WorldWideScience

Sample records for wireless ph monitoring

  1. Comparative study of two modes of gastroesophageal reflux measuring: conventional esophageal pH monitoring and wireless pH monitoring

    Directory of Open Access Journals (Sweden)

    Rimon Sobhi Azzam

    2012-06-01

    Full Text Available CONTEXT: Esophageal pH monitoring is considered to be the gold standard for the diagnosis of gastroesophageal acid reflux. However, this method is very troublesome and considerably limits the patient's routine activities. Wireless pH monitoring was developed to avoid these restrictions. OBJECTIVE: To compare the first 24 hours of the conventional and wireless pH monitoring, positioned 3 cm above the lower esophageal sphincter, in relation to: the occurrence of relevant technical failures, the ability to detect reflux and the ability to correlate the clinical symptoms to reflux. METHODS: Twenty-five patients referred for esophageal pH monitoring and with typical symptoms of gastroesophageal reflux disease were studied prospectively, underwent clinical interview, endoscopy, esophageal manometry and were submitted, with a simultaneous initial period, to 24-hour catheter pH monitoring and 48-hour wireless pH monitoring. RESULTS: Early capsule detachment occurred in one (4% case and there were no technical failures with the catheter pH monitoring (P = 0.463. Percentages of reflux time (total, upright and supine were higher with the wireless pH monitoring (P < 0.05. Pathological gastroesophageal reflux occurred in 16 (64% patients submitted to catheter and in 19 (76% to the capsule (P = 0.355. The symptom index was positive in 12 (48% patients with catheter pH monitoring and in 13 (52% with wireless pH monitoring (P = 0.777. CONCLUSIONS: 1 No significant differences were reported between the two methods of pH monitoring (capsule vs catheter, in regard to relevant technical failures; 2 Wireless pH monitoring detected higher percentages of reflux time than the conventional pH-metry; 3 The two methods of pH monitoring were comparable in diagnosis of pathological gastroesophageal reflux and comparable in correlating the clinical symptoms with the gastroesophageal reflux.

  2. An implantable, batteryless, and wireless capsule with integrated impedance and pH sensors for gastroesophageal reflux monitoring.

    Science.gov (United States)

    Cao, Hung; Landge, Vaibhav; Tata, Uday; Seo, Young-Sik; Rao, Smitha; Tang, Shou-Jiang; Tibbals, H F; Spechler, Stuart; Chiao, J-C

    2012-11-01

    In this study, a device for gastroesophageal reflux disease (GERD) monitoring has been prototyped. The system consists of an implantable, batteryless and wireless transponder with integrated impedance and pH sensors; and a wearable, external reader that wirelessly powers up the transponder and interprets the transponded radio-frequency signals. The transponder implant with the total size of 0.4 cm × 0.8 cm × 3.8 cm harvests radio frequency energy to operate dual-sensor and load-modulation circuitry. The external reader can store the data in a memory card and/or send it to a base station wirelessly, which is optional in the case of multiple-patient monitoring in a hospital or conducting large-scale freely behaving animal experiments. Tests were carried out to verify the signal transduction reliability in different situations for antenna locations and orientation. In vitro, experiments were conducted in a mannequin model by positioning the sensor capsule inside the wall of a tube mimicking the esophagus. Different liquids with known pH values were flushed through the tube creating reflux episodes and wireless signals were recorded. Live pigs under anesthesia were used for the animal models with the transponder implant attached on the esophageal wall. The reflux episodes were created while the sensor data were recorded wirelessly. The data were compared with those recorded independently by a clinically used wireless pH sensor capsule placed next to our implant transponder. The results showed that our transponder detected every episode in both acid and nonacid nature, while the commercial pH sensor missed events that had similar, repeated pH values, and failed to detect pH values higher than 10. Our batteryless transponder does not require a battery thus allowing longer diagnosis and prognosis periods to monitor drug efficacy, as well as providing accurate assessment of GERD symptoms.

  3. Injection moulded microneedle sensor for real-time wireless pH monitoring.

    Science.gov (United States)

    Mirza, Khalid B; Zuliani, Claudio; Hou, Benjamin; Ng, Fu Siong; Peters, Nicholas S; Toumazou, Christofer

    2017-07-01

    This paper describes the development of an array of individually addressable pH sensitive microneedles using injection moulding and their integration within a portable device for real-time wireless recording of pH distributions in biological samples. The fabricated microneedles are subjected to gold patterning followed by electrodeposition of iridium oxide to sensitize them to 0.07 units of pH change. Miniaturised electronics suitable for the sensors readout, analog-to-digital conversion and wireless transmission of the potentiometric data are embodied within the device, enabling it to measure real-time pH of soft biological samples such as muscles. In this paper, real-time recording of the cardiac pH distribution, during ischemia followed by reperfusion cycles in cardiac muscles of male Wistar rats has been demonstrated by using the microneedle array.

  4. The value of early wireless esophageal pH monitoring in diagnosing functional heartburn in refractory gastroesophageal reflux disease.

    Science.gov (United States)

    Park, Eun-Young; Choi, Myung-Gyu; Baeg, Meonggi; Lim, Chul-Hyun; Kim, Jinsu; Cho, Yukyung; Park, Jaemyung; Lee, Inseok; Kim, Sangwoo; Choi, Kyuyong

    2013-10-01

    It is difficult to differentiate functional heartburn from proton pump inhibitor (PPI) failure. The aims of this study were to assess the role of early wireless esophageal pH monitoring in patients referred with gastroesophageal reflux disease (GERD) and to identify differences in the clinical spectrum among GERD subtypes. We enrolled consecutive referred patients with suspected GERD. After endoscopy on the first visit, all underwent wireless esophageal pH monitoring when off the PPI. Two hundred thirty patients were enrolled. These patients were classified into a reflux esophagitis group (20, 8.7 %) and a normal endoscopic findings group (210, 91.3 %). Among the 210 patients in the normal endoscopic findings group, 63 (27.4 %) were diagnosed with pathological reflux, 35 (15.2 %) with hypersensitive esophagus, 87 (37.8 %) with normal acid exposure with negative symptom association, and 25 (10.9 %) with test failure. These groups did not differ in age, body mass index, smoking habit, alcohol consumption, symptom severity, quality of life, presence of atypical symptoms, overlap with irritable bowel syndrome, and the frequency of somatization, depression, and anxiety. PPI responses were evaluated in 135 patients. Fifty patients (37.0 %) were not responsive to the 4-week treatment; 26 (19.3 %) were diagnosed with refractory non-erosive gastroesophageal disease, and 24 (17.8 %) with functional heartburn. The demographics and clinical and psychological characteristics did not differ between the two groups. Demographic characteristics and symptom patterns alone cannot differentiate functional heartburn from various subtypes of GERD. Wireless esophageal pH monitoring should be considered for the initial evaluation of GERD in the tertiary referral setting.

  5. Long-term wireless pH monitoring of the distal esophagus: prolonging the test beyond 48 hours is unnecessary and may be misleading.

    Science.gov (United States)

    Capovilla, G; Salvador, R; Spadotto, L; Voltarel, G; Pesenti, E; Perazzolo, A; Nicoletti, L; Merigliano, S; Costantini, M

    2017-10-01

    Wireless pH monitoring of the esophagus has been widely used to detect GERD for more than a decade. It is generally well tolerated and accepted by patients, but it is still unclear whether prolonging a recording beyond the usual 48 hours can improve the test's diagnostic value. The aim of this study is to examine the diagnostic yield of 96-hour pH monitoring vis-à-vis 24- and 48-hour tests, and to ascertain whether any gain in diagnostic terms was of genuine clinical utility. Patients with suspected GERD underwent 4-day PPI-off wireless pH monitoring of the distal esophagus. The capsule was inserted under endoscopic control, 6 cm above the squamocolumnar junction. Average acid exposure time was calculated after 24, 48, and 96 hours of recording. Ninety-nine patients completed the 96 hour test, and formed the study sample. The wireless test method was used in 42 patients (42.4%) unable to tolerate the traditional pH-monitoring catheter, and in 57 (57.6%) with a previous negative pH study despite symptoms suggestive of GERD. On complete analysis, 47 patients (47.5%) had a pathological test result: 19 patients within the first 24 hours (19.2%, 24 hour group); another 16 after 48 hours (+16.2%, 48 hour group), and a further 12 (+12.1%, 96 hour group) only after 96 hours of monitoring. All 47 patients with an abnormal acid exposure were offered and accepted surgery (10 patients) or medical therapy (37 patients). Clinical follow-up was obtained in all patients with a positive Bravo test result after a median 67 months (IQR: 38-98) using a validated symptom questionnaire. A good outcome after fundoplication or medical therapy was achieved in 73.7% of patients in the 24 hour group, in 62.5% of those in the 48 hour group, and in only 25% of those in the 96 hour group, P = 0.02. Long-term wireless pH monitoring enables an increase in the diagnostic yield over traditional 24- and 48-hour pH studies, but prolonging the test may constitute an unwanted bias and prompt the

  6. Wireless device monitoring methods, wireless device monitoring systems, and articles of manufacture

    Science.gov (United States)

    McCown, Steven H [Rigby, ID; Derr, Kurt W [Idaho Falls, ID; Rohde, Kenneth W [Idaho Falls, ID

    2012-05-08

    Wireless device monitoring methods, wireless device monitoring systems, and articles of manufacture are described. According to one embodiment, a wireless device monitoring method includes accessing device configuration information of a wireless device present at a secure area, wherein the device configuration information comprises information regarding a configuration of the wireless device, accessing stored information corresponding to the wireless device, wherein the stored information comprises information regarding the configuration of the wireless device, comparing the device configuration information with the stored information, and indicating the wireless device as one of authorized and unauthorized for presence at the secure area using the comparing.

  7. Inconsistency in the Diagnosis of Functional Heartburn: Usefulness of Prolonged Wireless pH Monitoring in Patients With Proton Pump Inhibitor Refractory Gastroesophageal Reflux Disease

    Science.gov (United States)

    Penagini, Roberto; Sweis, Rami; Mauro, Aurelio; Domingues, Gerson; Vales, Andres; Sifrim, Daniel

    2015-01-01

    Background/Aims The diagnosis of functional heartburn is important for management, however it stands on fragile pH monitoring variables, ie, acid exposure time varies from day to day and symptoms are often few or absent. Aim of this study was to investigate consistency of the diagnosis of functional heartburn in subsequent days using prolonged wireless pH monitoring and its impact on patients’ outcome. Methods Fifty proton pump inhibitotor refractory patients (11 male, 48 years [range, 38–57 years]) with a diagnosis of functional heart-burn according to Rome III in the first 24 hours of wireless pH monitoring were reviewed. pH variables were analysed in the following 24-hour periods to determine if tracings were indicative of diagnosis of non-erosive reflux disease (either acid exposure time > 5% or normal acid exposure time and symptom index ≥ 50%). Outcome was assessed by review of hospital files and/or telephone interview. Results Fifteen out of 50 patients had a pathological acid exposure time after the first day of monitoring (10 in the second day and 5 in subsequent days), which changed their diagnosis from functional heartburn to non-erosive reflux disease. Fifty-four percent of non-erosive reflux disease vs 11% of functional heartburn patients (P heartburn patients (P heartburn at 24-hour pH-monitoring can be re-classified as non-erosive reflux disease after a more prolonged pH recording period. This observation has a positive impact on patients’ management. PMID:25843078

  8. Economical wireless optical ratiometric pH sensor

    International Nuclear Information System (INIS)

    Vuppu, Sandeep; Kostov, Yordan; Rao, Govind

    2009-01-01

    The development and application of a portable, wireless fluorescence-based optical pH sensor is presented. The design incorporates the MSP430 microcontroller as the control unit, an RF transceiver for wireless communication, digital filters and amplifiers and a USB-based communication module for data transmission. The pH sensor is based on ratiometric fluorescence detection from pH sensitive dye incorporated in a peel-and-stick patch. The ability of the instrument to detect the pH of the solution with contact only between the sensor patch and the solution makes it partially non-invasive. The instrument also has the ability to transmit data wirelessly, enabling its use in processes that entail stringent temperature control and sterility. The use of the microcontroller makes it a reliable, low-cost and low-power device. The luminous intensity of the light source can be digitally controlled to maximize the sensitivity of the instrument. It has a resolution of 0.05 pH. The sensor is accurate and reversible over the pH range of 6.5–9

  9. Wireless sensor networks and ecological monitoring

    CERN Document Server

    Jiang, Joe-Air

    2013-01-01

    This book presents the state of the art technologies and solutions to tackle the critical challenges faced by the building and development of the WSN and ecological monitoring system but also potential impact on society at social, medical and technological level. This book is dedicated to Sensing systems for Sensors, Wireless Sensor Networks and Ecological Monitoring. The book aims at Master and PhD degree students, researchers, practitioners, especially WSN engineers involved with ecological monitoring. The book will provide an opportunity of a dedicated and a deep approach in order to improve their knowledge in this specific field.  

  10. Indications of 24-h esophageal pH monitoring, capsule pH monitoring, combined pH monitoring with multichannel impedance, esophageal manometry, radiology and scintigraphy in gastroesophageal reflux disease?

    Science.gov (United States)

    Vardar, Rukiye; Keskin, Muharrem

    2017-12-01

    Ambulatory esophageal pH monitoring is an essential method in patients exhibiting signs of non-erosive reflux disease (NERD) to make an objective diagnosis. Intra-esophageal pH monitoring is important in patients who are non-responsive to medications and in those with extraesophageal symptoms, particularly in NERD, before surgical interventions. With the help of the wireless capsule pH monitoring, measurements can be made under more physiological conditions as well as longer recordings can be performed because the investigation can be better tolerated by patients. Ambulatory esophageal pH monitoring can be detected within normal limits in 17%-31.4% of the patients with endoscopic esophagitis; therefore, normal pH monitoring cannot exclude the diagnosis of gastroesophageal reflux disease (GERD). Multi-channel intraluminal impedance pH (MII-pH) technology have been developed and currently the most sensitive tool to evaluate patients with both typical and atypical reflux symptoms. The sensitivity of a pH catheter test is 58% for the detection of acid reflux compared with MII-pH monitoring; further, its sensitivity is 28% for the detection of weak acid reflux compared with MII-pH monitoring. By adding impedance to pH catheter in patients with reflux symptoms, particularly in those receiving PPIs, it has been demonstrated that higher rates of diagnoses and symptom analyses can be obtained than those using only pH catheter. Esophageal manometry is used in the evaluation of patients with functional dysphagia and unexplained noncardiac chest pain and prior to antireflux surgery. The use of esophageal manometry is suitable for the detection of esophageal motor patterns and extreme motor abnormalities (e.g., achalasia and extreme hypomotility). Esophageal manometry and ambulatory pH monitoring are often used in assessments prior to laparoscopic antireflux surgery and in patients with reflux symptoms refractory to medical treatment. Although the esophageal motility is

  11. Characterization of Industrial Coolant Fluids and Continuous Ageing Monitoring by Wireless Node—Enabled Fiber Optic Sensors

    Directory of Open Access Journals (Sweden)

    Alexandros El Sachat

    2017-03-01

    Full Text Available Environmentally robust chemical sensors for monitoring industrial processes or infrastructures are lately becoming important devices in industry. Low complexity and wireless enabled characteristics can offer the required flexibility for sensor deployment in adaptable sensing networks for continuous monitoring and management of industrial assets. Here are presented the design, development and operation of a class of low cost photonic sensors for monitoring the ageing process and the operational characteristics of coolant fluids used in an industrial heavy machinery infrastructure. The chemical, physical and spectroscopic characteristics of specific industrial-grade coolant fluids were analyzed along their entire life cycle range, and proper parameters for their efficient monitoring were identified. Based on multimode polymer or silica optical fibers, wide range (3–11 pH sensors were developed by employing sol-gel derived pH sensitive coatings. The performances of the developed sensors were characterized and compared, towards their coolants’ ageing monitoring capability, proving their efficiency in such a demanding application scenario and harsh industrial environment. The operating characteristics of this type of sensors allowed their integration in an autonomous wireless sensing node, thus enabling the future use of the demonstrated platform in wireless sensor networks for a variety of industrial and environmental monitoring applications.

  12. Characterization of Industrial Coolant Fluids and Continuous Ageing Monitoring by Wireless Node-Enabled Fiber Optic Sensors.

    Science.gov (United States)

    Sachat, Alexandros El; Meristoudi, Anastasia; Markos, Christos; Sakellariou, Andreas; Papadopoulos, Aggelos; Katsikas, Serafim; Riziotis, Christos

    2017-03-11

    Environmentally robust chemical sensors for monitoring industrial processes or infrastructures are lately becoming important devices in industry. Low complexity and wireless enabled characteristics can offer the required flexibility for sensor deployment in adaptable sensing networks for continuous monitoring and management of industrial assets. Here are presented the design, development and operation of a class of low cost photonic sensors for monitoring the ageing process and the operational characteristics of coolant fluids used in an industrial heavy machinery infrastructure. The chemical, physical and spectroscopic characteristics of specific industrial-grade coolant fluids were analyzed along their entire life cycle range, and proper parameters for their efficient monitoring were identified. Based on multimode polymer or silica optical fibers, wide range (3-11) pH sensors were developed by employing sol-gel derived pH sensitive coatings. The performances of the developed sensors were characterized and compared, towards their coolants' ageing monitoring capability, proving their efficiency in such a demanding application scenario and harsh industrial environment. The operating characteristics of this type of sensors allowed their integration in an autonomous wireless sensing node, thus enabling the future use of the demonstrated platform in wireless sensor networks for a variety of industrial and environmental monitoring applications.

  13. Characterization of Industrial Coolant Fluids and Continuous Ageing Monitoring by Wireless Node—Enabled Fiber Optic Sensors

    Science.gov (United States)

    El Sachat, Alexandros; Meristoudi, Anastasia; Markos, Christos; Sakellariou, Andreas; Papadopoulos, Aggelos; Katsikas, Serafim; Riziotis, Christos

    2017-01-01

    Environmentally robust chemical sensors for monitoring industrial processes or infrastructures are lately becoming important devices in industry. Low complexity and wireless enabled characteristics can offer the required flexibility for sensor deployment in adaptable sensing networks for continuous monitoring and management of industrial assets. Here are presented the design, development and operation of a class of low cost photonic sensors for monitoring the ageing process and the operational characteristics of coolant fluids used in an industrial heavy machinery infrastructure. The chemical, physical and spectroscopic characteristics of specific industrial-grade coolant fluids were analyzed along their entire life cycle range, and proper parameters for their efficient monitoring were identified. Based on multimode polymer or silica optical fibers, wide range (3–11) pH sensors were developed by employing sol-gel derived pH sensitive coatings. The performances of the developed sensors were characterized and compared, towards their coolants’ ageing monitoring capability, proving their efficiency in such a demanding application scenario and harsh industrial environment. The operating characteristics of this type of sensors allowed their integration in an autonomous wireless sensing node, thus enabling the future use of the demonstrated platform in wireless sensor networks for a variety of industrial and environmental monitoring applications. PMID:28287488

  14. Patient monitoring using infrastructure-oriented wireless LANs.

    Science.gov (United States)

    Varshney, Upkar

    2006-01-01

    There is considerable interest in using wireless and mobile technologies in patient monitoring in diverse environments including hospitals and nursing homes. However, there has not been much work in determining the requirements of patient monitoring and satisfying these requirements using infrastructure-oriented wireless networks. In this paper, we derive several requirements of patient monitoring and show how infrastructure-oriented wireless LANs, such as versions of IEEE 802.11, can be used to support patient monitoring in diverse environments.

  15. Wireless Sensor Network for Indoor Air Quality Monitoring

    Directory of Open Access Journals (Sweden)

    Jun Li

    2014-06-01

    Full Text Available Indoor air quality monitoring system consists of wireless sensor device, nRF24L01 wireless transceiver modules, C8051MCU, STM32103 remote monitoring platform, alarm device and data server. Distributed in the interior space of wireless sensors measure parameters of the local air quality, wireless transceiver module of the MCU to transmit data to the remote monitoring platform for analysis which displayed and stored field environment data or charts. The data collecting from wireless sensors to be send by wireless Access Point to the remote data server based on B/S architecture, intelligent terminals such as mobile phone, laptop, tablet PC on the Internet monitor indoor air quality in real-time. When site environment air quality index data exceeds the threshold in the monitoring device, the remote monitoring platform sends out the alarm SMS signal to inform user by GSM module. Indoor air quality monitoring system uses modular design method, has the portability and scalability has the low manufacture cost, real-time monitoring data and man-machine interaction.

  16. Radiation area monitoring by wireless-communicating area monitor with surveillance camera

    International Nuclear Information System (INIS)

    Shimura, Mitsuo; Kobayashi, Hiromitsu; Kitahara, Hideki; Kobayashi, Hironobu; Okamoto, Shinji

    2004-01-01

    Aiming at a dose reduction and a work efficiency improvement for nuclear power plants that have high dose regions, we have developed our system of wireless-communicating Area Monitor with Surveillance Camera, and have performed an on-site test. Now we are implementing this Area Monitor with Surveillance Camera for a use as a TV camera in the controlled-area, which enables a personal computer to simultaneously display two or more dose values and site live images on the screen. For the radiation detector of this Area Monitor System, our wireless-communicating dosimeter is utilized. Image data are transmitted via a wireless Local Area Network (LAN). As a test result, image transmission of a maximum of 20 frames per second has been realized, which shows that this concept is a practical application. Remote-site monitoring also has been realized from an office desk located within the non-controlled area, adopting a Japan's wireless phone system, PHS (Personal Handy Phone) for the transmission interface. (author)

  17. Wireless body sensor networks for health-monitoring applications

    International Nuclear Information System (INIS)

    Hao, Yang; Foster, Robert

    2008-01-01

    Current wireless technologies, such as wireless body area networks and wireless personal area networks, provide promising applications in medical monitoring systems to measure specified physiological data and also provide location-based information, if required. With the increasing sophistication of wearable and implantable medical devices and their integration with wireless sensors, an ever-expanding range of therapeutic and diagnostic applications is being pursued by research and commercial organizations. This paper aims to provide a comprehensive review of recent developments in wireless sensor technology for monitoring behaviour related to human physiological responses. It presents background information on the use of wireless technology and sensors to develop a wireless physiological measurement system. A generic miniature platform and other available technologies for wireless sensors have been studied in terms of hardware and software structural requirements for a low-cost, low-power, non-invasive and unobtrusive system. (topical review)

  18. A wireless pH sensor using magnetoelasticity for measurement of body fluid acidity.

    Science.gov (United States)

    Pang, Pengfei; Gao, Xianjuan; Xiao, Xilin; Yang, Wenyue; Cai, Qingyun; Yao, Shouzhuo

    2007-04-01

    The determination of body fluid acidity using a wireless magnetoelastic pH-sensitive sensor is described. The sensor was fabricated by casting a layer of pH-sensitive polymer on a magnetoelastic ribbon. In response to an externally applied time-varying magnetic field, the magnetoelastic sensor mechanically vibrates at a characteristic frequency that is inversely dependent upon the mass of the pH polymer film, which varies as the film swells and shrinks in response to pH. As the magnetoelastic sensor is magnetostrictive, the mechanical vibrations of the sensor launch magnetic flux that can be detected remotely using a pickup coil. The sensor can be used for direct measurements of body fluid acidity without a pretreatment of the sample by using a filtration membrane. A reversible and linear response was obtained between pH 5.0 and 8.0 with a measurement resolution of pH 0.1 and a slope of 0.2 kHz pH(-1). Since there are no physical connections between the sensor and the instrument, the sensor can be applied to in vivo and in situ monitoring of the physiological pH and its fluctuations.

  19. A New Mechanism for Network Monitoring and Shielding in Wireless LAN

    Directory of Open Access Journals (Sweden)

    Jiujun Cheng

    2014-01-01

    Full Text Available Wireless LAN (WLAN technology is developing rapidly with the help of wireless communication technology and social demand. During the development of WLAN, the security is more and more important, and wireless monitoring and shielding are of prime importance for network security. In this paper, we have explored various security issues of IEEE 802.11 based wireless network and analyzed numerous problems in implementing the wireless monitoring and shielding system. We identify the challenges which monitoring and shielding system needs to be aware of, and then provide a feasible mechanism to avoid those challenges. We implemented an actual wireless LAN monitoring and shielding system on Maemo operating system to monitor wireless network data stream efficiently and solve the security problems of mobile users. More importantly, the system analyzes wireless network protocols efficiently and flexibly, reveals rich information of the IEEE 802.11 protocol such as traffic distribution and different IP connections, and graphically displays later. Moreover, the system running results show that the system has the capability to work stably, and accurately and analyze the wireless protocols efficiently.

  20. A Wildlife Monitoring System Based on Wireless Image Sensor Networks

    Directory of Open Access Journals (Sweden)

    Junguo Zhang

    2014-10-01

    Full Text Available Survival and development of wildlife sustains the balance and stability of the entire ecosystem. Wildlife monitoring can provide lots of information such as wildlife species, quantity, habits, quality of life and habitat conditions, to help researchers grasp the status and dynamics of wildlife resources, and to provide basis for the effective protection, sustainable use, and scientific management of wildlife resources. Wildlife monitoring is the foundation of wildlife protection and management. Wireless Sensor Networks (WSN technology has become the most popular technology in the field of information. With advance of the CMOS image sensor technology, wireless sensor networks combined with image sensors, namely Wireless Image Sensor Networks (WISN technology, has emerged as an alternative in monitoring applications. Monitoring wildlife is one of its most promising applications. In this paper, system architecture of the wildlife monitoring system based on the wireless image sensor networks was presented to overcome the shortcomings of the traditional monitoring methods. Specifically, some key issues including design of wireless image sensor nodes and software process design have been studied and presented. A self-powered rotatable wireless infrared image sensor node based on ARM and an aggregation node designed for large amounts of data were developed. In addition, their corresponding software was designed. The proposed system is able to monitor wildlife accurately, automatically, and remotely in all-weather condition, which lays foundations for applications of wireless image sensor networks in wildlife monitoring.

  1. Wireless Sensor Networks for Long Distance Pipeline Monitoring

    OpenAIRE

    Augustine C. Azubogu; Victor E. Idigo; Schola U. Nnebe; Obinna S. Oguejiofor; Simon E.

    2013-01-01

    The main goal of this seminal paper is to introduce the application of Wireless Sensor Networks (WSN) in long distance infrastructure monitoring (in particular in pipeline infrastructure monitoring) – one of the on-going research projects by the Wireless Communication Research Group at the department of Electronic and Computer Engineering, Nnamdi Azikiwe University, Awka. The current sensor network architectures for monitoring long distance pipeline infrastructures are pr...

  2. Integration of Low-Power ASIC and MEMS Sensors for Monitoring Gastrointestinal Tract Using a Wireless Capsule System.

    Science.gov (United States)

    Arefin, Md Shamsul; Redoute, Jean-Michel; Yuce, Mehmet Rasit

    2018-01-01

    This paper presents a wireless capsule microsystem to detect and monitor the pH, pressure, and temperature of the gastrointestinal tract in real time. This research contributes to the integration of sensors (microfabricated capacitive pH, capacitive pressure, and resistive temperature sensors), frequency modulation and pulse width modulation based interface IC circuits, microcontroller, and transceiver with meandered conformal antenna for the development of a capsule system. The challenges associated with the system miniaturization, higher sensitivity and resolution of sensors, and lower power consumption of interface circuits are addressed. The layout, PCB design, and packaging of a miniaturized wireless capsule, having diameter of 13 mm and length of 28 mm, have successfully been implemented. A data receiver and recorder system is also designed to receive physiological data from the wireless capsule and to send it to a computer for real-time display and recording. Experiments are performed in vitro using a stomach model and minced pork as tissue simulating material. The real-time measurements also validate the suitability of sensors, interface circuits, and meandered antenna for wireless capsule applications.

  3. Patient Health Monitoring Using Wireless Body Area Network

    Directory of Open Access Journals (Sweden)

    Hsu Myat Thwe

    2015-06-01

    Full Text Available Abstract Nowadays remote patient health monitoring using wireless technology plays very vigorous role in a society. Wireless technology helps monitoring of physiological parameters like body temperature heart rate respiration blood pressure and ECG. The main aim of this paper is to propose a wireless sensor network system in which both heart rate and body temperature ofmultiplepatients can monitor on PC at the same time via RF network. The proposed prototype system includes two sensor nodes and receiver node base station. The sensor nodes are able to transmit data to receiver using wireless nRF transceiver module.The nRF transceiver module is used to transfer the data from microcontroller to PC and a graphical user interface GUI is developed to display the measured data and save to database. This system can provide very cheaper easier and quick respondent history of patient.

  4. A Piezoelectric Passive Wireless Sensor for Monitoring Strain

    Science.gov (United States)

    Zou, Xiyue; Ferri, Paul N.; Hogan, Ben; Mazzeo, Aaron D.; Hull. Patrick V.

    2017-01-01

    Interest in passive wireless sensing has grown over the past few decades to meet demands in structural health monitoring.(Deivasigamani et al., 2013; Wilson and Juarez, 2014) This work describes a passive wireless sensor for monitoring strain, which does not have an embedded battery or chip. Without an embedded battery, the passive wireless sensor has the potential to maintain its functionality over long periods in remote/harsh environments. This work also focuses on monitoring small strain (less than 1000 micro-?). The wireless sensing system includes a reader unit, a coil-like transponder, and a sensing unit. It operates in the Megahertz (MHz) frequency range, which allows for a few centimeters of separation between the reader and sensing unit during measurements. The sensing unit is a strain-sensitive piezoelectric resonator that maximizes the energy efficiency at the resonance frequency, so it converts nanoscale mechanical variations to detectable differences in electrical signal. In response to an external loading, the piezoelectric sensor breaks from its original electromechanical equilibrium, and the resonant frequency shifts as the system reaches a new balanced equilibrium. In this work, the fixture of the sensing unit is a small, sticker-like package that converts the surface strain of a test material to measurable shifts in resonant frequencies. Furthermore, electromechanical modeling provides a lumped-parameter model of the system to describe and predict the measured wireless signals of the sensor. Detailed characterization demonstrates how this wireless sensor has resolution comparable to that of conventional wired strain sensors for monitoring small strain.

  5. Structural health monitoring using wireless sensor networks

    Science.gov (United States)

    Sreevallabhan, K.; Nikhil Chand, B.; Ramasamy, Sudha

    2017-11-01

    Monitoring and analysing health of large structures like bridges, dams, buildings and heavy machinery is important for safety, economical, operational, making prior protective measures, and repair and maintenance point of view. In recent years there is growing demand for such larger structures which in turn make people focus more on safety. By using Microelectromechanical Systems (MEMS) Accelerometer we can perform Structural Health Monitoring by studying the dynamic response through measure of ambient vibrations and strong motion of such structures. By using Wireless Sensor Networks (WSN) we can embed these sensors in wireless networks which helps us to transmit data wirelessly thus we can measure the data wirelessly at any remote location. This in turn reduces heavy wiring which is a cost effective as well as time consuming process to lay those wires. In this paper we developed WSN based MEMS-accelerometer for Structural to test the results in the railway bridge near VIT University, Vellore campus.

  6. A ph sensor based on a flexible substrate

    Science.gov (United States)

    Huang, Wen-Ding

    pH sensor is an essential component used in many chemical, food, and bio-material industries. Conventional glass electrodes have been used to construct pH sensors, however, have some disadvantages. Glass electrodes are easily affected by alkaline or HF solution, they require a high input impedance pH meter, they often exhibit a sluggish response. In some specific applications, it is also difficult to use glass electrodes for in vivo biomedical or food monitoring applications due to the difficulty of size miniaturization, planarization and polymerization based on current manufacturing technologies. In this work, we have demonstrated a novel flexible pH sensor based on low-cost sol-gel fabrication process of iridium oxide (IrOx) sensing film (IROF). A pair of flexible miniature IrOx/AgCl electrode generated the action potential from the solution by electrochemical mechanism to obtain the pH level of the reagent. The fabrication process including sol-gel, thermal oxidation, and the electro-plating process of the silver chloride (AgCl) reference electrode were reported in the work. The IrOx film was verified and characterized using electron dispersive analysis (EDAX), scanning electron microscope (SEM), and x-ray diffraction (XRD). The flexible pH sensor's performance and characterization have been investigated with different testing parameters such as sensitivity, response time, stability, reversibility, repeatability, selectivity and temperature dependence. The flexible IrOx pH sensors exhibited promising sensing performance with a near-Nernstian response of sensitivity which is between --51.1mV/pH and --51.7mV/pH in different pH levels ranging from 1.5 to 12 at 25°C. Two applications including gastroesophageal reflux disease (GERD) diagnosis and food freshness wireless monitoring using our micro-flexible IrOx pH sensors were demonstrated. For the GERD diagnosing system, we embedded the micro flexible pH sensor on a 1.2cmx3.8cm of the capsule size of wireless sensor

  7. Automated wireless monitoring system for cable tension using smart sensors

    Science.gov (United States)

    Sim, Sung-Han; Li, Jian; Jo, Hongki; Park, Jongwoong; Cho, Soojin; Spencer, Billie F.; Yun, Chung-Bang

    2013-04-01

    Cables are critical load carrying members of cable-stayed bridges; monitoring tension forces of the cables provides valuable information for SHM of the cable-stayed bridges. Monitoring systems for the cable tension can be efficiently realized using wireless smart sensors in conjunction with vibration-based cable tension estimation approaches. This study develops an automated cable tension monitoring system using MEMSIC's Imote2 smart sensors. An embedded data processing strategy is implemented on the Imote2-based wireless sensor network to calculate cable tensions using a vibration-based method, significantly reducing the wireless data transmission and associated power consumption. The autonomous operation of the monitoring system is achieved by AutoMonitor, a high-level coordinator application provided by the Illinois SHM Project Services Toolsuite. The monitoring system also features power harvesting enabled by solar panels attached to each sensor node and AutoMonitor for charging control. The proposed wireless system has been deployed on the Jindo Bridge, a cable-stayed bridge located in South Korea. Tension forces are autonomously monitored for 12 cables in the east, land side of the bridge, proving the validity and potential of the presented tension monitoring system for real-world applications.

  8. Ultra Secure High Reliability Wireless Radiation Monitor

    International Nuclear Information System (INIS)

    Cordaro, J.; Shull, D.; Farrar, M.; Reeves, G.

    2011-01-01

    Radiation monitoring in nuclear facilities is essential to safe operation of the equipment as well as protecting personnel. In specific, typical air monitoring of radioactive gases or particulate involves complex systems of valves, pumps, piping and electronics. The challenge is to measure a representative sample in areas that are radioactively contaminated. Running cables and piping to these locations is very expensive due to the containment requirements. Penetration into and out of an airborne or containment area is complex and costly. The process rooms are built with thick rebar-enforced concrete walls with glove box containment chambers inside. Figure 1 shows high temperature radiation resistance cabling entering the top of a typical glove box. In some case, the entire processing area must be contained in a 'hot cell' where the only access into the chamber is via manipulators. An example is shown in Figure 2. A short range wireless network provides an ideal communication link for transmitting the data from the radiation sensor to a 'clean area', or area absent of any radiation fields or radioactive contamination. Radiation monitoring systems that protect personnel and equipment must meet stringent codes and standards due to the consequences of failure. At first glance a wired system would seem more desirable. Concerns with wireless communication include latency, jamming, spoofing, man in the middle attacks, and hacking. The Department of Energy's Savannah River National Laboratory (SRNL) has developed a prototype wireless radiation air monitoring system that address many of the concerns with wireless and allows quick deployment in radiation and contamination areas. It is stand alone and only requires a standard 120 VAC, 60 Hz power source. It is designed to be mounted or portable. The wireless link uses a National Security Agency (NSA) Suite B compliant wireless network from Fortress Technologies that is considered robust enough to be used for classified data

  9. ULTRA SECURE HIGH RELIABILITY WIRELESS RADIATION MONITOR

    Energy Technology Data Exchange (ETDEWEB)

    Cordaro, J.; Shull, D.; Farrar, M.; Reeves, G.

    2011-08-03

    Radiation monitoring in nuclear facilities is essential to safe operation of the equipment as well as protecting personnel. In specific, typical air monitoring of radioactive gases or particulate involves complex systems of valves, pumps, piping and electronics. The challenge is to measure a representative sample in areas that are radioactively contaminated. Running cables and piping to these locations is very expensive due to the containment requirements. Penetration into and out of an airborne or containment area is complex and costly. The process rooms are built with thick rebar-enforced concrete walls with glove box containment chambers inside. Figure 1 shows high temperature radiation resistance cabling entering the top of a typical glove box. In some case, the entire processing area must be contained in a 'hot cell' where the only access into the chamber is via manipulators. An example is shown in Figure 2. A short range wireless network provides an ideal communication link for transmitting the data from the radiation sensor to a 'clean area', or area absent of any radiation fields or radioactive contamination. Radiation monitoring systems that protect personnel and equipment must meet stringent codes and standards due to the consequences of failure. At first glance a wired system would seem more desirable. Concerns with wireless communication include latency, jamming, spoofing, man in the middle attacks, and hacking. The Department of Energy's Savannah River National Laboratory (SRNL) has developed a prototype wireless radiation air monitoring system that address many of the concerns with wireless and allows quick deployment in radiation and contamination areas. It is stand alone and only requires a standard 120 VAC, 60 Hz power source. It is designed to be mounted or portable. The wireless link uses a National Security Agency (NSA) Suite B compliant wireless network from Fortress Technologies that is considered robust enough to be

  10. Esophageal pH monitoring

    Science.gov (United States)

    pH monitoring - esophageal; Esophageal acidity test ... Esophageal pH monitoring is used to check how much stomach acid is entering the esophagus. It also checks how well the acid is cleared downward into the ...

  11. Sistem Pemantauan Kadar pH, Suhu dan Warna pada Air Sungai Melalui Web Berbasis Wireless Sensor Network

    Directory of Open Access Journals (Sweden)

    Ahmad Sabiq

    2017-07-01

    Full Text Available Water is a very important natural resource for human life and other living things. Water pollution, especially in river water, should be controlled because of the rapid development. One technology to monitor multiple physical quantities scattered in a region is the Wireless Sensor Network (WSN. WSN technology has the ability to transmit data from sensor readings and forward data received from other nodes. In this study, prototype monitoring system of pH level, temperature, and color based on WSN that can be monitored through the developed web. The sensors at each node are connected to Arduino Uno as a processing unit, data read from the sensor is sent to the sync node via XBee wireless device. In the sink, the PC also serves as a database server and a web server is used. Test results with two different dispersion indicate that sensor readings can be read by all nodes and received by the sync node and can be displayed on web pages that have been built. Air merupakan sumber daya alam yang sangat penting bagi kehidupan manusia dan mahluk hidup lainnya. Pencemaran air khususnya air sungai perlu dikendalikan seiring makin cepatnya pembangunan. Salah satu teknologi untuk melakukan pemantauan besaran fisik dalam wilayah yang tersebar adalah Wireless Sensor Network (WSN, yang memiliki kemampuan untuk mengirimkan data hasil pembacaan sensor serta meneruskan data yang diterima dari node lain. Pada penelitian ini dikembangkan purwarupa sistem pemantauan kadar pH, suhu dan warna berbasis WSN yang dapat dipantau melalui web. Sensor pada setiap node dihubungkan ke Arduino Uno sebagai unit pemroses, data yang dibaca dari sensor dikirimkan ke node sink melalui perangkat XBee nirkabel. Pada sink digunakan PC yang berfungsi juga sebagai database server dan web server. Hasil dari pengujian dengan dua penyebaran yang berbeda didapatkan hasil bahwa pembacaan sensor dapat dibaca oleh seluruh node dan diterima oleh sink serta dapat ditampilkan melalui laman web yang

  12. A wireless sensor network design and evaluation for large structural strain field monitoring

    International Nuclear Information System (INIS)

    Qiu, Zixue; Wu, Jian; Yuan, Shenfang

    2011-01-01

    Structural strain changes under external environmental or mechanical loads are the main monitoring parameters in structural health monitoring or mechanical property tests. This paper presents a wireless sensor network designed for monitoring large structural strain field variation. First of all, a precision strain sensor node is designed for multi-channel strain gauge signal conditioning and wireless monitoring. In order to establish a synchronous strain data acquisition network, the cluster-star network synchronization method is designed in detail. To verify the functionality of the designed wireless network for strain field monitoring capability, a multi-point network evaluation system is developed for an experimental aluminum plate structure for load variation monitoring. Based on the precision wireless strain nodes, the wireless data acquisition network is deployed to synchronously gather, process and transmit strain gauge signals and monitor results under concentrated loads. This paper shows the efficiency of the wireless sensor network for large structural strain field monitoring

  13. Wound dressing with reusable electronics for wireless monitoring

    KAUST Repository

    Shamim, Atif

    2016-10-20

    A wound dressing device with reusable electronics for wireless monitoring and a method of making the same are provided. The device can be a smart device. In an embodiment, the device has a disposable portion including one or more sensors and a reusable portion including wireless electronics. The one or more sensors can be secured to a flexible substrate and can be printed by non-contact printing on the substrate. The disposable portion can be removably coupled to the one or more sensors. The device can include one or more sensors for wireless monitoring of a wound, a wound dressing, a body fluid exuded by the wound and/or wearer health.

  14. Wireless monitoring system for personal dose

    International Nuclear Information System (INIS)

    Kobayashi, Hironobu; Kawamura, Takeshi; Inoue, Takayuki

    2000-01-01

    Fuji Electric has developed a system for the higher radiation controlled area in nuclear power plants, in which exposure dose data measured on the wearer's chest, hands, and legs are transferred by wireless to the data control equipment so that the exposure dose can be controlled in real time. The system using a specified low-power radio wave causes no interference to the other types of dosimeters. The data control equipment automatically saves data received from the dosimeters and also has functions of calibration of dosimeters and maintenance of the wireless system. This paper describes the wireless monitoring system that consists of chest and parts dosimeters and data control equipment. (author)

  15. On the Design of a Wireless Multi-antenna Monitoring System

    NARCIS (Netherlands)

    Hofstra, K.L.; Cronie, H.S.

    2004-01-01

    In this paper we investigate the design of a wireless monitoring system. This system consists of several wireless monitoring units, each transmitting data collected from sensors. This data is received and processed at a central control unit. The typical operating environment poses several

  16. Design of wireless sensor system for neonatal monitoring

    NARCIS (Netherlands)

    Chen, W.; Nguyen, S.T.; Bouwstra, S.; Coops, R.; Brown, L.; Bambang Oetomo, S.; Feijs, L.M.G.

    2011-01-01

    In this paper, we present the application of wireless sensor technology and the advantages it will inherently have for neonatal care and monitoring at Neonatal Intensive Care Units (NICU). An electrocardiography (ECG) readout board and a wireless transceiver module developed by IMEC at the Holst

  17. Wireless connectivity for health and sports monitoring: a review.

    Science.gov (United States)

    Armstrong, S

    2007-05-01

    This is a review of health and sports monitoring research that uses or could benefit from wireless connectivity. New, enabling wireless connectivity standards are evaluated for their suitability, and an assessment of current exploitation of these technologies is summarised. An example of the application is given, highlighting the capabilities of a network of wireless sensors. Issues of timing and power consumption in a battery-powered system are addressed to highlight the benefits networking can provide, and a suggestion of how monitoring different biometric signals might allow one to gain additional information about an athlete or patient is made.

  18. Wireless physiological monitoring system for psychiatric patients.

    Science.gov (United States)

    Rademeyer, A J; Blanckenberg, M M; Scheffer, C

    2009-01-01

    Patients in psychiatric hospitals that are sedated or secluded are at risk of death or injury if they are not continuously monitored. Some psychiatric patients are restless and aggressive, and hence the monitoring device should be robust and must transmit the data wirelessly. Two devices, a glove that measures oxygen saturation and a dorsally-mounted device that measures heart rate, skin temperature and respiratory rate were designed and tested. Both devices connect to one central monitoring station using two separate Bluetooth connections, ensuring a completely wireless setup. A Matlab graphical user interface (GUI) was developed for signal processing and monitoring of the vital signs of the psychiatric patient. Detection algorithms were implemented to detect ECG arrhythmias such as premature ventricular contraction and atrial fibrillation. The prototypes were manufactured and tested in a laboratory setting on healthy volunteers.

  19. Wireless Power Supply via Coupled Magnetic Resonance for on-line Monitoring Wireless Sensor of High-voltage Electrical Equipment

    DEFF Research Database (Denmark)

    Xingkui, Mao; Qisheng, Huang; Yudi, Xiao

    2016-01-01

    On-line monitoring of high-voltage electrical equipment (HV-EE) aiming to detect faults effectively has become crucial to avoid serious accidents. Moreover, highly reliable power supplies are the key component for the wireless sensors equipped in such on-line monitoring systems. Therefore......, in this paper, the wireless power supply via coupled magnetic resonance (MR-WPS) is proposed for powering the wireless sensor and the associated wireless sensor solution is also proposed. The key specifications of the MR-WPS working in switchgear cabinet with a harsh operation environment are analyzed...... power is able to be delivered to the wireless sensor through the designed MR-WPS, and therefore the theoretical analysis and design is verified....

  20. A Wireless Physiological Signal Monitoring System with Integrated Bluetooth and WiFi Technologies.

    Science.gov (United States)

    Yu, Sung-Nien; Cheng, Jen-Chieh

    2005-01-01

    This paper proposes a wireless patient monitoring system which integrates Bluetooth and WiFi wireless technologies. A wireless portable multi-parameter device was designated to acquire physiological signals and transmit them to a local server via Bluetooth wireless technology. Four kinds of monitor units were designed to communicate via the WiFi wireless technology, including a local monitor unit, a control center, mobile devices (personal digital assistant; PDA), and a web page. The use of various monitor units is intending to meet different medical requirements for different medical personnel. This system was demonstrated to promote the mobility and flexibility for both the patients and the medical personnel, which further improves the quality of health care.

  1. Low Cost Inkjet Printed Smart Bandage for Wireless Monitoring of Chronic Wounds

    KAUST Repository

    Farooqui, Muhammad Fahad

    2016-06-29

    Chronic wounds affect millions of patients around the world and their treatment is challenging as the early signs indicating their development are subtle. In addition, a type of chronic wound, known as pressure ulcer, develops in patients with limited mobility. Infection and frequent bleeding are indicators of chronic wound development. In this article, we present an unprecedented low cost continuous wireless monitoring system, realized through inkjet printing on a standard bandage, which can send early warnings for the parameters like irregular bleeding, variations in pH levels and external pressure at wound site. In addition to the early warnings, this smart bandage concept can provide long term wound progression data to the health care providers. The smart bandage comprises a disposable part which has the inkjet printed sensors and a reusable part constituting the wireless electronics. This work is an important step towards futuristic wearable sensors for remote health care applications.

  2. Low Cost Inkjet Printed Smart Bandage for Wireless Monitoring of Chronic Wounds.

    Science.gov (United States)

    Farooqui, Muhammad Fahad; Shamim, Atif

    2016-06-29

    Chronic wounds affect millions of patients around the world and their treatment is challenging as the early signs indicating their development are subtle. In addition, a type of chronic wound, known as pressure ulcer, develops in patients with limited mobility. Infection and frequent bleeding are indicators of chronic wound development. In this article, we present an unprecedented low cost continuous wireless monitoring system, realized through inkjet printing on a standard bandage, which can send early warnings for the parameters like irregular bleeding, variations in pH levels and external pressure at wound site. In addition to the early warnings, this smart bandage concept can provide long term wound progression data to the health care providers. The smart bandage comprises a disposable part which has the inkjet printed sensors and a reusable part constituting the wireless electronics. This work is an important step towards futuristic wearable sensors for remote health care applications.

  3. Low Cost Inkjet Printed Smart Bandage for Wireless Monitoring of Chronic Wounds

    Science.gov (United States)

    Farooqui, Muhammad Fahad; Shamim, Atif

    2016-06-01

    Chronic wounds affect millions of patients around the world and their treatment is challenging as the early signs indicating their development are subtle. In addition, a type of chronic wound, known as pressure ulcer, develops in patients with limited mobility. Infection and frequent bleeding are indicators of chronic wound development. In this article, we present an unprecedented low cost continuous wireless monitoring system, realized through inkjet printing on a standard bandage, which can send early warnings for the parameters like irregular bleeding, variations in pH levels and external pressure at wound site. In addition to the early warnings, this smart bandage concept can provide long term wound progression data to the health care providers. The smart bandage comprises a disposable part which has the inkjet printed sensors and a reusable part constituting the wireless electronics. This work is an important step towards futuristic wearable sensors for remote health care applications.

  4. Low Cost Inkjet Printed Smart Bandage for Wireless Monitoring of Chronic Wounds

    KAUST Repository

    Farooqui, Muhammad Fahad; Shamim, Atif

    2016-01-01

    Chronic wounds affect millions of patients around the world and their treatment is challenging as the early signs indicating their development are subtle. In addition, a type of chronic wound, known as pressure ulcer, develops in patients with limited mobility. Infection and frequent bleeding are indicators of chronic wound development. In this article, we present an unprecedented low cost continuous wireless monitoring system, realized through inkjet printing on a standard bandage, which can send early warnings for the parameters like irregular bleeding, variations in pH levels and external pressure at wound site. In addition to the early warnings, this smart bandage concept can provide long term wound progression data to the health care providers. The smart bandage comprises a disposable part which has the inkjet printed sensors and a reusable part constituting the wireless electronics. This work is an important step towards futuristic wearable sensors for remote health care applications.

  5. Online Monitoring of Temperature Using Wireless Module in a Rotating Drum-Applicable to Leather Industries

    Directory of Open Access Journals (Sweden)

    T. Narayani

    2015-07-01

    Full Text Available In order to ensure safe and efficient operation of unit processes, foremost requirement is accurate measurement of process variables, with which quality can be monitored and controlled. Understanding the necessity of online monitoring of process temperature in tanning/dyeing process, the article is focused on wireless measurement of physical parameters involved in wet processing of hides/ skins and monitoring through digital computer for further analysis. It’s a challenging task to measure and communicate the process information from a closed rotating drum. Wireless communication is proposed because of its enhanced security, superfast operating speed, and increased mobility. The physical parameters which are predominant in tanning process are temperature, pH, conductivity etc. of the process fluid. It is necessary to carryout dyeing at 65 0C for producing raw to wet blue process. As a first attempt, wireless module for temperature measurement has been developed. The module includes signal transmitter and receiver section. In the transmitter section, the temperature which is measured by an integrated sensor is converted into frequency signal and imposed on a radio frequency signal (career signal and get transmitted in air. On the other side, receiver section receives the radio frequency signal and converts that into electrical signals to interface with the digital computer for online monitoring. The module is able to receive and control temperature of tanning drum within a distance of 100 meters. Real time experiments on the fabricated model show interesting results for commercialization.

  6. Modeling Wireless Sensor Networks for Monitoring in Biological Processes

    DEFF Research Database (Denmark)

    Nadimi, Esmaeil

    parameters, as the use of wired sensors is impractical. In this thesis, a ZigBee based wireless sensor network was employed and only a part of the herd was monitored, as monitoring each individual animal in a large herd under practical conditions is inefficient. Investigations to show that the monitored...... (MMAE) approach to the data resulted in the highest classification success rate, due to the use of precise forth-order mathematical models which relate the feed offer to the pitch angle of the neck. This thesis shows that wireless sensor networks can be successfully employed to monitor the behavior...

  7. Wireless sensor network for monitoring soil moisture and weather conditions

    Science.gov (United States)

    A wireless sensor network (WSN) was developed and deployed in three fields to monitor soil water status and collect weather data for irrigation scheduling. The WSN consists of soil-water sensors, weather sensors, wireless data loggers, and a wireless modem. Soil-water sensors were installed at three...

  8. The wireless sensor network monitoring system for regional environmental nuclear radiation

    International Nuclear Information System (INIS)

    Liu Chong; Liu Dao; Wang Yaojun; Xie Yuxi; Song Lingling

    2012-01-01

    The wireless sensor network (WSN) technology has been utilized to design a new regional environmental radiation monitoring system based on the wireless sensor networks to meet the special requirements of monitoring the nuclear radiation in certain regions, and realize the wireless transmission of measurement data, information processing and integrated measurement of the nuclear radiation and the corresponding environmental parameters in real time. The system can be applied to the wireless monitoring of nuclear radiation dose in the nuclear radiation environment. The measured data and the distribution of radiation dose can be vividly displayed on the graphical interface in the host computer. The system has functioned with the wireless transmission and control, the data storage, the historical data inquiry, the node remote control. The experimental results show that the system has the advantages of low power consumption, stable performance, network flexibility, range of measurement and so on. (authors)

  9. Application for vibration monitoring of aspheric surface machining based on wireless sensor networks

    Science.gov (United States)

    Han, Chun Guang; Guo, Yin Biao; Jiang, Chen

    2010-05-01

    Any kinds of tiny vibration of machine tool parts will have a great influence on surface quality of the workpiece at ultra-precise machining process of aspheric surface. At present the major way for decreasing influence of vibration is machining compensation technology. Therefore it is important for machining compensation control to acquire and transmit these vibration signals effectively. This paper presents a vibration monitoring system of aspheric surface machining machine tool based on wireless sensor networks (WSN). Some key issues of wireless sensor networks for vibration monitoring system of aspheric surface machining are discussed. The reliability of data transmission, network communication protocol and synchronization mechanism of wireless sensor networks are studied for the vibration monitoring system. The proposed system achieves multi-sensors vibration monitoring involving the grinding wheel, the workpiece and the workbench spindle. The wireless transmission of vibration signals is achieved by the combination with vibration sensor nodes and wireless network. In this paper, these vibration sensor nodes are developed. An experimental platform is structured which employs wireless sensor networks to the vibration monitoring system in order to test acquisition and wireless transmission of vibration signal. The test results show that the proposed system can achieve vibration data transmission effectively and reliability and meet the monitoring requirements of aspheric surface machining machine tool.

  10. Industrial wireless monitoring with energy-harvesting devices

    NARCIS (Netherlands)

    Brian Blake, M.; Das, Kallol; Zand, P.; Havinga, Paul J.M.

    Vibration monitoring and analysis techniques are used increasingly for predictive maintenance. While traditional vibration monitoring relies on wired sensor networks, recent industrial technologies such as WirelessHART, ISA100.11a, and IEEE802.15.4e have brought a paradigm shift in the automation

  11. Sniffer Channel Selection for Monitoring Wireless LANs

    Science.gov (United States)

    Song, Yuan; Chen, Xian; Kim, Yoo-Ah; Wang, Bing; Chen, Guanling

    Wireless sniffers are often used to monitor APs in wireless LANs (WLANs) for network management, fault detection, traffic characterization, and optimizing deployment. It is cost effective to deploy single-radio sniffers that can monitor multiple nearby APs. However, since nearby APs often operate on orthogonal channels, a sniffer needs to switch among multiple channels to monitor its nearby APs. In this paper, we formulate and solve two optimization problems on sniffer channel selection. Both problems require that each AP be monitored by at least one sniffer. In addition, one optimization problem requires minimizing the maximum number of channels that a sniffer listens to, and the other requires minimizing the total number of channels that the sniffers listen to. We propose a novel LP-relaxation based algorithm, and two simple greedy heuristics for the above two optimization problems. Through simulation, we demonstrate that all the algorithms are effective in achieving their optimization goals, and the LP-based algorithm outperforms the greedy heuristics.

  12. Applications of Wireless Sensor Networks in Marine Environment Monitoring: A Survey

    Science.gov (United States)

    Xu, Guobao; Shen, Weiming; Wang, Xianbin

    2014-01-01

    With the rapid development of society and the economy, an increasing number of human activities have gradually destroyed the marine environment. Marine environment monitoring is a vital problem and has increasingly attracted a great deal of research and development attention. During the past decade, various marine environment monitoring systems have been developed. The traditional marine environment monitoring system using an oceanographic research vessel is expensive and time-consuming and has a low resolution both in time and space. Wireless Sensor Networks (WSNs) have recently been considered as potentially promising alternatives for monitoring marine environments since they have a number of advantages such as unmanned operation, easy deployment, real-time monitoring, and relatively low cost. This paper provides a comprehensive review of the state-of-the-art technologies in the field of marine environment monitoring using wireless sensor networks. It first describes application areas, a common architecture of WSN-based oceanographic monitoring systems, a general architecture of an oceanographic sensor node, sensing parameters and sensors, and wireless communication technologies. Then, it presents a detailed review of some related projects, systems, techniques, approaches and algorithms. It also discusses challenges and opportunities in the research, development, and deployment of wireless sensor networks for marine environment monitoring. PMID:25215942

  13. Using Wireless Sensor Networks to Achieve Intelligent Monitoring for High-Temperature Gas-Cooled Reactor

    Directory of Open Access Journals (Sweden)

    Jianghai Li

    2017-01-01

    Full Text Available High-temperature gas-cooled reactors (HTGR can incorporate wireless sensor network (WSN technology to improve safety and economic competitiveness. WSN has great potential in monitoring the equipment and processes within nuclear power plants (NPPs. This technology not only reduces the cost of regular monitoring but also enables intelligent monitoring. In intelligent monitoring, large sets of heterogeneous data collected by the WSN can be used to optimize the operation and maintenance of the HTGR. In this paper, WSN-based intelligent monitoring schemes that are specific for applications of HTGR are proposed. Three major concerns regarding wireless technology in HTGR are addressed: wireless devices interference, cybersecurity of wireless networks, and wireless standards selected for wireless platform. To process nonlinear and non-Gaussian data obtained by WSN for fault diagnosis, novel algorithms combining Kernel Entropy Component Analysis (KECA and support vector machine (SVM are developed.

  14. Bluetooth low energy: wireless connectivity for medical monitoring.

    Science.gov (United States)

    Omre, Alf Helge

    2010-03-01

    Electronic wireless sensors could cut medical costs by enabling physicians to remotely monitor vital signs such as blood pressure, blood glucose, and blood oxygenation while patients remain at home. According to the IDC report "Worldwide Bluetooth Semiconductor 2008-2012 Forecast," published November 2008, a forthcoming radio frequency communication ("wireless connectivity") standard, Bluetooth low energy, will link wireless sensors via radio signals to the 70% of cell phones and computers likely to be fitted with the next generation of Bluetooth wireless technology, leveraging a ready-built infrastructure for data transmission. Analysis of trends indicated by this data can help physicians better manage diseases such as diabetes. The technology also addresses the concerns of cost, compatibility, and interoperability that have previously stalled widespread adoption of wireless technology in medical applications. (c) 2010 Diabetes Technology Society.

  15. Wireless sensor network and monitoring for environment

    OpenAIRE

    Han, Liang

    2011-01-01

    In recent years, wireless sensor network technology is developing at a surprisingly high speed. More and more fields have started to use the wireless sensor network technology and find the advantages of WSN, such as military applications, environmental observing and forecasting system, medical care, smart home, structure monitoring. The world Environmental Summit in Copenhagen on 2010 has just concluded that environment has become the world’s main concern. But regrettably the summit did no...

  16. Ultra low power signal oriented approach for wireless health monitoring.

    Science.gov (United States)

    Marinkovic, Stevan; Popovici, Emanuel

    2012-01-01

    In recent years there is growing pressure on the medical sector to reduce costs while maintaining or even improving the quality of care. A potential solution to this problem is real time and/or remote patient monitoring by using mobile devices. To achieve this, medical sensors with wireless communication, computational and energy harvesting capabilities are networked on, or in, the human body forming what is commonly called a Wireless Body Area Network (WBAN). We present the implementation of a novel Wake Up Receiver (WUR) in the context of standardised wireless protocols, in a signal-oriented WBAN environment and present a novel protocol intended for wireless health monitoring (WhMAC). WhMAC is a TDMA-based protocol with very low power consumption. It utilises WBAN-specific features and a novel ultra low power wake up receiver technology, to achieve flexible and at the same time very low power wireless data transfer of physiological signals. As the main application is in the medical domain, or personal health monitoring, the protocol caters for different types of medical sensors. We define four sensor modes, in which the sensors can transmit data, depending on the sensor type and emergency level. A full power dissipation model is provided for the protocol, with individual hardware and application parameters. Finally, an example application shows the reduction in the power consumption for different data monitoring scenarios.

  17. Development of a PZT-based wireless digital monitor for composite impact monitoring

    International Nuclear Information System (INIS)

    Liu, Peipei; Yuan, Shenfang; Qiu, Lei

    2012-01-01

    One of the major concerns in the whole lifetime of composite materials in aircraft is their susceptibility to impact damage. And there has existed a need in recent years to develop an online structural health monitoring (SHM) system for impact monitoring. This paper proposes a new PZT-based wireless digital impact monitoring system development method aimed at giving a localized area for further inspection. Based on this method, a PZT-based wireless digital impact monitor (WDIM) with advantages of compactness, light weight, low power consumption and high efficiency is developed. Differently from conventional SHM systems, the complex analog circuits are removed and the whole process is achieved in a digital way by turning the output of the PZT sensor directly into a digital queue through a comparator. A simple but efficient sub-region location method is implemented in a field programmable gate array (FPGA) as the processing core of the WDIM to detect and record the impact events. In addition, wireless communication technology is used in the WDIM to transmit data and form a monitoring network. To illustrate the capability of the WDIM, a complete process dealing with an impact event is investigated and the stability of the WDIM is also evaluated in this paper. The WDIM shows its potential for real online applications in aircraft. (paper)

  18. Wireless vibration monitoring in a US coal-fired plant

    Energy Technology Data Exchange (ETDEWEB)

    Gbur, G.L.; Wier, W.; Bark, T.

    2006-07-15

    Choosing a reliable wireless systems able to provide data on vibration magnitudes in a coal pulveriser was never going to be easy, so two systems were tested alongside each other. One was the Wireless MCT System produced by SKF Reliability Systems; the other was from an alternative vendor. A replacement wireless vibration monitor was required at the Baldwin Energy Complex near Decartar, Illinois, USA. A single CE-Raymond model 923.RP pulverizer equipped with eight Wilcox on 786A accelerometers was chosen for monitoring. Five days after installation, the pulverizer experienced a failure. The wireless system provided vibration magnitudes to Dynegy's OSI PI Historian software. Analysis of this data coupled with an unsuccessful attempt to adjust the grinding roll, revealed that the number two grinding roll bearing had failed. The SKF Reliability System proved to detect the fault earlier than the non-SKF system and was chosen for the plant. 10 figs., 1 tab.

  19. A wireless smart sensor network for automated monitoring of cable tension

    International Nuclear Information System (INIS)

    Sim, Sung-Han; Cho, Soojin; Li, Jian; Jo, Hongki; Park, Jong-Woong; Jung, Hyung-Jo; Spencer Jr, Billie F

    2014-01-01

    As cables are primary load carrying members in cable-stayed bridges, monitoring the tension forces of the cables provides valuable information regarding structural soundness. Incorporating wireless smart sensors with vibration-based tension estimation methods provides an efficient means of autonomous long-term monitoring of cable tensions. This study develops a wireless cable tension monitoring system using MEMSIC’s Imote2 smart sensors. The monitoring system features autonomous operation, sustainable energy harvesting and power consumption, and remote access using the internet. To obtain the tension force, an in-network data processing strategy associated with the vibration-based tension estimation method is implemented on the Imote2-based sensor network, significantly reducing the wireless data transmission and the power consumption. The proposed monitoring system has been deployed and validated on the Jindo Bridge, a cable-stayed bridge located in South Korea. (paper)

  20. A wireless smart sensor network for automated monitoring of cable tension

    Science.gov (United States)

    Sim, Sung-Han; Li, Jian; Jo, Hongki; Park, Jong-Woong; Cho, Soojin; Spencer, Billie F., Jr.; Jung, Hyung-Jo

    2014-02-01

    As cables are primary load carrying members in cable-stayed bridges, monitoring the tension forces of the cables provides valuable information regarding structural soundness. Incorporating wireless smart sensors with vibration-based tension estimation methods provides an efficient means of autonomous long-term monitoring of cable tensions. This study develops a wireless cable tension monitoring system using MEMSIC’s Imote2 smart sensors. The monitoring system features autonomous operation, sustainable energy harvesting and power consumption, and remote access using the internet. To obtain the tension force, an in-network data processing strategy associated with the vibration-based tension estimation method is implemented on the Imote2-based sensor network, significantly reducing the wireless data transmission and the power consumption. The proposed monitoring system has been deployed and validated on the Jindo Bridge, a cable-stayed bridge located in South Korea.

  1. Continuous wireless pressure monitoring and mapping with ultra-small passive sensors for health monitoring and critical care.

    Science.gov (United States)

    Chen, Lisa Y; Tee, Benjamin C-K; Chortos, Alex L; Schwartz, Gregor; Tse, Victor; Lipomi, Darren J; Wong, H-S Philip; McConnell, Michael V; Bao, Zhenan

    2014-10-06

    Continuous monitoring of internal physiological parameters is essential for critical care patients, but currently can only be practically achieved via tethered solutions. Here we report a wireless, real-time pressure monitoring system with passive, flexible, millimetre-scale sensors, scaled down to unprecedented dimensions of 1 × 1 × 0.1 cubic millimeters. This level of dimensional scaling is enabled by novel sensor design and detection schemes, which overcome the operating frequency limits of traditional strategies and exhibit insensitivity to lossy tissue environments. We demonstrate the use of this system to capture human pulse waveforms wirelessly in real time as well as to monitor in vivo intracranial pressure continuously in proof-of-concept mice studies using sensors down to 2.5 × 2.5 × 0.1 cubic millimeters. We further introduce printable wireless sensor arrays and show their use in real-time spatial pressure mapping. Looking forward, this technology has broader applications in continuous wireless monitoring of multiple physiological parameters for biomedical research and patient care.

  2. Principles in wireless building health monitoring systems.

    Science.gov (United States)

    Pentaris, F. P.; Makris, J. P.; Stonham, J.; Vallianatos, F.

