WorldWideScience

Sample records for wireless network architecture

  1. Software Defined Networks in Wireless Sensor Architectures

    Directory of Open Access Journals (Sweden)

    Jesús Antonio Puente Fernández

    2018-03-01

    Full Text Available Nowadays, different protocols coexist in Internet that provides services to users. Unfortunately, control decisions and distributed management make it hard to control networks. These problems result in an inefficient and unpredictable network behaviour. Software Defined Networks (SDN is a new concept of network architecture. It intends to be more flexible and to simplify the management in networks with respect to traditional architectures. Each of these aspects are possible because of the separation of control plane (controller and data plane (switches in network devices. OpenFlow is the most common protocol for SDN networks that provides the communication between control and data planes. Moreover, the advantage of decoupling control and data planes enables a quick evolution of protocols and also its deployment without replacing data plane switches. In this survey, we review the SDN technology and the OpenFlow protocol and their related works. Specifically, we describe some technologies as Wireless Sensor Networks and Wireless Cellular Networks and how SDN can be included within them in order to solve their challenges. We classify different solutions for each technology attending to the problem that is being fixed.

  2. Fiber-wireless convergence in next-generation communication networks systems, architectures, and management

    CERN Document Server

    Chang, Gee-Kung; Ellinas, Georgios

    2017-01-01

    This book investigates new enabling technologies for Fi-Wi convergence. The editors discuss Fi-Wi technologies at the three major network levels involved in the path towards convergence: system level, network architecture level, and network management level. The main topics will be: a. At system level: Radio over Fiber (digitalized vs. analogic, standardization, E-band and beyond) and 5G wireless technologies; b. Network architecture level: NGPON, WDM-PON, BBU Hotelling, Cloud Radio Access Networks (C-RANs), HetNets. c. Network management level: SDN for convergence, Next-generation Point-of-Presence, Wi-Fi LTE Handover, Cooperative MultiPoint. • Addresses the Fi-Wi convergence issues at three different levels, namely at the system level, network architecture level, and network management level • Provides approaches in communication systems, network architecture, and management that are expected to steer the evolution towards fiber-wireless convergence • Contributions from leading experts in the field of...

  3. Wireless sensor networks architectures and protocols

    CERN Document Server

    Callaway, Jr, Edgar H

    2003-01-01

    Introduction to Wireless Sensor NetworksApplications and MotivationNetwork Performance ObjectivesContributions of this BookOrganization of this BookThe Development of Wireless Sensor NetworksEarly Wireless NetworksWireless Data NetworksWireless Sensor and Related NetworksConclusionThe Physical LayerSome Physical Layer ExamplesA Practical Physical Layer for Wireless Sensor NetworksSimulations and ResultsConclusionThe Data Link LayerMedium Access Control TechniquesThe Mediation DeviceSystem Analysis and SimulationConclusionThe Network LayerSome Network Design ExamplesA Wireless Sensor Network De

  4. Robust Networking Architecture and Secure Communication Scheme for Heterogeneous Wireless Sensor Networks

    Science.gov (United States)

    McNeal, McKenzie, III.

    2012-01-01

    Current networking architectures and communication protocols used for Wireless Sensor Networks (WSNs) have been designed to be energy efficient, low latency, and long network lifetime. One major issue that must be addressed is the security in data communication. Due to the limited capabilities of low cost and small sized sensor nodes, designing…

  5. An Energy-Efficient and High-Quality Video Transmission Architecture in Wireless Video-Based Sensor Networks

    Directory of Open Access Journals (Sweden)

    Yasaman Samei

    2008-08-01

    Full Text Available Technological progress in the fields of Micro Electro-Mechanical Systems (MEMS and wireless communications and also the availability of CMOS cameras, microphones and small-scale array sensors, which may ubiquitously capture multimedia content from the field, have fostered the development of low-cost limited resources Wireless Video-based Sensor Networks (WVSN. With regards to the constraints of videobased sensor nodes and wireless sensor networks, a supporting video stream is not easy to implement with the present sensor network protocols. In this paper, a thorough architecture is presented for video transmission over WVSN called Energy-efficient and high-Quality Video transmission Architecture (EQV-Architecture. This architecture influences three layers of communication protocol stack and considers wireless video sensor nodes constraints like limited process and energy resources while video quality is preserved in the receiver side. Application, transport, and network layers are the layers in which the compression protocol, transport protocol, and routing protocol are proposed respectively, also a dropping scheme is presented in network layer. Simulation results over various environments with dissimilar conditions revealed the effectiveness of the architecture in improving the lifetime of the network as well as preserving the video quality.

  6. An Energy-Efficient and High-Quality Video Transmission Architecture in Wireless Video-Based Sensor Networks.

    Science.gov (United States)

    Aghdasi, Hadi S; Abbaspour, Maghsoud; Moghadam, Mohsen Ebrahimi; Samei, Yasaman

    2008-08-04

    Technological progress in the fields of Micro Electro-Mechanical Systems (MEMS) and wireless communications and also the availability of CMOS cameras, microphones and small-scale array sensors, which may ubiquitously capture multimedia content from the field, have fostered the development of low-cost limited resources Wireless Video-based Sensor Networks (WVSN). With regards to the constraints of videobased sensor nodes and wireless sensor networks, a supporting video stream is not easy to implement with the present sensor network protocols. In this paper, a thorough architecture is presented for video transmission over WVSN called Energy-efficient and high-Quality Video transmission Architecture (EQV-Architecture). This architecture influences three layers of communication protocol stack and considers wireless video sensor nodes constraints like limited process and energy resources while video quality is preserved in the receiver side. Application, transport, and network layers are the layers in which the compression protocol, transport protocol, and routing protocol are proposed respectively, also a dropping scheme is presented in network layer. Simulation results over various environments with dissimilar conditions revealed the effectiveness of the architecture in improving the lifetime of the network as well as preserving the video quality.

  7. A Formally Verified Decentralized Key Management Architecture for Wireless Sensor Networks

    NARCIS (Netherlands)

    Law, Y.W.; Corin, R.J.; Etalle, Sandro; Hartel, Pieter H.

    We present a decentralized key management architecture for wireless sensor networks, covering the aspects of key deployment, key refreshment and key establishment. Our architecture is based on a clear set of assumptions and guidelines. Balance between security and energy consumption is achieved by

  8. Seamless interworking architecture for WBAN in heterogeneous wireless networks with QoS guarantees.

    Science.gov (United States)

    Khan, Pervez; Ullah, Niamat; Ullah, Sana; Kwak, Kyung Sup

    2011-10-01

    The IEEE 802.15.6 standard is a communication standard optimized for low-power and short-range in-body/on-body nodes to serve a variety of medical, consumer electronics and entertainment applications. Providing high mobility with guaranteed Quality of Service (QoS) to a WBAN user in heterogeneous wireless networks is a challenging task. A WBAN uses a Personal Digital Assistant (PDA) to gather data from body sensors and forwards it to a remote server through wide range wireless networks. In this paper, we present a coexistence study of WBAN with Wireless Local Area Networks (WLAN) and Wireless Wide Area Networks (WWANs). The main issue is interworking of WBAN in heterogenous wireless networks including seamless handover, QoS, emergency services, cooperation and security. We propose a Seamless Interworking Architecture (SIA) for WBAN in heterogenous wireless networks based on a cost function. The cost function is based on power consumption and data throughput costs. Our simulation results show that the proposed scheme outperforms typical approaches in terms of throughput, delay and packet loss rate.

  9. Tree-based server-middleman-client architecture: improving scalability and reliability for voting-based network games in ad hoc wireless networks

    Science.gov (United States)

    Guo, Y.; Fujinoki, H.

    2006-10-01

    The concept of a new tree-based architecture for networked multi-player games was proposed by Matuszek to improve scalability in network traffic at the same time to improve reliability. The architecture (we refer it as "Tree-Based Server- Middlemen-Client architecture") will solve the two major problems in ad-hoc wireless networks: frequent link failures and significance in battery power consumption at wireless transceivers by using two new techniques, recursive aggregation of client messages and subscription-based propagation of game state. However, the performance of the TBSMC architecture has never been quantitatively studied. In this paper, the TB-SMC architecture is compared with the client-server architecture using simulation experiments. We developed an event driven simulator to evaluate the performance of the TB-SMC architecture. In the network traffic scalability experiments, the TB-SMC architecture resulted in less than 1/14 of the network traffic load for 200 end users. In the reliability experiments, the TB-SMC architecture improved the number of successfully delivered players' votes by 31.6, 19.0, and 12.4% from the clientserver architecture at high (failure probability of 90%), moderate (50%) and low (10%) failure probability.

  10. MWAHCA: a multimedia wireless ad hoc cluster architecture.

    Science.gov (United States)

    Diaz, Juan R; Lloret, Jaime; Jimenez, Jose M; Sendra, Sandra

    2014-01-01

    Wireless Ad hoc networks provide a flexible and adaptable infrastructure to transport data over a great variety of environments. Recently, real-time audio and video data transmission has been increased due to the appearance of many multimedia applications. One of the major challenges is to ensure the quality of multimedia streams when they have passed through a wireless ad hoc network. It requires adapting the network architecture to the multimedia QoS requirements. In this paper we propose a new architecture to organize and manage cluster-based ad hoc networks in order to provide multimedia streams. Proposed architecture adapts the network wireless topology in order to improve the quality of audio and video transmissions. In order to achieve this goal, the architecture uses some information such as each node's capacity and the QoS parameters (bandwidth, delay, jitter, and packet loss). The architecture splits the network into clusters which are specialized in specific multimedia traffic. The real system performance study provided at the end of the paper will demonstrate the feasibility of the proposal.

  11. MWAHCA: A Multimedia Wireless Ad Hoc Cluster Architecture

    Directory of Open Access Journals (Sweden)

    Juan R. Diaz

    2014-01-01

    Full Text Available Wireless Ad hoc networks provide a flexible and adaptable infrastructure to transport data over a great variety of environments. Recently, real-time audio and video data transmission has been increased due to the appearance of many multimedia applications. One of the major challenges is to ensure the quality of multimedia streams when they have passed through a wireless ad hoc network. It requires adapting the network architecture to the multimedia QoS requirements. In this paper we propose a new architecture to organize and manage cluster-based ad hoc networks in order to provide multimedia streams. Proposed architecture adapts the network wireless topology in order to improve the quality of audio and video transmissions. In order to achieve this goal, the architecture uses some information such as each node’s capacity and the QoS parameters (bandwidth, delay, jitter, and packet loss. The architecture splits the network into clusters which are specialized in specific multimedia traffic. The real system performance study provided at the end of the paper will demonstrate the feasibility of the proposal.

  12. Proxy SDN Controller for Wireless Networks

    Directory of Open Access Journals (Sweden)

    Won-Suk Kim

    2016-01-01

    Full Text Available Management of wireless networks as well as wired networks by using software-defined networking (SDN has been highlighted continually. However, control features of a wireless network differ from those of a wired network in several aspects. In this study, we identify the various inefficient points when controlling and managing wireless networks by using SDN and propose SDN-based control architecture called Proxcon to resolve these problems. Proxcon introduces the concept of a proxy SDN controller (PSC for the wireless network control, and the PSC entrusted with the role of a main controller performs control operations and provides the latest network state for a network administrator. To address the control inefficiency, Proxcon supports offloaded SDN operations for controlling wireless networks by utilizing the PSC, such as local control by each PSC, hybrid control utilizing the PSC and the main controller, and locally cooperative control utilizing the PSCs. The proposed architecture and the newly supported control operations can enhance scalability and response time when the logically centralized control plane responds to the various wireless network events. Through actual experiments, we verified that the proposed architecture could address the various control issues such as scalability, response time, and control overhead.

  13. An Architecture for Performance Optimization in a Collaborative Knowledge-Based Approach for  Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Juan Ramon Velasco

    2011-09-01

    Full Text Available Over the past few years, Intelligent Spaces (ISs have received the attention of many Wireless Sensor Network researchers. Recently, several studies have been devoted to identify their common capacities and to set up ISs over these networks. However, little attention has been paid to integrating Fuzzy Rule-Based Systems into collaborative Wireless Sensor Networks for the purpose of implementing ISs. This work presents a distributed architecture proposal for collaborative Fuzzy Rule-Based Systems embedded in Wireless Sensor Networks, which has been designed to optimize the implementation of ISs. This architecture includes the following: (a an optimized design for the inference engine; (b a visual interface; (c a module to reduce the redundancy and complexity of the knowledge bases; (d a module to evaluate the accuracy of the new knowledge base; (e a module to adapt the format of the rules to the structure used by the inference engine; and (f a communications protocol. As a real-world application of this architecture and the proposed methodologies, we show an application to the problem of modeling two plagues of the olive tree: prays (olive moth, Prays oleae Bern. and repilo (caused by the fungus Spilocaea oleagina. The results show that the architecture presented in this paper significantly decreases the consumption of resources (memory, CPU and battery without a substantial decrease in the accuracy of the inferred values.

  14. Future Wireless Network: MyNET Platform and End-to-End Network Slicing

    OpenAIRE

    Zhang, Hang

    2016-01-01

    Future wireless networks are facing new challenges. These new challenges require new solutions and strategies of the network deployment, management, and operation. Many driving factors are decisive in the re-definition and re-design of the future wireless network architecture. In the previously published paper "5G Wireless Network - MyNET and SONAC", MyNET and SONAC, a future network architecture, are described. This paper elaborates MyNET platform with more details. The design principles of ...

  15. Miniaturized wireless sensor network

    OpenAIRE

    Lecointre , Aubin; Dragomirescu , Daniela; Dubuc , David; Grenier , Katia; Pons , Patrick; Aubert , Hervé; Müller , A.; Berthou , Pascal; Gayraud , Thierry; Plana , Robert

    2006-01-01

    This paper addresses an overview of the wireless sensor networks. It is shown that MEMS/NEMS technologies and SIP concept are well suited for advanced architectures. It is also shown analog architectures have to be compatible with digital signal techniques to develop smart network of microsystem.

  16. Information Assurance in Wireless Networks

    Science.gov (United States)

    Kabara, Joseph; Krishnamurthy, Prashant; Tipper, David

    2001-09-01

    Emerging wireless networks will contain a hybrid infrastructure based on fixed, mobile and ad hoc topologies and technologies. In such a dynamic architecture, we define information assurance as the provisions for both information security and information availability. The implications of this definition are that the wireless network architecture must (a) provide sufficient security measures, (b) be survivable under node or link attack or failure and (c) be designed such that sufficient capacity remains for all critical services (and preferably most other services) in the event of attack or component failure. We have begun a research project to investigate the provision of information assurance for wireless networks viz. survivability, security and availability and here discuss the issues and challenges therein.

  17. How to model wireless mesh networks topology

    International Nuclear Information System (INIS)

    Sanni, M L; Hashim, A A; Anwar, F; Ali, S; Ahmed, G S M

    2013-01-01

    The specification of network connectivity model or topology is the beginning of design and analysis in Computer Network researches. Wireless Mesh Networks is an autonomic network that is dynamically self-organised, self-configured while the mesh nodes establish automatic connectivity with the adjacent nodes in the relay network of wireless backbone routers. Researches in Wireless Mesh Networks range from node deployment to internetworking issues with sensor, Internet and cellular networks. These researches require modelling of relationships and interactions among nodes including technical characteristics of the links while satisfying the architectural requirements of the physical network. However, the existing topology generators model geographic topologies which constitute different architectures, thus may not be suitable in Wireless Mesh Networks scenarios. The existing methods of topology generation are explored, analysed and parameters for their characterisation are identified. Furthermore, an algorithm for the design of Wireless Mesh Networks topology based on square grid model is proposed in this paper. The performance of the topology generated is also evaluated. This research is particularly important in the generation of a close-to-real topology for ensuring relevance of design to the intended network and validity of results obtained in Wireless Mesh Networks researches

  18. Next Generation RFID-Based Medical Service Management System Architecture in Wireless Sensor Network

    Science.gov (United States)

    Tolentino, Randy S.; Lee, Kijeong; Kim, Yong-Tae; Park, Gil-Cheol

    Radio Frequency Identification (RFID) and Wireless Sensor Network (WSN) are two important wireless technologies that have wide variety of applications and provide unlimited future potentials most especially in healthcare systems. RFID is used to detect presence and location of objects while WSN is used to sense and monitor the environment. Integrating RFID with WSN not only provides identity and location of an object but also provides information regarding the condition of the object carrying the sensors enabled RFID tag. However, there isn't any flexible and robust communication infrastructure to integrate these devices into an emergency care setting. An efficient wireless communication substrate for medical devices that addresses ad hoc or fixed network formation, naming and discovery, transmission efficiency of data, data security and authentication, as well as filtration and aggregation of vital sign data need to be study and analyze. This paper proposed an efficient next generation architecture for RFID-based medical service management system in WSN that possesses the essential elements of each future medical application that are integrated with existing medical practices and technologies in real-time, remote monitoring, in giving medication, and patient status tracking assisted by embedded wearable wireless sensors which are integrated in wireless sensor network.

  19. Experiment of Wireless Sensor Network to Monitor Field Data

    Directory of Open Access Journals (Sweden)

    Kwang Sik Kim

    2009-08-01

    Full Text Available Recently the mobile wireless network has been drastically enhanced and one of the most efficient ways to realize the ubiquitous network will be to develop the converged network by integrating the mobile wireless network with other IP fixed network like NGN (Next Generation Network. So in this paper the term of the wireless ubiquitous network is used to describe this approach. In this paper, first, the wireless ubiquitous network architecture is described based on IMS which has been standardized by 3GPP (3rd Generation Partnership Program. Next, the field data collection system to match the satellite data using location information is proposed based on the concept of the wireless ubiquitous network architecture. The purpose of the proposed system is to provide more accurate analyzing method with the researchers in the remote sensing area.

  20. Wireless Sensor Networks for Ambient Assisted Living

    Directory of Open Access Journals (Sweden)

    Raúl Aquino-Santos

    2013-11-01

    Full Text Available This paper introduces wireless sensor networks for Ambient Assisted Living as a proof of concept. Our workgroup has developed an arrhythmia detection algorithm that we evaluate in a closed space using a wireless sensor network to relay the information collected to where the information can be registered, monitored and analyzed to support medical decisions by healthcare providers. The prototype we developed is then evaluated using the TelosB platform. The proposed architecture considers very specific restrictions regarding the use of wireless sensor networks in clinical situations. The seamless integration of the system architecture enables both mobile node and network configuration, thus providing the versatile and robust characteristics necessary for real-time applications in medical situations. Likewise, this system architecture efficiently permits the different components of our proposed platform to interact efficiently within the parameters of this study.

  1. An Embedded Multi-Agent Systems Based Industrial Wireless Sensor Network.

    Science.gov (United States)

    Taboun, Mohammed S; Brennan, Robert W

    2017-09-14

    With the emergence of cyber-physical systems, there has been a growing interest in network-connected devices. One of the key requirements of a cyber-physical device is the ability to sense its environment. Wireless sensor networks are a widely-accepted solution for this requirement. In this study, an embedded multi-agent systems-managed wireless sensor network is presented. A novel architecture is proposed, along with a novel wireless sensor network architecture. Active and passive wireless sensor node types are defined, along with their communication protocols, and two application-specific examples are presented. A series of three experiments is conducted to evaluate the performance of the agent-embedded wireless sensor network.

  2. Adaptive Code Division Multiple Access Protocol for Wireless Network-on-Chip Architectures

    Science.gov (United States)

    Vijayakumaran, Vineeth

    Massive levels of integration following Moore's Law ushered in a paradigm shift in the way on-chip interconnections were designed. With higher and higher number of cores on the same die traditional bus based interconnections are no longer a scalable communication infrastructure. On-chip networks were proposed enabled a scalable plug-and-play mechanism for interconnecting hundreds of cores on the same chip. Wired interconnects between the cores in a traditional Network-on-Chip (NoC) system, becomes a bottleneck with increase in the number of cores thereby increasing the latency and energy to transmit signals over them. Hence, there has been many alternative emerging interconnect technologies proposed, namely, 3D, photonic and multi-band RF interconnects. Although they provide better connectivity, higher speed and higher bandwidth compared to wired interconnects; they also face challenges with heat dissipation and manufacturing difficulties. On-chip wireless interconnects is one other alternative proposed which doesn't need physical interconnection layout as data travels over the wireless medium. They are integrated into a hybrid NOC architecture consisting of both wired and wireless links, which provides higher bandwidth, lower latency, lesser area overhead and reduced energy dissipation in communication. However, as the bandwidth of the wireless channels is limited, an efficient media access control (MAC) scheme is required to enhance the utilization of the available bandwidth. This thesis proposes using a multiple access mechanism such as Code Division Multiple Access (CDMA) to enable multiple transmitter-receiver pairs to send data over the wireless channel simultaneously. It will be shown that such a hybrid wireless NoC with an efficient CDMA based MAC protocol can significantly increase the performance of the system while lowering the energy dissipation in data transfer. In this work it is shown that the wireless NoC with the proposed CDMA based MAC protocol

  3. An Embedded Multi-Agent Systems Based Industrial Wireless Sensor Network

    Science.gov (United States)

    Brennan, Robert W.

    2017-01-01

    With the emergence of cyber-physical systems, there has been a growing interest in network-connected devices. One of the key requirements of a cyber-physical device is the ability to sense its environment. Wireless sensor networks are a widely-accepted solution for this requirement. In this study, an embedded multi-agent systems-managed wireless sensor network is presented. A novel architecture is proposed, along with a novel wireless sensor network architecture. Active and passive wireless sensor node types are defined, along with their communication protocols, and two application-specific examples are presented. A series of three experiments is conducted to evaluate the performance of the agent-embedded wireless sensor network. PMID:28906452

  4. Resource slicing in virtual wireless networks: a survey

    OpenAIRE

    Richart, Matias; Baliosian De Lazzari, Javier Ernesto; Serrat Fernández, Juan; Gorricho Moreno, Juan Luis

    2016-01-01

    New architectural and design approaches for radio access networks have appeared with the introduction of network virtualization in the wireless domain. One of these approaches splits the wireless network infrastructure into isolated virtual slices under their own management, requirements, and characteristics. Despite the advances in wireless virtualization, there are still many open issues regarding the resource allocation and isolation of wireless slices. Because of the dynamics and share...

  5. An Automated Planning Model for RoF Heterogeneous Wireless Networks

    DEFF Research Database (Denmark)

    Shawky, Ahmed; Bergheim, Hans; Ragnarsson, Ólafur

    2010-01-01

    The number of users in wireless WANs is increasing like never before, at the same time as the bandwidth demands by users increase.The structure of the third generation Wireless WANs makes it expensive for Wireless ISPs to meet these demands.The FUTON architecture is a RoF heterogeneous wireless...... network architecture under development,that will be cheaper to deploy and operate.This paper shows a method to plan an implementation of this architecture.The planning is done as automatic as possible,covering radio planning, fiber planning and network dimensioning. The out come of the paper is a planning...

  6. Real time network traffic monitoring for wireless local area networks based on compressed sensing

    Science.gov (United States)

    Balouchestani, Mohammadreza

    2017-05-01

    A wireless local area network (WLAN) is an important type of wireless networks which connotes different wireless nodes in a local area network. WLANs suffer from important problems such as network load balancing, large amount of energy, and load of sampling. This paper presents a new networking traffic approach based on Compressed Sensing (CS) for improving the quality of WLANs. The proposed architecture allows reducing Data Delay Probability (DDP) to 15%, which is a good record for WLANs. The proposed architecture is increased Data Throughput (DT) to 22 % and Signal to Noise (S/N) ratio to 17 %, which provide a good background for establishing high qualified local area networks. This architecture enables continuous data acquisition and compression of WLAN's signals that are suitable for a variety of other wireless networking applications. At the transmitter side of each wireless node, an analog-CS framework is applied at the sensing step before analog to digital converter in order to generate the compressed version of the input signal. At the receiver side of wireless node, a reconstruction algorithm is applied in order to reconstruct the original signals from the compressed signals with high probability and enough accuracy. The proposed algorithm out-performs existing algorithms by achieving a good level of Quality of Service (QoS). This ability allows reducing 15 % of Bit Error Rate (BER) at each wireless node.

  7. Energy management in wireless cellular and ad-hoc networks

    CERN Document Server

    Imran, Muhammad; Qaraqe, Khalid; Alouini, Mohamed-Slim; Vasilakos, Athanasios

    2016-01-01

    This book investigates energy management approaches for energy efficient or energy-centric system design and architecture and presents end-to-end energy management in the recent heterogeneous-type wireless network medium. It also considers energy management in wireless sensor and mesh networks by exploiting energy efficient transmission techniques and protocols. and explores energy management in emerging applications, services and engineering to be facilitated with 5G networks such as WBANs, VANETS and Cognitive networks. A special focus of the book is on the examination of the energy management practices in emerging wireless cellular and ad hoc networks. Considering the broad scope of energy management in wireless cellular and ad hoc networks, this book is organized into six sections covering range of Energy efficient systems and architectures; Energy efficient transmission and techniques; Energy efficient applications and services. .

  8. Real-time network traffic classification technique for wireless local area networks based on compressed sensing

    Science.gov (United States)

    Balouchestani, Mohammadreza

    2017-05-01

    Network traffic or data traffic in a Wireless Local Area Network (WLAN) is the amount of network packets moving across a wireless network from each wireless node to another wireless node, which provide the load of sampling in a wireless network. WLAN's Network traffic is the main component for network traffic measurement, network traffic control and simulation. Traffic classification technique is an essential tool for improving the Quality of Service (QoS) in different wireless networks in the complex applications such as local area networks, wireless local area networks, wireless personal area networks, wireless metropolitan area networks, and wide area networks. Network traffic classification is also an essential component in the products for QoS control in different wireless network systems and applications. Classifying network traffic in a WLAN allows to see what kinds of traffic we have in each part of the network, organize the various kinds of network traffic in each path into different classes in each path, and generate network traffic matrix in order to Identify and organize network traffic which is an important key for improving the QoS feature. To achieve effective network traffic classification, Real-time Network Traffic Classification (RNTC) algorithm for WLANs based on Compressed Sensing (CS) is presented in this paper. The fundamental goal of this algorithm is to solve difficult wireless network management problems. The proposed architecture allows reducing False Detection Rate (FDR) to 25% and Packet Delay (PD) to 15 %. The proposed architecture is also increased 10 % accuracy of wireless transmission, which provides a good background for establishing high quality wireless local area networks.

  9. Cognitive wireless networks

    CERN Document Server

    Feng, Zhiyong; Zhang, Ping

    2015-01-01

    This brief examines the current research in cognitive wireless networks (CWNs). Along with a review of challenges in CWNs, this brief presents novel theoretical studies and architecture models for CWNs, advances in the cognitive information awareness and delivery, and intelligent resource management technologies. The brief presents the motivations and concepts of CWNs, including theoretical studies of temporal and geographic distribution entropy as well as cognitive information metrics. A new architecture model of CWNs is proposed with theoretical, functional and deployment architectures suppo

  10. Sending policies in dynamic wireless mesh using network coding

    DEFF Research Database (Denmark)

    Pandi, Sreekrishna; Fitzek, Frank; Pihl, Jeppe

    2015-01-01

    This paper demonstrates the quick prototyping capabilities of the Python-Kodo library for network coding based performance evaluation and investigates the problem of data redundancy in a network coded wireless mesh with opportunistic overhearing. By means of several wireless meshed architectures ...

  11. A cross-layer communication framework for wireless networked control systems

    NARCIS (Netherlands)

    Israr, N.; Scanlon, W.G.; Irwin, G.W.

    2009-01-01

    This paper presents a robust, dynamic cross-layer wireless communication architecture for wireless networked control systems. Each layer in the proposed protocol architecture contributes to the overall goal of reliable, energy efficient communication. The protocol stack also features a

  12. Wireless local network architecture for Naval medical treatment facilities

    OpenAIRE

    Deason, Russell C.

    2004-01-01

    Approved for public release; distribution is unlimited In today's Navy Medicine, an approach towards wireless networks is coming into view. The idea of developing and deploying workable Wireless Local Area Networks (WLAN) throughout Naval hospitals is but just a few years down the road. Currently Naval Medical Treatment Facilities (MTF) are using wired Local Area Networks (LANs) throughout the infrastructure of each facility. Civilian hospitals and other medical treatment facilities have b...

  13. CogWnet: A Resource Management Architecture for Cognitive Wireless Networks

    KAUST Repository

    Alqerm, Ismail

    2013-07-01

    With the increasing adoption of wireless communication technologies, there is a need to improve management of existing radio resources. Cognitive radio is a promising technology to improve the utilization of wireless spectrum. Its operating principle is based on building an integrated hardware and software architecture that configures the radio to meet application requirements within the constraints of spectrum policy regulations. However, such an architecture must be able to cope with radio environment heterogeneity. In this paper, we propose a cognitive resource management architecture, called CogWnet, that allocates channels, re-configures radio transmission parameters to meet QoS requirements, ensures reliability, and mitigates interference. The architecture consists of three main layers: Communication Layer, which includes generic interfaces to facilitate the communication between the cognitive architecture and TCP/IP stack layers; Decision-Making Layer, which classifies the stack layers input parameters and runs decision-making optimization algorithms to output optimal transmission parameters; and Policy Layer to enforce policy regulations on the selected part of the spectrum. The efficiency of CogWnet is demonstrated through a testbed implementation and evaluation.

  14. Distributed Cross-layer Monitoring in Wireless Mesh Networks

    OpenAIRE

    Panmin, Ye; Yong,

    2009-01-01

    Wireless mesh networks has rapid development over the last few years. However, due to properties such as distributed infrastructure and interference, which strongly affect the performance of wireless mesh networks, developing technology has to face the challenge of architecture and protocol design issues. Traditional layered protocols do not function efficiently in multi-hop wireless environments. To get deeper understanding on interaction of the layered protocols and optimize the performance...

  15. Hybrid RRM Architecture for Future Wireless Networks

    DEFF Research Database (Denmark)

    Tragos, Elias; Mihovska, Albena D.; Mino, Emilio

    2007-01-01

    The concept of ubiquitous and scalable system is applied in the IST WINNER II [1] project to deliver optimum performance for different deployment scenarios from local area to wide area wireless networks. The integration of cellular and local area networks in a unique radio system will provide a g...

  16. Historical Building Monitoring Using an Energy-Efficient Scalable Wireless Sensor Network Architecture

    Science.gov (United States)

    Capella, Juan V.; Perles, Angel; Bonastre, Alberto; Serrano, Juan J.

    2011-01-01

    We present a set of novel low power wireless sensor nodes designed for monitoring wooden masterpieces and historical buildings, in order to perform an early detection of pests. Although our previous star-based system configuration has been in operation for more than 13 years, it does not scale well for sensorization of large buildings or when deploying hundreds of nodes. In this paper we demonstrate the feasibility of a cluster-based dynamic-tree hierarchical Wireless Sensor Network (WSN) architecture where realistic assumptions of radio frequency data transmission are applied to cluster construction, and a mix of heterogeneous nodes are used to minimize economic cost of the whole system and maximize power saving of the leaf nodes. Simulation results show that the specialization of a fraction of the nodes by providing better antennas and some energy harvesting techniques can dramatically extend the life of the entire WSN and reduce the cost of the whole system. A demonstration of the proposed architecture with a new routing protocol and applied to termite pest detection has been implemented on a set of new nodes and should last for about 10 years, but it provides better scalability, reliability and deployment properties. PMID:22346630

  17. Historical building monitoring using an energy-efficient scalable wireless sensor network architecture.

    Science.gov (United States)

    Capella, Juan V; Perles, Angel; Bonastre, Alberto; Serrano, Juan J

    2011-01-01

    We present a set of novel low power wireless sensor nodes designed for monitoring wooden masterpieces and historical buildings, in order to perform an early detection of pests. Although our previous star-based system configuration has been in operation for more than 13 years, it does not scale well for sensorization of large buildings or when deploying hundreds of nodes. In this paper we demonstrate the feasibility of a cluster-based dynamic-tree hierarchical Wireless Sensor Network (WSN) architecture where realistic assumptions of radio frequency data transmission are applied to cluster construction, and a mix of heterogeneous nodes are used to minimize economic cost of the whole system and maximize power saving of the leaf nodes. Simulation results show that the specialization of a fraction of the nodes by providing better antennas and some energy harvesting techniques can dramatically extend the life of the entire WSN and reduce the cost of the whole system. A demonstration of the proposed architecture with a new routing protocol and applied to termite pest detection has been implemented on a set of new nodes and should last for about 10 years, but it provides better scalability, reliability and deployment properties.

  18. Socially Aware Heterogeneous Wireless Networks.

    Science.gov (United States)

    Kosmides, Pavlos; Adamopoulou, Evgenia; Demestichas, Konstantinos; Theologou, Michael; Anagnostou, Miltiades; Rouskas, Angelos

    2015-06-11

    The development of smart cities has been the epicentre of many researchers' efforts during the past decade. One of the key requirements for smart city networks is mobility and this is the reason stable, reliable and high-quality wireless communications are needed in order to connect people and devices. Most research efforts so far, have used different kinds of wireless and sensor networks, making interoperability rather difficult to accomplish in smart cities. One common solution proposed in the recent literature is the use of software defined networks (SDNs), in order to enhance interoperability among the various heterogeneous wireless networks. In addition, SDNs can take advantage of the data retrieved from available sensors and use them as part of the intelligent decision making process contacted during the resource allocation procedure. In this paper, we propose an architecture combining heterogeneous wireless networks with social networks using SDNs. Specifically, we exploit the information retrieved from location based social networks regarding users' locations and we attempt to predict areas that will be crowded by using specially-designed machine learning techniques. By recognizing possible crowded areas, we can provide mobile operators with recommendations about areas requiring datacell activation or deactivation.

  19. Network Coded Cooperative Communication in a Real-Time Wireless Hospital Sensor Network.

    Science.gov (United States)

    Prakash, R; Balaji Ganesh, A; Sivabalan, Somu

    2017-05-01

    The paper presents a network coded cooperative communication (NC-CC) enabled wireless hospital sensor network architecture for monitoring health as well as postural activities of a patient. A wearable device, referred as a smartband is interfaced with pulse rate, body temperature sensors and an accelerometer along with wireless protocol services, such as Bluetooth and Radio-Frequency transceiver and Wi-Fi. The energy efficiency of wearable device is improved by embedding a linear acceleration based transmission duty cycling algorithm (NC-DRDC). The real-time demonstration is carried-out in a hospital environment to evaluate the performance characteristics, such as power spectral density, energy consumption, signal to noise ratio, packet delivery ratio and transmission offset. The resource sharing and energy efficiency features of network coding technique are improved by proposing an algorithm referred as network coding based dynamic retransmit/rebroadcast decision control (LA-TDC). From the experimental results, it is observed that the proposed LA-TDC algorithm reduces network traffic and end-to-end delay by an average of 27.8% and 21.6%, respectively than traditional network coded wireless transmission. The wireless architecture is deployed in a hospital environment and results are then successfully validated.

  20. Open-WiSe: A Solar Powered Wireless Sensor Network Platform

    Science.gov (United States)

    González, Apolinar; Aquino, Raúl; Mata, Walter; Ochoa, Alberto; Saldaña, Pedro; Edwards, Arthur

    2012-01-01

    Because battery-powered nodes are required in wireless sensor networks and energy consumption represents an important design consideration, alternate energy sources are needed to provide more effective and optimal function. The main goal of this work is to present an energy harvesting wireless sensor network platform, the Open Wireless Sensor node (WiSe). The design and implementation of the solar powered wireless platform is described including the hardware architecture, firmware, and a POSIX Real-Time Kernel. A sleep and wake up strategy was implemented to prolong the lifetime of the wireless sensor network. This platform was developed as a tool for researchers investigating Wireless sensor network or system integrators. PMID:22969396

  1. Open-WiSe: a solar powered wireless sensor network platform.

    Science.gov (United States)

    González, Apolinar; Aquino, Raúl; Mata, Walter; Ochoa, Alberto; Saldaña, Pedro; Edwards, Arthur

    2012-01-01

    Because battery-powered nodes are required in wireless sensor networks and energy consumption represents an important design consideration, alternate energy sources are needed to provide more effective and optimal function. The main goal of this work is to present an energy harvesting wireless sensor network platform, the Open Wireless Sensor node (WiSe). The design and implementation of the solar powered wireless platform is described including the hardware architecture, firmware, and a POSIX Real-Time Kernel. A sleep and wake up strategy was implemented to prolong the lifetime of the wireless sensor network. This platform was developed as a tool for researchers investigating Wireless sensor network or system integrators.

  2. Wireless sensor communications and internet connectivity for sensor networks

    Energy Technology Data Exchange (ETDEWEB)

    Dunbar, M. [Crossbow Technology, Inc., San Jose, CA (United States)

    2001-07-01

    A wireless sensor network architecture is an integrated hardware/software solution that has the potential to change the way sensors are used in a virtually unlimited range of industries and applications. By leveraging Bluetooth wireless technology for low-cost, short-range radio links, wireless sensor networks such as CrossNet{sup TM} enable users to create wireless sensor networks. These wireless networks can link dozens or hundreds of sensors of disparate types and brands with data acquisition/analysis systems, such as handheld devices, internet-enabled laptop or desktop PCs. The overwhelming majority of sensor applications are hard-wired at present, and since wiring is often the most time-consuming, tedious, trouble-prone and expensive aspect of sensor applications, users in many fields will find compelling reasons to adopt the wireless sensor network solution. (orig.)

  3. Distributed Prognostics and Health Management with a Wireless Network Architecture

    Science.gov (United States)

    Goebel, Kai; Saha, Sankalita; Sha, Bhaskar

    2013-01-01

    A heterogeneous set of system components monitored by a varied suite of sensors and a particle-filtering (PF) framework, with the power and the flexibility to adapt to the different diagnostic and prognostic needs, has been developed. Both the diagnostic and prognostic tasks are formulated as a particle-filtering problem in order to explicitly represent and manage uncertainties in state estimation and remaining life estimation. Current state-of-the-art prognostic health management (PHM) systems are mostly centralized in nature, where all the processing is reliant on a single processor. This can lead to a loss in functionality in case of a crash of the central processor or monitor. Furthermore, with increases in the volume of sensor data as well as the complexity of algorithms, traditional centralized systems become for a number of reasons somewhat ungainly for successful deployment, and efficient distributed architectures can be more beneficial. The distributed health management architecture is comprised of a network of smart sensor devices. These devices monitor the health of various subsystems or modules. They perform diagnostics operations and trigger prognostics operations based on user-defined thresholds and rules. The sensor devices, called computing elements (CEs), consist of a sensor, or set of sensors, and a communication device (i.e., a wireless transceiver beside an embedded processing element). The CE runs in either a diagnostic or prognostic operating mode. The diagnostic mode is the default mode where a CE monitors a given subsystem or component through a low-weight diagnostic algorithm. If a CE detects a critical condition during monitoring, it raises a flag. Depending on availability of resources, a networked local cluster of CEs is formed that then carries out prognostics and fault mitigation by efficient distribution of the tasks. It should be noted that the CEs are expected not to suspend their previous tasks in the prognostic mode. When the

  4. Analysis Of Packets Delay In Wireless Data Networks

    Directory of Open Access Journals (Sweden)

    Krivchenkov Aleksandr

    2015-12-01

    Full Text Available The networks with wireless links for automation control applications traffic transmission when packets have small size and application payload is predictable are under consideration. Analytical model for packets delay on their propagation path through the network is proposed. Estimations for network architectures based on WiFi and Bluetooth wireless technologies are made. The specifications for physical layer 802.11 a/b/g/n and 802.15.1 are under consideration. Analytical and experimental results for delivered network bandwidth for different network architecture, traffic structure and wireless technologies were compared to validate that basic mechanisms are correctly taken into account in the model. It is shown that basic effects are taken into account and further accuracy “improvement” of the model will give not more than 5%. As a result that is important for automation control applications we have reliably received the lowest possible level for packets delay in one wireless link. For 802.11 it is of order of 0.2 ms, for 802.15.1 it is 1.25 ms and is true when application packet can be transferred by one data frame.

  5. Sandwich node architecture for agile wireless sensor networks for real-time structural health monitoring applications

    Science.gov (United States)

    Wang, Zi; Pakzad, Shamim; Cheng, Liang

    2012-04-01

    In recent years, wireless sensor network (WSN), as a powerful tool, has been widely applied to structural health monitoring (SHM) due to its low cost of deployment. Several commercial hardware platforms of wireless sensor networks (WSN) have been developed and used for structural monitoring applications [1,2]. A typical design of a node includes a sensor board and a mote connected to it. Sensing units, analog filters and analog-to-digital converters (ADCs) are integrated on the sensor board and the mote consists of a microcontroller and a wireless transceiver. Generally, there are a set of sensor boards compatible with the same model of mote and the selection of the sensor board depends on the specific applications. A WSN system based on this node lacks the capability of interrupting its scheduled task to start a higher priority task. This shortcoming is rooted in the hardware architecture of the node. The proposed sandwich-node architecture is designed to remedy the shortcomings of the existing one for task preemption. A sandwich node is composed of a sensor board and two motes. The first mote is dedicated to managing the sensor board and processing acquired data. The second mote controls the first mote via commands. A prototype has been implemented using Imote2 and verified by an emulation in which one mote is triggered by a remote base station and then preempts the running task at the other mote for handling an emergency event.

  6. Wireless communications networks for the smart grid

    CERN Document Server

    Ho, Quang-Dung; Rajalingham, Gowdemy; Le-Ngoc, Tho

    2014-01-01

    This brief presents a comprehensive review of the network architecture and communication technologies of the smart grid communication network (SGCN). It then studies the strengths, weaknesses and applications of two promising wireless mesh routing protocols that could be used to implement the SGCN. Packet transmission reliability, latency and robustness of these two protocols are evaluated and compared by simulations in various practical SGCN scenarios. Finally, technical challenges and open research opportunities of the SGCN are addressed. Wireless Communications Networks for Smart Grid provi

  7. Open-WiSe: A Solar Powered Wireless Sensor Network Platform

    Directory of Open Access Journals (Sweden)

    Arthur Edwards

    2012-06-01

    Full Text Available Because battery-powered nodes are required in wireless sensor networks and energy consumption represents an important design consideration, alternate energy sources are needed to provide more effective and optimal function. The main goal of this work is to present an energy harvesting wireless sensor network platform, the Open Wireless Sensor node (WiSe. The design and implementation of the solar powered wireless platform is described including the hardware architecture, firmware, and a POSIX Real-Time Kernel. A sleep and wake up strategy was implemented to prolong the lifetime of the wireless sensor network. This platform was developed as a tool for researchers investigating Wireless sensor network or system integrators.

  8. Data aggregation in wireless sensor networks using the SOAP protocol

    International Nuclear Information System (INIS)

    Al-Yasiri, A; Sunley, A

    2007-01-01

    Wireless sensor networks (WSN) offer an increasingly attractive method of data gathering in distributed system architectures and dynamic access via wireless connectivity. Wireless sensor networks have physical and resource limitations, this leads to increased complexity for application developers and often results in applications that are closely coupled with network protocols. In this paper, a data aggregation framework using SOAP (Simple Object Access Protocol) on wireless sensor networks is presented. The framework works as a middleware for aggregating data measured by a number of nodes within a network. The aim of the study is to assess the suitability of the protocol in such environments where resources are limited compared to traditional networks

  9. Data aggregation in wireless sensor networks using the SOAP protocol

    Energy Technology Data Exchange (ETDEWEB)

    Al-Yasiri, A; Sunley, A [School of Computing, Science and Engineering, University of Salford, Greater Manchester, M5 4WT (United Kingdom)

    2007-07-15

    Wireless sensor networks (WSN) offer an increasingly attractive method of data gathering in distributed system architectures and dynamic access via wireless connectivity. Wireless sensor networks have physical and resource limitations, this leads to increased complexity for application developers and often results in applications that are closely coupled with network protocols. In this paper, a data aggregation framework using SOAP (Simple Object Access Protocol) on wireless sensor networks is presented. The framework works as a middleware for aggregating data measured by a number of nodes within a network. The aim of the study is to assess the suitability of the protocol in such environments where resources are limited compared to traditional networks.

  10. Reduced-Complexity Wireless Transceiver Architectures and Techniques for Space-Time Communications

    DEFF Research Database (Denmark)

    Tsakalaki, Elpiniki

    2012-01-01

    The dissertation sheds light on the performance gains of multi-antenna systems when the antenna aspects and the associated signal processing and coding aspects are integrated together in a multidisciplinary approach, addressing a variety of challenging tasks pertaining to the joint design of smart...... wireless transceivers and communication techniques. These tasks are at the intersection of different scientific disciplines including signal processing, communications, antennas and propagation. Specifically, the thesis deals with reduced-complexity space-time wireless transceiver architectures...... and associated communication techniques for multi-input multi-output (MIMO) and cognitive radio (CR) systems as well as wireless sensor networks (WSNs). The low-complexity architectures are obtained by equipping the wireless transceiver with passive control ports which require the minimum amount of RF hardware...

  11. Wireless Sensor Networks for Long Distance Pipeline Monitoring

    OpenAIRE

    Augustine C. Azubogu; Victor E. Idigo; Schola U. Nnebe; Obinna S. Oguejiofor; Simon E.

    2013-01-01

    The main goal of this seminal paper is to introduce the application of Wireless Sensor Networks (WSN) in long distance infrastructure monitoring (in particular in pipeline infrastructure monitoring) – one of the on-going research projects by the Wireless Communication Research Group at the department of Electronic and Computer Engineering, Nnamdi Azikiwe University, Awka. The current sensor network architectures for monitoring long distance pipeline infrastructures are pr...

  12. Expected Transmission Energy Route Metric for Wireless Mesh Senor Networks

    Directory of Open Access Journals (Sweden)

    YanLiang Jin

    2011-01-01

    Full Text Available Mesh is a network topology that achieves high throughput and stable intercommunication. With great potential, it is expected to be the key architecture of future networks. Wireless sensor networks are an active research area with numerous workshops and conferences arranged each year. The overall performance of a WSN highly depends on the energy consumption of the network. This paper designs a new routing metric for wireless mesh sensor networks. Results from simulation experiments reveal that the new metric algorithm improves the energy balance of the whole network and extends the lifetime of wireless mesh sensor networks (WMSNs.

  13. QoE management in wireless networks

    CERN Document Server

    Wang, Ying; Zhang, Ping

    2017-01-01

    This SpringerBrief presents research results on QoE management schemes for mobile services, including user services, and resource allocation. Along with a review of the research literature, it offers a data-driven architecture for personalized QoE management in wireless networks. The primary focus is on introducing efficient personalized character extraction mechanisms, e.g., context-aware Bayesian graph model, and cooperative QoE management mechanisms. Moreover, in order to demonstrate in the effectiveness of the QoE model, a QoE measurement platform is described and its collected data examined. The brief concludes with a discussion of future research directions. The example mechanisms and the data-driven architecture provide useful insights into the designs of QoE management, and motivate a new line of thinking for users' satisfaction in future wireless networks.

  14. Wireless networking and its application in nuclear safeguards.

    Energy Technology Data Exchange (ETDEWEB)

    Goncalves, Joao G. M. (Joint Research Centre, Italy); Smartt, Heidi Anne; Conti, Michele (Joint Research Centre, Italy); Caskey, Susan Adele; Rossini, Angelo (Joint Research Centre, Italy); Glidewell, Donnie Dwight

    2004-07-01

    Wireless networking can provide a cost effective and convenient method for installing and operating an unattended or remote monitoring system in an established facility. There is concern, however, that wireless devices can interfere with each other and with other radio systems within the facility. Additionally, there is concern that these devices add a potential risk to the security of the network. Since all data is transmitted in the air, it is possible for an unauthorized user to intercept the data transmissions and/or insert data onto the network if proper security is not in place. This paper describes a study being undertaken to highlight the benefits of wireless networking, evaluate interference and methods for mitigation, recommend security architectures, and present the results of a wireless network demonstration between Sandia National Laboratories (SNL) and the Joint Research Centre (JRC).

  15. Integrated control platform for converged optical and wireless networks

    DEFF Research Database (Denmark)

    Yan, Ying

    The next generation of broadband access networks is expected to be heterogeneous. Multiple wired and wireless systems can be integrated, in order to simultaneously provide seamless access with an appropriate Quality of Service (QoS). Wireless networks support ubiquitous connectivity yet low data...... rates, whereas optical networks can offer much higher data rates but only provide fixed connection structures. Their complementary characteristics make the integration of the two networks a promising trend for next generation networks. With combined strengths, the converged network will provide both...... the complementary characteristics of the optical networks and the wireless networks, addresses motivations for their interworking, discusses the current progress in hybrid network architectures as well as the functionalities of a control system, and identifies the achieved research contributions in the integrated...

  16. Routing and Scheduling Algorithms in Resource-Limited Wireless Multi-Hop Networks

    National Research Council Canada - National Science Library

    Michail, Anastassios

    2001-01-01

    ...) to transmit their messages to the desired destinations. The distinguishing features of such all-wireless network architectures give rise to new trade-offs between traditional concerns in wireless communications...

  17. Wireless coordinated multicell systems architectures and precoding designs

    CERN Document Server

    Nguyen, Duy H N

    2014-01-01

    This SpringerBrief discusses the current research on coordinated multipoint transmission/reception (CoMP) in wireless multi-cell systems. This book analyzes the structure of the CoMP precoders and the message exchange mechanism in the CoMP system in order to reveal the advantage of CoMP. Topics include interference management in wireless cellular networks, joint signal processing, interference coordination, uplink and downlink precoding and system models. After an exploration of the motivations and concepts of CoMP, the authors present the architectures of a CoMP system. Practical implementati

  18. Tenet: An Architecture for Tiered Embedded Networks

    OpenAIRE

    Ramesh Govindan; Eddie Kohler; Deborah Estrin; Fang Bian; Krishna Chintalapudi; Om Gnawali; Sumit Rangwala; Ramakrishna Gummadi; Thanos Stathopoulos

    2005-01-01

    Future large-scale sensor network deployments will be tiered, with the motes providing dense sensing and a higher tier of 32-bit master nodes with more powerful radios providing increased overall network capacity. In this paper, we describe a functional architecture for wireless sensor networks that leverages this structure to simplify the overall system. Our Tenet architecture has the nice property that the mote-layer software is generic and reusable, and all application functionality reside...

  19. On Radio over Fiber for Heterogeneous Wireless Networks

    DEFF Research Database (Denmark)

    Riaz, M. Tahir; Nielsen, Rasmus Hjorth; Pedersen, Jens Myrup

    2009-01-01

    The paper provides an overview of the radio over fiber (RoF) technology and its potential use in heterogeneous wireless networks. Wireless communications have seen a huge growth in the last decade. It has been estimated that five in every six people in the entire world will have a mobile phone...... in 2010. The vast growing use of Internet on the mobile devices has also been increased significantly. In order to provide a broadband access for mobile communications, a new wireless infrastructure (fiber optic networks for distributed, extendible heterogeneous radio architectures and service...... provisioning - FUTON) based on RoF technology has been introduced. The project adopts centralized processing of radio signals for number of wireless base stations can enhance the network performance in terms of bandwidth, and QoS parameters. The simplified remote access units (RAU) are expected to not only...

  20. Handbook of sensor networks compact wireless and wired sensing systems

    CERN Document Server

    Ilyas, Mohammad

    2004-01-01

    INTRODUCTION Opportunities and Challenges in Wireless Sensor Networks, M. Haenggi, Next Generation Technologies to Enable Sensor Networks, J. I.  Goodman, A. I. Reuther, and D. R. Martinez Sensor Networks Management, L. B. Ruiz, J. M. Nogueira, and A. A. F. Loureiro Models for Programmability in Sensor Networks, A. Boulis Miniaturizing Sensor Networks with MEMS, Brett Warneke A Taxonomy of Routing Techniques in Wireless Sensor Networks, J. N. Al-Karaki and A. E. Kamal Artificial Perceptual Systems, A. Loutfi, M. Lindquist, and P. Wide APPLICATIONS Sensor Network Architecture and Appl

  1. System-level Modeling of Wireless Integrated Sensor Networks

    DEFF Research Database (Denmark)

    Virk, Kashif M.; Hansen, Knud; Madsen, Jan

    2005-01-01

    Wireless integrated sensor networks have emerged as a promising infrastructure for a new generation of monitoring and tracking applications. In order to efficiently utilize the extremely limited resources of wireless sensor nodes, accurate modeling of the key aspects of wireless sensor networks...... is necessary so that system-level design decisions can be made about the hardware and the software (applications and real-time operating system) architecture of sensor nodes. In this paper, we present a SystemC-based abstract modeling framework that enables system-level modeling of sensor network behavior...... by modeling the applications, real-time operating system, sensors, processor, and radio transceiver at the sensor node level and environmental phenomena, including radio signal propagation, at the sensor network level. We demonstrate the potential of our modeling framework by simulating and analyzing a small...

  2. A medical-grade wireless architecture for remote electrocardiography.

    Science.gov (United States)

    Kang, Kyungtae; Park, Kyung-Joon; Song, Jae-Jin; Yoon, Chang-Hwan; Sha, Lui

    2011-03-01

    In telecardiology, electrocardiogram (ECG) signals from a patient are acquired by sensors and transmitted in real time to medical personnel across a wireless network. The use of IEEE 802.11 wireless LANs (WLANs), which are already deployed in many hospitals, can provide ubiquitous connectivity and thus allow cardiology patients greater mobility. However, engineering issues, including the error-prone nature of wireless channels and the unpredictable delay and jitter due to the nondeterministic nature of access to the wireless medium, need to be addressed before telecardiology can be safely realized. We propose a medical-grade WLAN architecture for remote ECG monitoring, which employs the point-coordination function (PCF) for medium access control and Reed-Solomon coding for error control. Realistic simulations with uncompressed two-lead ECG data from the MIT-BIH arrhythmia database demonstrate reliable wireless ECG monitoring; the reliability of ECG transmission exceeds 99.99% with the initial buffering delay of only 2.4 s.

