigated by field-induced electron spin resonance spectroscopy. The technique can detect signals due to tiny amount of field-induced carriers, accumulated at the semiconductor-insulator interfaces. Following aspects are presented and discussed; 1) Carrier motion within the crystalline domains can be understood in terms of the trap-and-release transport, 2) charge trap states are spatially extended over several sites depending on the trap levels, and 3) the intra- and inter-domain transport can be discriminated by anisotropic electron spin resonance measurements. Next we discuss novel print production technologies for organic semiconductors showing high layered crystallinity. The concept of "printed electronics" is now regarded as a realistic paradigm to manufacture light-weight, thin, and impact-resistant electronics devices, although production of highly crystalline semiconductor films may be incompatible with conventional printing process. We here present printing techniques for manufacturing high performance OTFTs; 1) double-shot inkjet printing for small-molecule-based semiconductors, and 2) push-coating for semiconducting polymers. We demonstrate that both processes are useful to manufacture high quality semiconductor layers with the high layered crystallinity.

  18. Physics-based Inverse Problem to Deduce Marine Atmospheric Boundary Layer Parameters

    Science.gov (United States)

    2017-03-07

    please find the Final Technical Report with SF 298 for Dr. Erin E. Hackett’s ONR grant entitled Physics -based Inverse Problem to Deduce Marine...From- To) 07/03/2017 Final Technica l Dec 2012- Dec 2016 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Physics -based Inverse Problem to Deduce Marine...19b. TELEPHONE NUMBER (Include area code) 843-349-4087 Standard Form 298 (Rev. 8/98) Prescribed by ANSI Std. Z39.18 Physics -Based Inverse Problem To

  19. CCNA Wireless Study Guide

    CERN Document Server

    Lammle, Todd

    2010-01-01

    A complete guide to the CCNA Wireless exam by leading networking authority Todd Lammle. The CCNA Wireless certification is the most respected entry-level certification in this rapidly growing field. Todd Lammle is the undisputed authority on networking, and this book focuses exclusively on the skills covered in this Cisco certification exam. The CCNA Wireless Study Guide joins the popular Sybex study guide family and helps network administrators advance their careers with a highly desirable certification.: The CCNA Wireless certification is the most respected entry-level wireless certification

  20. Physical Limitations of Phosphor layer thickness and concentration for White LEDs.

    Science.gov (United States)

    Tan, Cher Ming; Singh, Preetpal; Zhao, Wenyu; Kuo, Hao-Chung

    2018-02-05

    Increasing phosphor layer thickness and concentration can enhance the lumen flux of white LED (W-LED). In this work, we found that increasing the phosphor layer thickness and concentration can increase its temperature, and there is also a maximum thickness and concentration beyond which their increase will not lead to lumen increase, but only temperature increase. Higher thickness and higher concentration also results in warm light instead of White light. The maximum thickness and concentration are found to be limited by the scattering of light rays with higher % decrease of blue light rays than the yellow light rays. The results obtained in this work can also be used to compute the temperature and thermo-mechanical stress distribution of an encapsulated LED, demonstrating its usefulness to the design of encapsulated LED packages. Simulation software like ANSYS and TracePro are used extensively to verify the root cause mechanisms.

  1. A physical impact of organic fouling layers on bacterial adhesion during nanofiltration

    OpenAIRE

    Heffernan, Rory; Habimana, Olivier; Correia-Semião, Andrea Joana C.; Cao, Huayu; Safari, Ashkan; Casey, Eoin

    2014-01-01

    Organic conditioning films have been shown to alter properties of surfaces, such as hydrophobicity and surface free energy. Furthermore, initial bacterial adhesion has been shown to depend on the conditioning film surface properties as opposed to the properties of the virgin surface. For the particular case of nanofiltration membranes under permeate flux conditions, however, the conditioning film thickens to form a thin fouling layer. This study hence sought to determine if a thin fouling lay...

  2. Carrier Doping Effects on the Physical Properties of the Layered Antiferromagnetic Semiconductor (LaO)MnAs

    Science.gov (United States)

    Naito, Akito; Morosawa, Yasuhiro; Watanabe, Tadataka; Takano, Yoshiki; Takase, Kouichi

    We have focused on the layered antiferromagnetic semiconductor (LaO)MnAs and investigated carrier dependences of the physical properties to understand the semiconducting origin. The absolute values of electrical resistivity of (LaO1-xFx)MnAs decrease with F substitution, but the Zn substitution samples don't show apparent dependences in the resistivity. All substituted samples indicate paramagnetic behaviors, where (LaO)ZnAs without magnetic moments presents very small temperature independent magnetization. The magnetism of (LaO)MnAs changes from antiferromagnetism to paramagnetism by the carrier doping.

  3. Energy-efficient adaptive wireless network design

    NARCIS (Netherlands)

    Havinga, Paul J.M.; Smit, Gerardus Johannes Maria; Bos, M.

    Energy efficiency is an important issue for mobile computers since they must rely on their batteries. We present an energy-efficient highly adaptive architecture of a network interface and novel data link layer protocol for wireless networks that provides quality of service (QoS) support for diverse

  4. Service discovery in heterogeneous wireless networks

    NARCIS (Netherlands)

    Blangé, M.J.; Karkowski, I.P.; Vermeulen, B.C.B.

    2005-01-01

    In this paper we describe a possible solution to the problem of service discovery in heterogeneous wireless networks. This solution involves introduction of a network independent service discovery layer, with as main goal the improved robustness of applications running on top of it. A possible

  5. The Wireless ATM Architecture

    Directory of Open Access Journals (Sweden)

    R. Palitefka

    1998-06-01

    Full Text Available An overview of the proposed wireless ATM structure is provided. Wireless communication have been developed to a level where offered services can now be extended beyond voice and data. There are already wireless LANs, cordless systems offering data services and mobile data. Wireless LAN systems are basically planned for local, on-promises and in-house networking providing short distance radio or infrared links between computer system. The main challenge of wireless ATM is to harmonise the development of broadband wireless system with service B -ISDN/ATM and ATM LANs, and offer multimedia multiservice features for the support of time-sensitive voice communication, video, desktop multimedia applications, and LAN data traffic for the wireless user.

  6. Optical Physics of Cu(In,Ga)Se2 Solar Cells and Their Layer Components

    Science.gov (United States)

    Ibdah, Abedl-Rahman

    Polycrystalline Cu(In1-xGax)Se 2 (CIGS) thin film technology has emerged as a promising candidate for low cost and high performance solar modules. The efficiency of CIGS solar cells is strongly influenced by several key factors. Among these factors include Ga composition and its profile in the absorber layer, copper content in this layer, and the solar cell multilayer structure. As a result, tools for the characterization of thin film CIGS solar cells and their layer components are becoming increasingly essential in research and manufacturing. Spectroscopic ellipsometry is a non-invasive technique that can serve as an accurate probe of component layer optical properties and multilayer structures, and can be applied as a diagnostic tool for real-time, in-line, and off-line monitoring and analysis in small area solar cell fabrication as well as in large area photovoltaics manufacturing. Implementation of spectroscopic ellipsometry provides unique insights into the properties of complete solar cell multilayer structures and their layer components. These insights can improve our understanding of solar cell structures, overcome challenges associated with solar cell fabrication, and assist in process monitoring and control on a production line. In this dissertation research, Cu(In,Ga)Se2 films with different Cu contents have been prepared by the one stage co-evaporation process. These films have been studied by real time spectroscopic ellipsometry (RTSE) during deposition, and by in-situ SE at the deposition temperature as well as at room temperature to extract the dielectric functions (epsilon1, epsilon 2) of the thin film materials. Analytical expressions for the room temperature dielectric functions were developed, and the free parameters that describe these analytical functions were in turn expressed as functions of the Cu content. As a result of this parameterization, the dielectric function spectra (epsilon 1, epsilon2) can be predicted for any desired composition

  7. Observing the Unobservable - Distributed Online Outlier Detection in Wireless Sensor Networks

    NARCIS (Netherlands)

    Zhang, Y.

    2010-01-01

    The generation of wireless sensor networks (WSNs) makes human beings observe and reason about the physical environment better, easier, and faster. The wireless sensor nodes equipped with sensing, processing, wireless communication and actuation capabilities can be densely deployed in a wide

  8. Data aggregation in wireless sensor networks using the SOAP protocol

    Energy Technology Data Exchange (ETDEWEB)

    Al-Yasiri, A; Sunley, A [School of Computing, Science and Engineering, University of Salford, Greater Manchester, M5 4WT (United Kingdom)

    2007-07-15

    Wireless sensor networks (WSN) offer an increasingly attractive method of data gathering in distributed system architectures and dynamic access via wireless connectivity. Wireless sensor networks have physical and resource limitations, this leads to increased complexity for application developers and often results in applications that are closely coupled with network protocols. In this paper, a data aggregation framework using SOAP (Simple Object Access Protocol) on wireless sensor networks is presented. The framework works as a middleware for aggregating data measured by a number of nodes within a network. The aim of the study is to assess the suitability of the protocol in such environments where resources are limited compared to traditional networks.

  9. The Impact of Microphysics and Planetary Boundary Layer Physics on Model Simulation of U.S. Deep South Summer Convection

    Science.gov (United States)

    McCaul, Eugene W., Jr.; Case, Jonathan L.; Zavodsky, Bradley T.; Srikishen, Jayanthi; Medlin, Jeffrey M.; Wood, Lance

    2014-01-01

    Inspection of output from various configurations of high-resolution, explicit convection forecast models such as the Weather Research and Forecasting (WRF) model indicates significant sensitivity to the choices of model physics pararneterizations employed. Some of the largest apparent sensitivities are related to the specifications of the cloud microphysics and planetary boundary layer physics packages. In addition, these sensitivities appear to be especially pronounced for the weakly-sheared, multicell modes of deep convection characteristic of the Deep South of the United States during the boreal summer. Possible ocean-land sensitivities also argue for further examination of the impacts of using unique ocean-land surface initialization datasets provided by the NASA Short-term Prediction Research and Transition (SPoRn Center to select NOAAlNWS weather forecast offices. To obtain better quantitative understanding of these sensitivities and also to determine the utility of the ocean-land initialization data, we have executed matrices of regional WRF forecasts for selected convective events near Mobile, AL (MOB), and Houston, TX (HGX). The matrices consist of identically initialized WRF 24-h forecasts using any of eight microphysics choices and any of three planetary boWldary layer choices. The resulting 24 simulations performed for each event within either the MOB or HGX regions are then compared to identify the sensitivities of various convective storm metrics to the physics choices. Particular emphasis is placed on sensitivities of precipitation timing, intensity, and coverage, as well as amount and coverage oflightuing activity diagnosed from storm kinematics and graupel in the mixed phase layer. The results confirm impressions gleaned from study of the behavior of variously configured WRF runs contained in the ensembles produced each spring at the Center for the Analysis and Prediction of Storms, but with the benefit of more straightforward control of the

  10. The Impacts of Microphysics and Planetary Boundary Layer Physics on Model Simulations of U. S. Deep South Summer Convection

    Science.gov (United States)

    McCaul, E. W., Jr.; Case, J. L.; Zavodsky, B. T.; Srikishen, J.; Medlin, J. M.; Wood, L.

    2014-01-01

    Inspection of output from various configurations of high-resolution, explicit convection forecast models such as the Weather Research and Forecasting (WRF) model indicates significant sensitivity to the choices of model physics parameterizations employed. Some of the largest apparent sensitivities are related to the specifications of the cloud microphysics and planetary boundary layer physics packages. In addition, these sensitivities appear to be especially pronounced for the weakly-sheared, multicell modes of deep convection characteristic of the Deep South of the United States during the boreal summer. Possible ocean-land sensitivities also argue for further examination of the impacts of using unique ocean-land surface initialization datasets provided by the NASA Short-term Prediction Research and Transition (SPoRT Center to select NOAA/NWS weather forecast offices. To obtain better quantitative understanding of these sensitivities and also to determine the utility of the ocean-land initialization data, we have executed matrices of regional WRF forecasts for selected convective events near Mobile, AL (MOB), and Houston, TX (HGX). The matrices consist of identically initialized WRF 24-h forecasts using any of eight microphysics choices and any of three planetary boundary layer choices. The resulting 24 simulations performed for each event within either the MOB or HGX regions are then compared to identify the sensitivities of various convective storm metrics to the physics choices. Particular emphasis is placed on sensitivities of precipitation timing, intensity, and coverage, as well as amount and coverage of lightning activity diagnosed from storm kinematics and graupel in the mixed phase layer. The results confirm impressions gleaned from study of the behavior of variously configured WRF runs contained in the ensembles produced each spring at the Center for the Analysis and Prediction of Storms, but with the benefit of more straightforward control of the

  11. Wireless Information-Theoretic Security in an Outdoor Topology with Obstacles: Theoretical Analysis and Experimental Measurements

    Directory of Open Access Journals (Sweden)

    Dagiuklas Tasos

    2011-01-01

    Full Text Available This paper presents a Wireless Information-Theoretic Security (WITS scheme, which has been recently introduced as a robust physical layer-based security solution, especially for infrastructureless networks. An autonomic network of moving users was implemented via 802.11n nodes of an ad hoc network for an outdoor topology with obstacles. Obstructed-Line-of-Sight (OLOS and Non-Line-of-Sight (NLOS propagation scenarios were examined. Low-speed user movement was considered, so that Doppler spread could be discarded. A transmitter and a legitimate receiver exchanged information in the presence of a moving eavesdropper. Average Signal-to-Noise Ratio (SNR values were acquired for both the main and the wiretap channel, and the Probability of Nonzero Secrecy Capacity was calculated based on theoretical formula. Experimental results validate theoretical findings stressing the importance of user location and mobility schemes on the robustness of Wireless Information-Theoretic Security and call for further theoretical analysis.

  12. Structural and physical properties of mercury-iron selenide layers and quantum wells

    Science.gov (United States)

    Schikora, D.; Widmer, Th.; Lischka, K.; Schäfer, P.; Machel, G.; Luther, S.; von Ortenberg, M.

    1995-10-01

    Epitaxial layers and single quantum wells (SQW's) of Fermi-level pinned mercury-iron selenide (HgSe:Fe) have been grown by molecular-beam epitaxy on ZnTe buffer layers and characterized by in situ reflection high-energy electron-diffraction (RHEED) and high-field magnetospectroscopy investigations. The onset of strain relaxation at the critical thickness has been determined by time-dependent intensity-profile analysis of different reflexes in the RHEED pattern. In spite of the small mismatch and the very low growth temperature, a growth-mode transition from a two-dimensional-to-three-dimensional (2D-to-3D) Stranski-Krastanov growth mode has been identified, which coincides exactly with the critical thickness equilibrium value of about 61 nm predicted by the Matthews-Blakeslee theory. Due to this mechanism, the surface roughness transition region is extended and the onset of plastic relaxation is delayed up to a thickness of about 280 nm. Hall-effect measurements have been performed to determine the iron concentration in the HgSe layers below and above the Fermi-level pinning threshold concentration. With increasing iron concentration both a pronounced increase of the mobility and decrease of the Dingle temperature have been found in the layers. This agrees well with the present available data from HgSe:Fe bulk crystals and also with the values predicted by the short-range correlation model. However, the maximum carrier mobility of about 2.7×105 cm-3 measured in a 1.5-μm-thick HgSe:Fe layer indicates that long-range correlations also have to be considered in the transport mechanism of mercury-iron selenide. HgSe:Fe SQW's grown in the strained-layer region below the equilibrium critical thickness have been analyzed by Shubnikov-de Haas (SdH) measurements and Hall-effect measurements in magnetic fields up to 50 T. The existence of a two-dimensional electron system (Q2D) in the SQW has been confirmed by the cosine dependence of the SdH oscillation period. The subband

  13. Mobile-host-centric transport protocol for wireless networks

    Science.gov (United States)

    Zhang, Liang; Shu, Yantai; Yang, Zhenyu

    2005-10-01

    Reliable transport protocols such as TCP are tuned to perform well in traditional networks where packet losses occur mostly because of congestion. However, networks with wireless and other lossy links also suffer from significant non-congestion-related losses due to reasons such as bit errors and handoffs. TCP responds to all losses by invoking congestion control and avoidance algorithms, resulting in degraded end-to-end performance in wireless and lossy networks. In case of wired-wireless interaction (WLANs), the wireless link is assumed to be the last hop where most of the loss and delay occurs. Since the mobile host is adjacent to the wireless hops, it is obviously better equipped to obtain first-hand knowledge of the wireless links. In the paper, we proposed a mobile-host-centric transport protocol called MCP (Mobile-host Control Protocol) that is like TCP in its general behavior, but allows for better congestion control and loss recovery in mobile wireless networks. The MCP shifts most transport layer control policies to the mobile host side under all cases (mobile host is a sender or receiver, fixed or mobile, and so on). Therefore, mobile stations can make better transport layer control in time based on the condition of wireless link.

  14. Specimen charging on thin films with one conducting layer:Discussion of physical principles

    Energy Technology Data Exchange (ETDEWEB)

    Glaeser, Robert M.; Downing, Kenneth H.

    2003-04-15

    While the most familiar consequences of specimen charging in transmission electron microscopy can be eliminated by evaporating a thin conducting film (such as a carbon film) onto an insulating specimen, or by preparing samples directly on such a conducting film to begin with, a more subtle charging effect still remains. We argue here that specimen charging is in this case likely to produce a dipole sheet rather than a layer of positive charge at the surface of the specimen. A simple model of the factors that control the kinetics of specimen charging, and its neutralization, is discussed as a guide for experiments that attempt to minimize the amount of specimen charging. Believable estimates of the electrostatic forces and the electron optical disturbances that are likely to occur suggest that specimen bending and warping may have the biggest impact on degrading the image quality at high resolution. Electron optical effects are likely to be negligible except in the case of a specimen that is tilted to high angle. A model is proposed to explain how both the mechanical and electron-optical effects of forming a dipole layer would have much greater impact on the image resolution in a direction perpendicular to the tilt axis, a well-known effect in electron microscopy of two-dimensional crystals.

  15. A physics-based model for maintenance of the pH gradient in the gastric mucus layer.

    Science.gov (United States)

    Lewis, Owen L; Keener, James P; Fogelson, Aaron L

    2017-12-01

    It is generally accepted that the gastric mucus layer provides a protective barrier between the lumen and the mucosa, shielding the mucosa from acid and digestive enzymes and preventing autodigestion of the stomach epithelium. However, the precise mechanisms that contribute to this protective function are still up for debate. In particular, it is not clear what physical processes are responsible for transporting hydrogen protons, secreted within the gastric pits, across the mucus layer to the lumen without acidifying the environment adjacent to the epithelium. One hypothesis is that hydrogen may be bound to the mucin polymers themselves as they are convected away from the mucosal surface and eventually degraded in the stomach lumen. It is also not clear what mechanisms prevent hydrogen from diffusing back toward the mucosal surface, thereby lowering the local pH. In this work we investigate a physics-based model of ion transport within the mucosal layer based on a Nernst-Planck-like equation. Analysis of this model shows that the mechanism of transporting protons bound to the mucus gel is capable of reproducing the trans-mucus pH gradients reported in the literature. Furthermore, when coupled with ion exchange at the epithelial surface, our analysis shows that bicarbonate secretion alone is capable of neutralizing the epithelial pH, even in the face of enormous diffusive gradients of hydrogen. Maintenance of the pH gradient is found to be robust to a wide array of perturbations in both physiological and phenomenological model parameters, suggesting a robust physiological control mechanism. NEW & NOTEWORTHY This work combines modeling techniques based on physical principles, as well as novel numerical simulations to test the plausibility of one hypothesized mechanism for proton transport across the gastric mucus layer. Results show that this mechanism is able to maintain the extreme pH gradient seen in in vivo experiments and suggests a highly robust regulation

  16. Dissolution kinetics and physical characterization of three-layered tablet with poly(ethylene oxide) core matrix capped by Carbopol.

    Science.gov (United States)

    Hong, Sung In; Oh, Seaung Youl

    2008-05-22

    We have prepared poly(ethylene oxide) (PEO) tablets which have three-layered structure by direct compression. Carbopol (CP) was coated on both sides of the central PEO matrix which contains solid-dispersed nifedipine (NP) in PEG4000. For comparison, physical mixture of PEO with poly(ethylene glycol 4000) (PEG4000) solid dispersion was also prepared. The differential scanning calorimetry (DSC) thermogram and X-ray diffraction (XRD) pattern obtained after 4 weeks of storage indicated that the crystallinity of PEG4000 in solid dispersion only slightly increased upon aging during this storage period. The formation of crystalline domain of NP, PEO or sodium dodecyl sulfate (SDS) was not observed. CP layers decreased the surface area exposed to dissolution medium, and after swelling, they also covered the exposed side area of the tablet. It seems that swelling and morphological change of CP layers minimize the erosional release for rapidly erodible PEO200K (Mw 200,000) and change the NP release to a diffusion-controlled process. For PEO900K (Mw 900,000), initial release rate was slower than that of PEO200K, possibly due to the slower swelling and erosional release from the side of the tablet. Diffusional release seemed to be the dominating mechanism for the release of NP from PEO7000K (Mw 7,000,000) tablet. Physical mixture of PEO and CP delayed the release of NP remarkably. The increase in pH, ionic strength and buffer concentration of the dissolution medium decreased the release rate. The data obtained for capped and blended tablets were fitted using the power law equation to understand the release mechanism. These results provided some useful information on parameters which can be modulated in the design of a controlled release dosage form for NP.

  17. Sea State and Boundary Layer Physics of the Emerging Arctic Ocean

    Science.gov (United States)

    2013-09-01

    through increased melt rates, acting as an additional positive influence on ice albedo –temperature feedback. Indeed, 4 APL-UW TR1306 Applied Physics...assumption of horizontal homogeneity is not valid. The most striking gradients are in the albedo . However, ice regions and adjacent open ocean areas are also...generated by MODIS , passive microwave, and scatterometer data. Currently no remote sensors will be used to obtain either direct or freeboard-derived sea ice

  18. The hydrological response to precipitations of a layered shallow sloping deposit: physical experiments and mathematical modeling

    Science.gov (United States)

    Damiano, Emilia; Greco, Roberto; Guida, Andrea; Olivares, Lucio; Picarelli, Luciano

    2016-04-01

    Although rainfall-induced landslides are frequent, so that they can be probably considered the most widespread natural hazards, fortunately the occurrence of an extreme rainfall event only rarely corresponds to the triggering of landslides. This is due to the fact that slopes, although often considered as separated systems in the stability analyses, are actually part of a larger, more complex hydrological system, with which continuously exchange water. Indeed, most of the slopes do not fail, and when they are subjected to heavy precipitation, effective draining mechanisms spontaneously develop, such as overland and subsurface runoff, and sometimes even new preferential flow paths originated by mechanical processes, such as piping erosion or deformation cracks. Hence, the triggering of a rainfall-induced landslide requires these dynamically evolving (non-linear) drainage processes to be incapable of releasing the excess of water (and pressure) accumulating within the slope. For the case of shallow sloping covers, the capability of the slope to effectively drain the infiltrating water depends on the hydraulic properties of the involved soils (hydraulic conductivity and water retention curves) and on the hydraulic boundary conditions (at the base of the cover, where it lays upon the bedrock, and at the foot of the slope), which are in turn strongly influenced by the initial moisture state (often indicated as a predisposing cause), owing to the non-linearity of the hydraulic processes. Such an already complex picture is furthermore complicated by heterogeneity. In this study, we focus our attention onto the effects of a layered soil cover with contrasting hydraulic properties on the infiltration and drainage processes in a shallow pyroclastic deposit. This is a typical situation along many pyroclastic-covered slopes of Campania (southern Italy), which present alternations of ashes (silty sands) and pumices (sands with gravel) deposited by volcanic eruptions, and where

  19. Soil Physical Constraints on Intrinsic Biodegradation of Petroleum Vapors in a Layered Subsurface

    DEFF Research Database (Denmark)

    Kristensen, Andreas Houlberg; Henriksen, Kaj; Mortensen, Lars

    2010-01-01

    in a deep and highly layered vadose zone contaminated with petroleum hydrocarbons. Soil slurry experiments on benzene biodegradation were used for determining the relative potential for hydrocarbon biodegradation in 100 soil samples collected from 2-16 m below ground surface. Regardless of nutrient......Intrinsic biodegradation of organic contaminants in the soil vadose zone depends on site-specific soil properties controlling biophysical and geochemical interactions within the soil pore space. In this study we evaluated the effect of soil texture and moisture conditions on aerobic biodegradation...... in the deep vadose zone. As a result, management of petroleum hydrocarbon spill sites will benefit from site-specific conceptual models in which the vadose zone is divided into geological compartments with different biophysical potential for biodegradation and bioremediation....

