WorldWideScience

Sample records for wireless monitoring system

  1. Wireless device monitoring systems and monitoring devices, and associated methods

    Science.gov (United States)

    McCown, Steven H; Derr, Kurt W; Rohde, Kenneth W

    2014-05-27

    Wireless device monitoring systems and monitoring devices include a communications module for receiving wireless communications of a wireless device. Processing circuitry is coupled with the communications module and configured to process the wireless communications to determine whether the wireless device is authorized or unauthorized to be present at the monitored area based on identification information of the wireless device. Methods of monitoring for the presence and identity of wireless devices are also provided.

  2. Wireless device monitoring methods, wireless device monitoring systems, and articles of manufacture

    Science.gov (United States)

    McCown, Steven H [Rigby, ID; Derr, Kurt W [Idaho Falls, ID; Rohde, Kenneth W [Idaho Falls, ID

    2012-05-08

    Wireless device monitoring methods, wireless device monitoring systems, and articles of manufacture are described. According to one embodiment, a wireless device monitoring method includes accessing device configuration information of a wireless device present at a secure area, wherein the device configuration information comprises information regarding a configuration of the wireless device, accessing stored information corresponding to the wireless device, wherein the stored information comprises information regarding the configuration of the wireless device, comparing the device configuration information with the stored information, and indicating the wireless device as one of authorized and unauthorized for presence at the secure area using the comparing.

  3. Wireless battery management control and monitoring system

    Science.gov (United States)

    Zumstein, James M.; Chang, John T.; Farmer, Joseph C.; Kovotsky, Jack; Lavietes, Anthony; Trebes, James Edward

    2018-01-16

    A battery management system using a sensor inside of the battery that sensor enables monitoring and detection of various events in the battery and transmission of a signal from the sensor through the battery casing to a control and data acquisition module by wireless transmission. The detection of threshold events in the battery enables remedial action to be taken to avoid catastrophic events.

  4. REAL TIME WIRELESS AIR POLLUTION MONITORING SYSTEM

    Directory of Open Access Journals (Sweden)

    Raja Vara Prasad Y

    2011-06-01

    Full Text Available Air pollution has significant influence on the concentration of constituents in the atmosphere leading to effects like global warming and acid rains. To avoid such adverse imbalances in the nature, an air pollution monitoring system is utmost important. This paper attempts to develop an effective solution for pollution monitoring using wireless sensor networks (WSN on a real time basis namely real time wireless air pollution monitoring system. Commercially available discrete gas sensors for sensing concentration of gases like CO2, NO2, CO and O2 are calibrated using appropriate calibration technologies. These pre-calibrated gas sensors are then integrated with the wireless sensor motes for field deployment at the campus and the Hyderabad city using multi hop data aggregation algorithm. A light weight middleware and a web interface to view the live pollution data in the form of numbers and charts from the test beds was developed and made available from anywhere on the internet. Other parameters like temperature and humidity were also sensed along with gas concentrations to enable data analysis through data fusion techniques. Experimentation carried out using the developed wireless air pollution monitoring system under different physical conditions show that the system collects reliable source of real time fine-grain pollution data.

  5. An Algorithm of Wireless Sensor Monitoring System

    Directory of Open Access Journals (Sweden)

    Li Hongri

    2018-01-01

    Full Text Available In order to realize more intelligent storage monitoring system, the information fusion model of wireless sensor network for storage environment monitoring is studied on the basis of analyzing information fusion technology. By analyzing the structure of storage monitoring system based on wireless sensor network, a two-layer information fusion method is established. The information fusion of homogeneous sensor based on adaptive weighting and the fusion method of heterogeneous sensor based on radial basis function neural network are designed and verified. The experimental results show that the design method can fuse the storage environment information and realize the accurate identification of the environmental state. Therefore, the algorithm can effectively improve the speed of network training, and the classification effect is good. To a certain extent, it can help enterprises to establish a safe and efficient storage system, to enhance the efficiency of enterprise warehousing operations.

  6. Wireless remote monitoring system for sleep apnea

    Science.gov (United States)

    Oh, Sechang; Kwon, Hyeokjun; Varadan, Vijay K.

    2011-04-01

    Sleep plays the important role of rejuvenating the body, especially the central nervous system. However, more than thirty million people suffer from sleep disorders and sleep deprivation. That can cause serious health consequences by increasing the risk of hypertension, diabetes, heart attack and so on. Apart from the physical health risk, sleep disorders can lead to social problems when sleep disorders are not diagnosed and treated. Currently, sleep disorders are diagnosed through sleep study in a sleep laboratory overnight. This involves large expenses in addition to the inconvenience of overnight hospitalization and disruption of daily life activities. Although some systems provide home based diagnosis, most of systems record the sleep data in a memory card, the patient has to face the inconvenience of sending the memory card to a doctor for diagnosis. To solve the problem, we propose a wireless sensor system for sleep apnea, which enables remote monitoring while the patient is at home. The system has 5 channels to measure ECG, Nasal airflow, body position, abdominal/chest efforts and oxygen saturation. A wireless transmitter unit transmits signals with Zigbee and a receiver unit which has two RF modules, Zigbee and Wi-Fi, receives signals from the transmitter unit and retransmits signals to the remote monitoring system with Zigbee and Wi-Fi, respectively. By using both Zigbee and Wi-Fi, the wireless sensor system can achieve a low power consumption and wide range coverage. The system's features are presented, as well as continuous monitoring results of vital signals.

  7. BABY MONITORING SYSTEM USING WIRELESS SENSOR NETWORKS

    Directory of Open Access Journals (Sweden)

    G. Rajesh

    2014-09-01

    Full Text Available Sudden Infant Death Syndrome (SIDS is marked by the sudden death of an infant during sleep that is not predicted by the medical history and remains unexplained even after thorough forensic autopsy and detailed death investigation. In this we developed a system that provides solutions for the above problems by making the crib smart using the wireless sensor networks (WSN and smart phones. The system provides visual monitoring service through live video, alert services by crib fencing and awakens alert, monitoring services by temperature reading and light intensity reading, vaccine reminder and weight monitoring.

  8. Wireless Remote Monitoring System for Cultural Heritage

    Directory of Open Access Journals (Sweden)

    Allan HUYNH

    2010-07-01

    Full Text Available Existing systems to collect temperature and relative humidity data at cultural heritage buildings require technical knowledge by people who are working with it, which is very seldom that they do have. The systems available today also require manual downloading of the collected data from the sensor to a computer for central storage and for further analysis. In this paper a wireless remote sensor network based on the ZigBee technology together with a simplified data collection system is presented. The system does not require any knowledge by the building administrator after the network is deployed. The wireless sensor device will automatically join available network when the user wants to expand the network. The collected data will be automatically and periodically synchronized to a remote main server via an Internet connection. The data can be used for centralized monitoring and other purpose. The power consumption of the sensor module is also minimized and the battery lifetime is estimated up to 10 years.

  9. A Wildlife Monitoring System Based on Wireless Image Sensor Networks

    Directory of Open Access Journals (Sweden)

    Junguo Zhang

    2014-10-01

    Full Text Available Survival and development of wildlife sustains the balance and stability of the entire ecosystem. Wildlife monitoring can provide lots of information such as wildlife species, quantity, habits, quality of life and habitat conditions, to help researchers grasp the status and dynamics of wildlife resources, and to provide basis for the effective protection, sustainable use, and scientific management of wildlife resources. Wildlife monitoring is the foundation of wildlife protection and management. Wireless Sensor Networks (WSN technology has become the most popular technology in the field of information. With advance of the CMOS image sensor technology, wireless sensor networks combined with image sensors, namely Wireless Image Sensor Networks (WISN technology, has emerged as an alternative in monitoring applications. Monitoring wildlife is one of its most promising applications. In this paper, system architecture of the wildlife monitoring system based on the wireless image sensor networks was presented to overcome the shortcomings of the traditional monitoring methods. Specifically, some key issues including design of wireless image sensor nodes and software process design have been studied and presented. A self-powered rotatable wireless infrared image sensor node based on ARM and an aggregation node designed for large amounts of data were developed. In addition, their corresponding software was designed. The proposed system is able to monitor wildlife accurately, automatically, and remotely in all-weather condition, which lays foundations for applications of wireless image sensor networks in wildlife monitoring.

  10. Passive Wireless Sensor System for Structural Health Monitoring, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Albido proposes to develop a Passive Wireless Sensor System for Structural Health Monitoring capable of measuring high-bandwidth temperature and strain of space and...

  11. Passive Wireless Sensor System for Structural Health Monitoring, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Albido proposes to develop a Passive Wireless Sensor System for Structural Health Monitoring capable of measuring high-bandwidth temperature and strain of space and...

  12. Principles in wireless building health monitoring systems.

    Science.gov (United States)

    Pentaris, F. P.; Makris, J. P.; Stonham, J.; Vallianatos, F.

    2012-04-01

    Monitoring the structural state of a building is essential for the safety of the people who work, live, visit or just use it as well as for the civil protection of urban areas. Many factors can affect the state of the health of a structure, namely man made, like mistakes in the construction, traffic, heavy loads on the structures, explosions, environmental impacts like wind loads, humidity, chemical reactions, temperature changes and saltiness, and natural hazards like earthquakes and landslides. Monitoring the health of a structure provides the ability to anticipate structural failures and secure the safe use of buildings especially those of public services. This work reviews the state of the art and the challenges of a wireless Structural Health Monitoring (WiSHM). Literature review reveals that although there is significant evolution in wireless structural health monitoring, in many cases, monitoring by itself is not enough to predict when a structure becomes inappropriate and/or unsafe for use, and the damage or low durability of a structure cannot be revealed (Chintalapudi, et al., 2006; Ramos, Aguilar, & Lourenço, 2011). Several features and specifications of WiSHM like wireless sensor networking, reliability and autonomy of sensors, algorithms of data transmission and analysis should still be evolved and improved in order to increase the predictive effectiveness of the SHM (Jinping Ou & Hui Li, 2010; Lu & Loh, 2010) . Acknowledgments This work was supported in part by the ARCHEMEDES III Program of the Ministry of Education of Greece and the European Union in the framework of the project entitled «Interdisciplinary Multi-Scale Research of Earthquake Physics and Seismotectonics at the front of the Hellenic Arc (IMPACT-ARC) ».

  13. Monitoring devices and systems for monitoring frequency hopping wireless communications, and related methods

    Science.gov (United States)

    Derr, Kurt W.; Richardson, John G.

    2017-05-02

    Monitoring devices and systems comprise a plurality of data channel modules coupled to processing circuitry. Each data channel module of the plurality of data channel modules is configured to capture wireless communications for a selected frequency channel. The processing circuitry is configured to receive captured wireless communications from the plurality of data channel modules and to organize received wireless communications according to at least one parameter. Related methods of monitoring wireless communications are also disclosed.

  14. Automated wireless monitoring system for cable tension using smart sensors

    Science.gov (United States)

    Sim, Sung-Han; Li, Jian; Jo, Hongki; Park, Jongwoong; Cho, Soojin; Spencer, Billie F.; Yun, Chung-Bang

    2013-04-01

    Cables are critical load carrying members of cable-stayed bridges; monitoring tension forces of the cables provides valuable information for SHM of the cable-stayed bridges. Monitoring systems for the cable tension can be efficiently realized using wireless smart sensors in conjunction with vibration-based cable tension estimation approaches. This study develops an automated cable tension monitoring system using MEMSIC's Imote2 smart sensors. An embedded data processing strategy is implemented on the Imote2-based wireless sensor network to calculate cable tensions using a vibration-based method, significantly reducing the wireless data transmission and associated power consumption. The autonomous operation of the monitoring system is achieved by AutoMonitor, a high-level coordinator application provided by the Illinois SHM Project Services Toolsuite. The monitoring system also features power harvesting enabled by solar panels attached to each sensor node and AutoMonitor for charging control. The proposed wireless system has been deployed on the Jindo Bridge, a cable-stayed bridge located in South Korea. Tension forces are autonomously monitored for 12 cables in the east, land side of the bridge, proving the validity and potential of the presented tension monitoring system for real-world applications.

  15. [A wireless mobile monitoring system based on bluetooth technology].

    Science.gov (United States)

    Sun, Shou-jun; Wu, Kai; Wu, Xiao-Ming

    2006-09-01

    This paper presents a wireless mobile monitoring system based on Bluetooth technology. This system realizes the remote mobile monitoring of multiple physiological parameters, and has the characters of easy use, low cost, good reliability and strong capability of anti-jamming.

  16. Wireless Underwater Monitoring Systems Based on Energy Harvestings

    Directory of Open Access Journals (Sweden)

    Sea-Hee HWANGBO

    2013-01-01

    Full Text Available One of the important research fields for aquatic exploitation and conservation is underwater wireless sensor network. Since limited energy source for underwater nodes and devices is a main open problem, in this paper, we propose wireless underwater monitoring systems powered by energy harvester which resolves the energy constraint. The target system generates renewable energy from energy harvester and shares the energy with underwater sensor nodes. For the realization of the system, key components to be investigated are discriminated as follows: acoustic modem, actuator, smart battery charge controller, energy harvester and wireless power transfer module. By developing acoustic modem, actuator and smart battery charge controller and utilizing off-the-shelf energy harvester and wireless power transfer module, we design and implement a prototype of the system. Also, we verify the feasibility of concept of target system by conducting indoor and outdoor experiments.

  17. An integrated circuit for wireless ambulatory arrhythmia monitoring systems.

    Science.gov (United States)

    Kim, Hyejung; Yazicioglu, Refet Firat; Torfs, Tom; Merken, Patrick; Van Hoof, Chris; Yoo, Hoi-Jun

    2009-01-01

    An ECG signal processor (ESP) is proposed for the low energy wireless ambulatory arrhythmia monitoring system. The ECG processor mainly performs filtering, compression, classification and encryption. The data compression flow consisting of skeleton and modified Huffman coding is the essential function to reduce the transmission energy consumption and the memory capacity, which are the most energy consuming part. The classification flow performs the arrhythmia analysis to alert the abnormality. The proposed ESP IC is implemented in 0.18-microm CMOS process and integrated into the wireless arrhythmia monitoring sensor platform. By integration of the ESP, the total system energy reduction is evaluated by 95.6%.

  18. Development of wireless sensor network for landslide monitoring system

    International Nuclear Information System (INIS)

    Suryadi; Puranto, Prabowo; Adinanta, Hendra; Tohari, Adrin; Priambodo, Purnomo S

    2017-01-01

    A wireless sensor network has been developed to monitor soil movement of some observed areas periodically. The system consists of four nodes and one gateway which installed on a scope area of 0.2 Km 2 . Each of nodehastwo types of sensor,an inclinometer and an extensometer. An inclinometer sensor is used to measure the tilt of a structure while anextensometer sensor is used to measure the displacement of soil movement. Each of nodeisalso supported by awireless communication device, a solar power supply unit, and a microcontroller unit called sensor module. In this system, there is also gateway module as a main communication system consistinga wireless communication device, power supply unit, and rain gauge to measure the rainfall intensity of the observed area. Each sensor of inclinometer and extensometer isconnected to the sensor module in wiring system but sensor module iscommunicating with gateway in a wireless system. Those four nodes are alsoconnectedeach other in a wireless system collecting the data from inclinometer and extensometer sensors. Module Gateway istransmitting the instruction code to each sensor module one by one and collecting the data from them. Gateway module is an important part to communicate with not only sensor modules but also to the server. This wireless system wasdesigned toreducethe electric consumption powered by 80 WP solar panel and 55Ah battery. This system has been implemented in Pangalengan, Bandung, which has high intensity of rainfall and it can be seen on the website. (paper)

  19. Locomotive monitoring system using wireless sensor networks

    CSIR Research Space (South Africa)

    Croucamp, PL

    2014-07-01

    Full Text Available Theft of cables used for powering a locomotive not only stops the train from functioning but also paralyzes the signalling and monitoring system. This means that information on certain locomotive's cannot be passed onto other locomotives which may...

  20. Design of wireless synchronous structural monitoring system for large bridges

    Science.gov (United States)

    Liu, Zhiqiang; Liu, Wei; Li, Na; Yu, Yan; Mao, Xingquan; Yang, Zhitao

    2017-04-01

    Large bridges play a significant role in the development of both the urban traffic condition and the social economy. It is of high importance to monitor the operational bridges and to assess their security from the perspective of people's life and property safety. In this paper, a wireless bridge structure monitoring system was developed and DMTS synchronization algorithm (based on the one-way synchronization mechanism of the sender) which can meet the system requirement was proposed. Then the deck vibration test of a bridge in Xiamen was carried out. The study shows that the wireless sensing system has the advantage of high accuracy, and the feature of easy operation, good instantaneity, and low overhead costs, which has a good application prospect in the field of structure monitoring and condition assessment of the bridges.

  1. Construct mine environment monitoring system based on wireless mesh network

    Science.gov (United States)

    Chen, Xin; Ge, Gengyu; Liu, Yinmei; Cheng, Aimin; Wu, Jun; Fu, Jun

    2018-04-01

    The system uses wireless Mesh network as a network transmission medium, and strive to establish an effective and reliable underground environment monitoring system. The system combines wireless network technology and embedded technology to monitor the internal data collected in the mine and send it to the processing center for analysis and environmental assessment. The system can be divided into two parts: the main control network module and the data acquisition terminal, and the SPI bus technology is used for mutual communication between them. Multi-channel acquisition and control interface design Data acquisition and control terminal in the analog signal acquisition module, digital signal acquisition module, and digital signal output module. The main control network module running Linux operating system, in which the transplant SPI driver, USB card driver and AODV routing protocol. As a result, the internal data collection and reporting of the mine are realized.

  2. Passive Wireless Hermetic Environment Monitoring System for Spray Painting Workshop.

    Science.gov (United States)

    Wang, Lifeng; Ma, Jingjing; Huang, Yan; Tang, Dan; Huang, Qing-An

    2016-08-01

    Passive wireless sensors have the advantages of operating without a power supply and remote sensing capability. Hence, they are very suitable for some harsh environments, such as hermetic environments, rotating parts, or very high temperature environments. The spray painting workshop is such a harsh environment, containing a large amount of flammable paint mist and organic gas. Aiming at this special environment of spray painting workshop, a passive wireless hermetic environment monitoring system was designed, fabricated, and demonstrated. The proposed system is composed of a transponder and a reader, and the circuit design of each part is given in detail in this paper. The power and the data transmission between the transponder and the reader are realized by the inductive coupling mechanism. Utilizing the back scatter modulation and channel multiplexing, the frequency signals generated by three different environmental sensors-together with their interfaces in the transponder-are wirelessly read out by the reader. Because of the harsh environment of the spray painting room, the package of the monitoring system is quite important. Three different kinds of filter films for the system package were compared. The experimental results show that the composite filter film aluminum anodic oxide/polytetrafluoroethylene (AAO/PTFE) has the best performance. After fabrication, the measured temperature, humidity, and pressure sensitivities were measured and found to be 180 Hz/°C in the range of 0~60 °C, 100 Hz/%RH in the range of 15~95 %RH, and 42 Hz/hPa in the range of 600~1100 hPa, respectively. Additionally, the remote sensing distance of the monitoring system reaches 4 cm. Finally, the passive wireless hermetic environment monitoring system was installed on the glass wall of the spray painting workshop and was successfully demonstrated.

  3. Wireless pilot monitoring system for extreme race conditions.

    Science.gov (United States)

    Pino, Esteban J; Arias, Diego E; Aqueveque, Pablo; Melin, Pedro; Curtis, Dorothy W

    2012-01-01

    This paper presents the design and implementation of an assistive device to monitor car drivers under extreme conditions. In particular, this system is designed in preparation for the 2012 Atacama Solar Challenge to be held in the Chilean desert. Actual preliminary results show the feasibility of such a project including physiological and ambient sensors, real-time processing algorithms, wireless data transmission and a remote monitoring station. Implementation details and field results are shown along with a discussion of the main problems found in real-life telemetry monitoring.

  4. Active Wireless System for Structural Health Monitoring Applications

    Directory of Open Access Journals (Sweden)

    Ricardo Perera

    2017-12-01

    Full Text Available The use of wireless sensors in Structural Health Monitoring (SHM has increased significantly in the last years. Piezoelectric-based lead zirconium titanate (PZT sensors have been on the rise in SHM due to their superior sensing abilities. They are applicable in different technologies such as electromechanical impedance (EMI-based SHM. This work develops a flexible wireless smart sensor (WSS framework based on the EMI method using active sensors for full-scale and autonomous SHM. In contrast to passive sensors, the self-sensing properties of the PZTs allow interrogating with or exciting a structure when desired. The system integrates the necessary software and hardware within a service-oriented architecture approach able to provide in a modular way the services suitable to satisfy the key requirements of a WSS. The framework developed in this work has been validated on different experimental applications. Initially, the reliability of the EMI method when carried out with the proposed wireless sensor system is evaluated by comparison with the wireless counterpart. Afterwards, the performance of the system is evaluated in terms of software stability and reliability of functioning.

  5. GSM module for wireless radiation monitoring system via SMS

    Science.gov (United States)

    Rahman, Nur Aira Abd; Hisyam Ibrahim, Noor; Lombigit, Lojius; Azman, Azraf; Jaafar, Zainudin; Arymaswati Abdullah, Nor; Hadzir Patai Mohamad, Glam

    2018-01-01

    A customised Global System for Mobile communication (GSM) module is designed for wireless radiation monitoring through Short Messaging Service (SMS). This module is able to receive serial data from radiation monitoring devices such as survey meter or area monitor and transmit the data as text SMS to a host server. It provides two-way communication for data transmission, status query, and configuration setup. The module hardware consists of GSM module, voltage level shifter, SIM circuit and Atmega328P microcontroller. Microcontroller provides control for sending, receiving and AT command processing to GSM module. The firmware is responsible to handle task related to communication between device and host server. It process all incoming SMS, extract, and store new configuration from Host, transmits alert/notification SMS when the radiation data reach/exceed threshold value, and transmits SMS data at every fixed interval according to configuration. Integration of this module with radiation survey/monitoring device will create mobile and wireless radiation monitoring system with prompt emergency alert at high-level radiation.