  3. A new type of intelligent wireless sensing network for health monitoring of large-size structures

    Science.gov (United States)

    Lei, Ying; Liu, Ch.; Wu, D. T.; Tang, Y. L.; Wang, J. X.; Wu, L. J.; Jiang, X. D.

    2009-07-01

    In recent years, some innovative wireless sensing systems have been proposed. However, more exploration and research on wireless sensing systems are required before wireless systems can substitute for the traditional wire-based systems. In this paper, a new type of intelligent wireless sensing network is proposed for the heath monitoring of large-size structures. Hardware design of the new wireless sensing units is first studied. The wireless sensing unit mainly consists of functional modules of: sensing interface, signal conditioning, signal digitization, computational core, wireless communication and battery management. Then, software architecture of the unit is introduced. The sensing network has a two-level cluster-tree architecture with Zigbee communication protocol. Important issues such as power saving and fault tolerance are considered in the designs of the new wireless sensing units and sensing network. Each cluster head in the network is characterized by its computational capabilities that can be used to implement the computational methodologies of structural health monitoring; making the wireless sensing units and sensing network have "intelligent" characteristics. Primary tests on the measurement data collected by the wireless system are performed. The distributed computational capacity of the intelligent sensing network is also demonstrated. It is shown that the new type of intelligent wireless sensing network provides an efficient tool for structural health monitoring of large-size structures.

  4. A flexible data fusion architecture for persistent surveillance using ultra-low-power wireless sensor networks

    Science.gov (United States)

    Hanson, Jeffrey A.; McLaughlin, Keith L.; Sereno, Thomas J.

    2011-06-01

    We have developed a flexible, target-driven, multi-modal, physics-based fusion architecture that efficiently searches sensor detections for targets and rejects clutter while controlling the combinatoric problems that commonly arise in datadriven fusion systems. The informational constraints imposed by long lifetime requirements make systems vulnerable to false alarms. We demonstrate that our data fusion system significantly reduces false alarms while maintaining high sensitivity to threats. In addition, mission goals can vary substantially in terms of targets-of-interest, required characterization, acceptable latency, and false alarm rates. Our fusion architecture provides the flexibility to match these trade-offs with mission requirements unlike many conventional systems that require significant modifications for each new mission. We illustrate our data fusion performance with case studies that span many of the potential mission scenarios including border surveillance, base security, and infrastructure protection. In these studies, we deployed multi-modal sensor nodes - including geophones, magnetometers, accelerometers and PIR sensors - with low-power processing algorithms and low-bandwidth wireless mesh networking to create networks capable of multi-year operation. The results show our data fusion architecture maintains high sensitivities while suppressing most false alarms for a variety of environments and targets.

  5. Multilayer Statistical Intrusion Detection in Wireless Networks

    Science.gov (United States)

    Hamdi, Mohamed; Meddeb-Makhlouf, Amel; Boudriga, Noureddine

    2008-12-01

    The rapid proliferation of mobile applications and services has introduced new vulnerabilities that do not exist in fixed wired networks. Traditional security mechanisms, such as access control and encryption, turn out to be inefficient in modern wireless networks. Given the shortcomings of the protection mechanisms, an important research focuses in intrusion detection systems (IDSs). This paper proposes a multilayer statistical intrusion detection framework for wireless networks. The architecture is adequate to wireless networks because the underlying detection models rely on radio parameters and traffic models. Accurate correlation between radio and traffic anomalies allows enhancing the efficiency of the IDS. A radio signal fingerprinting technique based on the maximal overlap discrete wavelet transform (MODWT) is developed. Moreover, a geometric clustering algorithm is presented. Depending on the characteristics of the fingerprinting technique, the clustering algorithm permits to control the false positive and false negative rates. Finally, simulation experiments have been carried out to validate the proposed IDS.

  6. Wireless mesh networks.

    Science.gov (United States)

    Wang, Xinheng

    2008-01-01

    Wireless telemedicine using GSM and GPRS technologies can only provide low bandwidth connections, which makes it difficult to transmit images and video. Satellite or 3G wireless transmission provides greater bandwidth, but the running costs are high. Wireless networks (WLANs) appear promising, since they can supply high bandwidth at low cost. However, the WLAN technology has limitations, such as coverage. A new wireless networking technology named the wireless mesh network (WMN) overcomes some of the limitations of the WLAN. A WMN combines the characteristics of both a WLAN and ad hoc networks, thus forming an intelligent, large scale and broadband wireless network. These features are attractive for telemedicine and telecare because of the ability to provide data, voice and video communications over a large area. One successful wireless telemedicine project which uses wireless mesh technology is the Emergency Room Link (ER-LINK) in Tucson, Arizona, USA. There are three key characteristics of a WMN: self-organization, including self-management and self-healing; dynamic changes in network topology; and scalability. What we may now see is a shift from mobile communication and satellite systems for wireless telemedicine to the use of wireless networks based on mesh technology, since the latter are very attractive in terms of cost, reliability and speed.

  7. HARDWARE IMPLEMENTATION OF SECURE AODV FOR WIRELESS SENSOR NETWORKS

    Directory of Open Access Journals (Sweden)

    S. Sharmila

    2010-12-01

    Full Text Available Wireless Sensor Networks are extremely vulnerable to any kind of routing attacks due to several factors such as wireless transmission and resource-constrained nodes. In this respect, securing the packets is of great importance when designing the infrastructure and protocols of sensor networks. This paper describes the hardware architecture of secure routing for wireless sensor networks. The routing path is selected using Ad-hoc on demand distance vector routing protocol (AODV. The data packets are converted into digest using hash functions. The functionality of the proposed method is modeled using Verilog HDL in MODELSIM simulator and the performance is compared with various target devices. The results show that the data packets are secured and defend against the routing attacks with minimum energy consumption.

  8. Load balancing in integrated optical wireless networks

    DEFF Research Database (Denmark)

    Yan, Ying; Dittmann, Lars; Wong, S-W.

    2010-01-01

    In this paper, we tackle the load balancing problem in Integrated Optical Wireless Networks, where cell breathing technique is used to solve congestion by changing the coverage area of a fully loaded cell tower. Our objective is to design a load balancing mechanism which works closely...... with the integrated control scheme so as to maximize overall network throughput in the integrated network architecture. To the best of our knowledge no load balancing mechanisms, especially based on the Multi-Point Control Protocol (MPCP) defined in the IEEE 802.3ah, have been proposed so far. The major research...... issues are outlined and a cost function based optimization model is developed for power management. In particularly, two alternative feedback schemes are proposed to report wireless network status. Simulation results show that our proposed load balancing mechanism improves network performances....

  9. A Comparative Study of Wireless Sensor Networks and Their Routing Protocols

    Directory of Open Access Journals (Sweden)

    Subhajit Pal

    2010-11-01

    Full Text Available Recent developments in the area of micro-sensor devices have accelerated advances in the sensor networks field leading to many new protocols specifically designed for wireless sensor networks (WSNs. Wireless sensor networks with hundreds to thousands of sensor nodes can gather information from an unattended location and transmit the gathered data to a particular user, depending on the application. These sensor nodes have some constraints due to their limited energy, storage capacity and computing power. Data are routed from one node to other using different routing protocols. There are a number of routing protocols for wireless sensor networks. In this review article, we discuss the architecture of wireless sensor networks. Further, we categorize the routing protocols according to some key factors and summarize their mode of operation. Finally, we provide a comparative study on these various protocols.

  10. Cooperative Technique Based on Sensor Selection in Wireless Sensor Network

    Directory of Open Access Journals (Sweden)

    ISLAM, M. R.

    2009-02-01

    Full Text Available An energy efficient cooperative technique is proposed for the IEEE 1451 based Wireless Sensor Networks. Selected numbers of Wireless Transducer Interface Modules (WTIMs are used to form a Multiple Input Single Output (MISO structure wirelessly connected with a Network Capable Application Processor (NCAP. Energy efficiency and delay of the proposed architecture are derived for different combination of cluster size and selected number of WTIMs. Optimized constellation parameters are used for evaluating derived parameters. The results show that the selected MISO structure outperforms the unselected MISO structure and it shows energy efficient performance than SISO structure after a certain distance.

  11. Scalable power selection method for wireless mesh networks

    CSIR Research Space (South Africa)

    Olwal, TO

    2009-01-01

    Full Text Available This paper addresses the problem of a scalable dynamic power control (SDPC) for wireless mesh networks (WMNs) based on IEEE 802.11 standards. An SDPC model that accounts for architectural complexities witnessed in multiple radios and hops...

  12. Efficient Evaluation of Wireless Real-Time Control Networks

    Directory of Open Access Journals (Sweden)

    Peter Horvath

    2015-02-01

    Full Text Available In this paper, we present a system simulation framework for the design and performance evaluation of complex wireless cyber-physical systems. We describe the simulator architecture and the specific developments that are required to simulate cyber-physical systems relying on multi-channel, multihop mesh networks. We introduce realistic and efficient physical layer models and a system simulation methodology, which provides statistically significant performance evaluation results with low computational complexity. The capabilities of the proposed framework are illustrated in the example of WirelessHART, a centralized, real-time, multi-hop mesh network designed for industrial control and monitor applications.

  13. Mobility management techniques for the next-generation wireless networks

    Science.gov (United States)

    Sun, Junzhao; Howie, Douglas P.; Sauvola, Jaakko J.

    2001-10-01

    The tremendous demands from social market are pushing the booming development of mobile communications faster than ever before, leading to plenty of new advanced techniques emerging. With the converging of mobile and wireless communications with Internet services, the boundary between mobile personal telecommunications and wireless computer networks is disappearing. Wireless networks of the next generation need the support of all the advances on new architectures, standards, and protocols. Mobility management is an important issue in the area of mobile communications, which can be best solved at the network layer. One of the key features of the next generation wireless networks is all-IP infrastructure. This paper discusses the mobility management schemes for the next generation mobile networks through extending IP's functions with mobility support. A global hierarchical framework model for the mobility management of wireless networks is presented, in which the mobility management is divided into two complementary tasks: macro mobility and micro mobility. As the macro mobility solution, a basic principle of Mobile IP is introduced, together with the optimal schemes and the advances in IPv6. The disadvantages of the Mobile IP on solving the micro mobility problem are analyzed, on the basis of which three main proposals are discussed as the micro mobility solutions for mobile communications, including Hierarchical Mobile IP (HMIP), Cellular IP, and Handoff-Aware Wireless Access Internet Infrastructure (HAWAII). A unified model is also described in which the different micro mobility solutions can coexist simultaneously in mobile networks.

  14. TCPL: A Defense against wormhole attacks in wireless sensor networks

    International Nuclear Information System (INIS)

    Kumar, K. E. Naresh; Waheed, Mohd. Abdul; Basappa, K. Kari

    2010-01-01

    Do In this paper presents recent advances in technology have made low-cost, low-power wireless sensors with efficient energy consumption. A network of such nodes can coordinate among themselves for distributed sensing and processing of certain data. For which, we propose an architecture to provide a stateless solution in sensor networks for efficient routing in wireless sensor networks. This type of architecture is known as Tree Cast. We propose a unique method of address allocation, building up multiple disjoint trees which are geographically inter-twined and rooted at the data sink. Using these trees, routing messages to and from the sink node without maintaining any routing state in the sensor nodes is possible. In this paper, we introduce the wormhole attack, a severe attack in ad hoc networks that is particularly challenging to defend against. The wormhole attack is possible even if the attacker has not compromised any hosts and even if all communication provides authenticity and confidentiality. In the wormhole attack, an attacker records packets (or bits) at one location in the network, tunnels them to another location, and retransmits them there into the network. The wormhole attack can form a serious threat in wireless networks, especially against many sensor network routing protocols and location-based wireless security systems. For example, most existing ad hoc network routing protocols, without some mechanism to defend against the wormhole attack, would be unable to find routes longer than one or two hops, severely disrupting communication. We present a new, general mechanism, called packet leashes, for detecting and thus defending against wormhole attacks, and we present a specific protocol, called TIK, that implements leashes.

  15. An ad hoc wireless sensor network for tele medicine applications

    International Nuclear Information System (INIS)

    Sheltami, Tarek R.; Mahmoud, Ashraf S.; Abu-Amara, Marwan H.

    2007-01-01

    Recent advances in embedded computing systems have led to the emergence of wireless sensor networks (SNETs), consisting of small, battery-powered motes with limited computation and radio communication capabilities. SNETs permit data gathering and computation to be deeply embedded in the physical environment. Large scale ad hoc sensor networks (ASNET), when deployed among mobile patients, can provide dynamic data query architecture to allow medical specialists to monitor patients at any place via the web or cellular network. In case of an emergency, doctors and/or nurses will be contacted automatically through their handheld personal digital assistants (PDAs) or cellular phones. In specific, the proposed network consists of sensor nodes at the first layer whose responsibility is to measure, collect and communicate, via wired or wireless interface, readings to a microcontroller presenting the second layer of architecture. Deployed microcontrollers process incoming readings and report to a central system via a wireless interface. The implemented network distinguishes between periodic sensor readings and critical or event driven readings where higher priorities is given for the latter. In this paper we implement 3 special cases for tracking and monitoring patients and doctors using SNETs. In addition, the performance of a large scale of our implementation has been tested by means of mathematical analysis. (author)

  16. A SURVEY on WIRELESS MESH NETWORKS, ROUTING METRICS and PROTOCOLS

    Directory of Open Access Journals (Sweden)

    Safak DURUKAN ODABASI

    2013-01-01

    Full Text Available Today, Internet has become an indispensable part of our daily lives. It has a growing user community in many fields from banking transactions to online entertainment. It will be very efficient for users, as the next generation internet access becomes wireless like frequently used services such as cellular phones. But for providing this, a new network is needed to be designed or an existing network must be improved as well as making changes on infrastructure. At this point, mesh network infrastructure arises and offers more sophisticated internet access with less need. The most important advantage of mesh networks is the capability of working without infrastructure. Mesh networks are an additional access technology more than being a renewed one in the next generation wireless networks called 4G. In this study, wireless mesh networks and example applications are mentioned. Base architecture and design factors are emphasized, current routing protocols that are used on wireless mesh networks and routing metrics on which these protocols are based, are explained. Finally, the performance effects of these protocols and metrics on different network topologies are referred.

  17. Survey and Benchmark of Block Ciphers for Wireless Sensor Networks

    NARCIS (Netherlands)

    Law, Y.W.; Doumen, J.M.; Hartel, Pieter H.

    Cryptographic algorithms play an important role in the security architecture of wireless sensor networks (WSNs). Choosing the most storage- and energy-efficient block cipher is essential, due to the facts that these networks are meant to operate without human intervention for a long period of time

  18. Network Traffic Prediction Based on Deep Belief Network and Spatiotemporal Compressive Sensing in Wireless Mesh Backbone Networks

    Directory of Open Access Journals (Sweden)

    Laisen Nie

    2018-01-01

    Full Text Available Wireless mesh network is prevalent for providing a decentralized access for users and other intelligent devices. Meanwhile, it can be employed as the infrastructure of the last few miles connectivity for various network applications, for example, Internet of Things (IoT and mobile networks. For a wireless mesh backbone network, it has obtained extensive attention because of its large capacity and low cost. Network traffic prediction is important for network planning and routing configurations that are implemented to improve the quality of service for users. This paper proposes a network traffic prediction method based on a deep learning architecture and the Spatiotemporal Compressive Sensing method. The proposed method first adopts discrete wavelet transform to extract the low-pass component of network traffic that describes the long-range dependence of itself. Then, a prediction model is built by learning a deep architecture based on the deep belief network from the extracted low-pass component. Otherwise, for the remaining high-pass component that expresses the gusty and irregular fluctuations of network traffic, the Spatiotemporal Compressive Sensing method is adopted to predict it. Based on the predictors of two components, we can obtain a predictor of network traffic. From the simulation, the proposed prediction method outperforms three existing methods.

  19. Wireless Network Security Vulnerabilities and Concerns

    Science.gov (United States)

    Mushtaq, Ahmad

    The dilemma of cyber communications insecurity has existed all the times since the beginning of the network communications. The problems and concerns of unauthorized access and hacking has existed form the time of introduction of world wide web communication and Internet's expansion for popular use in 1990s, and has remained till present time as one of the most important issues. The wireless network security is no exception. Serious and continuous efforts of investigation, research and development has been going on for the last several decades to achieve the goal of provision of 100 percent or full proof security for all the protocols of networking architectures including the wireless networking. Some very reliable and robust strategies have been developed and deployed which has made network communications more and more secure. However, the most desired goal of complete security has yet to see the light of the day. The latest Cyber War scenario, reported in the media of intrusion and hacking of each other's defense and secret agencies between the two super powers USA and China has further aggravated the situation. This sort of intrusion by hackers between other countries such as India and Pakistan, Israel and Middle East countries has also been going on and reported in the media frequently. The paper reviews and critically examines the strategies already in place, for wired network. Wireless Network Security and also suggests some directions and strategies for more robust aspects to be researched and deployed.

  20. Design and initial deployment of the wireless local area networking infrastructure at Sandia National Laboratories.

    Energy Technology Data Exchange (ETDEWEB)

    Long, John P.; Hamill, Michael J.; Mitchell, M. G.; Miller, Marc M.; Witzke, Edward L.; Wiener, Dallas J

    2006-11-01

    A major portion of the Wireless Networking Project at Sandia National Laboratories over the last few years has been to examine IEEE 802.11 wireless networking for possible use at Sandia and if practical, introduce this technology. This project team deployed 802.11a, b, and g Wireless Local Area Networking at Sandia. This report examines the basics of wireless networking and captures key results from project tests and experiments. It also records project members thoughts and designs on wireless LAN architecture and security issues. It documents some of the actions and milestones of this project, including pilot and production deployment of wireless networking equipment, and captures the team's rationale behind some of the decisions made. Finally, the report examines lessons learned, future directions, and conclusions.

  1. Underwater Optical Wireless Communications, Networking, and Localization: A Survey

    KAUST Repository

    Saeed, Nasir; Celik, Abdulkadir; Al-Naffouri, Tareq Y.; Alouini, Mohamed-Slim

    2018-01-01

    Underwater wireless communications can be carried out through acoustic, radio frequency (RF), and optical waves. Compared to its bandwidth limited acoustic and RF counterparts, underwater optical wireless communications (UOWCs) can support higher data rates at low latency levels. However, severe aquatic channel conditions (e.g., absorption, scattering, turbulence, etc.) pose great challenges for UOWCs and significantly reduce the attainable communication ranges, which necessitates efficient networking and localization solutions. Therefore, we provide a comprehensive survey on the challenges, advances, and prospects of underwater optical wireless networks (UOWNs) from a layer by layer perspective which includes: 1) Potential network architectures; 2) Physical layer issues including propagation characteristics, channel modeling, and modulation techniques 3) Data link layer problems covering link configurations, link budgets, performance metrics, and multiple access schemes; 4) Network layer topics containing relaying techniques and potential routing algorithms; 5) Transport layer subjects such as connectivity, reliability, flow and congestion control; 6) Application layer goals and state-of-the-art UOWN applications, and 7) Localization and its impacts on UOWN layers. Finally, we outline the open research challenges and point out the future directions for underwater optical wireless communications, networking, and localization research.

  2. Underwater Optical Wireless Communications, Networking, and Localization: A Survey

    KAUST Repository

    Saeed, Nasir

    2018-02-28

    Underwater wireless communications can be carried out through acoustic, radio frequency (RF), and optical waves. Compared to its bandwidth limited acoustic and RF counterparts, underwater optical wireless communications (UOWCs) can support higher data rates at low latency levels. However, severe aquatic channel conditions (e.g., absorption, scattering, turbulence, etc.) pose great challenges for UOWCs and significantly reduce the attainable communication ranges, which necessitates efficient networking and localization solutions. Therefore, we provide a comprehensive survey on the challenges, advances, and prospects of underwater optical wireless networks (UOWNs) from a layer by layer perspective which includes: 1) Potential network architectures; 2) Physical layer issues including propagation characteristics, channel modeling, and modulation techniques 3) Data link layer problems covering link configurations, link budgets, performance metrics, and multiple access schemes; 4) Network layer topics containing relaying techniques and potential routing algorithms; 5) Transport layer subjects such as connectivity, reliability, flow and congestion control; 6) Application layer goals and state-of-the-art UOWN applications, and 7) Localization and its impacts on UOWN layers. Finally, we outline the open research challenges and point out the future directions for underwater optical wireless communications, networking, and localization research.

  3. Architectural and Mobility Management Designs in Internet-Based Infrastructure Wireless Mesh Networks

    Science.gov (United States)

    Zhao, Weiyi

    2011-01-01

    Wireless mesh networks (WMNs) have recently emerged to be a cost-effective solution to support large-scale wireless Internet access. They have numerous applications, such as broadband Internet access, building automation, and intelligent transportation systems. One research challenge for Internet-based WMNs is to design efficient mobility…

  4. The Wireless ATM Architecture

    Directory of Open Access Journals (Sweden)

    R. Palitefka

    1998-06-01

    Full Text Available An overview of the proposed wireless ATM structure is provided. Wireless communication have been developed to a level where offered services can now be extended beyond voice and data. There are already wireless LANs, cordless systems offering data services and mobile data. Wireless LAN systems are basically planned for local, on-promises and in-house networking providing short distance radio or infrared links between computer system. The main challenge of wireless ATM is to harmonise the development of broadband wireless system with service B -ISDN/ATM and ATM LANs, and offer multimedia multiservice features for the support of time-sensitive voice communication, video, desktop multimedia applications, and LAN data traffic for the wireless user.

  5. Network performance of a wireless sensor network for temperature monitoring in vineyards

    DEFF Research Database (Denmark)

    Liscano, Ramiro; Jacoub, John Khalil; Dersingh, Anand

    2011-01-01

    Wireless sensor networks (WSNs) are an emerging technology which can be used for outdoor environmental monitoring. This paper presents challenges that arose from the development and deployment of a WSN for environmental monitoring as well as network performance analysis of this network. Different...... components in our sensor network architecture are presented like the physical nodes, the sensor node code, and two messaging protocols; one for collecting sensor and network values and the other for sensor node commands. An information model for sensor nodes to support plug-and-play capabilities in sensor...... networks is also presented....

  6. Design Methodology of a Sensor Network Architecture Supporting Urgent Information and Its Evaluation

    Science.gov (United States)

    Kawai, Tetsuya; Wakamiya, Naoki; Murata, Masayuki

    Wireless sensor networks are expected to become an important social infrastructure which helps our life to be safe, secure, and comfortable. In this paper, we propose design methodology of an architecture for fast and reliable transmission of urgent information in wireless sensor networks. In this methodology, instead of establishing single complicated monolithic mechanism, several simple and fully-distributed control mechanisms which function in different spatial and temporal levels are incorporated on each node. These mechanisms work autonomously and independently responding to the surrounding situation. We also show an example of a network architecture designed following the methodology. We evaluated the performance of the architecture by extensive simulation and practical experiments and our claim was supported by the results of these experiments.

  7. A Benefit Analysis of Infusing Wireless into Aircraft and Fleet Operations - Report to Seedling Project Efficient Reconfigurable Cockpit Design and Fleet Operations Using Software Intensive, Network Enabled, Wireless Architecture (ECON)

    Science.gov (United States)

    Alexandrov, Natalia; Holmes, Bruce J.; Hahn, Andrew S.

    2016-01-01

    We report on an examination of potential benefits of infusing wireless technologies into various areas of aircraft and airspace operations. The analysis is done in support of a NASA seedling project Efficient Reconfigurable Cockpit Design and Fleet Operations Using Software Intensive, Network Enabled Wireless Architecture (ECON). The study has two objectives. First, we investigate one of the main benefit hypotheses of the ECON proposal: that the replacement of wired technologies with wireless would lead to significant weight reductions on an aircraft, among other benefits. Second, we advance a list of wireless technology applications and discuss their system benefits. With regard to the primary hypothesis, we conclude that the promise of weight reduction is premature. Specificity of the system domain and aircraft, criticality of components, reliability of wireless technologies, the weight of replacement or augmentation equipment, and the cost of infusion must all be taken into account among other considerations, to produce a reliable estimate of weight savings or increase.

  8. Applications of Wireless Sensor Networks in Marine Environment Monitoring: A Survey

    Science.gov (United States)

    Xu, Guobao; Shen, Weiming; Wang, Xianbin

    2014-01-01

    With the rapid development of society and the economy, an increasing number of human activities have gradually destroyed the marine environment. Marine environment monitoring is a vital problem and has increasingly attracted a great deal of research and development attention. During the past decade, various marine environment monitoring systems have been developed. The traditional marine environment monitoring system using an oceanographic research vessel is expensive and time-consuming and has a low resolution both in time and space. Wireless Sensor Networks (WSNs) have recently been considered as potentially promising alternatives for monitoring marine environments since they have a number of advantages such as unmanned operation, easy deployment, real-time monitoring, and relatively low cost. This paper provides a comprehensive review of the state-of-the-art technologies in the field of marine environment monitoring using wireless sensor networks. It first describes application areas, a common architecture of WSN-based oceanographic monitoring systems, a general architecture of an oceanographic sensor node, sensing parameters and sensors, and wireless communication technologies. Then, it presents a detailed review of some related projects, systems, techniques, approaches and algorithms. It also discusses challenges and opportunities in the research, development, and deployment of wireless sensor networks for marine environment monitoring. PMID:25215942

  9. Security for multihop wireless networks

    CERN Document Server

    Khan, Shafiullah

    2014-01-01

    Security for Multihop Wireless Networks provides broad coverage of the security issues facing multihop wireless networks. Presenting the work of a different group of expert contributors in each chapter, it explores security in mobile ad hoc networks, wireless sensor networks, wireless mesh networks, and personal area networks.Detailing technologies and processes that can help you secure your wireless networks, the book covers cryptographic coprocessors, encryption, authentication, key management, attacks and countermeasures, secure routing, secure medium access control, intrusion detection, ep

  10. Java-based mobile agent platforms for wireless sensor networks

    NARCIS (Netherlands)

    Aiello, F.; Carbone, A.; Fortino, G.; Galzarano, S.; Ganzha, M.; Paprzycki, M.

    2010-01-01

    This paper proposes an overview and comparison of mobile agent platforms for the development of wireless sensor network applications. In particular, the architecture, programming model and basic performance of two Java-based agent platforms, Mobile Agent Platform for Sun SPOT (MAPS) and Agent

  11. A Wildlife Monitoring System Based on Wireless Image Sensor Networks

    Directory of Open Access Journals (Sweden)

    Junguo Zhang

    2014-10-01

    Full Text Available Survival and development of wildlife sustains the balance and stability of the entire ecosystem. Wildlife monitoring can provide lots of information such as wildlife species, quantity, habits, quality of life and habitat conditions, to help researchers grasp the status and dynamics of wildlife resources, and to provide basis for the effective protection, sustainable use, and scientific management of wildlife resources. Wildlife monitoring is the foundation of wildlife protection and management. Wireless Sensor Networks (WSN technology has become the most popular technology in the field of information. With advance of the CMOS image sensor technology, wireless sensor networks combined with image sensors, namely Wireless Image Sensor Networks (WISN technology, has emerged as an alternative in monitoring applications. Monitoring wildlife is one of its most promising applications. In this paper, system architecture of the wildlife monitoring system based on the wireless image sensor networks was presented to overcome the shortcomings of the traditional monitoring methods. Specifically, some key issues including design of wireless image sensor nodes and software process design have been studied and presented. A self-powered rotatable wireless infrared image sensor node based on ARM and an aggregation node designed for large amounts of data were developed. In addition, their corresponding software was designed. The proposed system is able to monitor wildlife accurately, automatically, and remotely in all-weather condition, which lays foundations for applications of wireless image sensor networks in wildlife monitoring.

  12. Application of Wireless Sensor Networks to Automobiles

    Science.gov (United States)

    Tavares, Jorge; Velez, Fernando J.; Ferro, João M.

    2008-01-01

    Some applications of Wireless Sensor Networks (WSNs) to the automobile are identified, and the use of Crossbow MICAz motes operating at 2.4 GHz is considered together with TinyOS support. These WSNs are conceived in order to measure, process and supply to the user diverse types of information during an automobile journey. Examples are acceleration and fuel consumption, identification of incorrect tire pressure, verification of illumination, and evaluation of the vital signals of the driver. A brief survey on WSNs concepts is presented, as well as the way the wireless sensor network itself was developed. Calibration curves were produced which allowed for obtaining luminous intensity and temperature values in the appropriate units. Aspects of the definition of the architecture and the choice/implementation of the protocols are identified. Security aspects are also addressed.

  13. Wireless Interconnect in Multilayer Chip-Area-Networks for Future Multimaterial High-Speed Systems Design

    Directory of Open Access Journals (Sweden)

    Oluwole John Famoriji

    2017-01-01

    Full Text Available Wireless chip area network which enables wireless communication among chips fosters development in wireless communication and it is envisioned that future hardware system and developmental functionality will require multimaterial. However, the traditional system architecture is limited by channel bandwidth-limited interfaces, throughput, delay, and power consumption and as a result limits the efficiency and system performance. Wireless interconnect has been proposed to overcome scalability and performance limitations of multihop wired architectures. Characterization and modeling of channel become more important for specification of choice of modulation or demodulation techniques, channel bandwidths, and other mitigation techniques for channel distortion and interference such as equalization. This paper presents an analytical channel model for characterization, modeling, and analysis of wireless chip-to-chip or interchip interconnects in wireless chip area network with a particular focus on large-scale analysis. The proposed model accounts for both static and dynamic channel losses/attenuation in high-speed systems. Simulation and evaluation of the model with experimental data conducted in a computer desktop casing depict that proposed model matched measurement data very closely. The transmission of EM waves via a medium introduces molecular absorption due to various molecules within the material substance. This model is a representative of channel loss profile in wireless chip-area-network communication and good for future electronic circuits and high-speed systems design.

  14. Application of Wireless Sensor Networks for Indoor Temperature Regulation

    DEFF Research Database (Denmark)

    Stojkoska, Biljana Risteska; Popovska Avramova, Andrijana; Chatzimisios, Periklis

    2014-01-01

    Wireless sensor networks take a major part in our everyday lives by enhancing systems for home automation, healthcare, temperature control, energy consumption monitoring, and so forth. In this paper we focus on a system used for temperature regulation for residential, educational, industrial...... energy savings by reducing the amount of data transmissions through the network. Furthermore, the framework explores techniques for localization, such that the location of the nodes can be used by algorithms that regulate temperature settings......., and commercial premises, and so forth. We propose a framework for indoor temperature regulation and optimization using wireless sensor networks based on ZigBee platform. This paper considers architectural design of the system, as well as implementation guidelines. The proposed system favors methods that provide...

  15. An orthogonal wavelet division multiple-access processor architecture for LTE-advanced wireless/radio-over-fiber systems over heterogeneous networks

    Science.gov (United States)

    Mahapatra, Chinmaya; Leung, Victor CM; Stouraitis, Thanos

    2014-12-01

    The increase in internet traffic, number of users, and availability of mobile devices poses a challenge to wireless technologies. In long-term evolution (LTE) advanced system, heterogeneous networks (HetNet) using centralized coordinated multipoint (CoMP) transmitting radio over optical fibers (LTE A-ROF) have provided a feasible way of satisfying user demands. In this paper, an orthogonal wavelet division multiple-access (OWDMA) processor architecture is proposed, which is shown to be better suited to LTE advanced systems as compared to orthogonal frequency division multiple access (OFDMA) as in LTE systems 3GPP rel.8 (3GPP, http://www.3gpp.org/DynaReport/36300.htm). ROF systems are a viable alternative to satisfy large data demands; hence, the performance in ROF systems is also evaluated. To validate the architecture, the circuit is designed and synthesized on a Xilinx vertex-6 field-programmable gate array (FPGA). The synthesis results show that the circuit performs with a clock period as short as 7.036 ns (i.e., a maximum clock frequency of 142.13 MHz) for transform size of 512. A pipelined version of the architecture reduces the power consumption by approximately 89%. We compare our architecture with similar available architectures for resource utilization and timing and provide performance comparison with OFDMA systems for various quality metrics of communication systems. The OWDMA architecture is found to perform better than OFDMA for bit error rate (BER) performance versus signal-to-noise ratio (SNR) in wireless channel as well as ROF media. It also gives higher throughput and mitigates the bad effect of peak-to-average-power ratio (PAPR).

  16. Wireless virtualization

    CERN Document Server

    Wen, Heming; Le-Ngoc, Tho

    2013-01-01

    This SpringerBriefs is an overview of the emerging field of wireless access and mobile network virtualization. It provides a clear and relevant picture of the current virtualization trends in wireless technologies by summarizing and comparing different architectures, techniques and technologies applicable to a future virtualized wireless network infrastructure. The readers are exposed to a short walkthrough of the future Internet initiative and network virtualization technologies in order to understand the potential role of wireless virtualization in the broader context of next-generation ubiq

  17. Handbook on theoretical and algorithmic aspects of sensor, ad hoc wireless, and peer-to-peer networks

    CERN Document Server

    Wu, Jie

    2005-01-01

    PrefaceAD HOC WIRELESS NETWORKSA Modular Cross Layer Architecture for Ad Hoc Networks, M. Conti, J. Crowcroft, G. Maselli, and G. TuriRouting Scalability in MANETs, J. Eriksson, S. Krishnamurthy and M. FaloutsosUniformly Distributed Algorithm for Virtual Backbone Routing in Ad Hoc Wireless Networks, D.S. KimMaximum Necessary Hop Count for Packet Routing in MANET, X. Chen and J. ShenEfficient Strategyproof Multicast in Selfish Wireless Networks, X.-Yang LiGeocasting in Ad Hoc and Sensor Networks, I. StojmenovicTopology Control for Ad hoc Networks: Present Solutions and Open Issues, C.-C. Shen a

  18. Fault Tolerant Mechanism for Multimedia Flows in Wireless Ad Hoc Networks Based on Fast Switching Paths

    Directory of Open Access Journals (Sweden)

    Juan R. Diaz

    2014-01-01

    Full Text Available Multimedia traffic can be forwarded through a wireless ad hoc network using the available resources of the nodes. Several models and protocols have been designed in order to organize and arrange the nodes to improve transmissions along the network. We use a cluster-based framework, called MWAHCA architecture, which optimizes multimedia transmissions over a wireless ad hoc network. It was proposed by us in a previous research work. This architecture is focused on decreasing quality of service (QoS parameters like latency, jitter, and packet loss, but other network features were not developed, like load balance or fault tolerance. In this paper, we propose a new fault tolerance mechanism, using as a base the MWAHCA architecture, in order to recover any multimedia flow crossing the wireless ad hoc network when there is a node failure. The algorithm can run independently for each multimedia flow. The main objective is to keep the QoS parameters as low as possible. To achieve this goal, the convergence time must be controlled and reduced. This paper provides the designed protocol, the analytical model of the algorithm, and a software application developed to test its performance in a real laboratory.

  19. Service Class Resource Management For Green Wireless-Optical Broadband Access NetworksWOBAN

    Directory of Open Access Journals (Sweden)

    SRUTHY.S

    2015-08-01

    Full Text Available Abstract-Broadband access networks have become an essential part of worldwide communication systems because of the exponential growth of broadband services such as video on demand high definition TV internet protocol TV and video conferencing. Exponential growth in the volume of wireless data boosted by the growing popularity of mobile devices such as smartphone and tablets has forced the telecommunication industries to rethink the way networks are currently designed and to focus on the development of high-capacity mobile broadband networks. In response to this challenge researchers have been working toward the development of an integrated wireless optical broadband access network. Two major candidate technologies which are currently known for their high capacity as well as quality of service QoS for multimedia traffic are passive optical networks PON and fourth generation 4G wireless networks. PON is a wired access technology well known for its cost efficiency and high capacity whereas 4G is a wireless broadband access technology which has achieved broad market acceptance because of its ease of deployment ability to offer mobility and its cost efficiency. Integration of PON and 4G technologies in the form of wireless-optical broadband access networks offers advantages such as extension of networks in rural areas support for mobile broadband services and quick deployment of broadband networks. These two technologies however have different design architectures for handling broadband services that require quality of service. For example 4G networks use traffic classification for supporting different QoS demands whereas the PON architecture has no such mechanism to differentiate between types of traffic. These two technologies also differ in their power saving mechanisms. Propose a service class mapping for the integrated PON-4G network which is based on the MG1 queuing model and class-based power saving mechanism which significantly improves the

  20. Fundamentals of wireless sensor networks theory and practice

    CERN Document Server

    Dargie, Waltenegus

    2010-01-01

    In this book, the authors describe the fundamental concepts and practical aspects of wireless sensor networks. The book provides a comprehensive view to this rapidly evolving field, including its many novel applications, ranging from protecting civil infrastructure to pervasive health monitoring. Using detailed examples and illustrations, this book provides an inside track on the current state of the technology. The book is divided into three parts. In Part I, several node architectures, applications and operating systems are discussed. In Part II, the basic architectural frameworks, including

  1. Wireless network pricing

    CERN Document Server

    Huang, Jianwei

    2013-01-01

    Today's wireless communications and networking practices are tightly coupled with economic considerations, to the extent that it is almost impossible to make a sound technology choice without understanding the corresponding economic implications. This book aims at providing a foundational introduction on how microeconomics, and pricing theory in particular, can help us to understand and build better wireless networks. The book can be used as lecture notes for a course in the field of network economics, or a reference book for wireless engineers and applied economists to understand how pricing

  2. A novel PON based UMTS broadband wireless access network architecture with an algorithm to guarantee end to end QoS

    Science.gov (United States)

    Sana, Ajaz; Hussain, Shahab; Ali, Mohammed A.; Ahmed, Samir

    2007-09-01

    In this paper we proposes a novel Passive Optical Network (PON) based broadband wireless access network architecture to provide multimedia services (video telephony, video streaming, mobile TV, mobile emails etc) to mobile users. In the conventional wireless access networks, the base stations (Node B) and Radio Network Controllers (RNC) are connected by point to point T1/E1 lines (Iub interface). The T1/E1 lines are expensive and add up to operating costs. Also the resources (transceivers and T1/E1) are designed for peak hours traffic, so most of the time the dedicated resources are idle and wasted. Further more the T1/E1 lines are not capable of supporting bandwidth (BW) required by next generation wireless multimedia services proposed by High Speed Packet Access (HSPA, Rel.5) for Universal Mobile Telecommunications System (UMTS) and Evolution Data only (EV-DO) for Code Division Multiple Access 2000 (CDMA2000). The proposed PON based back haul can provide Giga bit data rates and Iub interface can be dynamically shared by Node Bs. The BW is dynamically allocated and the unused BW from lightly loaded Node Bs is assigned to heavily loaded Node Bs. We also propose a novel algorithm to provide end to end Quality of Service (QoS) (between RNC and user equipment).The algorithm provides QoS bounds in the wired domain as well as in wireless domain with compensation for wireless link errors. Because of the air interface there can be certain times when the user equipment (UE) is unable to communicate with Node B (usually referred to as link error). Since the link errors are bursty and location dependent. For a proposed approach, the scheduler at the Node B maps priorities and weights for QoS into wireless MAC. The compensations for errored links is provided by the swapping of services between the active users and the user data is divided into flows, with flows allowed to lag or lead. The algorithm guarantees (1)delay and throughput for error-free flows,(2)short term fairness

  3. Towards adaptive security for convergent wireless sensor networks in beyond 3G environments

    DEFF Research Database (Denmark)

    Mitseva, Anelia; Aivaloglou, Efthimia; Marchitti, Maria-Antonietta

    2010-01-01

    The integration of wireless sensor networks with different network systems gives rise to many research challenges to ensure security, privacy and trust in the overall architecture. The main contribution of this paper is a generic security, privacy and trust framework providing context-aware adapt...

  4. Energy-Efficient Transmissions for Remote Wireless Sensor Networks: An Integrated HAP/Satellite Architecture for Emergency Scenarios.

    Science.gov (United States)

    Dong, Feihong; Li, Hongjun; Gong, Xiangwu; Liu, Quan; Wang, Jingchao

    2015-09-03

    A typical application scenario of remote wireless sensor networks (WSNs) is identified as an emergency scenario. One of the greatest design challenges for communications in emergency scenarios is energy-efficient transmission, due to scarce electrical energy in large-scale natural and man-made disasters. Integrated high altitude platform (HAP)/satellite networks are expected to optimally meet emergency communication requirements. In this paper, a novel integrated HAP/satellite (IHS) architecture is proposed, and three segments of the architecture are investigated in detail. The concept of link-state advertisement (LSA) is designed in a slow flat Rician fading channel. The LSA is received and processed by the terminal to estimate the link state information, which can significantly reduce the energy consumption at the terminal end. Furthermore, the transmission power requirements of the HAPs and terminals are derived using the gradient descent and differential equation methods. The energy consumption is modeled at both the source and system level. An innovative and adaptive algorithm is given for the energy-efficient path selection. The simulation results validate the effectiveness of the proposed adaptive algorithm. It is shown that the proposed adaptive algorithm can significantly improve energy efficiency when combined with the LSA and the energy consumption estimation.

  5. Energy-Efficient Transmissions for Remote Wireless Sensor Networks: An Integrated HAP/Satellite Architecture for Emergency Scenarios

    Science.gov (United States)

    Dong, Feihong; Li, Hongjun; Gong, Xiangwu; Liu, Quan; Wang, Jingchao

    2015-01-01

    A typical application scenario of remote wireless sensor networks (WSNs) is identified as an emergency scenario. One of the greatest design challenges for communications in emergency scenarios is energy-efficient transmission, due to scarce electrical energy in large-scale natural and man-made disasters. Integrated high altitude platform (HAP)/satellite networks are expected to optimally meet emergency communication requirements. In this paper, a novel integrated HAP/satellite (IHS) architecture is proposed, and three segments of the architecture are investigated in detail. The concept of link-state advertisement (LSA) is designed in a slow flat Rician fading channel. The LSA is received and processed by the terminal to estimate the link state information, which can significantly reduce the energy consumption at the terminal end. Furthermore, the transmission power requirements of the HAPs and terminals are derived using the gradient descent and differential equation methods. The energy consumption is modeled at both the source and system level. An innovative and adaptive algorithm is given for the energy-efficient path selection. The simulation results validate the effectiveness of the proposed adaptive algorithm. It is shown that the proposed adaptive algorithm can significantly improve energy efficiency when combined with the LSA and the energy consumption estimation. PMID:26404292

  6. Energy-Efficient Transmissions for Remote Wireless Sensor Networks: An Integrated HAP/Satellite Architecture for Emergency Scenarios

    Directory of Open Access Journals (Sweden)

    Feihong Dong

    2015-09-01

    Full Text Available A typical application scenario of remote wireless sensor networks (WSNs is identified as an emergency scenario. One of the greatest design challenges for communications in emergency scenarios is energy-efficient transmission, due to scarce electrical energy in large-scale natural and man-made disasters. Integrated high altitude platform (HAP/satellite networks are expected to optimally meet emergency communication requirements. In this paper, a novel integrated HAP/satellite (IHS architecture is proposed, and three segments of the architecture are investigated in detail. The concept of link-state advertisement (LSA is designed in a slow flat Rician fading channel. The LSA is received and processed by the terminal to estimate the link state information, which can significantly reduce the energy consumption at the terminal end. Furthermore, the transmission power requirements of the HAPs and terminals are derived using the gradient descent and differential equation methods. The energy consumption is modeled at both the source and system level. An innovative and adaptive algorithm is given for the energy-efficient path selection. The simulation results validate the effectiveness of the proposed adaptive algorithm. It is shown that the proposed adaptive algorithm can significantly improve energy efficiency when combined with the LSA and the energy consumption estimation.

  7. Strategies for P2P connectivity in reconfigurable converged wired/wireless access networks.

    Science.gov (United States)

    Puerto, Gustavo; Mora, José; Ortega, Beatriz; Capmany, José

    2010-12-06

    This paper presents different strategies to define the architecture of a Radio-Over-Fiber (RoF) Access networks enabling Peer-to-Peer (P2P) functionalities. The architectures fully exploit the flexibility of a wavelength router based on the feedback configuration of an Arrayed Waveguide Grating (AWG) and an optical switch to broadcast P2P services among diverse infrastructures featuring dynamic channel allocation and enabling an optical platform for 3G and beyond wireless backhaul requirements. The first architecture incorporates a tunable laser to generate a dedicated wavelength for P2P purposes and the second architecture takes advantage of reused wavelengths to enable the P2P connectivity among Optical Network Units (ONUs) or Base Stations (BS). While these two approaches allow the P2P connectivity in a one at a time basis (1:1), the third architecture enables the broadcasting of P2P sessions among different ONUs or BSs at the same time (1:M). Experimental assessment of the proposed architecture shows approximately 0.6% Error Vector Magnitude (EVM) degradation for wireless services and 1 dB penalty in average for 1 x 10(-12) Bit Error Rate (BER) for wired baseband services.

  8. Wireless network security theories and applications

    CERN Document Server

    Chen, Lei; Zhang, Zihong

    2013-01-01

    Wireless Network Security Theories and Applications discusses the relevant security technologies, vulnerabilities, and potential threats, and introduces the corresponding security standards and protocols, as well as provides solutions to security concerns. Authors of each chapter in this book, mostly top researchers in relevant research fields in the U.S. and China, presented their research findings and results about the security of the following types of wireless networks: Wireless Cellular Networks, Wireless Local Area Networks (WLANs), Wireless Metropolitan Area Networks (WMANs), Bluetooth

  9. Green heterogeneous wireless networks

    CERN Document Server

    Ismail, Muhammad; Nee, Hans-Peter; Qaraqe, Khalid A; Serpedin, Erchin

    2016-01-01

    This book focuses on the emerging research topic "green (energy efficient) wireless networks" which has drawn huge attention recently from both academia and industry. This topic is highly motivated due to important environmental, financial, and quality-of-experience (QoE) considerations. Specifically, the high energy consumption of the wireless networks manifests in approximately 2% of all CO2 emissions worldwide. This book presents the authors’ visions and solutions for deployment of energy efficient (green) heterogeneous wireless communication networks. The book consists of three major parts. The first part provides an introduction to the "green networks" concept, the second part targets the green multi-homing resource allocation problem, and the third chapter presents a novel deployment of device-to-device (D2D) communications and its successful integration in Heterogeneous Networks (HetNets). The book is novel in that it specifically targets green networking in a heterogeneous wireless medium, which re...

  10. Efficient Security Mechanisms for mHealth Applications Using Wireless Body Sensor Networks

    Directory of Open Access Journals (Sweden)

    Prasan Kumar Sahoo

    2012-09-01

    Full Text Available Recent technological advances in wireless communications and physiological sensing allow miniature, lightweight, ultra-low power, intelligent monitoring devices, which can be integrated into a Wireless Body Sensor Network (WBSN for health monitoring. Physiological signals of humans such as heartbeats, temperature and pulse can be monitored from a distant location using tiny biomedical wireless sensors. Hence, it is highly essential to combine the ubiquitous computing with mobile health technology using wireless sensors and smart phones to monitor the well-being of chronic patients such as cardiac, Parkinson and epilepsy patients. Since physiological data of a patient are highly sensitive, maintaining its confidentiality is highly essential. Hence, security is a vital research issue in mobile health (mHealth applications, especially if a patient has an embarrassing disease. In this paper a three tier security architecture for the mHealth application is proposed, in which light weight data confidentiality and authentication protocols are proposed to maintain the privacy of a patient. Moreover, considering the energy and hardware constraints of the wireless body sensors, low complexity data confidential and authentication schemes are designed. Performance evaluation of the proposed architecture shows that they can satisfy the energy and hardware limitations of the sensors and still can maintain the secure fabrics of the wireless body sensor networks. Besides, the proposed schemes can outperform in terms of energy consumption, memory usage and computation time over standard key establishment security scheme.

  11. Efficient Security Mechanisms for mHealth Applications Using Wireless Body Sensor Networks

    Science.gov (United States)

    Sahoo, Prasan Kumar

    2012-01-01

    Recent technological advances in wireless communications and physiological sensing allow miniature, lightweight, ultra-low power, intelligent monitoring devices, which can be integrated into a Wireless Body Sensor Network (WBSN) for health monitoring. Physiological signals of humans such as heartbeats, temperature and pulse can be monitored from a distant location using tiny biomedical wireless sensors. Hence, it is highly essential to combine the ubiquitous computing with mobile health technology using wireless sensors and smart phones to monitor the well-being of chronic patients such as cardiac, Parkinson and epilepsy patients. Since physiological data of a patient are highly sensitive, maintaining its confidentiality is highly essential. Hence, security is a vital research issue in mobile health (mHealth) applications, especially if a patient has an embarrassing disease. In this paper a three tier security architecture for the mHealth application is proposed, in which light weight data confidentiality and authentication protocols are proposed to maintain the privacy of a patient. Moreover, considering the energy and hardware constraints of the wireless body sensors, low complexity data confidential and authentication schemes are designed. Performance evaluation of the proposed architecture shows that they can satisfy the energy and hardware limitations of the sensors and still can maintain the secure fabrics of the wireless body sensor networks. Besides, the proposed schemes can outperform in terms of energy consumption, memory usage and computation time over standard key establishment security scheme. PMID:23112734

  12. Efficient security mechanisms for mHealth applications using wireless body sensor networks.

    Science.gov (United States)

    Sahoo, Prasan Kumar

    2012-01-01

    Recent technological advances in wireless communications and physiological sensing allow miniature, lightweight, ultra-low power, intelligent monitoring devices, which can be integrated into a Wireless Body Sensor Network (WBSN) for health monitoring. Physiological signals of humans such as heartbeats, temperature and pulse can be monitored from a distant location using tiny biomedical wireless sensors. Hence, it is highly essential to combine the ubiquitous computing with mobile health technology using wireless sensors and smart phones to monitor the well-being of chronic patients such as cardiac, Parkinson and epilepsy patients. Since physiological data of a patient are highly sensitive, maintaining its confidentiality is highly essential. Hence, security is a vital research issue in mobile health (mHealth) applications, especially if a patient has an embarrassing disease. In this paper a three tier security architecture for the mHealth application is proposed, in which light weight data confidentiality and authentication protocols are proposed to maintain the privacy of a patient. Moreover, considering the energy and hardware constraints of the wireless body sensors, low complexity data confidential and authentication schemes are designed. Performance evaluation of the proposed architecture shows that they can satisfy the energy and hardware limitations of the sensors and still can maintain the secure fabrics of the wireless body sensor networks. Besides, the proposed schemes can outperform in terms of energy consumption, memory usage and computation time over standard key establishment security scheme.

  13. MAC layer security issues in wireless mesh networks

    Science.gov (United States)

    Reddy, K. Ganesh; Thilagam, P. Santhi

    2016-03-01

    Wireless Mesh Networks (WMNs) have emerged as a promising technology for a broad range of applications due to their self-organizing, self-configuring and self-healing capability, in addition to their low cost and easy maintenance. Securing WMNs is more challenging and complex issue due to their inherent characteristics such as shared wireless medium, multi-hop and inter-network communication, highly dynamic network topology and decentralized architecture. These vulnerable features expose the WMNs to several types of attacks in MAC layer. The existing MAC layer standards and implementations are inadequate to secure these features and fail to provide comprehensive security solutions to protect both backbone and client mesh. Hence, there is a need for developing efficient, scalable and integrated security solutions for WMNs. In this paper, we classify the MAC layer attacks and analyze the existing countermeasures. Based on attacks classification and countermeasures analysis, we derive the research directions to enhance the MAC layer security for WMNs.

  14. Advances in network systems architectures, security, and applications

    CERN Document Server

    Awad, Ali; Furtak, Janusz; Legierski, Jarosław

    2017-01-01

    This book provides the reader with a comprehensive selection of cutting–edge algorithms, technologies, and applications. The volume offers new insights into a range of fundamentally important topics in network architectures, network security, and network applications. It serves as a reference for researchers and practitioners by featuring research contributions exemplifying research done in the field of network systems. In addition, the book highlights several key topics in both theoretical and practical aspects of networking. These include wireless sensor networks, performance of TCP connections in mobile networks, photonic data transport networks, security policies, credentials management, data encryption for network transmission, risk management, live TV services, and multicore energy harvesting in distributed systems. .

  15. QoS Management and Control for an All-IP WiMAX Network Architecture: Design, Implementation and Evaluation

    Directory of Open Access Journals (Sweden)

    Thomas Michael Bohnert

    2008-01-01

    Full Text Available The IEEE 802.16 standard provides a specification for a fixed and mobile broadband wireless access system, offering high data rate transmission of multimedia services with different Quality-of-Service (QoS requirements through the air interface. The WiMAX Forum, going beyond the air interface, defined an end-to-end WiMAX network architecture, based on an all-IP platform in order to complete the standards required for a commercial rollout of WiMAX as broadband wireless access solution. As the WiMAX network architecture is only a functional specification, this paper focuses on an innovative solution for an end-to-end WiMAX network architecture offering in compliance with the WiMAX Forum specification. To our best knowledge, this is the first WiMAX architecture built by a research consortium globally and was performed within the framework of the European IST project WEIRD (WiMAX Extension to Isolated Research Data networks. One of the principal features of our architecture is support for end-to-end QoS achieved by the integration of resource control in the WiMAX wireless link and the resource management in the wired domains in the network core. In this paper we present the architectural design of these QoS features in the overall WiMAX all-IP framework and their functional as well as performance evaluation. The presented results can safely be considered as unique and timely for any WiMAX system integrator.