  20. The Model of Communication Channel in the 802.11b Standard Wireless Network

    Directory of Open Access Journals (Sweden)

    Zdenek Nemec

    2008-01-01

    Full Text Available The paper deals with software modelling of a communication channel in the 802.11b standard wireless network physical layer. A computer model of signal processing was created to verify possibility of the proposal of localisation system. Functionality of the signal generation and processing model was verified by the Spectrum Analyzer. Simulations run inSimulink/Matlab SW. The Simulink is used for the signal processor model and a pure Matlab software is used for mathematical evaluations of data processor model and for determination of initial conditions.

  1. Further insight into physics of rough-wall turbulent boundary layer

    Science.gov (United States)

    Bhaganagar, Kiran; Juttijudata, Vejapong; Sen, Mehmet

    2008-11-01

    To get a good understanding of the effect of surface-roughness in altering the flow in a turbulent boundary layer it is important to understand the alterations in the dynamical activity of the flow. For this purpose direct proper orthogonal decomposition (POD) has been used as a tool. The data used for the POD has been obtained from direct numerical simulation of flow in a channel with egg-carton roughness elements. In this talk the effects of surface-roughness on the temporal flow dynamics such as bursting frequency of the energetic structures in the flow will be discussed. VITA detection technique has been used to obtain the bursting frequency. It has confirmed that rough-wall has a shorter bursting period and a higher turbulence activity compared to the smooth-wall. The results have confirmed the existence of roll and propagating modes for flow over rough-wall. In addition to the turbulent kinetic energy, the concept of entropy that has been introduced in this study within the context of degree of distribution of energy over range of scales, is a useful metric to categorize the rough-wall flow dynamics.

  2. Wireless security in mobile health.

    Science.gov (United States)

    Osunmuyiwa, Olufolabi; Ulusoy, Ali Hakan

    2012-12-01

    Mobile health (m-health) is an extremely broad term that embraces mobile communication in the health sector and data packaging. The four broad categories of wireless networks are wireless personal area network, wireless metropolitan area network, wireless wide area network, and wireless local area network. Wireless local area network is the most notable of the wireless networking tools obtainable in the health sector. Transfer of delicate and critical information on radio frequencies should be secure, and the right to use must be meticulous. This article covers the business opportunities in m-health, threats faced by wireless networks in hospitals, and methods of mitigating these threats.

  3. Adaptive Wireless Transceiver Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Wireless technologies are an increasingly attractive means for spatial data, input, manipulation, and distribution. Mobitrum is proposing an innovative Adaptive...

  4. Wireless Emulation Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Wireless Emulation Laboratory (WEL) is a researchtest bed used to investigate fundamental issues in networkscience. It is a research infrastructure that emulates...

  5. Scheduling and congestion control for wireless internet

    CERN Document Server

    Wang, Xin

    2014-01-01

    This brief proposes that the keys to internet cross-layer optimization are the development of non-standard implicit primal-dual solvers for underlying optimization problems, and design of jointly optimal network protocols as decomposition of such solvers. Relying on this novel design-space oriented approach, the author develops joint TCP congestion control and wireless-link scheduling schemes for wireless applications over Internet with centralized and distributed (multi-hop) wireless links. Different from the existing solutions, the proposed schemes can be asynchronously implemented without message passing among network nodes; thus they are readily deployed with current infrastructure. Moreover, global convergence/stability of the proposed schemes to optimal equilibrium is established using the Lyapunov method in the network fluid model. Simulation results are provided to evaluate the proposed schemes in practical networks.

  6. Transport Protocols for Wireless Mesh Networks

    Science.gov (United States)

    Eddie Law, K. L.

    Transmission control protocol (TCP) provides reliable connection-oriented services between any two end systems on the Internet. With TCP congestion control algorithm, multiple TCP connections can share network and link resources simultaneously. These TCP congestion control mechanisms have been operating effectively in wired networks. However, performance of TCP connections degrades rapidly in wireless and lossy networks. To sustain the throughput performance of TCP connections in wireless networks, design modifications may be required accordingly in the TCP flow control algorithm, and potentially, in association with other protocols in other layers for proper adaptations. In this chapter, we explain the limitations of the latest TCP congestion control algorithm, and then review some popular designs for TCP connections to operate effectively in wireless mesh network infrastructure.

  7. Future integrated broadband fiber, wireless, and satellite networks

    Science.gov (United States)

    Chan, Vincent W. S.

    2006-10-01

    With the increasing technical maturity in fiber, wireless and satellite communication technologies, new horizons are becoming feasible for future broadband networks, providing economical data rates well in excess of Gbps for stationary and mobile users as well as novel applications these advanced network services will permit. This talk explores the future architecture possibilities of such a network using new and radical technology building blocks such as: free space laser communications, multiple access multi-beam data satellite communications, novel all-optical network transport/switching and analog transmission and processing over optical carriers that support coherent distributed platform sensing and communications. We will articulate why we have to design this new network across layers from the Physical Layer to the Network and Transport Layers (even the Application Layer). Not only can future network performance and cost undergo quantum-leap improvements; such a network can have profound transforming effects on space and terrestrial system architectures for sensing, healthcare, early warning systems, disaster relief, research collaborations and other new commercial applications.

  8. Optimal Backpressure Scheduling in Wireless Networks using Mutual Information Accumulation

    CERN Document Server

    Yang, Jing; Draper, Stark C

    2011-01-01

    In this paper we develop scheduling policies that maximize the stability region of a wireless network under the assumption that mutual information accumulation is implemented at the physical layer. When the link quality between nodes is not sufficiently high that a packet can be decoded within a single slot, the system can accumulate information across multiple slots, eventually decoding the packet. The result is an expanded stability region. The accumulation process over weak links is temporally coupled and therefore does not satisfy the independent and identically distributed (i.i.d) assumption that underlies many previous analysis in this area. Therefore the problem setting also poses new analytic challenges. We propose two dynamic scheduling algorithms to cope with the non-i.i.d nature of the decoding. The first performs scheduling every $T$ slots, and approaches the boundary of the stability region as $T$ gets large, but at the cost of increased average delay. The second introduces virtual queues for eac...

  9. Energy Efficiency and Reliability in Wireless Biomedical Implant Systems

    CERN Document Server

    Abouei, Jamshid; Plataniotis, Konstantinos N; Pasupathy, Subbarayan

    2011-01-01

    The use of wireless implant technology requires correct delivery of the vital physiological signs of the patient along with the energy management in power-constrained devices. Toward these goals, we present an augmentation protocol for the physical layer of the Medical Implant Communications Service (MICS) with focus on the energy efficiency of deployed devices over the MICS frequency band. The present protocol uses the rateless code with the Frequency Shift Keying (FSK) modulation scheme to overcome the reliability and power cost concerns in tiny implantable sensors due to the considerable attenuation of propagated signals across the human body. In addition, the protocol allows a fast start-up time for the transceiver circuitry. The main advantage of using rateless codes is to provide an inherent adaptive duty-cycling for power management, due to the flexibility of the rateless code rate. Analytical results demonstrate that an 80% energy saving is achievable with the proposed protocol when compared to the IE...

  10. Physics of collisionless scrape-off-layer plasma during normal and off-normal Tokamak operating conditions.

    Energy Technology Data Exchange (ETDEWEB)

    Hassanein, A.; Konkashbaev, I.

    1999-03-15

    The structure of a collisionless scrape-off-layer (SOL) plasma in tokamak reactors is being studied to define the electron distribution function and the corresponding sheath potential between the divertor plate and the edge plasma. The collisionless model is shown to be valid during the thermal phase of a plasma disruption, as well as during the newly desired low-recycling normal phase of operation with low-density, high-temperature, edge plasma conditions. An analytical solution is developed by solving the Fokker-Planck equation for electron distribution and balance in the SOL. The solution is in good agreement with numerical studies using Monte-Carlo methods. The analytical solutions provide an insight to the role of different physical and geometrical processes in a collisionless SOL during disruptions and during the enhanced phase of normal operation over a wide range of parameters.

  11. A Physically Based Horizontal Subgrid-scale Turbulent Mixing Parameterization for the Convective Boundary Layer in Mesoscale Models

    Science.gov (United States)

    Zhou, Bowen; Xue, Ming; Zhu, Kefeng

    2017-04-01

    Compared to the representation of vertical turbulent mixing through various PBL schemes, the treatment of horizontal turbulence mixing in the boundary layer within mesoscale models, with O(10) km horizontal grid spacing, has received much less attention. In mesoscale models, subgrid-scale horizontal fluxes most often adopt the gradient-diffusion assumption. The horizontal mixing coefficients are usually set to a constant, or through the 2D Smagorinsky formulation, or in some cases based on the 1.5-order turbulence kinetic energy (TKE) closure. In this work, horizontal turbulent mixing parameterizations using physically based characteristic velocity and length scales are proposed for the convective boundary layer based on analysis of a well-resolved, wide-domain large-eddy simulation (LES). The proposed schemes involve different levels of sophistication. The first two schemes can be used together with first-order PBL schemes, while the third uses TKE to define its characteristic velocity scale and can be used together with TKE-based higher-order PBL schemes. The current horizontal mixing formulations are also assessed a priori through the filtered LES results to illustrate their limitations. The proposed parameterizations are tested a posteriori in idealized simulations of turbulent dispersion of a passive scalar. Comparisons show improved horizontal dispersion by the proposed schemes, and further demonstrate the weakness of the current schemes.

  12. Implementation of a Cross-Layer Sensing Medium-Access Control Scheme.

    Science.gov (United States)

    Su, Yishan; Fu, Xiaomei; Han, Guangyao; Xu, Naishen; Jin, Zhigang

    2017-04-10

    In this paper, compressed sensing (CS) theory is utilized in a medium-access control (MAC) scheme for wireless sensor networks (WSNs). We propose a new, cross-layer compressed sensing medium-access control (CL CS-MAC) scheme, combining the physical layer and data link layer, where the wireless transmission in physical layer is considered as a compress process of requested packets in a data link layer according to compressed sensing (CS) theory. We first introduced using compressive complex requests to identify the exact active sensor nodes, which makes the scheme more efficient. Moreover, because the reconstruction process is executed in a complex field of a physical layer, where no bit and frame synchronizations are needed, the asynchronous and random requests scheme can be implemented without synchronization payload. We set up a testbed based on software-defined radio (SDR) to implement the proposed CL CS-MAC scheme practically and to demonstrate the validation. For large-scale WSNs, the simulation results show that the proposed CL CS-MAC scheme provides higher throughput and robustness than the carrier sense multiple access (CSMA) and compressed sensing medium-access control (CS-MAC) schemes.

  13. Bottom-Up Abstract Modelling of Optical Networks-on-Chip: From Physical to Architectural Layer

    Directory of Open Access Journals (Sweden)

    Alberto Parini

    2012-01-01

    Full Text Available This work presents a bottom-up abstraction procedure based on the design-flow FDTD + SystemC suitable for the modelling of optical Networks-on-Chip. In this procedure, a complex network is decomposed into elementary switching elements whose input-output behavior is described by means of scattering parameters models. The parameters of each elementary block are then determined through 2D-FDTD simulation, and the resulting analytical models are exported within functional blocks in SystemC environment. The inherent modularity and scalability of the S-matrix formalism are preserved inside SystemC, thus allowing the incremental composition and successive characterization of complex topologies typically out of reach for full-vectorial electromagnetic simulators. The consistency of the outlined approach is verified, in the first instance, by performing a SystemC analysis of a four-input, four-output ports switch and making a comparison with the results of 2D-FDTD simulations of the same device. Finally, a further complex network encompassing 160 microrings is investigated, the losses over each routing path are calculated, and the minimum amount of power needed to guarantee an assigned BER is determined. This work is a basic step in the direction of an automatic technology-aware network-level simulation framework capable of assembling complex optical switching fabrics, while at the same time assessing the practical feasibility and effectiveness at the physical/technological level.

  14. Diagnosing degradation of services in hybrid wireless tactical networks

    Science.gov (United States)

    Tati, Srikar; Novotny, Petr; Ko, Bong Jun; Wolf, Alexander; Swami, Ananthram; La Porta, Thomas

    2013-05-01

    In this paper, we consider a problem related to service management and deployment in tactical military networks. Tactical networks are typically hybrid wireless networks in which there are both static and mobile nodes with several wireless interfaces, such as 802.11, 3G, satellite, etc. In tactical networks, performance degradation in services could prove fatal, so it must be diagnosed quickly. This degradation could be due to mobility or bottlenecks in capacity at network layer. We provide a cross-layer framework to detect and diagnose these causes of performance degradation as part of service management; it includes a monitoring model of services and a network model for hybrid wireless networks. In addition, we give a working example in tactical military networks to illustrate our framework. We provide an experimental setup to simulate our hybrid wireless tactical network scenario along with preliminary results.

  15. Malicious node detection in ad-hoc wireless networks

    Science.gov (United States)

    Griswold, Richard L.; Medidi, Sirisha R.

    2003-07-01

    Advances in wireless communications and the proliferation of mobile computing devices has led to the rise of a new type of computer network: the ad-hoc wireless network. Ad-hoc networks are characterized by a lack of fixed infrastructure, which give ad-hoc networks a great deal of flexibility, but also increases the risk of security problems. In wired networks, key pieces of network infrastructure are secured to prevent unauthorized physical access and tampering. Network administrators ensure that everything is properly configured and are on-hand to fix problems and deal with intrusions. In contrast, the nodes in an ad-hoc network are responsible for routing and forwarding data in the network, and there are no network administrators to handle potential problems. This makes an ad-hoc network more vulnerable to a misconfigured, faulty, or compromised node. We propose a means for a node in an ad-hoc network to detect and handle these malicious nodes by comparing data available to the routing protocol, such as cached routes in Dynamic Source Routing, ICMP messages, and transport layer information, such as TCP timeouts. This data can then be used along with network probes to isolate the malicious node.

  16. Physical layer one-time-pad data encryption through synchronized semiconductor laser networks

    Science.gov (United States)

    Argyris, Apostolos; Pikasis, Evangelos; Syvridis, Dimitris

    2016-02-01

    Semiconductor lasers (SL) have been proven to be a key device in the generation of ultrafast true random bit streams. Their potential to emit chaotic signals under conditions with desirable statistics, establish them as a low cost solution to cover various needs, from large volume key generation to real-time encrypted communications. Usually, only undemanding post-processing is needed to convert the acquired analog timeseries to digital sequences that pass all established tests of randomness. A novel architecture that can generate and exploit these true random sequences is through a fiber network in which the nodes are semiconductor lasers that are coupled and synchronized to central hub laser. In this work we show experimentally that laser nodes in such a star network topology can synchronize with each other through complex broadband signals that are the seed to true random bit sequences (TRBS) generated at several Gb/s. The potential for each node to access real-time generated and synchronized with the rest of the nodes random bit streams, through the fiber optic network, allows to implement an one-time-pad encryption protocol that mixes the synchronized true random bit sequence with real data at Gb/s rates. Forward-error correction methods are used to reduce the errors in the TRBS and the final error rate at the data decoding level. An appropriate selection in the sampling methodology and properties, as well as in the physical properties of the chaotic seed signal through which network locks in synchronization, allows an error free performance.

  17. Wireless mobile Internet security

    CERN Document Server

    Rhee, Man Young

    2013-01-01

      The mobile industry for wireless cellular services has grown at a rapid pace over the past decade. Similarly, Internet service technology has also made dramatic growth through the World Wide Web with a wire line infrastructure. Realization for complete wired/wireless mobile Internet technologies will become the future objectives for convergence of these technologies thr

  18. Debate: Wired versus Wireless.

    Science.gov (United States)

    Meeks, Glenn; Nair, Prakash

    2000-01-01

    Debates the issue of investing in wiring schools for desktop computer networks versus using laptops and wireless networks. Included are cost considerations and the value of technology for learning. Suggestions include using wireless networks for existing schools, hardwiring computers for new construction, and not using computers for elementary…

  19. Topological properties of random wireless networks

    Indian Academy of Sciences (India)

    indicating that a physical infrastructure needs to be put in place before nodes can communicate. Ad hoc and sensor ... edges, the communication paths of the wireless network can be represented by a graph. The representation of the ..... Pr (Gn ∈ P) → 1. Another definition of a threshold is from Friedgut & Kalal (1996). For a.

  20. Wireless Sensor Networks : Structure and Algorithms

    NARCIS (Netherlands)

    van Dijk, T.C.|info:eu-repo/dai/nl/304841293

    2014-01-01

    In this thesis we look at various problems in wireless networking. First we consider two problems in physical-model networks. We introduce a new model for localisation. The model is based on a range-free model of radio transmissions. The first scheme is randomised and we analyse its expected

  1. Estimation of Expectable Network Quality in Wireless Mesh Networks

    OpenAIRE

    Wollenberg, Till

    2012-01-01

    Part 3: Computing in Networks; International audience; Our work aims to improve the usability of wireless mesh networks as communication layer of smart office environments. While wireless mesh networks are well-suited for this task in general, the negative impact of interference, fading, and saturation makes the communication basically opportunistic. Our goal is to develop a system which allows a short-term estimation of network quality in terms of throughput, packet loss and latency. The est...

  2. The Impacts of Microphysics and Planetary Boundary Layer Physics on Model Simulations of U.S. Deep South Summer Convection

    Science.gov (United States)

    McCaul, Eugene W., Jr.; Case, Jonathan L.; Zavodsky, Bradley; Srikishen, Jayanthi; Medlin, Jeffrey; Wood, Lance

    2014-01-01

    Convection-allowing numerical weather simula- tions have often been shown to produce convective storms that have significant sensitivity to choices of model physical parameterizations. Among the most important of these sensitivities are those related to cloud microphysics, but planetary boundary layer parameterizations also have a significant impact on the evolution of the convection. Aspects of the simulated convection that display sensitivity to these physics schemes include updraft size and intensity, simulated radar reflectivity, timing and placement of storm initi- ation and decay, total storm rainfall, and other storm features derived from storm structure and hydrometeor fields, such as predicted lightning flash rates. In addition to the basic parameters listed above, the simulated storms may also exhibit sensitivity to im- posed initial conditions, such as the fields of soil temper- ature and moisture, vegetation cover and health, and sea and lake water surface temperatures. Some of these sensitivities may rival those of the basic physics sensi- tivities mentioned earlier. These sensitivities have the potential to disrupt the accuracy of short-term forecast simulations of convective storms, and thereby pose sig- nificant difficulties for weather forecasters. To make a systematic study of the quantitative impacts of each of these sensitivities, a matrix of simulations has been performed using all combinations of eight separate microphysics schemes, three boundary layer schemes, and two sets of initial conditions. The first version of initial conditions consists of the default data from large-scale operational model fields, while the second features specialized higher- resolution soil conditions, vegetation conditions and water surface temperatures derived from datasets created at NASA's Short-term Prediction and Operational Research Tran- sition (SPoRT) Center at the National Space Science and Technology Center (NSSTC) in Huntsville, AL. Simulations as

  3. Development of an Internal Real-Time Wireless Diagnostic Tool for a Proton Exchange Membrane Fuel Cell

    Science.gov (United States)

    Lee, Chi-Yuan; Chen, Chia-Hung; Tsai, Chao-Hsuan; Wang, Yu-Syuan

    2018-01-01

    To prolong the operating time of unmanned aerial vehicles which use proton exchange membrane fuel cells (PEMFC), the performance of PEMFC is the key. However, a long-term operation can make the Pt particles of the catalyst layer and the pollutants in the feedstock gas bond together (e.g., CO), so that the catalyst loses reaction activity. The performance decay and aging of PEMFC will be influenced by operating conditions, temperature, flow and CO concentration. Therefore, this study proposes the development of an internal real-time wireless diagnostic tool for PEMFC, and uses micro-electro-mechanical systems (MEMS) technology to develop a wireless and thin (<50 μm) flexible integrated (temperature, flow and CO) microsensor. The technical advantages are (1) compactness and three wireless measurement functions; (2) elastic measurement position and accurate embedding; (3) high accuracy and sensitivity and quick response; (4) real-time wireless monitoring of dynamic performance of PEMFC; (5) customized design and development. The flexible integrated microsensor is embedded in the PEMFC, three important physical quantities in the PEMFC, which are the temperature, flow and CO, can be measured simultaneously and instantly, so as to obtain the authentic and complete reaction in the PEMFC to enhance the performance of PEMFC and to prolong the service life. PMID:29342832

  4. Development of an Internal Real-Time Wireless Diagnostic Tool for a Proton Exchange Membrane Fuel Cell

    Directory of Open Access Journals (Sweden)

    Chi-Yuan Lee

    2018-01-01

    Full Text Available To prolong the operating time of unmanned aerial vehicles which use proton exchange membrane fuel cells (PEMFC, the performance of PEMFC is the key. However, a long-term operation can make the Pt particles of the catalyst layer and the pollutants in the feedstock gas bond together (e.g., CO, so that the catalyst loses reaction activity. The performance decay and aging of PEMFC will be influenced by operating conditions, temperature, flow and CO concentration. Therefore, this study proposes the development of an internal real-time wireless diagnostic tool for PEMFC, and uses micro-electro-mechanical systems (MEMS technology to develop a wireless and thin (<50 μm flexible integrated (temperature, flow and CO microsensor. The technical advantages are (1 compactness and three wireless measurement functions; (2 elastic measurement position and accurate embedding; (3 high accuracy and sensitivity and quick response; (4 real-time wireless monitoring of dynamic performance of PEMFC; (5 customized design and development. The flexible integrated microsensor is embedded in the PEMFC, three important physical quantities in the PEMFC, which are the temperature, flow and CO, can be measured simultaneously and instantly, so as to obtain the authentic and complete reaction in the PEMFC to enhance the performance of PEMFC and to prolong the service life.

  5. Integrating atomic layer deposition and ultra-high vacuum physical vapor deposition for in situ fabrication of tunnel junctions.

    Science.gov (United States)

    Elliot, Alan J; Malek, Gary A; Lu, Rongtao; Han, Siyuan; Yu, Haifeng; Zhao, Shiping; Wu, Judy Z

    2014-07-01

    Atomic Layer Deposition (ALD) is a promising technique for growing ultrathin, pristine dielectrics on metal substrates, which is essential to many electronic devices. Tunnel junctions are an excellent example which require a leak-free, ultrathin dielectric tunnel barrier of typical thickness around 1 nm between two metal electrodes. A challenge in the development of ultrathin dielectric tunnel barriers using ALD is controlling the nucleation of dielectrics on metals with minimal formation of native oxides at the metal surface for high-quality interfaces between the tunnel barrier and metal electrodes. This poses a critical need for integrating ALD with ultra-high vacuum (UHV) physical vapor deposition. In order to address these challenges, a viscous-flow ALD chamber was designed and interfaced to an UHV magnetron sputtering chamber via a load lock. A sample transportation system was implemented for in situ sample transfer between the ALD, load lock, and sputtering chambers. Using this integrated ALD-UHV sputtering system, superconductor-insulator-superconductor (SIS) Nb-Al/Al2O2/Nb Josephson tunnel junctions were fabricated with tunnel barriers of thickness varied from sub-nm to ~1 nm. The suitability of using an Al wetting layer for initiation of the ALD Al2O3 tunnel barrier was investigated with ellipsometry, atomic force microscopy, and electrical transport measurements. With optimized processing conditions, leak-free SIS tunnel junctions were obtained, demonstrating the viability of this integrated ALD-UHV sputtering system for the fabrication of tunnel junctions and devices comprised of metal-dielectric-metal multilayers.

  6. Integrating atomic layer deposition and ultra-high vacuum physical vapor deposition for in situ fabrication of tunnel junctions

    Science.gov (United States)

    Elliot, Alan J.; Malek, Gary A.; Lu, Rongtao; Han, Siyuan; Yu, Haifeng; Zhao, Shiping; Wu, Judy Z.

    2014-07-01

    Atomic Layer Deposition (ALD) is a promising technique for growing ultrathin, pristine dielectrics on metal substrates, which is essential to many electronic devices. Tunnel junctions are an excellent example which require a leak-free, ultrathin dielectric tunnel barrier of typical thickness around 1 nm between two metal electrodes. A challenge in the development of ultrathin dielectric tunnel barriers using ALD is controlling the nucleation of dielectrics on metals with minimal formation of native oxides at the metal surface for high-quality interfaces between the tunnel barrier and metal electrodes. This poses a critical need for integrating ALD with ultra-high vacuum (UHV) physical vapor deposition. In order to address these challenges, a viscous-flow ALD chamber was designed and interfaced to an UHV magnetron sputtering chamber via a load lock. A sample transportation system was implemented for in situ sample transfer between the ALD, load lock, and sputtering chambers. Using this integrated ALD-UHV sputtering system, superconductor-insulator-superconductor (SIS) Nb-Al/Al2O2/Nb Josephson tunnel junctions were fabricated with tunnel barriers of thickness varied from sub-nm to ˜1 nm. The suitability of using an Al wetting layer for initiation of the ALD Al2O3 tunnel barrier was investigated with ellipsometry, atomic force microscopy, and electrical transport measurements. With optimized processing conditions, leak-free SIS tunnel junctions were obtained, demonstrating the viability of this integrated ALD-UHV sputtering system for the fabrication of tunnel junctions and devices comprised of metal-dielectric-metal multilayers.