    2012-04-01

    Monitoring the structural state of a building is essential for the safety of the people who work, live, visit or just use it as well as for the civil protection of urban areas. Many factors can affect the state of the health of a structure, namely man made, like mistakes in the construction, traffic, heavy loads on the structures, explosions, environmental impacts like wind loads, humidity, chemical reactions, temperature changes and saltiness, and natural hazards like earthquakes and landslides. Monitoring the health of a structure provides the ability to anticipate structural failures and secure the safe use of buildings especially those of public services. This work reviews the state of the art and the challenges of a wireless Structural Health Monitoring (WiSHM). Literature review reveals that although there is significant evolution in wireless structural health monitoring, in many cases, monitoring by itself is not enough to predict when a structure becomes inappropriate and/or unsafe for use, and the damage or low durability of a structure cannot be revealed (Chintalapudi, et al., 2006; Ramos, Aguilar, & Lourenço, 2011). Several features and specifications of WiSHM like wireless sensor networking, reliability and autonomy of sensors, algorithms of data transmission and analysis should still be evolved and improved in order to increase the predictive effectiveness of the SHM (Jinping Ou & Hui Li, 2010; Lu & Loh, 2010) . Acknowledgments This work was supported in part by the ARCHEMEDES III Program of the Ministry of Education of Greece and the European Union in the framework of the project entitled «Interdisciplinary Multi-Scale Research of Earthquake Physics and Seismotectonics at the front of the Hellenic Arc (IMPACT-ARC) ».

  3. 3D inkjet printed disposable environmental monitoring wireless sensor node

    KAUST Repository

    Farooqui, Muhammad Fahad; Shamim, Atif

    2017-01-01

    We propose a disposable, miniaturized, moveable, fully integrated 3D inkjet-printed wireless sensor node for large area environmental monitoring applications. As a proof of concept, we show the wireless sensing of temperature, humidity and H2S

  4. Design and implementation on wireless transmission platform of area radiation monitoring data

    International Nuclear Information System (INIS)

    Li Dan; Ge Liangquan; Lai Wanchang; Ren Yong; Liu Huijun; Wang Guangxi

    2011-01-01

    To solve data transmission problems of radiation area monitoring system, Wireless transmission platform is built based on ZigBee module, thus wireless transmission between the radiation area central node and the monitoring points is achieved. It introduces the framework of ZigBee protocol, APL applications between FFD and RFD module, FFD, module and central node host, and RFD module and monitoring equipment, are developed using simplified protocol stack. Wireless network is set up using a FFD module and two RFD modules, the results show that RSSI are above 50, and the data communication is normal for the transmission distance of 60 m. (authors)

  5. Large-Scale Wireless Temperature Monitoring System for Liquefied Petroleum Gas Storage Tanks

    Directory of Open Access Journals (Sweden)

    Guangwen Fan

    2015-09-01

    Full Text Available Temperature distribution is a critical indicator of the health condition for Liquefied Petroleum Gas (LPG storage tanks. In this paper, we present a large-scale wireless temperature monitoring system to evaluate the safety of LPG storage tanks. The system includes wireless sensors networks, high temperature fiber-optic sensors, and monitoring software. Finally, a case study on real-world LPG storage tanks proves the feasibility of the system. The unique features of wireless transmission, automatic data acquisition and management, local and remote access make the developed system a good alternative for temperature monitoring of LPG storage tanks in practical applications.

  6. Large-Scale Wireless Temperature Monitoring System for Liquefied Petroleum Gas Storage Tanks.

    Science.gov (United States)

    Fan, Guangwen; Shen, Yu; Hao, Xiaowei; Yuan, Zongming; Zhou, Zhi

    2015-09-18

    Temperature distribution is a critical indicator of the health condition for Liquefied Petroleum Gas (LPG) storage tanks. In this paper, we present a large-scale wireless temperature monitoring system to evaluate the safety of LPG storage tanks. The system includes wireless sensors networks, high temperature fiber-optic sensors, and monitoring software. Finally, a case study on real-world LPG storage tanks proves the feasibility of the system. The unique features of wireless transmission, automatic data acquisition and management, local and remote access make the developed system a good alternative for temperature monitoring of LPG storage tanks in practical applications.

  7. The development of wireless radiation dose monitoring using smart phone

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jin Woo; Jeong, Gyo Seong; Lee, Yun Jong [Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup (Korea, Republic of); Kim, Chong Yeal [Chonbuk National University, Jeonju (Korea, Republic of); Lim, Chai Wan [REMTECH, Seoul (Korea, Republic of)

    2016-11-15

    Radiation workers at a nuclear facility or radiation working area should hold personal dosimeters. some types of dosimeters have functions to generate audible or visible alarms to radiation workers. However, such devices used in radiation fields these days have no functions to communicate with other equipment or the responsible personnel. our project aims at the development of a remote wireless radiation dose monitoring system that can be utilized to monitor the radiation dose for radiation workers and to notify the radiation protection manager of the dose information in real time. We use a commercial survey meter for personal radiation measurement and a smart phone for a mobile wireless communication tool and a Beacon for position detection of radiation workers using Blue tooth communication. In this report, the developed wireless dose monitoring of cellular phone is introduced.

  8. Low Cost Wireless Sensor Network for Continuous Bridge monitoring

    DEFF Research Database (Denmark)

    Han, Bo; Kalis, A; Tragas, P

    2012-01-01

    Continuous monitoring wireless sensor networks (WSN) are considered as one of the most promising means to harvest information from large structures in order to assist in structural health monitoring and management. At the same time, continuous monitoring WSNs suffer from limited network lifetimes...

  9. Seals monitoring systems using wireless communications

    International Nuclear Information System (INIS)

    Hermand, Guillaume; Bertrand, Johan; Farhoud, Radwan; Suzuki, Kei; ETO, Jiro; Tanabe, Hiromi; Takamura, Hisashi; Suyama, Yasuhiro

    2012-01-01

    Document available in extended abstract form only. Wireless monitoring based on electromagnetic waves is a promising application for deep geological nuclear waste repositories. It should allow data transmission without installing wires across the various seals (disposal cell plugs, gallery plugs, shaft plugs). Developments of the wireless system (e.g. transmitter and receiver) are in progress in order to fit the repository requirements. A common research program has been elaborated by RWMC and Andra. The present work aims at developing the wireless monitoring technology to intermediate level waste (ILW) disposal facilities concept. In this concept, ILW packages will be emplaced in disposal cells with concrete liner. After the operational phase, the cells will be backfilled with sealing material. In practice, this work demonstrates the feasibility of adapting and optimizing the wireless transmission system for specific repository cases. After preliminary transmission studies, it was decided to make a representative test in situ of a wireless transmission through the clay from a sealed side to an accessible side of the repository. In order to reduce the attenuation of magnetic flux caused by steel components between the transmitter and the receiver, the receiving antenna is installed in a dedicated borehole (drilled from the accessible side). Two types of reception antennas have been designed. According to its coil orientation, type A antenna measures the electromagnetic wave perpendicular to the borehole axis. On the other hand, type B antenna with a coil set in-line with the tubular casing, measures the electromagnetic wave parallel to the borehole axis. The outside cylinder (pressure tight case) is made of PVC considering the attenuation of electromagnetic flux. According to the direction of electromagnetic flux and position of the boreholes in the final repository design, type A or type B will be chosen. For the 'representative' test, a borehole, TSF1002 has been

  10. Wireless Sensor Network for Electric Transmission Line Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Alphenaar, Bruce

    2009-06-30

    Generally, federal agencies tasked to oversee power grid reliability are dependent on data from grid infrastructure owners and operators in order to obtain a basic level of situational awareness. Since there are many owners and operators involved in the day-to-day functioning of the power grid, the task of accessing, aggregating and analyzing grid information from these sources is not a trivial one. Seemingly basic tasks such as synchronizing data timestamps between many different data providers and sources can be difficult as evidenced during the post-event analysis of the August 2003 blackout. In this project we investigate the efficacy and cost effectiveness of deploying a network of wireless power line monitoring devices as a method of independently monitoring key parts of the power grid as a complement to the data which is currently available to federal agencies from grid system operators. Such a network is modeled on proprietary power line monitoring technologies and networks invented, developed and deployed by Genscape, a Louisville, Kentucky based real-time energy information provider. Genscape measures transmission line power flow using measurements of electromagnetic fields under overhead high voltage transmission power lines in the United States and Europe. Opportunities for optimization of the commercial power line monitoring technology were investigated in this project to enable lower power consumption, lower cost and improvements to measurement methodologies. These optimizations were performed in order to better enable the use of wireless transmission line monitors in large network deployments (perhaps covering several thousand power lines) for federal situational awareness needs. Power consumption and cost reduction were addressed by developing a power line monitor using a low power, low cost wireless telemetry platform known as the ''Mote''. Motes were first developed as smart sensor nodes in wireless mesh networking applications

  11. Real-Time and Secure Wireless Health Monitoring

    Science.gov (United States)

    Dağtaş, S.; Pekhteryev, G.; Şahinoğlu, Z.; Çam, H.; Challa, N.

    2008-01-01

    We present a framework for a wireless health monitoring system using wireless networks such as ZigBee. Vital signals are collected and processed using a 3-tiered architecture. The first stage is the mobile device carried on the body that runs a number of wired and wireless probes. This device is also designed to perform some basic processing such as the heart rate and fatal failure detection. At the second stage, further processing is performed by a local server using the raw data transmitted by the mobile device continuously. The raw data is also stored at this server. The processed data as well as the analysis results are then transmitted to the service provider center for diagnostic reviews as well as storage. The main advantages of the proposed framework are (1) the ability to detect signals wirelessly within a body sensor network (BSN), (2) low-power and reliable data transmission through ZigBee network nodes, (3) secure transmission of medical data over BSN, (4) efficient channel allocation for medical data transmission over wireless networks, and (5) optimized analysis of data using an adaptive architecture that maximizes the utility of processing and computational capacity at each platform. PMID:18497866

  12. Wireless Zigbee strain gage sensor system for structural health monitoring

    Science.gov (United States)

    Ide, Hiroshi; Abdi, Frank; Miraj, Rashid; Dang, Chau; Takahashi, Tatsuya; Sauer, Bruce

    2009-05-01

    A compact cell phone size radio frequency (ZigBee) wireless strain measurement sensor system to measure the structural strain deformation was developed. The developed system provides an accurate strain measurement data stream to the Internet for further Diagnostic and Prognostic (DPS) correlation. Existing methods of structural measurement by strain sensors (gauges) do not completely satisfy problems posed by continuous structural health monitoring. The need for efficient health monitoring methods with real-time requirements to bidirectional data flow from sensors and to a commanding device is becoming critical for keeping our daily life safety. The use of full-field strain measurement techniques could reduce costly experimental programs through better understanding of material behavior. Wireless sensor-network technology is a monitoring method that is estimated to grow rapidly providing potential for cost savings over traditional wired sensors. The many of currently available wireless monitoring methods have: the proactive and constant data rate character of the data streams rather than traditional reactive, event-driven data delivery; mostly static node placement on structures with limited number of nodes. Alpha STAR Electronics' wireless sensor network system, ASWN, addresses some of these deficiencies, making the system easier to operate. The ASWN strain measurement system utilizes off-the-shelf sensors, namely strain gauges, with an analog-to-digital converter/amplifier and ZigBee radio chips to keep cost lower. Strain data is captured by the sensor, converted to digital form and delivered to the ZigBee radio chip, which in turn broadcasts the information using wireless protocols to a Personal Data Assistant (PDA) or Laptop/Desktop computers. From here, data is forwarded to remote computers for higher-level analysis and feedback using traditional cellular and satellite communication or the Ethernet infrastructure. This system offers a compact size, lower cost

  13. Wireless motion sensor network for monitoring motion in a process, wireless sensor node, reasoning node, and feedback and/or actuation node for such wireless motion sensor network

    NARCIS (Netherlands)

    Havinga, Paul J.M.; Marin Perianu, Raluca; Marin Perianu, Mihai

    2010-01-01

    Wireless motion sensor network for monitoring motion in a process comprising at least one wireless sensor node for measuring at least one physical quantity related to motion or orientation, feature extraction means for deriving a feature for the measured quantities, a wireless transmitter connected

  14. A Wireless Monitoring Sub-nA Resolution Test Platform for Nanostructure Sensors

    Science.gov (United States)

    Jang, Chi Woong; Byun, Young Tae; Lee, Taikjin; Woo, Deok Ha; Lee, Seok; Jhon, Young Min

    2013-01-01

    We have constructed a wireless monitoring test platform with a sub-nA resolution signal amplification/processing circuit (SAPC) and a wireless communication network to test the real-time remote monitoring of the signals from carbon nanotube (CNT) sensors. The operation characteristics of the CNT sensors can also be measured by the ISD-VSD curve with the SAPC. The SAPC signals are transmitted to a personal computer by Bluetooth communication and the signals from the computer are transmitted to smart phones by Wi-Fi communication, in such a way that the signals from the sensors can be remotely monitored through a web browser. Successful remote monitoring of signals from a CNT sensor was achieved with the wireless monitoring test platform for detection of 0.15% methanol vapor with 0.5 nA resolution and 7 Hz sampling rate. PMID:23783735

  15. A Wireless Monitoring Sub-nA Resolution Test Platform for Nanostructure Sensors

    Directory of Open Access Journals (Sweden)

    Young Min Jhon

    2013-06-01

    Full Text Available We have constructed a wireless monitoring test platform with a sub-nA resolution signal amplification/processing circuit (SAPC and a wireless communication network to test the real-time remote monitoring of the signals from carbon nanotube (CNT sensors. The operation characteristics of the CNT sensors can also be measured by the ISD-VSD curve with the SAPC. The SAPC signals are transmitted to a personal computer by Bluetooth communication and the signals from the computer are transmitted to smart phones by Wi-Fi communication, in such a way that the signals from the sensors can be remotely monitored through a web browser. Successful remote monitoring of signals from a CNT sensor was achieved with the wireless monitoring test platform for detection of 0.15% methanol vapor with 0.5 nA resolution and 7 Hz sampling rate.

  16. A mobile-agent-based wireless sensing network for structural monitoring applications

    International Nuclear Information System (INIS)

    Taylor, Stuart G; Farinholt, Kevin M; Figueiredo, Eloi; Moro, Erik A; Park, Gyuhae; Farrar, Charles R; Flynn, Eric B; Mascarenas, David L; Todd, Michael D

    2009-01-01

    A new wireless sensing network paradigm is presented for structural monitoring applications. In this approach, both power and data interrogation commands are conveyed via a mobile agent that is sent to sensor nodes to perform intended interrogations, which can alleviate several limitations of the traditional sensing networks. Furthermore, the mobile agent provides computational power to make near real-time assessments on the structural conditions. This paper will discuss such prototype systems, which are used to interrogate impedance-based sensors for structural health monitoring applications. Our wireless sensor node is specifically designed to accept various energy sources, including wireless energy transmission, and to be wirelessly triggered on an as-needed basis by the mobile agent or other sensor nodes. The capabilities of this proposed sensing network paradigm are demonstrated in the laboratory and the field

  17. Integrated 3d printed wireless sensing system for environmental monitoring

    KAUST Repository

    Farooqui, Muhammad Fahad

    2017-12-21

    Disclosed are various embodiments of a wireless sensor device for monitoring environment conditions. A wireless sensor device may comprise, for example, a computing device, printable circuitry, sensors, and antennas combined with one or more transmitters on a panel. The wireless sensor device may be configured to take environment measurements, such as temperature, gas, humidity, and wirelessly communicate the environment measurements to a remote computing device, in addition, the present disclosure relates to a method of assembling the wireless sensor device. The method may comprise printing sensors, circuitry, and antennas to a panel; folding the panel to form an enclosure comprising a plurality of side panels; and attaching the plurality of side panels to a circuit board panel.

  18. Review of Radio Frequency Identification and Wireless Technology for Structural Health Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Dhital, Dipesh; Chia, Chen Ciang; Lee, Jung Ryul [Chonbuk National University, Jeonju (Korea, Republic of); Park, Chan Yik [Aeronautical Technology Directorate, Agency for Defense Development, Daejeon (Korea, Republic of)

    2010-06-15

    Radio frequency identification(RFID) combined with wireless technology has good potential for structural health monitoring(SHM). We describe several advantages of RFID and wireless technologies for SHM, and review SHM examples with working principles, design and technical details for damage detection, heat exposure monitoring, force/strain sensing, and corrosion detection in concrete, steel, carbon fiber reinforced polymer(CFRP), and other materials. Various sensors combined with wireless communication are also discussed. These methodologies can be readily developed, implemented, and customized. There are some technical difficulties, but solutions are being addressed. Lastly, a surface acoustic wave-based RFID system is presented, and possible future trends of SHM based on RFID and wireless technology are presented

  19. Review of Radio Frequency Identification and Wireless Technology for Structural Health Monitoring

    International Nuclear Information System (INIS)

    Dhital, Dipesh; Chia, Chen Ciang; Lee, Jung Ryul; Park, Chan Yik

    2010-01-01

    Radio frequency identification(RFID) combined with wireless technology has good potential for structural health monitoring(SHM). We describe several advantages of RFID and wireless technologies for SHM, and review SHM examples with working principles, design and technical details for damage detection, heat exposure monitoring, force/strain sensing, and corrosion detection in concrete, steel, carbon fiber reinforced polymer(CFRP), and other materials. Various sensors combined with wireless communication are also discussed. These methodologies can be readily developed, implemented, and customized. There are some technical difficulties, but solutions are being addressed. Lastly, a surface acoustic wave-based RFID system is presented, and possible future trends of SHM based on RFID and wireless technology are presented

  20. Helicopter Rotor Blade Monitoring using Autonomous Wireless Sensor Network

    NARCIS (Netherlands)

    Sanchez Ramirez, Andrea; Loendersloot, Richard; Tinga, Tiedo; Basu, B.

    2013-01-01

    The advancement on Wireless Sensor Networks for vibration monitoring presents important possibilities for helicopter rotor health and usage monitoring. While main rotor blades account for the main source of lift for helicopters, rotor induced vibration establishes an important source for

  1. [A wireless mobile monitoring system based on bluetooth technology].

    Science.gov (United States)

    Sun, Shou-jun; Wu, Kai; Wu, Xiao-Ming

    2006-09-01

    This paper presents a wireless mobile monitoring system based on Bluetooth technology. This system realizes the remote mobile monitoring of multiple physiological parameters, and has the characters of easy use, low cost, good reliability and strong capability of anti-jamming.

  2. Realization of Intelligent Household Appliance Wireless Monitoring Network Based on LEACH Protocol

    Directory of Open Access Journals (Sweden)

    Weilong ZHOU

    2014-06-01

    Full Text Available The intelligent household appliance wireless monitoring network can real-time monitor the apparent power and power factor of various household appliances in different indoor regions, and can realize the real-time monitoring on the household appliance working status and performance. The household appliance wireless monitoring network based on LEACH protocol is designed in the paper. Firstly, the basic idea of LEACH routing algorithm is proposed. Aiming at the node-distribution feature of intelligent home, the selection of cluster head in the routing algorithm and the data transmission method at the stable communication phase is modified. Moreover, the hardware circuit of power acquisition and power factor measurement is designed. The realization of wireless monitoring network based on CC2530 is described, each module and the whole system were conducted the on-line debugging. Finally, the system is proved to meet the practical requirement through the networking test.

  3. Wireless plataforms for the monitoring of biomedical variables

    International Nuclear Information System (INIS)

    Bianco, Roman; Laprovitta, AgustIn; Misa, Alberto; Toselli, Eduardo; Castagnola, Juan Luis

    2007-01-01

    The present paper aims to analyze and to compare two wireless platforms for the monitoring of biomedical variables. They must obtain the vital signals of the patients, transmit them through a radio frequency bond and centralize them for their process, storage and monitoring in real time. The implementation of this system permit us to obtain two important benefits; The patient will enjoy greater comfort during the internment, and the doctors will be able to know the state of the biomedical variables of each patient, in simultaneous form. In order to achieve the objective of this work, two communication systems for wireless transmissions data were developed and implemented. The CC1000 transceiver was used in the first system and the Bluetooth module was used in the other system

  4. Wireless plataforms for the monitoring of biomedical variables

    Energy Technology Data Exchange (ETDEWEB)

    Bianco, Roman; Laprovitta, AgustIn; Misa, Alberto; Toselli, Eduardo; Castagnola, Juan Luis [Laboratory of Communications and Electronics, Catholic University of Cordoba (Argentina)

    2007-11-15

    The present paper aims to analyze and to compare two wireless platforms for the monitoring of biomedical variables. They must obtain the vital signals of the patients, transmit them through a radio frequency bond and centralize them for their process, storage and monitoring in real time. The implementation of this system permit us to obtain two important benefits; The patient will enjoy greater comfort during the internment, and the doctors will be able to know the state of the biomedical variables of each patient, in simultaneous form. In order to achieve the objective of this work, two communication systems for wireless transmissions data were developed and implemented. The CC1000 transceiver was used in the first system and the Bluetooth module was used in the other system.

  5. Wireless plataforms for the monitoring of biomedical variables

    Science.gov (United States)

    Bianco, Román; Laprovitta, Agustín; Misa, Alberto; Toselli, Eduardo; Castagnola, Juan Luis

    2007-11-01

    The present paper aims to analyze and to compare two wireless platforms for the monitoring of biomedical variables. They must obtain the vital signals of the patients, transmit them through a radio frequency bond and centralize them for their process, storage and monitoring in real time. The implementation of this system permit us to obtain two important benefits; The patient will enjoy greater comfort during the internment, and the doctors will be able to know the state of the biomedical variables of each patient, in simultaneous form. In order to achieve the objective of this work, two communication systems for wireless transmissions data were developed and implemented. The CC1000 transceiver was used in the first system and the Bluetooth module was used in the other system.

  6. Wireless Underwater Monitoring Systems Based on Energy Harvestings

    Directory of Open Access Journals (Sweden)

    Sea-Hee HWANGBO

    2013-01-01

    Full Text Available One of the important research fields for aquatic exploitation and conservation is underwater wireless sensor network. Since limited energy source for underwater nodes and devices is a main open problem, in this paper, we propose wireless underwater monitoring systems powered by energy harvester which resolves the energy constraint. The target system generates renewable energy from energy harvester and shares the energy with underwater sensor nodes. For the realization of the system, key components to be investigated are discriminated as follows: acoustic modem, actuator, smart battery charge controller, energy harvester and wireless power transfer module. By developing acoustic modem, actuator and smart battery charge controller and utilizing off-the-shelf energy harvester and wireless power transfer module, we design and implement a prototype of the system. Also, we verify the feasibility of concept of target system by conducting indoor and outdoor experiments.

  7. Wireless remote monitoring system for sleep apnea

    Science.gov (United States)

    Oh, Sechang; Kwon, Hyeokjun; Varadan, Vijay K.

    2011-04-01

    Sleep plays the important role of rejuvenating the body, especially the central nervous system. However, more than thirty million people suffer from sleep disorders and sleep deprivation. That can cause serious health consequences by increasing the risk of hypertension, diabetes, heart attack and so on. Apart from the physical health risk, sleep disorders can lead to social problems when sleep disorders are not diagnosed and treated. Currently, sleep disorders are diagnosed through sleep study in a sleep laboratory overnight. This involves large expenses in addition to the inconvenience of overnight hospitalization and disruption of daily life activities. Although some systems provide home based diagnosis, most of systems record the sleep data in a memory card, the patient has to face the inconvenience of sending the memory card to a doctor for diagnosis. To solve the problem, we propose a wireless sensor system for sleep apnea, which enables remote monitoring while the patient is at home. The system has 5 channels to measure ECG, Nasal airflow, body position, abdominal/chest efforts and oxygen saturation. A wireless transmitter unit transmits signals with Zigbee and a receiver unit which has two RF modules, Zigbee and Wi-Fi, receives signals from the transmitter unit and retransmits signals to the remote monitoring system with Zigbee and Wi-Fi, respectively. By using both Zigbee and Wi-Fi, the wireless sensor system can achieve a low power consumption and wide range coverage. The system's features are presented, as well as continuous monitoring results of vital signals.

  8. Toward Wireless Health Monitoring via an Analog Signal Compression-Based Biosensing Platform.

    Science.gov (United States)

    Zhao, Xueyuan; Sadhu, Vidyasagar; Le, Tuan; Pompili, Dario; Javanmard, Mehdi

    2018-06-01

    Wireless all-analog biosensor design for the concurrent microfluidic and physiological signal monitoring is presented in this paper. The key component is an all-analog circuit capable of compressing two analog sources into one analog signal by the analog joint source-channel coding (AJSCC). Two circuit designs are discussed, including the stacked-voltage-controlled voltage source (VCVS) design with the fixed number of levels, and an improved design, which supports a flexible number of AJSCC levels. Experimental results are presented on the wireless biosensor prototype, composed of printed circuit board realizations of the stacked-VCVS design. Furthermore, circuit simulation and wireless link simulation results are presented on the improved design. Results indicate that the proposed wireless biosensor is well suited for sensing two biological signals simultaneously with high accuracy, and can be applied to a wide variety of low-power and low-cost wireless continuous health monitoring applications.

  9. NFC like wireless technology for monitoring purposes in scientific/industrial facilities

    International Nuclear Information System (INIS)

    Badillo, I.; Eguiraun, M.; Jugo, J.

    2012-01-01

    Wireless technologies are becoming more and more used in large industrial and scientific facilities like particle accelerators for facilitating the monitoring and indeed sensing in these kind of large environments. Cabled equipment means little flexibility in placement and is very expensive in both money and effort whenever reorganization or new installation is needed. So, when cabling is not really needed for performance reasons wireless monitoring and control is a good option, due to the speed of implementation. There are several wireless flavors to choose, as Bluetooth, Zigbee, WiFi, etc. depending on the requirements of each specific application. In this work a wireless monitoring system for EPICS (Experimental and Industrial Control System) is presented. The desired control system variables are acquired over the network and published in a mobile device, allowing the operator to check process variables everywhere the signal spreads. In this approach, a Python based server will be continuously getting EPICS Process Variables via Channel Access protocol and sending them through a WiFi standard 802.11 network using ICE middle-ware. ICE is a tool-kit oriented to build distributed applications. Finally, the mobile device will read the data and show it to the operator. The security of the communication can be improved by means of a weak wireless signal, following the same idea as in Near Field Communication (NFC), but for more large distances. With this approach, local monitoring and control applications, as for example a vacuum control system for several pumps, are currently implemented. (authors)

  10. Development of mediator-type biosensor to wirelessly monitor whole cholesterol concentration in fish.

    Science.gov (United States)

    Takase, Mai; Murata, Masataka; Hibi, Kyoko; Huifeng, Ren; Endo, Hideaki

    2014-04-01

    We developed a wireless monitoring system to monitor fish condition by tracking the change in whole cholesterol concentration. The whole cholesterol concentration of fish is a source of steroid hormones or indicator of immunity level, which makes its detection important for tracking physiological condition of fish. Wireless monitoring system comprises of mediator-type biosensor and wireless transmission device. Biosensor is implantable to fish body, and transmission device is so light, in that fish is allowed to swim freely during monitoring. Cholesterol esterase and oxidase were fixated on to the detection site of biosensor and used to detect the whole cholesterol concentration. However, cholesterol oxidase incorporates oxidation-reduction reaction of oxygen for detection, which concentration fluctuates easily due to change in environmental condition. Meanwhile, mediator-type biosensor enables monitoring of whole cholesterol concentration by using mediator to substitute that oxidation-reduction reaction of oxygen. Characteristic of fabricated mediator-type biosensor was tested. The sensor output current of mediator-type biosensor remained stable compared to output current of non-mediator-type biosensor under fluctuating oxygen concentration of 0-8 ppm, which implied that this sensor is less affected by change in dissolved oxygen concentration. That biosensor was then implanted into fish for wireless monitoring. As a result, approximately 48 h of real-time monitoring was successful.

  11. A Wireless Monitoring System for Cracks on the Surface of Reactor Containment Buildings.

    Science.gov (United States)

    Zhou, Jianguo; Xu, Yaming; Zhang, Tao

    2016-06-14

    Structural health monitoring with wireless sensor networks has been increasingly popular in recent years because of the convenience. In this paper, a real-time monitoring system for cracks on the surface of reactor containment buildings is presented. Customized wireless sensor networks platforms are designed and implemented with sensors especially for crack monitoring, which include crackmeters and temperature detectors. Software protocols like route discovery, time synchronization and data transfer are developed to satisfy the requirements of the monitoring system and stay simple at the same time. Simulation tests have been made to evaluate the performance of the system before full scale deployment. The real-life deployment of the crack monitoring system is carried out on the surface of reactor containment building in Daya Bay Nuclear Power Station during the in-service pressure test with 30 wireless sensor nodes.

  12. A new type of intelligent wireless sensing network for health monitoring of large-size structures

    Science.gov (United States)

    Lei, Ying; Liu, Ch.; Wu, D. T.; Tang, Y. L.; Wang, J. X.; Wu, L. J.; Jiang, X. D.

    2009-07-01

    In recent years, some innovative wireless sensing systems have been proposed. However, more exploration and research on wireless sensing systems are required before wireless systems can substitute for the traditional wire-based systems. In this paper, a new type of intelligent wireless sensing network is proposed for the heath monitoring of large-size structures. Hardware design of the new wireless sensing units is first studied. The wireless sensing unit mainly consists of functional modules of: sensing interface, signal conditioning, signal digitization, computational core, wireless communication and battery management. Then, software architecture of the unit is introduced. The sensing network has a two-level cluster-tree architecture with Zigbee communication protocol. Important issues such as power saving and fault tolerance are considered in the designs of the new wireless sensing units and sensing network. Each cluster head in the network is characterized by its computational capabilities that can be used to implement the computational methodologies of structural health monitoring; making the wireless sensing units and sensing network have "intelligent" characteristics. Primary tests on the measurement data collected by the wireless system are performed. The distributed computational capacity of the intelligent sensing network is also demonstrated. It is shown that the new type of intelligent wireless sensing network provides an efficient tool for structural health monitoring of large-size structures.

  13. Development of Wireless Smart Sensor for Structure and Machine Monitoring

    Directory of Open Access Journals (Sweden)

    Ismoyo Haryanto

    2013-07-01

    Full Text Available Vibration based condition monitoring is a method used for determining the condition of a system. The condition of mechanical or a structural system can be determined from the vibration. The vibration that is produced by the system indicates the condition of a system and possibly used to calculate the lifetime of a system or even used to take early action before fatal failure occurred. This paper explains how the wireless smart sensor can be used to identify the health condition of a system by monitoring the vibration parameters. The wireless smart sensor would continously  senses the vibration parameters of the system in a real-time systems and then data will be transmitted wirelessly  to a base station which is a host PC used for digital signal processing, from there the vibration will be plotted as a graph which used to analyzed the condition of the system. Finally, several tested performed to the real system to verify the accuracy of a smart sensor and the method of condition based monitoring.

  14. GSM module for wireless radiation monitoring system via SMS

    Science.gov (United States)

    Rahman, Nur Aira Abd; Hisyam Ibrahim, Noor; Lombigit, Lojius; Azman, Azraf; Jaafar, Zainudin; Arymaswati Abdullah, Nor; Hadzir Patai Mohamad, Glam

    2018-01-01

    A customised Global System for Mobile communication (GSM) module is designed for wireless radiation monitoring through Short Messaging Service (SMS). This module is able to receive serial data from radiation monitoring devices such as survey meter or area monitor and transmit the data as text SMS to a host server. It provides two-way communication for data transmission, status query, and configuration setup. The module hardware consists of GSM module, voltage level shifter, SIM circuit and Atmega328P microcontroller. Microcontroller provides control for sending, receiving and AT command processing to GSM module. The firmware is responsible to handle task related to communication between device and host server. It process all incoming SMS, extract, and store new configuration from Host, transmits alert/notification SMS when the radiation data reach/exceed threshold value, and transmits SMS data at every fixed interval according to configuration. Integration of this module with radiation survey/monitoring device will create mobile and wireless radiation monitoring system with prompt emergency alert at high-level radiation.

  15. Wireless Communications for Monitoring Nuclear Material Processes Part 2: Wireless In-plant Data Transmission

    International Nuclear Information System (INIS)

    Braina, F.; Goncalves, J.M.C.; Versino, C.; Heppleston, M.; Ottesen, C.; Schoeneman, B.; Tolk, K.

    2008-01-01

    The wireless transmission of data from sensors, monitoring both static and dynamic safeguards processes, is highly appealing for the simple fact that there are no wires. In a nuclear safeguards regime, this has the implied benefits of low-cost installations, versatile configurations, and the elimination of conduits to inspect. However, with the implied solutions of wireless, we are presented with a new set of problems for system implementation and operation management, in particular (1) Radio Frequency (RF) interference and (2) security in information transmission. These problems are addressable. This paper looks at the clear benefits of wireless technologies and the cautions regarding the possible pitfalls of poorly applied technology, discusses the integration of radio frequency in existing and new facilities, provides high-level considerations for information security, and reviews prospects for the future

  16. Ultrasonic wireless health monitoring

    Science.gov (United States)

    Petit, Lionel; Lefeuvre, Elie; Guyomar, Daniel; Richard, Claude; Guy, Philippe; Yuse, Kaori; Monnier, Thomas

    2006-03-01

    The integration of autonomous wireless elements in health monitoring network increases the reliability by suppressing power supplies and data transmission wiring. Micro-power piezoelectric generators are an attractive alternative to primary batteries which are limited by a finite amount of energy, a limited capacity retention and a short shelf life (few years). Our goal is to implement such an energy harvesting system for powering a single AWT (Autonomous Wireless Transmitter) using our SSH (Synchronized Switch Harvesting) method. Based on a non linear process of the piezoelement voltage, this SSH method optimizes the energy extraction from the mechanical vibrations. This AWT has two main functions : The generation of an identifier code by RF transmission to the central receiver and the Lamb wave generation for the health monitoring of the host structure. A damage index is derived from the variation between the transmitted wave spectrum and a reference spectrum. The same piezoelements are used for the energy harvesting function and the Lamb wave generation, thus reducing mass and cost. A micro-controller drives the energy balance and synchronizes the functions. Such an autonomous transmitter has been evaluated on a 300x50x2 mm 3 composite cantilever beam. Four 33x11x0.3 mm 3 piezoelements are used for the energy harvesting and for the wave lamb generation. A piezoelectric sensor is placed at the free end of the beam to track the transmitted Lamb wave. In this configuration, the needed energy for the RF emission is 0.1 mJ for a 1 byte-information and the Lamb wave emission requires less than 0.1mJ. The AWT can harvested an energy quantity of approximately 20 mJ (for a 1.5 Mpa lateral stress) with a 470 μF storage capacitor. This corresponds to a power density near to 6mW/cm 3. The experimental AWT energy abilities are presented and the damage detection process is discussed. Finally, some envisaged solutions are introduced for the implementation of the required data

  17. Development of a Wireless System for Monitoring and Control of a Wind Turbine

    Directory of Open Access Journals (Sweden)

    Cristhian M. Durán-Acevedo

    2013-11-01

    Full Text Available This article presents the use of a wireless communication technology through the ZigBee protocol, by implementing XBee S2B. Wireless communication was implemented on a wind turbine prototype (i.e. wind power generation in order to controlling variables automatically, such as: Direction of the wind, temperature, humidity and velocity engine. The XBee were conditioned using a Mega ADK Arduino card, which the signals generated were acquired by several sensors and subsequently sent wirelessly. The programming and monitoring of Arduino module with each of the variables was performed through Labview software. The study was also conducted in order to explore new technologies for wireless communication, which is useful in interoperable systems to monitor, control and automate different processes. As a result, the performance test with the wireless system was stable and data transmission was reliable.

  18. [Wireless device for monitoring the patients with chronic disease].

    Science.gov (United States)

    Ciorap, R; Zaharia, D; Corciovă, C; Ungureanu, Monica; Lupu, R; Stan, A

    2008-01-01

    Remote monitoring of chronic diseases can improve health outcomes and potentially lower health care costs. The high number of the patients, suffering of chronically diseases, who wish to stay at home rather then in a hospital increasing the need of homecare monitoring and have lead to a high demand of wearable medical devices. Also, extended patient monitoring during normal activity has become a very important target. In this paper are presented the design of the wireless monitoring devices based on ultra low power circuits, high storage memory flash, bluetooth communication and the firmware for the management of the monitoring device. The monitoring device is built using an ultra low power microcontroller (MSP430 from Texas Instruments) that offers the advantage of high integration of some circuits. The custom made electronic boards used for biosignal acquisition are also included modules for storage device (SD/MMC card) with FAT32 file system and Bluetooth device for short-range communication used for data transmission between monitoring device and PC or PDA. The work was focused on design and implementation of an ultra low power wearable device able to acquire patient vital parameters, causing minimal discomfort and allowing high mobility. The proposed wireless device could be used as a warning system for monitoring during normal activity.

  19. Compressive sensing based wireless sensor for structural health monitoring

    Science.gov (United States)

    Bao, Yuequan; Zou, Zilong; Li, Hui

    2014-03-01

    Data loss is a common problem for monitoring systems based on wireless sensors. Reliable communication protocols, which enhance communication reliability by repetitively transmitting unreceived packets, is one approach to tackle the problem of data loss. An alternative approach allows data loss to some extent and seeks to recover the lost data from an algorithmic point of view. Compressive sensing (CS) provides such a data loss recovery technique. This technique can be embedded into smart wireless sensors and effectively increases wireless communication reliability without retransmitting the data. The basic idea of CS-based approach is that, instead of transmitting the raw signal acquired by the sensor, a transformed signal that is generated by projecting the raw signal onto a random matrix, is transmitted. Some data loss may occur during the transmission of this transformed signal. However, according to the theory of CS, the raw signal can be effectively reconstructed from the received incomplete transformed signal given that the raw signal is compressible in some basis and the data loss ratio is low. This CS-based technique is implemented into the Imote2 smart sensor platform using the foundation of Illinois Structural Health Monitoring Project (ISHMP) Service Tool-suite. To overcome the constraints of limited onboard resources of wireless sensor nodes, a method called random demodulator (RD) is employed to provide memory and power efficient construction of the random sampling matrix. Adaptation of RD sampling matrix is made to accommodate data loss in wireless transmission and meet the objectives of the data recovery. The embedded program is tested in a series of sensing and communication experiments. Examples and parametric study are presented to demonstrate the applicability of the embedded program as well as to show the efficacy of CS-based data loss recovery for real wireless SHM systems.

  20. BABY MONITORING SYSTEM USING WIRELESS SENSOR NETWORKS

    Directory of Open Access Journals (Sweden)

    G. Rajesh

    2014-09-01

    Full Text Available Sudden Infant Death Syndrome (SIDS is marked by the sudden death of an infant during sleep that is not predicted by the medical history and remains unexplained even after thorough forensic autopsy and detailed death investigation. In this we developed a system that provides solutions for the above problems by making the crib smart using the wireless sensor networks (WSN and smart phones. The system provides visual monitoring service through live video, alert services by crib fencing and awakens alert, monitoring services by temperature reading and light intensity reading, vaccine reminder and weight monitoring.

  1. Active Wireless System for Structural Health Monitoring Applications.

    Science.gov (United States)

    Perera, Ricardo; Pérez, Alberto; García-Diéguez, Marta; Zapico-Valle, José Luis

    2017-12-11

    The use of wireless sensors in Structural Health Monitoring (SHM) has increased significantly in the last years. Piezoelectric-based lead zirconium titanate (PZT) sensors have been on the rise in SHM due to their superior sensing abilities. They are applicable in different technologies such as electromechanical impedance (EMI)-based SHM. This work develops a flexible wireless smart sensor (WSS) framework based on the EMI method using active sensors for full-scale and autonomous SHM. In contrast to passive sensors, the self-sensing properties of the PZTs allow interrogating with or exciting a structure when desired. The system integrates the necessary software and hardware within a service-oriented architecture approach able to provide in a modular way the services suitable to satisfy the key requirements of a WSS. The framework developed in this work has been validated on different experimental applications. Initially, the reliability of the EMI method when carried out with the proposed wireless sensor system is evaluated by comparison with the wireless counterpart. Afterwards, the performance of the system is evaluated in terms of software stability and reliability of functioning.

  2. Design of Tropical Flowers Environmental Parameters Wireless Monitoring System Based on MSP430

    Directory of Open Access Journals (Sweden)

    Huang Jian-Qing

    2016-01-01

    Full Text Available Considering the importance of real-time monitoring tropical flower environment parameters, the paper designs a wireless monitoring system based on MSP430F149 for tropical flower growing parameters. The proposed system uses sensor nodes to obtain data of temperature, humidity and light intensity, sink node to collect data from sensor nodes through wireless sensor network, and monitoring center to process data downloaded from the sink node through RS232 serial port. The node hardware platform is composed of a MSP430F149 processor, AM2306 and NHZD10AI sensors used to adopt temperature, humidity and light intensity data, and an nRF905 RF chip used to receive and send data. The node software, operated in IAR Embedded Workbench, adopts C Language to do node data collection and process, wireless transmission and serial port communication. The software of monitoring center develops in VB6.0, which can provide vivid and explicit real-time monitoring platform for flower farmers.

  3. Intrusion detection and monitoring for wireless networks.

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Eric D.; Van Randwyk, Jamie A.; Lee, Erik J.; Stephano, Amanda (Indiana University); Tabriz, Parisa (University of Illinois at Urbana-Champaign); Pelon, Kristen (Cedarville University); McCoy, Damon (University of Colorado, Boulder); Lodato, Mark (Lafayette College); Hemingway, Franklin (University of New Mexico); Custer, Ryan P.; Averin, Dimitry (Polytechnic University); Franklin, Jason (Carnegie Mellon University); Kilman, Dominique Marie

    2005-11-01

    complete network coverage for use by emergency responders and other municipal agencies. In short, these Wi-Fi networks are being deployed everywhere. Much thought has been and is being put into evaluating cost-benefit analyses of wired vs. wireless networks and issues such as how to effectively cover an office building or municipality, how to efficiently manage a large network of wireless access points (APs), and how to save money by replacing an Internet service provider (ISP) with 802.11 technology. In comparison, very little thought and money are being focused on wireless security and monitoring for security purposes.

  4. Application of an automated wireless structural monitoring system for long-span suspension bridges

    International Nuclear Information System (INIS)

    Kurata, M.; Lynch, J. P.; Linden, G. W. van der; Hipley, P.; Sheng, L.-H.

    2011-01-01

    This paper describes an automated wireless structural monitoring system installed at the New Carquinez Bridge (NCB). The designed system utilizes a dense network of wireless sensors installed in the bridge but remotely controlled by a hierarchically designed cyber-environment. The early efforts have included performance verification of a dense network of wireless sensors installed on the bridge and the establishment of a cellular gateway to the system for remote access from the internet. Acceleration of the main bridge span was the primary focus of the initial field deployment of the wireless monitoring system. An additional focus of the study is on ensuring wireless sensors can survive for long periods without human intervention. Toward this end, the life-expectancy of the wireless sensors has been enhanced by embedding efficient power management schemes in the sensors while integrating solar panels for power harvesting. The dynamic characteristics of the NCB under daily traffic and wind loads were extracted from the vibration response of the bridge deck and towers. These results have been compared to a high-fidelity finite element model of the bridge.

  5. Application of AN Automated Wireless Structural Monitoring System for Long-Span Suspension Bridges

    Science.gov (United States)

    Kurata, M.; Lynch, J. P.; van der Linden, G. W.; Hipley, P.; Sheng, L.-H.

    2011-06-01

    This paper describes an automated wireless structural monitoring system installed at the New Carquinez Bridge (NCB). The designed system utilizes a dense network of wireless sensors installed in the bridge but remotely controlled by a hierarchically designed cyber-environment. The early efforts have included performance verification of a dense network of wireless sensors installed on the bridge and the establishment of a cellular gateway to the system for remote access from the internet. Acceleration of the main bridge span was the primary focus of the initial field deployment of the wireless monitoring system. An additional focus of the study is on ensuring wireless sensors can survive for long periods without human intervention. Toward this end, the life-expectancy of the wireless sensors has been enhanced by embedding efficient power management schemes in the sensors while integrating solar panels for power harvesting. The dynamic characteristics of the NCB under daily traffic and wind loads were extracted from the vibration response of the bridge deck and towers. These results have been compared to a high-fidelity finite element model of the bridge.

  6. A wireless capsule system with ASIC for monitoring the physiological signals of the human gastrointestinal tract.

    Science.gov (United States)

    Xu, Fei; Yan, Guozheng; Zhao, Kai; Lu, Li; Gao, Jinyang; Liu, Gang

    2014-12-01

    This paper presents the design of a wireless capsule system for monitoring the physiological signals of the human gastrointestinal (GI) tract. The primary components of the system include a wireless capsule, a portable data recorder, and a workstation. Temperature, pH, and pressure sensors; an RF transceiver; a controlling and processing application specific integrated circuit (ASIC); and batteries were applied in a wireless capsule. Decreasing capsule size, improving sensor precision, and reducing power needs were the primary challenges; these were resolved by employing micro sensors, optimized architecture, and an ASIC design that include power management, clock management, a programmable gain amplifier (PGA), an A/D converter (ADC), and a serial peripheral interface (SPI) communication unit. The ASIC has been fabricated in 0.18- μm CMOS technology with a die area of 5.0 mm × 5.0 mm. The wireless capsule integrating the ASIC controller measures Φ 11 mm × 26 mm. A data recorder and a workstation were developed, and 20 cases of human experiments were conducted in hospitals. Preprocessing in the workstation can significantly improve the quality of the data, and 76 original features were determined by mathematical statistics. Based on the 13 optimal features achieved in the evaluation of the features, the clustering algorithm can identify the patients who lack GI motility with a recognition rate reaching 83.3%.

  7. A comprehensive survey of wearable and wireless ECG monitoring systems for older adults.

    Science.gov (United States)

    Baig, Mirza Mansoor; Gholamhosseini, Hamid; Connolly, Martin J

    2013-05-01

    Wearable health monitoring is an emerging technology for continuous monitoring of vital signs including the electrocardiogram (ECG). This signal is widely adopted to diagnose and assess major health risks and chronic cardiac diseases. This paper focuses on reviewing wearable ECG monitoring systems in the form of wireless, mobile and remote technologies related to older adults. Furthermore, the efficiency, user acceptability, strategies and recommendations on improving current ECG monitoring systems with an overview of the design and modelling are presented. In this paper, over 120 ECG monitoring systems were reviewed and classified into smart wearable, wireless, mobile ECG monitoring systems with related signal processing algorithms. The results of the review suggest that most research in wearable ECG monitoring systems focus on the older adults and this technology has been adopted in aged care facilitates. Moreover, it is shown that how mobile telemedicine systems have evolved and how advances in wearable wireless textile-based systems could ensure better quality of healthcare delivery. The main drawbacks of deployed ECG monitoring systems including imposed limitations on patients, short battery life, lack of user acceptability and medical professional's feedback, and lack of security and privacy of essential data have been also discussed.

  8. Wound dressing with reusable electronics for wireless monitoring

    KAUST Repository

    Shamim, Atif; Farooqui, Muhammad Fahad

    2016-01-01

    A wound dressing device with reusable electronics for wireless monitoring and a method of making the same are provided. The device can be a smart device. In an embodiment, the device has a disposable portion including one or more sensors and a

  9. Wireless Sensor Network Based Subsurface Contaminant Plume Monitoring

    Science.gov (United States)

    2012-04-16

    Sensor Network (WSN) to monitor contaminant plume movement in naturally heterogeneous subsurface formations to advance the sensor networking based...time to assess the source and predict future plume behavior. This proof-of-concept research aimed at demonstrating the use of an intelligent Wireless

  10. Wireless Industrial Monitoring and Control Networks: The Journey So Far and the Road Ahead

    Directory of Open Access Journals (Sweden)

    Paul Havinga

    2012-08-01

    Full Text Available While traditional wired communication technologies have played a crucial role in industrial monitoring and control networks over the past few decades, they are increasingly proving to be inadequate to meet the highly dynamic and stringent demands of today’s industrial applications, primarily due to the very rigid nature of wired infrastructures. Wireless technology, however, through its increased pervasiveness, has the potential to revolutionize the industry, not only by mitigating the problems faced by wired solutions, but also by introducing a completely new class of applications. While present day wireless technologies made some preliminary inroads in the monitoring domain, they still have severe limitations especially when real-time, reliable distributed control operations are concerned. This article provides the reader with an overview of existing wireless technologies commonly used in the monitoring and control industry. It highlights the pros and cons of each technology and assesses the degree to which each technology is able to meet the stringent demands of industrial monitoring and control networks. Additionally, it summarizes mechanisms proposed by academia, especially serving critical applications by addressing the real-time and reliability requirements of industrial process automation. The article also describes certain key research problems from the physical layer communication for sensor networks and the wireless networking perspective that have yet to be addressed to allow the successful use of wireless technologies in industrial monitoring and control networks.

  11. Wireless pilot monitoring system for extreme race conditions.

    Science.gov (United States)

    Pino, Esteban J; Arias, Diego E; Aqueveque, Pablo; Melin, Pedro; Curtis, Dorothy W

    2012-01-01

    This paper presents the design and implementation of an assistive device to monitor car drivers under extreme conditions. In particular, this system is designed in preparation for the 2012 Atacama Solar Challenge to be held in the Chilean desert. Actual preliminary results show the feasibility of such a project including physiological and ambient sensors, real-time processing algorithms, wireless data transmission and a remote monitoring station. Implementation details and field results are shown along with a discussion of the main problems found in real-life telemetry monitoring.

  12. An Efficient Wireless Sensor Network for Industrial Monitoring and Control.

    Science.gov (United States)

    Aponte-Luis, Juan; Gómez-Galán, Juan Antonio; Gómez-Bravo, Fernando; Sánchez-Raya, Manuel; Alcina-Espigado, Javier; Teixido-Rovira, Pedro Miguel

    2018-01-10

    This paper presents the design of a wireless sensor network particularly designed for remote monitoring and control of industrial parameters. The article describes the network components, protocol and sensor deployment, aimed to accomplish industrial constraint and to assure reliability and low power consumption. A particular case of study is presented. The system consists of a base station, gas sensing nodes, a tree-based routing scheme for the wireless sensor nodes and a real-time monitoring application that operates from a remote computer and a mobile phone. The system assures that the industrial safety quality and the measurement and monitoring system achieves an efficient industrial monitoring operations. The robustness of the developed system and the security in the communications have been guaranteed both in hardware and software level. The system is flexible and can be adapted to different environments. The testing of the system confirms the feasibility of the proposed implementation and validates the functional requirements of the developed devices, the networking solution and the power consumption management.

  13. Investigation of Wireless Sensor Networks for Structural Health Monitoring

    Directory of Open Access Journals (Sweden)

    Ping Wang

    2012-01-01

    Full Text Available Wireless sensor networks (WSNs are one of the most able technologies in the structural health monitoring (SHM field. Through intelligent, self-organising means, the contents of this paper will test a variety of different objects and different working principles of sensor nodes connected into a network and integrated with data processing functions. In this paper the key issues of WSN applied in SHM are discussed, including the integration of different types of sensors with different operational modalities, sampling frequencies, issues of transmission bandwidth, real-time ability, and wireless transmitter frequency. Furthermore, the topology, data fusion, integration, energy saving, and self-powering nature of different systems will be investigated. In the FP7 project “Health Monitoring of Offshore Wind Farms,” the above issues are explored.

  14. Events as Power Source: Wireless Sustainable Corrosion Monitoring

    OpenAIRE

    Sun, Guodong; Qiao, Guofu; Zhao, Lin; Chen, Zhibo

    2013-01-01

    This study presents and implements a corrosion-monitoring wireless sensor platform, EPS (Events as Power Source), which monitors the corrosion events in reinforced concrete (RC) structures, while being powered by the micro-energy released from the corrosion process. In EPS, the proposed corrosion-sensing device serves both as the signal source for identifying corrosion and as the power source for driving the sensor mote, because the corrosion process (event) releases electric energy; this is ...

  15. On the Relevance of Using OpenWireless Sensor Networks in Environment Monitoring

    Directory of Open Access Journals (Sweden)

    Antoine B. Bagula

    2009-06-01

    Full Text Available This paper revisits the problem of the readiness for field deployments of wireless- sensor networks by assessing the relevance of using Open Hardware and Software motes for environment monitoring. We propose a new prototype wireless sensor network that finetunes SquidBee motes to improve the life-time and sensing performance of an environment monitoring system that measures temperature, humidity and luminosity. Building upon two outdoor sensing scenarios, we evaluate the performance of the newly proposed energy-aware prototype solution in terms of link quality when expressed by the Received Signal Strength, Packet Loss and the battery lifetime. The experimental results reveal the relevance of using the Open Hardware and Software motes when setting up outdoor wireless sensor networks.

  16. Application of wireless sensor networks in personnel dosage monitoring system of nuclear power plant

    International Nuclear Information System (INIS)

    Chen Yonghong; Zhang Dafa; Jiang Wei; Chen Dengke

    2007-01-01

    Aim to meet the need of personnel dosage monitoring of nuclear power plant, a monitoring system was designed which based on wireless sensor network. First, the basic concept was described; the characteristics of the wireless sensor network applied in the monitoring system of nuclear power plant were also been analyzed; the structure of the system was built too. Finally, the special technologies like the choice of communication mode, the security of communication network and orientation that used in the monitoring system were discussed. (authors)

  17. Wireless-accessible sensor populations for monitoring biological variables

    NARCIS (Netherlands)

    Mazzu, Marco; Scalvini, Simonetta; Giordano, A.; Frumento, E.; Wells, Hannah; Lokhorst, C.; Glisenti, Fulvio

    2008-01-01

    The current health-care infrastructure is generally considered to be inadequate to meet the needs of an increasingly older population. We have investigated the feasibility of a passive in-home monitoring system based on wireless accessible sensor populations (WASP). In an EU-funded project we have

  18. Active Wireless System for Structural Health Monitoring Applications

    Directory of Open Access Journals (Sweden)

    Ricardo Perera

    2017-12-01

    Full Text Available The use of wireless sensors in Structural Health Monitoring (SHM has increased significantly in the last years. Piezoelectric-based lead zirconium titanate (PZT sensors have been on the rise in SHM due to their superior sensing abilities. They are applicable in different technologies such as electromechanical impedance (EMI-based SHM. This work develops a flexible wireless smart sensor (WSS framework based on the EMI method using active sensors for full-scale and autonomous SHM. In contrast to passive sensors, the self-sensing properties of the PZTs allow interrogating with or exciting a structure when desired. The system integrates the necessary software and hardware within a service-oriented architecture approach able to provide in a modular way the services suitable to satisfy the key requirements of a WSS. The framework developed in this work has been validated on different experimental applications. Initially, the reliability of the EMI method when carried out with the proposed wireless sensor system is evaluated by comparison with the wireless counterpart. Afterwards, the performance of the system is evaluated in terms of software stability and reliability of functioning.

  19. On a digital wireless impact-monitoring network for large-scale composite structures

    International Nuclear Information System (INIS)

    Yuan, Shenfang; Mei, Hanfei; Qiu, Lei; Ren, Yuanqiang

    2014-01-01

    Impact, which may occur during manufacture, service or maintenance, is one of the major concerns to be monitored throughout the lifetime of aircraft composite structures. Aiming at monitoring impacts online while minimizing the weight added to the aircraft to meet the strict limitations of aerospace engineering, this paper puts forward a new digital wireless network based on miniaturized wireless digital impact-monitoring nodes developed for large-scale composite structures. In addition to investigations on the design methods of the network architecture, time synchronization and implementation method, a conflict resolution method based on the feature parameters of digital sequences is first presented to address impact localization conflicts when several nodes are arranged close together. To verify the feasibility and stability of the wireless network, experiments are performed on a complex aircraft composite wing box and an unmanned aerial vehicle (UAV) composite wing. Experimental results show the successful design of the presented network. (paper)

  20. Raspberry Pi Based Intelligent Wireless Sensor Node for Localized Torrential Rain Monitoring

    Directory of Open Access Journals (Sweden)

    Zhaozhuo Xu

    2016-01-01

    Full Text Available Wireless sensor networks are proved to be effective in long-time localized torrential rain monitoring. However, the existing widely used architecture of wireless sensor networks for rain monitoring relies on network transportation and back-end calculation, which causes delay in response to heavy rain in localized areas. Our work improves the architecture by applying logistic regression and support vector machine classification to an intelligent wireless sensor node which is created by Raspberry Pi. The sensor nodes in front-end not only obtain data from sensors, but also can analyze the probabilities of upcoming heavy rain independently and give early warnings to local clients in time. When the sensor nodes send the probability to back-end server, the burdens of network transport are released. We demonstrate by simulation results that our sensor system architecture has potentiality to increase the local response to heavy rain. The monitoring capacity is also raised.

  1. An ultralow power wireless intraocular pressure monitoring system

    International Nuclear Information System (INIS)

    Liu Demeng; Mei Niansong; Zhang Zhaofeng

    2014-01-01

    This paper describes an ultralow power wireless intraocular pressure (IOP) monitoring system that is dedicated to sensing and transferring intraocular pressure of glaucoma patients. Our system is comprised of a capacitive pressure sensor, an application-specific integrated circuit, which is designed on the SMIC 180 nm process, and a dipole antenna. The system is wirelessly powered and demonstrates a power consumption of 7.56 μW at 1.24 V during continuous monitoring, a significant reduction in active power dissipation compared to existing work. The input RF sensitivity is −13 dBm. A significant reduction in input RF sensitivity results from the reduction of mismatch time of the ASK modulation caused by FM0 encoding. The system exhibits an average error of ± 1.5 mmHg in measured pressure. Finally, a complete IOP system is demonstrated in the real biological environment, showing a successful reading of the pressure of an eye. (semiconductor integrated circuits)

  2. A wireless laser displacement sensor node for structural health monitoring.

    Science.gov (United States)

    Park, Hyo Seon; Kim, Jong Moon; Choi, Se Woon; Kim, Yousok

    2013-09-30

    This study describes a wireless laser displacement sensor node that measures displacement as a representative damage index for structural health monitoring (SHM). The proposed measurement system consists of a laser displacement sensor (LDS) and a customized wireless sensor node. Wireless communication is enabled by a sensor node that consists of a sensor module, a code division multiple access (CDMA) communication module, a processor, and a power module. An LDS with a long measurement distance is chosen to increase field applicability. For a wireless sensor node driven by a battery, we use a power control module with a low-power processor, which facilitates switching between the sleep and active modes, thus maximizing the power consumption efficiency during non-measurement and non-transfer periods. The CDMA mode is also used to overcome the limitation of communication distance, which is a challenge for wireless sensor networks and wireless communication. To evaluate the reliability and field applicability of the proposed wireless displacement measurement system, the system is tested onsite to obtain the required vertical displacement measurements during the construction of mega-trusses and an edge truss, which are the primary structural members in a large-scale irregular building currently under construction. The measurement values confirm the validity of the proposed wireless displacement measurement system and its potential for use in safety evaluations of structural elements.

  3. A Wireless Laser Displacement Sensor Node for Structural Health Monitoring

    Directory of Open Access Journals (Sweden)

    Se Woon Choi

    2013-09-01

    Full Text Available This study describes a wireless laser displacement sensor node that measures displacement as a representative damage index for structural health monitoring (SHM. The proposed measurement system consists of a laser displacement sensor (LDS and a customized wireless sensor node. Wireless communication is enabled by a sensor node that consists of a sensor module, a code division multiple access (CDMA communication module, a processor, and a power module. An LDS with a long measurement distance is chosen to increase field applicability. For a wireless sensor node driven by a battery, we use a power control module with a low-power processor, which facilitates switching between the sleep and active modes, thus maximizing the power consumption efficiency during non-measurement and non-transfer periods. The CDMA mode is also used to overcome the limitation of communication distance, which is a challenge for wireless sensor networks and wireless communication. To evaluate the reliability and field applicability of the proposed wireless displacement measurement system, the system is tested onsite to obtain the required vertical displacement measurements during the construction of mega-trusses and an edge truss, which are the primary structural members in a large-scale irregular building currently under construction. The measurement values confirm the validity of the proposed wireless displacement measurement system and its potential for use in safety evaluations of structural elements.

  4. Integrated Wireless Monitoring and Control System in Reverse Osmosis Membrane Desalination Plants

    Directory of Open Access Journals (Sweden)

    Al Haji Ahmad

    2015-01-01

    Full Text Available The operational processes of the Reverse Osmosis (RO membrane desalination plants require continuous monitoring through the constant attendance of operators to ensure proper productivity and minimize downtime and prevent membrane failure. Therefore, the plant must be equipped with a control system that monitors and controls the operational variables. Monitoring and controlling the affecting parameters are critical to the evaluation of the performance of the desalination plant, which will help the operator find and resolve problems immediately. Therefore, this paper was aimed at developing an RO unit by utilizing a wireless sensor network (WSN system. Hence, an RO pilot plant with a feed capacity of 1.2 m3/h was utilized, commissioned, and tested in Kuwait to assess and verify the performance of the integrated WSN in RO membrane desalination system. The investigated system allowed the operators to remotely monitor the operational process of the RO system. The operational data were smoothly recorded and monitored. Furthermore, the technical problems were immediately determined, which reduced the time and effort in rectifying the technical problems relevant to the RO performance. The manpower requirements of such treatment system were dramatically reduced by about 50%. Based on a comparison between manual and wireless monitoring operational processes, the availability of the integrated RO unit with a wireless monitoring was increased by 10%

  5. A wireless vibrating wire sensor node for continuous structural health monitoring

    International Nuclear Information System (INIS)

    Lee, H M; Park, H S; Kim, J M; Sho, K

    2010-01-01

    Vibrating wire sensors (VWS) are generally used for strain measurements of structures in buildings and civil infrastructures. In this paper, a wireless vibrating wire sensor node is developed which can measure resonance frequencies from vibrating wire sensors and can remotely communicate the frequencies by wireless. The wireless sensor node consists of a sensor module, which excites the vibrating wire and reads the resonance frequencies, a wireless communication module, which transmits the wire's resonance frequencies to the user or administrator, and a processor that controls the two modules. The wireless sensor node has the following characteristics: it has multiple channels to enable measurement of multiple vibrating wire sensors (up to four) using a single sensor node; it has a power-saving feature that enables operation for up to one year; and lastly, the wireless unit uses the 424 MHz UHF (ultra-high frequency) band with good diffraction that has an effect on minimizing the influence of impediments such as structural or nonstructural elements. The wireless sensor node is tested in terms of its measurement precision and its wireless communication performance. As a result, it is confirmed that the node enables the long-term structural health monitoring of buildings and infrastructures

  6. Real-time stress monitoring of highway bridges with a secured wireless sensor network.

    Science.gov (United States)

    2011-12-01

    "This collaborative research aims to develop a real-time stress monitoring system for highway bridges with a secured wireless sensor network. The near term goal is to collect wireless sensor data under different traffic patterns from local highway br...

  7. Wireless battery management control and monitoring system

    Science.gov (United States)

    Zumstein, James M.; Chang, John T.; Farmer, Joseph C.; Kovotsky, Jack; Lavietes, Anthony; Trebes, James Edward

    2018-01-16

    A battery management system using a sensor inside of the battery that sensor enables monitoring and detection of various events in the battery and transmission of a signal from the sensor through the battery casing to a control and data acquisition module by wireless transmission. The detection of threshold events in the battery enables remedial action to be taken to avoid catastrophic events.

  8. Low-Cost Inkjet-Printed Wireless Sensor Nodes for Environmental and Health Monitoring Applications

    KAUST Repository

    Farooqui, Muhammad Fahad

    2016-11-01

    Increase in population and limited resources have created a growing demand for a futuristic living environment where technology enables the efficient utilization and management of resources in order to increase quality of life. One characteristic of such a society, which is often referred to as a ‘Smart City’, is that the people are well informed about their physiological being as well as the environment around them, which makes them better equipped to handle crisis situations. There is a need, therefore, to develop wireless sensors which can provide early warnings and feedback during calamities such as floods, fires, and industrial leaks, and provide remote health care facilities. For these situations, low-cost sensor nodes with small form factors are required. For this purpose, the use of a low-cost, mass manufacturing technique such as inkjet printing can be beneficial due to its digitally controlled additive nature of depositing material on a variety of substrates. Inkjet printing can permit economical use of material on cheap flexible substrates that allows for the development of miniaturized freeform electronics. This thesis describes how low-cost, inkjet-printed, wireless sensors have been developed for real-time monitoring applications. A 3D buoyant mobile wireless sensor node has been demonstrated that can provide early warnings as well as real-time data for flood monitoring. This disposable paper-based module can communicate while floating in water up to a distance of 50 m, regardless of its orientation in the water. Moreover, fully inkjet-printed sensors have been developed to monitor temperature, humidity and gas levels for wireless environmental monitoring. The sensors are integrated and packaged using 3D inkjet printing technology. Finally, in order to demonstrate the benefits of such wireless sensor systems for health care applications, a low-cost, wearable, wireless sensing system has been developed for chronic wound monitoring. The system

  9. Monitoring network for doserate-measurements with wireless datatransmitting in Baden-Wuerttemberg

    International Nuclear Information System (INIS)

    Aures, R.; Wenzel, H.