  16. Delay-tolerant mobile network protocol for rice field monitoring using wireless sensor networks

    Science.gov (United States)

    Guitton, Alexandre; Andres, Frédéric; Cardoso, Jarbas Lopes; Kawtrakul, Asanee; Barbin, Silvio E.

    2015-10-01

    The monitoring of rice fields can improve productivity by helping farmers throughout the rice cultivation cycle, on various issues: when to harvest, when to treat the crops against disease, when to increase the water level, how to share observations and decisions made in a collaborative way, etc. In this paper, we propose an architecture to monitor a rice field by a wireless sensor network. Our architecture is based on static sensor nodes forming a disconnected network, and mobile nodes communicating with the sensor nodes in a delay-tolerant manner. The data collected by the static sensor nodes are transmitted to mobile nodes, which in turn transmit them to a gateway, connected to a database, for further analysis. We focus on the related architecture, as well as on the energy-efficient protocols intended to perform the data collection.

  17. LIDeA: A Distributed Lightweight Intrusion Detection Architecture for Sensor Networks

    DEFF Research Database (Denmark)

    Giannetsos, Athanasios; Krontiris, Ioannis; Dimitriou, Tassos

    2008-01-01

    to achieve a more autonomic and complete defense mechanism, even against attacks that have not been anticipated in advance. In this paper, we present a lightweight intrusion detection system, called LIDeA, designed for wireless sensor networks. LIDeA is based on a distributed architecture, in which nodes......Wireless sensor networks are vulnerable to adversaries as they are frequently deployed in open and unattended environments. Preventive mechanisms can be applied to protect them from an assortment of attacks. However, more sophisticated methods, like intrusion detection systems, are needed...

  18. Joint Channel Assignment and Routing in Multiradio Multichannel Wireless Mesh Networks: Design Considerations and Approaches

    Directory of Open Access Journals (Sweden)

    Omar M. Zakaria

    2016-01-01

    Full Text Available Multiradio wireless mesh network is a promising architecture that improves the network capacity by exploiting multiple radio channels concurrently. Channel assignment and routing are underlying challenges in multiradio architectures since both determine the traffic distribution over links and channels. The interdependency between channel assignments and routing promotes toward the joint solutions for efficient configurations. This paper presents an in-depth review of the joint approaches of channel assignment and routing in multiradio wireless mesh networks. First, the key design issues, modeling, and approaches are identified and discussed. Second, existing algorithms for joint channel assignment and routing are presented and classified based on the channel assignment types. Furthermore, the set of reconfiguration algorithms to adapt the network traffic dynamics is also discussed. Finally, the paper presents some multiradio practical implementations and test-beds and points out the future research directions.

  19. Intelligent Devices in Rural Wireless Networks

    Directory of Open Access Journals (Sweden)

    Daniel FUENTES

    2014-03-01

    Full Text Available The rural wireless networks are increasingly in demand by associations and autarchies to expand Internet access in this type of areas. The problem of such solutions centers not only in network deployment and its maintenance, but also in the equipment installation on clients, which always has big costs. This installation and configuration must be performed by a technician on site, so that the equipment can be integrated in the infrastructure. To try to mitigate this problem, it is presented a solution that allows the clients to install, with transparency, the device at home, reducing not only the cost for the management entity but also for the clients. This way, for info-excluded people or with new technology low experience level, it is the user that integrates himself in the network, making him part of the process, fostering the network usage.In this article are specified not only the system architecture but also the way that it works and how it obtains the desirable result. The tests made to the solution show the quickness, reliability and autonomy in the execution of the tasks, making it a benefit for rural wireless networks.This solution, by its robustness and simplicity, allowed an uptake to the IT by people who never thought to do it, namely an advanced age group (elderly who want to join the world of the new technologies

  20. Capacity Analysis of Wireless Mesh Networks

    Directory of Open Access Journals (Sweden)

    M. I. Gumel

    2012-06-01

    Full Text Available The next generation wireless networks experienced a great development with emergence of wireless mesh networks (WMNs, which can be regarded as a realistic solution that provides wireless broadband access. The limited available bandwidth makes capacity analysis of the network very essential. While the network offers broadband wireless access to community and enterprise users, the problems that limit the network capacity must be addressed to exploit the optimum network performance. The wireless mesh network capacity analysis shows that the throughput of each mesh node degrades in order of l/n with increasing number of nodes (n in a linear topology. The degradation is found to be higher in a fully mesh network as a result of increase in interference and MAC layer contention in the network.

  1. Wireless rechargeable sensor networks

    CERN Document Server

    Yang, Yuanyuan

    2015-01-01

    This SpringerBrief provides a concise guide to applying wireless energy transfer techniques in traditional battery-powered sensor networks. It examines the benefits and challenges of wireless power including efficiency and reliability. The authors build a wireless rechargeable sensor networks from scratch and aim to provide perpetual network operation. Chapters cover a wide range of topics from the collection of energy information and recharge scheduling to joint design with typical sensing applications such as data gathering. Problems are approached using a natural combination of probability

  2. Emerging wireless networks concepts, techniques and applications

    CERN Document Server

    Makaya, Christian

    2011-01-01

    An authoritative collection of research papers and surveys, Emerging Wireless Networks: Concepts, Techniques, and Applications explores recent developments in next-generation wireless networks (NGWNs) and mobile broadband networks technologies, including 4G (LTE, WiMAX), 3G (UMTS, HSPA), WiFi, mobile ad hoc networks, mesh networks, and wireless sensor networks. Focusing on improving the performance of wireless networks and provisioning better quality of service and quality of experience for users, it reports on the standards of different emerging wireless networks, applications, and service fr

  3. On a digital wireless impact-monitoring network for large-scale composite structures

    International Nuclear Information System (INIS)

    Yuan, Shenfang; Mei, Hanfei; Qiu, Lei; Ren, Yuanqiang

    2014-01-01

    Impact, which may occur during manufacture, service or maintenance, is one of the major concerns to be monitored throughout the lifetime of aircraft composite structures. Aiming at monitoring impacts online while minimizing the weight added to the aircraft to meet the strict limitations of aerospace engineering, this paper puts forward a new digital wireless network based on miniaturized wireless digital impact-monitoring nodes developed for large-scale composite structures. In addition to investigations on the design methods of the network architecture, time synchronization and implementation method, a conflict resolution method based on the feature parameters of digital sequences is first presented to address impact localization conflicts when several nodes are arranged close together. To verify the feasibility and stability of the wireless network, experiments are performed on a complex aircraft composite wing box and an unmanned aerial vehicle (UAV) composite wing. Experimental results show the successful design of the presented network. (paper)

  4. Bio-inspired energy and channel management in distributed wireless multi-radio networks

    CSIR Research Space (South Africa)

    Olwal, TO

    2014-06-01

    Full Text Available In the recent past, research in the next generation wireless heterogeneous broadband networks has favoured the design of multi-radio interface over the single radio interface architectures in order to support desirable features such as a self...

  5. Novel Concepts of Cooperative Wireless Networking

    DEFF Research Database (Denmark)

    Zhang, Qi

    2008-01-01

    ; secondly, the increasing density of the wireless devices makes cooperation possible; last, the cost of information exchange (i.e. transmission power, transmission time, spectrum, etc.) is very low if information exchange over short-range link is needed. Cooperation changes the way of information delivery......Although wireless networks have achieved great success in the lastest two decades, the current wireless networks have difficulties to fulll users' ever-increasing expectations and needs. It is mainly due to available spectrum resource scarcity, limited battery capacity of wireless device......, unreliable wireless radio link, etc. To tackle these issues, a new telecommunication paradigm has been proposed, referred to as cooperative wireless networking [1]. The basic idea of cooperative wireless networking is that wireless devices work together to achieve their individual goals or one common goal...

  6. Rogue AP Detection in the Wireless LAN for Large Scale Deployment

    OpenAIRE

    Sang-Eon Kim; Byung-Soo Chang; Sang Hong Lee; Dae Young Kim

    2006-01-01

    The wireless LAN standard, also known as WiFi, has begun to use commercial purposes. This paper describes access network architecture of wireless LAN for large scale deployment to provide public service. A metro Ethernet and digital subscriber line access network can be used for wireless LAN with access point. In this network architecture, access point plays interface between wireless node and network infrastructure. It is important to maintain access point without any failure and problems to...

  7. Sustainable wireless networks

    CERN Document Server

    Zheng, Zhongming; Xuemin

    2013-01-01

    This brief focuses on network planning and resource allocation by jointly considering cost and energy sustainability in wireless networks with sustainable energy. The characteristics of green energy and investigating existing energy-efficient green approaches for wireless networks with sustainable energy is covered in the first part of this brief. The book then addresses the random availability and capacity of the energy supply. The authors explore how to maximize the energy sustainability of the network and minimize the failure probability that the mesh access points (APs) could deplete their

  8. Ubiquitous Monitoring Solution for Wireless Sensor Networks with Push Notifications and End-to-End Connectivity

    Directory of Open Access Journals (Sweden)

    Luis M. L. Oliveira

    2014-01-01

    Full Text Available Wireless Sensor Networks (WSNs belongs to a new trend in technology in which tiny and resource constrained devices are wirelessly interconnected and are able to interact with the surrounding environment by collecting data such as temperature and humidity. Recently, due to the huge growth in the use of mobile devices with Internet connection, smartphones are becoming the center of future ubiquitous wireless networks. Interconnecting WSNs with smartphones and the Internet is a big challenge and new architectures are required due to the heterogeneity of these devices. Taking into account that people are using smartphones with Internet connection, there is a good opportunity to propose a new architecture for wireless sensors monitoring using push notifications and smartphones. Then, this paper proposes a ubiquitous approach for WSN monitoring based on a REST Web Service, a relational database, and an Android mobile application. Real-time data sensed by WSNs are sent directly to a smartphone or stored in a database and requested by the mobile application using a well-defined RESTful interface. A push notification system was created in order to alert mobile users when a sensor parameter overcomes a given threshold. The proposed architecture and mobile application were evaluated and validated using a laboratory WSN testbed and are ready for use.

  9. A wireless sensor network-based portable vehicle detector evaluation system.

    Science.gov (United States)

    Yoo, Seong-eun

    2013-01-17

    In an upcoming smart transportation environment, performance evaluations of existing Vehicle Detection Systems are crucial to maintain their accuracy. The existing evaluation method for Vehicle Detection Systems is based on a wired Vehicle Detection System reference and a video recorder, which must be operated and analyzed by capable traffic experts. However, this conventional evaluation system has many disadvantages. It is inconvenient to deploy, the evaluation takes a long time, and it lacks scalability and objectivity. To improve the evaluation procedure, this paper proposes a Portable Vehicle Detector Evaluation System based on wireless sensor networks. We describe both the architecture and design of a Vehicle Detector Evaluation System and the implementation results, focusing on the wireless sensor networks and methods for traffic information measurement. With the help of wireless sensor networks and automated analysis, our Vehicle Detector Evaluation System can evaluate a Vehicle Detection System conveniently and objectively. The extensive evaluations of our Vehicle Detector Evaluation System show that it can measure the traffic information such as volume counts and speed with over 98% accuracy.

  10. FireFly: reconfigurable optical wireless networking data centers

    Science.gov (United States)

    Kavehrad, Mohsen; Deng, Peng; Gupta, H.; Longtin, J.; Das, S. R.; Sekar, V.

    2017-01-01

    We explore a novel, free-space optics based approach for building data center interconnects. Data centers (DCs) are a critical piece of today's networked applications in both private and public sectors. The key factors that have driven this trend are economies of scale, reduced management costs, better utilization of hardware via statistical multiplexing, and the ability to elastically scale applications in response to changing workload patterns. A robust DC network fabric is fundamental to the success of DCs and to ensure that the network does not become a bottleneck for high-performance applications. In this context, DC network design must satisfy several goals: high performance (e.g., high throughput and low latency), low equipment and management cost, robustness to dynamic traffic patterns, incremental expandability to add new servers or racks, and other practical concerns such as cabling complexity, and power and cooling costs. Current DC network architectures do not seem to provide a satisfactory solution, with respect to the above requirements. In particular, traditional static (wired) networks are either overprovisioned or oversubscribed. Recent works have tried to overcome the above limitations by augmenting a static (wired) "core" with some flexible links (RF-wireless or optical). These augmented architectures show promise, but offer only incremental improvement in performance. Specifically, RFwireless based augmented solutions also offer only limited performance improvement, due to inherent interference and range constraints of RF links. This paper explores an alternative design point—a fully flexible and all-wireless DC interrack network based on free-space optical (FSO) links. We call this FireFly as in; Free-space optical Inter-Rack nEtwork with high FLexibilitY. We will present our designs and tests using various configurations that can help the performance and reliability of the FSO links.

  11. On the Geometrical Characteristics of Three-Dimensional Wireless Ad Hoc Networks and Their Applications

    Directory of Open Access Journals (Sweden)

    2006-01-01

    Full Text Available In a wireless ad hoc network, messages are transmitted, received, and forwarded in a finite geometrical region and the transmission of messages is highly dependent on the locations of the nodes. Therefore the study of geometrical relationship between nodes in wireless ad hoc networks is of fundamental importance in the network architecture design and performance evaluation. However, most previous works concentrated on the networks deployed in the two-dimensional region or in the infinite three-dimensional space, while in many cases wireless ad hoc networks are deployed in the finite three-dimensional space. In this paper, we analyze the geometrical characteristics of the three-dimensional wireless ad hoc network in a finite space in the framework of random graph and deduce an expression to calculate the distance probability distribution between network nodes that are independently and uniformly distributed in a finite cuboid space. Based on the theoretical result, we present some meaningful results on the finite three-dimensional network performance, including the node degree and the max-flow capacity. Furthermore, we investigate some approximation properties of the distance probability distribution function derived in the paper.

  12. Intrusion detection in wireless ad-hoc networks

    CERN Document Server

    Chaki, Nabendu

    2014-01-01

    Presenting cutting-edge research, Intrusion Detection in Wireless Ad-Hoc Networks explores the security aspects of the basic categories of wireless ad-hoc networks and related application areas. Focusing on intrusion detection systems (IDSs), it explains how to establish security solutions for the range of wireless networks, including mobile ad-hoc networks, hybrid wireless networks, and sensor networks.This edited volume reviews and analyzes state-of-the-art IDSs for various wireless ad-hoc networks. It includes case studies on honesty-based intrusion detection systems, cluster oriented-based

  13. An Efficient Radio Access Control Mechanism for Wireless Network-On-Chip Architectures

    Directory of Open Access Journals (Sweden)

    Maurizio Palesi

    2015-03-01

    Full Text Available Modern systems-on-chip (SoCs today contain hundreds of cores, and this number is predicted to reach the thousands by the year 2020. As the number of communicating elements increases, there is a need for an efficient, scalable and reliable communication infrastructure. As technology geometries shrink to the deep submicron regime, however, the communication delay and power consumption of global interconnections become the major bottleneck. The network-on-chip (NoC design paradigm, based on a modular packet-switched mechanism, can address many of the on-chip communication issues, such as the performance limitations of long interconnects and integration of large number of cores on a chip. Recently, new communication technologies based on the NoC concept have emerged with the aim of improving the scalability limitations of conventional NoC-based architectures. Among them, wireless NoCs (WiNoCs use the radio medium for reducing the performance and energy penalties of long-range and multi-hop communications. As the radio medium can be accessed by a single transmitter at a time, a radio access control mechanism (RACM is needed. In this paper, we present a novel RACM, which allows one to improve both the performance and energy figures of the WiNoC. Experiments, carried out on both synthetic and real traffic scenarios, have shown the effectiveness of the proposed RACM. On average, a 30% reduction in communication delay and a 25% energy savings have been observed when the proposed RACM is applied to a known WiNoC architecture.

  14. Voice Quality Estimation in Wireless Networks

    Directory of Open Access Journals (Sweden)

    Petr Zach

    2015-01-01

    Full Text Available This article deals with the impact of Wireless (Wi-Fi networks on the perceived quality of voice services. The Quality of Service (QoS metrics must be monitored in the computer network during the voice data transmission to ensure proper voice service quality the end-user has paid for, especially in the wireless networks. In addition to the QoS, research area called Quality of Experience (QoE provides metrics and methods for quality evaluation from the end-user’s perspective. This article focuses on a QoE estimation of Voice over IP (VoIP calls in the wireless networks using network simulator. Results contribute to voice quality estimation based on characteristics of the wireless network and location of a wireless client.

  15. Track classification within wireless sensor network

    Science.gov (United States)

    Doumerc, Robin; Pannetier, Benjamin; Moras, Julien; Dezert, Jean; Canevet, Loic

    2017-05-01

    In this paper, we present our study on track classification by taking into account environmental information and target estimated states. The tracker uses several motion model adapted to different target dynamics (pedestrian, ground vehicle and SUAV, i.e. small unmanned aerial vehicle) and works in centralized architecture. The main idea is to explore both: classification given by heterogeneous sensors and classification obtained with our fusion module. The fusion module, presented in his paper, provides a class on each track according to track location, velocity and associated uncertainty. To model the likelihood on each class, a fuzzy approach is used considering constraints on target capability to move in the environment. Then the evidential reasoning approach based on Dempster-Shafer Theory (DST) is used to perform a time integration of this classifier output. The fusion rules are tested and compared on real data obtained with our wireless sensor network.In order to handle realistic ground target tracking scenarios, we use an autonomous smart computer deposited in the surveillance area. After the calibration step of the heterogeneous sensor network, our system is able to handle real data from a wireless ground sensor network. The performance of this system is evaluated in a real exercise for intelligence operation ("hunter hunt" scenario).

  16. Classifying Sensors Depending on their IDs to Reduce Power Consumption in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Ayman Mohammd Brisha

    2010-05-01

    Full Text Available Wireless sensor networks produce a large amount of data that needs to be processed, delivered, and assessed according to the application objectives. Cluster-based is an effective architecture for data-gathering in wireless sensor networks. Clustering provides an effective way for prolonging the lifetime of a wireless sensor network. Current clustering algorithms usually utilize two techniques, selecting cluster heads with more residual energy and rotating cluster heads periodically, in order to distribute the energy consumption among nodes in each cluster and extend the network lifetime. Clustering sensors are divided into groups, so that sensors will communicate information only to cluster heads and then the cluster heads will communicate the aggregated information to the processing center, and this may save energy. In this paper we show Two Relay Sensor Algorithm (TRSA, which divide wireless Sensor Network (WSN into unequaled clusters, showing that it can effectively save power for maximizing the life time of the network. Simulation results show that the proposed unequal clustering mechanism (TRSA balances the energy consumption among all sensor nodes and achieves an obvious improvement on the network lifetime.

  17. Security For Wireless Sensor Network

    OpenAIRE

    Saurabh Singh,; Dr. Harsh Kumar Verma

    2011-01-01

    Wireless sensor network is highly vulnerable to attacks because it consists of various resourceconstrained devices with their low battery power, less memory, and associated low energy. Sensor nodescommunicate among themselves via wireless links. However, there are still a lot of unresolved issues in wireless sensor networks of which security is one of the hottest research issues. Sensor networks aredeployed in hostile environments. Environmental conditions along with resource-constraints give...

  18. WIRELESS SENSOR NETWORKSARCHITECTURE, SECURITY REQUIREMENTS, SECURITY THREATS AND ITS COUNTERMEASURES

    OpenAIRE

    Ranjit Panigrahi; Kalpana Sharma; M.K. Ghose

    2013-01-01

    Wireless Sensor Network (WSN) has a huge range of applications such as battlefield, surveillance, emergency rescue operation and smart home technology etc. Apart from its inherent constraints such as limited memory and energy resources, when deployed in hostile environmental conditions, the sensor nodes are vulnerable to physical capture and other security constraints. These constraints put security as a major challenge for the researchers in the field of computer networking. T...

  19. Evolution of Heterogeneous Wireless Networks

    DEFF Research Database (Denmark)

    Zhang, Q.; Fitzek, Frank; Katz, Marcos

    2006-01-01

    Mobile and wireless content, services and networks - Short-term and long-term development trends......Mobile and wireless content, services and networks - Short-term and long-term development trends...

  20. Agent Collaborative Target Localization and Classification in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Sheng Wang

    2007-07-01

    Full Text Available Wireless sensor networks (WSNs are autonomous networks that have beenfrequently deployed to collaboratively perform target localization and classification tasks.Their autonomous and collaborative features resemble the characteristics of agents. Suchsimilarities inspire the development of heterogeneous agent architecture for WSN in thispaper. The proposed agent architecture views WSN as multi-agent systems and mobileagents are employed to reduce in-network communication. According to the architecture,an energy based acoustic localization algorithm is proposed. In localization, estimate oftarget location is obtained by steepest descent search. The search algorithm adapts tomeasurement environments by dynamically adjusting its termination condition. With theagent architecture, target classification is accomplished by distributed support vectormachine (SVM. Mobile agents are employed for feature extraction and distributed SVMlearning to reduce communication load. Desirable learning performance is guaranteed bycombining support vectors and convex hull vectors. Fusion algorithms are designed tomerge SVM classification decisions made from various modalities. Real world experimentswith MICAz sensor nodes are conducted for vehicle localization and classification.Experimental results show the proposed agent architecture remarkably facilitates WSNdesigns and algorithm implementation. The localization and classification algorithms alsoprove to be accurate and energy efficient.

  1. Attacks on IEEE 802.11 wireless networks

    Directory of Open Access Journals (Sweden)

    Dejan Milan Tepšić

    2013-06-01

    Full Text Available Security of wireless computer networks was initially secured with the WEP security protocol, which relies on the RC4 encryption algorithm and the CRC algorithm to check the integrity. The basic problems of the WEP are a short initialization vector, unsafe data integrity checking, using a common key, the lack of mechanisms for management and exchange of keys, the lack of protection from the endless insertion of the same package into the network, the lack of authentication of access points and the like. The consequences of these failures are easy attacks against the WEP network, namely their complete insecurity. Therefore, the work began on the IEEE 802.11i protocol, which should radically improve the security of wireless networks. Since the development of a protocol lasted, the WPA standard was released to offset the security gap caused by the WEP. The WPA also relies on RC4 and CRC algorithms, but brings temporary keys and the MIC algorithm for data integrity. The 802.1X authentication was introduced and common keys are no longer needed, since it is possible to use an authentication server. The length of the initialization vector was increased and the vector is obtained based on the packet serial number, in order to prevent the insertion of the same packet into the network. The weakness of the WPA security mechanism is the use of a common key. WPA2 (802.11i later appeared. Unlike the WPA mechanism that worked on old devices with the replacement of software, WPA2 requires new network devices that can perform AES encryption. AES replaces the RC4 algorithm and delivers much greater security. Data integrity is protected by encryption. Despite progress, there are still weaknesses in wireless networks. Attacks for denial of service are possible as well as spoofing package headers attacks. For now, it is not advisable to use wireless networks in environments where unreliability and unavailability are not tolerated. Introduction In the entire history of

  2. Bio-Inspired Energy-Aware Protocol Design for Cooperative Wireless Networks

    DEFF Research Database (Denmark)

    Perrucci, Gian Paolo; Anggraeni, Puri Novelti; Wardana, Satya Ardhy

    2011-01-01

    In this work, bio-inspired cooperation rules are applied to wireless communication networks. The main goal is to derive cooperative behaviour rules to improve the energy consumption of each mobile device. A medium access control (MAC) protocol particularly designed for peer-to-peer communication...... be achieved by this architecture using game theoretic approaches. As an extension, this work explores the impact of the MAC protocol on the power saving capabilities. This result shows that standard MAC mechanisms are not optimised for the considered cooperative setup. A new MAC protocol is proposed...... among cooperative wireless mobile devices is described. The work is based on a novel communication architecture, where a group of mobile devices are connected both to a cellular base station and among them using short-range communication links. A prior work has investigated the energy saving that can...

  3. Wireless Networks: New Meaning to Ubiquitous Computing.

    Science.gov (United States)

    Drew, Wilfred, Jr.

    2003-01-01

    Discusses the use of wireless technology in academic libraries. Topics include wireless networks; standards (IEEE 802.11); wired versus wireless; why libraries implement wireless technology; wireless local area networks (WLANs); WLAN security; examples of wireless use at Indiana State University and Morrisville College (New York); and useful…

  4. Low power design of wireless endoscopy compression/communication architecture

    Directory of Open Access Journals (Sweden)

    Zitouni Abdelkrim

    2018-05-01

    Full Text Available A wireless endoscopy capsule represents an efficient device interesting on the examination of digestive diseases. Many performance criteria’s (silicon area, dissipated power, image quality, computational time, etc. need to be deeply studied.In this paper, our interest is the optimization of the indicated criteria. The proposed methodology is based on exploring the advantages of the DCT/DWT transforms by combining them into single architecture. For arithmetic operations, the MCLA technique is used. This architecture integrates also a CABAC entropy coder that supports all binarization schemes. AMBA/I2C architecture is developed for assuring optimized communication.The comparisons of the proposed architecture with the most popular methods explained in related works show efficient results in terms dissipated power, hardware cost, and computation speed. Keywords: Wireless endoscopy capsule, DCT/DWT image compression, CABAC entropy coder, AMBA/I2C multi-bus architecture

  5. End-to-end network models encompassing terrestrial, wireless, and satellite components

    Science.gov (United States)

    Boyarko, Chandler L.; Britton, John S.; Flores, Phil E.; Lambert, Charles B.; Pendzick, John M.; Ryan, Christopher M.; Shankman, Gordon L.; Williams, Ramon P.

    2004-08-01

    Development of network models that reflect true end-to-end architectures such as the Transformational Communications Architecture need to encompass terrestrial, wireless and satellite component to truly represent all of the complexities in a world wide communications network. Use of best-in-class tools including OPNET, Satellite Tool Kit (STK), Popkin System Architect and their well known XML-friendly definitions, such as OPNET Modeler's Data Type Description (DTD), or socket-based data transfer modules, such as STK/Connect, enable the sharing of data between applications for more rapid development of end-to-end system architectures and a more complete system design. By sharing the results of and integrating best-in-class tools we are able to (1) promote sharing of data, (2) enhance the fidelity of our results and (3) allow network and application performance to be viewed in the context of the entire enterprise and its processes.

  6. A Routing Algorithm for WiFi-Based Wireless Sensor Network and the Application in Automatic Meter Reading

    Directory of Open Access Journals (Sweden)

    Li Li

    2013-01-01

    Full Text Available The Automatic Meter Reading (AMR network for the next generation Smart Grid is required to possess many essential functions, such as data reading and writing, intelligent power transmission, and line damage detection. However, the traditional AMR network cannot meet the previous requirement. With the development of the WiFi sensor node in the low power cost, a new kind of wireless sensor network based on the WiFi technology can be used in application. In this paper, we have designed a new architecture of WiFi-based wireless sensor network, which is suitable for the next generation AMR system. We have also proposed a new routing algorithm called Energy Saving-Based Hybrid Wireless Mesh Protocol (E-HWMP on the premise of current algorithm, which can improve the energy saving of the HWMP and be suitable for the WiFi-based wireless sensor network. The simulation results show that the life cycle of network is extended.

  7. Rogue AP Detection in the Wireless LAN for Large Scale Deployment

    Directory of Open Access Journals (Sweden)

    Sang-Eon Kim

    2006-10-01

    Full Text Available The wireless LAN standard, also known as WiFi, has begun to use commercial purposes. This paper describes access network architecture of wireless LAN for large scale deployment to provide public service. A metro Ethernet and digital subscriber line access network can be used for wireless LAN with access point. In this network architecture, access point plays interface between wireless node and network infrastructure. It is important to maintain access point without any failure and problems to public users. This paper proposes definition of rogue access point and classifies based on functional problem to access the Internet. After that, rogue access point detection scheme is described based on classification over the wireless LAN. The rogue access point detector can greatly improve the network availability to network service provider of wireless LAN.

  8. Performance analysis of data delivery schemes for a multi-sink wireless sensor network

    NARCIS (Netherlands)

    Tan, H.P.; Gabor, A.F.; Seah, W.K.G.; Lee, P.W.Q.

    2008-01-01

    Wireless sensor networks are expected to be deployed in harsh environments characterised by extremely poor and fluctuating channel conditions. With the commonly adopted single-sink architecture, such conditions are exemplified by contention near the sink as a result of multipath delivery. This may

  9. Security Threats on Wireless Sensor Network Protocols

    OpenAIRE

    H. Gorine; M. Ramadan Elmezughi

    2016-01-01

    In this paper, we investigate security issues and challenges facing researchers in wireless sensor networks and countermeasures to resolve them. The broadcast nature of wireless communication makes Wireless Sensor Networks prone to various attacks. Due to resources limitation constraint in terms of limited energy, computation power and memory, security in wireless sensor networks creates different challenges than wired network security. We will discuss several attempts at addressing the issue...

  10. EEM{sup TM} wireless supervision

    Energy Technology Data Exchange (ETDEWEB)

    Bilic, H. [Ericsson-Nikola Tesla d.d. Zagreb (Croatia)

    2000-07-01

    By adding the GSM network to the communication level of Energy Management systems, energy operating centres (EOC) can offer wireless access to the supervised equipment. Furthermore EOC can profit from rapid service development in the GSM networks. With implementation of GPRS to the GSM network EOC can instantly offer wireless access to external IP based networks such as Internet and corporate Intranets. The author describes architecture and key characteristic of Ericsson EnergyMaster{sup TM} (EEM{sup TM}) system for Energy Management, how and where to implement wireless supervision, wireless access to IP addresses and also how to implement new services provided by the GSM network. (orig.)

  11. WING/WORLD: An Open Experimental Toolkit for the Design and Deployment of IEEE 802.11-Based Wireless Mesh Networks Testbeds

    Directory of Open Access Journals (Sweden)

    Daniele Miorandi

    2010-01-01

    Full Text Available Wireless Mesh Networks represent an interesting instance of light-infrastructure wireless networks. Due to their flexibility and resiliency to network failures, wireless mesh networks are particularly suitable for incremental and rapid deployments of wireless access networks in both metropolitan and rural areas. This paper illustrates the design and development of an open toolkit aimed at supporting the design of different solutions for wireless mesh networking by enabling real evaluation, validation, and demonstration. The resulting testbed is based on off-the-shelf hardware components and open-source software and is focused on IEEE 802.11 commodity devices. The software toolkit is based on an “open” philosophy and aims at providing the scientific community with a tool for effective and reproducible performance analysis of WMNs. The paper describes the architecture of the toolkit, and its core functionalities, as well as its potential evolutions.

  12. Analysis of mobile fronthaul bandwidth and wireless transmission performance in split-PHY processing architecture.

    Science.gov (United States)

    Miyamoto, Kenji; Kuwano, Shigeru; Terada, Jun; Otaka, Akihiro

    2016-01-25

    We analyze the mobile fronthaul (MFH) bandwidth and the wireless transmission performance in the split-PHY processing (SPP) architecture, which redefines the functional split of centralized/cloud RAN (C-RAN) while preserving high wireless coordinated multi-point (CoMP) transmission/reception performance. The SPP architecture splits the base stations (BS) functions between wireless channel coding/decoding and wireless modulation/demodulation, and employs its own CoMP joint transmission and reception schemes. Simulation results show that the SPP architecture reduces the MFH bandwidth by up to 97% from conventional C-RAN while matching the wireless bit error rate (BER) performance of conventional C-RAN in uplink joint reception with only 2-dB signal to noise ratio (SNR) penalty.

  13. Introduction to wireless sensor networks

    CERN Document Server

    Forster, Anna

    2016-01-01

    Explores real-world wireless sensor network development, deployment, and applications. The book begins with an introduction to wireless sensor networks and their fundamental concepts. Hardware components, operating systems, protocols, and algorithms that make up the anatomy of a sensor node are described in chapter two. Properties of wireless communications, medium access protocols, wireless links, and link estimation protocols are described in chapter three and chapter four. Routing basics and metrics, clustering techniques, time synchronization and localization protocols, as well as sensing techniques are introduced in chapter five to nine. The concluding chapter summarizes the learnt methods and shows how to use them to deploy real-world sensor networks in a structured way.

  14. Wireless intelligent network: infrastructure before services?

    Science.gov (United States)

    Chu, Narisa N.

    1996-01-01

    The Wireless Intelligent Network (WIN) intends to take advantage of the Advanced Intelligent Network (AIN) concepts and products developed from wireline communications. However, progress of the AIN deployment has been slow due to the many barriers that exist in the traditional wireline carriers' deployment procedures and infrastructure. The success of AIN has not been truly demonstrated. The AIN objectives and directions are applicable to the wireless industry although the plans and implementations could be significantly different. This paper points out WIN characteristics in architecture, flexibility, deployment, and value to customers. In order to succeed, the technology driven AIN concept has to be reinforced by the market driven WIN services. An infrastructure suitable for the WIN will contain elements that are foreign to the wireline network. The deployment process is expected to seed with the revenue generated services. Standardization will be achieved by simplifying and incorporating the IS-41C, AIN, and Intelligent Network CS-1 recommendations. Integration of the existing and future systems impose the biggest challenge of all. Service creation has to be complemented with service deployment process which heavily impact the carriers' infrastructure. WIN deployment will likely start from an Intelligent Peripheral, a Service Control Point and migrate to a Service Node when sufficient triggers are implemented in the mobile switch for distributed call control. The struggle to move forward will not be based on technology, but rather on the impact to existing infrastructure.

  15. 802.11 Wireless Networks The Definitive Guide

    CERN Document Server

    Gast, Matthew S

    2005-01-01

    As we all know by now, wireless networks offer many advantages over fixed (or wired) networks. Foremost on that list is mobility, since going wireless frees you from the tether of an Ethernet cable at a desk. But that's just the tip of the cable-free iceberg. Wireless networks are also more flexible, faster and easier for you to use, and more affordable to deploy and maintain. The de facto standard for wireless networking is the 802.11 protocol, which includes Wi-Fi (the wireless standard known as 802.11b) and its faster cousin, 802.11g. With easy-to-install 802.11 network hardware avail

  16. Sinkhole Avoidance Routing in Wireless Sensor Networks

    Science.gov (United States)

    2011-05-09

    COVERED (From- To) 09-05-2011 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Sinkhole Avoidance Routing in Wireless Sensor Networks 5b . GRANT NUMBER . 5c...reliability of wireless sensor networks. 15. SUBJECT TERMS wireless sensor networks, sinkhole attack, routing protocol 16. SECURITY CLASSIFICATION...Include area code) Standard Form 298 (Rev. 8/98) Prescribed by ANSI Std . Z39.18 1 Sinkhole Avoidance Routing in Wireless Sensor Networks MIDN 1/C

  17. Towards Controlling Latency in Wireless Networks

    KAUST Repository

    Bouacida, Nader

    2017-04-24

    Wireless networks are undergoing an unprecedented revolution in the last decade. With the explosion of delay-sensitive applications in the Internet (i.e., online gaming and VoIP), latency becomes a major issue for the development of wireless technology. Taking advantage of the significant decline in memory prices, industrialists equip the network devices with larger buffering capacities to improve the network throughput by limiting packets drops. Over-buffering results in increasing the time that packets spend in the queues and, thus, introducing more latency in networks. This phenomenon is known as “bufferbloat”. While throughput is the dominant performance metric, latency also has a huge impact on user experience not only for real-time applications but also for common applications like web browsing, which is sensitive to latencies in order of hundreds of milliseconds. Concerns have arisen about designing sophisticated queue management schemes to mitigate the effects of such phenomenon. My thesis research aims to solve bufferbloat problem in both traditional half-duplex and cutting-edge full-duplex wireless systems by reducing delay while maximizing wireless links utilization and fairness. Our work shed lights on buffer management algorithms behavior in wireless networks and their ability to reduce latency resulting from excessive queuing delays inside oversized static network buffers without a significant loss in other network metrics. First of all, we address the problem of buffer management in wireless full-duplex networks by using Wireless Queue Management (WQM), which is an active queue management technique for wireless networks. Our solution is based on Relay Full-Duplex MAC (RFD-MAC), an asynchronous media access control protocol designed for relay full-duplexing. Compared to the default case, our solution reduces the end-to-end delay by two orders of magnitude while achieving similar throughput in most of the cases. In the second part of this thesis

  18. Analyzing Multimode Wireless Sensor Networks Using the Network Calculus

    Directory of Open Access Journals (Sweden)

    Xi Jin

    2015-01-01

    Full Text Available The network calculus is a powerful tool to analyze the performance of wireless sensor networks. But the original network calculus can only model the single-mode wireless sensor network. In this paper, we combine the original network calculus with the multimode model to analyze the maximum delay bound of the flow of interest in the multimode wireless sensor network. There are two combined methods A-MM and N-MM. The method A-MM models the whole network as a multimode component, and the method N-MM models each node as a multimode component. We prove that the maximum delay bound computed by the method A-MM is tighter than or equal to that computed by the method N-MM. Experiments show that our proposed methods can significantly decrease the analytical delay bound comparing with the separate flow analysis method. For the large-scale wireless sensor network with 32 thousands of sensor nodes, our proposed methods can decrease about 70% of the analytical delay bound.

  19. Wireless sensors in heterogeneous networked systems configuration and operation middleware

    CERN Document Server

    Cecilio, José

    2014-01-01

    This book presents an examination of the middleware that can be used to configure and operate heterogeneous node platforms and sensor networks. The middleware requirements for a range of application scenarios are compared and analysed. The text then defines middleware architecture that has been integrated in an approach demonstrated live in a refinery. Features: presents a thorough introduction to the major concepts behind wireless sensor networks (WSNs); reviews the various application scenarios and existing middleware solutions for WSNs; discusses the middleware mechanisms necessary for hete

  20. Smart Control of Multiple Evaporator Systems with Wireless Sensor and Actuator Networks

    Directory of Open Access Journals (Sweden)

    Apolinar González-Potes

    2016-02-01

    Full Text Available This paper describes the complete integration of a fuzzy control of multiple evaporator systems with the IEEE 802.15.4 standard, in which we study several important aspects for this kind of system, like a detailed analysis of the end-to-end real-time flows over wireless sensor and actuator networks (WSAN, a real-time kernel with an earliest deadline first (EDF scheduler, periodic and aperiodic tasking models for the nodes, lightweight and flexible compensation-based control algorithms for WSAN that exhibit packet dropouts, an event-triggered sampling scheme and design methodologies. We address the control problem of the multi-evaporators with the presence of uncertainties, which was tackled through a wireless fuzzy control approach, showing the advantages of this concept where it can easily perform the optimization for a set of multiple evaporators controlled by the same smart controller, which should have an intelligent and flexible architecture based on multi-agent systems (MAS that allows one to add or remove new evaporators online, without the need for reconfiguring, while maintaining temporal and functional restrictions in the system. We show clearly how we can get a greater scalability, the self-configuration of the network and the least overhead with a non-beacon or unslotted mode of the IEEE 802.15.4 protocol, as well as wireless communications and distributed architectures, which could be extremely helpful in the development process of networked control systems in large spatially-distributed plants, which involve many sensors and actuators. For this purpose, a fuzzy scheme is used to control a set of parallel evaporator air-conditioning systems, with temperature and relative humidity control as a multi-input and multi-output closed loop system; in addition, a general architecture is presented, which implements multiple control loops closed over a communication network, integrating the analysis and validation method for multi

  1. Security for 5G Mobile Wireless Networks

    OpenAIRE

    Fang, Dongfeng; Qian, Yi; Qingyang Hu, Rose

    2017-01-01

    The advanced features of 5G mobile wireless network systems yield new security requirements and challenges. This paper presents a comprehensive survey on security of 5G wireless network systems compared to the traditional cellular networks. The paper starts with a review on 5G wireless networks particularities as well as on the new requirements and motivations of 5G wireless security. The potential attacks and security services with the consideration of new service requirements and new use ca...

  2. Opportunistic Beacon Networks: Information Dissemination via Wireless Network Identifiers

    NARCIS (Netherlands)

    Türkes, Okan; Scholten, Johan; Havinga, Paul J.M.

    2016-01-01

    This paper presents OBN, a universal opportunistic ad hoc networking model particularly intended for smart mobile devices. It enables fast and lightweight data dissemination in wireless community networks through the utilization of universally-available wireless network identifiers. As a ubiquitous

  3. Distributed medium access control in wireless networks

    CERN Document Server

    Wang, Ping

    2013-01-01

    This brief investigates distributed medium access control (MAC) with QoS provisioning for both single- and multi-hop wireless networks including wireless local area networks (WLANs), wireless ad hoc networks, and wireless mesh networks. For WLANs, an efficient MAC scheme and a call admission control algorithm are presented to provide guaranteed QoS for voice traffic and, at the same time, increase the voice capacity significantly compared with the current WLAN standard. In addition, a novel token-based scheduling scheme is proposed to provide great flexibility and facility to the network servi

  4. Routing architecture and security for airborne networks

    Science.gov (United States)

    Deng, Hongmei; Xie, Peng; Li, Jason; Xu, Roger; Levy, Renato

    2009-05-01

    Airborne networks are envisioned to provide interconnectivity for terrestial and space networks by interconnecting highly mobile airborne platforms. A number of military applications are expected to be used by the operator, and all these applications require proper routing security support to establish correct route between communicating platforms in a timely manner. As airborne networks somewhat different from traditional wired and wireless networks (e.g., Internet, LAN, WLAN, MANET, etc), security aspects valid in these networks are not fully applicable to airborne networks. Designing an efficient security scheme to protect airborne networks is confronted with new requirements. In this paper, we first identify a candidate routing architecture, which works as an underlying structure for our proposed security scheme. And then we investigate the vulnerabilities and attack models against routing protocols in airborne networks. Based on these studies, we propose an integrated security solution to address routing security issues in airborne networks.

  5. Integration of RFID and Wireless Sensor Networks

    Institute of Scientific and Technical Information of China (English)

    Miodrag; Bolic; Amiya; Nayak; Ivan; Stojmenovi.

    2007-01-01

    Radio Frequency Identification (RFID) and Wireless Sensor Network (WSN) are two important wireless technologies that have wide variety of applications and provide limitless future potentials. However,RFID and sensor networks almost are under development in parallel way. Integration of RFID and wireless sensor networks attracts little attention from research community. This paper first presents a brief introduction on RFID,and then investigates recent research works,new products/patents and applications that integrate RFID with sensor networks. Four types of integration are discussed. They are integrating tags with sensors,integrating tags with wireless sensor nodes,integrating readers with wireless sensor nodes and wire-less devices,and mix of RFID and sensors. New challenges and future works are discussed in the end.

  6. Development of a wireless radioactive material sensor network

    Energy Technology Data Exchange (ETDEWEB)

    Katsis, Dimosthenis, E-mail: katsisdc@ieee.org [US Army Research Laboratory, Athena Energy Corporation, Adelphi, Bowie, MD (United States); Burns, David; Henriquez, Stanley; Howell, Steve; Litz, Marc [US Army Research Laboratory, Athena Energy Corporation, Adelphi, Bowie, MD (United States)

    2011-10-01

    Our team at the United States Army Research Laboratory (ARL) has designed and developed a low-power, compact, wireless-networked gamma sensor (WGS) array. The WGS system provides high sensitivity gamma photon detection and remote warning for a broad range of radioactive materials. This sensor identifies the presence of a 1 {mu}Ci Cs137 source at a distance of 1.5 m. The networked array of sensors presently operates as a facility and laboratory sensor for the movement of radioactive check sources. Our goal has been to apply this architecture for field security applications by incorporating low-power design with compact packaging. The performance of this radiation measurement network is demonstrated for both detection and location of radioactive material.

  7. A Power Planning Algorithm Based on RPL for AMI Wireless Sensor Networks.

    Science.gov (United States)

    Miguel, Marcio L F; Jamhour, Edgard; Pellenz, Marcelo E; Penna, Manoel C

    2017-03-25

    The advanced metering infrastructure (AMI) is an architecture for two-way communication between electric, gas and water meters and city utilities. The AMI network is a wireless sensor network that provides communication for metering devices in the neighborhood area of the smart grid. Recently, the applicability of a routing protocol for low-power and lossy networks (RPL) has been considered in AMI networks. Some studies in the literature have pointed out problems with RPL, including sub-optimal path selection and instability. In this paper, we defend the viewpoint that careful planning of the transmission power in wireless RPL networks can significantly reduce the pointed problems. This paper presents a method for planning the transmission power in order to assure that, after convergence, the size of the parent set of the RPL nodes is as close as possible to a predefined size. Another important feature is that all nodes in the parent set offer connectivity through links of similar quality.

  8. Wireless home networking for dummies

    CERN Document Server

    Briere, Danny; Ferris, Edward

    2010-01-01

    The perennial bestseller shows you how share your files and Internet connection across a wireless network. Fully updated for Windows 7 and Mac OS X Snow Leopard, this new edition of this bestseller returns with all the latest in wireless standards and security. This fun and friendly guide shows you how to integrate your iPhone, iPod touch, smartphone, or gaming system into your home network. Veteran authors escort you through the various financial and logisitical considerations that you need to take into account before building a wireless network at home.: Covers the basics of planning, instal

  9. Standards-Based Wireless Sensor Networking Protocols for Spaceflight Applications

    Science.gov (United States)

    Wagner, Raymond S.

    2010-01-01

    Wireless sensor networks (WSNs) have the capacity to revolutionize data gathering in both spaceflight and terrestrial applications. WSNs provide a huge advantage over traditional, wired instrumentation since they do not require wiring trunks to connect sensors to a central hub. This allows for easy sensor installation in hard to reach locations, easy expansion of the number of sensors or sensing modalities, and reduction in both system cost and weight. While this technology offers unprecedented flexibility and adaptability, implementing it in practice is not without its difficulties. Recent advances in standards-based WSN protocols for industrial control applications have come a long way to solving many of the challenges facing practical WSN deployments. In this paper, we will overview two of the more promising candidates - WirelessHART from the HART Communication Foundation and ISA100.11a from the International Society of Automation - and present the architecture for a new standards-based sensor node for networking and applications research.

  10. Energy efficient medium access protocol for wireless medical body area sensor networks.

    Science.gov (United States)

    Omeni, O; Wong, A; Burdett, A J; Toumazou, C

    2008-12-01

    This paper presents a novel energy-efficient MAC Protocol designed specifically for wireless body area sensor networks (WBASN) focused towards pervasive healthcare applications. Wireless body area networks consist of wireless sensor nodes attached to the human body to monitor vital signs such as body temperature, activity or heart-rate. The network adopts a master-slave architecture, where the body-worn slave node periodically sends sensor readings to a central master node. Unlike traditional peer-to-peer wireless sensor networks, the nodes in this biomedical WBASN are not deployed in an ad hoc fashion. Joining a network is centrally managed and all communications are single-hop. To reduce energy consumption, all the sensor nodes are in standby or sleep mode until the centrally assigned time slot. Once a node has joined a network, there is no possibility of collision within a cluster as all communication is initiated by the central node and is addressed uniquely to a slave node. To avoid collisions with nearby transmitters, a clear channel assessment algorithm based on standard listen-before-transmit (LBT) is used. To handle time slot overlaps, the novel concept of a wakeup fallback time is introduced. Using single-hop communication and centrally controlled sleep/wakeup times leads to significant energy reductions for this application compared to more ldquoflexiblerdquo network MAC protocols such as 802.11 or Zigbee. As duty cycle is reduced, the overall power consumption approaches the standby power. The protocol is implemented in hardware as part of the Sensiumtrade system-on-chip WBASN ASIC, in a 0.13- mum CMOS process.

  11. The art of wireless sensor networks

    CERN Document Server

    2014-01-01

    During the last one and a half decades, wireless sensor networks have witnessed significant growth and tremendous development in both academia and industry.   “The Art of Wireless Sensor Networks: Volume 1: Fundamentals” focuses on the fundamentals concepts in the design, analysis, and implementation of wireless sensor networks. It covers the various layers of the lifecycle of this type of network from the physical layer up to the application layer. Its rationale is that the first volume covers contemporary design issues, tools, and protocols for radio-based two-dimensional terrestrial sensor networks. All the book chapters in this volume include up-to-date research work spanning various classic facets of the physical properties and functional behavior of wireless sensor networks, including physical layer, medium access control, data routing, topology management, mobility management, localization, task management, data management, data gathering, security, middleware, sensor technology, standards, and ...

  12. Traffic Profiling in Wireless Sensor Networks

    National Research Council Canada - National Science Library

    Kirykos, Georgios

    2006-01-01

    .... Wireless sensor networks pose unique challenges and limitations to the traditional schemes, which are used in the other wireless networks for security protection, and are due mainly to the increased...

  13. Future Wireless Networks and Information Systems Volume 1

    CERN Document Server

    2012-01-01

    This volume contains revised and extended research articles written by prominent researchers participating in ICFWI 2011 conference. The 2011 International Conference on Future Wireless Networks and Information Systems (ICFWI 2011) has been held on November 30 ~ December 1, 2011, Macao, China. Topics covered include Wireless Information Networks, Wireless Networking Technologies, Mobile Software and Services, intelligent computing, network management, power engineering, control engineering, Signal and Image Processing, Machine Learning, Control Systems and Applications, The book will offer the states of arts of tremendous advances in Wireless Networks and Information Systems and also serve as an excellent reference work for researchers and graduate students working on Wireless Networks and Information Systems.

  14. Analysis and Testing of Mobile Wireless Networks

    Science.gov (United States)

    Alena, Richard; Evenson, Darin; Rundquist, Victor; Clancy, Daniel (Technical Monitor)

    2002-01-01

    Wireless networks are being used to connect mobile computing elements in more applications as the technology matures. There are now many products (such as 802.11 and 802.11b) which ran in the ISM frequency band and comply with wireless network standards. They are being used increasingly to link mobile Intranet into Wired networks. Standard methods of analyzing and testing their performance and compatibility are needed to determine the limits of the technology. This paper presents analytical and experimental methods of determining network throughput, range and coverage, and interference sources. Both radio frequency (BE) domain and network domain analysis have been applied to determine wireless network throughput and range in the outdoor environment- Comparison of field test data taken under optimal conditions, with performance predicted from RF analysis, yielded quantitative results applicable to future designs. Layering multiple wireless network- sooners can increase performance. Wireless network components can be set to different radio frequency-hopping sequences or spreading functions, allowing more than one sooner to coexist. Therefore, we ran multiple 802.11-compliant systems concurrently in the same geographical area to determine interference effects and scalability, The results can be used to design of more robust networks which have multiple layers of wireless data communication paths and provide increased throughput overall.

  15. A wireless sensor enabled by wireless power.

    Science.gov (United States)

    Lee, Da-Sheng; Liu, Yu-Hong; Lin, Chii-Ruey

    2012-11-22

    Through harvesting energy by wireless charging and delivering data by wireless communication, this study proposes the concept of a wireless sensor enabled by wireless power (WPWS) and reports the fabrication of a prototype for functional tests. One WPWS node consists of wireless power module and sensor module with different chip-type sensors. Its main feature is the dual antenna structure. Following RFID system architecture, a power harvesting antenna was designed to gather power from a standard reader working in the 915 MHz band. Referring to the Modbus protocol, the other wireless communication antenna was integrated on a node to send sensor data in parallel. The dual antenna structure integrates both the advantages of an RFID system and a wireless sensor. Using a standard UHF RFID reader, WPWS can be enabled in a distributed area with a diameter up to 4 m. Working status is similar to that of a passive tag, except that a tag can only be queried statically, while the WPWS can send dynamic data from the sensors. The function is the same as a wireless sensor node. Different WPWSs equipped with temperature and humidity, optical and airflow velocity sensors are tested in this study. All sensors can send back detection data within 8 s. The accuracy is within 8% deviation compared with laboratory equipment. A wireless sensor network enabled by wireless power should be a totally wireless sensor network using WPWS. However, distributed WPWSs only can form a star topology, the simplest topology for constructing a sensor network. Because of shielding effects, it is difficult to apply other complex topologies. Despite this limitation, WPWS still can be used to extend sensor network applications in hazardous environments. Further research is needed to improve WPWS to realize a totally wireless sensor network.

  16. Filtering and control of wireless networked systems

    CERN Document Server

    Zhang, Dan; Yu, Li

    2017-01-01

    This self-contained book, written by leading experts, offers a cutting-edge, in-depth overview of the filtering and control of wireless networked systems. It addresses the energy constraint and filter/controller gain variation problems, and presents both the centralized and the distributed solutions. The first two chapters provide an introduction to networked control systems and basic information on system analysis. Chapters (3–6) then discuss the centralized filtering of wireless networked systems, presenting different approaches to deal with energy efficiency and filter/controller gain variation problems. The next part (chapters 7–10) explores the distributed filtering of wireless networked systems, addressing the main problems of energy constraint and filter gain variation. The final part (chapters 11–14) focuses on the distributed control of wireless networked systems. wireless networked systems for communication and control applications, the bo...

  17. Wireless Multi Hop Access Networks and Protocols

    OpenAIRE

    Nilsson Plymoth, Anders

    2007-01-01

    As more and more applications and services in our society now depend on the Internet, it is important that dynamically deployed wireless multi hop networks are able to gain access to the Internet and other infrastructure networks and services. This thesis proposes and evaluates solutions for providing multi hop Internet Access. It investigates how ad hoc networks can be combined with wireless and mesh networks in order to create wireless multi hop access networks. When several access points t...

  18. Flexible network wireless transceiver and flexible network telemetry transceiver

    Science.gov (United States)

    Brown, Kenneth D.