  7. Security for multihop wireless networks

    CERN Document Server

    Khan, Shafiullah

    2014-01-01

    Security for Multihop Wireless Networks provides broad coverage of the security issues facing multihop wireless networks. Presenting the work of a different group of expert contributors in each chapter, it explores security in mobile ad hoc networks, wireless sensor networks, wireless mesh networks, and personal area networks.Detailing technologies and processes that can help you secure your wireless networks, the book covers cryptographic coprocessors, encryption, authentication, key management, attacks and countermeasures, secure routing, secure medium access control, intrusion detection, ep

  8. In-to-out body path loss for wireless radio frequency capsule endoscopy in a human body.

    Science.gov (United States)

    Vermeeren, G; Tanghe, E; Thielens, A; Martens, L; Joseph, W

    2016-08-01

    Physical-layer characterization is important for design of in-to-out body communication for wireless body area networks (WBANs). This paper numerically investigates the path loss of an in-to-out body radio frequency (RF) wireless link between an endoscopy capsule and a receiver outside the body using a 3D electromagnetic solver. A spiral antenna in the endoscopy capsule is tuned to operate in the Medical Implant Communication Service (MICS) band at 402 MHz, accounting for the properties of the human body. The influence of misalignment, rotation of the capsule, and human body model are investigated. Semi-empirical path loss models for various homogeneous tissues and 3D realistic human body models are provided for manufacturers to evaluate the performance of in-to-out-body WBAN systems.

  9. Wireless rechargeable sensor networks

    CERN Document Server

    Yang, Yuanyuan

    2015-01-01

    This SpringerBrief provides a concise guide to applying wireless energy transfer techniques in traditional battery-powered sensor networks. It examines the benefits and challenges of wireless power including efficiency and reliability. The authors build a wireless rechargeable sensor networks from scratch and aim to provide perpetual network operation. Chapters cover a wide range of topics from the collection of energy information and recharge scheduling to joint design with typical sensing applications such as data gathering. Problems are approached using a natural combination of probability

  10. Wireless network pricing

    CERN Document Server

    Huang, Jianwei

    2013-01-01

    Today's wireless communications and networking practices are tightly coupled with economic considerations, to the extent that it is almost impossible to make a sound technology choice without understanding the corresponding economic implications. This book aims at providing a foundational introduction on how microeconomics, and pricing theory in particular, can help us to understand and build better wireless networks. The book can be used as lecture notes for a course in the field of network economics, or a reference book for wireless engineers and applied economists to understand how pricing

  11. Wireless mesh networks

    CERN Document Server

    Held, Gilbert

    2005-01-01

    Wireless mesh networking is a new technology that has the potential to revolutionize how we access the Internet and communicate with co-workers and friends. Wireless Mesh Networks examines the concept and explores its advantages over existing technologies. This book explores existing and future applications, and examines how some of the networking protocols operate.The text offers a detailed analysis of the significant problems affecting wireless mesh networking, including network scale issues, security, and radio frequency interference, and suggests actual and potential solutions for each pro

  12. Optical and wireless technologies

    CERN Document Server

    Tiwari, Manish; Singh, Ghanshyam; Minzioni, Paolo

    2018-01-01

    This book presents selected papers from 1st International Conference on Optical and Wireless Technologies, providing insights into the analytical, experimental, and developmental aspects of systems, techniques, and devices in these spheres. It explores the combined use of various optical and wireless technologies in next-generation networking applications, and discusses the latest developments in applications such as photonics, high-speed communication systems and networks, visible light communication, nanophotonics, and wireless and multiple-input-multiple-output (MIMO) systems. The book will serve as a valuable reference resource for academics and researchers across the globe.

  13. ENERGY OPTIMIZATION IN CLUSTER BASED WIRELESS SENSOR NETWORKS

    Directory of Open Access Journals (Sweden)

    T. SHANKAR

    2014-04-01

    Full Text Available Wireless sensor networks (WSN are made up of sensor nodes which are usually battery-operated devices, and hence energy saving of sensor nodes is a major design issue. To prolong the networks lifetime, minimization of energy consumption should be implemented at all layers of the network protocol stack starting from the physical to the application layer including cross-layer optimization. Optimizing energy consumption is the main concern for designing and planning the operation of the WSN. Clustering technique is one of the methods utilized to extend lifetime of the network by applying data aggregation and balancing energy consumption among sensor nodes of the network. This paper proposed new version of Low Energy Adaptive Clustering Hierarchy (LEACH, protocols called Advanced Optimized Low Energy Adaptive Clustering Hierarchy (AOLEACH, Optimal Deterministic Low Energy Adaptive Clustering Hierarchy (ODLEACH, and Varying Probability Distance Low Energy Adaptive Clustering Hierarchy (VPDL combination with Shuffled Frog Leap Algorithm (SFLA that enables selecting best optimal adaptive cluster heads using improved threshold energy distribution compared to LEACH protocol and rotating cluster head position for uniform energy dissipation based on energy levels. The proposed algorithm optimizing the life time of the network by increasing the first node death (FND time and number of alive nodes, thereby increasing the life time of the network.

  14. The Most Possible Scheme of Joint Service Detection for the Next Wireless Communication Technologies

    Directory of Open Access Journals (Sweden)

    Firdaus Firdaus

    2013-03-01

    Full Text Available The era of beyond third generation wireless communication is highly heterogeneous in that it comprises several radio access technologies that need to be joined into a single multimode terminal. In this respect, this paper introduces a common service recognition system for the next wireless communication technologies i.e. Long Term Evolution (LTE, WiMAX or IEEE 802.16, and Wireless Local Area Network (WLAN or IEEE 802.11. It is done in physical layer as one of multimode terminal ability regardless network cooperation existence. We investigated on the preamble and synchronization signals as indicators of the available services instead of carrier frequency detection. To detect these signals, we proposed a time domain detection system consisting of auto-correlation, cross-correlation, and a peak period detection. Based on complexity analysis, this paper proposes the most possible scheme with lower complexity than cross-correlation implementation. Moreover, the fixed point simulation results show that the proposed system satisfies the minimum receiver sensitivity requirements that specified in the standards.

  15. A Team Study of a Multiple-Power Wireless Random Channel Access Mechanism with Capture Effect

    Directory of Open Access Journals (Sweden)

    Abdelillah Karouit

    2013-01-01

    Full Text Available We present a team analysis of a slotted random wireless channel access mechanism. Under the proposed scheme, denoted wireless random access mechanism with multiple power levels (MPL-WRA, each mobile station contends for a transmission opportunity following the principles of a slotted access mechanism incorporating a random transmitting power value selected among various available power levels. In this way, a capture effect may be produced allowing the packet to be decoded whenever the signal-to-interference-plus-noise ratio is higher than a given threshold. In order to analyze the performance and optimization of the proposed setup, we build a Markovian model integrating the wireless access mechanism supplemented by the use of multiple power levels in an attractive and simple cross-layer fashion. We follow a team problem approach allowing us to fine tune the design parameters of the overall system configuration. Throughout an extensive numerical analysis, our main results set the basis for the social optimal system configuration of the proposed mechanism taking into account the physical constraints of using multiple power levels and the actual practical implementation of a slotted access mechanism. We end the paper with concluding remarks and future research directions including guidelines for the actual implementation of our proposal.

  16. Power allocation and cooperative jamming for enhancing physical layer security in opportunistic relay networks in the presence of interference

    KAUST Repository

    Abd El-Malek, Ahmed H.

    2017-04-18

    In this paper, the impact of cochannel interference on the secrecy performance of dual-hop decode-and-forward relaying is investigated. In particular, the outage and intercept probabilities are obtained for the opportunistic relay selection (ORS) model in the presence of nonidentical interfering signals under a single/multiple passive eavesdropper(s) attack. Moreover, the proposed work enhances physical layer security performance of ORS model using cooperative jamming (CJ) techniques. Therefore, new closed-form expressions are derived for the intercept and outage probabilities of the CJ-ORS model in the presence of interference over Rayleigh fading channels. Moreover, the analyses are generalized to the case of multiple eavesdroppers where closed-form expressions are derived for the intercept probability. To reveal more insights on the proposed work secrecy performance, asymptotic closed-form expressions for the intercept and outage probabilities are obtained. Using these asymptotic expressions, a power allocation optimization problem is formulated and solved for enhancing the system security. The derived analytical formulas herein are supported by numerical and simulation results to clarify the main contributions of the paper. The results show that, although the cochannel interference increases the system outage probability, it might improve the system secrecy performance. Moreover, the proposed CJ-ORS model is shown to enhance the system secrecy performance compared to ORS model.

  17. Eigen-Direction Alignment Based Physical-Layer Network Coding for MIMO Two-Way Relay Channels

    CERN Document Server

    Yang, Tao; Ping, Li; Collings, Iain B; Yuan, Jinhong

    2012-01-01

    In this paper, we propose a novel communication strategy which incorporates physical-layer network coding (PNC) into multiple-input multiple output (MIMO) two-way relay channels (TWRCs). At the heart of the proposed scheme lies a new key technique referred to as eigen-direction alignment (EDA) precoding. The EDA precoding efficiently aligns the two-user's eigen-modes into the same directions. Based on that, we carry out multi-stream PNC over the aligned eigen-modes. We derive an achievable rate of the proposed EDA-PNC scheme, based on nested lattice codes, over a MIMO TWRC. Asymptotic analysis shows that the proposed EDA-PNC scheme approaches the capacity upper bound as the number of user antennas increases towards infinity. For a finite number of user antennas, we formulate the design criterion of the optimal EDA precoder and present solutions. Numerical results show that there is only a marginal gap between the achievable rate of the proposed EDA-PNC scheme and the capacity upper bound of the MIMO TWRC, in ...

  18. Puff pastry with low saturated fat contents: The role of fat and dough physical interactions in the development of a layered structure

    NARCIS (Netherlands)

    Renzetti, S.; Harder, R. de; Jurgens, A.

    2015-01-01

    In puff pastry, fat and dough rheological behavior during sheeting control pastry dough development by formation of the layered structure which is essential for product quality. The aim of this work was to unravel the influence of fat and dough physical interactions during sheeting, as affected by

  19. Physical and chemical degradation behavior of sputtered aluminum doped zinc oxide layers for Cu(In,Ga)Se2 solar cells

    NARCIS (Netherlands)

    Theelen, M.; Boumans, T.; Stegeman, F.; Colberts, F.; Illiberi, A.; Berkum, J. van; Barreau, N.; Vroon, Z.; Zeman, M.

    2014-01-01

    Sputtered aluminum doped zinc oxide (ZnO:Al) layers on borosilicate glass were exposed to damp heat (85 C/85% relative humidity) for 2876 h to accelerate the physical and chemical degradation behavior. The ZnO:Al samples were characterized by electrical, compositional and optical measurements before

  20. Green heterogeneous wireless networks

    CERN Document Server

    Ismail, Muhammad; Nee, Hans-Peter; Qaraqe, Khalid A; Serpedin, Erchin

    2016-01-01

    This book focuses on the emerging research topic "green (energy efficient) wireless networks" which has drawn huge attention recently from both academia and industry. This topic is highly motivated due to important environmental, financial, and quality-of-experience (QoE) considerations. Specifically, the high energy consumption of the wireless networks manifests in approximately 2% of all CO2 emissions worldwide. This book presents the authors’ visions and solutions for deployment of energy efficient (green) heterogeneous wireless communication networks. The book consists of three major parts. The first part provides an introduction to the "green networks" concept, the second part targets the green multi-homing resource allocation problem, and the third chapter presents a novel deployment of device-to-device (D2D) communications and its successful integration in Heterogeneous Networks (HetNets). The book is novel in that it specifically targets green networking in a heterogeneous wireless medium, which re...

  1. Wireless radio a history

    CERN Document Server

    Coe, Lewis

    2006-01-01

    ""Informative...recommended""--Choice; ""interesting...a good read...well worth reading""--Contact Magazine. This history first looks at Marconi's wireless communications system and then explores its many applications, including marine radio, cellular telephones, police and military uses, television and radar. Radio collecting is also discussed, and brief biographies are provided for the major figures in the development and use of the wireless.

  2. Combining Natural Human-Computer Interaction and Wireless Communication

    Directory of Open Access Journals (Sweden)

    Ştefan Gheorghe PENTIUC

    2011-01-01

    Full Text Available In this paper we present how human-computer interaction can be improved by using wireless communication between devices. Devices that offer a natural user interaction, like the Microsoft Surface Table and tablet PCs, can work together to enhance the experience of an application. Users can use physical objects for a more natural way of handling the virtual world on one hand, and interact with other users wirelessly connected on the other. Physical objects, that interact with the surface table, have a tag attached to them, allowing us to identify them, and take the required action. The TCP/IP protocol was used to handle the wireless communication over the wireless network. A server and a client application were developed for the used devices. To get a wide range of targeted mobile devices, different frameworks for developing cross platform applications were analyzed.

  3. Wireless Networks: New Meaning to Ubiquitous Computing.

    Science.gov (United States)

    Drew, Wilfred, Jr.

    2003-01-01

    Discusses the use of wireless technology in academic libraries. Topics include wireless networks; standards (IEEE 802.11); wired versus wireless; why libraries implement wireless technology; wireless local area networks (WLANs); WLAN security; examples of wireless use at Indiana State University and Morrisville College (New York); and useful…

  4. A Next Generation Wireless Simulator Based on MIMO-OFDM: LTE Case Study

    Directory of Open Access Journals (Sweden)

    Gómez Gerardo

    2010-01-01

    Full Text Available The complexity of next generation wireless systems is growing exponentially. The combination of Multiple-Input Multiple-Output (MIMO technology with Orthogonal Frequency Division Multiplexing (OFDM is considered as the best solution to provide high data rates under frequency-selective fading channels. The design and evaluation of MIMO-OFDM systems require a detailed analysis of a number of functionalities such as MIMO transmission modes, channel estimation, MIMO detection, channel coding, or cross-layer scheduling. In this paper we present a MIMO-OFDM-based simulator that includes the main physical and link layer functionalities. The simulator has been used to evaluate the performance of the 3GPP Long-Term Evolution (LTE technology for different MIMO-OFDM techniques under realistic assumptions such as user mobility or bandwidth-limited feedback channel.

  5. Health Monitoring Using Wireless Sensor Network: "A Matlab Approach"

    OpenAIRE

    Okeke, David Chukwuemeka

    2016-01-01

    A wireless sensor network consists of locally distributed independent sensors to cooperatively monitor physical or environmental conditions, such as temperature, sound, vibration, pressure, motion or pollutants. Wireless Body Area Network (WBANs) represents a promising trend in wearable health monitoring systems. WBANs promise to revolutionize health monitoring and offer continuous and omnipresent moving health monitoring at the least level of obtrusiveness, resulting in an increase in user’s...

  6. Energy-aware Wireless Multi-hop Networks

    OpenAIRE

    Vazifehdan, J.

    2011-01-01

    Wireless networks have provided us a variety of services which facilitate communication between people beyond the physical boundaries. Mobile telephony, mobile Internet and high-deffnition video calls are examples of services supported by modern networks nowadays. Beyond this, enhancements in processing capabilities of electronic devices coupled with advances in wireless communication have resulted in the emergence of devices which have high processing and communication capabilities. Small de...

  7. Wireless Sensor Portal Technology Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Mobitrum Corporation has demonstrated the feasibility in the Phase I of " A Wireless Sensor Portal Technology" and proposes a Phase II effort to develop a wireless...

  8. Evolution of Heterogeneous Wireless Networks

    DEFF Research Database (Denmark)

    Zhang, Q.; Fitzek, Frank; Katz, Marcos

    2006-01-01

    Mobile and wireless content, services and networks - Short-term and long-term development trends......Mobile and wireless content, services and networks - Short-term and long-term development trends...

  9. Versatile Wireless Data Net Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed R&D is to develop a wireless data networking capability. A prototype capability will result from the Phase 1 and 2 contracts. The Versatile Wireless...

  10. Introducing new physical synergism effect arise together presence of multi wall carbon nanotube and Vulcan in the micro porous layer of gas diffusion electrode

    Energy Technology Data Exchange (ETDEWEB)

    Abdullah Mirzaie, R. [Shahid Rajaee Univ., Tehran (Iran, Islamic Republic of). Dept. of Chemistry; Gharibi, H. [Tarbiat Modarres Univ., Tehran (Iran, Islamic Republic of); Javaheri, M. [Tarbiat Modarres Univ., Tehran (Iran, Islamic Republic of). Dept. of Chemistry; Asfa, A. [Shahid Rajaee Univ., Tehran (Iran, Islamic Republic of)

    2009-07-01

    This study investigated the influence of multi-wall carbon nanotube (MWCNT) in fuel cell components. In particular, it examined how vulcanization in the microporous layer affects the performance of the gas-diffusion electrode (GDE) for the cathodic oxygen reduction reaction. Different percentages of MWCNT and Vulcan were used in the microporous layer of the GDE. A porosimeter, scanning electron microscope (SEM) and four probe conductometer was used to study the morphological and physical structure of the fabricated microporous layer. Linear sweep voltametry (LSV), electrochemical impedance spectroscopy (EIS), chronoamperometry and SEM techniques were used to study the electrochemical performance of prepared gas diffusion electrodes for oxygen reduction reaction. The results showed that the combination of MWCNT and Vulcan perturb the morphological structure in the microporous layer. The optimized value of MWCNT in the microporous layer varies with different platinum loading in the reaction layer. The optimized values were found to be 60 wt per cent, 80 wt per cent and 40 wt per cent MWCNT at 0.115 mg per cm{sup 2}, 0.5 mg per cm{sup 2} and 1 mg per cm{sup 2} Pt loading respectively.

  11. New Physical Deposition Approach for Low Cost Inorganic Hole Transport Layer in Normal Architecture of Durable Perovskite Solar Cells.

    Science.gov (United States)

    Nejand, Bahram Abdollahi; Ahmadi, Vahid; Shahverdi, Hamid Reza

    2015-10-07

    In this work we reported sputter deposited NiOx/Ni double layer as an HTM/contact couple in normal architecture of perovskite solar cell. A perovskite solar cell that is durable for more than 60 days was achieved, with increasing efficiency from 1.3% to 7.28% within 6 days. Moreover, low temperature direct deposition of NiOx layer on perovskite layer was introduced as a potential hole transport material for an efficient cost-effective solar cell applicable for various morphologies of perovskite layers, even for perovskite layers containing pinholes, which is a notable challenge in perovskite solar cells. The angular deposition of NiOx layers by dc reactive magnetron sputtering showed uniform and crack-free coverage of the perovskite layer with no negative impact on perovskite structure that is suitable for nickel back contact layer, surface shielding against moisture, and mechanical damages. Replacing the expensive complex materials in previous perovskite solar cells with low cost available materials introduces cost-effective scalable perovskite solar cells.

  12. OPTICAL WIRELESS COMMUNICATION SYSTEM

    Directory of Open Access Journals (Sweden)

    JOSHUA L.Y. CHIENG

    2016-02-01

    Full Text Available The growing demand of bandwidth in this modern internet age has been testing the existing telecommunication infrastructures around the world. With broadband speeds moving towards the region of Gbps and Tbps, many researches have begun on the development of using optical wireless technology as feasible and future methods to the current wireless technology. Unlike the existing radio frequency wireless applications, optical wireless uses electromagnetic spectrums that are unlicensed and free. With that, this project aim to understand and gain better understanding of optical wireless communication system by building an experimental and simulated model. The quality of service and system performance will be investigated and reviewed. This project employs laser diode as the propagation medium and successfully transferred audio signals as far as 15 meters. On its quality of service, results of the project model reveal that the bit error rate increases, signal-to-noise ratio and quality factor decreases as the link distance between the transmitter and receiver increases. OptiSystem was used to build the simulated model and MATLAB was used to assist signal-to-noise ratio calculations. By comparing the simulated and experimental receiver’s power output, the experimental model’s efficiency is at 66.3%. Other than the system’s performance, challenges and factors affecting the system have been investigated and discussed. Such challenges include beam divergence, misalignment and particle absorption.

  13. Evaluating the Efficiency of Physical and Cryptographic Security Solutions for Quantum Immune IoT

    Directory of Open Access Journals (Sweden)

    Jani Suomalainen

    2018-02-01

    Full Text Available The threat of quantum-computer-assisted cryptanalysis is forcing the security community to develop new types of security protocols. These solutions must be secure against classical and post-quantum cryptanalysis techniques as well as feasible for all kinds of devices, including energy-restricted Internet of Things (IoT devices. The quantum immunity can be implemented in the cryptographic layer, e.g., by using recent lattice-based key exchange algorithms NewHope or Frodo, or in the physical layer of wireless communication, by utilizing eavesdropping-resistant secrecy coding techniques. In this study, we explore and compare the feasibility and energy efficiency of selected cryptographic layer and physical layer approaches by applying an evaluation approach that is based on simulation and modeling. In particular, we consider NewHope and Frodo key exchange algorithms as well as novel physical layer secrecy coding approach that is based on polar codes. The results reveal that our proposed physical layer implementation is very competitive with respect to the cryptographic solutions, particularly in short-range wireless communication. We also observed that the total energy consumption is unequally divided between transmitting and receiving devices in all the studied approaches. This may be an advantage when designing security architectures for energy-restricted devices.

  14. Bandwidth Estimation in Wireless Lans for Multimedia Streaming Services

    Directory of Open Access Journals (Sweden)

    Heung Ki Lee

    2007-01-01

    Full Text Available The popularity of multimedia streaming services via wireless networks presents major challenges in the management of network bandwidth. One challenge is to quickly and precisely estimate the available bandwidth for the decision of streaming rates of layered and scalable multimedia services. Previous studies based on wired networks are too burdensome to be applied to multimedia applications in wireless networks. In this paper, a new method, IdleGap, is suggested to estimate the available bandwidth of a wireless LAN based on the information from a low layer in the protocol stack. We use a network simulation tool, NS-2, to evaluate our new method with various ranges of cross-traffic and observation times. Our simulation results show that IdleGap accurately estimates the available bandwidth for all ranges of cross-traffic (100 Kbps ∼ 1 Mbps with a very short observation time of 10 seconds.

  15. Localization in Wireless Networks Foundations and Applications

    CERN Document Server

    Sanford, Jessica Feng; Slijepcevic, Sasha

    2012-01-01

    In a computational tour-de-force, this volume wipes away a host of problems related to location discovery in wireless ad-hoc sensor networks. WASNs have recognized potential in many applications that are location-dependent, yet are heavily constrained by factors such as cost and energy consumption. Their “ad-hoc” nature, with direct rather than mediated connections between a network of wireless devices, adds another layer of difficulty.   Basing this work entirely on data-driven, coordinated algorithms, the authors' aim is to present location discovery techniques that are highly accurate—and which fit user criteria. The research deploys nonparametric statistical methods and relies on the concept of joint probability to construct error (including location error) models and environmental field models. It also addresses system issues such as the broadcast and scheduling of the beacon. Reporting an impressive accuracy gain of almost 17 percent, and organized in a clear, sequential manner, this book represe...

  16. Optical wireless connected objects for healthcare.

    Science.gov (United States)

    Toumieux, Pascal; Chevalier, Ludovic; Sahuguède, Stéphanie; Julien-Vergonjanne, Anne

    2015-10-01

    In this Letter the authors explore the communication capabilities of optical wireless technology for a wearable device dedicated to healthcare application. In an indoor environment sensible to electromagnetic perturbations such as a hospital, the use of optical wireless links can permit reducing the amount of radio frequencies in the patient environment. Moreover, this technology presents the advantage to be secure, low-cost and easy to deploy. On the basis of commercially available components, a custom-made wearable device is presented, which allows optical wireless transmission of accelerometer data in the context of physical activity supervision of post-stroke patients in hospital. Considering patient mobility, the experimental performance is established in terms of packet loss as a function of the number of receivers fixed to the ceiling. The results permit to conclude that optical wireless links can be used to perform such mobile remote monitoring applications. Moreover, based on the measurements obtained with one receiver, it is possible to theoretically determine the performance according to the number of receivers to be deployed.