  6. Wireless remote radiation monitoring system (WRRMS). Innovative technology summary report

    International Nuclear Information System (INIS)

    1998-12-01

    The Science Application International Corporation (SAIC) RadStar trademark wireless remote radiation monitoring system (WRRMS) is designed to provide real-time monitoring of the radiation dose to workers as they perform work in radiologically contaminated areas. WRRMS can also monitor dose rates in a room or area. The system uses radio-frequency communications to transmit dose readings from the wireless dosimeters worn by workers to a remote monitoring station that can be located out of the contaminated area. Each base station can monitor up to 16 workers simultaneously. The WRRMS can be preset to trigger both audible and visual alarms at certain dose rates. The alarms are provided to the worker as well as the base station operator. This system is particularly useful when workers are wearing personal protective clothing or respirators that make visual observation of their self-reading dosimeters (SRDs), which are typically used to monitor workers, more difficult. The base station is an IBM-compatible personal computer that updates and records information on individual workers every ten seconds. Although the equipment costs for this improved technology are higher than the SRDs (amortized at $2.54/hr versus $1.02/hr), total operational costs are actually less ($639/day versus $851/day). This is because the WRRMS requires fewer workers to be in the contaminated zone than the traditional (baseline) technology. There are also intangible benefits associated with improved worker safety and as low as reasonably achievable (ALARA) principles, making the WRRMS an attractive alternative to the baseline technology. The baseline technology measures only integrated dose and requires workers to check their own dosimeters manually during the task

  7. The development of remote wireless radiation dose monitoring system

    International Nuclear Information System (INIS)

    Lee, Jin-woo; Jeong, Kyu-hwan; Kim, Jong-il; Im, Chae-wan

    2015-01-01

    Internet of things (IoT) technology has recently shown a large flow of IT trends in human life. In particular, our lives are now becoming integrated with a lot of items around the 'smart-phone' with IoT, including Bluetooth, Near Field Communication (NFC), Beacons, WiFi, and Global Positioning System (GPS). Our project focuses on the interconnection of radiation dosimetry and IoT technology. The radiation workers at a nuclear facility should hold personal dosimeters such as a Thermo-Luminescence Dosimeter (TLD), an Optically Stimulated Luminescence Dosimeter (OSL), pocket ionization chamber dosimeters, an Electronic Personal Dosimeter (EPD), or an alarm dosimeter on their body. Some of them have functions that generate audible or visible alarms to radiation workers in a real working area. However, such devices used in radiation fields these days have no functions for communicating with other areas or the responsible personnel in real time. In particular, when conducting a particular task in a high dose area, or a number of repair works within a radiation field, radiation dose monitoring is important for the health of the workers and the work efficiency. Our project aims at the development of a remote wireless radiation dose monitoring system (RWRD) that can be used to monitor the radiation dose in a nuclear facility for radiation workers and a radiation protection program In this project, a radiation dosimeter is the detection device for personal radiation dose, a smart phone is the mobile wireless communication tool, and, Beacon is the wireless starter for the detection, communication, and position of the worker using BLE (Bluetooth Low Energy). In this report, we report the design of the RWRD and a demonstration case in a real radiation field. (authors)

  8. The development of remote wireless radiation dose monitoring system

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jin-woo [KAERI - Korea Atomic Energy Research Institute, Jeongup-si (Korea, Republic of); Chonbuk National University, Jeonjoo-Si (Korea, Republic of); Jeong, Kyu-hwan [KINS - Korea Institute of Nuclear Safety, Daejeon-Si (Korea, Republic of); Kim, Jong-il [Chonbuk National University, Jeonjoo-Si (Korea, Republic of); Im, Chae-wan [REMTECH, Seoul-Si (Korea, Republic of)

    2015-07-01

    Internet of things (IoT) technology has recently shown a large flow of IT trends in human life. In particular, our lives are now becoming integrated with a lot of items around the 'smart-phone' with IoT, including Bluetooth, Near Field Communication (NFC), Beacons, WiFi, and Global Positioning System (GPS). Our project focuses on the interconnection of radiation dosimetry and IoT technology. The radiation workers at a nuclear facility should hold personal dosimeters such as a Thermo-Luminescence Dosimeter (TLD), an Optically Stimulated Luminescence Dosimeter (OSL), pocket ionization chamber dosimeters, an Electronic Personal Dosimeter (EPD), or an alarm dosimeter on their body. Some of them have functions that generate audible or visible alarms to radiation workers in a real working area. However, such devices used in radiation fields these days have no functions for communicating with other areas or the responsible personnel in real time. In particular, when conducting a particular task in a high dose area, or a number of repair works within a radiation field, radiation dose monitoring is important for the health of the workers and the work efficiency. Our project aims at the development of a remote wireless radiation dose monitoring system (RWRD) that can be used to monitor the radiation dose in a nuclear facility for radiation workers and a radiation protection program In this project, a radiation dosimeter is the detection device for personal radiation dose, a smart phone is the mobile wireless communication tool, and, Beacon is the wireless starter for the detection, communication, and position of the worker using BLE (Bluetooth Low Energy). In this report, we report the design of the RWRD and a demonstration case in a real radiation field. (authors)

  9. Integrated 3d printed wireless sensing system for environmental monitoring

    KAUST Repository

    Farooqui, Muhammad Fahad

    2017-12-21

    Disclosed are various embodiments of a wireless sensor device for monitoring environment conditions. A wireless sensor device may comprise, for example, a computing device, printable circuitry, sensors, and antennas combined with one or more transmitters on a panel. The wireless sensor device may be configured to take environment measurements, such as temperature, gas, humidity, and wirelessly communicate the environment measurements to a remote computing device, in addition, the present disclosure relates to a method of assembling the wireless sensor device. The method may comprise printing sensors, circuitry, and antennas to a panel; folding the panel to form an enclosure comprising a plurality of side panels; and attaching the plurality of side panels to a circuit board panel.

  10. An intelligent environment monitoring system based on wireless sensor networks

    Science.gov (United States)

    Cao, Minghua; Wang, Huiqin; Peng, Duo; Jia, Kejun

    2009-07-01

    Nowadays, information technology is becoming more and more important to improve the productivity of agriculture, especially for real time environment monitoring. However, the traditional method of environmental data collection is unable to provide real-time and highly accurate data of the monitored region to meet the requirements of precision agriculture. As wireless sensor networks(WSNs) has profound impacts on many fields due to its promising capability, in this paper, a WSN-based environment monitoring system is proposed. A prototype of the system that utilizes GAINSJ nodes based on Zigbee communication protocol has been implemented, and its packet error rate in different conditions was evaluated. Based on the proposed system architecture and technologies, the real time data can be measured, transmitted and stored in high accuracy. Moreover, the system was applied in upland grassland in Yushu, Qinghai province, and compared the results with the data acquired by local weather station. The system evaluation and experimental results show the effectiveness and reliability of the system in measuring the variations of temperature and humidity data within monitored region.

  11. Large-Scale Wireless Temperature Monitoring System for Liquefied Petroleum Gas Storage Tanks

    OpenAIRE

    Fan, Guangwen; Shen, Yu; Hao, Xiaowei; Yuan, Zongming; Zhou, Zhi

    2015-01-01

    Temperature distribution is a critical indicator of the health condition for Liquefied Petroleum Gas (LPG) storage tanks. In this paper, we present a large-scale wireless temperature monitoring system to evaluate the safety of LPG storage tanks. The system includes wireless sensors networks, high temperature fiber-optic sensors, and monitoring software. Finally, a case study on real-world LPG storage tanks proves the feasibility of the system. The unique features of wireless transmission, au...

  12. On the Design of a Wireless Multi-antenna Monitoring System

    NARCIS (Netherlands)

    Hofstra, K.L.; Cronie, H.S.

    2004-01-01

    In this paper we investigate the design of a wireless monitoring system. This system consists of several wireless monitoring units, each transmitting data collected from sensors. This data is received and processed at a central control unit. The typical operating environment poses several

  13. A qualitative review for wireless health monitoring system

    Science.gov (United States)

    Arshad, Atika; Fadzil Ismail, Ahmad; Khan, Sheroz; Zahirul Alam, A. H. M.; Tasnim, Rumana; Samnan Haider, Syed; Shobaki, Mohammed M.; Shahid, Zeeshan

    2013-12-01

    A proliferating interest has been being observed over the past years in accurate wireless system development in order to monitor incessant human activities in health care centres. Furthermore because of the swelling number of elderly population and the inadequate number of competent staffs for nursing homes there is a big market petition for health care monitoring system. In order to detect human researchers developed different methods namely which include Field Identification technique, Visual Sensor Network, radar detection, e-mobile techniques and so on. An all-encompassing overview of the non-wired human detection application advancement is presented in this paper. Inductive links are used for human detection application while wiring an electronic system has become impractical in recent times. Keeping in mind the shortcomings, an Inductive Intelligent Sensor (IIS) has been proposed as a novel human monitoring system for future implementation. The proposed sensor works towards exploring the signature signals of human body movement and size. This proposed sensor is fundamentally based on inductive loop that senses the presence and a passing human resulting an inductive change.

  14. Cooperative wireless network control based health and activity monitoring system.

    Science.gov (United States)

    Prakash, R; Ganesh, A Balaji; Girish, Siva V

    2016-10-01

    A real-time cooperative communication based wireless network is presented for monitoring health and activity of an end-user in their environment. The cooperative communication offers better energy consumption and also an opportunity to aware the current location of a user non-intrusively. The link between mobile sensor node and relay node is dynamically established by using Received Signal Strength Indicator (RSSI) and Link Quality Indicator (LQI) based on adaptive relay selection scheme. The study proposes a Linear Acceleration based Transmission Power Decision Control (LA-TPDC) algorithm to further enhance the energy efficiency of cooperative communication. Further, the occurrences of false alarms are carefully prevented by introducing three stages of sequential warning system. The real-time experiments are carried-out by using the nodes, namely mobile sensor node, relay nodes and a destination node which are indigenously developed by using a CC430 microcontroller integrated with an in-built transceiver at 868 MHz. The wireless node performance characteristics, such as energy consumption, Signal-Noise ratio (SNR), Bit Error Rate (BER), Packet Delivery Ratio (PDR) and transmission offset are evaluated for all the participated nodes. The experimental results observed that the proposed linear acceleration based transmission power decision control algorithm almost doubles the battery life time than energy efficient conventional cooperative communication.

  15. A hybrid system identification methodology for wireless structural health monitoring systems based on dynamic substructuring

    Science.gov (United States)

    Dragos, Kosmas; Smarsly, Kay

    2016-04-01

    System identification has been employed in numerous structural health monitoring (SHM) applications. Traditional system identification methods usually rely on centralized processing of structural response data to extract information on structural parameters. However, in wireless SHM systems the centralized processing of structural response data introduces a significant communication bottleneck. Exploiting the merits of decentralization and on-board processing power of wireless SHM systems, many system identification methods have been successfully implemented in wireless sensor networks. While several system identification approaches for wireless SHM systems have been proposed, little attention has been paid to obtaining information on the physical parameters (e.g. stiffness, damping) of the monitored structure. This paper presents a hybrid system identification methodology suitable for wireless sensor networks based on the principles of component mode synthesis (dynamic substructuring). A numerical model of the monitored structure is embedded into the wireless sensor nodes in a distributed manner, i.e. the entire model is segmented into sub-models, each embedded into one sensor node corresponding to the substructure the sensor node is assigned to. The parameters of each sub-model are estimated by extracting local mode shapes and by applying the equations of the Craig-Bampton method on dynamic substructuring. The proposed methodology is validated in a laboratory test conducted on a four-story frame structure to demonstrate the ability of the methodology to yield accurate estimates of stiffness parameters. Finally, the test results are discussed and an outlook on future research directions is provided.

  16. Combine harvester monitor system based on wireless sensor network

    Science.gov (United States)

    A measurement method based on Wireless Sensor Network (WSN) was developed to monitor the working condition of combine harvester for remote application. Three JN5139 modules were chosen for sensor data acquisition and another two as a router and a coordinator, which could create a tree topology netwo...

  17. ZigBee wireless sensor network for environmental monitoring system

    Science.gov (United States)

    Chai, Shun-qi; Ji, Lei; Wu, Hong

    2009-11-01

    ZigBee is a new close-up, low-complexity, low-power, low data rate, low-cost wireless networking technology, mainly used for short distance wireless transmission. It is based on IEEE802.15.4 standards, thousands of tiny sensors form a network through mutual coordination to communications. This paper introduces the ZigBee wireless sensor networks in environmental monitoring applications. The hardware design, including microprocessor, data acquisition, antenna and peripheral circuits of the chips, and through software design composed ZigBee mesh network that can make data acquisition and communication. This network has low power consumption, low cost, the effective area is big, and information transfers reliable merits. And have confirmed the network's communication applicability by the Serial Com Assistant, also testified the network have very good pragmatism by the NS2 emulation the network's operation.

  18. Intelligent Wireless Sensor Networks for System Health Monitoring

    Science.gov (United States)

    Alena, Rick

    2011-01-01

    Wireless sensor networks (WSN) based on the IEEE 802.15.4 Personal Area Network (PAN) standard are finding increasing use in the home automation and emerging smart energy markets. The network and application layers, based on the ZigBee 2007 Standard, provide a convenient framework for component-based software that supports customer solutions from multiple vendors. WSNs provide the inherent fault tolerance required for aerospace applications. The Discovery and Systems Health Group at NASA Ames Research Center has been developing WSN technology for use aboard aircraft and spacecraft for System Health Monitoring of structures and life support systems using funding from the NASA Engineering and Safety Center and Exploration Technology Development and Demonstration Program. This technology provides key advantages for low-power, low-cost ancillary sensing systems particularly across pressure interfaces and in areas where it is difficult to run wires. Intelligence for sensor networks could be defined as the capability of forming dynamic sensor networks, allowing high-level application software to identify and address any sensor that joined the network without the use of any centralized database defining the sensors characteristics. The IEEE 1451 Standard defines methods for the management of intelligent sensor systems and the IEEE 1451.4 section defines Transducer Electronic Datasheets (TEDS), which contain key information regarding the sensor characteristics such as name, description, serial number, calibration information and user information such as location within a vehicle. By locating the TEDS information on the wireless sensor itself and enabling access to this information base from the application software, the application can identify the sensor unambiguously and interpret and present the sensor data stream without reference to any other information. The application software is able to read the status of each sensor module, responding in real-time to changes of

  19. Large-Scale Wireless Temperature Monitoring System for Liquefied Petroleum Gas Storage Tanks.

    Science.gov (United States)

    Fan, Guangwen; Shen, Yu; Hao, Xiaowei; Yuan, Zongming; Zhou, Zhi

    2015-09-18

    Temperature distribution is a critical indicator of the health condition for Liquefied Petroleum Gas (LPG) storage tanks. In this paper, we present a large-scale wireless temperature monitoring system to evaluate the safety of LPG storage tanks. The system includes wireless sensors networks, high temperature fiber-optic sensors, and monitoring software. Finally, a case study on real-world LPG storage tanks proves the feasibility of the system. The unique features of wireless transmission, automatic data acquisition and management, local and remote access make the developed system a good alternative for temperature monitoring of LPG storage tanks in practical applications.

  20. Large-Scale Wireless Temperature Monitoring System for Liquefied Petroleum Gas Storage Tanks

    Directory of Open Access Journals (Sweden)

    Guangwen Fan

    2015-09-01

    Full Text Available Temperature distribution is a critical indicator of the health condition for Liquefied Petroleum Gas (LPG storage tanks. In this paper, we present a large-scale wireless temperature monitoring system to evaluate the safety of LPG storage tanks. The system includes wireless sensors networks, high temperature fiber-optic sensors, and monitoring software. Finally, a case study on real-world LPG storage tanks proves the feasibility of the system. The unique features of wireless transmission, automatic data acquisition and management, local and remote access make the developed system a good alternative for temperature monitoring of LPG storage tanks in practical applications.

  1. Wireless Sensor Platform for Cultural Heritage Monitoring and Modeling System

    Science.gov (United States)

    Bermudez, Sergio A.; Schrott, Alejandro G.; Tsukada, Masahiko; Kargere, Lucretia; Marianno, Fernando; Hamann, Hendrik F.; López, Vanessa; Leona, Marco

    2017-01-01

    Results from three years of continuous monitoring of environmental conditions using a wireless sensor platform installed at The Cloisters, the medieval branch of the New York Metropolitan Museum of Art, are presented. The platform comprises more than 200 sensors that were distributed in five galleries to assess temperature and air flow and to quantify microclimate changes using physics-based and statistical models. The wireless sensor network data shows a very stable environment within the galleries, while the dense monitoring enables localized monitoring of subtle changes in air quality trends and impact of visitors on the microclimate conditions. The high spatial and temporal resolution data serves as a baseline study to understand the impact of visitors and building operations on the long-term preservation of art objects. PMID:28858223

  2. Wireless Sensor Platform for Cultural Heritage Monitoring and Modeling System.

    Science.gov (United States)

    Klein, Levente J; Bermudez, Sergio A; Schrott, Alejandro G; Tsukada, Masahiko; Dionisi-Vici, Paolo; Kargere, Lucretia; Marianno, Fernando; Hamann, Hendrik F; López, Vanessa; Leona, Marco

    2017-08-31

    Results from three years of continuous monitoring of environmental conditions using a wireless sensor platform installed at The Cloisters, the medieval branch of the New York Metropolitan Museum of Art, are presented. The platform comprises more than 200 sensors that were distributed in five galleries to assess temperature and air flow and to quantify microclimate changes using physics-based and statistical models. The wireless sensor network data shows a very stable environment within the galleries, while the dense monitoring enables localized monitoring of subtle changes in air quality trends and impact of visitors on the microclimate conditions. The high spatial and temporal resolution data serves as a baseline study to understand the impact of visitors and building operations on the long-term preservation of art objects.

  3. A new wireless underground network system for continuous monitoring of soil water contents

    NARCIS (Netherlands)

    Ritsema, C.J.; Kuipers, H.; Kleiboer, L.; Elsen, van den H.G.M.; Oostindie, K.; Wesseling, J.G.; Wolthuis, J.W.; Havinga, P.

    2009-01-01

    A new stand-alone wireless embedded network system has been developed recently for continuous monitoring of soil water contents at multiple depths. This paper presents information on the technical aspects of the system, including the applied sensor technology, the wireless communication protocols,

  4. A Wireless Physiological Signal Monitoring System with Integrated Bluetooth and WiFi Technologies.

    Science.gov (United States)

    Yu, Sung-Nien; Cheng, Jen-Chieh

    2005-01-01

    This paper proposes a wireless patient monitoring system which integrates Bluetooth and WiFi wireless technologies. A wireless portable multi-parameter device was designated to acquire physiological signals and transmit them to a local server via Bluetooth wireless technology. Four kinds of monitor units were designed to communicate via the WiFi wireless technology, including a local monitor unit, a control center, mobile devices (personal digital assistant; PDA), and a web page. The use of various monitor units is intending to meet different medical requirements for different medical personnel. This system was demonstrated to promote the mobility and flexibility for both the patients and the medical personnel, which further improves the quality of health care.

  5. Flood and Traffic Wireless Monitoring System for Smart Cities

    KAUST Repository

    Moussa, Mustafa

    2016-10-01

    The convergence of computation, communication and sensing has led to the emergence of Wireless Sensor Networks (WSNs), which allow distributed monitoring of physical phenomena over extended areas. In this thesis, we focus on a dual flood and traffic flow WSN applicable to urban environments. This fixed sensing system is based on the combination of ultrasonic range-finding with remote temperature sensing, and can sense both phenomena with a high degree of accuracy. This enables the monitoring of urban areas to lessen the impact of catastrophic flood events, by monitoring flood parameters and traffic flow to enable public evacuation and early warning, allocate the resources efficiently or control the traffic to make cities more productive and smarter. We present an implementation of the device, and illustrate its performance in water level estimation and rain detection using a novel combination of L1 regularized reconstruction and machine learning algorithms on a 6-month dataset involving four different sensors. Our results show that water level can be estimated with an uncertainty of 1 cm using a combination of thermal sensing and ultrasonic distance measurements. The demonstration of the performance included the detection of an actual flash flood event using two sensors located in Umm Al Qura University (Mecca). Finally, we show that Lagrangian (mobile) sensors can be used to inexpensively increase the performance of the system with respect to traffic sensing. These sensors are based on Inertial Measurement Units (IMUs), which have never been investigated in the context of traffic ow monitoring before. We investigate the divergence of the speed estimation process, the lack of the calibration parameters of the system, and the problem of reconstructing vehicle trajectories evolving in a given transportation network. To address these problems, we propose an automatic calibration algorithm applicable to IMU-equipped ground vehicles, and an L1 regularized least squares

  6. Wireless system for monitoring Intra-abdominal pressure in patient with severe abdominal pathology

    Science.gov (United States)

    Sokolovskiy, S. S.; Shtotskiy, Y. V.; Leljanov, A. D.

    2017-01-01

    The paper discusses an experimental design of the wireless system for monitoring intra-abdominal pressure (IAP) using Bluetooth Low Energy technology. The possibility of measuring IAP via the bladder using a wireless pressure sensor with a hydrophobic bacteria filter between the liquid transmitting medium and the sensor element is grounded.

  7. Wireless Networked Sensors for Remote Monitoring in Propulsion Systems, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This NASA Phase I SBIR program would fabricate wireless networked nanomembrane (NM) based surface pressure sensors for remote monitoring in propulsion systems, using...

  8. [The Development of Information Centralization and Management Integration System for Monitors Based on Wireless Sensor Network].

    Science.gov (United States)

    Xu, Xiu; Zhang, Honglei; Li, Yiming; Li, Bin

    2015-07-01

    Developed the information centralization and management integration system for monitors of different brands and models with wireless sensor network technologies such as wireless location and wireless communication, based on the existing wireless network. With adaptive implementation and low cost, the system which possesses the advantages of real-time, efficiency and elaboration is able to collect status and data of the monitors, locate the monitors, and provide services with web server, video server and locating server via local network. Using an intranet computer, the clinical and device management staffs can access the status and parameters of monitors. Applications of this system provide convenience and save human resource for clinical departments, as well as promote the efficiency, accuracy and elaboration for the device management. The successful achievement of this system provides solution for integrated and elaborated management of the mobile devices including ventilator and infusion pump.

  9. Passive Wireless Sensor System for Space and Structural Health Monitoring, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Aviana Molecular (Aviana) and the University of Central Florida (UCF) propose to develop a Passive Wireless Sensor System (PWSS) for Structural Health Monitoring...

  10. Development of a Wireless System for Monitoring and Control of a Wind Turbine

    Directory of Open Access Journals (Sweden)

    Cristhian M. Durán-Acevedo

    2013-11-01

    Full Text Available This article presents the use of a wireless communication technology through the ZigBee protocol, by implementing XBee S2B. Wireless communication was implemented on a wind turbine prototype (i.e. wind power generation in order to controlling variables automatically, such as: Direction of the wind, temperature, humidity and velocity engine. The XBee were conditioned using a Mega ADK Arduino card, which the signals generated were acquired by several sensors and subsequently sent wirelessly. The programming and monitoring of Arduino module with each of the variables was performed through Labview software. The study was also conducted in order to explore new technologies for wireless communication, which is useful in interoperable systems to monitor, control and automate different processes. As a result, the performance test with the wireless system was stable and data transmission was reliable.