    2008-08-05

    A transceiver for facilitating two-way wireless communication between a baseband application and other nodes in a wireless network, wherein the transceiver provides baseband communication networking and necessary configuration and control functions along with transmitter, receiver, and antenna functions to enable the wireless communication. More specifically, the transceiver provides a long-range wireless duplex communication node or channel between the baseband application, which is associated with a mobile or fixed space, air, water, or ground vehicle or other platform, and other nodes in the wireless network or grid. The transceiver broadly comprises a communication processor; a flexible telemetry transceiver including a receiver and a transmitter; a power conversion and regulation mechanism; a diplexer; and a phased array antenna system, wherein these various components and certain subcomponents thereof may be separately enclosed and distributable relative to the other components and subcomponents.

  19. Low-Power Wireless Sensor Network Infrastructures

    DEFF Research Database (Denmark)

    Hansen, Morten Tranberg

    Advancements in wireless communication and electronics improving form factor and hardware capabilities has expanded the applicability of wireless sensor networks. Despite these advancements, devices are still limited in terms of energy which creates the need for duty-cycling and low-power protocols...... peripherals need to by duty-cycled and the low-power wireless radios are severely influenced by the environmental effects causing bursty and unreliable wireless channels. This dissertation presents a communication stack providing services for low-power communication, secure communication, data collection......, and network management which enables construction of low-power wireless sensor network applications. More specifically, these services are designed with the extreme low-power scenarios of the SensoByg project in mind and are implemented as follows. First, low-power communication is implemented with Auto...

  20. Intelligent Wireless Sensor Network

    OpenAIRE

    Saeed, Bakhtiar I.; Mehrdadi, Bruce

    2010-01-01

    In recent years, there has been significant increase in utilisation of embedded-microcontrollers in broad range of applications extending from commercial products to industrial process system monitoring. Furthermore, improvements in speed, size and power consumption of microcontrollers with added wireless capabilities has provided new generation of applications. These include versatile and\\ud low cost solutions in wireless sensor networking applications such as wireless system monitoring and ...

  1. Extending the lifetime of wireless sensor network with partial SDN deployment

    Directory of Open Access Journals (Sweden)

    S. Tomovic

    2016-06-01

    Full Text Available Energy efficiency is one of the key requirements in Wireless Sensor Networks (WSNs. In order to optimize energy usage at sensor nodes, this paper proposes a new network architecture that relies on concepts of Software Defined Networking (SDN. Since SDN is a relatively new technology, originally envisioned for wired networks, it cannot be expected to get immediately and completely adopted in WSN domain, regardless of potential benefits. For this reason, we consider incremental SDN deployment where SDN nodes coexist with traditional sensor nodes, and propose a new routing algorithm for SDN controller that prolongs the WSN lifetime even when a small percentage of SDN nodes is deployed.

  2. Towards Effective Intra-flow Network Coding in Software Defined Wireless Mesh Networks

    OpenAIRE

    Donghai Zhu; Xinyu Yang Yang; Peng Zhao; Wei Yu

    2016-01-01

    Wireless Mesh Networks (WMNs) have potential to provide convenient broadband wireless Internet access to mobile users.With the support of Software-Defined Networking (SDN) paradigm that separates control plane and data plane, WMNs can be easily deployed and managed. In addition, by exploiting the broadcast nature of the wireless medium and the spatial diversity of multi-hop wireless networks, intra-flow network coding has shown a greater benefit in comparison with traditional routing paradigm...

  3. Design and implementation about the campus wireless network

    International Nuclear Information System (INIS)

    Qi Fazhi; An Dehai; Wang Yanming; Cui Tao; Chen Gang; Liu Baoxu

    2007-01-01

    With the development of network applications, flexibility and wieldy is becoming more and more important for network users. Based on the analysis of the needs of campus wireless network. This article design and analysis the deployment mechanism, register system and protection system of wireless network. Built a wireless network system base on IHEP network environment, realization the 'always and everywhere' access the network in the IHEP campus area. (authors)

  4. Performance Analysis of IIUM Wireless Campus Network

    International Nuclear Information System (INIS)

    Latif, Suhaimi Abd; Masud, Mosharrof H; Anwar, Farhat

    2013-01-01

    International Islamic University Malaysia (IIUM) is one of the leading universities in the world in terms of quality of education that has been achieved due to providing numerous facilities including wireless services to every enrolled student. The quality of this wireless service is controlled and monitored by Information Technology Division (ITD), an ISO standardized organization under the university. This paper aims to investigate the constraints of wireless campus network of IIUM. It evaluates the performance of the IIUM wireless campus network in terms of delay, throughput and jitter. QualNet 5.2 simulator tool has employed to measure these performances of IIUM wireless campus network. The observation from the simulation result could be one of the influencing factors in improving wireless services for ITD and further improvement

  5. Mobility Models for Next Generation Wireless Networks Ad Hoc, Vehicular and Mesh Networks

    CERN Document Server

    Santi, Paolo

    2012-01-01

    Mobility Models for Next Generation Wireless Networks: Ad Hoc, Vehicular and Mesh Networks provides the reader with an overview of mobility modelling, encompassing both theoretical and practical aspects related to the challenging mobility modelling task. It also: Provides up-to-date coverage of mobility models for next generation wireless networksOffers an in-depth discussion of the most representative mobility models for major next generation wireless network application scenarios, including WLAN/mesh networks, vehicular networks, wireless sensor networks, and

  6. Heterogeneous wireless/wireline optical access networks with the R-EAT as backend component

    Science.gov (United States)

    Hagedorn, Klaus; Gindera, Ralf; Stohr, Andreas; Jager, Dieter

    2004-09-01

    A heterogeneous wireless/wireline optical transmission link using a reflection type electroabsorption transceiver (R-EAT) is presented. Simultaneous transmission of full-duplex broadband wireless LAN (WLAN) channels and 1Gb/s base band data is experimentally demonstrated. The system link employs sub-carrier multiplexing (SCM) and two optical channels for full duplex transmission of various analog WLAN channels and downlink digital base band data. The developed link architecture is suitable for simultaneous transmission of broadband wireline and wireless signals, it enables the coexistence and interoperability between wireline and wireless access technologies. The developed R-EAT component employed in this wireline/wireless access system, features "single-chip-component" base stations in access networks with star type topology where only a single optical fiber is used for bidirectional optical transmission. The R-EAT can be used within the optical C-band (1530- 1560nm) and is suitable for (D)WDM networks. Bit error rate measurements demonstrate the capabilities of the R-EAT for 1Gb/s base band transmission. The analog performance for WLAN transmission is characterised by a spurious free dynamic range (SFDR) of more than 75dB and 90dB for uplink and downlink transmission, respectively. The link gain for uplink and downlink transmission is -42dB and -37dB, respectively. The demonstrates the analog performances of the R-EAT for being used in wireless access networks such as W-LAN.

  7. An artificial neural network architecture for non-parametric visual odometry in wireless capsule endoscopy

    Science.gov (United States)

    Dimas, George; Iakovidis, Dimitris K.; Karargyris, Alexandros; Ciuti, Gastone; Koulaouzidis, Anastasios

    2017-09-01

    Wireless capsule endoscopy is a non-invasive screening procedure of the gastrointestinal (GI) tract performed with an ingestible capsule endoscope (CE) of the size of a large vitamin pill. Such endoscopes are equipped with a usually low-frame-rate color camera which enables the visualization of the GI lumen and the detection of pathologies. The localization of the commercially available CEs is performed in the 3D abdominal space using radio-frequency (RF) triangulation from external sensor arrays, in combination with transit time estimation. State-of-the-art approaches, such as magnetic localization, which have been experimentally proved more accurate than the RF approach, are still at an early stage. Recently, we have demonstrated that CE localization is feasible using solely visual cues and geometric models. However, such approaches depend on camera parameters, many of which are unknown. In this paper the authors propose a novel non-parametric visual odometry (VO) approach to CE localization based on a feed-forward neural network architecture. The effectiveness of this approach in comparison to state-of-the-art geometric VO approaches is validated using a robotic-assisted in vitro experimental setup.

  8. An artificial neural network architecture for non-parametric visual odometry in wireless capsule endoscopy

    International Nuclear Information System (INIS)

    Dimas, George; Iakovidis, Dimitris K; Karargyris, Alexandros; Ciuti, Gastone; Koulaouzidis, Anastasios

    2017-01-01

    Wireless capsule endoscopy is a non-invasive screening procedure of the gastrointestinal (GI) tract performed with an ingestible capsule endoscope (CE) of the size of a large vitamin pill. Such endoscopes are equipped with a usually low-frame-rate color camera which enables the visualization of the GI lumen and the detection of pathologies. The localization of the commercially available CEs is performed in the 3D abdominal space using radio-frequency (RF) triangulation from external sensor arrays, in combination with transit time estimation. State-of-the-art approaches, such as magnetic localization, which have been experimentally proved more accurate than the RF approach, are still at an early stage. Recently, we have demonstrated that CE localization is feasible using solely visual cues and geometric models. However, such approaches depend on camera parameters, many of which are unknown. In this paper the authors propose a novel non-parametric visual odometry (VO) approach to CE localization based on a feed-forward neural network architecture. The effectiveness of this approach in comparison to state-of-the-art geometric VO approaches is validated using a robotic-assisted in vitro experimental setup. (paper)

  9. Wireless networks of opportunity in support of secure field operations

    Science.gov (United States)

    Stehle, Roy H.; Lewis, Mark

    1997-02-01

    Under funding from the Defense Advanced Research Projects Agency (DARPA) for joint military and law enforcement technologies, demonstrations of secure information transfer in support of law enforcement and military operations other than war, using wireless and wired technology, were held in September 1996 at several locations in the United States. In this paper, the network architecture, protocols, and equipment supporting the demonstration's scenarios are presented, together with initial results, including lessons learned and desired system enhancements. Wireless networks of opportunity encompassed in-building (wireless-LAN), campus-wide (Metricom Inc.), metropolitan (AMPS cellular, CDPD), and national (one- and two-way satellite) systems. Evolving DARPA-sponsored packet radio technology was incorporated. All data was encrypted, using multilevel information system security initiative (MISSI)FORTEZZA technology, for carriage over unsecured and unclassified commercial networks. The identification and authentication process inherent in the security system permitted logging for database accesses and provided an audit trail useful in evidence gathering. Wireless and wireline communications support, to and between modeled crisis management centers, was demonstrated. Mechanisms for the guarded transport of data through the secret-high military tactical Internet were included, to support joint law enforcement and crisis management missions. A secure World Wide Web (WWW) browser forms the primary, user-friendly interface for information retrieval and submission. The WWW pages were structured to be sensitive to the bandwidth, error rate, and cost of the communications medium in use (e.g., the use of and resolution for graphical data). Both still and motion compressed video were demonstrated, along with secure voice transmission from laptop computers in the field. Issues of network bandwidth, airtime costs, and deployment status are discussed.

  10. Applying Physical-Layer Network Coding in Wireless Networks

    Directory of Open Access Journals (Sweden)

    Liew SoungChang

    2010-01-01

    Full Text Available A main distinguishing feature of a wireless network compared with a wired network is its broadcast nature, in which the signal transmitted by a node may reach several other nodes, and a node may receive signals from several other nodes, simultaneously. Rather than a blessing, this feature is treated more as an interference-inducing nuisance in most wireless networks today (e.g., IEEE 802.11. This paper shows that the concept of network coding can be applied at the physical layer to turn the broadcast property into a capacity-boosting advantage in wireless ad hoc networks. Specifically, we propose a physical-layer network coding (PNC scheme to coordinate transmissions among nodes. In contrast to "straightforward" network coding which performs coding arithmetic on digital bit streams after they have been received, PNC makes use of the additive nature of simultaneously arriving electromagnetic (EM waves for equivalent coding operation. And in doing so, PNC can potentially achieve 100% and 50% throughput increases compared with traditional transmission and straightforward network coding, respectively, in 1D regular linear networks with multiple random flows. The throughput improvements are even larger in 2D regular networks: 200% and 100%, respectively.

  11. TD-LTE Wireless Private Network QoS Transmission Protection

    Science.gov (United States)

    Zhang, Jianming; Cheng, Chao; Wu, Zanhong

    With the commencement of construction of the smart grid, the demand power business for reliability and security continues to improve, the reliability transmission of power TD-LTE Wireless Private Network are more and more attention. For TD-LTE power private network, it can provide different QoS services according to the user's business type, to protect the reliable transmission of business. This article describes in detail the AF module of PCC in the EPC network, specifically introduces set up AF module station and QoS mechanisms in the EPS load, fully considers the business characteristics of the special power network, establishing a suitable architecture for mapping QoS parameters, ensuring the implementation of each QoS business. Through using radio bearer management, we can achieve the reliable transmission of each business on physical channel.

  12. Intrusion detection and monitoring for wireless networks.

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Eric D.; Van Randwyk, Jamie A.; Lee, Erik J.; Stephano, Amanda (Indiana University); Tabriz, Parisa (University of Illinois at Urbana-Champaign); Pelon, Kristen (Cedarville University); McCoy, Damon (University of Colorado, Boulder); Lodato, Mark (Lafayette College); Hemingway, Franklin (University of New Mexico); Custer, Ryan P.; Averin, Dimitry (Polytechnic University); Franklin, Jason (Carnegie Mellon University); Kilman, Dominique Marie

    2005-11-01

    Wireless computer networks are increasing exponentially around the world. They are being implemented in both the unlicensed radio frequency (RF) spectrum (IEEE 802.11a/b/g) and the licensed spectrum (e.g., Firetide [1] and Motorola Canopy [2]). Wireless networks operating in the unlicensed spectrum are by far the most popular wireless computer networks in existence. The open (i.e., proprietary) nature of the IEEE 802.11 protocols and the availability of ''free'' RF spectrum have encouraged many producers of enterprise and common off-the-shelf (COTS) computer networking equipment to jump into the wireless arena. Competition between these companies has driven down the price of 802.11 wireless networking equipment and has improved user experiences with such equipment. The end result has been an increased adoption of the equipment by businesses and consumers, the establishment of the Wi-Fi Alliance [3], and widespread use of the Alliance's ''Wi-Fi'' moniker to describe these networks. Consumers use 802.11 equipment at home to reduce the burden of running wires in existing construction, facilitate the sharing of broadband Internet services with roommates or neighbors, and increase their range of ''connectedness''. Private businesses and government entities (at all levels) are deploying wireless networks to reduce wiring costs, increase employee mobility, enable non-employees to access the Internet, and create an added revenue stream to their existing business models (coffee houses, airports, hotels, etc.). Municipalities (Philadelphia; San Francisco; Grand Haven, MI) are deploying wireless networks so they can bring broadband Internet access to places lacking such access; offer limited-speed broadband access to impoverished communities; offer broadband in places, such as marinas and state parks, that are passed over by traditional broadband providers; and provide themselves with higher quality, more

  13. Bluetooth-based wireless sensor networks

    Science.gov (United States)

    You, Ke; Liu, Rui Qiang

    2007-11-01

    In this work a Bluetooth-based wireless sensor network is proposed. In this bluetooth-based wireless sensor networks, information-driven star topology and energy-saved mode are used, through which a blue master node can control more than seven slave node, the energy of each sensor node is reduced and secure management of each sensor node is improved.

  14. Networking wireless sensors

    National Research Council Canada - National Science Library

    Krishnamachari, Bhaskar

    2005-01-01

    ... by networking techniques across multiple layers. The topics covered include network deployment, localization, time synchronization, wireless radio characteristics, medium-access, topology control, routing, data-centric techniques, and transport protocols. Ideal for researchers and designers seeking to create new algorithms and protocols and enginee...

  15. Resilient Disaster Network Based on Software Defined Cognitive Wireless Network Technology

    Directory of Open Access Journals (Sweden)

    Goshi Sato

    2015-01-01

    Full Text Available In order to temporally recover the information network infrastructure in disaster areas from the Great East Japan Earthquake in 2011, various wireless network technologies such as satellite IP network, 3G, and Wi-Fi were effectively used. However, since those wireless networks are individually introduced and installed but not totally integrated, some of networks were congested due to the sudden network traffic generation and unbalanced traffic distribution, and eventually the total network could not effectively function. In this paper, we propose a disaster resilient network which integrates various wireless networks into a cognitive wireless network that users can use as an access network to the Internet at the serious disaster occurrence. We designed and developed the disaster resilient network based on software defined network (SDN technology to automatically select the best network link and route among the possible access networks to the Internet by periodically monitoring their network states and evaluate those using extended AHP method. In order to verify the usefulness of our proposed system, a prototype system is constructed and its performance is evaluated.

  16. Analysis of Distributed Consensus Time Synchronization with Gaussian Delay over Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Xiong Gang

    2009-01-01

    Full Text Available This paper presents theoretical results on the convergence of the distributed consensus timing synchronization (DCTS algorithm for wireless sensor networks assuming general Gaussian delay between nodes. The asymptotic expectation and mean square of the global synchronization error are computed. The results lead to the definition of a time delay balanced network in which average timing consensus between nodes can be achieved despite random delays. Several structured network architectures are studied as examples, and their associated simulation results are used to validate analytical findings.

  17. Self-Similar Traffic In Wireless Networks

    OpenAIRE

    Jerjomins, R.; Petersons, E.

    2005-01-01

    Many studies have shown that traffic in Ethernet and other wired networks is self-similar. This paper reveals that wireless network traffic is also self-similar and long-range dependant by analyzing big amount of data captured from the wireless router.

  18. Topological Analysis of Wireless Networks (TAWN)

    Science.gov (United States)

    2016-05-31

    19b. TELEPHONE NUMBER (Include area code) 31-05-2016 FINAL REPORT 12-02-2015 -- 31-05-2016 Topological Analysis of Wireless Networks (TAWN) Robinson...Release, Distribution Unlimited) N/A The goal of this project was to develop topological methods to detect and localize vulnerabilities of wireless... topology U U U UU 32 Michael Robinson 202-885-3681 Final Report: May 2016 Topological Analysis of Wireless Networks Principal Investigator: Prof. Michael

  19. Power Management for A Distributed Wireless Health Management Architecture

    Data.gov (United States)

    National Aeronautics and Space Administration — Distributed wireless architectures for prognostics is an important enabling step in prognostic research in order to achieve feasible real-time system health...

  20. Cooperative Diversity in Wireless Networks

    Directory of Open Access Journals (Sweden)

    A. Mahmood

    2010-01-01

    Full Text Available Transmit Diversity is an effective methodology for improving the quality and reliability of a wireless network by reducingthe effects of fading. As majority of the wireless devices (i.e. mobile handsets, etc are limited to only one antenna, especiallydue to hardware constraints, size and cost factors; cooperative communication can be utilized in order to generatetransmit diversity [1]. This enables single antenna wireless devices to share their antennas during transmission in such amanner that creates a virtual MIMO (multiple-input and multiple-output system [2] [3]. In this paper, we will analyze therecent developments and trends in this promising area of wireless Ad hoc networks. The article will also discuss variousmain cooperative signaling methods and will also observe their performance.

  1. Sensor Fusion-based Event Detection in Wireless Sensor Networks

    NARCIS (Netherlands)

    Bahrepour, M.; Meratnia, Nirvana; Havinga, Paul J.M.

    2009-01-01

    Recently, Wireless Sensor Networks (WSN) community has witnessed an application focus shift. Although, monitoring was the initial application of wireless sensor networks, in-network data processing and (near) real-time actuation capability have made wireless sensor networks suitable candidate for

  2. Wireless Sensor Network –A Survey

    OpenAIRE

    Nirvika Chouhan; P.D.Vyavahare; Rekha Jain

    2013-01-01

    Wireless sensor networks are the networks consisting of large number of small and tiny sensor nodes. The nodes are supplied with limited power, memory and other resources and perform in-network processing. In this paper, various issues are discussed that actually put the limitations in the well working and the life time of the network. In Wireless sensor network, nodes should consume less power, memoryand so data aggregation should be performed. Security is another aspect which should be pres...

  3. A Nodes Deployment Algorithm in Wireless Sensor Network Based on Distribution

    Directory of Open Access Journals (Sweden)

    Song Yuli

    2014-07-01

    Full Text Available Wireless sensor network coverage is a basic problem of wireless sensor network. In this paper, we propose a wireless sensor network node deployment algorithm base on distribution in order to form an efficient wireless sensor network. The iteratively greedy algorithm is used in this paper to choose priority nodes into active until the entire network is covered by wireless sensor nodes, the whole network to multiply connected. The simulation results show that the distributed wireless sensor network node deployment algorithm can form a multiply connected wireless sensor network.

  4. Wireless Network Penetration Testing and Security Auditing

    Directory of Open Access Journals (Sweden)

    Wang Shao-Long

    2016-01-01

    Full Text Available IEEE802.11 wireless wireless networks have security issues that are vulnerable to a variety of attacks. Due to using radio to transport data, attackers can bypass firewalls, sniff sensitive information, intercept packets and send malicious packets. Security auditing and penetration testing is expected to ensure wireless networks security. The contributions of this work are analyzed the vulnerability and types of attacks pertaining to IEEE 802.11 WLAN, performed well known attacks in a laboratory environment to conduct penetration tests to confirm whether our wireless network is hackable or not. WAIDPS is configured as auditing tool to view wireless attacks, such as WEP/WPA/WPA2 cracking, rouge access points, denial of service attack. WAIDPS is designed to detect wireless intrusion with additional features. Penetration testing and auditing will mitigate the risk and threatening to protect WALN.

  5. Wireless Sensor Networks Database: Data Management and Implementation

    Directory of Open Access Journals (Sweden)

    Ping Liu

    2014-04-01

    Full Text Available As the core application of wireless sensor network technology, Data management and processing have become the research hotspot in the new database. This article studied mainly data management in wireless sensor networks, in connection with the characteristics of the data in wireless sensor networks, discussed wireless sensor network data query, integrating technology in-depth, proposed a mobile database structure based on wireless sensor network and carried out overall design and implementation for the data management system. In order to achieve the communication rules of above routing trees, network manager uses a simple maintenance algorithm of routing trees. Design ordinary node end, server end in mobile database at gathering nodes and mobile client end that can implement the system, focus on designing query manager, storage modules and synchronous module at server end in mobile database at gathering nodes.

  6. Wireless sensor networks in chemical industry

    International Nuclear Information System (INIS)

    Minhas, A.A.; Jawad, S.

    2010-01-01

    Recent advances in wireless technology are a clear indication of the commercial promise of wireless networks. Industrial wireless sensing has now become more economical, efficient and secure as compared to traditional wired sensing. Wireless Sensor Networks (WSN) are successfully being used for process monitoring and control of many industrial plants. This paper explores how Chemical Industry in particular can benefit from the application of WSN technology. Various examples of successful implementation are cited. In order to address the industrial requirements, we propose a low power and low cost solution for process monitoring by implementing WSN. (author)

  7. On the Conditional Entropy of Wireless Networks

    DEFF Research Database (Denmark)

    Coon, Justin P.; Badiu, Mihai Alin; Gündüz, Deniz

    2018-01-01

    The characterization of topological uncertainty in wireless networks using the formalism of graph entropy has received interest in the spatial networks community. In this paper, we develop lower bounds on the entropy of a wireless network by conditioning on potential network observables. Two appr...... a homogeneous binomial point process in this work) and the network topology....

  8. Battling Latency in Modern Wireless Networks

    KAUST Repository

    Showail, Ahmad

    2018-05-15

    Buffer sizing has a tremendous effect on the performance of Wi-Fi based networks. Choosing the right buffer size is challenging due to the dynamic nature of the wireless environment. Over buffering or ‘bufferbloat’ may produce unacceptable endto-end delays. On the other hand, small buffers may limit the performance gains that can be obtained with various IEEE 802.11n/ac enhancements, such as frame aggregation. We propose Wireless Queue Management (WQM), a novel, practical, and lightweight queue management scheme for wireless networks. WQM adapts the buffer size based on the wireless link characteristics and the network load. Furthermore, it accounts for aggregates length when deciding on the optimal buffer size. We evaluate WQM using our 10 nodes wireless testbed. WQM reduces the end-to-end delay by an order of magnitude compared to the default buffer size in Linux while achieving similar network throughput. Also, WQM outperforms state of the art bufferbloat solutions, namely CoDel and PIE. WQM achieves 7× less latency compared to PIE, and 2× compared to CoDel at the cost of 8% drop in goodput in the worst case. Further, WQM improves network fairness as it limits the ability of a single flow to saturate the buffers.

  9. Battling Latency in Modern Wireless Networks

    KAUST Repository

    Showail, Ahmad; Shihada, Basem

    2018-01-01

    Buffer sizing has a tremendous effect on the performance of Wi-Fi based networks. Choosing the right buffer size is challenging due to the dynamic nature of the wireless environment. Over buffering or ‘bufferbloat’ may produce unacceptable endto-end delays. On the other hand, small buffers may limit the performance gains that can be obtained with various IEEE 802.11n/ac enhancements, such as frame aggregation. We propose Wireless Queue Management (WQM), a novel, practical, and lightweight queue management scheme for wireless networks. WQM adapts the buffer size based on the wireless link characteristics and the network load. Furthermore, it accounts for aggregates length when deciding on the optimal buffer size. We evaluate WQM using our 10 nodes wireless testbed. WQM reduces the end-to-end delay by an order of magnitude compared to the default buffer size in Linux while achieving similar network throughput. Also, WQM outperforms state of the art bufferbloat solutions, namely CoDel and PIE. WQM achieves 7× less latency compared to PIE, and 2× compared to CoDel at the cost of 8% drop in goodput in the worst case. Further, WQM improves network fairness as it limits the ability of a single flow to saturate the buffers.

  10. Performance Analysis of On-Demand Routing Protocols in Wireless Mesh Networks

    Directory of Open Access Journals (Sweden)

    Arafatur RAHMAN

    2009-01-01

    Full Text Available Wireless Mesh Networks (WMNs have recently gained a lot of popularity due to their rapid deployment and instant communication capabilities. WMNs are dynamically self-organizing, self-configuring and self-healing with the nodes in the network automatically establishing an adiej hoc network and preserving the mesh connectivity. Designing a routing protocol for WMNs requires several aspects to consider, such as wireless networks, fixed applications, mobile applications, scalability, better performance metrics, efficient routing within infrastructure, load balancing, throughput enhancement, interference, robustness etc. To support communication, various routing protocols are designed for various networks (e.g. ad hoc, sensor, wired etc.. However, all these protocols are not suitable for WMNs, because of the architectural differences among the networks. In this paper, a detailed simulation based performance study and analysis is performed on the reactive routing protocols to verify the suitability of these protocols over such kind of networks. Ad Hoc On-Demand Distance Vector (AODV, Dynamic Source Routing (DSR and Dynamic MANET On-demand (DYMO routing protocol are considered as the representative of reactive routing protocols. The performance differentials are investigated using varying traffic load and number of source. Based on the simulation results, how the performance of each protocol can be improved is also recommended.

  11. A Study on Wireless Charging for Prolonging the Lifetime of Wireless Sensor Networks.

    Science.gov (United States)

    Tu, Weijian; Xu, Xianghua; Ye, Tingcong; Cheng, Zongmao

    2017-07-04

    Wireless charging is an important issue in wireless sensor networks, since it can provide an emerging and effective solution in the absence of other power supplies. The state-of-the-art methods employ a mobile car and a predefined moving path to charge the sensor nodes in the network. Previous studies only consider a factor of the network (i.e., residual energy of sensor node) as a constraint to design the wireless charging strategy. However, other factors, such as the travelled distance of the mobile car, can also affect the effectiveness of wireless charging strategy. In this work, we study wireless charging strategy based on the analysis of a combination of two factors, including the residual energy of sensor nodes and the travelled distance of the charging car. Firstly, we theoretically analyze the limited size of the sensor network to match the capability of a charging car. Then, the networked factors are selected as the weights of traveling salesman problem (TSP) to design the moving path of the charging car. Thirdly, the charging time of each sensor node is computed based on the linear programming problem for the charging car. Finally, a charging period for the network is studied. The experimental results show that the proposed approach can significantly maximize the lifetime of the wireless sensor network.

  12. A Study on Wireless Charging for Prolonging the Lifetime of Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Weijian Tu

    2017-07-01

    Full Text Available Wireless charging is an important issue in wireless sensor networks, since it can provide an emerging and effective solution in the absence of other power supplies. The state-of-the-art methods employ a mobile car and a predefined moving path to charge the sensor nodes in the network. Previous studies only consider a factor of the network (i.e., residual energy of sensor node as a constraint to design the wireless charging strategy. However, other factors, such as the travelled distance of the mobile car, can also affect the effectiveness of wireless charging strategy. In this work, we study wireless charging strategy based on the analysis of a combination of two factors, including the residual energy of sensor nodes and the travelled distance of the charging car. Firstly, we theoretically analyze the limited size of the sensor network to match the capability of a charging car. Then, the networked factors are selected as the weights of traveling salesman problem (TSP to design the moving path of the charging car. Thirdly, the charging time of each sensor node is computed based on the linear programming problem for the charging car. Finally, a charging period for the network is studied. The experimental results show that the proposed approach can significantly maximize the lifetime of the wireless sensor network.

  13. Maximizing lifetime of wireless sensor networks using genetic approach

    DEFF Research Database (Denmark)

    Wagh, Sanjeev; Prasad, Ramjee

    2014-01-01

    The wireless sensor networks are designed to install the smart network applications or network for emergency solutions, where human interaction is not possible. The nodes in wireless sensor networks have to self organize as per the users requirements through monitoring environments. As the sensor......-objective parameters are considered to solve the problem using genetic algorithm of evolutionary approach.......The wireless sensor networks are designed to install the smart network applications or network for emergency solutions, where human interaction is not possible. The nodes in wireless sensor networks have to self organize as per the users requirements through monitoring environments. As the sensor...

  14. Cognitive Radio Wireless Sensor Networks: Applications, Challenges and Research Trends

    Science.gov (United States)

    Joshi, Gyanendra Prasad; Nam, Seung Yeob; Kim, Sung Won

    2013-01-01

    A cognitive radio wireless sensor network is one of the candidate areas where cognitive techniques can be used for opportunistic spectrum access. Research in this area is still in its infancy, but it is progressing rapidly. The aim of this study is to classify the existing literature of this fast emerging application area of cognitive radio wireless sensor networks, highlight the key research that has already been undertaken, and indicate open problems. This paper describes the advantages of cognitive radio wireless sensor networks, the difference between ad hoc cognitive radio networks, wireless sensor networks, and cognitive radio wireless sensor networks, potential application areas of cognitive radio wireless sensor networks, challenges and research trend in cognitive radio wireless sensor networks. The sensing schemes suited for cognitive radio wireless sensor networks scenarios are discussed with an emphasis on cooperation and spectrum access methods that ensure the availability of the required QoS. Finally, this paper lists several open research challenges aimed at drawing the attention of the readers toward the important issues that need to be addressed before the vision of completely autonomous cognitive radio wireless sensor networks can be realized. PMID:23974152

  15. Cognitive Radio Wireless Sensor Networks: Applications, Challenges and Research Trends

    Directory of Open Access Journals (Sweden)

    Gyanendra Prasad Joshi

    2013-08-01

    Full Text Available A cognitive radio wireless sensor network is one of the candidate areas where cognitive techniques can be used for opportunistic spectrum access. Research in this area is still in its infancy, but it is progressing rapidly. The aim of this study is to classify the existing literature of this fast emerging application area of cognitive radio wireless sensor networks, highlight the key research that has already been undertaken, and indicate open problems. This paper describes the advantages of cognitive radio wireless sensor networks, the difference between ad hoc cognitive radio networks, wireless sensor networks, and cognitive radio wireless sensor networks, potential application areas of cognitive radio wireless sensor networks, challenges and research trend in cognitive radio wireless sensor networks. The sensing schemes suited for cognitive radio wireless sensor networks scenarios are discussed with an emphasis on cooperation and spectrum access methods that ensure the availability of the required QoS. Finally, this paper lists several open research challenges aimed at drawing the attention of the readers toward the important issues that need to be addressed before the vision of completely autonomous cognitive radio wireless sensor networks can be realized.

  16. Cognitive radio wireless sensor networks: applications, challenges and research trends.

    Science.gov (United States)

    Joshi, Gyanendra Prasad; Nam, Seung Yeob; Kim, Sung Won

    2013-08-22

    A cognitive radio wireless sensor network is one of the candidate areas where cognitive techniques can be used for opportunistic spectrum access. Research in this area is still in its infancy, but it is progressing rapidly. The aim of this study is to classify the existing literature of this fast emerging application area of cognitive radio wireless sensor networks, highlight the key research that has already been undertaken, and indicate open problems. This paper describes the advantages of cognitive radio wireless sensor networks, the difference between ad hoc cognitive radio networks, wireless sensor networks, and cognitive radio wireless sensor networks, potential application areas of cognitive radio wireless sensor networks, challenges and research trend in cognitive radio wireless sensor networks. The sensing schemes suited for cognitive radio wireless sensor networks scenarios are discussed with an emphasis on cooperation and spectrum access methods that ensure the availability of the required QoS. Finally, this paper lists several open research challenges aimed at drawing the attention of the readers toward the important issues that need to be addressed before the vision of completely autonomous cognitive radio wireless sensor networks can be realized.

  17. Extending Wireless Broadband Network Architectures with Home Gateways, Localization, and Physical Environment Surveillance

    DEFF Research Database (Denmark)

    Jelling Kristoffersen, Kåre; Kjærgaard, Mikkel Baun; Chen, Jianjun

    2005-01-01

    homes. It must bridge across the most prevalent standard protocols for data, video, telephony and telemetry, and must be able to automatically discover new devices in a residence and allow over the air/wire provisioning, billing, management and aggregation of new services from multiple service providers...... is initially demonstrated in a 52 DECT base station installation covering four office buildings of total 4500 m2 . Finally the paper proposes the application of a commercial off-the-shelf wireless broadband network as a sensor network, without any additional hardware, for physical intrusion detection of e...

  18. Providing end-to-end QoS for multimedia applications in 3G wireless networks

    Science.gov (United States)

    Guo, Katherine; Rangarajan, Samapth; Siddiqui, M. A.; Paul, Sanjoy

    2003-11-01

    As the usage of wireless packet data services increases, wireless carriers today are faced with the challenge of offering multimedia applications with QoS requirements within current 3G data networks. End-to-end QoS requires support at the application, network, link and medium access control (MAC) layers. We discuss existing CDMA2000 network architecture and show its shortcomings that prevent supporting multiple classes of traffic at the Radio Access Network (RAN). We then propose changes in RAN within the standards framework that enable support for multiple traffic classes. In addition, we discuss how Session Initiation Protocol (SIP) can be augmented with QoS signaling for supporting end-to-end QoS. We also review state of the art scheduling algorithms at the base station and provide possible extensions to these algorithms to support different classes of traffic as well as different classes of users.

  19. Wireless coexistence and interference test method for low-power wireless sensor networks

    NARCIS (Netherlands)

    Serra, R.; Nabi, Majid

    2015-01-01

    Wireless sensor networks (WSNs) are being increasingly introduced for critical applications such as safety, security and health. One the main characteristic requirements of such networks are that they should function with relative low power. Therefore the wireless links are more vulnerable.

  20. Real-Time and Secure Wireless Health Monitoring

    Science.gov (United States)

    Dağtaş, S.; Pekhteryev, G.; Şahinoğlu, Z.; Çam, H.; Challa, N.

    2008-01-01

    We present a framework for a wireless health monitoring system using wireless networks such as ZigBee. Vital signals are collected and processed using a 3-tiered architecture. The first stage is the mobile device carried on the body that runs a number of wired and wireless probes. This device is also designed to perform some basic processing such as the heart rate and fatal failure detection. At the second stage, further processing is performed by a local server using the raw data transmitted by the mobile device continuously. The raw data is also stored at this server. The processed data as well as the analysis results are then transmitted to the service provider center for diagnostic reviews as well as storage. The main advantages of the proposed framework are (1) the ability to detect signals wirelessly within a body sensor network (BSN), (2) low-power and reliable data transmission through ZigBee network nodes, (3) secure transmission of medical data over BSN, (4) efficient channel allocation for medical data transmission over wireless networks, and (5) optimized analysis of data using an adaptive architecture that maximizes the utility of processing and computational capacity at each platform. PMID:18497866

  1. AUTHENTICATION ARCHITECTURE USING THRESHOLD CRYPTOGRAPHY IN KERBEROS FOR MOBILE AD HOC NETWORKS

    Directory of Open Access Journals (Sweden)

    Hadj Gharib

    2014-06-01

    Full Text Available The use of wireless technologies is gradually increasing and risks related to the use of these technologies are considerable. Due to their dynamically changing topology and open environment without a centralized policy control of a traditional network, a mobile ad hoc network (MANET is vulnerable to the presence of malicious nodes and attacks. The ideal solution to overcome a myriad of security concerns in MANET’s is the use of reliable authentication architecture. In this paper we propose a new key management scheme based on threshold cryptography in kerberos for MANET’s, the proposed scheme uses the elliptic curve cryptography method that consumes fewer resources well adapted to the wireless environment. Our approach shows a strength and effectiveness against attacks.

  2. SNMS: an intelligent transportation system network architecture based on WSN and P2P network

    Institute of Scientific and Technical Information of China (English)

    LI Li; LIU Yuan-an; TANG Bi-hua

    2007-01-01

    With the development of city road networks, the question of how to obtain information about the roads is becoming more and more important. In this article, sensor network with mobile station (SNMS), a novel two-tiered intelligent transportation system (ITS) network architecture based on wireless sensor network (WSN) and peer-to-peer (P2P) network, is proposed to provide significant traffic information about the road and thereby, assist travelers to take optimum decisions when they are driving. A detailed explanation with regard to the strategy of each level as well as the design of two main components in the network, sensor unit (SU) and mobile station (MS), is presented. Finally, a representative scenario is described to display the operation of the system.

  3. Adaptive Naive Bayes classification for wireless sensor networks

    NARCIS (Netherlands)

    Zwartjes, G.J.

    2017-01-01

    Wireless Sensor Networks are tiny devices equipped with sensors and wireless communication. These devices observe environments and communicatie about these observations. Machine Learning techniques are of interest for Wireless Sensor Network applications since they can reduce the amount of needed

  4. Secure positioning in wireless networks

    DEFF Research Database (Denmark)

    Capkun, Srdjan; Hubaux, Jean-Pierre

    2006-01-01

    So far, the problem of positioning in wireless networks has been studied mainly in a non-adversarial settings. In this work, we analyze the resistance of positioning techniques to position and distance spoofing attacks. We propose a mechanism for secure positioning of wireless devices, that we call...... Verifiable Multilateration. We then show how this mechanism can be used to secure positioning in sensor networks. We analyze our system through simulations....

  5. Physical parameters collection based on wireless senor network

    Science.gov (United States)

    Chen, Xin; Wu, Hong; Ji, Lei

    2013-12-01

    With the development of sensor technology, wireless senor network has been applied in the medical, military, entertainment field and our daily life. But the existing available wireless senor networks applied in human monitoring system still have some problems, such as big power consumption, low security and so on. To improve senor network applied in health monitoring system, the paper introduces a star wireless senor networks based on msp430 and DSP. We design a low-cost heart-rate monitor senor node. The communication between senor node and sink node is realized according to the newest protocol proposed by the IEEE 802.15.6 Task Group. This wireless senor network will be more energy-efficient and faster compared to traditional senor networks.

  6. Green Wireless Power Transfer Networks

    NARCIS (Netherlands)

    Liu, Q.; Golinnski, M.; Pawelczak, P.; Warnier, M.

    2016-01-01

    wireless power transfer network (WPTN) aims to support devices with cable-less energy on-demand. Unfortunately, wireless power transfer itself-especially through radio frequency radiation rectification-is fairly inefficient due to decaying power with distance, antenna polarization, etc.

  7. Network coding at different layers in wireless networks

    CERN Document Server

    2016-01-01

    This book focuses on how to apply network coding at different layers in wireless networks – including MAC, routing, and TCP – with special focus on cognitive radio networks. It discusses how to select parameters in network coding (e.g., coding field, number of packets involved, and redundant information ration) in order to be suitable for the varying wireless environments. The book explores how to deploy network coding in MAC to improve network performance and examines joint network coding with opportunistic routing to improve the successful rate of routing. In regards to TCP and network coding, the text considers transport layer protocol working with network coding to overcome the transmission error rate, particularly with how to use the ACK feedback of TCP to enhance the efficiency of network coding. The book pertains to researchers and postgraduate students, especially whose interests are in opportunistic routing and TCP in cognitive radio networks.

  8. BackTrack testing wireless network security

    CERN Document Server

    Cardwell, Kevin

    2013-01-01

    Written in an easy-to-follow step-by-step format, you will be able to get started in next to no time with minimal effort and zero fuss.BackTrack: Testing Wireless Network Security is for anyone who has an interest in security and who wants to know more about wireless networks.All you need is some experience with networks and computers and you will be ready to go.

  9. Detection of Spoofed MAC Addresses in 802.11 Wireless Networks

    Science.gov (United States)

    Tao, Kai; Li, Jing; Sampalli, Srinivas

    Medium Access Control (MAC) address spoofing is considered as an important first step in a hacker's attempt to launch a variety of attacks on 802.11 wireless networks. Unfortunately, MAC address spoofing is hard to detect. Most current spoofing detection systems mainly use the sequence number (SN) tracking technique, which has drawbacks. Firstly, it may lead to an increase in the number of false positives. Secondly, such techniques cannot be used in systems with wireless cards that do not follow standard 802.11 sequence number patterns. Thirdly, attackers can forge sequence numbers, thereby causing the attacks to go undetected. We present a new architecture called WISE GUARD (Wireless Security Guard) for detection of MAC address spoofing on 802.11 wireless LANs. It integrates three detection techniques - SN tracking, Operating System (OS) fingerprinting & tracking and Received Signal Strength (RSS) fingerprinting & tracking. It also includes the fingerprinting of Access Point (AP) parameters as an extension to the OS fingerprinting for detection of AP address spoofing. We have implemented WISE GUARD on a test bed using off-the-shelf wireless devices and open source drivers. Experimental results show that the new design enhances the detection effectiveness and reduces the number of false positives in comparison with current approaches.

  10. A COMPARATIVE STUDY OF SYSTEM NETWORK ARCHITECTURE Vs DIGITAL NETWORK ARCHITECTURE

    OpenAIRE

    Seema; Mukesh Arya

    2011-01-01

    The efficient managing system of sources is mandatory for the successful running of any network. Here this paper describes the most popular network architectures one of developed by IBM, System Network Architecture (SNA) and other is Digital Network Architecture (DNA). As we know that the network standards and protocols are needed for the network developers as well as users. Some standards are The IEEE 802.3 standards (The Institute of Electrical and Electronics Engineers 1980) (LAN), IBM Sta...

  11. Virtual Lab for Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    PICOVICI, D.

    2008-06-01

    Full Text Available This article details an experimental system developed to enhance the education and research in the area of wireless networks technologies. The system referred, as Virtual Lab (VL is primarily targeting first time users or users with limited experience in programming and using wireless sensor networks. The VL enables a set of predefined sensor networks to be remotely accessible and controlled for constructive and time-efficient experimentation. In order to facilitate the user's wireless sensor applications, the VL is using three main components: a a Virtual Lab Motes (VLM, representing the wireless sensor, b a Virtual Lab Client (VLC, representing the user's tool to interact with the VLM and c a Virtual Lab Server (VLS representing the software link between the VLM and VLC. The concept has been proven using the moteiv produced Tmote Sky modules. Initial experimental use clearly demonstrates that the VL approach reduces dramatically the learning curve involved in programming and using the associated wireless sensor nodes. In addition the VL allows the user's focus to be directed towards the experiment and not towards the software programming challenges.

  12. Energy efficiency in future wireless broadband networks

    CSIR Research Space (South Africa)

    Masonta, MT

    2012-10-01

    Full Text Available greener economy and environment. In this research, we investigate the concept of green radio communications in wireless networks and discuss approaches for energy efficient solutions in wireless broadband network deployments. These solutions include...

  13. Reliable and Efficient Communications in Wireless Sensor Networks

    International Nuclear Information System (INIS)

    Abdelhakim, M.M.

    2014-01-01

    , and has shown to be optimal from the information theory point of view. Next, we observe that: while simplifying the routing process, a major limitation with SENMA is that data transmission is limited by the physical speed of the mobile access points (MAs) and the length of their trajectory, resulting in low throughput and large delay. To solve this problem, we propose a novel mobile access coordinated wireless sensor network (MC-WSN) architecture. The proposed MC-WSN can provide reliable and time-sensitive information exchange through hop number control, which is achieved by active network development and topology design. We discuss the optimal topology design for MC-WSN such that the average number of hops between the source and its nearest sink is minimized, and analyze the performance of MC-WSN in terms of throughput, stability, delay, and energy efficiency by exploiting tools in information theory, queuing theory, and radio energy dissipation model. It is shown that MC-WSN achieves much higher throughput and significantly lower delay and energy consumption than that of SENMA. Finally, motivated by the observation that the number of hops in data transmission has a direct impact on the network performance, we introduce the concept of the N-hop networks. Based on the N-hop concept, we propose a unified framework for wireless networks and discuss general network design criteria. The unified framework reflects the convergence of centralized and ad-hoc networks. It includes all exiting network models as special cases, and makes the analytical characterization of the network performance more tractable. Further study on N-hop networks will be conducted in our future research.

  14. Wireless Sensor Network Safety Study

    OpenAIRE

    M.Shankar; Dr.M.Sridar; Dr.M.Rajani

    2012-01-01

    Few security mechanisms in wireless sensor networks (WSNs) have been implemented, and even fewer have been applied in real deployments. The limited resources of each sensor node makes security in WSNs hard, as the tradeoff between security and practicality must be carefully considered. These complex systems include in their design different types of information and communication technology systems, such as wireless (mesh) sensor networks, to carry out control processes in real time. This fact...

  15. Analyzing the factors affecting network lifetime cluster-based wireless sensor network

    International Nuclear Information System (INIS)

    Malik, A.S.; Qureshi, A.

    2010-01-01

    Cluster-based wireless sensor networks enable the efficient utilization of the limited energy resources of the deployed sensor nodes and hence prolong the node as well as network lifetime. Low Energy Adaptive Clustering Hierarchy (Leach) is one of the most promising clustering protocol proposed for wireless sensor networks. This paper provides the energy utilization and lifetime analysis for cluster-based wireless sensor networks based upon LEACH protocol. Simulation results identify some important factors that induce unbalanced energy utilization between the sensor nodes and hence affect the network lifetime in these types of networks. These results highlight the need for a standardized, adaptive and distributed clustering technique that can increase the network lifetime by further balancing the energy utilization among sensor nodes. (author)

  16. Ad hoc mobile wireless networks principles, protocols, and applications

    CERN Document Server

    Sarkar, Subir Kumar

    2013-01-01

    The military, the research community, emergency services, and industrial environments all rely on ad hoc mobile wireless networks because of their simple infrastructure and minimal central administration. Now in its second edition, Ad Hoc Mobile Wireless Networks: Principles, Protocols, and Applications explains the concepts, mechanism, design, and performance of these highly valued systems. Following an overview of wireless network fundamentals, the book explores MAC layer, routing, multicast, and transport layer protocols for ad hoc mobile wireless networks. Next, it examines quality of serv

  17. Design and Optimization of the VideoWeb Wireless Camera Network

    Directory of Open Access Journals (Sweden)

    Nguyen HoangThanh

    2010-01-01

    Full Text Available Sensor networks have been a very active area of research in recent years. However, most of the sensors used in the development of these networks have been local and nonimaging sensors such as acoustics, seismic, vibration, temperature, humidity. The emerging development of video sensor networks poses its own set of unique challenges, including high-bandwidth and low latency requirements for real-time processing and control. This paper presents a systematic approach by detailing the design, implementation, and evaluation of a large-scale wireless camera network, suitable for a variety of practical real-time applications. We take into consideration issues related to hardware, software, control, architecture, network connectivity, performance evaluation, and data-processing strategies for the network. We also perform multiobjective optimization on settings such as video resolution and compression quality to provide insight into the performance trade-offs when configuring such a network and present lessons learned in the building and daily usage of the network.

  18. Topological properties of random wireless networks

    Indian Academy of Sciences (India)

    Wireless networks in which the node locations are random are best modelled as random geometric graphs (RGGs). In addition to their extensive application in the modelling of wireless networks, RGGs find many new applications and are being studied in their own right. In this paper we first provide a brief introduction to the ...

  19. 47 CFR 27.1305 - Shared wireless broadband network.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Shared wireless broadband network. 27.1305... broadband network. The Shared Wireless Broadband Network developed by the 700 MHz Public/Private Partnership must be designed to meet requirements associated with a nationwide, public safety broadband network. At...

  20. 47 CFR 90.1405 - Shared wireless broadband network.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Shared wireless broadband network. 90.1405... broadband network. The Shared Wireless Broadband Network developed by the 700 MHz Public/Private Partnership must be designed to meet requirements associated with a nationwide, public safety broadband network. At...

  1. Design mobile satellite system architecture as an integral part of the cellular access digital network

    Science.gov (United States)

    Chien, E. S. K.; Marinho, J. A.; Russell, J. E., Sr.

    1988-01-01

    The Cellular Access Digital Network (CADN) is the access vehicle through which cellular technology is brought into the mainstream of the evolving integrated telecommunications network. Beyond the integrated end-to-end digital access and per call network services provisioning of the Integrated Services Digital Network (ISDN), the CADN engenders the added capability of mobility freedom via wireless access. One key element of the CADN network architecture is the standard user to network interface that is independent of RF transmission technology. Since the Mobile Satellite System (MSS) is envisioned to not only complement but also enhance the capabilities of the terrestrial cellular telecommunications network, compatibility and interoperability between terrestrial cellular and mobile satellite systems are vitally important to provide an integrated moving telecommunications network of the future. From a network standpoint, there exist very strong commonalities between the terrestrial cellular system and the mobile satellite system. Therefore, the MSS architecture should be designed as an integral part of the CADN. This paper describes the concept of the CADN, the functional architecture of the MSS, and the user-network interface signaling protocols.

  2. Wireless Sensor Network for Forest Fire Detection 2

    OpenAIRE

    João Gilberto Fernandes Gonçalves Teixeira

    2017-01-01

    The main purpose for this project is the development of a semi-autonomous wireless sensor network for fire detection in remote territory. Making use of the IEEE 802.15.4 standard, a wireless standard for low-power, low-rate wireless sensor networks, a real sensor network and web application will be developed and deployed with the ability to monitor sensor data, detect a fire occurrence and generate early fire alerts.

  3. Cluster-based Data Gathering in Long-Strip Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    FANG, W.

    2012-02-01

    Full Text Available This paper investigates a special class of wireless sensor networks that are different from traditional ones in that the sensor nodes in this class of networks are deployed along narrowly elongated geographical areas and form a long-strip topology. According to hardware capabilities of current sensor nodes, a cluster-based protocol for reliable and efficient data gathering in long-strip wireless sensor networks (LSWSN is proposed. A well-distributed cluster-based architecture is first formed in the whole network through contention-based cluster head election. Cluster heads are responsible for coordination among the nodes within their clusters and aggregation of their sensory data, as well as transmission the data to the sink node on behalf of their own clusters. The intra-cluster coordination is based on the traditional TDMA schedule, in which the inter-cluster interference caused by the border nodes is solved by the multi-channel communication technique. The cluster reporting is based on the CSMA contention, in which a connected overlay network is formed by relay nodes to forward the data from the cluster heads through multi-hops to the sink node. The relay nodes are non-uniformly deployed to resolve the energy-hole problem which is extremely serious in the LSWSN. Extensive simulation results illuminate the distinguished performance of the proposed protocol.

  4. A survey of system architecture requirements for health care-based wireless sensor networks.

    Science.gov (United States)

    Egbogah, Emeka E; Fapojuwo, Abraham O

    2011-01-01

    Wireless Sensor Networks (WSNs) have emerged as a viable technology for a vast number of applications, including health care applications. To best support these health care applications, WSN technology can be adopted for the design of practical Health Care WSNs (HCWSNs) that support the key system architecture requirements of reliable communication, node mobility support, multicast technology, energy efficiency, and the timely delivery of data. Work in the literature mostly focuses on the physical design of the HCWSNs (e.g., wearable sensors, in vivo embedded sensors, et cetera). However, work towards enhancing the communication layers (i.e., routing, medium access control, et cetera) to improve HCWSN performance is largely lacking. In this paper, the information gleaned from an extensive literature survey is shared in an effort to fortify the knowledge base for the communication aspect of HCWSNs. We highlight the major currently existing prototype HCWSNs and also provide the details of their routing protocol characteristics. We also explore the current state of the art in medium access control (MAC) protocols for WSNs, for the purpose of seeking an energy efficient solution that is robust to mobility and delivers data in a timely fashion. Furthermore, we review a number of reliable transport layer protocols, including a network coding based protocol from the literature, that are potentially suitable for delivering end-to-end reliability of data transmitted in HCWSNs. We identify the advantages and disadvantages of the reviewed MAC, routing, and transport layer protocols as they pertain to the design and implementation of a HCWSN. The findings from this literature survey will serve as a useful foundation for designing a reliable HCWSN and also contribute to the development and evaluation of protocols for improving the performance of future HCWSNs. Open issues that required further investigations are highlighted.