  17. Experimental validation of wireless communication with chaos

    Science.gov (United States)

    Ren, Hai-Peng; Bai, Chao; Liu, Jian; Baptista, Murilo S.; Grebogi, Celso

    2016-08-01

    The constraints of a wireless physical media, such as multi-path propagation and complex ambient noises, prevent information from being communicated at low bit error rate. Surprisingly, it has only recently been shown that, from a theoretical perspective, chaotic signals are optimal for communication. It maximises the receiver signal-to-noise performance, consequently minimizing the bit error rate. This work demonstrates numerically and experimentally that chaotic systems can in fact be used to create a reliable and efficient wireless communication system. Toward this goal, we propose an impulsive control method to generate chaotic wave signals that encode arbitrary binary information signals and an integration logic together with the match filter capable of decreasing the noise effect over a wireless channel. The experimental validation is conducted by inputting the signals generated by an electronic transmitting circuit to an electronic circuit that emulates a wireless channel, where the signals travel along three different paths. The output signal is decoded by an electronic receiver, after passing through a match filter.

  18. REAL TIME WIRELESS AIR POLLUTION MONITORING SYSTEM

    Directory of Open Access Journals (Sweden)

    Raja Vara Prasad Y

    2011-06-01

    Full Text Available Air pollution has significant influence on the concentration of constituents in the atmosphere leading to effects like global warming and acid rains. To avoid such adverse imbalances in the nature, an air pollution monitoring system is utmost important. This paper attempts to develop an effective solution for pollution monitoring using wireless sensor networks (WSN on a real time basis namely real time wireless air pollution monitoring system. Commercially available discrete gas sensors for sensing concentration of gases like CO2, NO2, CO and O2 are calibrated using appropriate calibration technologies. These pre-calibrated gas sensors are then integrated with the wireless sensor motes for field deployment at the campus and the Hyderabad city using multi hop data aggregation algorithm. A light weight middleware and a web interface to view the live pollution data in the form of numbers and charts from the test beds was developed and made available from anywhere on the internet. Other parameters like temperature and humidity were also sensed along with gas concentrations to enable data analysis through data fusion techniques. Experimentation carried out using the developed wireless air pollution monitoring system under different physical conditions show that the system collects reliable source of real time fine-grain pollution data.

  19. Experimental validation of wireless communication with chaos.

    Science.gov (United States)

    Ren, Hai-Peng; Bai, Chao; Liu, Jian; Baptista, Murilo S; Grebogi, Celso

    2016-08-01

    The constraints of a wireless physical media, such as multi-path propagation and complex ambient noises, prevent information from being communicated at low bit error rate. Surprisingly, it has only recently been shown that, from a theoretical perspective, chaotic signals are optimal for communication. It maximises the receiver signal-to-noise performance, consequently minimizing the bit error rate. This work demonstrates numerically and experimentally that chaotic systems can in fact be used to create a reliable and efficient wireless communication system. Toward this goal, we propose an impulsive control method to generate chaotic wave signals that encode arbitrary binary information signals and an integration logic together with the match filter capable of decreasing the noise effect over a wireless channel. The experimental validation is conducted by inputting the signals generated by an electronic transmitting circuit to an electronic circuit that emulates a wireless channel, where the signals travel along three different paths. The output signal is decoded by an electronic receiver, after passing through a match filter.

  20. Wireless Technology Development: History, Now, and Then

    OpenAIRE

    Lusiana Citra Dewi

    2011-01-01

    Wireless technology is one of many technologies that can enable people to communicate with each other by air medium, or rather you can say by radio frequency. This paper discusses about history of wireless technology, different kinds of wireless connection, wireless technology standards, and a few comparisons of different kinds of world’s wireless technology standards. Besides discussing about history about wireless technology and wireless technology that we can use nowadays, this paper also ...

  1. Terabit Wireless Communication Challenges

    Science.gov (United States)

    Hwu, Shian U.

    2012-01-01

    This presentation briefly discusses a research effort on Terabit Wireless communication systems for possible space applications. Recently, terahertz (THz) technology (300-3000 GHz frequency) has attracted a great deal of interest from academia and industry. This is due to a number of interesting features of THz waves, including the nearly unlimited bandwidths available, and the non-ionizing radiation nature which does not damage human tissues and DNA with minimum health threat. Also, as millimeter-wave communication systems mature, the focus of research is, naturally, moving to the THz range. Many scientists regard THz as the last great frontier of the electromagnetic spectrum, but finding new applications outside the traditional niches of radio astronomy, Earth and planetary remote sensing, and molecular spectroscopy particularly in biomedical imaging and wireless communications has been relatively slow. Radiologists find this area of study so attractive because t-rays are non-ionizing, which suggests no harm is done to tissue or DNA. They also offer the possibility of performing spectroscopic measurements over a very wide frequency range, and can even capture signatures from liquids and solids. According to Shannon theory, the broad bandwidth of the THz frequency bands can be used for terabit-per-second (Tb/s) wireless communication systems. This enables several new applications, such as cell phones with 360 degrees autostereoscopic displays, optic-fiber replacement, and wireless Tb/s file transferring. Although THz technology could satisfy the demand for an extremely high data rate, a number of technical challenges need to be overcome before its development. This presentation provides an overview the state-of-the- art in THz wireless communication and the technical challenges for an emerging application in Terabit wireless systems. The main issue for THz wave propagation is the high atmospheric attenuation, which is dominated by water vapor absorption in the THz

  2. Physics of Transitional Shear Flows Instability and Laminar–Turbulent Transition in Incompressible Near-Wall Shear Layers

    CERN Document Server

    Boiko, Andrey V; Grek, Genrih R; Kozlov, Victor V

    2012-01-01

    Starting from fundamentals of classical stability theory, an overview is given of the transition phenomena in subsonic, wall-bounded shear flows. At first, the consideration focuses on elementary small-amplitude velocity perturbations of laminar shear layers, i.e. instability waves, in the simplest canonical configurations of a plane channel flow and a flat-plate boundary layer. Then the linear stability problem is expanded to include the effects of pressure gradients, flow curvature, boundary-layer separation, wall compliance, etc. related to applications. Beyond the amplification of instability waves is the non-modal growth of local stationary and non-stationary shear flow perturbations which are discussed as well. The volume continues with the key aspect of the transition process, that is, receptivity of convectively unstable shear layers to external perturbations, summarizing main paths of the excitation of laminar flow disturbances. The remainder of the book addresses the instability phenomena found at l...

  3. A Study on Physical Performance for Poly(L-lactic acid in Addition to Layered Strontium Phenylphosphonate

    Directory of Open Access Journals (Sweden)

    Yan-Hua Zhang

    2016-01-01

    Full Text Available The organic-inorganic hybrid layered strontium phenylphosphonate (SrP was synthesized by using strontium chloride and phenylphosphinic acid. And the influence of layered SrP on the crystallization behavior and thermal stability of poly(L-lactic acid (PLLA was investigated through DSC, XRD, and TGA. Both DSC and XRD results demonstrated that layered SrP had the powerful accelerated ability for PLLA crystallization, and in the range of studied concentration, 0.7 wt%–1 wt% is the optimum concentration range to achieve rapid crystallization of PLLA. Meantime, as a result, the increase of cooling rate in nonisothermal crystallization procedure seriously affected the crystallization accelerated efficiency of SrP. Thermal stability measurement showed that layered SrP could cause the onset decomposition temperature of PLLA to decrease, but the thermal decomposition behavior of PLLA hardly depended on the SrP concentration.

  4. Wireless sensor platform

    Energy Technology Data Exchange (ETDEWEB)

    Joshi, Pooran C.; Killough, Stephen M.; Kuruganti, Phani Teja

    2017-08-08

    A wireless sensor platform and methods of manufacture are provided. The platform involves providing a plurality of wireless sensors, where each of the sensors is fabricated on flexible substrates using printing techniques and low temperature curing. Each of the sensors can include planar sensor elements and planar antennas defined using the printing and curing. Further, each of the sensors can include a communications system configured to encode the data from the sensors into a spread spectrum code sequence that is transmitted to a central computer(s) for use in monitoring an area associated with the sensors.

  5. Wireless telecommunication systems

    CERN Document Server

    Terré, Michel; Vivier, Emmanuelle

    2013-01-01

    Wireless telecommunication systems generate a huge amount of interest. In the last two decades, these systems have experienced at least three major technological leaps, and it has become impossible to imagine how society was organized without them. In this book, we propose a macroscopic approach on wireless systems, and aim at answering key questions about power, data rates, multiple access, cellular engineering and access networks architectures.We present a series of solved problems, whose objective is to establish the main elements of a global link budget in several radiocommunicati

  6. Sustainable wireless networks

    CERN Document Server

    Zheng, Zhongming; Xuemin

    2013-01-01

    This brief focuses on network planning and resource allocation by jointly considering cost and energy sustainability in wireless networks with sustainable energy. The characteristics of green energy and investigating existing energy-efficient green approaches for wireless networks with sustainable energy is covered in the first part of this brief. The book then addresses the random availability and capacity of the energy supply. The authors explore how to maximize the energy sustainability of the network and minimize the failure probability that the mesh access points (APs) could deplete their

  7. Wireless optical telecommunications

    CERN Document Server

    Bouchet, Olivier

    2013-01-01

    Wireless optical communication refers to communication based on the unguided propagation of optical waves. The past 30 years have seen significant improvements in this technique - a wireless communication solution for the current millennium - that offers an alternative to radio systems; a technique that could gain attractiveness due to recent concerns regarding the potential effects of radiofrequency waves on human health.The aim of this book is to look at the free space optics that are already used for the exchange of current information; its many benefits, such as incorporating chan

  8. Data converters for wireless standards

    CERN Document Server

    Shi, Chunlei

    2002-01-01

    Wireless communication is witnessing tremendous growth with proliferation of different standards covering wide, local and personal area networks (WAN, LAN and PAN). The trends call for designs that allow 1) smooth migration to future generations of wireless standards with higher data rates for multimedia applications, 2) convergence of wireless services allowing access to different standards from the same wireless device, 3) inter-continental roaming. This requires designs that work across multiple wireless standards, can easily be reused, achieve maximum hardware share at a minimum power consumption levels particularly for mobile battery-operated devices.

  9. Energy efficiency in wireless networks

    CERN Document Server

    Jumira, Oswald

    2013-01-01

    The last decade has witnessed an unprecedented development and growth in global wireless communications systems, technologies and network "traffic" generated over network infrastructures.This book presents state-of-the-art energy-efficient techniques, designs and implementations that pertain to wireless communication networks such as cellular networks, wireless local area networks (WLANs) and wireless ad hoc networks (WAHNs) including mobile ad hoc networks (MANETs), and wireless sensor networks (WSNs) as they are deployed across the world to facilitate "always on" reliable high-speed

  10. Liquid-crystal intraocular adaptive lens with wireless control

    NARCIS (Netherlands)

    Simonov, A.N.; Vdovine, G.V.; Loktev, M.

    2007-01-01

    We present a prototype of an adaptive intraocular lens based on a modal liquid-crystal spatial phase modulator with wireless control. The modal corrector consists of a nematic liquid-crystal layer sandwiched between two glass substrates with transparent low- and high-ohmic electrodes, respectively.

  11. Energy efficient topology for Wireless Mesh Networks | Negash ...

    African Journals Online (AJOL)

    We analyze the power control problem using coalition formation game theory employing utilities based on the coverage areas of the access points by associating a cost function with the utility as the payoff of the coalition members. Our work focuses on the access layer of a wireless mesh local area network. We show that by ...

  12. Reliable Communication in Wireless Meshed Networks using Network Coding

    DEFF Research Database (Denmark)

    Pahlevani, Peyman; Paramanathan, Achuthan; Hundebøll, Martin

    2012-01-01

    The advantages of network coding have been extensively studied in the field of wireless networks. Integrating network coding with existing IEEE 802.11 MAC layer is a challenging problem. The IEEE 802.11 MAC does not provide any reliability mechanisms for overheard packets. This paper addresses th...... introduce some signaling overhead, the results show that the performance is yet improved....

  13. Sub-Transport Layer Coding

    DEFF Research Database (Denmark)

    Hansen, Jonas; Krigslund, Jeppe; Roetter, Daniel Enrique Lucani

    2014-01-01

    Packet losses in wireless networks dramatically curbs the performance of TCP. This paper introduces a simple coding shim that aids IP-layer traffic in lossy environments while being transparent to transport layer protocols. The proposed coding approach enables erasure correction while being...... oblivious to the congestion control algorithms of the utilised transport layer protocol. Although our coding shim is indifferent towards the transport layer protocol, we focus on the performance of TCP when ran on top of our proposed coding mechanism due to its widespread use. The coding shim provides gains...

  14. Wireless Sensor Technologies and Applications

    Directory of Open Access Journals (Sweden)

    Feng Xia

    2009-11-01

    Full Text Available Recent years have witnessed tremendous advances in the design and applications of wirelessly networked and embedded sensors. Wireless sensor nodes are typically low-cost, low-power, small devices equipped with limited sensing, data processing and wireless communication capabilities, as well as power supplies. They leverage the concept of wireless sensor networks (WSNs, in which a large (possibly huge number of collaborative sensor nodes could be deployed. As an outcome of the convergence of micro-electro-mechanical systems (MEMS technology, wireless communications, and digital electronics, WSNs represent a significant improvement over traditional sensors. In fact, the rapid evolution of WSN technology has accelerated the development and deployment of various novel types of wireless sensors, e.g., multimedia sensors. Fulfilling Moore’s law, wireless sensors are becoming smaller and cheaper, and at the same time more powerful and ubiquitous. [...

  15. A Novel Passive Wireless Sensor for Concrete Humidity Monitoring.

    Science.gov (United States)

    Zhou, Shuangxi; Deng, Fangming; Yu, Lehua; Li, Bing; Wu, Xiang; Yin, Baiqiang

    2016-09-20

    This paper presents a passive wireless humidity sensor for concrete monitoring. After discussing the transmission of electromagnetic wave in concrete, a novel architecture of wireless humidity sensor, based on Ultra-High Frequency (UHF) Radio Frequency Identification (RFID) technology, is proposed for low-power application. The humidity sensor utilizes the top metal layer to form the interdigitated electrodes, which were then filled with polyimide as the humidity sensing layer. The sensor interface converts the humidity capacitance into a digital signal in the frequency domain. A two-stage rectifier adopts a dynamic bias-voltage generator to boost the effective gate-source voltage of the switches in differential-drive architecture. The clock generator employs a novel structure to reduce the internal voltage swing. The measurement results show that our proposed wireless humidity can achieve a high linearity with a normalized sensitivity of 0.55% %RH at 20 °C. Despite the high losses of concrete, the proposed wireless humidity sensor achieves reliable communication performances in passive mode. The maximum operating distance is 0.52 m when the proposed wireless sensor is embedded into the concrete at the depth of 8 cm. The measured results are highly consistent with the results measured by traditional methods.

  16. A Cross-Layer Approach in Sensing and Resource Allocation for Multimedia Transmission over Cognitive UWB Networks

    Directory of Open Access Journals (Sweden)

    Lo ACC

    2010-01-01

    Full Text Available We propose an MAC centric cross-layer approach to address the problem of multimedia transmission over cognitive Ultra Wideband (C-UWB networks. Several fundamental design issues, which are related to application (APP, medium access control (MAC, and physical (PHY layer, are discussed. Although substantial research has been carried out in the PHY layer perspective of cognitive radio system, this paper attempts to extend the existing research paradigm to MAC and APP layers, which can be considered as premature at this time. This paper proposed a cross-layer design that is aware of (a UWB wireless channel conditions, (b time slot allocations at the MAC layer, and (c MPEG-4 video at the APP layer. Two cooperative sensing mechanisms, namely, AND and OR, are analyzed in terms of probability of detection ( , probability of false alarm ( , and the required sensing period. Then, the impact of sensing scheduling to the MPEG-4 video transmission over wireless cognitive UWB networks is observed. In addition, we also proposed the packet reception rate- (PRR- based resource allocation scheme that is aware of the channel condition, target PRR, and queue status.

  17. Toward Reliable and Energy Efficient Wireless Sensing for Space and Extreme Environments

    Science.gov (United States)

    Choi, Baek-Young; Boyd, Darren; Wilkerson, DeLisa

    2017-01-01

    Reliability is the critical challenge of wireless sensing in space systems operating in extreme environments. Energy efficiency is another concern for battery powered wireless sensors. Considering the physics of wireless communications, we propose an approach called Software-Defined Wireless Communications (SDC) that dynamically decide a reliable channel(s) avoiding unnecessary redundancy of channels, out of multiple distinct electromagnetic frequency bands such as radio and infrared frequencies.We validate the concept with Android and Raspberry Pi sensors and pseudo extreme experiments. SDC can be utilized in many areas beyond space applications.

  18. Wireless Telegraphic Communication

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 7; Issue 1. Wireless Telegraphic Communication. Guglielmo Marconi. Classics Volume 7 Issue 1 January 2002 pp 95-101. Fulltext. Click here to view fulltext PDF. Permanent link: http://www.ias.ac.in/article/fulltext/reso/007/01/0095-0101 ...

  19. Wireless, Not Penniless.

    Science.gov (United States)

    Schaeffer, Brett

    2003-01-01

    Describes some advantages of the early adoption of wireless, laptop, and personal digital assistant (PDA) technology. Provides examples of early adoption experiences in several school districts. Advantages include increased computer access, timesavings, and expanded curricular offerings. Also highlights potential cost savings involving, for…

  20. Wired vs. Wireless.

    Science.gov (United States)

    Fielding, Randall

    2000-01-01

    Presents a debate on which technology will be in tomorrow's classrooms and the pros and cons of wiring classrooms and using a wireless network. Concluding comments address the likelihood, and desirability, of placing computers throughout the entire educational process and what types of computers and capabilities are needed. (GR)

  1. Wireless networked music performance

    CERN Document Server

    Gabrielli, Leonardo

    2016-01-01

    This book presents a comprehensive overview of the state of the art in Networked Music Performance (NMP) and a historical survey of computer music networking. It introduces current technical trends in NMP and technical issues yet to be addressed. It also lists wireless communication protocols and compares these to the requirements of NMP. Practical use cases and advancements are also discussed.

  2. Wireless Sensors Network (Sensornet)

    Science.gov (United States)

    Perotti, J.

    2003-01-01

    The Wireless Sensor Network System presented in this paper provides a flexible reconfigurable architecture that could be used in a broad range of applications. It also provides a sensor network with increased reliability; decreased maintainability costs, and assured data availability by autonomously and automatically reconfiguring to overcome communication interferences.

  3. Group-Orthogonal Code-Division Multiplex: A Physical-Layer Enhancement for IEEE 802.11n Networks

    Directory of Open Access Journals (Sweden)

    Felip Riera-Palou

    2010-01-01

    Full Text Available The new standard for wireless local area networks (WLANs, named IEEE 802.11n, has been recently released. This new norm builds upon and remains compatible with the previous WLANs standards IEEE 802.11a/g while it is able to achieve transmission rates of up to 600 Mbps. These increased data rates are mainly a consequence of two important new features: (1 multiple antenna technology at transmission and reception, and (2 optional doubling of the system bandwidth thanks to the availability of an additional 20 MHz band. This paper proposes the use of Group-Orthogonal Code Division Multiplex (GO-CDM as a means to improve the performance of the 802.11n standard by further exploiting the inherent frequency diversity. It is explained why GO-CDM synergistically matches with the two aforementioned new features and the performance gains it can offer under different configurations is illustrated. Furthermore, the effects that group-orthogonal has on key implementation issues such as channel estimation, carrier frequency offset, and peak-to-average power ratio (PAPR are also considered.

  4. NASA Bluetooth Wireless Communications

    Science.gov (United States)

    Miller, Robert D.

    2007-01-01

    NASA has been interested in wireless communications for many years, especially when the crew size of the International Space Station (ISS) was reduced to two members. NASA began a study to find ways to improve crew efficiency to make sure the ISS could be maintained with limited crew capacity and still be a valuable research testbed in Low-Earth Orbit (LEO). Currently the ISS audio system requires astronauts to be tethered to the audio system, specifically a device called the Audio Terminal Unit (ATU). Wireless communications would remove the tether and allow astronauts to freely float from experiment to experiment without having to worry about moving and reconnecting the associated cabling or finding the space equivalent of an extension cord. A wireless communication system would also improve safety and reduce system susceptibility to Electromagnetic Interference (EMI). Safety would be improved because a crewmember could quickly escape a fire while maintaining communications with the ground and other crewmembers at any location. In addition, it would allow the crew to overcome the volume limitations of the ISS ATU. This is especially important to the Portable Breathing Apparatus (PBA). The next generation of space vehicles and habitats also demand wireless attention. Orion will carry up to six crewmembers in a relatively small cabin. Yet, wireless could become a driving factor to reduce launch weight and increase habitable volume. Six crewmembers, each tethered to a panel, could result in a wiring mess even in nominal operations. In addition to Orion, research is being conducted to determine if Bluetooth is appropriate for Lunar Habitat applications.

  5. Multilayered security and privacy protection in Car-to-X networks solutions from application down to physical layer

    CERN Document Server

    Stübing, Hagen

    2013-01-01

    Car-to-X (C2X) communication in terms of Car-to-Car (C2C) and Car-to-Infrastructure (C2I) communication aims at increasing road safety and traffic efficiency by exchanging foresighted traffic information. Thereby, security and privacy are regarded as an absolute prerequisite for successfully establishing the C2X technology on the market. Towards the paramount objective of covering the entire ITS reference model with security and privacy measures, Hagen Stübing develops dedicated solutions for each layer, respectively. On application layer a security architecture in terms of a Public Key Infras

  6. Analysis of Wireless Sensor Network Topology and Estimation of Optimal Network Deployment by Deterministic Radio Channel Characterization

    Directory of Open Access Journals (Sweden)

    Erik Aguirre

    2015-02-01

    Full Text Available One of the main challenges in the implementation and design of context-aware scenarios is the adequate deployment strategy for Wireless Sensor Networks (WSNs, mainly due to the strong dependence of the radiofrequency physical layer with the surrounding media, which can lead to non-optimal network designs. In this work, radioplanning analysis for WSN deployment is proposed by employing a deterministic 3D ray launching technique in order to provide insight into complex wireless channel behavior in context-aware indoor scenarios. The proposed radioplanning procedure is validated with a testbed implemented with a Mobile Ad Hoc Network WSN following a chain configuration, enabling the analysis and assessment of a rich variety of parameters, such as received signal level, signal quality and estimation of power consumption. The adoption of deterministic radio channel techniques allows the design and further deployment of WSNs in heterogeneous wireless scenarios with optimized behavior in terms of coverage, capacity, quality of service and energy consumption.

  7. Implementation of a Low-Cost Energy and Environment Monitoring System Based on a Hybrid Wireless Sensor Network

    Directory of Open Access Journals (Sweden)

    Dong Sik Kim

    2017-01-01

    Full Text Available A low-cost hybrid wireless sensor network (WSN that utilizes the 917 MHz band Wireless Smart Utility Network (Wi-SUN and a 447 MHz band narrow bandwidth communication network is implemented for electric metering and room temperature, humidity, and CO2 gas measurements. A mesh network connection that is commonly utilized for the Internet of Things (IoT is used for the Wi-SUN under the Contiki OS, and a star connection is used for the narrow bandwidth network. Both a duty-cycling receiver algorithm and a digitally controlled temperature-compensated crystal oscillator algorithm for frequency reference are implemented at the physical layer of the receiver to accomplish low-power and low-cost wireless sensor node design. A two-level temperature-compensation approach, in which first a fixed third-order curve and then a sample-based first-order curve are applied, is proposed using a conventional AT-cut quartz crystal resonator. The developed WSN is installed in a home and provides reliable data collection with low construction complexity and power consumption.

  8. XCP-Winf and RCP-Winf: Improving Explicit Wireless Congestion Control

    Directory of Open Access Journals (Sweden)

    Luís Barreto

    2015-01-01

    Full Text Available Congestion control in wireless networks is strongly dependent on the dynamics and instability of wireless links. Therefore, it is very difficult to accurately evaluate the characteristics of the wireless links. It is known that TCP experiences serious performance degradation problems in wireless networks. Moreover, congestion control mechanisms that rely on network interaction and network parameters, such as XCP and RCP, do not evaluate accurately the capacity and available link bandwidth in wireless networks. In this paper we propose new explicit flow control protocols for wireless mesh networks, based on XCP and RCP. We name these protocols XCP-Winf and RCP-Winf. They rely on the MAC layer information gathered by a new method to accurately estimate the available bandwidth and the path capacity over a wireless network path. The estimation is performed in real time and without the need to intrusively inject packets in the network. These new congestion control mechanisms are evaluated in different scenarios in wireless mesh and ad hoc networks and compared against several new approaches for wireless congestion control. It is shown that both XCP-Winf and RCP-Winf outperform the evaluated approaches, showing its stable behavior and better channel utilization.