  11. A Wireless Monitoring System for Cracks on the Surface of Reactor Containment Buildings

    Directory of Open Access Journals (Sweden)

    Jianguo Zhou

    2016-06-01

    Full Text Available Structural health monitoring with wireless sensor networks has been increasingly popular in recent years because of the convenience. In this paper, a real-time monitoring system for cracks on the surface of reactor containment buildings is presented. Customized wireless sensor networks platforms are designed and implemented with sensors especially for crack monitoring, which include crackmeters and temperature detectors. Software protocols like route discovery, time synchronization and data transfer are developed to satisfy the requirements of the monitoring system and stay simple at the same time. Simulation tests have been made to evaluate the performance of the system before full scale deployment. The real-life deployment of the crack monitoring system is carried out on the surface of reactor containment building in Daya Bay Nuclear Power Station during the in-service pressure test with 30 wireless sensor nodes.

  12. Development of Pseudo Autonomous Wireless Sensor Monitoring System for Water Distribution Network

    OpenAIRE

    Kondratjevs, K; Zabašta, A; Kuņicina, N; Ribickis, L

    2014-01-01

    Water distribution networks require long term autonomous monitoring solutions, integrated, reliable and cost effective data transfer methods. This paper investigates the data delivery infrastructure of water distribution network sensor equipment used for network monitoring and billing of the subscribers. Water distribution network usually apply sensors to measure water flow, pressure and temperature. The main goal is to offer a wireless sensor system architecture comprisi...

  13. Integrated wireless sensor network and real time smart controlling and monitoring system for efficient energy management in standalone photovoltaic systems

    Science.gov (United States)

    Abou-Elnour, Ali; Thabt, A.; Helmy, S.; Kashf, Y.; Hadad, Y.; Tarique, M.; Abo-Elnor, Ossama

    2014-04-01

    In the present work, wireless sensor network and smart real-time controlling and monitoring system are integrated for efficient energy management of standalone photovoltaic system. The proposed system has two main components namely the monitoring and controlling system and the wireless communication system. LabView software has been used in the implementation of the monitoring and controlling system. On the other hand, ZigBee wireless modules have been used to implement the wireless system. The main functions of monitoring and controlling unit is to efficiently control the energy consumption form the photovoltaic system based on accurate determination of the periods of times at which the loads are required to be operated. The wireless communication system send the data from the monitoring and controlling unit to the loads at which desired switching operations are performed. The wireless communication system also continuously feeds the monitoring and controlling unit with updated input data from the sensors and from the photovoltaic module send to calculate and record the generated, the consumed, and the stored energy to apply load switching saving schemes if necessary. It has to be mentioned that our proposed system is a low cost and low power system because and it is flexible to be upgraded to fulfill additional users' requirements.

  14. Application of AN Automated Wireless Structural Monitoring System for Long-Span Suspension Bridges

    Science.gov (United States)

    Kurata, M.; Lynch, J. P.; van der Linden, G. W.; Hipley, P.; Sheng, L.-H.

    2011-06-01

    This paper describes an automated wireless structural monitoring system installed at the New Carquinez Bridge (NCB). The designed system utilizes a dense network of wireless sensors installed in the bridge but remotely controlled by a hierarchically designed cyber-environment. The early efforts have included performance verification of a dense network of wireless sensors installed on the bridge and the establishment of a cellular gateway to the system for remote access from the internet. Acceleration of the main bridge span was the primary focus of the initial field deployment of the wireless monitoring system. An additional focus of the study is on ensuring wireless sensors can survive for long periods without human intervention. Toward this end, the life-expectancy of the wireless sensors has been enhanced by embedding efficient power management schemes in the sensors while integrating solar panels for power harvesting. The dynamic characteristics of the NCB under daily traffic and wind loads were extracted from the vibration response of the bridge deck and towers. These results have been compared to a high-fidelity finite element model of the bridge.

  15. Field Implementation of Wireless Vibration Sensing System for Monitoring of Harbor Caisson Breakwaters

    OpenAIRE

    Jin-Hak Yi; Jeong-Tae Kim; So-Young Lee; Han-Sam Yoon

    2012-01-01

    A wireless sensing system for structural health monitoring (SHM) of harbor caisson structures is presented. To achieve the objective, the following approaches were implemented. First, a wave-induced vibration sensing system was designed for global structural health monitoring. Second, global SHM methods which are suitable for damage monitoring of caisson structures were selected to alarm the occurrence of unwanted behaviors. Third, an SHM scheme was designed for the target structure by implem...

  16. A comprehensive survey of wearable and wireless ECG monitoring systems for older adults.

    Science.gov (United States)

    Baig, Mirza Mansoor; Gholamhosseini, Hamid; Connolly, Martin J

    2013-05-01

    Wearable health monitoring is an emerging technology for continuous monitoring of vital signs including the electrocardiogram (ECG). This signal is widely adopted to diagnose and assess major health risks and chronic cardiac diseases. This paper focuses on reviewing wearable ECG monitoring systems in the form of wireless, mobile and remote technologies related to older adults. Furthermore, the efficiency, user acceptability, strategies and recommendations on improving current ECG monitoring systems with an overview of the design and modelling are presented. In this paper, over 120 ECG monitoring systems were reviewed and classified into smart wearable, wireless, mobile ECG monitoring systems with related signal processing algorithms. The results of the review suggest that most research in wearable ECG monitoring systems focus on the older adults and this technology has been adopted in aged care facilitates. Moreover, it is shown that how mobile telemedicine systems have evolved and how advances in wearable wireless textile-based systems could ensure better quality of healthcare delivery. The main drawbacks of deployed ECG monitoring systems including imposed limitations on patients, short battery life, lack of user acceptability and medical professional's feedback, and lack of security and privacy of essential data have been also discussed.

  17. A Wireless and Real-Time Monitoring System Design for Car Networking Applications

    Directory of Open Access Journals (Sweden)

    Li Wenjun

    2013-01-01

    Full Text Available We described a wireless and monitoring system to obtain several classes of vehicle data and send them to the server via General Packet Radio Service (GPRS in real-time. These data are consisted by on-board diagnostic (OBD which get from the vehicle’s OBD interface, Tire-Pressure Monitoring system (TPMS and Global Positioning System (GPS. The main content of this paper is the hardware design of the system, especially RF modules and antennas.

  18. Wireless data management system for environmental monitoring in livestock buildings

    Directory of Open Access Journals (Sweden)

    James Gray

    2017-03-01

    Full Text Available The impact of air quality on the health, welfare and productivity of livestock needs to be considered, especially when livestock are kept in enclosed buildings. The monitoring of such environmental factors allows for the development of appropriate strategies to reduce detrimental effects of sub-optimal air quality on the respiratory health of both livestock and farmers. In 2009, an environmental monitoring system was designed, developed and tested that allowed for the monitoring of a number of airborne pollutants. One limitation of the system was the manual collection of logged data from each unit. This paper identifies limitations of the current environmental monitoring system and suggests a range of networking technologies that can be used to increase usability. Consideration is taken for the networking of environmental monitoring units, as well as the collection of recorded data. Furthermore, the design and development of a software system that is used to collate and store recorded environmental data from multiple farms is explored. In order to design such a system, simplified software engineering processes and methodologies have been utilised. The main steps taken in order to complete the project were requirements elicitation with clients, requirements analysis, system design, implementation and finally testing. The outcome of the project provided a potential prototype for improving the environmental monitoring system and analysis informing the benefit of the implementation.

  19. Integrated Wireless Monitoring and Control System in Reverse Osmosis Membrane Desalination Plants

    Directory of Open Access Journals (Sweden)

    Al Haji Ahmad

    2015-01-01

    Full Text Available The operational processes of the Reverse Osmosis (RO membrane desalination plants require continuous monitoring through the constant attendance of operators to ensure proper productivity and minimize downtime and prevent membrane failure. Therefore, the plant must be equipped with a control system that monitors and controls the operational variables. Monitoring and controlling the affecting parameters are critical to the evaluation of the performance of the desalination plant, which will help the operator find and resolve problems immediately. Therefore, this paper was aimed at developing an RO unit by utilizing a wireless sensor network (WSN system. Hence, an RO pilot plant with a feed capacity of 1.2 m3/h was utilized, commissioned, and tested in Kuwait to assess and verify the performance of the integrated WSN in RO membrane desalination system. The investigated system allowed the operators to remotely monitor the operational process of the RO system. The operational data were smoothly recorded and monitored. Furthermore, the technical problems were immediately determined, which reduced the time and effort in rectifying the technical problems relevant to the RO performance. The manpower requirements of such treatment system were dramatically reduced by about 50%. Based on a comparison between manual and wireless monitoring operational processes, the availability of the integrated RO unit with a wireless monitoring was increased by 10%

  20. Application of Wireless Sensor Network and RFID Monitoring System in Airport Logistics

    Directory of Open Access Journals (Sweden)

    Wang Le

    2018-01-01

    Full Text Available To better regulate the airport cargo transportation, we presented the design of an airport logistics monitoring system based on WSN and RFID. The monitoring system is mainly composed of four modules: RFID system, wireless sensor monitoring network, communication network and remote monitoring terminal. Wireless sensors mainly include temperature sensors, humidity sensors and smoke sensors. The sensors can collect the environment data such as goods temperature, humidity and smoke and so on. The node sensor module is implemented in such a way that the sensor is connected to the node in a plug-in manner, that is, the sensors are integrated on a sensor panel and the sensor data is transferred through the standard I / O interface between the sensor panel and the node. The system can realize real-time tracking and positioning of airport cargo, collecting cargo information.

  1. A Wireless Fatigue Monitoring System Utilizing a Bio-Inspired Tree Ring Data Tracking Technique

    OpenAIRE

    Bai, Shi; Li, Xuan; Xie, Zhaohui; Zhou, Zhi; Ou, Jinping

    2014-01-01

    Fatigue, a hot scientific research topic for centuries, can trigger sudden failure of critical structures such as aircraft and railway systems, resulting in enormous casualties as well as economic losses. The fatigue life of certain structures is intrinsically random and few monitoring techniques are capable of tracking the full life-cycle fatigue damage. In this paper, a novel in-situ wireless real-time fatigue monitoring system using a bio-inspired tree ring data tracking technique is propo...

  2. Unobtrusive Wireless Monitoring System for Assisted Living and Improving the Wellbeing of Elderly People

    International Nuclear Information System (INIS)

    Browne, Aidan; Duncliffe, Richard; Spillane, James; Walsh, Colin; Hill, Martin; O'Mahony, Tom; O'Reilly, Fergus

    2011-01-01

    A novel system to unobtrusively monitor the wellbeing of elderly people based on their activity patterns is presented. The system uses a wireless ZigBee network to monitor the electrical usage in a subject's home and then sends this data to an Apache server via HTTP from a GPRS unit. The data is logged in a MySQL database where pattern analysis is used to identify periods of significant inactivity. When such an event is identified designated contacts are notified by text message. For subjects requiring higher levels of monitoring a portable health monitor can be integrated incorporating a fall detector and panic button to inform of emergency situations.

  3. An experimental work on wireless structural health monitoring system applying on a submarine model scale

    Science.gov (United States)

    Nugroho, W. H.; Purnomo, N. J. H.; Soedarto, T.

    2016-11-01

    This paper presents an experimental work to monitor the health of submarine hull structures using strain sensors and wireless communication technology. The monitored - submarine hull was built in a hydro elastic model scale 1: 30 with a steel bar backbone and tested on water tank of Indonesian Hydrodynamic Laboratory (IHL). Specifically, this health monitoring system for the submarine model was developed using wireless modems, data communication software and conventional strain sensors. This system was used to monitor the loads on a steel bar backbone of the running submarine model from the edge of the water tank. Commands were issued from a notebook to instruct the health monitoring system to acquire data from sensors mounted externally to the steel bar. Data from measurements made on the structure are then transmitted wirelessly back to a notebook computer for processing and analysis. The results of the tank test have been validated and showed no loss of communication signal over an area of the tank. This work also presents a potential use of involving complete automation of this system with an in-service structure coupled with an on-line warning/damage detection capability.

  4. Implementation of Multiple Host Nodes in Wireless Sensing Node Network System for Landslide Monitoring

    Science.gov (United States)

    Abas, Faizulsalihin bin; Takayama, Shigeru

    2015-02-01

    This paper proposes multiple host nodes in Wireless Sensing Node Network System (WSNNS) for landslide monitoring. As landslide disasters damage monitoring system easily, one major demand in landslide monitoring is the flexibility and robustness of the system to evaluate the current situation in the monitored area. For various reasons WSNNS can provide an important contribution to reach that aim. In this system, acceleration sensors and GPS are deployed in sensing nodes. Location information by GPS, enable the system to estimate network topology and enable the system to perceive the location in emergency by monitoring the node mode. Acceleration sensors deployment, capacitate this system to detect slow mass movement that can lead to landslide occurrence. Once deployed, sensing nodes self-organize into an autonomous wireless ad hoc network. The measurement parameter data from sensing nodes is transmitted to Host System via host node and "Cloud" System. The implementation of multiple host nodes in Local Sensing Node Network System (LSNNS), improve risk- management of the WSNNS for real-time monitoring of landslide disaster.

  5. A Wireless Emergency Telemedicine System for Patients Monitoring and Diagnosis

    Directory of Open Access Journals (Sweden)

    M. Abo-Zahhad

    2014-01-01

    Full Text Available Recently, remote healthcare systems have received increasing attention in the last decade, explaining why intelligent systems with physiology signal monitoring for e-health care are an emerging area of development. Therefore, this study adopts a system which includes continuous collection and evaluation of multiple vital signs, long-term healthcare, and a cellular connection to a medical center in emergency case and it transfers all acquired raw data by the internet in normal case. The proposed system can continuously acquire four different physiological signs, for example, ECG, SpO2, temperature, and blood pressure and further relayed them to an intelligent data analysis scheme to diagnose abnormal pulses for exploring potential chronic diseases. The proposed system also has a friendly web-based interface for medical staff to observe immediate pulse signals for remote treatment. Once abnormal event happened or the request to real-time display vital signs is confirmed, all physiological signs will be immediately transmitted to remote medical server through both cellular networks and internet. Also data can be transmitted to a family member’s mobile phone or doctor’s phone through GPRS. A prototype of such system has been successfully developed and implemented, which will offer high standard of healthcare with a major reduction in cost for our society.

  6. Wireless sensing system for non-invasive monitoring of attributes of contents in a container

    Science.gov (United States)

    Woodard, Stanley E. (Inventor)

    2010-01-01

    A wireless sensing system monitors the level, temperature, magnetic permeability and electrical dielectric constant of a non-gaseous material in a container. An open-circuit electrical conductor is shaped to form a two-dimensional geometric pattern that can store and transfer electrical and magnetic energy. The conductor resonates in the presence of a time-varying magnetic field to generate a harmonic response. The conductor is mounted in an environmentally-sealed housing. A magnetic field response recorder wirelessly transmits the time-varying magnetic field to power the conductor, and wirelessly detects the harmonic response that is an indication of at least one of level of the material in the container, temperature of the material in the container, magnetic permeability of the material in the container, and dielectric constant of the material in the container.

  7. Design of Mine Ventilators Monitoring System Based on Wireless Sensor Network

    Science.gov (United States)

    Fu, Sheng; Song, Haiqiang

    2012-05-01

    A monitoring system for a mine ventilator is designed based on ZigBee wireless sensor network technology in the paper. The system consists of a sink node, sensor nodes, industrial personal computer and several sensors. Sensor nodes communicate with the sink node through the ZigBee wireless sensor network. The sink node connects with the configuration software on the pc via serial port. The system can collect or calculate vibration, temperature, negative pressure, air volume and other information of the mine ventilator. Meanwhile the system accurately monitors operating condition of the ventilator through these parameters. Especially it provides the most original information for potential faults of the ventilator. Therefore, there is no doubt that it improves the efficiency of fault diagnosis.

  8. Design of Mine Ventilators Monitoring System Based on Wireless Sensor Network

    International Nuclear Information System (INIS)

    Fu Sheng; Song Haiqiang

    2012-01-01

    A monitoring system for a mine ventilator is designed based on ZigBee wireless sensor network technology in the paper. The system consists of a sink node, sensor nodes, industrial personal computer and several sensors. Sensor nodes communicate with the sink node through the ZigBee wireless sensor network. The sink node connects with the configuration software on the pc via serial port. The system can collect or calculate vibration, temperature, negative pressure, air volume and other information of the mine ventilator. Meanwhile the system accurately monitors operating condition of the ventilator through these parameters. Especially it provides the most original information for potential faults of the ventilator. Therefore, there is no doubt that it improves the efficiency of fault diagnosis.

  9. Design of Tropical Flowers Environmental Parameters Wireless Monitoring System Based on MSP430

    Directory of Open Access Journals (Sweden)

    Huang Jian-Qing

    2016-01-01

    Full Text Available Considering the importance of real-time monitoring tropical flower environment parameters, the paper designs a wireless monitoring system based on MSP430F149 for tropical flower growing parameters. The proposed system uses sensor nodes to obtain data of temperature, humidity and light intensity, sink node to collect data from sensor nodes through wireless sensor network, and monitoring center to process data downloaded from the sink node through RS232 serial port. The node hardware platform is composed of a MSP430F149 processor, AM2306 and NHZD10AI sensors used to adopt temperature, humidity and light intensity data, and an nRF905 RF chip used to receive and send data. The node software, operated in IAR Embedded Workbench, adopts C Language to do node data collection and process, wireless transmission and serial port communication. The software of monitoring center develops in VB6.0, which can provide vivid and explicit real-time monitoring platform for flower farmers.

  10. Research on continuous environmental radiation monitoring system for NPP based on wireless sensor network

    International Nuclear Information System (INIS)

    Fu Hailong; Jia Mingchun; Peng Guichu

    2010-01-01

    According to the characteristics of environmental gamma radiation monitoring and the requirement of nuclear power plant (NPP) developing, a new continuous environmental radiation monitoring system based on wireless sensor network (WSN) was presented. The basic concepts and application of WSN were introduced firstly. And then the characteristics of the new system were analyzed. At the same time the configuration of the WSN and the whole structure of the system were built. Finally, the crucial techniques used in system designing, such as the design of sensor node, the choice of communication mode and protocol, the time synchronization and space location, the security of the network and the faults tolerance were introduced. (authors)

  11. In vivo wireless biodiagnosis system for long-term bioactivity monitoring network

    Science.gov (United States)

    Chen, Chun-Kuang; Wu, Wen-Jong; Yu, Shih-An; Huang, Jhen-Gang; Lin, Yun-Han; Chen, Yih-Fan; Jin, Ming-Hui; Wen, Chih-Min; Kao, Cheng-Yan; Lin, Shi-Ming; Lu, Shey-Shi; Lin, Chii-Wann; Yen, Jia-Yush; Jaw, Fu-Shan; Chen, Chi-An; Liao, Fang-Jen; Chiu, Nan-Fu; Chien, Chia-Nan; Lee, Chih-Kung

    2004-07-01

    Attempts to develop a Wireless Health Advanced Mobile Bio-diagnostic System (abbreviated as WHAM-BioS) have arisen from the need to monitor the health status of patients under long-term care programs. The proposed WHAM-BioS as presented here was developed by integrating various technologies: nano/MEMS technology, biotechnology, network/communication technology, and information technology. The biochips proposed not only detect certain diseases but will also report any abnormal status readings on the patient to the medical personnel immediately through the network system. Since long-term home care is typically involved, the parameters monitored must be analyzed and traced continuously over a long period of time. To minimize the intrusion to the patients, a wireless sensor embedded within a wireless network is highly recommended. To facilitate the widest possible use of various biochips, a smart sensor node concept was implemented. More specifically, various technologies and components such as built-in micro power generators, energy storage devices, initialization processes, no-waste bio-detection methodologies, embedded controllers, wireless warning signal transmissions, and power/data management were merged and integrated to create this novel technology. The design methodologies and the implementation schemes are detailed. Potential expansions of this newly developed technology to other applications regimes will be presented as well.

  12. A high-resolution mini-microscope system for wireless real-time monitoring.

    Science.gov (United States)

    Wang, Zongjie; Boddeda, Akash; Parker, Benjamin; Samanipour, Roya; Ghosh, Sanjoy; Menard, Frederic; Kim, Keekyoung

    2017-09-04

    Compact, cost-effective and high-performance microscope that enables the real-time imaging of cells and lab-on-a-chip devices is highly demanded for cell biology and biomedical engineering. This paper aims to present the design and application of an inexpensive wireless mini-microscope with resolution up to 2592 × 1944 pixels and speed up to 90 fps. The mini-microscope system was built on a commercial embedded system (Raspberry Pi). We modified a camera module and adopted an inverse dual lens system to obtain the clear field of view and appropriate magnification for tens of micrometer objects. The system was capable of capturing time-lapse images and transferring image data wirelessly. The entire system can be operated wirelessly and cordlessly in a conventional cell culturing incubator. The developed mini-microscope was used to monitor the attachment and proliferation of NIH-3T3 and HEK 293 cells inside an incubator for 50 hours. In addition, the mini-microscope was used to monitor a droplet generation process in a microfluidic device. The high-quality images captured by the mini-microscope enabled us an automated analysis of experimental parameters. The successful applications prove the great potential of the developed mini-microscope for monitoring various biological samples and microfluidic devices. This paper presents the design of a high resolution mini-microscope system that enables the wireless real-time imaging of cells inside the incubator. This system has been verified to be a useful tool to obtain high-quality images and videos for the automated quantitative analysis of biological samples and lab-on-a-chip devices in the long term.

  13. Highly Efficient Wireless Powering for Autonomous Structural Health Monitoring and Test/Evaluation Systems

    Science.gov (United States)

    2016-07-27

    official Department of the Army position, policy or decision, unless so designated by other documentation. 9. SPONSORING/MONITORING AGENCY NAME (S) AND...Internat. Symp. 27-JUN-16, Fajardo, Puerto Rico . : , . Misalignment Study of Cylindrical SCMR Wireless Power Transfer System, IEEE Antennas Propagat...Society Internat. Symp., Fajardo, Puerto Rico , Jun. 26- Jul. 1, 2016. 26-JUN- 16, Fajardo, Puerto Rico . : , . Analysis and modeling of Conformal Strongly

  14. A SMART MONITORING SYSTEM FOR CAMPUS USING ZIGBEE WIRELESS SENSOR NETWORKS

    Directory of Open Access Journals (Sweden)

    Alaa Azmi Allahham

    2018-02-01

    Full Text Available The wireless sensor networks are autonomous sensors that are distributed to monitor environmental and physical conditions and pass them across the network to other areas, which is considered one of the key elements that are used in the applications of smart cities. Therefore, this paper aims to provide a design to add more smart applications to the sanctuary and other compounds based on wireless sensor networks using ZigBee technology. The transition from reliance on the style of surveillance and controlled manually by staff to apply the principles of smart applications through wireless sensor network which provides the ability to getting all the necessary information and capabilities of controlling and monitoring are required to automatically and thus saving the time, effort, and money. The system proposed in this paper to design a smart monitoring system at the campus to control the opening and closing of the doors of many halls and the possibility of including lighting systems and appliances. The results obtained from OPNET program show that the network topology, which used within a ZigBee network vary in terms of performance, thus giving options for designers to build their network and choose technologies that suit their project.