  5. A Survey of System Architecture Requirements for Health Care-Based Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Abraham O. Fapojuwo

    2011-05-01

    Full Text Available Wireless Sensor Networks (WSNs have emerged as a viable technology for a vast number of applications, including health care applications. To best support these health care applications, WSN technology can be adopted for the design of practical Health Care WSNs (HCWSNs that support the key system architecture requirements of reliable communication, node mobility support, multicast technology, energy efficiency, and the timely delivery of data. Work in the literature mostly focuses on the physical design of the HCWSNs (e.g., wearable sensors, in vivo embedded sensors, et cetera. However, work towards enhancing the communication layers (i.e., routing, medium access control, et cetera to improve HCWSN performance is largely lacking. In this paper, the information gleaned from an extensive literature survey is shared in an effort to fortify the knowledge base for the communication aspect of HCWSNs. We highlight the major currently existing prototype HCWSNs and also provide the details of their routing protocol characteristics. We also explore the current state of the art in medium access control (MAC protocols for WSNs, for the purpose of seeking an energy efficient solution that is robust to mobility and delivers data in a timely fashion. Furthermore, we review a number of reliable transport layer protocols, including a network coding based protocol from the literature, that are potentially suitable for delivering end-to-end reliability of data transmitted in HCWSNs. We identify the advantages and disadvantages of the reviewed MAC, routing, and transport layer protocols as they pertain to the design and implementation of a HCWSN. The findings from this literature survey will serve as a useful foundation for designing a reliable HCWSN and also contribute to the development and evaluation of protocols for improving the performance of future HCWSNs. Open issues that required further investigations are highlighted.

  6. Availability Issues in Wireless Visual Sensor Networks

    Science.gov (United States)

    Costa, Daniel G.; Silva, Ivanovitch; Guedes, Luiz Affonso; Vasques, Francisco; Portugal, Paulo

    2014-01-01

    Wireless visual sensor networks have been considered for a large set of monitoring applications related with surveillance, tracking and multipurpose visual monitoring. When sensors are deployed over a monitored field, permanent faults may happen during the network lifetime, reducing the monitoring quality or rendering parts or the entire network unavailable. In a different way from scalar sensor networks, camera-enabled sensors collect information following a directional sensing model, which changes the notions of vicinity and redundancy. Moreover, visual source nodes may have different relevancies for the applications, according to the monitoring requirements and cameras' poses. In this paper we discuss the most relevant availability issues related to wireless visual sensor networks, addressing availability evaluation and enhancement. Such discussions are valuable when designing, deploying and managing wireless visual sensor networks, bringing significant contributions to these networks. PMID:24526301

  7. Wireless Sensor Network Metrics for Real-Time Systems

    Science.gov (United States)

    2009-05-20

    Wireless Sensor Network Metrics for Real-Time Systems Phoebus Wei-Chih Chen Electrical Engineering and Computer Sciences University of California at...3. DATES COVERED 00-00-2009 to 00-00-2009 4. TITLE AND SUBTITLE Wireless Sensor Network Metrics for Real-Time Systems 5a. CONTRACT NUMBER 5b... wireless sensor networks (WSNs) is moving from studies of WSNs in isolation toward studies where the WSN is treated as a component of a larger system

  8. Wireless receiver architectures and design antennas, RF, synthesizers, mixed signal, and digital signal processing

    CERN Document Server

    Rouphael, Tony J

    2014-01-01

    Wireless Receiver Architectures and Design presents the various designs and architectures of wireless receivers in the context of modern multi-mode and multi-standard devices. This one-stop reference and guide to designing low-cost low-power multi-mode, multi-standard receivers treats analog and digital signal processing simultaneously, with equal detail given to the chosen architecture and modulating waveform. It provides a complete understanding of the receiver's analog front end and the digital backend, and how each affects the other. The book explains the design process in great detail, s

  9. Radio Frequency Energy Harvesting for Long Lifetime Wireless Sensor Networks

    DEFF Research Database (Denmark)

    Han, Bo; Nielsen, Rasmus Hjorth; Prasad, Ramjee

    2014-01-01

    In wireless sensor networks energy scarcity is a major concern on energy consumption, and by properly designing on the node network architecture or selecting efficient protocols of the networks, the maximum energy can be reduced significantly thereby increasing the network lifetime. However......, in most of the cases, the sensor nodes are either powered by non-replaceable batteries, or there will be a considerable replacement cost. Thus a self-rechargeable sensor node design is necessary: the sensor node should be able to harvest energy from the environment. Among the existing techniques......, harvesting energy from the radio frequency (RF) waves gives the lowest system design. Previous research on RF energy harvesting is based on the model that the radio energy is omnidirectional in the air. In this paper, a directional transmission/receiving model is proposed which can further overcome the path...

  10. Wireless sensor network adaptive cooling

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, T. [SynapSense Corp., Folsom, CA (United States)

    2009-07-01

    Options for reducing data centre cooling energy requirements and their cost savings were discussed with particular reference to a wireless control solution developed by SynapSense Corporation. The wireless sensor network reduces cooling energy use at data centres by providing improved air flow management through the installation of cold aisle containment. The use of this low cost, non-invasive wireless sensor network has reduced the cooling energy use in a data center at BC Hydro by 30 per cent. The system also reduced the server and storage fan energy by 3 per cent by maintaining inlet air temperature below ASHRAE recommended operating range. The distribution of low power, low cost wireless sensors has enabled visualization tools that are changing the way that data centres are managed. The annual savings have been estimated at 4,560,000 kWh and the annual carbon dioxide abatement is approximately 1,400 metric tons. tabs., figs.

  11. Wireless Sensor Network Optimization: Multi-Objective Paradigm.

    Science.gov (United States)

    Iqbal, Muhammad; Naeem, Muhammad; Anpalagan, Alagan; Ahmed, Ashfaq; Azam, Muhammad

    2015-07-20

    Optimization problems relating to wireless sensor network planning, design, deployment and operation often give rise to multi-objective optimization formulations where multiple desirable objectives compete with each other and the decision maker has to select one of the tradeoff solutions. These multiple objectives may or may not conflict with each other. Keeping in view the nature of the application, the sensing scenario and input/output of the problem, the type of optimization problem changes. To address different nature of optimization problems relating to wireless sensor network design, deployment, operation, planing and placement, there exist a plethora of optimization solution types. We review and analyze different desirable objectives to show whether they conflict with each other, support each other or they are design dependent. We also present a generic multi-objective optimization problem relating to wireless sensor network which consists of input variables, required output, objectives and constraints. A list of constraints is also presented to give an overview of different constraints which are considered while formulating the optimization problems in wireless sensor networks. Keeping in view the multi facet coverage of this article relating to multi-objective optimization, this will open up new avenues of research in the area of multi-objective optimization relating to wireless sensor networks.

  12. Wireless Sensor Network Optimization: Multi-Objective Paradigm

    Science.gov (United States)

    Iqbal, Muhammad; Naeem, Muhammad; Anpalagan, Alagan; Ahmed, Ashfaq; Azam, Muhammad

    2015-01-01

    Optimization problems relating to wireless sensor network planning, design, deployment and operation often give rise to multi-objective optimization formulations where multiple desirable objectives compete with each other and the decision maker has to select one of the tradeoff solutions. These multiple objectives may or may not conflict with each other. Keeping in view the nature of the application, the sensing scenario and input/output of the problem, the type of optimization problem changes. To address different nature of optimization problems relating to wireless sensor network design, deployment, operation, planing and placement, there exist a plethora of optimization solution types. We review and analyze different desirable objectives to show whether they conflict with each other, support each other or they are design dependent. We also present a generic multi-objective optimization problem relating to wireless sensor network which consists of input variables, required output, objectives and constraints. A list of constraints is also presented to give an overview of different constraints which are considered while formulating the optimization problems in wireless sensor networks. Keeping in view the multi facet coverage of this article relating to multi-objective optimization, this will open up new avenues of research in the area of multi-objective optimization relating to wireless sensor networks. PMID:26205271

  13. Wireless sensor network topology control

    OpenAIRE

    Zuk, Olexandr; Romanjuk, Valeriy; Sova, Oleg

    2010-01-01

    Topology control process for the wireless sensor network is considered. In this article the use of rule base for making decision on the search of optimum network topology is offered for the realization of different aims of network management.

  14. Location based Network Optimizations for Mobile Wireless Networks

    DEFF Research Database (Denmark)

    Nielsen, Jimmy Jessen

    selection in Wi-Fi networks and predictive handover optimization in heterogeneous wireless networks. The investigations in this work have indicated that location based network optimizations are beneficial compared to typical link measurement based approaches. Especially the knowledge of geographical...

  15. Industrial wireless sensor networks applications, protocols, and standards

    CERN Document Server

    Güngör, V Çagri

    2013-01-01

    The collaborative nature of industrial wireless sensor networks (IWSNs) brings several advantages over traditional wired industrial monitoring and control systems, including self-organization, rapid deployment, flexibility, and inherent intelligent processing. In this regard, IWSNs play a vital role in creating more reliable, efficient, and productive industrial systems, thus improving companies' competitiveness in the marketplace. Industrial Wireless Sensor Networks: Applications, Protocols, and Standards examines the current state of the art in industrial wireless sensor networks and outline

  16. A Novel Buffer Management Architecture for Epidemic Routing in Delay Tolerant Networks (DTNs)

    KAUST Repository

    Elwhishi, Ahmed; Ho, Pin-Han; Naik, K.; Shihada, Basem

    2010-01-01

    Delay tolerant networks (DTNs) are wireless networks in which an end-to-end path for a given node pair can never exist for an extended period. It has been reported as a viable approach in launching multiple message replicas in order to increase message delivery ratio and reduce message delivery delay. This advantage, nonetheless, is at the expense of taking more buffer space at each node. The combination of custody and replication entails high buffer and bandwidth overhead. This paper investigates a new buffer management architecture for epidemic routing in DTNs, which helps each node to make a decision on which message should be forwarded or dropped. The proposed buffer management architecture is characterized by a suite of novel functional modules, including Summary Vector Exchange Module (SVEM), Networks State Estimation Module (NSEM), and Utility Calculation Module (UCM). Extensive simulation results show that the proposed buffer management architecture can achieve superb performance against its counterparts in terms of delivery ratio and delivery delay.

  17. A Novel Buffer Management Architecture for Epidemic Routing in Delay Tolerant Networks (DTNs)

    KAUST Repository

    Elwhishi, Ahmed

    2010-11-17

    Delay tolerant networks (DTNs) are wireless networks in which an end-to-end path for a given node pair can never exist for an extended period. It has been reported as a viable approach in launching multiple message replicas in order to increase message delivery ratio and reduce message delivery delay. This advantage, nonetheless, is at the expense of taking more buffer space at each node. The combination of custody and replication entails high buffer and bandwidth overhead. This paper investigates a new buffer management architecture for epidemic routing in DTNs, which helps each node to make a decision on which message should be forwarded or dropped. The proposed buffer management architecture is characterized by a suite of novel functional modules, including Summary Vector Exchange Module (SVEM), Networks State Estimation Module (NSEM), and Utility Calculation Module (UCM). Extensive simulation results show that the proposed buffer management architecture can achieve superb performance against its counterparts in terms of delivery ratio and delivery delay.

  18. Node counting in wireless ad-hoc networks

    NARCIS (Netherlands)

    Evers, J.H.M.; Kiss, D.; Kowalczyk, W.; Navilarekallu, T.; Renger, D.R.M.; Sella, L.; Timperio, V.; Viorel, A.; Wijk, van A.C.C.; Yzelman, A.J.; Planqué, B.; Bhulai, S.; Hulshof, J.; Kager, W.; Rot, T.

    2012-01-01

    We study wireless ad-hoc networks consisting of small microprocessors with limited memory, where the wireless communication between the processors can be highly unreliable. For this setting, we propose a number of algorithms to estimate the number of nodes in the network, and the number of direct

  19. RoboSmith: Wireless Networked Architecture for Multiagent Robotic System

    Directory of Open Access Journals (Sweden)

    Florin Moldoveanu

    2010-11-01

    Full Text Available In this paper is presented an architecture for a flexible mini robot for a multiagent robotic system. In a multiagent system the value of an individual agent is negligible since the goal of the system is essential. Thus, the agents (robots need to be small, low cost and cooperative. RoboSmith are designed based on these conditions. The proposed architecture divide a robot into functional modules such as locomotion, control, sensors, communication, and actuation. Any mobile robot can be constructed by combining these functional modules for a specific application. An embedded software with dynamic task uploading and multi-tasking abilities is developed in order to create better interface between robots and the command center and among the robots. The dynamic task uploading allows the robots change their behaviors in runtime. The flexibility of the robots is given by facts that the robots can work in multiagent system, as master-slave, or hybrid mode, can be equipped with different modules and possibly be used in other applications such as mobile sensor networks remote sensing, and plant monitoring.

  20. Wireless Sensor Network Based Smart Grid Communications: Cyber Attacks, Intrusion Detection System and Topology Control

    Directory of Open Access Journals (Sweden)

    Lipi Chhaya

    2017-01-01

    Full Text Available The existing power grid is going through a massive transformation. Smart grid technology is a radical approach for improvisation in prevailing power grid. Integration of electrical and communication infrastructure is inevitable for the deployment of Smart grid network. Smart grid technology is characterized by full duplex communication, automatic metering infrastructure, renewable energy integration, distribution automation and complete monitoring and control of entire power grid. Wireless sensor networks (WSNs are small micro electrical mechanical systems that are deployed to collect and communicate the data from surroundings. WSNs can be used for monitoring and control of smart grid assets. Security of wireless sensor based communication network is a major concern for researchers and developers. The limited processing capabilities of wireless sensor networks make them more vulnerable to cyber-attacks. The countermeasures against cyber-attacks must be less complex with an ability to offer confidentiality, data readiness and integrity. The address oriented design and development approach for usual communication network requires a paradigm shift to design data oriented WSN architecture. WSN security is an inevitable part of smart grid cyber security. This paper is expected to serve as a comprehensive assessment and analysis of communication standards, cyber security issues and solutions for WSN based smart grid infrastructure.

  1. Handoff Between a Wireless Local Area Network (WLAN and a Wide Area Network (UMTS

    Directory of Open Access Journals (Sweden)

    J. Sánchez–García

    2009-04-01

    Full Text Available With the appearance of wireless data networks with variable coverage, band width and handoff strategies, in addition to the growing need of mobile nodes to freely roam among these networks, the support of an interoperable handoff strategy for hybrid wireless data networks is a requirement that needs to be addressed. The current trend in wireless data networks is to offer multimedia access to mobile users by employing the wireless local area network (WLAN standard IEEE802.11 while the user is located indoors; on the other hand, 3rd generation wireless networks (WAN are being deployed to provide coverage while the user is located outdoors. As a result, the mobile node will require a handoff mechanism to allow the user to roam between WLAN and WAN environments; up to this date several strategies have been proposed (Sattari et al., 2004 and HyoJin, 2007 in the literature, however, none of these have been standardized to date. To support this interoperability, the mobile node must be equipped with configurable wireless inetrfaces to support the handoff between the WLAN and the WAN networks. In this work a new algorithm is proposed to allow a mobile node to roam between a wireless local area network (IEEE802.11 and a WAN base station (UMTS, while employing IP mobility support. The algorithm is implemented in simulation, using the Network Simulator 2.

  2. Reactor building indoor wireless network channel quality estimation using RSSI measurement of wireless sensor network

    International Nuclear Information System (INIS)

    Merat, S.

    2008-01-01

    Expanding wireless communication network reception inside reactor buildings (RB) and service wings (SW) has always been a technical challenge for operations service team. This is driven by the volume of metal equipment inside the Reactor Buildings (RB) that blocks and somehow shields the signal throughout the link. In this study, to improve wireless reception inside the Reactor Building (RB), an experimental model using indoor localization mesh based on IEEE 802.15 is developed to implement a wireless sensor network. This experimental model estimates the distance between different nodes by measuring the RSSI (Received Signal Strength Indicator). Then by using triangulation and RSSI measurement, the validity of the estimation techniques is verified to simulate the physical environmental obstacles, which block the signal transmission. (author)

  3. Reactor building indoor wireless network channel quality estimation using RSSI measurement of wireless sensor network

    Energy Technology Data Exchange (ETDEWEB)

    Merat, S. [Wardrop Engineering Inc., Toronto, Ontario (Canada)

    2008-07-01

    Expanding wireless communication network reception inside reactor buildings (RB) and service wings (SW) has always been a technical challenge for operations service team. This is driven by the volume of metal equipment inside the Reactor Buildings (RB) that blocks and somehow shields the signal throughout the link. In this study, to improve wireless reception inside the Reactor Building (RB), an experimental model using indoor localization mesh based on IEEE 802.15 is developed to implement a wireless sensor network. This experimental model estimates the distance between different nodes by measuring the RSSI (Received Signal Strength Indicator). Then by using triangulation and RSSI measurement, the validity of the estimation techniques is verified to simulate the physical environmental obstacles, which block the signal transmission. (author)

  4. Topology Optimisation of Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Thike Aye Min

    2016-01-01

    Full Text Available Wireless sensor networks are widely used in a variety of fields including industrial environments. In case of a clustered network the location of cluster head affects the reliability of the network operation. Finding of the optimum location of the cluster head, therefore, is critical for the design of a network. This paper discusses the optimisation approach, based on the brute force algorithm, in the context of topology optimisation of a cluster structure centralised wireless sensor network. Two examples are given to verify the approach that demonstrate the implementation of the brute force algorithm to find an optimum location of the cluster head.

  5. Wireless local area network for the dental office.

    Science.gov (United States)

    Mupparapu, Muralidhar

    2004-01-01

    Dental offices are no exception to the implementation of new and advanced technology, especially if it enhances productivity. In a rapidly transforming digital world, wireless technology has a special place, as it has truly "retired the wire" and contributed to the ease and efficient access to patient data and other software-based applications for diagnosis and treatment. If the office or the clinic is networked, access to patient management software, imaging software and treatment planning tools is enhanced. Access will be further enhanced and unrestricted if the entire network is wireless. As with any new, emerging technology, there will be issues that should be kept in mind before adapting to the wireless environment. Foremost is the network security involved in the installation and use of these wireless networks. This short, technical manuscript deals with standards and choices in wireless technology currently available for implementation within a dental office. The benefits of each network security protocol available to protect patient data and boost the efficiency of a modern dental office are discussed.

  6. Wireless sensor network for sodium leak detection

    International Nuclear Information System (INIS)

    Satya Murty, S.A.V.; Raj, Baldev; Sivalingam, Krishna M.; Ebenezer, Jemimah; Chandran, T.; Shanmugavel, M.; Rajan, K.K.

    2012-01-01

    Highlights: ► Early detection of sodium leak is mandatory in any reactor handling liquid sodium. ► Wireless sensor networking technology has been introduced for detecting sodium leak. ► We designed and developed a wireless sensor node in-house. ► We deployed a pilot wireless sensor network for handling nine sodium leak signals. - Abstract: To study the mechanical properties of Prototype Fast Breeder Reactor component materials under the influence of sodium, the IN Sodium Test (INSOT) facility has been erected and commissioned at Indira Gandhi Centre for Atomic Research. Sodium reacts violently with air/moisture leading to fire. Hence early detection of sodium leak if any is mandatory for such plants and almost 140 sodium leak detectors are placed throughout the loop. All these detectors are wired to the control room for data collection and monitoring. To reduce the cost, space and maintenance that are involved in cabling, the wireless sensor networking technology has been introduced in the sodium leak detection system of INSOT. This paper describes about the deployment details of the pilot wireless sensor network and the measures taken for the successful deployment.

  7. Ad hoc mobile wireless networks principles, protocols and applications

    CERN Document Server

    Sarkar, Subir Kumar; Puttamadappa, C

    2007-01-01

    Ad hoc mobile wireless networks have seen increased adaptation in a variety of disciplines because they can be deployed with simple infrastructures and virtually no central administration. In particular, the development of ad hoc wireless and sensor networks provides tremendous opportunities in areas including disaster recovery, defense, health care, and industrial environments. Ad Hoc Mobile Wireless Networks: Principles, Protocols and Applications explains the concepts, mechanisms, design, and performance of these systems. It presents in-depth explanations of the latest wireless technologies

  8. Cross-Layer Protocol as a Better Option in Wireless Mesh Network with Respect to Layered-Protocol

    OpenAIRE

    Ahmed Abdulwahab Al-Ahdal; Dr. V. P. Pawar; G. N. Shinde

    2014-01-01

    The Optimal way to improve Wireless Mesh Networks (WMNs) performance is to use a better network protocol, but whether layered-protocol design or cross-layer design is a better option to optimize protocol performance in WMNs is still an on-going research topic. In this paper, we focus on cross-layer protocol as a better option with respect to layered-protocol. The layered protocol architecture (OSI) model divides networking tasks into layers and defines a pocket of services for each layer to b...

  9. High-throughput and low-latency 60GHz small-cell network architectures over radio-over-fiber technologies

    Science.gov (United States)

    Pleros, N.; Kalfas, G.; Mitsolidou, C.; Vagionas, C.; Tsiokos, D.; Miliou, A.

    2017-01-01

    Future broadband access networks in the 5G framework will need to be bilateral, exploiting both optical and wireless technologies. This paper deals with new approaches and synergies on radio-over-fiber (RoF) technologies and how those can be leveraged to seamlessly converge wireless technology for agility and mobility with passive optical networks (PON)-based backhauling. The proposed convergence paradigm is based upon a holistic network architecture mixing mm-wave wireless access with photonic integration, dynamic capacity allocation and network coding schemes to enable high bandwidth and low-latency fixed and 60GHz wireless personal area communications for gigabit rate per user, proposing and deploying on top a Medium-Transparent MAC (MT-MAC) protocol as a low-latency bandwidth allocation mechanism. We have evaluated alternative network topologies between the central office (CO) and the access point module (APM) for data rates up to 2.5 Gb/s and SC frequencies up to 60 GHz. Optical network coding is demonstrated for SCM-based signaling to enhance bandwidth utilization and facilitate optical-wireless convergence in 5G applications, reporting medium-transparent network coding directly at the physical layer between end-users communicating over a RoF infrastructure. Towards equipping the physical layer with the appropriate agility to support MT-MAC protocols, a monolithic InP-based Remote Antenna Unit optoelectronic PIC interface is shown that ensures control over the optical resource allocation assisting at the same time broadband wireless service. Finally, the MT-MAC protocol is analysed and simulation and analytical theoretical results are presented that are found to be in good agreement confirming latency values lower than 1msec for small- to mid-load conditions.

  10. SDN Based User-Centric Framework for Heterogeneous Wireless Networks

    Directory of Open Access Journals (Sweden)

    Zhaoming Lu

    2016-01-01

    Full Text Available Due to the rapid growth of mobile data traffic, more and more basestations and access points (APs have been densely deployed to provide users with ubiquitous network access, which make current wireless network a complex heterogeneous network (HetNet. However, traditional wireless networks are designed with network-centric approaches where different networks have different quality of service (QoS strategies and cannot easily cooperate with each other to serve network users. Massive network infrastructures could not assure users perceived network and service quality, which is an indisputable fact. To address this issue, we design a new framework for heterogeneous wireless networks with the principle of user-centricity, refactoring the network from users’ perspective to suffice their requirements and preferences. Different from network-centric approaches, the proposed framework takes advantage of Software Defined Networking (SDN and virtualization technology, which will bring better perceived services quality for wireless network users. In the proposed user-centric framework, control plane and data plane are decoupled to manage the HetNets in a flexible and coadjutant way, and resource virtualization technology is introduced to abstract physical resources of HetNets into unified virtualized resources. Hence, ubiquitous and undifferentiated network connectivity and QoE (quality of experience driven fine-grained resource management could be achieved for wireless network users.

  11. Ensuring Data Storage Security in Tree cast Routing Architecture for Sensor Networks

    Science.gov (United States)

    Kumar, K. E. Naresh; Sagar, U. Vidya; Waheed, Mohd. Abdul

    2010-10-01

    In this paper presents recent advances in technology have made low-cost, low-power wireless sensors with efficient energy consumption. A network of such nodes can coordinate among themselves for distributed sensing and processing of certain data. For which, we propose an architecture to provide a stateless solution in sensor networks for efficient routing in wireless sensor networks. This type of architecture is known as Tree Cast. We propose a unique method of address allocation, building up multiple disjoint trees which are geographically inter-twined and rooted at the data sink. Using these trees, routing messages to and from the sink node without maintaining any routing state in the sensor nodes is possible. In contrast to traditional solutions, where the IT services are under proper physical, logical and personnel controls, this routing architecture moves the application software and databases to the large data centers, where the management of the data and services may not be fully trustworthy. This unique attribute, however, poses many new security challenges which have not been well understood. In this paper, we focus on data storage security, which has always been an important aspect of quality of service. To ensure the correctness of users' data in this architecture, we propose an effective and flexible distributed scheme with two salient features, opposing to its predecessors. By utilizing the homomorphic token with distributed verification of erasure-coded data, our scheme achieves the integration of storage correctness insurance and data error localization, i.e., the identification of misbehaving server(s). Unlike most prior works, the new scheme further supports secure and efficient dynamic operations on data blocks, including: data update, delete and append. Extensive security and performance analysis shows that the proposed scheme is highly efficient and resilient against Byzantine failure, malicious data modification attack, and even server

  12. CogWnet: A Resource Management Architecture for Cognitive Wireless Networks

    KAUST Repository

    Alqerm, Ismail; Shihada, Basem; Shin, Kang G.

    2013-01-01

    With the increasing adoption of wireless communication technologies, there is a need to improve management of existing radio resources. Cognitive radio is a promising technology to improve the utilization of wireless spectrum. Its operating

  13. Virtual Wireless Sensor Networks: Adaptive Brain-Inspired Configuration for Internet of Things Applications

    Science.gov (United States)

    Toyonaga, Shinya; Kominami, Daichi; Murata, Masayuki

    2016-01-01

    Many researchers are devoting attention to the so-called “Internet of Things” (IoT), and wireless sensor networks (WSNs) are regarded as a critical technology for realizing the communication infrastructure of the future, including the IoT. Against this background, virtualization is a crucial technique for the integration of multiple WSNs. Designing virtualized WSNs for actual environments will require further detailed studies. Within the IoT environment, physical networks can undergo dynamic change, and so, many problems exist that could prevent applications from running without interruption when using the existing approaches. In this paper, we show an overall architecture that is suitable for constructing and running virtual wireless sensor network (VWSN) services within a VWSN topology. Our approach provides users with a reliable VWSN network by assigning redundant resources according to each user’s demand and providing a recovery method to incorporate environmental changes. We tested this approach by simulation experiment, with the results showing that the VWSN network is reliable in many cases, although physical deployment of sensor nodes and the modular structure of the VWSN will be quite important to the stability of services within the VWSN topology. PMID:27548177

  14. Virtual Wireless Sensor Networks: Adaptive Brain-Inspired Configuration for Internet of Things Applications.

    Science.gov (United States)

    Toyonaga, Shinya; Kominami, Daichi; Murata, Masayuki

    2016-08-19

    Many researchers are devoting attention to the so-called "Internet of Things" (IoT), and wireless sensor networks (WSNs) are regarded as a critical technology for realizing the communication infrastructure of the future, including the IoT. Against this background, virtualization is a crucial technique for the integration of multiple WSNs. Designing virtualized WSNs for actual environments will require further detailed studies. Within the IoT environment, physical networks can undergo dynamic change, and so, many problems exist that could prevent applications from running without interruption when using the existing approaches. In this paper, we show an overall architecture that is suitable for constructing and running virtual wireless sensor network (VWSN) services within a VWSN topology. Our approach provides users with a reliable VWSN network by assigning redundant resources according to each user's demand and providing a recovery method to incorporate environmental changes. We tested this approach by simulation experiment, with the results showing that the VWSN network is reliable in many cases, although physical deployment of sensor nodes and the modular structure of the VWSN will be quite important to the stability of services within the VWSN topology.

  15. Using the PALS Architecture to Verify a Distributed Topology Control Protocol for Wireless Multi-Hop Networks in the Presence of Node Failures

    Directory of Open Access Journals (Sweden)

    José Meseguer

    2010-09-01

    Full Text Available The PALS architecture reduces distributed, real-time asynchronous system design to the design of a synchronous system under reasonable requirements. Assuming logical synchrony leads to fewer system behaviors and provides a conceptually simpler paradigm for engineering purposes. One of the current limitations of the framework is that from a set of independent "synchronous machines", one must compose the entire synchronous system by hand, which is tedious and error-prone. We use Maude's meta-level to automatically generate a synchronous composition from user-provided component machines and a description of how the machines communicate with each other. We then use the new capabilities to verify the correctness of a distributed topology control protocol for wireless networks in the presence of nodes that may fail.

  16. Overlapping coalition formation games in wireless communication networks

    CERN Document Server

    Wang, Tianyu; Saad, Walid; Han, Zhu

    2017-01-01

    This brief introduces overlapping coalition formation games (OCF games), a novel mathematical framework from cooperative game theory that can be used to model, design and analyze cooperative scenarios in future wireless communication networks. The concepts of OCF games are explained, and several algorithmic aspects are studied. In addition, several major application scenarios are discussed. These applications are drawn from a variety of fields that include radio resource allocation in dense wireless networks, cooperative spectrum sensing for cognitive radio networks, and resource management for crowd sourcing. For each application, the use of OCF games is discussed in detail in order to show how this framework can be used to solve relevant wireless networking problems. Overlapping Coalition Formation Games in Wireless Communication Networks provides researchers, students and practitioners with a concise overview of existing works in this emerging area, exploring the relevant fundamental theories, key techniqu...

  17. Towards Effective Intra-flow Network Coding in Software Defined Wireless Mesh Networks

    Directory of Open Access Journals (Sweden)

    Donghai Zhu

    2016-01-01

    Full Text Available Wireless Mesh Networks (WMNs have potential to provide convenient broadband wireless Internet access to mobile users.With the support of Software-Defined Networking (SDN paradigm that separates control plane and data plane, WMNs can be easily deployed and managed. In addition, by exploiting the broadcast nature of the wireless medium and the spatial diversity of multi-hop wireless networks, intra-flow network coding has shown a greater benefit in comparison with traditional routing paradigms in data transmission for WMNs. In this paper, we develop a novel OpenCoding protocol, which combines the SDN technique with intra-flow network coding for WMNs. Our developed protocol can simplify the deployment and management of the network and improve network performance. In OpenCoding, a controller that works on the control plane makes routing decisions for mesh routers and the hop-by-hop forwarding function is replaced by network coding functions in data plane. We analyze the overhead of OpenCoding. Through a simulation study, we show the effectiveness of the OpenCoding protocol in comparison with existing schemes. Our data shows that OpenCoding outperforms both traditional routing and intra-flow network coding schemes.

  18. Hybrid emergency radiation detection: a wireless sensor network application for consequence management of a radiological release

    Science.gov (United States)

    Kyker, Ronald D.; Berry, Nina; Stark, Doug; Nachtigal, Noel; Kershaw, Chris

    2004-08-01

    The Hybrid Emergency Radiation Detection (HERD) system is a rapidly deployable ad-hoc wireless sensor network for monitoring the radiation hazard associated with a radiation release. The system is designed for low power, small size, low cost, and rapid deployment in order to provide early notification and minimize exposure. The many design tradeoffs, decisions, and challenges in the implementation of this wireless sensor network design will be presented and compared to the commercial systems available. Our research in a scaleable modular architectural highlights the need and implementation of a system level approach that provides flexibility and adaptability for a variety of applications. This approach seeks to minimize power, provide mission specific specialization, and provide the capability to upgrade the system with the most recent technology advancements by encapsulation and modularity. The implementation of a low power, widely available Real Time Operating System (RTOS) for multitasking with an improvement in code maintenance, portability, and reuse will be presented. Finally future design enhancements technology trends affecting wireless sensor networks will be presented.

  19. Converged Wireless Networking and Optimization for Next Generation Services

    Directory of Open Access Journals (Sweden)

    J. Rodriguez

    2010-01-01

    Full Text Available The Next Generation Network (NGN vision is tending towards the convergence of internet and mobile services providing the impetus for new market opportunities in combining the appealing services of internet with the roaming capability of mobile networks. However, this convergence does not go far enough, and with the emergence of new coexistence scenarios, there is a clear need to evolve the current architecture to provide cost-effective end-to-end communication. The LOOP project, a EUREKA-CELTIC driven initiative, is one piece in the jigsaw by helping European industry to sustain a leading role in telecommunications and manufacturing of high-value products and machinery by delivering pioneering converged wireless networking solutions that can be successfully demonstrated. This paper provides an overview of the LOOP project and the key achievements that have been tunneled into first prototypes for showcasing next generation services for operators and process manufacturers.

  20. Key Management in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Ismail Mansour

    2015-09-01

    Full Text Available Wireless sensor networks are a challenging field of research when it comes to security issues. Using low cost sensor nodes with limited resources makes it difficult for cryptographic algorithms to function without impacting energy consumption and latency. In this paper, we focus on key management issues in multi-hop wireless sensor networks. These networks are easy to attack due to the open nature of the wireless medium. Intruders could try to penetrate the network, capture nodes or take control over particular nodes. In this context, it is important to revoke and renew keys that might be learned by malicious nodes. We propose several secure protocols for key revocation and key renewal based on symmetric encryption and elliptic curve cryptography. All protocols are secure, but have different security levels. Each proposed protocol is formally proven and analyzed using Scyther, an automatic verification tool for cryptographic protocols. For efficiency comparison sake, we implemented all protocols on real testbeds using TelosB motes and discussed their performances.

  1. Insecurity of Wireless Networks

    Energy Technology Data Exchange (ETDEWEB)

    Sheldon, Frederick T [ORNL; Weber, John Mark [Dynetics, Inc.; Yoo, Seong-Moo [University of Alabama, Huntsville; Pan, W. David [University of Alabama, Huntsville

    2012-01-01

    Wireless is a powerful core technology enabling our global digital infrastructure. Wi-Fi networks are susceptible to attacks on Wired Equivalency Privacy, Wi-Fi Protected Access (WPA), and WPA2. These attack signatures can be profiled into a system that defends against such attacks on the basis of their inherent characteristics. Wi-Fi is the standard protocol for wireless networks used extensively in US critical infrastructures. Since the Wired Equivalency Privacy (WEP) security protocol was broken, the Wi-Fi Protected Access (WPA) protocol has been considered the secure alternative compatible with hardware developed for WEP. However, in November 2008, researchers developed an attack on WPA, allowing forgery of Address Resolution Protocol (ARP) packets. Subsequent enhancements have enabled ARP poisoning, cryptosystem denial of service, and man-in-the-middle attacks. Open source systems and methods (OSSM) have long been used to secure networks against such attacks. This article reviews OSSMs and the results of experimental attacks on WPA. These experiments re-created current attacks in a laboratory setting, recording both wired and wireless traffic. The article discusses methods of intrusion detection and prevention in the context of cyber physical protection of critical Internet infrastructure. The basis for this research is a specialized (and undoubtedly incomplete) taxonomy of Wi-Fi attacks and their adaptations to existing countermeasures and protocol revisions. Ultimately, this article aims to provide a clearer picture of how and why wireless protection protocols and encryption must achieve a more scientific basis for detecting and preventing such attacks.

  2. On the Conditional Entropy of Wireless Networks

    DEFF Research Database (Denmark)

    Coon, Justin P.; Badiu, Mihai Alin; Gündüz, Deniz

    2018-01-01

    The characterization of topological uncertainty in wireless networks using the formalism of graph entropy has received interest in the spatial networks community. In this paper, we develop lower bounds on the entropy of a wireless network by conditioning on potential network observables. Two...... approaches are considered: 1) conditioning on subgraphs, and 2) conditioning on node positions. The first approach is shown to yield a relatively tight bound on the network entropy. The second yields a loose bound, in general, but it provides insight into the dependence between node positions (modelled using...

  3. Towards Controlling Latency in Wireless Networks

    KAUST Repository

    Bouacida, Nader

    2017-01-01

    Wireless networks are undergoing an unprecedented revolution in the last decade. With the explosion of delay-sensitive applications in the Internet (i.e., online gaming and VoIP), latency becomes a major issue for the development of wireless

  4. Convergence of wireless, wireline, and photonics next generation networks

    CERN Document Server

    Iniewski, Krzysztof

    2010-01-01

    Filled with illustrations and practical examples from industry, this book provides a brief but comprehensive introduction to the next-generation wireless networks that will soon replace more traditional wired technologies. Written by a mixture of top industrial experts and key academic professors, it is the only book available that covers both wireless networks (such as wireless local area and personal area networks) and optical networks (such as long-haul and metropolitan networks) in one volume. It gives engineers and engineering students the necessary knowledge to meet challenges of next-ge

  5. A Fuzzy Preprocessing Module for Optimizing the Access Network Selection in Wireless Networks

    Directory of Open Access Journals (Sweden)

    Faisal Kaleem

    2013-01-01

    Full Text Available A heterogeneous wireless network is characterized by the presence of different wireless access technologies that coexist in an overlay fashion. These wireless access technologies usually differ in terms of their operating parameters. On the other hand, Mobile Stations (MSs in a heterogeneous wireless network are equipped with multiple interfaces to access different types of services from these wireless access technologies. The ultimate goal of these heterogeneous wireless networks is to provide global connectivity with efficient ubiquitous computing to these MSs based on the Always Best Connected (ABC principle. This is where the need for intelligent and efficient Vertical Handoffs (VHOs between wireless technologies in a heterogeneous environment becomes apparent. This paper presents the design and implementation of a fuzzy multicriteria based Vertical Handoff Necessity Estimation (VHONE scheme that determines the proper time for VHO, while considering the continuity and quality of the currently utilized service, and the end-users' satisfaction.

  6. Wireless body sensor networks for health-monitoring applications

    International Nuclear Information System (INIS)

    Hao, Yang; Foster, Robert

    2008-01-01

    Current wireless technologies, such as wireless body area networks and wireless personal area networks, provide promising applications in medical monitoring systems to measure specified physiological data and also provide location-based information, if required. With the increasing sophistication of wearable and implantable medical devices and their integration with wireless sensors, an ever-expanding range of therapeutic and diagnostic applications is being pursued by research and commercial organizations. This paper aims to provide a comprehensive review of recent developments in wireless sensor technology for monitoring behaviour related to human physiological responses. It presents background information on the use of wireless technology and sensors to develop a wireless physiological measurement system. A generic miniature platform and other available technologies for wireless sensors have been studied in terms of hardware and software structural requirements for a low-cost, low-power, non-invasive and unobtrusive system. (topical review)

  7. Sensing across large-scale cognitive radio networks: Data processing, algorithms, and testbed for wireless tomography and moving target tracking

    Science.gov (United States)

    Bonior, Jason David

    As the use of wireless devices has become more widespread so has the potential for utilizing wireless networks for remote sensing applications. Regular wireless communication devices are not typically designed for remote sensing. Remote sensing techniques must be carefully tailored to the capabilities of these networks before they can be applied. Experimental verification of these techniques and algorithms requires robust yet flexible testbeds. In this dissertation, two experimental testbeds for the advancement of research into sensing across large-scale cognitive radio networks are presented. System architectures, implementations, capabilities, experimental verification, and performance are discussed. One testbed is designed for the collection of scattering data to be used in RF and wireless tomography research. This system is used to collect full complex scattering data using a vector network analyzer (VNA) and amplitude-only data using non-synchronous software-defined radios (SDRs). Collected data is used to experimentally validate a technique for phase reconstruction using semidefinite relaxation and demonstrate the feasibility of wireless tomography. The second testbed is a SDR network for the collection of experimental data. The development of tools for network maintenance and data collection is presented and discussed. A novel recursive weighted centroid algorithm for device-free target localization using the variance of received signal strength for wireless links is proposed. The signal variance resulting from a moving target is modeled as having contours related to Cassini ovals. This model is used to formulate recursive weights which reduce the influence of wireless links that are farther from the target location estimate. The algorithm and its implementation on this testbed are presented and experimental results discussed.

  8. On the Capacity of Hybrid Wireless Networks with Opportunistic Routing

    Directory of Open Access Journals (Sweden)

    Le Tan

    2010-01-01

    Full Text Available This paper studies the capacity of hybrid wireless networks with opportunistic routing (OR. We first extend the opportunistic routing algorithm to exploit high-speed data transmissions in infrastructure network through base stations. We then develop linear programming models to calculate the end-to-end throughput bounds from multiple source nodes to single as well as multiple destination nodes. The developed models are applied to study several hybrid wireless network examples. Through case studies, we investigate several factors that have significant impacts on the hybrid wireless network capacity under opportunistic routing, such as node transmission range, density and distribution pattern of base stations (BTs, and number of wireless channels on wireless nodes and base stations. Our numerical results demonstrate that opportunistic routing could achieve much higher throughput on both ad hoc and hybrid networks than traditional unicast routing (UR. Moreover, opportunistic routing can efficiently utilize base stations and achieve significantly higher throughput gains in hybrid wireless networks than in pure ad hoc networks especially with multiple-channel base stations.

  9. AVAILABILITY RESEARCH OF REMOTE DEVICES FOR WIRELESS NETWORKS

    Directory of Open Access Journals (Sweden)

    N. A. Bazhayev

    2016-05-01

    Full Text Available We consider the wireless network under attack, aimed at "broadcast storm" initiation, in order to determine the availability of stand-alone units and the ability to carry out their functional tasks under information exposure. We determine a set of conditions for such type of attacks on the part of potential information interloper. The functional analysis of the systems based on wireless technology is made. We examine the remote device of a self-organizing wireless network as a queuing system M/M/1/n. Model dependencies are shown for normal system performance and at information exposure on the part of potential information interloper. Analytical simulation of wireless network functioning is carried out in the normal mode and under the attack aimed at "broadcast storm" initiation. An experiment is described which provides statistical information on operation of network remote devices. We present experiment results on carrying out attack at typical system transferring data by broabcast net scanning package at different noise intensities on the part of information interloper. The proposed model can be used to determine the technical characteristics of wireless ad-hoc network, develop recommendations for node configuration, aimed at countering "broadcast storm".

  10. Performance and energy efficiency in wireless self-organized networks

    Energy Technology Data Exchange (ETDEWEB)

    Gao, C.

    2009-07-01

    Self-organized packet radio networks (ad-hoc networks) and wireless sensor networks have got massive attention recently. One of critical problems in such networks is the energy efficiency, because wireless nodes are usually powered by battery. Energy efficiency design can dramatically increase the survivability and stability of wireless ad-hoc/sensor networks. In this thesis the energy efficiency has been considered at different protocol layers for wireless ad-hoc/sensor networks. The energy consumption of wireless nodes is inspected at the physical layer and MAC layer. At the network layer, some current routing protocols are compared and special attention has been paid to reactive routing protocols. A minimum hop analysis is given and according to the analysis result, a modification of AODV routing is proposed. A variation of transmit power can be also applied to clustering algorithm, which is believed to be able to control the scalability of network. Clustering a network can also improve the energy efficiency. We offer a clustering scheme based on the link state measurement and variation of transmit power of intra-cluster and inter-cluster transmission. Simulation shows that it can achieve both targets. In association with the clustering algorithm, a global synchronization scheme is proposed to increase the efficiency of clustering algorithm. The research attention has been also paid to self-organization for multi-hop cellular networks. A 2-hop 2-slot uplink proposal to infrastructure-based cellular networks. The proposed solution can significantly increase the throughput of uplink communication and reduce the energy consumption of wireless terminals. (orig.)

  11. Voice over IP in Wireless Heterogeneous Networks

    DEFF Research Database (Denmark)

    Fathi, Hanane; Chakraborty, Shyam; Prasad, Ramjee

    with the deployment of wireless heterogeneous systems, both speech and data traffic are carrried over wireless links by the same IP-based packet-switched infrastructure. However, this combination faces some challenges due to the inherent properties of the wireless network. The requirements for good quality VoIP...... communications are difficult to achieve in a time-varying environment due to channel errors and traffic congestion and across different systems. The provision of VoIP in wireless heterogeneous networks requires a set of time-efficient control mechanisms to support a VoIP session with acceptable quality....... The focus of Voice over IP in Wierless Heterogeneous Networks is on mechanisms that affect the VoIP user satisfaction  while not explicitly involved in the media session. This relates to the extra delays introduced by the security and the signaling protocols used to set up an authorized VoIP session...

  12. Competition in the domain of wireless networks security

    Science.gov (United States)

    Bednarczyk, Mariusz

    2017-04-01

    Wireless networks are very popular and have found wide spread usage amongst various segments, also in military environment. The deployment of wireless infrastructures allow to reduce the time it takes to install and dismantle communications networks. With wireless, users are more mobile and can easily get access to the network resources all the time. However, wireless technologies like WiFi or Bluetooth have security issues that hackers have extensively exploited over the years. In the paper several serious security flaws in wireless technologies are presented. Most of them enable to get access to the internal networks and easily carry out man-in-the-middle attacks. Very often, they are used to launch massive denial of service attacks that target the physical infrastructure as well as the RF spectrum. For instance, there are well known instances of Bluetooth connection spoofing in order to steal WiFi password stored in the mobile device. To raise the security awareness and protect wireless networks against an adversary attack, an analysis of attack methods and tools over time is presented in the article. The particular attention is paid to the severity, possible targets as well as the ability to persist in the context of protective measures. Results show that an adversary can take complete control of the victims' mobile device features if the users forget to use simple safety principles.

  13. Raspberry Pi Based Intelligent Wireless Sensor Node for Localized Torrential Rain Monitoring

    Directory of Open Access Journals (Sweden)

    Zhaozhuo Xu

    2016-01-01

    Full Text Available Wireless sensor networks are proved to be effective in long-time localized torrential rain monitoring. However, the existing widely used architecture of wireless sensor networks for rain monitoring relies on network transportation and back-end calculation, which causes delay in response to heavy rain in localized areas. Our work improves the architecture by applying logistic regression and support vector machine classification to an intelligent wireless sensor node which is created by Raspberry Pi. The sensor nodes in front-end not only obtain data from sensors, but also can analyze the probabilities of upcoming heavy rain independently and give early warnings to local clients in time. When the sensor nodes send the probability to back-end server, the burdens of network transport are released. We demonstrate by simulation results that our sensor system architecture has potentiality to increase the local response to heavy rain. The monitoring capacity is also raised.

  14. Multipath Routing in Wireless Sensor Networks: Survey and Research Challenges

    Science.gov (United States)

    Radi, Marjan; Dezfouli, Behnam; Bakar, Kamalrulnizam Abu; Lee, Malrey

    2012-01-01

    A wireless sensor network is a large collection of sensor nodes with limited power supply and constrained computational capability. Due to the restricted communication range and high density of sensor nodes, packet forwarding in sensor networks is usually performed through multi-hop data transmission. Therefore, routing in wireless sensor networks has been considered an important field of research over the past decade. Nowadays, multipath routing approach is widely used in wireless sensor networks to improve network performance through efficient utilization of available network resources. Accordingly, the main aim of this survey is to present the concept of the multipath routing approach and its fundamental challenges, as well as the basic motivations for utilizing this technique in wireless sensor networks. In addition, we present a comprehensive taxonomy on the existing multipath routing protocols, which are especially designed for wireless sensor networks. We highlight the primary motivation behind the development of each protocol category and explain the operation of different protocols in detail, with emphasis on their advantages and disadvantages. Furthermore, this paper compares and summarizes the state-of-the-art multipath routing techniques from the network application point of view. Finally, we identify open issues for further research in the development of multipath routing protocols for wireless sensor networks. PMID:22368490

  15. Multipath routing in wireless sensor networks: survey and research challenges.

    Science.gov (United States)

    Radi, Marjan; Dezfouli, Behnam; Abu Bakar, Kamalrulnizam; Lee, Malrey

    2012-01-01

    A wireless sensor network is a large collection of sensor nodes with limited power supply and constrained computational capability. Due to the restricted communication range and high density of sensor nodes, packet forwarding in sensor networks is usually performed through multi-hop data transmission. Therefore, routing in wireless sensor networks has been considered an important field of research over the past decade. Nowadays, multipath routing approach is widely used in wireless sensor networks to improve network performance through efficient utilization of available network resources. Accordingly, the main aim of this survey is to present the concept of the multipath routing approach and its fundamental challenges, as well as the basic motivations for utilizing this technique in wireless sensor networks. In addition, we present a comprehensive taxonomy on the existing multipath routing protocols, which are especially designed for wireless sensor networks. We highlight the primary motivation behind the development of each protocol category and explain the operation of different protocols in detail, with emphasis on their advantages and disadvantages. Furthermore, this paper compares and summarizes the state-of-the-art multipath routing techniques from the network application point of view. Finally, we identify open issues for further research in the development of multipath routing protocols for wireless sensor networks.

  16. Reliability Analysis of Wireless Sensor Networks Using Markovian Model

    Directory of Open Access Journals (Sweden)

    Jin Zhu

    2012-01-01

    Full Text Available This paper investigates reliability analysis of wireless sensor networks whose topology is switching among possible connections which are governed by a Markovian chain. We give the quantized relations between network topology, data acquisition rate, nodes' calculation ability, and network reliability. By applying Lyapunov method, sufficient conditions of network reliability are proposed for such topology switching networks with constant or varying data acquisition rate. With the conditions satisfied, the quantity of data transported over wireless network node will not exceed node capacity such that reliability is ensured. Our theoretical work helps to provide a deeper understanding of real-world wireless sensor networks, which may find its application in the fields of network design and topology control.

  17. Comparative study of internet cloud and cloudlet over wireless mesh networks for real-time applications

    Science.gov (United States)

    Khan, Kashif A.; Wang, Qi; Luo, Chunbo; Wang, Xinheng; Grecos, Christos

    2014-05-01

    Mobile cloud computing is receiving world-wide momentum for ubiquitous on-demand cloud services for mobile users provided by Amazon, Google etc. with low capital cost. However, Internet-centric clouds introduce wide area network (WAN) delays that are often intolerable for real-time applications such as video streaming. One promising approach to addressing this challenge is to deploy decentralized mini-cloud facility known as cloudlets to enable localized cloud services. When supported by local wireless connectivity, a wireless cloudlet is expected to offer low cost and high performance cloud services for the users. In this work, we implement a realistic framework that comprises both a popular Internet cloud (Amazon Cloud) and a real-world cloudlet (based on Ubuntu Enterprise Cloud (UEC)) for mobile cloud users in a wireless mesh network. We focus on real-time video streaming over the HTTP standard and implement a typical application. We further perform a comprehensive comparative analysis and empirical evaluation of the application's performance when it is delivered over the Internet cloud and the cloudlet respectively. The study quantifies the influence of the two different cloud networking architectures on supporting real-time video streaming. We also enable movement of the users in the wireless mesh network and investigate the effect of user's mobility on mobile cloud computing over the cloudlet and Amazon cloud respectively. Our experimental results demonstrate the advantages of the cloudlet paradigm over its Internet cloud counterpart in supporting the quality of service of real-time applications.

  18. Utilising artificial intelligence in software defined wireless sensor network

    CSIR Research Space (South Africa)

    Matlou, OG

    2017-10-01

    Full Text Available Software Defined Wireless Sensor Network (SDWSN) is realised by infusing Software Defined Network (SDN) model in Wireless Sensor Network (WSN), Reason for that is to overcome the challenges of WSN. Artificial Intelligence (AI) and machine learning...

  19. Wireless sensor networks concepts, applications, experimentation and analysis

    CERN Document Server

    Fahmy, Hossam Mahmoud Ahmad

    2016-01-01

    This book focuses on the principles of wireless sensor networks (WSNs), their applications, and their analysis tools, with meticulous attention paid to definitions and terminology. This book presents the adopted technologies and their manufacturers in detail, making WSNs tangible for the reader. In introductory computer networking books, chapter sequencing follows the bottom-up or top-down architecture of the 7-layer protocol. This book addresses subsequent steps in this process, both horizontally and vertically, thus fostering a clearer and deeper understanding through chapters that elaborate on WSN concepts and issues. With such depth, this book is intended for a wide audience; it is meant to be a helper and motivator for senior undergraduates, postgraduates, researchers, and practitioners. It lays out important concepts and WSN-relate applications; uses appropriate literature to back research and practical issues; and focuses on new trends. Senior undergraduate students can use it to familiarize themselves...

  20. Energy Efficient Network Protocols for Wireless and Mobile Networks

    National Research Council Canada - National Science Library

    Sivalingam, Krishna

    2001-01-01

    ... (also called power aware) network protocols for wireless and mobile networks. Battery power limitations are a very serious concern, and it is essential to study energy efficient protocol design at different layers of the network protocol stack...

  1. Protocol design and analysis for cooperative wireless networks

    CERN Document Server

    Song, Wei; Jin, A-Long

    2017-01-01

    This book focuses on the design and analysis of protocols for cooperative wireless networks, especially at the medium access control (MAC) layer and for crosslayer design between the MAC layer and the physical layer. It highlights two main points that are often neglected in other books: energy-efficiency and spatial random distribution of wireless devices. Effective methods in stochastic geometry for the design and analysis of wireless networks are also explored. After providing a comprehensive review of existing studies in the literature, the authors point out the challenges that are worth further investigation. Then, they introduce several novel solutions for cooperative wireless network protocols that reduce energy consumption and address spatial random distribution of wireless nodes. For each solution, the book offers a clear system model and problem formulation, details of the proposed cooperative schemes, comprehensive performance analysis, and extensive numerical and simulation results that validate th...

  2. Architecture of a wireless Personal Assistant for telemedical diabetes care.

    Science.gov (United States)

    García-Sáez, Gema; Hernando, M Elena; Martínez-Sarriegui, Iñaki; Rigla, Mercedes; Torralba, Verónica; Brugués, Eulalia; de Leiva, Alberto; Gómez, Enrique J

    2009-06-01

    Advanced information technologies joined to the increasing use of continuous medical devices for monitoring and treatment, have made possible the definition of a new telemedical diabetes care scenario based on a hand-held Personal Assistant (PA). This paper describes the architecture, functionality and implementation of the PA, which communicates different medical devices in a personal wireless network. The PA is a mobile system for patients with diabetes connected to a telemedical center. The software design follows a modular approach to make the integration of medical devices or new functionalities independent from the rest of its components. Physicians can remotely control medical devices from the telemedicine server through the integration of the Common Object Request Broker Architecture (CORBA) and mobile GPRS communications. Data about PA modules' usage and patients' behavior evaluation come from a pervasive tracing system implemented into the PA. The PA architecture has been technically validated with commercially available medical devices during a clinical experiment for ambulatory monitoring and expert feedback through telemedicine. The clinical experiment has allowed defining patients' patterns of usage and preferred scenarios and it has proved the Personal Assistant's feasibility. The patients showed high acceptability and interest in the system as recorded in the usability and utility questionnaires. Future work will be devoted to the validation of the system with automatic control strategies from the telemedical center as well as with closed-loop control algorithms.