  9. Wireless/integrated strain monitoring and simulation system

    Science.gov (United States)

    Abdi, Frank; Dutton, R.; Takahashi, Tatsuya; Godines, Cody; Abumeri, Galib

    2011-06-01

    This paper addresses the development and real time test validation of an integrated hardware and software environment that will be able to measure real-time in-situ strain and deformation fields using a state-of-the-art wireless sensor system to enhance structural durability and damage tolerance (D&DT), reliability via real-time structural health monitoring (SHM) for sensorized aerospace structures. The tool will be a vital extension of existing suite of structural health monitoring (SHM) and diagnostic prognostic system (DPS). The goal of the extended SHM-DPS is to apply a multi-scale nonlinear physics-based finite element analyses (FEA) to the "as-is" structural configuration to determine multi-site damage evolution, residual strength, remaining service life, and future inspection intervals and procedures. Information from a distributed system of wireless sensors will be used to determine the "as-is" state of the structure versus the "as-designed" target. The approach enables active monitoring of aerospace structural component performance and realization of DPS-based conditioned based maintenance. Software enhancements will incorporate information from a sensor network system that is distributed over an aerospace structural component. As case study DPS application a realistic composite stiffened panel representative of fuselage/wing components is selected. Two stiffened panels is manufactured and instrumented; a) embedded internally between composite layers, and b) surface mounted with wireless sensors; the second of which with an optimized sensor network. The panels will be tested in compression following low-velocity impact. The sensor system output will be routed and integrated with a finite element analysis (FEA) tool to determine the panel's, multi-site damage locations, and associated failure mechanisms, residual strength, remaining service life, and future inspection interval. The FEA model utilizes the web/internet based GENOA progressive failure analysis

  10. Utilizing Cross-Layer Information to Improve Performance in JPEG2000 Decoding

    Directory of Open Access Journals (Sweden)

    Hannes Persson

    2007-01-01

    Full Text Available We focus on wireless multimedia communication and investigate how cross-layer information can be used to improve performance at the application layer, using JPEG2000 as an example. The cross-layer information is in the form of soft information from the physical layer. The soft information, which is supplied by a soft decision demodulator, yields reliability measures for the received bits and is fed into two soft input iterative JPEG2000 image decoders. When errors are detected with the error detecting mechanisms in JPEG2000, the decoders utilize the soft information to point out likely transmission errors. Hence, the decoders can correct errors and increase the image quality without making time-consuming retransmissions. We believe that the proposed decoding method utilizing soft information is suitable for a general IP-based network and that it keeps the principles of a layered structure of the protocol stack intact. Further, experimental results with images transmitted over a simulated wireless channel show that a simple decoding algorithm that utilizes soft information can give high gains in image quality compared to the standard hard-decision decoding.

  11. Ubiquitous Wireless Smart Sensing and Control

    Science.gov (United States)

    Wagner, Raymond

    2013-01-01

    Need new technologies to reliably and safely have humans interact within sensored environments (integrated user interfaces, physical and cognitive augmentation, training, and human-systems integration tools). Areas of focus include: radio frequency identification (RFID), motion tracking, wireless communication, wearable computing, adaptive training and decision support systems, and tele-operations. The challenge is developing effective, low cost/mass/volume/power integrated monitoring systems to assess and control system, environmental, and operator health; and accurately determining and controlling the physical, chemical, and biological environments of the areas and associated environmental control systems.

  12. ANALYSIS OF CROSS LAYER SCHEMES TO ENHANCE TCP PERFORMANCE IN MANET

    Directory of Open Access Journals (Sweden)

    I. Sumaiya Thaseen

    2012-09-01

    Full Text Available Wireless communication is a major component of mobile computing. Transmission Control Protocol suffers from performance degradation in wireless environments. Due to high mobility and varying bit error rate in these environments, any packet loss that occurs is misinterpreted by the TCP as congestion and invokes congestion control mechanisms thereby degrading performance. Hence the performance of wireless networks is improved by introducing a cross layer design to exchange information between different layers. Cross layer optimizations produced many promising results which initiated research activity in this domain. This paper mainly focuses on cross layer proposals between network and transport layer and various TCP schemes employed to enhance performance.

  13. Mobile middleware for wireless body area network.

    Science.gov (United States)

    Chen, Xiang; Waluyo, Agustinus Borgy; Pek, Isaac; Yeoh, Wee-Soon

    2010-01-01

    This paper presents a flexible, efficient and lightweight Wireless Body Area Network (WBAN) Middleware. The Middleware is developed to bridge the communication between mobile device as a gateway and the sensor nodes, and therefore it shields the underlying sensor and OS/protocol stack away from the WBAN application layer. The middleware is coded in the form of lightweight dynamic link library, which allows the application developer to simply incorporate the middleware resource dynamic link library into their application and call the required functions (i.e. data acquisition, resource management and configurations). A showcase of the middleware deployment is exhibited at the end of the paper.

  14. Wireless Technology Development: History, Now, and Then

    Directory of Open Access Journals (Sweden)

    Lusiana Citra Dewi

    2011-12-01

    Full Text Available Wireless technology is one of many technologies that can enable people to communicate with each other by air medium, or rather you can say by radio frequency. This paper discusses about history of wireless technology, different kinds of wireless connection, wireless technology standards, and a few comparisons of different kinds of world’s wireless technology standards. Besides discussing about history about wireless technology and wireless technology that we can use nowadays, this paper also reviews about prediction of wireless technology development in the future for better human life. The purpose of this study is to give a glimpse of view on how the wireless technology develops, the world standard for wireless technologies and work system, the security and characteristic for each wireless technology including advantages and drawbacks, and future wireless technology development. 

  15. Initial Results from an Energy-Aware Airborne Dynamic, Data-Driven Application System Performing Sampling in Coherent Boundary-Layer Structures

    Science.gov (United States)

    Frew, E.; Argrow, B. M.; Houston, A. L.; Weiss, C.

    2014-12-01

    The energy-aware airborne dynamic, data-driven application system (EA-DDDAS) performs persistent sampling in complex atmospheric conditions by exploiting wind energy using the dynamic data-driven application system paradigm. The main challenge for future airborne sampling missions is operation with tight integration of physical and computational resources over wireless communication networks, in complex atmospheric conditions. The physical resources considered here include sensor platforms, particularly mobile Doppler radar and unmanned aircraft, the complex conditions in which they operate, and the region of interest. Autonomous operation requires distributed computational effort connected by layered wireless communication. Onboard decision-making and coordination algorithms can be enhanced by atmospheric models that assimilate input from physics-based models and wind fields derived from multiple sources. These models are generally too complex to be run onboard the aircraft, so they need to be executed in ground vehicles in the field, and connected over broadband or other wireless links back to the field. Finally, the wind field environment drives strong interaction between the computational and physical systems, both as a challenge to autonomous path planning algorithms and as a novel energy source that can be exploited to improve system range and endurance. Implementation details of a complete EA-DDDAS will be provided, along with preliminary flight test results targeting coherent boundary-layer structures.

  16. Wireless sensor network for streetlight monitoring and control

    Science.gov (United States)

    Huang, Xin-Ming; Ma, Jing; Leblanc, Lawrence E.

    2004-08-01

    Wireless sensor network has attracted considerable research attention as the world becomes more information oriented. This technology provides an opportunity of innovations in traditional industries. Management and control of streetlight system is a labor-intensive high-cost task for public facility operations. This paper applies wireless sensor network technology in streetlight monitoring and control. Wireless sensor networks are employed to replace traditional physical patrol maintenance and manual switching on every lamp in the street or along the highway at the aim of reducing the maintenance and management expense. Active control is used to preserve energy cost while ensuring public safety. A proof-of-concept network architecture operated at 900 MHz industrial, scientific, and medical (ISM) band is designed for a two-way wireless telemetry system in streetlight remote control and monitoring. The radio architecture, multi-hop protocol and system interface are discussed in detail. MOTES sensor nodes are used in simulation and experimental tests. Simulation results show that the sensor network approach provides an efficient solution to monitor and control lighting infrastructures through wireless links. The unique application in this paper addresses an immediate need in streetlight control and monitoring, the architecture developed in this research could also serve as a platform for many other applications and researches in wireless sensor network.

  17. Passive Classification of Wireless NICs during Rate Switching

    Directory of Open Access Journals (Sweden)

    Beyah RaheemA

    2008-01-01

    Full Text Available Abstract Computer networks have become increasingly ubiquitous. However, with the increase in networked applications, there has also been an increase in difficulty to manage and secure these networks. The proliferation of 802.11 wireless networks has heightened this problem by extending networks beyond physical boundaries. We propose the use of spectral analysis to identify the type of wireless network interface card (NIC. This mechanism can be applied to support the detection of unauthorized systems that use NICs which are different from that of a legitimate system. We focus on rate switching, a vaguely specified mechanism required by the 802.11 standard that is implemented in the hardware and software of the wireless NIC. We show that the implementation of this function influences the transmission patterns of a wireless stream, which are observable through traffic analysis. Our mechanism for NIC identification uses signal processing to analyze the periodicity embedded in the wireless traffic caused by rate switching. A stable spectral profile is created from the periodic components of the traffic and used for the identity of the wireless NIC. We show that we can distinguish between NICs manufactured by different vendors and NICs manufactured by the same vendor using their spectral profiles.

  18. Passive Classification of Wireless NICs during Rate Switching

    Directory of Open Access Journals (Sweden)

    Cherita L. Corbett

    2008-02-01

    Full Text Available Computer networks have become increasingly ubiquitous. However, with the increase in networked applications, there has also been an increase in difficulty to manage and secure these networks. The proliferation of 802.11 wireless networks has heightened this problem by extending networks beyond physical boundaries. We propose the use of spectral analysis to identify the type of wireless network interface card (NIC. This mechanism can be applied to support the detection of unauthorized systems that use NICs which are different from that of a legitimate system. We focus on rate switching, a vaguely specified mechanism required by the 802.11 standard that is implemented in the hardware and software of the wireless NIC. We show that the implementation of this function influences the transmission patterns of a wireless stream, which are observable through traffic analysis. Our mechanism for NIC identification uses signal processing to analyze the periodicity embedded in the wireless traffic caused by rate switching. A stable spectral profile is created from the periodic components of the traffic and used for the identity of the wireless NIC. We show that we can distinguish between NICs manufactured by different vendors and NICs manufactured by the same vendor using their spectral profiles.

  19. Competition in the domain of wireless networks security

    Science.gov (United States)

    Bednarczyk, Mariusz

    2017-04-01

    Wireless networks are very popular and have found wide spread usage amongst various segments, also in military environment. The deployment of wireless infrastructures allow to reduce the time it takes to install and dismantle communications networks. With wireless, users are more mobile and can easily get access to the network resources all the time. However, wireless technologies like WiFi or Bluetooth have security issues that hackers have extensively exploited over the years. In the paper several serious security flaws in wireless technologies are presented. Most of them enable to get access to the internal networks and easily carry out man-in-the-middle attacks. Very often, they are used to launch massive denial of service attacks that target the physical infrastructure as well as the RF spectrum. For instance, there are well known instances of Bluetooth connection spoofing in order to steal WiFi password stored in the mobile device. To raise the security awareness and protect wireless networks against an adversary attack, an analysis of attack methods and tools over time is presented in the article. The particular attention is paid to the severity, possible targets as well as the ability to persist in the context of protective measures. Results show that an adversary can take complete control of the victims' mobile device features if the users forget to use simple safety principles.

  20. The Lure of Wireless Encryption

    CERN Multimedia

    Computer Security Team

    2013-01-01

    Following our article entitled “Jekyll or Hyde? Better browse securely” in the last issue of the Bulletin, some people wondered why the CERN wireless network is not encrypted…   There are many arguments why it is not. The simplest is usability: the communication and management of the corresponding access keys would be challenging given the sheer number of wireless devices the CERN network hosts. Keys would quickly become public, e.g. at conferences, and might be shared, written on whiteboards, etc. Then there are all the devices which cannot be easily configured to use encryption protocols - a fact which would create plenty of calls to the CERN Service Desk… But our main argument is that wireless encryption is DECEPTIVE. Wireless encryption is deceptive as it only protects the wireless network against unauthorised access (and the CERN network already has other means to protect against that). Wireless encryption however, does not really help you. You ...

  1. The physical and physiological effects of vacuum massage on the different skin layers: a current status of the literature

    National Research Council Canada - National Science Library

    Moortgat, Peter; Anthonissen, Mieke; Meirte, Jill; Van Daele, Ulrike; Maertens, Koen

    2016-01-01

    .... Therefore, the aim of this review is to present an overview of the available literature on the physical and physiological effects of vacuum massage on epidermal and dermal skin structures in order...

  2. 5G Wireless Communication Systems

    OpenAIRE

    Saddam Hossain

    2013-01-01

    As a subscriber becomes more aware of the mobile phone technology, he/she will seek for anappropriate package all together, including all the advanced features of a cellular phone can have. Hence, the search for new technology is always the main intention of the prime cell phone giants to out innovate their competitors. In addition, the main purpose of the fifth generation wireless networks (5G Wireless networks) is planned to design the best wireless world that is free from limitations...

  3. Matching theory for wireless networks

    CERN Document Server

    Han, Zhu; Saad, Walid

    2017-01-01

    This book provides the fundamental knowledge of the classical matching theory problems. It builds up the bridge between the matching theory and the 5G wireless communication resource allocation problems. The potentials and challenges of implementing the semi-distributive matching theory framework into the wireless resource allocations are analyzed both theoretically and through implementation examples. Academics, researchers, engineers, and so on, who are interested in efficient distributive wireless resource allocation solutions, will find this book to be an exceptional resource. .

  4. An Embedded Multi-Agent Systems Based Industrial Wireless Sensor Network.

    Science.gov (United States)

    Taboun, Mohammed S; Brennan, Robert W

    2017-09-14

    With the emergence of cyber-physical systems, there has been a growing interest in network-connected devices. One of the key requirements of a cyber-physical device is the ability to sense its environment. Wireless sensor networks are a widely-accepted solution for this requirement. In this study, an embedded multi-agent systems-managed wireless sensor network is presented. A novel architecture is proposed, along with a novel wireless sensor network architecture. Active and passive wireless sensor node types are defined, along with their communication protocols, and two application-specific examples are presented. A series of three experiments is conducted to evaluate the performance of the agent-embedded wireless sensor network.

  5. An Embedded Multi-Agent Systems Based Industrial Wireless Sensor Network

    Directory of Open Access Journals (Sweden)

    Mohammed S. Taboun

    2017-09-01

    Full Text Available With the emergence of cyber-physical systems, there has been a growing interest in network-connected devices. One of the key requirements of a cyber-physical device is the ability to sense its environment. Wireless sensor networks are a widely-accepted solution for this requirement. In this study, an embedded multi-agent systems-managed wireless sensor network is presented. A novel architecture is proposed, along with a novel wireless sensor network architecture. Active and passive wireless sensor node types are defined, along with their communication protocols, and two application-specific examples are presented. A series of three experiments is conducted to evaluate the performance of the agent-embedded wireless sensor network.

  6. Battery-free Wireless Sensor Network For Advanced Fossil-Fuel Based Power Generation

    Energy Technology Data Exchange (ETDEWEB)

    Yi Jia

    2011-02-28

    This report summarizes technical progress achieved during the project supported by the Department of Energy under Award Number DE-FG26-07NT4306. The aim of the project was to conduct basic research into battery-free wireless sensing mechanism in order to develop novel wireless sensors and sensor network for physical and chemical parameter monitoring in a harsh environment. Passive wireless sensing platform and five wireless sensors including temperature sensor, pressure sensor, humidity sensor, crack sensor and networked sensors developed and demonstrated in our laboratory setup have achieved the objective for the monitoring of various physical and chemical parameters in a harsh environment through remote power and wireless sensor communication, which is critical to intelligent control of advanced power generation system. This report is organized by the sensors developed as detailed in each progress report.

  7. PHYSICS

    CERN Multimedia

    P. Sphicas

    There have been three physics meetings since the last CMS week: “physics days” on March 27-29, the Physics/ Trigger week on April 23-27 and the most recent physics days on May 22-24. The main purpose of the March physics days was to finalize the list of “2007 analyses”, i.e. the few topics that the physics groups will concentrate on for the rest of this calendar year. The idea is to carry out a full physics exercise, with CMSSW, for select physics channels which test key features of the physics objects, or represent potential “day 1” physics topics that need to be addressed in advance. The list of these analyses was indeed completed and presented in the plenary meetings. As always, a significant amount of time was also spent in reviewing the status of the physics objects (reconstruction) as well as their usage in the High-Level Trigger (HLT). The major event of the past three months was the first “Physics/Trigger week” in Apri...

  8. SONAbeam optical wireless products

    Science.gov (United States)

    Carbonneau, Theresa H.; Mecherle, G. Stephen

    2000-05-01

    fSONA has developed an optical wireless line of products that will enable high bandwidth wireless connectivity, much like fiber optic technology has done for wired connectivity. All of the fSONA products use wavelengths around 1.5 micrometers both for eye safety and for maximum commonality with fiber optic technology. Initial products provide either OC-3 (155 Mbps) or Fast Ethernet (125 Mbps). The 2 km unit is fixed mounted and provides a relatively large beamwidth to compensate for building motion. The 4 km unit utilizes a narrow transmit beamwidth with active pointing for motion compensation. Trials of the units with key customers begin in second quarter 2000, with volume production of the 2 km- unit beginning in third quarter and the 4 km unit in the fourth quarter. Product designs for 622 Mbps and 1.25 Gbps should be completed prior to the end of the 2000.

  9. Wireless Seismometer for Venus

    Science.gov (United States)

    Ponchak, George E.; Scardelletti, Maximilian C.; Taylor, Brandt; Beard, Steve; Clougherty, Brian; Meredith, Roger D.; Beheim, Glenn M.; Kiefer, Walter S.; Hunter, Gary W.

    2014-01-01

    Measuring the seismic activity of Venus is critical to understanding its composition and interior dynamics. Because Venus has an average surface temperature of 462 C and the challenge of providing cooling to multiple seismometers, a high temperature, wireless sensor using a wide bandgap semiconductor is an attractive option. This paper presents progress towards a seismometer sensor with wireless capabilities for Venus applications. A variation in inductance of a coil caused by a 1 cm movement of a ferrite probe held in the coil and attached to a balanced leaf-spring seismometer causes a variation of 80 MHz in the transmitted signal from the oscillator sensor system at 420 C, which correlates to a 10 kHz mm sensitivity when the ferrite probe is located at the optimum location in the coil.

  10. Wireless Sensor Portal Technology Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Recognizing the needs and challenges facing NASA Earth Science for data input, manipulation and distribution, Mobitrum is proposing a ? Wireless Sensor Portal...

  11. Smart Home Wireless Sensor Nodes

    DEFF Research Database (Denmark)

    Lynggaard, Per

    Smart homes are further development of intelligent buildings and home automation, where context awareness and autonomous behaviour are added. They are based on a combination of the Internet and emerging technologies like wireless sensor nodes. These wireless sensor nodes are challenging because....... This paper introduces an approach that considerably lowers the wireless sensor node power consumption and the amount of transmitted sensor events. It uses smart objects that include artificial intelligence to efficiently process the sensor event on location and thereby saves the costly wireless...

  12. Resource management for multimedia services in high data rate wireless networks

    CERN Document Server

    Zhang, Ruonan; Pan, Jianping

    2017-01-01

    This brief offers a valuable resource on principles of quality-of-service (QoS) provisioning and the related link-layer resource management techniques for high data-rate wireless networks. The primary emphasis is on protocol modeling and analysis. It introduces media access control (MAC) protocols, standards of wireless local area networks (WLANs), wireless personal area networks (WPANs), and wireless body area networks (WBANs), discussing their key technologies, applications, and deployment scenarios. The main analytical approaches and models for performance analysis of the fundamental resource scheduling mechanisms, including the contention-based, reservation-based, and hybrid MAC, are presented. To help readers understand and evaluate system performance, the brief contains a range of simulation results. In addition, a thorough bibliography provides an additional tool. This brief is an essential resource for engineers, researchers, students, and users of wireless networks.

  13. Cognitive wireless networks

    CERN Document Server

    Feng, Zhiyong; Zhang, Ping

    2015-01-01

    This brief examines the current research in cognitive wireless networks (CWNs). Along with a review of challenges in CWNs, this brief presents novel theoretical studies and architecture models for CWNs, advances in the cognitive information awareness and delivery, and intelligent resource management technologies. The brief presents the motivations and concepts of CWNs, including theoretical studies of temporal and geographic distribution entropy as well as cognitive information metrics. A new architecture model of CWNs is proposed with theoretical, functional and deployment architectures suppo

  14. Wireless Cellular Mobile Communications

    OpenAIRE

    V. Zalud

    2002-01-01

    In this article is briefly reviewed the history of wireless cellular mobile communications, examined the progress in current second generation (2G) cellular standards and discussed their migration to the third generation (3G). The European 2G cellular standard GSM and its evolution phases GPRS and EDGE are described somewhat in detail. The third generation standard UMTS taking up on GSM/GPRS core network and equipped with a new advanced access network on the basis of code division multiple ac...

  15. Combined Scalable Video Coding Method for Wireless Transmission

    Directory of Open Access Journals (Sweden)

    Achmad Affandi

    2011-08-01

    Full Text Available Mobile video streaming is one of multimedia services that has developed very rapidly. Recently, bandwidth utilization for wireless transmission is the main problem in the field of multimedia communications. In this research, we offer a combination of scalable methods as the most attractive solution to this problem. Scalable method for wireless communication should adapt to input video sequence. Standard ITU (International Telecommunication Union - Joint Scalable Video Model (JSVM is employed to produce combined scalable video coding (CSVC method that match the required quality of video streaming services for wireless transmission. The investigation in this paper shows that combined scalable technique outperforms the non-scalable one, in using bit rate capacity at certain layer.

  16. An improved technique for the detection of pilot contamination attacks in TDD wireless communication systems

    Directory of Open Access Journals (Sweden)

    Mihaylova Dimitriya

    2017-01-01

    Full Text Available One of the problems phasing the physical layer security of a wireless system is its vulnerability to pilot contamination attacks and hence schemes for its detection need to be applied. A method proposed in the literature consists of training with two N-PSK pilots. Although the method is effective in most of the cases, it is not able to discover an attack initiated during the transmission of the second pilot from the pair if both the legitimate and non-legitimate pilots coincide. In this current paper, an improvement to this method is proposed which detects an intruder who misses the first pilot transmission. The suggested improvement eliminates the usage of threshold values in the detection – a main drawback of previously existing solution.

  17. Experimental Evaluation of Simulation Abstractions for Wireless Sensor Network MAC Protocols

    Directory of Open Access Journals (Sweden)

    G. P. Halkes

    2010-01-01

    Full Text Available The evaluation of MAC protocols for Wireless Sensor Networks (WSNs is often performed through simulation. These simulations necessarily abstract away from reality in many ways. However, the impact of these abstractions on the results of the simulations has received only limited attention. Moreover, many studies on the accuracy of simulation have studied either the physical layer and per link effects or routing protocol effects. To the best of our knowledge, no other work has focused on the study of the simulation abstractions with respect to MAC protocol performance. In this paper, we present the results of an experimental study of two often used abstractions in the simulation of WSN MAC protocols. We show that a simple SNR-based reception model can provide quite accurate results for metrics commonly used to evaluate MAC protocols. Furthermore, we provide an analysis of what the main sources of deviation are and thereby how the simulations can be improved to provide even better results.

  18. Radial transfer of tracking data with wireless links

    CERN Document Server

    Pelikan, Daniel; Brenner, Richard; Dancila, Dragos; Gustafsson, Leif

    2014-01-01

    Wireless data transfer has revolutionized the consumer mar ket for the last decade giving products equipped with transmitters and receiver for wireless data t ransfer. Wireless technology has fea- tures attractive for data transfer in future tracking detec tors. The removal of wires and connectors for data links is certainly beneficial both for the material b udget and the reliability of the system. One other advantage is the freedom of routing signals which t oday is particularly complicated when bringing the data the first 50 cm outside the tracker. Wit h wireless links intelligence can be built into a tracker by introducing communication betwee n tracking layers within a Region Of Interest which would allow the construction of track primit ives in real time. The wireless signal is transmitted by a passive antenna structure which is a radiat ion hard and much less complex object than an optical link. Due to the requirement of high data rate s in detectors a high bandwidth is required. The frequency band aro...