  15. A wirelessly programmable actuation and sensing system for structural health monitoring

    Science.gov (United States)

    Long, James; Büyüköztürk, Oral

    2016-04-01

    Wireless sensor networks promise to deliver low cost, low power and massively distributed systems for structural health monitoring. A key component of these systems, particularly when sampling rates are high, is the capability to process data within the network. Although progress has been made towards this vision, it remains a difficult task to develop and program 'smart' wireless sensing applications. In this paper we present a system which allows data acquisition and computational tasks to be specified in Python, a high level programming language, and executed within the sensor network. Key features of this system include the ability to execute custom application code without firmware updates, to run multiple users' requests concurrently and to conserve power through adjustable sleep settings. Specific examples of sensor node tasks are given to demonstrate the features of this system in the context of structural health monitoring. The system comprises of individual firmware for nodes in the wireless sensor network, and a gateway server and web application through which users can remotely submit their requests.

  16. A design of wireless sensor networks for a power quality monitoring system.

    Science.gov (United States)

    Lim, Yujin; Kim, Hak-Man; Kang, Sanggil

    2010-01-01

    Power grids deal with the business of generation, transmission, and distribution of electric power. Recently, interest in power quality in electrical distribution systems has increased rapidly. In Korea, the communication network to deliver voltage, current, and temperature measurements gathered from pole transformers to remote monitoring centers employs cellular mobile technology. Due to high cost of the cellular mobile technology, power quality monitoring measurements are limited and data gathering intervals are large. This causes difficulties in providing the power quality monitoring service. To alleviate the problems, in this paper we present a communication infrastructure to provide low cost, reliable data delivery. The communication infrastructure consists of wired connections between substations and monitoring centers, and wireless connections between pole transformers and substations. For the wireless connection, we employ a wireless sensor network and design its corresponding data forwarding protocol to improve the quality of data delivery. For the design, we adopt a tree-based data forwarding protocol in order to customize the distribution pattern of the power quality information. We verify the performance of the proposed data forwarding protocol quantitatively using the NS-2 network simulator.

  17. A Design of Wireless Sensor Networks for a Power Quality Monitoring System

    Directory of Open Access Journals (Sweden)

    Sanggil Kang

    2010-11-01

    Full Text Available Power grids deal with the business of generation, transmission, and distribution of electric power. Recently, interest in power quality in electrical distribution systems has increased rapidly. In Korea, the communication network to deliver voltage, current, and temperature measurements gathered from pole transformers to remote monitoring centers employs cellular mobile technology. Due to high cost of the cellular mobile technology, power quality monitoring measurements are limited and data gathering intervals are large. This causes difficulties in providing the power quality monitoring service. To alleviate the problems, in this paper we present a communication infrastructure to provide low cost, reliable data delivery. The communication infrastructure consists of wired connections between substations and monitoring centers, and wireless connections between pole transformers and substations. For the wireless connection, we employ a wireless sensor network and design its corresponding data forwarding protocol to improve the quality of data delivery. For the design, we adopt a tree-based data forwarding protocol in order to customize the distribution pattern of the power quality information. We verify the performance of the proposed data forwarding protocol quantitatively using the NS-2 network simulator.

  18. A novel fully implantable wireless sensor system for monitoring hypertension patients.

    Science.gov (United States)

    Cleven, Nina J; Müntjes, Jutta A; Fassbender, Holger; Urban, Ute; Görtz, Michael; Vogt, Holger; Gräfe, Maik; Göttsche, Thorsten; Penzkofer, Tobias; Schmitz-Rode, Thomas; Mokwa, Wilfried

    2012-11-01

    This paper presents a novel fully implantable wireless sensor system intended for long-term monitoring of hypertension patients, designed for implantation into the femoral artery with computed tomography angiography. It consists of a pressure sensor and a telemetric unit, which is wirelessly connected to an extracorporeal readout station for energy supply and data recording. The system measures intraarterial pressure at a sampling rate of 30 Hz and an accuracy of ±1.0 mmHg over a range of 30-300 mmHg, while consuming up to 300 μW. A special peel-away sheath introducer set was developed to support the implantation procedure. The system delivered stable measurements in initial animal trials in sheep, with results being in good agreement with reference sensor systems.

  19. Wi-GIM system: a new wireless sensor network (WSN) for accurate ground instability monitoring

    Science.gov (United States)

    Mucchi, Lorenzo; Trippi, Federico; Schina, Rosa; Fornaciai, Alessandro; Gigli, Giovanni; Nannipieri, Luca; Favalli, Massimiliano; Marturia Alavedra, Jordi; Intrieri, Emanuele; Agostini, Andrea; Carnevale, Ennio; Bertolini, Giovanni; Pizziolo, Marco; Casagli, Nicola

    2016-04-01

    Landslides are among the most serious and common geologic hazards around the world. Their impact on human life is expected to increase in the next future as a consequence of human-induced climate change as well as the population growth in proximity of unstable slopes. Therefore, developing better performing technologies for monitoring landslides and providing local authorities with new instruments able to help them in the decision making process, is becoming more and more important. The recent progresses in Information and Communication Technologies (ICT) allow us to extend the use of wireless technologies in landslide monitoring. In particular, the developments in electronics components have permitted to lower the price of the sensors and, at the same time, to actuate more efficient wireless communications. In this work we present a new wireless sensor network (WSN) system, designed and developed for landslide monitoring in the framework of EU Wireless Sensor Network for Ground Instability Monitoring - Wi-GIM project (LIFE12 ENV/IT/001033). We show the preliminary performance of the Wi-GIM system after the first period of monitoring on the active Roncovetro Landslide and on a large subsiding area in the neighbourhood of Sallent village. The Roncovetro landslide is located in the province of Reggio Emilia (Italy) and moved an inferred volume of about 3 million cubic meters. Sallent village is located at the centre of the Catalan evaporitic basin in Spain. The Wi-GIM WSN monitoring system consists of three levels: 1) Master/Gateway level coordinates the WSN and performs data aggregation and local storage; 2) Master/Server level takes care of acquiring and storing data on a remote server; 3) Nodes level that is based on a mesh of peripheral nodes, each consisting in a sensor board equipped with sensors and wireless module. The nodes are located in the landslide ground perimeter and are able to create an ad-hoc WSN. The location of each sensor on the ground is

  20. A wireless capsule system with ASIC for monitoring the physiological signals of the human gastrointestinal tract.

    Science.gov (United States)

    Xu, Fei; Yan, Guozheng; Zhao, Kai; Lu, Li; Gao, Jinyang; Liu, Gang

    2014-12-01

    This paper presents the design of a wireless capsule system for monitoring the physiological signals of the human gastrointestinal (GI) tract. The primary components of the system include a wireless capsule, a portable data recorder, and a workstation. Temperature, pH, and pressure sensors; an RF transceiver; a controlling and processing application specific integrated circuit (ASIC); and batteries were applied in a wireless capsule. Decreasing capsule size, improving sensor precision, and reducing power needs were the primary challenges; these were resolved by employing micro sensors, optimized architecture, and an ASIC design that include power management, clock management, a programmable gain amplifier (PGA), an A/D converter (ADC), and a serial peripheral interface (SPI) communication unit. The ASIC has been fabricated in 0.18- μm CMOS technology with a die area of 5.0 mm × 5.0 mm. The wireless capsule integrating the ASIC controller measures Φ 11 mm × 26 mm. A data recorder and a workstation were developed, and 20 cases of human experiments were conducted in hospitals. Preprocessing in the workstation can significantly improve the quality of the data, and 76 original features were determined by mathematical statistics. Based on the 13 optimal features achieved in the evaluation of the features, the clustering algorithm can identify the patients who lack GI motility with a recognition rate reaching 83.3%.

  1. A distributed monitoring system for photovoltaic arrays based on a two-level wireless sensor network

    Science.gov (United States)

    Su, F. P.; Chen, Z. C.; Zhou, H. F.; Wu, L. J.; Lin, P. J.; Cheng, S. Y.; Li, Y. F.

    2017-11-01

    In this paper, a distributed on-line monitoring system based on a two-level wireless sensor network (WSN) is proposed for real time status monitoring of photovoltaic (PV) arrays to support the fine management and maintenance of PV power plants. The system includes the sensing nodes installed on PV modules (PVM), sensing and routing nodes installed on combiner boxes of PV sub-arrays (PVA), a sink node and a data management centre (DMC) running on a host computer. The first level WSN is implemented by the low-cost wireless transceiver nRF24L01, and it is used to achieve single hop communication between the PVM nodes and their corresponding PVA nodes. The second level WSN is realized by the CC2530 based ZigBee network for multi-hop communication among PVA nodes and the sink node. The PVM nodes are used to monitor the PVM working voltage and backplane temperature, and they send the acquired data to their PVA node via the nRF24L01 based first level WSN. The PVA nodes are used to monitor the array voltage, PV string current and environment irradiance, and they send the acquired and received data to the DMC via the ZigBee based second level WSN. The DMC is designed using the MATLAB GUIDE and MySQL database. Laboratory experiment results show that the system can effectively acquire, display, store and manage the operating and environment parameters of PVA in real time.

  2. Design of a telemetry system based on wireless power transmission for physiological parameter monitoring

    Science.gov (United States)

    Jia, Zhiwei; Yan, Guozheng; Zhu, Bingquan

    2015-04-01

    An implanted telemetry system for experimental animals with or without anaesthesia can be used to continuously monitor physiological parameters. This system is significant not only in the study of organisms but also in the evaluation of drug efficacy, artificial organs, and auxiliary devices. The system is composed of a miniature electronic capsule, a wireless power transmission module, a data-recording device, and a processing module. An electrocardiograph, a temperature sensor, and a pressure sensor are integrated in the miniature electronic capsule, in which the signals are transmitted in vitro by wireless communication after filtering, amplification, and A/D sampling. To overcome the power shortage of batteries, a wireless power transmission module based on electromagnetic induction was designed. The transmitting coil of a rectangular-section solenoid and a 3D receiving coil are proposed according to stability and safety constraints. Experiments show that at least 150 mW of power could pick up on the load in a volume of Φ10.5 mm × 11 mm, with a transmission efficiency of 2.56%. Vivisection experiments verified the feasibility of the integrated radio-telemetry system.

  3. Design of a telemetry system based on wireless power transmission for physiological parameter monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Jia, Zhiwei, E-mail: jiayege@hotmail.com [College of Electrical and Information Engineering, Changsha University of Science and Technology, Changsha (China); Yan, Guozheng; Zhu, Bingquan [820 Institute, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai (China)

    2015-04-15

    An implanted telemetry system for experimental animals with or without anaesthesia can be used to continuously monitor physiological parameters. This system is significant not only in the study of organisms but also in the evaluation of drug efficacy, artificial organs, and auxiliary devices. The system is composed of a miniature electronic capsule, a wireless power transmission module, a data-recording device, and a processing module. An electrocardiograph, a temperature sensor, and a pressure sensor are integrated in the miniature electronic capsule, in which the signals are transmitted in vitro by wireless communication after filtering, amplification, and A/D sampling. To overcome the power shortage of batteries, a wireless power transmission module based on electromagnetic induction was designed. The transmitting coil of a rectangular-section solenoid and a 3D receiving coil are proposed according to stability and safety constraints. Experiments show that at least 150 mW of power could pick up on the load in a volume of Φ10.5 mm × 11 mm, with a transmission efficiency of 2.56%. Vivisection experiments verified the feasibility of the integrated radio-telemetry system.

  4. A Self-Health Monitoring System for a Wireless Sensor Network Used in Bridge Diagnosis

    Science.gov (United States)

    Xiao, Haitao; Li, Tansheng; Ogai, Harutoshi

    For bridge diagnosis, the authors developed a wireless sensor network (WSN) to measure and gather the vibration data of bridges. In previous bridge diagnosis experiments, node failure and data packet loss occurred in the WSN, which caused some corruption in the collected data and hence the WSN could not be used to analyze the health status of the bridge. Furthermore, it was always difficult to determine the location of the nodes in order to ensure the link quality, when all the nodes of the WSN deployed for the first time. In this paper, a self-health monitoring system called distributed localized decision monitoring system (DLDMS) is presented to monitor the health of the WSN. Key features of the system include high detection accuracy, high responsiveness, and low energy consumption. Experimental data is given based on experiments at Kitakyushu in Japan.

  5. Study on an agricultural environment monitoring server system using Wireless Sensor Networks.

    Science.gov (United States)

    Hwang, Jeonghwan; Shin, Changsun; Yoe, Hyun

    2010-01-01

    This paper proposes an agricultural environment monitoring server system for monitoring information concerning an outdoors agricultural production environment utilizing Wireless Sensor Network (WSN) technology. The proposed agricultural environment monitoring server system collects environmental and soil information on the outdoors through WSN-based environmental and soil sensors, collects image information through CCTVs, and collects location information using GPS modules. This collected information is converted into a database through the agricultural environment monitoring server consisting of a sensor manager, which manages information collected from the WSN sensors, an image information manager, which manages image information collected from CCTVs, and a GPS manager, which processes location information of the agricultural environment monitoring server system, and provides it to producers. In addition, a solar cell-based power supply is implemented for the server system so that it could be used in agricultural environments with insufficient power infrastructure. This agricultural environment monitoring server system could even monitor the environmental information on the outdoors remotely, and it could be expected that the use of such a system could contribute to increasing crop yields and improving quality in the agricultural field by supporting the decision making of crop producers through analysis of the collected information.

  6. Study on an Agricultural Environment Monitoring Server System using Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Hyun Yoe

    2010-12-01

    Full Text Available This paper proposes an agricultural environment monitoring server system for monitoring information concerning an outdoors agricultural production environment utilizing Wireless Sensor Network (WSN technology. The proposed agricultural environment monitoring server system collects environmental and soil information on the outdoors through WSN-based environmental and soil sensors, collects image information through CCTVs, and collects location information using GPS modules. This collected information is converted into a database through the agricultural environment monitoring server consisting of a sensor manager, which manages information collected from the WSN sensors, an image information manager, which manages image information collected from CCTVs, and a GPS manager, which processes location information of the agricultural environment monitoring server system, and provides it to producers. In addition, a solar cell-based power supply is implemented for the server system so that it could be used in agricultural environments with insufficient power infrastructure. This agricultural environment monitoring server system could even monitor the environmental information on the outdoors remotely, and it could be expected that the use of such a system could contribute to increasing crop yields and improving quality in the agricultural field by supporting the decision making of crop producers through analysis of the collected information.

  7. Development of personal dose monitoring system using wireless data transmission device

    International Nuclear Information System (INIS)

    Inui, Daisuke; Nakashima, Sadao

    2008-01-01

    Radiation workers working in radiation controlled area in nuclear power plants etc., are required to carry a dosimeters by regulation law. The workers are controlled daily on personal exposure dose by reading out the exposure dose information of the dosimeters with an area access control gate installed at the entrance of the radiation controlled area. This type of personal dose monitoring system has a problem that each worker can get his personal dose data only at the entrance of the radiation controlled area several times a day. We developed a system to get the real-time acquisition of personal dose data especially for workers working in a high dose area. This system is generally composed of a dosimeter with a wireless attachment, relay station, and monitor. Some relay stations set in main work places in the radiation controlled area can collect real-time personal dose data of each dosimeter carried by workers at the work place with the relay stations, and transmit it to the monitor to get personal dose data of individual workers. A wireless communication system between dosimeters and relay stations is applied to collect efficiently all personal dose data in the work place. (author)

  8. An Airborne Wireless Sensor System for Near-Real Time Air Pollution Monitoring

    Directory of Open Access Journals (Sweden)

    Orestis EVANGELATOS

    2015-06-01

    Full Text Available Over the last decades with the rapid growth of industrial zones, manufacturing plants and the substantial urbanization, environmental pollution has become a crucial health, environmental and safety concern. In particular, due to the increased emissions of various pollutants caused mainly by human sources, the air pollution problem is elevated in such extent where significant measures need to be taken. Towards the identification and the qualification of that problem, we present in this paper an airborne wireless sensor network system for automated monitoring and measuring of the ambient air pollution. Our proposed system is comprised of a pollution-aware wireless sensor network and unmanned aerial vehicles (UAVs. It is designed for monitoring the pollutants and gases of the ambient air in three-dimensional spaces without the human intervention. In regards to the general architecture of our system, we came up with two schemes and algorithms for an autonomous monitoring of a three-dimensional area of interest. To demonstrate our solution, we deployed the system and we conducted experiments in a real environment measuring air pollutants such as: NH3, CH4, CO2, O2 along with temperature, relative humidity and atmospheric pressure. Lastly, we experimentally evaluated and analyzed the two proposed schemes.

  9. The Wireless Sensor Network (WSN) Based Coal Ash Impoundments Safety Monitoring System

    Science.gov (United States)

    Sun, E. J.; Nieto, A.; Zhang, X. K.

    2017-01-01

    Coal ash impoundments are inevitable production of the coal-fired power plants. All coal ash impoundments in North Carolina USA that tested for groundwater contamination are leaking toxic heavy metals and other pollutants. Coal ash impoundments are toxic sources of dangerous pollutants that pose a danger to human and environmental health if the toxins spread to adjacent surface waters and drinking water wells. Coal ash impoundments failures accidents resulted in serious water contamination along with toxic heavy metals. To improve the design and stability of coal ash impoundments, the Development of a Coal Ash Impoundment Safety Monitoring System (CAISM) was proposed based on the implementation of a wireless sensor network (WSN) with the ability to monitor the stability of coal ash impoundments, water level, and saturation levels on-demand and remotely. The monitoring system based on a robust Ad-hoc network could be adapted to different safety conditions.

  10. A Wireless Fatigue Monitoring System Utilizing a Bio-Inspired Tree Ring Data Tracking Technique

    Directory of Open Access Journals (Sweden)

    Shi Bai

    2014-03-01

    Full Text Available Fatigue, a hot scientific research topic for centuries, can trigger sudden failure of critical structures such as aircraft and railway systems, resulting in enormous casualties as well as economic losses. The fatigue life of certain structures is intrinsically random and few monitoring techniques are capable of tracking the full life-cycle fatigue damage. In this paper, a novel in-situ wireless real-time fatigue monitoring system using a bio-inspired tree ring data tracking technique is proposed. The general framework, methodology, and verification of this intelligent system are discussed in details. The rain-flow counting (RFC method is adopted as the core algorithm which quantifies fatigue damages, and Digital Signal Processing (DSP is introduced as the core module for data collection and analysis. Laboratory test results based on strain gauges and polyvinylidene fluoride (PVDF sensors have shown that the developed intelligent system can provide a reliable quick feedback and early warning of fatigue failure. With the merits of low cost, high accuracy and great reliability, the developed wireless fatigue sensing system can be further applied to mechanical engineering, civil infrastructures, transportation systems, aerospace engineering, etc.

  11. A wireless fatigue monitoring system utilizing a bio-inspired tree ring data tracking technique.

    Science.gov (United States)

    Bai, Shi; Li, Xuan; Xie, Zhaohui; Zhou, Zhi; Ou, Jinping

    2014-03-05

    Fatigue, a hot scientific research topic for centuries, can trigger sudden failure of critical structures such as aircraft and railway systems, resulting in enormous casualties as well as economic losses. The fatigue life of certain structures is intrinsically random and few monitoring techniques are capable of tracking the full life-cycle fatigue damage. In this paper, a novel in-situ wireless real-time fatigue monitoring system using a bio-inspired tree ring data tracking technique is proposed. The general framework, methodology, and verification of this intelligent system are discussed in details. The rain-flow counting (RFC) method is adopted as the core algorithm which quantifies fatigue damages, and Digital Signal Processing (DSP) is introduced as the core module for data collection and analysis. Laboratory test results based on strain gauges and polyvinylidene fluoride (PVDF) sensors have shown that the developed intelligent system can provide a reliable quick feedback and early warning of fatigue failure. With the merits of low cost, high accuracy and great reliability, the developed wireless fatigue sensing system can be further applied to mechanical engineering, civil infrastructures, transportation systems, aerospace engineering, etc.

  12. A ZigBee Wireless Sensor Network for Monitoring an Aquaculture Recirculating System

    Directory of Open Access Journals (Sweden)

    Francisco J. Espinosa-Faller

    2012-06-01

    Full Text Available A ZigBee wireless sensor network was developed for monitoring an experimental aquaculture recirculating system.Temperature, dissolved oxygen, water and air pressure as well as electric current sensors were included in the setup.The high fish densities required in these systems to become economically viable present a case where sensornetworks can be applied to preserve a healthy livestock and to reduce the risk of failures that end up in the loss ofproduction. Modules for reading and transmitting sensor values through a ZigBee wireless network were developedand tested. The modules were installed in an aquaculture recirculating system to transmit sensor values to thenetwork coordinator. A monitoring program was created in order to display and store sensor values and to comparethem with reference limits. An alert is emitted in case reference limits have been reached. E-mail and an SMSmessage alert can also be sent to the cellular phone of the system administrator, so immediate action can be taken. Aweb interface allows Internet access to the sensor values. The present work demonstrates the applicability of ZigBeewireless sensor network technology to aquaculture recirculating systems.

  13. Wireless microwave acoustic sensor system for condition monitoring in power plant environments

    Energy Technology Data Exchange (ETDEWEB)

    Pereira da Cunha, Mauricio [Univ. of Maine, Orno, ME (United States)

    2017-03-30

    This project successfully demonstrated novel wireless microwave acoustic temperature and pressure sensors that can be embedded into equipment and structures located in fossil fuel power plant environments to monitor the condition of components such as steam headers, re-heat lines, water walls, burner tubes, and power turbines. The wireless microwave acoustic sensor technology researched and developed through a collaborative partnership between the University of Maine and Environetix Technologies Corporation can provide a revolutionary impact in the power industry since it is anticipated that the wireless sensors will deliver reliable real-time sensing information in harsh power plant conditions that involve temperatures up to 1100oC and pressures up to 750 psi. The work involved the research and development of novel high temperature harsh environment thin film electrodes, piezoelectric smart microwave acoustic sensing elements, sensor encapsulation materials that were engineered to function over long times up to 1100oC, and a radio-frequency (RF) wireless interrogation electronics unit that are located both inside and outside the high temperature harsh environment. The UMaine / Environetix team have interacted with diverse power plant facilities, and identified as a testbed a local power generation facility, which burns municipal solid waste (MSW), the Penobscot Energy Recovery Company (PERC), Orrington, Maine. In this facility Environetix / UMaine successfully implemented and tested multiple wireless temperature sensor systems within the harsh-environment of the economizer chamber and at the boiler tubes, transferring the developed technology to the power plant environment to perform real-time sensor monitoring experiments under typical operating conditions, as initially targeted in the project. The wireless microwave acoustic sensor technology developed under this project for power plant applications offers several significant advantages including wireless

  14. Wireless Patient Monitoring System Using Point to Multi Point Zigbee Technology

    Directory of Open Access Journals (Sweden)

    Aung Soe Phyo

    2015-06-01

    Full Text Available ABSTRACT A ZigBee sensor network for data acquisition and monitoring is presented in this paper. A ZigBee module is connected via a USB interface to a Microsoft Windows PC which works as a base station in the network. Data collected by sensor devices are sent to the base station PC which is set as Wireless sensorNetwork WSN. ZigBee is low power consumption built-in security method and ratified specifications make it very suitable to be used with medical sensor devices.This application of Zigbee based network consists of two transmitter sections and a receiver section.Each transmitter section consists of heartbeat sensor body temperature sensor microcontroller Zigbee and LCD module.In the proposed system the patients health is continuously monitored and theacquired data is analyzed at a personal computer using Graphical User InterfaceGUI. If a particular patients health parameter is higher or lower the threshold values an alarm system is used to alert the doctor. The aim of this system is to know the condition of patients health by the doctor immediately and to reduce the load of the staff taking care of the patient in the hospitals. In this paper wireless point to multipoint system is used between doctor and patient.