    2003-01-01

    In the environment of the nuclear power plants Philippsburg, Obrigheim and Neckarwestheim in Baden-Wuerttemberg there is a monitoring network with 90 stations. They are measuring the gamma-dose rate. In the meantime these monitoring stations are nearly 20 years old and now it is time to substitute old technology by a new one. The aim is a mix of monitoring stations with phone wire- and wireless data transmission (Skylink). Thinkable is a part of 50 % of Skylink-tubes in the monitoring network and some for mobile performance. The main aspect of the planned substitution is a second independent way of data transmission. Normally there are no problems for data transmission. But in case of emergency the data transmissions which depends from phone wires could be delayed if there are too much dates. So the second way, the way of wireless data transmissions becomes important. The Landesanstalt fuer Umweltschutz in Karlsruhe has bought a complete system from the company Genitron in Frankfurt/Main. The system (Skylink) consists of the receiver and the does rate-monitoring stations. Such a system was tested successfully in a region with many mountains and deep valleys. Since July 2000 the Skylink-system is performed in the ''Nuclear power monitoring system'' (KFUe) in Baden-Wuerttemberg. The receiver is on the Koenigstuhl (630 m) near Heidelberg. This is a very good position to receive the wireless transmitted dates from every monitoring station (Skylink Gammatracer) of the monitoring network. Now there are 27 Skylink Gammatracer spread in the monitoring network. At time they are placed near the dose rate tubes of the old monitoring stations for comparing the dose rates and they are working with best results. (orig.)

  10. Characterization of Industrial Coolant Fluids and Continuous Ageing Monitoring by Wireless Node-Enabled Fiber Optic Sensors

    DEFF Research Database (Denmark)

    Sachat, Alexandros El; Meristoudi, Anastasia; Markos, Christos

    2017-01-01

    Environmentally robust chemical sensors for monitoring industrial processes or infrastructures are lately becoming important devices in industry. Low complexity and wireless enabled characteristics can offer the required flexibility for sensor deployment in adaptable sensing networks for continuous...... of sensors allowed their integration in an autonomous wireless sensing node, thus enabling the future use of the demonstrated platform in wireless sensor networks for a variety of industrial and environmental monitoring applications....

  11. Flood and Traffic Wireless Monitoring System for Smart Cities

    KAUST Repository

    Mousa, Mustafa

    2016-01-01

    The convergence of computation, communication and sensing has led to the emergence of Wireless Sensor Networks (WSNs), which allow distributed monitoring of physical phenomena over extended areas. In this thesis, we focus on a dual flood and traffic

  12. A Design of Wireless Sensor Networks for a Power Quality Monitoring System

    Directory of Open Access Journals (Sweden)

    Sanggil Kang

    2010-11-01

    Full Text Available Power grids deal with the business of generation, transmission, and distribution of electric power. Recently, interest in power quality in electrical distribution systems has increased rapidly. In Korea, the communication network to deliver voltage, current, and temperature measurements gathered from pole transformers to remote monitoring centers employs cellular mobile technology. Due to high cost of the cellular mobile technology, power quality monitoring measurements are limited and data gathering intervals are large. This causes difficulties in providing the power quality monitoring service. To alleviate the problems, in this paper we present a communication infrastructure to provide low cost, reliable data delivery. The communication infrastructure consists of wired connections between substations and monitoring centers, and wireless connections between pole transformers and substations. For the wireless connection, we employ a wireless sensor network and design its corresponding data forwarding protocol to improve the quality of data delivery. For the design, we adopt a tree-based data forwarding protocol in order to customize the distribution pattern of the power quality information. We verify the performance of the proposed data forwarding protocol quantitatively using the NS-2 network simulator.

  13. A design of wireless sensor networks for a power quality monitoring system.

    Science.gov (United States)

    Lim, Yujin; Kim, Hak-Man; Kang, Sanggil

    2010-01-01

    Power grids deal with the business of generation, transmission, and distribution of electric power. Recently, interest in power quality in electrical distribution systems has increased rapidly. In Korea, the communication network to deliver voltage, current, and temperature measurements gathered from pole transformers to remote monitoring centers employs cellular mobile technology. Due to high cost of the cellular mobile technology, power quality monitoring measurements are limited and data gathering intervals are large. This causes difficulties in providing the power quality monitoring service. To alleviate the problems, in this paper we present a communication infrastructure to provide low cost, reliable data delivery. The communication infrastructure consists of wired connections between substations and monitoring centers, and wireless connections between pole transformers and substations. For the wireless connection, we employ a wireless sensor network and design its corresponding data forwarding protocol to improve the quality of data delivery. For the design, we adopt a tree-based data forwarding protocol in order to customize the distribution pattern of the power quality information. We verify the performance of the proposed data forwarding protocol quantitatively using the NS-2 network simulator.

  14. [The Development of Information Centralization and Management Integration System for Monitors Based on Wireless Sensor Network].

    Science.gov (United States)

    Xu, Xiu; Zhang, Honglei; Li, Yiming; Li, Bin

    2015-07-01

    Developed the information centralization and management integration system for monitors of different brands and models with wireless sensor network technologies such as wireless location and wireless communication, based on the existing wireless network. With adaptive implementation and low cost, the system which possesses the advantages of real-time, efficiency and elaboration is able to collect status and data of the monitors, locate the monitors, and provide services with web server, video server and locating server via local network. Using an intranet computer, the clinical and device management staffs can access the status and parameters of monitors. Applications of this system provide convenience and save human resource for clinical departments, as well as promote the efficiency, accuracy and elaboration for the device management. The successful achievement of this system provides solution for integrated and elaborated management of the mobile devices including ventilator and infusion pump.

  15. Recent Developments on Wireless Sensor Networks Technology for Bridge Health Monitoring

    Directory of Open Access Journals (Sweden)

    Guang-Dong Zhou

    2013-01-01

    Full Text Available Structural health monitoring (SHM systems have shown great potential to sense the responses of a bridge system, diagnose the current structural conditions, predict the expected future performance, provide information for maintenance, and validate design hypotheses. Wireless sensor networks (WSNs that have the benefits of reducing implementation costs of SHM systems as well as improving data processing efficiency become an attractive alternative to traditional tethered sensor systems. This paper introduces recent technology developments in the field of bridge health monitoring using WSNs. As a special application of WSNs, the requirements and characteristics of WSNs when used for bridge health monitoring are firstly briefly discussed. Then, the state of the art in WSNs-based bridge health monitoring systems is reviewed including wireless sensor, network topology, data processing technology, power management, and time synchronization. Following that, the performance validations and applications of WSNs in bridge health monitoring through scale models and field deployment are presented. Finally, some existing problems and promising research efforts for promoting applications of WSNs technology in bridge health monitoring throughout the world are explored.

  16. In Vivo Self-Powered Wireless Cardiac Monitoring via Implantable Triboelectric Nanogenerator.

    Science.gov (United States)

    Zheng, Qiang; Zhang, Hao; Shi, Bojing; Xue, Xiang; Liu, Zhuo; Jin, Yiming; Ma, Ye; Zou, Yang; Wang, Xinxin; An, Zhao; Tang, Wei; Zhang, Wei; Yang, Fan; Liu, Yang; Lang, Xilong; Xu, Zhiyun; Li, Zhou; Wang, Zhong Lin

    2016-07-26

    Harvesting biomechanical energy in vivo is an important route in obtaining sustainable electric energy for powering implantable medical devices. Here, we demonstrate an innovative implantable triboelectric nanogenerator (iTENG) for in vivo biomechanical energy harvesting. Driven by the heartbeat of adult swine, the output voltage and the corresponding current were improved by factors of 3.5 and 25, respectively, compared with the reported in vivo output performance of biomechanical energy conversion devices. In addition, the in vivo evaluation of the iTENG was demonstrated for over 72 h of implantation, during which the iTENG generated electricity continuously in the active animal. Due to its excellent in vivo performance, a self-powered wireless transmission system was fabricated for real-time wireless cardiac monitoring. Given its outstanding in vivo output and stability, iTENG can be applied not only to power implantable medical devices but also possibly to fabricate a self-powered, wireless healthcare monitoring system.

  17. A Novel Passive Wireless Sensor for Concrete Humidity Monitoring

    Directory of Open Access Journals (Sweden)

    Shuangxi Zhou

    2016-09-01

    Full Text Available This paper presents a passive wireless humidity sensor for concrete monitoring. After discussing the transmission of electromagnetic wave in concrete, a novel architecture of wireless humidity sensor, based on Ultra-High Frequency (UHF Radio Frequency Identification (RFID technology, is proposed for low-power application. The humidity sensor utilizes the top metal layer to form the interdigitated electrodes, which were then filled with polyimide as the humidity sensing layer. The sensor interface converts the humidity capacitance into a digital signal in the frequency domain. A two-stage rectifier adopts a dynamic bias-voltage generator to boost the effective gate-source voltage of the switches in differential-drive architecture. The clock generator employs a novel structure to reduce the internal voltage swing. The measurement results show that our proposed wireless humidity can achieve a high linearity with a normalized sensitivity of 0.55% %RH at 20 °C. Despite the high losses of concrete, the proposed wireless humidity sensor achieves reliable communication performances in passive mode. The maximum operating distance is 0.52 m when the proposed wireless sensor is embedded into the concrete at the depth of 8 cm. The measured results are highly consistent with the results measured by traditional methods.

  18. A Novel Passive Wireless Sensor for Concrete Humidity Monitoring.

    Science.gov (United States)

    Zhou, Shuangxi; Deng, Fangming; Yu, Lehua; Li, Bing; Wu, Xiang; Yin, Baiqiang

    2016-09-20

    This paper presents a passive wireless humidity sensor for concrete monitoring. After discussing the transmission of electromagnetic wave in concrete, a novel architecture of wireless humidity sensor, based on Ultra-High Frequency (UHF) Radio Frequency Identification (RFID) technology, is proposed for low-power application. The humidity sensor utilizes the top metal layer to form the interdigitated electrodes, which were then filled with polyimide as the humidity sensing layer. The sensor interface converts the humidity capacitance into a digital signal in the frequency domain. A two-stage rectifier adopts a dynamic bias-voltage generator to boost the effective gate-source voltage of the switches in differential-drive architecture. The clock generator employs a novel structure to reduce the internal voltage swing. The measurement results show that our proposed wireless humidity can achieve a high linearity with a normalized sensitivity of 0.55% %RH at 20 °C. Despite the high losses of concrete, the proposed wireless humidity sensor achieves reliable communication performances in passive mode. The maximum operating distance is 0.52 m when the proposed wireless sensor is embedded into the concrete at the depth of 8 cm. The measured results are highly consistent with the results measured by traditional methods.

  19. A Novel Passive Wireless Sensor for Concrete Humidity Monitoring

    Science.gov (United States)

    Zhou, Shuangxi; Deng, Fangming; Yu, Lehua; Li, Bing; Wu, Xiang; Yin, Baiqiang

    2016-01-01

    This paper presents a passive wireless humidity sensor for concrete monitoring. After discussing the transmission of electromagnetic wave in concrete, a novel architecture of wireless humidity sensor, based on Ultra-High Frequency (UHF) Radio Frequency Identification (RFID) technology, is proposed for low-power application. The humidity sensor utilizes the top metal layer to form the interdigitated electrodes, which were then filled with polyimide as the humidity sensing layer. The sensor interface converts the humidity capacitance into a digital signal in the frequency domain. A two-stage rectifier adopts a dynamic bias-voltage generator to boost the effective gate-source voltage of the switches in differential-drive architecture. The clock generator employs a novel structure to reduce the internal voltage swing. The measurement results show that our proposed wireless humidity can achieve a high linearity with a normalized sensitivity of 0.55% %RH at 20 °C. Despite the high losses of concrete, the proposed wireless humidity sensor achieves reliable communication performances in passive mode. The maximum operating distance is 0.52 m when the proposed wireless sensor is embedded into the concrete at the depth of 8 cm. The measured results are highly consistent with the results measured by traditional methods. PMID:27657070

  20. An Efficient Wireless Sensor Network for Industrial Monitoring and Control

    Science.gov (United States)

    Aponte-Luis, Juan; Gómez-Bravo, Fernando; Sánchez-Raya, Manuel; Alcina-Espigado, Javier; Teixido-Rovira, Pedro Miguel

    2018-01-01

    This paper presents the design of a wireless sensor network particularly designed for remote monitoring and control of industrial parameters. The article describes the network components, protocol and sensor deployment, aimed to accomplish industrial constraint and to assure reliability and low power consumption. A particular case of study is presented. The system consists of a base station, gas sensing nodes, a tree-based routing scheme for the wireless sensor nodes and a real-time monitoring application that operates from a remote computer and a mobile phone. The system assures that the industrial safety quality and the measurement and monitoring system achieves an efficient industrial monitoring operations. The robustness of the developed system and the security in the communications have been guaranteed both in hardware and software level. The system is flexible and can be adapted to different environments. The testing of the system confirms the feasibility of the proposed implementation and validates the functional requirements of the developed devices, the networking solution and the power consumption management. PMID:29320466

  1. An Efficient Wireless Sensor Network for Industrial Monitoring and Control

    Directory of Open Access Journals (Sweden)

    Juan Aponte-Luis

    2018-01-01

    Full Text Available This paper presents the design of a wireless sensor network particularly designed for remote monitoring and control of industrial parameters. The article describes the network components, protocol and sensor deployment, aimed to accomplish industrial constraint and to assure reliability and low power consumption. A particular case of study is presented. The system consists of a base station, gas sensing nodes, a tree-based routing scheme for the wireless sensor nodes and a real-time monitoring application that operates from a remote computer and a mobile phone. The system assures that the industrial safety quality and the measurement and monitoring system achieves an efficient industrial monitoring operations. The robustness of the developed system and the security in the communications have been guaranteed both in hardware and software level. The system is flexible and can be adapted to different environments. The testing of the system confirms the feasibility of the proposed implementation and validates the functional requirements of the developed devices, the networking solution and the power consumption management.

  2. ZigBee wireless sensor network for environmental monitoring system

    Science.gov (United States)

    Chai, Shun-qi; Ji, Lei; Wu, Hong

    2009-11-01

    ZigBee is a new close-up, low-complexity, low-power, low data rate, low-cost wireless networking technology, mainly used for short distance wireless transmission. It is based on IEEE802.15.4 standards, thousands of tiny sensors form a network through mutual coordination to communications. This paper introduces the ZigBee wireless sensor networks in environmental monitoring applications. The hardware design, including microprocessor, data acquisition, antenna and peripheral circuits of the chips, and through software design composed ZigBee mesh network that can make data acquisition and communication. This network has low power consumption, low cost, the effective area is big, and information transfers reliable merits. And have confirmed the network's communication applicability by the Serial Com Assistant, also testified the network have very good pragmatism by the NS2 emulation the network's operation.

  3. Objective determination of pH thresholds in the analysis of 24 h ambulatory oesophageal pH monitoring

    NARCIS (Netherlands)

    Weusten, B. L.; Roelofs, J. M.; Akkermans, L. M.; vanBerge-Henegouwen, G. P.; Smout, A. J.

    1996-01-01

    In 24 h oesophageal pH monitoring, pH 4 is widely but arbitrarily used as the threshold between reflux and non-reflux pH values. The aim of the study was to define pH thresholds objectively, based on Gaussian curve fitting of pH frequency distributions. Single-channel 24 h oesophageal pH monitoring

  4. Image-based environmental monitoring sensor application using an embedded wireless sensor network.

    Science.gov (United States)

    Paek, Jeongyeup; Hicks, John; Coe, Sharon; Govindan, Ramesh

    2014-08-28

    This article discusses the experiences from the development and deployment of two image-based environmental monitoring sensor applications using an embedded wireless sensor network. Our system uses low-power image sensors and the Tenet general purpose sensing system for tiered embedded wireless sensor networks. It leverages Tenet's built-in support for reliable delivery of high rate sensing data, scalability and its flexible scripting language, which enables mote-side image compression and the ease of deployment. Our first deployment of a pitfall trap monitoring application at the James San Cannot Mountain Reserve provided us with insights and lessons learned into the deployment of and compression schemes for these embedded wireless imaging systems. Our three month-long deployment of a bird nest monitoring application resulted in over 100,000 images collected from a 19-camera node network deployed over an area of 0.05 square miles, despite highly variable environmental conditions. Our biologists found the on-line, near-real-time access to images to be useful for obtaining data on answering their biological questions.

  5. A Monitoring System for Vegetable Greenhouses based on a Wireless Sensor Network

    Science.gov (United States)

    Li, Xiu-hong; Cheng, Xiao; Yan, Ke; Gong, Peng

    2010-01-01

    A wireless sensor network-based automatic monitoring system is designed for monitoring the life conditions of greenhouse vegetatables. The complete system architecture includes a group of sensor nodes, a base station, and an internet data center. For the design of wireless sensor node, the JN5139 micro-processor is adopted as the core component and the Zigbee protocol is used for wireless communication between nodes. With an ARM7 microprocessor and embedded ZKOS operating system, a proprietary gateway node is developed to achieve data influx, screen display, system configuration and GPRS based remote data forwarding. Through a Client/Server mode the management software for remote data center achieves real-time data distribution and time-series analysis. Besides, a GSM-short-message-based interface is developed for sending real-time environmental measurements, and for alarming when a measurement is beyond some pre-defined threshold. The whole system has been tested for over one year and satisfactory results have been observed, which indicate that this system is very useful for greenhouse environment monitoring. PMID:22163391

  6. Image-Based Environmental Monitoring Sensor Application Using an Embedded Wireless Sensor Network

    Directory of Open Access Journals (Sweden)

    Jeongyeup Paek

    2014-08-01

    Full Text Available This article discusses the experiences from the development and deployment of two image-based environmental monitoring sensor applications using an embedded wireless sensor network. Our system uses low-power image sensors and the Tenet general purpose sensing system for tiered embedded wireless sensor networks. It leverages Tenet’s built-in support for reliable delivery of high rate sensing data, scalability and its flexible scripting language, which enables mote-side image compression and the ease of deployment. Our first deployment of a pitfall trap monitoring application at the James San Jacinto Mountain Reserve provided us with insights and lessons learned into the deployment of and compression schemes for these embedded wireless imaging systems. Our three month-long deployment of a bird nest monitoring application resulted in over 100,000 images collected from a 19-camera node network deployed over an area of 0.05 square miles, despite highly variable environmental conditions. Our biologists found the on-line, near-real-time access to images to be useful for obtaining data on answering their biological questions.

  7. Design of Zigbee-Based Wireless Sensor suitable for Radiation Detection and Monitoring

    International Nuclear Information System (INIS)

    Madian, A.A.

    2012-01-01

    This paper presents a design for a wireless sensor nuclear radiation monitoring and detection based on Zigbee. The system consists of transmitter and receiver modules. The wireless sensor installed at transmitter whiles the receiver processing data. The communication between Tx and Rx done through Zigbee module using the protocol of CSMA/CA. The Zigbee has the advantages of reliable, power-efficient, and low-latency communications between low-cost Tx/Rx.The wireless sensor implementation can easily be deployed to discover unusual or abnormal radioactivity. The sensors are convenient to be installed indoors or outdoors, as well as to be mounted on mobile equipment's. All wireless nuclear detection sensors are designed using micro controller and other integrated systems

  8. Wireless dynamic monitoring of the Colosseum in Rome

    International Nuclear Information System (INIS)

    Monti, Giorgio; Fumagalli, Fabio; Quaranta, Giuseppe; Marano, Giuseppe Carlo; Sgroi, Marco; Tommasi, Marcello; Rea Rossella; Nazzaro Barbara

    2016-01-01

    A key point for cultural heritage protection in many modern cities is to prevent damaging of historical monuments from urbanization disturbances, such as road and subway traffic vibrations. A typical dilemma is whether to focus on the effects of short-term vibrations due to construction activities or on the consequences of long-term traffic induced vibrations. Both case s present practical difficulties in both monitoring and data analysis procedures. Besides, specific standards do not provide indications neither on how to extract meaningful features from data, nor on how to identify proper strategic decisions for an effective maintenance of monuments. In this paper, an example of state - of - the - art monitoring system is presented with its application to the continuous trigger free dynamic monitoring of the Flavian Amphitheater , widely known as the Colosseum , in Rome . The installation of the monitoring system , composed of wireless accelerometers located on the top portion of the North façade of the Monument , has allowed to study all the features of recorded vibrations, beyond the usually considered peaks . The system architecture, the wireless protocol and the processing of the data are described in detail in this paper . A discussion on the data collected during a full year of monitoring is presented , with focus on statistical representation s of the dynamic response, such as fractiles of the peak acceleration s, which are meaningful and synthetic indicator s of the effects induced on the Monument by external actions of both natural and man-made nature.

  9. In vivo wireless biodiagnosis system for long-term bioactivity monitoring network

    Science.gov (United States)

    Chen, Chun-Kuang; Wu, Wen-Jong; Yu, Shih-An; Huang, Jhen-Gang; Lin, Yun-Han; Chen, Yih-Fan; Jin, Ming-Hui; Wen, Chih-Min; Kao, Cheng-Yan; Lin, Shi-Ming; Lu, Shey-Shi; Lin, Chii-Wann; Yen, Jia-Yush; Jaw, Fu-Shan; Chen, Chi-An; Liao, Fang-Jen; Chiu, Nan-Fu; Chien, Chia-Nan; Lee, Chih-Kung

    2004-07-01

    Attempts to develop a Wireless Health Advanced Mobile Bio-diagnostic System (abbreviated as WHAM-BioS) have arisen from the need to monitor the health status of patients under long-term care programs. The proposed WHAM-BioS as presented here was developed by integrating various technologies: nano/MEMS technology, biotechnology, network/communication technology, and information technology. The biochips proposed not only detect certain diseases but will also report any abnormal status readings on the patient to the medical personnel immediately through the network system. Since long-term home care is typically involved, the parameters monitored must be analyzed and traced continuously over a long period of time. To minimize the intrusion to the patients, a wireless sensor embedded within a wireless network is highly recommended. To facilitate the widest possible use of various biochips, a smart sensor node concept was implemented. More specifically, various technologies and components such as built-in micro power generators, energy storage devices, initialization processes, no-waste bio-detection methodologies, embedded controllers, wireless warning signal transmissions, and power/data management were merged and integrated to create this novel technology. The design methodologies and the implementation schemes are detailed. Potential expansions of this newly developed technology to other applications regimes will be presented as well.

  10. A Wireless Fully Passive Neural Recording Device for Unobtrusive Neuropotential Monitoring.

    Science.gov (United States)

    Kiourti, Asimina; Lee, Cedric W L; Chae, Junseok; Volakis, John L

    2016-01-01

    We propose a novel wireless fully passive neural recording device for unobtrusive neuropotential monitoring. Previous work demonstrated the feasibility of monitoring emulated brain signals in a wireless fully passive manner. In this paper, we propose a novel realistic recorder that is significantly smaller and much more sensitive. The proposed recorder utilizes a highly efficient microwave backscattering method and operates without any formal power supply or regulating elements. Also, no intracranial wires or cables are required. In-vitro testing is performed inside a four-layer head phantom (skin, bone, gray matter, and white matter). Compared to our former implementation, the neural recorder proposed in this study has the following improved features: 1) 59% smaller footprint, 2) up to 20-dB improvement in neuropotential detection sensitivity, and 3) encapsulation in biocompatible polymer. For the first time, temporal emulated neuropotentials as low as 63 μVpp can be detected in a wireless fully passive manner. Remarkably, the high-sensitivity achieved in this study implies reading of most neural signals generated by the human brain. The proposed recorder brings forward transformational possibilities in wireless fully passive neural detection for a very wide range of applications (e.g., epilepsy, Alzheimer's, mental disorders, etc.).

  11. A wireless telecommunications network for real-time monitoring of greenhouse microclimate

    Directory of Open Access Journals (Sweden)

    Giuliano Vox

    2014-10-01

    Full Text Available An innovative wireless monitoring system for measuring greenhouse climatic parameters was developed to overcome the problems related to wires cabling such as presence of a dense net of wires hampering the cultivation practices, wires subjected to high temperature and relative humidity, rodents that can damage wires. The system exploits battery-powered environmental sensors, such as air temperature and relative humidity sensors, wind speed and direction, and solar radiation sensors, integrated in the contest of an 802.15.4-based wireless sensors network. Besides, a fruit diameter measurement sensor was integrated into the system. This approach guarantees flexibility, ease of deployment and low power consumption. Data collected from the greenhouse are then sent to a remote server via a general packet radio service link. The proposed solution has been implemented in a real environment. The test of the communication system showed that 0.3% of the sent data packed were lost; the climatic parameters measured with the wireless system were compared with data collected by the wired system showing a mean value of the absolute difference equal to 0.6°C for the value of the greenhouse air temperature. The wireless climate monitoring system showed a good reliability, while the sensor node batteries showed a lifetime of 530 days.

  12. Wireless nanosensors for monitoring concussion of football players

    Science.gov (United States)

    Ramasamy, Mouli; Harbaugh, Robert E.; Varadan, Vijay K.

    2015-04-01

    Football players are more to violent impacts and injuries more than any athlete in any other sport. Concussion or mild traumatic brain injuries were one of the lesser known sports injuries until the last decade. With the advent of modern technologies in medical and engineering disciplines, people are now more aware of concussion detection and prevention. These concussions are often overlooked by football players themselves. The cumulative effect of these mild traumatic brain injuries can cause long-term residual brain dysfunctions. The principle of concussion is based the movement of the brain in the neurocranium and viscerocranium. The brain is encapsulated by the cerebrospinal fluid which acts as a protective layer for the brain. This fluid can protect the brain against minor movements, however, any rapid movements of the brain may mitigate the protective capability of the cerebrospinal fluid. In this paper, we propose a wireless health monitoring helmet that addresses the concerns of the current monitoring methods - it is non-invasive for a football player as helmet is not an additional gear, it is efficient in performance as it is equipped with EEG nanosensors and 3D accelerometer, it does not restrict the movement of the user as it wirelessly communicates to the remote monitoring station, requirement of individual monitoring stations are not required for each player as the ZigBee protocol can couple multiple transmitters with one receiver. A helmet was developed and validated according to the above mentioned parameters.

  13. A Comparative Field Monitoring of Column Shortenings in Tall Buildings Using Wireless and Wired Sensor Network Systems

    Directory of Open Access Journals (Sweden)

    Sungho Lee

    2016-01-01

    Full Text Available A comparative field measurement for column shortening of tall buildings is presented in this study, with a focus on the reliability and stability of a wireless sensor network. A wireless sensor network was used for monitoring the column shortenings of a 58-story building under construction. The wireless sensor network, which was composed of sensor and master nodes, employed the ultra-high-frequency band and CDMA communication methods. To evaluate the reliability and stability of the wireless sensor network system, the column shortenings were also measured using a conventional wired monitoring system. Two vibration wire gauges were installed in each of the selected 7 columns and 3 walls. Measurements for selected columns and walls were collected for 270 days after casting of the concrete. The results measured by the wireless sensor network were compared with the results of the conventional method. The strains and column shortenings measured using both methods showed good agreement for all members. It was verified that the column shortenings of tall buildings could be monitored using the wireless sensor network system with its reliability and stability.

  14. Secure and Time-Aware Communication of Wireless Sensors Monitoring Overhead Transmission Lines.

    Science.gov (United States)

    Mazur, Katarzyna; Wydra, Michal; Ksiezopolski, Bogdan

    2017-07-11

    Existing transmission power grids suffer from high maintenance costs and scalability issues along with a lack of effective and secure system monitoring. To address these problems, we propose to use Wireless Sensor Networks (WSNs) as a technology to achieve energy efficient, reliable, and low-cost remote monitoring of transmission grids. With WSNs, smart grid enables both utilities and customers to monitor, predict and manage energy usage effectively and react to possible power grid disturbances in a timely manner. However, the increased application of WSNs also introduces new security challenges, especially related to privacy, connectivity, and security management, repeatedly causing unpredicted expenditures. Monitoring the status of the power system, a large amount of sensors generates massive amount of sensitive data. In order to build an effective Wireless Sensor Network (WSN) for a smart grid, we focus on designing a methodology of efficient and secure delivery of the data measured on transmission lines. We perform a set of simulations, in which we examine different routing algorithms, security mechanisms and WSN deployments in order to select the parameters that will not affect the delivery time but fulfill their role and ensure security at the same time. Furthermore, we analyze the optimal placement of direct wireless links, aiming at minimizing time delays, balancing network performance and decreasing deployment costs.

  15. The difference of delay time in monitoring system of facial acupressure learning media using bluetooth, wireless and ethernet

    Science.gov (United States)

    Agustin, Eny Widhia; Hangga, Arimaz; Fahrian, Muhammad Iqbal; Azhari, Anis Fikri

    2018-03-01

    The implementation of monitoring system in the facial acupressure learning media could increase the students' proficiency. However the common learning media still has not implemented a monitoring system in their learning process. This research was conducted to implement monitoring system in the mannequin head prototype as a learning media of facial acupressure using Bluetooth, wireless and Ethernet. The results of the implementation of monitoring system in the prototype showed that there were differences in the delay time between Bluetooth and wireless or Ethernet. The results data showed no difference in the average delay time between the use of Bluetooth with wireless and the use of Bluetooth with Ethernet in monitoring system of facial acupressure learning media. From all the facial acupressure points, the forehead facial acupressure point has the longest delay time of 11.93 seconds. The average delay time in all 3 class rooms was 1.96 seconds therefore the use of Bluetooth, wireless and Ethernet is highly recommended in the monitoring system of facial acupressure.

  16. A reliable transmission protocol for ZigBee-based wireless patient monitoring.

    Science.gov (United States)

    Chen, Shyr-Kuen; Kao, Tsair; Chan, Chia-Tai; Huang, Chih-Ning; Chiang, Chih-Yen; Lai, Chin-Yu; Tung, Tse-Hua; Wang, Pi-Chung

    2012-01-01

    Patient monitoring systems are gaining their importance as the fast-growing global elderly population increases demands for caretaking. These systems use wireless technologies to transmit vital signs for medical evaluation. In a multihop ZigBee network, the existing systems usually use broadcast or multicast schemes to increase the reliability of signals transmission; however, both the schemes lead to significantly higher network traffic and end-to-end transmission delay. In this paper, we present a reliable transmission protocol based on anycast routing for wireless patient monitoring. Our scheme automatically selects the closest data receiver in an anycast group as a destination to reduce the transmission latency as well as the control overhead. The new protocol also shortens the latency of path recovery by initiating route recovery from the intermediate routers of the original path. On the basis of a reliable transmission scheme, we implement a ZigBee device for fall monitoring, which integrates fall detection, indoor positioning, and ECG monitoring. When the triaxial accelerometer of the device detects a fall, the current position of the patient is transmitted to an emergency center through a ZigBee network. In order to clarify the situation of the fallen patient, 4-s ECG signals are also transmitted. Our transmission scheme ensures the successful transmission of these critical messages. The experimental results show that our scheme is fast and reliable. We also demonstrate that our devices can seamlessly integrate with the next generation technology of wireless wide area network, worldwide interoperability for microwave access, to achieve real-time patient monitoring.

  17. A SMART MONITORING SYSTEM FOR CAMPUS USING ZIGBEE WIRELESS SENSOR NETWORKS

    Directory of Open Access Journals (Sweden)

    Alaa Azmi Allahham

    2018-02-01

    Full Text Available The wireless sensor networks are autonomous sensors that are distributed to monitor environmental and physical conditions and pass them across the network to other areas, which is considered one of the key elements that are used in the applications of smart cities. Therefore, this paper aims to provide a design to add more smart applications to the sanctuary and other compounds based on wireless sensor networks using ZigBee technology. The transition from reliance on the style of surveillance and controlled manually by staff to apply the principles of smart applications through wireless sensor network which provides the ability to getting all the necessary information and capabilities of controlling and monitoring are required to automatically and thus saving the time, effort, and money. The system proposed in this paper to design a smart monitoring system at the campus to control the opening and closing of the doors of many halls and the possibility of including lighting systems and appliances. The results obtained from OPNET program show that the network topology, which used within a ZigBee network vary in terms of performance, thus giving options for designers to build their network and choose technologies that suit their project.

  18. Event localization in underwater wireless sensor networks using Monitoring Courses

    KAUST Repository

    Debont, Matthew John Robert; Jamshaid, Kamran; Shihada, Basem; Ho, Pin-Han

    2012-01-01

    We propose m-courses (Monitoring Courses), a novel solution to localize events in an underwater wireless sensor network. These networks consists of surface gateways and relay nodes. GPS can localize the position of surface gateways which can

  19. Development of Hybrid pH sensor for long-term seawater pH monitoring.

    Science.gov (United States)

    Nakano, Y.; Egashira, T.; Miwa, T.; Kimoto, H.

    2016-02-01

    We have been developing the in situ pH sensor (Hybrid pH sensor: HpHS) for the long-term seawater pH monitoring. We are planning to provide the HpHS for researchers and environmental consultants for observation of the CCS (Carbon dioxide Capture and Storage) monitoring system, the coastal environment monitoring system (e.g. Blue Carbon) and ocean acidification. The HpHS has two types of pH sensors (i.e. potentiometric pH sensor and spectrophotometric pH sensor). The spectrophotometric pH sensor can measure pH correctly and stably, however it needs large power consumption and a lot of reagents in a long period of observation. The pH sensor used m-cresol purple (mCP) as an indicator of pH (Clayton and Byrne, 1993 and Liu et al., 2011). We can choose both coefficients before deployment. On the other hand, although the potentiometric pH sensor is low power consumption and high-speed response (within 10 seconds), drifts in the pH of the potentiometric measurements may possibly occur for a long-term observation. The HpHS can measure in situ pH correctly and stably combining advantage of both pH sensors. The HpHS consists of an aluminum pressure housing with optical cell (main unit) and an aluminum silicon-oil filled, pressure-compensated vessel containing pumps and valves (diaphragm pump and valve unit) and pressure-compensated reagents bags (pH indicator, pure water and Tris buffer or certified reference material: CRM) with an ability to resist water pressure to 3000m depth. The main unit holds system control boards, pump drivers, data storage (micro SD card), LED right source, photodiode, optical cell and pressure proof windows. The HpHS also has an aluminum pressure housing that holds a rechargeable lithium-ion battery or a lithium battery for the power supply (DC 24 V). The HpHS is correcting the value of the potentiometric pH sensor (measuring frequently) by the value of the spectrophotometric pH sensor (measuring less frequently). It is possible to calibrate in

  20. Wireless Networked Sensors for Remote Monitoring in Propulsion Systems, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This NASA Phase I SBIR program would fabricate wireless networked nanomembrane (NM) based surface pressure sensors for remote monitoring in propulsion systems, using...

  1. Combine harvester monitor system based on wireless sensor network

    Science.gov (United States)

    A measurement method based on Wireless Sensor Network (WSN) was developed to monitor the working condition of combine harvester for remote application. Three JN5139 modules were chosen for sensor data acquisition and another two as a router and a coordinator, which could create a tree topology netwo...

  2. A Wireless Sensor System for Real-Time Monitoring and Fault Detection of Motor Arrays.

    Science.gov (United States)

    Medina-García, Jonathan; Sánchez-Rodríguez, Trinidad; Galán, Juan Antonio Gómez; Delgado, Aránzazu; Gómez-Bravo, Fernando; Jiménez, Raúl

    2017-02-25

    This paper presents a wireless fault detection system for industrial motors that combines vibration, motor current and temperature analysis, thus improving the detection of mechanical faults. The design also considers the time of detection and further possible actions, which are also important for the early detection of possible malfunctions, and thus for avoiding irreversible damage to the motor. The remote motor condition monitoring is implemented through a wireless sensor network (WSN) based on the IEEE 802.15.4 standard. The deployed network uses the beacon-enabled mode to synchronize several sensor nodes with the coordinator node, and the guaranteed time slot mechanism provides data monitoring with a predetermined latency. A graphic user interface offers remote access to motor conditions and real-time monitoring of several parameters. The developed wireless sensor node exhibits very low power consumption since it has been optimized both in terms of hardware and software. The result is a low cost, highly reliable and compact design, achieving a high degree of autonomy of more than two years with just one 3.3 V/2600 mAh battery. Laboratory and field tests confirm the feasibility of the wireless system.

  3. Optimum wireless sensor deployment scheme for structural health monitoring: a simulation study

    International Nuclear Information System (INIS)

    Liu, Chengyin; Fang, Kun; Teng, Jun

    2015-01-01

    With the rapid advancements in smart sensing technology and wireless communication technology, the wireless sensor network (WSN) offers an alternative solution to structural health monitoring (SHM). In WSNs, dense deployment of wireless nodes aids the identification of structural dynamic characteristics, while data transmission is a significant issue since wireless channels typically have a lower bandwidth and a limited power supply. This paper provides a wireless sensor deployment optimization scheme for SHM, in terms of both energy consumption and modal identification accuracy. A spherical energy model is established to formulate the energy consumption within a WSN. The optimal number of sensors and their locations are obtained through solving a multi-objective function with weighting factors on energy consumption and modal identification accuracy using a genetic algorithm (GA). Simulation and comparison results with traditional sensor deployment methods demonstrate the efficiency of the proposed optimization scheme. (paper)

  4. Wireless Impedance Sensor with PZT-Interface for Prestress-Loss Monitoring in Prestressed Concrete Girder

    International Nuclear Information System (INIS)

    Nguyen, Khac Duy; Lee, So Young; Kim, Jeong Tae

    2011-01-01

    Ensuring the designed prestress force is very important for the safety of prestressed concrete bridge. The loss of prestress force in tendon could significantly reduce load carrying capacity of the structure. In this study, an automated prestress-loss monitoring system for prestressed concrete girder using PZT-interface and wireless impedance sensor node is presented. The following approaches are carried out to achieve the objective. Firstly, wireless impedance sensor nodes are designed for automated impedance-based monitoring technique. The sensor node is mounted on the high-performance Imote2 sensor platform to fulfill high operating speed, low power requirement and large storage memory. Secondly, a smart PZT-interface designed for monitoring prestress force is described. A linear regression model is established to predict prestress-loss. Finally, a system of the PZT-interface interacted with the wireless sensor node is evaluated from a lab-scale tendon-anchorage connection of a prestressed concrete girder

  5. Application of wireless LAN technology to remote monitoring for inspection equipment

    International Nuclear Information System (INIS)

    Ishiyama, Koichi; Kimura, Takashi; Miura, Yasushi; Yamaguchi, Katsuhiro; Kabuki, Toshihide

    2011-01-01

    To support inspections under an Integrated Safeguards regime into Tokai Reprocessing Plant (TRP), the IAEA suggested making use of Remote Monitoring (RM) capabilities to the inspection equipment (surveillance camera and NDA systems) installed in the spent fuel storage area at TRP. Since TRP had no pre-prepared cabling infrastructure for data transmission in the spent fuel storage area, the option of wireless LAN was chosen over the telephone line due to its lower installation costs. Feasibility studies and tests were performed by TRP on communication and particularly on long-term continuous communication using wireless LAN equipment composed of APs (AP: Access Point) and the external antennas for introducing wireless LAN technology to RM. As a result it was recognized that wireless LAN has enough ability to communicate for long periods of time and consequently the IAEA installed the AP and the external antenna to each inspection equipment and the wireless LAN technology was applied for RM. In this paper, the summary of each test and the results are reported. (author)

  6. Design of Mine Ventilators Monitoring System Based on Wireless Sensor Network

    International Nuclear Information System (INIS)

    Fu Sheng; Song Haiqiang

    2012-01-01

    A monitoring system for a mine ventilator is designed based on ZigBee wireless sensor network technology in the paper. The system consists of a sink node, sensor nodes, industrial personal computer and several sensors. Sensor nodes communicate with the sink node through the ZigBee wireless sensor network. The sink node connects with the configuration software on the pc via serial port. The system can collect or calculate vibration, temperature, negative pressure, air volume and other information of the mine ventilator. Meanwhile the system accurately monitors operating condition of the ventilator through these parameters. Especially it provides the most original information for potential faults of the ventilator. Therefore, there is no doubt that it improves the efficiency of fault diagnosis.

  7. Design of Mine Ventilators Monitoring System Based on Wireless Sensor Network

    Science.gov (United States)

    Fu, Sheng; Song, Haiqiang

    2012-05-01

    A monitoring system for a mine ventilator is designed based on ZigBee wireless sensor network technology in the paper. The system consists of a sink node, sensor nodes, industrial personal computer and several sensors. Sensor nodes communicate with the sink node through the ZigBee wireless sensor network. The sink node connects with the configuration software on the pc via serial port. The system can collect or calculate vibration, temperature, negative pressure, air volume and other information of the mine ventilator. Meanwhile the system accurately monitors operating condition of the ventilator through these parameters. Especially it provides the most original information for potential faults of the ventilator. Therefore, there is no doubt that it improves the efficiency of fault diagnosis.

  8. A high-resolution mini-microscope system for wireless real-time monitoring.

    Science.gov (United States)

    Wang, Zongjie; Boddeda, Akash; Parker, Benjamin; Samanipour, Roya; Ghosh, Sanjoy; Menard, Frederic; Kim, Keekyoung

    2017-09-04

    Compact, cost-effective and high-performance microscope that enables the real-time imaging of cells and lab-on-a-chip devices is highly demanded for cell biology and biomedical engineering. This paper aims to present the design and application of an inexpensive wireless mini-microscope with resolution up to 2592 × 1944 pixels and speed up to 90 fps. The mini-microscope system was built on a commercial embedded system (Raspberry Pi). We modified a camera module and adopted an inverse dual lens system to obtain the clear field of view and appropriate magnification for tens of micrometer objects. The system was capable of capturing time-lapse images and transferring image data wirelessly. The entire system can be operated wirelessly and cordlessly in a conventional cell culturing incubator. The developed mini-microscope was used to monitor the attachment and proliferation of NIH-3T3 and HEK 293 cells inside an incubator for 50 hours. In addition, the mini-microscope was used to monitor a droplet generation process in a microfluidic device. The high-quality images captured by the mini-microscope enabled us an automated analysis of experimental parameters. The successful applications prove the great potential of the developed mini-microscope for monitoring various biological samples and microfluidic devices. This paper presents the design of a high resolution mini-microscope system that enables the wireless real-time imaging of cells inside the incubator. This system has been verified to be a useful tool to obtain high-quality images and videos for the automated quantitative analysis of biological samples and lab-on-a-chip devices in the long term.

  9. Microscopic monitoring of extracellular pH in dental biofilms

    DEFF Research Database (Denmark)

    Schlafer, Sebastian; Garcia, Javier; Greve, Matilde

    pH in dental biofilm is a key virulence factor for the development of caries lesions. The complex three-dimensional architecture of dental biofilms leads to steep gradients of nutrients and metabolites, including organic acids, across the biofilm. For decades, measuring pH in dental biofilm has...... been limited to monitoring bulk pH with electrodes. Although pH microelectrodes with a better spatial resolution have been developed, they do not permit to monitor horizontal pH gradients in real-time. Quantitative fluorescent microscopic techniques, such as fluorescence lifetime imaging or pH...... ratiometry, can be employed to map the pH landscape in dental biofilm with more detail. However, when pH sensitive fluorescent probes are used to visualize pH in biofilms, it is crucial to differentiate between extracellular and intracellular pH. Intracellular microbial pH and pH in the extracellular matrix...

  10. A Compression Algorithm in Wireless Sensor Networks of Bearing Monitoring

    International Nuclear Information System (INIS)

    Zheng Bin; Meng Qingfeng; Wang Nan; Li Zhi

    2011-01-01

    The energy consumption of wireless sensor networks (WSNs) is always an important problem in the application of wireless sensor networks. This paper proposes a data compression algorithm to reduce amount of data and energy consumption during the data transmission process in the on-line WSNs-based bearing monitoring system. The proposed compression algorithm is based on lifting wavelets, Zerotree coding and Hoffman coding. Among of that, 5/3 lifting wavelets is used for dividing data into different frequency bands to extract signal characteristics. Zerotree coding is applied to calculate the dynamic thresholds to retain the attribute data. The attribute data are then encoded by Hoffman coding to further enhance the compression ratio. In order to validate the algorithm, simulation is carried out by using Matlab. The result of simulation shows that the proposed algorithm is very suitable for the compression of bearing monitoring data. The algorithm has been successfully used in online WSNs-based bearing monitoring system, in which TI DSP TMS320F2812 is used to realize the algorithm.

  11. 3D inkjet printed disposable environmental monitoring wireless sensor node

    KAUST Repository

    Farooqui, Muhammad Fahad

    2017-10-24

    We propose a disposable, miniaturized, moveable, fully integrated 3D inkjet-printed wireless sensor node for large area environmental monitoring applications. As a proof of concept, we show the wireless sensing of temperature, humidity and H2S levels which are important for early warnings of two critical environmental conditions namely forest fires and industrial gas leaks. The temperature sensor has TCR of -0.018/°, the highest of any inkjet-printed sensor and the H2S sensor can detect as low as 3 ppm of gas. These sensors and an antenna have been realized on the walls of a 3D-printed cubic package which encloses the microelectronics developed on a 3D-printed circuit board. Hence, 3D printing and inkjet printing have been combined in order to realize a unique low-cost, fully integrated wireless sensor node. Field tests show that these sensor nodes can wirelessly communicate up to a distance of over 100m. Our proposed sensor node can be a part of internet of things with the aim of providing a better and safe living.

  12. Wireless air monitoring network with new AMIZ-2004G dust monitors

    International Nuclear Information System (INIS)

    Jakowiuk, A.; Machaj, B.; Pienkos, P.; Swistowski, E.

    2006-01-01

    The principle of operation of the dust monitors is based on determination of dust mass deposited on air filters from known volumes of air samples. The dust mass is determined from radiation attenuation of a Pm-147 beta source. MIZA and AMIZ monitors produced in the Institute of Nuclear Chemistry and Technology, Warsaw (Poland) additionally measure relative humidity, atmospheric pressure and temperature of the air. In case the measurements are made in a few different places, direct collection of the results requires that personnel of the environment protection units has to go frequently to the monitors and collect the data. To improve the data transmission, a new version of the AMIZ-2004G monitor was developed which is equipped with a GSM modem enabling communication with a central computer. Thanks to the new construction not only a remote wireless communication with AMIZ is possible, but also a monitoring network containing a higher number of dust monitors can be made. The measuring data from all the monitors in the network can now be collected in one central computer equipped with the GSM modem and a proper acquisition program. In 2005, two such monitoring networks were put into operation

  13. Wireless sensor placement for structural monitoring using information-fusing firefly algorithm

    Science.gov (United States)

    Zhou, Guang-Dong; Yi, Ting-Hua; Xie, Mei-Xi; Li, Hong-Nan

    2017-10-01

    Wireless sensor networks (WSNs) are promising technology in structural health monitoring (SHM) applications for their low cost and high efficiency. The limited wireless sensors and restricted power resources in WSNs highlight the significance of optimal wireless sensor placement (OWSP) during designing SHM systems to enable the most useful information to be captured and to achieve the longest network lifetime. This paper presents a holistic approach, including an optimization criterion and a solution algorithm, for optimally deploying self-organizing multi-hop WSNs on large-scale structures. The combination of information effectiveness represented by the modal independence and the network performance specified by the network connectivity and network lifetime is first formulated to evaluate the performance of wireless sensor configurations. Then, an information-fusing firefly algorithm (IFFA) is developed to solve the OWSP problem. The step sizes drawn from a Lévy distribution are adopted to drive fireflies toward brighter individuals. Following the movement with Lévy flights, information about the contributions of wireless sensors to the objective function as carried by the fireflies is fused and applied to move inferior wireless sensors to better locations. The reliability of the proposed approach is verified via a numerical example on a long-span suspension bridge. The results demonstrate that the evaluation criterion provides a good performance metric of wireless sensor configurations, and the IFFA outperforms the simple discrete firefly algorithm.

  14. Energy-efficient digital and wireless IC design for wireless smart sensing

    Science.gov (United States)

    Zhou, Jun; Huang, Xiongchuan; Wang, Chao; Tae-Hyoung Kim, Tony; Lian, Yong

    2017-10-01

    Wireless smart sensing is now widely used in various applications such as health monitoring and structural monitoring. In conventional wireless sensor nodes, significant power is consumed in wirelessly transmitting the raw data. Smart sensing adds local intelligence to the sensor node and reduces the amount of wireless data transmission via on-node digital signal processing. While the total power consumption is reduced compared to conventional wireless sensing, the power consumption of the digital processing becomes as dominant as wireless data transmission. This paper reviews the state-of-the-art energy-efficient digital and wireless IC design techniques for reducing the power consumption of the wireless smart sensor node to prolong battery life and enable self-powered applications.

  15. Development of wireless sensor network for landslide monitoring system

    International Nuclear Information System (INIS)

    Suryadi; Puranto, Prabowo; Adinanta, Hendra; Tohari, Adrin; Priambodo, Purnomo S

    2017-01-01

    A wireless sensor network has been developed to monitor soil movement of some observed areas periodically. The system consists of four nodes and one gateway which installed on a scope area of 0.2 Km 2 . Each of nodehastwo types of sensor,an inclinometer and an extensometer. An inclinometer sensor is used to measure the tilt of a structure while anextensometer sensor is used to measure the displacement of soil movement. Each of nodeisalso supported by awireless communication device, a solar power supply unit, and a microcontroller unit called sensor module. In this system, there is also gateway module as a main communication system consistinga wireless communication device, power supply unit, and rain gauge to measure the rainfall intensity of the observed area. Each sensor of inclinometer and extensometer isconnected to the sensor module in wiring system but sensor module iscommunicating with gateway in a wireless system. Those four nodes are alsoconnectedeach other in a wireless system collecting the data from inclinometer and extensometer sensors. Module Gateway istransmitting the instruction code to each sensor module one by one and collecting the data from them. Gateway module is an important part to communicate with not only sensor modules but also to the server. This wireless system wasdesigned toreducethe electric consumption powered by 80 WP solar panel and 55Ah battery. This system has been implemented in Pangalengan, Bandung, which has high intensity of rainfall and it can be seen on the website. (paper)

  16. Development of low cost wireless radiation monitoring station using GSM network

    International Nuclear Information System (INIS)

    Nur Aira Abd Rahman; Mohd Ashhar Khalid; Nor Arymaswati Abdullah; Roslan Md Dan

    2006-01-01

    SMS or Short Message Service is a mean of GSM wireless communication that allow text messages to be sent to and from mobile cell phones. While SMS communication is mainly utilized at personal level or person to person basis; the usage of SMS can be extended into nuclear application specifically in radiation monitoring. This paper explains the development of a wireless station assembled by using a recycled Siemens M50 cell phone as substitutes to GSM modem, a PIC micro controller, and MINT-ISG home made digital survey meter at the remote transmitting site. While at the receiving end; an online monitoring system is set-up by using a Bluetooth enabled cell phone, a Bluetooth dongle, and a PC with Labview 8.0 software written as the Data logger which also served as the PC-Bluetooth interface platform. Wireless station at the remote area operates by continuously sending SMS in every 3 minutes to a predefined cellular number located at the monitoring system. The SMS consists of 6 data which individually is a survey meter readings recorded at each 30 seconds duration. At the receiver, Data logger program will retrieve the SMS from the cell phone via Bluetooth and extract the original 6 readings to be displayed on PC. The system has been successfully tested to detect and log radiation data for extended period of time. (Author)

  17. Construct mine environment monitoring system based on wireless mesh network

    Science.gov (United States)

    Chen, Xin; Ge, Gengyu; Liu, Yinmei; Cheng, Aimin; Wu, Jun; Fu, Jun

    2018-04-01

    The system uses wireless Mesh network as a network transmission medium, and strive to establish an effective and reliable underground environment monitoring system. The system combines wireless network technology and embedded technology to monitor the internal data collected in the mine and send it to the processing center for analysis and environmental assessment. The system can be divided into two parts: the main control network module and the data acquisition terminal, and the SPI bus technology is used for mutual communication between them. Multi-channel acquisition and control interface design Data acquisition and control terminal in the analog signal acquisition module, digital signal acquisition module, and digital signal output module. The main control network module running Linux operating system, in which the transplant SPI driver, USB card driver and AODV routing protocol. As a result, the internal data collection and reporting of the mine are realized.

  18. Integrated wireless sensor network and real time smart controlling and monitoring system for efficient energy management in standalone photovoltaic systems

    Science.gov (United States)

    Abou-Elnour, Ali; Thabt, A.; Helmy, S.; Kashf, Y.; Hadad, Y.; Tarique, M.; Abo-Elnor, Ossama

    2014-04-01

    In the present work, wireless sensor network and smart real-time controlling and monitoring system are integrated for efficient energy management of standalone photovoltaic system. The proposed system has two main components namely the monitoring and controlling system and the wireless communication system. LabView software has been used in the implementation of the monitoring and controlling system. On the other hand, ZigBee wireless modules have been used to implement the wireless system. The main functions of monitoring and controlling unit is to efficiently control the energy consumption form the photovoltaic system based on accurate determination of the periods of times at which the loads are required to be operated. The wireless communication system send the data from the monitoring and controlling unit to the loads at which desired switching operations are performed. The wireless communication system also continuously feeds the monitoring and controlling unit with updated input data from the sensors and from the photovoltaic module send to calculate and record the generated, the consumed, and the stored energy to apply load switching saving schemes if necessary. It has to be mentioned that our proposed system is a low cost and low power system because and it is flexible to be upgraded to fulfill additional users' requirements.

  19. Web of Things-Based Remote Monitoring System for Coal Mine Safety Using Wireless Sensor Network

    OpenAIRE

    Bo, Cheng; Xin, Cheng; Zhongyi, Zhai; Chengwen, Zhang; Junliang, Chen

    2014-01-01

    Frequent accidents have occurred in coal mine enterprises; therefore, raising the technological level of coal mine safety monitoring systems is an urgent problem. Wireless sensor networks (WSN), as a new field of research, have broad application prospects. This paper proposes a Web of Things- (WoT-) based remote monitoring system that takes full advantage of wireless sensor networks in combination with the CAN bus communication technique that abstracts the underground sensor data and capabili...

  20. Wireless sensor and data transmission needs and technologies for patient monitoring in the operating room and intensive care unit.

    Science.gov (United States)

    Paksuniemi, M; Sorvoja, H; Alasaarela, E; Myllyla, R

    2005-01-01

    In the intensive care unit, or during anesthesia, patients are attached to monitors by cables. These cables obstruct nursing staff and hinder the patients from moving freely in the hospital. However, rapidly developing wireless technologies are expected to solve these problems. To this end, this study revealed problem areas in current patient monitoring and established the most important medical parameters to monitor. In addition, usable wireless techniques for short-range data transmission were explored and currently employed wireless applications in the hospital environment were studied. The most important parameters measured of the patient include blood pressures, electrocardiography, respiration rate, heart rate and temperature. Currently used wireless techniques in hospitals are based on the WMTS and WLAN standards. There are no viable solutions for short-range data transmission from patient sensors to patient monitors, but potentially usable techniques in the future are based on the WPAN standards. These techniques include Bluetooth, ZigBee and UWB. Other suitable techniques might be based on capacitive or inductive coupling. The establishing of wireless techniques depends on ensuring the reliability of data transmission, eliminating disturbance by other wireless devices, ensuring patient data security and patient safety, and lowering the power consumption and price.

  1. Acoustic power delivery to pipeline monitoring wireless sensors.

    Science.gov (United States)

    Kiziroglou, M E; Boyle, D E; Wright, S W; Yeatman, E M

    2017-05-01

    The use of energy harvesting for powering wireless sensors is made more challenging in most applications by the requirement for customization to each specific application environment because of specificities of the available energy form, such as precise location, direction and motion frequency, as well as the temporal variation and unpredictability of the energy source. Wireless power transfer from dedicated sources can overcome these difficulties, and in this work, the use of targeted ultrasonic power transfer as a possible method for remote powering of sensor nodes is investigated. A powering system for pipeline monitoring sensors is described and studied experimentally, with a pair of identical, non-inertial piezoelectric transducers used at the transmitter and receiver. Power transmission of 18mW (Root-Mean-Square) through 1m of a118mm diameter cast iron pipe, with 8mm wall thickness is demonstrated. By analysis of the delay between transmission and reception, including reflections from the pipeline edges, a transmission speed of 1000m/s is observed, corresponding to the phase velocity of the L(0,1) axial and F(1,1) radial modes of the pipe structure. A reduction of power delivery with water-filling is observed, yet over 4mW of delivered power through a fully-filled pipe is demonstrated. The transmitted power and voltage levels exceed the requirements for efficient power management, including rectification at cold-starting conditions, and for the operation of low-power sensor nodes. The proposed powering technique may allow the implementation of energy autonomous wireless sensor systems for monitoring industrial and network pipeline infrastructure. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  2. The development of remote wireless radiation dose monitoring system

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jin-woo [KAERI - Korea Atomic Energy Research Institute, Jeongup-si (Korea, Republic of); Chonbuk National University, Jeonjoo-Si (Korea, Republic of); Jeong, Kyu-hwan [KINS - Korea Institute of Nuclear Safety, Daejeon-Si (Korea, Republic of); Kim, Jong-il [Chonbuk National University, Jeonjoo-Si (Korea, Republic of); Im, Chae-wan [REMTECH, Seoul-Si (Korea, Republic of)

    2015-07-01

    Internet of things (IoT) technology has recently shown a large flow of IT trends in human life. In particular, our lives are now becoming integrated with a lot of items around the 'smart-phone' with IoT, including Bluetooth, Near Field Communication (NFC), Beacons, WiFi, and Global Positioning System (GPS). Our project focuses on the interconnection of radiation dosimetry and IoT technology. The radiation workers at a nuclear facility should hold personal dosimeters such as a Thermo-Luminescence Dosimeter (TLD), an Optically Stimulated Luminescence Dosimeter (OSL), pocket ionization chamber dosimeters, an Electronic Personal Dosimeter (EPD), or an alarm dosimeter on their body. Some of them have functions that generate audible or visible alarms to radiation workers in a real working area. However, such devices used in radiation fields these days have no functions for communicating with other areas or the responsible personnel in real time. In particular, when conducting a particular task in a high dose area, or a number of repair works within a radiation field, radiation dose monitoring is important for the health of the workers and the work efficiency. Our project aims at the development of a remote wireless radiation dose monitoring system (RWRD) that can be used to monitor the radiation dose in a nuclear facility for radiation workers and a radiation protection program In this project, a radiation dosimeter is the detection device for personal radiation dose, a smart phone is the mobile wireless communication tool, and, Beacon is the wireless starter for the detection, communication, and position of the worker using BLE (Bluetooth Low Energy). In this report, we report the design of the RWRD and a demonstration case in a real radiation field. (authors)

  3. The development of remote wireless radiation dose monitoring system

    International Nuclear Information System (INIS)

    Lee, Jin-woo; Jeong, Kyu-hwan; Kim, Jong-il; Im, Chae-wan

    2015-01-01

    Internet of things (IoT) technology has recently shown a large flow of IT trends in human life. In particular, our lives are now becoming integrated with a lot of items around the 'smart-phone' with IoT, including Bluetooth, Near Field Communication (NFC), Beacons, WiFi, and Global Positioning System (GPS). Our project focuses on the interconnection of radiation dosimetry and IoT technology. The radiation workers at a nuclear facility should hold personal dosimeters such as a Thermo-Luminescence Dosimeter (TLD), an Optically Stimulated Luminescence Dosimeter (OSL), pocket ionization chamber dosimeters, an Electronic Personal Dosimeter (EPD), or an alarm dosimeter on their body. Some of them have functions that generate audible or visible alarms to radiation workers in a real working area. However, such devices used in radiation fields these days have no functions for communicating with other areas or the responsible personnel in real time. In particular, when conducting a particular task in a high dose area, or a number of repair works within a radiation field, radiation dose monitoring is important for the health of the workers and the work efficiency. Our project aims at the development of a remote wireless radiation dose monitoring system (RWRD) that can be used to monitor the radiation dose in a nuclear facility for radiation workers and a radiation protection program In this project, a radiation dosimeter is the detection device for personal radiation dose, a smart phone is the mobile wireless communication tool, and, Beacon is the wireless starter for the detection, communication, and position of the worker using BLE (Bluetooth Low Energy). In this report, we report the design of the RWRD and a demonstration case in a real radiation field. (authors)

  4. Design of a wireless, standard-based patient monitoring system for operating rooms

    Energy Technology Data Exchange (ETDEWEB)

    Villalobos Cervantes, A.; Alamo Ramiro, J.M. del

    2016-07-01

    In the last decades, IT has brought several successful innovations into the healthcare field, such as wearable devices or hospital information systems. However, IT adoption in surgical environments has followed a slower pace. In this kind of interventions, the large number of wired monitoring equipment limits the efficiency and movements of surgical staff in the room. Therefore, wireless intercommunication between these devices has become a priority. This paper proposes a solution to these needs, and describes the design of a system that uses wireless technologies to collect data from different monitors and display physicians an integrated vision of the patient’s status. Finally, a functional prototype was developed to validate the proposed design. (Author)

  5. An Integrated Environment Monitoring System for Underground Coal Mines—Wireless Sensor Network Subsystem with Multi-Parameter Monitoring

    OpenAIRE

    Zhang, Yu; Yang, Wei; Han, Dongsheng; Kim, Young-Il

    2014-01-01

    Environment monitoring is important for the safety of underground coal mine production, and it is also an important application of Wireless Sensor Networks (WSNs). We put forward an integrated environment monitoring system for underground coal mine, which uses the existing Cable Monitoring System (CMS) as the main body and the WSN with multi-parameter monitoring as the supplementary technique. As CMS techniques are mature, this paper mainly focuses on the WSN and the interconnection between t...

  6. A zero power harmonic transponder sensor for ubiquitous wireless μL liquid-volume monitoring

    Science.gov (United States)

    Huang, Haiyu; Chen, Pai-Yen; Hung, Cheng-Hsien; Gharpurey, Ranjit; Akinwande, Deji

    2016-01-01

    Autonomous liquid-volume monitoring is crucial in ubiquitous healthcare. However, conventional approach is based on either human visual observation or expensive detectors, which are costly for future pervasive monitoring. Here we introduce a novel approach based on passive harmonic transponder antenna sensor and frequency hopping spread spectrum (FHSS) pattern analysis, to provide a very low cost wireless μL-resolution liquid-volume monitoring without battery or digital circuits. In our conceptual demonstration, the harmonic transponder comprises of a passive nonlinear frequency multiplier connected to a metamaterial-inspired 3-D antenna designed to be highly sensitive to the liquid-volume within a confined region. The transponder first receives some FHSS signal from an interrogator, then converts such signal to its harmonic band and re-radiates through the antenna sensor. The harmonic signal is picked up by a sniffer receiver and decoded through pattern analysis of the high dimensional FHSS signal strength data. A robust, zero power, absolute accuracy wireless liquid-volume monitoring is realized in the presence of strong direct coupling, background scatters, distance variance as well as near-field human-body interference. The concepts of passive harmonic transponder sensor, metamaterial-inspired antenna sensor, and FHSS pattern analysis based sensor decoding may help establishing cost-effective, energy-efficient and intelligent wireless pervasive healthcare monitoring platforms.

  7. Wireless sensors cut costs of well monitoring in Nigerian swamps[Nigeria

    Energy Technology Data Exchange (ETDEWEB)

    Fasasi, Toyin; Maynard, Don; Nasr, Hatem; Patwari, Rajesh; Mashetti, Srikanth

    2005-07-01

    The article presents a pilot installation at the Kambo oil field in Nigeria that employs two-way wireless communication devices for long-range monitoring of production wells and facilities. Some management and technical aspects are mentioned.

  8. Passive Wireless Sensor System for Space and Structural Health Monitoring, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Aviana Molecular (Aviana) and the University of Central Florida (UCF) propose to develop a Passive Wireless Sensor System (PWSS) for Structural Health Monitoring...

  9. Wireless patient monitoring system for a moving-actuator type artificial heart.

    Science.gov (United States)

    Nam, K W; Chung, J; Choi, S W; Sun, K; Min, B G

    2006-10-01

    In this study, we developed a wireless monitoring system for outpatients equipped with a moving-actuator type pulsatile bi-ventricular assist device, AnyHeart. The developed monitoring system consists of two parts; a Bluetooth-based short-distance self-monitoring system that can monitor and control the operating status of a VAD using a Bluetooth-embedded personal digital assistant or a personal computer within a distance of 10 meters, and a cellular network-based remote monitoring system that can continuously monitor and control the operating status of AnyHeart at any location. Results of in vitro experiments demonstrate the developed system's ability to monitor the operational status of an implanted AnyHeart.