  3. Wireless networks; Traadloese nettverk

    Energy Technology Data Exchange (ETDEWEB)

    2008-07-01

    Wireless Local Area Networks - WLAN, is being installed in homes, offices, schools and city areas with an increasing speed. Computers communicate with each other through networks by using radio signals. Base stations make sure there is sufficient radio coverage in the current areas. The effects on human and if it is dangerous is discussed

  4. Energy-Harvesting Wireless Sensor Networks

    DEFF Research Database (Denmark)

    Fafoutis, Xenofon; Vuckovic, Dusan; Di Mauro, Alessio

    2012-01-01

    Energy Harvesting comprises a promising solution to one of the key problems faced by battery-powered Wireless Sensor Networks, namely the limited nature of the energy supply (finite battery capacity). By harvesting energy from the surrounding environment, the sensors can have a continuous lifetime...... Sensor Networks with energy harvesting capability....... without any needs for battery recharge or replacement. However, energy harvesting introduces a change to the fundamental principles based on which WSNs are designed and realized. In this poster we sketch some of the key research challenges as well as our ongoing work in designing and realizing Wireless...

  5. Novel Machine Learning-Based Techniques for Efficient Resource Allocation in Next Generation Wireless Networks

    KAUST Repository

    AlQuerm, Ismail A.

    2018-02-21

    There is a large demand for applications of high data rates in wireless networks. These networks are becoming more complex and challenging to manage due to the heterogeneity of users and applications specifically in sophisticated networks such as the upcoming 5G. Energy efficiency in the future 5G network is one of the essential problems that needs consideration due to the interference and heterogeneity of the network topology. Smart resource allocation, environmental adaptivity, user-awareness and energy efficiency are essential features in the future networks. It is important to support these features at different networks topologies with various applications. Cognitive radio has been found to be the paradigm that is able to satisfy the above requirements. It is a very interdisciplinary topic that incorporates flexible system architectures, machine learning, context awareness and cooperative networking. Mitola’s vision about cognitive radio intended to build context-sensitive smart radios that are able to adapt to the wireless environment conditions while maintaining quality of service support for different applications. Artificial intelligence techniques including heuristics algorithms and machine learning are the shining tools that are employed to serve the new vision of cognitive radio. In addition, these techniques show a potential to be utilized in an efficient resource allocation for the upcoming 5G networks’ structures such as heterogeneous multi-tier 5G networks and heterogeneous cloud radio access networks due to their capability to allocate resources according to real-time data analytics. In this thesis, we study cognitive radio from a system point of view focusing closely on architectures, artificial intelligence techniques that can enable intelligent radio resource allocation and efficient radio parameters reconfiguration. We propose a modular cognitive resource management architecture, which facilitates a development of flexible control for

  6. Multi-Channel Wireless Sensor Networks: Protocols, Design and Evaluation

    OpenAIRE

    Durmaz, O.

    2009-01-01

    Pervasive systems, which are described as networked embedded systems integrated with everyday environments, are considered to have the potential to change our daily lives by creating smart surroundings and by their ubiquity, just as the Internet. In the last decade, “Wireless Sensor Networks��? have appeared as one of the real-world examples of pervasive systems by combining automated sensing, embedded computing and wireless networking into tiny embedded devices. A wireless sensor network typ...

  7. Automated mode shape estimation in agent-based wireless sensor networks

    Science.gov (United States)

    Zimmerman, Andrew T.; Lynch, Jerome P.

    2010-04-01

    Recent advances in wireless sensing technology have made it possible to deploy dense networks of sensing transducers within large structural systems. Because these networks leverage the embedded computing power and agent-based abilities integral to many wireless sensing devices, it is possible to analyze sensor data autonomously and in-network. In this study, market-based techniques are used to autonomously estimate mode shapes within a network of agent-based wireless sensors. Specifically, recent work in both decentralized Frequency Domain Decomposition and market-based resource allocation is leveraged to create a mode shape estimation algorithm derived from free-market principles. This algorithm allows an agent-based wireless sensor network to autonomously shift emphasis between improving mode shape accuracy and limiting the consumption of certain scarce network resources: processing time, storage capacity, and power consumption. The developed algorithm is validated by successfully estimating mode shapes using a network of wireless sensor prototypes deployed on the mezzanine balcony of Hill Auditorium, located on the University of Michigan campus.

  8. The study and implementation of the wireless network data security model

    Science.gov (United States)

    Lin, Haifeng

    2013-03-01

    In recent years, the rapid development of Internet technology and the advent of information age, people are increasing the strong demand for the information products and the market for information technology. Particularly, the network security requirements have become more sophisticated. This paper analyzes the wireless network in the data security vulnerabilities. And a list of wireless networks in the framework is the serious defects with the related problems. It has proposed the virtual private network technology and wireless network security defense structure; and it also given the wireless networks and related network intrusion detection model for the detection strategies.

  9. On Prolonging Network Lifetime through Load-Similar Node Deployment in Wireless Sensor Networks

    Science.gov (United States)

    Li, Qiao-Qin; Gong, Haigang; Liu, Ming; Yang, Mei; Zheng, Jun

    2011-01-01

    This paper is focused on the study of the energy hole problem in the Progressive Multi-hop Rotational Clustered (PMRC)-structure, a highly scalable wireless sensor network (WSN) architecture. Based on an analysis on the traffic load distribution in PMRC-based WSNs, we propose a novel load-similar node distribution strategy combined with the Minimum Overlapping Layers (MOL) scheme to address the energy hole problem in PMRC-based WSNs. In this strategy, sensor nodes are deployed in the network area according to the load distribution. That is, more nodes shall be deployed in the range where the average load is higher, and then the loads among different areas in the sensor network tend to be balanced. Simulation results demonstrate that the load-similar node distribution strategy prolongs network lifetime and reduces the average packet latency in comparison with existing nonuniform node distribution and uniform node distribution strategies. Note that, besides the PMRC structure, the analysis model and the proposed load-similar node distribution strategy are also applicable to other multi-hop WSN structures. PMID:22163809

  10. Collaborative Algortihms for Communication in Wireless Sensor Networks

    NARCIS (Netherlands)

    Nieberg, T.; Dulman, S.O.; Havinga, Paul J.M.; van Hoesel, L.F.W.; Wu Jian, W.J.

    In this paper, we present the design of the communication in a wireless sensor network. The resource limitations of a wireless sensor network, especially in terms of energy, require an integrated, and collaborative approach for the different layers of communication. In particular, energy-efficient

  11. Collaborative Algorithms for Communication in Wireless Sensor Networks

    NARCIS (Netherlands)

    Nieberg, T.; Dulman, S.O.; Havinga, Paul J.M.; van Hoesel, L.F.W.; Wu Jian, W.J.; Basten, Twan; Geilen, Marc; de Groot, Harmke

    2003-01-01

    In this paper, we present the design of the communication in a wireless sensor network. The resource limitations of a wireless sensor network, especially in terms of energy, require an integrated, and collaborative approach for the different layers of communication. In particular, energy-efficient

  12. Time Synchronized Wireless Sensor Network for Vibration Measurement

    Science.gov (United States)

    Uchimura, Yutaka; Nasu, Tadashi; Takahashi, Motoichi

    Network based wireless sensing has become an important area of research and various new applications for remote sensing are expected to emerge. One of the promising applications is structural health monitoring of building or civil engineering structure and it often requires vibration measurement. For the vibration measurement via wireless network, time synchronization is indispensable. In this paper, we introduce a newly developed time synchronized wireless sensor network system. The system employs IEEE 802.11 standard based TSF counter and sends the measured data with the counter value. TSF based synchronization enables consistency on common clock among different wireless nodes. We consider the scale effect on the synchronization accuracy and the effect is evaluated by stochastic analysis and simulation studies. A new wireless sensing system is developed and the hardware and software specifications are shown. The experiments are conducted in a reinforced concrete building and results show good performance enough for vibration measurement purpose.

  13. Experiences with a Decade of Wireless Sensor Networks in Mountain Cryosphere Research

    Science.gov (United States)

    Beutel, Jan

    2017-04-01

    Research in geoscience depends on high-quality measurements over long periods of time in order to understand processes and to create and validate models. The promise of wireless sensor networks to monitor autonomously at unprecedented spatial and temporal scale motivated the use of this novel technology for studying mountain permafrost in the mid 2000s. Starting from a first experimental deployment to investigate the thermal properties of steep bedrock permafrost in 2006 on the Jungfraujoch, Switzerland at 3500 m asl using prototype wireless sensors the PermaSense project has evolved into a multi-site and multi-discipline initiative. We develop, deploy and operate wireless sensing systems customized for long-term autonomous operation in high-mountain environments. Around this central element, we develop concepts, methods and tools to investigate and to quantify the connection between climate, cryosphere (permafrost, glaciers, snow) and geomorphodynamics. In this presentation, we describe the concepts and system architecture used both for the wireless sensor network as well as for data management and processing. Furthermore, we will discuss the experience gained in over a decade of planning, installing and operating large deployments on field sites spread across a large part of the Swiss and French Alps and applications ranging from academic, experimental research campaigns, long-term monitoring and natural hazard warning in collaboration with government authorities and local industry partners. Reference http://www.permasense.ch Online Open Data Access http://data.permasense.ch

  14. Existing PON Infrastructure Supported Hybrid Fiber-Wireless Sensor Networks

    DEFF Research Database (Denmark)

    Yu, Xianbin; Zhao, Ying; Deng, Lei

    2012-01-01

    We propose a hybrid fiber wireless sensor network based on the existing PON infrastructure. The feasibility of remote sensing and PON convergence is experimentally proven by transmitting direct-sequence spread-spectrum wireless sensing and 2.5Gbps GPON signals.......We propose a hybrid fiber wireless sensor network based on the existing PON infrastructure. The feasibility of remote sensing and PON convergence is experimentally proven by transmitting direct-sequence spread-spectrum wireless sensing and 2.5Gbps GPON signals....

  15. The Audacity of Fiber-Wireless (FiWi) Networks

    Science.gov (United States)

    Maier, Martin; Ghazisaidi, Navid; Reisslein, Martin

    A plethora of enabling optical and wireless technologies have been emerging that can be used to build future-proof bimodal fiber-wireless (FiWi) broadband access networks. After overviewing key enabling radio-over-fiber (RoF) and radio-and-fiber (R&F) technologies and briefly surveying the state of the art of FiWi networks, we introduce an Ethernet-based access-metro FiWi network, called SuperMAN, that integrates next-generation WiFi and WiMAX networks with WDM-enhanced EPON and RPR networks. Throughout the paper we pay close attention to the technical challenges and opportunities of FiWi networks, but also elaborate on their societal benefits and potential to shift the current research focus from optical-wireless networking to the exploitation of personal and in-home computing facilities to create new unforeseen services and applications as we are about to enter the Petabyte age.

  16. Intelligent Wireless Sensor Networks for System Health Monitoring

    Science.gov (United States)

    Alena, Rick

    2011-01-01

    Wireless sensor networks (WSN) based on the IEEE 802.15.4 Personal Area Network (PAN) standard are finding increasing use in the home automation and emerging smart energy markets. The network and application layers, based on the ZigBee 2007 Standard, provide a convenient framework for component-based software that supports customer solutions from multiple vendors. WSNs provide the inherent fault tolerance required for aerospace applications. The Discovery and Systems Health Group at NASA Ames Research Center has been developing WSN technology for use aboard aircraft and spacecraft for System Health Monitoring of structures and life support systems using funding from the NASA Engineering and Safety Center and Exploration Technology Development and Demonstration Program. This technology provides key advantages for low-power, low-cost ancillary sensing systems particularly across pressure interfaces and in areas where it is difficult to run wires. Intelligence for sensor networks could be defined as the capability of forming dynamic sensor networks, allowing high-level application software to identify and address any sensor that joined the network without the use of any centralized database defining the sensors characteristics. The IEEE 1451 Standard defines methods for the management of intelligent sensor systems and the IEEE 1451.4 section defines Transducer Electronic Datasheets (TEDS), which contain key information regarding the sensor characteristics such as name, description, serial number, calibration information and user information such as location within a vehicle. By locating the TEDS information on the wireless sensor itself and enabling access to this information base from the application software, the application can identify the sensor unambiguously and interpret and present the sensor data stream without reference to any other information. The application software is able to read the status of each sensor module, responding in real-time to changes of

  17. Self-Configuration and Self-Optimization Process in Heterogeneous Wireless Networks

    Directory of Open Access Journals (Sweden)

    Eduardo Camponogara

    2010-12-01

    Full Text Available Self-organization in Wireless Mesh Networks (WMN is an emergent research area, which is becoming important due to the increasing number of nodes in a network. Consequently, the manual configuration of nodes is either impossible or highly costly. So it is desirable for the nodes to be able to configure themselves. In this paper, we propose an alternative architecture for self-organization of WMN based on Optimized Link State Routing Protocol (OLSR and the ad hoc on demand distance vector (AODV routing protocols as well as using the technology of software agents. We argue that the proposed self-optimization and self-configuration modules increase the throughput of network, reduces delay transmission and network load, decreases the traffic of HELLO messages according to network’s scalability. By simulation analysis, we conclude that the self-optimization and self-configuration mechanisms can significantly improve the performance of OLSR and AODV protocols in comparison to the baseline protocols analyzed.

  18. Self-Configuration and Self-Optimization Process in Heterogeneous Wireless Networks

    Science.gov (United States)

    Guardalben, Lucas; Villalba, Luis Javier García; Buiati, Fábio; Sobral, João Bosco Mangueira; Camponogara, Eduardo

    2011-01-01

    Self-organization in Wireless Mesh Networks (WMN) is an emergent research area, which is becoming important due to the increasing number of nodes in a network. Consequently, the manual configuration of nodes is either impossible or highly costly. So it is desirable for the nodes to be able to configure themselves. In this paper, we propose an alternative architecture for self-organization of WMN based on Optimized Link State Routing Protocol (OLSR) and the ad hoc on demand distance vector (AODV) routing protocols as well as using the technology of software agents. We argue that the proposed self-optimization and self-configuration modules increase the throughput of network, reduces delay transmission and network load, decreases the traffic of HELLO messages according to network’s scalability. By simulation analysis, we conclude that the self-optimization and self-configuration mechanisms can significantly improve the performance of OLSR and AODV protocols in comparison to the baseline protocols analyzed. PMID:22346584

  19. Information Security of PHY Layer in Wireless Networks

    Directory of Open Access Journals (Sweden)

    Weidong Fang

    2016-01-01

    Full Text Available Since the characteristics of wireless channel are open and broadcasting, wireless networks are very vulnerable to be attacked via eavesdropping, jamming, and interference. As traditional secure technologies are not suitable for PHY layer of wireless networks, physical-layer security issues become a focus of attention. In this paper, we firstly identify and summarize the threats and vulnerabilities in PHY layer of wireless networks. Then, we give a holistic overview of PHY layer secure schemes, which are divided into three categories: spatial domain-based, time domain-based, and frequency domain-based. Along the way, we analyze the pros and cons of current secure technologies in each category. In addition, we also conclude the techniques and methods used in these categories and point out the open research issues and directions in this area.

  20. Scalable Video Streaming in Wireless Mesh Networks for Education

    Science.gov (United States)

    Liu, Yan; Wang, Xinheng; Zhao, Liqiang

    2011-01-01

    In this paper, a video streaming system for education based on a wireless mesh network is proposed. A wireless mesh network is a self-organizing, self-managing and reliable intelligent network, which allows educators to deploy a network quickly. Video streaming plays an important role in this system for multimedia data transmission. This new…

  1. Routing Protocol for Mobile Ad-hoc Wireless Networks

    Directory of Open Access Journals (Sweden)

    I. M. B. Nogales

    2007-09-01

    Full Text Available Bluetooth is a cutting-edge technology used for implementing wireless ad hoc networks. In order to provide an overall scheme for mobile ad hoc networks, this paper deals with scatternet topology formation and routing algorithm to form larger ad hoc wireless Networks. Scatternet topology starts by forming a robust network, which is less susceptible to the problems posed by node mobility. Mobile topology relies on the presence of free nodes that create multiple connections with the network and on their subsequently rejoining the network. Our routing protocol is a proactive routing protocol, which is tailor made for the Bluetooth ad hoc network. The connection establishment connects nodes in a structure that simplifies packet routing and scheduling. The design allows nodes to arrive and leave arbitrarily, incrementally building the topology and healing partitions when they occur. We present simulation results that show that the algorithm presents low formation latency and also generates an efficient topology for forwarding packets along ad-hoc wireless networks.

  2. KeyWare: an open wireless distributed computing environment

    Science.gov (United States)

    Shpantzer, Isaac; Schoenfeld, Larry; Grindahl, Merv; Kelman, Vladimir

    1995-12-01

    Deployment of distributed applications in the wireless domain lack equivalent tools, methodologies, architectures, and network management that exist in LAN based applications. A wireless distributed computing environment (KeyWareTM) based on intelligent agents within a multiple client multiple server scheme was developed to resolve this problem. KeyWare renders concurrent application services to wireline and wireless client nodes encapsulated in multiple paradigms such as message delivery, database access, e-mail, and file transfer. These services and paradigms are optimized to cope with temporal and spatial radio coverage, high latency, limited throughput and transmission costs. A unified network management paradigm for both wireless and wireline facilitates seamless extensions of LAN- based management tools to include wireless nodes. A set of object oriented tools and methodologies enables direct asynchronous invocation of agent-based services supplemented by tool-sets matched to supported KeyWare paradigms. The open architecture embodiment of KeyWare enables a wide selection of client node computing platforms, operating systems, transport protocols, radio modems and infrastructures while maintaining application portability.

  3. Complex networks-based energy-efficient evolution model for wireless sensor networks

    Energy Technology Data Exchange (ETDEWEB)

    Zhu Hailin [Beijing Key Laboratory of Intelligent Telecommunications Software and Multimedia, Beijing University of Posts and Telecommunications, P.O. Box 106, Beijing 100876 (China)], E-mail: zhuhailin19@gmail.com; Luo Hong [Beijing Key Laboratory of Intelligent Telecommunications Software and Multimedia, Beijing University of Posts and Telecommunications, P.O. Box 106, Beijing 100876 (China); Peng Haipeng; Li Lixiang; Luo Qun [Information Secure Center, State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, P.O. Box 145, Beijing 100876 (China)

    2009-08-30

    Based on complex networks theory, we present two self-organized energy-efficient models for wireless sensor networks in this paper. The first model constructs the wireless sensor networks according to the connectivity and remaining energy of each sensor node, thus it can produce scale-free networks which have a performance of random error tolerance. In the second model, we not only consider the remaining energy, but also introduce the constraint of links to each node. This model can make the energy consumption of the whole network more balanced. Finally, we present the numerical experiments of the two models.

  4. Complex networks-based energy-efficient evolution model for wireless sensor networks

    International Nuclear Information System (INIS)

    Zhu Hailin; Luo Hong; Peng Haipeng; Li Lixiang; Luo Qun

    2009-01-01

    Based on complex networks theory, we present two self-organized energy-efficient models for wireless sensor networks in this paper. The first model constructs the wireless sensor networks according to the connectivity and remaining energy of each sensor node, thus it can produce scale-free networks which have a performance of random error tolerance. In the second model, we not only consider the remaining energy, but also introduce the constraint of links to each node. This model can make the energy consumption of the whole network more balanced. Finally, we present the numerical experiments of the two models.

  5. Wireless sensor network for irrigation application in cotton

    Science.gov (United States)

    A wireless sensor network was deployed in a cotton field to monitor soil water status for irrigation. The network included two systems, a Decagon system and a microcontroller-based system. The Decagon system consists of soil volumetric water-content sensors, wireless data loggers, and a central data...

  6. X-raying neighbour discovery in a wireless sensor network ...

    African Journals Online (AJOL)

    In most wireless sensor networks, the nodes are often assumed to be stationary. However, network connectivity is subject to changes arising from interference in wireless communication, changes in transmission power or loss of synchronization among neighbouring network nodes. Hence, even after a sensor node is aware ...

  7. Data fusion for target tracking and classification with wireless sensor network

    Science.gov (United States)

    Pannetier, Benjamin; Doumerc, Robin; Moras, Julien; Dezert, Jean; Canevet, Loic

    2016-10-01

    In this paper, we address the problem of multiple ground target tracking and classification with information obtained from a unattended wireless sensor network. A multiple target tracking (MTT) algorithm, taking into account road and vegetation information, is proposed based on a centralized architecture. One of the key issue is how to adapt classical MTT approach to satisfy embedded processing. Based on track statistics, the classification algorithm uses estimated location, velocity and acceleration to help to classify targets. The algorithms enables tracking human and vehicles driving both on and off road. We integrate road or trail width and vegetation cover, as constraints in target motion models to improve performance of tracking under constraint with classification fusion. Our algorithm also presents different dynamic models, to palliate the maneuvers of targets. The tracking and classification algorithms are integrated into an operational platform (the fusion node). In order to handle realistic ground target tracking scenarios, we use an autonomous smart computer deposited in the surveillance area. After the calibration step of the heterogeneous sensor network, our system is able to handle real data from a wireless ground sensor network. The performance of system is evaluated in a real exercise for intelligence operation ("hunter hunt" scenario).

  8. Wireless Sensor Network Handles Image Data

    Science.gov (United States)

    2008-01-01

    To relay data from remote locations for NASA s Earth sciences research, Goddard Space Flight Center contributed to the development of "microservers" (wireless sensor network nodes), which are now used commercially as a quick and affordable means to capture and distribute geographical information, including rich sets of aerial and street-level imagery. NASA began this work out of a necessity for real-time recovery of remote sensor data. These microservers work much like a wireless office network, relaying information between devices. The key difference, however, is that instead of linking workstations within one office, the interconnected microservers operate miles away from one another. This attribute traces back to the technology s original use: The microservers were originally designed for seismology on remote glaciers and ice streams in Alaska, Greenland, and Antarctica-acquiring, storing, and relaying data wirelessly between ground sensors. The microservers boast three key attributes. First, a researcher in the field can establish a "managed network" of microservers and rapidly see the data streams (recovered wirelessly) on a field computer. This rapid feedback permits the researcher to reconfigure the network for different purposes over the course of a field campaign. Second, through careful power management, the microservers can dwell unsupervised in the field for up to 2 years, collecting tremendous amounts of data at a research location. The third attribute is the exciting potential to deploy a microserver network that works in synchrony with robotic explorers (e.g., providing ground truth validation for satellites, supporting rovers as they traverse the local environment). Managed networks of remote microservers that relay data unsupervised for up to 2 years can drastically reduce the costs of field instrumentation and data rec

  9. Key handling in wireless sensor networks

    International Nuclear Information System (INIS)

    Li, Y; Newe, T

    2007-01-01

    With the rapid growth of Wireless Sensor Networks (WSNs), many advanced application areas have received significant attention. However, security will be an important factor for their full adoption. Wireless sensor nodes pose unique challenges and as such traditional security protocols, used in traditional networks cannot be applied directly. Some new protocols have been published recently with the goal of providing both privacy of data and authentication of sensor nodes for WSNs. Such protocols can employ private-key and/or public key cryptographic algorithms. Public key algorithms hold the promise of simplifying the network infrastructure required to provide security services such as: privacy, authentication and non-repudiation, while symmetric algorithms require less processing power on the lower power wireless node. In this paper a selection of key establishment/agreement protocols are reviewed and they are broadly divided into two categories: group key agreement protocols and pair-wise key establishment protocols. A summary of the capabilities and security related services provided by each protocol is provided

  10. Key handling in wireless sensor networks

    Energy Technology Data Exchange (ETDEWEB)

    Li, Y; Newe, T [Optical Fibre Sensors Research Centre, Department of Electronic and Computer Engineering, University of Limerick, Limerick (Ireland)

    2007-07-15

    With the rapid growth of Wireless Sensor Networks (WSNs), many advanced application areas have received significant attention. However, security will be an important factor for their full adoption. Wireless sensor nodes pose unique challenges and as such traditional security protocols, used in traditional networks cannot be applied directly. Some new protocols have been published recently with the goal of providing both privacy of data and authentication of sensor nodes for WSNs. Such protocols can employ private-key and/or public key cryptographic algorithms. Public key algorithms hold the promise of simplifying the network infrastructure required to provide security services such as: privacy, authentication and non-repudiation, while symmetric algorithms require less processing power on the lower power wireless node. In this paper a selection of key establishment/agreement protocols are reviewed and they are broadly divided into two categories: group key agreement protocols and pair-wise key establishment protocols. A summary of the capabilities and security related services provided by each protocol is provided.

  11. Wireless Sensor Networks Approach

    Science.gov (United States)

    Perotti, Jose M.

    2003-01-01

    This viewgraph presentation provides information on hardware and software configurations for a network architecture for sensors. The hardware configuration uses a central station and remote stations. The software configuration uses the 'lost station' software algorithm. The presentation profiles a couple current examples of this network architecture in use.

  12. Outage Performance Analysis of Relay Selection Schemes in Wireless Energy Harvesting Cooperative Networks over Non-Identical Rayleigh Fading Channels.

    Science.gov (United States)

    Do, Nhu Tri; Bao, Vo Nguyen Quoc; An, Beongku

    2016-02-26

    In this paper, we study relay selection in decode-and-forward wireless energy harvesting cooperative networks. In contrast to conventional cooperative networks, the relays harvest energy from the source's radio-frequency radiation and then use that energy to forward the source information. Considering power splitting receiver architecture used at relays to harvest energy, we are concerned with the performance of two popular relay selection schemes, namely, partial relay selection (PRS) scheme and optimal relay selection (ORS) scheme. In particular, we analyze the system performance in terms of outage probability (OP) over independent and non-identical (i.n.i.d.) Rayleigh fading channels. We derive the closed-form approximations for the system outage probabilities of both schemes and validate the analysis by the Monte-Carlo simulation. The numerical results provide comprehensive performance comparison between the PRS and ORS schemes and reveal the effect of wireless energy harvesting on the outage performances of both schemes. Additionally, we also show the advantages and drawbacks of the wireless energy harvesting cooperative networks and compare to the conventional cooperative networks.

  13. Autonomic Wireless Sensor Networks: A Systematic Literature Review

    Directory of Open Access Journals (Sweden)

    Jesús M. T. Portocarrero

    2014-01-01

    Full Text Available Autonomic computing (AC is a promising approach to meet basic requirements in the design of wireless sensor networks (WSNs, and its principles can be applied to efficiently manage nodes operation and optimize network resources. Middleware for WSNs supports the implementation and basic operation of such networks. In this systematic literature review (SLR we aim to provide an overview of existing WSN middleware systems that address autonomic properties. The main goal is to identify which development approaches of AC are used for designing WSN middleware system, which allow the self-management of WSN. Another goal is finding out which interactions and behavior can be automated in WSN components. We drew the following main conclusions from the SLR results: (i the selected studies address WSN concerns according to the self-* properties of AC, namely, self-configuration, self-healing, self-optimization, and self-protection; (ii the selected studies use different approaches for managing the dynamic behavior of middleware systems for WSN, such as policy-based reasoning, context-based reasoning, feedback control loops, mobile agents, model transformations, and code generation. Finally, we identified a lack of comprehensive system architecture designs that support the autonomy of sensor networking.

  14. Wireless local area network. A new technology of network

    International Nuclear Information System (INIS)

    Wu Yunjun; Zhao Zongtao

    2003-01-01

    This paper introduces Wireless Local Area Network (WLAN), including the concept, history, characters and the foreground of its development, it also narrates in detail the several key techniques used to implement IEEE802.11 WLAN, and ideas on key technology of future progress in wireless LAN field have also been presented. (authors)

  15. Wireless motion sensor network for monitoring motion in a process, wireless sensor node, reasoning node, and feedback and/or actuation node for such wireless motion sensor network

    NARCIS (Netherlands)

    Havinga, Paul J.M.; Marin Perianu, Raluca; Marin Perianu, Mihai

    2010-01-01

    Wireless motion sensor network for monitoring motion in a process comprising at least one wireless sensor node for measuring at least one physical quantity related to motion or orientation, feature extraction means for deriving a feature for the measured quantities, a wireless transmitter connected

  16. Wireless Sensor Networks for Developmental and Flight Instrumentation

    Science.gov (United States)

    Alena, Richard; Figueroa, Fernando; Becker, Jeffrey; Foster, Mark; Wang, Ray; Gamudevelli, Suman; Studor, George

    2011-01-01

    Wireless sensor networks (WSN) based on the IEEE 802.15.4 Personal Area Network and ZigBee Pro 2007 standards are finding increasing use in home automation and smart energy markets providing a framework for interoperable software. The Wireless Connections in Space Project, funded by the NASA Engineering and Safety Center, is developing technology, metrics and requirements for next-generation spacecraft avionics incorporating wireless data transport. The team from Stennis Space Center and Mobitrum Corporation, working under a NASA SBIR grant, has developed techniques for embedding plug-and-play software into ZigBee WSN prototypes implementing the IEEE 1451 Transducer Electronic Datasheet (TEDS) standard. The TEDS provides meta-information regarding sensors such as serial number, calibration curve and operational status. Incorporation of TEDS into wireless sensors leads directly to building application level software that can recognize sensors at run-time, dynamically instantiating sensors as they are added or removed. The Ames Research Center team has been experimenting with this technology building demonstration prototypes for on-board health monitoring. Innovations in technology, software and process can lead to dramatic improvements for managing sensor systems applied to Developmental and Flight Instrumentation (DFI) aboard aerospace vehicles. A brief overview of the plug-and-play ZigBee WSN technology is presented along with specific targets for application within the aerospace DFI market. The software architecture for the sensor nodes incorporating the TEDS information is described along with the functions of the Network Capable Gateway processor which bridges 802.15.4 PAN to the TCP/IP network. Client application software connects to the Gateway and is used to display TEDS information and real-time sensor data values updated every few seconds, incorporating error detection and logging to help measure performance and reliability in relevant target environments

  17. Wireless Integrated Network Sensors Next Generation

    National Research Council Canada - National Science Library

    Merrill, William

    2004-01-01

    ..., autonomous networking, and distributed operations for wireless networked sensor systems. Multiple types of sensor systems were developed and provided including capabilities for acoustic, seismic, passive infrared detection, and visual imaging...

  18. Wireless networked music performance

    CERN Document Server

    Gabrielli, Leonardo

    2016-01-01

    This book presents a comprehensive overview of the state of the art in Networked Music Performance (NMP) and a historical survey of computer music networking. It introduces current technical trends in NMP and technical issues yet to be addressed. It also lists wireless communication protocols and compares these to the requirements of NMP. Practical use cases and advancements are also discussed.

  19. Implementing 802.11 with microcontrollers wireless networking for embedded systems designers

    CERN Document Server

    Eady, Fred

    2005-01-01

    Wireless networking is poised to have a massive impact on communications, and the 802.11 standard is to wireless networking what Ethernet is to wired networking. There are already over 50 million devices using the dominant IEEE 802.11 (essentially wireless Ethernet) standard, with astronomical growth predicted over the next 10 years. New applications are emerging every day, with wireless capability being embedded in everything from electric meters to hospital patient tracking systems to security devices. This practical reference guides readers through the wireless technology forest, gi

  20. Stochastic petri nets for wireless networks

    CERN Document Server

    Lei, Lei; Zhong, Zhangdui

    2015-01-01

    This SpringerBrief presents research in the application of Stochastic Petri Nets (SPN) to the performance evaluation of wireless networks under bursty traffic. It covers typical Quality-of-Service performance metrics such as mean throughput, average delay and packet dropping probability. Along with an introduction of SPN basics, the authors introduce the key motivation and challenges of using SPN to analyze the resource sharing performance in wireless networks. The authors explain two powerful modeling techniques that treat the well-known state space explosion problem: model decomposition and

  1. Opportunistic Data Collection in Sparse Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Franceschinis Mirko

    2011-01-01

    Full Text Available Opportunistic wireless sensor networks (WSNs have recently been proposed as solutions for many remote monitoring problems. Many such problems, including environmental monitoring, involve large deployment scenarios with lower-than-average node density, as well as a long time scale and limited budgets. Traditional approaches designed for conventional situations, and thus not optimized for these scenarios, entail unnecessary complexity and larger costs. This paper discusses the issues related with the design and test of opportunistic architectures, and presents one possible solution—CHARON (Convergent Hybrid-replication Approach to Routing in Opportunistic Networks. Both algorithm-specific and comparative simulation results are presented, as well as real-world tests using a reference implementation. A comprehensive experimental setup was also used to seek a full characterization of the devised opportunistic approach including the derivation of a simple analytical model that is able to accurately predict the opportunistic message delivery performance in the used test bed.

  2. Ubiquitous Wireless Sensor Networks and future “Internet of Things""

    OpenAIRE

    Vermesan, Ovidiu

    2009-01-01

    Overview of heterogeneous networks of embedded devices that can range from RFID, to smart identifiable systems with sensing and actuating capabilitie. Presentation of wireless sensor networks protocols and Internet of Things future technology. Bridging the real, virtual and digital worlds by using wireless connectivity. Application examples in automotive, aeronautics, healthcare, building, oil and gas industries. Ubiquitous Wireless Sensor Networks and future “Internet ...

  3. An LDPC decoder architecture for wireless sensor network applications.

    Science.gov (United States)

    Biroli, Andrea Dario Giancarlo; Martina, Maurizio; Masera, Guido

    2012-01-01

    The pervasive use of wireless sensors in a growing spectrum of human activities reinforces the need for devices with low energy dissipation. In this work, coded communication between a couple of wireless sensor devices is considered as a method to reduce the dissipated energy per transmitted bit with respect to uncoded communication. Different Low Density Parity Check (LDPC) codes are considered to this purpose and post layout results are shown for a low-area low-energy decoder, which offers percentage energy savings with respect to the uncoded solution in the range of 40%-80%, depending on considered environment, distance and bit error rate.

  4. Distributed Estimation, Coding, and Scheduling in Wireless Visual Sensor Networks

    Science.gov (United States)

    Yu, Chao

    2013-01-01

    In this thesis, we consider estimation, coding, and sensor scheduling for energy efficient operation of wireless visual sensor networks (VSN), which consist of battery-powered wireless sensors with sensing (imaging), computation, and communication capabilities. The competing requirements for applications of these wireless sensor networks (WSN)…

  5. REAL TIME ANALYSIS OF WIRELESS CONTROLLER AREA NETWORK

    Directory of Open Access Journals (Sweden)

    Gerardine Immaculate Mary

    2014-09-01

    Full Text Available It is widely known that Control Area Networks (CAN are used in real-time, distributed and parallel processing which cover manufacture plants, humanoid robots, networking fields, etc., In applications where wireless conditions are encountered it is convenient to continue the exchange of CAN frames within the Wireless CAN (WCAN. The WCAN considered in this research is based on wireless token ring protocol (WTRP; a MAC protocol for wireless networks to reduce the number of retransmissions due to collision and the wired counterpart CAN attribute on message based communication. WCAN uses token frame method to provide channel access to the nodes in the system. This method allow all the nodes to share common broadcast channel by taken turns in transmitting upon receiving the token frame which is circulating within the network for specified amount of time. This method provides high throughput in bounded latency environment, consistent and predictable delays and good packet delivery ratio. The most important factor to consider when evaluating a control network is the end-to-end time delay between sensors, controllers, and actuators. The correct operation of a control system depends on the timeliness of the data coming over the network, and thus, a control network should be able to guarantee message delivery within a bounded transmission time. The proposed WCAN is modeled and simulated using QualNet, and its average end to end delay and packet delivery ratio (PDR are calculated. The parameters boundaries of WCAN are evaluated to guarantee a maximum throughput and a minimum latency time, in the case of wireless communications, precisely WCAN.

  6. COMPARATIVE ANALYSIS OF LEACH AND HEEMPCP PROTOCOLS FOR WIRELESS SENSOR NETWORKS SYSTEM

    OpenAIRE

    Richa Asstt. Pro.Misha Thakur

    2018-01-01

    In this paper author aims at describing a wireless sensor network. wireless sensor network consisting of spatially distributed autonomous devices using sensor to monitor physical or environmental conditions. Wireless sensor network can be used in wide range of applications including environmental monitoring, habitat monitoring, various military applications, smart home technologiesand agriculture. Wireless sensor networks constitute one of promising application areas of the recently developed...

  7. A New Mechanism for Network Monitoring and Shielding in Wireless LAN

    Directory of Open Access Journals (Sweden)

    Jiujun Cheng

    2014-01-01

    Full Text Available Wireless LAN (WLAN technology is developing rapidly with the help of wireless communication technology and social demand. During the development of WLAN, the security is more and more important, and wireless monitoring and shielding are of prime importance for network security. In this paper, we have explored various security issues of IEEE 802.11 based wireless network and analyzed numerous problems in implementing the wireless monitoring and shielding system. We identify the challenges which monitoring and shielding system needs to be aware of, and then provide a feasible mechanism to avoid those challenges. We implemented an actual wireless LAN monitoring and shielding system on Maemo operating system to monitor wireless network data stream efficiently and solve the security problems of mobile users. More importantly, the system analyzes wireless network protocols efficiently and flexibly, reveals rich information of the IEEE 802.11 protocol such as traffic distribution and different IP connections, and graphically displays later. Moreover, the system running results show that the system has the capability to work stably, and accurately and analyze the wireless protocols efficiently.

  8. Relaying Strategies and Protocols for Efficient Wireless Networks

    KAUST Repository

    Zafar, Ammar

    2014-10-01

    Next generation wireless networks are expected to provide high data rate and satisfy the Quality-of-Service (QoS) constraints of the users. A significant component of achieving these goals is to increase the effi ciency of wireless networks by either optimizing current architectures or exploring new technologies which achieve that. The latter includes revisiting technologies which were previously proposed, but due to a multitude of reasons were ignored at that time. One such technology is relaying which was initially proposed in the latter half of the 1960s and then was revived in the early 2000s. In this dissertation, we study relaying in conjunction with resource allocation to increase the effi ciency of wireless networks. In this regard, we differentiate between conventional relaying and relaying with buffers. Conventional relaying is traditional relaying where the relay forwards the signal it received immediately. On the other hand, in relaying with buffers or buffer-aided relaying as it is called, the relay can store received data in its buffer and forward it later on. This gives the benefit of taking advantage of good channel conditions as the relay can only transmit when the channel conditions are good. The dissertation starts with conventional relaying and considers the problem of minimizing the total consumed power while maintaining system QoS. After upper bounding the system performance, more practical algorithms which require reduced feedback overhead are explored. Buffer-aided relaying is then considered and the joint user-and-hop scheduler is introduced which exploits multi-user diversity (MUD) and 5 multi-hop diversity (MHD) gains together in dual-hop broadcast channels. Next joint user-and-hop scheduling is extended to the shared relay channel where two source-destination pairs share a single relay. The benefits of buffer-aided relaying in the bidirectional relay channel utilizing network coding are then explored. Finally, a new transmission protocol

  9. On Maximizing the Lifetime of Wireless Sensor Networks by Optimally Assigning Energy Supplies

    Science.gov (United States)

    Asorey-Cacheda, Rafael; García-Sánchez, Antonio Javier; García-Sánchez, Felipe; García-Haro, Joan; Gonzalez-Castaño, Francisco Javier

    2013-01-01

    The extension of the network lifetime of Wireless Sensor Networks (WSN) is an important issue that has not been appropriately solved yet. This paper addresses this concern and proposes some techniques to plan an arbitrary WSN. To this end, we suggest a hierarchical network architecture, similar to realistic scenarios, where nodes with renewable energy sources (denoted as primary nodes) carry out most message delivery tasks, and nodes equipped with conventional chemical batteries (denoted as secondary nodes) are those with less communication demands. The key design issue of this network architecture is the development of a new optimization framework to calculate the optimal assignment of renewable energy supplies (primary node assignment) to maximize network lifetime, obtaining the minimum number of energy supplies and their node assignment. We also conduct a second optimization step to additionally minimize the number of packet hops between the source and the sink. In this work, we present an algorithm that approaches the results of the optimization framework, but with much faster execution speed, which is a good alternative for large-scale WSN networks. Finally, the network model, the optimization process and the designed algorithm are further evaluated and validated by means of computer simulation under realistic conditions. The results obtained are discussed comparatively. PMID:23939582

  10. On Maximizing the Lifetime of Wireless Sensor Networks by Optimally Assigning Energy Supplies

    Directory of Open Access Journals (Sweden)

    Francisco Javier González-Castano

    2013-08-01

    Full Text Available The extension of the network lifetime of Wireless Sensor Networks (WSN is an important issue that has not been appropriately solved yet. This paper addresses this concern and proposes some techniques to plan an arbitrary WSN. To this end, we suggest a hierarchical network architecture, similar to realistic scenarios, where nodes with renewable energy sources (denoted as primary nodes carry out most message delivery tasks, and nodes equipped with conventional chemical batteries (denoted as secondary nodes are those with less communication demands. The key design issue of this network architecture is the development of a new optimization framework to calculate the optimal assignment of renewable energy supplies (primary node assignment to maximize network lifetime, obtaining the minimum number of energy supplies and their node assignment. We also conduct a second optimization step to additionally minimize the number of packet hops between the source and the sink. In this work, we present an algorithm that approaches the results of the optimization framework, but with much faster execution speed, which is a good alternative for large-scale WSN networks. Finally, the network model, the optimization process and the designed algorithm are further evaluated and validated by means of computer simulation under realistic conditions. The results obtained are discussed comparatively.

  11. Probabilistic Bandwidth Assignment in Wireless Sensor Networks

    OpenAIRE

    Khan , Dawood; Nefzi , Bilel; Santinelli , Luca; Song , Ye-Qiong

    2012-01-01

    International audience; With this paper we offer an insight in designing and analyzing wireless sensor networks in a versatile manner. Our framework applies probabilistic and component-based design principles for the wireless sensor network modeling and consequently analysis; while maintaining flexibility and accuracy. In particular, we address the problem of allocating and reconfiguring the available bandwidth. The framework has been successfully implemented in IEEE 802.15.4 using an Admissi...

  12. Towards a networkArchitecture

    DEFF Research Database (Denmark)

    Rüdiger, Bjarne; Tournay, Bruno

    2001-01-01

    Planche, bidrag til DAL-konkurrencen. Hvor industrien har været inspirationen for udviklingen af den moderne arkitektur, er IT det tekniske og æstetiske grundlag for den spirende NetworkArchitecture. Computeren og netværker af computerne er således mere end en metafor for NetworkArchitecture....... NetworkArchitecture består af intelligente byggekomponenter forbundet med hinanden i et netværk og i interaktion med omgivelser....

  13. Resource aware sensor nodes in wireless sensor networks

    International Nuclear Information System (INIS)

    Merrett, G V; Al-Hashimi, B M; White, N M; Harris, N R

    2005-01-01

    Wireless sensor networks are continuing to receive considerable research interest due, in part, to the range of possible applications. One of the greatest challenges facing researchers is in overcoming the limited network lifetime inherent in the small locally powered sensor nodes. In this paper, we propose IDEALS, a system to manage a wireless sensor network using a combination of information management, energy harvesting and energy monitoring, which we label resource awareness. Through this, IDEALS is able to extend the network lifetime for important messages, by controlling the degradation of the network to maximise information throughput

  14. ZigBee wireless sensor network for environmental monitoring system

    Science.gov (United States)

    Chai, Shun-qi; Ji, Lei; Wu, Hong

    2009-11-01

    ZigBee is a new close-up, low-complexity, low-power, low data rate, low-cost wireless networking technology, mainly used for short distance wireless transmission. It is based on IEEE802.15.4 standards, thousands of tiny sensors form a network through mutual coordination to communications. This paper introduces the ZigBee wireless sensor networks in environmental monitoring applications. The hardware design, including microprocessor, data acquisition, antenna and peripheral circuits of the chips, and through software design composed ZigBee mesh network that can make data acquisition and communication. This network has low power consumption, low cost, the effective area is big, and information transfers reliable merits. And have confirmed the network's communication applicability by the Serial Com Assistant, also testified the network have very good pragmatism by the NS2 emulation the network's operation.

  15. Towards Internet of Things (IOTS):Integration of Wireless Sensor Network to Cloud Services for Data Collection and Sharing

    OpenAIRE

    Piyare, Rajeev; Lee, Seong Ro

    2013-01-01

    Cloud computing provides great benefits for applications hosted on the Web that also have special computational and storage requirements. This paper proposes an extensible and flexible architecture for integrating Wireless Sensor Networks with the Cloud. We have used REST based Web services as an interoperable application layer that can be directly integrated into other application domains for remote monitoring such as e-health care services, smart homes, or even vehicular area networks (VAN)...

  16. Wireless network simulation - Your window on future network performance

    NARCIS (Netherlands)

    Fledderus, E.

    2005-01-01

    The paper describes three relevant perspectives on current wireless simulation practices. In order to obtain the key challenges for future network simulations, the characteristics of "beyond 3G" networks are described, including their impact on simulation.

  17. Collaborative Area Monitoring Using Wireless Sensor Networks with Stationary and Mobile Nodes

    Directory of Open Access Journals (Sweden)

    Theofanis P. Lambrou

    2009-01-01

    Full Text Available Monitoring a large area with stationary sensor networks requires a very large number of nodes which with current technology implies a prohibitive cost. The motivation of this work is to develop an architecture where a set of mobile sensors will collaborate with the stationary sensors in order to reliably detect and locate an event. The main idea of this collaborative architecture is that the mobile sensors should sample the areas that are least covered (monitored by the stationary sensors. Furthermore, when stationary sensors have a “suspicion” that an event may have occurred, they report it to a mobile sensor that can move closer to the suspected area and can confirm whether the event has occurred or not. An important component of the proposed architecture is that the mobile nodes autonomously decide their path based on local information (their own beliefs and measurements as well as information collected from the stationary sensors in a neighborhood around them. We believe that this approach is appropriate in the context of wireless sensor networks since it is not feasible to have an accurate global view of the state of the environment.

  18. Network Coding on Heterogeneous Multi-Core Processors for Wireless Sensor Networks

    Science.gov (United States)

    Kim, Deokho; Park, Karam; Ro, Won W.

    2011-01-01

    While network coding is well known for its efficiency and usefulness in wireless sensor networks, the excessive costs associated with decoding computation and complexity still hinder its adoption into practical use. On the other hand, high-performance microprocessors with heterogeneous multi-cores would be used as processing nodes of the wireless sensor networks in the near future. To this end, this paper introduces an efficient network coding algorithm developed for the heterogenous multi-core processors. The proposed idea is fully tested on one of the currently available heterogeneous multi-core processors referred to as the Cell Broadband Engine. PMID:22164053

  19. Wireless vehicular networks for car collision avoidance

    CERN Document Server

    2013-01-01

    Wireless Vehicular Networks for Car Collision Avoidance focuses on the development of the ITS (Intelligent Transportation Systems) in order to minimize vehicular accidents. The book presents and analyses a range of concrete accident scenarios while examining the causes of vehicular collision and proposing countermeasures based on wireless vehicular networks. The book also describes the vehicular network standards and quality of service mechanisms focusing on improving critical dissemination of safety information. With recommendations on techniques and protocols to consider when improving road safety policies in order to minimize crashes and collision risks.

  20. Recent development in wireless sensor and ad-hoc networks

    CERN Document Server

    Li, Xiaolong; Yang, Yeon-Mo

    2015-01-01

    Wireless Sensor Network (WSN) consists of numerous physically distributed autonomous devices used for sensing and monitoring the physical and/or environmental conditions. A WSN uses a gateway that provides wireless connectivity to the wired world as well as distributed networks. There are many open problems related to Ad-Hoc networks and its applications. Looking at the expansion of the cellular infrastructure, Ad-Hoc network may be acting as the basis of the 4th generation wireless technology with the new paradigm of ‘anytime, anywhere communications’. To realize this, the real challenge would be the security, authorization and management issues of the large scale WSNs. This book is an edited volume in the broad area of WSNs. The book covers various chapters like Multi-Channel Wireless Sensor Networks, its Coverage, Connectivity as well as Deployment. It covers comparison of various communication protocols and algorithms such as MANNET, ODMRP and ADMR Protocols for Ad hoc Multicasting, Location Based C...

  1. Securing DSR with mobile agents in wireless ad hoc networks

    Directory of Open Access Journals (Sweden)

    Ahmed Abosamra

    2011-03-01

    Full Text Available Ad hoc wireless network consists of a set of wireless nodes communicating with each other without a pre-defined infrastructure. They communicate by forwarding packets which can reach wireless nodes that do not exist in the range of the direct radio transmission. Designing ad hoc network routing protocols is a challenging task because of its decentralized infrastructure which makes securing ad hoc networks more and more challenging. Dynamic Source Routing (DSR protocol is a popular routing protocol designed for use in wireless ad hoc networks. Mobile agent is a promising technology used in diverse fields of network applications. In this paper, we try to implement DSR using mobile agents for securing this type of wireless network. Hybrid encryption technique (symmetric key encryption/public key encryption is used to improve performance; where symmetric keys are used to encrypt routing data to authenticate and authorize node sending data, while, public keys are used for the exchange of symmetric keys between nodes. We found that DSR may be secured using mobile agents with competitive performance.

  2. Secure Wireless Sensor Networks: Problems and Solutions

    Directory of Open Access Journals (Sweden)

    Fei Hu

    2003-08-01

    Full Text Available As sensor networks edge closer towards wide-spread deployment, security issues become a central concern. So far, the main research focus has been on making sensor networks feasible and useful, and less emphasis was placed on security. This paper analyzes security challenges in wireless sensor networks and summarizes key issues that should be solved for achieving the ad hoc security. It gives an overview of the current state of solutions on such key issues as secure routing, prevention of denial-of-service and key management service. We also present some secure methods to achieve security in wireless sensor networks. Finally we present our integrated approach to securing sensor networks.

  3. Scalable Coverage Maintenance for Dense Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Jun Lu

    2007-06-01

    Full Text Available Owing to numerous potential applications, wireless sensor networks have been attracting significant research effort recently. The critical challenge that wireless sensor networks often face is to sustain long-term operation on limited battery energy. Coverage maintenance schemes can effectively prolong network lifetime by selecting and employing a subset of sensors in the network to provide sufficient sensing coverage over a target region. We envision future wireless sensor networks composed of a vast number of miniaturized sensors in exceedingly high density. Therefore, the key issue of coverage maintenance for future sensor networks is the scalability to sensor deployment density. In this paper, we propose a novel coverage maintenance scheme, scalable coverage maintenance (SCOM, which is scalable to sensor deployment density in terms of communication overhead (i.e., number of transmitted and received beacons and computational complexity (i.e., time and space complexity. In addition, SCOM achieves high energy efficiency and load balancing over different sensors. We have validated our claims through both analysis and simulations.

  4. Collective intelligent wireless sensor networks

    NARCIS (Netherlands)

    Mihaylov, M.; Nowe, A.; Tuyls, K.P.; Nijholt, A.; Pantic, M.

    2008-01-01

    In this paper we apply the COllective INtelligence (COIN) framework ofWolpert et al. toWireless Sensor Networks (WSNs) with the aim to increase the autonomous lifetime of the network in a decentralized manner. COIN describes how selfish agents can learn to optimize their own performance, so that the

  5. Evaluation of wireless Local Area Networks

    Science.gov (United States)

    McBee, Charles L.

    1993-09-01

    This thesis is an in-depth evaluation of the current wireless Local Area Network (LAN) technologies. Wireless LAN's consist of three technologies: they are infrared light, microwave, and spread spectrum. When the first wireless LAN's were introduced, they were unfavorably labeled slow, expensive, and unreliable. The wireless LAN's of today are competitively priced, more secure, easier to install, and provide equal to or greater than the data throughput of unshielded twisted pair cable. Wireless LAN's are best suited for organizations that move office staff frequently, buildings that have historical significance, or buildings that have asbestos. Additionally, an organization may realize a cost savings of between $300 to $1,200 each time a node is moved. Current wireless LAN technologies have a positive effect on LAN standards being developed by the Defense Information System Agency (DISA). DoD as a whole is beginning to focus on wireless LAN's and mobile communications. If system managers want to remain successful, they need to stay abreast of this technology.

  6. An LDPC Decoder Architecture for Wireless Sensor Network Applications

    Science.gov (United States)

    Giancarlo Biroli, Andrea Dario; Martina, Maurizio; Masera, Guido

    2012-01-01

    The pervasive use of wireless sensors in a growing spectrum of human activities reinforces the need for devices with low energy dissipation. In this work, coded communication between a couple of wireless sensor devices is considered as a method to reduce the dissipated energy per transmitted bit with respect to uncoded communication. Different Low Density Parity Check (LDPC) codes are considered to this purpose and post layout results are shown for a low-area low-energy decoder, which offers percentage energy savings with respect to the uncoded solution in the range of 40%–80%, depending on considered environment, distance and bit error rate. PMID:22438724

  7. Dynamic Session-Key Generation for Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Chen Chin-Ling

    2008-01-01

    Full Text Available Abstract Recently, wireless sensor networks have been used extensively in different domains. For example, if the wireless sensor node of a wireless sensor network is distributed in an insecure area, a secret key must be used to protect the transmission between the sensor nodes. Most of the existing methods consist of preselecting keys from a key pool and forming a key chain. Then, the sensor nodes make use of the key chain to encrypt the data. However, while the secret key is being transmitted, it can easily be exposed during transmission. We propose a dynamic key management protocol, which can improve the security of the key juxtaposed to existing methods. Additionally, the dynamic update of the key can lower the probability of the key to being guessed correctly. In addition, with the new protocol, attacks on the wireless sensor network can be avoided.