  15. Development of a wireless monitoring system for fracture-critical bridges

    Science.gov (United States)

    Fasl, Jeremiah; Samaras, Vasilis; Reichenbach, Matthew; Helwig, Todd; Wood, Sharon L.; Potter, David; Lindenberg, Richard; Frank, Karl

    2011-04-01

    This paper provides a summary of ongoing research sponsored by the National Institute of Standards and Technology (NIST) that seeks to improve inspection practices for steel bridges by providing the technology and methodology for real-time monitoring. In order to reduce the time and cost of installing a monitoring system, the research team elected to use wireless communications within the sensor network. The investigation considered both IEEE 802.11 and IEEE 802.15.4 communications protocols and identified the latter as more practical for bridge monitoring applications. Studies were conducted to investigate possible improvements in the network performance using high-gain antennas. Results from experiments conducted outside and on bridges with different antennas are presented in this paper. Although some benefits were observed using high-gain antennas, the inconsistent performance and higher cost relative to the current stock, omni-directional antennas does not justify their use.

  16. A LIGHTNING CONDUCTOR MONITORING SYSTEM BASED ON A WIRELESS SENSOR NETWORK

    Directory of Open Access Journals (Sweden)

    Jan Mikeš

    2013-12-01

    Full Text Available Automated heating, lighting and irrigation systems are nowadays standard features of industrial and commercial buildings, and are also increasingly found in ordinary housing. In addition to the benefits of user comfort, automated technology for buildings saves energy and, above all, it provides enhanced protection against leakage of water and hazardous gases, and against fire hazards. Lightning strikes are a natural phenomenon that poses a significant threat to the safety of buildings. The statistics of the Fire and Rescue Service of the Czech Republic show that buildings are in many cases inadequately protected against lightning strikes, or that systems have been damaged by previous strikes. A subsequent strike can occur within the period between regular inspections, which are normally made at intervals of 2–4 years. Over the whole of Europe, thousands of buildings are subjected to the effects of direct lightning strikes each year. This paper presents ways to carry out wireless monitoring of lightning strikes on buildings and to deal with their impact on lightning conductors. By intervening promptly (disconnecting the power supply, disconnecting the gas supply, sending an engineer to inspect the structure, submitting a report to ARC, etc. we can prevent many downstream effects of direct lightning strikes on buildings (fires, electric shocks, etc. This paper introduces a way to enhance contemporary home automation systems for monitoring lightning strikes based on wireless sensor networks technology.

  17. A Comparative Field Monitoring of Column Shortenings in Tall Buildings Using Wireless and Wired Sensor Network Systems

    Directory of Open Access Journals (Sweden)

    Sungho Lee

    2016-01-01

    Full Text Available A comparative field measurement for column shortening of tall buildings is presented in this study, with a focus on the reliability and stability of a wireless sensor network. A wireless sensor network was used for monitoring the column shortenings of a 58-story building under construction. The wireless sensor network, which was composed of sensor and master nodes, employed the ultra-high-frequency band and CDMA communication methods. To evaluate the reliability and stability of the wireless sensor network system, the column shortenings were also measured using a conventional wired monitoring system. Two vibration wire gauges were installed in each of the selected 7 columns and 3 walls. Measurements for selected columns and walls were collected for 270 days after casting of the concrete. The results measured by the wireless sensor network were compared with the results of the conventional method. The strains and column shortenings measured using both methods showed good agreement for all members. It was verified that the column shortenings of tall buildings could be monitored using the wireless sensor network system with its reliability and stability.

  18. An Ambulatory System for Gait Monitoring Based on Wireless Sensorized Insoles

    Science.gov (United States)

    González, Iván; Fontecha, Jesús; Hervás, Ramón; Bravo, José

    2015-01-01

    A new gait phase detection system for continuous monitoring based on wireless sensorized insoles is presented. The system can be used in gait analysis mobile applications, and it is designed for real-time demarcation of gait phases. The system employs pressure sensors to assess the force exerted by each foot during walking. A fuzzy rule-based inference algorithm is implemented on a smartphone and used to detect each of the gait phases based on the sensor signals. Additionally, to provide a solution that is insensitive to perturbations caused by non-walking activities, a probabilistic classifier is employed to discriminate walking forward from other low-level activities, such as turning, walking backwards, lateral walking, etc. The combination of these two algorithms constitutes the first approach towards a continuous gait assessment system, by means of the avoidance of non-walking influences. PMID:26184199

  19. Wireless Intelligent Monitoring and Control System of Greenhouse Temperature Based on Fuzzy-PID

    Directory of Open Access Journals (Sweden)

    Mei ZHAN

    2014-03-01

    Full Text Available Control effect is not ideal for traditional control method and wired control system, since greenhouse temperature has such characteristics as nonlinear and longtime lag. Therefore, Fuzzy- PID control method was introduced and radio frequency chip CC1110 was applied to design greenhouse wireless intelligent monitoring and control system. The design of the system, the component of nodes and the developed intelligent management software system were explained in this paper. Then describe the design of the control algorithm Fuzzy-PID. By simulating the new method in Matlab software, the results showed that Fuzzy-PID method small overshoot and better dynamic performance compared with general PID control. It has shorter settling time and no steady-state error compared with fuzzy control. It can meet requirements in greenhouse production.

  20. An Ambulatory System for Gait Monitoring Based on Wireless Sensorized Insoles

    Directory of Open Access Journals (Sweden)

    Iván González

    2015-07-01

    Full Text Available A new gait phase detection system for continuous monitoring based on wireless sensorized insoles is presented. The system can be used in gait analysis mobile applications, and it is designed for real-time demarcation of gait phases. The system employs pressure sensors to assess the force exerted by each foot during walking. A fuzzy rule-based inference algorithm is implemented on a smartphone and used to detect each of the gait phases based on the sensor signals. Additionally, to provide a solution that is insensitive to perturbations caused by non-walking activities, a probabilistic classifier is employed to discriminate walking forward from other low-level activities, such as turning, walking backwards, lateral walking, etc. The combination of these two algorithms constitutes the first approach towards a continuous gait assessment system, by means of the avoidance of non-walking influences.

  1. Compact mobile-reader system for two-way wireless communication, tracking and status monitoring for transport safety and security

    Science.gov (United States)

    Tsai, Han-Chung; Liu, Yung Y.; Lee, Hok L.; Craig, Brian; Byrne, Kevin; Mittal, Ketan; Scherer, Justin C.

    2016-12-06

    A system for monitoring a plurality radio frequency identification tags is described. The system uses at least one set of radio frequency identification tags. Each tag is attached to a container and includes several sensors for detecting physical conditions of said container. The system includes at least one autonomous intermediate reader in wireless communication with the frequency identification tags. The intermediate reader includes external wireless communication system, intermediate reader logic controller, and a self-contained rechargeable power supply. The system uses a central status reporting system in communication the intermediate reader.

  2. Study on Wireless Network Communication in Stage Hydraulic Monitoring System Based on Internet of Things

    Directory of Open Access Journals (Sweden)

    Yue Dong

    2015-01-01

    Full Text Available A novel stage hydraulic monitoring system based on Internet of Things (IoT is proposed in this paper. Compared with the traditional wired system, the proposed system is a flexible working method and can save the cost. Furthermore, it has the low power consumption, high safety, and large scale network. The real-time pressure and flow data can be collected by using the nodes in ZigBee network. The fault detection and diagnosis process was used in this study, which was facilitated by measuring pressure of flow. When the monitored data exceeds the normal range, some failure may occur in the stage hydraulic system. If any failure occurs in the circuit, the maintainers can be informed immediately, which can greatly improve maintenance efficiency, ensuring the failure to be eliminated in time. Meanwhile, we can take advantage of wireless sensor network (WSN to connect the multiple loops and then monitor the loops by using ZigBee technology, which greatly improves the efficiency of monitoring.

  3. A Wireless Electronic Esophageal Stethoscope for Continuous Monitoring of Cardiovascular and Respiratory Systems during Anaesthesia

    Directory of Open Access Journals (Sweden)

    Parsaei H.

    2017-03-01

    Full Text Available Background: The basic requirements for monitoring anesthetized patients during surgery are assessing cardiac and respiratory function. Esophageal stethoscopes have been developed for this purpose, but these devices may not provide clear heart and lung sound due to existence of various noises in operating rooms. In addition, the stethoscope is not applicable for continues monitoring, and it is unsuitable for observing inaccessible patients in some conditions such as during CT scan. Objective: A wireless electronic esophageal stethoscope is designed for continues auscultation of heart and lung sounds in anesthetized patients. The system consists of a transmitter and a receiver. The former acquires, amplifies and transmits the acquired sound signals to the latter via a frequency modulation transmitter. The receiver demodulates, amplifies, and delivers the received signal to a headphone to be heard by anesthesiologist. Results: The usability and effectiveness of the designed system was qualitatively evaluated by 5 anesthesiologists in Namazi Hospital and Shahid Chamran Hospital, Shiraz, Iran on 30 patients in several operating rooms in different conditions; e.g., when electro surgery instruments are working. Fortunately, the experts on average ranked good quality for the heard heart and lung sounds and very good on the user friendly being of the instrument. Conclusion: Evaluation results demonstrate that the developed system is capable of capturing and transmitting heart and lung sounds successfully. Therefore, it can be used to continuously monitor anesthetized patients’ cardiac and respiratory function. Since via the instrument wireless auscultation is possible, it could be suitable for observing inaccessible patients in several conditions such as during CT scan.

  4. A system for Real time monitoring of buildings with cultural heritage importance using wireless sensor networks

    Science.gov (United States)

    Hloupis, G.; Vallianatos, F.

    2009-04-01

    Simultaneously real time monitoring of buildings usually requires several different sensors. Even if the number of monitoring items is small the cost of monitoring devices plus the telemetry needed could increased in excessive values. For this reason the use of autonomous sensors is indicated. These devices are self contained embedded computers capable of hosting several sensors and communication boards and providing local computing processing. The acquisition of high resolution physical quantities using low power wireless sensor nodes consist a Wireless Sensor Network (WSN). By using these systems it is easy to collect different data from different clusters of sensors using low cost sensor nodes. The main concern for these approaches is the optimization of data acquisition regarding the management of energy capacity and available radio bandwidth. In this study we propose an optimized management scheme for monitoring historical buildings at the city of Chania using sensor nodes connected to high resolution uniaxial and triaxial embedded accelerometers. A number of sensor nodes are placed in every building. Since an event is not a linear process regarding its time occurrence and the produced results in each sensor node (due to sensor temporary malfunction or existence of noise) we followed a non linear approach. The proposed management scheme focus on the optimum self configuration of the network in a hybrid star topology. It is based on public available TinyOS and produces hierarchical rules in order to have at least one central node (the one that sends all the data to the remote data centre). Example policies that demonstrated is thresholding, noise removal, triggering and event correlation which are implemented using wavelet transform techniques. Acknowledgements This work is partially supported by SE-RISK Project (INTERREG III, STRAND B ARCHIMED/Axis: Integrated and Sustainable Management of Cultural and Natural Resources and of Landscape and Risk Management)

  5. An Integrated Environment Monitoring System for Underground Coal Mines—Wireless Sensor Network Subsystem with Multi-Parameter Monitoring

    Science.gov (United States)

    Zhang, Yu; Yang, Wei; Han, Dongsheng; Kim, Young-Il

    2014-01-01

    Environment monitoring is important for the safety of underground coal mine production, and it is also an important application of Wireless Sensor Networks (WSNs). We put forward an integrated environment monitoring system for underground coal mine, which uses the existing Cable Monitoring System (CMS) as the main body and the WSN with multi-parameter monitoring as the supplementary technique. As CMS techniques are mature, this paper mainly focuses on the WSN and the interconnection between the WSN and the CMS. In order to implement the WSN for underground coal mines, two work modes are designed: periodic inspection and interrupt service; the relevant supporting technologies, such as routing mechanism, collision avoidance, data aggregation, interconnection with the CMS, etc., are proposed and analyzed. As WSN nodes are limited in energy supply, calculation and processing power, an integrated network management scheme is designed in four aspects, i.e., topology management, location management, energy management and fault management. Experiments were carried out both in a laboratory and in a real underground coal mine. The test results indicate that the proposed integrated environment monitoring system for underground coal mines is feasible and all designs performed well as expected. PMID:25051037

  6. An integrated environment monitoring system for underground coal mines--Wireless Sensor Network subsystem with multi-parameter monitoring.

    Science.gov (United States)

    Zhang, Yu; Yang, Wei; Han, Dongsheng; Kim, Young-Il

    2014-07-21

    Environment monitoring is important for the safety of underground coal mine production, and it is also an important application of Wireless Sensor Networks (WSNs). We put forward an integrated environment monitoring system for underground coal mine, which uses the existing Cable Monitoring System (CMS) as the main body and the WSN with multi-parameter monitoring as the supplementary technique. As CMS techniques are mature, this paper mainly focuses on the WSN and the interconnection between the WSN and the CMS. In order to implement the WSN for underground coal mines, two work modes are designed: periodic inspection and interrupt service; the relevant supporting technologies, such as routing mechanism, collision avoidance, data aggregation, interconnection with the CMS, etc., are proposed and analyzed. As WSN nodes are limited in energy supply, calculation and processing power, an integrated network management scheme is designed in four aspects, i.e., topology management, location management, energy management and fault management. Experiments were carried out both in a laboratory and in a real underground coal mine. The test results indicate that the proposed integrated environment monitoring system for underground coal mines is feasible and all designs performed well as expected.

  7. Research on a Banknote Printing Wastewater Monitoring System based on Wireless Sensor Network

    Energy Technology Data Exchange (ETDEWEB)

    Li, B B; Yuan, Z F [School of Manufacture Sci.and Eng., Sichuan University, Chengdu 610065 (China)

    2006-10-15

    In this paper, a banknote printing wastewater monitoring system based on WSN is presented in line with the system demands and actual condition of the worksite for a banknote printing factory. In Physical Layer, the network node is a nRF9e5-centric embedded instrument, which can realize the multi-function such as data collecting, status monitoring, wireless data transmission and so on. Limited by the computing capability, memory capability, communicating energy and others factors, it is impossible for the node to get every detail information of the network, so the communication protocol on WSN couldn't be very complicated. The competitive-based MACA (Multiple Access with Collision Avoidance) Protocol is introduced in MAC, which can decide the communication process and working mode of the nodes, avoid the collision of data transmission, hidden and exposed station problem of nodes. On networks layer, the routing protocol in charge of the transmitting path of the data, the networks topology structure is arranged based on address assignation. Accompanied with some redundant nodes, the network performances stabile and expandable. The wastewater monitoring system is a tentative practice of WSN theory in engineering. Now, the system has passed test and proved efficiently.

  8. Research on a Banknote Printing Wastewater Monitoring System based on Wireless Sensor Network

    Science.gov (United States)

    Li, B. B.; Yuan, Z. F.

    2006-10-01

    In this paper, a banknote printing wastewater monitoring system based on WSN is presented in line with the system demands and actual condition of the worksite for a banknote printing factory. In Physical Layer, the network node is a nRF9e5-centric embedded instrument, which can realize the multi-function such as data collecting, status monitoring, wireless data transmission and so on. Limited by the computing capability, memory capability, communicating energy and others factors, it is impossible for the node to get every detail information of the network, so the communication protocol on WSN couldn't be very complicated. The competitive-based MACA (Multiple Access with Collision Avoidance) Protocol is introduced in MAC, which can decide the communication process and working mode of the nodes, avoid the collision of data transmission, hidden and exposed station problem of nodes. On networks layer, the routing protocol in charge of the transmitting path of the data, the networks topology structure is arranged based on address assignation. Accompanied with some redundant nodes, the network performances stabile and expandable. The wastewater monitoring system is a tentative practice of WSN theory in engineering. Now, the system has passed test and proved efficiently.

  9. Research on a Banknote Printing Wastewater Monitoring System based on Wireless Sensor Network

    International Nuclear Information System (INIS)

    Li, B B; Yuan, Z F

    2006-01-01

    In this paper, a banknote printing wastewater monitoring system based on WSN is presented in line with the system demands and actual condition of the worksite for a banknote printing factory. In Physical Layer, the network node is a nRF9e5-centric embedded instrument, which can realize the multi-function such as data collecting, status monitoring, wireless data transmission and so on. Limited by the computing capability, memory capability, communicating energy and others factors, it is impossible for the node to get every detail information of the network, so the communication protocol on WSN couldn't be very complicated. The competitive-based MACA (Multiple Access with Collision Avoidance) Protocol is introduced in MAC, which can decide the communication process and working mode of the nodes, avoid the collision of data transmission, hidden and exposed station problem of nodes. On networks layer, the routing protocol in charge of the transmitting path of the data, the networks topology structure is arranged based on address assignation. Accompanied with some redundant nodes, the network performances stabile and expandable. The wastewater monitoring system is a tentative practice of WSN theory in engineering. Now, the system has passed test and proved efficiently

  10. Compact Wireless BioMetric Monitoring and Real Time Processing System, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — BioWATCH is a modular ambulatory compact wireless biomedical data acquisition system. More specifically, it is a data acquisition unit for acquiring signals from...

  11. Design and Implementation of Mobile Car with Wireless Video Monitoring System Based on STC89C52

    Directory of Open Access Journals (Sweden)

    Yang Hong

    2014-05-01

    Full Text Available With the rapid development of wireless networks and image acquisition technology, wireless video transmission technology has been widely applied in various communication systems. The traditional video monitoring technology is restricted by some conditions such as layout, environmental, the relatively large volume, cost, and so on. In view of this problem, this paper proposes a method that the mobile car can be equipped with wireless video monitoring system. The mobile car which has some functions such as detection, video acquisition and wireless data transmission is developed based on STC89C52 Micro Control Unit (MCU and WiFi router. Firstly, information such as image, temperature and humidity is processed by the MCU and communicated with the router, and then returned by the WiFi router to the host computer phone. Secondly, control information issued by the host computer phone is received by WiFi router and sent to the MCU, and then the MCU sends relevant instructions. Lastly, the wireless transmission of video images and the remote control of the car are realized. The results prove that the system has some features such as simple operation, high stability, fast response, low cost, strong flexibility, widely application, and so on. The system has certain practical value and popularization value.

  12. A Survey of Wireless Sensor Network Based Air Pollution Monitoring Systems.

    Science.gov (United States)

    Yi, Wei Ying; Lo, Kin Ming; Mak, Terrence; Leung, Kwong Sak; Leung, Yee; Meng, Mei Ling

    2015-12-12

    The air quality in urban areas is a major concern in modern cities due to significant impacts of air pollution on public health, global environment, and worldwide economy. Recent studies reveal the importance of micro-level pollution information, including human personal exposure and acute exposure to air pollutants. A real-time system with high spatio-temporal resolution is essential because of the limited data availability and non-scalability of conventional air pollution monitoring systems. Currently, researchers focus on the concept of The Next Generation Air Pollution Monitoring System (TNGAPMS) and have achieved significant breakthroughs by utilizing the advance sensing technologies, MicroElectroMechanical Systems (MEMS) and Wireless Sensor Network (WSN). However, there exist potential problems of these newly proposed systems, namely the lack of 3D data acquisition ability and the flexibility of the sensor network. In this paper, we classify the existing works into three categories as Static Sensor Network (SSN), Community Sensor Network (CSN) and Vehicle Sensor Network (VSN) based on the carriers of the sensors. Comprehensive reviews and comparisons among these three types of sensor networks were also performed. Last but not least, we discuss the limitations of the existing works and conclude the objectives that we want to achieve in future systems.

  13. Integration of a prototype wireless communication system with micro-electromechanical temperature and humidity sensor for concrete pavement health monitoring

    Directory of Open Access Journals (Sweden)

    Shuo Yang

    2015-12-01

    Full Text Available In recent years, structural health monitoring and management (SHMM has become a popular approach and is considered essential for achieving well-performing, long-lasting, sustainable transportation infrastructure systems. Key requirements in ideal SHMM of road infrastructure include long-term, continuous, and real-time monitoring of pavement response and performance under various pavement geometry-materials-loading configurations and environmental conditions. With advancements in wireless technologies, integration of wireless communications into sensing device is considered an alternate and superior solution to existing time- and labor-intensive wired sensing systems in meeting the requirements of an ideal SHMM. This study explored the development and integration of a wireless communications sub-system into a commercial off-the-shelf micro-electromechanical sensor-based concrete pavement monitoring system. A success-rate test was performed after the wireless transmission system was buried in the concrete slab, and the test results indicated that the system was able to provide reliable communications at a distance of more than 46 m (150 feet. This will be a useful feature for highway engineers performing routine pavement scans from the pavement shoulder without the need for traffic control or road closure.

  14. Structural health monitoring using wireless sensor networks

    Science.gov (United States)

    Sreevallabhan, K.; Nikhil Chand, B.; Ramasamy, Sudha

    2017-11-01

    Monitoring and analysing health of large structures like bridges, dams, buildings and heavy machinery is important for safety, economical, operational, making prior protective measures, and repair and maintenance point of view. In recent years there is growing demand for such larger structures which in turn make people focus more on safety. By using Microelectromechanical Systems (MEMS) Accelerometer we can perform Structural Health Monitoring by studying the dynamic response through measure of ambient vibrations and strong motion of such structures. By using Wireless Sensor Networks (WSN) we can embed these sensors in wireless networks which helps us to transmit data wirelessly thus we can measure the data wirelessly at any remote location. This in turn reduces heavy wiring which is a cost effective as well as time consuming process to lay those wires. In this paper we developed WSN based MEMS-accelerometer for Structural to test the results in the railway bridge near VIT University, Vellore campus.