  19. Influence of Embedded Fibers and an Epithelium Layer on the Glottal Closure Pattern in a Physical Vocal Fold Model

    Science.gov (United States)

    Xuan, Yue; Zhang, Zhaoyan

    2014-01-01

    Purpose: The purpose of this study was to explore the possible structural and material property features that may facilitate complete glottal closure in an otherwise isotropic physical vocal fold model. Method: Seven vocal fold models with different structural features were used in this study. An isotropic model was used as the baseline model, and…

  20. PHYSICS

    CERN Multimedia

    D. Acosta

    2010-01-01

    A remarkable amount of progress has been made in Physics since the last CMS Week in June given the exponential growth in the delivered LHC luminosity. The first major milestone was the delivery of a variety of results to the ICHEP international conference held in Paris this July. For this conference, CMS prepared 15 Physics Analysis Summaries on physics objects and 22 Summaries on new and interesting physics measurements that exploited the luminosity recorded by the CMS detector. The challenge was incorporating the largest batch of luminosity that was delivered only days before the conference (300 nb-1 total). The physics covered from this initial running period spanned hadron production measurements, jet production and properties, electroweak vector boson production, and even glimpses of the top quark. Since then, the accumulated integrated luminosity has increased by a factor of more than 100, and all groups have been working tremendously hard on analysing this dataset. The September Physics Week was held ...

  1. Layered materials

    Science.gov (United States)

    Johnson, David; Clarke, Simon; Wiley, John; Koumoto, Kunihito

    2014-06-01

    Layered compounds, materials with a large anisotropy to their bonding, electrical and/or magnetic properties, have been important in the development of solid state chemistry, physics and engineering applications. Layered materials were the initial test bed where chemists developed intercalation chemistry that evolved into the field of topochemical reactions where researchers are able to perform sequential steps to arrive at kinetically stable products that cannot be directly prepared by other approaches. Physicists have used layered compounds to discover and understand novel phenomena made more apparent through reduced dimensionality. The discovery of charge and spin density waves and more recently the remarkable discovery in condensed matter physics of the two-dimensional topological insulating state were discovered in two-dimensional materials. The understanding developed in two-dimensional materials enabled subsequent extension of these and other phenomena into three-dimensional materials. Layered compounds have also been used in many technologies as engineers and scientists used their unique properties to solve challenging technical problems (low temperature ion conduction for batteries, easy shear planes for lubrication in vacuum, edge decorated catalyst sites for catalytic removal of sulfur from oil, etc). The articles that are published in this issue provide an excellent overview of the spectrum of activities that are being pursued, as well as an introduction to some of the most established achievements in the field. Clusters of papers discussing thermoelectric properties, electronic structure and transport properties, growth of single two-dimensional layers, intercalation and more extensive topochemical reactions and the interleaving of two structures to form new materials highlight the breadth of current research in this area. These papers will hopefully serve as a useful guideline for the interested reader to different important aspects in this field and

  2. Wireless laptop-based phonocardiograph and diagnosis

    Directory of Open Access Journals (Sweden)

    Amy T. Dao

    2015-08-01

    Full Text Available Auscultation is used to evaluate heart health, and can indicate when it’s needed to refer a patient to a cardiologist. Advanced phonocardiograph (PCG signal processing algorithms are developed to assist the physician in the initial diagnosis but they are primarily designed and demonstrated with research quality equipment. Therefore, there is a need to demonstrate the applicability of those techniques with consumer grade instrument. Furthermore, routine monitoring would benefit from a wireless PCG sensor that allows continuous monitoring of cardiac signals of patients in physical activity, e.g., treadmill or weight exercise. In this work, a low-cost portable and wireless healthcare monitoring system based on PCG signal is implemented to validate and evaluate the most advanced algorithms. Off-the-shelf electronics and a notebook PC are used with MATLAB codes to record and analyze PCG signals which are collected with a notebook computer in tethered and wireless mode. Physiological parameters based on the S1 and S2 signals and MATLAB codes are demonstrated. While the prototype is based on MATLAB, the later is not an absolute requirement.

  3. Wireless laptop-based phonocardiograph and diagnosis.

    Science.gov (United States)

    Dao, Amy T

    2015-01-01

    Auscultation is used to evaluate heart health, and can indicate when it's needed to refer a patient to a cardiologist. Advanced phonocardiograph (PCG) signal processing algorithms are developed to assist the physician in the initial diagnosis but they are primarily designed and demonstrated with research quality equipment. Therefore, there is a need to demonstrate the applicability of those techniques with consumer grade instrument. Furthermore, routine monitoring would benefit from a wireless PCG sensor that allows continuous monitoring of cardiac signals of patients in physical activity, e.g., treadmill or weight exercise. In this work, a low-cost portable and wireless healthcare monitoring system based on PCG signal is implemented to validate and evaluate the most advanced algorithms. Off-the-shelf electronics and a notebook PC are used with MATLAB codes to record and analyze PCG signals which are collected with a notebook computer in tethered and wireless mode. Physiological parameters based on the S1 and S2 signals and MATLAB codes are demonstrated. While the prototype is based on MATLAB, the later is not an absolute requirement.

  4. Wireless remote monitoring system for sleep apnea

    Science.gov (United States)

    Oh, Sechang; Kwon, Hyeokjun; Varadan, Vijay K.

    2011-04-01

    Sleep plays the important role of rejuvenating the body, especially the central nervous system. However, more than thirty million people suffer from sleep disorders and sleep deprivation. That can cause serious health consequences by increasing the risk of hypertension, diabetes, heart attack and so on. Apart from the physical health risk, sleep disorders can lead to social problems when sleep disorders are not diagnosed and treated. Currently, sleep disorders are diagnosed through sleep study in a sleep laboratory overnight. This involves large expenses in addition to the inconvenience of overnight hospitalization and disruption of daily life activities. Although some systems provide home based diagnosis, most of systems record the sleep data in a memory card, the patient has to face the inconvenience of sending the memory card to a doctor for diagnosis. To solve the problem, we propose a wireless sensor system for sleep apnea, which enables remote monitoring while the patient is at home. The system has 5 channels to measure ECG, Nasal airflow, body position, abdominal/chest efforts and oxygen saturation. A wireless transmitter unit transmits signals with Zigbee and a receiver unit which has two RF modules, Zigbee and Wi-Fi, receives signals from the transmitter unit and retransmits signals to the remote monitoring system with Zigbee and Wi-Fi, respectively. By using both Zigbee and Wi-Fi, the wireless sensor system can achieve a low power consumption and wide range coverage. The system's features are presented, as well as continuous monitoring results of vital signals.

  5. Implementation of WirelessHART in the NS-2 Simulator and Validation of Its Correctness

    Directory of Open Access Journals (Sweden)

    Pouria Zand

    2014-05-01

    Full Text Available One of the first standards in the wireless sensor networks domain,WirelessHART (HART (Highway Addressable Remote Transducer, was introduced to address industrial process automation and control requirements. This standard can be used as a reference point to evaluate other wireless protocols in the domain of industrial monitoring and control. This makes it worthwhile to set up a reliable WirelessHART simulator in order to achieve that reference point in a relatively easy manner. Moreover, it offers an alternative to expensive testbeds for testing and evaluating the performance of WirelessHART. This paper explains our implementation of WirelessHART in the NS-2 network simulator. According to our knowledge, this is the first implementation that supports the WirelessHART network manager, as well as the whole stack (all OSI (Open Systems Interconnection model layers of the WirelessHART standard. It also explains our effort to validate the correctness of our implementation, namely through the validation of the implementation of the WirelessHART stack protocol and of the network manager. We use sniffed traffic from a realWirelessHART testbed installed in the Idrolab plant for these validations. This confirms the validity of our simulator. Empirical analysis shows that the simulated results are nearly comparable to the results obtained from real networks. We also demonstrate the versatility and usability of our implementation by providing some further evaluation results in diverse scenarios. For example, we evaluate the performance of the WirelessHART network by applying incremental interference in a multi-hop network.

  6. A multichannel multi-encoding transmission scheme for wireless video streaming

    Science.gov (United States)

    Kolekar, Abhijeet; Feng, Wuchi; Venkatachalam, Muthaiah

    2007-01-01

    The wireless industry has seen a surge of interest in upcoming broadband wireless access (BWA) networks like WiMAX that are based on orthogonal frequency division multiplexing (OFDM). These wireless access technologies have several key features such as centralized scheduling, fine-grained allocation of transmission slots, adaptation of the modulation and coding schemes (MCS) to the SNR variations of the wireless channel, flexible and connection oriented MAC layer as well as QoS awareness and differentiation for applications. As a result, such architectures provide new opportunities for cross-layer optimization, particularly for applications that can tolerate some bit errors. In this paper, we describe a multi-channel video streaming protocol for video streaming over such networks. In addition, we propose a new combined channel coding and proportional share allocation scheme for multicast video distribution based upon a video's popularity. Our results show that we can more efficiently allocate network bandwidth while providing high quality video to the application.

  7. Toward the Physical Basis of Complex Systems: Dielectric Analysis of Porous Silicon Nanochannels in the Electrical Double Layer Length Range

    Directory of Open Access Journals (Sweden)

    Radu Mircea Ciuceanu

    2011-01-01

    Full Text Available Dielectric analysis (DEA shows changes in the properties of
    a materials as a response to the application on it of a time dependent electric field. Dielectric measurements are extremely sensitive to small changes in materials properties, that molecular relaxation, dipole changes, local motions that involve the reorientation of dipoles, and so can be observed by DEA. Electrical double layer (EDL, consists in a shielding layer that is naturally created within the liquid near a charged surface. The thickness of the EDL is given by the characteristic Debye length what grows less with the ionic strength defined by half summ products of concentration with square of charge for all solvent
    ions (co-ions, counterions, charged molecules. The typical length scale for the Debye length is on the order of 1 nm, depending on the ionic contents in the solvent; thus, the EDL becomes significant for nano-capillaries that nanochannels. The electrokinetic e®ects in the nanochannels depend essentialy on the distribution of charged species in EDL, described by the Poisson-Boltzmann equation those solutions require the solvent dielectric permittivity. In this work we propose a model for solvent low-frequency permittivity and a DEA profile taking into account both the porous silicon electrode and aqueous solvent properties in the Debye length range.

  8. Physical and electrical characteristics of Si/SiC quantum dot superlattice solar cells with passivation layer of aluminum oxide

    Science.gov (United States)

    Tsai, Yi-Chia; Li, Yiming; Samukawa, Seiji

    2017-12-01

    In this work, we numerically simulate the silicon (Si)/silicon carbide (SiC) quantum dot superlattice solar cell (SiC-QDSL) with aluminum oxide (Al2O3-QDSL) passivation. By exploiting the passivation layer of Al2O3, the high photocurrent and the conversion efficiency can be achieved without losing the effective bandgap. Based on the two-photon transition mechanism in an AM1.5 and a one sun illumination, the simulated short-circuit current (J sc) of 4.77 mA cm‑2 is very close to the experimentally measured 4.75 mA cm‑2, which is higher than those of conventional SiC-QDSLs. Moreover, the efficiency fluctuation caused by the structural variation is less sensitive by using the passivation layer. A high conversion efficiency of 17.4% is thus estimated by adopting the QD’s geometry used in the experiment; and, it can be further boosted by applying a hexagonal QD formation with an inter-dot spacing of 0.3 nm.

  9. Contrasting the surface ocean distribution of bromoform and methyl iodide; implications for boundary layer physics, chemistry and climate

    Energy Technology Data Exchange (ETDEWEB)

    Palmer, C J, E-mail: carl.j.palmer@gmail.co [Department of Oceanography, University of Cape Town, 7701 (South Africa)

    2010-08-15

    Bromoform and methyl iodide are both methane-like hydrocarbons with a halogen atom replacing one or more of the hydrogen atoms. Both of these compounds occur naturally in the environment as a result of their production from seaweed and kelp. They are of interest to climate science as a result of their catalytic destruction of boundary layer ozone (a potent greenhouse gas) and, specifically for methyl iodide, the proposed role in the formation of new cloud condensation nuclei with implications for climate. In this paper, the currently available data on the distribution of bromoform and methyl iodide are analysed and contrasted to show that the concentrations of bromoform and methyl iodide do not correlate, that, in contrast to bromoform, the parameterization of sea surface methyl iodide concentrations demands only the sea surface temperature, and that the pelagic distribution of methyl iodide appears to follow the solar zenith angle. These three observations together suggest that, while the pelagic source of bromoform is mostly biogenic, the source of methyl iodide is photochemical. This has implications for the understanding of planetary boundary layer chemistry and potential organohalogen mediated feedbacks to climate.

  10. PHYSICS

    CERN Multimedia

    P. Sphicas

    The CPT project came to an end in December 2006 and its original scope is now shared among three new areas, namely Computing, Offline and Physics. In the physics area the basic change with respect to the previous system (where the PRS groups were charged with detector and physics object reconstruction and physics analysis) was the split of the detector PRS groups (the old ECAL-egamma, HCAL-jetMET, Tracker-btau and Muons) into two groups each: a Detector Performance Group (DPG) and a Physics Object Group. The DPGs are now led by the Commissioning and Run Coordinator deputy (Darin Acosta) and will appear in the correspond¬ing column in CMS bulletins. On the physics side, the physics object groups are charged with the reconstruction of physics objects, the tuning of the simulation (in collaboration with the DPGs) to reproduce the data, the provision of code for the High-Level Trigger, the optimization of the algorithms involved for the different physics analyses (in collaboration with the analysis gr...

  11. PHYSICS

    CERN Multimedia

    J. Incandela

    There have been numerous developments in the physics area since the September CMS week. The biggest single event was the Physics/Trigger week in the end of Octo¬ber, whereas in terms of ongoing activities the “2007 analyses” went into high gear. This was in parallel with participation in CSA07 by the physics groups. On the or¬ganizational side, the new conveners of the physics groups have been selected, and a new database for man¬aging physics analyses has been deployed. Physics/Trigger week The second Physics-Trigger week of 2007 took place during the week of October 22-26. The first half of the week was dedicated to working group meetings. The ple¬nary Joint Physics-Trigger meeting took place on Wednesday afternoon and focused on the activities of the new Trigger Studies Group (TSG) and trigger monitoring. Both the Physics and Trigger organizations are now focused on readiness for early data-taking. Thus, early trigger tables and preparations for calibr...

  12. A Sub-Space Method to Detect Multiple Wireless Microphone Signals in TV Band White Space

    CERN Document Server

    Dhillon, Harpreet S; Datla, Dinesh; Benonis, Michael; Buehrer, R Michael; Reed, Jeffrey H

    2011-01-01

    The main hurdle in the realization of dynamic spectrum access (DSA) systems from physical layer perspective is the reliable sensing of low power licensed users. One such scenario shows up in the unlicensed use of TV bands where the TV Band Devices (TVBDs) are required to sense extremely low power wireless microphones (WMs). The lack of technical standard among various wireless manufacturers and the resemblance of certain WM signals to narrow-band interference signals, such as spurious emissions, further aggravate the problem. Due to these uncertainties, it is extremely difficult to abstract the features of WM signals and hence develop robust sensing algorithms. To partly counter these challenges, we develop a two-stage sub-space algorithm that detects multiple narrow-band analog frequency-modulated signals generated by WMs. The performance of the algorithm is verified by using experimentally captured low power WM signals with received power ranging from -100 to -105 dBm. The problem of differentiating between...

  13. Review of optical wireless communications for data centers

    Science.gov (United States)

    Arnon, Shlomi

    2017-10-01

    A data center (DC) is a facility either physical or virtual, for running applications, searching, storage, management and dissemination of information known as cloud computing, which consume a huge amount of energy. A DC includes thousands of servers, communication and storage equipment and a support system including an air conditioning system, security, monitoring equipment and electricity regulator units. Data center operators face the challenges of meeting exponentially increasing demands for network bandwidth without unreasonable increases in operation and infrastructure cost. In order to meet the requirements of moderate increase in operation and infrastructure cost technology, a revolution is required. One way to overcome the shortcomings of traditional static (wired) data center architectures is use of a hybrid network based on fiber and optical wireless communication (OWC) or free space optics (FSO). The OWC link could be deployed on top of the existing cable/fiber network layer, so that live migration could be done easily and dynamically. In that case the network topology is flexible and adapts quickly to changes in traffic, heat distribution, power consumption and characteristics of the applications. In addition, OWC could provide an easy way to maintain and scale up data centers. As a result total cost of ownership could be reduced and the return on investment could be increased. In this talk we will review the main OWC technologies applicable for data centers, indicate how energy could be saved using OWC multichannel communication and discuss the issue of OWC pointing accuracy for data center scenario.

  14. Green Modulations in Energy-Constrained Wireless Sensor Networks

    CERN Document Server

    Abouei, Jamshid; Pasupathy, Subbarayan

    2010-01-01

    Due to the unique characteristics of sensor devices, finding the energy-efficient modulation with a low-complexity implementation (refereed to as green modulation) poses significant challenges in the physical layer design of Wireless Sensor Networks (WSNs). Toward this goal, we present an in-depth analysis on the energy efficiency of various modulation schemes using realistic models in the IEEE 802.15.4 standard to find the optimum distance-based scheme in a WSN over Rayleigh and Rician fading channels with path-loss. We describe a proactive system model according to a flexible duty-cycling mechanism utilized in practical sensor apparatus. The present analysis includes the effect of the channel bandwidth and the active mode duration on the energy consumption of popular modulation designs. Path-loss exponent and DC-DC converter efficiency are also taken into consideration. In considering the energy efficiency and complexity, it is demonstrated that among various sinusoidal carrier-based modulations, the optimi...

  15. Link Investigation of IEEE 802.15.4 Wireless Sensor Networks in Forests

    Science.gov (United States)

    Ding, Xingjian; Sun, Guodong; Yang, Gaoxiang; Shang, Xinna

    2016-01-01

    Wireless sensor networks are expected to automatically monitor the ecological evolution and wildlife habits in forests. Low-power links (transceivers) are often adopted in wireless sensor network applications, in order to save the precious sensor energy and then achieve long-term, unattended monitoring. Recent research has presented some performance characteristics of such low-power wireless links under laboratory or outdoor scenarios with less obstacles, and they have found that low-power wireless links are unreliable and prone to be affected by the target environment. However, there is still less understanding about how well the low-power wireless link performs in real-world forests and to what extent the complex in-forest surrounding environments affect the link performances. In this paper, we empirically evaluate the low-power links of wireless sensors in three typical different forest environments. Our experiment investigates the performance of the link layer compatible with the IEEE 802.15.4 standard and analyzes the variation patterns of the packet reception ratio (PRR), the received signal strength indicator (RSSI) and the link quality indicator (LQI) under diverse experimental settings. Some observations of this study are inconsistent with or even contradict prior results that are achieved in open fields or relatively clean environments and thus, provide new insights both into effectively evaluating the low-power wireless links and into efficiently deploying wireless sensor network systems in forest environments. PMID:27355957

  16. Link Investigation of IEEE 802.15.4 Wireless Sensor Networks in Forests.

    Science.gov (United States)

    Ding, Xingjian; Sun, Guodong; Yang, Gaoxiang; Shang, Xinna

    2016-06-27

    Wireless sensor networks are expected to automatically monitor the ecological evolution and wildlife habits in forests. Low-power links (transceivers) are often adopted in wireless sensor network applications, in order to save the precious sensor energy and then achieve long-term, unattended monitoring. Recent research has presented some performance characteristics of such low-power wireless links under laboratory or outdoor scenarios with less obstacles, and they have found that low-power wireless links are unreliable and prone to be affected by the target environment. However, there is still less understanding about how well the low-power wireless link performs in real-world forests and to what extent the complex in-forest surrounding environments affect the link performances. In this paper, we empirically evaluate the low-power links of wireless sensors in three typical different forest environments. Our experiment investigates the performance of the link layer compatible with the IEEE 802.15.4 standard and analyzes the variation patterns of the packet reception ratio (PRR), the received signal strength indicator (RSSI) and the link quality indicator (LQI) under diverse experimental settings. Some observations of this study are inconsistent with or even contradict prior results that are achieved in open fields or relatively clean environments and thus, provide new insights both into effectively evaluating the low-power wireless links and into efficiently deploying wireless sensor network systems in forest environments.

  17. Wireless communication with multiple antennas

    Indian Academy of Sciences (India)

    admin

    Wireless communications has seen a very rapid growth, both in practice and theory, during the past one decade. Most of the present wireless communication systems use one transmit antenna and one receive antenna. However, communication with multiple transmit and multiple receive antennas can enormously increase ...

  18. Green Wireless Power Transfer Networks

    NARCIS (Netherlands)

    Liu, Q.; Golinnski, M.; Pawelczak, P.; Warnier, M.

    2016-01-01

    wireless power transfer network (WPTN) aims to support devices with cable-less energy on-demand. Unfortunately, wireless power transfer itself-especially through radio frequency radiation rectification-is fairly inefficient due to decaying power with distance, antenna polarization, etc.

  19. Launching a Wireless Laptop Program

    Science.gov (United States)

    Grignano, Domenic

    2007-01-01

    In this article, the author, as a technology director for East Rock Magnet School in New Haven, Connecticut, a federal government test site for laptop learning, shares his secrets to a successful implementation of a wireless laptop program: (1) Build a wireless foundation; (2) Do not choose the cheapest model just because of budget; (3) A sturdy…

  20. Energy efficient wireless ATM design

    NARCIS (Netherlands)

    Havinga, Paul J.M.; Smit, Gerardus Johannes Maria; Bos, M.

    1999-01-01

    Energy efficiency is an important issue for mobile computers since they must rely on their batteries. We present an architecture for wireless ATM and a novel MAC protocol that achieves a good energy efficiency of the wireless interface of the mobile and provides QoS support for diverse traffic

  1. Marine Fouling and Thermal Dissipation of Undersea Wireless Power Transfer

    Science.gov (United States)

    2014-09-01

    Energy Harvesting thermal dissipation marine fouling high-power coil undersea wireless power transfer...should be a priority when implementing a high-power WPT system for unmanned underwater vehicles (UUVs). Coils must be carefully designed to dissipate...require precision mating for the transfer of electrical energy . For the electrical socket configuration, any physical misalignments can lead to

  2. Supporting QoS in broadband wireless and wired access

    NARCIS (Netherlands)

    Peelen, Bastien; Zivkovic, Miroslav; Bijwaard, D.; Teunissen, Harold

    2003-01-01

    Wireless local area network (WLAN), cable, and digital subscriber line (xDSL) are among the most popular broadband access technologies in use today. In all such technologies, the transport capacity provided at the level of the physical medium is non-deterministically shared by different traffic

  3. Mechanisms for Prolonging Network Lifetime in Wireless Sensor Networks

    Science.gov (United States)

    Yang, Yinying

    2010-01-01

    Sensors are used to monitor and control the physical environment. A Wireless Sensor Network (WSN) is composed of a large number of sensor nodes that are densely deployed either inside the phenomenon or very close to it [18][5]. Sensor nodes measure various parameters of the environment and transmit data collected to one or more sinks, using…

  4. Energy-aware Wireless Multi-hop Networks

    NARCIS (Netherlands)

    Vazifehdan, J.

    2011-01-01

    Wireless networks have provided us a variety of services which facilitate communication between people beyond the physical boundaries. Mobile telephony, mobile Internet and high-deffnition video calls are examples of services supported by modern networks nowadays. Beyond this, enhancements in

  5. 75 FR 8400 - In the Matter of Certain Wireless Communications System Server Software, Wireless Handheld...

    Science.gov (United States)

    2010-02-24

    ... COMMISSION In the Matter of Certain Wireless Communications System Server Software, Wireless Handheld Devices... importation, and the sale within the United States after importation of certain wireless communications system... importation of certain wireless communications system server software, wireless handheld devices or battery...

  6. Synthesis and physical properties of new layered double hydroxides based on ionic liquids: Application to a polylactide matrix

    KAUST Repository

    Livi, Sébastien

    2012-12-01

    Ionic liquids based on tetraalkylphosphonium salts combined with different anions (decanoate and dodecylsulfonate) have been used as intercalating agents of layered double hydroxides (LDHs) by ion exchange. The synthesized phosphonium-treated LDHs display a dramatically improved thermal degradation and a significant increase in the interlayer distance as confirmed by thermogravimetric analysis (TGA) and X-ray Diffraction (XRD), respectively. To highlight the effect of thermostable ionic liquids, a very low amount of LDHs has been introduced within a polylactide (PLA) matrix and PLA/LDHs nanocomposites have been processed in melt by twin-screw extrusion. Then, transmission electron microscopy (TEM) analysis has been used to investigate the influence of ILs on the different morphologies of these nanocomposites. Even though the thermal stability of PLA matrix decreased, an excellent stiffness-toughness compromise has been obtained. © 2012 Elsevier Inc.

  7. Views of wireless network systems.

    Energy Technology Data Exchange (ETDEWEB)

    Young, William Frederick; Duggan, David Patrick

    2003-10-01

    Wireless networking is becoming a common element of industrial, corporate, and home networks. Commercial wireless network systems have become reliable, while the cost of these solutions has become more affordable than equivalent wired network solutions. The security risks of wireless systems are higher than wired and have not been studied in depth. This report starts to bring together information on wireless architectures and their connection to wired networks. We detail information contained on the many different views of a wireless network system. The method of using multiple views of a system to assist in the determination of vulnerabilities comes from the Information Design Assurance Red Team (IDART{trademark}) Methodology of system analysis developed at Sandia National Laboratories.