  8. Dynamic Session-Key Generation for Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Cheng-Ta Li

    2008-09-01

    Full Text Available Recently, wireless sensor networks have been used extensively in different domains. For example, if the wireless sensor node of a wireless sensor network is distributed in an insecure area, a secret key must be used to protect the transmission between the sensor nodes. Most of the existing methods consist of preselecting m keys from a key pool and forming a key chain. Then, the sensor nodes make use of the key chain to encrypt the data. However, while the secret key is being transmitted, it can easily be exposed during transmission. We propose a dynamic key management protocol, which can improve the security of the key juxtaposed to existing methods. Additionally, the dynamic update of the key can lower the probability of the key to being guessed correctly. In addition, with the new protocol, attacks on the wireless sensor network can be avoided.

  9. Artificial intelligence based event detection in wireless sensor networks

    NARCIS (Netherlands)

    Bahrepour, M.

    2013-01-01

    Wireless sensor networks (WSNs) are composed of large number of small, inexpensive devices, called sensor nodes, which are equipped with sensing, processing, and communication capabilities. While traditional applications of wireless sensor networks focused on periodic monitoring, the focus of more

  10. Butterfly Encryption Scheme for Resource-Constrained Wireless Networks

    Directory of Open Access Journals (Sweden)

    Raghav V. Sampangi

    2015-09-01

    Full Text Available Resource-constrained wireless networks are emerging networks such as Radio Frequency Identification (RFID and Wireless Body Area Networks (WBAN that might have restrictions on the available resources and the computations that can be performed. These emerging technologies are increasing in popularity, particularly in defence, anti-counterfeiting, logistics and medical applications, and in consumer applications with growing popularity of the Internet of Things. With communication over wireless channels, it is essential to focus attention on securing data. In this paper, we present an encryption scheme called Butterfly encryption scheme. We first discuss a seed update mechanism for pseudorandom number generators (PRNG, and employ this technique to generate keys and authentication parameters for resource-constrained wireless networks. Our scheme is lightweight, as in it requires less resource when implemented and offers high security through increased unpredictability, owing to continuously changing parameters. Our work focuses on accomplishing high security through simplicity and reuse. We evaluate our encryption scheme using simulation, key similarity assessment, key sequence randomness assessment, protocol analysis and security analysis.

  11. Butterfly Encryption Scheme for Resource-Constrained Wireless Networks.

    Science.gov (United States)

    Sampangi, Raghav V; Sampalli, Srinivas

    2015-09-15

    Resource-constrained wireless networks are emerging networks such as Radio Frequency Identification (RFID) and Wireless Body Area Networks (WBAN) that might have restrictions on the available resources and the computations that can be performed. These emerging technologies are increasing in popularity, particularly in defence, anti-counterfeiting, logistics and medical applications, and in consumer applications with growing popularity of the Internet of Things. With communication over wireless channels, it is essential to focus attention on securing data. In this paper, we present an encryption scheme called Butterfly encryption scheme. We first discuss a seed update mechanism for pseudorandom number generators (PRNG), and employ this technique to generate keys and authentication parameters for resource-constrained wireless networks. Our scheme is lightweight, as in it requires less resource when implemented and offers high security through increased unpredictability, owing to continuously changing parameters. Our work focuses on accomplishing high security through simplicity and reuse. We evaluate our encryption scheme using simulation, key similarity assessment, key sequence randomness assessment, protocol analysis and security analysis.

  12. A Monitoring System for Vegetable Greenhouses based on a Wireless Sensor Network

    Science.gov (United States)

    Li, Xiu-hong; Cheng, Xiao; Yan, Ke; Gong, Peng

    2010-01-01

    A wireless sensor network-based automatic monitoring system is designed for monitoring the life conditions of greenhouse vegetatables. The complete system architecture includes a group of sensor nodes, a base station, and an internet data center. For the design of wireless sensor node, the JN5139 micro-processor is adopted as the core component and the Zigbee protocol is used for wireless communication between nodes. With an ARM7 microprocessor and embedded ZKOS operating system, a proprietary gateway node is developed to achieve data influx, screen display, system configuration and GPRS based remote data forwarding. Through a Client/Server mode the management software for remote data center achieves real-time data distribution and time-series analysis. Besides, a GSM-short-message-based interface is developed for sending real-time environmental measurements, and for alarming when a measurement is beyond some pre-defined threshold. The whole system has been tested for over one year and satisfactory results have been observed, which indicate that this system is very useful for greenhouse environment monitoring. PMID:22163391

  13. Technical Survey on Applications of Wireless Sensor Networks in Nuclear Power Plants

    International Nuclear Information System (INIS)

    Jiang, Jin; Bari, Ataul; Chen, Dongyi; Hashemian, Hash M.

    2014-01-01

    Even though there is no general consensus on using wireless technologies in nuclear power plants, potential applications of wireless sensor networks within nuclear power plants (NPPs) has been investigated. The topics of interests include potential interaction of wireless sensor networks with the sensitive protection equipment, radiation damage of the electronics on board sensor nodes, optimal placement of relay nodes that collect and forward data in the network, and possible applications, such as radiation dose and level monitoring, and equipment condition monitoring. Several wireless sensor networks have been deployed on site of NPPs on a trial basis to perform these tasks. Different aspects of deployment of such wireless sensor networks in NPPs have also been examined. Industrial standards or guidelines for deployment of WSNs in NPPs are also been considered. This paper examines the state of the art of wireless sensor networks in NPPs

  14. Technical Survey on Applications of Wireless Sensor Networks in Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Jin; Bari, Ataul [University of Western Ontario, Ontario (Canada); Chen, Dongyi [University of Electronic Science and Technology of China, Chengdu (China); Hashemian, Hash M. [AMS Technology Center, Knoxville (United States)

    2014-08-15

    Even though there is no general consensus on using wireless technologies in nuclear power plants, potential applications of wireless sensor networks within nuclear power plants (NPPs) has been investigated. The topics of interests include potential interaction of wireless sensor networks with the sensitive protection equipment, radiation damage of the electronics on board sensor nodes, optimal placement of relay nodes that collect and forward data in the network, and possible applications, such as radiation dose and level monitoring, and equipment condition monitoring. Several wireless sensor networks have been deployed on site of NPPs on a trial basis to perform these tasks. Different aspects of deployment of such wireless sensor networks in NPPs have also been examined. Industrial standards or guidelines for deployment of WSNs in NPPs are also been considered. This paper examines the state of the art of wireless sensor networks in NPPs.

  15. Emerging Needs for Pervasive Passive Wireless Sensor Networks on Aerospace Vehicles

    Science.gov (United States)

    Wilson, William C.; Juarez, Peter D.

    2014-01-01

    NASA is investigating passive wireless sensor technology to reduce instrumentation mass and volume in ground testing, air flight, and space exploration applications. Vehicle health monitoring systems (VHMS) are desired on all aerospace programs to ensure the safety of the crew and the vehicles. Pervasive passive wireless sensor networks facilitate VHMS on aerospace vehicles. Future wireless sensor networks on board aerospace vehicles will be heterogeneous and will require active and passive network systems. Since much has been published on active wireless sensor networks, this work will focus on the need for passive wireless sensor networks on aerospace vehicles. Several passive wireless technologies such as microelectromechanical systems MEMS, SAW, backscatter, and chipless RFID techniques, have all shown potential to meet the pervasive sensing needs for aerospace VHMS applications. A SAW VHMS application will be presented. In addition, application areas including ground testing, hypersonic aircraft and spacecraft will be explored along with some of the harsh environments found in aerospace applications.

  16. Towards a distributed control system for software defined wireless sensor networks

    CSIR Research Space (South Africa)

    Kobo, Hlabishi I

    2017-10-01

    Full Text Available on the network device. The coupling stifles innovation and evolution because the network often becomes rigid. Software Defined Wireless Sensor Networks (SDWSN) is also an emerging network paradigm that infuses the SDN model into Wireless Sensor Networks (WSNs...

  17. Development of a Testbed for Wireless Underground Sensor Networks

    Directory of Open Access Journals (Sweden)

    Mehmet C. Vuran

    2010-01-01

    Full Text Available Wireless Underground Sensor Networks (WUSNs constitute one of the promising application areas of the recently developed wireless sensor networking techniques. WUSN is a specialized kind of Wireless Sensor Network (WSN that mainly focuses on the use of sensors that communicate through soil. Recent models for the wireless underground communication channel are proposed but few field experiments were realized to verify the accuracy of the models. The realization of field WUSN experiments proved to be extremely complex and time-consuming in comparison with the traditional wireless environment. To the best of our knowledge, this is the first work that proposes guidelines for the development of an outdoor WUSN testbed with the goals of improving the accuracy and reducing of time for WUSN experiments. Although the work mainly aims WUSNs, many of the presented practices can also be applied to generic WSN testbeds.

  18. 2014 International Conference on Wireless Communications, Networking and Applications

    CERN Document Server

    2016-01-01

    This book is based on a series of conferences on Wireless Communications, Networking and Applications that have been held on December 27-28, 2014 in Shenzhen, China. The meetings themselves were a response to technological developments in the areas of wireless communications, networking and applications and facilitate researchers, engineers and students to share the latest research results and the advanced research methods of the field. The broad variety of disciplines involved in this research and the differences in approaching the basic problems are probably typical of a developing field of interdisciplinary research. However, some main areas of research and development in the emerging areas of wireless communication technology can now be identified. The contributions to this book are mainly selected from the papers of the conference on wireless communications, networking and applications and reflect the main areas of interest: Section 1 - Emerging Topics in Wireless and Mobile Computing and Communications...

  19. Fiber-wireless integrated mobile backhaul network based on a hybrid millimeter-wave and free-space-optics architecture with an adaptive diversity combining technique.

    Science.gov (United States)

    Zhang, Junwen; Wang, Jing; Xu, Yuming; Xu, Mu; Lu, Feng; Cheng, Lin; Yu, Jianjun; Chang, Gee-Kung

    2016-05-01

    We propose and experimentally demonstrate a novel fiber-wireless integrated mobile backhaul network based on a hybrid millimeter-wave (MMW) and free-space-optics (FSO) architecture using an adaptive combining technique. Both 60 GHz MMW and FSO links are demonstrated and fully integrated with optical fibers in a scalable and cost-effective backhaul system setup. Joint signal processing with an adaptive diversity combining technique (ADCT) is utilized at the receiver side based on a maximum ratio combining algorithm. Mobile backhaul transportation of 4-Gb/s 16 quadrature amplitude modulation frequency-division multiplexing (QAM-OFDM) data is experimentally demonstrated and tested under various weather conditions synthesized in the lab. Performance improvement in terms of reduced error vector magnitude (EVM) and enhanced link reliability are validated under fog, rain, and turbulence conditions.

  20. Efficient data communication protocols for wireless networks

    Science.gov (United States)

    Zeydan, Engin

    In this dissertation, efficient decentralized algorithms are investigated for cost minimization problems in wireless networks. For wireless sensor networks, we investigate both the reduction in the energy consumption and throughput maximization problems separately using multi-hop data aggregation for correlated data in wireless sensor networks. The proposed algorithms exploit data redundancy using a game theoretic framework. For energy minimization, routes are chosen to minimize the total energy expended by the network using best response dynamics to local data. The cost function used in routing takes into account distance, interference and in-network data aggregation. The proposed energy-efficient correlation-aware routing algorithm significantly reduces the energy consumption in the network and converges in a finite number of steps iteratively. For throughput maximization, we consider both the interference distribution across the network and correlation between forwarded data when establishing routes. Nodes along each route are chosen to minimize the interference impact in their neighborhood and to maximize the in-network data aggregation. The resulting network topology maximizes the global network throughput and the algorithm is guaranteed to converge with a finite number of steps using best response dynamics. For multiple antenna wireless ad-hoc networks, we present distributed cooperative and regret-matching based learning schemes for joint transmit beanformer and power level selection problem for nodes operating in multi-user interference environment. Total network transmit power is minimized while ensuring a constant received signal-to-interference and noise ratio at each receiver. In cooperative and regret-matching based power minimization algorithms, transmit beanformers are selected from a predefined codebook to minimize the total power. By selecting transmit beamformers judiciously and performing power adaptation, the cooperative algorithm is shown to

  1. SRAM Design for Wireless Sensor Networks Energy Efficient and Variability Resilient Techniques

    CERN Document Server

    Sharma, Vibhu; Dehaene, Wim

    2013-01-01

    This book features various, ultra low energy, variability resilient SRAM circuit design techniques for wireless sensor network applications. Conventional SRAM design targets area efficiency and high performance at the increased cost of energy consumption, making it unsuitable for computation-intensive sensor node applications.  This book, therefore, guides the reader through different techniques at the circuit level for reducing   energy consumption and increasing the variability resilience. It includes a detailed review of the most efficient circuit design techniques and trade-offs, introduces new memory architecture techniques, sense amplifier circuits and voltage optimization methods for reducing the impact of variability for the advanced technology nodes.    Discusses fundamentals of energy reduction for SRAM circuits and applies them to energy limitation challenges associated with wireless sensor  nodes; Explains impact of variability resilience in reducing the energy consumption; Describes various...

  2. Outage Performance Analysis of Relay Selection Schemes in Wireless Energy Harvesting Cooperative Networks over Non-Identical Rayleigh Fading Channels †

    Science.gov (United States)

    Do, Nhu Tri; Bao, Vo Nguyen Quoc; An, Beongku

    2016-01-01

    In this paper, we study relay selection in decode-and-forward wireless energy harvesting cooperative networks. In contrast to conventional cooperative networks, the relays harvest energy from the source’s radio-frequency radiation and then use that energy to forward the source information. Considering power splitting receiver architecture used at relays to harvest energy, we are concerned with the performance of two popular relay selection schemes, namely, partial relay selection (PRS) scheme and optimal relay selection (ORS) scheme. In particular, we analyze the system performance in terms of outage probability (OP) over independent and non-identical (i.n.i.d.) Rayleigh fading channels. We derive the closed-form approximations for the system outage probabilities of both schemes and validate the analysis by the Monte-Carlo simulation. The numerical results provide comprehensive performance comparison between the PRS and ORS schemes and reveal the effect of wireless energy harvesting on the outage performances of both schemes. Additionally, we also show the advantages and drawbacks of the wireless energy harvesting cooperative networks and compare to the conventional cooperative networks. PMID:26927119

  3. Wireless sensor network and monitoring for environment

    OpenAIRE

    Han, Liang

    2011-01-01

    In recent years, wireless sensor network technology is developing at a surprisingly high speed. More and more fields have started to use the wireless sensor network technology and find the advantages of WSN, such as military applications, environmental observing and forecasting system, medical care, smart home, structure monitoring. The world Environmental Summit in Copenhagen on 2010 has just concluded that environment has become the world’s main concern. But regrettably the summit did no...

  4. The Systems Librarian: Implementing Wireless Networks without Compromising Security

    Science.gov (United States)

    Breeding, Marshall

    2005-01-01

    Many libraries are or soon will be offering Wi-Fi, also known as wireless networks. The largest perceived barriers to providing this service are concerns about security. The prime rule when deploying Wi-Fi is segregation, having a clear separation between a public wireless network and the rest of the library?s network. A number of devices can be…

  5. Multi-objective ant algorithm for wireless sensor network positioning

    International Nuclear Information System (INIS)

    Fidanova, S.; Shindarov, M.; Marinov, P.

    2013-01-01

    It is impossible to imagine our modern life without telecommunications. Wireless networks are a part of telecommunications. Wireless sensor networks (WSN) consist of spatially distributed sensors, which communicate in wireless way. This network monitors physical or environmental conditions. The objective is the full coverage of the monitoring region and less energy consumption of the network. The most appropriate approach to solve the problem is metaheuristics. In this paper the full coverage of the area is treated as a constrain. The objectives which are optimized are a minimal number of sensors and energy (lifetime) of the network. We apply multi-objective Ant Colony Optimization to solve this important telecommunication problem. We chose MAX-MIN Ant System approach, because it is proven to converge to the global optima

  6. Connectivity model for Inter-working multi-hop wireless networks

    CSIR Research Space (South Africa)

    Salami, O

    2009-08-01

    Full Text Available pairs in inter-working multi-hop wireless networks can be evaluated based on the availability of radio links and communication routes. This paper presents an analytical study of the link and route availability in inter-working multi-hop wireless networks....

  7. Wireless networking for the dental office: current wireless standards and security protocols.

    Science.gov (United States)

    Mupparapu, Muralidhar; Arora, Sarika

    2004-11-15

    Digital radiography has gained immense popularity in dentistry today in spite of the early difficulty for the profession to embrace the technology. The transition from film to digital has been happening at a faster pace in the fields of Orthodontics, Oral Surgery, Endodontics, Periodontics, and other specialties where the radiographic images (periapical, bitewing, panoramic, cephalometric, and skull radiographs) are being acquired digitally, stored within a server locally, and eventually accessed for diagnostic purposes, along with the rest of the patient data via the patient management software (PMS). A review of the literature shows the diagnostic performance of digital radiography is at least comparable to or even better than that of conventional radiography. Similarly, other digital diagnostic tools like caries detectors, cephalometric analysis software, and digital scanners were used for many years for the diagnosis and treatment planning purposes. The introduction of wireless charged-coupled device (CCD) sensors in early 2004 (Schick Technologies, Long Island City, NY) has moved digital radiography a step further into the wireless era. As with any emerging technology, there are concerns that should be looked into before adapting to the wireless environment. Foremost is the network security involved in the installation and usage of these wireless networks. This article deals with the existing standards and choices in wireless technologies that are available for implementation within a contemporary dental office. The network security protocols that protect the patient data and boost the efficiency of modern day dental clinics are enumerated.

  8. Wireless Sensor Networks TestBed: ASNTbed

    CSIR Research Space (South Africa)

    Dludla, AG

    2013-05-01

    Full Text Available Wireless sensor networks (WSNs) have been used in different types of applications and deployed within various environments. Simulation tools are essential for studying WSNs, especially for exploring large-scale networks. However, WSN testbeds...

  9. A Power Balance Aware Wireless Charger Deployment Method for Complete Coverage in Wireless Rechargeable Sensor Networks

    Directory of Open Access Journals (Sweden)

    Tu-Liang Lin

    2016-08-01

    Full Text Available Traditional sensor nodes are usually battery powered, and the limited battery power constrains the overall lifespan of the sensors. Recently, wireless power transmission technology has been applied in wireless sensor networks (WSNs to transmit wireless power from the chargers to the sensor nodes and solve the limited battery power problem. The combination of wireless sensors and wireless chargers forms a new type of network called wireless rechargeable sensor networks (WRSNs. In this research, we focus on how to effectively deploy chargers to maximize the lifespan of a network. In WSNs, the sensor nodes near the sink consume more power than nodes far away from the sink because of frequent data forwarding. This important power unbalanced factor has not been considered, however, in previous charger deployment research. In this research, a power balance aware deployment (PBAD method is proposed to address the power unbalance in WRSNs and to design the charger deployment with maximum charging efficiency. The proposed deployment method is effectively aware of the existence of the sink node that would cause unbalanced power consumption in WRSNs. The simulation results show that the proposed PBAD algorithm performs better than other deployment methods, and fewer chargers are deployed as a result.

  10. A SAT-Based Analysis of a Calculus for Wireless Sensor Networks

    DEFF Research Database (Denmark)

    Wu, Xi; Nielson, Hanne Riis; Zhu, Huibiao

    2015-01-01

    In viewing the common unreliability problem in wireless communications, the CWQ calculus (a Calculus for Wireless sensor networks from Quality perspective) was recently proposed for modeling and reasoning about WSNs(Wireless Sensor Networks) and their applications from a quality perspective...

  11. Capacity of Heterogeneous Mobile Wireless Networks with D-Delay Transmission Strategy.

    Science.gov (United States)

    Wu, Feng; Zhu, Jiang; Xi, Zhipeng; Gao, Kai

    2016-03-25

    This paper investigates the capacity problem of heterogeneous wireless networks in mobility scenarios. A heterogeneous network model which consists of n normal nodes and m helping nodes is proposed. Moreover, we propose a D-delay transmission strategy to ensure that every packet can be delivered to its destination nodes with limited delay. Different from most existing network schemes, our network model has a novel two-tier architecture. The existence of helping nodes greatly improves the network capacity. Four types of mobile networks are studied in this paper: i.i.d. fast mobility model and slow mobility model in two-dimensional space, i.i.d. fast mobility model and slow mobility model in three-dimensional space. Using the virtual channel model, we present an intuitive analysis of the capacity of two-dimensional mobile networks and three-dimensional mobile networks, respectively. Given a delay constraint D, we derive the asymptotic expressions for the capacity of the four types of mobile networks. Furthermore, the impact of D and m to the capacity of the whole network is analyzed. Our findings provide great guidance for the future design of the next generation of networks.

  12. Resource management for multimedia services in high data rate wireless networks

    CERN Document Server

    Zhang, Ruonan; Pan, Jianping

    2017-01-01

    This brief offers a valuable resource on principles of quality-of-service (QoS) provisioning and the related link-layer resource management techniques for high data-rate wireless networks. The primary emphasis is on protocol modeling and analysis. It introduces media access control (MAC) protocols, standards of wireless local area networks (WLANs), wireless personal area networks (WPANs), and wireless body area networks (WBANs), discussing their key technologies, applications, and deployment scenarios. The main analytical approaches and models for performance analysis of the fundamental resource scheduling mechanisms, including the contention-based, reservation-based, and hybrid MAC, are presented. To help readers understand and evaluate system performance, the brief contains a range of simulation results. In addition, a thorough bibliography provides an additional tool. This brief is an essential resource for engineers, researchers, students, and users of wireless networks.

  13. Energy Aware Clustering Algorithms for Wireless Sensor Networks

    Science.gov (United States)

    Rakhshan, Noushin; Rafsanjani, Marjan Kuchaki; Liu, Chenglian

    2011-09-01

    The sensor nodes deployed in wireless sensor networks (WSNs) are extremely power constrained, so maximizing the lifetime of the entire networks is mainly considered in the design. In wireless sensor networks, hierarchical network structures have the advantage of providing scalable and energy efficient solutions. In this paper, we investigate different clustering algorithms for WSNs and also compare these clustering algorithms based on metrics such as clustering distribution, cluster's load balancing, Cluster Head's (CH) selection strategy, CH's role rotation, node mobility, clusters overlapping, intra-cluster communications, reliability, security and location awareness.

  14. A survey on the wireless sensor network technology

    International Nuclear Information System (INIS)

    Kim, Jae Hee; Jun, Hyeong Seop; Lee, Jae Cheol; Choi, Yoo Rak

    2007-12-01

    Wireless sensor technology is required in the safety inspection for safety-critical unit of nuclear power plant. This report describes wireless sensor technology related with the project named 'Development of a remote care system of NPP components based on the network and safety database'. This report includes contents of methodology and status of sensor network construction, status of zigbee sensor network, problem of security and sensor battery. Energy harvesting technology will be mentioned on the next report

  15. Emulation Platform for Cyber Analysis of Wireless Communication Network Protocols

    Energy Technology Data Exchange (ETDEWEB)

    Van Leeuwen, Brian P. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Eldridge, John M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-11-01

    Wireless networking and mobile communications is increasing around the world and in all sectors of our lives. With increasing use, the density and complexity of the systems increase with more base stations and advanced protocols to enable higher data throughputs. The security of data transported over wireless networks must also evolve with the advances in technologies enabling more capable wireless networks. However, means for analysis of the effectiveness of security approaches and implementations used on wireless networks are lacking. More specifically a capability to analyze the lower-layer protocols (i.e., Link and Physical layers) is a major challenge. An analysis approach that incorporates protocol implementations without the need for RF emissions is necessary. In this research paper several emulation tools and custom extensions that enable an analysis platform to perform cyber security analysis of lower layer wireless networks is presented. A use case of a published exploit in the 802.11 (i.e., WiFi) protocol family is provided to demonstrate the effectiveness of the described emulation platform.

  16. Emulating Wired Backhaul with Wireless Network Coding

    DEFF Research Database (Denmark)

    Thomsen, Henning; De Carvalho, Elisabeth; Popovski, Petar

    2014-01-01

    In this paper we address the need for wireless network densification. We propose a solution wherein the wired backhaul employed in heterogeneous cellular networks is replaced with wireless links, while maintaining the rate requirements of the uplink and downlink traffic of each user. The first...... of the two-way protocol. The transmit power is set high enough to enable successive decoding at the small cell base station where the downlink data to the user is first decoded and its contribution removed from the received signal followed by the uplink data from the user. The decoding of the second layer......, the uplink traffic to the user, remains identical to the one performed in a wired system. In the broadcast phase, the decoding of the downlink traffic can also be guaranteed to remain identical. Hence, our solution claims an emulation of a wired backhaul with wireless network coding with same performance. We...

  17. Wireless physical layer security

    Science.gov (United States)

    Poor, H. Vincent; Schaefer, Rafael F.

    2017-01-01

    Security in wireless networks has traditionally been considered to be an issue to be addressed separately from the physical radio transmission aspects of wireless systems. However, with the emergence of new networking architectures that are not amenable to traditional methods of secure communication such as data encryption, there has been an increase in interest in the potential of the physical properties of the radio channel itself to provide communications security. Information theory provides a natural framework for the study of this issue, and there has been considerable recent research devoted to using this framework to develop a greater understanding of the fundamental ability of the so-called physical layer to provide security in wireless networks. Moreover, this approach is also suggestive in many cases of coding techniques that can approach fundamental limits in practice and of techniques for other security tasks such as authentication. This paper provides an overview of these developments.

  18. Network Coding Opportunities for Wireless Grids Formed by Mobile Devices

    DEFF Research Database (Denmark)

    Nielsen, Karsten Fyhn; Madsen, Tatiana Kozlova; Fitzek, Frank

    2008-01-01

    Wireless grids have potential in sharing communication, computational and storage resources making these networks more powerful, more robust, and less cost intensive. However, to enjoy the benefits of cooperative resource sharing, a number of issues should be addressed and the cost of the wireless...... link should be taken into account. We focus on the question how nodes can efficiently communicate and distribute data in a wireless grid. We show the potential of a network coding approach when nodes have the possibility to combine packets thus increasing the amount of information per transmission. Our...... implementation demonstrates the feasibility of network coding for wireless grids formed by mobile devices....

  19. Routing in Wireless Multimedia Home Networks

    NARCIS (Netherlands)

    Scholten, Johan; Jansen, P.G.; Hop, Laurens

    This paper describes an adapted version of the destination sequenced distance vector routing protocol (DSDV) which is suitable to calculate routes in a wireless real-time home network. The home network is based on a IEEE 802.11b ad hoc network and uses a scheduled token to enforce real-time

  20. Monitoring Churn in Wireless Networks

    Science.gov (United States)

    Holzer, Stephan; Pignolet, Yvonne Anne; Smula, Jasmin; Wattenhofer, Roger

    Wireless networks often experience a significant amount of churn, the arrival and departure of nodes. In this paper we propose a distributed algorithm for single-hop networks that detects churn and is resilient to a worst-case adversary. The nodes of the network are notified about changes quickly, in asymptotically optimal time up to an additive logarithmic overhead. We establish a trade-off between saving energy and minimizing the delay until notification for single- and multi-channel networks.

  1. An Embedded Wireless Sensor Network with Wireless Power Transmission Capability for the Structural Health Monitoring of Reinforced Concrete Structures.

    Science.gov (United States)

    Gallucci, Luca; Menna, Costantino; Angrisani, Leopoldo; Asprone, Domenico; Moriello, Rosario Schiano Lo; Bonavolontà, Francesco; Fabbrocino, Francesco

    2017-11-07

    Maintenance strategies based on structural health monitoring can provide effective support in the optimization of scheduled repair of existing structures, thus enabling their lifetime to be extended. With specific regard to reinforced concrete (RC) structures, the state of the art seems to still be lacking an efficient and cost-effective technique capable of monitoring material properties continuously over the lifetime of a structure. Current solutions can typically only measure the required mechanical variables in an indirect, but economic, manner, or directly, but expensively. Moreover, most of the proposed solutions can only be implemented by means of manual activation, making the monitoring very inefficient and then poorly supported. This paper proposes a structural health monitoring system based on a wireless sensor network (WSN) that enables the automatic monitoring of a complete structure. The network includes wireless distributed sensors embedded in the structure itself, and follows the monitoring-based maintenance (MBM) approach, with its ABCDE paradigm, namely: accuracy, benefit, compactness, durability, and easiness of operations. The system is structured in a node level and has a network architecture that enables all the node data to converge in a central unit. Human control is completely unnecessary until the periodic evaluation of the collected data. Several tests are conducted in order to characterize the system from a metrological point of view and assess its performance and effectiveness in real RC conditions.

  2. An Embedded Wireless Sensor Network with Wireless Power Transmission Capability for the Structural Health Monitoring of Reinforced Concrete Structures

    Directory of Open Access Journals (Sweden)

    Luca Gallucci

    2017-11-01

    Full Text Available Maintenance strategies based on structural health monitoring can provide effective support in the optimization of scheduled repair of existing structures, thus enabling their lifetime to be extended. With specific regard to reinforced concrete (RC structures, the state of the art seems to still be lacking an efficient and cost-effective technique capable of monitoring material properties continuously over the lifetime of a structure. Current solutions can typically only measure the required mechanical variables in an indirect, but economic, manner, or directly, but expensively. Moreover, most of the proposed solutions can only be implemented by means of manual activation, making the monitoring very inefficient and then poorly supported. This paper proposes a structural health monitoring system based on a wireless sensor network (WSN that enables the automatic monitoring of a complete structure. The network includes wireless distributed sensors embedded in the structure itself, and follows the monitoring-based maintenance (MBM approach, with its ABCDE paradigm, namely: accuracy, benefit, compactness, durability, and easiness of operations. The system is structured in a node level and has a network architecture that enables all the node data to converge in a central unit. Human control is completely unnecessary until the periodic evaluation of the collected data. Several tests are conducted in order to characterize the system from a metrological point of view and assess its performance and effectiveness in real RC conditions.

  3. Wireless telecommunication systems

    CERN Document Server

    Terré, Michel; Vivier, Emmanuelle

    2013-01-01

    Wireless telecommunication systems generate a huge amount of interest. In the last two decades, these systems have experienced at least three major technological leaps, and it has become impossible to imagine how society was organized without them. In this book, we propose a macroscopic approach on wireless systems, and aim at answering key questions about power, data rates, multiple access, cellular engineering and access networks architectures.We present a series of solved problems, whose objective is to establish the main elements of a global link budget in several radiocommunicati

  4. A distributed multiagent system architecture for body area networks applied to healthcare monitoring.

    Science.gov (United States)

    Felisberto, Filipe; Laza, Rosalía; Fdez-Riverola, Florentino; Pereira, António

    2015-01-01

    In the last years the area of health monitoring has grown significantly, attracting the attention of both academia and commercial sectors. At the same time, the availability of new biomedical sensors and suitable network protocols has led to the appearance of a new generation of wireless sensor networks, the so-called wireless body area networks. Nowadays, these networks are routinely used for continuous monitoring of vital parameters, movement, and the surrounding environment of people, but the large volume of data generated in different locations represents a major obstacle for the appropriate design, development, and deployment of more elaborated intelligent systems. In this context, we present an open and distributed architecture based on a multiagent system for recognizing human movements, identifying human postures, and detecting harmful activities. The proposed system evolved from a single node for fall detection to a multisensor hardware solution capable of identifying unhampered falls and analyzing the users' movement. The experiments carried out contemplate two different scenarios and demonstrate the accuracy of our proposal as a real distributed movement monitoring and accident detection system. Moreover, we also characterize its performance, enabling future analyses and comparisons with similar approaches.

  5. Energy efficient wireless sensor networks by using a fuzzy-based solution

    Science.gov (United States)

    Tirrito, Salvatore; Nicolosi, Giuseppina

    2016-12-01

    Wireless Sensor Networks are characterized by a distributed architecture realized by a set of autonomous electronic devices able to sense data from the surrounding environment and to communicate among them. These devices are battery powered since they may be used even to monitor hazardous events in inaccessible areas. As a consequence, it is preferable to assure the adoption of energy management solutions in order to extend the WSN lifetime, as far as possible. Moreover, it is crucial to guarantee that the nodes receive the transmitted data correctly. It is clear that trading off power optimization and quality of service has become one the most important concerns when dealing with modern systems based on WSNs. This paper introduces a solution based on a Fuzzy Logic Controller (FLC) focusing on the minimization of energy consumption of wireless sensor nodes. This is made possible because the sleeping time of these nodes is dynamically regulated by a FLC.

  6. Human-Centric Wireless Communication Networks

    OpenAIRE

    Cavallari, Riccardo

    2016-01-01

    This thesis covers two main topics: the design and performance evaluation of Wireless Body Area Networks (WBANs), and the simulation and mathematical modeling of Delay Tolerant Networks (DTNs). Different Medium Access Control (MAC) protocols for WBANs are implemented on dedicated hardware in order to evaluate, through extensive measurement campaigns, the performance of the network in terms of packet loss rate, delay and energy consumption. Novel solutions to cope with bo...

  7. Energy-aware Wireless Multi-hop Networks

    NARCIS (Netherlands)

    Vazifehdan, J.

    2011-01-01

    Wireless networks have provided us a variety of services which facilitate communication between people beyond the physical boundaries. Mobile telephony, mobile Internet and high-deffnition video calls are examples of services supported by modern networks nowadays. Beyond this, enhancements in

  8. One Kind of Routing Algorithm Modified in Wireless Sensor Network

    Directory of Open Access Journals (Sweden)

    Wei Ni Ni

    2016-01-01

    Full Text Available The wireless sensor networks are the emerging next generation sensor networks, Routing technology is the wireless sensor network communication layer of the core technology. To build reliable paths in wireless sensor networks, we can consider two ways: providing multiple paths utilizing the redundancy to assure the communication reliability or constructing transmission reliability mechanism to assure the reliability of every hop. Braid multipath algorithm and ReInforM routing algorithm are the realizations of these two mechanisms. After the analysis of these two algorithms, this paper proposes a ReInforM routing algorithm based braid multipath routing algorithm.

  9. Using Wireless Network Coding to Replace a Wired with Wireless Backhaul

    DEFF Research Database (Denmark)

    Thomsen, Henning; De Carvalho, Elisabeth; Popovski, Petar

    2014-01-01

    of wireless emulated wire (WEW), based on two-way relaying and network coding. This setup leads to a new type of broadcast problem, with decoding conditions that are specific to the requirement for equivalence to the wired backhaul. We formulate and solve the associated optimization problems. The proposed...... approach is a convincing argument that wireless backhauling solutions should be designed and optimized for two-way communication....

  10. Routing in Wireless Multimedia Home Networks

    NARCIS (Netherlands)

    Scholten, Johan; Jansen, P.G.; Hop, Laurens

    This paper describes an adapted version of the destination sequenced distance vector routing protocol (DSDV) which is suitable to calculate routes in a wireless ¿real-time¿ home network. The home network is based on a IEEE 802.11b ad hoc network and uses a scheduled token to enforce real-time

  11. A Feedback-Based Secure Path Approach for Wireless Sensor Network Data Collection

    Science.gov (United States)

    Mao, Yuxin; Wei, Guiyi

    2010-01-01

    The unattended nature of wireless sensor networks makes them very vulnerable to malicious attacks. Therefore, how to preserve secure data collection is an important issue to wireless sensor networks. In this paper, we propose a novel approach of secure data collection for wireless sensor networks. We explore secret sharing and multipath routing to achieve secure data collection in wireless sensor network with compromised nodes. We present a novel tracing-feedback mechanism, which makes full use of the routing functionality of wireless sensor networks, to improve the quality of data collection. The major advantage of the approach is that the secure paths are constructed as a by-product of data collection. The process of secure routing causes little overhead to the sensor nodes in the network. Compared with existing works, the algorithms of the proposed approach are easy to implement and execute in resource-constrained wireless sensor networks. According to the result of a simulation experiment, the performance of the approach is better than the recent approaches with a similar purpose. PMID:22163424

  12. A feedback-based secure path approach for wireless sensor network data collection.

    Science.gov (United States)

    Mao, Yuxin; Wei, Guiyi

    2010-01-01

    The unattended nature of wireless sensor networks makes them very vulnerable to malicious attacks. Therefore, how to preserve secure data collection is an important issue to wireless sensor networks. In this paper, we propose a novel approach of secure data collection for wireless sensor networks. We explore secret sharing and multipath routing to achieve secure data collection in wireless sensor network with compromised nodes. We present a novel tracing-feedback mechanism, which makes full use of the routing functionality of wireless sensor networks, to improve the quality of data collection. The major advantage of the approach is that the secure paths are constructed as a by-product of data collection. The process of secure routing causes little overhead to the sensor nodes in the network. Compared with existing works, the algorithms of the proposed approach are easy to implement and execute in resource-constrained wireless sensor networks. According to the result of a simulation experiment, the performance of the approach is better than the recent approaches with a similar purpose.

  13. A Feedback-Based Secure Path Approach for Wireless Sensor Network Data Collection

    Directory of Open Access Journals (Sweden)

    Guiyi Wei

    2010-10-01

    Full Text Available The unattended nature of wireless sensor networks makes them very vulnerable to malicious attacks. Therefore, how to preserve secure data collection is an important issue to wireless sensor networks. In this paper, we propose a novel approach of secure data collection for wireless sensor networks. We explore secret sharing and multipath routing to achieve secure data collection in wireless sensor network with compromised nodes. We present a novel tracing-feedback mechanism, which makes full use of the routing functionality of wireless sensor networks, to improve the quality of data collection. The major advantage of the approach is that the secure paths are constructed as a by-product of data collection. The process of secure routing causes little overhead to the sensor nodes in the network. Compared with existing works, the algorithms of the proposed approach are easy to implement and execute in resource-constrained wireless sensor networks. According to the result of a simulation experiment, the performance of the approach is better than the recent approaches with a similar purpose.

  14. A guide to wireless networking by light

    Science.gov (United States)

    Haas, Harald; Chen, Cheng; O'Brien, Dominic

    2017-09-01

    The lack of wireless spectrum in the radio frequency bands has led to a rapid growth in research in wireless networking using light, known as LiFi (light fidelity). In this paper an overview of the subsystems, challenges and techniques required to achieve this is presented.

  15. An Inter-Networking Mechanism with Stepwise Synchronization for Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Masayuki Murata

    2011-08-01

    Full Text Available To realize the ambient information society, multiple wireless networks deployed in the region and devices carried by users are required to cooperate with each other. Since duty cycles and operational frequencies are different among networks, we need a mechanism to allow networks to efficiently exchange messages. For this purpose, we propose a novel inter-networking mechanism where two networks are synchronized with each other in a moderate manner, which we call stepwise synchronization. With our proposal, to bridge the gap between intrinsic operational frequencies, nodes near the border of networks adjust their operational frequencies in a stepwise fashion based on the pulse-coupled oscillator model as a fundamental theory of synchronization. Through simulation experiments, we show that the communication delay and the energy consumption of border nodes are reduced, which enables wireless sensor networks to communicate longer with each other.

  16. Experience of wireless local area network in a radiation oncology department.

    Science.gov (United States)

    Mandal, Abhijit; Asthana, Anupam Kumar; Aggarwal, Lalit Mohan

    2010-01-01

    The aim of this work is to develop a wireless local area network (LAN) between different types of users (Radiation Oncologists, Radiological Physicists, Radiation Technologists, etc) for efficient patient data management and to made easy the availability of information (chair side) to improve the quality of patient care in Radiation Oncology department. We have used mobile workstations (Laptops) and stationary workstations, all equipped with wireless-fidelity (Wi-Fi) access. Wireless standard 802.11g (as recommended by Institute of Electrical and Electronic Engineers (IEEE, Piscataway, NJ) has been used. The wireless networking was configured with the Service Set Identifier (SSID), Media Access Control (MAC) address filtering, and Wired Equivalent Privacy (WEP) network securities. We are successfully using this wireless network in sharing the indigenously developed patient information management software. The proper selection of the hardware and the software combined with a secure wireless LAN setup will lead to a more efficient and productive radiation oncology department.

  17. On Event-Triggered Adaptive Architectures for Decentralized and Distributed Control of Large-Scale Modular Systems.

    Science.gov (United States)

    Albattat, Ali; Gruenwald, Benjamin C; Yucelen, Tansel

    2016-08-16

    The last decade has witnessed an increased interest in physical systems controlled over wireless networks (networked control systems). These systems allow the computation of control signals via processors that are not attached to the physical systems, and the feedback loops are closed over wireless networks. The contribution of this paper is to design and analyze event-triggered decentralized and distributed adaptive control architectures for uncertain networked large-scale modular systems; that is, systems consist of physically-interconnected modules controlled over wireless networks. Specifically, the proposed adaptive architectures guarantee overall system stability while reducing wireless network utilization and achieving a given system performance in the presence of system uncertainties that can result from modeling and degraded modes of operation of the modules and their interconnections between each other. In addition to the theoretical findings including rigorous system stability and the boundedness analysis of the closed-loop dynamical system, as well as the characterization of the effect of user-defined event-triggering thresholds and the design parameters of the proposed adaptive architectures on the overall system performance, an illustrative numerical example is further provided to demonstrate the efficacy of the proposed decentralized and distributed control approaches.

  18. On Event-Triggered Adaptive Architectures for Decentralized and Distributed Control of Large-Scale Modular Systems

    Directory of Open Access Journals (Sweden)

    Ali Albattat

    2016-08-01

    Full Text Available The last decade has witnessed an increased interest in physical systems controlled over wireless networks (networked control systems. These systems allow the computation of control signals via processors that are not attached to the physical systems, and the feedback loops are closed over wireless networks. The contribution of this paper is to design and analyze event-triggered decentralized and distributed adaptive control architectures for uncertain networked large-scale modular systems; that is, systems consist of physically-interconnected modules controlled over wireless networks. Specifically, the proposed adaptive architectures guarantee overall system stability while reducing wireless network utilization and achieving a given system performance in the presence of system uncertainties that can result from modeling and degraded modes of operation of the modules and their interconnections between each other. In addition to the theoretical findings including rigorous system stability and the boundedness analysis of the closed-loop dynamical system, as well as the characterization of the effect of user-defined event-triggering thresholds and the design parameters of the proposed adaptive architectures on the overall system performance, an illustrative numerical example is further provided to demonstrate the efficacy of the proposed decentralized and distributed control approaches.

  19. An empirical evaluation of bufferbloat in IEEE 802.11n wireless networks

    KAUST Repository

    Showail, Ahmad; Jamshaid, Kamran; Shihada, Basem

    2014-01-01

    In this paper, we analyze the impact of large, persistently-full buffers (`bufferbloat') on various network dynamics in IEEE 802.11n wireless networks. Bufferbloat has mostly been studied in the context of wired networks. We study the impact of bufferbloat on a variety of wireless network topologies, including wireless LAN (WLAN) and multi-hop wireless networks. Our results show that a single FTP transfer between two Linux wireless hosts can saturate the buffers in the network stack, leading to RTT delays exceeding 4.5 s in multi-hop configurations. We show that well-designed Aggregate MAC Protocol Data Unit (A-MPDU) MAC-layer frame aggregation can reduce RTT delays while simultaneously increasing network throughput. However, additional measures may still be required to meet the constraints of real-time flows (such as VoIP). Our experiments show that large buffers can deteriorate the fairness in rate allocation in parking lot based multi-hop networks.

  20. An empirical evaluation of bufferbloat in IEEE 802.11n wireless networks

    KAUST Repository

    Showail, Ahmad

    2014-04-06

    In this paper, we analyze the impact of large, persistently-full buffers (`bufferbloat\\') on various network dynamics in IEEE 802.11n wireless networks. Bufferbloat has mostly been studied in the context of wired networks. We study the impact of bufferbloat on a variety of wireless network topologies, including wireless LAN (WLAN) and multi-hop wireless networks. Our results show that a single FTP transfer between two Linux wireless hosts can saturate the buffers in the network stack, leading to RTT delays exceeding 4.5 s in multi-hop configurations. We show that well-designed Aggregate MAC Protocol Data Unit (A-MPDU) MAC-layer frame aggregation can reduce RTT delays while simultaneously increasing network throughput. However, additional measures may still be required to meet the constraints of real-time flows (such as VoIP). Our experiments show that large buffers can deteriorate the fairness in rate allocation in parking lot based multi-hop networks.

  1. Structural health monitoring using wireless sensor networks

    Science.gov (United States)

    Sreevallabhan, K.; Nikhil Chand, B.; Ramasamy, Sudha

    2017-11-01

    Monitoring and analysing health of large structures like bridges, dams, buildings and heavy machinery is important for safety, economical, operational, making prior protective measures, and repair and maintenance point of view. In recent years there is growing demand for such larger structures which in turn make people focus more on safety. By using Microelectromechanical Systems (MEMS) Accelerometer we can perform Structural Health Monitoring by studying the dynamic response through measure of ambient vibrations and strong motion of such structures. By using Wireless Sensor Networks (WSN) we can embed these sensors in wireless networks which helps us to transmit data wirelessly thus we can measure the data wirelessly at any remote location. This in turn reduces heavy wiring which is a cost effective as well as time consuming process to lay those wires. In this paper we developed WSN based MEMS-accelerometer for Structural to test the results in the railway bridge near VIT University, Vellore campus.

  2. Wireless Sensor Network for Indoor Air Quality Monitoring

    Directory of Open Access Journals (Sweden)

    Jun Li

    2014-06-01

    Full Text Available Indoor air quality monitoring system consists of wireless sensor device, nRF24L01 wireless transceiver modules, C8051MCU, STM32103 remote monitoring platform, alarm device and data server. Distributed in the interior space of wireless sensors measure parameters of the local air quality, wireless transceiver module of the MCU to transmit data to the remote monitoring platform for analysis which displayed and stored field environment data or charts. The data collecting from wireless sensors to be send by wireless Access Point to the remote data server based on B/S architecture, intelligent terminals such as mobile phone, laptop, tablet PC on the Internet monitor indoor air quality in real-time. When site environment air quality index data exceeds the threshold in the monitoring device, the remote monitoring platform sends out the alarm SMS signal to inform user by GSM module. Indoor air quality monitoring system uses modular design method, has the portability and scalability has the low manufacture cost, real-time monitoring data and man-machine interaction.

  3. Optimized Charging Scheduling with Single Mobile Charger for Wireless Rechargeable Sensor Networks

    Directory of Open Access Journals (Sweden)

    Qihua Wang

    2017-11-01

    Full Text Available Due to the rapid development of wireless charging technology, the recharging issue in wireless rechargeable sensor network (WRSN has been a popular research problem in the past few years. The weakness of previous work is that charging route planning is not reasonable. In this work, a dynamic optimal scheduling scheme aiming to maximize the vacation time ratio of a single mobile changer for WRSN is proposed. In the proposed scheme, the wireless sensor network is divided into several sub-networks according to the initial topology of deployed sensor networks. After comprehensive analysis of energy states, working state and constraints for different sensor nodes in WRSN, we transform the optimized charging path problem of the whole network into the local optimization problem of the sub networks. The optimized charging path with respect to dynamic network topology in each sub-network is obtained by solving an optimization problem, and the lifetime of the deployed wireless sensor network can be prolonged. Simulation results show that the proposed scheme has good and reliable performance for a small wireless rechargeable sensor network.

  4. Simultaneity Analysis In A Wireless Sensor Network

    Directory of Open Access Journals (Sweden)

    Malović Miodrag

    2015-06-01

    Full Text Available An original wireless sensor network for vibration measurements was designed. Its primary purpose is modal analysis of vibrations of large structures. A number of experiments have been performed to evaluate the system, with special emphasis on the influence of different effects on simultaneity of data acquired from remote nodes, which is essential for modal analysis. One of the issues is that quartz crystal oscillators, which provide time reading on the devices, are optimized for use in the room temperature and exhibit significant frequency variations if operated outside the 20–30°C range. Although much research was performed to optimize algorithms of synchronization in wireless networks, the subject of temperature fluctuations was not investigated and discussed in proportion to its significance. This paper describes methods used to evaluate data simultaneity and some algorithms suitable for its improvement in small to intermediate size ad-hoc wireless sensor networks exposed to varying temperatures often present in on-site civil engineering measurements.

  5. Self-Propagating Worms in Wireless Sensor Networks

    DEFF Research Database (Denmark)

    Giannetsos, Thanassis; Dimitriou, Tassos; Prasad, Neeli R.

    2009-01-01

    Malicious code is defined as software designed to execute attacks on software systems. This work demonstrates the possibility of executing malware on wireless sensor nodes that are based on the von Neumann architecture. This is achieved by exploiting a buffer overflow vulnerability to smash the c...

  6. A Hybrid Fuzzy Multi-hop Unequal Clustering Algorithm for Dense Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Shawkat K. Guirguis

    2017-01-01

    Full Text Available Clustering is carried out to explore and solve power dissipation problem in wireless sensor network (WSN. Hierarchical network architecture, based on clustering, can reduce energy consumption, balance traffic load, improve scalability, and prolong network lifetime. However, clustering faces two main challenges: hotspot problem and searching for effective techniques to perform clustering. This paper introduces a fuzzy unequal clustering technique for heterogeneous dense WSNs to determine both final cluster heads and their radii. Proposed fuzzy system blends three effective parameters together which are: the distance to the base station, the density of the cluster, and the deviation of the noders residual energy from the average network energy. Our objectives are achieving gain for network lifetime, energy distribution, and energy consumption. To evaluate the proposed algorithm, WSN clustering based routing algorithms are analyzed, simulated, and compared with obtained results. These protocols are LEACH, SEP, HEED, EEUC, and MOFCA.

  7. Making Wireless Networks Secure for NASA Mission Critical Applications Using Virtual Private Network (VPN) Technology

    Science.gov (United States)

    Nichols, Kelvin F.; Best, Susan; Schneider, Larry

    2004-01-01

    With so many security issues involved with wireless networks, the technology has not been fully utilized in the area of mission critical applications. These applications would include the areas of telemetry, commanding, voice and video. Wireless networking would allow payload operators the mobility to take computers outside of the control room to their off ices and anywhere else in the facility that the wireless network was extended. But the risk is too great of having someone sit just inside of your wireless network coverage and intercept enough of your network traffic to steal proprietary data from a payload experiment or worse yet hack back into your system and do even greater harm by issuing harmful commands. Wired Equivalent Privacy (WEP) is improving but has a ways to go before it can be trusted to protect mission critical data. Today s hackers are becoming more aggressive and innovative, and in order to take advantage of the benefits that wireless networking offer, appropriate security measures need to be in place that will thwart hackers. The Virtual Private Network (VPN) offers a solution to the security problems that have kept wireless networks from being used for mission critical applications. VPN provides a level of encryption that will ensure that data is protected while it is being transmitted over a wireless local area network (LAN). The VPN allows a user to authenticate to the site that the user needs to access. Once this authentication has taken place the network traffic between that site and the user is encapsulated in VPN packets with the Triple Data Encryption Standard (3DES). 3DES is an encryption standard that uses a single secret key to encrypt and decrypt data. The length of the encryption key is 168 bits as opposed to its predecessor DES that has a 56-bit encryption key. Even though 3DES is the common encryption standard for today, the Advance Encryption Standard (AES), which provides even better encryption at a lower cycle cost is growing

  8. Energy- Efficient Routing Protocols For Wireless Sensor Network A Review

    Directory of Open Access Journals (Sweden)

    Pardeep Kaur

    2017-12-01

    Full Text Available There has been plenty of interest in building and deploying sensor networks. Wireless sensor network is a collection of a large number of small nodes which acts as routers also. These nodes carry very limited power source which is non-rechargeable and non-replaceable which makes energy consumption an significant issue. Energy conservation is a very important issue for prolonging the lifetime of the network. As the sensor nodes act like routers as well the determination of routing technique plays a key role in controlling the consumption of energy. This paper describes the framework of wireless sensor network and the analysis and study of various research work related to Energy Efficient Routing in Wireless Sensor Networks.

  9. Heterogeneous network architectures

    DEFF Research Database (Denmark)

    Christiansen, Henrik Lehrmann

    2006-01-01

    is flexibility. This thesis investigates such heterogeneous network architectures and how to make them flexible. A survey of algorithms for network design is presented, and it is described how using heuristics can increase the speed. A hierarchical, MPLS based network architecture is described......Future networks will be heterogeneous! Due to the sheer size of networks (e.g., the Internet) upgrades cannot be instantaneous and thus heterogeneity appears. This means that instead of trying to find the olution, networks hould be designed as being heterogeneous. One of the key equirements here...... and it is discussed that it is advantageous to heterogeneous networks and illustrated by a number of examples. Modeling and simulation is a well-known way of doing performance evaluation. An approach to event-driven simulation of communication networks is presented and mixed complexity modeling, which can simplify...