  15. Ground Control Point - Wireless System Network for UAV-based environmental monitoring applications

    Science.gov (United States)

    Mejia-Aguilar, Abraham

    2016-04-01

    In recent years, Unmanned Aerial Vehicles (UAV) have seen widespread civil applications including usage for survey and monitoring services in areas such as agriculture, construction and civil engineering, private surveillance and reconnaissance services and cultural heritage management. Most aerial monitoring services require the integration of information acquired during the flight (such as imagery) with ground-based information (such as GPS information or others) for improved ground truth validation. For example, to obtain an accurate 3D and Digital Elevation Model based on aerial imagery, it is necessary to include ground-based information of coordinate points, which are normally acquired with surveying methods based on Global Position Systems (GPS). However, GPS surveys are very time consuming and especially for longer time series of monitoring data repeated GPS surveys are necessary. In order to improve speed of data collection and integration, this work presents an autonomous system based on Waspmote technologies build on single nodes interlinked in a Wireless Sensor Network (WSN) star-topology for ground based information collection and later integration with surveying data obtained by UAV. Nodes are designed to be visible from the air, to resist extreme weather conditions with low-power consumption. Besides, nodes are equipped with GPS as well as Inertial Measurement Unit (IMU), accelerometer, temperature and soil moisture sensors and thus provide significant advantages in a broad range of applications for environmental monitoring. For our purpose, the WSN transmits the environmental data with 3G/GPRS to a database on a regular time basis. This project provides a detailed case study and implementation of a Ground Control Point System Network for UAV-based vegetation monitoring of dry mountain grassland in the Matsch valley, Italy.

  16. Implementation and Analysis of a Wireless Sensor Network-Based Pet Location Monitoring System for Domestic Scenarios

    Directory of Open Access Journals (Sweden)

    Erik Aguirre

    2016-08-01

    Full Text Available The flexibility of new age wireless networks and the variety of sensors to measure a high number of variables, lead to new scenarios where anything can be monitored by small electronic devices, thereby implementing Wireless Sensor Networks (WSN. Thanks to ZigBee, RFID or WiFi networks the precise location of humans or animals as well as some biological parameters can be known in real-time. However, since wireless sensors must be attached to biological tissues and they are highly dispersive, propagation of electromagnetic waves must be studied to deploy an efficient and well-working network. The main goal of this work is to study the influence of wireless channel limitations in the operation of a specific pet monitoring system, validated at physical channel as well as at functional level. In this sense, radio wave propagation produced by ZigBee devices operating at the ISM 2.4 GHz band is studied through an in-house developed 3D Ray Launching simulation tool, in order to analyze coverage/capacity relations for the optimal system selection as well as deployment strategy in terms of number of transceivers and location. Furthermore, a simplified dog model is developed for simulation code, considering not only its morphology but also its dielectric properties. Relevant wireless channel information such as power distribution, power delay profile and delay spread graphs are obtained providing an extensive wireless channel analysis. A functional dog monitoring system is presented, operating over the implemented ZigBee network and providing real time information to Android based devices. The proposed system can be scaled in order to consider different types of domestic pets as well as new user based functionalities.

  17. Implementation and Analysis of a Wireless Sensor Network-Based Pet Location Monitoring System for Domestic Scenarios.

    Science.gov (United States)

    Aguirre, Erik; Lopez-Iturri, Peio; Azpilicueta, Leyre; Astrain, José Javier; Villadangos, Jesús; Santesteban, Daniel; Falcone, Francisco

    2016-08-30

    The flexibility of new age wireless networks and the variety of sensors to measure a high number of variables, lead to new scenarios where anything can be monitored by small electronic devices, thereby implementing Wireless Sensor Networks (WSN). Thanks to ZigBee, RFID or WiFi networks the precise location of humans or animals as well as some biological parameters can be known in real-time. However, since wireless sensors must be attached to biological tissues and they are highly dispersive, propagation of electromagnetic waves must be studied to deploy an efficient and well-working network. The main goal of this work is to study the influence of wireless channel limitations in the operation of a specific pet monitoring system, validated at physical channel as well as at functional level. In this sense, radio wave propagation produced by ZigBee devices operating at the ISM 2.4 GHz band is studied through an in-house developed 3D Ray Launching simulation tool, in order to analyze coverage/capacity relations for the optimal system selection as well as deployment strategy in terms of number of transceivers and location. Furthermore, a simplified dog model is developed for simulation code, considering not only its morphology but also its dielectric properties. Relevant wireless channel information such as power distribution, power delay profile and delay spread graphs are obtained providing an extensive wireless channel analysis. A functional dog monitoring system is presented, operating over the implemented ZigBee network and providing real time information to Android based devices. The proposed system can be scaled in order to consider different types of domestic pets as well as new user based functionalities.

  18. A Technical Evaluation of Wireless Connectivity from Patient Monitors to an Anesthesia Information Management System During Intensive Care Unit Surgery.

    Science.gov (United States)

    Simpao, Allan F; Galvez, Jorge A; England, W Randall; Wartman, Elicia C; Scott, James H; Hamid, Michael M; Rehman, Mohamed A; Epstein, Richard H

    2016-02-01

    Surgical procedures performed at the bedside in the neonatal intensive care unit (NICU) at The Children's Hospital of Philadelphia were documented using paper anesthesia records in contrast to the operating rooms, where an anesthesia information management system (AIMS) was used for all cases. This was largely because of logistical problems related to connecting cables between the bedside monitors and our portable AIMS workstations. We implemented an AIMS for documentation in the NICU using wireless adapters to transmit data from bedside monitoring equipment to a portable AIMS workstation. Testing of the wireless AIMS during simulation in the presence of an electrosurgical generator showed no evidence of interference with data transmission. Thirty NICU surgical procedures were documented via the wireless AIMS. Two wireless cases exhibited brief periods of data loss; one case had an extended data gap because of adapter power failure. In comparison, in a control group of 30 surgical cases in which wired connections were used, there were no data gaps. The wireless AIMS provided a simple, unobtrusive, portable alternative to paper records for documenting anesthesia records during NICU bedside procedures.

  19. The Trauma Patient Tracking System: implementing a wireless monitoring infrastructure for emergency response.

    Science.gov (United States)

    Maltz, Jonathan; C Ng, Thomas; Li, Dustin; Wang, Jian; Wang, Kang; Bergeron, William; Martin, Ron; Budinger, Thomas

    2005-01-01

    In mass trauma situations, emergency personnel are challenged with the task of prioritizing the care of many injured victims. We propose a trauma patient tracking system (TPTS) where first-responders tag all patients with a wireless monitoring device that continuously reports the location of each patient. The system can be used not only to prioritize patient care, but also to determine the time taken for each patient to receive treatment. This is important in training emergency personnel and in identifying bottlenecks in the disaster response process. In situations where biochemical agents are involved, a TPTS may be employed to determine sites of cross-contamination. In order to track patient location in both outdoor and indoor environments, we employ both Global Positioning System (GPS) and Television/ Radio Frequency (TVRF) technologies. Each patient tag employs IEEE 802.11 (Wi-Fi)/TCP/IP networking to communicate with a central server via any available Wi-Fi basestation. A key component to increase TPTS fault-tolerance is a mobile Wi-Fi basestation that employs redundant Internet connectivity to ensure that tags at the disaster scene can send information to the central server even when local infrastructure is unavailable for use. We demonstrate the robustness of the system in tracking multiple patients in a simulated trauma situation in an urban environment.

  20. A Wireless Posture Monitoring System for Personalized Home-Based Rehabilitation

    Directory of Open Access Journals (Sweden)

    Pedro Macedo

    2015-06-01

    Full Text Available We live in an aging society, an issue that will be exacerbated in the coming decades, due to low birth rates and increasing life expectancy. With the decline in physical and cognitive functions with age, it is of the utmost importance to maintain regular physical activity, in order to preserve an individual’s mobility, motor capabilities and coordination. Within this context, this paper describes the development of a wireless sensor network and its application in a human motion capture system based on wearable inertial and magnetic sensors. The goal is to enable, through continuous real- time monitoring, the creation of a personalized home-based rehabilitation system for the elderly population and/or injured people. Within this system, the user can benefit from an assisted mode, in which their movements can be compared to a reference motion model of the same movements, resulting in visual feedback alerts given by the application. This motion model can be created previously, in a ‘learning phase’, under supervision of a caregiver.

  1. Ultra Secure High Reliability Wireless Radiation Monitor

    International Nuclear Information System (INIS)

    Cordaro, J.; Shull, D.; Farrar, M.; Reeves, G.

    2011-01-01

    Radiation monitoring in nuclear facilities is essential to safe operation of the equipment as well as protecting personnel. In specific, typical air monitoring of radioactive gases or particulate involves complex systems of valves, pumps, piping and electronics. The challenge is to measure a representative sample in areas that are radioactively contaminated. Running cables and piping to these locations is very expensive due to the containment requirements. Penetration into and out of an airborne or containment area is complex and costly. The process rooms are built with thick rebar-enforced concrete walls with glove box containment chambers inside. Figure 1 shows high temperature radiation resistance cabling entering the top of a typical glove box. In some case, the entire processing area must be contained in a 'hot cell' where the only access into the chamber is via manipulators. An example is shown in Figure 2. A short range wireless network provides an ideal communication link for transmitting the data from the radiation sensor to a 'clean area', or area absent of any radiation fields or radioactive contamination. Radiation monitoring systems that protect personnel and equipment must meet stringent codes and standards due to the consequences of failure. At first glance a wired system would seem more desirable. Concerns with wireless communication include latency, jamming, spoofing, man in the middle attacks, and hacking. The Department of Energy's Savannah River National Laboratory (SRNL) has developed a prototype wireless radiation air monitoring system that address many of the concerns with wireless and allows quick deployment in radiation and contamination areas. It is stand alone and only requires a standard 120 VAC, 60 Hz power source. It is designed to be mounted or portable. The wireless link uses a National Security Agency (NSA) Suite B compliant wireless network from Fortress Technologies that is considered robust enough to be used for classified data

  2. ULTRA SECURE HIGH RELIABILITY WIRELESS RADIATION MONITOR

    Energy Technology Data Exchange (ETDEWEB)

    Cordaro, J.; Shull, D.; Farrar, M.; Reeves, G.

    2011-08-03

    Radiation monitoring in nuclear facilities is essential to safe operation of the equipment as well as protecting personnel. In specific, typical air monitoring of radioactive gases or particulate involves complex systems of valves, pumps, piping and electronics. The challenge is to measure a representative sample in areas that are radioactively contaminated. Running cables and piping to these locations is very expensive due to the containment requirements. Penetration into and out of an airborne or containment area is complex and costly. The process rooms are built with thick rebar-enforced concrete walls with glove box containment chambers inside. Figure 1 shows high temperature radiation resistance cabling entering the top of a typical glove box. In some case, the entire processing area must be contained in a 'hot cell' where the only access into the chamber is via manipulators. An example is shown in Figure 2. A short range wireless network provides an ideal communication link for transmitting the data from the radiation sensor to a 'clean area', or area absent of any radiation fields or radioactive contamination. Radiation monitoring systems that protect personnel and equipment must meet stringent codes and standards due to the consequences of failure. At first glance a wired system would seem more desirable. Concerns with wireless communication include latency, jamming, spoofing, man in the middle attacks, and hacking. The Department of Energy's Savannah River National Laboratory (SRNL) has developed a prototype wireless radiation air monitoring system that address many of the concerns with wireless and allows quick deployment in radiation and contamination areas. It is stand alone and only requires a standard 120 VAC, 60 Hz power source. It is designed to be mounted or portable. The wireless link uses a National Security Agency (NSA) Suite B compliant wireless network from Fortress Technologies that is considered robust enough to be

  3. Neural activity based biofeedback therapy for Autism spectrum disorder through wearable wireless textile EEG monitoring system

    Science.gov (United States)

    Sahi, Ahna; Rai, Pratyush; Oh, Sechang; Ramasamy, Mouli; Harbaugh, Robert E.; Varadan, Vijay K.

    2014-04-01

    Mu waves, also known as mu rhythms, comb or wicket rhythms are synchronized patterns of electrical activity involving large numbers of neurons, in the part of the brain that controls voluntary functions. Controlling, manipulating, or gaining greater awareness of these functions can be done through the process of Biofeedback. Biofeedback is a process that enables an individual to learn how to change voluntary movements for purposes of improving health and performance through the means of instruments such as EEG which rapidly and accurately 'feedback' information to the user. Biofeedback is used for therapeutic purpose for Autism Spectrum Disorder (ASD) by focusing on Mu waves for detecting anomalies in brain wave patterns of mirror neurons. Conventional EEG measurement systems use gel based gold cup electrodes, attached to the scalp with adhesive. It is obtrusive and wires sticking out of the electrodes to signal acquisition system make them impractical for use in sensitive subjects like infants and children with ASD. To remedy this, sensors can be incorporated with skull cap and baseball cap that are commonly used for infants and children. Feasibility of Textile based Sensor system has been investigated here. Textile based multi-electrode EEG, EOG and EMG monitoring system with embedded electronics for data acquisition and wireless transmission has been seamlessly integrated into fabric of these items for continuous detection of Mu waves. Textile electrodes were placed on positions C3, CZ, C4 according to 10-20 international system and their capability to detect Mu waves was tested. The system is ergonomic and can potentially be used for early diagnosis in infants and planning therapy for ASD patients.

  4. Wireless Instantaneous Neurotransmitter Concentration Sensing System (WINCS) for intraoperative neurochemical monitoring.

    Science.gov (United States)

    Kimble, Christopher J; Johnson, David M; Winter, Bruce A; Whitlock, Sidney V; Kressin, Kenneth R; Horne, April E; Robinson, Justin C; Bledsoe, Jonathan M; Tye, Susannah J; Chang, Su-Youne; Agnesi, Filippo; Griessenauer, Christoph J; Covey, Daniel; Shon, Young-Min; Bennet, Kevin E; Garris, Paul A; Lee, Kendall H

    2009-01-01

    The Wireless Instantaneous Neurotransmitter Concentration Sensing System (WINCS) measures extracellular neurotransmitter concentration in vivo and displays the data graphically in nearly real time. WINCS implements two electroanalytical methods, fast-scan cyclic voltammetry (FSCV) and fixed-potential amperometry (FPA), to measure neurotransmitter concentrations at an electrochemical sensor, typically a carbon-fiber microelectrode. WINCS comprises a battery-powered patient module and a custom software application (WINCSware) running on a nearby personal computer. The patient module impresses upon the electrochemical sensor either a constant potential (for FPA) or a time-varying waveform (for FSCV). A transimpedance amplifier converts the resulting current to a signal that is digitized and transmitted to the base station via a Bluetooth radio link. WINCSware controls the operational parameters for FPA or FSCV, and records the transmitted data stream. Filtered data is displayed in various formats, including a background-subtracted plot of sequential FSCV scans - a representation that enables users to distinguish the signatures of various analytes with considerable specificity. Dopamine, glutamate, adenosine and serotonin were selected as analytes for test trials. Proof-of-principle tests included in vitro flow-injection measurements and in vivo measurements in rat and pig. Further testing demonstrated basic functionality in a 3-Tesla MRI unit. WINCS was designed in compliance with consensus standards for medical electrical device safety, and it is anticipated that its capability for real-time intraoperative monitoring of neurotransmitter release at an implanted sensor will prove useful for advancing functional neurosurgery.

  5. Design and Development of an Automatic Level Crossing Monitoring System Using Wireless Sensor Network in West Central Railway Zone

    Directory of Open Access Journals (Sweden)

    Alka DUBEY

    2010-07-01

    Full Text Available Indian railway is the largest rail network of Asia. There were 21,792 unmanned and 16,549 manned level crossings on Indian Railway System. At present, 6446 manned level crossings are interlocked and 14502 are provided with telephones. For reducing the rate of accidents due to level crossing a wireless sensor network is developed which monitor these manned and unmanned level crossing and automatic operate the gate with horn.

  6. Development of a wireless MEMS multifunction sensor system and field demonstration of embedded sensors for monitoring concrete pavements : tech transfer summary.

    Science.gov (United States)

    2016-08-01

    Micro-electromechanical sensors and systems- (MEMS)-based and : wireless-based smart-sensing technologies have, until now, rarely : been used for monitoring pavement response in the field, and the : requirements for using such smart sensing technolog...

  7. Integration of Low-Power ASIC and MEMS Sensors for Monitoring Gastrointestinal Tract Using a Wireless Capsule System.

    Science.gov (United States)

    Arefin, Md Shamsul; Redoute, Jean-Michel; Yuce, Mehmet Rasit

    2018-01-01

    This paper presents a wireless capsule microsystem to detect and monitor the pH, pressure, and temperature of the gastrointestinal tract in real time. This research contributes to the integration of sensors (microfabricated capacitive pH, capacitive pressure, and resistive temperature sensors), frequency modulation and pulse width modulation based interface IC circuits, microcontroller, and transceiver with meandered conformal antenna for the development of a capsule system. The challenges associated with the system miniaturization, higher sensitivity and resolution of sensors, and lower power consumption of interface circuits are addressed. The layout, PCB design, and packaging of a miniaturized wireless capsule, having diameter of 13 mm and length of 28 mm, have successfully been implemented. A data receiver and recorder system is also designed to receive physiological data from the wireless capsule and to send it to a computer for real-time display and recording. Experiments are performed in vitro using a stomach model and minced pork as tissue simulating material. The real-time measurements also validate the suitability of sensors, interface circuits, and meandered antenna for wireless capsule applications.

  8. Secure Data Exchange in Environmental Health Monitoring System through Wireless Sensor Network

    Directory of Open Access Journals (Sweden)

    Amang Sudarsono

    2016-04-01

    Full Text Available Recently, disseminating latest sensory information regarding the status of environmental health in the surroundings of human life is one of very important circumstances which must be known by everyone. These circumstances should be accessible at anytime and anywhere by everyone through any type of end-user devices, both fixed and mobile devices, i.e., Desktop PCs, Laptop PCs, and Smartphones. Wireless Sensor Network (WSN is one of the networks which deals with data sensors distribution from sensor nodes to the gateway node toward a Data Center Server. However, there is a big possibility for many adversaries to intercept and even manipulate data sensors crossing the network. Hence, a secure data sensor exchange in the system would be strongly desirable. In this research, we propose an environmental health conditions monitoring system through WSN and its implementation with considering secure data sensor exchange within the network and secure data sensor access. This work may contribute to support a part of smart cities and take in part the Internet of Thing (IoT technology. In our proposed system, we collect some environmental health information such as temperature, humidity, luminosity, noise, carbon monoxide (CO and carbon dioxide (CO2 from sensor nodes. We keep the confidentiality and integrity of transmitted data sensors propagating through IEEE802.15.4-based communication toward a gateway node. Further, the collected data sensors in the gateway are synchronized to the Data Center Server through a secure TCP/IP connection for permanently storing. At anytime and anywhere, only legitimated users who successfully pass-through an attribute-based authentication system are able to access the data sensors.

  9. Development of real-time monitoring system using wired and wireless networks in a full-scale ship

    Directory of Open Access Journals (Sweden)

    Bu-Geun Paik

    2010-09-01

    Full Text Available In the present study, the real-time monitoring system is developed based on the wireless sensor network (WSN and power line communication (PLC employed in the 3,000-ton-class training ship. The WSN consists of sensor nodes, router, gateway and middleware. The PLC is composed of power lines, modems, Ethernet gateway and phase-coupler. The basic tests show that the ship has rather good environments for the wired and wireless communications. The developed real-time monitoring system is applied to recognize the thermal environments of main-engine room and one cabin in the ship. The main-engine room has lots of heat sources and needs careful monitoring to satisfy safe operation condition or detect any human errors beforehand. The monitoring is performed in two regions near the turbocharger and cascade tank, considered as heat sources. The cabin on the second deck is selected to monitor the thermal environments because it is close to the heat source of main engine. The monitoring results of the cabin show the thermal environment is varied by the human activity. The real-time monitoring for the thermal environment would be useful for the planning of the ventilation strategy based on the traces of the human activity against inconvenient thermal environments as well as the recognizing the temperature itself in each cabin.

  10. Bluetooth wireless monitoring, diagnosis and calibration interface for control system of fuel cell bus in Olympic demonstration

    Science.gov (United States)

    Hua, Jianfeng; Lin, Xinfan; Xu, Liangfei; Li, Jianqiu; Ouyang, Minggao

    With the worldwide deterioration of the natural environment and the fossil fuel crisis, the possible commercialization of fuel cell vehicles has become a hot topic. In July 2008, Beijing started a clean public transportation plan for the 29th Olympic games. Three fuel cell city buses and 497 other low-emission vehicles are now serving the Olympic core area and Beijing urban areas. The fuel cell buses will operate along a fixed bus line for 1 year as a public demonstration of green energy vehicles. Due to the specialized nature of fuel cell engines and electrified power-train systems, measurement, monitoring and calibration devices are indispensable. Based on the latest Bluetooth wireless technology, a novel Bluetooth universal data interface was developed for the control system of the fuel cell city bus. On this platform, a series of wireless portable control auxiliary systems have been implemented, including wireless calibration, a monitoring system and an in-system programming platform, all of which are ensuring normal operation of the fuel cell buses used in the demonstration.

  11. Miniaturized Human Insertable Cardiac Monitoring System with Wireless Power Transmission Technique

    Directory of Open Access Journals (Sweden)

    Jong-Ha Lee

    2016-01-01

    Full Text Available Prolonged monitoring is more likely to diagnose atrial fibrillation accurately than intermittent or short-term monitoring. In this study, an implantable electrocardiograph (ECG sensor to monitor atrial fibrillation patients in real time was developed. The implantable sensor is composed of a micro controller unit, an analog-to-digital converter, a signal transmitter, an antenna, and two electrodes. The sensor detects ECG signals from the two electrodes and transmits these to an external receiver carried by the patient. Because the sensor continuously transmits signals, its battery consumption rate is extremely high; therefore, the sensor includes a wireless power transmission module that allows it to charge wirelessly from an external power source. The integrated sensor has the approximate dimensions 3 mm × 4 mm × 14 mm, which is small enough to be inserted into a patient without the need for major surgery. The signal and power transmission data sampling rate and frequency of the unit are 300 samples/s and 430 Hz, respectively. To validate the developed sensor, experiments were conducted on small animals.

  12. Development of a wireless, self-sustaining damage detection sensor system based on chemiluminescence for structural health monitoring

    Science.gov (United States)

    Kuang, K. S. C.