  8. PHYSICS

    CERN Multimedia

    Submitted by

    Physics Week: plenary meeting on physics groups plans for startup (14–15 May 2008) The Physics Objects (POG) and Physics Analysis (PAG) Groups presented their latest developments at the plenary meeting during the Physics Week. In the presentations particular attention was given to startup plans and readiness for data-taking. Many results based on the recent cosmic run were shown. A special Workshop on SUSY, described in a separate section, took place the day before the plenary. At the meeting, we had also two special DPG presentations on “Tracker and Muon alignment with CRAFT” (Ernesto Migliore) and “Calorimeter studies with CRAFT” (Chiara Rovelli). We had also a report from Offline (Andrea Rizzi) and Computing (Markus Klute) on the San Diego Workshop, described elsewhere in this bulletin. Tracking group (Boris Mangano). The level of sophistication of the tracking software increased significantly over the last few months: V0 (K0 and Λ) reconstr...

  9. PHYSICAL AND CHEMICAL FUNDAMENTALS OF PROTECTION PROCESSES FOR SURFACE LAYER OF CONCRETE ROAD PAVING BY IMPREGNATING COMPOSITIONS

    Directory of Open Access Journals (Sweden)

    M. K. Pshembayev

    2017-01-01

    Full Text Available Construction of concrete road paving which was started in the 30-ies of the last century in the United States has proved its perspectiveness from the viewpoint of service life. In addition to that an analysis of road usage has shown that concrete paving is a deformation tendency due to some reasons and the tendency entails some difficulties in their repair after rather long operation. The deformations appear more intensively after 5-10-year road operational period. The following negative effects are practically unavoidable: micro-crack formation, scaling, deformation due to freezing of angular edges in concrete plates, destruction of deformation joints etc. The defects are characterized by rather large scope and they are present practically on all the roads. It is necessary to note the fact that a great number of the above-mentioned defects can be avoided on the condition that measures on strengthening surface layer of concrete paving will be undertaken in time. The measures presuppose application of impregnating method while using compositions that contain hydrophobisator and silicon dioxide sol. Industry-produced potassium methyl siliconate, oligomethyl hydride siliconate, tetraethoxysilane have been used as hydrophobisator and they form not easily soluble film on the surface of concrete pores which prevents penetration of water into concrete. Calcium hydrate being formed in the dissolution and hydrolysis process of cement clinker minerals is bound in hydrosilicates which are contained in the solution impregnated by silicon dioxide sol. These hydrosilicates culmatate concrete pores and strengthen its surface layer due to additional hard phase and according to chemical composition it is related to calcium hydrosilicates formed as a result of concrete hardening.

  10. Advanced Measurements of the Aggregation Capability of the MPT Network Layer Multipath Communication Library

    Directory of Open Access Journals (Sweden)

    Gábor Lencse

    2015-05-01

    Full Text Available The MPT network layer multipath communicationlibrary is a novel solution for several problems including IPv6transition, reliable data transmission using TCP, real-time transmissionusing UDP and also wireless network layer routingproblems. MPT can provide an IPv4 or an IPv6 tunnel overone or more IPv4 or IPv6 communication channels. MPT canalso aggregate the capacity of multiple physical channels. In thispaper, the channel aggregation capability of the MPT libraryis measured up to twelve 100Mbps speed channels. Differentscenarios are used: both IPv4 and IPv6 are used as the underlyingand also as the encapsulated protocols and also both UDP andTCP are used as transport protocols. In addition, measurementsare taken with both 32-bit and 64-bit version of the MPT library.In all cases, the number of the physical channels is increased from1 to 12 and the aggregated throughput is measured.

  11. Wireless Chemical Sensing Method

    Science.gov (United States)

    Woodard, Stanley E. (Inventor); Oglesby, Donald M. (Inventor); Taylor, Bryant D. (Inventor)

    2017-01-01

    A wireless chemical sensor includes an electrical conductor and a material separated therefrom by an electric insulator. The electrical conductor is an unconnected open-circuit shaped for storage of an electric field and a magnetic field. In the presence of a time-varying magnetic field, the first electrical conductor resonates to generate harmonic electric and magnetic field responses. The material is positioned at a location lying within at least one of the electric and magnetic field responses so-generated. The material changes in electrical conductivity in the presence of a chemical-of-interest.

  12. Wireless Distributed Antenna MIMO

    DEFF Research Database (Denmark)

    2015-01-01

    The present disclosure relates to system applications of multicore optical fibers. One embodiment relates to a base transceiver station for a wireless telecommunication system comprising a plurality of antenna units arranged in a MIMO configuration and adapted for transmission and/or reception...... of radio-frequency signals, an optical transmitter in the form of an electro-optic conversion unit for each of said plurality of antenna units, each electro-optic conversion unit adapted for converting an RF signal into an optical signal, a plurality of a single core optical fibers for guiding the optical...

  13. Wired or Wireless Internet?

    DEFF Research Database (Denmark)

    Gimpel, Gregory

    2010-01-01

    This paper finds that network externalities play a minimal role in the choice of internet access technology. Potential adopters of mobile laptop internet view broadband technology as a black box, the technological details of which donot matter. The study uses qualitative techniques to explore how...... the speed of technological obsolescence, market share dominance, and the black boxing of technology influence consumer intention to adopt WiMax and 3G wireless internet for their laptop computers. The results, implications for industry, and areas for further research are discussed....

  14. Dynamic wireless sensor networks

    CERN Document Server

    Oteafy, Sharief M A

    2014-01-01

    In this title, the authors leap into a novel paradigm of scalability and cost-effectiveness, on the basis of resource reuse. In a world with much abundance of wirelessly accessible devices, WSN deployments should capitalize on the resources already available in the region of deployment, and only augment it with the components required to meet new application requirements. However, if the required resources already exist in that region, WSN deployment converges to an assignment and scheduling scheme to accommodate for the new application given the existing resources. Such resources are polled

  15. Wireless Cellular Mobile Communications

    Directory of Open Access Journals (Sweden)

    V. Zalud

    2002-12-01

    Full Text Available In this article is briefly reviewed the history of wireless cellularmobile communications, examined the progress in current secondgeneration (2G cellular standards and discussed their migration to thethird generation (3G. The European 2G cellular standard GSM and itsevolution phases GPRS and EDGE are described somewhat in detail. Thethird generation standard UMTS taking up on GSM/GPRS core network andequipped with a new advanced access network on the basis of codedivision multiple access (CDMA is investigated too. A sketch of theperspective of mobile communication beyond 3G concludes this article.

  16. RESTful Web services in Wireless Sensor Networks

    OpenAIRE

    Moreno Yeste, Pol

    2011-01-01

    Premi Accenture al millor projecte de fi de carrera d’Enginyeria de Telecomunicació en Serveis Telemàtics (curs 2011-2012) English: Wireless Sensor Networks (WSNs) have become very popular in recent years. A WSN consists of distributed autonomous sensors to monitor physical or environmental conditions and to cooperatively send their data through the network to a main location. A WSN facilitates the creation of low-cost networks that can be used for multiple applications when the use of wir...

  17. Passive wireless sensing tags NASA inflatable structures.

    Energy Technology Data Exchange (ETDEWEB)

    Brocato, Robert Wesley

    2006-03-01

    This report gives a description of several types of wireless, unpowered remote sensors. Surface acoustic wave (SAW) devices were coupled with conventional sensors to create entirely new types of sensors. These sensors report physically measurable data in the same manner as the conventional sensors, but they do it remotely and without any local power source. The sensors are measured remotely using a radar-like interrogation device, and the sensors and their related communication electronics draw all of the power needed for communicating from the radar pulse. The report covers only a description of prototype sensors and not of the manufacturing requirements of these devices.

  18. Physical processes in an electron current layer causing intense plasma heating and formation of x-lines

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Nagendra; Wells, B. E. [Electrical and Computer Engineering, University of Alabama, Huntsville, Alabama 35899 (United States); Khazanov, Igor [CSPAR, University of Alabama, Huntsville, Alabama 35899 (United States)

    2015-05-15

    We study the evolution of an electron current layer (ECL) through its several stages by means of three-dimensional particle-in-cell (PIC) simulations with ion to electron mass ratio M/m{sub e} = 400. An ECL evolves through the following stages: (i) Electrostatic (ES) current-driven instability (CDI) soon after its formation with half width w about 2 electron skin depth (d{sub e}), (ii) current disruption in the central part of the ECL by trapping of electrons and generation of anomalous resistivity, (iii) electron tearing instability (ETI) with significantly large growth rates in the lower end of the whistler frequency range, (iv) widening of the ECL and modulation of its width by the ETI, (v) gradual heating of electrons by the CDI-driven ES ion modes create the condition that the electrons become hotter than the ions, (vi) despite the reduced electron drift associated with the current disruption by the CDI, the enhanced electron temperature continues to favor a slow growth of the ion waves reaching nonlinear amplitudes, (vii) the nonlinear ion waves undergo modulation and collapse into localized density cavities containing spiky electric fields like in double layers (DLs), (viii) such spiky electric fields are very effective in further rapid heating of both electrons and ions. As predicted by the electron magnetohydrodynamic (EMHD) theories, the ETI growth rate maximizes at wave numbers in the range 0.4 < k{sub x}W < 0.8 where k{sub x} is the wave number parallel to the ECL magnetic field and w is the evolving half width of the ECL. The developing ETI generates in-plane currents that support out-of-plane magnetic fields around the emerging x-lines. The ETI and the spiky electrostatic structures are accompanied by fluctuations in the magnetic fields near and above the lower-hybrid (ion plasma) frequency, including the whistler frequency range. We compare our results with experimental results and satellite observation.

  19. Evaluation of physical parameters of localized states in insulating Y-Ba-Cu-O layers by means of electronic transport measurements

    Energy Technology Data Exchange (ETDEWEB)

    Moran, O., E-mail: omoranc@unalmed.edu.c [Laboratorio de Materiales Ceramicos y Vitreos, Departamento de Fisica, Universidad Nacional de Colombia, sede Medellin, A.A. 568, Medellin (Colombia)

    2010-02-01

    Electronic transport measurements were carried out on YBa{sub 2}Cu{sub 3}O{sub 7-d}elta/insulator/Au planar junctions in order to determine physical parameters of the localized states in thin insulating Y-Ba-Cu-O layers. In doing so, 12x5 mum{sup 2} YBa{sub 2}Cu{sub 3}O{sub 7-d}elta/insulator/Au junction areas were defined by standard lithographic techniques and Ar ion milling. The analysis of the conductance of the junction at high-temperature or high-bias voltages showed that Mott's variable-range hopping conduction model is appropriated to describe the electrical behavior of the junction in this regime. From the fitting procedure, important physical parameters of the barrier such as the localization length alpha{sup -1} (approx3 A), the average barrier height phi (approx0.5 eV) or the variable range hopping length l{sub in} (approx20 A at approx300 K) were estimated. The experimentally estimated values were physically reasonable and comparable to those reported for other oxide materials.

  20. Adaptive beamforming and rate control in real-time wireless sensor networks for QoS optimization

    Science.gov (United States)

    Hortos, William S.

    2011-06-01

    Quality-of-service (QoS) metrics for sensor types in a wireless sensor network (WSN) can be associated with metrics for multimedia that describe the quality of fused information, e.g., throughput, delay, jitter, packet error rate, information correlation, congestion, etc. These QoS metrics are typically set by the application layer of the protocol stack. Application-layer metrics, in turn, depend on the support from lower protocol layers: session, transport, network, data link (MAC), and physical. Protocol dependencies of QoS metrics motivate a cross-layer design approach to QoS optimization for heterogeneous sensor types in a WSN. Cross-layer interactions in the protocol are represented, in previous work by the author, by a set of concatenated parameters and resource levels. The "best" cross-layer designs that optimize QoS are established by applying the general theory of martingale representations to parameterized multivariate point processes (MVPPs) for discrete random events occurring in the WSN. Adaptive control of WSN behavior through cross-layer design is realized through parametric factorization of stochastic conditional rates of the MVPPs. Cross-layer parameters that optimize QoS are determined in solutions to stochastic dynamic programming conditions derived from models of transient flows of heterogeneous data. Adaptive transmit beamforming, simplified as sectored antennas, and rate control at sensor nodes are introduced to enhance the performance metrics of successful throughput, known as "goodput", congestion, capacity, etc. Adaptive antenna and rate controls are parametrized in realtime cross-layer models of WSN dynamics. Simulations demonstrate that adaptive antenna directionality and rate allocations improve overall QoS performance of a baseline design without such adaptation.

  1. PHYSICS

    CERN Multimedia

    D. Futyan

    A lot has transpired on the “Physics” front since the last CMS Bulletin. The summer was filled with preparations of new Monte Carlo samples based on CMSSW_3, the finalization of all the 10 TeV physics analyses [in total 50 analyses were approved] and the preparations for the Physics Week in Bologna. A couple weeks later, the “October Exercise” commenced and ran through an intense two-week period. The Physics Days in October were packed with a number of topics that are relevant to data taking, in a number of “mini-workshops”: the luminosity measurement, the determination of the beam spot and the measurement of the missing transverse energy (MET) were the three main topics.  Physics Week in Bologna The second physics week in 2009 took place in Bologna, Italy, on the week of Sep 7-11. The aim of the week was to review and establish how ready we are to do physics with the early collisions at the LHC. The agenda of the week was thus pac...

  2. PHYSICS

    CERN Multimedia

    D. Futyan

    A lot has transpired on the “Physics” front since the last CMS Bulletin. The summer was filled with preparations of new Monte Carlo samples based on CMSSW_3, the finalization of all the 10 TeV physics analyses [in total 50 analyses were approved] and the preparations for the Physics Week in Bologna. A couple weeks later, the “October Exercise” commenced and ran through an intense two-week period. The Physics Days in October were packed with a number of topics that are relevant to data taking, in a number of “mini-workshops”: the luminosity measurement, the determination of the beam spot and the measurement of the missing transverse energy (MET) were the three main topics.   Physics Week in Bologna The second physics week in 2009 took place in Bologna, Italy, on the week of Sep 7-11. The aim of the week was to review and establish (we hoped) the readiness of CMS to do physics with the early collisions at the LHC. The agenda of the...

  3. Wireless network security theories and applications

    CERN Document Server

    Chen, Lei; Zhang, Zihong

    2013-01-01

    Wireless Network Security Theories and Applications discusses the relevant security technologies, vulnerabilities, and potential threats, and introduces the corresponding security standards and protocols, as well as provides solutions to security concerns. Authors of each chapter in this book, mostly top researchers in relevant research fields in the U.S. and China, presented their research findings and results about the security of the following types of wireless networks: Wireless Cellular Networks, Wireless Local Area Networks (WLANs), Wireless Metropolitan Area Networks (WMANs), Bluetooth

  4. Coexistence of Wireless Sensor Networks in Factory Automation Scenarios

    Directory of Open Access Journals (Sweden)

    Paolo FERRARI

    2008-04-01

    Full Text Available The factory automation world can take advantage from innovative wireless sensors network applications, but installation of several wireless systems in the same industrial plant will raise coexistence problems. However, in general, industrial Wireless Sensor Networks (WSNs operate cyclically and coexistence can be obtained exploiting this characteristic. The paper proposes a methodology based on a central arbiter that assigns medium resources according to requests coming from WSN coordinators. An infrastructure (e.g. a wired Real-Time Ethernet (RTE network assures synchronization and distribute resource allocation results. A simulation framework has been designed to evaluate allocation scheme and WSNs coexistence before physical implementation. The real feasibility of the proposed approach has been demonstrated by means of prototype WSNs (based on IEEE802.15.4 synchronized by means of PROFINET IO RT_Class 3 network. Experimental results show a synchronization accuracy below 4 ms that allows reading of two WSNs (32 nodes in 128 ms without collisions.

  5. A Survey on Secure Wireless Body Area Networks

    Directory of Open Access Journals (Sweden)

    Shihong Zou

    2017-01-01

    Full Text Available Combining tiny sensors and wireless communication technology, wireless body area network (WBAN is one of the most promising fields. Wearable and implantable sensors are utilized for collecting the physiological data to achieve continuously monitoring of people’s physical conditions. However, due to the openness of wireless environment and the significance and privacy of people’s physiological data, WBAN is vulnerable to various attacks; thus, strict security mechanisms are required to enable a secure WBAN. In this article, we mainly focus on a survey on the security issues in WBAN, including securing internal communication in WBAN and securing communication between WBAN and external users. For each part, we discuss and identify the security goals to be achieved. Meanwhile, relevant security solutions in existing research on WBAN are presented and their applicability is analyzed.

  6. Household wireless electroencephalogram hat

    Science.gov (United States)

    Szu, Harold; Hsu, Charles; Moon, Gyu; Yamakawa, Takeshi; Tran, Binh

    2012-06-01

    We applied Compressive Sensing to design an affordable, convenient Brain Machine Interface (BMI) measuring the high spatial density, and real-time process of Electroencephalogram (EEG) brainwaves by a Smartphone. It is useful for therapeutic and mental health monitoring, learning disability biofeedback, handicap interfaces, and war gaming. Its spec is adequate for a biomedical laboratory, without the cables hanging over the head and tethered to a fixed computer terminal. Our improved the intrinsic signal to noise ratio (SNR) by using the non-uniform placement of the measuring electrodes to create the proximity of measurement to the source effect. We computing a spatiotemporal average the larger magnitude of EEG data centers in 0.3 second taking on tethered laboratory data, using fuzzy logic, and computing the inside brainwave sources, by Independent Component Analysis (ICA). Consequently, we can overlay them together by non-uniform electrode distribution enhancing the signal noise ratio and therefore the degree of sparseness by threshold. We overcame the conflicting requirements between a high spatial electrode density and precise temporal resolution (beyond Event Related Potential (ERP) P300 brainwave at 0.3 sec), and Smartphone wireless bottleneck of spatiotemporal throughput rate. Our main contribution in this paper is the quality and the speed of iterative compressed image recovery algorithm based on a Block Sparse Code (Baranuick et al, IEEE/IT 2008). As a result, we achieved real-time wireless dynamic measurement of EEG brainwaves, matching well with traditionally tethered high density EEG.

  7. Wirelessness as Experience of Transition

    Directory of Open Access Journals (Sweden)

    Adrian Mackenzie

    2008-01-01

    Full Text Available The paper analyses wireless networks in terms of a concept of experience drawn from the work of William James. James' account of experience focuses closely on the effects of ongoing change, and this is particularly useful in thinking about media change. The specific experience in question here is 'wirelessness,' an experience that envelops many media, infrastructures, practices, and processes today. The paper argues that a concept of wirelessness uniquely connects together a set of perceptions, representation, materials, problems and events associated with ongoing change in contemporary media and information cultures. In analysing wirelessness as form of experience, the article examines how those feelings of ongoing change shape and inform experiences of self, otherness, place and sociality in technological-informatic environments. In describing different infrastructural and commercial dimensions of wirelessness, it pays close attention to how ‘conjunctive relations’ (James’ term such as ‘with’, ‘between’, ‘near’, and ‘inside’ arise in wireless networks, and how different kinds of intimacy and distance stem from conjunctive relations. The paper explores how wirelessness embodies and organises networked places. In this respect, the paper inverts conventional understandings of the network as ground or platform. It treats the under-represented yet highly significant embodied experiences of relations as generative of information infrastructures.

  8. SDN Based User-Centric Framework for Heterogeneous Wireless Networks

    Directory of Open Access Journals (Sweden)

    Zhaoming Lu

    2016-01-01

    Full Text Available Due to the rapid growth of mobile data traffic, more and more basestations and access points (APs have been densely deployed to provide users with ubiquitous network access, which make current wireless network a complex heterogeneous network (HetNet. However, traditional wireless networks are designed with network-centric approaches where different networks have different quality of service (QoS strategies and cannot easily cooperate with each other to serve network users. Massive network infrastructures could not assure users perceived network and service quality, which is an indisputable fact. To address this issue, we design a new framework for heterogeneous wireless networks with the principle of user-centricity, refactoring the network from users’ perspective to suffice their requirements and preferences. Different from network-centric approaches, the proposed framework takes advantage of Software Defined Networking (SDN and virtualization technology, which will bring better perceived services quality for wireless network users. In the proposed user-centric framework, control plane and data plane are decoupled to manage the HetNets in a flexible and coadjutant way, and resource virtualization technology is introduced to abstract physical resources of HetNets into unified virtualized resources. Hence, ubiquitous and undifferentiated network connectivity and QoE (quality of experience driven fine-grained resource management could be achieved for wireless network users.

  9. Effects of smear layer removal agents on the physical properties and microstructure of mineral trioxide aggregate cement.

    Science.gov (United States)

    Ballal, Nidambur Vasudev; Sona, Mrunali; Tay, Franklin R

    2017-11-01

    To compare the effect of QMix (Dentsply Sirona), 7% maleic acid (MA), and 17% ethylenediaminetetraacetic acid (EDTA) on the microhardness, flexural strength and microstructure of mineral trioxide aggregate (MTA; ProRoot MTA, Dentsply Sirona). Forty MTA specimens were divided into four groups: [I] QMix [II] 7% MA [III] 17% EDTA and [IV] distilled water (control). After treatment with 5mL of the respective solution for 1min, the specimens were tested for microhardness using a Knoop hardness tester. Forty additional specimens were similarly treated and evaluated for the flexural strength using a universal testing machine. For microstructure evaluation, MTA specimens were treated in a similar manner and examined by X-ray diffractometry and scanning electron microscopy (SEM). For microhardness, there were no differences between distilled water, QMix and EDTA groups. However, MTA exposed to distilled water had higher microhardness than MA. When compared with QMix and EDTA, MA had lower microhardness; there was no difference between EDTA and QMix. For flexural strength, distilled water group had higher flexural strength than the other agents. There were no differences between EDTA vs MA and EDTA vs QMix. Specimens treated with QMix had higher flexural strength than MA. X-ray diffraction indicated that EDTA inhibited hydration of MTA. For SEM, all the tested agents altered the microstructure of MTA when compared to distilled water. MA had more detrimental effect on the physical properties of MTA and EDTA was more detrimental to the hydration of MTA. The present study highlights the effect of newer chelating agents on the physical properties and microstructure of MTA. Preventing the deterioration of MTA is important for its long term success in endodontic procedures. Published by Elsevier Ltd.

  10. Physical processes controlling the spatial distributions of relative humidity in the tropical tropopause layer over the Pacific

    Science.gov (United States)

    Jensen, Eric J.; Thornberry, Troy D.; Rollins, Andrew W.; Ueyama, Rei; Pfister, Leonhard; Bui, Theopaul; Diskin, Glenn S.; DiGangi, Joshua P.; Hintsa, Eric; Gao, Ru-Shan; Woods, Sarah; Lawson, R. Paul; Pittman, Jasna

    2017-06-01

    The spatial distribution of relative humidity with respect to ice (RHI) in the boreal wintertime tropical tropopause layer (TTL, ≃14-18 km) over the Pacific is examined with the measurements provided by the NASA Airborne Tropical TRopopause EXperiment. We also compare the measured RHI distributions with results from a transport and microphysical model driven by meteorological analysis fields. Notable features in the distribution of RHI versus temperature and longitude include (1) the common occurrence of RHI values near ice saturation over the western Pacific in the lower to middle TTL; (2) low RHI values in the lower TTL over the central and eastern Pacific; (3) common occurrence of RHI values following a constant mixing ratio in the middle to upper TTL (temperatures between 190 and 200 K); (4) RHI values typically near ice saturation in the coldest airmasses sampled; and (5) RHI values typically near 100% across the TTL temperature range in air parcels with ozone mixing ratios less than 50 ppbv. We suggest that the typically saturated air in the lower TTL over the western Pacific is likely driven by a combination of the frequent occurrence of deep convection and the predominance of rising motion in this region. The nearly constant water vapor mixing ratios in the middle to upper TTL likely result from the combination of slow ascent (resulting in long residence times) and wave-driven temperature variability. The numerical simulations generally reproduce the observed RHI distribution features, and sensitivity tests further emphasize the strong influence of convective input and vertical motions on TTL relative humidity.

  11. PHYSICS

    CERN Multimedia

    Joe Incandela

    There have been two plenary physics meetings since the December CMS week. The year started with two workshops, one on the measurements of the Standard Model necessary for “discovery physics” as well as one on the Physics Analysis Toolkit (PAT). Meanwhile the tail of the “2007 analyses” is going through the last steps of approval. It is expected that by the end of January all analyses will have converted to using the data from CSA07 – which include the effects of miscalibration and misalignment. January Physics Days The first Physics Days of 2008 took place on January 22-24. The first two days were devoted to comprehensive re¬ports from the Detector Performance Groups (DPG) and Physics Objects Groups (POG) on their planning and readiness for early data-taking followed by approvals of several recent studies. Highlights of POG presentations are included below while the activities of the DPGs are covered elsewhere in this bulletin. January 24th was devo...