  10. Analyzing energy consumption of wireless networks. A model-based approach

    Energy Technology Data Exchange (ETDEWEB)

    Yue, Haidi

    2013-03-04

    During the last decades, wireless networking has been continuously a hot topic both in academy and in industry. Many different wireless networks have been introduced like wireless local area networks, wireless personal networks, wireless ad hoc networks, and wireless sensor networks. If these networks want to have a long term usability, the power consumed by the wireless devices in each of these networks needs to be managed efficiently. Hence, a lot of effort has been carried out for the analysis and improvement of energy efficiency, either for a specific network layer (protocol), or new cross-layer designs. In this thesis, we apply model-based approach for the analysis of energy consumption of different wireless protocols. The protocols under consideration are: one leader election protocol, one routing protocol, and two medium access control protocols. By model-based approach we mean that all these four protocols are formalized as some formal models, more precisely, as discrete-time Markov chains (DTMCs), Markov decision processes (MDPs), or stochastic timed automata (STA). For the first two models, DTMCs and MDPs, we model them in PRISM, a prominent model checker for probabilistic model checking, and apply model checking technique to analyze them. Model checking belongs to the family of formal methods. It discovers exhaustively all possible (reachable) states of the models, and checks whether these models meet a given specification. Specifications are system properties that we want to study, usually expressed by some logics, for instance, probabilistic computer tree logic (PCTL). However, while model checking relies on rigorous mathematical foundations and automatically explores the entire state space of a model, its applicability is also limited by the so-called state space explosion problem -- even systems of moderate size often yield models with an exponentially larger state space that thwart their analysis. Hence for the STA models in this thesis, since there

  11. State of the art on defenses against wormhole attacks in wireless sensor networks

    DEFF Research Database (Denmark)

    Prasad, Neeli R.; Giannetsos, T.; Dimitriou, T.

    2009-01-01

    describe the wormhole attack, a severe routing attack against sensor networks that is particularly challenging to defend against. We detail its characteristics and study its effects on the successful operation of a sensor network. We present state-of-the-art research for addressing wormhole related...... the possibility of using more sophisticated methods, like intrusion detection systems, to achieve a more complete and autonomic defense mechanism against wormhole attackers. We present our work on intrusion detection and introduce a lightweight IDS framework, called LIDeA, designed for wireless sensor networks....... LIDeA is based on a distributed architecture, in which nodes overhear their neighboring nodes and collaborate with each other in order to successfully detect an intrusion. We conclude by highlighting how such a system can be used for defending against wormhole attackers....

  12. Performance of Implementation IBR-DTN and Batman-Adv Routing Protocol in Wireless Mesh Networks

    Directory of Open Access Journals (Sweden)

    Herman Yuliandoko

    2016-03-01

    Full Text Available Wireless mesh networks is a network which has high mobility and flexibility network. In Wireless mesh networks nodes are free to move and able to automatically build a network connection with other nodes. High mobility, heterogeneous condition and intermittent network connectivity cause data packets drop during wireless communication and it becomes a problem in the wireless mesh networks. This condition can happen because wireless mesh networks use connectionless networking type such as IP protocol which it is not tolerant to delay. To solve this condition it is needed a technology to keep data packets when the network is disconnect. Delay tolerant technology is a technology that provides store and forward mechanism and it can prevent packet data dropping during communication. In our research, we proposed a test bed wireless mesh networks implementation by using proactive routing protocol and combining with delay tolerant technology. We used Batman-adv routing protocol and IBR-DTN on our research. We measured some particular performance aspect of networking such as packet loss, delay, and throughput of the network. We identified that delay tolerant could keep packet data from dropping better than current wireless mesh networks in the intermittent network condition. We also proved that IBR-DTN and Batman-adv could run together on the wireless mesh networks. In The experiment throughput test result of IBR-DTN was higher than Current TCP on the LoS (Line of Side and on environment with obstacle. Keywords: Delay Tolerant, IBR-DTN, Wireless Mesh, Batman-adv, Performance

  13. Trust framework for a secured routing in wireless sensor network

    Directory of Open Access Journals (Sweden)

    Ouassila Hoceini

    2015-11-01

    Full Text Available Traditional techniques to eliminate insider attacks developed for wired and wireless ad hoc networks are not well suited for wireless sensors networks due to their resource constraints nature. In order to protect WSNs against malicious and selfish behavior, some trust-based systems have recently been modeled. The resource efficiency and dependability of a trust system are the most fundamental requirements for any wireless sensor network (WSN. In this paper, we propose a Trust Framework for a Secured Routing in Wireless Sensor Network (TSR scheme, which works with clustered networks. This approach can effectively reduce the cost of trust evaluation and guarantee a better selection of safest paths that lead to the base station. Theoretical as well as simulation results show that our scheme requires less communication overheads and consumes less energy as compared to the current typical trust systems for WSNs. Moreover, it detects selfish and defective nodes and prevents us of insider attacks

  14. Wireless Power Transfer and Data Collection in Wireless Sensor Networks

    OpenAIRE

    Li, Kai; Ni, Wei; Duan, Lingjie; Abolhasan, Mehran; Niu, Jianwei

    2017-01-01

    In a rechargeable wireless sensor network, the data packets are generated by sensor nodes at a specific data rate, and transmitted to a base station. Moreover, the base station transfers power to the nodes by using Wireless Power Transfer (WPT) to extend their battery life. However, inadequately scheduling WPT and data collection causes some of the nodes to drain their battery and have their data buffer overflow, while the other nodes waste their harvested energy, which is more than they need...

  15. Design of a Child Localization System on RFID and Wireless Sensor Networks

    OpenAIRE

    Chen, Chao

    2010-01-01

    Radio Frequency Identification (RFID) and wireless sensor networks are wireless technologies that rapidly emerge and show great potential. Combining RFID and wireless sensor networks provides a cost-efficient way to expand the RFID system's range and to enable an RFID system in areas without a network infrastructure. These two technologies are employed to build a wireless localization system in a children's theme park. The main purpose of this child localization system is to track and locate ...

  16. Cooperative Jamming for Physical Layer Security in Wireless Sensor Networks

    DEFF Research Database (Denmark)

    Rohokale, Vandana M.; Prasad, Neeli R.; Prasad, Ramjee

    2012-01-01

    Interference is generally considered as the redundant and unwanted occurrence in wireless communication. This work proposes a novel cooperative jamming mechanism for scalable networks like Wireless Sensor Networks (WSNs) which makes use of friendly interference to confuse the eavesdropper...

  17. Radio propagation and adaptive antennas for wireless communication networks

    CERN Document Server

    Blaunstein, Nathan

    2014-01-01

    Explores novel wireless networks beyond 3G, and advanced 4G technologies, such as MIMO, via propagation phenomena and the fundamentals of adapted antenna usage.Explains how adaptive antennas can improve GoS and QoS for any wireless channel, with specific examples and applications in land, aircraft and satellite communications.Introduces new stochastic approach based on several multi-parametric models describing various terrestrial scenarios, which have been experimentally verified in different environmental conditionsNew chapters on fundamentals of wireless networks, cellular and non-cellular,

  18. Wireless sensor networks principles, design and applications

    CERN Document Server

    Yang, Shuang-Hua

    2014-01-01

    Wireless Sensor Networks presents the latest practical solutions to the design issues presented in wireless-sensor-network-based systems. Novel features of the text, distributed throughout, include workable solutions, demonstration systems and case studies of the design and application of wireless sensor networks (WSNs) based on the first-hand research and development experience of the author, and the chapters on real applications: building fire safety protection; smart home automation; and logistics resource management. Case studies and applications illustrate the practical perspectives of: ·         sensor node design; ·         embedded software design; ·         routing algorithms; ·         sink node positioning; ·         co-existence with other wireless systems; ·         data fusion; ·         security; ·         indoor location tracking; ·         integrating with radio-frequency identification; and ·         In...

  19. A wireless sensor network design and evaluation for large structural strain field monitoring

    International Nuclear Information System (INIS)

    Qiu, Zixue; Wu, Jian; Yuan, Shenfang

    2011-01-01

    Structural strain changes under external environmental or mechanical loads are the main monitoring parameters in structural health monitoring or mechanical property tests. This paper presents a wireless sensor network designed for monitoring large structural strain field variation. First of all, a precision strain sensor node is designed for multi-channel strain gauge signal conditioning and wireless monitoring. In order to establish a synchronous strain data acquisition network, the cluster-star network synchronization method is designed in detail. To verify the functionality of the designed wireless network for strain field monitoring capability, a multi-point network evaluation system is developed for an experimental aluminum plate structure for load variation monitoring. Based on the precision wireless strain nodes, the wireless data acquisition network is deployed to synchronously gather, process and transmit strain gauge signals and monitor results under concentrated loads. This paper shows the efficiency of the wireless sensor network for large structural strain field monitoring

  20. Priority image transmission in wireless sensor networks

    International Nuclear Information System (INIS)

    Nasri, M.; Helali, A.; Sghaier, H.; Maaref, H.

    2011-01-01

    The emerging technology during the last years allowed the development of new sensors equipped with wireless communication which can be organized into a cooperative autonomous network. Some application areas for wireless sensor networks (WSNs) are home automations, health care services, military domain, and environment monitoring. The required constraints are limited capacity of processing, limited storage capability, and especially these nodes are limited in energy. In addition, such networks are tiny battery powered which their lifetime is very limited. During image processing and transmission to the destination, the lifetime of sensor network is decreased quickly due to battery and processing power constraints. Therefore, digital image transmissions are a significant challenge for image sensor based Wireless Sensor Networks (WSNs). Based on a wavelet image compression, we propose a novel, robust and energy-efficient scheme, called Priority Image Transmission (PIT) in WSN by providing various priority levels during image transmissions. Different priorities in the compressed image are considered. The information for the significant wavelet coeffcients are transmitted with higher quality assurance, whereas relatively less important coefficients are transmitted with lower overhead. Simulation results show that the proposed scheme prolongs the system lifetime and achieves higher energy efficiency in WSN with an acceptable compromise on the image quality.

  1. Virtualized cognitive network architecture for 5G cellular networks

    KAUST Repository

    Elsawy, Hesham

    2015-07-17

    Cellular networks have preserved an application agnostic and base station (BS) centric architecture1 for decades. Network functionalities (e.g. user association) are decided and performed regardless of the underlying application (e.g. automation, tactile Internet, online gaming, multimedia). Such an ossified architecture imposes several hurdles against achieving the ambitious metrics of next generation cellular systems. This article first highlights the features and drawbacks of such architectural ossification. Then the article proposes a virtualized and cognitive network architecture, wherein network functionalities are implemented via software instances in the cloud, and the underlying architecture can adapt to the application of interest as well as to changes in channels and traffic conditions. The adaptation is done in terms of the network topology by manipulating connectivities and steering traffic via different paths, so as to attain the applications\\' requirements and network design objectives. The article presents cognitive strategies to implement some of the classical network functionalities, along with their related implementation challenges. The article further presents a case study illustrating the performance improvement of the proposed architecture as compared to conventional cellular networks, both in terms of outage probability and handover rate.

  2. 7th China Conference on Wireless Sensor Networks

    CERN Document Server

    Cui, Li; Guo, Zhongwen

    2014-01-01

    Advanced Technologies in Ad Hoc and Sensor Networks collects selected papers from the 7th China Conference on Wireless Sensor Networks (CWSN2013) held in Qingdao, October 17-19, 2013. The book features state-of-the-art studies on Sensor Networks in China with the theme of “Advances in wireless sensor networks of China”. The selected works can help promote development of sensor network technology towards interconnectivity, resource sharing, flexibility and high efficiency. Researchers and engineers in the field of sensor networks can benefit from the book. Xue Wang is a professor at Tsinghua University; Li Cui is a professor at Institute of Computing Technology, Chinese Academy of Sciences; Zhongwen Guo is a professor at Ocean University of China.

  3. Distributed wireless quantum communication networks with partially entangled pairs

    International Nuclear Information System (INIS)

    Yu Xu-Tao; Zhang Zai-Chen; Xu Jin

    2014-01-01

    Wireless quantum communication networks transfer quantum state by teleportation. Existing research focuses on maximal entangled pairs. In this paper, we analyse the distributed wireless quantum communication networks with partially entangled pairs. A quantum routing scheme with multi-hop teleportation is proposed. With the proposed scheme, is not necessary for the quantum path to be consistent with the classical path. The quantum path and its associated classical path are established in a distributed way. Direct multi-hop teleportation is conducted on the selected path to transfer a quantum state from the source to the destination. Based on the feature of multi-hop teleportation using partially entangled pairs, if the node number of the quantum path is even, the destination node will add another teleportation at itself. We simulated the performance of distributed wireless quantum communication networks with a partially entangled state. The probability of transferring the quantum state successfully is statistically analyzed. Our work shows that multi-hop teleportation on distributed wireless quantum networks with partially entangled pairs is feasible. (general)

  4. Wireless optical network for a home network

    Science.gov (United States)

    Bouchet, Olivier; Porcon, Pascal; Walewski, Joachim W.; Nerreter, Stefan; Langer, Klaus-Dieter; Fernández, Luz; Vucic, Jelena; Kamalakis, Thomas; Ntogari, Georgia; Neokosmidis, Ioannis; Gueutier, Eric

    2010-08-01

    During the European collaborative project OMEGA, two optical-wireless prototypes have been developed. The first prototype operates in the near-infrared spectral region and features Giga Ethernet connectivity, a simple transceiver architecture due to the use of on-off keying, a multi-sector transceiver, and an ultra-fast switch for sector-to-sector hand over. This full-duplex system, composed by one base station and one module, transmits data on three meters. The second prototype is a visible-light-communications system based on DMT signal processing and an adapted MAC sublayer. Data rates around to 100 Mb/s at the physical layer are achieved. This broadcast system, composed also by one base station and one module, transmits data up to two meters. In this paper we present the adapted optical wireless media-access-control sublayer protocol for visible-light communications. This protocol accommodates link adaptation from 128 Mb/s to 1024 Mb/s with multi-sector coverage, and half-duplex or full-duplex transmission.

  5. Ninth International Conference on Wireless Communication and Sensor Networks

    CERN Document Server

    Tiwari, Murlidhar; Arora, Anish

    2014-01-01

    Wireless communication and sensor networks would form the backbone to create pervasive and ubiquitous environments that would have profound influence on the society and thus are important to the society. The wireless communication technologies and wireless sensor networks would encompass a wide range of domains such as HW devices such as motes, sensors and associated instrumentation, actuators, transmitters, receivers, antennas, etc., sensor network aspects such as topologies, routing algorithms, integration of heterogeneous network elements and topologies, designing RF devices and systems for energy efficiency and reliability etc. These sensor networks would provide opportunity to continuously and in a distributed manner monitor the environment and generate the necessary warnings and actions. However most of the developments have been demonstrated only in controlled and laboratory environments. So we are yet to see those powerful, ubiquitous applications for the benefit of the society. The conference and con...

  6. Secure Geographic Routing in Ad Hoc and Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Zahariadis Theodore

    2010-01-01

    Full Text Available Security in sensor networks is one of the most relevant research topics in resource constrained wireless devices and networks. Several attacks can be suffered in ad hoc and wireless sensor networks (WSN, which are highly susceptible to attacks, due to the limited resources of the nodes. In this paper, we propose innovative and lightweight localization techniques that allow for intrusion identification and isolation schemes and provide accurate location information. This information is used by our routing protocol which additionally incorporates a distributed trust model to prevent several routing attacks to the network. We finally evaluate our algorithms for accurate localization and for secure routing which have been implemented and tested in real ad hoc and wireless sensor networks.

  7. Wireless sensor network: an aimless gadget or a necessary tool for natural hazards warning systems

    Science.gov (United States)

    Hloupis, George; Stavrakas, Ilias; Triantis, Dimos

    2010-05-01

    The purpose of the current study is to review the current technical and scientific state of wireless sensor networks (WSNs) with application on natural hazards. WSN have received great attention from the research community in the last few years, mainly due to the theoretical and practical efforts from challenges that led to mature solutions and adoption of standards, such as Bluetooth [2] and ZigBee [3]. Wireless technology solutions allows Micro-ElectroMechanical Systems sensors (MEMS) to be integrated (with all the necessary circuitry) to small wireless capable devices, the nodes. Available MEMS today include pressure, temperature, humidity, inertial and strain-gauge sensors as well as transducers for velocity, acceleration, vibration, flow position and inclination [4]. A WSN is composed by a large number of nodes which are deployed densely adjacent to the area under monitoring. Each node collects data which transmitted to a gateway. The main requirements that WSNs must fulfilled are quite different than those of ad-hoc networks. WSNs have to be self-organized (since the positions of individual nodes are not known in advance), they must present cooperative processing of tasks (where groups of nodes cooperate in order to provide the gathered data to the user), they require security mechanisms that are adaptive to monitoring conditions and all algorithms must be energy optimized. In this paper, the state of the art in hardware, software, algorithms and protocols for WSNs, focused on natural hazards, is surveyed. Architectures for WSNs are investigated along with their advantages and drawbacks. Available research prototypes as well as commercially proposed solutions that can be used for natural hazards monitoring and early warning systems are listed and classified. [1] I.F. Akyildiz, W. Su, Y. Sankarasubramaniam, E. Cayirci, Wireless sensor networks: a survey, Comput. Networks (Elsevier) 38 (4) (2002) 393-422. [2] Dursch, A.; Yen, D.C.; Shih, D.H. Bluetooth

  8. Integrated resource management for Hybrid Optical Wireless (HOW) networks

    DEFF Research Database (Denmark)

    Yan, Ying; Yu, Hao; Wessing, Henrik

    2009-01-01

    Efficient utilization of available bandwidth over hybrid optical wireless networks is a critical issue, especially for multimedia applications with high data rates and stringent Quality of Service (QoS) requirements. In this paper, we propose an integrated resource management including an enhanced...... resource sharing scheme and an integrated admission control scheme for the hybrid optical wireless networks. It provides QoS guarantees for connections through both optical and wireless domain. Simulation results show that our proposed scheme improves QoS performances in terms of high throughput and low...

  9. Design architecture for multi-zone HVAC control systems from existing single-zone systems using wireless sensor networks

    Science.gov (United States)

    Redfern, Andrew; Koplow, Michael; Wright, Paul

    2007-01-01

    Most residential heating, ventilating, and air-conditioning (HVAC) systems utilize a single zone for conditioning air throughout the entire house. While inexpensive, these systems lead to wide temperature distributions and inefficient cooling due to the difference in thermal loads in different rooms. The end result is additional cost to the end user because the house is over conditioned. To reduce the total amount of energy used in a home and to increase occupant comfort there is a need for a better control system using multiple temperature zones. Typical multi-zone systems are costly and require extensive infrastructure to function. Recent advances in wireless sensor networks (WSNs) have enabled a low cost drop-in wireless vent register control system. The register control system is controlled by a master controller unit, which collects sensor data from a distributed wireless sensor network. Each sensor node samples local settings (occupancy, light, humidity and temperature) and reports the data back to the master control unit. The master control unit compiles the incoming data and then actuates the vent resisters to control the airflow throughout the house. The control system also utilizes a smart thermostat with a movable set point to enable the user to define their given comfort levels. The new system can reduce the run time of the HVAC system and thus decreasing the amount of energy used and increasing the comfort of the home occupations.

  10. Localisation system in wireless sensor networks using ns-2

    CSIR Research Space (South Africa)

    Abu-Mahfouz, Adnan M

    2012-04-01

    Full Text Available -1 /************************************************************************** ********** * * File: readme.asn * * Author: Adnan Abu-Mahfouz * * Date: March 2012 * * Description: Localisation system in wireless sensor networks using ns-2... *************************************************************************** *********/ /************************************************************************** *************************************************************************** *****/ 1. Introduction: ns-2 contains several flexible features that encourage researchers to use ns-2 to investigate the characteristics of wireless sensor networks (WSNs). However, to implement and evaluate localisation algorithms, the current ns- 2...

  11. Implementation of an Optical-Wireless Network with Spectrum Sensing and Dynamic Resource Allocation Using Optically Controlled Reconfigurable Antennas

    Directory of Open Access Journals (Sweden)

    E. Raimundo-Neto

    2014-01-01

    Full Text Available This work proposes the concept and reports the implementation of an adaptive and cognitive radio over fiber architecture. It is aimed at dealing with the new demands for convergent networks by means of simultaneously providing the functionalities of multiband radiofrequency spectrum sensing, dynamic resource allocation, and centralized processing capability, as well as the use of optically controlled reconfigurable antennas and radio over fiber technology. The performance of this novel and innovative architecture has been evaluated in a geographically distributed optical-wireless network under real conditions and for different fiber lengths. Experimental results demonstrate reach extension of more than 40 times and an enhancement of more than 30 dB in the carrier to interference plus noise ratio parameter.

  12. Developing a Framework for E-Manufacturing Based on Wireless Sensor Network

    Directory of Open Access Journals (Sweden)

    Xu Xi

    2013-06-01

    Full Text Available This paper analyzes the current situation of business environment and business intelligence systems integration at first. With emerging applications of internet and wireless communication technologies, e-manufacturing is focused on the use of internet, monitoring and communications technologies to make things happen collaboratively on a global basis. A wireless sensor network based data acquisition system gives enormous benefits such as ease and flexibility of deployment in addition to low maintenance and deployment costs. This paper reviews wireless sensor network and its application for e-manufacturing. To provide a dependable, non-intrusive, secure, real-time automated health monitoring, a distributed reconfigurable sensor network is introduced which consists of real and virtual sensor nodes over a communication wireless sensor network using Mica2 motes.

  13. Adaptive Protocols for Mobile Wireless Networks

    National Research Council Canada - National Science Library

    Pursley, Michael B

    2005-01-01

    .... Research results are presented on adaptive, energy-efficient, distributed protocols for mobile wireless networks that must operate effectively over unreliable communication links in highly dynamic...

  14. Coverage and Connectivity Issue in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Rachit Trivedi

    2013-04-01

    Full Text Available Wireless sensor networks (WSNs are an emerging area of interest in research and development. It finds use in military surveillance, health care, environmental monitoring, forest fire detection and smart environments. An important research issue in WSNs is the coverage since cost, area and lifetime are directly validated to it.In this paper we present an overview of WSNs and try to refine the coverage and connectivity issues in wireless sensor networks.

  15. Cross-layer optimization of wireless multi-hop networks

    OpenAIRE

    Soldati, Pablo

    2007-01-01

    The interest in wireless communications has grown constantly for the past decades, leading to an enormous number of applications and services embraced by billions of users. In order to meet the increasing demand for mobile Internet access, several high data-rate radio networking technologies have been proposed to offer wide area high-speed wireless communications, eventually replacing fixed (wired) networks for many applications. This thesis considers cross-layer optimization of multi-hop rad...

  16. Spatial reuse of wireless medium in multi-hop wireless sensor networks

    NARCIS (Netherlands)

    Geerlings, J.; Geerlings, J.; van Hoesel, L.F.W.; Hoeksema, F.W.; Slump, Cornelis H.; Havinga, Paul J.M.

    2007-01-01

    The idea of multi-hop communication originates from the 1990’s and is eagerly incorporated in the wireless sensor network research field, since a tremendous amount of energy can be saved by letting —often battery powered– nodes in the network assist each other in forwarding packets. In such systems

  17. Scaling Laws for Heterogeneous Wireless Networks

    Science.gov (United States)

    2009-09-01

    planned and the size of communication networks that are fundamentally understood. On the one hand, wireline networks (like the Internet) have grown from...Franceschetti, Marco D. Migliore, and Paolo Minero . The capacity of wireless networks: Information-theoretic and physical limits. In Proceedings of the...Allerton Conference on Communication, Control, and Computing, September 2007. [12] Massimo Franceschetti, Marco D. Migliore, and Paolo Minero . The

  18. The architectural design of networks of protein domain architectures.

    Science.gov (United States)

    Hsu, Chia-Hsin; Chen, Chien-Kuo; Hwang, Ming-Jing

    2013-08-23

    Protein domain architectures (PDAs), in which single domains are linked to form multiple-domain proteins, are a major molecular form used by evolution for the diversification of protein functions. However, the design principles of PDAs remain largely uninvestigated. In this study, we constructed networks to connect domain architectures that had grown out from the same single domain for every single domain in the Pfam-A database and found that there are three main distinctive types of these networks, which suggests that evolution can exploit PDAs in three different ways. Further analysis showed that these three different types of PDA networks are each adopted by different types of protein domains, although many networks exhibit the characteristics of more than one of the three types. Our results shed light on nature's blueprint for protein architecture and provide a framework for understanding architectural design from a network perspective.

  19. Wireless Sensor Networks : Structure and Algorithms

    NARCIS (Netherlands)

    van Dijk, T.C.

    2014-01-01

    In this thesis we look at various problems in wireless networking. First we consider two problems in physical-model networks. We introduce a new model for localisation. The model is based on a range-free model of radio transmissions. The first scheme is randomised and we analyse its expected

  20. Adaptive Protocols for Mobile Wireless Networks

    National Research Council Canada - National Science Library

    Pursley, Michael B

    2005-01-01

    Results are reported for basic research in mobile wireless communication networks for tactical applications including investigations of new methods for error-control coding and decoding, modulation...

  1. Software defined wireless sensor networks application opportunities for efficient network management: a survey

    CSIR Research Space (South Africa)

    Modieginyane, KM

    2017-03-01

    Full Text Available Wireless Sensor Networks (WSNs) are commonly used information technologies of modern networking and computing platforms. Today's network computing applications are faced with a high demand of powerful network functionalities. Functional network...

  2. Mobile agents affect worm spreading in wireless ad hoc networks

    International Nuclear Information System (INIS)

    Huang, Zi-Gang; Sun, Jin-Tu; Wang, Ying-Hai; Wang, Sheng-Jun; Xu, Xin-Jian

    2009-01-01

    Considering the dynamic nature of portable computing devices with wireless communication capability, an extended model is introduced for worm spreading in the wireless ad hoc network, with a population of mobile agents in a planar distribution, starting from an initial infected seed. The effect of agents' mobility on worm spreading is investigated via extensive Monte Carlo simulations. The threshold behavior and the dynamics of worm epidemics in the wireless networks are greatly affected by both agents' mobility and spatial and temporal correlations. The medium access control mechanism for the wireless communication promotes the sensitivity of the spreading dynamics to agents' mobility

  3. Designing reliable wireless sensor network for nuclear power plant

    International Nuclear Information System (INIS)

    Fujiwara, Takeshi; Takahashi, Hiroyuki

    2007-01-01

    This study proposes an innovative method for the monitoring the nuclear power plant. In this field, false detection of the trouble, both 'false negative' and 'false positive' will become a serious problem. In the other hand, since nuclear power plant is such a complicated system, wireless is required for implementing into real field. Considering these backgrounds, we propose a new reliable health monitoring system for nuclear power plant. This is based on an idea, 'a network on a network', such as 'wireless global network' on 'local network with self-maintenance function.' (author)

  4. Design issues and applications of wireless sensor networks ...

    African Journals Online (AJOL)

    ... using tiny wireless sensor motes known as “smart dusts”, which have been made possible by advances in micro-electromechanical systems (MEMS) technology, wireless communications and digital electronics. Design considerations for the hardware and the topology necessary to realize these networks were evaluated.

  5. A Hybrid TDMA/CSMA-Based Wireless Sensor and Data Transmission Network for ORS Intra-Microsatellite Applications.

    Science.gov (United States)

    Wang, Long; Liu, Yong; Yin, Zengshan

    2018-05-12

    To achieve launch-on-demand for Operationally Responsive Space (ORS) missions, in this article, an intra-satellite wireless network (ISWN) is presented. It provides a wireless and modularized scheme for intra-spacecraft sensing and data buses. By removing the wired data bus, the commercial off-the-shelf (COTS) based wireless modular architecture will reduce both the volume and weight of the satellite platform, thus achieving rapid design and cost savings in development and launching. Based on the on-orbit data demand analysis, a hybrid time division multiple access/carrier sense multiple access (TDMA/CSMA) protocol is proposed. It includes an improved clear channel assessment (CCA) mechanism and a traffic adaptive slot allocation method. To analyze the access process, a Markov model is constructed. Then a detailed calculation is given in which the unsaturated cases are considered. Through simulations, the proposed protocol is proved to commendably satisfy the demands and performs better than existing schemes. It helps to build a full-wireless satellite instead of the current wired ones, and will contribute to provide dynamic space capabilities for ORS missions.

  6. Energy-efficient wireless mesh networks

    CSIR Research Space (South Africa)

    Ntlatlapa, N

    2007-06-01

    Full Text Available This paper outlines the objectives of a recently formed research group at Meraka Institute. The authors consider application of wireless mesh networks in rural infrastructure deficient parts of the African continent where nodes operate on batteries...

  7. A Cross-Layer Routing Design for Multi-Interface Wireless Mesh Networks

    Directory of Open Access Journals (Sweden)

    Tzu-Chieh Tsai

    2009-01-01

    Full Text Available In recent years, Wireless Mesh Networks (WMNs technologies have received significant attentions. WMNs not only accede to the advantages of ad hoc networks but also provide hierarchical multi-interface architecture. Transmission power control and routing path selections are critical issues in the past researches of multihop networks. Variable transmission power levels lead to different network connectivity and interference. Further, routing path selections among different radio interfaces will also produce different intra-/interflow interference. These features tightly affect the network performance. Most of the related works on the routing protocol design do not consider transmission power control and multi-interface environment simultaneously. In this paper, we proposed a cross-layer routing protocol called M2iRi2 which coordinates transmission power control and intra-/interflow interference considerations as routing metrics. Each radio interface calculates the potential tolerable-added transmission interference in the physical layer. When the route discovery starts, the M2iRi2 will adopt the appropriate power level to evaluate each interface quality along paths. The simulation results demonstrate that our design can enhance both network throughput and end-to-end delay.

  8. Energy Aware Cluster Based Routing Scheme For Wireless Sensor Network

    Directory of Open Access Journals (Sweden)

    Roy Sohini

    2015-09-01

    Full Text Available Wireless Sensor Network (WSN has emerged as an important supplement to the modern wireless communication systems due to its wide range of applications. The recent researches are facing the various challenges of the sensor network more gracefully. However, energy efficiency has still remained a matter of concern for the researches. Meeting the countless security needs, timely data delivery and taking a quick action, efficient route selection and multi-path routing etc. can only be achieved at the cost of energy. Hierarchical routing is more useful in this regard. The proposed algorithm Energy Aware Cluster Based Routing Scheme (EACBRS aims at conserving energy with the help of hierarchical routing by calculating the optimum number of cluster heads for the network, selecting energy-efficient route to the sink and by offering congestion control. Simulation results prove that EACBRS performs better than existing hierarchical routing algorithms like Distributed Energy-Efficient Clustering (DEEC algorithm for heterogeneous wireless sensor networks and Energy Efficient Heterogeneous Clustered scheme for Wireless Sensor Network (EEHC.

  9. Energy-efficient Organization of Wireless Sensor Networks with Adaptive Forecasting

    Directory of Open Access Journals (Sweden)

    Dao-Wei Bi

    2008-04-01

    Full Text Available Due to the wide potential applications of wireless sensor networks, this topic has attracted great attention. The strict energy constraints of sensor nodes result in great challenges for energy efficiency. This paper proposes an energy-efficient organization method. The organization of wireless sensor networks is formulated for target tracking. Target localization is achieved by collaborative sensing with multi-sensor fusion. The historical localization results are utilized for adaptive target trajectory forecasting. Combining autoregressive moving average (ARMA model and radial basis function networks (RBFNs, robust target position forecasting is performed. Moreover, an energyefficient organization method is presented to enhance the energy efficiency of wireless sensor networks. The sensor nodes implement sensing tasks are awakened in a distributed manner. When the sensor nodes transfer their observations to achieve data fusion, the routing scheme is obtained by ant colony optimization. Thus, both the operation and communication energy consumption can be minimized. Experimental results verify that the combination of ARMA model and RBFN can estimate the target position efficiently and energy saving is achieved by the proposed organization method in wireless sensor networks.

  10. Information network architectures

    Science.gov (United States)

    Murray, N. D.

    1985-01-01

    Graphs, charts, diagrams and outlines of information relative to information network architectures for advanced aerospace missions, such as the Space Station, are presented. Local area information networks are considered a likely technology solution. The principle needs for the network are listed.

  11. Patient Health Monitoring Using Wireless Body Area Network

    Directory of Open Access Journals (Sweden)

    Hsu Myat Thwe

    2015-06-01

    Full Text Available Abstract Nowadays remote patient health monitoring using wireless technology plays very vigorous role in a society. Wireless technology helps monitoring of physiological parameters like body temperature heart rate respiration blood pressure and ECG. The main aim of this paper is to propose a wireless sensor network system in which both heart rate and body temperature ofmultiplepatients can monitor on PC at the same time via RF network. The proposed prototype system includes two sensor nodes and receiver node base station. The sensor nodes are able to transmit data to receiver using wireless nRF transceiver module.The nRF transceiver module is used to transfer the data from microcontroller to PC and a graphical user interface GUI is developed to display the measured data and save to database. This system can provide very cheaper easier and quick respondent history of patient.

  12. Distributed Detection with Collisions in a Random, Single-Hop Wireless Sensor Network

    Science.gov (United States)

    2013-05-26

    public release; distribution is unlimited. Distributed detection with collisions in a random, single-hop wireless sensor network The views, opinions...1274 2 ABSTRACT Distributed detection with collisions in a random, single-hop wireless sensor network Report Title We consider the problem of... WIRELESS SENSOR NETWORK Gene T. Whipps?† Emre Ertin† Randolph L. Moses† ?U.S. Army Research Laboratory, Adelphi, MD 20783 †The Ohio State University

  13. Implementation Of The Precision Agriculture Using LEACH Protocol Of Wireless Sensor Network

    Directory of Open Access Journals (Sweden)

    Than Htike Aung

    2015-08-01

    Full Text Available The evolution of wireless sensor network technology leads to develop advanced systems for real-time monitoring. Wireless sensor network WSN is a major technology that drives the development of precision agriculture.By forming wireless sensor networkagricultural practicescan be made good monitoring systems.Various agricultural parameters like soil moisture temperature and humidity are monitored by monitoring units.The paper explains about how to utilize thesensors in agricultural practices and explains about routing protocols of wireless sensor network. In this paper agricultural parameter of temperature will monitor with the use of LEACH protocol.

  14. Wireless synapses in bio-inspired neural networks

    Science.gov (United States)

    Jannson, Tomasz; Forrester, Thomas; Degrood, Kevin

    2009-05-01

    Wireless (virtual) synapses represent a novel approach to bio-inspired neural networks that follow the infrastructure of the biological brain, except that biological (physical) synapses are replaced by virtual ones based on cellular telephony modeling. Such synapses are of two types: intracluster synapses are based on IR wireless ones, while intercluster synapses are based on RF wireless ones. Such synapses have three unique features, atypical of conventional artificial ones: very high parallelism (close to that of the human brain), very high reconfigurability (easy to kill and to create), and very high plasticity (easy to modify or upgrade). In this paper we analyze the general concept of wireless synapses with special emphasis on RF wireless synapses. Also, biological mammalian (vertebrate) neural models are discussed for comparison, and a novel neural lensing effect is discussed in detail.

  15. Key Management for Secure Multicast over IPv6 Wireless Networks

    Directory of Open Access Journals (Sweden)

    Siddiqi Mohammad Umar

    2006-01-01

    Full Text Available Multicasting is an efficient method for transmission and routing of packets to multiple destinations using fewer network resources. Along with widespread deployment of wireless networks, secure multicast over wireless networks is an important and challenging goal. In this paper, we extend the scope of a recent new key distribution scheme to a security framework that offers a novel solution for secure multicast over IPv6 wireless networks. Our key management framework includes two scenarios for securely distributing the group key and rekey messages for joining and leaving a mobile host in secure multicast group. In addition, we perform the security analysis and provide performance comparisons between our approach and two recently published scenarios. The benefits of our proposed techniques are that they minimize the number of transmissions required to rekey the multicast group and impose minimal storage requirements on the multicast group. In addition, our proposed schemes are also very desirable from the viewpoint of transmission bandwidth savings since an efficient rekeying mechanism is provided for membership changes and they significantly reduce the required bandwidth due to key updating in mobile networks. Moreover, they achieve the security and scalability requirements in wireless networks.

  16. Contemporary, emerging, and ratified wireless security standards: an update for the networked dental office.

    Science.gov (United States)

    Mupparapu, Muralidhar

    2006-02-15

    Wireless networking is not new to contemporary dental offices around the country. Wireless routers and network cards have made access to patient records within the office handy and, thereby, saving valuable chair side time and increasing productivity. As is the case with any rapidly developing technology, wireless technology also changes with the same rate. Unless, the users of the wireless networking understand the implications of these changes and keep themselves updated periodically, the office network will become obsolete very quickly. This update of the emerging security protocols and pertaining to ratified wireless 802.11 standards will be timely for the contemporary dentist whose office is wirelessly networked. This article brings the practicing dentist up-to-date on the newer versions and standards in wireless networking that are changing at a fast pace. The introduction of newer 802.11 standards like super G, Super AG, Multiple Input Multiple Output (MIMO), and pre-n are changing the pace of adaptation of this technology. Like any other rapidly transforming technology, information pertaining to wireless networking should be a priority for the contemporary dentist, an eventual end-user in order to be a well-informed and techno-savvy consumer.

  17. Simulations of Large-scale WiFi-based Wireless Networks: Interdisciplinary Challenges and Applications

    OpenAIRE

    Nekovee, Maziar

    2008-01-01

    Wireless Fidelity (WiFi) is the fastest growing wireless technology to date. In addition to providing wire-free connectivity to the Internet WiFi technology also enables mobile devices to connect directly to each other and form highly dynamic wireless adhoc networks. Such distributed networks can be used to perform cooperative communication tasks such ad data routing and information dissemination in the absence of a fixed infrastructure. Furthermore, adhoc grids composed of wirelessly network...

  18. Dynamic Hierarchical Sleep Scheduling for Wireless Ad-Hoc Sensor Networks

    Directory of Open Access Journals (Sweden)

    Chih-Yu Wen

    2009-05-01

    Full Text Available This paper presents two scheduling management schemes for wireless sensor networks, which manage the sensors by utilizing the hierarchical network structure and allocate network resources efficiently. A local criterion is used to simultaneously establish the sensing coverage and connectivity such that dynamic cluster-based sleep scheduling can be achieved. The proposed schemes are simulated and analyzed to abstract the network behaviors in a number of settings. The experimental results show that the proposed algorithms provide efficient network power control and can achieve high scalability in wireless sensor networks.

  19. Dynamic hierarchical sleep scheduling for wireless ad-hoc sensor networks.

    Science.gov (United States)

    Wen, Chih-Yu; Chen, Ying-Chih

    2009-01-01

    This paper presents two scheduling management schemes for wireless sensor networks, which manage the sensors by utilizing the hierarchical network structure and allocate network resources efficiently. A local criterion is used to simultaneously establish the sensing coverage and connectivity such that dynamic cluster-based sleep scheduling can be achieved. The proposed schemes are simulated and analyzed to abstract the network behaviors in a number of settings. The experimental results show that the proposed algorithms provide efficient network power control and can achieve high scalability in wireless sensor networks.

  20. Network Coding to Enhance Standard Routing Protocols in Wireless Mesh Networks

    DEFF Research Database (Denmark)

    Pahlevani, Peyman; Roetter, Daniel Enrique Lucani; Fitzek, Frank

    2013-01-01

    This paper introduces a design and simulation of a locally optimized network coding protocol, called PlayNCool, for wireless mesh networks. PlayN-Cool is easy to implement and compatible with existing routing protocols and devices. This allows the system to gain from network coding capabilities i...

  1. Context-Based Topology Control for Wireless Mesh Networks

    Directory of Open Access Journals (Sweden)

    Pragasen Mudali

    2016-01-01

    Full Text Available Topology Control has been shown to provide several benefits to wireless ad hoc and mesh networks. However these benefits have largely been demonstrated using simulation-based evaluations. In this paper, we demonstrate the negative impact that the PlainTC Topology Control prototype has on topology stability. This instability is found to be caused by the large number of transceiver power adjustments undertaken by the prototype. A context-based solution is offered to reduce the number of transceiver power adjustments undertaken without sacrificing the cumulative transceiver power savings and spatial reuse advantages gained from employing Topology Control in an infrastructure wireless mesh network. We propose the context-based PlainTC+ prototype and show that incorporating context information in the transceiver power adjustment process significantly reduces topology instability. In addition, improvements to network performance arising from the improved topology stability are also observed. Future plans to add real-time context-awareness to PlainTC+ will have the scheme being prototyped in a software-defined wireless mesh network test-bed being planned.

  2. Optimized and Executive Survey of Physical Node Capture Attack in Wireless Sensor Network

    OpenAIRE

    Bhavana Butani; Piyush Kumar Shukla; Sanjay Silakari

    2014-01-01

    Wireless sensor networks (WSNs) are novel large-scale wireless networks that consist of distributed, self organizing, low-power, low-cost, tiny sensor devices to cooperatively collect information through infrastructure less wireless networks. These networks are envisioned to play a crucial role in variety of applications like critical military surveillance applications, forest fire monitoring, commercial applications such as building security monitoring, traffic surveillance, habitat monitori...

  3. Audio coding in wireless acoustic sensor networks

    DEFF Research Database (Denmark)

    Zahedi, Adel; Østergaard, Jan; Jensen, Søren Holdt

    2015-01-01

    In this paper, we consider the problem of source coding for a wireless acoustic sensor network where each node in the network makes its own noisy measurement of the sound field, and communicates with other nodes in the network by sending and receiving encoded versions of the measurements. To make...

  4. Transmission Range Assignment with Balancing Connectivity in Clustered Wireless Networks

    OpenAIRE

    Hussein, Abd Ali

    2014-01-01

    Currently, the main challenge for researchers in the field of wireless sensor networks is associated with reducing the energy consumption as much as possible to increase the lifetime of the nodes and improve the performance of the network. Furthermore, delivery of data to its destination is also an important key issue that represents throughput of the network. On the other hand, transmission range assignment in clustered wireless networks is the bottleneck of the balance between energy con...

  5. FTS2000 network architecture

    Science.gov (United States)

    Klenart, John

    1991-01-01

    The network architecture of FTS2000 is graphically depicted. A map of network A topology is provided, with interservice nodes. Next, the four basic element of the architecture is laid out. Then, the FTS2000 time line is reproduced. A list of equipment supporting FTS2000 dedicated transmissions is given. Finally, access alternatives are shown.

  6. Modeling Multistandard Wireless Networks in OPNET

    DEFF Research Database (Denmark)

    Zakrzewska, Anna; Berger, Michael Stübert; Ruepp, Sarah Renée

    2011-01-01

    Future wireless communication is emerging towards one heterogeneous platform. In this new environment wireless access will be provided by multiple radio technologies that are cooperating and complementing one another. The paper investigates the possibilities of developing such a multistandard sys...... system using OPNET Modeler. A network model consisting of LTE interworking with WLAN and WiMAX is considered from the radio resource management perspective. In particular, implementing a joint packet scheduler across multiple systems is discussed more in detail....

  7. Secure Broadcast in Energy-Aware Wireless Sensor Networks

    National Research Council Canada - National Science Library

    Lazos, Loukas; Poovendran, Radha

    2002-01-01

    .... The authors show that existing efficient key distribution techniques for wired networks that rely on logical hierarchies are extremely energy inefficient for energy-constrained wireless ad-hoc networks...

  8. Consistent sensor, relay, and link selection in wireless sensor networks

    NARCIS (Netherlands)

    Arroyo Valles, M.D.R.; Simonetto, A.; Leus, G.J.T.

    2017-01-01

    In wireless sensor networks, where energy is scarce, it is inefficient to have all nodes active because they consume a non-negligible amount of battery. In this paper we consider the problem of jointly selecting sensors, relays and links in a wireless sensor network where the active sensors need

  9. Compatibility Issues of IPSec and TCP in Wireless Networks

    Institute of Scientific and Technical Information of China (English)

    ZHAO Hai-yang; XIN Yang

    2004-01-01

    Due to the problems arising when the Transmission Control Protocol (TCP) is applied over wireless networks, many TCP performance enhancement mechanisms have been proposed. However, such mechanisms aren't compatible with IPSec protocol. The paper reviews the TCP performance enhancement mechanisms in wireless networks. Then the conflicts between them are analyzed. Several proposals for solving theconflicts are discussed, and their benefit and limitations are examined.

  10. Seamless and secure communications over heterogeneous wireless networks

    CERN Document Server

    Cao, Jiannong

    2014-01-01

    This brief provides an overview of the requirements, challenges, design issues and major techniques for seamless and secure communications over heterogeneous wireless networks. It summarizes and provides detailed insights into the latest research on handoff management, mobility management, fast authentication and security management to support seamless and secure roaming for mobile clients. The reader will also learn about the challenges in developing relevant technologies and providing ubiquitous Internet access over heterogeneous wireless networks. The authors have extensive experience in im

  11. Data-Driven Design of Intelligent Wireless Networks: An Overview and Tutorial

    Directory of Open Access Journals (Sweden)

    Merima Kulin

    2016-06-01

    Full Text Available Data science or “data-driven research” is a research approach that uses real-life data to gain insight about the behavior of systems. It enables the analysis of small, simple as well as large and more complex systems in order to assess whether they function according to the intended design and as seen in simulation. Data science approaches have been successfully applied to analyze networked interactions in several research areas such as large-scale social networks, advanced business and healthcare processes. Wireless networks can exhibit unpredictable interactions between algorithms from multiple protocol layers, interactions between multiple devices, and hardware specific influences. These interactions can lead to a difference between real-world functioning and design time functioning. Data science methods can help to detect the actual behavior and possibly help to correct it. Data science is increasingly used in wireless research. To support data-driven research in wireless networks, this paper illustrates the step-by-step methodology that has to be applied to extract knowledge from raw data traces. To this end, the paper (i clarifies when, why and how to use data science in wireless network research; (ii provides a generic framework for applying data science in wireless networks; (iii gives an overview of existing research papers that utilized data science approaches in wireless networks; (iv illustrates the overall knowledge discovery process through an extensive example in which device types are identified based on their traffic patterns; (v provides the reader the necessary datasets and scripts to go through the tutorial steps themselves.

  12. Configuration of Wireless Cooperative/Sensor Networks

    National Research Council Canada - National Science Library

    Shafiee, Hamid R; Maham, B; Vazifehdan, J

    2008-01-01

    .... When employing more than one antenna at each node of a wireless network is not applicable, cooperation diversity protocols exploit the inherent spatial diversity of relay channels by allowing mobile...

  13. A Vehicular Guidance Wireless Sensor/Actuator Network

    KAUST Repository

    Boudellioua, Imene

    2012-07-01

    Sensor networks have been heralded as one of 21 most important technologies for the 21st century by Business Week [1]. Wireless sensor/actuator networks (WSANs)are emerging as a new generation of sensor networks with the potential for enhancing the versatility and effectiveness of sensor networks. However, the unreliability of wireless communications and the real-time requirements of control applications raise great challenges for WSAN design. In this thesis, we design a WSAN for a vehicular guidance system targeting environmental disaster management applications. In this system, actuators provide mobility to all sensor nodes in the observed area whenever needed. Moreover, nodes form clusters and their movement is controlled by a master node that is selected dynamically. We also discuss the factors affecting our network performance in real-life and propose a framework which accounts for real-time requirement and reliable actuation. We finally perform some experimental studies on our system to measure its performance in an indoor environment.

  14. Partial Interference and Its Performance Impact on Wireless Multiple Access Networks

    Directory of Open Access Journals (Sweden)

    Lau WingCheong

    2010-01-01

    Full Text Available To determine the capacity of wireless multiple access networks, the interference among the wireless links must be accurately modeled. In this paper, we formalize the notion of the partial interference phenomenon observed in many recent wireless measurement studies and establish analytical models with tractable solutions for various types of wireless multiple access networks. In particular, we characterize the stability region of IEEE 802.11 networks under partial interference with two potentially unsaturated links numerically. We also provide a closed-form solution for the stability region of slotted ALOHA networks under partial interference with two potentially unsaturated links and obtain a partial characterization of the boundary of the stability region for the general M-link case. Finally, we derive a closed-form approximated solution for the stability region for general M-link slotted ALOHA system under partial interference effects. Based on our results, we demonstrate that it is important to model the partial interference effects while analyzing wireless multiple access networks. This is because such considerations can result in not only significant quantitative differences in the predicted system capacity but also fundamental qualitative changes in the shape of the stability region of the systems.

  15. UMA/GAN network architecture analysis

    Science.gov (United States)

    Yang, Liang; Li, Wensheng; Deng, Chunjian; Lv, Yi

    2009-07-01

    This paper is to critically analyze the architecture of UMA which is one of Fix Mobile Convergence (FMC) solutions, and also included by the third generation partnership project(3GPP). In UMA/GAN network architecture, UMA Network Controller (UNC) is the key equipment which connects with cellular core network and mobile station (MS). UMA network could be easily integrated into the existing cellular networks without influencing mobile core network, and could provides high-quality mobile services with preferentially priced indoor voice and data usage. This helps to improve subscriber's experience. On the other hand, UMA/GAN architecture helps to integrate other radio technique into cellular network which includes WiFi, Bluetooth, and WiMax and so on. This offers the traditional mobile operators an opportunity to integrate WiMax technique into cellular network. In the end of this article, we also give an analysis of potential influence on the cellular core networks ,which is pulled by UMA network.

  16. Design and implementation of a topology control scheme for wireless mesh networks

    CSIR Research Space (South Africa)

    Mudali, P

    2009-09-01

    Full Text Available The Wireless Mesh Network (WMN) backbone is usually comprised of stationary nodes but the transient nature of wireless links results in changing network topologies. Topology Control (TC) aims to preserve network connectivity in ad hoc and mesh...

  17. Bio-Mimic Optimization Strategies in Wireless Sensor Networks: A Survey

    Science.gov (United States)

    Adnan, Md. Akhtaruzzaman; Razzaque, Mohammd Abdur; Ahmed, Ishtiaque; Isnin, Ismail Fauzi

    2014-01-01

    For the past 20 years, many authors have focused their investigations on wireless sensor networks. Various issues related to wireless sensor networks such as energy minimization (optimization), compression schemes, self-organizing network algorithms, routing protocols, quality of service management, security, energy harvesting, etc., have been extensively explored. The three most important issues among these are energy efficiency, quality of service and security management. To get the best possible results in one or more of these issues in wireless sensor networks optimization is necessary. Furthermore, in number of applications (e.g., body area sensor networks, vehicular ad hoc networks) these issues might conflict and require a trade-off amongst them. Due to the high energy consumption and data processing requirements, the use of classical algorithms has historically been disregarded. In this context contemporary researchers started using bio-mimetic strategy-based optimization techniques in the field of wireless sensor networks. These techniques are diverse and involve many different optimization algorithms. As far as we know, most existing works tend to focus only on optimization of one specific issue of the three mentioned above. It is high time that these individual efforts are put into perspective and a more holistic view is taken. In this paper we take a step in that direction by presenting a survey of the literature in the area of wireless sensor network optimization concentrating especially on the three most widely used bio-mimetic algorithms, namely, particle swarm optimization, ant colony optimization and genetic algorithm. In addition, to stimulate new research and development interests in this field, open research issues, challenges and future research directions are highlighted. PMID:24368702

  18. Bio-mimic optimization strategies in wireless sensor networks: a survey.

    Science.gov (United States)

    Adnan, Md Akhtaruzzaman; Abdur Razzaque, Mohammd; Ahmed, Ishtiaque; Isnin, Ismail Fauzi

    2013-12-24

    For the past 20 years, many authors have focused their investigations on wireless sensor networks. Various issues related to wireless sensor networks such as energy minimization (optimization), compression schemes, self-organizing network algorithms, routing protocols, quality of service management, security, energy harvesting, etc., have been extensively explored. The three most important issues among these are energy efficiency, quality of service and security management. To get the best possible results in one or more of these issues in wireless sensor networks optimization is necessary. Furthermore, in number of applications (e.g., body area sensor networks, vehicular ad hoc networks) these issues might conflict and require a trade-off amongst them. Due to the high energy consumption and data processing requirements, the use of classical algorithms has historically been disregarded. In this context contemporary researchers started using bio-mimetic strategy-based optimization techniques in the field of wireless sensor networks. These techniques are diverse and involve many different optimization algorithms. As far as we know, most existing works tend to focus only on optimization of one specific issue of the three mentioned above. It is high time that these individual efforts are put into perspective and a more holistic view is taken. In this paper we take a step in that direction by presenting a survey of the literature in the area of wireless sensor network optimization concentrating especially on the three most widely used bio-mimetic algorithms, namely, particle swarm optimization, ant colony optimization and genetic algorithm. In addition, to stimulate new research and development interests in this field, open research issues, challenges and future research directions are highlighted.

  19. Cyber Insurance for Heterogeneous Wireless Networks

    OpenAIRE

    Lu, Xiao; Niyato, Dusit; Jiang, Hai; Wang, Ping; Poor, H. Vincent

    2017-01-01

    Heterogeneous wireless networks (HWNs) composed of densely deployed base stations of different types with various radio access technologies have become a prevailing trend to accommodate ever-increasing traffic demand in enormous volume. Nowadays, users rely heavily on HWNs for ubiquitous network access that contains valuable and critical information such as financial transactions, e-health, and public safety. Cyber risks, representing one of the most significant threats to network security an...

  20. Algorithm for Wireless Sensor Networks Based on Grid Management

    Directory of Open Access Journals (Sweden)

    Geng Zhang

    2014-05-01

    Full Text Available This paper analyzes the key issues for wireless sensor network trust model and describes a method to build a wireless sensor network, such as the definition of trust for wireless sensor networks, computing and credibility of trust model application. And for the problem that nodes are vulnerable to attack, this paper proposed a grid-based trust algorithm by deep exploration trust model within the framework of credit management. Algorithm for node reliability screening and rotation schedule to cover parallel manner based on the implementation of the nodes within the area covered by trust. And analyze the results of the size of trust threshold has great influence on the safety and quality of coverage throughout the coverage area. The simulation tests the validity and correctness of the algorithm.