  10. Design and development of Solar Powered Wireless Telemetering System (SPWTS) for Environmental Radiation Monitoring (ERM) of nuclear power plants

    International Nuclear Information System (INIS)

    Mariappan, Bhuvaneswari; Ramachandran, Shanmugalakshmi

    2014-01-01

    Presently, the real time environmental radiation monitoring system installed in the nuclear power plant is based on LAN. Generally data from the surveillance instrument are collected at regular intervals using a lap-top or system/units and taken to the laboratory for downloading the archival data. So a need was felt to design and develop Solar powered Wireless Telemetering System (SPWTS) for Environmental Radiation Monitoring (ERM) of Nuclear Power Plants. SPWTS is used for real-time monitoring and wireless transmission of the on-line data to the Central Control Unit (CCU) to investigate the history of monitored data. Thus, in this paper a wireless mode using Zigbee is proposed, thereby improving scalability, flexibility and continuous radiological surveillance along with data archival facility. The proposed Solar Powered Wireless Telemetering System (SPWTS) comprising of transmitter, intermediate devices and receiver units transmits the ERM data to Central Control Unit (CCU) for storage and display to RADAS unit. In order to meet the coverage distance without data loss, suitable number of repeaters/routers are configured and joined in the network. The entire wireless telemetry system is powered up by solar cells with rechargeable battery backup facility, SPWTS suitable for ERM data transmission module will replace the wired Ethernet environment by wireless mode thereby improving scalability, flexibility and continuous radiological surveillance of the gamma dose monitoring. This module also proposes solutions for wireless transmission of safety related critical data to a remote control unit. Finally, this module promotes interoperability within hierarchical framework by reducing the amount of changes that could be introduced into the existing system. (author)

  11. Vibration based monitoring of stay cable force using wireless piezoelectric based strain sensor nodes

    International Nuclear Information System (INIS)

    Nguyen, Khac Duy; Kim, Jeong Tae

    2012-01-01

    This study presents a method to monitor cable force using wireless sensor nodes and piezoelectric sensors. The following approaches are carried out to achieve the objective. Firstly, the principle of piezoelectric materials (e.g., PZT) as strain sensors is reviewed. A cable force estimation method using dynamic features of cables measured by piezoelectric materials is presented. Secondly, the design of an automated cable force monitoring system using the data acquisition sensor node Imote2/SHM DAQ is described. The sensor node is originally developed by University of Illinois at Urbana champaign and is adopted in this study to monitor strain induced voltage from PZT sensors. The advantages of the system are cheap, and eligible for wireless communication and automated operation. Finally, the feasibility of the proposed monitoring system is evaluated on a lab scaled cable

  12. Sleep Scheduling in Critical Event Monitoring with Wireless Sensor Networks

    NARCIS (Netherlands)

    Guo, Peng; Jiang, Tao; Zhang, Qian; Zhang, Kui

    In this paper, we focus on the applications of wireless sensor networks (WSNs) for critical event monitoring, where normally there are only small number of packets need to be transmitted, while when urgent event occurs, the alarm should be broadcast to the entire network as soon as possible. During

  13. Integrating wireless sensor network for monitoring subsidence phenomena

    Science.gov (United States)

    Marturià, Jordi; Lopez, Ferran; Gigli, Giovanni; Intrieri, Emanuele; Mucchi, Lorenzo; Fornaciai, Alessandro

    2016-04-01

    An innovative wireless sensor network (WSN) for the 3D superficial monitoring of deformations (such as landslides and subsidence) is being developed in the frame of the Wi-GIM project (Wireless sensor network for Ground Instability Monitoring - LIFE12 ENV/IT/001033). The surface movement is detected acquiring the position (x, y and z) by integrating large bandwidth technology able to detect the 3D coordinates of the sensor with a sub-meter error, with continuous wave radar, which allows decreasing the error down to sub-cm. The Estació neighborhood in Sallent is located over the old potassium mine Enrique. This zone has been affected by a subsidence process over more than twenty years. The implementation of a wide network for ground auscultation has allowed monitoring the process of subsidence since 1997. This network consists of: i) a high-precision topographic leveling network to control the subsidence in surface; ii) a rod extensometers network to monitor subsurface deformation; iii) an automatic Leica TCA Total Station to monitor building movements; iv) an inclinometers network to measure the horizontal displacements on subsurface and v) a piezometer to measure the water level. Those networks were implemented within an alert system for an organized an efficient response of the civil protection authorities in case of an emergency. On 23rd December 2008, an acceleration of subsoil movements (of approx. 12-18 cm/year) provoked the activation of the emergency plan by the Catalan Civil Protection. This implied the preventive and scheduled evacuation of the neighbours (January 2009) located in the area with a higher risk of collapse: around 120 residents of 43 homes. As a consequence, the administration implemented a compensation plan for the evacuation of the whole neighbourhood residents and the demolition of 405 properties. In this work, the adaptation and integration process of Wi-GIM system with those conventional monitoring network are presented for its testing

  14. Wireless AE Event and Environmental Monitoring for Wind Turbine Blades at Low Sampling Rates

    Science.gov (United States)

    Bouzid, Omar M.; Tian, Gui Y.; Cumanan, K.; Neasham, J.

    Integration of acoustic wireless technology in structural health monitoring (SHM) applications introduces new challenges due to requirements of high sampling rates, additional communication bandwidth, memory space, and power resources. In order to circumvent these challenges, this chapter proposes a novel solution through building a wireless SHM technique in conjunction with acoustic emission (AE) with field deployment on the structure of a wind turbine. This solution requires a low sampling rate which is lower than the Nyquist rate. In addition, features extracted from aliased AE signals instead of reconstructing the original signals on-board the wireless nodes are exploited to monitor AE events, such as wind, rain, strong hail, and bird strike in different environmental conditions in conjunction with artificial AE sources. Time feature extraction algorithm, in addition to the principal component analysis (PCA) method, is used to extract and classify the relevant information, which in turn is used to classify or recognise a testing condition that is represented by the response signals. This proposed novel technique yields a significant data reduction during the monitoring process of wind turbine blades.

  15. Airborne Wireless Sensor Networks for Airplane Monitoring System

    Directory of Open Access Journals (Sweden)

    Shang Gao

    2018-01-01

    Full Text Available In traditional airplane monitoring system (AMS, data sensed from strain, vibration, ultrasound of structures or temperature, and humidity in cabin environment are transmitted to central data repository via wires. However, drawbacks still exist in wired AMS such as expensive installation and maintenance, and complicated wired connections. In recent years, accumulating interest has been drawn to performing AMS via airborne wireless sensor network (AWSN system with the advantages of flexibility, low cost, and easy deployment. In this review, we present an overview of AMS and AWSN and demonstrate the requirements of AWSN for AMS particularly. Furthermore, existing wireless hardware prototypes and network communication schemes of AWSN are investigated according to these requirements. This paper will improve the understanding of how the AWSN design under AMS acquires sensor data accurately and carries out network communication efficiently, providing insights into prognostics and health management (PHM for AMS in future.

  16. A wireless computational platform for distributed computing based traffic monitoring involving mixed Eulerian-Lagrangian sensing

    KAUST Repository

    Jiang, Jiming

    2013-06-01

    This paper presents a new wireless platform designed for an integrated traffic monitoring system based on combined Lagrangian (mobile) and Eulerian (fixed) sensing. The sensor platform is built around a 32-bit ARM Cortex M4 micro-controller and a 2.4GHz 802.15.4 ISM compliant radio module, and can be interfaced with fixed traffic sensors, or receive data from vehicle transponders. The platform is specially designed and optimized to be integrated in a solar-powered wireless sensor network in which traffic flow maps are computed by the nodes directly using distributed computing. A MPPT circuitry is proposed to increase the power output of the attached solar panel. A self-recovering unit is designed to increase reliability and allow periodic hard resets, an essential requirement for sensor networks. A radio monitoring circuitry is proposed to monitor incoming and outgoing transmissions, simplifying software debug. An ongoing implementation is briefly discussed, and compared with existing platforms used in wireless sensor networks. © 2013 IEEE.

  17. Miniaturized Human Insertable Cardiac Monitoring System with Wireless Power Transmission Technique

    Directory of Open Access Journals (Sweden)

    Jong-Ha Lee

    2016-01-01

    Full Text Available Prolonged monitoring is more likely to diagnose atrial fibrillation accurately than intermittent or short-term monitoring. In this study, an implantable electrocardiograph (ECG sensor to monitor atrial fibrillation patients in real time was developed. The implantable sensor is composed of a micro controller unit, an analog-to-digital converter, a signal transmitter, an antenna, and two electrodes. The sensor detects ECG signals from the two electrodes and transmits these to an external receiver carried by the patient. Because the sensor continuously transmits signals, its battery consumption rate is extremely high; therefore, the sensor includes a wireless power transmission module that allows it to charge wirelessly from an external power source. The integrated sensor has the approximate dimensions 3 mm × 4 mm × 14 mm, which is small enough to be inserted into a patient without the need for major surgery. The signal and power transmission data sampling rate and frequency of the unit are 300 samples/s and 430 Hz, respectively. To validate the developed sensor, experiments were conducted on small animals.

  18. An Embedded Wireless Sensor Network with Wireless Power Transmission Capability for the Structural Health Monitoring of Reinforced Concrete Structures.

    Science.gov (United States)

    Gallucci, Luca; Menna, Costantino; Angrisani, Leopoldo; Asprone, Domenico; Moriello, Rosario Schiano Lo; Bonavolontà, Francesco; Fabbrocino, Francesco

    2017-11-07

    Maintenance strategies based on structural health monitoring can provide effective support in the optimization of scheduled repair of existing structures, thus enabling their lifetime to be extended. With specific regard to reinforced concrete (RC) structures, the state of the art seems to still be lacking an efficient and cost-effective technique capable of monitoring material properties continuously over the lifetime of a structure. Current solutions can typically only measure the required mechanical variables in an indirect, but economic, manner, or directly, but expensively. Moreover, most of the proposed solutions can only be implemented by means of manual activation, making the monitoring very inefficient and then poorly supported. This paper proposes a structural health monitoring system based on a wireless sensor network (WSN) that enables the automatic monitoring of a complete structure. The network includes wireless distributed sensors embedded in the structure itself, and follows the monitoring-based maintenance (MBM) approach, with its ABCDE paradigm, namely: accuracy, benefit, compactness, durability, and easiness of operations. The system is structured in a node level and has a network architecture that enables all the node data to converge in a central unit. Human control is completely unnecessary until the periodic evaluation of the collected data. Several tests are conducted in order to characterize the system from a metrological point of view and assess its performance and effectiveness in real RC conditions.

  19. An Embedded Wireless Sensor Network with Wireless Power Transmission Capability for the Structural Health Monitoring of Reinforced Concrete Structures

    Directory of Open Access Journals (Sweden)

    Luca Gallucci

    2017-11-01

    Full Text Available Maintenance strategies based on structural health monitoring can provide effective support in the optimization of scheduled repair of existing structures, thus enabling their lifetime to be extended. With specific regard to reinforced concrete (RC structures, the state of the art seems to still be lacking an efficient and cost-effective technique capable of monitoring material properties continuously over the lifetime of a structure. Current solutions can typically only measure the required mechanical variables in an indirect, but economic, manner, or directly, but expensively. Moreover, most of the proposed solutions can only be implemented by means of manual activation, making the monitoring very inefficient and then poorly supported. This paper proposes a structural health monitoring system based on a wireless sensor network (WSN that enables the automatic monitoring of a complete structure. The network includes wireless distributed sensors embedded in the structure itself, and follows the monitoring-based maintenance (MBM approach, with its ABCDE paradigm, namely: accuracy, benefit, compactness, durability, and easiness of operations. The system is structured in a node level and has a network architecture that enables all the node data to converge in a central unit. Human control is completely unnecessary until the periodic evaluation of the collected data. Several tests are conducted in order to characterize the system from a metrological point of view and assess its performance and effectiveness in real RC conditions.

  20. Low-cost wireless voltage & current grid monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Hines, Jacqueline [SenSanna Inc., Arnold, MD (United States)

    2016-12-31

    This report describes the development and demonstration of a novel low-cost wireless power distribution line monitoring system. This system measures voltage, current, and relative phase on power lines of up to 35 kV-class. The line units operate without any batteries, and without harvesting energy from the power line. Thus, data on grid condition is provided even in outage conditions, when line current is zero. This enhances worker safety by detecting the presence of voltage and current that may appear from stray sources on nominally isolated lines. Availability of low-cost power line monitoring systems will enable widespread monitoring of the distribution grid. Real-time data on local grid operating conditions will enable grid operators to optimize grid operation, implement grid automation, and understand the impact of solar and other distributed sources on grid stability. The latter will enable utilities to implement eneygy storage and control systems to enable greater penetration of solar into the grid.

  1. Pengembangan Wireless Sensor Network Berbasis Internet of Things untuk Sistem Pemantauan Kualitas Air dan Tanah Pertanian

    Directory of Open Access Journals (Sweden)

    Ummi Syafiqoh

    2018-05-01

    Full Text Available Water and soil quality is very important in agriculture. The level of acidity (pH and soil temperature is one of the things that affect the fertility of plants. Therefore the quality of water and soil on agricultural land is one of the important things that need special attention in its management. One solution to water and soil quality can be monitored and managed efficiently is by utilizing the Wireless Sensor Network based on the Internet of Things (IoT. Use of ESP8266 Module as a WIFI module, widely used by Internet-based applications of Things because the price is cheap, thus reducing many costs and have a pretty good speed of 80 MHz. This research aims to develop the concept of Wireless Sensor Network by utilizing ESP8266 module to monitor pH value using pH Meter Analog Kit sensor and temperature of agricultural land using DS18B20 Waterproof sensor. The result of temperature measurement accuracy using DS18B20 Waterproof sensor of the designed system is 99.09% while the pH measurement using pH Meter Analog Kit sensor is 91.33%.

  2. A wireless monitoring system for Hydrocephalus shunts.

    Science.gov (United States)

    Narayanaswamy, A; Nourani, M; Tamil, L; Bianco, S

    2015-08-01

    Patients with Hydrocephalus are usually treated by diverting the excess Cerebrospinal Fluid (CSF) to other parts of the body using shunts. More than 40 percentage of shunts implanted fail within the first two years. Obstruction in the shunts is one of the major causes of failure (45 percent) and the detection of obstruction reduces the complexity of the revision surgery. This paper describes a proposed wireless monitoring system for clog detection and flow measurement in shunts. A prototype was built using multiple pressure sensors along the shunt catheters for sensing the location of clog and flow rate. Regular monitoring of flow rates can be used to adjust the valve in the shunt to prevent over drainage or under drainage of CSF. The accuracy of the flow measurement is more than 90 percent.

  3. Development of a High-Sensitivity Wireless Accelerometer for Structural Health Monitoring.

    Science.gov (United States)

    Zhu, Li; Fu, Yuguang; Chow, Raymond; Spencer, Billie F; Park, Jong Woong; Mechitov, Kirill

    2018-01-17

    Structural health monitoring (SHM) is playing an increasingly important role in ensuring the safety of structures. A shift of SHM research away from traditional wired methods toward the use of wireless smart sensors (WSS) has been motivated by the attractive features of wireless smart sensor networks (WSSN). The progress achieved in Micro Electro-Mechanical System (MEMS) technologies and wireless data transmission, has extended the effectiveness and range of applicability of WSSNs. One of the most common sensors employed in SHM strategies is the accelerometer; however, most accelerometers in WSS nodes have inadequate resolution for measurement of the typical accelerations found in many SHM applications. In this study, a high-resolution and low-noise tri-axial digital MEMS accelerometer is incorporated in a next-generation WSS platform, the Xnode. In addition to meeting the acceleration sensing demands of large-scale civil infrastructure applications, this new WSS node provides powerful hardware and a robust software framework to enable edge computing that can deliver actionable information. Hardware and software integration challenges are presented, and the associate resolutions are discussed. The performance of the wireless accelerometer is demonstrated experimentally through comparison with high-sensitivity wired accelerometers. This new high-sensitivity wireless accelerometer will extend the use of WSSN to a broader class of SHM applications.

  4. Development of a High-Sensitivity Wireless Accelerometer for Structural Health Monitoring

    Science.gov (United States)

    Zhu, Li; Fu, Yuguang; Chow, Raymond; Spencer, Billie F.; Park, Jong Woong; Mechitov, Kirill

    2018-01-01

    Structural health monitoring (SHM) is playing an increasingly important role in ensuring the safety of structures. A shift of SHM research away from traditional wired methods toward the use of wireless smart sensors (WSS) has been motivated by the attractive features of wireless smart sensor networks (WSSN). The progress achieved in Micro Electro-Mechanical System (MEMS) technologies and wireless data transmission, has extended the effectiveness and range of applicability of WSSNs. One of the most common sensors employed in SHM strategies is the accelerometer; however, most accelerometers in WSS nodes have inadequate resolution for measurement of the typical accelerations found in many SHM applications. In this study, a high-resolution and low-noise tri-axial digital MEMS accelerometer is incorporated in a next-generation WSS platform, the Xnode. In addition to meeting the acceleration sensing demands of large-scale civil infrastructure applications, this new WSS node provides powerful hardware and a robust software framework to enable edge computing that can deliver actionable information. Hardware and software integration challenges are presented, and the associate resolutions are discussed. The performance of the wireless accelerometer is demonstrated experimentally through comparison with high-sensitivity wired accelerometers. This new high-sensitivity wireless accelerometer will extend the use of WSSN to a broader class of SHM applications. PMID:29342102

  5. Realization of hiberarchy wireless sensor network for mine laneway monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Yang Wei; Wang Bin [Beijing Jiaotong University, Beijing (China). Key Laboratory of All Optical Network and Advanced Telecommunications Network

    2008-01-15

    According to the requirement of monitoring the environment of coal mine laneways and the characteristics of laneway land form, a kind of hiberarchy wireless sensor network was proposed for laneway monitoring. The topology control mechanism and routing mechanism were designed, corresponding hardware of the sensor node and the protocol stack were developed and two work modes for the system were designed. Simulation experiment in the laboratory proved to operate well; the data exceeding the threshold could be timely delivered in interrupt mode and data could be periodically gathered steadily and reliably in period monitor mode. 6 refs., 7 figs.

  6. Wireless Monitoring of the Height of Condensed Water in Steam Pipes

    Science.gov (United States)

    Lee, Hyeong Jae; Bar-Cohen, Yoseph; Lih, Shyh-Shiuh; Badescu, Mircea; Dingizian, Arsham; Takano, Nobuyuki; Blosiu, Julian O.

    2014-01-01

    A wireless health monitoring system has been developed for determining the height of water condensation in the steam pipes and the data acquisition is done remotely using a wireless network system. The developed system is designed to operate in the harsh environment encountered at manholes and the pipe high temperature of over 200 °C. The test method is an ultrasonic pulse-echo and the hardware includes a pulser, receiver and wireless modem for communication. Data acquisition and signal processing software were developed to determine the water height using adaptive signal processing and data communication that can be controlled while the hardware is installed in a manhole. A statistical decision-making tool is being developed based on the field test data to determine the height of in the condensed water under high noise conditions and other environmental factors.

  7. Monitoring of debris flows and landslides by wired and wireless systems. Experiences from the Catalan Pyrenees.

    Science.gov (United States)

    Hürlimann, Marcel; Abancó, Clàudia; Moya, José; Vilajosana, Ignasi; Llosa, Jordi

    2013-04-01

    Sophisticated monitoring of landslides for research purpose has started in the 1990thies in the Catalan Pyrenees. Since then several types of mass movements (large landslides, debris flows, shallow landslides and rock falls) and multiples techniques have been applied. In this contribution, special attention will be given to the debris-flow monitoring system installed since summer 2009 in the Rebaixader catchment, Central Pyrenees. The monitoring system has continuously been improved during the last years and nowadays includes devices studying the three major aspects: 1) initiation, 2) flow dynamics, and 3) accumulation. While some parts of the monitoring network include a traditional wired system, the newer parts were installed using low-power wireless devices. Two major aspects will be discussed. First, results of the Rebaixader monitoring site will be presented. Second, experience regarding the monitoring will be evaluated focussing on technical aspects and the comparison between wired and wireless techniques. In the Rebaixader catchment, 6 debris flows and 11 debris floods were observed between August 2009 and October 2012. Surprisingly, also 4 major rock falls were recorded. The rainfall analysis shows that the debris flows were triggered by short, high-intensity rainstorms with a preliminary threshold of about 15 mm during 1 hour. In addition, there was observed a positive trend between event volume and rainfall amount or intensity. The analysis of the ground vibration signals shows significant differences between the time series recorded at the different geophones. These differences are associated with the geophone location in the channel (distance and material), the mounting or the data acquisition system. For instance, the most downstream geophone, installed in bedrock, shows the clearest debris-flows vibration time series, while the uppermost is the most reliable regarding the detection of rockfalls. An evaluation of wired versus wireless monitoring

  8. Long-term real-time structural health monitoring using wireless smart sensor

    Science.gov (United States)

    Jang, Shinae; Mensah-Bonsu, Priscilla O.; Li, Jingcheng; Dahal, Sushil

    2013-04-01

    Improving the safety and security of civil infrastructure has become a critical issue for decades since it plays a central role in the economics and politics of a modern society. Structural health monitoring of civil infrastructure using wireless smart sensor network has emerged as a promising solution recently to increase structural reliability, enhance inspection quality, and reduce maintenance costs. Though hardware and software framework are well prepared for wireless smart sensors, the long-term real-time health monitoring strategy are still not available due to the lack of systematic interface. In this paper, the Imote2 smart sensor platform is employed, and a graphical user interface for the long-term real-time structural health monitoring has been developed based on Matlab for the Imote2 platform. This computer-aided engineering platform enables the control, visualization of measured data as well as safety alarm feature based on modal property fluctuation. A new decision making strategy to check the safety is also developed and integrated in this software. Laboratory validation of the computer aided engineering platform for the Imote2 on a truss bridge and a building structure has shown the potential of the interface for long-term real-time structural health monitoring.

  9. Wireless remote radiation monitoring system (WRRMS). Innovative technology summary report

    International Nuclear Information System (INIS)

    1998-12-01

    The Science Application International Corporation (SAIC) RadStar trademark wireless remote radiation monitoring system (WRRMS) is designed to provide real-time monitoring of the radiation dose to workers as they perform work in radiologically contaminated areas. WRRMS can also monitor dose rates in a room or area. The system uses radio-frequency communications to transmit dose readings from the wireless dosimeters worn by workers to a remote monitoring station that can be located out of the contaminated area. Each base station can monitor up to 16 workers simultaneously. The WRRMS can be preset to trigger both audible and visual alarms at certain dose rates. The alarms are provided to the worker as well as the base station operator. This system is particularly useful when workers are wearing personal protective clothing or respirators that make visual observation of their self-reading dosimeters (SRDs), which are typically used to monitor workers, more difficult. The base station is an IBM-compatible personal computer that updates and records information on individual workers every ten seconds. Although the equipment costs for this improved technology are higher than the SRDs (amortized at $2.54/hr versus $1.02/hr), total operational costs are actually less ($639/day versus $851/day). This is because the WRRMS requires fewer workers to be in the contaminated zone than the traditional (baseline) technology. There are also intangible benefits associated with improved worker safety and as low as reasonably achievable (ALARA) principles, making the WRRMS an attractive alternative to the baseline technology. The baseline technology measures only integrated dose and requires workers to check their own dosimeters manually during the task

  10. Wireless remote radiation monitoring system (WRRMS). Innovative technology summary report

    Energy Technology Data Exchange (ETDEWEB)

    1998-12-01

    The Science Application International Corporation (SAIC) RadStar{trademark} wireless remote radiation monitoring system (WRRMS) is designed to provide real-time monitoring of the radiation dose to workers as they perform work in radiologically contaminated areas. WRRMS can also monitor dose rates in a room or area. The system uses radio-frequency communications to transmit dose readings from the wireless dosimeters worn by workers to a remote monitoring station that can be located out of the contaminated area. Each base station can monitor up to 16 workers simultaneously. The WRRMS can be preset to trigger both audible and visual alarms at certain dose rates. The alarms are provided to the worker as well as the base station operator. This system is particularly useful when workers are wearing personal protective clothing or respirators that make visual observation of their self-reading dosimeters (SRDs), which are typically used to monitor workers, more difficult. The base station is an IBM-compatible personal computer that updates and records information on individual workers every ten seconds. Although the equipment costs for this improved technology are higher than the SRDs (amortized at $2.54/hr versus $1.02/hr), total operational costs are actually less ($639/day versus $851/day). This is because the WRRMS requires fewer workers to be in the contaminated zone than the traditional (baseline) technology. There are also intangible benefits associated with improved worker safety and as low as reasonably achievable (ALARA) principles, making the WRRMS an attractive alternative to the baseline technology. The baseline technology measures only integrated dose and requires workers to check their own dosimeters manually during the task.

  11. Online vehicle and atmospheric pollution monitoring using GIS and wireless sensor networks

    International Nuclear Information System (INIS)

    Cordova-Lopez, L E; Mason, A; Cullen, J D; Shaw, A; Al-Shamma'a, A I

    2007-01-01

    A Geographical Information System (GIS) is a computer system designed to integrate, store, edit, analyse, share and display geographically referenced data. A wireless sensor network (WSN) is a wireless network of spatially distributed autonomous devices using sensors to monitor physical or environmental conditions. This paper presents the integration of these two technologies to create a system able to detect measure and transmit information regarding the presence and quantities of internal combustion derived pollution and the geographical location in real time with the aim of creating pollution maps in urban environments

  12. Energy-efficient strain gauges for the wireless condition monitoring systems in mechanical engineering

    Energy Technology Data Exchange (ETDEWEB)

    Berndt, Michael; Fellner, Thomas; Zeiser, Roderich; Wilde, Juergen [Freiburg Univ. (Germany). Dept. for Microsystems Engineering (IMTEK)

    2012-07-01

    This work focuses on the development of novel strain gauges, which are suited for the operation in autonomous wireless condition monitoring systems. For this purpose, capacitive as well as highly resistive strain gauges were designed and fabricated. The C- and R-sensors were utilised in combination with demonstration circuits, which integrate the circuits for instrumentation, A/D-conversion and furthermore comprise a microcontroller with a wireless transceiver system, all on a small separate printed wiring board. (orig.)

  13. Conformally integrated stent cell resonators for wireless monitoring of peripheral artery disease

    KAUST Repository

    Viswanath, Anupam; Green, Scott Ryan; Kosel, Jü rgen; Gianchandani, Yogesh B.

    2013-01-01

    This paper presents the design and in vitro evaluation of magnetoelastic sensors intended for wireless monitoring of tissue accumulation in peripheral artery stents. The sensors, shaped like stent cells, are fabricated from 28-μm thick foils

  14. Implementation of Multiple Host Nodes in Wireless Sensing Node Network System for Landslide Monitoring

    International Nuclear Information System (INIS)

    Bin Abas, Faizulsalihin; Takayama, Shigeru

    2015-01-01

    This paper proposes multiple host nodes in Wireless Sensing Node Network System (WSNNS) for landslide monitoring. As landslide disasters damage monitoring system easily, one major demand in landslide monitoring is the flexibility and robustness of the system to evaluate the current situation in the monitored area. For various reasons WSNNS can provide an important contribution to reach that aim. In this system, acceleration sensors and GPS are deployed in sensing nodes. Location information by GPS, enable the system to estimate network topology and enable the system to perceive the location in emergency by monitoring the node mode. Acceleration sensors deployment, capacitate this system to detect slow mass movement that can lead to landslide occurrence. Once deployed, sensing nodes self-organize into an autonomous wireless ad hoc network. The measurement parameter data from sensing nodes is transmitted to Host System via host node and ''Cloud'' System. The implementation of multiple host nodes in Local Sensing Node Network System (LSNNS), improve risk- management of the WSNNS for real-time monitoring of landslide disaster

  15. Implementation of Multiple Host Nodes in Wireless Sensing Node Network System for Landslide Monitoring

    Science.gov (United States)

    Abas, Faizulsalihin bin; Takayama, Shigeru

    2015-02-01

    This paper proposes multiple host nodes in Wireless Sensing Node Network System (WSNNS) for landslide monitoring. As landslide disasters damage monitoring system easily, one major demand in landslide monitoring is the flexibility and robustness of the system to evaluate the current situation in the monitored area. For various reasons WSNNS can provide an important contribution to reach that aim. In this system, acceleration sensors and GPS are deployed in sensing nodes. Location information by GPS, enable the system to estimate network topology and enable the system to perceive the location in emergency by monitoring the node mode. Acceleration sensors deployment, capacitate this system to detect slow mass movement that can lead to landslide occurrence. Once deployed, sensing nodes self-organize into an autonomous wireless ad hoc network. The measurement parameter data from sensing nodes is transmitted to Host System via host node and "Cloud" System. The implementation of multiple host nodes in Local Sensing Node Network System (LSNNS), improve risk- management of the WSNNS for real-time monitoring of landslide disaster.

  16. 3D-Printed Disposable Wireless Sensors with Integrated Microelectronics for Large Area Environmental Monitoring

    KAUST Repository

    Farooqui, Muhammad Fahad

    2017-05-19

    Large area environmental monitoring can play a crucial role in dealing with crisis situations. However, it is challenging as implementing a fixed sensor network infrastructure over large remote area is economically unfeasible. This work proposes disposable, compact, dispersible 3D-printed wireless sensor nodes with integrated microelectronics which can be dispersed in the environment and work in conjunction with few fixed nodes for large area monitoring applications. As a proof of concept, the wireless sensing of temperature, humidity, and H2S levels are shown which are important for two critical environmental conditions namely forest fires and industrial leaks. These inkjet-printed sensors and an antenna are realized on the walls of a 3D-printed cubic package which encloses the microelectronics developed on a 3D-printed circuit board. Hence, 3D printing and inkjet printing are uniquely combined in order to realize a low-cost, fully integrated wireless sensor node.

  17. Development of personal dose monitoring system using wireless data transmission device

    International Nuclear Information System (INIS)

    Inui, Daisuke; Nakashima, Sadao

    2008-01-01

    Radiation workers working in radiation controlled area in nuclear power plants etc., are required to carry a dosimeters by regulation law. The workers are controlled daily on personal exposure dose by reading out the exposure dose information of the dosimeters with an area access control gate installed at the entrance of the radiation controlled area. This type of personal dose monitoring system has a problem that each worker can get his personal dose data only at the entrance of the radiation controlled area several times a day. We developed a system to get the real-time acquisition of personal dose data especially for workers working in a high dose area. This system is generally composed of a dosimeter with a wireless attachment, relay station, and monitor. Some relay stations set in main work places in the radiation controlled area can collect real-time personal dose data of each dosimeter carried by workers at the work place with the relay stations, and transmit it to the monitor to get personal dose data of individual workers. A wireless communication system between dosimeters and relay stations is applied to collect efficiently all personal dose data in the work place. (author)

  18. Wireless Sensor Network for Helicopter Rotor Blade Vibration Monitoring: Requirements Definition and Technological Aspects

    NARCIS (Netherlands)

    Sanchez Ramirez, Andrea; Das, Kallol; Loendersloot, Richard; Tinga, Tiedo; Havinga, Paul J.M.; Basu, Biswajit

    The main rotor accounts for the largest vibration source for a helicopter fuselage and its components. However, accurate blade monitoring has been limited due to the practical restrictions on instrumenting rotating blades. The use of Wireless Sensor Networks (WSNs) for real time vibration monitoring

  19. A Wearable Wireless Sensor Network for Indoor Smart Environment Monitoring in Safety Applications.

    Science.gov (United States)

    Antolín, Diego; Medrano, Nicolás; Calvo, Belén; Pérez, Francisco

    2017-02-14

    This paper presents the implementation of a wearable wireless sensor network aimed at monitoring harmful gases in industrial environments. The proposed solution is based on a customized wearable sensor node using a low-power low-rate wireless personal area network (LR-WPAN) communications protocol, which as a first approach measures CO₂ concentration, and employs different low power strategies for appropriate energy handling which is essential to achieving long battery life. These wearables nodes are connected to a deployed static network and a web-based application allows data storage, remote control and monitoring of the complete network. Therefore, a complete and versatile remote web application with a locally implemented decision-making system is accomplished, which allows early detection of hazardous situations for exposed workers.

  20. A Wearable Wireless Sensor Network for Indoor Smart Environment Monitoring in Safety Applications

    Directory of Open Access Journals (Sweden)

    Diego Antolín

    2017-02-01

    Full Text Available This paper presents the implementation of a wearable wireless sensor network aimed at monitoring harmful gases in industrial environments. The proposed solution is based on a customized wearable sensor node using a low-power low-rate wireless personal area network (LR-WPAN communications protocol, which as a first approach measures CO2 concentration, and employs different low power strategies for appropriate energy handling which is essential to achieving long battery life. These wearables nodes are connected to a deployed static network and a web-based application allows data storage, remote control and monitoring of the complete network. Therefore, a complete and versatile remote web application with a locally implemented decision-making system is accomplished, which allows early detection of hazardous situations for exposed workers.

  1. Implementation and Analysis of a Wireless Sensor Network-Based Pet Location Monitoring System for Domestic Scenarios.

    Science.gov (United States)

    Aguirre, Erik; Lopez-Iturri, Peio; Azpilicueta, Leyre; Astrain, José Javier; Villadangos, Jesús; Santesteban, Daniel; Falcone, Francisco

    2016-08-30

    The flexibility of new age wireless networks and the variety of sensors to measure a high number of variables, lead to new scenarios where anything can be monitored by small electronic devices, thereby implementing Wireless Sensor Networks (WSN). Thanks to ZigBee, RFID or WiFi networks the precise location of humans or animals as well as some biological parameters can be known in real-time. However, since wireless sensors must be attached to biological tissues and they are highly dispersive, propagation of electromagnetic waves must be studied to deploy an efficient and well-working network. The main goal of this work is to study the influence of wireless channel limitations in the operation of a specific pet monitoring system, validated at physical channel as well as at functional level. In this sense, radio wave propagation produced by ZigBee devices operating at the ISM 2.4 GHz band is studied through an in-house developed 3D Ray Launching simulation tool, in order to analyze coverage/capacity relations for the optimal system selection as well as deployment strategy in terms of number of transceivers and location. Furthermore, a simplified dog model is developed for simulation code, considering not only its morphology but also its dielectric properties. Relevant wireless channel information such as power distribution, power delay profile and delay spread graphs are obtained providing an extensive wireless channel analysis. A functional dog monitoring system is presented, operating over the implemented ZigBee network and providing real time information to Android based devices. The proposed system can be scaled in order to consider different types of domestic pets as well as new user based functionalities.

  2. Implementation and Analysis of a Wireless Sensor Network-Based Pet Location Monitoring System for Domestic Scenarios

    Directory of Open Access Journals (Sweden)

    Erik Aguirre

    2016-08-01

    Full Text Available The flexibility of new age wireless networks and the variety of sensors to measure a high number of variables, lead to new scenarios where anything can be monitored by small electronic devices, thereby implementing Wireless Sensor Networks (WSN. Thanks to ZigBee, RFID or WiFi networks the precise location of humans or animals as well as some biological parameters can be known in real-time. However, since wireless sensors must be attached to biological tissues and they are highly dispersive, propagation of electromagnetic waves must be studied to deploy an efficient and well-working network. The main goal of this work is to study the influence of wireless channel limitations in the operation of a specific pet monitoring system, validated at physical channel as well as at functional level. In this sense, radio wave propagation produced by ZigBee devices operating at the ISM 2.4 GHz band is studied through an in-house developed 3D Ray Launching simulation tool, in order to analyze coverage/capacity relations for the optimal system selection as well as deployment strategy in terms of number of transceivers and location. Furthermore, a simplified dog model is developed for simulation code, considering not only its morphology but also its dielectric properties. Relevant wireless channel information such as power distribution, power delay profile and delay spread graphs are obtained providing an extensive wireless channel analysis. A functional dog monitoring system is presented, operating over the implemented ZigBee network and providing real time information to Android based devices. The proposed system can be scaled in order to consider different types of domestic pets as well as new user based functionalities.

  3. Esophageal scintigraphy and pH monitoring in adults with gastroesophageal reflux

    Energy Technology Data Exchange (ETDEWEB)

    Jouin, H.; Chamouard, P.; Baumann, R. and others

    1987-10-01

    Thirty-seven adults with gastroesophageal reflux were explored by oesophageal scintigraphy and pH monitoring (three hours postprandial). Scintigraphy was less frequently positive than pH test in gastroesophageal reflux (81% versus 57%) with a significant difference. It is suggested that postprandial pH monitoring is reliable in the initial assessment of symptomatic gastroesophageal reflux.

  4. Wi-GIM system: a new wireless sensor network (WSN) for accurate ground instability monitoring

    Science.gov (United States)

    Mucchi, Lorenzo; Trippi, Federico; Schina, Rosa; Fornaciai, Alessandro; Gigli, Giovanni; Nannipieri, Luca; Favalli, Massimiliano; Marturia Alavedra, Jordi; Intrieri, Emanuele; Agostini, Andrea; Carnevale, Ennio; Bertolini, Giovanni; Pizziolo, Marco; Casagli, Nicola

    2016-04-01

    Landslides are among the most serious and common geologic hazards around the world. Their impact on human life is expected to increase in the next future as a consequence of human-induced climate change as well as the population growth in proximity of unstable slopes. Therefore, developing better performing technologies for monitoring landslides and providing local authorities with new instruments able to help them in the decision making process, is becoming more and more important. The recent progresses in Information and Communication Technologies (ICT) allow us to extend the use of wireless technologies in landslide monitoring. In particular, the developments in electronics components have permitted to lower the price of the sensors and, at the same time, to actuate more efficient wireless communications. In this work we present a new wireless sensor network (WSN) system, designed and developed for landslide monitoring in the framework of EU Wireless Sensor Network for Ground Instability Monitoring - Wi-GIM project (LIFE12 ENV/IT/001033). We show the preliminary performance of the Wi-GIM system after the first period of monitoring on the active Roncovetro Landslide and on a large subsiding area in the neighbourhood of Sallent village. The Roncovetro landslide is located in the province of Reggio Emilia (Italy) and moved an inferred volume of about 3 million cubic meters. Sallent village is located at the centre of the Catalan evaporitic basin in Spain. The Wi-GIM WSN monitoring system consists of three levels: 1) Master/Gateway level coordinates the WSN and performs data aggregation and local storage; 2) Master/Server level takes care of acquiring and storing data on a remote server; 3) Nodes level that is based on a mesh of peripheral nodes, each consisting in a sensor board equipped with sensors and wireless module. The nodes are located in the landslide ground perimeter and are able to create an ad-hoc WSN. The location of each sensor on the ground is

  5. Esophageal scintigraphy and pH monitoring in adults with gastroesophageal reflux

    International Nuclear Information System (INIS)

    Jouin, H.; Chamouard, P.; Baumann, R.

    1987-01-01

    Thirty-seven adults with gastroesophageal reflux were explored by oesophageal scintigraphy and pH monitoring (three hours postprandial). Scintigraphy was less frequently positive than pH test in gastroesophageal reflux (81% versus 57%) with a significant difference. It is suggested that postprandial pH monitoring is reliable in the initial assessment of symptomatic gastroesophageal reflux [fr

  6. Miniaturized and Wireless Optical Neurotransmitter Sensor for Real-Time Monitoring of Dopamine in the Brain.

    Science.gov (United States)

    Kim, Min H; Yoon, Hargsoon; Choi, Sang H; Zhao, Fei; Kim, Jongsung; Song, Kyo D; Lee, Uhn

    2016-11-10

    Real-time monitoring of extracellular neurotransmitter concentration offers great benefits for diagnosis and treatment of neurological disorders and diseases. This paper presents the study design and results of a miniaturized and wireless optical neurotransmitter sensor (MWONS) for real-time monitoring of brain dopamine concentration. MWONS is based on fluorescent sensing principles and comprises a microspectrometer unit, a microcontroller for data acquisition, and a Bluetooth wireless network for real-time monitoring. MWONS has a custom-designed application software that controls the operation parameters for excitation light sources, data acquisition, and signal processing. MWONS successfully demonstrated a measurement capability with a limit of detection down to a 100 nanomole dopamine concentration, and high selectivity to ascorbic acid (90:1) and uric acid (36:1).

  7. Energy generation for an ad hoc wireless sensor network-based monitoring system using animal head movement

    DEFF Research Database (Denmark)

    S. Nadimi, Esmaeil; Blanes-Vidal, Victoria; Jørgensen, Rasmus Nyholm

    2011-01-01

    are not easily accessible. Therefore, exploring novel sources of energy generation rather than operating electronics only on limited power supplies such as batteries is a major challenge. Monitoring free-ranging animal behavior is an application in which the entities (animals) within the MANET are not readily...... that the amount of energy generated by the vertical neck–head movement of sheep during grazing can be converted to useful electrical power adequate to provide power for operation of wireless sensor nodes on a continuous basis within a MANET-based animal behavior monitoring system.......The supply of energy to electronics is an imperative constraining factor to be considered during the design process of mobile ad hoc wireless sensor networks (MANETs). This influence is especially important when the MANET is deployed unattended or the wireless modules within the MANET...

  8. A system for ubiquitous health monitoring in the bedroom via a Bluetooth network and wireless LAN.

    Science.gov (United States)

    Choi, J M; Choi, B H; Seo, J W; Sohn, R H; Ryu, M S; Yi, W; Park, K S

    2004-01-01

    Advances in information technology have enabled ubiquitous health monitoring at home, which is particularly useful for patients, who have to live alone. We have focused on the automatic and unobtrusive measurement of biomedical signals and activities of patients. We have constructed wireless communication networks in order to transfer data. The networks consist of Bluetooth and Wireless Local Area Network (WLAN). In this paper, we present the concept of a ubiquitous-Bedroom (u-Bedroom) which is a part of a ubiquitous-House (u-House) and we present our systems for ubiquitous health monitoring.

  9. 'There were more wires than him': the potential for wireless patient monitoring in neonatal intensive care.

    Science.gov (United States)

    Bonner, Oliver; Beardsall, Kathryn; Crilly, Nathan; Lasenby, Joan

    2017-02-01

    The neonatal intensive care unit (NICU) can be one of the most stressful hospital environments. Alongside providing intensive clinical care, it is important that parents have the opportunity for regular physical contact with their babies because the neonatal period is critical for parent-child bonding. At present, monitoring technology in the NICU requires multiple wired sensors to track each baby's vital signs. This study describes the experiences that parents and nurses have with the current monitoring methods, and reports on their responses to the concept of a wireless monitoring system. Semistructured interviews were conducted with six parents, each of whom had babies on the unit, and seven nurses who cared for those babies. The interviews initially focused on the participants' experiences of the current wired system and then on their responses to the concept of a wireless system. The transcripts were analysed using a general inductive approach to identify relevant themes. Participants reported on physical and psychological barriers to parental care, the ways in which the current system obstructed the efficient delivery of clinical care and the perceived benefits and risks of a wireless system. The parents and nurses identified that the wires impeded baby-parent bonding; physically and psychologically. While a wireless system was viewed as potentially enabling greater interaction, staff and parents highlighted potential concerns, including the size, weight and battery life of any new device. The many wires required to safely monitor babies within the NICU creates a negative environment for parents at a critical developmental period, in terms of physical and psychological interactions. Nurses also experience challenges with the existing system, which could negatively impact the clinical care delivery. Developing a wireless system could overcome these barriers, but there remain challenges in designing a device suitable for this unique environment.

  10. Intelligent Wireless Sensor Network

    OpenAIRE

    Saeed, Bakhtiar I.; Mehrdadi, Bruce

    2010-01-01

    In recent years, there has been significant increase in utilisation of embedded-microcontrollers in broad range of applications extending from commercial products to industrial process system monitoring. Furthermore, improvements in speed, size and power consumption of microcontrollers with added wireless capabilities has provided new generation of applications. These include versatile and\\ud low cost solutions in wireless sensor networking applications such as wireless system monitoring and ...

  11. Policy based Agents in Wireless Body Sensor Mesh Networks for Patient Health Monitoring

    OpenAIRE

    Kevin Miller; Suresh Sankaranarayanan

    2009-01-01

    There is presently considerable research interest in using wireless and mobile technologies in patient health monitoring particularly in hospitals and nursing homes. For health monitoring,, an intelligent agent based hierarchical architecture has already been published by one of the authors of this paper. Also, the technique of monitoring and notifying the health of patients using an intelligent agent, to the concerned hospital personnel, has also been proposed. We now present the details of ...

  12. A Wireless Sensor Network for Vineyard Monitoring That Uses Image Processing

    Science.gov (United States)

    Lloret, Jaime; Bosch, Ignacio; Sendra, Sandra; Serrano, Arturo

    2011-01-01

    The first step to detect when a vineyard has any type of deficiency, pest or disease is to observe its stems, its grapes and/or its leaves. To place a sensor in each leaf of every vineyard is obviously not feasible in terms of cost and deployment. We should thus look for new methods to detect these symptoms precisely and economically. In this paper, we present a wireless sensor network where each sensor node takes images from the field and internally uses image processing techniques to detect any unusual status in the leaves. This symptom could be caused by a deficiency, pest, disease or other harmful agent. When it is detected, the sensor node sends a message to a sink node through the wireless sensor network in order to notify the problem to the farmer. The wireless sensor uses the IEEE 802.11 a/b/g/n standard, which allows connections from large distances in open air. This paper describes the wireless sensor network design, the wireless sensor deployment, how the node processes the images in order to monitor the vineyard, and the sensor network traffic obtained from a test bed performed in a flat vineyard in Spain. Although the system is not able to distinguish between deficiency, pest, disease or other harmful agents, a symptoms image database and a neuronal network could be added in order learn from the experience and provide an accurate problem diagnosis. PMID:22163948

  13. A wireless sensor network for vineyard monitoring that uses image processing.

    Science.gov (United States)

    Lloret, Jaime; Bosch, Ignacio; Sendra, Sandra; Serrano, Arturo

    2011-01-01

    The first step to detect when a vineyard has any type of deficiency, pest or disease is to observe its stems, its grapes and/or its leaves. To place a sensor in each leaf of every vineyard is obviously not feasible in terms of cost and deployment. We should thus look for new methods to detect these symptoms precisely and economically. In this paper, we present a wireless sensor network where each sensor node takes images from the field and internally uses image processing techniques to detect any unusual status in the leaves. This symptom could be caused by a deficiency, pest, disease or other harmful agent. When it is detected, the sensor node sends a message to a sink node through the wireless sensor network in order to notify the problem to the farmer. The wireless sensor uses the IEEE 802.11 a/b/g/n standard, which allows connections from large distances in open air. This paper describes the wireless sensor network design, the wireless sensor deployment, how the node processes the images in order to monitor the vineyard, and the sensor network traffic obtained from a test bed performed in a flat vineyard in Spain. Although the system is not able to distinguish between deficiency, pest, disease or other harmful agents, a symptoms image database and a neuronal network could be added in order learn from the experience and provide an accurate problem diagnosis.

  14. Monitoring and Modeling Temperature Variations Inside Silage Stack Using Novel Wireless Sensor Networks

    DEFF Research Database (Denmark)

    Green, Ole; Shahrak Nadimi, Esmaeil; Blanes-Vidal, Victoria

    2009-01-01

    the sensor nodes were successfully delivered to the gateway. The reliable performance of the network confirmed the correct choice of network characteristics (i.e., frequency range of 433 MHz, a handshaking communication protocol and 10 mW transmission power). The designed sensor housings were capable......Abstract: By monitoring silage temperature at different locations inside silage stacks, it is possible to detect any significant increases in temperature occurring during silage decomposition. The objectives of this study were: (1) to develop novel noninvasive wireless sensor nodes for measuring...... the temperature inside silage stacks; (2) to design a suitable sensor protection housing that prevents physical and chemical damage to the sensor; and (3) to mathematically model temperature variations inside a silage stack, using system identification techniques. The designed wireless nodes were used to monitor...

  15. Monitoring and modeling temperature variations inside silage stacks using novel wireless sensor networks

    DEFF Research Database (Denmark)

    Green, O.; Nadimi, E.S.; Blanes-Vidal, V.

    2009-01-01

    the sensor nodes were successfully delivered to the gateway. The reliable performance of the network confirmed the correct choice of network characteristics (i.e., frequency range of 433 MHz, a handshaking communication protocol, and 10 mW transmission power). The designed sensor housings were capable......By monitoring silage temperature at different locations inside silage stacks, it is possible to detect any significant increases in temperature occurring during silage decomposition. The objectives of this study were: (1) to develop novel noninvasive wireless sensor nodes for measuring...... the temperature inside silage stacks; (2) to design a suitable sensor protection housing that prevents physical and chemical damage to the sensor: and (3) to mathematically model temperature variations inside a silage stack, using system identification techniques. The designed wireless nodes were used to monitor...

  16. Thermoelectric powered wireless sensors for spent fuel monitoring

    International Nuclear Information System (INIS)

    Carstens, T.; Corradini, M.; Blanchard, J.; Ma, Z.

    2011-01-01

    This paper describes using thermoelectric generators to power wireless sensors to monitor spent nuclear fuel during dry-cask storage. OrigenArp was used to determine the decay heat of the spent fuel at different times during the service life of the dry-cask. The Engineering Equation Solver computer program modeled the temperatures inside the spent fuel storage facility during its service life. The temperature distribution in a thermoelectric generator and heat sink was calculated using the computer program Finite Element Heat Transfer. From these temperature distributions the power produced by the thermoelectric generator was determined as a function of the service life of the dry-cask. In addition, an estimation of the path loss experienced by the wireless signal can be made based on materials and thickness of the structure. Once the path loss is known, the transmission power and thermoelectric generator power requirements can be determined. This analysis estimates that a thermoelectric generator can produce enough power for a sensor to function and transmit data from inside the dry-cask throughout its service life. (authors)

  17. Frequency selective surface based passive wireless sensor for structural health monitoring

    International Nuclear Information System (INIS)

    Jang, Sang-Dong; Kang, Byung-Woo; Kim, Jaehwan

    2013-01-01

    Wireless sensor networks or ubiquitous sensor networks are a promising technology giving useful information to people. In particular, the chipless passive wireless sensor is one of the most important developments in wireless sensor technology because it is compact and does not need a battery or chip for the sensor operation. So it has many possibilities for use in various types of sensor system with economical efficiency and robustness in harsh environmental conditions. This sensor uses an electromagnetic resonance frequency or phase angle shift associated with a geometrical change of the sensor tag or an impedance change of the sensor. In this paper, a chipless passive wireless structural health monitoring (SHM) sensor is made using a frequency selective surface (FSS). The cross type FSS is introduced, and its SHM principle is explained. The electromagnetic characteristics of the FSS are simulated in terms of transmission and reflection coefficients using simulation software, and an experimental verification is conducted. The electromagnetic characteristic change of the FSS in the presence of mechanical strain or a structural crack is investigated by means of simulation and experiment. Since large-area structures can be covered by deploying FSS, it is possible to detect the location of any cracks. (paper)

  18. A new energy-harvesting device system for wireless sensors, adaptable to on-site monitoring of MR damper motion

    International Nuclear Information System (INIS)

    Yu, Miao; Peng, Youxiang; Wang, Siqi; Fu, Jie; Choi, S B

    2014-01-01

    Under extreme service conditions in vehicle suspension systems, some defects exist in the hardening, bodying, and poor temperature stability of magnetorheological (MR) fluid. These defects can cause weak and even invalid performance in the MR fluid damper (MR damper for short). To ensure the effective validity of the practical applicability of the MR damper, one must implement an online state-monitoring sensor to monitor several performance factors, such as acceleration. In this empirical work, we propose a new energy-harvesting device system for the wireless sensor system of an MR damper. The monitoring sensor system consists of several components, such as an energy-harvesting device, energy-management circuit, and wireless sensor node. The electrical energy harvested from the kinetic energy of the MR fluid that flows within the MR damper can be automatically charged and discharged with the help of an energy-management circuit for the wireless sensor node. After verifying good performance from each component, an experimental apparatus is built to evaluate the feasibility of the proposed self-powered wireless sensor system. The measured results of pressure, temperature, and acceleration data within the MR damper clearly demonstrate the practical applicability of monitoring the operating work states of the MR damper when it is subjected to sinusoidal excitation. (technical note)

  19. Gastroesophageal reflux: comparison of barium studies with 24-h pH monitoring

    International Nuclear Information System (INIS)

    Pan, John J.; Levine, Marc S.; Redfern, Regina O.; Rubesin, Stephen E.; Laufer, Igor; Katzka, David A.

    2003-01-01

    Objective: To determine the correlation between massive gastroesophageal reflux (GER) on barium studies and pathologic acid reflux on 24-h pH monitoring. Methods: A search of hospital records from January 1997 to January 2001 revealed 28 patients who underwent both barium studies and 24-h pH monitoring. The radiologic reports were reviewed to determine the presence and degree of GER. Patients with reflux to or above the thoracic inlet either spontaneously or with provocative maneuvers in the recumbent position were classified as having massive reflux, whereas the remaining patients with reflux below the thoracic inlet or no reflux comprised the control group. The pH monitoring reports were also reviewed to determine if pathologic acid reflux was present in the recumbent position. The findings on these studies were then compared to determine the frequency of pathologic acid reflux in the recumbent position on pH monitoring in patients with massive reflux on barium studies compared with the control group. Results: Massive GER was observed on barium studies in 11 (39%) of the 28 patients and reflux below the thoracic inlet or no reflux in the remaining 17 patients (61%) who comprised the control group. All 11 patients (100%) with massive reflux on barium studies had pathologic acid reflux on pH monitoring in the recumbent position compared with six (35%) of 17 patients in the control group (P=0.0009). The pH in the distal esophagus on pH monitoring was less than 4.0 for 13.1% of the recumbent period for patients with massive GER on barium studies compared with 6.2% of the recumbent period for the control group (P=0.0076). Conclusion: Although 24-h pH monitoring remains the gold standard for the detection of GER, our experience suggests that patients with massive reflux on barium studies are so likely to have pathologic acid reflux in the recumbent position that these individuals can be further evaluated and treated for their gastroesophageal reflux disease (GERD

  20. Gastroesophageal reflux: comparison of barium studies with 24-h pH monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Pan, John J.; Levine, Marc S. E-mail: levine@oasis.rad.upenn.edu; Redfern, Regina O.; Rubesin, Stephen E.; Laufer, Igor; Katzka, David A

    2003-08-01

    Objective: To determine the correlation between massive gastroesophageal reflux (GER) on barium studies and pathologic acid reflux on 24-h pH monitoring. Methods: A search of hospital records from January 1997 to January 2001 revealed 28 patients who underwent both barium studies and 24-h pH monitoring. The radiologic reports were reviewed to determine the presence and degree of GER. Patients with reflux to or above the thoracic inlet either spontaneously or with provocative maneuvers in the recumbent position were classified as having massive reflux, whereas the remaining patients with reflux below the thoracic inlet or no reflux comprised the control group. The pH monitoring reports were also reviewed to determine if pathologic acid reflux was present in the recumbent position. The findings on these studies were then compared to determine the frequency of pathologic acid reflux in the recumbent position on pH monitoring in patients with massive reflux on barium studies compared with the control group. Results: Massive GER was observed on barium studies in 11 (39%) of the 28 patients and reflux below the thoracic inlet or no reflux in the remaining 17 patients (61%) who comprised the control group. All 11 patients (100%) with massive reflux on barium studies had pathologic acid reflux on pH monitoring in the recumbent position compared with six (35%) of 17 patients in the control group (P=0.0009). The pH in the distal esophagus on pH monitoring was less than 4.0 for 13.1% of the recumbent period for patients with massive GER on barium studies compared with 6.2% of the recumbent period for the control group (P=0.0076). Conclusion: Although 24-h pH monitoring remains the gold standard for the detection of GER, our experience suggests that patients with massive reflux on barium studies are so likely to have pathologic acid reflux in the recumbent position that these individuals can be further evaluated and treated for their gastroesophageal reflux disease (GERD

  1. Challenges and Prospects of Equipment Health Monitoring with Wireless Sensor Network in Nuclear Power Plants

    International Nuclear Information System (INIS)

    Chen, Dongyi; Jiang, Jin; Bari, Ataul; Wang, Quan; Hashemian, Hash-M.

    2014-01-01

    A wireless sensor network (WSN) system can offer tremendous benefits to equipment condition monitoring in newly-constructed and/or refurbished nuclear power plants (NPPs). However, it has not been widely accepted so far because of the following requirements by the NPP operators ectromagnetic (EM) emissions from the wireless transceivers must not interfere with the functionalities of the sensitive safety and protection systems in the plant, WSN must perform reliably in the presence of high levels of EM interference from devices such as relays and motor driven pumps, and ionizing radiation sources, dependable WSN performance in harsh industrial environments that are cluttered with cable trays, piping, valves, pumps, motors, and concrete and steel structures, and trict compliance with nuclear regulatory guidelines on EM emissions by the wireless devices. This paper will review the key issues associated with the deployment of WSN for equipment condition monitoring in NPPs. Some promising WSN technologies that can be used in NPP applications are also discussed

  2. Challenges and Prospects of Equipment Health Monitoring with Wireless Sensor Network in Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Dongyi [University of Electronic Science and Technology of China, Chengdu (China); Jiang, Jin; Bari, Ataul; Wang, Quan [University of Western Ontario, Ontario (Canada); Hashemian, Hash-M. [AMS Technology Center Knoxville (United States)

    2014-08-15

    A wireless sensor network (WSN) system can offer tremendous benefits to equipment condition monitoring in newly-constructed and/or refurbished nuclear power plants (NPPs). However, it has not been widely accepted so far because of the following requirements by the NPP operators ectromagnetic (EM) emissions from the wireless transceivers must not interfere with the functionalities of the sensitive safety and protection systems in the plant, WSN must perform reliably in the presence of high levels of EM interference from devices such as relays and motor driven pumps, and ionizing radiation sources, dependable WSN performance in harsh industrial environments that are cluttered with cable trays, piping, valves, pumps, motors, and concrete and steel structures, and trict compliance with nuclear regulatory guidelines on EM emissions by the wireless devices. This paper will review the key issues associated with the deployment of WSN for equipment condition monitoring in NPPs. Some promising WSN technologies that can be used in NPP applications are also discussed.

  3. Ambulatory oesophageal pH monitoring: a comparison between antimony, ISFET, and glass pH electrodes

    NARCIS (Netherlands)

    Hemmink, Gerrit J. M.; Weusten, Bas L. A. M.; Oors, Jac; Bredenoord, Albert J.; Timmer, Robin; Smout, André J. P. M.

    2010-01-01

    BACKGROUND AND AIM: Ambulatory oesophageal pH-impedance monitoring is a widely used test to evaluate patients with reflux symptoms. Several types of pH electrodes are available: antimony, ion sensitive field effect transistor (ISFET), and glass electrodes. These pH electrodes have not been compared

  4. Active Low Intrusion Hybrid Monitor for Wireless Sensor Networks.

    Science.gov (United States)

    Navia, Marlon; Campelo, Jose C; Bonastre, Alberto; Ors, Rafael; Capella, Juan V; Serrano, Juan J

    2015-09-18

    Several systems have been proposed to monitor wireless sensor networks (WSN). These systems may be active (causing a high degree of intrusion) or passive (low observability inside the nodes). This paper presents the implementation of an active hybrid (hardware and software) monitor with low intrusion. It is based on the addition to the sensor node of a monitor node (hardware part) which, through a standard interface, is able to receive the monitoring information sent by a piece of software executed in the sensor node. The intrusion on time, code, and energy caused in the sensor nodes by the monitor is evaluated as a function of data size and the interface used. Then different interfaces, commonly available in sensor nodes, are evaluated: serial transmission (USART), serial peripheral interface (SPI), and parallel. The proposed hybrid monitor provides highly detailed information, barely disturbed by the measurement tool (interference), about the behavior of the WSN that may be used to evaluate many properties such as performance, dependability, security, etc. Monitor nodes are self-powered and may be removed after the monitoring campaign to be reused in other campaigns and/or WSNs. No other hardware-independent monitoring platforms with such low interference have been found in the literature.

  5. Broadband Loop Antenna on Soft Contact Lens for Wireless Ocular Physiological Monitoring

    Directory of Open Access Journals (Sweden)

    Ssu-Han Ting

    2014-01-01

    Full Text Available This paper presents a novel loop antenna with broadband for wireless ocular physiological monitoring (WOPM. The antenna is fabricated on a thin-film poly-para-xylylene C (parylene C substrate with a small thickness of 11 μm and dimension of π×6.5×6.5 mm2. With the advantage of small size, the proposed antenna is suitable to apply to the soft contact lens and transmit the signal in microelectromechanical Systems (MEMS. Because the pig's eye and human's eye have similar parameters of conductivity and permittivity, the experimental results are obtained by applying the proposed antenna on the pig's eye and cover from 1.54 to 6 GHz for ISM band (2.4 and 5.8 GHz applications. The measured antenna radiation patterns, antenna gains, and radiation efficiency will be demonstrated in this paper, which are suitable for application of wireless ocular physiological monitoring.

  6. Micro Electrochemical pH Sensor Applicable for Real-Time Ratiometric Monitoring of pH Values in Rat Brains.

    Science.gov (United States)

    Zhou, Jie; Zhang, Limin; Tian, Yang

    2016-02-16

    To develop in vivo monitoring meter for pH measurements is still the bottleneck for understanding the role of pH plays in the brain diseases. In this work, a selective and sensitive electrochemical pH meter was developed for real-time ratiometric monitoring of pH in different regions of rat brains upon ischemia. First, 1,2-naphthoquinone (1,2-NQ) was employed and optimized as a selective pH recognition element to establish a 2H(+)/2e(-) approach over a wide range of pH from 5.8 to 8.0. The pH meter demonstrated remarkable selectivity toward pH detection against metal ions, amino acids, reactive oxygen species, and other biological species in the brain. Meanwhile, an inner reference, 6-(ferrocenyl)hexanethiol (FcHT), was selected as a built-in correction to avoid the environmental effect through coimmobilization with 1,2-NQ. In addition, three-dimensional gold nanoleaves were electrodeposited onto the electrode surface to amplify the signal by ∼4.0-fold and the measurement was achieved down to 0.07 pH. Finally, combined with the microelectrode technique, the microelectrochemical pH meter was directly implanted into brain regions including the striatum, hippocampus, and cortex and successfully applied in real-time monitoring of pH values in these regions of brain followed by global cerebral ischemia. The results demonstrated that pH values were estimated to 7.21 ± 0.05, 7.13 ± 0.09, and 7.27 ± 0.06 in the striatum, hippocampus, and cortex in the rat brains, respectively, in normal conditions. However, pH decreased to 6.75 ± 0.07 and 6.52 ± 0.03 in the striatum and hippocampus, upon global cerebral ischemia, while a negligible pH change was obtained in the cortex.

  7. Ultra sensitive sea water radioactivity monitoring system. Autonomous low power consumption equipped with wireless data communication

    International Nuclear Information System (INIS)

    Bonet, H.; Debauche, A.; Lellis, C. de; Adam, V.; Lacroix, J.P.; Put, P. van

    2003-01-01

    Following the recognition of their usefulness by the States and the scientific community, the automatic water monitoring networks were developed again to be able to measure sea water. For that purpose they had to be fully autonomous, have low power consumption (solar panels power supply), use wireless communicating (satellite, GSM, Radio) and be very sensitive (few Bq/m 3 ). It is important to note that radioactivity detection in sea has many constraints: The detection system sensitivity must be very high because of the dilution factor of the ocean. The analysis method has to be adapted: the detection of very low levels of artificial contamination is made difficult due to the natural radioactivity in seawater (i.e., more than 10 kBq of 40 K/m 3 ). The system has to be completely autonomous, 'wireless'. Additional conventional measuring probes must be connected to the system to increase its interest (pH, t deg, salinity, position, meteorology). The system maintenance must be very limited (1/year). Wind and corrosion resistance must be high. The probe must be installed on a buoy. Moreover, some improvements are needed to allow: Amplification Gain drifts due to NaI sensitivity to t deg to be compensated. Net peak area computation in a specific energy range. Interference correction to prevent false alarms due to natural radiation. Very long counting time. (author)

  8. Low-complexity Wireless Monitoring of Respiratory Movements Using Ultra-wideband Impulse Response Estimation

    KAUST Repository

    Sana, Furrukh; Ballal, Tarig; Al-Naffouri, Tareq Y.; Hoteit, Ibrahim

    2014-01-01

    In this paper; we present a comprehensive scheme for wireless monitoring of the respiratory movements in humans. Our scheme overcomes the challenges low signal-to-noise ratio, background clutter and high sampling rates. It is based on the estimation

  9. A new wireless system for decentralised measurement of physiological parameters from shake flasks

    Directory of Open Access Journals (Sweden)

    Illmann Lutz

    2006-02-01

    Full Text Available Abstract Background Shake flasks are widely used because of their low price and simple handling. Many researcher are, however, not aware of the physiological consequences of oxygen limitation and substrate overflow metabolism that occur in shake flasks. Availability of a wireless measuring system brings the possibilities for quality control and design of cultivation conditions. Results Here we present a new wireless solution for the measurement of pH and oxygen from shake flasks with standard sensors, which allows data transmission over a distance of more than 100 metres in laboratory environments. This new system was applied to monitoring of cultivation conditions in shake flasks. The at-time monitoring of the growth conditions became possible by simple means. Here we demonstrate that with typical protocols E. coli shake flask cultures run into severe oxygen limitation and the medium is strongly acidified. Additionally the strength of the new system is demonstrated by continuous monitoring of the oxygen level in methanol-fed Pichia pastoris shake flask cultures, which allows the optimisation of substrate feeding for preventing starvation or methanol overfeed. 40 % higher cell density was obtained by preventing starvation phases which occur in standard shake flask protocols by adding methanol when the respiration activity decreased in the cultures. Conclusion The here introduced wireless system can read parallel sensor data over long distances from shake flasks that are under vigorous shaking in cultivation rooms or closed incubators. The presented technology allows centralised monitoring of decentralised targets. It is useful for the monitoring of pH and dissolved oxygen in shake flask cultures. It is not limited to standard sensors, but can be easily adopted to new types of sensors and measurement places (e.g., new sensor points in large-scale bioreactors.

  10. Apparatus And Method For Wireless Monitoring Using Ultra-wideband Frequencies

    KAUST Repository

    Sana, Furrukh

    2015-04-23

    A system for and a method of wirelessly monitoring one or more patients can include transmitting ultra-wideband pulses toward the one or more patients, receiving ultra-wideband signals, and sampling the ultra-wideband signals. Sampling the ultra-wideband pulses can be performed with a sample rate that is less than the Nyquist rate. Impulse response can be estimated and/or recovered by exploiting sparsity of the impulse response.

  11. Ubiquitous Monitoring Solution for Wireless Sensor Networks with Push Notifications and End-to-End Connectivity

    Directory of Open Access Journals (Sweden)

    Luis M. L. Oliveira

    2014-01-01

    Full Text Available Wireless Sensor Networks (WSNs belongs to a new trend in technology in which tiny and resource constrained devices are wirelessly interconnected and are able to interact with the surrounding environment by collecting data such as temperature and humidity. Recently, due to the huge growth in the use of mobile devices with Internet connection, smartphones are becoming the center of future ubiquitous wireless networks. Interconnecting WSNs with smartphones and the Internet is a big challenge and new architectures are required due to the heterogeneity of these devices. Taking into account that people are using smartphones with Internet connection, there is a good opportunity to propose a new architecture for wireless sensors monitoring using push notifications and smartphones. Then, this paper proposes a ubiquitous approach for WSN monitoring based on a REST Web Service, a relational database, and an Android mobile application. Real-time data sensed by WSNs are sent directly to a smartphone or stored in a database and requested by the mobile application using a well-defined RESTful interface. A push notification system was created in order to alert mobile users when a sensor parameter overcomes a given threshold. The proposed architecture and mobile application were evaluated and validated using a laboratory WSN testbed and are ready for use.