    2014-03-01

    A novel application of chemiluminescence resulting from the chemical reaction in a glow-stick as sensors for structural health monitoring is demonstrated here. By detecting the presence of light emitting from these glow-sticks, it is possible to develop a low-cost sensing device with the potential to provide early warning of damage in a variety of engineering applications such as monitoring of cracks or damage in concrete shear walls, detecting of ground settlement, soil liquefaction, slope instability, liquefaction-related damage of underground structure and others. In addition, this paper demonstrates the ease of incorporating wireless capability to the sensor device and the possibility of making the sensor system self-sustaining by means of a renewable power source for the wireless module. A significant advantage of the system compared to previous work on the use of plastic optical fibre (POF) for damage detection is that here the system does not require an electrically-powered light source. Here, the sensing device, embedded in a cement host, is shown to be capable of detecting damage. A series of specimens with embedded glow-sticks have been investigated and an assessment of their damage detection capability will be reported. The specimens were loaded under flexure and the sensor responses were transmitted via a wireless connection.

  13. Design of a hybrid (wired/wireless) acquisition data system for monitoring of cultural heritage physical parameters in Smart Cities.

    Science.gov (United States)

    García Diego, Fernando-Juan; Esteban, Borja; Merello, Paloma

    2015-03-25

    Preventive conservation represents a working method and combination of techniques which helps in determining and controlling the deterioration process of cultural heritage in order to take the necessary actions before it occurs. It is acknowledged as important, both in terms of preserving and also reducing the cost of future conservation measures. Therefore, long-term monitoring of physical parameters influencing cultural heritage is necessary. In the context of Smart Cities, monitoring of cultural heritage is of interest in order to perform future comparative studies and load information into the cloud that will be useful for the conservation of other heritage sites. In this paper the development of an economical and appropriate acquisition data system combining wired and wireless communication, as well as third party hardware for increased versatility, is presented. The device allows monitoring a complex network of points with high sampling frequency, with wired sensors in a 1-wire bus and a wireless centralized system recording data for monitoring of physical parameters, as well as the future possibility of attaching an alarm system or sending data over the Internet. This has been possible with the development of three board's designs and more than 5000 algorithm lines. System tests have shown an adequate system operation.

  14. Design of a Hybrid (Wired/Wireless Acquisition Data System for Monitoring of Cultural Heritage Physical Parameters in Smart Cities

    Directory of Open Access Journals (Sweden)

    Fernando-Juan García Diego

    2015-03-01

    Full Text Available Preventive conservation represents a working method and combination of techniques which helps in determining and controlling the deterioration process of cultural heritage in order to take the necessary actions before it occurs. It is acknowledged as important, both in terms of preserving and also reducing the cost of future conservation measures. Therefore, long-term monitoring of physical parameters influencing cultural heritage is necessary. In the context of Smart Cities, monitoring of cultural heritage is of interest in order to perform future comparative studies and load information into the cloud that will be useful for the conservation of other heritage sites. In this paper the development of an economical and appropriate acquisition data system combining wired and wireless communication, as well as third party hardware for increased versatility, is presented. The device allows monitoring a complex network of points with high sampling frequency, with wired sensors in a 1-wire bus and a wireless centralized system recording data for monitoring of physical parameters, as well as the future possibility of attaching an alarm system or sending data over the Internet. This has been possible with the development of three board’s designs and more than 5000 algorithm lines. System tests have shown an adequate system operation.

  15. Wireless sensor networks and ecological monitoring

    CERN Document Server

    Jiang, Joe-Air

    2013-01-01

    This book presents the state of the art technologies and solutions to tackle the critical challenges faced by the building and development of the WSN and ecological monitoring system but also potential impact on society at social, medical and technological level. This book is dedicated to Sensing systems for Sensors, Wireless Sensor Networks and Ecological Monitoring. The book aims at Master and PhD degree students, researchers, practitioners, especially WSN engineers involved with ecological monitoring. The book will provide an opportunity of a dedicated and a deep approach in order to improve their knowledge in this specific field.  

  16. The development of a monitoring system using a Wireless and Powerless Sensing Node deployed inside a spindle.

    Science.gov (United States)

    Chang, Liang-Cheng; Lee, Da-Sheng

    2012-01-01

    Installation of a Wireless and Powerless Sensing Node (WPSN) inside a spindle enables the direct transmission of monitoring signals through a metal case of a certain thickness instead of the traditional method of using connecting cables. Thus, the node can be conveniently installed inside motors to measure various operational parameters. This study extends this earlier finding by applying this advantage to the monitoring of spindle systems. After over 2 years of system observation and optimization, the system has been verified to be superior to traditional methods. The innovation of fault diagnosis in this study includes the unmatched assembly dimensions of the spindle system, the unbalanced system, and bearing damage. The results of the experiment demonstrate that the WPSN provides a desirable signal-to-noise ratio (SNR) in all three of the simulated faults, with the difference of SNR reaching a maximum of 8.6 dB. Following multiple repetitions of the three experiment types, 80% of the faults were diagnosed when the spindle revolved at 4,000 rpm, significantly higher than the 30% fault recognition rate of traditional methods. The experimental results of monitoring of the spindle production line indicated that monitoring using the WPSN encounters less interference from noise compared to that of traditional methods. Therefore, this study has successfully developed a prototype concept into a well-developed monitoring system, and the monitoring can be implemented in a spindle production line or real-time monitoring of machine tools.

  17. Simultaneous wireless electrophysiological and neurochemical monitoring

    Science.gov (United States)

    Murari, Kartikeya; Mollazadeh, Mohsen; Thakor, Nitish; Cauwenberghs, Gert

    2008-08-01

    Information processing and propagation in the central nervous system is mostly electrical in nature. At synapses, electrical signals cause the release of neurotransmitters like dopamine, glutamate etc., that are sensed by post-synaptic neurons resulting in signal propagation or inhibition. It can be very informative to monitor electrical and neurochemical signals simultaneously to understand the mechanisms underlying normal or abnormal brain function. We present an integrated system for the simultaneous wireless acquisition of neurophysiological and neurochemical activity. Applications of the system to neuroscience include monitoring EEG and glutamate in rat somatosensory cortex following global ischemia.

  18. Biomedical Wireless Ambulatory Crew Monitor

    Science.gov (United States)

    Chmiel, Alan; Humphreys, Brad

    2009-01-01

    A compact, ambulatory biometric data acquisition system has been developed for space and commercial terrestrial use. BioWATCH (Bio medical Wireless and Ambulatory Telemetry for Crew Health) acquires signals from biomedical sensors using acquisition modules attached to a common data and power bus. Several slots allow the user to configure the unit by inserting sensor-specific modules. The data are then sent real-time from the unit over any commercially implemented wireless network including 802.11b/g, WCDMA, 3G. This system has a distributed computing hierarchy and has a common data controller on each sensor module. This allows for the modularity of the device along with the tailored ability to control the cards using a relatively small master processor. The distributed nature of this system affords the modularity, size, and power consumption that betters the current state of the art in medical ambulatory data acquisition. A new company was created to market this technology.

  19. Measurement of meteorological data based on wireless data acquisition system monitoring

    International Nuclear Information System (INIS)

    Benghanem, M.

    2009-01-01

    Estimation of solar energy potential of a region requires detailed solar radiation climatology, and it is necessary to collect extensive radiation data of high accuracy covering all climatic zones of the region. In this regard, a wireless data acquisition system (WDAS) would help to estimate solar energy potential considering the remote region's energy requirement. This article explains the design and implementation of WDAS for assessment of solar energy. The proposed system consists of a set of sensors for measuring meteorological parameters. The collected data are first conditioned using precision electronic circuits and then interfaced to a PC using RS232 connection via wireless unit. The LabVIEW program is used to further process, display and store the collected data in the PC disk. The proposed architecture permits the rapid system development and has the advantage of flexibility and it can be easily extended for controlling the renewable energy systems like photovoltaic system. The WDAS with executive information systems and reporting tools helps to tap vast data resources and deliver information.

  20. Survey of Energy Harvesting Systems for Wireless Sensor Networks in Environmental Monitoring

    Directory of Open Access Journals (Sweden)

    Dziadak Bogdan

    2016-12-01

    Full Text Available Wireless Sensor Networks (WSNs have existed for many years and had assimilated many interesting innovations. Advances in electronics, radio transceivers, processes of IC manufacturing and development of algorithms for operation of such networks now enable creating energy-efficient devices that provide practical levels of performance and a sufficient number of features. Environmental monitoring is one of the areas in which WSNs can be successfully used. At the same time this is a field where devices must either bring their own power reservoir, such as a battery, or scavenge energy locally from some natural phenomena. Improving the efficiency of energy harvesting methods reduces complexity of WSN structures. This survey is based on practical examples from the real world and provides an overview of state-of-the-art methods and techniques that are used to create energyefficient WSNs with energy harvesting.

  1. Wireless connection of continuous glucose monitoring system to the electronic patient record

    Science.gov (United States)

    Murakami, Alexandre; Gutierrez, Marco A.; Lage, Silvia G.; Rebelo, Marina S.; Granja, Luiz A. R.; Ramires, Jose A. F.

    2005-04-01

    The control of blood sugar level (BSL) at near-normal levels has been documented to reduce both acute and chronic complications of diabetes mellitus. Recent studies suggested, the reduction of mortality in a surgical intensive care unit (ICU), when the BSL are maintained at normal levels. Despite of the benefits appointed by these and others clinical studies, the strict BSL control in critically ill patients suffers from some difficulties: a) medical staff need to measure and control the patient"s BSL using blood sample at least every hour. This is a complex and time consuming task; b) the inaccuracy of standard capillary glucose monitoring (fingerstick) in hypotensive patients and, if frequently used to sample arterial or venous blood, may lead to excess phlebotomy; c) there is no validated procedure for continuously monitoring of BSL levels. This study used the MiniMed CGMS in ill patients at ICU to send, in real-time, BSL values to a Web-Based Electronic Patient Record. The BSL values are parsed and delivered through a wireless network as an HL7 message. The HL7 messages with BSL values are collected, stored into the Electronic Patient Record and presented into a bed-side monitor at the ICU together with other relevant patient information.

  2. A Proposed Scalable Design and Simulation of Wireless Sensor Network-Based Long-Distance Water Pipeline Leakage Monitoring System

    Directory of Open Access Journals (Sweden)

    Abdulaziz S. Almazyad

    2014-02-01

    Full Text Available Anomalies such as leakage and bursts in water pipelines have severe consequences for the environment and the economy. To ensure the reliability of water pipelines, they must be monitored effectively. Wireless Sensor Networks (WSNs have emerged as an effective technology for monitoring critical infrastructure such as water, oil and gas pipelines. In this paper, we present a scalable design and simulation of a water pipeline leakage monitoring system using Radio Frequency IDentification (RFID and WSN technology. The proposed design targets long-distance aboveground water pipelines that have special considerations for maintenance, energy consumption and cost. The design is based on deploying a group of mobile wireless sensor nodes inside the pipeline and allowing them to work cooperatively according to a prescheduled order. Under this mechanism, only one node is active at a time, while the other nodes are sleeping. The node whose turn is next wakes up according to one of three wakeup techniques: location-based, time-based and interrupt-driven. In this paper, mathematical models are derived for each technique to estimate the corresponding energy consumption and memory size requirements. The proposed equations are analyzed and the results are validated using simulation.

  3. Nondestructive Wireless Monitoring of Early-Age Concrete Strength Gain Using an Innovative Electromechanical Impedance Sensing System

    Directory of Open Access Journals (Sweden)

    C. P. Providakis

    2013-01-01

    Full Text Available Monitoring the concrete early-age strength gain at any arbitrary time from a few minutes to a few hours after mixing is crucial for operations such as removal of frameworks, prestress, or cracking control. This paper presents the development and evaluation of a potential active wireless USB sensing tool that consists of a miniaturized electromechanical impedance measuring chip and a reusable piezoelectric transducer appropriately installed in a Teflon-based enclosure to monitor the concrete strength development at early ages and initial hydration states. In this study, the changes of the measured electromechanical impedance signatures as obtained by using the proposed sensing system during the whole early-age concrete hydration process are experimentally investigated. It is found that the proposed electromechanical impedance (EMI sensing system associated with a properly defined statistical index which evaluates the rate of concrete strength development is very sensitive to the strength gain of concrete structures from their earliest stages.

  4. Wireless Monitoring of Automobile Tires for Intelligent Tires

    Directory of Open Access Journals (Sweden)

    Akira Todoroki

    2008-12-01

    Full Text Available This review discusses key technologies of intelligent tires focusing on sensors and wireless data transmission. Intelligent automobile tires, which monitor their pressure, deformation, wheel loading, friction, or tread wear, are expected to improve the reliability of tires and tire control systems. However, in installing sensors in a tire, many problems have to be considered, such as compatibility of the sensors with tire rubber, wireless transmission, and battery installments. As regards sensing, this review discusses indirect methods using existing sensors, such as that for wheel speed, and direct methods, such as surface acoustic wave sensors and piezoelectric sensors. For wireless transmission, passive wireless methods and energy harvesting are also discussed.

  5. OPTICAL WIRELESS COMMUNICATION SYSTEM

    Directory of Open Access Journals (Sweden)

    JOSHUA L.Y. CHIENG

    2016-02-01

    Full Text Available The growing demand of bandwidth in this modern internet age has been testing the existing telecommunication infrastructures around the world. With broadband speeds moving towards the region of Gbps and Tbps, many researches have begun on the development of using optical wireless technology as feasible and future methods to the current wireless technology. Unlike the existing radio frequency wireless applications, optical wireless uses electromagnetic spectrums that are unlicensed and free. With that, this project aim to understand and gain better understanding of optical wireless communication system by building an experimental and simulated model. The quality of service and system performance will be investigated and reviewed. This project employs laser diode as the propagation medium and successfully transferred audio signals as far as 15 meters. On its quality of service, results of the project model reveal that the bit error rate increases, signal-to-noise ratio and quality factor decreases as the link distance between the transmitter and receiver increases. OptiSystem was used to build the simulated model and MATLAB was used to assist signal-to-noise ratio calculations. By comparing the simulated and experimental receiver’s power output, the experimental model’s efficiency is at 66.3%. Other than the system’s performance, challenges and factors affecting the system have been investigated and discussed. Such challenges include beam divergence, misalignment and particle absorption.

  6. Wireless telecommunication systems

    CERN Document Server

    Terré, Michel; Vivier, Emmanuelle

    2013-01-01

    Wireless telecommunication systems generate a huge amount of interest. In the last two decades, these systems have experienced at least three major technological leaps, and it has become impossible to imagine how society was organized without them. In this book, we propose a macroscopic approach on wireless systems, and aim at answering key questions about power, data rates, multiple access, cellular engineering and access networks architectures.We present a series of solved problems, whose objective is to establish the main elements of a global link budget in several radiocommunicati

  7. A practical monitoring system for the structural safety of mega-trusses using wireless vibrating wire strain gauges.

    Science.gov (United States)

    Park, Hyo Seon; Lee, Hwan Young; Choi, Se Woon; Kim, Yousok

    2013-12-16

    Sensor technologies have been actively employed in structural health monitoring (SHM) to evaluate structural safety. To provide stable and real-time monitoring, a practical wireless sensor network system (WSNS) based on vibrating wire strain gauges (VWSGs) is proposed and applied to a building under construction. In this WSNS, the data measured from each VWSG are transmitted to the sensor node via a signal line and then transmitted to the master node through a short-range wireless communication module (operating on the Industrial, Scientific, and Medical (ISM) band). The master node also employs a long-range wireless communication module (Code Division Multiple Access-CDMA) to transmit the received data from the sensor node to a server located in a remote area, which enables a manager to examine the measured data in real time without any time or location restrictions. In this study, a total of 48 VWSGs, 14 sensor nodes, and seven master nodes were implemented to measure long-term strain variations of mega-trusses in an irregular large-scale building under construction. Based on strain data collected over a 16-month period, a quantitative evaluation of the construction process was performed to determine the aspects that exhibit the greatest influence on member behavior and to conduct a comparison with numerical simulation results. The effect of temperature stress on the structural elements was also analyzed. From these observations, the feasibility of a long-term WSNS based on VWSGs to evaluate the structural safety of an irregular building under construction was confirmed.

  8. A Practical Monitoring System for the Structural Safety of Mega-Trusses Using Wireless Vibrating Wire Strain Gauges

    Directory of Open Access Journals (Sweden)

    Hyo Seon Park

    2013-12-01

    Full Text Available Sensor technologies have been actively employed in structural health monitoring (SHM to evaluate structural safety. To provide stable and real-time monitoring, a practical wireless sensor network system (WSNS based on vibrating wire strain gauges (VWSGs is proposed and applied to a building under construction. In this WSNS, the data measured from each VWSG are transmitted to the sensor node via a signal line and then transmitted to the master node through a short-range wireless communication module (operating on the Industrial, Scientific, and Medical (ISM band. The master node also employs a long-range wireless communication module (Code Division Multiple Access—CDMA to transmit the received data from the sensor node to a server located in a remote area, which enables a manager to examine the measured data in real time without any time or location restrictions. In this study, a total of 48 VWSGs, 14 sensor nodes, and seven master nodes were implemented to measure long-term strain variations of mega-trusses in an irregular large-scale building under construction. Based on strain data collected over a 16-month period, a quantitative evaluation of the construction process was performed to determine the aspects that exhibit the greatest influence on member behavior and to conduct a comparison with numerical simulation results. The effect of temperature stress on the structural elements was also analyzed. From these observations, the feasibility of a long-term WSNS based on VWSGs to evaluate the structural safety of an irregular building under construction was confirmed.

  9. A reliable low-cost wireless and wearable gait monitoring system based on a plastic optical fibre sensor

    International Nuclear Information System (INIS)

    Bilro, L; Pinto, J L; Oliveira, J G; Nogueira, R N

    2011-01-01

    A wearable and wireless system designed to evaluate quantitatively the human gait is presented. It allows knee sagittal motion monitoring over long distances and periods with a portable and low-cost package. It is based on the measurement of transmittance changes when a side-polished plastic optical fibre is bent. Four voluntary healthy subjects, on five different days, were tested in order to assess inter-day and inter-subject reliability. Results have shown that this technique is reliable, allows a one-time calibration and is suitable in the diagnosis and rehabilitation of knee injuries or for monitoring the performance of competitive athletes. Environmental testing was accomplished in order to study the influence of different temperatures and humidity conditions

  10. Wireless Sensor Network for Indoor Air Quality Monitoring

    Directory of Open Access Journals (Sweden)

    Jun Li

    2014-06-01

    Full Text Available Indoor air quality monitoring system consists of wireless sensor device, nRF24L01 wireless transceiver modules, C8051MCU, STM32103 remote monitoring platform, alarm device and data server. Distributed in the interior space of wireless sensors measure parameters of the local air quality, wireless transceiver module of the MCU to transmit data to the remote monitoring platform for analysis which displayed and stored field environment data or charts. The data collecting from wireless sensors to be send by wireless Access Point to the remote data server based on B/S architecture, intelligent terminals such as mobile phone, laptop, tablet PC on the Internet monitor indoor air quality in real-time. When site environment air quality index data exceeds the threshold in the monitoring device, the remote monitoring platform sends out the alarm SMS signal to inform user by GSM module. Indoor air quality monitoring system uses modular design method, has the portability and scalability has the low manufacture cost, real-time monitoring data and man-machine interaction.

  11. Automated analysis of long-term bridge behavior and health using a cyber-enabled wireless monitoring system

    Science.gov (United States)

    O'Connor, Sean M.; Zhang, Yilan; Lynch, Jerome; Ettouney, Mohammed; van der Linden, Gwen

    2014-04-01

    A worthy goal for the structural health monitoring field is the creation of a scalable monitoring system architecture that abstracts many of the system details (e.g., sensors, data) from the structure owner with the aim of providing "actionable" information that aids in their decision making process. While a broad array of sensor technologies have emerged, the ability for sensing systems to generate large amounts of data have far outpaced advances in data management and processing. To reverse this trend, this study explores the creation of a cyber-enabled wireless SHM system for highway bridges. The system is designed from the top down by considering the damage mechanisms of concern to bridge owners and then tailoring the sensing and decision support system around those concerns. The enabling element of the proposed system is a powerful data repository system termed SenStore. SenStore is designed to combine sensor data with bridge meta-data (e.g., geometric configuration, material properties, maintenance history, sensor locations, sensor types, inspection history). A wireless sensor network deployed to a bridge autonomously streams its measurement data to SenStore via a 3G cellular connection for storage. SenStore securely exposes the bridge meta- and sensor data to software clients that can process the data to extract information relevant to the decision making process of the bridge owner. To validate the proposed cyber-enable SHM system, the system is implemented on the Telegraph Road Bridge (Monroe, MI). The Telegraph Road Bridge is a traditional steel girder-concrete deck composite bridge located along a heavily travelled corridor in the Detroit metropolitan area. A permanent wireless sensor network has been installed to measure bridge accelerations, strains and temperatures. System identification and damage detection algorithms are created to automatically mine bridge response data stored in SenStore over an 18-month period. Tools like Gaussian Process (GP

  12. Optimizing usability and signal capture: a proactive risk assessment for the implementation of a wireless vital sign monitoring system.

    Science.gov (United States)

    Kowalski, Rebecca; Capan, Muge; Lodato, Peter; Mosby, Danielle; Thomas, Tamekia; Arnold, Ryan; Miller, Kristen

    2017-11-01

    Wearable vital sign monitors are a promising step towards optimal patient surveillance, providing continuous data to allow for early detection and treatment of patient deterioration. However, as wearable monitors become more widely adopted in healthcare, there is a corresponding need to carefully design the implementation of these tools to promote their integration into clinical workflows and defend against potential misuse and patient harm. Prior to the roll-out of these monitors, our multidisciplinary team of clinicians, clinical engineers, information technologists and research investigators conducted a modified Healthcare Failure Mode and Effect Analysis (HFMEA), a proactive evaluation of potential problems which could be encountered in the use of a wireless vital signs monitoring system. This evaluation was accomplished by focussing on the identification of procedures and actions that would be required during the devices' regular usage, as well as the implementation of the system as a comprehensive process. Using this method, the team identified challenges that would arise throughout the lifecycle of the device and developed recommendations to address them. This proactive risk assessment can guide the implementation of wearable patient monitors, optimising the use of innovative health information technology.

  13. A Real-Time Construction Safety Monitoring System for Hazardous Gas Integrating Wireless Sensor Network and Building Information Modeling Technologies

    Directory of Open Access Journals (Sweden)

    Weng-Fong Cheung

    2018-02-01

    Full Text Available In recent years, many studies have focused on the application of advanced technology as a way to improve management of construction safety management. A Wireless Sensor Network (WSN, one of the key technologies in Internet of Things (IoT development, enables objects and devices to sense and communicate environmental conditions; Building Information Modeling (BIM, a revolutionary technology in construction, integrates database and geometry into a digital model which provides a visualized way in all construction lifecycle management. This paper integrates BIM and WSN into a unique system which enables the construction site to visually monitor the safety status via a spatial, colored interface and remove any hazardous gas automatically. Many wireless sensor nodes were placed on an underground construction site and to collect hazardous gas level and environmental condition (temperature and humidity data, and in any region where an abnormal status is detected, the BIM model will alert the region and an alarm and ventilator on site will start automatically for warning and removing the hazard. The proposed system can greatly enhance the efficiency in construction safety management and provide an important reference information in rescue tasks. Finally, a case study demonstrates the applicability of the proposed system and the practical benefits, limitations, conclusions, and suggestions are summarized for further applications.