  12. PHYSICS

    CERN Multimedia

    J. Incandela

    The all-plenary format of the CMS week in Cyprus gave the opportunity to the conveners of the physics groups to present the plans of each physics analysis group for tackling early physics analyses. The presentations were complete, so all are encouraged to browse through them on the Web. There is a wealth of information on what is going on, by whom and on what basis and priority. The CMS week was followed by two CMS “physics events”, the ICHEP08 days and the physics days in July. These were two weeks dedicated to either the approval of all the results that would be presented at ICHEP08, or to the review of all the other Monte-Carlo based analyses that were carried out in the context of our preparations for analysis with the early LHC data (the so-called “2008 analyses”). All this was planned in the context of the beginning of a ramp down of these Monte Carlo efforts, in anticipation of data.  The ICHEP days are described below (agenda and talks at: http://indic...

  13. Physical and sedimentary processes on the tidal flat of central Jiangsu Coast, China: Headland induced tidal eddies and benthic fluid mud layers

    Science.gov (United States)

    Yu, Qian; Wang, Yunwei; Shi, Benwei; Wang, Ya Ping; Gao, Shu

    2017-02-01

    An 11-tidal-cycle record time series of current, wave, suspended-sediment, and bed-level characteristics was analyzed to identify physical and sedimentary processes on the tidal flat of Jiangsu Coast, China. A tripod observation system was placed near the transition between mid and upper tidal flat south of a newly constructed harbor for hydrodynamic and sediment dynamic measurements from 27 Apr 2013 to 3 May 2013. The observations confirm the stable longshore northward (ebb direction) current s with residual velocities 59.2° anti-clockwise from the offshore direction. This phenomenon can be attributed to the effects of headland (the Harbor) induced tidal eddies based on comparable frictional length scale and the headland length scale. Benthic fluid mud layers occurred in 2 of 11 tidal cycles, with the conditions of strong waves during the flood phase. The fine sediment was resuspended by the waves and currents from the lower area, transported upward and concentrated at the observation station, resulting in the formation of a fluid mud layer with thickness of 15 cm and SSC of 8 kg/m3 at 10 cm asb. Once formed, the fluid mud layer dramatically modified the flow structure, showing a large reduction of current speed from 20 cm asb to 10 cm asb, when the gradient Richardson number was around the critical value of 0.25, inferring that sufficient turbulence from waves and currents exists to maintain fluid mud suspension. The fluid mud processes appear to occur episodically and may play an important role of sediment dynamics on the tidal flat.

  14. Radio Relays Improve Wireless Products

    Science.gov (United States)

    2009-01-01

    Signal Hill, California-based XCOM Wireless Inc. developed radio frequency micromachine (RF MEMS) relays with a Phase II Small Business Innovation Research (SBIR) contract through NASA?s Jet Propulsion Laboratory. In order to improve satellite communication systems, XCOM produced wireless RF MEMS relays and tunable capacitors that use metal-to-metal contact and have the potential to outperform most semiconductor technologies while using less power. These relays are used in high-frequency test equipment and instrumentation, where increased speed can mean significant cost savings. Applications now also include mainstream wireless applications and greatly improved tactical radios.

  15. Microwave materials for wireless applications

    CERN Document Server

    Cruickshank, David B

    2011-01-01

    This practical resource offers you an in-depth, up-to-date understanding of the use of microwave magnetic materials for cutting-edge wireless applications. The book discusses device applications used in wireless infrastructure base stations, point-to-point radio links, and a range of more specialized microwave systems. You find detailed discussions on the attributes of each family of magnetic materials with respect to specific wireless applications. Moreover, the book addresses two of the hottest topics in the field today - insertion loss and intermodulation. This comprehensive reference also

  16. Structural processing for wireless communications

    CERN Document Server

    Lu, Jianhua; Ge, Ning

    2015-01-01

    This brief presents an alternative viewpoint on processing technology for wireless communications based on recent research advances. As a lever in emerging processing technology, the structure perspective addresses the complexity and uncertainty issues found in current wireless applications. Likewise, this brief aims at providing a new prospective to the development of communication technology and information science, while stimulating new theories and technologies for wireless systems with ever-increasing complexity. Readers of this brief may range from graduate students to researchers in related fields.

  17. Wireless home networking for dummies

    CERN Document Server

    Briere, Danny; Ferris, Edward

    2010-01-01

    The perennial bestseller shows you how share your files and Internet connection across a wireless network. Fully updated for Windows 7 and Mac OS X Snow Leopard, this new edition of this bestseller returns with all the latest in wireless standards and security. This fun and friendly guide shows you how to integrate your iPhone, iPod touch, smartphone, or gaming system into your home network. Veteran authors escort you through the various financial and logisitical considerations that you need to take into account before building a wireless network at home.: Covers the basics of planning, instal

  18. Wireless Communications in Smart Grid

    Science.gov (United States)

    Bojkovic, Zoran; Bakmaz, Bojan

    Communication networks play a crucial role in smart grid, as the intelligence of this complex system is built based on information exchange across the power grid. Wireless communications and networking are among the most economical ways to build the essential part of the scalable communication infrastructure for smart grid. In particular, wireless networks will be deployed widely in the smart grid for automatic meter reading, remote system and customer site monitoring, as well as equipment fault diagnosing. With an increasing interest from both the academic and industrial communities, this chapter systematically investigates recent advances in wireless communication technology for the smart grid.

  19. Multi-user Session Control in Next Generation Wireless Systems

    OpenAIRE

    Eduardo Cerqueira; Paulo Mendes; Edmundo Monteiro

    2006-01-01

    Next generation IP wireless systems are envisioned to be heterogeneous and to provide ubiquitous services to mobile users with different quality of service requirements. Furthermore, in order to attract and keep customers, mobile operators are expanding their portfolio with the inclusion of publish-subscribe services, such as real-time multimedia sessions. This paper presents a signalling application layer based on the Next Steps in Signalling (NSIS) framework that aims to provide the c...

  20. Non-Bayesian Rate-Adaptive Wireless Communication Using ARQ-Feedback

    CERN Document Server

    Koksal, C Emre

    2009-01-01

    To combat the detrimental effects of the variability in wireless channels, we consider cross-layer rate adaptation. We study communication systems that utilize the limited feedback in the form of link-layer Automatic Repeat-reQuest (ARQ) to maximize the physical-layer transmission rate, subject to a certain upper bound on the expected packet error rate. We assume that there is no knowledge of the prior distribution of the channel state at the transmitter. We first analyze the fundamental limitations of such systems and derive an upper bound on the achievable rate for signalling schemes based on uncoded modulation with QAM and random-coded modulation with Gaussian ensembles. We show that, for channel estimation based on binary ARQ feedback, it may be preferable to use a separate training sequence at high error rates, rather than to exploit low-error-rate data packets themselves. We also develop an adaptive recursive estimator, which is provably asymptotically optimal and asymptotically efficient.

  1. Physics

    CERN Document Server

    Cullen, Katherine

    2005-01-01

    Defined as the scientific study of matter and energy, physics explains how all matter behaves. Separated into modern and classical physics, the study attracts both experimental and theoretical physicists. From the discovery of the process of nuclear fission to an explanation of the nature of light, from the theory of special relativity to advancements made in particle physics, this volume profiles 10 pioneers who overcame tremendous odds to make significant breakthroughs in this heavily studied branch of science. Each chapter contains relevant information on the scientist''s childhood, research, discoveries, and lasting contributions to the field and concludes with a chronology and a list of print and Internet references specific to that individual.

  2. Wireless device monitoring methods, wireless device monitoring systems, and articles of manufacture

    Science.gov (United States)

    McCown, Steven H [Rigby, ID; Derr, Kurt W [Idaho Falls, ID; Rohde, Kenneth W [Idaho Falls, ID

    2012-05-08

    Wireless device monitoring methods, wireless device monitoring systems, and articles of manufacture are described. According to one embodiment, a wireless device monitoring method includes accessing device configuration information of a wireless device present at a secure area, wherein the device configuration information comprises information regarding a configuration of the wireless device, accessing stored information corresponding to the wireless device, wherein the stored information comprises information regarding the configuration of the wireless device, comparing the device configuration information with the stored information, and indicating the wireless device as one of authorized and unauthorized for presence at the secure area using the comparing.

  3. P-channel transparent thin-film transistor using physical-vapor-deposited NiO layer

    Science.gov (United States)

    Lin, Chiung-Wei; Chung, Wei-Chieh; Zhang, Zhao-De; Hsu, Ming-Chih

    2018-01-01

    The effect of oxygen (O) content on the electrical properties of physical-vapor-deposited nickel oxide (PVD-NiO) was studied. When the NiO target was sputtered, introducing O2 can lead to the formation of Ni3+ ions in the deposited film. These Ni3+ ions can act as acceptors. However, there were too many Ni3+ ions that were obtained following the introduction of O atoms. It resulted in intensive p-type conduction and made the O2-introduced PVD-NiO behave as a conductor. Thus, it was possible to reduce the O content of PVD-NiO to obtain a p-type semiconductor. In this study, a transparent PVD-NiO film with a carrier concentration of 1.62 × 1017 cm‑3 and a resistivity of 3.74 Ω cm was sputter-deposited within pure argon plasma. The thin-film transistor (TFT) employing this proposed PVD-NiO can result in good current switching, and even operated at very low drain–source voltage. The ON/OFF current ratio, field-effect carrier mobility, and threshold voltage of the proposed NiO TFT were 3.61 × 104, 1.09 cm2 V‑1 s‑1 and ‑3.31 V, respectively.

  4. Integration of hybrid wireless networks in cloud services oriented enterprise information systems

    Science.gov (United States)

    Li, Shancang; Xu, Lida; Wang, Xinheng; Wang, Jue

    2012-05-01

    This article presents a hybrid wireless network integration scheme in cloud services-based enterprise information systems (EISs). With the emerging hybrid wireless networks and cloud computing technologies, it is necessary to develop a scheme that can seamlessly integrate these new technologies into existing EISs. By combining the hybrid wireless networks and computing in EIS, a new framework is proposed, which includes frontend layer, middle layer and backend layers connected to IP EISs. Based on a collaborative architecture, cloud services management framework and process diagram are presented. As a key feature, the proposed approach integrates access control functionalities within the hybrid framework that provide users with filtered views on available cloud services based on cloud service access requirements and user security credentials. In future work, we will implement the proposed framework over SwanMesh platform by integrating the UPnP standard into an enterprise information system.

  5. PHYSICS

    CERN Multimedia

    Guenther Dissertori

    The time period between the last CMS week and this June was one of intense activity with numerous get-together targeted at addressing specific issues on the road to data-taking. The two series of workshops, namely the “En route to discoveries” series and the “Vertical Integration” meetings continued.   The first meeting of the “En route to discoveries” sequence (end 2007) had covered the measurements of the Standard Model signals as necessary prerequisite to any claim of signals beyond the Standard Model. The second meeting took place during the Feb CMS week and concentrated on the commissioning of the Physics Objects, whereas the third occurred during the April Physics Week – and this time the theme was the strategy for key new physics signatures. Both of these workshops are summarized below. The vertical integration meetings also continued, with two DPG-physics get-togethers on jets and missing ET and on electrons and photons. ...

  6. PHYSICS

    CERN Multimedia

    Chris Hill

    2012-01-01

    The months that have passed since the last CMS Bulletin have been a very busy and exciting time for CMS physics. We have gone from observing the very first 8TeV collisions produced by the LHC to collecting a dataset of the collisions that already exceeds that recorded in all of 2011. All in just a few months! Meanwhile, the analysis of the 2011 dataset and publication of the subsequent results has continued. These results come from all the PAGs in CMS, including searches for the Higgs boson and other new phenomena, that have set the most stringent limits on an ever increasing number of models of physics beyond the Standard Model including dark matter, Supersymmetry, and TeV-scale gravity scenarios, top-quark physics where CMS has overtaken the Tevatron in the precision of some measurements, and bottom-quark physics where CMS made its first discovery of a new particle, the Ξ*0b baryon (candidate event pictured below). Image 2:  A Ξ*0b candidate event At the same time POGs and PAGs...

  7. PHYSICS

    CERN Multimedia

    D. Acosta

    2011-01-01

    Since the last CMS Week, all physics groups have been extremely active on analyses based on the full 2010 dataset, with most aiming for a preliminary measurement in time for the winter conferences. Nearly 50 analyses were approved in a “marathon” of approval meetings during the first two weeks of March, and the total number of approved analyses reached 90. The diversity of topics is very broad, including precision QCD, Top, and electroweak measurements, the first observation of single Top production at the LHC, the first limits on Higgs production at the LHC including the di-tau final state, and comprehensive searches for new physics in a wide range of topologies (so far all with null results unfortunately). Most of the results are based on the full 2010 pp data sample, which corresponds to 36 pb-1 at √s = 7 TeV. This report can only give a few of the highlights of a very rich physics program, which is listed below by physics group...

  8. Wireless devices in nursing education

    Directory of Open Access Journals (Sweden)

    Ana Belén Sánchez-García

    2013-03-01

    Full Text Available Objective. This article sought to explore the adoption of wireless devices in university nursing teaching and address their repercussion on future professionals. Methodology. This is a bibliographical study conducted in 2011, which analyzed international publications on the use, review, application, opinion, and experimentation of wireless devices in university nursing teaching of wireless technology in nursing teaching. The following databases were used: Medline and Science@Direct. Results. A total of 503 articles were extracted and 77 were selected, of which 40 investigated the Personal Digital Assistant (PDA, 13 the clicker (Student Response Wireless System, and six the smart phone. The use of mobile devices has experienced strong growth during the last five years, especially PDAs. Conclusion. Use of mobile devices in university nursing teaching has grown in recent years, especially PDAs

  9. Wireless Communication over Dispersive Channels

    NARCIS (Netherlands)

    Fang, K.

    2010-01-01

    Broadband wireless communication systems require high transmission rates, where the bandwidth of the transmitted signal is larger than the channel coherence bandwidth. This gives rise to time dispersion of the transmitted symbols or frequency-selectivity with different frequency components

  10. Introduction to wireless sensor networks

    CERN Document Server

    Forster, Anna

    2016-01-01

    Explores real-world wireless sensor network development, deployment, and applications. The book begins with an introduction to wireless sensor networks and their fundamental concepts. Hardware components, operating systems, protocols, and algorithms that make up the anatomy of a sensor node are described in chapter two. Properties of wireless communications, medium access protocols, wireless links, and link estimation protocols are described in chapter three and chapter four. Routing basics and metrics, clustering techniques, time synchronization and localization protocols, as well as sensing techniques are introduced in chapter five to nine. The concluding chapter summarizes the learnt methods and shows how to use them to deploy real-world sensor networks in a structured way.

  11. Wireless power transfer system

    Science.gov (United States)

    Wu, Hunter; Sealy, Kylee; Gilchrist, Aaron

    2016-02-23

    A system includes a first stage of an inductive power transfer system with an LCL load resonant converter with a switching section, an LCL tuning circuit, and a primary receiver pad. The IPT system includes a second stage with a secondary receiver pad, a secondary resonant circuit, a secondary rectification circuit, and a secondary decoupling converter. The secondary receiver pad connects to the secondary resonant circuit. The secondary resonant circuit connects to the secondary rectification circuit. The secondary rectification circuit connects to the secondary decoupling converter. The second stage connects to a load. The load includes an energy storage element. The second stage and load are located on a vehicle and the first stage is located at a fixed location. The primary receiver pad wirelessly transfers power to the secondary receiver pad across a gap when the vehicle positions the secondary receiver pad with respect to the primary receiver pad.

  12. Quality-Aware SCTP in Wireless Networks

    Directory of Open Access Journals (Sweden)

    Pan Jen-Yi

    2010-01-01

    Full Text Available SCTP (Stream control transmission protocol is a new transport layer protocol that was published as RFC2960 by IETF (the Internet Engineering Task Force in October 2000 and amended in RFC4960 in September 2007. SCTP provides reliable ordered and unordered transport services. The congestion control and flow control mechanisms for SCTP are very similar to those for TCP (transmission control protocol. SCTP can apply more than one IP address when establishing associations. SCTP multihoming can support multiple paths in association. These features provide SCTP with some network-level fault tolerance through network address redundancy. SCTP multihoming has tremendous transmission potential. However, SCTP path management is very simple in RFC4960 and therefore cannot effectively distinguish path conditions; it also has no path switch strategy appropriate for wireless networking. These factors all degrade SCTP performance. This study proposes a new path management (quality-aware SCTP for wireless networks; this includes a new path failure detection method and ICE (idle path congestion window size estimation mechanism. An experiment using NS2 was performed, showing that quality-aware SCTP can effectively improve the network performance. Quality-aware SCTP is simple and provides a more effective performance than SCTP alone.

  13. Secure positioning in wireless networks

    DEFF Research Database (Denmark)

    Capkun, Srdjan; Hubaux, Jean-Pierre

    2006-01-01

    So far, the problem of positioning in wireless networks has been studied mainly in a non-adversarial settings. In this work, we analyze the resistance of positioning techniques to position and distance spoofing attacks. We propose a mechanism for secure positioning of wireless devices, that we call...... Verifiable Multilateration. We then show how this mechanism can be used to secure positioning in sensor networks. We analyze our system through simulations....

  14. Wireless data signal transmission system

    DEFF Research Database (Denmark)

    2014-01-01

    The present invention relates to a method for providing a radio frequency signal for transmission, a system for providing a radio frequency signal for transmission and a method for wireless data transmission between a transmitter and a receiver.......The present invention relates to a method for providing a radio frequency signal for transmission, a system for providing a radio frequency signal for transmission and a method for wireless data transmission between a transmitter and a receiver....

  15. Design and evaluation of a wireless sensor network based aircraft strength testing system.

    Science.gov (United States)

    Wu, Jian; Yuan, Shenfang; Zhou, Genyuan; Ji, Sai; Wang, Zilong; Wang, Yang

    2009-01-01

    The verification of aerospace structures, including full-scale fatigue and static test programs, is essential for structure strength design and evaluation. However, the current overall ground strength testing systems employ a large number of wires for communication among sensors and data acquisition facilities. The centralized data processing makes test programs lack efficiency and intelligence. Wireless sensor network (WSN) technology might be expected to address the limitations of cable-based aeronautical ground testing systems. This paper presents a wireless sensor network based aircraft strength testing (AST) system design and its evaluation on a real aircraft specimen. In this paper, a miniature, high-precision, and shock-proof wireless sensor node is designed for multi-channel strain gauge signal conditioning and monitoring. A cluster-star network topology protocol and application layer interface are designed in detail. To verify the functionality of the designed wireless sensor network for strength testing capability, a multi-point WSN based AST system is developed for static testing of a real aircraft undercarriage. Based on the designed wireless sensor nodes, the wireless sensor network is deployed to gather, process, and transmit strain gauge signals and monitor results under different static test loads. This paper shows the efficiency of the wireless sensor network based AST system, compared to a conventional AST system.

  16. Design and Evaluation of a Wireless Sensor Network Based Aircraft Strength Testing System

    Directory of Open Access Journals (Sweden)

    Yang Wang

    2009-06-01

    Full Text Available The verification of aerospace structures, including full-scale fatigue and static test programs, is essential for structure strength design and evaluation. However, the current overall ground strength testing systems employ a large number of wires for communication among sensors and data acquisition facilities. The centralized data processing makes test programs lack efficiency and intelligence. Wireless sensor network (WSN technology might be expected to address the limitations of cable-based aeronautical ground testing systems. This paper presents a wireless sensor network based aircraft strength testing (AST system design and its evaluation on a real aircraft specimen. In this paper, a miniature, high-precision, and shock-proof wireless sensor node is designed for multi-channel strain gauge signal conditioning and monitoring. A cluster-star network topology protocol and application layer interface are designed in detail. To verify the functionality of the designed wireless sensor network for strength testing capability, a multi-point WSN based AST system is developed for static testing of a real aircraft undercarriage. Based on the designed wireless sensor nodes, the wireless sensor network is deployed to gather, process, and transmit strain gauge signals and monitor results under different static test loads. This paper shows the efficiency of the wireless sensor network based AST system, compared to a conventional AST system.

  17. Organic Matter Fractions and Quality of the Surface Layer of a Constructed and Vegetated Soil After Coal Mining. II - Physical Compartments and Carbon Management Index

    Directory of Open Access Journals (Sweden)

    Otávio dos Anjos Leal

    2015-06-01

    Full Text Available Soils constructed after mining often have low carbon (C stocks and low quality of organic matter (OM. Cover crops are decisive for the recovery process of these stocks, improving the quality of constructed soils. Therefore, the goal of this study was to evaluate the effect of cover crops on total organic C (TOC stocks, C distribution in physical fractions of OM and the C management index (CMI of a soil constructed after coal mining. The experiment was initiated in 2003 with six treatments: Hemarthria altissima (T1, Paspalum notatum (T2, Cynodon dactylon (T3, Urochloa brizantha (T4, bare constructed soil (T5, and natural soil (T6. Soil samples were collected in 2009 from the 0.00-0.03 m layer, and the TOC and C stocks in the physical particle size fractions (carbon in the coarse fraction - CCF, and mineral-associated carbon - MAC and density fractions (free light fraction - FLF; occluded light fraction - OLF, and heavy fraction - HF of OM were determined. The CMI components: carbon pool index (CPI, lability (L and lability index (LI were estimated by both fractionation methods. No differences were observed between TOC, CCF and MAC stocks. The lowest C stocks in FLF and OLF fractions were presented by T2, 0.86 and 0.61 Mg ha-1, respectively. The values of TOC stock, C stock in physical fractions and CMI were intermediate, greater than T5 and lower than T6 in all treatments, indicating the partial recovery of soil quality. As a result of the better adaptation of the species Hemarthria and Brizantha, resulting in greater accumulation of labile organic material, the CPI, L, LI and CMI values were higher in these treatments, suggesting a greater potential of these species for recovery of constructed soils.

  18. PHYSICS

    CERN Multimedia

    C. Hill

    2012-01-01

      2012 has started off as a very busy year for the CMS Physics Groups. Planning for the upcoming higher luminosity/higher energy (8 TeV) operation of the LHC and relatively early Rencontres de Moriond are the high-priority activities for the group at the moment. To be ready for the coming 8-TeV data, CMS has made a concerted effort to perform and publish analyses on the 5 fb−1 dataset recorded in 2011. This has resulted in the submission of 16 papers already, including nine on the search for the Higgs boson. In addition, a number of preliminary results on the 2011 dataset have been released to the public. The Exotica and SUSY groups approved several searches for new physics in January, such as searches for W′ and exotic highly ionising particles. These were highlighted at a CERN seminar given on 24th  January. Many more analyses, from all the PAGs, including the newly formed SMP (Standard Model Physics) and FSQ (Forward and Small-x QCD), were approved in February. The ...

  19. PHYSICS

    CERN Multimedia

    C. Hill

    2012-01-01

      The period since the last CMS Bulletin has been historic for CMS Physics. The pinnacle of our physics programme was an observation of a new particle – a strong candidate for a Higgs boson – which has captured worldwide interest and made a profound impact on the very field of particle physics. At the time of the discovery announcement on 4 July, 2012, prominent signals were observed in the high-resolution H→γγ and H→ZZ(4l) modes. Corroborating excess was observed in the H→W+W– mode as well. The fermionic channel analyses (H→bb, H→ττ), however, yielded less than the Standard Model (SM) expectation. Collectively, the five channels established the signal with a significance of five standard deviations. With the exception of the diphoton channel, these analyses have all been updated in the last months and several new channels have been added. With improved analyses and more than twice the i...

  20. PHYSICS

    CERN Multimedia

    Darin Acosta

    2010-01-01

    The collisions last year at 900 GeV and 2.36 TeV provided the long anticipated collider data to the CMS physics groups. Quite a lot has been accomplished in a very short time. Although the delivered luminosity was small, CMS was able to publish its first physics paper (with several more in preparation), and commence the commissioning of physics objects for future analyses. Many new performance results have been approved in advance of this CMS Week. One remarkable outcome has been the amazing agreement between out-of-the-box data with simulation at these low energies so early in the commissioning of the experiment. All of this is testament to the hard work and preparation conducted beforehand by many people in CMS. These analyses could not have happened without the dedicated work of the full collaboration on building and commissioning the detector, computing, and software systems combined with the tireless work of many to collect, calibrate and understand the data and our detector. To facilitate the efficien...