  12. A Wireless and Real-Time Monitoring System Design for Car Networking Applications

    Directory of Open Access Journals (Sweden)

    Li Wenjun

    2013-01-01

    Full Text Available We described a wireless and monitoring system to obtain several classes of vehicle data and send them to the server via General Packet Radio Service (GPRS in real-time. These data are consisted by on-board diagnostic (OBD which get from the vehicle’s OBD interface, Tire-Pressure Monitoring system (TPMS and Global Positioning System (GPS. The main content of this paper is the hardware design of the system, especially RF modules and antennas.

  13. Development and Application of a Structural Health Monitoring System Based on Wireless Smart Aggregates.

    Science.gov (United States)

    Yan, Shi; Ma, Haoyan; Li, Peng; Song, Gangbing; Wu, Jianxin

    2017-07-17

    Structural health monitoring (SHM) systems can improve the safety and reliability of structures, reduce maintenance costs, and extend service life. Research on concrete SHMs using piezoelectric-based smart aggregates have reached great achievements. However, the newly developed techniques have not been widely applied in practical engineering, largely due to the wiring problems associated with large-scale structural health monitoring. The cumbersome wiring requires much material and labor work, and more importantly, the associated maintenance work is also very heavy. Targeting a practical large scale concrete crack detection (CCD) application, a smart aggregates-based wireless sensor network system is proposed for the CCD application. The developed CCD system uses Zigbee 802.15.4 protocols, and is able to perform dynamic stress monitoring, structural impact capturing, and internal crack detection. The system has been experimentally validated, and the experimental results demonstrated the effectiveness of the proposed system. This work provides important support for practical CCD applications using wireless smart aggregates.

  14. Energy-efficient ZigBee-based wireless sensor network for track bicycle performance monitoring.

    Science.gov (United States)

    Gharghan, Sadik K; Nordin, Rosdiadee; Ismail, Mahamod

    2014-08-22

    In a wireless sensor network (WSN), saving power is a vital requirement. In this paper, a simple point-to-point bike WSN was considered. The data of bike parameters, speed and cadence, were monitored and transmitted via a wireless communication based on the ZigBee protocol. Since the bike parameters are monitored and transmitted on every bike wheel rotation, this means the sensor node does not sleep for a long time, causing power consumption to rise. Therefore, a newly proposed algorithm, known as the Redundancy and Converged Data (RCD) algorithm, was implemented for this application to put the sensor node into sleep mode while maintaining the performance measurements. This is achieved by minimizing the data packets transmitted as much as possible and fusing the data of speed and cadence by utilizing the correlation measurements between them to minimize the number of sensor nodes in the network to one node, which results in reduced power consumption, cost, and size, in addition to simpler hardware implementation. Execution of the proposed RCD algorithm shows that this approach can reduce the current consumption to 1.69 mA, and save 95% of the sensor node energy. Also, the comparison results with different wireless standard technologies demonstrate minimal current consumption in the sensor node.

  15. Energy-Efficient ZigBee-Based Wireless Sensor Network for Track Bicycle Performance Monitoring

    Directory of Open Access Journals (Sweden)

    Sadik K. Gharghan

    2014-08-01

    Full Text Available In a wireless sensor network (WSN, saving power is a vital requirement. In this paper, a simple point-to-point bike WSN was considered. The data of bike parameters, speed and cadence, were monitored and transmitted via a wireless communication based on the ZigBee protocol. Since the bike parameters are monitored and transmitted on every bike wheel rotation, this means the sensor node does not sleep for a long time, causing power consumption to rise. Therefore, a newly proposed algorithm, known as the Redundancy and Converged Data (RCD algorithm, was implemented for this application to put the sensor node into sleep mode while maintaining the performance measurements. This is achieved by minimizing the data packets transmitted as much as possible and fusing the data of speed and cadence by utilizing the correlation measurements between them to minimize the number of sensor nodes in the network to one node, which results in reduced power consumption, cost, and size, in addition to simpler hardware implementation. Execution of the proposed RCD algorithm shows that this approach can reduce the current consumption to 1.69 mA, and save 95% of the sensor node energy. Also, the comparison results with different wireless standard technologies demonstrate minimal current consumption in the sensor node.

  16. Novel method for water vapour monitoring using wireless communication networks measurements

    Science.gov (United States)

    David, N.; Alpert, P.; Messer, H.

    2010-09-01

    We propose a new technique for monitoring near-surface water vapour, by estimating humidity from data collected through existing wireless communication networks. Weather conditions and atmospheric phenomena affect the electromagnetic channel, causing attenuations to the radio signals. Thus, wireless communication networks are in effect built-in environmental monitoring facilities. The wireless microwave links, used in these networks, are widely deployed by cellular providers for backhaul communication between base stations, a few tens of meters above ground level. As a result, if all available measurements are used, the proposed method can provide moisture observations with high spatial resolution and potentially high temporal resolution. Further, the implementation cost is minimal, since the data used are already collected and saved by the cellular operators. In addition - many of these links are installed in areas where access is difficult such as orographic terrain and complex topography. As such, our method enables measurements in places that have been hard to measure in the past, or have never been measured before. The technique is restricted to weather conditions which exclude rain, fog or clouds along the propagation path. Strong winds that may cause movement of the link transmitter or receiver (or both) may also interfere with the ability to conduct accurate measurements. We present results from real-data measurements taken from microwave links used in a backhaul cellular network that show very good correlation with surface station humidity measurements (comparisons were performed for several links, found at different locations, during different time periods, showing correlations in the range of 0.5-0.9).

  17. Design and Implementation of Mobile Car with Wireless Video Monitoring System Based on STC89C52

    Directory of Open Access Journals (Sweden)

    Yang Hong

    2014-05-01

    Full Text Available With the rapid development of wireless networks and image acquisition technology, wireless video transmission technology has been widely applied in various communication systems. The traditional video monitoring technology is restricted by some conditions such as layout, environmental, the relatively large volume, cost, and so on. In view of this problem, this paper proposes a method that the mobile car can be equipped with wireless video monitoring system. The mobile car which has some functions such as detection, video acquisition and wireless data transmission is developed based on STC89C52 Micro Control Unit (MCU and WiFi router. Firstly, information such as image, temperature and humidity is processed by the MCU and communicated with the router, and then returned by the WiFi router to the host computer phone. Secondly, control information issued by the host computer phone is received by WiFi router and sent to the MCU, and then the MCU sends relevant instructions. Lastly, the wireless transmission of video images and the remote control of the car are realized. The results prove that the system has some features such as simple operation, high stability, fast response, low cost, strong flexibility, widely application, and so on. The system has certain practical value and popularization value.

  18. A qualitative review for wireless health monitoring system

    Science.gov (United States)

    Arshad, Atika; Fadzil Ismail, Ahmad; Khan, Sheroz; Zahirul Alam, A. H. M.; Tasnim, Rumana; Samnan Haider, Syed; Shobaki, Mohammed M.; Shahid, Zeeshan

    2013-12-01

    A proliferating interest has been being observed over the past years in accurate wireless system development in order to monitor incessant human activities in health care centres. Furthermore because of the swelling number of elderly population and the inadequate number of competent staffs for nursing homes there is a big market petition for health care monitoring system. In order to detect human researchers developed different methods namely which include Field Identification technique, Visual Sensor Network, radar detection, e-mobile techniques and so on. An all-encompassing overview of the non-wired human detection application advancement is presented in this paper. Inductive links are used for human detection application while wiring an electronic system has become impractical in recent times. Keeping in mind the shortcomings, an Inductive Intelligent Sensor (IIS) has been proposed as a novel human monitoring system for future implementation. The proposed sensor works towards exploring the signature signals of human body movement and size. This proposed sensor is fundamentally based on inductive loop that senses the presence and a passing human resulting an inductive change.

  19. Wireless Communications for Monitoring Nuclear Material Processes part 1.: Context and Technologies

    International Nuclear Information System (INIS)

    Braina, F.; Goncalves, J.C.M.; Versino, C.; Heppleston, M.; Schoeneman, B.; Tolk, K.

    2007-01-01

    Recent advances in radio frequency communication technologies offer the motivation to consider the use of wireless communication in nuclear safeguards applications. From the Nuclear Safeguards Inspectorate' (NSI) point of view, wireless data transmission, which would be supplemental to wired communication is attractive for the ease of installation and the ability to respond to the changing requirements as the inspection approach evolves, resulting in a reduction of costs. However, for wireless technologies to be considered as a viable complement to cables, a number of concerns have to be addressed. First, nuclear operators need to be guaranteed that RF transmission will not interfere with the facilities safety and physical security systems. On their side, the NSI must be satisfied that Containment and Surveillance equipment and data transmission processes will not be affected by the other existing RF equipment. Second, it is desirable, both for the NSI and the operators, that the data being transmitted is not available for analysis by a third party. In addition, the NSI require data to be authenticated as close to the point of acquisition as possible. This paper was prepared as an account of work performed and approved by the ESARDA Working Group on Containment and Surveillance. It is the first of a suite dedicated to bridging RF technologies with safeguards monitoring applications. The paper focuses on technological issues: it introduces basic concepts underlying wireless communication, including methods for transmission, issues on power consumption, frequency, range, and considerations on interference and noise resilience. It overviews state-of-the-art wireless technologies and presents a projection on wireless capabilities that are likely to be reached in the near future

  20. Deployment Algorithms of Wireless Sensor Networks for Near-surface Underground Oil and Gas Pipeline Monitoring

    Directory of Open Access Journals (Sweden)

    Hua-Ping YU

    2014-07-01

    Full Text Available Oil and gas pipelines are the infrastructure of national economic development. Deployment problem of wireless underground sensor networks (WUSN for oil and gas pipeline systems is a fundamental problem. This paper firstly analyzed the wireless channel characteristics and energy consumption model in near-surface underground soil, and then studied the spatial structure of oil and gas pipelines and introduced the three-layer system structure of WUSN for oil and gas pipelines monitoring. Secondly, the optimal deployment strategy in XY plane and XZ plane which were projected from three-dimensional oil and gas pipeline structure was analyzed. Thirdly, the technical framework of using kinetic energy of the fluid in pipelines to recharge sensor nodes and partition strategy for energy consumption balance based on the wireless communication technology of magnetic induction waveguide were proposed, which can effectively improve the energy performance and connectivity of the network, and provide theoretical guidance and practical basis for the monitoring of long oil and gas pipeline network, the city tap water pipe network and sewage pipe network.

  1. A wearable “electronic patch” for wireless continuous monitoring of chronically diseased patients

    DEFF Research Database (Denmark)

    Haahr, Rasmus Grønbek; Duun, Sune; Thomsen, Erik Vilain

    2008-01-01

    We present a wearable health system (WHS) for non-invasive and wireless monitoring of physiological signals. The system is made as an electronic patch where sensors, low power electronics, and radio communication are integrated in an adhesive material of hydrocolloid polymer making it a sticking...

  2. Events as Power Source: Wireless Sustainable Corrosion Monitoring

    Directory of Open Access Journals (Sweden)

    Guodong Sun

    2013-12-01

    Full Text Available This study presents and implements a corrosion-monitoring wireless sensor platform, EPS (Events as Power Source, which monitors the corrosion events in reinforced concrete (RC structures, while being powered by the micro-energy released from the corrosion process. In EPS, the proposed corrosion-sensing device serves both as the signal source for identifying corrosion and as the power source for driving the sensor mote, because the corrosion process (event releases electric energy; this is a novel idea proposed by this study. For accumulating the micro-corrosion energy, we integrate EPS with a COTS (Commercial Off-The-Shelf energy-harvesting chip that recharges a supercapacitor. In particular, this study designs automatic energy management and adaptive transmitted power control polices to efficiently use the constrained accumulated energy. Finally, a set of preliminary experiments based on concrete pore solution are conducted to evaluate the feasibility and the efficacy of EPS.

  3. Events as power source: wireless sustainable corrosion monitoring.

    Science.gov (United States)

    Sun, Guodong; Qiao, Guofu; Zhao, Lin; Chen, Zhibo

    2013-12-17

    This study presents and implements a corrosion-monitoring wireless sensor platform, EPS (Events as Power Source), which monitors the corrosion events in reinforced concrete (RC) structures, while being powered by the micro-energy released from the corrosion process. In EPS, the proposed corrosion-sensing device serves both as the signal source for identifying corrosion and as the power source for driving the sensor mote, because the corrosion process (event) releases electric energy; this is a novel idea proposed by this study. For accumulating the micro-corrosion energy, we integrate EPS with a COTS (Commercial Off-The-Shelf) energy-harvesting chip that recharges a supercapacitor. In particular, this study designs automatic energy management and adaptive transmitted power control polices to efficiently use the constrained accumulated energy. Finally, a set of preliminary experiments based on concrete pore solution are conducted to evaluate the feasibility and the efficacy of EPS.

  4. 3D-Printed Disposable Wireless Sensors with Integrated Microelectronics for Large Area Environmental Monitoring

    KAUST Repository

    Farooqui, Muhammad Fahad; Karimi, Muhammad Akram; Salama, Khaled N.; Shamim, Atif

    2017-01-01

    disposable, compact, dispersible 3D-printed wireless sensor nodes with integrated microelectronics which can be dispersed in the environment and work in conjunction with few fixed nodes for large area monitoring applications. As a proof of concept

  5. Integration of a prototype wireless communication system with micro-electromechanical temperature and humidity sensor for concrete pavement health monitoring

    Directory of Open Access Journals (Sweden)

    Shuo Yang

    2015-12-01

    Full Text Available In recent years, structural health monitoring and management (SHMM has become a popular approach and is considered essential for achieving well-performing, long-lasting, sustainable transportation infrastructure systems. Key requirements in ideal SHMM of road infrastructure include long-term, continuous, and real-time monitoring of pavement response and performance under various pavement geometry-materials-loading configurations and environmental conditions. With advancements in wireless technologies, integration of wireless communications into sensing device is considered an alternate and superior solution to existing time- and labor-intensive wired sensing systems in meeting the requirements of an ideal SHMM. This study explored the development and integration of a wireless communications sub-system into a commercial off-the-shelf micro-electromechanical sensor-based concrete pavement monitoring system. A success-rate test was performed after the wireless transmission system was buried in the concrete slab, and the test results indicated that the system was able to provide reliable communications at a distance of more than 46 m (150 feet. This will be a useful feature for highway engineers performing routine pavement scans from the pavement shoulder without the need for traffic control or road closure.

  6. Wireless sensing system for non-invasive monitoring of attributes of contents in a container

    Science.gov (United States)

    Woodard, Stanley E. (Inventor)

    2010-01-01

    A wireless sensing system monitors the level, temperature, magnetic permeability and electrical dielectric constant of a non-gaseous material in a container. An open-circuit electrical conductor is shaped to form a two-dimensional geometric pattern that can store and transfer electrical and magnetic energy. The conductor resonates in the presence of a time-varying magnetic field to generate a harmonic response. The conductor is mounted in an environmentally-sealed housing. A magnetic field response recorder wirelessly transmits the time-varying magnetic field to power the conductor, and wirelessly detects the harmonic response that is an indication of at least one of level of the material in the container, temperature of the material in the container, magnetic permeability of the material in the container, and dielectric constant of the material in the container.

  7. An Airborne Wireless Sensor System for Near-Real Time Air Pollution Monitoring

    Directory of Open Access Journals (Sweden)

    Orestis EVANGELATOS

    2015-06-01

    Full Text Available Over the last decades with the rapid growth of industrial zones, manufacturing plants and the substantial urbanization, environmental pollution has become a crucial health, environmental and safety concern. In particular, due to the increased emissions of various pollutants caused mainly by human sources, the air pollution problem is elevated in such extent where significant measures need to be taken. Towards the identification and the qualification of that problem, we present in this paper an airborne wireless sensor network system for automated monitoring and measuring of the ambient air pollution. Our proposed system is comprised of a pollution-aware wireless sensor network and unmanned aerial vehicles (UAVs. It is designed for monitoring the pollutants and gases of the ambient air in three-dimensional spaces without the human intervention. In regards to the general architecture of our system, we came up with two schemes and algorithms for an autonomous monitoring of a three-dimensional area of interest. To demonstrate our solution, we deployed the system and we conducted experiments in a real environment measuring air pollutants such as: NH3, CH4, CO2, O2 along with temperature, relative humidity and atmospheric pressure. Lastly, we experimentally evaluated and analyzed the two proposed schemes.

  8. Wireless Amperometric Neurochemical Monitoring Using an Integrated Telemetry Circuit

    Science.gov (United States)

    Roham, Masoud; Halpern, Jeffrey M.; Martin, Heidi B.; Chiel, Hillel J.

    2015-01-01

    An integrated circuit for wireless real-time monitoring of neurochemical activity in the nervous system is described. The chip is capable of conducting high-resolution amperometric measurements in four settings of the input current. The chip architecture includes a first-order ΔΣ modulator (ΔΣM) and a frequency-shift-keyed (FSK) voltage-controlled oscillator (VCO) operating near 433 MHz. It is fabricated using the AMI 0.5 μm double-poly triple-metal n-well CMOS process, and requires only one off-chip component for operation. Measured dc current resolutions of ~250 fA, ~1.5 pA, ~4.5 pA, and ~17 pA were achieved for input currents in the range of ±5, ±37, ±150, and ±600 nA, respectively. The chip has been interfaced with a diamond-coated, quartz-insulated, microneedle, tungsten electrode, and successfully recorded dopamine concentration levels as low as 0.5 μM wirelessly over a transmission distance of ~0.5 m in flow injection analysis experiments. PMID:18990633

  9. Wireless amperometric neurochemical monitoring using an integrated telemetry circuit.

    Science.gov (United States)

    Roham, Masoud; Halpern, Jeffrey M; Martin, Heidi B; Chiel, Hillel J; Mohseni, Pedram

    2008-11-01

    An integrated circuit for wireless real-time monitoring of neurochemical activity in the nervous system is described. The chip is capable of conducting high-resolution amperometric measurements in four settings of the input current. The chip architecture includes a first-order Delta Sigma modulator (Delta Sigma M) and a frequency-shift-keyed (FSK) voltage-controlled oscillator (VCO) operating near 433 MHz. It is fabricated using the AMI 0.5 microm double-poly triple-metal n-well CMOS process, and requires only one off-chip component for operation. Measured dc current resolutions of approximately 250 fA, approximately 1.5 pA, approximately 4.5 pA, and approximately 17 pA were achieved for input currents in the range of +/-5, +/-37, +/-150, and +/-600 nA, respectively. The chip has been interfaced with a diamond-coated, quartz-insulated, microneedle, tungsten electrode, and successfully recorded dopamine concentration levels as low as 0.5 microM wirelessly over a transmission distance of approximately 0.5 m in flow injection analysis experiments.

  10. A graphene oxide pH sensor for wound monitoring.

    Science.gov (United States)

    Melai, B; Salvo, P; Calisi, N; Moni, L; Bonini, A; Paoletti, C; Lomonaco, T; Mollica, V; Fuoco, R; Di Francesco, F

    2016-08-01

    This article describes the fabrication and characterization of a pH sensor for monitoring the wound status. The pH sensitive layer consists of a graphene oxide (GO) layer obtained by drop-casting 5 μΐ of GO dispersion onto the working electrode of a screen-printed substrate. Sensitivity was 31.8 mV/pH with an accuracy of 0.3 unit of pH. Open-circuit potentiometry was carried out to measure pH in an exudate sample. The GO pH sensor proved to be reliable as the comparison with results obtained from a standard glass electrode pH-meter showed negligible differences (pH units in the worst case) for measurements performed over a period of 4 days.

  11. The deployment of carbon monoxide wireless sensor network (CO-WSN) for ambient air monitoring.

    Science.gov (United States)

    Chaiwatpongsakorn, Chaichana; Lu, Mingming; Keener, Tim C; Khang, Soon-Jai

    2014-06-16

    Wireless sensor networks are becoming increasingly important as an alternative solution for environment monitoring because they can reduce cost and complexity. Also, they can improve reliability and data availability in places where traditional monitoring methods are difficult to site. In this study, a carbon monoxide wireless sensor network (CO-WSN) was developed to measure carbon monoxide concentrations at a major traffic intersection near the University of Cincinnati main campus. The system has been deployed over two weeks during Fall 2010, and Summer 2011-2012, traffic data was also recorded by using a manual traffic counter and a video camcorder to characterize vehicles at the intersection 24 h, particularly, during the morning and evening peak hour periods. According to the field test results, the 1 hr-average CO concentrations were found to range from 0.1-1.0 ppm which is lower than the National Ambient Air Quality Standards (NAAQS) 35 ppm on a one-hour averaging period. During rush hour periods, the traffic volume at the intersection varied from 2,067 to 3,076 vehicles per hour with 97% being passenger vehicles. Furthermore, the traffic volume based on a 1-h average showed good correlation (R2 = 0.87) with the 1-h average CO-WSN concentrations for morning and evening peak time periods whereas CO-WSN results provided a moderate correlation (R2 = 0.42) with 24 hours traffic volume due to fluctuated changes of meteorological conditions. It is concluded that the performance and the reliability of wireless ambient air monitoring networks can be used as an alternative method for real time air monitoring.

  12. A Wireless Sensor Network with Enhanced Power Efficiency and Embedded Strain Cycle Identification for Fatigue Monitoring of Railway Bridges

    Directory of Open Access Journals (Sweden)

    Glauco Feltrin

    2016-01-01

    Full Text Available Wireless sensor networks have been shown to be a cost-effective monitoring tool for many applications on civil structures. Strain cycle monitoring for fatigue life assessment of railway bridges, however, is still a challenge since it is data intensive and requires a reliable operation for several weeks or months. In addition, sensing with electrical resistance strain gauges is expensive in terms of energy consumption. The induced reduction of battery lifetime of sensor nodes increases the maintenance costs and reduces the competitiveness of wireless sensor networks. To overcome this drawback, a signal conditioning hardware was designed that is able to significantly reduce the energy consumption. Furthermore, the communication overhead is reduced to a sustainable level by using an embedded data processing algorithm that extracts the strain cycles from the raw data. Finally, a simple software triggering mechanism that identifies events enabled the discrimination of useful measurements from idle data, thus increasing the efficiency of data processing. The wireless monitoring system was tested on a railway bridge for two weeks. The monitoring system demonstrated a good reliability and provided high quality data.

  13. Project SIMORAC: a wireless system for radiation monitoring in emergencies

    International Nuclear Information System (INIS)

    Gomez, D.; Serrano, J. L.; Cabrera, E.; Barbaran, J.; Llopis, L.; Diaz, M.

    2013-01-01

    The SIMORAC project includes a new system for Radiological monitoring using wireless sensor networks (RSIs), without infrastructure planning in emergency situations for a rapidly deployable by air or land, with the aim of providing a tool emergency teams capable of offering a real time x-ray map within the radius of action of an accident. Communication of quality at a great distance, resistance to weather, long autonomy and possibility of aerial deployment are some of the features of SIMORAC.

  14. Wearable and Implantable Wireless Sensor Network Solutions for Healthcare Monitoring

    OpenAIRE

    Darwish, Ashraf; Hassanien, Aboul Ella

    2011-01-01

    Wireless sensor network (WSN) technologies are considered one of the key research areas in computer science and the healthcare application industries for improving the quality of life. The purpose of this paper is to provide a snapshot of current developments and future direction of research on wearable and implantable body area network systems for continuous monitoring of patients. This paper explains the important role of body sensor networks in medicine to minimize the need for caregivers ...

  15. Wireless microwave acoustic sensor system for condition monitoring in power plant environments

    Energy Technology Data Exchange (ETDEWEB)

    Pereira da Cunha, Mauricio [Univ. of Maine, Orno, ME (United States)

    2017-03-30

    This project successfully demonstrated novel wireless microwave acoustic temperature and pressure sensors that can be embedded into equipment and structures located in fossil fuel power plant environments to monitor the condition of components such as steam headers, re-heat lines, water walls, burner tubes, and power turbines. The wireless microwave acoustic sensor technology researched and developed through a collaborative partnership between the University of Maine and Environetix Technologies Corporation can provide a revolutionary impact in the power industry since it is anticipated that the wireless sensors will deliver reliable real-time sensing information in harsh power plant conditions that involve temperatures up to 1100oC and pressures up to 750 psi. The work involved the research and development of novel high temperature harsh environment thin film electrodes, piezoelectric smart microwave acoustic sensing elements, sensor encapsulation materials that were engineered to function over long times up to 1100oC, and a radio-frequency (RF) wireless interrogation electronics unit that are located both inside and outside the high temperature harsh environment. The UMaine / Environetix team have interacted with diverse power plant facilities, and identified as a testbed a local power generation facility, which burns municipal solid waste (MSW), the Penobscot Energy Recovery Company (PERC), Orrington, Maine. In this facility Environetix / UMaine successfully implemented and tested multiple wireless temperature sensor systems within the harsh-environment of the economizer chamber and at the boiler tubes, transferring the developed technology to the power plant environment to perform real-time sensor monitoring experiments under typical operating conditions, as initially targeted in the project. The wireless microwave acoustic sensor technology developed under this project for power plant applications offers several significant advantages including wireless

  16. MedMon: securing medical devices through wireless monitoring and anomaly detection.

    Science.gov (United States)

    Zhang, Meng; Raghunathan, Anand; Jha, Niraj K

    2013-12-01

    Rapid advances in personal healthcare systems based on implantable and wearable medical devices promise to greatly improve the quality of diagnosis and treatment for a range of medical conditions. However, the increasing programmability and wireless connectivity of medical devices also open up opportunities for malicious attackers. Unfortunately, implantable/wearable medical devices come with extreme size and power constraints, and unique usage models, making it infeasible to simply borrow conventional security solutions such as cryptography. We propose a general framework for securing medical devices based on wireless channel monitoring and anomaly detection. Our proposal is based on a medical security monitor (MedMon) that snoops on all the radio-frequency wireless communications to/from medical devices and uses multi-layered anomaly detection to identify potentially malicious transactions. Upon detection of a malicious transaction, MedMon takes appropriate response actions, which could range from passive (notifying the user) to active (jamming the packets so that they do not reach the medical device). A key benefit of MedMon is that it is applicable to existing medical devices that are in use by patients, with no hardware or software modifications to them. Consequently, it also leads to zero power overheads on these devices. We demonstrate the feasibility of our proposal by developing a prototype implementation for an insulin delivery system using off-the-shelf components (USRP software-defined radio). We evaluate its effectiveness under several attack scenarios. Our results show that MedMon can detect virtually all naive attacks and a large fraction of more sophisticated attacks, suggesting that it is an effective approach to enhancing the security of medical devices.

  17. Describing temporal variation in reticuloruminal pH using continuous monitoring data.

    Science.gov (United States)

    Denwood, M J; Kleen, J L; Jensen, D B; Jonsson, N N

    2018-01-01

    Reticuloruminal pH has been linked to subclinical disease in dairy cattle, leading to considerable interest in identifying pH observations below a given threshold. The relatively recent availability of continuously monitored data from pH boluses gives new opportunities for characterizing the normal patterns of pH over time and distinguishing these from abnormal patterns using more sensitive and specific methods than simple thresholds. We fitted a series of statistical models to continuously monitored data from 93 animals on 13 farms to characterize normal variation within and between animals. We used a subset of the data to relate deviations from the normal pattern to the productivity of 24 dairy cows from a single herd. Our findings show substantial variation in pH characteristics between animals, although animals within the same farm tended to show more consistent patterns. There was strong evidence for a predictable diurnal variation in all animals, and up to 70% of the observed variation in pH could be explained using a simple statistical model. For the 24 animals with available production information, there was also a strong association between productivity (as measured by both milk yield and dry matter intake) and deviations from the expected diurnal pattern of pH 2 d before the productivity observation. In contrast, there was no association between productivity and the occurrence of observations below a threshold pH. We conclude that statistical models can be used to account for a substantial proportion of the observed variability in pH and that future work with continuously monitored pH data should focus on deviations from a predictable pattern rather than the frequency of observations below an arbitrary pH threshold. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  18. A Technical Evaluation of Wireless Connectivity from Patient Monitors to an Anesthesia Information Management System During Intensive Care Unit Surgery.

    Science.gov (United States)

    Simpao, Allan F; Galvez, Jorge A; England, W Randall; Wartman, Elicia C; Scott, James H; Hamid, Michael M; Rehman, Mohamed A; Epstein, Richard H

    2016-02-01

    Surgical procedures performed at the bedside in the neonatal intensive care unit (NICU) at The Children's Hospital of Philadelphia were documented using paper anesthesia records in contrast to the operating rooms, where an anesthesia information management system (AIMS) was used for all cases. This was largely because of logistical problems related to connecting cables between the bedside monitors and our portable AIMS workstations. We implemented an AIMS for documentation in the NICU using wireless adapters to transmit data from bedside monitoring equipment to a portable AIMS workstation. Testing of the wireless AIMS during simulation in the presence of an electrosurgical generator showed no evidence of interference with data transmission. Thirty NICU surgical procedures were documented via the wireless AIMS. Two wireless cases exhibited brief periods of data loss; one case had an extended data gap because of adapter power failure. In comparison, in a control group of 30 surgical cases in which wired connections were used, there were no data gaps. The wireless AIMS provided a simple, unobtrusive, portable alternative to paper records for documenting anesthesia records during NICU bedside procedures.

  19. Electrocardiographic Patch Devices and Contemporary Wireless Cardiac Monitoring

    Directory of Open Access Journals (Sweden)

    Erik eFung

    2015-05-01

    Full Text Available Cardiac electrophysiologic derangements often coexist with disorders of the circulatory system. Capturing and diagnosing arrhythmias and conduction system disease may lead to a change in diagnosis, clinical management and patient outcomes. Standard 12-lead electrocardiogram (ECG, Holter monitors and event recorders have served as useful diagnostic tools over the last few decades. However, their shortcomings are only recently being addressed by emerging technologies. With advances in device miniaturization and wireless technologies, and changing consumer expectations, wearable ‘on-body’ ECG patch devices have evolved to meet contemporary needs. These devices are unobtrusive and easy to use, leading to increased device wear time and diagnostic yield. While becoming the standard for detecting arrhythmias and conduction system disorders in the outpatient setting where continuous ECG monitoring in the short to medium term (days to weeks is indicated, these cardiac devices and related digital mobile health technologies are reshaping the clinician-patient interface with important implications for future healthcare delivery.

  20. Two-Layer Hierarchy Optimization Model for Communication Protocol in Railway Wireless Monitoring Networks

    Directory of Open Access Journals (Sweden)

    Xiaoping Ma

    2018-01-01

    Full Text Available The wireless monitoring system is always destroyed by the insufficient energy of the sensors in railway. Hence, how to optimize the communication protocol and extend the system lifetime is crucial to ensure the stability of system. However, the existing studies focused primarily on cluster-based or multihop protocols individually, which are ineffective in coping with the complex communication scenarios in the railway wireless monitoring system (RWMS. This study proposes a hybrid protocol which combines the cluster-based and multihop protocols (CMCP to minimize and balance the energy consumption in different sections of the RWMS. In the first hierarchy, the total energy consumption is minimized by optimizing the cluster quantities in the cluster-based protocol and the number of hops and the corresponding hop distances in the multihop protocol. In the second hierarchy, the energy consumption is balanced through rotating the cluster head (CH in the subnetworks and further optimizing the hops and the corresponding hop distances in the backbone network. On this basis, the system lifetime is maximized with the minimum and balance energy consumption among the sensors. Furthermore, the hybrid particle swarm optimization and genetic algorithm (PSO-GA are adopted to optimize the energy consumption from the two-layer hierarchy. Finally, the effectiveness of the proposed CMCP is verified in the simulation. The performances of the proposed CMCP in system lifetime, residual energy, and the corresponding variance are all superior to the LEACH protocol widely applied in the previous research. The effective protocol proposed in this study can facilitate the application of the wireless monitoring network in the railway system and enhance safety operation of the railway.

  1. Describing temporal variation in reticuloruminal pH using continuous monitoring data

    DEFF Research Database (Denmark)

    Denwood, M. J.; Kleen, J. L.; Jensen, D. B.

    2018-01-01

    Reticuloruminal pH has been linked to subclinical disease in dairy cattle, leading to considerable interest in identifying pH observations below a given threshold. The relatively recent availability of continuously monitored data from pH boluses gives new opportunities for characterizing the normal...... patterns of pH over time and distinguishing these from abnormal patterns using more sensitive and specific methods than simple thresholds. We fitted a series of statistical models to continuously monitored data from 93 animals on 13 farms to characterize normal variation within and between animals. We used...... a subset of the data to relate deviations from the normal pattern to the productivity of 24 dairy cows from a single herd. Our findings show substantial variation in pH characteristics between animals, although animals within the same farm tended to show more consistent patterns. There was strong evidence...

  2. Network performance of a wireless sensor network for temperature monitoring in vineyards

    DEFF Research Database (Denmark)

    Liscano, Ramiro; Jacoub, John Khalil; Dersingh, Anand

    2011-01-01

    Wireless sensor networks (WSNs) are an emerging technology which can be used for outdoor environmental monitoring. This paper presents challenges that arose from the development and deployment of a WSN for environmental monitoring as well as network performance analysis of this network. Different...... components in our sensor network architecture are presented like the physical nodes, the sensor node code, and two messaging protocols; one for collecting sensor and network values and the other for sensor node commands. An information model for sensor nodes to support plug-and-play capabilities in sensor...... networks is also presented....

  3. A home monitoring program including real-time wireless home spirometry in idiopathic pulmonary fibrosis: a pilot study on experiences and barriers.

    Science.gov (United States)

    Moor, C C; Wapenaar, M; Miedema, J R; Geelhoed, J J M; Chandoesing, P P; Wijsenbeek, M S

    2018-05-29

    In idiopathic pulmonary fibrosis (IPF), home monitoring experiences are limited, not yet real-time available nor implemented in daily care. We evaluated feasibility and potential barriers of a new home monitoring program with real-time wireless home spirometry in IPF. Ten patients with IPF were asked to test this home monitoring program, including daily home spirometry, for four weeks. Measurements of home and hospital spirometry showed good agreement. All patients considered real-time wireless spirometry useful and highly feasible. Both patients and researchers suggested relatively easy solutions for the identified potential barriers regarding real-time home monitoring in IPF.

  4. A wireless telecommunications network for real-time monitoring of greenhouse microclimate

    OpenAIRE

    Giuliano Vox; Pierfrancesco Losito; Fabio Valente; Rinaldo Consoletti; Giacomo Scarascia-Mugnozza; Evelia Schettini; Cristoforo Marzocca; Francesco Corsi

    2014-01-01

    An innovative wireless monitoring system for measuring greenhouse climatic parameters was developed to overcome the problems related to wires cabling such as presence of a dense net of wires hampering the cultivation practices, wires subjected to high temperature and relative humidity, rodents that can damage wires. The system exploits battery-powered environmental sensors, such as air temperature and relative humidity sensors, wind speed and direction, and solar radiation sensors, integrated...

  5. Gastroesophageal reflux disease-related symptom recurrence in patients discontinuing proton pump inhibitors for Bravo wireless esophageal pH monitoring study

    Directory of Open Access Journals (Sweden)

    R. Schey

    2017-10-01

    Full Text Available Background: Patients with gastroesophageal reflux disease (GERD are treated with proton pump inhibitors (PPIs. Those that do not achieve symptom relief, or non-responders, usually undergo esophageal pH monitoring off PPIs in order to confirm the presence of GERD. Aims: To assess the efficacy of the reverse-PPI trial in evaluating the presence of GERD or its recurrence rates, as well as to identify a correlation between the symptom recurrence rates and GERD severity determined by 48-hour Bravo esophageal pH-monitor testing. Methods: A final total of 205 patients that underwent the 48-hour Bravo esophageal pH-monitoring study were retrospectively included. Patients discontinued PPI usage for at least 7 days prior to testing, and completed symptom questionnaires during the 2-day test. The Bravo test was considered positive if the percentage of time with esophageal pH 4.4%. Results: A total of 363 patients underwent 48-hour Bravo testing and of those patients, 205 were eligible for the study. Ninety-two patients reported symptoms as being «same/better» and 113 as being «worse» after stopping PPIs. Of the 92 patients with improved symptoms, 44 (48% had documented acid reflux during the Bravo study, compared with 65 of 113 (58% patients with worsening symptoms that also complained of acid reflux. Of the 109 patients found to have confirmed GERD upon pH monitoring, 65 (59.6% reported a worsening of symptoms, compared with 48 of 96 (50.0% patients without GERD (p = 0.043. Main symptoms stated to be worse included heartburn, chest pain, regurgitation, nausea, and belching (p  7 days (p = 0.042 Conclusion: Symptom exacerbation following PPI cessation for at least 7 days correlated with acid reflux severity assessed by Bravo testing. Patients off PPIs for 7 days had a higher likelihood of experiencing worsening symptoms, compared with those off PPIs for more than 7 days. These findings suggest that when PPIs are held for 7 days or less prior to

  6. A Model for Field Deployment of Wireless Sensor Networks (WSNs) within the Domain of Microclimate Habitat Monitoring

    Science.gov (United States)

    Sanborn, Mark

    2011-01-01

    Wireless sensor networks (WSNs) represent a class of miniaturized information systems designed to monitor physical environments. These smart monitoring systems form collaborative networks utilizing autonomous sensing, data-collection, and processing to provide real-time analytics of observed environments. As a fundamental research area in…

  7. Wireless Patient Monitoring System Using Point to Multi Point Zigbee Technology

    Directory of Open Access Journals (Sweden)

    Aung Soe Phyo

    2015-06-01

    Full Text Available ABSTRACT A ZigBee sensor network for data acquisition and monitoring is presented in this paper. A ZigBee module is connected via a USB interface to a Microsoft Windows PC which works as a base station in the network. Data collected by sensor devices are sent to the base station PC which is set as Wireless sensorNetwork WSN. ZigBee is low power consumption built-in security method and ratified specifications make it very suitable to be used with medical sensor devices.This application of Zigbee based network consists of two transmitter sections and a receiver section.Each transmitter section consists of heartbeat sensor body temperature sensor microcontroller Zigbee and LCD module.In the proposed system the patients health is continuously monitored and theacquired data is analyzed at a personal computer using Graphical User InterfaceGUI. If a particular patients health parameter is higher or lower the threshold values an alarm system is used to alert the doctor. The aim of this system is to know the condition of patients health by the doctor immediately and to reduce the load of the staff taking care of the patient in the hospitals. In this paper wireless point to multipoint system is used between doctor and patient.

  8. Implementation of a wireless sensor network for heart rate monitoring in a senior center.

    Science.gov (United States)

    Huang, Jyh-How; Su, Tzu-Yao; Raknim, Paweeya; Lan, Kun-Chan

    2015-06-01

    Wearable sensor systems are widely used to monitor vital sign in hospitals and in recent years have also been used at home. In this article we present a system that includes a ring probe, sensor, radio, and receiver, designed for use as a long-term heart rate monitoring system in a senior center. The primary contribution of this article is successfully implementing a cheap, large-scale wireless heart rate monitoring system that is stable and comfortable to use 24 h a day. We developed new finger ring sensors for comfortable continuous wearing experience and used dynamic power adjustment on the ring so the sensor can detect pulses at different strength levels. Our system has been deployed in a senior center since May 2012, and 63 seniors have used this system in this period. During the 54-h system observation period, 10 alarms were set off. Eight of them were due to abnormal heart rate, and two of them were due to loose probes. The monitoring system runs stably with the senior center's existing WiFi network, and achieves 99.48% system availability. The managers and caregivers use our system as a reliable warning system for clinical deterioration. The results of the year-long deployment show that the wireless group heart rate monitoring system developed in this work is viable for use within a designated area.

  9. Development of a wireless monitoring system for fracture-critical bridges

    Science.gov (United States)

    Fasl, Jeremiah; Samaras, Vasilis; Reichenbach, Matthew; Helwig, Todd; Wood, Sharon L.; Potter, David; Lindenberg, Richard; Frank, Karl

    2011-04-01

    This paper provides a summary of ongoing research sponsored by the National Institute of Standards and Technology (NIST) that seeks to improve inspection practices for steel bridges by providing the technology and methodology for real-time monitoring. In order to reduce the time and cost of installing a monitoring system, the research team elected to use wireless communications within the sensor network. The investigation considered both IEEE 802.11 and IEEE 802.15.4 communications protocols and identified the latter as more practical for bridge monitoring applications. Studies were conducted to investigate possible improvements in the network performance using high-gain antennas. Results from experiments conducted outside and on bridges with different antennas are presented in this paper. Although some benefits were observed using high-gain antennas, the inconsistent performance and higher cost relative to the current stock, omni-directional antennas does not justify their use.

  10. Campaign monitoring of railroad bridges in high-speed rail shared corridors using wireless smart sensors.

    Science.gov (United States)

    2015-06-01

    This research project used wireless smart sensors to develop a cost-effective and practical portable structural health monitoring : system for railroad bridges in North America. The system is designed for periodic deployment rather than as a permanen...

  11. A Wireless Sensor Network for Structural Health Monitoring: Performance and Experience

    OpenAIRE

    Paek, Jeongyeup; Chintalapudi, Krishna; Caffrey, John; Govindan, Ramesh; Masri, Sami

    2005-01-01

    While sensor network research has made significant strides in the past few years, the literature has relatively few examples of papers that have evaluated and validated a complete experimental system. In this paper we discuss our deployment experiences and evaluate the performance of a multi-hop wireless data acquisition system (called Wisden) for structural health monitoring (SHM) on a large seismic test structure used by civil engineers. Our experiments indicate that, with the latest sensor...

  12. A Dual-Mode UWB Wireless Platform with Random Pulse Length Detection for Remote Patient Monitoring

    DEFF Research Database (Denmark)

    Reyes, Carlos; Bisbe, Sergi; Shen, Ming

    2013-01-01

    on a single hardware platform, but it is capable of both monitoring and data transmission. This is achieved by employing a new random pulse length detection method that allows data transmission by using a modulated monitoring signal. To prove the proposed concept a test system has been built, using commercial......This paper presents a dual-mode ultra-wideband platform for wireless Remote Patient Monitoring (RPM). Existing RPM solutions are typically based on two different hardware platforms; one responsible for medical-data monitoring and one to handle data transmission. The proposed RPM topology is based...

  13. Gastro-oesophageal reflux demonstrated by radiography: a supplement to 24-h pH monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Madsen, E.; Aksglaede, K.; Jacobsen, N.O.; Funch-Jensen, P.; Thommesen, P. [Aarhus Univ. Hospital (Denmark)

    2001-09-01

    Purpose: Gastro-oesophageal reflux (GOR) is demonstrated by radiography as a supplement to 24-h pH monitoring. Material and Methods: Forty-two patients (mean age 44 years) with suspicion of GOR disease were assessed according to a standard questionnaire. GOR was investigated by 24-h pH-monitoring and by radiography. Oesophageal emptying and the presence of rings or strictures were registered as well. Mucosal biopsies, classified as normal, light oesophagitis, severe oesophagitis, or Barrett's oesophagus, were correlated to age, gender, symptomatology, pH monitoring, and oesophageal emptying. GOR and morphological changes demonstrated by radiography were correlated to pH monitoring and mucosa biopsies. Results: Based on pH monitoring, patients with severe oesophagitis and Barrett's oesophagus had a significantly higher acid exposure compared to patients with normal mucosa and light oesophagitis, with no difference concerning age, gender, and symptoms. Severe oesophagitis, including Barrett's oesophagus, was found only in patients with a positive test for radiologic GOR. Eleven patients had rings or strictures independent of oesophageal mucosal changes. Conclusion: GOR demonstrated by radiography identified patients where complications could be expected, which was not possible by pH monitoring alone.

  14. Wireless Biological Electronic Sensors.

    Science.gov (United States)

    Cui, Yue

    2017-10-09

    The development of wireless biological electronic sensors could open up significant advances for both fundamental studies and practical applications in a variety of areas, including medical diagnosis, environmental monitoring, and defense applications. One of the major challenges in the development of wireless bioelectronic sensors is the successful integration of biosensing units and wireless signal transducers. In recent years, there are a few types of wireless communication systems that have been integrated with biosensing systems to construct wireless bioelectronic sensors. To successfully construct wireless biological electronic sensors, there are several interesting questions: What types of biosensing transducers can be used in wireless bioelectronic sensors? What types of wireless systems can be integrated with biosensing transducers to construct wireless bioelectronic sensors? How are the electrical sensing signals generated and transmitted? This review will highlight the early attempts to address these questions in the development of wireless biological electronic sensors.

  15. Continuous pH monitoring in a perfused bioreactor system using an optical pH sensor

    Science.gov (United States)

    Jeevarajan, Antony S.; Vani, Sundeep; Taylor, Thomas D.; Anderson, Melody M.

    2002-01-01

    Monitoring and regulating the pH of the solution in a bioprocess is one of the key steps in the success of bioreactor operation. An in-line optical pH sensor, based on the optical absorption properties of phenol red present in the medium, was developed and tested in this work for use in NASA space bioreactors based on a rotating wall-perfused vessel system supporting a baby hamster kidney (BHK-21) cell culture. The sensor was tested over three 30-day and one 124-day cell runs. The pH sensor initially was calibrated and then used during the entire cell culture interval. The pH reported by the sensor was compared to that measured by a fiber optically coupled Shimadzu spectrophotometer and a blood gas analyzer. The maximum standard error of prediction for all the four cell runs for development pH sensor against BGA was +/-0.06 pH unit and for the fiber optically coupled Shimadzu spectrophotometer against the blood gas analyzer was +/-0.05 pH unit. The pH sensor system performed well without need of recalibration for 124 days. Copyright 2002 Wiley Periodicals, Inc.

  16. Wireless sensor networks in chemical industry

    International Nuclear Information System (INIS)

    Minhas, A.A.; Jawad, S.

    2010-01-01

    Recent advances in wireless technology are a clear indication of the commercial promise of wireless networks. Industrial wireless sensing has now become more economical, efficient and secure as compared to traditional wired sensing. Wireless Sensor Networks (WSN) are successfully being used for process monitoring and control of many industrial plants. This paper explores how Chemical Industry in particular can benefit from the application of WSN technology. Various examples of successful implementation are cited. In order to address the industrial requirements, we propose a low power and low cost solution for process monitoring by implementing WSN. (author)

  17. Structural Health Monitoring Using Wireless Technologies: An Ambient Vibration Test on the Adolphe Bridge, Luxembourg City

    Directory of Open Access Journals (Sweden)

    Adrien Oth

    2012-01-01

    Full Text Available Major threats to bridges primarily consist of the aging of the structural elements, earthquake-induced shaking and standing waves generated by windstorms. The necessity of information on the state of health of structures in real-time, allowing for timely warnings in the case of damaging events, requires structural health monitoring (SHM systems that allow the risks of these threats to be mitigated. Here we present the results of a short-duration experiment carried out with low-cost wireless instruments for monitoring the vibration characteristics and dynamic properties of a strategic civil infrastructure, the Adolphe Bridge in Luxembourg City. The Adolphe Bridge is a masonry arch construction dating from 1903 and will undergo major renovation works in the upcoming years. Our experiment shows that a network of these wireless sensing units is well suited to monitor the vibration characteristics of such a historical arch bridge and hence represents a low-cost and efficient solution for SHM.

  18. Distributed Cross-layer Monitoring in Wireless Mesh Networks

    OpenAIRE

    Panmin, Ye; Yong,

    2009-01-01

    Wireless mesh networks has rapid development over the last few years. However, due to properties such as distributed infrastructure and interference, which strongly affect the performance of wireless mesh networks, developing technology has to face the challenge of architecture and protocol design issues. Traditional layered protocols do not function efficiently in multi-hop wireless environments. To get deeper understanding on interaction of the layered protocols and optimize the performance...

  19. Describing temporal variation in reticuloruminal pH using continuous monitoring data

    OpenAIRE

    Denwood, M.J.; Kleen, J.L.; Jensen, D.B.; Jonsson, N.N.

    2018-01-01

    Reticuloruminal pH has been linked to subclinical disease in dairy cattle, leading to considerable interest in identifying pH observations below a given threshold. The relatively recent availability of continuously monitored data from pH boluses gives new opportunities for characterizing the normal patterns of pH over time and distinguishing these from abnormal patterns using more sensitive and specific methods than simple thresholds. We fitted a series of statistical models to continuously m...

  20. Remote Monitoring of Post-eruption Volcano Environment Based-On Wireless Sensor Network (WSN): The Mount Sinabung Case

    Science.gov (United States)

    Soeharwinto; Sinulingga, Emerson; Siregar, Baihaqi

    2017-01-01

    An accurate information can be useful for authorities to make good policies for preventive and mitigation after volcano eruption disaster. Monitoring of environmental parameters of post-eruption volcano provides an important information for authorities. Such monitoring system can be develop using the Wireless Network Sensor technology. Many application has been developed using the Wireless Sensor Network technology, such as floods early warning system, sun radiation mapping, and watershed monitoring. This paper describes the implementation of a remote environment monitoring system of mount Sinabung post-eruption. The system monitor three environmental parameters: soil condition, water quality and air quality (outdoor). Motes equipped with proper sensors, as components of the monitoring system placed in sample locations. The measured value from the sensors periodically sends to data server using 3G/GPRS communication module. The data can be downloaded by the user for further analysis.The measurement and data analysis results generally indicate that the environmental parameters in the range of normal/standard condition. The sample locations are safe for living and suitable for cultivation, but awareness is strictly required due to the uncertainty of Sinabung status.

  1. Unobtrusive Wireless Monitoring System for Assisted Living and Improving the Wellbeing of Elderly People

    International Nuclear Information System (INIS)

    Browne, Aidan; Duncliffe, Richard; Spillane, James; Walsh, Colin; Hill, Martin; O'Mahony, Tom; O'Reilly, Fergus

    2011-01-01

    A novel system to unobtrusively monitor the wellbeing of elderly people based on their activity patterns is presented. The system uses a wireless ZigBee network to monitor the electrical usage in a subject's home and then sends this data to an Apache server via HTTP from a GPRS unit. The data is logged in a MySQL database where pattern analysis is used to identify periods of significant inactivity. When such an event is identified designated contacts are notified by text message. For subjects requiring higher levels of monitoring a portable health monitor can be integrated incorporating a fall detector and panic button to inform of emergency situations.

  2. A Wireless Fatigue Monitoring System Utilizing a Bio-Inspired Tree Ring Data Tracking Technique

    OpenAIRE

    Bai, Shi; Li, Xuan; Xie, Zhaohui; Zhou, Zhi; Ou, Jinping

    2014-01-01

    Fatigue, a hot scientific research topic for centuries, can trigger sudden failure of critical structures such as aircraft and railway systems, resulting in enormous casualties as well as economic losses. The fatigue life of certain structures is intrinsically random and few monitoring techniques are capable of tracking the full life-cycle fatigue damage. In this paper, a novel in-situ wireless real-time fatigue monitoring system using a bio-inspired tree ring data tracking technique is propo...

  3. Real-time monitoring of drowsiness through wireless nanosensor systems

    Science.gov (United States)

    Ramasamy, Mouli; Varadan, Vijay K.

    2016-04-01

    Detection of sleepiness and drowsiness in human beings has been a daunting task for both engineering and medical technologies. Accuracy, precision and promptness of detection have always been an issue that has to be dealt by technologists. Generally, the bio potential signals - ECG, EOG, EEG and EMG are used to classify and discriminate sleep from being awake. However, the potential drawbacks may be high false detections, low precision, obtrusiveness, aftermath analysis, etc. To overcome the disadvantages, this paper reviews the design aspects of a wireless and a real time monitoring system to track sleep and detect fatigue. This concept involves the use of EOG and EEG to measure the blink rate and asses the person's condition. In this user friendly and intuitive approach, EOG and EEG signals are obtained by the textile based nanosensors mounted on the inner side of a flexible headband. The acquired signals are then electrically transmitted to the data processing and transmission unit, which transmits the processed data to the receiver/monitoring module through ZigBee communication. This system is equipped with a software program to process, feature extract, analyze, display and store the information. Thereby, immediate detection of a person falling asleep is made feasible and, tracking the sleep cycle continuously provides an insight about the fatigue level. This approach of using a wireless, real time, dry sensor on a flexible substrate mitigates obtrusiveness that is expected from a wearable system. We have previously presented the results of the aforementioned wearable systems. This paper aims to extend our work conceptually through a review of engineering and medical techniques involved in wearable systems to detect drowsiness.

  4. Monitoring Street-Level Spatial-Temporal Variations of Carbon Monoxide in Urban Settings Using a Wireless Sensor Network (WSN) Framework

    Science.gov (United States)

    Wen, Tzai-Hung; Jiang, Joe-Air; Sun, Chih-Hong; Juang, Jehn-Yih; Lin, Tzu-Shiang

    2013-01-01

    Air pollution has become a severe environmental problem due to urbanization and heavy traffic. Monitoring street-level air quality is an important issue, but most official monitoring stations are installed to monitor large-scale air quality conditions, and their limited spatial resolution cannot reflect the detailed variations in air quality that may be induced by traffic jams. By deploying wireless sensors on crossroads and main roads, this study established a pilot framework for a wireless sensor network (WSN)-based real-time monitoring system to understand street-level spatial-temporal changes of carbon monoxide (CO) in urban settings. The system consists of two major components. The first component is the deployment of wireless sensors. We deployed 44 sensor nodes, 40 transmitter nodes and four gateway nodes in this study. Each sensor node includes a signal processing module, a CO sensor and a wireless communication module. In order to capture realistic human exposure to traffic pollutants, all sensors were deployed at a height of 1.5 m on lampposts and traffic signs. The study area covers a total length of 1.5 km of Keelung Road in Taipei City. The other component is a map-based monitoring platform for sensor data visualization and manipulation in time and space. Using intensive real-time street-level monitoring framework, we compared the spatial-temporal patterns of air pollution in different time periods. Our results capture four CO concentration peaks throughout the day at the location, which was located along an arterial and nearby traffic sign. The hourly average could reach 5.3 ppm from 5:00 pm to 7:00 pm due to the traffic congestion. The proposed WSN-based framework captures detailed ground information and potential risk of human exposure to traffic-related air pollution. It also provides street-level insights into real-time monitoring for further early warning of air pollution and urban environmental management. PMID:24287859

  5. Monitoring Street-Level Spatial-Temporal Variations of Carbon Monoxide in Urban Settings Using a Wireless Sensor Network (WSN Framework

    Directory of Open Access Journals (Sweden)

    Tzai-Hung Wen

    2013-11-01

    Full Text Available Air pollution has become a severe environmental problem due to urbanization and heavy traffic. Monitoring street-level air quality is an important issue, but most official monitoring stations are installed to monitor large-scale air quality conditions, and their limited spatial resolution cannot reflect the detailed variations in air quality that may be induced by traffic jams. By deploying wireless sensors on crossroads and main roads, this study established a pilot framework for a wireless sensor network (WSN-based real-time monitoring system to understand street-level spatial-temporal changes of carbon monoxide (CO in urban settings. The system consists of two major components. The first component is the deployment of wireless sensors. We deployed 44 sensor nodes, 40 transmitter nodes and four gateway nodes in this study. Each sensor node includes a signal processing module, a CO sensor and a wireless communication module. In order to capture realistic human exposure to traffic pollutants, all sensors were deployed at a height of 1.5 m on lampposts and traffic signs. The study area covers a total length of 1.5 km of Keelung Road in Taipei City. The other component is a map-based monitoring platform for sensor data visualization and manipulation in time and space. Using intensive real-time street-level monitoring framework, we compared the spatial-temporal patterns of air pollution in different time periods. Our results capture four CO concentration peaks throughout the day at the location, which was located along an arterial and nearby traffic sign. The hourly average could reach 5.3 ppm from 5:00 pm to 7:00 pm due to the traffic congestion. The proposed WSN-based framework captures detailed ground information and potential risk of human exposure to traffic-related air pollution. It also provides street-level insights into real-time monitoring for further early warning of air pollution and urban environmental management.

  6. Monitoring street-level spatial-temporal variations of carbon monoxide in urban settings using a wireless sensor network (WSN) framework.

    Science.gov (United States)

    Wen, Tzai-Hung; Jiang, Joe-Air; Sun, Chih-Hong; Juang, Jehn-Yih; Lin, Tzu-Shiang

    2013-11-27

    Air pollution has become a severe environmental problem due to urbanization and heavy traffic. Monitoring street-level air quality is an important issue, but most official monitoring stations are installed to monitor large-scale air quality conditions, and their limited spatial resolution cannot reflect the detailed variations in air quality that may be induced by traffic jams. By deploying wireless sensors on crossroads and main roads, this study established a pilot framework for a wireless sensor network (WSN)-based real-time monitoring system to understand street-level spatial-temporal changes of carbon monoxide (CO) in urban settings. The system consists of two major components. The first component is the deployment of wireless sensors. We deployed 44 sensor nodes, 40 transmitter nodes and four gateway nodes in this study. Each sensor node includes a signal processing module, a CO sensor and a wireless communication module. In order to capture realistic human exposure to traffic pollutants, all sensors were deployed at a height of 1.5 m on lampposts and traffic signs. The study area covers a total length of 1.5 km of Keelung Road in Taipei City. The other component is a map-based monitoring platform for sensor data visualization and manipulation in time and space. Using intensive real-time street-level monitoring framework, we compared the spatial-temporal patterns of air pollution in different time periods. Our results capture four CO concentration peaks throughout the day at the location, which was located along an arterial and nearby traffic sign. The hourly average could reach 5.3 ppm from 5:00 pm to 7:00 pm due to the traffic congestion. The proposed WSN-based framework captures detailed ground information and potential risk of human exposure to traffic-related air pollution. It also provides street-level insights into real-time monitoring for further early warning of air pollution and urban environmental management.

  7. A Monitoring and Control System for Aquaculture via Wireless Network and Android Platform

    Directory of Open Access Journals (Sweden)

    Juan Huan

    2014-04-01

    Full Text Available Web applications, databases and advanced mobile platform can facilitate real-time data acquisition for effective monitoring on intelligent agriculture. To improve facilities for aquaculture production automation and efficient, this paper presents an application for wireless network and Android platform that interacts with an advanced control system based on Apache, SQL Server, Java, to collect and monitor variables applied in aquaculture. The test and application shows that is stable, high price-performance ratio, good mobility and easy to operate, It has a strong practicality and application prospects.

  8. Bluetooth wireless monitoring, diagnosis and calibration interface for control system of fuel cell bus in Olympic demonstration

    Energy Technology Data Exchange (ETDEWEB)

    Hua, Jianfeng; Lin, Xinfan; Xu, Liangfei; Li, Jianqiu; Ouyang, Minggao [Tsinghua University, State Key Laboratory of Automotive Safety and Energy, Beijing100084 (China)

    2009-01-15

    With the worldwide deterioration of the natural environment and the fossil fuel crisis, the possible commercialization of fuel cell vehicles has become a hot topic. In July 2008, Beijing started a clean public transportation plan for the 29th Olympic games. Three fuel cell city buses and 497 other low-emission vehicles are now serving the Olympic core area and Beijing urban areas. The fuel cell buses will operate along a fixed bus line for 1 year as a public demonstration of green energy vehicles. Due to the specialized nature of fuel cell engines and electrified power-train systems, measurement, monitoring and calibration devices are indispensable. Based on the latest Bluetooth wireless technology, a novel Bluetooth universal data interface was developed for the control system of the fuel cell city bus. On this platform, a series of wireless portable control auxiliary systems have been implemented, including wireless calibration, a monitoring system and an in-system programming platform, all of which are ensuring normal operation of the fuel cell buses used in the demonstration. (author)

  9. Statistical analysis of modal properties of a cable-stayed bridge through long-term structural health monitoring with wireless smart sensor networks

    Science.gov (United States)

    Asadollahi, Parisa; Li, Jian

    2016-04-01

    Understanding the dynamic behavior of complex structures such as long-span bridges requires dense deployment of sensors. Traditional wired sensor systems are generally expensive and time-consuming to install due to cabling. With wireless communication and on-board computation capabilities, wireless smart sensor networks have the advantages of being low cost, easy to deploy and maintain and therefore facilitate dense instrumentation for structural health monitoring. A long-term monitoring project was recently carried out for a cable-stayed bridge in South Korea with a dense array of 113 smart sensors, which feature the world's largest wireless smart sensor network for civil structural monitoring. This paper presents a comprehensive statistical analysis of the modal properties including natural frequencies, damping ratios and mode shapes of the monitored cable-stayed bridge. Data analyzed in this paper is composed of structural vibration signals monitored during a 12-month period under ambient excitations. The correlation between environmental temperature and the modal frequencies is also investigated. The results showed the long-term statistical structural behavior of the bridge, which serves as the basis for Bayesian statistical updating for the numerical model.

  10. Development of real-time monitoring system using wired and wireless networks in a full-scale ship

    Directory of Open Access Journals (Sweden)

    Bu-Geun Paik

    2010-09-01

    Full Text Available In the present study, the real-time monitoring system is developed based on the wireless sensor network (WSN and power line communication (PLC employed in the 3,000-ton-class training ship. The WSN consists of sensor nodes, router, gateway and middleware. The PLC is composed of power lines, modems, Ethernet gateway and phase-coupler. The basic tests show that the ship has rather good environments for the wired and wireless communications. The developed real-time monitoring system is applied to recognize the thermal environments of main-engine room and one cabin in the ship. The main-engine room has lots of heat sources and needs careful monitoring to satisfy safe operation condition or detect any human errors beforehand. The monitoring is performed in two regions near the turbocharger and cascade tank, considered as heat sources. The cabin on the second deck is selected to monitor the thermal environments because it is close to the heat source of main engine. The monitoring results of the cabin show the thermal environment is varied by the human activity. The real-time monitoring for the thermal environment would be useful for the planning of the ventilation strategy based on the traces of the human activity against inconvenient thermal environments as well as the recognizing the temperature itself in each cabin.

  11. Wireless transmission of monitoring data out of the Hades underground laboratory

    International Nuclear Information System (INIS)

    Schroeder, T.J.; Hart, J.

    2012-01-01

    Document available in extended abstract form only. For the monitoring of geological waste disposal in the post-closure phase, data acquired by the underground monitoring system inside the repository need to be transmitted wirelessly through the underground to the surface. Low frequency magneto-induction techniques as applied in mine communication and rescue can potentially be used for the wireless transmission of data from the repository to the surface. However, the propagation of magnetic fields through porous argillaceous rocks like the Boom Clay is hindered by the high electrical conductivity of the rock. As part of the European 7. framework project MoDeRn, Monitoring Developments for safe Repository operation and staged closure, NRG is conducting tests on the wireless transmission of monitoring data under conditions representative for a generic Dutch disposal in Boom Clay. This should help to judge the general feasibility of long-term wireless data transmission from an underground repository through the enclosing host rock and the overlying geosphere to the surface. Experimental work As contribution to the MoDeRn Work Package 3, In-situ demonstration of innovative monitoring techniques, NRG conducts tests on the wireless transmission of signals and data. The wireless data transmission experiments of NRG are being performed at the HADES Underground Research Laboratory (URL) in Mol, Belgium, situated at 225 m depth in a 100 m thick layer of Boom Clay. The main objective of the contribution is to quantify and optimise the energy efficiency of the transmission technique used. Because the Boom Clay and the overlying aquifers attenuate the magnetic fields more strongly than other host rocks, it is assumed that transmission experiments performed in the HADES give a more realistic picture on field propagation than experiments performed e.g. in granite, salt rock or Opalinus clay. Although the generic depth for the Dutch disposal design is 500 m, the experiments

  12. Monitoring the corrosion process of Al alloys through pH induced fluorescence

    International Nuclear Information System (INIS)

    Pidaparti, R M; Neblett, E B; Miller, S A; Alvarez, J C

    2008-01-01

    A sensing and monitoring set-up based on electrochemical pH induced fluorescence to systematically control the electrochemical corrosion process has been developed for possible applications in the field of localized corrosion. The sensing and monitoring concept is based on exposing the corroding metal surface to solutions that contain selected redox chemicals which will react in local regions where anodic or cathodic polarizations occur. Redox couples that produce or consume protons in their electrochemical reactions were used so that local pH gradients can indicate electrochemical activity by inducing fluorescence in dyes. This approach has been applied to study the corrosion initiation in aircraft aluminum metal 2024-T3 in a controlled electrochemical cell. Preliminary results obtained suggest that monitoring of localized corrosion based on pH can be achieved for field applications

  13. Improving Perinatal Care in the Rural Regions Worldwide by Wireless Enabled Antepartum Fetal Monitoring: A Demonstration Project

    Directory of Open Access Journals (Sweden)

    Roberto Tapia-Conyer

    2015-01-01

    Full Text Available Background. Fetal and neonatal morbidity and mortality are significant problems in developing countries; remote maternal-fetal monitoring offers promise in addressing this challenge. The Gary and Mary West Health Institute and the Instituto Carlos Slim de la Salud conducted a demonstration project of wirelessly enabled antepartum maternal-fetal monitoring in the state of Yucatán, Mexico, to assess whether there were any fundamental barriers preventing deployment and use. Methods. Following informed consent, high-risk pregnant women at 27–29 weeks of gestation at the Chemax primary clinic participated in remote maternal-fetal monitoring. Study participants were randomized to receive either prototype wireless monitoring or standard-of-care. Feasibility was evaluated by assessing technical aspects of performance, adherence to monitoring appointments, and response to recommendations. Results. Data were collected from 153 high-risk pregnant indigenous Mayan women receiving either remote monitoring (n=74 or usual standard-of-care (n=79. Remote monitoring resulted in markedly increased adherence (94.3% versus 45.1%. Health outcomes were not statistically different in the two groups. Conclusions. Remote maternal-fetal monitoring is feasible in resource-constrained environments and can improve maternal compliance for monitoring sessions. Improvement in maternal-fetal health outcomes requires integration of such technology into sociocultural context and addressing logistical challenges of access to appropriate emergency services.

  14. Improving Perinatal Care in the Rural Regions Worldwide by Wireless Enabled Antepartum Fetal Monitoring: A Demonstration Project

    Science.gov (United States)

    Tapia-Conyer, Roberto; Lyford, Shelley; Saucedo, Rodrigo; Casale, Michael; Gallardo, Hector; Becerra, Karen; Mack, Jonathan; Mujica, Ricardo; Estrada, Daniel; Sanchez, Antonio; Sabido, Ramon; Meier, Carlos; Smith, Joseph

    2015-01-01

    Background. Fetal and neonatal morbidity and mortality are significant problems in developing countries; remote maternal-fetal monitoring offers promise in addressing this challenge. The Gary and Mary West Health Institute and the Instituto Carlos Slim de la Salud conducted a demonstration project of wirelessly enabled antepartum maternal-fetal monitoring in the state of Yucatán, Mexico, to assess whether there were any fundamental barriers preventing deployment and use. Methods. Following informed consent, high-risk pregnant women at 27–29 weeks of gestation at the Chemax primary clinic participated in remote maternal-fetal monitoring. Study participants were randomized to receive either prototype wireless monitoring or standard-of-care. Feasibility was evaluated by assessing technical aspects of performance, adherence to monitoring appointments, and response to recommendations. Results. Data were collected from 153 high-risk pregnant indigenous Mayan women receiving either remote monitoring (n = 74) or usual standard-of-care (n = 79). Remote monitoring resulted in markedly increased adherence (94.3% versus 45.1%). Health outcomes were not statistically different in the two groups. Conclusions. Remote maternal-fetal monitoring is feasible in resource-constrained environments and can improve maternal compliance for monitoring sessions. Improvement in maternal-fetal health outcomes requires integration of such technology into sociocultural context and addressing logistical challenges of access to appropriate emergency services. PMID:25691900

  15. Adequate technologies for wireless real-time dose rate monitoring for off-site emergency management

    International Nuclear Information System (INIS)

    Dielmann, R.; Buerkin, W.

    2003-01-01

    Full text: What are the requirements for off-site gamma dose rate monitoring systems? What are the pros and cons of available communication technologies? This report gives an overview of modern communication techniques and their applicability for reliable real-time data acquisition as basis for off-site nuclear emergency management. The results of three years operating experience with a wireless gamma dose rate monitoring system, installed around the NPPs of KURSK, KALININ and BALAKOVA (Russia) in the year 2000, are shown. (author)

  16. Monolithically integrated biophotonic lab-on-a-chip for cell culture and simultaneous pH monitoring

    NARCIS (Netherlands)

    Munoz-Berbel, Xavier; Rodriguez-Rodriguez, Rosalia; Vigues, Nuria; Demming, Stefanie; Mas, Jordi; Buettgenbach, Stephanus; Verpoorte, Elisabeth; Ortiz, Pedro; Llobera, Andreu

    2013-01-01

    A poly(dimethylsiloxane) biophotonic lab-on-a-chip (bioPhLoC) containing two chambers, an incubation chamber and a monitoring chamber for cell retention/proliferation and pH monitoring, respectively, is presented. The bioPhLoC monolithically integrates a filter with 3 mu m high size-exclusion

  17. Real-time monitoring of ubiquitous wireless ECG sensor node for medical care using ZigBee

    Science.gov (United States)

    Vijayalakshmi, S. R.; Muruganand, S.

    2012-01-01

    Sensor networks have the potential to impact many aspects of medical care greatly. By outfitting patients with wireless, wearable vital sign sensors, collecting detailed real-time data on physiological status can be greatly simplified. In this article, we propose the system architecture for smart sensor platform based on advanced wireless sensor networks. An emerging application for wireless sensor networks involves their use in medical care. In hospitals or clinics, outfitting every patient with tiny, wearable wireless vital sign sensors would allow doctors, nurses and other caregivers to continuously monitor the status of their patients. In an emergency or disaster scenario, the same technology would enable medics to more effectively care for a large number of casualties. First responders could receive immediate notifications on any changes in patient status, such as respiratory failure or cardiac arrest. Wireless sensor network is a set of small, autonomous devices, working together to solve different problems. It is a relatively new technology, experiencing true expansion in the past decade. People have realised that integration of small and cheap microcontrollers with sensors can result in the production of extremely useful devices, which can be used as an integral part of the sensor nets. These devices are called sensor nodes. Today, sensor nets are used in agriculture, ecology and tourism, but medicine is the area where they certainly meet the greatest potential. This article presents a medical smart sensor node platform. This article proposes a wireless two-lead EKG. These devices collect heart rate and EKG data and relay it over a short-range (300 m) wireless network to any number of receiving devices, including PDAs, laptops or ambulance-based terminals.

  18. Optical sensing system based on wireless paired emitter detector diode device and ionogels for lab-on-a-disc water quality analysis.

    Science.gov (United States)

    Czugala, Monika; Gorkin, Robert; Phelan, Thomas; Gaughran, Jennifer; Curto, Vincenzo Fabio; Ducrée, Jens; Diamond, Dermot; Benito-Lopez, Fernando

    2012-12-07

    This work describes the first use of a wireless paired emitter detector diode device (PEDD) as an optical sensor for water quality monitoring in a lab-on-a-disc device. The microfluidic platform, based on an ionogel sensing area combined with a low-cost optical sensor, is applied for quantitative pH and qualitative turbidity monitoring of water samples at point-of-need. The autonomous capabilities of the PEDD system, combined with the portability and wireless communication of the full device, provide the flexibility needed for on-site water testing. Water samples from local fresh and brackish sources were successfully analysed using the device, showing very good correlation with standard bench-top systems.

  19. Biotelemetric Wireless Intracranial Pressure Monitoring: An In Vitro Study

    Directory of Open Access Journals (Sweden)

    Mohammad H. Behfar

    2015-01-01

    Full Text Available Assessment of intracranial pressure (ICP is of great importance in management of traumatic brain injuries (TBIs. The existing clinically established ICP measurement methods require catheter insertion in the cranial cavity. This increases the risk of infection and hemorrhage. Thus, noninvasive but accurate techniques are attractive. In this paper, we present two wireless, batteryless, and minimally invasive implantable sensors for continuous ICP monitoring. The implants comprise ultrathin (50 μm flexible spiral coils connected in parallel to a capacitive microelectromechanical systems (MEMS pressure sensor. The implantable sensors are inductively coupled to an external on-body reader antenna. The ICP variation can be detected wirelessly through measuring the reader antenna’s input impedance. This paper also proposes novel implant placement to improve the efficiency of the inductive link. In this study, the performance of the proposed telemetry system was evaluated in a hydrostatic pressure measurement setup. The impact of the human tissues on the inductive link was simulated using a 5 mm layer of pig skin. The results from the in vitro measurement proved the capability of our developed sensors to detect ICP variations ranging from 0 to 70 mmHg at 2.5 mmHg intervals.

  20. Development of a wearable wireless body area network for health monitoring of the elderly and disabled

    Science.gov (United States)

    Rushambwa, Munyaradzi C.; Gezimati, Mavis; Jeeva, J. B.

    2017-11-01

    Novel advancements in systems miniaturization, electronics in health care and communication technologies are enabling the integration of both patients and doctors involvement in health care system. A Wearable Wireless Body Area Network (WWBAN) provides continuous, unobtrusive ambulatory, ubiquitous health monitoring, and provide real time patient’s status to the physician without any constraint on their normal daily life activities. In this project we developed a wearable wireless body area network system that continuously monitor the health of the elderly and the disabled and provide them with independent, safe and secure living. The WWBAN system monitors the following parameters; blood oxygen saturation using a pulse oximeter sensor (SpO2), heart rate (HR) pulse sensor, Temperature, hydration, glucose level and fall detection. When the wearable system is put on, the sensor values are processed and analysed. If any of the monitored parameter values falls below or exceeds the normal range, there is trigger of remote alert by which an SMS is send to a doctor or physician via GSM module and network. The developed system offers flexibility and mobility to the user; it is a real time system and has significance in revolutionizing health care system by enabling non-invasive, inexpensive, continuous health monitoring.

  1. Wireless sleep monitoring headband to identify sleep and track fatigue

    Science.gov (United States)

    Ramasamy, Mouli; Oh, Sechang; Varadan, Vijay K.

    2014-04-01

    Detection of sleepiness and drowsiness in human beings has been a daunting task for both engineering and medical technologies. Accuracy, precision and promptness of detection have always been an issue that has to be dealt by technologists. Commonly, the rudimentary bio potential signals - ECG, EOG, EEG and EMG are used to classify and discriminate sleep from being awake. However, the potential drawbacks may be high false detections, low precision, obtrusiveness, aftermath analysis, etc. To overcome the disadvantages, this paper proposes the design of a wireless and a real time monitoring system to track sleep and detect fatigue. This concept involves the use of EOG and EEG to measure the blink rate and asses the person's condition. In this user friendly and intuitive approach, EOG and EEG signals are obtained by the dry gold wire nano-sensors fabricated on the inner side of a flexible headband. The acquired signals are then electrically transmitted to the data processing and transmission unit, which transmits the processed data to the receiver/monitoring module through WCDMA/GSM communication. This module is equipped with a software program to process, feature extract, analyze, display and store the information. Thereby, immediate detection of a person falling asleep is made feasible and, tracking the sleep cycle continuously provides an insight about the experienced fatigue level. The novel approach of using a wireless, real time, dry sensor on a flexible substrate reduces the obtrusiveness, and techniques adopted in the electronics and software facilitates and substantial increase in efficiency, accuracy and precision.

  2. Development of self-powered wireless high temperature electrochemical sensor for in situ corrosion monitoring of coal-fired power plant.

    Science.gov (United States)

    Aung, Naing Naing; Crowe, Edward; Liu, Xingbo

    2015-03-01

    Reliable wireless high temperature electrochemical sensor technology is needed to provide in situ corrosion information for optimal predictive maintenance to ensure a high level of operational effectiveness under the harsh conditions present in coal-fired power generation systems. This research highlights the effectiveness of our novel high temperature electrochemical sensor for in situ coal ash hot corrosion monitoring in combination with the application of wireless communication and an energy harvesting thermoelectric generator (TEG). This self-powered sensor demonstrates the successful wireless transmission of both corrosion potential and corrosion current signals to a simulated control room environment. Copyright © 2014 ISA. All rights reserved.

  3. An Implementation of the Salt-Farm Monitoring System Using Wireless Sensor Network

    Science.gov (United States)

    Ju, Jonggil; Park, Ingon; Lee, Yongwoong; Cho, Jongsik; Cho, Hyunwook; Yoe, Hyun; Shin, Changsun

    In producing solar salt, natural environmental factors such as temperature, humidity, solar radiation, wind direction, wind speed and rain are essential elements which influence on the productivity and quality of salt. If we can manage the above mentioned environmental elements efficiently, we could achieve improved results in production of salt with good quality. To monitor and manage the natural environments, this paper suggests the Salt-Farm Monitoring System (SFMS) which is operated with renewable energy power. The system collects environmental factors directly from the environmental measure sensors and the sensor nodes. To implement a stand-alone system, we applied solar cell and wind generator to operate this system. Finally, we showed that the SFMS could monitor the salt-farm environments by using wireless sensor nodes and operate correctly without external power supply.

  4. Low Cost Inkjet Printed Smart Bandage for Wireless Monitoring of Chronic Wounds

    OpenAIRE

    Farooqui, Muhammad Fahad; Shamim, Atif

    2016-01-01

    Chronic wounds affect millions of patients around the world and their treatment is challenging as the early signs indicating their development are subtle. In addition, a type of chronic wound, known as pressure ulcer, develops in patients with limited mobility. Infection and frequent bleeding are indicators of chronic wound development. In this article, we present an unprecedented low cost continuous wireless monitoring system, realized through inkjet printing on a standard bandage, which can...

  5. Monitoring the Productivity of Coastal Systems Using PH ...

    Science.gov (United States)

    The impact of nutrient inputs to the eutrophication of coastal ecosystems has been one of the great themes of coastal ecology. There have been countless studies devoted to quantifying how human sources of nutrients, in particular nitrogen (N), effect coastal water bodies. These studies, which often measure in situ concentrations of nutrients, chlorophyll, and dissolved oxygen, are often spatially and/or temporally intensive and expensive. We provide evidence from experimental mesocosms, coupled with data from the water column of a well-mixed estuary, that pH can be a quick, inexpensive, and integrative measure of net ecosystem metabolism. In some cases, this approach is a more sensitive tracer of production than direct measurements of chlorophyll and carbon-14. Taken together, our data suggest that pH is a sensitive, but often overlooked, tool for monitoring estuarine production. This presentation will explore the potential utility of pH as an indicator of ecosystem productivity. Our data suggest that pH is a sensitive and potentially integrator of net ecosystem production. It should not be overlooked, that measuring pH is quick, easy, and inexpensive, further increasing its value as an analytical tool.

  6. Experiment of Wireless Sensor Network to Monitor Field Data

    Directory of Open Access Journals (Sweden)

    Kwang Sik Kim

    2009-08-01

    Full Text Available Recently the mobile wireless network has been drastically enhanced and one of the most efficient ways to realize the ubiquitous network will be to develop the converged network by integrating the mobile wireless network with other IP fixed network like NGN (Next Generation Network. So in this paper the term of the wireless ubiquitous network is used to describe this approach. In this paper, first, the wireless ubiquitous network architecture is described based on IMS which has been standardized by 3GPP (3rd Generation Partnership Program. Next, the field data collection system to match the satellite data using location information is proposed based on the concept of the wireless ubiquitous network architecture. The purpose of the proposed system is to provide more accurate analyzing method with the researchers in the remote sensing area.

  7. A Passive and Wireless Sensor for Bone Plate Strain Monitoring.

    Science.gov (United States)

    Tan, Yisong; Hu, Jiale; Ren, Limin; Zhu, Jianhua; Yang, Jiaqi; Liu, Di

    2017-11-16

    This paper reports on a sensor for monitoring bone plate strain in real time. The detected bone plate strain could be used for judging the healing state of fractures in patients. The sensor consists of a magnetoelastic material, which can be wirelessly connected and passively embedded. In order to verify the effectiveness of the sensor, a tibia-bone plate-screw (TBS) model was established using the finite element analysis method. A variation of the bone plate strain was obtained via this model. A goat hindquarter tibia was selected as the bone fracture model in the experiment. The tibia was fixed on a high precision load platform and an external force was applied. Bone plate strain variation during the bone fracture healing process was acquired with sensing coils. Simulation results indicated that bone plate strain decreases as the bone gradually heals, which is consistent with the finite element analysis results. This validated the soundness of the sensor reported here. This sensor has wireless connections, no in vivo battery requirement, and long-term embedding. These results can be used not only for clinical practices of bone fracture healing, but also for bone fracture treatment and rehabilitation equipment design.

  8. Biodiesel transesterification kinetics monitored by pH measurement.

    Science.gov (United States)

    Clark, William M; Medeiros, Nicholas J; Boyd, Donal J; Snell, Jared R

    2013-05-01

    Quantification of a pH change that was observed over the course of the transesterification reaction that converts vegetable oil to biodiesel may provide a simple method to monitor the reaction. Transesterification of canola oil at 6:1 methanol to oil ratio with 0.5 wt.% KOH as catalyst was studied at 25, 35, and 45 °C. Reaction conversion was correlated to pH measurements and the results were shown to be in agreement with an independent measure of conversion using an enzymatic assay for glycerol. Rate constants obtained from these measurements are consistent with those in the literature. The measured pH change appears to be related to dilution of OH(-) ions as the oil is converted to products rather than to depletion of OH(-) due to reaction. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Collection, transfer and processing of information in systems of monitoring of objects based on wireless sensor networks

    Directory of Open Access Journals (Sweden)

    Sergievskiy Maxim

    2016-01-01

    Full Text Available Monitoring of the aircraft structures’ during the pre-fiight testing is a critical task of the aerospace industry. One of the most promising solutions, not yet widely applied, is continuous monitoring of aircraft structures using wireless sensor network technology. The brief summary of the proposed system is the following: special sensors send signals to the local motes (autonomous computing device equipped with a wireless transmitter. Information from motes is gathered by routers which then transfer the aggregated information to the datacenter. Applications of corporate network control and define flexible patterns for processing of the information received from sensors. This network structure allows to centralize data collection modes in the process of testing; implement continuous data collection at a defined frequency; process and display data in real-time.

  10. Design and implementation of smart sensor nodes for wireless disaster monitoring systems

    Science.gov (United States)

    Chen, Yih-Fan; Wu, Wen-Jong; Chen, Chun-Kuang; Wen, Chih-Min; Jin, Ming-Hui; Gau, Chung-Yun; Chang, Chih-Chie; Lee, Chih-Kung

    2004-07-01

    A newly developed smart sensor node that can monitor the safety of temporary structures such as scaffolds at construction sites is detailed in this paper. The design methodology and its trade-offs, as well as its influence on the optimization of sensor networks, is examined. The potential impact on civil engineering construction sites, environmental and natural disaster pre-warning issues, etc., all of which are foundations of smart sensor nodes and corresponding smart sensor networks, is also presented. To minimize the power requirements in order to achieve a true wireless system both in terms of signal and power, a sensor node was designed by adopting an 8051-based micro-controller, an ISM band RF transceiver, and an auto-balanced strain gage signal conditioner. With the built-in RF transceiver, all measurement data can be transmitted to a local control center for data integrity, security, central monitoring, and full-scale analysis. As a battery is the only well-established power source and there is a strong desire to eliminate the need to install bulky power lines, this system designed includes a battery-powered core with optimal power efficiency. To further extend the service life of the built-in power source, a power control algorithm has been embedded in the microcontroller of each sensor node. The entire system has been verified by experimental tests on full-scale scaffold monitoring. The results show that this system provides a practical method to monitor the structure safety in real time and possesses the potential of reducing maintenance costs significantly. The design of the sensor node, central control station, and the integration of several kinds of wireless communication protocol, all of which are successfully integrated to demonstrate the capabilities of this newly developed system, are detailed. Potential impact to the network topology is briefly examined as well.

  11. Hydrogel-coated fiber Bragg grating sensor for pH monitoring

    Science.gov (United States)

    Pabbisetti, Vayu Nandana Kishore; Madhuvarasu, Sai Shankar

    2016-06-01

    We present a fiber-optic wavelength-modulated sensor for pH applications. Fiber Bragg grating (FBG) is functionalized with a stimulus-responsive hydrogel that induces a strain on FBG due to mechanical expansion of the gel in response to ambient pH changes. The gel is synthesized from the blends of poly (vinyl alcohol)/poly (acrylic acid). The induced strain results in a shift of FBG reflected peak that is monitored by an interrogator. The sensor system shows good linearity in the acidic pH range of 3 to 7 with a sensitivity of 12.16 pm/pH. In addition, it shows good repeatability and oscillator behavior, which proves it to be fit for pH sensing applications.

  12. A LIGHTNING CONDUCTOR MONITORING SYSTEM BASED ON A WIRELESS SENSOR NETWORK

    Directory of Open Access Journals (Sweden)

    Jan Mikeš

    2013-12-01

    Full Text Available Automated heating, lighting and irrigation systems are nowadays standard features of industrial and commercial buildings, and are also increasingly found in ordinary housing. In addition to the benefits of user comfort, automated technology for buildings saves energy and, above all, it provides enhanced protection against leakage of water and hazardous gases, and against fire hazards. Lightning strikes are a natural phenomenon that poses a significant threat to the safety of buildings. The statistics of the Fire and Rescue Service of the Czech Republic show that buildings are in many cases inadequately protected against lightning strikes, or that systems have been damaged by previous strikes. A subsequent strike can occur within the period between regular inspections, which are normally made at intervals of 2–4 years. Over the whole of Europe, thousands of buildings are subjected to the effects of direct lightning strikes each year. This paper presents ways to carry out wireless monitoring of lightning strikes on buildings and to deal with their impact on lightning conductors. By intervening promptly (disconnecting the power supply, disconnecting the gas supply, sending an engineer to inspect the structure, submitting a report to ARC, etc. we can prevent many downstream effects of direct lightning strikes on buildings (fires, electric shocks, etc. This paper introduces a way to enhance contemporary home automation systems for monitoring lightning strikes based on wireless sensor networks technology.

  13. Implementation Of The Precision Agriculture Using LEACH Protocol Of Wireless Sensor Network

    Directory of Open Access Journals (Sweden)

    Than Htike Aung

    2015-08-01

    Full Text Available The evolution of wireless sensor network technology leads to develop advanced systems for real-time monitoring. Wireless sensor network WSN is a major technology that drives the development of precision agriculture.By forming wireless sensor networkagricultural practicescan be made good monitoring systems.Various agricultural parameters like soil moisture temperature and humidity are monitored by monitoring units.The paper explains about how to utilize thesensors in agricultural practices and explains about routing protocols of wireless sensor network. In this paper agricultural parameter of temperature will monitor with the use of LEACH protocol.

  14. An iridium oxide microelectrode for monitoring acute local pH changes of endothelial cells.

    Science.gov (United States)

    Ng, Shu Rui; O'Hare, Danny

    2015-06-21

    pH sensors were fabricated by anodically electrodepositing iridium oxide films (AEIROFs) onto microelectrodes on chips and coated with poly(ethyleneimine) (PEI) for mechanical stability. These demonstrate super-Nernstian response to pH from pH 4.0 to 7.7 in chloride-free phosphate buffer. The surface of the chip was coated with fibronectin for the attachment of porcine aortic endothelial cells (PAECs). The working capability of the pH sensor for monitoring acute local pH changes was investigated by stimulating the PAECs with thrombin. Our results show that thrombin induced acute extracellular acidification of PAECs and dissolution of fibronectin, causing the local pH to decrease. The use of PD98059, a mitogen-activated protein kinase (MAPK) inhibitor, reduced extracellular acidification and an increase in local pH was observed. This study shows that our pH sensors can facilitate the investigation of acute cellular responses to stimulation by monitoring the real-time, local pH changes of cells attached to the sensors.

  15. Wireless sensor networks for structural health monitoring

    CERN Document Server

    Cao, Jiannong

    2016-01-01

    This brief covers the emerging area of wireless sensor network (WSN)-based structural health monitoring (SHM) systems, and introduces the authors’ WSN-based platform called SenetSHM. It helps the reader differentiate specific requirements of SHM applications from other traditional WSN applications, and demonstrates how these requirements are addressed by using a series of systematic approaches. The brief serves as a practical guide, explaining both the state-of-the-art technologies in domain-specific applications of WSNs, as well as the methodologies used to address the specific requirements for a WSN application. In particular, the brief offers instruction for problem formulation and problem solving based on the authors’ own experiences implementing SenetSHM. Seven concise chapters cover the development of hardware and software design of SenetSHM, as well as in-field experiments conducted while testing the platform. The brief’s exploration of the SenetSHM platform is a valuable feature for civil engine...

  16. COMPARATIVE ANALYSIS OF LEACH AND HEEMPCP PROTOCOLS FOR WIRELESS SENSOR NETWORKS SYSTEM

    OpenAIRE

    Richa Asstt. Pro.Misha Thakur

    2018-01-01

    In this paper author aims at describing a wireless sensor network. wireless sensor network consisting of spatially distributed autonomous devices using sensor to monitor physical or environmental conditions. Wireless sensor network can be used in wide range of applications including environmental monitoring, habitat monitoring, various military applications, smart home technologiesand agriculture. Wireless sensor networks constitute one of promising application areas of the recently developed...

  17. SoundProof: A Smartphone Platform for Wireless Monitoring of Wildlife and Environment

    Science.gov (United States)

    Lukac, M.; Monibi, M.; Lane, M. L.; Howell, L.; Ramanathan, N.; Borker, A.; McKown, M.; Croll, D.; Terschy, B.

    2011-12-01

    We are developing an open-source, low-cost wildlife and environmental monitoring solution based on Android smartphones. Using a smartphone instead of a traditional microcontroller or single board computer has several advantages: smartphones are single integrated devices with multiple radios and a battery; they have a robust software interface which enables customization; and are field-tested by millions of users daily. Consequently, smartphones can improve the cost, configurability, and real-time access to data for environmental monitoring, ultimately replacing existing monitoring solutions which are proprietary, difficult to customize, expensive, and require labor-intensive maintenance. While smartphones can radically change environmental and wildlife monitoring, there are a number of technical challenges to address. We present our smartphone-based platform, SoundProof, discuss the challenges of building an autonomous system based on Android phones, and our ongoing efforts to enable environmental monitoring. Our system is built using robust off-the-shelf hardware and mature open-source software where available, to increase scalability and ease of installation. Key features include: * High-quality acoustic signal collection from external microphones to monitor wildlife populations. * Real-time data access, remote programming, and configuration of the field sensor via wireless cellular or WiFi channels, accessible from a website. * Waterproof packaging and solar charger setup for long-term field deployments. * Rich instrumentation of the end-to-end system to quickly identify and debug problems. * Supplementary mesh networking system with long-range wireless antennae to provide coverage when no cell network is available. We have deployed this system to monitor Rufous Crowned Sparrows on Anacapa Island, Chinese Crested Turns on the Matsu Islands in Taiwan, and Ashy Storm Petrels on South East Farallon Island. We have testbeds at two UC Natural Reserves to field

  18. Condition Monitoring of a Process Filter Applying Wireless Vibration Analysis

    Directory of Open Access Journals (Sweden)

    Pekka KOSKELA

    2011-05-01

    Full Text Available This paper presents a novel wireless vibration-based method for monitoring the degree of feed filter clogging. In process industry, these filters are applied to prevent impurities entering the process. During operation, the filters gradually become clogged, decreasing the feed flow and, in the worst case, preventing it. The cleaning of the filter should therefore be carried out predictively in order to avoid equipment damage and unnecessary process downtime. The degree of clogging is estimated by first calculating the time domain indices from low frequency accelerometer samples and then taking the median of the processed values. Nine different statistical quantities are compared based on the estimation accuracy and criteria for operating in resource-constrained environments with particular focus on energy efficiency. The initial results show that the method is able to detect the degree of clogging, and the approach may be applicable to filter clogging monitoring.

  19. Energy Efficient Monitoring for Intrusion Detection in Battery-Powered Wireless Mesh Networks

    KAUST Repository

    Hassanzadeh, Amin

    2011-07-18

    Wireless Mesh Networks (WMN) are easy-to-deploy, low cost solutions for providing networking and internet services in environments with no network infrastructure, e.g., disaster areas and battlefields. Since electric power is not readily available in such environments battery-powered mesh routers, operating in an energy efficient manner, are required. To the best of our knowledge, the impact of energy efficient solutions, e.g., involving duty-cycling, on WMN intrusion detection systems, which require continuous monitoring, remains an open research problem. In this paper we propose that carefully chosen monitoring mesh nodes ensure continuous and complete detection coverage, while allowing non-monitoring mesh nodes to save energy through duty-cycling. We formulate the monitoring node selection problem as an optimization problem and propose distributed and centralized solutions for it, with different tradeoffs. Through extensive simulations and a proof-of-concept hardware/software implementation we demonstrate that our solutions extend the WMN lifetime by 8%, while ensuring, at the minimum, a 97% intrusion detection rate.

  20. Mobile Wireless Sensor Networks for Advanced Soil Sensing and Ecosystem Monitoring

    Science.gov (United States)

    Mollenhauer, Hannes; Schima, Robert; Remmler, Paul; Mollenhauer, Olaf; Hutschenreuther, Tino; Toepfer, Hannes; Dietrich, Peter; Bumberger, Jan

    2015-04-01

    For an adequate characterization of ecosystems it is necessary to detect individual processes with suitable monitoring strategies and methods. Due to the natural complexity of all environmental compartments, single point or temporally and spatially fixed measurements are mostly insufficient for an adequate representation. The application of mobile wireless sensor networks for soil and atmosphere sensing offers significant benefits, due to the simple adjustment of the sensor distribution, the sensor types and the sample rate (e.g. by using optimization approaches or event triggering modes) to the local test conditions. This can be essential for the monitoring of heterogeneous and dynamic environmental systems and processes. One significant advantage in the application of mobile ad-hoc wireless sensor networks is their self-organizing behavior. Thus, the network autonomously initializes and optimizes itself. Due to the localization via satellite a major reduction in installation and operation costs and time is generated. In addition, single point measurements with a sensor are significantly improved by measuring at several optimized points continuously. Since performing analog and digital signal processing and computation in the sensor nodes close to the sensors a significant reduction of the data to be transmitted can be achieved which leads to a better energy management of nodes. Furthermore, the miniaturization of the nodes and energy harvesting are current topics under investigation. First results of field measurements are given to present the potentials and limitations of this application in environmental science. In particular, collected in-situ data with numerous specific soil and atmosphere parameters per sensor node (more than 25) recorded over several days illustrates the high performance of this system for advanced soil sensing and soil-atmosphere interaction monitoring. Moreover, investigations of biotic and abiotic process interactions and optimization

  1. Low reproducibility of 2 x 24-hour continuous esophageal pH monitoring in infants and children

    DEFF Research Database (Denmark)

    Nielsen, Rasmus; Kruse-Andersen, Søren; Husby, Steffen

    2003-01-01

    the degree of reproducibility to endoscopic evidence of mucosal injury. Upper endoscopy and 2 x 24-hr consecutive pH monitoring were performed in 30 infants and children referred for gastroesophageal reflux disease. The monitoring was performed without dietary or activity restrictions in order to assess...... be taken into consideration when evaluating gastroesophageal reflux disease in infants and children by means of pH monitoring. The day-to-day variability limits the use of simultaneous pH monitoring and dietary challenges as a procedure to identify a possible causative relation between GERD and dietary...... reflux parameters in a near-normal physiologic setting. The NASPGHAN criteria for pathological reflux index (RI, % fraction of time with pH

  2. Wireless power transfer and data communication for neural implants case study : epilepsy monitoring

    CERN Document Server

    Yilmaz, Gürkan

    2017-01-01

    This book presents new circuits and systems for implantable biomedical applications targeting neural recording. The authors describe a system design adapted to conform to the requirements of an epilepsy monitoring system. Throughout the book, these requirements are reflected in terms of implant size, power consumption, and data rate. In addition to theoretical background which explains the relevant technical challenges, the authors provide practical, step-by-step solutions to these problems. Readers will gain understanding of the numerical values in such a system, enabling projections for feasibility of new projects. Provides complete, system-level perspective for implantable batteryless biomedical system; Extends design example to implementation and long term in-vitro validation; Discusses system design concerns regarding wireless power transmission and wireless data communication, particularly for systems in which both are performed on the same channel/frequency; Presents fully-integrated, implantable syste...

  3. Passive wireless structural health monitoring sensor made with a flexible planar dipole antenna

    International Nuclear Information System (INIS)

    Jang, Sang-Dong; Kim, Jaehwan

    2012-01-01

    Cheap and efficient wireless sensors have been widely studied by electronics and communication technology development. In this paper, a flexible planar dipole antenna based passive wireless strain sensor has been investigated. The planar dipole antenna is designed for X band and made on a flexible polymer substrate using a conventional photolithography process. The fabricated dipole antenna is attached to a nonmetallic cantilever beam and monitors its bending strain. Mechanical strain and load impedance of the dipole antenna can change its resonance frequency, return loss and reflected signal. The return loss and reflected signals of the dipole antenna sensor are characterized by using a network analyzer. The strain sensitivity of the sensor is proportional to the return loss variation with the bending strain of the cantilever beam. The magnitude of reflected signals increases as the bending strain increases. (technical note)

  4. Wireless Magnetic Sensor Network for Road Traffic Monitoring and Vehicle Classification

    Directory of Open Access Journals (Sweden)

    Velisavljevic Vladan

    2016-12-01

    Full Text Available Efficiency of transportation of people and goods is playing a vital role in economic growth. A key component for enabling effective planning of transportation networks is the deployment and operation of autonomous monitoring and traffic analysis tools. For that reason, such systems have been developed to register and classify road traffic usage. In this paper, we propose a novel system for road traffic monitoring and classification based on highly energy efficient wireless magnetic sensor networks. We develop novel algorithms for vehicle speed and length estimation and vehicle classification that use multiple magnetic sensors. We also demonstrate that, using such a low-cost system with simplified installation and maintenance compared to current solutions, it is possible to achieve highly accurate estimation and a high rate of positive vehicle classification.

  5. Ubiquinone modified printed carbon electrodes for cell culture pH monitoring.

    Science.gov (United States)

    McBeth, Craig; Dughaishi, Rajaa Al; Paterson, Andrew; Sharp, Duncan

    2018-08-15

    The measurement of pH is important throughout many biological systems, but there are limited available technologies to enable its periodical monitoring in the complex, small volume, media often used in cell culture experiments across a range of disciplines. Herein, pad printed electrodes are developed and characterised through modification with: a commercially available fullerene multiwall carbon nanotube composite applied in Nafion, casting of hydrophobic ubiquinone as a pH probe to provide the electrochemical signal, and coated in Polyethylene glycol to reduce fouling and potentially enhance biocompatibility, which together are proven to enable the determination of pH in cell culture media containing serum. The ubiquinone oxidation peak position (E pa ) provided an indirect marker of pH across the applicable range of pH 6-9 (R 2 = 0.9985, n = 15) in complete DMEM. The electrochemical behaviour of these sensors was also proven to be robust; retaining their ability to measure pH in cell culture media supplemented with serum up to 20% (v/v) [encompassing the range commonly employed in cell culture], cycled > 100 times in 10% serum containing media and maintain > 60% functionality after 5 day incubation in a 10% serum containing medium. Overall, this proof of concept research highlights the potential applicability of this, or similar, electrochemical approaches to enable to detection or monitoring of pH in complex cell culture media. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Physical parameters collection based on wireless senor network

    Science.gov (United States)

    Chen, Xin; Wu, Hong; Ji, Lei

    2013-12-01

    With the development of sensor technology, wireless senor network has been applied in the medical, military, entertainment field and our daily life. But the existing available wireless senor networks applied in human monitoring system still have some problems, such as big power consumption, low security and so on. To improve senor network applied in health monitoring system, the paper introduces a star wireless senor networks based on msp430 and DSP. We design a low-cost heart-rate monitor senor node. The communication between senor node and sink node is realized according to the newest protocol proposed by the IEEE 802.15.6 Task Group. This wireless senor network will be more energy-efficient and faster compared to traditional senor networks.

  7. An enhanced ionising radiation monitoring and detecting technique in radiotherapy units of hospitals using wireless sensor networks

    International Nuclear Information System (INIS)

    Ali, Peter

    2017-01-01

    In this paper, a solution of ionising radiation monitoring based on the concept of Wireless Sensor Network (WSN), is presented. Radiation dose rate measured by the sensor node is sent to the monitoring station through ZigBee wireless network operated on 2.4 GHz unlicensed Industrial Scientific Medical (ISM) band. The system is calibrated for use for ionizing radiation dose rate range of between amount of ionising radiation observed in radiotherapy unit of a hospital and 1.02 mSv/h. Power consumption of the sensor node is kept low by operating the node ZigBee radio with low duty cycle: i.e. by keeping the radio awake only during data transmission/reception. Two ATmega8 microcontrollers, one each for sensor node and the monitoring station, are programmed to perform interfacing, data processing, and control functions. The system range of coverage is 124m for outdoor (line of site) deployment and 56.8m for indoor application where 5 brick walls separated the sensor node and the monitoring station. Range of coverage of the system is extendable via the use of ZigBee router (s)

  8. Availability Issues in Wireless Visual Sensor Networks

    Science.gov (United States)

    Costa, Daniel G.; Silva, Ivanovitch; Guedes, Luiz Affonso; Vasques, Francisco; Portugal, Paulo

    2014-01-01

    Wireless visual sensor networks have been considered for a large set of monitoring applications related with surveillance, tracking and multipurpose visual monitoring. When sensors are deployed over a monitored field, permanent faults may happen during the network lifetime, reducing the monitoring quality or rendering parts or the entire network unavailable. In a different way from scalar sensor networks, camera-enabled sensors collect information following a directional sensing model, which changes the notions of vicinity and redundancy. Moreover, visual source nodes may have different relevancies for the applications, according to the monitoring requirements and cameras' poses. In this paper we discuss the most relevant availability issues related to wireless visual sensor networks, addressing availability evaluation and enhancement. Such discussions are valuable when designing, deploying and managing wireless visual sensor networks, bringing significant contributions to these networks. PMID:24526301

  9. A Remote WIRELESS Facility

    Directory of Open Access Journals (Sweden)

    Kees Uiterwijk

    2007-10-01

    Full Text Available Continuing need for available distance learning facilities has led to the development of a remote lab facility focusing on wireless technology. In the field of engineering there is a student need of gaining experience in set-up, monitoring and maintenance of 802.11A/B/G based wireless LAN environments.

  10. Model-based pH monitor for sensor assessment.

    Science.gov (United States)

    van Schagen, Kim; Rietveld, Luuk; Veersma, Alex; Babuska, Robert

    2009-01-01

    Owing to the nature of the treatment processes, monitoring the processes based on individual online measurements is difficult or even impossible. However, the measurements (online and laboratory) can be combined with a priori process knowledge, using mathematical models, to objectively monitor the treatment processes and measurement devices. The pH measurement is a commonly used measurement at different stages in the drinking water treatment plant, although it is a unreliable instrument, requiring significant maintenance. It is shown that, using a grey-box model, it is possible to assess the measurement devices effectively, even if detailed information of the specific processes is unknown.

  11. Dynamic Sleep Scheduling on Air Pollution Levels Monitoring with Wireless Sensor Network

    OpenAIRE

    Gezaq Abror; Rusminto Tjatur Widodo; M. Udin Harun Al Rasyid

    2018-01-01

    Wireless Sensor Network (WSN) can be applied for Air Pollution Level Monitoring System that have been determined by the Environmental Impact Management Agency which is  PM10, SO2, O3, NO2 and CO. In WSN, node system is constrained to a limited power supply, so that the node system has a lifetime. To doing lifetime maximization, power management scheme is required and sensor nodes should use energy efficiently. This paper proposes dynamic sleep scheduling using Time Category-Fuzzy Logic (Time-...

  12. Biomedical Wireless Ambulatory Crew Monitor

    Science.gov (United States)

    Chmiel, Alan; Humphreys, Brad

    2009-01-01

    A compact, ambulatory biometric data acquisition system has been developed for space and commercial terrestrial use. BioWATCH (Bio medical Wireless and Ambulatory Telemetry for Crew Health) acquires signals from biomedical sensors using acquisition modules attached to a common data and power bus. Several slots allow the user to configure the unit by inserting sensor-specific modules. The data are then sent real-time from the unit over any commercially implemented wireless network including 802.11b/g, WCDMA, 3G. This system has a distributed computing hierarchy and has a common data controller on each sensor module. This allows for the modularity of the device along with the tailored ability to control the cards using a relatively small master processor. The distributed nature of this system affords the modularity, size, and power consumption that betters the current state of the art in medical ambulatory data acquisition. A new company was created to market this technology.

  13. Multi-Parameter Wireless Monitoring and Telecommand of a Rocket Payload: Design and Implementation

    Science.gov (United States)

    Pamungkas, Arga C.; Putra, Alma A.; Puspitaningayu, Pradini; Fransisca, Yulia; Widodo, Arif

    2018-04-01

    A rocket system generally consists of two parts, the rocket motor and the payload. The payload system is built of several sensors such as accelerometer, gyroscope, magnetometer, and also a surveillance camera. These sensors are used to monitor the rocket in a three-dimensional axis which determine its attitude. Additionally, the payload must be able to perform image capturing in a certain distance using telecommand. This article is intended to describe the design and also the implementation of a rocket payload which has attitude monitoring and telecommand ability from the ground control station using a long-range wireless module Digi XBee Pro 900 HP.

  14. Sandwich node architecture for agile wireless sensor networks for real-time structural health monitoring applications

    Science.gov (United States)

    Wang, Zi; Pakzad, Shamim; Cheng, Liang

    2012-04-01

    In recent years, wireless sensor network (WSN), as a powerful tool, has been widely applied to structural health monitoring (SHM) due to its low cost of deployment. Several commercial hardware platforms of wireless sensor networks (WSN) have been developed and used for structural monitoring applications [1,2]. A typical design of a node includes a sensor board and a mote connected to it. Sensing units, analog filters and analog-to-digital converters (ADCs) are integrated on the sensor board and the mote consists of a microcontroller and a wireless transceiver. Generally, there are a set of sensor boards compatible with the same model of mote and the selection of the sensor board depends on the specific applications. A WSN system based on this node lacks the capability of interrupting its scheduled task to start a higher priority task. This shortcoming is rooted in the hardware architecture of the node. The proposed sandwich-node architecture is designed to remedy the shortcomings of the existing one for task preemption. A sandwich node is composed of a sensor board and two motes. The first mote is dedicated to managing the sensor board and processing acquired data. The second mote controls the first mote via commands. A prototype has been implemented using Imote2 and verified by an emulation in which one mote is triggered by a remote base station and then preempts the running task at the other mote for handling an emergency event.

  15. A comparative study of a new wireless continuous cardiorespiratory monitor for the diagnosis and management of patients with congestive heart failure at home.

    Science.gov (United States)

    Andrews, D; Gouda, M S; Higgins, S; Johnson, P; Williams, A; Vandenburg, M

    2002-01-01

    Congestive heart failure (CHF) is a major and increasing chronic disease in Western society, with a high mortality, morbidity and cost for unplanned hospital admissions. Continuous cardiorespiratory monitoring is required to detect Cheyne-Stokes respiration (CSR). We have tested a new wireless monitoring system and compared it with polysomnography (PSG) and respiratory inductance plethysmography (RIP) in six CHF patients with CSR in a sleep laboratory. The wireless system compared well with RIP for the detection of CSR but less well with PSG, which had unexpected but significant respiratory sensing errors that led to misclassification of the respiratory disorder present. The wireless system could be used to select CHF patients for better-customized treatment at home as part of a specialist-supported community telemedicine programme.

  16. Wireless Technology Application to Nuclear Power Plants

    International Nuclear Information System (INIS)

    Lee, Jeong Kweon; Jeong, See Chae; Jeong, Ki Hoon; Oh, Do Young; Kim, Jae Hack

    2009-01-01

    Wireless technologies are getting widely used in various industrial processes for equipment condition monitoring, process measurement and other applications. In case of Nuclear Power Plant (NPP), it is required to review applicability of the wireless technologies for maintaining plant reliability, preventing equipment failure, and reducing operation and maintenance costs. Remote sensors, mobile technology and two-way radio communication may satisfy these needs. The application of the state of the art wireless technologies in NPPs has been restricted because of the vulnerability for the Electromagnetic Interference and Radio Frequency Interference (EMI/RFI) and cyber security. It is expected that the wireless technologies can be applied to the nuclear industry after resolving these issues which most of the developers and vendors are aware of. This paper presents an overview and information on general wireless deployment in nuclear facilities for future application. It also introduces typical wireless plant monitoring system application in the existing NPPs

  17. An integrated environment monitoring system for underground coal mines--Wireless Sensor Network subsystem with multi-parameter monitoring.

    Science.gov (United States)

    Zhang, Yu; Yang, Wei; Han, Dongsheng; Kim, Young-Il

    2014-07-21

    Environment monitoring is important for the safety of underground coal mine production, and it is also an important application of Wireless Sensor Networks (WSNs). We put forward an integrated environment monitoring system for underground coal mine, which uses the existing Cable Monitoring System (CMS) as the main body and the WSN with multi-parameter monitoring as the supplementary technique. As CMS techniques are mature, this paper mainly focuses on the WSN and the interconnection between the WSN and the CMS. In order to implement the WSN for underground coal mines, two work modes are designed: periodic inspection and interrupt service; the relevant supporting technologies, such as routing mechanism, collision avoidance, data aggregation, interconnection with the CMS, etc., are proposed and analyzed. As WSN nodes are limited in energy supply, calculation and processing power, an integrated network management scheme is designed in four aspects, i.e., topology management, location management, energy management and fault management. Experiments were carried out both in a laboratory and in a real underground coal mine. The test results indicate that the proposed integrated environment monitoring system for underground coal mines is feasible and all designs performed well as expected.

  18. An Integrated Environment Monitoring System for Underground Coal Mines—Wireless Sensor Network Subsystem with Multi-Parameter Monitoring

    Science.gov (United States)

    Zhang, Yu; Yang, Wei; Han, Dongsheng; Kim, Young-Il

    2014-01-01

    Environment monitoring is important for the safety of underground coal mine production, and it is also an important application of Wireless Sensor Networks (WSNs). We put forward an integrated environment monitoring system for underground coal mine, which uses the existing Cable Monitoring System (CMS) as the main body and the WSN with multi-parameter monitoring as the supplementary technique. As CMS techniques are mature, this paper mainly focuses on the WSN and the interconnection between the WSN and the CMS. In order to implement the WSN for underground coal mines, two work modes are designed: periodic inspection and interrupt service; the relevant supporting technologies, such as routing mechanism, collision avoidance, data aggregation, interconnection with the CMS, etc., are proposed and analyzed. As WSN nodes are limited in energy supply, calculation and processing power, an integrated network management scheme is designed in four aspects, i.e., topology management, location management, energy management and fault management. Experiments were carried out both in a laboratory and in a real underground coal mine. The test results indicate that the proposed integrated environment monitoring system for underground coal mines is feasible and all designs performed well as expected. PMID:25051037

  19. An Integrated Environment Monitoring System for Underground Coal Mines—Wireless Sensor Network Subsystem with Multi-Parameter Monitoring

    Directory of Open Access Journals (Sweden)

    Yu Zhang

    2014-07-01

    Full Text Available Environment monitoring is important for the safety of underground coal mine production, and it is also an important application of Wireless Sensor Networks (WSNs. We put forward an integrated environment monitoring system for underground coal mine, which uses the existing Cable Monitoring System (CMS as the main body and the WSN with multi-parameter monitoring as the supplementary technique. As CMS techniques are mature, this paper mainly focuses on the WSN and the interconnection between the WSN and the CMS. In order to implement the WSN for underground coal mines, two work modes are designed: periodic inspection and interrupt service; the relevant supporting technologies, such as routing mechanism, collision avoidance, data aggregation, interconnection with the CMS, etc., are proposed and analyzed. As WSN nodes are limited in energy supply, calculation and processing power, an integrated network management scheme is designed in four aspects, i.e., topology management, location management, energy management and fault management. Experiments were carried out both in a laboratory and in a real underground coal mine. The test results indicate that the proposed integrated environment monitoring system for underground coal mines is feasible and all designs performed well as expected.

  20. A Wireless Fatigue Monitoring System Utilizing a Bio-Inspired Tree Ring Data Tracking Technique

    Directory of Open Access Journals (Sweden)

    Shi Bai

    2014-03-01

    Full Text Available Fatigue, a hot scientific research topic for centuries, can trigger sudden failure of critical structures such as aircraft and railway systems, resulting in enormous casualties as well as economic losses. The fatigue life of certain structures is intrinsically random and few monitoring techniques are capable of tracking the full life-cycle fatigue damage. In this paper, a novel in-situ wireless real-time fatigue monitoring system using a bio-inspired tree ring data tracking technique is proposed. The general framework, methodology, and verification of this intelligent system are discussed in details. The rain-flow counting (RFC method is adopted as the core algorithm which quantifies fatigue damages, and Digital Signal Processing (DSP is introduced as the core module for data collection and analysis. Laboratory test results based on strain gauges and polyvinylidene fluoride (PVDF sensors have shown that the developed intelligent system can provide a reliable quick feedback and early warning of fatigue failure. With the merits of low cost, high accuracy and great reliability, the developed wireless fatigue sensing system can be further applied to mechanical engineering, civil infrastructures, transportation systems, aerospace engineering, etc.

  1. Structural Health Monitoring of Wind Turbine Blades: Acoustic Source Localization Using Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Omar Mabrok Bouzid

    2015-01-01

    Full Text Available Structural health monitoring (SHM is important for reducing the maintenance and operation cost of safety-critical components and systems in offshore wind turbines. This paper proposes an in situ wireless SHM system based on an acoustic emission (AE technique. By using this technique a number of challenges are introduced due to high sampling rate requirements, limitations in the communication bandwidth, memory space, and power resources. To overcome these challenges, this paper focused on two elements: (1 the use of an in situ wireless SHM technique in conjunction with the utilization of low sampling rates; (2 localization of acoustic sources which could emulate impact damage or audible cracks caused by different objects, such as tools, bird strikes, or strong hail, all of which represent abrupt AE events and could affect the structural health of a monitored wind turbine blade. The localization process is performed using features extracted from aliased AE signals based on a developed constraint localization model. To validate the performance of these elements, the proposed system was tested by testing the localization of the emulated AE sources acquired in the field.

  2. A wireless fatigue monitoring system utilizing a bio-inspired tree ring data tracking technique.

    Science.gov (United States)

    Bai, Shi; Li, Xuan; Xie, Zhaohui; Zhou, Zhi; Ou, Jinping

    2014-03-05

    Fatigue, a hot scientific research topic for centuries, can trigger sudden failure of critical structures such as aircraft and railway systems, resulting in enormous casualties as well as economic losses. The fatigue life of certain structures is intrinsically random and few monitoring techniques are capable of tracking the full life-cycle fatigue damage. In this paper, a novel in-situ wireless real-time fatigue monitoring system using a bio-inspired tree ring data tracking technique is proposed. The general framework, methodology, and verification of this intelligent system are discussed in details. The rain-flow counting (RFC) method is adopted as the core algorithm which quantifies fatigue damages, and Digital Signal Processing (DSP) is introduced as the core module for data collection and analysis. Laboratory test results based on strain gauges and polyvinylidene fluoride (PVDF) sensors have shown that the developed intelligent system can provide a reliable quick feedback and early warning of fatigue failure. With the merits of low cost, high accuracy and great reliability, the developed wireless fatigue sensing system can be further applied to mechanical engineering, civil infrastructures, transportation systems, aerospace engineering, etc.

  3. Cooperative wireless network control based health and activity monitoring system.

    Science.gov (United States)

    Prakash, R; Ganesh, A Balaji; Girish, Siva V

    2016-10-01

    A real-time cooperative communication based wireless network is presented for monitoring health and activity of an end-user in their environment. The cooperative communication offers better energy consumption and also an opportunity to aware the current location of a user non-intrusively. The link between mobile sensor node and relay node is dynamically established by using Received Signal Strength Indicator (RSSI) and Link Quality Indicator (LQI) based on adaptive relay selection scheme. The study proposes a Linear Acceleration based Transmission Power Decision Control (LA-TPDC) algorithm to further enhance the energy efficiency of cooperative communication. Further, the occurrences of false alarms are carefully prevented by introducing three stages of sequential warning system. The real-time experiments are carried-out by using the nodes, namely mobile sensor node, relay nodes and a destination node which are indigenously developed by using a CC430 microcontroller integrated with an in-built transceiver at 868 MHz. The wireless node performance characteristics, such as energy consumption, Signal-Noise ratio (SNR), Bit Error Rate (BER), Packet Delivery Ratio (PDR) and transmission offset are evaluated for all the participated nodes. The experimental results observed that the proposed linear acceleration based transmission power decision control algorithm almost doubles the battery life time than energy efficient conventional cooperative communication.

  4. Development of a wireless, self-sustaining damage detection sensor system based on chemiluminescence for structural health monitoring

    Science.gov (United States)

    Kuang, K. S. C.

    2014-03-01

    A novel application of chemiluminescence resulting from the chemical reaction in a glow-stick as sensors for structural health monitoring is demonstrated here. By detecting the presence of light emitting from these glow-sticks, it is possible to develop a low-cost sensing device with the potential to provide early warning of damage in a variety of engineering applications such as monitoring of cracks or damage in concrete shear walls, detecting of ground settlement, soil liquefaction, slope instability, liquefaction-related damage of underground structure and others. In addition, this paper demonstrates the ease of incorporating wireless capability to the sensor device and the possibility of making the sensor system self-sustaining by means of a renewable power source for the wireless module. A significant advantage of the system compared to previous work on the use of plastic optical fibre (POF) for damage detection is that here the system does not require an electrically-powered light source. Here, the sensing device, embedded in a cement host, is shown to be capable of detecting damage. A series of specimens with embedded glow-sticks have been investigated and an assessment of their damage detection capability will be reported. The specimens were loaded under flexure and the sensor responses were transmitted via a wireless connection.

  5. Design of a telemetry system based on wireless power transmission for physiological parameter monitoring

    International Nuclear Information System (INIS)

    Jia, Zhiwei; Yan, Guozheng; Zhu, Bingquan

    2015-01-01

    An implanted telemetry system for experimental animals with or without anaesthesia can be used to continuously monitor physiological parameters. This system is significant not only in the study of organisms but also in the evaluation of drug efficacy, artificial organs, and auxiliary devices. The system is composed of a miniature electronic capsule, a wireless power transmission module, a data-recording device, and a processing module. An electrocardiograph, a temperature sensor, and a pressure sensor are integrated in the miniature electronic capsule, in which the signals are transmitted in vitro by wireless communication after filtering, amplification, and A/D sampling. To overcome the power shortage of batteries, a wireless power transmission module based on electromagnetic induction was designed. The transmitting coil of a rectangular-section solenoid and a 3D receiving coil are proposed according to stability and safety constraints. Experiments show that at least 150 mW of power could pick up on the load in a volume of Φ10.5 mm × 11 mm, with a transmission efficiency of 2.56%. Vivisection experiments verified the feasibility of the integrated radio-telemetry system

  6. Design of a telemetry system based on wireless power transmission for physiological parameter monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Jia, Zhiwei, E-mail: jiayege@hotmail.com [College of Electrical and Information Engineering, Changsha University of Science and Technology, Changsha (China); Yan, Guozheng; Zhu, Bingquan [820 Institute, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai (China)

    2015-04-15

    An implanted telemetry system for experimental animals with or without anaesthesia can be used to continuously monitor physiological parameters. This system is significant not only in the study of organisms but also in the evaluation of drug efficacy, artificial organs, and auxiliary devices. The system is composed of a miniature electronic capsule, a wireless power transmission module, a data-recording device, and a processing module. An electrocardiograph, a temperature sensor, and a pressure sensor are integrated in the miniature electronic capsule, in which the signals are transmitted in vitro by wireless communication after filtering, amplification, and A/D sampling. To overcome the power shortage of batteries, a wireless power transmission module based on electromagnetic induction was designed. The transmitting coil of a rectangular-section solenoid and a 3D receiving coil are proposed according to stability and safety constraints. Experiments show that at least 150 mW of power could pick up on the load in a volume of Φ10.5 mm × 11 mm, with a transmission efficiency of 2.56%. Vivisection experiments verified the feasibility of the integrated radio-telemetry system.

  7. A distributed monitoring system for photovoltaic arrays based on a two-level wireless sensor network

    Science.gov (United States)

    Su, F. P.; Chen, Z. C.; Zhou, H. F.; Wu, L. J.; Lin, P. J.; Cheng, S. Y.; Li, Y. F.

    2017-11-01

    In this paper, a distributed on-line monitoring system based on a two-level wireless sensor network (WSN) is proposed for real time status monitoring of photovoltaic (PV) arrays to support the fine management and maintenance of PV power plants. The system includes the sensing nodes installed on PV modules (PVM), sensing and routing nodes installed on combiner boxes of PV sub-arrays (PVA), a sink node and a data management centre (DMC) running on a host computer. The first level WSN is implemented by the low-cost wireless transceiver nRF24L01, and it is used to achieve single hop communication between the PVM nodes and their corresponding PVA nodes. The second level WSN is realized by the CC2530 based ZigBee network for multi-hop communication among PVA nodes and the sink node. The PVM nodes are used to monitor the PVM working voltage and backplane temperature, and they send the acquired data to their PVA node via the nRF24L01 based first level WSN. The PVA nodes are used to monitor the array voltage, PV string current and environment irradiance, and they send the acquired and received data to the DMC via the ZigBee based second level WSN. The DMC is designed using the MATLAB GUIDE and MySQL database. Laboratory experiment results show that the system can effectively acquire, display, store and manage the operating and environment parameters of PVA in real time.

  8. A Wireless Biomedical Signal Interface System-on-Chip for Body Sensor Networks.

    Science.gov (United States)

    Lei Wang; Guang-Zhong Yang; Jin Huang; Jinyong Zhang; Li Yu; Zedong Nie; Cumming, D R S

    2010-04-01

    Recent years have seen the rapid development of biosensor technology, system-on-chip design, wireless technology. and ubiquitous computing. When assembled into an autonomous body sensor network (BSN), the technologies become powerful tools in well-being monitoring, medical diagnostics, and personal connectivity. In this paper, we describe the first demonstration of a fully customized mixed-signal silicon chip that has most of the attributes required for use in a wearable or implantable BSN. Our intellectual-property blocks include low-power analog sensor interface for temperature and pH, a data multiplexing and conversion module, a digital platform based around an 8-b microcontroller, data encoding for spread-spectrum wireless transmission, and a RF section requiring very few off-chip components. The chip has been fully evaluated and tested by connection to external sensors, and it satisfied typical system requirements.

  9. Implementation Of The Precision Agriculture Using LEACH Protocol Of Wireless Sensor Network

    OpenAIRE

    Than Htike Aung; Su Su Yi Mon; Chaw Myat Nwe; Zaw Min Naing; HLa Myo Tun

    2015-01-01

    The evolution of wireless sensor network technology leads to develop advanced systems for real-time monitoring. Wireless sensor network WSN is a major technology that drives the development of precision agriculture.By forming wireless sensor networkagricultural practicescan be made good monitoring systems.Various agricultural parameters like soil moisture temperature and humidity are monitored by monitoring units.The paper explains about how to utilize thesensors in agricultural practices and...

  10. pH monitoring in patients with benign voice disorders

    DEFF Research Database (Denmark)

    Grøntved, A M; West, F

    2000-01-01

    The aim of this study was to compare oesophageal pH-metry with laryngeal signs and symptoms in patients suspected of laryngeal reflux disease. A total of 60 patients with voice disorders, who were suspected of laryngeal reflux, were tested by single probe oesophageal pH monitoring. Thirty...

  11. Integration of wireless sensor networks into cyberinfrastructure for monitoring Hawaiian "mountain-to-sea" environments.

    Science.gov (United States)

    Kido, Michael H; Mundt, Carsten W; Montgomery, Kevin N; Asquith, Adam; Goodale, David W; Kaneshiro, Kenneth Y

    2008-10-01

    Monitoring the complex environmental relationships and feedbacks of ecosystems on catchment (or mountain)-to-sea scales is essential for social systems to effectively deal with the escalating impacts of expanding human populations globally on watersheds. However, synthesis of emerging technologies into a robust observing platform for the monitoring of coupled human-natural environments on extended spatial scales has been slow to develop. For this purpose, the authors produced a new cyberinfrastructure for environmental monitoring which successfully merged the use of wireless sensor technologies, grid computing with three-dimensional (3D) geospatial data visualization/exploration, and a secured internet portal user interface, into a working prototype for monitoring mountain-to-sea environments in the high Hawaiian Islands. A use-case example is described in which native Hawaiian residents of Waipa Valley (Kauai) utilized the technology to monitor the effects of regional weather variation on surface water quality/quantity response, to better understand their local hydrologic cycle, monitor agricultural water use, and mitigate the effects of lowland flooding.

  12. Compact mobile-reader system for two-way wireless communication, tracking and status monitoring for transport safety and security

    Science.gov (United States)

    Tsai, Han-Chung; Liu, Yung Y.; Lee, Hok L.; Craig, Brian; Byrne, Kevin; Mittal, Ketan; Scherer, Justin C.

    2016-12-06

    A system for monitoring a plurality radio frequency identification tags is described. The system uses at least one set of radio frequency identification tags. Each tag is attached to a container and includes several sensors for detecting physical conditions of said container. The system includes at least one autonomous intermediate reader in wireless communication with the frequency identification tags. The intermediate reader includes external wireless communication system, intermediate reader logic controller, and a self-contained rechargeable power supply. The system uses a central status reporting system in communication the intermediate reader.

  13. A Survey on Data Quality for Dependable Monitoring in Wireless Sensor Networks.

    Science.gov (United States)

    Jesus, Gonçalo; Casimiro, António; Oliveira, Anabela

    2017-09-02

    Wireless sensor networks are being increasingly used in several application areas, particularly to collect data and monitor physical processes. Non-functional requirements, like reliability, security or availability, are often important and must be accounted for in the application development. For that purpose, there is a large body of knowledge on dependability techniques for distributed systems, which provide a good basis to understand how to satisfy these non-functional requirements of WSN-based monitoring applications. Given the data-centric nature of monitoring applications, it is of particular importance to ensure that data are reliable or, more generically, that they have the necessary quality. In this survey, we look into the problem of ensuring the desired quality of data for dependable monitoring using WSNs. We take a dependability-oriented perspective, reviewing the possible impairments to dependability and the prominent existing solutions to solve or mitigate these impairments. Despite the variety of components that may form a WSN-based monitoring system, we give particular attention to understanding which faults can affect sensors, how they can affect the quality of the information and how this quality can be improved and quantified.

  14. An Emergency-Adaptive Routing Scheme for Wireless Sensor Networks for Building Fire Hazard Monitoring

    Directory of Open Access Journals (Sweden)

    Guilin Zheng

    2011-03-01

    Full Text Available Fire hazard monitoring and evacuation for building environments is a novel application area for the deployment of wireless sensor networks. In this context, adaptive routing is essential in order to ensure safe and timely data delivery in building evacuation and fire fighting resource applications. Existing routing mechanisms for wireless sensor networks are not well suited for building fires, especially as they do not consider critical and dynamic network scenarios. In this paper, an emergency-adaptive, real-time and robust routing protocol is presented for emergency situations such as building fire hazard applications. The protocol adapts to handle dynamic emergency scenarios and works well with the routing hole problem. Theoretical analysis and simulation results indicate that our protocol provides a real-time routing mechanism that is well suited for dynamic emergency scenarios in building fires when compared with other related work.

  15. Fluorescence based fibre optic pH sensor for the pH 10-13 range suitable for corrosion monitoring in concrete structures

    OpenAIRE

    Nguyen, T.H.; Venugopala, T.; Chen, S.; Sun, T.; Grattan, K. T. V.; Taylor, S.E.; Basheer, P.A.M.; Long, A.E.

    2014-01-01

    The design, development and evaluation of an optical fibre pH sensor for monitoring pH in the alkaline region are discussed in detail in this paper. The design of this specific pH sensor is based on the pH induced change in fluorescence intensity of a coumarin imidazole dye which is covalently attached to a polymer network and then fixed to the distal end of an optical fibre. The sensor provides a response over a pH range of 10.0 – 13.2 with an acceptable response rate of around 50 minutes, h...

  16. A Novel Passive Wireless Sensing Method for Concrete Chloride Ion Concentration Monitoring

    Directory of Open Access Journals (Sweden)

    Shuangxi Zhou

    2017-12-01

    Full Text Available In this paper, a novel approach for concrete chloride ion concentration measuring based on passive and wireless sensor tag is proposed. The chloride ion sensor based on RFID communication protocol is consisting of an energy harvesting and management circuit, a low dropout voltage regulator, a MCU, a RFID tag chip and a pair of electrodes. The proposed sensor harvests energy radiated by the RFID reader to power its circuitry. To improve the stability of power supply, a three-stage boost rectifier is customized to rectify the harvested power into dc power and step-up the voltage. Since the measured data is wirelessly transmitted, it contains miscellaneous noises which would decrease the accuracy of measuring. Thus, in this paper, the wavelet denoising method is adopted to denoise the raw data. Besides, a monitoring software is developed to display the measurement results in real-time. The measurement results indicate that the proposed passive sensor tag can achieve a reliable communication distance of 16.3 m and can reliably measure the chloride ion concentration in concrete.

  17. A Novel Passive Wireless Sensing Method for Concrete Chloride Ion Concentration Monitoring.

    Science.gov (United States)

    Zhou, Shuangxi; Sheng, Wei; Deng, Fangming; Wu, Xiang; Fu, Zhihui

    2017-12-11

    In this paper, a novel approach for concrete chloride ion concentration measuring based on passive and wireless sensor tag is proposed. The chloride ion sensor based on RFID communication protocol is consisting of an energy harvesting and management circuit, a low dropout voltage regulator, a MCU, a RFID tag chip and a pair of electrodes. The proposed sensor harvests energy radiated by the RFID reader to power its circuitry. To improve the stability of power supply, a three-stage boost rectifier is customized to rectify the harvested power into dc power and step-up the voltage. Since the measured data is wirelessly transmitted, it contains miscellaneous noises which would decrease the accuracy of measuring. Thus, in this paper, the wavelet denoising method is adopted to denoise the raw data. Besides, a monitoring software is developed to display the measurement results in real-time. The measurement results indicate that the proposed passive sensor tag can achieve a reliable communication distance of 16.3 m and can reliably measure the chloride ion concentration in concrete.

  18. Demonstration of TEG-powered wireless autonomous transducer solution for condition monitoring in industrial environment

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ziyang; Patrascu, Mihai; Su, Jiale; Vullers, Ruud J.M. [imec the Netherlands, Eindhoven (Netherlands)

    2011-07-01

    Imec/Holst Centre focuses on the development of wireless autonomous transducer solution, which is poised to bring about huge impact in the sectors of health care, machinery, transportation and energy, etc. In this paper, we first showcase a TEG-powered demonstration for condition monitoring in industrial environment. Composing of sensor-actuator, front-end interface, digital signal processing unit and radio, the developed wireless sensor node can monitor the changing operating condition, i.e. the loading on a rolling-element bearing, on a rotating shaft. The use of a specially designed TEG, working in tandem with an energy storage device, can significantly improve the energy autonomy of the condition monitoring system as a whole. The different components in the demonstration are presented. Subsequently, the experimental results of vibration signature analysis are exhibited. On one hand, the presented demonstration sheds light on the huge potential of thermoelectric energy harvesting to achieve energy autonomy. On the other hand, it also points to the aspects that are in need of further development, namely miniaturization and cost reduction of energy harvesters. Aimed at the delivery of cost-effective miniaturized thermoelectric harvesting devices, imec/Holst Centre has been tackling with the relevant challenges by resorting to, but not limited to, its expertise in micromachining. An update on the latest research results is subsequently given with regard to various micromachined thermoelectric devices, fully fledged wearable TEGs with custom designed package and thermoelectric material property optimization. (orig.)

  19. Design of a Wireless Sensor Module for Monitoring Conductor Galloping of Transmission Lines.

    Science.gov (United States)

    Huang, Xinbo; Zhao, Long; Chen, Guimin

    2016-10-09

    Conductor galloping may cause flashovers and even tower collapses. The available conductor galloping monitoring methods often employ acceleration sensors to measure the conductor translations without considering the conductor twist. In this paper, a new sensor for monitoring conductor galloping of transmission lines based on an inertial measurement unit and wireless communication is proposed. An inertial measurement unit is used for collecting the accelerations and angular rates of a conductor, which are further transformed into the corresponding geographic coordinate frame using a quaternion transformation to reconstruct the galloping of the conductor. Both the hardware design and the software design are described in details. The corresponding test platforms are established, and the experiments show the feasibility and accuracy of the proposed monitoring sensor. The field operation of the proposed sensor in a conductor spanning 734 m also shows its effectiveness.

  20. Embedded micro-sensor for monitoring pH in concrete structures

    Science.gov (United States)

    Srinivasan, Rengaswamy; Phillips, Terry E.; Bargeron, C. Brent; Carlson, Micah A.; Schemm, Elizabeth R.; Saffarian, Hassan M.

    2000-04-01

    Three major causes of corrosion of steel in concrete are chloride ions (Cl-), temperature (T) and acidity (pH). Under normal operating temperatures and with pH above 13, steel does not undergo pitting corrosion. In presence of Cl-, if the pH decreases below 12, the probability of pitting increases. Acid rain and atmospheric carbon dioxide cause the pH to drop in concrete, often leading to corrosion of the structure with the concomitant cost of repair or replacement. Currently, the pH level in concrete is estimated through destructive testing of the structures. Glass ISFET, and other pH sensors that need maintenance and calibration cannot be embedded in concrete. In this paper, we describe an inexpensive solid state pH sensor that can be embedded in concrete, to detect pH changes at the early stages. It employs a chemical reagent, trinitrobenzenesulfonic acid (TNBS) that exhibits changes in optical properties in the 12 - 14 pH range, and is held in a film of a sol-gel/TNBS composite on an optically transparent surface. A simple LED/filter/photodiode transducer monitors pH-induced changes in TNBS. Such a device needs no periodic calibration or maintenance. The optical window, the light-source and sensor can be easily housed and encapsulated in a chemically inert structure, and embedded in concrete.

  1. Embracing interference in wireless systems

    CERN Document Server

    Gollakota, Shyamnath

    2014-01-01

    The wireless medium is a shared resource. If nearby devices transmit at thesame time, their signals interfere, resulting in a collision. In traditionalnetworks, collisions cause the loss of the transmitted information. For thisreason, wireless networks have been designed with the assumption thatinterference is intrinsically harmful and must be avoided.This book, a revised version of the author's award-winning Ph.D.dissertation, takes an alternate approach: Instead of viewing interferenceas an inherently counterproductive phenomenon that should to be avoided, wedesign practical systems that tra

  2. Maximizing lifetime of wireless sensor networks using genetic approach

    DEFF Research Database (Denmark)

    Wagh, Sanjeev; Prasad, Ramjee

    2014-01-01

    The wireless sensor networks are designed to install the smart network applications or network for emergency solutions, where human interaction is not possible. The nodes in wireless sensor networks have to self organize as per the users requirements through monitoring environments. As the sensor......-objective parameters are considered to solve the problem using genetic algorithm of evolutionary approach.......The wireless sensor networks are designed to install the smart network applications or network for emergency solutions, where human interaction is not possible. The nodes in wireless sensor networks have to self organize as per the users requirements through monitoring environments. As the sensor...

  3. Patients’ Heart Monitoring System Based on Wireless Sensor Network

    Science.gov (United States)

    Sollu, T. S.; Alamsyah; Bachtiar, M.; Sooai, A. G.

    2018-04-01

    Wireless sensor network (WSN) has been utilized to support the health field such as monitoring the patient’s heartbeat. Heart health monitoring is essential in maintaining health, especially in the elderly. Such an arrangement is needed to understand the patient’s heart characteristics. The increasing number of patients certainly will enhance the burdens of doctors or nurses in dealing with the condition of the patients. Therefore, required a solution that could help doctors or nurses in monitoring the progress of patients’ health at a real time. This research proposes a design and application of a patient heart monitoring system based on WSN. This system with using electrocardiograph (ECG) mounted on the patients’ body and sent to the server through the ZigBee. The results indicated that the retrieval of data for 15 seconds in male patients, with the age of 25 years was 17 times rate or equal to 68 bpm. For 884 data packets sent for 15 minutes using ZigBee produce a data as much as 4488 bytes, throughput of 2.39 Kbps, and 0.24486 seconds of average delay. The measurement of the communication coverage based on the open space conditions within 15 seconds through ZigBee resulting throughput value of 4.19 Kbps, packet loss of 0 %, and 6.667 seconds of average delay. While, the measurement of communication range based on closed space condition through ZigBee resulting throughput of 4.27 Kbps, packet loss of 0 %, and 6.55 seconds of average delay.

  4. Combining wireless sensor networks and semantic middleware for an Internet of Things-based sportsman/woman monitoring application.

    Science.gov (United States)

    Rodríguez-Molina, Jesús; Martínez, José-Fernán; Castillejo, Pedro; López, Lourdes

    2013-01-31

    Wireless Sensor Networks (WSNs) are spearheading the efforts taken to build and deploy systems aiming to accomplish the ultimate objectives of the Internet of Things. Due to the sensors WSNs nodes are provided with, and to their ubiquity and pervasive capabilities, these networks become extremely suitable for many applications that so-called conventional cabled or wireless networks are unable to handle. One of these still underdeveloped applications is monitoring physical parameters on a person. This is an especially interesting application regarding their age or activity, for any detected hazardous parameter can be notified not only to the monitored person as a warning, but also to any third party that may be helpful under critical circumstances, such as relatives or healthcare centers. We propose a system built to monitor a sportsman/woman during a workout session or performing a sport-related indoor activity. Sensors have been deployed by means of several nodes acting as the nodes of a WSN, along with a semantic middleware development used for hardware complexity abstraction purposes. The data extracted from the environment, combined with the information obtained from the user, will compose the basis of the services that can be obtained.

  5. Combining Wireless Sensor Networks and Semantic Middleware for an Internet of Things-Based Sportsman/Woman Monitoring Application

    Science.gov (United States)

    Rodríguez-Molina, Jesús; Martínez, José-Fernán; Castillejo, Pedro; López, Lourdes

    2013-01-01

    Wireless Sensor Networks (WSNs) are spearheading the efforts taken to build and deploy systems aiming to accomplish the ultimate objectives of the Internet of Things. Due to the sensors WSNs nodes are provided with, and to their ubiquity and pervasive capabilities, these networks become extremely suitable for many applications that so-called conventional cabled or wireless networks are unable to handle. One of these still underdeveloped applications is monitoring physical parameters on a person. This is an especially interesting application regarding their age or activity, for any detected hazardous parameter can be notified not only to the monitored person as a warning, but also to any third party that may be helpful under critical circumstances, such as relatives or healthcare centers. We propose a system built to monitor a sportsman/woman during a workout session or performing a sport-related indoor activity. Sensors have been deployed by means of several nodes acting as the nodes of a WSN, along with a semantic middleware development used for hardware complexity abstraction purposes. The data extracted from the environment, combined with the information obtained from the user, will compose the basis of the services that can be obtained. PMID:23385405

  6. Combining Wireless Sensor Networks and Semantic Middleware for an Internet of Things-Based Sportsman/Woman Monitoring Application

    Directory of Open Access Journals (Sweden)

    Lourdes López

    2013-01-01

    Full Text Available Wireless Sensor Networks (WSNs are spearheading the efforts taken to build and deploy systems aiming to accomplish the ultimate objectives of the Internet of Things. Due to the sensors WSNs nodes are provided with, and to their ubiquity and pervasive capabilities, these networks become extremely suitable for many applications that so-called conventional cabled or wireless networks are unable to handle. One of these still underdeveloped applications is monitoring physical parameters on a person. This is an especially interesting application regarding their age or activity, for any detected hazardous parameter can be notified not only to the monitored person as a warning, but also to any third party that may be helpful under critical circumstances, such as relatives or healthcare centers. We propose a system built to monitor a sportsman/woman during a workout session or performing a sport-related indoor activity. Sensors have been deployed by means of several nodes acting as the nodes of a WSN, along with a semantic middleware development used for hardware complexity abstraction purposes. The data extracted from the environment, combined with the information obtained from the user, will compose the basis of the services that can be obtained.

  7. Research on continuous environmental radiation monitoring system for NPP based on wireless sensor network

    International Nuclear Information System (INIS)

    Fu Hailong; Jia Mingchun; Peng Guichu

    2010-01-01

    According to the characteristics of environmental gamma radiation monitoring and the requirement of nuclear power plant (NPP) developing, a new continuous environmental radiation monitoring system based on wireless sensor network (WSN) was presented. The basic concepts and application of WSN were introduced firstly. And then the characteristics of the new system were analyzed. At the same time the configuration of the WSN and the whole structure of the system were built. Finally, the crucial techniques used in system designing, such as the design of sensor node, the choice of communication mode and protocol, the time synchronization and space location, the security of the network and the faults tolerance were introduced. (authors)

  8. Wireless Concrete Strength Monitoring of Wind Turbine Foundations.

    Science.gov (United States)

    Perry, Marcus; Fusiek, Grzegorz; Niewczas, Pawel; Rubert, Tim; McAlorum, Jack

    2017-12-16

    Wind turbine foundations are typically cast in place, leaving the concrete to mature under environmental conditions that vary in time and space. As a result, there is uncertainty around the concrete's initial performance, and this can encourage both costly over-design and inaccurate prognoses of structural health. Here, we demonstrate the field application of a dense, wireless thermocouple network to monitor the strength development of an onshore, reinforced-concrete wind turbine foundation. Up-to-date methods in fly ash concrete strength and maturity modelling are used to estimate the distribution and evolution of foundation strength over 29 days of curing. Strength estimates are verified by core samples, extracted from the foundation base. In addition, an artificial neural network, trained using temperature data, is exploited to demonstrate that distributed concrete strengths can be estimated for foundations using only sparse thermocouple data. Our techniques provide a practical alternative to computational models, and could assist site operators in making more informed decisions about foundation design, construction, operation and maintenance.

  9. Development and application of an excitation ratiometric optical pH sensor for bioprocess monitoring.

    Science.gov (United States)

    Badugu, Ramachandram; Kostov, Yordan; Rao, Govind; Tolosa, Leah

    2008-01-01

    The development of a fluorescent excitation ratiometric pH sensor (AHQ-PEG) using a novel allylhydroxyquinolinium (AHQ) derivative copolymerized with polyethylene glycol dimethacrylate (PEG) is described. The AHQ-PEG sensor film is shown to be suitable for real-time, noninvasive, continuous, online pH monitoring of bioprocesses. Optical ratiometric measurements are generally more reliable, robust, inexpensive, and insensitive to experimental errors such as fluctuations in the source intensity and fluorophore photobleaching. The sensor AHQ-PEG in deionized water was shown to exhibit two excitation maxima at 375 and 425 nm with a single emission peak at 520 nm. Excitation spectra of AHQ-PEG show a decrease in emission at the 360 nm excitation and an increase at the 420 nm excitation with increasing pH. Accordingly, the ratio of emission at 420:360 nm excitation showed a maximum change between pH 5 and 8 with an apparent pK(a) of 6.40. The low pK(a) value is suitable for monitoring the fermentation of most industrially important microorganisms. Additionally, the AHQ-PEG sensor was shown to have minimal sensitivity to ionic strength and temperature. Because AHQ is covalently attached to PEG, the film shows no probe leaching and is sterilizable by steam and alcohol. It shows rapid (approximately 2 min) and reversible response to pH over many cycles without any photobleaching. Subsequently, the AHQ-PEG sensor film was tested for its suitability in monitoring the pH of S. cereviseae (yeast) fermentation. The observed pH using AHQ-PEG film is in agreement with a conventional glass pH electrode. However, unlike the glass electrode, the present sensor is easily adaptable to noninvasive monitoring of sterilized, closed bioprocess environments without the awkward wire connections that electrodes require. In addition, the AHQ-PEG sensor is easily miniaturized to fit in microwell plates and microbioreactors for high-throughput cell culture applications.

  10. Sensor Fusion-based Event Detection in Wireless Sensor Networks

    NARCIS (Netherlands)

    Bahrepour, M.; Meratnia, Nirvana; Havinga, Paul J.M.

    2009-01-01

    Recently, Wireless Sensor Networks (WSN) community has witnessed an application focus shift. Although, monitoring was the initial application of wireless sensor networks, in-network data processing and (near) real-time actuation capability have made wireless sensor networks suitable candidate for

  11. In vivo pH monitoring using boron doped diamond microelectrode and silver needles: Application to stomach disorder diagnosis

    Science.gov (United States)

    Fierro, Stéphane; Seishima, Ryo; Nagano, Osamu; Saya, Hideyuki; Einaga, Yasuaki

    2013-11-01

    This study presents the in vivo electrochemical monitoring of pH using boron doped diamond (BDD) microelectrode and silver needles for potential application in medical diagnosis. Accurate calibration curve for pH determination were obtained through in vitro electrochemical measurements. The increase induced in stomach pH by treatment with pantoprazole was used to demonstrate that it is possible to monitor the pH in vivo using the simple and noninvasive system proposed herein. Using the results of the in vivo and in vitro experiments, a quantitative analysis of the increase in stomach pH is also presented. It is proposed that the catheter-free pH monitoring system presented in this study could be potentially employed in any biological environment.

  12. All-IP wireless sensor networks for real-time patient monitoring.

    Science.gov (United States)

    Wang, Xiaonan; Le, Deguang; Cheng, Hongbin; Xie, Conghua

    2014-12-01

    This paper proposes the all-IP WSNs (wireless sensor networks) for real-time patient monitoring. In this paper, the all-IP WSN architecture based on gateway trees is proposed and the hierarchical address structure is presented. Based on this architecture, the all-IP WSN can perform routing without route discovery. Moreover, a mobile node is always identified by a home address and it does not need to be configured with a care-of address during the mobility process, so the communication disruption caused by the address change is avoided. Through the proposed scheme, a physician can monitor the vital signs of a patient at any time and at any places, and according to the IPv6 address he can also obtain the location information of the patient in order to perform effective and timely treatment. Finally, the proposed scheme is evaluated based on the simulation, and the simulation data indicate that the proposed scheme might effectively reduce the communication delay and control cost, and lower the packet loss rate. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Clip-on wireless wearable microwave sensor for ambulatory cardiac monitoring.

    Science.gov (United States)

    Fletcher, Richard R; Kulkarni, Sarang

    2010-01-01

    We present a new type of non-contact sensor for use in ambulatory cardiac monitoring. The sensor operation is based on a microwave Doppler technique; however, instead of detecting the heart activity from a distance, the sensor is placed on the patient's chest over the clothing. The microwave sensor directly measures heart movement rather than electrical activity, and is thus complementary to ECG. The primary advantages of the microwave sensor includes small size, light weight, low power, low-cost, and the ability to operate through clothing. We present a sample sensor design that incorporates a 2.4 GHz Doppler circuit, integrated microstrip patch antenna, and microntroller with 12-bit ADC data sampling. The prototype sensor also includes a wireless data link for sending data to a remote PC or mobile phone. Sample data is shown for several subjects and compared to data from a commercial portable ECG device. Data collected from the microwave sensor exhibits a significant amount of features, indicating possible use as a tool for monitoring heart mechanics and detection of abnormalities such as fibrillation and akinesia.

  14. Remote Monitoring of the Heart Condition of Athletes by Measuring the Cardiac Action Potential Propagation Time Using a Wireless Sensor Network

    Directory of Open Access Journals (Sweden)

    Amang Sudarsono

    2016-04-01

    Full Text Available Highly performing athletes are susceptible to cardiac damage of several kinds which may be irreversible. The monitoring of heart rate and ECG waveforms from such subjects by wireless sensor networks has been reported in health and sports care documents. However, a more decisive parameter for instant to instant changes would be the time of Cardiac Action Potential Propagation. This time, which can be between 15-20 ms would shoot suddenly in acute stress in highly performing athletes for short durations. Repeated incidents of such rising values will tend to cause irreversible damage to the heart. We developed the technique of measuring this time and reporting it through a wireless sensor network to monitoring station.

  15. A Reliable and Non-destructive Method for Monitoring the Stromal pH in Isolated Chloroplasts Using a Fluorescent pH Probe

    Directory of Open Access Journals (Sweden)

    Pai-Hsiang Su

    2017-12-01

    Full Text Available The proton gradient established by the pH difference across a biological membrane is essential for many physiological processes, including ATP synthesis and ion and metabolite transport. Currently, ionophores are used to study proton gradients, and determine their importance to biological functions of interest. Because of the lack of an easy method for monitoring the proton gradient across the inner envelope membrane of chloroplasts (ΔpHenv, whether the concentration of ionophores used can effectively abolish the ΔpHenv is not proven for most experiments. To overcome this hindrance, we tried to setup an easy method for real-time monitoring of the stromal pH in buffered, isolated chloroplasts by using fluorescent pH probes; using this method the ΔpHenv can be calculated by subtracting the buffer pH from the measured stromal pH. When three fluorescent dyes, BCECF-AM [2′,7′-bis-(2-carboxyethyl-5-(and-6-carboxyfluorescein acetoxymethyl ester], CFDA-SE [5(6-Carboxyfluorescein diacetate succinimidyl ester] and SNARF-1 carboxylic acid acetate succinimidyl ester were incubated with isolated chloroplasts, BCECF-AM and CFDA-SE, but not the ester-formed SNARF-1 were taken up by chloroplasts and digested with esterase to release high levels of fluorescence. According to its relatively higher pKa value (6.98, near the physiological pH of the stroma, BCECF was chosen for further development. Due to shielding of the excitation and emission lights by chloroplast pigments, the ratiometric fluorescence of BCECF was highly dependent on the concentration of chloroplasts. By using a fixed concentration of chloroplasts, a highly correlated standard curve of pH to the BCECF ratiometric fluorescence with an r-square value of 0.98 was obtained, indicating the reliability of this method. Consistent with previous reports, the light-dependent formation of ΔpHenv can be detected ranging from 0.15 to 0.33 pH units upon illumination. The concentration of the ionophore

  16. Wireless hydrotherapy smart suit for monitoring handicapped people

    Science.gov (United States)

    Correia, Jose H.; Mendes, Paulo M.

    2005-02-01

    This paper presents a smart suit, water impermeable, containing sensors and electronics for monitoring handicapped people at hydrotherapy sessions in swimming-pools. For integration into textiles, electronic components should be designed in a functional, robust and inexpensive way. Therefore, small-size electronics microsystems are a promising approach. The smart suit allows the monitoring of individual biometric data, such as heart rate, temperature and movement of the body. Two solutions for transmitting the data wirelessly are presented: through a low-voltage (3.0 V), low-power, CMOS RF IC (1.6 mm x 1.5 mm size dimensions) operating at 433 MHz, with ASK modulation and a patch antenna built on lossy substrates compatible with integrated circuits fabrication. Two different substrates were used for antenna implementation: high-resistivity silicon (HRS) and Corning Pyrex #7740 glass. The antenna prototypes were built to operate close to the 5 GHz ISM band. They operate at a center frequency of 5.705 GHz (HRS) and 5.995 GHz (Pyrex). The studied parameters were: substrate thickness, substrate losses, oxide thickness, metal conductivity and thickness. The antenna on HRS uses an area of 8 mm2, providing a 90 MHz bandwidth and ~0.3 dBi of gain. On a glass substrate, the antenna uses 12 mm2, provides 100 MHz bandwidth and ~3 dBi of gain.

  17. Low-complexity Wireless Monitoring of Respiratory Movements Using Ultra-wideband Impulse Response Estimation

    KAUST Repository

    Sana, Furrukh

    2014-03-01

    In this paper; we present a comprehensive scheme for wireless monitoring of the respiratory movements in humans. Our scheme overcomes the challenges low signal-to-noise ratio, background clutter and high sampling rates. It is based on the estimation of the ultra-wideband channel impulse response. We suggest techniques for dealing with background clutter in situations when it might be time variant. We also present a novel methodology for reducing the required sampling rate of the system significantly while achieving the accuracy offered by the Nyquist rate. Performance results from simulations conducted with pre-recorded respiratory signals demonstrate the robustness of our scheme for tackling the above challenges and providing a low-complexity solution for the monitoring of respiratory movements.

  18. A contact lens with integrated telecommunication circuit and sensors for wireless and continuous tear glucose monitoring

    International Nuclear Information System (INIS)

    Yao, H; Liao, Y; Lingley, A R; Afanasiev, A; Lähdesmäki, I; Otis, B P; Parviz, B A

    2012-01-01

    We present an integrated functional contact lens, composed of a differential glucose sensor module, metal interconnects, sensor read-out circuit, antenna and telecommunication circuit, to monitor tear glucose levels wirelessly, continuously and non-invasively. The electrochemical differential sensor module is based on immobilization of activated and de-activated glucose oxidase. We characterized the sensor on a model polymer eye and determined that it showed good repeatability, molecular interference rejection and linearity in the range of 0–2 mM glucose, covering normal tear glucose concentrations (0.1–0.6 mM). We also report the temperature, ageing and protein-fouling sensitivity of the sensor. We report the design and implementation of a low-power (3 µW) sensor read-out and telecommunication circuit to deliver wireless power and transmit data for the sensor module. Using this small chip (0.36 mm 2 ), we produced an integrated contact lens with sensors and demonstrated wireless operation of the system and glucose read-out over the distance of several centimeters. (paper)

  19. pH monitoring of gastro-oesophageal reflux before and after laparoscopic sleeve gastrectomy.

    Science.gov (United States)

    Thereaux, J; Barsamian, C; Bretault, M; Dusaussoy, H; Lamarque, D; Bouillot, J-L; Czernichow, S; Carette, C

    2016-03-01

    Gastro-oesophageal reflux disease (GORD) is a common obesity-related co-morbidity that is assessed objectively by 24-h pH monitoring. Some concerns have been raised regarding the risk of de novo GORD or exacerbation of pre-existing GORD after laparoscopic sleeve gastrectomy. Here, 24-h pH monitoring was used to assess the influence of laparoscopic sleeve gastrectomy on postoperative GORD in obese patients with or without preoperative GORD. From July 2012 to September 2014, all patients scheduled for laparoscopic sleeve gastrectomy were invited to participate in a prospective follow-up. Patients who underwent preoperative 24-h pH monitoring were asked to repeat the examination 6 months after operation. GORD was defined as an oesophageal pH < 4 for at least 4·2 per cent of the total time recorded. Of 89 patients, 76 had preoperative pH monitoring for GORD evaluation and 50 had postoperative reassessment. Patients without (group 1, 29 patients) or with (group 2, 21 patients) preoperative GORD were similar regarding age, sex ratio and body mass index. In group 1, the median (i.q.r.) total time at pH < 4 was significantly higher after surgery than before: 5·6 (2·5-9·5) versus 1·6 (0·7-2·9) per cent (P < 0·001). Twenty of the 29 patients experienced de novo GORD as determined by 24-h pH monitoring (P < 0·001). In group 2, total time at pH < 4 after surgery was no different from the preoperative value: 5·9 (3·9-10·7) versus 7·7 (5·2-10·3) per cent (P = 0·296). Laparoscopic sleeve gastrectomy was associated with de novo GORD in over two-thirds of patients, but did not seem to exacerbate existing GORD. © 2016 BJS Society Ltd Published by John Wiley & Sons Ltd.

  20. Wireless acceleration sensor of moving elements for condition monitoring of mechanisms

    Science.gov (United States)

    Sinitsin, Vladimir V.; Shestakov, Aleksandr L.

    2017-09-01

    Comprehensive analysis of the angular and linear accelerations of moving elements (shafts, gears) allows an increase in the quality of the condition monitoring of mechanisms. However, existing tools and methods measure either linear or angular acceleration with postprocessing. This paper suggests a new construction design of an angular acceleration sensor for moving elements. The sensor is mounted on a moving element and, among other things, the data transfer and electric power supply are carried out wirelessly. In addition, the authors introduce a method for processing the received information which makes it possible to divide the measured acceleration into the angular and linear components. The design has been validated by the results of laboratory tests of an experimental model of the sensor. The study has shown that this method provides a definite separation of the measured acceleration into linear and angular components, even in noise. This research contributes an advance in the range of methods and tools for condition monitoring of mechanisms.

  1. Wireless acceleration sensor of moving elements for condition monitoring of mechanisms

    International Nuclear Information System (INIS)

    Sinitsin, Vladimir V; Shestakov, Aleksandr L

    2017-01-01

    Comprehensive analysis of the angular and linear accelerations of moving elements (shafts, gears) allows an increase in the quality of the condition monitoring of mechanisms. However, existing tools and methods measure either linear or angular acceleration with postprocessing. This paper suggests a new construction design of an angular acceleration sensor for moving elements. The sensor is mounted on a moving element and, among other things, the data transfer and electric power supply are carried out wirelessly. In addition, the authors introduce a method for processing the received information which makes it possible to divide the measured acceleration into the angular and linear components. The design has been validated by the results of laboratory tests of an experimental model of the sensor. The study has shown that this method provides a definite separation of the measured acceleration into linear and angular components, even in noise. This research contributes an advance in the range of methods and tools for condition monitoring of mechanisms. (paper)

  2. Internal model control for industrial wireless plant using WirelessHART hardware-in-the-loop simulator.

    Science.gov (United States)

    Tran, Chung Duc; Ibrahim, Rosdiazli; Asirvadam, Vijanth Sagayan; Saad, Nordin; Sabo Miya, Hassan

    2018-04-01

    The emergence of wireless technologies such as WirelessHART and ISA100 Wireless for deployment at industrial process plants has urged the need for research and development in wireless control. This is in view of the fact that the recent application is mainly in monitoring domain due to lack of confidence in control aspect. WirelessHART has an edge over its counterpart as it is based on the successful Wired HART protocol with over 30 million devices as of 2009. Recent works on control have primarily focused on maintaining the traditional PID control structure which is proven not adequate for the wireless environment. In contrast, Internal Model Control (IMC), a promising technique for delay compensation, disturbance rejection and setpoint tracking has not been investigated in the context of WirelessHART. Therefore, this paper discusses the control design using IMC approach with a focus on wireless processes. The simulation and experimental results using real-time WirelessHART hardware-in-the-loop simulator (WH-HILS) indicate that the proposed approach is more robust to delay variation of the network than the PID. Copyright © 2017. Published by Elsevier Ltd.

  3. Smart multi-level tool for remote patient monitoring based on a wireless sensor network and mobile augmented reality.

    Science.gov (United States)

    González, Fernando Cornelio Jiménez; Villegas, Osslan Osiris Vergara; Ramírez, Dulce Esperanza Torres; Sánchez, Vianey Guadalupe Cruz; Domínguez, Humberto Ochoa

    2014-09-16

    Technological innovations in the field of disease prevention and maintenance of patient health have enabled the evolution of fields such as monitoring systems. One of the main advances is the development of real-time monitors that use intelligent and wireless communication technology. In this paper, a system is presented for the remote monitoring of the body temperature and heart rate of a patient by means of a wireless sensor network (WSN) and mobile augmented reality (MAR). The combination of a WSN and MAR provides a novel alternative to remotely measure body temperature and heart rate in real time during patient care. The system is composed of (1) hardware such as Arduino microcontrollers (in the patient nodes), personal computers (for the nurse server), smartphones (for the mobile nurse monitor and the virtual patient file) and sensors (to measure body temperature and heart rate), (2) a network layer using WiFly technology, and (3) software such as LabView, Android SDK, and DroidAR. The results obtained from tests show that the system can perform effectively within a range of 20 m and requires ten minutes to stabilize the temperature sensor to detect hyperthermia, hypothermia or normal body temperature conditions. Additionally, the heart rate sensor can detect conditions of tachycardia and bradycardia.

  4. Technical Note: Novel method for water vapour monitoring using wireless communication networks measurements

    Directory of Open Access Journals (Sweden)

    N. David

    2009-04-01

    Full Text Available We propose a new technique that overcomes the obstacles of the existing methods for monitoring near-surface water vapour, by estimating humidity from data collected through existing wireless communication networks.

    Weather conditions and atmospheric phenomena affect the electromagnetic channel, causing attenuations to the radio signals. Thus, wireless communication networks are in effect built-in environmental monitoring facilities. The wireless microwave links, used in these networks, are widely deployed by cellular providers for backhaul communication between base stations, a few tens of meters above ground level. As a result, if all available measurements are used, the proposed method can provide moisture observations with high spatial resolution and potentially high temporal resolution. Further, the implementation cost is minimal, since the data used are already collected and saved by the cellular operators. In addition – many of these links are installed in areas where access is difficult such as orographic terrain and complex topography. As such, our method enables measurements in places that have been hard to measure in the past, or have never been measured before. The technique is restricted to weather conditions which exclude rain, fog or clouds along the propagation path. Strong winds that may cause movement of the link transmitter or receiver (or both may also interfere with the ability to conduct accurate measurements.

    We present results from real-data measurements taken from two microwave links used in a backhaul cellular network that show convincing correlation to surface station humidity measurements. The measurements were taken daily in two sites, one in northern Israel (28 measurements, the other in central Israel (29 measurements. The correlation between the microwave link measurements and the humidity gauges were 0.9 and 0.82 for the north and central sites, respectively. The Root Mean Square Differences

  5. Technical Note: Novel method for water vapour monitoring using wireless communication networks measurements

    Science.gov (United States)

    David, N.; Alpert, P.; Messer, H.

    2009-04-01

    We propose a new technique that overcomes the obstacles of the existing methods for monitoring near-surface water vapour, by estimating humidity from data collected through existing wireless communication networks. Weather conditions and atmospheric phenomena affect the electromagnetic channel, causing attenuations to the radio signals. Thus, wireless communication networks are in effect built-in environmental monitoring facilities. The wireless microwave links, used in these networks, are widely deployed by cellular providers for backhaul communication between base stations, a few tens of meters above ground level. As a result, if all available measurements are used, the proposed method can provide moisture observations with high spatial resolution and potentially high temporal resolution. Further, the implementation cost is minimal, since the data used are already collected and saved by the cellular operators. In addition - many of these links are installed in areas where access is difficult such as orographic terrain and complex topography. As such, our method enables measurements in places that have been hard to measure in the past, or have never been measured before. The technique is restricted to weather conditions which exclude rain, fog or clouds along the propagation path. Strong winds that may cause movement of the link transmitter or receiver (or both) may also interfere with the ability to conduct accurate measurements. We present results from real-data measurements taken from two microwave links used in a backhaul cellular network that show convincing correlation to surface station humidity measurements. The measurements were taken daily in two sites, one in northern Israel (28 measurements), the other in central Israel (29 measurements). The correlation between the microwave link measurements and the humidity gauges were 0.9 and 0.82 for the north and central sites, respectively. The Root Mean Square Differences (RMSD) were 1.8 g/m3 and 3.4 g/m3 for

  6. Biona-C Cell Culture pH Monitoring System

    Science.gov (United States)

    Friedericks, C.

    1999-01-01

    Sensors 2000! is developing a system to demonstrate the ability to perform accurate, real-time measurements of pH and CO2 in a cell culture media in Space. The BIONA-C Cell Culture pH Monitoring System consists of S2K! developed ion selective sensors and control electronics integrated with the fluidics of a cell culture system. The integrated system comprises a "rail" in the Cell Culture Module (CCM) of WRAIR (Space Biosciences of Walter Read Army Institute of Research). The CCM is a Space Shuttle mid-deck locker experiment payload. The BIONA-C is displayed along with associated graphics and text explanations. The presentation will stimulate interest in development of sensor technology for real-time cell culture measurements. The transfer of this technology to other applications will also be of interest. Additional information is contained in the original document.

  7. Development of a Wireless Unified-Maintenance System for the Structural Health Monitoring of Civil Structures.

    Science.gov (United States)

    Heo, Gwanghee; Son, Byungjik; Kim, Chunggil; Jeon, Seunggon; Jeon, Joonryong

    2018-05-09

    A disaster preventive structural health monitoring (SHM) system needs to be equipped with the following abilities: First, it should be able to simultaneously measure diverse types of data (e.g., displacement, velocity, acceleration, strain, load, temperature, humidity, etc.) for accurate diagnosis. Second, it also requires standalone power supply to guarantee its immediate response in crisis (e.g., sudden interruption of normal AC power in disaster situations). Furthermore, it should be capable of prompt processing and realtime wireless communication of a huge amount of data. Therefore, this study is aimed at developing a wireless unified-maintenance system (WUMS) that would satisfy all the requirements for a disaster preventive SHM system of civil structures. The WUMS is designed to measure diverse types of structural responses in realtime based on wireless communication, allowing users to selectively use WiFi RF band and finally working in standalone mode by means of the field-programmable gate array (FPGA) technology. To verify its performance, the following tests were performed: (i) A test to see how far communication is possible in open field, (ii) a test on a shaker to see how accurate responses are, (iii) a modal test on a bridge to see how exactly characteristic real-time dynamic responses are of structures. The test results proved that the WUMS was able to secure stable communication far up to nearly 800 m away by acquiring wireless responses in realtime accurately, when compared to the displacement and acceleration responses which were acquired through wired communication. The analysis of dynamic characteristics also showed that the wireless acceleration responses in real-time represented satisfactorily the dynamic properties of structures. Therefore, the WUMS is proved valid as a SHM, and its outstanding performance is also proven.

  8. Integrated 3d printed wireless sensing system for environmental monitoring

    KAUST Repository

    Farooqui, Muhammad Fahad; Shamim, Atif

    2017-01-01

    transmitters on a panel. The wireless sensor device may be configured to take environment measurements, such as temperature, gas, humidity, and wirelessly communicate the environment measurements to a remote computing device, in addition, the present disclosure

  9. Application opportunities in wireless communications. Final report

    International Nuclear Information System (INIS)

    Abbott, R.E.; Blevins, R.P.; Olmstead, C.

    1998-07-01

    This report presents the results of examinations of wireless technologies and applications that may offer potential to utilities. Five different wireless technology areas are reviewed. Three areas--Communication Networks, Monitored Security Services, and Home Automation--potentially represent new business ventures for utilities. Two areas--Automatic Vehicle Location and Automated Field-Force Management--represent wireless applications with potential for reduced operating costs and improved customer relations

  10. Historical Building Monitoring Using an Energy-Efficient Scalable Wireless Sensor Network Architecture

    Science.gov (United States)

    Capella, Juan V.; Perles, Angel; Bonastre, Alberto; Serrano, Juan J.

    2011-01-01

    We present a set of novel low power wireless sensor nodes designed for monitoring wooden masterpieces and historical buildings, in order to perform an early detection of pests. Although our previous star-based system configuration has been in operation for more than 13 years, it does not scale well for sensorization of large buildings or when deploying hundreds of nodes. In this paper we demonstrate the feasibility of a cluster-based dynamic-tree hierarchical Wireless Sensor Network (WSN) architecture where realistic assumptions of radio frequency data transmission are applied to cluster construction, and a mix of heterogeneous nodes are used to minimize economic cost of the whole system and maximize power saving of the leaf nodes. Simulation results show that the specialization of a fraction of the nodes by providing better antennas and some energy harvesting techniques can dramatically extend the life of the entire WSN and reduce the cost of the whole system. A demonstration of the proposed architecture with a new routing protocol and applied to termite pest detection has been implemented on a set of new nodes and should last for about 10 years, but it provides better scalability, reliability and deployment properties. PMID:22346630

  11. Historical building monitoring using an energy-efficient scalable wireless sensor network architecture.

    Science.gov (United States)

    Capella, Juan V; Perles, Angel; Bonastre, Alberto; Serrano, Juan J

    2011-01-01

    We present a set of novel low power wireless sensor nodes designed for monitoring wooden masterpieces and historical buildings, in order to perform an early detection of pests. Although our previous star-based system configuration has been in operation for more than 13 years, it does not scale well for sensorization of large buildings or when deploying hundreds of nodes. In this paper we demonstrate the feasibility of a cluster-based dynamic-tree hierarchical Wireless Sensor Network (WSN) architecture where realistic assumptions of radio frequency data transmission are applied to cluster construction, and a mix of heterogeneous nodes are used to minimize economic cost of the whole system and maximize power saving of the leaf nodes. Simulation results show that the specialization of a fraction of the nodes by providing better antennas and some energy harvesting techniques can dramatically extend the life of the entire WSN and reduce the cost of the whole system. A demonstration of the proposed architecture with a new routing protocol and applied to termite pest detection has been implemented on a set of new nodes and should last for about 10 years, but it provides better scalability, reliability and deployment properties.

  12. [Wireless Passive Body Sensor for Temperature Monitoring Using Near Field Communication Technology].

    Science.gov (United States)

    Shi, Bo; Zhang, Li; Zhang, Genxuan; Tsau, Young; Zhang, Sai; Li, Lei

    2017-01-01

    In this study, we designed a wireless body temperature sensor (WBTS) based on near field communication (NFC) technology. Just attaching the WBTS to a mobile phone with NFC function, the real-time body temperature of human subjects can be acquired by an application program without seperate power supply. The WBTS is mainly composed of a digital body temperature probe (d-BTP), a NFC unit and an antenna. The d-BTP acquires and processes body temperature data through a micro control er, and the NFC unit and antenna are used for wireless energy transmission and data communication between the mobile phone and WBTS. UART communication protocol is used in the communication between the d-BTP and NFC unit, and data compression technique is adopted for improving transmission efficiency and decreasing power loss. In tests, the error of WBTS is ±0.1 oC, in range of 32 oC to 42 oC. The WBTS has advantages of high accuracy, low power loss, strong anti-interference ability, dispensation with independent power supply etc., and it can be integrated into wearable apparatuses for temperature monitoring and health management.

  13. Unsedated peroral wireless pH capsule placement vs. standard pH testing: A randomized study and cost analysis

    Directory of Open Access Journals (Sweden)

    Andrews Christopher N

    2012-05-01

    Full Text Available Abstract Background Wireless capsule pH-metry (WC is better tolerated than standard nasal pH catheter (SC, but endoscopic placement is expensive. Aims: to confirm that non-endoscopic peroral manometric placement of WC is as effective and better tolerated than SC and to perform a cost analysis of the available esophageal pH-metry methods. Methods Randomized trial at 2 centers. Patients referred for esophageal pH testing were randomly assigned to WC with unsedated peroral placement or SC after esophageal manometry (ESM. Primary outcome was overall discomfort with pH-metry. Costs of 3 different pH-metry strategies were analyzed: 1 ESM + SC, 2 ESM + WC and 3 endoscopically placed WC (EGD + WC using publicly funded health care system perspective. Results 86 patients (mean age 51 ± 2 years, 71% female were enrolled. Overall discomfort score was less in WC than in SC patients (26 ± 4 mm vs 39 ± 4 mm VAS, respectively, p = 0.012 but there were no significant group differences in throat, chest, or overall discomfort during placement. Overall failure rate was 7% in the SC group vs 12% in the WC group (p = 0.71. Per patient costs ($Canadian were $1475 for EGD + WC, $1014 for ESM + WC, and $906 for ESM + SC. Decreasing the failure rate of ESM + WC from 12% to 5% decreased the cost of ESM + WC to $991. The ESM + SC and ESM + WC strategies became equivalent when the cost of the WC device was dropped from $292 to $193. Conclusions Unsedated peroral WC insertion is better tolerated than SC pH-metry both overall and during placement. Although WC is more costly, the extra expense is partially offset when the higher patient and caregiver time costs of SC are considered. Trial registration Clinicaltrials.gov Identifier NCT01364610

  14. A proposed scalable design and simulation of wireless sensor network-based long-distance water pipeline leakage monitoring system.

    Science.gov (United States)

    Almazyad, Abdulaziz S; Seddiq, Yasser M; Alotaibi, Ahmed M; Al-Nasheri, Ahmed Y; BenSaleh, Mohammed S; Obeid, Abdulfattah M; Qasim, Syed Manzoor

    2014-02-20

    Anomalies such as leakage and bursts in water pipelines have severe consequences for the environment and the economy. To ensure the reliability of water pipelines, they must be monitored effectively. Wireless Sensor Networks (WSNs) have emerged as an effective technology for monitoring critical infrastructure such as water, oil and gas pipelines. In this paper, we present a scalable design and simulation of a water pipeline leakage monitoring system using Radio Frequency IDentification (RFID) and WSN technology. The proposed design targets long-distance aboveground water pipelines that have special considerations for maintenance, energy consumption and cost. The design is based on deploying a group of mobile wireless sensor nodes inside the pipeline and allowing them to work cooperatively according to a prescheduled order. Under this mechanism, only one node is active at a time, while the other nodes are sleeping. The node whose turn is next wakes up according to one of three wakeup techniques: location-based, time-based and interrupt-driven. In this paper, mathematical models are derived for each technique to estimate the corresponding energy consumption and memory size requirements. The proposed equations are analyzed and the results are validated using simulation.

  15. A Proposed Scalable Design and Simulation of Wireless Sensor Network-Based Long-Distance Water Pipeline Leakage Monitoring System

    Directory of Open Access Journals (Sweden)

    Abdulaziz S. Almazyad

    2014-02-01

    Full Text Available Anomalies such as leakage and bursts in water pipelines have severe consequences for the environment and the economy. To ensure the reliability of water pipelines, they must be monitored effectively. Wireless Sensor Networks (WSNs have emerged as an effective technology for monitoring critical infrastructure such as water, oil and gas pipelines. In this paper, we present a scalable design and simulation of a water pipeline leakage monitoring system using Radio Frequency IDentification (RFID and WSN technology. The proposed design targets long-distance aboveground water pipelines that have special considerations for maintenance, energy consumption and cost. The design is based on deploying a group of mobile wireless sensor nodes inside the pipeline and allowing them to work cooperatively according to a prescheduled order. Under this mechanism, only one node is active at a time, while the other nodes are sleeping. The node whose turn is next wakes up according to one of three wakeup techniques: location-based, time-based and interrupt-driven. In this paper, mathematical models are derived for each technique to estimate the corresponding energy consumption and memory size requirements. The proposed equations are analyzed and the results are validated using simulation.

  16. Application of wireless monitoring and communication systems in the power engineering

    Directory of Open Access Journals (Sweden)

    Grechikhin V. A.

    2012-06-01

    Full Text Available The article describes some achievements of modern radio electronics, which prove a huge potential of modern wireless engineering for using in the fuel-energy complex. Wireless corporation communication systems, application of short-range radar measuring systems on the power engineering objects, prospects of laser measuring systems, methods of radio thermography and radio spectroscopy, wireless acoustic-electronic sensors are discussed.

  17. Development and application of a modified wireless tracer for disaster prevention

    Science.gov (United States)

    Chung Yang, Han; Su, Chih Chiang

    2016-04-01

    Typhoon-induced flooding causes water overflow in a river channel, which results in general and bridge scour and soil erosion, thus leading to bridge failure, debris flow and landslide collapse. Therefore, dynamic measurement technology should be developed to assess scour in channels and landslide as a disaster-prevention measure against bridge failure and debris flow. This paper presents a wireless tracer that enables monitoring general scour in river channels and soil erosion in hillsides. The wireless tracer comprises a wireless high-power radio modem, various electronic components, and a self-designed printed circuit board that are all combined with a 9-V battery pack and an auto switch. The entire device is sealed in a jar by silicon. After it was modified, the wireless tracer underwent the following tests for practical applications: power continuation and durability, water penetration, and signal transmission during floating. A regression correlation between the wireless tracer's transmission signal and distance was also established. This device can be embedded at any location where scouring is monitored, and, in contrast to its counterparts that detect scour depth by identifying and analyzing received signals, it enables real-time observation of the scouring process. In summary, the wireless tracer developed in this study provides a dynamic technology for real-time monitoring of scouring (or erosion) and forecasting of landslide hazards. Keywords: wireless tracer; scour; real-time monitoring; landslide hazard.

  18. Applications of wireless sensor networks for monitoring oil and gas onshore fields; Aplicacoes de redes de sensores sem fio em monitoramento de pocos petroliferos terrestres

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Ivanovitch Medeiros D. da; Oliveira, Luiz Affonso H. Guedes de [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil)

    2008-07-01

    The major part of onshore oil wells monitoring currently is based on wireless solutions. However these solutions employ old technologies based on analog radios and inefficient communication topologies. On the other hand, technologies based on digital radios can provide more efficient solutions related to energy consumption, security and fault tolerance. Thus, this paper investigates the Wireless Sensor Network as an approach to onshore oil wells monitoring. Reliability, energy consumption and communication delay in a mesh topology will be used as metrics to validate the proposal using the simulation tool NS-2. (author)

  19. A medical-grade wireless architecture for remote electrocardiography.

    Science.gov (United States)

    Kang, Kyungtae; Park, Kyung-Joon; Song, Jae-Jin; Yoon, Chang-Hwan; Sha, Lui

    2011-03-01

    In telecardiology, electrocardiogram (ECG) signals from a patient are acquired by sensors and transmitted in real time to medical personnel across a wireless network. The use of IEEE 802.11 wireless LANs (WLANs), which are already deployed in many hospitals, can provide ubiquitous connectivity and thus allow cardiology patients greater mobility. However, engineering issues, including the error-prone nature of wireless channels and the unpredictable delay and jitter due to the nondeterministic nature of access to the wireless medium, need to be addressed before telecardiology can be safely realized. We propose a medical-grade WLAN architecture for remote ECG monitoring, which employs the point-coordination function (PCF) for medium access control and Reed-Solomon coding for error control. Realistic simulations with uncompressed two-lead ECG data from the MIT-BIH arrhythmia database demonstrate reliable wireless ECG monitoring; the reliability of ECG transmission exceeds 99.99% with the initial buffering delay of only 2.4 s.

  20. Voice Quality Estimation in Wireless Networks

    Directory of Open Access Journals (Sweden)

    Petr Zach

    2015-01-01

    Full Text Available This article deals with the impact of Wireless (Wi-Fi networks on the perceived quality of voice services. The Quality of Service (QoS metrics must be monitored in the computer network during the voice data transmission to ensure proper voice service quality the end-user has paid for, especially in the wireless networks. In addition to the QoS, research area called Quality of Experience (QoE provides metrics and methods for quality evaluation from the end-user’s perspective. This article focuses on a QoE estimation of Voice over IP (VoIP calls in the wireless networks using network simulator. Results contribute to voice quality estimation based on characteristics of the wireless network and location of a wireless client.

  1. Low-power wireless infrared communications

    NARCIS (Netherlands)

    Otte, R.; Jong, de L.P.; Roermund, van A.H.M.

    1999-01-01

    Today, wireless infrared transmission has entered our homes, offices, industry and health care, with applications in the field of remote control, telemetry, and local communication. This book is about the underlying technology. As it is an outgrowth of my Ph.D. thesis, the emphasis is on fundamental

  2. Radio Characterization for ISM 2.4 GHz Wireless Sensor Networks for Judo Monitoring Applications

    Directory of Open Access Journals (Sweden)

    Peio Lopez-Iturri

    2014-12-01

    Full Text Available In this work, the characterization of the radio channel for ISM 2.4GHz Wireless Sensor Networks (WSNs for judo applications is presented. The environments where judo activity is held are usually complex indoor scenarios in terms of radiopropagation due to their morphology, the presence of humans and the electromagnetic interference generated by personal portable devices, wireless microphones and other wireless systems used by the media. For the assessment of the impact that the topology and the morphology of these environments have on electromagnetic propagation, an in-house developed 3D ray-launching software has been used in this study. Time domain results as well as estimations of received power level have been obtained for the complete volume of a training venue of a local judo club’s facilities with a contest area with the dimensions specified by the International Judo Federation (IJF for international competitions. The obtained simulation results have been compared with measurements, which have been carried out deploying ZigBee-compliant XBee Pro modules at presented scenario, using approved Judogis (jacket, trousers and belt. The analysis is completed with the inclusion of an in-house human body computational model. Such analysis has allowed the design and development of an in house application devoted to monitor the practice of judo, in order to aid referee activities, training routines and to enhance spectator experience.

  3. GTSO: Global Trace Synchronization and Ordering Mechanism for Wireless Sensor Network Monitoring Platforms.

    Science.gov (United States)

    Navia, Marlon; Campelo, José Carlos; Bonastre, Alberto; Ors, Rafael

    2017-12-23

    Monitoring is one of the best ways to evaluate the behavior of computer systems. When the monitored system is a distributed system-such as a wireless sensor network (WSN)-the monitoring operation must also be distributed, providing a distributed trace for further analysis. The temporal sequence of occurrence of the events registered by the distributed monitoring platform (DMP) must be correctly established to provide cause-effect relationships between them, so the logs obtained in different monitor nodes must be synchronized. Many of synchronization mechanisms applied to DMPs consist in adjusting the internal clocks of the nodes to the same value as a reference time. However, these mechanisms can create an incoherent event sequence. This article presents a new method to achieve global synchronization of the traces obtained in a DMP. It is based on periodic synchronization signals that are received by the monitor nodes and logged along with the recorded events. This mechanism processes all traces and generates a global post-synchronized trace by scaling all times registered proportionally according with the synchronization signals. It is intended to be a simple but efficient offline mechanism. Its application in a WSN-DMP demonstrates that it guarantees a correct ordering of the events, avoiding the aforementioned issues.

  4. GTSO: Global Trace Synchronization and Ordering Mechanism for Wireless Sensor Network Monitoring Platforms

    Science.gov (United States)

    Bonastre, Alberto; Ors, Rafael

    2017-01-01

    Monitoring is one of the best ways to evaluate the behavior of computer systems. When the monitored system is a distributed system—such as a wireless sensor network (WSN)—the monitoring operation must also be distributed, providing a distributed trace for further analysis. The temporal sequence of occurrence of the events registered by the distributed monitoring platform (DMP) must be correctly established to provide cause-effect relationships between them, so the logs obtained in different monitor nodes must be synchronized. Many of synchronization mechanisms applied to DMPs consist in adjusting the internal clocks of the nodes to the same value as a reference time. However, these mechanisms can create an incoherent event sequence. This article presents a new method to achieve global synchronization of the traces obtained in a DMP. It is based on periodic synchronization signals that are received by the monitor nodes and logged along with the recorded events. This mechanism processes all traces and generates a global post-synchronized trace by scaling all times registered proportionally according with the synchronization signals. It is intended to be a simple but efficient offline mechanism. Its application in a WSN-DMP demonstrates that it guarantees a correct ordering of the events, avoiding the aforementioned issues. PMID:29295494

  5. Real-time Alarm Monitoring System for Detecting Driver Fatigue in Wireless Areas

    Directory of Open Access Journals (Sweden)

    Rongrong Fu

    2017-04-01

    Full Text Available The purpose of this paper was to develop a real-time alarm monitoring system that can detect the fatigue driving state through wireless communication. The drivers’ electroencephalogram (EEG signals were recorded from occipital electrodes. Seven EEG rhythms with different frequency bands as gamma, hbeta, beta, sigma, alpha, theta and delta waves were extracted. They were simultaneously assessed using relative operating characteristic (ROC curves and grey relational analysis to select one as the fatigue feature. The research results showed that the performance of theta wave was the best one. Therefore, theta wave was used as fatigue feature in the following alarm device. The real-time alarm monitoring system based on the result has been developed, once the threshold was settled by using the data of the first ten minutes driving period. The developed system can detect driver fatigue and give alarm to indicate the onset of fatigue automatically.

  6. An inversion strategy for energy saving in smart building through wireless monitoring

    Science.gov (United States)

    Anselmi, N.; Moriyama, T.

    2017-10-01

    The building plants represent one of the main sources of power consumption and of greenhouse gases emission in urban scenarios. The efficiency of energy management is also related to the indoor environmental conditions that reflect on the user comfort. The constant monitoring of comfort indicators enables the accurate management of building plants with the final objective of reducing energy waste and satisfying the user needs. This paper presents an inversion methodology based on support vector regression for the reconstruction and forecasting of the thermal comfort of users starting from the indoor environmental features of the building. The environmental monitoring is performed by means of a wireless sensor network, which pervasively measures the spatial variability of indoor conditions. The proposed system has been experimentally validated in a real test-site to assess the advantages and the limitations in supporting the management of the building plants towards energy saving.

  7. Novel wireless health monitor with acupuncture bio-potentials obtained by using a replaceable salt-water-wetted foam-rubber cushions on RFID-tag.

    Science.gov (United States)

    Lin, Jium-Ming; Lu, Hung-Han; Lin, Cheng-Hung

    2014-01-01

    This paper proposes a bio-potential measurement apparatus including a wireless device for transmitting acupuncture bio-potential information to a remote control station for health conditions analysis and monitor. The key technology of this system is to make replaceable foam-rubber cushions, double-side conducting tapes, chip and antenna on the radio frequency identification (RFID) tag. The foam-rubber cushions can be wetted with salt-water and contact with the acupuncture points to reduce contact resistance. Besides, the double-side conducting tapes are applied to fix foam-rubber cushions. Thus, one can peel the used cushions or tapes away and supply new ones quickly. Since the tag is a flexible plastic substrate, it is easy to deploy on the skin. Besides, the amplifier made by CMOS technology on RFID chip could amplify the signals to improve S/N ratio and impedance matching. Thus, cloud server can wirelessly monitor the health conditions. An example shows that the proposed system can be used as a wireless health condition monitor, the numerical method and the criteria are given to analyze eleven bio-potentials for the important acupunctures of eleven meridians on a person's hands and legs. Then a professional doctor can know the performance of an individual and the cross-linking effects of the organs.

  8. Performance Analysis of IIUM Wireless Campus Network

    International Nuclear Information System (INIS)

    Latif, Suhaimi Abd; Masud, Mosharrof H; Anwar, Farhat

    2013-01-01

    International Islamic University Malaysia (IIUM) is one of the leading universities in the world in terms of quality of education that has been achieved due to providing numerous facilities including wireless services to every enrolled student. The quality of this wireless service is controlled and monitored by Information Technology Division (ITD), an ISO standardized organization under the university. This paper aims to investigate the constraints of wireless campus network of IIUM. It evaluates the performance of the IIUM wireless campus network in terms of delay, throughput and jitter. QualNet 5.2 simulator tool has employed to measure these performances of IIUM wireless campus network. The observation from the simulation result could be one of the influencing factors in improving wireless services for ITD and further improvement

  9. Induction of Inflammation In Vivo by Electrocardiogram Sensor Operation Using Wireless Power Transmission.

    Science.gov (United States)

    Heo, Jin-Chul; Kim, Beomjoon; Kim, Yoon-Nyun; Kim, Dae-Kwang; Lee, Jong-Ha

    2017-12-14

    Prolonged monitoring by cardiac electrocardiogram (ECG) sensors is useful for patients with emergency heart conditions. However, implant monitoring systems are limited by lack of tissue biocompatibility. Here, we developed an implantable ECG sensor for real-time monitoring of ventricular fibrillation and evaluated its biocompatibility using an animal model. The implantable sensor comprised transplant sensors with two electrodes, a wireless power transmission system, and a monitoring system. The sensor was inserted into the subcutaneous tissue of the abdominal area and operated for 1 h/day for 5 days using a wireless power system. Importantly, the sensor was encapsulated by subcutaneous tissue and induced angiogenesis, inflammation, and phagocytosis. In addition, we observed that the levels of inflammation-related markers increased with wireless-powered transmission via the ECG sensor; in particular, levels of the Th-1 cytokine interleukin-12 were significantly increased. The results showed that induced tissue damage was associated with the use of wireless-powered sensors. We also investigated research strategies for the prevention of adverse effects caused by lack of tissue biocompatibility of a wireless-powered ECG monitoring system and provided information on the clinical applications of inflammatory reactions in implant treatment using the wireless-powered transmission system.

  10. Truck-based mobile wireless sensor networks for the experimental observation of vehicle–bridge interaction

    International Nuclear Information System (INIS)

    Kim, Junhee; Lynch, Jerome P; Lee, Jong-Jae; Lee, Chang-Geun

    2011-01-01

    Heavy vehicles driving over a bridge create a complex dynamic phenomenon known as vehicle–bridge interaction. In recent years, interest in vehicle–bridge interaction has grown because a deeper understanding of the phenomena can lead to improvements in bridge design methods while enhancing the accuracy of structural health monitoring techniques. The mobility of wireless sensors can be leveraged to directly monitor the dynamic coupling between the moving vehicle and the bridge. In this study, a mobile wireless sensor network is proposed for installation on a heavy truck to capture the vertical acceleration, horizontal acceleration and gyroscopic pitching of the truck as it crosses a bridge. The vehicle-based wireless monitoring system is designed to interact with a static, permanent wireless monitoring system installed on the bridge. Specifically, the mobile wireless sensors time-synchronize with the bridge's wireless sensors before transferring the vehicle response data. Vertical acceleration and gyroscopic pitching measurements of the vehicle are combined with bridge accelerations to create a time-synchronized vehicle–bridge response dataset. In addition to observing the vehicle vibrations, Kalman filtering is adopted to accurately track the vehicle position using the measured horizontal acceleration of the vehicle and positioning information derived from piezoelectric strip sensors installed on the bridge deck as part of the bridge monitoring system. Using the Geumdang Bridge (Korea), extensive field testing of the proposed vehicle–bridge wireless monitoring system is conducted. Experimental results verify the reliability of the wireless system and the accuracy of the vehicle positioning algorithm

  11. In vivo pH monitoring using boron doped diamond microelectrode and silver needles: Application to stomach disorder diagnosis

    OpenAIRE

    Fierro, St?phane; Seishima, Ryo; Nagano, Osamu; Saya, Hideyuki; Einaga, Yasuaki

    2013-01-01

    This study presents the in vivo electrochemical monitoring of pH using boron doped diamond (BDD) microelectrode and silver needles for potential application in medical diagnosis. Accurate calibration curve for pH determination were obtained through in vitro electrochemical measurements. The increase induced in stomach pH by treatment with pantoprazole was used to demonstrate that it is possible to monitor the pH in vivo using the simple and noninvasive system proposed herein. Using the result...

  12. Regional gastrointestinal transit and pH studied in 215 healthy volunteers using the wireless motility capsule: influence of age, gender, study country and testing protocol.

    Science.gov (United States)

    Wang, Y T; Mohammed, S D; Farmer, A D; Wang, D; Zarate, N; Hobson, A R; Hellström, P M; Semler, J R; Kuo, B; Rao, S S; Hasler, W L; Camilleri, M; Scott, S M

    2015-09-01

    The wireless motility capsule (WMC) offers the ability to investigate luminal gastrointestinal (GI) physiology in a minimally invasive manner. To investigate the effect of testing protocol, gender, age and study country on regional GI transit times and associated pH values using the WMC. Regional GI transit times and pH values were determined in 215 healthy volunteers from USA and Sweden studied using the WMC over a 6.5-year period. The effects of test protocol, gender, age and study country were examined. For GI transit times, testing protocol was associated with differences in gastric emptying time (GET; shorter with protocol 2 (motility capsule ingested immediately after meal) vs. protocol 1 (motility capsule immediately before): median difference: 52 min, P = 0.0063) and colonic transit time (CTT; longer with protocol 2: median 140 min, P = 0.0189), but had no overall effect on whole gut transit time. Females had longer GET (by median 17 min, P = 0.0307), and also longer CTT by (104 min, P = 0.0285) and whole gut transit time by (263 min, P = 0.0077). Increasing age was associated with shorter small bowel transit time (P = 0.002), and study country also influenced small bowel and CTTs. Whole gut and CTTs showed clustering of data at values separated by 24 h, suggesting that describing these measures as continuous variables is invalid. Testing protocol, gender and study country also significantly influenced pH values. Regional GI transit times and pH values, delineated using the wireless motility capsule (WMC), vary based on testing protocol, gender, age and country. Standardisation of testing is crucial for cross-referencing in clinical practice and future research. © 2015 John Wiley & Sons Ltd.

  13. Wireless Concrete Strength Monitoring of Wind Turbine Foundations

    Directory of Open Access Journals (Sweden)

    Marcus Perry

    2017-12-01

    Full Text Available Wind turbine foundations are typically cast in place, leaving the concrete to mature under environmental conditions that vary in time and space. As a result, there is uncertainty around the concrete’s initial performance, and this can encourage both costly over-design and inaccurate prognoses of structural health. Here, we demonstrate the field application of a dense, wireless thermocouple network to monitor the strength development of an onshore, reinforced-concrete wind turbine foundation. Up-to-date methods in fly ash concrete strength and maturity modelling are used to estimate the distribution and evolution of foundation strength over 29 days of curing. Strength estimates are verified by core samples, extracted from the foundation base. In addition, an artificial neural network, trained using temperature data, is exploited to demonstrate that distributed concrete strengths can be estimated for foundations using only sparse thermocouple data. Our techniques provide a practical alternative to computational models, and could assist site operators in making more informed decisions about foundation design, construction, operation and maintenance.

  14. Implementasi Wireless Monitoring Energi Listrik Berbasis Web Database

    Directory of Open Access Journals (Sweden)

    Irwan Dinata

    2015-03-01

    Full Text Available Web Database based wireless device for monitoring electricity consumption is designed to substitute manual and conventional measurement system. This device consists of sensor, processor, display and network. The sensor consists of current transformer and AC to AC Power Adapter. The processor is Arduino UNO which process sensor output. Liquid crystal device (LCD is used to display real time output. The last part of the device is network composed of Ethernet Shield, 3G Modem for communication with Database Server as data further processing and storage. The testing with nominal total load 120 watt shows that Vrms value on LCD of the device is 218 volt, Vrms value measured with clamp meter is 216 volt. Irms value on LCD of the device is 0,44 ampere, Irms value measured with clamp meter 0,5 ampere. The real power value on LCD of the device is 92 watt, the real power value measured with clamp meter is 84 watt. The power factor value on LCD of the device is 0,97, the power factor value measured with clamp meter is 0,99.

  15. Monitoring Churn in Wireless Networks

    Science.gov (United States)

    Holzer, Stephan; Pignolet, Yvonne Anne; Smula, Jasmin; Wattenhofer, Roger

    Wireless networks often experience a significant amount of churn, the arrival and departure of nodes. In this paper we propose a distributed algorithm for single-hop networks that detects churn and is resilient to a worst-case adversary. The nodes of the network are notified about changes quickly, in asymptotically optimal time up to an additive logarithmic overhead. We establish a trade-off between saving energy and minimizing the delay until notification for single- and multi-channel networks.

  16. Smart home design for electronic devices monitoring based wireless gateway network using cisco packet tracer

    Science.gov (United States)

    Sihombing, Oloan; Zendrato, Niskarto; Laia, Yonata; Nababan, Marlince; Sitanggang, Delima; Purba, Windania; Batubara, Diarmansyah; Aisyah, Siti; Indra, Evta; Siregar, Saut

    2018-04-01

    In the era of technological development today, the technology has become the need for the life of today's society. One is needed to create a smart home in turning on and off electronic devices via smartphone. So far in turning off and turning the home electronic device is done by pressing the switch or remote button, so in control of electronic device control less effective. The home smart design is done by simulation concept by testing system, network configuration, and wireless home gateway computer network equipment required by a smart home network on cisco packet tracer using Internet Thing (IoT) control. In testing the IoT home network wireless network gateway system, multiple electronic devices can be controlled and monitored via smartphone based on predefined configuration conditions. With the Smart Ho me can potentially increase energy efficiency, decrease energy usage costs, control electronics and change the role of residents.

  17. Design of a hybrid (wired/wireless) acquisition data system for monitoring of cultural heritage physical parameters in Smart Cities.

    Science.gov (United States)

    García Diego, Fernando-Juan; Esteban, Borja; Merello, Paloma

    2015-03-25

    Preventive conservation represents a working method and combination of techniques which helps in determining and controlling the deterioration process of cultural heritage in order to take the necessary actions before it occurs. It is acknowledged as important, both in terms of preserving and also reducing the cost of future conservation measures. Therefore, long-term monitoring of physical parameters influencing cultural heritage is necessary. In the context of Smart Cities, monitoring of cultural heritage is of interest in order to perform future comparative studies and load information into the cloud that will be useful for the conservation of other heritage sites. In this paper the development of an economical and appropriate acquisition data system combining wired and wireless communication, as well as third party hardware for increased versatility, is presented. The device allows monitoring a complex network of points with high sampling frequency, with wired sensors in a 1-wire bus and a wireless centralized system recording data for monitoring of physical parameters, as well as the future possibility of attaching an alarm system or sending data over the Internet. This has been possible with the development of three board's designs and more than 5000 algorithm lines. System tests have shown an adequate system operation.

  18. Wearable wireless photoplethysmography sensors

    Science.gov (United States)

    Spigulis, Janis; Erts, Renars; Nikiforovs, Vladimirs; Kviesis-Kipge, Edgars

    2008-04-01

    Wearable health monitoring sensors may support early detection of abnormal conditions and prevention of their consequences. Recent designs of three wireless photoplethysmography monitoring devices embedded in hat, glove and sock, and connected to PC or mobile phone by means of the Bluetooth technology, are described. First results of distant monitoring of heart rate and pulse wave transit time using the newly developed devices are presented.

  19. Wireless Communications in Smart Grid

    Science.gov (United States)

    Bojkovic, Zoran; Bakmaz, Bojan

    Communication networks play a crucial role in smart grid, as the intelligence of this complex system is built based on information exchange across the power grid. Wireless communications and networking are among the most economical ways to build the essential part of the scalable communication infrastructure for smart grid. In particular, wireless networks will be deployed widely in the smart grid for automatic meter reading, remote system and customer site monitoring, as well as equipment fault diagnosing. With an increasing interest from both the academic and industrial communities, this chapter systematically investigates recent advances in wireless communication technology for the smart grid.

  20. A GPRS-Based Low Energy Consumption Remote Terminal Unit for Aquaculture Water Quality Monitoring

    OpenAIRE

    Xu , Dan; Li , Daoliang; Fei , Biaoqing; Wang , Yang; Peng , Fa

    2013-01-01

    International audience; The monitoring of water quality parameters such as DO, pH, salinity and temperature are necessary for the health of seafood such as sea cucumber. However, traditional monitoring system is based on cable data acquisition that has many disadvantages. Nowadays, GPRS is the most commonly accepted way for wireless transmission. Based on it, a type of low energy consumption RTU is developed and applied. In this paper, details of the design are introduced. In hardware design ...

  1. Conformally integrated stent cell resonators for wireless monitoring of peripheral artery disease

    KAUST Repository

    Viswanath, Anupam

    2013-01-01

    This paper presents the design and in vitro evaluation of magnetoelastic sensors intended for wireless monitoring of tissue accumulation in peripheral artery stents. The sensors, shaped like stent cells, are fabricated from 28-μm thick foils of magnetoelastic Ni-Fe alloy and are conformally integrated with the stent. The typical sensitivity to viscosity is 427 ppm/cP over a 1.1-8.6 cP range. The sensitivity to mass loading is typically 63,000-65000 ppm/mg with resonant frequency showing an 8.1% reduction for an applied mass that is 15% of the unloaded mass of the sensor. © 2013 IEEE.

  2. Monitoring and Precision Spraying for Orchid Plantation with Wireless WebCAMs

    Directory of Open Access Journals (Sweden)

    Grianggai Samseemoung

    2017-10-01

    Full Text Available Through processing images taken from wireless WebCAMs on the low altitude remote sensing (LARS platform, this research monitored crop growth, pest, and disease information in a dendrobium orchid’s plantation. Vegetetative indices were derived for distinguishing different stages of crop growth, and the infestation density of pests and diseases. Image data was processed through an algorithm created in MATLAB® (The MathWorks, Inc., Natick, USA. Corresponding to the orchid’s growth stage and its infestation density, varying levels of fertilizer and chemical injections were administered. The acquired LARS images from wireless WebCAMs were positioned using geo-referencing, and eventually processed to estimate vegetative-indices (Red = 650 nm and NIR = 800 nm band center. Good correlations and a clear cluster range were obtained in characteristic plots of the normalized difference vegetation index (NDVI and the green normalized difference vegetation index (GNDVI against chlorophyll content. The coefficient of determination, the chlorophyll content values (μmol m−2 showed significant differences among clusters for healthy orchids (R2 = 0.985–0.992, and for infested orchids (R2 = 0.984–0.998. The WebCAM application, while being inexpensive, provided acceptable inputs for image processing. The LARS platform gave its best performance at an altitude of 1.2 m above canopy. The image processing software based on LARS images provided satisfactory results as compared with manual measurements.

  3. A Wireless Sensor Network-Based Approach with Decision Support for Monitoring Lake Water Quality.

    Science.gov (United States)

    Huang, Xiaoci; Yi, Jianjun; Chen, Shaoli; Zhu, Xiaomin

    2015-11-19

    Online monitoring and water quality analysis of lakes are urgently needed. A feasible and effective approach is to use a Wireless Sensor Network (WSN). Lake water environments, like other real world environments, present many changing and unpredictable situations. To ensure flexibility in such an environment, the WSN node has to be prepared to deal with varying situations. This paper presents a WSN self-configuration approach for lake water quality monitoring. The approach is based on the integration of a semantic framework, where a reasoner can make decisions on the configuration of WSN services. We present a WSN ontology and the relevant water quality monitoring context information, which considers its suitability in a pervasive computing environment. We also propose a rule-based reasoning engine that is used to conduct decision support through reasoning techniques and context-awareness. To evaluate the approach, we conduct usability experiments and performance benchmarks.

  4. Wireless technologies for the monitoring of strategic civil infrastructures: an ambient vibration test of the Faith Bridge, Istanbul, Turkey

    Science.gov (United States)

    Picozzi, M.; Milkereit, C.; Zulfikar, C.; Ditommaso, R.; Erdik, M.; Safak, E.; Fleming, K.; Ozel, O.; Zschau, J.; Apaydin, N.

    2008-12-01

    The monitoring of strategic civil infrastructures to ensure their structural integrity is a task of major importance, especially in earthquake-prone areas. Classical approaches to such monitoring are based on visual inspections and the use of wired systems. While the former has the drawback that the structure is only superficially examined and discontinuously in time, wired systems are relatively expensive and time consuming to install. Today, however, wireless systems represent an advanced, easily installed and operated tool to be used for monitoring purposes, resulting in a wide and interesting range of possible applications. Within the framework of the earthquake early warning projects SAFER (Seismic eArly warning For EuRope) and EDIM (Earthquake Disaster Information systems for the Marmara Sea region, Turkey), new low-cost wireless sensors with the capability to automatically rearrange their communications scheme are being developed. The reduced sensitivity of these sensors, arising from the use of low-cost components, is compensated by the possibility of deploying high-density self-organizing networks performing real-time data acquisition and analysis. Thanks to the developed system's versatility, it has been possible to perform an experimental ambient vibration test with a network of 24 sensors on the Fatih Sultan Mehmet Bridge, Istanbul (Turkey), a gravity-anchored suspension bridge spanning the Bosphorus Strait with distance between its towers of 1090 m. Preliminary analysis of the data has demonstrated that the main modal properties of the bridge can be retrieved, and may therefore be regularly re-evaluated as part of a long-term monitoring program. Using a multi-hop communications technique, data could be exchanged among groups of sensors over distances of a few hundred meters. Thus, the test showed that, although more work is required to optimize the communication parameters, the performance of the network offers encouragement for us to follow this

  5. Wireless energizing system for an automated implantable sensor

    Energy Technology Data Exchange (ETDEWEB)

    Swain, Biswaranjan; Nayak, Praveen P.; Kar, Durga P.; Bhuyan, Satyanarayan; Mishra, Laxmi P. [Department of Electronics and Instrumentation Engineering, Siksha ‘O’ Anusandhan University, Bhubaneswar 751030 (India)

    2016-07-15

    The wireless drive of an automated implantable electronic sensor has been explored for health monitoring applications. The proposed system comprises of an automated biomedical sensing system which is energized through resonant inductive coupling. The implantable sensor unit is able to monitor the body temperature parameter and sends back the corresponding telemetry data wirelessly to the data recoding unit. It has been observed that the wireless power delivery system is capable of energizing the automated biomedical implantable electronic sensor placed over a distance of 3 cm from the power transmitter with an energy transfer efficiency of 26% at the operating resonant frequency of 562 kHz. This proposed method ensures real-time monitoring of different human body temperatures around the clock. The monitored temperature data have been compared with a calibrated temperature measurement system to ascertain the accuracy of the proposed system. The investigated technique can also be useful for monitoring other body parameters such as blood pressure, bladder pressure, and physiological signals of the patient in vivo using various implantable sensors.

  6. Wireless energizing system for an automated implantable sensor

    International Nuclear Information System (INIS)

    Swain, Biswaranjan; Nayak, Praveen P.; Kar, Durga P.; Bhuyan, Satyanarayan; Mishra, Laxmi P.

    2016-01-01

    The wireless drive of an automated implantable electronic sensor has been explored for health monitoring applications. The proposed system comprises of an automated biomedical sensing system which is energized through resonant inductive coupling. The implantable sensor unit is able to monitor the body temperature parameter and sends back the corresponding telemetry data wirelessly to the data recoding unit. It has been observed that the wireless power delivery system is capable of energizing the automated biomedical implantable electronic sensor placed over a distance of 3 cm from the power transmitter with an energy transfer efficiency of 26% at the operating resonant frequency of 562 kHz. This proposed method ensures real-time monitoring of different human body temperatures around the clock. The monitored temperature data have been compared with a calibrated temperature measurement system to ascertain the accuracy of the proposed system. The investigated technique can also be useful for monitoring other body parameters such as blood pressure, bladder pressure, and physiological signals of the patient in vivo using various implantable sensors.

  7. Wireless energizing system for an automated implantable sensor.

    Science.gov (United States)

    Swain, Biswaranjan; Nayak, Praveen P; Kar, Durga P; Bhuyan, Satyanarayan; Mishra, Laxmi P

    2016-07-01

    The wireless drive of an automated implantable electronic sensor has been explored for health monitoring applications. The proposed system comprises of an automated biomedical sensing system which is energized through resonant inductive coupling. The implantable sensor unit is able to monitor the body temperature parameter and sends back the corresponding telemetry data wirelessly to the data recoding unit. It has been observed that the wireless power delivery system is capable of energizing the automated biomedical implantable electronic sensor placed over a distance of 3 cm from the power transmitter with an energy transfer efficiency of 26% at the operating resonant frequency of 562 kHz. This proposed method ensures real-time monitoring of different human body temperatures around the clock. The monitored temperature data have been compared with a calibrated temperature measurement system to ascertain the accuracy of the proposed system. The investigated technique can also be useful for monitoring other body parameters such as blood pressure, bladder pressure, and physiological signals of the patient in vivo using various implantable sensors.

  8. How does wireless phones effect communication and treatment in hospitals?

    DEFF Research Database (Denmark)

    Paasch, Bettina Sletten

    The use of wireless phones in hospital units are increasing, inducing practitioners to carry a working phone each. A study performed in a medical hospital unit demonstrates that wireless phones can impair communication between health care practitioners and patients (Paasch, in press). Also wireless...... phones can compromise patient safety, both by disturbing the practitioners’ concentration, causing mistakes, and by transporting bacteria between patients. This qualitative Ph.D.-study wishes to further investigate the effect of wireless phones on communication and treatment in hospital units, using...... participant observations, ethnographic interviews and video observations. The study will explore how wireless phones mediate and is mediated by practitioners communication with each other and patients. As hospitals are constructed and reconstructed by all communication within, this insight will enable...

  9. Energy scavenging system by acoustic wave and integrated wireless communication

    Science.gov (United States)

    Kim, Albert

    The purpose of the project was developing an energy-scavenging device for other bio implantable devices. Researchers and scientist have studied energy scavenging method because of the limitation of traditional power source, especially for bio-implantable devices. In this research, piezoelectric power generator that activates by acoustic wave, or music was developed. Follow by power generator, a wireless communication also integrated with the device for monitoring the power generation. The Lead Zirconate Titanate (PZT) bimorph cantilever with a proof mass at the free end tip was studied to convert acoustic wave to power. The music or acoustic wave played through a speaker to vibrate piezoelectric power generator. The LC circuit integrated with the piezoelectric material for purpose of wireless monitoring power generation. However, wireless monitoring can be used as wireless power transmission, which means the signal received via wireless communication also can be used for power for other devices. Size of 74 by 7 by 7cm device could generate and transmit 100mVp from 70 mm distance away with electrical resonant frequency at 420.2 kHz..

  10. A Wireless Electronic Esophageal Stethoscope for Continuous Monitoring of Cardiovascular and Respiratory Systems during Anaesthesia

    Directory of Open Access Journals (Sweden)

    Parsaei H.

    2017-03-01

    Full Text Available Background: The basic requirements for monitoring anesthetized patients during surgery are assessing cardiac and respiratory function. Esophageal stethoscopes have been developed for this purpose, but these devices may not provide clear heart and lung sound due to existence of various noises in operating rooms. In addition, the stethoscope is not applicable for continues monitoring, and it is unsuitable for observing inaccessible patients in some conditions such as during CT scan. Objective: A wireless electronic esophageal stethoscope is designed for continues auscultation of heart and lung sounds in anesthetized patients. The system consists of a transmitter and a receiver. The former acquires, amplifies and transmits the acquired sound signals to the latter via a frequency modulation transmitter. The receiver demodulates, amplifies, and delivers the received signal to a headphone to be heard by anesthesiologist. Results: The usability and effectiveness of the designed system was qualitatively evaluated by 5 anesthesiologists in Namazi Hospital and Shahid Chamran Hospital, Shiraz, Iran on 30 patients in several operating rooms in different conditions; e.g., when electro surgery instruments are working. Fortunately, the experts on average ranked good quality for the heard heart and lung sounds and very good on the user friendly being of the instrument. Conclusion: Evaluation results demonstrate that the developed system is capable of capturing and transmitting heart and lung sounds successfully. Therefore, it can be used to continuously monitor anesthetized patients’ cardiac and respiratory function. Since via the instrument wireless auscultation is possible, it could be suitable for observing inaccessible patients in several conditions such as during CT scan.

  11. A Wireless Electronic Esophageal Stethoscope for Continuous Monitoring of Cardiovascular and Respiratory Systems during Anaesthesia

    Science.gov (United States)

    Parsaei, H.; Vakily, A.; Shafiei, A.M.

    2017-01-01

    Background: The basic requirements for monitoring anesthetized patients during surgery are assessing cardiac and respiratory function. Esophageal stethoscopes have been developed for this purpose, but these devices may not provide clear heart and lung sound due to existence of various noises in operating rooms. In addition, the stethoscope is not applicable for continues monitoring, and it is unsuitable for observing inaccessible patients in some conditions such as during CT scan. Objective: A wireless electronic esophageal stethoscope is designed for continues auscultation of heart and lung sounds in anesthetized patients. The system consists of a transmitter and a receiver. The former acquires, amplifies and transmits the acquired sound signals to the latter via a frequency modulation transmitter. The receiver demodulates, amplifies, and delivers the received signal to a headphone to be heard by anesthesiologist. Results: The usability and effectiveness of the designed system was qualitatively evaluated by 5 anesthesiologists in Namazi Hospital and Shahid Chamran Hospital, Shiraz, Iran on 30 patients in several operating rooms in different conditions; e.g., when electro surgery instruments are working. Fortunately, the experts on average ranked good quality for the heard heart and lung sounds and very good on the user friendly being of the instrument. Conclusion: Evaluation results demonstrate that the developed system is capable of capturing and transmitting heart and lung sounds successfully. Therefore, it can be used to continuously monitor anesthetized patients’ cardiac and respiratory function. Since via the instrument wireless auscultation is possible, it could be suitable for observing inaccessible patients in several conditions such as during CT scan. PMID:28451580

  12. An agent-based signal processing in-node environment for real-time human activity monitoring based on wireless body sensor networks

    NARCIS (Netherlands)

    Aiello, F.; Bellifemine, F.L.; Fortino, G.; Galzarano, S.; Gravina, R.

    2011-01-01

    Nowadays wireless body sensor networks (WBSNs) have great potential to enable a broad variety of assisted living applications such as human biophysical/biochemical control and activity monitoring for health care, e-fitness, emergency detection, emotional recognition for social networking, security,

  13. Development of a wireless MEMS multifunction sensor system and field demonstration of embedded sensors for monitoring concrete pavements : tech transfer summary.

    Science.gov (United States)

    2016-08-01

    Micro-electromechanical sensors and systems- (MEMS)-based and : wireless-based smart-sensing technologies have, until now, rarely : been used for monitoring pavement response in the field, and the : requirements for using such smart sensing technolog...

  14. Flood and Traffic Wireless Monitoring System for Smart Cities

    KAUST Repository

    Moussa, Mustafa

    2016-10-01

    The convergence of computation, communication and sensing has led to the emergence of Wireless Sensor Networks (WSNs), which allow distributed monitoring of physical phenomena over extended areas. In this thesis, we focus on a dual flood and traffic flow WSN applicable to urban environments. This fixed sensing system is based on the combination of ultrasonic range-finding with remote temperature sensing, and can sense both phenomena with a high degree of accuracy. This enables the monitoring of urban areas to lessen the impact of catastrophic flood events, by monitoring flood parameters and traffic flow to enable public evacuation and early warning, allocate the resources efficiently or control the traffic to make cities more productive and smarter. We present an implementation of the device, and illustrate its performance in water level estimation and rain detection using a novel combination of L1 regularized reconstruction and machine learning algorithms on a 6-month dataset involving four different sensors. Our results show that water level can be estimated with an uncertainty of 1 cm using a combination of thermal sensing and ultrasonic distance measurements. The demonstration of the performance included the detection of an actual flash flood event using two sensors located in Umm Al Qura University (Mecca). Finally, we show that Lagrangian (mobile) sensors can be used to inexpensively increase the performance of the system with respect to traffic sensing. These sensors are based on Inertial Measurement Units (IMUs), which have never been investigated in the context of traffic ow monitoring before. We investigate the divergence of the speed estimation process, the lack of the calibration parameters of the system, and the problem of reconstructing vehicle trajectories evolving in a given transportation network. To address these problems, we propose an automatic calibration algorithm applicable to IMU-equipped ground vehicles, and an L1 regularized least squares

  15. Design and Implementation of Dual-Mode Wireless Video Monitoring System

    Directory of Open Access Journals (Sweden)

    BAO Song-Jian

    2014-10-01

    Full Text Available Dual-mode wireless video transmission has two major problems. Firstly, one is time delay difference bringing about asynchronous reception decoding frame error phenomenon; secondly, dual-mode network bandwidth inconformity causes scheduling problem. In order to solve above two problems, a kind of TD-SCDMA/CDMA20001x dual-mode wireless video transmission design method is proposed. For the solution of decoding frame error phenomenon, the design puts forward adding frame identification and packet preprocessing at the sending and synchronizing combination at the receiving end. For the solution of scheduling problem, the wireless communication channel cooperative work and video data transmission scheduling management algorithm is proposed in the design.

  16. On-line monitoring of CO2 production in Lactococcus lactis during physiological pH decrease using membrane inlet mass spectrometry with dynamic pH calibration.

    Science.gov (United States)

    Andersen, Ann Zahle; Lauritsen, Frants Roager; Olsen, Lars Folke

    2005-12-20

    Monitoring CO2 production in systems, where pH is changing with time is hampered by the chemical behavior and pH-dependent volatility of this compound. In this article, we present the first method where the concentration and production rate of dissolved CO2 can be monitored directly, continuously, and quantitatively under conditions where pH changes rapidly ( approximately 2 units in 15 min). The method corrects membrane inlet mass spectrometry (MIMS) measurements of CO2 for pH dependency using on-line pH analysis and an experimentally established calibration model. It is valid within the pH range of 3.5 to 7, despite pH-dependent calibration constants that vary in a non-linear fashion with more than a factor of 3 in this interval. The method made it possible to determine the carbon dioxide production during Lactococcus lactis fermentations, where pH drops up to 3 units during the fermentation. The accuracy was approximately 5%. We used the method to investigate the effect of initial extracellular pH on carbon dioxide production during anarobic glucose fermentation by non-growing Lactocoocus lactis and demonstrated that the carbon dioxide production rate increases considerably, when the initial pH was increased from 6 to 6.8. (c) 2005 Wiley Periodicals, Inc.

  17. Delay-tolerant mobile network protocol for rice field monitoring using wireless sensor networks

    Science.gov (United States)

    Guitton, Alexandre; Andres, Frédéric; Cardoso, Jarbas Lopes; Kawtrakul, Asanee; Barbin, Silvio E.

    2015-10-01

    The monitoring of rice fields can improve productivity by helping farmers throughout the rice cultivation cycle, on various issues: when to harvest, when to treat the crops against disease, when to increase the water level, how to share observations and decisions made in a collaborative way, etc. In this paper, we propose an architecture to monitor a rice field by a wireless sensor network. Our architecture is based on static sensor nodes forming a disconnected network, and mobile nodes communicating with the sensor nodes in a delay-tolerant manner. The data collected by the static sensor nodes are transmitted to mobile nodes, which in turn transmit them to a gateway, connected to a database, for further analysis. We focus on the related architecture, as well as on the energy-efficient protocols intended to perform the data collection.

  18. Intelligent Wireless Sensor Networks for System Health Monitoring

    Science.gov (United States)

    Alena, Rick

    2011-01-01

    Wireless sensor networks (WSN) based on the IEEE 802.15.4 Personal Area Network (PAN) standard are finding increasing use in the home automation and emerging smart energy markets. The network and application layers, based on the ZigBee 2007 Standard, provide a convenient framework for component-based software that supports customer solutions from multiple vendors. WSNs provide the inherent fault tolerance required for aerospace applications. The Discovery and Systems Health Group at NASA Ames Research Center has been developing WSN technology for use aboard aircraft and spacecraft for System Health Monitoring of structures and life support systems using funding from the NASA Engineering and Safety Center and Exploration Technology Development and Demonstration Program. This technology provides key advantages for low-power, low-cost ancillary sensing systems particularly across pressure interfaces and in areas where it is difficult to run wires. Intelligence for sensor networks could be defined as the capability of forming dynamic sensor networks, allowing high-level application software to identify and address any sensor that joined the network without the use of any centralized database defining the sensors characteristics. The IEEE 1451 Standard defines methods for the management of intelligent sensor systems and the IEEE 1451.4 section defines Transducer Electronic Datasheets (TEDS), which contain key information regarding the sensor characteristics such as name, description, serial number, calibration information and user information such as location within a vehicle. By locating the TEDS information on the wireless sensor itself and enabling access to this information base from the application software, the application can identify the sensor unambiguously and interpret and present the sensor data stream without reference to any other information. The application software is able to read the status of each sensor module, responding in real-time to changes of

  19. A practical monitoring system for the structural safety of mega-trusses using wireless vibrating wire strain gauges.

    Science.gov (United States)

    Park, Hyo Seon; Lee, Hwan Young; Choi, Se Woon; Kim, Yousok

    2013-12-16

    Sensor technologies have been actively employed in structural health monitoring (SHM) to evaluate structural safety. To provide stable and real-time monitoring, a practical wireless sensor network system (WSNS) based on vibrating wire strain gauges (VWSGs) is proposed and applied to a building under construction. In this WSNS, the data measured from each VWSG are transmitted to the sensor node via a signal line and then transmitted to the master node through a short-range wireless communication module (operating on the Industrial, Scientific, and Medical (ISM) band). The master node also employs a long-range wireless communication module (Code Division Multiple Access-CDMA) to transmit the received data from the sensor node to a server located in a remote area, which enables a manager to examine the measured data in real time without any time or location restrictions. In this study, a total of 48 VWSGs, 14 sensor nodes, and seven master nodes were implemented to measure long-term strain variations of mega-trusses in an irregular large-scale building under construction. Based on strain data collected over a 16-month period, a quantitative evaluation of the construction process was performed to determine the aspects that exhibit the greatest influence on member behavior and to conduct a comparison with numerical simulation results. The effect of temperature stress on the structural elements was also analyzed. From these observations, the feasibility of a long-term WSNS based on VWSGs to evaluate the structural safety of an irregular building under construction was confirmed.

  20. A Practical Monitoring System for the Structural Safety of Mega-Trusses Using Wireless Vibrating Wire Strain Gauges

    Directory of Open Access Journals (Sweden)

    Hyo Seon Park

    2013-12-01

    Full Text Available Sensor technologies have been actively employed in structural health monitoring (SHM to evaluate structural safety. To provide stable and real-time monitoring, a practical wireless sensor network system (WSNS based on vibrating wire strain gauges (VWSGs is proposed and applied to a building under construction. In this WSNS, the data measured from each VWSG are transmitted to the sensor node via a signal line and then transmitted to the master node through a short-range wireless communication module (operating on the Industrial, Scientific, and Medical (ISM band. The master node also employs a long-range wireless communication module (Code Division Multiple Access—CDMA to transmit the received data from the sensor node to a server located in a remote area, which enables a manager to examine the measured data in real time without any time or location restrictions. In this study, a total of 48 VWSGs, 14 sensor nodes, and seven master nodes were implemented to measure long-term strain variations of mega-trusses in an irregular large-scale building under construction. Based on strain data collected over a 16-month period, a quantitative evaluation of the construction process was performed to determine the aspects that exhibit the greatest influence on member behavior and to conduct a comparison with numerical simulation results. The effect of temperature stress on the structural elements was also analyzed. From these observations, the feasibility of a long-term WSNS based on VWSGs to evaluate the structural safety of an irregular building under construction was confirmed.

  1. Wireless, Ultra-Low-Power Implantable Sensor for Chronic Bladder Pressure Monitoring.

    Science.gov (United States)

    Majerus, Steve J A; Garverick, Steven L; Suster, Michael A; Fletter, Paul C; Damaser, Margot S

    2012-06-01

    The wireless implantable/intracavity micromanometer (WIMM) system was designed to fulfill the unmet need for a chronic bladder pressure sensing device in urological fields such as urodynamics for diagnosis and neuromodulation for bladder control. Neuromodulation in particular would benefit from a wireless bladder pressure sensor which could provide real-time pressure feedback to an implanted stimulator, resulting in greater bladder capacity while using less power. The WIMM uses custom integrated circuitry, a MEMS transducer, and a wireless antenna to transmit pressure telemetry at a rate of 10 Hz. Aggressive power management techniques yield an average current draw of 9 μ A from a 3.6-Volt micro-battery, which minimizes the implant size. Automatic pressure offset cancellation circuits maximize the sensing dynamic range to account for drifting pressure offset due to environmental factors, and a custom telemetry protocol allows transmission with minimum overhead. Wireless operation of the WIMM has demonstrated that the external receiver can receive the telemetry packets, and the low power consumption allows for at least 24 hours of operation with a 4-hour wireless recharge session.

  2. Induction of Inflammation In Vivo by Electrocardiogram Sensor Operation Using Wireless Power Transmission

    Directory of Open Access Journals (Sweden)

    Jin-Chul Heo

    2017-12-01

    Full Text Available Prolonged monitoring by cardiac electrocardiogram (ECG sensors is useful for patients with emergency heart conditions. However, implant monitoring systems are limited by lack of tissue biocompatibility. Here, we developed an implantable ECG sensor for real-time monitoring of ventricular fibrillation and evaluated its biocompatibility using an animal model. The implantable sensor comprised transplant sensors with two electrodes, a wireless power transmission system, and a monitoring system. The sensor was inserted into the subcutaneous tissue of the abdominal area and operated for 1 h/day for 5 days using a wireless power system. Importantly, the sensor was encapsulated by subcutaneous tissue and induced angiogenesis, inflammation, and phagocytosis. In addition, we observed that the levels of inflammation-related markers increased with wireless-powered transmission via the ECG sensor; in particular, levels of the Th-1 cytokine interleukin-12 were significantly increased. The results showed that induced tissue damage was associated with the use of wireless-powered sensors. We also investigated research strategies for the prevention of adverse effects caused by lack of tissue biocompatibility of a wireless-powered ECG monitoring system and provided information on the clinical applications of inflammatory reactions in implant treatment using the wireless-powered transmission system.

  3. Diagnostic value of combined esophageal multi-channel intraluminal impedance and pH monitoring for gastroesophageal reflux in critically ill patients

    Directory of Open Access Journals (Sweden)

    Yi JIN

    2016-06-01

    Full Text Available Objective  To compare the diagnostic value of using 24-hour combined esophageal multichannel intraluminal impedance and pH monitoring (MII-pH in the diagnosis of gastro-esophageal reflux (GER and pH monitoring alone in critically ill patients. Methods  A prospective observational study was performed including 116 critically ill adult patients admitted to ICU of Peking Haidian Hospital from Jul. 2013 to Dec. 2014. All the patients underwent 24-hour combined MⅡ-pH monitoring. GER episodes were recorded and its pH was recorded (acidic, weakly acidic and weakly alkaline and its composition was recorded (liquid, mixed and gas reflux. The results of the MⅡ-pH and the pH were monitored and compared. The demographic characteristics and clinical information were recorded. Results  MⅡ-pH was monitored for 5024 episodes of GER in 115 of 116(99.1% patients, with a mean of 43.28±3.96 episodes per patient (median, 34 episodes; range, 0-196 episodes. The pH monitoring detected 1868 episodes (100% acid in only 54 of 116(46.6% patients, with a mean of 7.66±1.65 episodes per patient (median, 0 episodes; range, 0-81 episodes. The number of episode of all reflux and liquid reflux diagnosed by pH monitoring alone was less than those diagnosed by MⅡ-pH monitoring (P=0.000, and there was no correlation in the episodes number of all reflux and liquid reflux between the two techniques (r=0.119, 0.231. Only a moderate correlation was found in the number of episodes of acidic reflux between the two techniques (r=0.656. Conclusion  MⅡ-pH monitoring is more sensitive than pH monitoring alone for establishing the diagnosis of GER. DOI: 10.11855/j.issn.0577-7402.2016.05.12

  4. Radio/antenna mounting system for wireless networking under row-crop agriculture conditions

    Science.gov (United States)

    Interest in and deployment of wireless monitoring systems is increasing in many diverse environments, including row-crop agricultural fields. While many studies have been undertaken to evaluate various aspects of wireless monitoring and networking, such as electronic hardware components, data-colle...

  5. Unmanned Aerial Vehicle Based Wireless Sensor Network for Marine-Coastal Environment Monitoring.

    Science.gov (United States)

    Trasviña-Moreno, Carlos A; Blasco, Rubén; Marco, Álvaro; Casas, Roberto; Trasviña-Castro, Armando

    2017-02-24

    Marine environments are delicate ecosystems which directly influence local climates, flora, fauna, and human activities. Their monitorization plays a key role in their preservation, which is most commonly done through the use of environmental sensing buoy networks. These devices transmit data by means of satellite communications or close-range base stations, which present several limitations and elevated infrastructure costs. Unmanned Aerial Vehicles (UAV) are another alternative for remote environmental monitoring which provide new types of data and ease of use. These aircraft are mainly used in video capture related applications, in its various light spectrums, and do not provide the same data as sensing buoys, nor can they be used for such extended periods of time. The aim of this research is to provide a flexible, easy to deploy and cost-effective Wireless Sensor Network (WSN) for monitoring marine environments. This proposal uses a UAV as a mobile data collector, low-power long-range communications and sensing buoys as part of a single WSN. A complete description of the design, development, and implementation of the various parts of this system is presented, as well as its validation in a real-world scenario.

  6. A Wireless Sensor Network with Enhanced Power Efficiency and Embedded Strain Cycle Identification for Fatigue Monitoring of Railway Bridges

    OpenAIRE

    Feltrin, Glauco; Popovic, Nemanja; Flouri, Kallirroi; Pietrzak, Piotr

    2016-01-01

    Wireless sensor networks have been shown to be a cost-effective monitoring tool for many applications on civil structures. Strain cycle monitoring for fatigue life assessment of railway bridges, however, is still a challenge since it is data intensive and requires a reliable operation for several weeks or months. In addition, sensing with electrical resistance strain gauges is expensive in terms of energy consumption. The induced reduction of battery lifetime of sensor nodes increases the mai...

  7. Wireless sensor platform

    Science.gov (United States)

    Joshi, Pooran C.; Killough, Stephen M.; Kuruganti, Phani Teja

    2017-08-08

    A wireless sensor platform and methods of manufacture are provided. The platform involves providing a plurality of wireless sensors, where each of the sensors is fabricated on flexible substrates using printing techniques and low temperature curing. Each of the sensors can include planar sensor elements and planar antennas defined using the printing and curing. Further, each of the sensors can include a communications system configured to encode the data from the sensors into a spread spectrum code sequence that is transmitted to a central computer(s) for use in monitoring an area associated with the sensors.

  8. Wireless Sensor Network for Forest Fire Detection 2

    OpenAIRE

    João Gilberto Fernandes Gonçalves Teixeira

    2017-01-01

    The main purpose for this project is the development of a semi-autonomous wireless sensor network for fire detection in remote territory. Making use of the IEEE 802.15.4 standard, a wireless standard for low-power, low-rate wireless sensor networks, a real sensor network and web application will be developed and deployed with the ability to monitor sensor data, detect a fire occurrence and generate early fire alerts.

  9. Monitoring in the post-closure phase. Development of wireless techniques for data transmission from the repository to the surface

    International Nuclear Information System (INIS)

    Schroeder, Thomas J.; Rosca-Bocancea, Ecaterina; Hart, Jaap

    2015-01-01

    When the in-situ monitoring in a geological disposal facility is continued during the post-closure phase, monitoring data need to be transmitted wirelessly from the repository to the surface. Wireless data transmission is used today in many applications, but the large attenuation by the geologic medium between the disposal facility and the surface makes the application of high-frequency based techniques impractical. As part of the EURATOM FP-7 project MoDeRn (Monitoring Developments for safe Repository operation and staged closure), NRG has investigated the feasibility of wireless data transmission through an argillaceous host rock (Boom Clay), making use of low frequency magnetic fields. The main focus of the contribution was to analyze and optimize the energy efficiency of this technique. Therefore, a mathematical model description has been developed that allows to estimate the expected signal strength on the earth's surface on basis of the most relevant characteristics of transmitter, receiver and transmission path. The model is used to analyze the complex interactions of different system parameters, and is applied to design an optimized set-up for through-the-earth data transmission and to estimate minimum energy demands for signal transmission. To demonstrate the potentials of this technique, experiments were performed in the 225 m deep underground research facility HADES in Mol, Belgium. Signal propagation and attenuation by the geologic medium between the HADES and the surface has been measured, and the site-specific magnetic background noise at the surface in Mol has been characterized. Based on the results, optimum conditions for signal transmission have been derived and data transmission experiments have been performed. Results show that despite large local interferences on the surface in Mol, wireless data transmission through 225 m of a geological medium is possible. Data transmission rates up to 100 bit/s has been successfully tested. The

  10. Monitoring in the post-closure phase. Development of wireless techniques for data transmission from the repository to the surface

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, Thomas J.; Rosca-Bocancea, Ecaterina; Hart, Jaap [Nuclear Research and Consultancy Group (NRG), Petten (Netherlands)

    2015-07-01

    When the in-situ monitoring in a geological disposal facility is continued during the post-closure phase, monitoring data need to be transmitted wirelessly from the repository to the surface. Wireless data transmission is used today in many applications, but the large attenuation by the geologic medium between the disposal facility and the surface makes the application of high-frequency based techniques impractical. As part of the EURATOM FP-7 project MoDeRn (Monitoring Developments for safe Repository operation and staged closure), NRG has investigated the feasibility of wireless data transmission through an argillaceous host rock (Boom Clay), making use of low frequency magnetic fields. The main focus of the contribution was to analyze and optimize the energy efficiency of this technique. Therefore, a mathematical model description has been developed that allows to estimate the expected signal strength on the earth's surface on basis of the most relevant characteristics of transmitter, receiver and transmission path. The model is used to analyze the complex interactions of different system parameters, and is applied to design an optimized set-up for through-the-earth data transmission and to estimate minimum energy demands for signal transmission. To demonstrate the potentials of this technique, experiments were performed in the 225 m deep underground research facility HADES in Mol, Belgium. Signal propagation and attenuation by the geologic medium between the HADES and the surface has been measured, and the site-specific magnetic background noise at the surface in Mol has been characterized. Based on the results, optimum conditions for signal transmission have been derived and data transmission experiments have been performed. Results show that despite large local interferences on the surface in Mol, wireless data transmission through 225 m of a geological medium is possible. Data transmission rates up to 100 bit/s has been successfully tested. The

  11. Optimized and Executive Survey of Physical Node Capture Attack in Wireless Sensor Network

    OpenAIRE

    Bhavana Butani; Piyush Kumar Shukla; Sanjay Silakari

    2014-01-01

    Wireless sensor networks (WSNs) are novel large-scale wireless networks that consist of distributed, self organizing, low-power, low-cost, tiny sensor devices to cooperatively collect information through infrastructure less wireless networks. These networks are envisioned to play a crucial role in variety of applications like critical military surveillance applications, forest fire monitoring, commercial applications such as building security monitoring, traffic surveillance, habitat monitori...

  12. Low-Power and Reliable Communications for UWB-Based Wireless Monitoring Sensor Networks in Underground Mine Tunnels

    OpenAIRE

    Abou El-Nasr, Mohamad; Shaban, Heba

    2015-01-01

    This paper investigates the bit-error-rate (BER) and maximum allowable data throughput (MADTh) performance of a novel low-power mismatched Rake receiver structure for ultra wideband (UWB) wireless monitoring sensor networks in underground mine tunnels. This receive node structure provides a promising solution for low-power and reliable communications in underground mine tunnels with more than 90% reduction in power consumption. The BER and MADTh of the proposed receive nodes are investigated ...

  13. A Three-Step Resolution-Reconfigurable Hazardous Multi-Gas Sensor Interface for Wireless Air-Quality Monitoring Applications.

    Science.gov (United States)

    Choi, Subin; Park, Kyeonghwan; Lee, Seungwook; Lim, Yeongjin; Oh, Byungjoo; Chae, Hee Young; Park, Chan Sam; Shin, Heugjoo; Kim, Jae Joon

    2018-03-02

    This paper presents a resolution-reconfigurable wide-range resistive sensor readout interface for wireless multi-gas monitoring applications that displays results on a smartphone. Three types of sensing resolutions were selected to minimize processing power consumption, and a dual-mode front-end structure was proposed to support the detection of a variety of hazardous gases with wide range of characteristic resistance. The readout integrated circuit (ROIC) was fabricated in a 0.18 μm CMOS process to provide three reconfigurable data conversions that correspond to a low-power resistance-to-digital converter (RDC), a 12-bit successive approximation register (SAR) analog-to-digital converter (ADC), and a 16-bit delta-sigma modulator. For functional feasibility, a wireless sensor system prototype that included in-house microelectromechanical (MEMS) sensing devices and commercial device products was manufactured and experimentally verified to detect a variety of hazardous gases.

  14. Wireless Sensing Opportunities for Aerospace Applications

    Directory of Open Access Journals (Sweden)

    William Wilson

    2008-07-01

    Full Text Available Wireless sensors and sensor networks is an emerging technology area with many applications within the aerospace industry. Integrated vehicle health monitoring (IVHM of aerospace vehicles is needed to ensure the safety of the crew and the vehicle, yet often high costs, weight, size and other constraints prevent the incorporation of instrumentation onto spacecraft. This paper presents a few of the areas such as IVHM, where new wireless sensing technology is needed on both existing vehicles as well as future spacecraft. From ground tests to inflatable structures to the International Space Station, many applications could receive benefits from small, low power, wireless sensors. This paper also highlights some of the challenges that need to overcome when implementing wireless sensor networks for aerospace vehicles.

  15. Technical Survey on Applications of Wireless Sensor Networks in Nuclear Power Plants

    International Nuclear Information System (INIS)

    Jiang, Jin; Bari, Ataul; Chen, Dongyi; Hashemian, Hash M.

    2014-01-01

    Even though there is no general consensus on using wireless technologies in nuclear power plants, potential applications of wireless sensor networks within nuclear power plants (NPPs) has been investigated. The topics of interests include potential interaction of wireless sensor networks with the sensitive protection equipment, radiation damage of the electronics on board sensor nodes, optimal placement of relay nodes that collect and forward data in the network, and possible applications, such as radiation dose and level monitoring, and equipment condition monitoring. Several wireless sensor networks have been deployed on site of NPPs on a trial basis to perform these tasks. Different aspects of deployment of such wireless sensor networks in NPPs have also been examined. Industrial standards or guidelines for deployment of WSNs in NPPs are also been considered. This paper examines the state of the art of wireless sensor networks in NPPs

  16. Technical Survey on Applications of Wireless Sensor Networks in Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Jin; Bari, Ataul [University of Western Ontario, Ontario (Canada); Chen, Dongyi [University of Electronic Science and Technology of China, Chengdu (China); Hashemian, Hash M. [AMS Technology Center, Knoxville (United States)

    2014-08-15

    Even though there is no general consensus on using wireless technologies in nuclear power plants, potential applications of wireless sensor networks within nuclear power plants (NPPs) has been investigated. The topics of interests include potential interaction of wireless sensor networks with the sensitive protection equipment, radiation damage of the electronics on board sensor nodes, optimal placement of relay nodes that collect and forward data in the network, and possible applications, such as radiation dose and level monitoring, and equipment condition monitoring. Several wireless sensor networks have been deployed on site of NPPs on a trial basis to perform these tasks. Different aspects of deployment of such wireless sensor networks in NPPs have also been examined. Industrial standards or guidelines for deployment of WSNs in NPPs are also been considered. This paper examines the state of the art of wireless sensor networks in NPPs.

  17. LBMR: Load-Balanced Multipath Routing for Wireless Data-Intensive Transmission in Real-Time Medical Monitoring.

    Science.gov (United States)

    Tseng, Chinyang Henry

    2016-05-31

    In wireless networks, low-power Zigbee is an excellent network solution for wireless medical monitoring systems. Medical monitoring generally involves transmission of a large amount of data and easily causes bottleneck problems. Although Zigbee's AODV mesh routing provides extensible multi-hop data transmission to extend network coverage, it originally does not, and needs to support some form of load balancing mechanism to avoid bottlenecks. To guarantee a more reliable multi-hop data transmission for life-critical medical applications, we have developed a multipath solution, called Load-Balanced Multipath Routing (LBMR) to replace Zigbee's routing mechanism. LBMR consists of three main parts: Layer Routing Construction (LRC), a Load Estimation Algorithm (LEA), and a Route Maintenance (RM) mechanism. LRC assigns nodes into different layers based on the node's distance to the medical data gateway. Nodes can have multiple next-hops delivering medical data toward the gateway. All neighboring layer-nodes exchange flow information containing current load, which is the used by the LEA to estimate future load of next-hops to the gateway. With LBMR, nodes can choose the neighbors with the least load as the next-hops and thus can achieve load balancing and avoid bottlenecks. Furthermore, RM can detect route failures in real-time and perform route redirection to ensure routing robustness. Since LRC and LEA prevent bottlenecks while RM ensures routing fault tolerance, LBMR provides a highly reliable routing service for medical monitoring. To evaluate these accomplishments, we compare LBMR with Zigbee's AODV and another multipath protocol, AOMDV. The simulation results demonstrate LBMR achieves better load balancing, less unreachable nodes, and better packet delivery ratio than either AODV or AOMDV.

  18. Twenty-four-hour esophageal pH monitoring in children and adolescents with chronic and/or recurrent rhinosinusitis

    Directory of Open Access Journals (Sweden)

    V.R.S.G. Monteiro

    2005-02-01

    Full Text Available Gastroesophageal reflux (GER disorder was studied in children and adolescents with chronic and/or recurrent rhinosinusitis not associated with bronchial asthma. Ten children with a clinical and radiological diagnosis of chronic and/or recurrent rhinosinusitis, consecutively attended at the Pediatric Otolaryngology Outpatient Clinic, Federal University of São Paulo, were evaluated. Prolonged esophageal pH monitoring was used to investigate GER disorder. The mean age of the ten patients evaluated (eight males was 7.4 ± 2.4 years. Two patients presented vomiting as a clinical manifestation and one patient presented retrosternal pain with a burning sensation. Twenty-four-hour esophageal pH monitoring was performed using the Sandhill apparatus. An antimony probe electrode was placed in the lower third of the esophagus, confirmed by fluoroscopy and later by a chest X-ray. The parameters analyzed by esophageal pH monitoring included: total percent time of the presence of acid esophageal pH, i.e., pH below 4 (<4.2%; total number of acid episodes (<50 episodes; number of reflux episodes longer than 5 min (3 or less, and duration of the longest reflux episode (<9.2 min. One patient (1/10, 10% presented a 24-h esophageal pH profile compatible with GER disorder. This data suggest that an association between chronic rhinosinusitis not associated with bronchial asthma and GER disorder may exist in children and adolescents, especially in those with compatible GER disorder symptoms. In these cases, 24-h esophageal pH monitoring should be performed before indicating surgery, since the present data suggest that 10% of chronic rhinosinusitis surgeries can be eliminated.

  19. Wireless sensor network for irrigation application in cotton

    Science.gov (United States)

    A wireless sensor network was deployed in a cotton field to monitor soil water status for irrigation. The network included two systems, a Decagon system and a microcontroller-based system. The Decagon system consists of soil volumetric water-content sensors, wireless data loggers, and a central data...

  20. Implementation monitoring temperature, humidity and mositure soil based on wireless sensor network for e-agriculture technology

    Science.gov (United States)

    Sumarudin, A.; Ghozali, A. L.; Hasyim, A.; Effendi, A.

    2016-04-01

    Indonesian agriculture has great potensial for development. Agriculture a lot yet based on data collection for soil or plant, data soil can use for analys soil fertility. We propose e-agriculture system for monitoring soil. This system can monitoring soil status. Monitoring system based on wireless sensor mote that sensing soil status. Sensor monitoring utilize soil moisture, humidity and temperature. System monitoring design with mote based on microcontroler and xbee connection. Data sensing send to gateway with star topology with one gateway. Gateway utilize with mini personal computer and connect to xbee cordinator mode. On gateway, gateway include apache server for store data based on My-SQL. System web base with YII framework. System done implementation and can show soil status real time. Result the system can connection other mote 40 meters and mote lifetime 7 hours and minimum voltage 7 volt. The system can help famer for monitoring soil and farmer can making decision for treatment soil based on data. It can improve the quality in agricultural production and would decrease the management and farming costs.

  1. Guidelines for wireless technology in nuclear power plants

    International Nuclear Information System (INIS)

    Shankar, Ramesh

    2003-01-01

    As a result of technological breakthroughs, increased demand for the use of wireless technology is common in all industries today, and the electric power industry is no exception. Already, wireless technology has many applications in our industry, including - but not limited to - cellular phone systems, paging systems, two-way radio communication systems, dose management and tracking systems, and operator logs. EPRI has prepared a comprehensive guidelines document to support evaluation of wireless technologies in power plants for integrated (voice/data/video) communication, remote equipment and system monitoring, and to complement an electronic procedures support system (EPSS). The guidelines effort focuses on the development of a rules structure to support the deployment of wireless devices in a plant without compromising continuous, safe, and reliable operation. The guidelines document consists of two volumes. The first volume is introductory in nature and lays out the business case for applying wireless technologies. The intended audience is senior plant management personnel and utility industry executives. This volume contains background information, templates, worksheets, processes, and presentations that will allow internal sponsors to create business cases for piloting wireless projects. The second volume includes guidance on implementation and regulatory issues relevant to plant implementation. It covers the following application areas: implementation of integrated communication capability, equipment monitoring, work quality control, time and knowledge management, and business process automation. It details regulatory issues relevant to the adoption of wireless technology within nuclear power plants and offers guidance on preparing for and executing pilot and implementations of wireless technologies. The paper will cover important aspects on the guidelines. (author)

  2. Low-power wireless micromanometer system for acute and chronic bladder-pressure monitoring.

    Science.gov (United States)

    Majerus, Steve J A; Fletter, Paul C; Damaser, Margot S; Garverick, Steven L

    2011-03-01

    This letter describes the design, fabrication, and testing of a wireless bladder-pressure-sensing system for chronic, point-of-care applications, such as urodynamics or closed-loop neuromodulation. The system consists of a miniature implantable device and an external RF receiver and wireless battery charger. The implant is small enough to be cystoscopically implanted within the bladder wall, where it is securely held and shielded from the urine stream. The implant consists of a custom application-specific integrated circuit (ASIC), a pressure transducer, a rechargeable battery, and wireless telemetry and recharging antennas. The ASIC includes instrumentation, wireless transmission, and power-management circuitry, and on an average draws less than 9 μA from the 3.6-V battery. The battery charge can be wirelessly replenished with daily 6-h recharge periods that can occur during the periods of sleep. Acute in vivo evaluation of the pressure-sensing system in canine models has demonstrated that the system can accurately capture lumen pressure from a submucosal implant location.

  3. Artificial intelligence based event detection in wireless sensor networks

    NARCIS (Netherlands)

    Bahrepour, M.

    2013-01-01

    Wireless sensor networks (WSNs) are composed of large number of small, inexpensive devices, called sensor nodes, which are equipped with sensing, processing, and communication capabilities. While traditional applications of wireless sensor networks focused on periodic monitoring, the focus of more

  4. Wireless vibration-based SHM of caisson-type breakwater under foundation damage

    Science.gov (United States)

    Lee, So-Young; Nguyen, Khac-Duy; Kim, Jeong-Tae; Yi, Jin-Hak

    2012-04-01

    This paper presents a vibration-based structural health monitoring (SHM) technique using a high sensitive wireless sensor node for caisson-type breakwater. To achieve the objective, the following approaches are implemented. Firstly, vibration-based SHM method is selected for caisson-type breakwater. The feasibility of the vibration-based SHM method is examined for the caisson structure by FE analysis. Foundation loss damage is considered as the damage of caisson-type breakwater. Secondly, a wireless SHM system with a high sensitive wireless sensor node is designed. The sensor node is built on an imote2 platform. The vibration-based SHM method is embedded on the sensor node. Finally, the performance of the wireless SHM technique is estimated from experimental tests on a lab-scaled caisson. The vibration responses and damage monitoring results are compared with the proposed wireless system and conventional wired system.

  5. The Design and Implementation of Smart Monitoring System for Large-Scale Railway Maintenance Equipment Cab Based on ZigBee Wireless Sensor Network

    OpenAIRE

    Hairui Wang; Junfu Yu

    2014-01-01

    In recent years, organizations use IEEE 802.15.4 and ZigBee technology to deliver solution in variety areas including home environment monitoring. ZigBee technology has advantages on low-cost, low power consumption and self-forming. With the rapid expansion of the Internet, there is the requirement for remote monitoring large-scale railway maintenance equipment cab. This paper discusses the disadvantages of the existing smart monitoring system, and proposes a solution. A ZigBee wireless senso...

  6. A wireless sensor network for urban traffic characterization and trend monitoring.

    Science.gov (United States)

    Fernández-Lozano, J J; Martín-Guzmán, Miguel; Martín-Ávila, Juan; García-Cerezo, A

    2015-10-15

    Sustainable mobility requires a better management of the available infrastructure resources. To achieve this goal, it is necessary to obtain accurate data about road usage, in particular in urban areas. Although a variety of sensor alternates for urban traffic exist, they usually require extensive investments in the form of construction works for installation, processing means, etc. Wireless Sensor Networks (WSN) are an alternative to acquire urban traffic data, allowing for flexible, easy deployment. Together with the use of the appropriate sensors, like Bluetooth identification, and associate processing, WSN can provide the means to obtain in real time data like the origin-destination matrix, a key tool for trend monitoring which previously required weeks or months to be completed. This paper presents a system based on WSN designed to characterize urban traffic, particularly traffic trend monitoring through the calculation of the origin-destination matrix in real time by using Bluetooth identification. Additional sensors are also available integrated in different types of nodes. Experiments in real conditions have been performed, both for separate sensors (Bluetooth, ultrasound and laser), and for the whole system, showing the feasibility of this approach.

  7. Wireless cardiac action potential transmission with ultrasonically inserted silicon microprobes

    International Nuclear Information System (INIS)

    Shen, C J; Ramkumar, A; Lal, A; Gilmour, R F Jr

    2011-01-01

    This paper reports on the integration of ultrasonically inserted horn-shaped cardiac probes with wireless transmission of 3D cardiac action potential measurement for applications in ex vivo preparations such as monitoring the onset of ventricular fibrillation. Ultrasonically inserted silicon horn probes permit reduced penetration force during insertion, allowing silicon, a brittle material, to penetrate cardiac tissue. The probes also allow recording from multiple sites that are lithographically defined. An application-specific integrated circuit has been designed with a 40 dB amplifying stage and a frequency modulating oscillator at 95 MHz to wirelessly transmit the recorded action potentials. This ultrasonically inserted microprobe wireless system demonstrates the initial results in wireless monitoring of 3D action potential propagation, and the extraction of parameters of interest including the action potential duration and diastolic interval

  8. Industrial wireless sensor networks applications, protocols, and standards

    CERN Document Server

    Güngör, V Çagri

    2013-01-01

    The collaborative nature of industrial wireless sensor networks (IWSNs) brings several advantages over traditional wired industrial monitoring and control systems, including self-organization, rapid deployment, flexibility, and inherent intelligent processing. In this regard, IWSNs play a vital role in creating more reliable, efficient, and productive industrial systems, thus improving companies' competitiveness in the marketplace. Industrial Wireless Sensor Networks: Applications, Protocols, and Standards examines the current state of the art in industrial wireless sensor networks and outline

  9. A data acquisition protocol for a reactive wireless sensor network monitoring application.

    Science.gov (United States)

    Aderohunmu, Femi A; Brunelli, Davide; Deng, Jeremiah D; Purvis, Martin K

    2015-04-30

    Limiting energy consumption is one of the primary aims for most real-world deployments of wireless sensor networks. Unfortunately, attempts to optimize energy efficiency are often in conflict with the demand for network reactiveness to transmit urgent messages. In this article, we propose SWIFTNET: a reactive data acquisition scheme. It is built on the synergies arising from a combination of the data reduction methods and energy-efficient data compression schemes. Particularly, it combines compressed sensing, data prediction and adaptive sampling strategies. We show how this approach dramatically reduces the amount of unnecessary data transmission in the deployment for environmental monitoring and surveillance networks. SWIFTNET targets any monitoring applications that require high reactiveness with aggressive data collection and transmission. To test the performance of this method, we present a real-world testbed for a wildfire monitoring as a use-case. The results from our in-house deployment testbed of 15 nodes have proven to be favorable. On average, over 50% communication reduction when compared with a default adaptive prediction method is achieved without any loss in accuracy. In addition, SWIFTNET is able to guarantee reactiveness by adjusting the sampling interval from 5 min up to 15 s in our application domain.

  10. Wireless connection of continuous glucose monitoring system to the electronic patient record

    Science.gov (United States)

    Murakami, Alexandre; Gutierrez, Marco A.; Lage, Silvia G.; Rebelo, Marina S.; Granja, Luiz A. R.; Ramires, Jose A. F.

    2005-04-01

    The control of blood sugar level (BSL) at near-normal levels has been documented to reduce both acute and chronic complications of diabetes mellitus. Recent studies suggested, the reduction of mortality in a surgical intensive care unit (ICU), when the BSL are maintained at normal levels. Despite of the benefits appointed by these and others clinical studies, the strict BSL control in critically ill patients suffers from some difficulties: a) medical staff need to measure and control the patient"s BSL using blood sample at least every hour. This is a complex and time consuming task; b) the inaccuracy of standard capillary glucose monitoring (fingerstick) in hypotensive patients and, if frequently used to sample arterial or venous blood, may lead to excess phlebotomy; c) there is no validated procedure for continuously monitoring of BSL levels. This study used the MiniMed CGMS in ill patients at ICU to send, in real-time, BSL values to a Web-Based Electronic Patient Record. The BSL values are parsed and delivered through a wireless network as an HL7 message. The HL7 messages with BSL values are collected, stored into the Electronic Patient Record and presented into a bed-side monitor at the ICU together with other relevant patient information.

  11. Applicable approach of the wireless technology for Korean nuclear power plants

    International Nuclear Information System (INIS)

    Ko, Do Young; Lee, Soo Ill

    2013-01-01

    Highlights: • To apply wireless technology for Korean NPPs, several stipulations are proposed. • WLAN is proposed as the most appropriate wireless technology for Korean NPPs. • WLAN can be applied to the specific fields except in the control system. • An attitude survey on wireless showed that 94.7% agree with the necessity of wireless. - Abstract: Recently, many nuclear power plants (NPPs) over the world use various types of wireless systems for the advantages. Unfortunately, wireless technologies are not currently installed in any Korean NPPs because it is difficult to solve the negative impact of unexpected outcomes or failures from the influence of the wireless technologies, which is electromagnetic interference and radio-frequency interference (EMI/RFI). Moreover, a lack of desire on the part of Korean nuclear industry to implement it leads to give up benefit from the wireless technologies. To install the wireless technologies with maximum benefit and minimum risk, a systematic approach, which quantify the negative impact and prevent the influence, is essential; therefore, this paper describes an applicable research result on the wireless technology for Korean NPPs based on regulatory guides and current wireless hardware and software technologies. Also, survey on the needs for the wireless technology for Korean nuclear power plants was conducted, because the level of awareness of workers in NPPs regarding wireless technologies is very important issue. In this paper, we propose an applicable system to enhance the applicability for the wireless technology for Korean NPPs. The result based on proposed applicable system shows that wireless local area network (WLAN) is the representative candidate for Korean NPPs, which can be applied to the specific fields of radiation monitoring, voice and data communication, component monitoring and instrumentation, and wireless cameras

  12. Applicable approach of the wireless technology for Korean nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Do Young, E-mail: kodoyoung@khnp.co.kr; Lee, Soo Ill

    2013-12-15

    Highlights: • To apply wireless technology for Korean NPPs, several stipulations are proposed. • WLAN is proposed as the most appropriate wireless technology for Korean NPPs. • WLAN can be applied to the specific fields except in the control system. • An attitude survey on wireless showed that 94.7% agree with the necessity of wireless. - Abstract: Recently, many nuclear power plants (NPPs) over the world use various types of wireless systems for the advantages. Unfortunately, wireless technologies are not currently installed in any Korean NPPs because it is difficult to solve the negative impact of unexpected outcomes or failures from the influence of the wireless technologies, which is electromagnetic interference and radio-frequency interference (EMI/RFI). Moreover, a lack of desire on the part of Korean nuclear industry to implement it leads to give up benefit from the wireless technologies. To install the wireless technologies with maximum benefit and minimum risk, a systematic approach, which quantify the negative impact and prevent the influence, is essential; therefore, this paper describes an applicable research result on the wireless technology for Korean NPPs based on regulatory guides and current wireless hardware and software technologies. Also, survey on the needs for the wireless technology for Korean nuclear power plants was conducted, because the level of awareness of workers in NPPs regarding wireless technologies is very important issue. In this paper, we propose an applicable system to enhance the applicability for the wireless technology for Korean NPPs. The result based on proposed applicable system shows that wireless local area network (WLAN) is the representative candidate for Korean NPPs, which can be applied to the specific fields of radiation monitoring, voice and data communication, component monitoring and instrumentation, and wireless cameras.

  13. An electrochemical approach to monitor pH change in agar media during plant tissue culture.

    Science.gov (United States)

    Wang, Min; Ha, Yang

    2007-05-15

    In this work, metal oxide microelectrodes were developed to monitor pH change in agar media during plant tissue culture. An antimony wire was produced by a new approach "capillary melt method". The surface of the obtained antimony wire was oxidized in a potassium nitrate melt to fabricate an antimony oxide film for pH sensing. Characterization results show that the oxide layer grown on the wire surface consists of Sb(2)O(3) crystal phase. The sensing response, open-circuit potential, of the electrode has a good linear relationship (R(2)=1.00) with pH value of the test solution. Adding organic compounds into the test media would not affect the linear relationship, although the slope of the lines varied with different ingredients added. The antimony oxide electrodes were employed to continuously monitor pH change of agar culture media during a 2-week plant tissue culture of Dendrobium candidum. The antimony oxide electrode fabricated this way has the advantages of low cost, easy fabrication, fast response, and almost no contamination introduced into the system. It would be suitable for in situ and continuous pH measurement in many bio applications.

  14. SecMAS: Security Enhanced Monitoring and Analysis Systems for Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Ding Chao

    2016-01-01

    Full Text Available The monitoring, control, and security guarantee for the communication in the wireless sensor networks (WSNs are currently treated as three independent issues and addressed separately through specialized tools. However, most cases of WSNs applications requires the network administrator change the network configuration in a very short time to response to the change of observed phenomenon with security guarantee. To meet this requirement, we propose a security enhanced monitoring and control platform named SecMAS for WSNs, which provides the real-time visualization about network states and online reconfiguration of the network properties and behaviours in a resource-efficient way. Besides, basic cryptographic primitives and part of the anomaly detection functionalities are implemented in SecMAS to enabling the secure communication in WSNs. Furthermore, we conduct experiments to evaluate the performance of SecMAS in terms of the latency, throughput, communication overhead, and the security capacity. The experimental results demonstrate that the SecMAS system achieves stable, efficient and secure data collection with lightweight quick-response network control.

  15. Connecting to concrete: wireless monitoring of chloride ions in concrete structures

    NARCIS (Netherlands)

    Abbas, Yawar; ten Have, Bas; Hoekstra, Gerrit I.; Douma, Arjan; de Bruijn, Douwe; Olthuis, Wouter; van den Berg, Albert

    2015-01-01

    For the first time, chloride ions are measured wirelessly in concrete. The half-cell potential of a silver/silver chloride (Ag/AgCl) electrode, which corresponds to the concentration of chloride ions, is measured wirelessly. The sensor system (the Ag/AgCl and a reference electrode) is embedded in

  16. Tracking the harmonic response of magnetically-soft sensors for wireless temperature, stress, and corrosive monitoring

    Science.gov (United States)

    Ong, Keat G.; Grimes, Craig A.

    2002-01-01

    This paper describes the application of magnetically-soft ribbon-like sensors for measurement of temperature and stress, as well as corrosive monitoring, based upon changes in the amplitudes of the higher-order harmonics generated by the sensors in response to a magnetic interrogation signal. The sensors operate independently of mass loading, and so can be placed or rigidly embedded inside nonmetallic, opaque structures such as concrete or plastic. The passive harmonic-based sensor is remotely monitored through a single coplanar interrogation and detection coil. Effects due to the relative location of the sensor are eliminated by tracking harmonic amplitude ratios, thereby, enabling wide area monitoring. The wireless, passive, mass loading independent nature of the described sensor platform makes it ideally suited for long-term structural monitoring applications, such as measurement of temperature and stress inside concrete structures. A theoretical model is presented to explain the origin and behavior of the higher-order harmonics in response to temperature and stress. c2002 Elsevier Science B.V. All rights reserved.

  17. [Evaluation of an Experimental Production Wireless Dose Monitoring System for Radiation Exposure Management of Medical Staff].

    Science.gov (United States)

    Fujibuchi, Toshioh; Murazaki, Hiroo; Kuramoto, Taku; Umedzu, Yoshiyuki; Ishigaki, Yung

    2015-08-01

    Because of the more advanced and more complex procedures in interventional radiology, longer treatment times have become necessary. Therefore, it is important to determine the exposure doses received by operators and patients. The aim of our study was to evaluate an experimental production wireless dose monitoring system for pulse radiation in diagnostic X-ray. The energy, dose rate, and pulse fluoroscopy dependence were evaluated as the basic characteristics of this system for diagnostic X-ray using a fully digital fluoroscopy system. The error of 1 cm dose equivalent rate was less than 15% from 35.1 keV to 43.2 keV with energy correction using metal filter. It was possible to accurately measure the dose rate dependence of this system, which was highly linear until 100 μSv/h. This system showed a constant response to the pulse fluoroscopy. This system will become useful wireless dosimeter for the individual exposure management by improving the high dose rate and the energy characteristics.

  18. Intelligent, net or wireless enabled fluorosensors for high throughput monitoring of assorted crops

    International Nuclear Information System (INIS)

    Barócsi, Attila

    2013-01-01

    Phenotypic characterization of assorted crops of different genotypes requires large data sets of diverse types for statistical reliability. Temporal monitoring of plant fluorescence is able to capture the dynamics of the photosynthesis process that is summarized in a number of parameters for which the genotypic heritability can be calculated. In this paper, an intelligent sensor system is presented that is capable of high-throughput production of baseline-corrected temporal fluorescence curves with many feature points. These are obtained by integrating several (direct and modulated) measurement methods applied at different wavelengths. Simultaneously, temporal change of the sample's emission and the ambient reference temperatures are recorded. Multiple sensors can be deployed easily in large span greenhouse environments with centralized data collection over wired or wireless infrastructure. The unique features of the sensors are a compact, embedded signal guiding fibre optic system, instrument-standard variable tubular detector and source modules, net or wireless enabling for remote control and fast, quasi real-time data collection. Along with the instrumentation, some representative phenotyping data are also presented that were taken on a subset of pepper recombinant inbred line population. It is also demonstrated that transient fluorescence feature points yield high heritability, offering a high confidence level for distinguishing the pepper genotypes. (paper)

  19. Wearable and Implantable Wireless Sensor Network Solutions for Healthcare Monitoring

    Science.gov (United States)

    Darwish, Ashraf; Hassanien, Aboul Ella

    2011-01-01

    Wireless sensor network (WSN) technologies are considered one of the key research areas in computer science and the healthcare application industries for improving the quality of life. The purpose of this paper is to provide a snapshot of current developments and future direction of research on wearable and implantable body area network systems for continuous monitoring of patients. This paper explains the important role of body sensor networks in medicine to minimize the need for caregivers and help the chronically ill and elderly people live an independent life, besides providing people with quality care. The paper provides several examples of state of the art technology together with the design considerations like unobtrusiveness, scalability, energy efficiency, security and also provides a comprehensive analysis of the various benefits and drawbacks of these systems. Although offering significant benefits, the field of wearable and implantable body sensor networks still faces major challenges and open research problems which are investigated and covered, along with some proposed solutions, in this paper. PMID:22163914

  20. Wearable and implantable wireless sensor network solutions for healthcare monitoring.

    Science.gov (United States)

    Darwish, Ashraf; Hassanien, Aboul Ella

    2011-01-01

    Wireless sensor network (WSN) technologies are considered one of the key research areas in computer science and the healthcare application industries for improving the quality of life. The purpose of this paper is to provide a snapshot of current developments and future direction of research on wearable and implantable body area network systems for continuous monitoring of patients. This paper explains the important role of body sensor networks in medicine to minimize the need for caregivers and help the chronically ill and elderly people live an independent life, besides providing people with quality care. The paper provides several examples of state of the art technology together with the design considerations like unobtrusiveness, scalability, energy efficiency, security and also provides a comprehensive analysis of the various benefits and drawbacks of these systems. Although offering significant benefits, the field of wearable and implantable body sensor networks still faces major challenges and open research problems which are investigated and covered, along with some proposed solutions, in this paper.