  14. A Real-Time Construction Safety Monitoring System for Hazardous Gas Integrating Wireless Sensor Network and Building Information Modeling Technologies.

    Science.gov (United States)

    Cheung, Weng-Fong; Lin, Tzu-Hsuan; Lin, Yu-Cheng

    2018-02-02

    In recent years, many studies have focused on the application of advanced technology as a way to improve management of construction safety management. A Wireless Sensor Network (WSN), one of the key technologies in Internet of Things (IoT) development, enables objects and devices to sense and communicate environmental conditions; Building Information Modeling (BIM), a revolutionary technology in construction, integrates database and geometry into a digital model which provides a visualized way in all construction lifecycle management. This paper integrates BIM and WSN into a unique system which enables the construction site to visually monitor the safety status via a spatial, colored interface and remove any hazardous gas automatically. Many wireless sensor nodes were placed on an underground construction site and to collect hazardous gas level and environmental condition (temperature and humidity) data, and in any region where an abnormal status is detected, the BIM model will alert the region and an alarm and ventilator on site will start automatically for warning and removing the hazard. The proposed system can greatly enhance the efficiency in construction safety management and provide an important reference information in rescue tasks. Finally, a case study demonstrates the applicability of the proposed system and the practical benefits, limitations, conclusions, and suggestions are summarized for further applications.

  15. Analysis of Environment Monitoring Platform Based on Wireless Sensor Network

    Directory of Open Access Journals (Sweden)

    Yang Zhi-Jun

    2017-01-01

    Full Text Available This paper established a TinyOS operating system for wireless sensor network of temperature and humidity monitoring system. It introduces the basic structure of the monitoring system, sensor nodes, the TinyOS operating system, and the NesC language. Besides, it preliminary design the application of temperature and humidity monitoring. This paper choose cc2538cb as the sensor nodes in the design of system, and introduce the design method of environmental monitoring mobile phone software.

  16. Optimized MPPT-based converter for TEG energy harvester to power wireless sensor and monitoring system in nuclear power plant

    Science.gov (United States)

    Xing, Shaoxu; Anakok, Isil; Zuo, Lei

    2017-04-01

    Accidents like Fukushima Disasters push people to improve the monitoring systems for the nuclear power plants. Thus, various types of energy harvesters are designed to power these systems and the Thermoelectric Generator (TEG) energy harvester is one of them. In order to enhance the amount of harvested power and the system efficiency, the power management stage needs to be carefully designed. In this paper, a power converter with optimized Maximum Power Point Tracking (MPPT) is proposed for the TEG Energy Harvester to power the wireless sensor network in nuclear power plant. The TEG Energy Harvester is installed on the coolant pipe of the nuclear plant and harvests energy from its heat energy while the power converter with optimized MPPT can make the TEG Energy Harvester output the maximum power, quickly response to the voltage change and provide sufficient energy for wireless sensor system to monitor the operation of the nuclear power plant. Due to the special characteristics of the Single-Ended Primary Inductor Converter (SEPIC) when it is working in the Discontinuous Inductor Current Mode (DICM) and Continuous Conduction Mode (CCM), the MPPT method presented in this paper would be able to control the converter to achieve the maximum output power in any working conditions of the TEG system with a simple circuit. The optimized MPPT algorithm will significantly reduce the cost and simplify the system as well as achieve a good performance. Experiment test results have shown that, comparing to a fixed- duty-cycle SEPIC which is specifically designed for the working on the secondary coolant loop in nuclear power plant, the optimized MPPT algorithm increased the output power by 55%.

  17. Monitoring System of Environmental Variables Using a Wireless Sensor Network and Platforms of Internet of Things

    Directory of Open Access Journals (Sweden)

    Manuel Quiñones-Cuenca

    2017-02-01

    Full Text Available This work proposes a system for collecting meteorological data using a Wireless Sensor Network (WSN, that is able to transmit data in real-time. The system automatizes the process of collecting the data in a continuous manner for long periods of time, for this, the module is equipped with a source of solar energy that allows autonomous operation. In order to obtain viability of design and prototype implementation, the construction of two systems was proposed based on DigiMesh and Wi-Fi; those prototypes could be applied to different scenarios such as urban and rural areas. Additionally, it was performed an evaluation of broadcasting of information to platforms of Internet of Things (IoT, where the data collected by the nodes will be managed and displayed. This system was conceived as a low-cost alternative compared with conventional weather stations that offer these facilities and are based on free hardware and software components. Finally, the validation of the obtained results was performed using a statistical analysis with the collected data of the weather station Davis Vantage Pro, obtaining a maximum average relative error of 4.93%.

  18. Development of a wireless MEMS multifunction sensor system and field demonstration of embedded sensors for monitoring concrete pavements, volume II

    Science.gov (United States)

    2016-08-01

    This two-pronged study evaluated the performance of commercial off-the-shelf (COTS) micro-electromechanical sensors and systems (MEMS) embedded in concrete pavement (Final Report Volume I) and developed a wireless MEMS multifunctional sensor system f...

  19. Wireless Infrastructure for Performing Monitoring, Diagnostics, and Control HVAC and Other Energy-Using Systems in Small Commercial Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Patrick O' Neill

    2009-06-30

    This project focused on developing a low-cost wireless infrastructure for monitoring, diagnosing, and controlling building systems and equipment. End users receive information via the Internet and need only a web browser and Internet connection. The system used wireless communications for: (1) collecting data centrally on site from many wireless sensors installed on building equipment, (2) transmitting control signals to actuators and (3) transmitting data to an offsite network operations center where it is processed and made available to clients on the Web (see Figure 1). Although this wireless infrastructure can be applied to any building system, it was tested on two representative applications: (1) monitoring and diagnostics for packaged rooftop HVAC units used widely on small commercial buildings and (2) continuous diagnosis and control of scheduling errors such as lights and equipment left on during unoccupied hours. This project developed a generic infrastructure for performance monitoring, diagnostics, and control, applicable to a broad range of building systems and equipment, but targeted specifically to small to medium commercial buildings (an underserved market segment). The proposed solution is based on two wireless technologies. The first, wireless telemetry, is used for cell phones and paging and is reliable and widely available. This risk proved to be easily managed during the project. The second technology is on-site wireless communication for acquiring data from sensors and transmitting control signals. The technology must enable communication with many nodes, overcome physical obstructions, operate in environments with other electrical equipment, support operation with on-board power (instead of line power) for some applications, operate at low transmission power in license-free radio bands, and be low cost. We proposed wireless mesh networking to meet these needs. This technology is relatively new and has been applied only in research and tests

  20. Patient Health Monitoring Using Wireless Body Area Network

    Directory of Open Access Journals (Sweden)

    Hsu Myat Thwe

    2015-06-01

    Full Text Available Abstract Nowadays remote patient health monitoring using wireless technology plays very vigorous role in a society. Wireless technology helps monitoring of physiological parameters like body temperature heart rate respiration blood pressure and ECG. The main aim of this paper is to propose a wireless sensor network system in which both heart rate and body temperature ofmultiplepatients can monitor on PC at the same time via RF network. The proposed prototype system includes two sensor nodes and receiver node base station. The sensor nodes are able to transmit data to receiver using wireless nRF transceiver module.The nRF transceiver module is used to transfer the data from microcontroller to PC and a graphical user interface GUI is developed to display the measured data and save to database. This system can provide very cheaper easier and quick respondent history of patient.

  1. A Wireless Monitoring System Using a Tunneling Sensor Array in a Smart Oral Appliance for Sleep Apnea Treatment

    Directory of Open Access Journals (Sweden)

    Kun-Ying Yeh

    2017-10-01

    Full Text Available Sleep apnea is a serious sleep disorder, and the most common type is obstructive sleep apnea (OSA. Untreated OSA will cause lots of potential health problems. Oral appliance therapy is an effective and popular approach for OSA treatment, but making a perfect fit for each patient is time-consuming and decreases its efficiency considerably. This paper proposes a System-on-a-Chip (SoC enabled sleep monitoring system in a smart oral appliance, which is capable of intelligently collecting the physiological data about tongue movement through the whole therapy. A tunneling sensor array with an ultra-high sensitivity is incorporated to accurately detect the subtle pressure from the tongue. When the device is placed on the wireless platform, the temporary stored data will be retrieved and wirelessly transmitted to personal computers and cloud storages. The battery will be recharged by harvesting external RF power from the platform. A compact prototype module, whose size is 4.5 × 2.5 × 0.9 cm3, is implemented and embedded inside the oral appliance to demonstrate the tongue movement detection in continuous time frames. The functions of this design are verified by the presented measurement results. This design aims to increase efficiency and make it a total solution for OSA treatment.

  2. Low-Cost and Energy-Saving Wireless Sensor Network for Real-Time Urban Mobility Monitoring System

    Directory of Open Access Journals (Sweden)

    Joyoung Lee

    2015-01-01

    Full Text Available This paper presents a low-cost and energy-saving urban mobility monitoring system based on wireless sensor networks (WSNs. The primary components of the proposed sensor unit are a Bluetooth sensor and a Zigbee transceiver. Within the WSN, the Bluetooth sensor captures the MAC addresses of Bluetooth units equipped in mobile devices and car navigation systems. The Zigbee transceiver transmits the collected MAC addresses to a data center without any major communications infrastructures (e.g., fiber optics and 3G/4G network. A total of seven prototype sensor units have been deployed on roadway segments in Newark, New Jersey, for a proof of concept (POC test. The results of the POC test show that the performance of the proposed sensor unit appears promising, resulting in 2% of data drop rates and an improved Bluetooth capturing rate.

  3. Energy generation for an ad hoc wireless sensor network-based monitoring system using animal head movement

    DEFF Research Database (Denmark)

    S. Nadimi, Esmaeil; Blanes-Vidal, Victoria; Jørgensen, Rasmus Nyholm

    2011-01-01

    The supply of energy to electronics is an imperative constraining factor to be considered during the design process of mobile ad hoc wireless sensor networks (MANETs). This influence is especially important when the MANET is deployed unattended or the wireless modules within the MANET are not eas......The supply of energy to electronics is an imperative constraining factor to be considered during the design process of mobile ad hoc wireless sensor networks (MANETs). This influence is especially important when the MANET is deployed unattended or the wireless modules within the MANET...... are not easily accessible. Therefore, exploring novel sources of energy generation rather than operating electronics only on limited power supplies such as batteries is a major challenge. Monitoring free-ranging animal behavior is an application in which the entities (animals) within the MANET are not readily...

  4. PM2.5 monitoring system based on ZigBee wireless sensor network

    Science.gov (United States)

    Lin, Lukai; Li, Xiangshun; Gu, Weiying

    2017-06-01

    In the view of the haze problem, aiming at improving the deficiency of the traditional PM2.5 monitoring methods, such as the insufficient real-time monitoring, limited transmission distance, high cost and the difficulty to maintain, the atmosphere PM2.5 monitoring system based on ZigBee technology is designed. The system combines the advantages of ZigBee’s low cost, low power consumption, high reliability and GPRS/Internet’s capability of remote transmission of data. Furthermore, it adopts TI’s Z-Stack protocol stack, and selects CC2530 chip and TI’s MSP430 microcontroller as the core, which establishes the air pollution monitoring network that is helpful for the early prediction of major air pollution disasters.

  5. Wireless Remote Control System

    Directory of Open Access Journals (Sweden)

    Adrian Tigauan

    2012-06-01

    Full Text Available This paper presents the design of a wireless remote control system based on the ZigBee communication protocol. Gathering data from sensors or performing control tasks through wireless communication is advantageous in situations in which the use of cables is impractical. An Atmega328 microcontroller (from slave device is used for gathering data from the sensors and transmitting it to a coordinator device with the help of the XBee modules. The ZigBee standard is suitable for low-cost, low-data-rate and low-power wireless networks implementations. The XBee-PRO module, designed to meet ZigBee standards, requires minimal power for reliable data exchange between devices over a distance of up to 1600m outdoors. A key component of the ZigBee protocol is the ability to support networking and this can be used in a wireless remote control system. This system may be employed e.g. to control temperature and humidity (SHT11 sensor and light intensity (TSL230 sensor levels inside a commercial greenhouse.

  6. Wireless Augmented Reality Communication System

    Science.gov (United States)

    Devereaux, Ann (Inventor); Jedrey, Thomas (Inventor); Agan, Martin (Inventor)

    2016-01-01

    The system of the present invention is a highly integrated radio communication system with a multimedia co-processor which allows true two-way multimedia (video, audio, data) access as well as real-time biomedical monitoring in a pager-sized portable access unit. The system is integrated in a network structure including one or more general purpose nodes for providing a wireless-to-wired interface. The network architecture allows video, audio and data (including biomedical data) streams to be connected directly to external users and devices. The portable access units may also be mated to various non-personal devices such as cameras or environmental sensors for providing a method for setting up wireless sensor nets from which reported data may be accessed through the portable access unit. The reported data may alternatively be automatically logged at a remote computer for access and viewing through a portable access unit, including the user's own.

  7. Real-time stress monitoring of highway bridges with a secured wireless sensor network.

    Science.gov (United States)

    2011-12-01

    "This collaborative research aims to develop a real-time stress monitoring system for highway bridges with a secured wireless sensor network. The near term goal is to collect wireless sensor data under different traffic patterns from local highway br...

  8. A Real-Time Monitoring System of Industry Carbon Monoxide Based on Wireless Sensor Networks.

    Science.gov (United States)

    Yang, Jiachen; Zhou, Jianxiong; Lv, Zhihan; Wei, Wei; Song, Houbing

    2015-11-20

    Carbon monoxide (CO) burns or explodes at over-standard concentration. Hence, in this paper, a Wifi-based, real-time monitoring of a CO system is proposed for application in the construction industry, in which a sensor measuring node is designed by low-frequency modulation method to acquire CO concentration reliably, and a digital filtering method is adopted for noise filtering. According to the triangulation, the Wifi network is constructed to transmit information and determine the position of nodes. The measured data are displayed on a computer or smart phone by a graphical interface. The experiment shows that the monitoring system obtains excellent accuracy and stability in long-term continuous monitoring.

  9. Design and Implementation of Dual-Mode Wireless Video Monitoring System

    Directory of Open Access Journals (Sweden)

    BAO Song-Jian

    2014-10-01

    Full Text Available Dual-mode wireless video transmission has two major problems. Firstly, one is time delay difference bringing about asynchronous reception decoding frame error phenomenon; secondly, dual-mode network bandwidth inconformity causes scheduling problem. In order to solve above two problems, a kind of TD-SCDMA/CDMA20001x dual-mode wireless video transmission design method is proposed. For the solution of decoding frame error phenomenon, the design puts forward adding frame identification and packet preprocessing at the sending and synchronizing combination at the receiving end. For the solution of scheduling problem, the wireless communication channel cooperative work and video data transmission scheduling management algorithm is proposed in the design.

  10. Combining Multi-Agent Systems and Wireless Sensor Networks for Monitoring Crop Irrigation

    Directory of Open Access Journals (Sweden)

    Gabriel Villarrubia

    2017-08-01

    Full Text Available Monitoring mechanisms that ensure efficient crop growth are essential on many farms, especially in certain areas of the planet where water is scarce. Most farmers must assume the high cost of the required equipment in order to be able to streamline natural resources on their farms. Considering that many farmers cannot afford to install this equipment, it is necessary to look for more effective solutions that would be cheaper to implement. The objective of this study is to build virtual organizations of agents that can communicate between each other while monitoring crops. A low cost sensor architecture allows farmers to monitor and optimize the growth of their crops by streamlining the amount of resources the crops need at every moment. Since the hardware has limited processing and communication capabilities, our approach uses the PANGEA architecture to overcome this limitation. Specifically, we will design a system that is capable of collecting heterogeneous information from its environment, using sensors for temperature, solar radiation, humidity, pH, moisture and wind. A major outcome of our approach is that our solution is able to merge heterogeneous data from sensors and produce a response adapted to the context. In order to validate the proposed system, we present a case study in which farmers are provided with a tool that allows us to monitor the condition of crops on a TV screen using a low cost device.

  11. Wireless Smart Sensor Network System Using SmartBridge Sensor Nodes for Structural Health Monitoring of Existing Concrete Bridges

    Science.gov (United States)

    Gaviña, J. R.; Uy, F. A.; Carreon, J. D.

    2017-06-01

    There are over 8000 bridges in the Philippines today according to the Department of Public Works and Highways (DPWH). Currently, visual inspection is the most common practice in monitoring the structural integrity of bridges. However, visual inspections have proven to be insufficient in determining the actual health or condition of a bridge. Structural Health Monitoring (SHM) aims to give, in real-time, a diagnosis of the actual condition of the bridge. In this study, SmartBridge Sensor Nodes were installed on an existing concrete bridge with American Association of State Highway and Transportation Officials (AASHTO) Type IV Girders to gather vibration of the elements of the bridge. Also, standards on the effective installation of SmartBridge Sensor Nodes, such as location and orientation was determined. Acceleration readings from the sensor were then uploaded to a server, wherein they are monitored against certain thresholds, from which, the health of the bridge will be derived. Final output will be a portal or webpage wherein the information, health, and acceleration readings of the bridge will be available for viewing. With levels of access set for different types of users, the main users will have access to download data and reports. Data transmission and webpage access are available online, making the SHM system wireless.

  12. The Design and Implementation of Smart Monitoring System for Large-Scale Railway Maintenance Equipment Cab Based on ZigBee Wireless Sensor Network

    Directory of Open Access Journals (Sweden)

    Hairui Wang

    2014-06-01

    Full Text Available In recent years, organizations use IEEE 802.15.4 and ZigBee technology to deliver solution in variety areas including home environment monitoring. ZigBee technology has advantages on low-cost, low power consumption and self-forming. With the rapid expansion of the Internet, there is the requirement for remote monitoring large-scale railway maintenance equipment cab. This paper discusses the disadvantages of the existing smart monitoring system, and proposes a solution. A ZigBee wireless sensor network smart monitoring system and Wi-Fi network is integrated through a home gateway to increase the system flexibility. At the same time the home gateway cooperated with a pre- processing system provide a flexible user interface, and the security and safety of the smart monitoring system. To testify the efficiency of the proposed system, the temperature and humidity sensors and light sensors have developed and evaluated in the smart monitoring system.

  13. Wireless capsule motility: comparison of the SmartPill GI monitoring system with scintigraphy for measuring whole gut transit.

    Science.gov (United States)

    Maqbool, Sabba; Parkman, Henry P; Friedenberg, Frank K

    2009-10-01

    Assessment of whole gut transit, by radio-opaque markers or scintigraphy, is used to evaluate patients with constipation for slow gastrointestinal transit. Wireless capsule motility, using the SmartPill GI monitoring system, samples and transmits intraluminal pH, pressure, and temperature data from a capsule at regular intervals as it traverses through the gastrointestinal tract; from these, gastric emptying and whole gastrointestinal tract transit can be assessed. The objective of this study was to compare the SmartPill with whole gut transit scintigraphy to determine whether the SmartPill system could serve as a test for measurement of whole gut motility and transit. Ten healthy, asymptomatic subjects underwent simultaneous whole gut scintigraphy and SmartPill assessment of whole gut transit. All subjects completed the study per protocol and experienced natural passage of the pill. Capsule residence time in the stomach correlated very strongly with percent gastric retention of the Tc-99 radiolabel at 120 min (r = 0.95) and at 240 min (r = 0.73). Small bowel contraction-min(-1) measured by the SmartPill correlated with small bowel transit % (r = 0.69; P = 0.05) and with isotopic colonic geometric center at 24 h after ingestion (r = 0.70, P = 0.024). Capsule transit time correlated with scintigraphic assessment of whole gut transit. SmartPill capsule assessment of gastric emptying and whole gut transit compares favorably with that of scintigraphy. Wireless capsule motility shows promise as a useful diagnostic test to evaluate patients for GI transit disorders and to study the effect of prokinetic agents on GI transit.

  14. Wireless Headset Communication System

    Science.gov (United States)

    Lau, Wilfred K.; Swanson, Richard; Christensen, Kurt K.

    1995-01-01

    System combines features of pagers, walkie-talkies, and cordless telephones. Wireless headset communication system uses digital modulation on spread spectrum to avoid interference among units. Consists of base station, 4 radio/antenna modules, and as many as 16 remote units with headsets. Base station serves as network controller, audio-mixing network, and interface to such outside services as computers, telephone networks, and other base stations. Developed for use at Kennedy Space Center, system also useful in industrial maintenance, emergency operations, construction, and airport operations. Also, digital capabilities exploited; by adding bar-code readers for use in taking inventories.

  15. Passive wireless strain monitoring of tire using capacitance change

    Science.gov (United States)

    Matsuzaki, Ryosuke; Todoroki, Akira

    2004-07-01

    In-service strain monitoring of tires of automobile is quite effective for improving the reliability of tires and Anti-lock Braking System (ABS). Since conventional strain gages have high stiffness and require lead wires, the conventional strain gages are cumbersome for the strain measurements of the tires. In a previous study, the authors proposed a new wireless strain monitoring method that adopts the tire itself as a sensor, with an oscillating circuit. This method is very simple and useful, but it requires a battery to activate the oscillating circuit. In the present study, the previous method for wireless tire monitoring is improved to produce a passive wireless sensor. A specimen made from a commercially available tire is connected to a tuning circuit comprising an inductance and a capacitance as a condenser. The capacitance change of tire causes change of the tuning frequency. This change of the tuned radio wave enables us to measure the applied strain of the specimen wirelessly, without any power supply from outside. This new passive wireless method is applied to a specimen and the static applied strain is measured. As a result, the method is experimentally shown to be effective as a passive wireless strain monitoring of tires.

  16. Pollution Monitoring System Using Gas Sensor based on Wireless Sensor Network

    Directory of Open Access Journals (Sweden)

    M. Udin Harun Al Rasyid

    2016-01-01

    Full Text Available Carbon monoxide (CO and carbon dioxide (CO2 gases are classified as colorless and odorless gas so we need special tools to monitor their concentration in the air. Concentration of air pollution of CO and CO2 that are high in the air will give serious effects for health status. CO is a poisonous gas that damages the circulation of oxygen in the blood when inhaled, while CO2 is one of the gases that causes global warming. In this paper, we developed an integrated pollution monitoring (IPOM system to monitor the concentration of air pollution. This research implemented three sensor nodes (end-device which each node contains CO and CO2 sensors on the gas sensors board to perform sensing from the environment. Furthermore, the data taken from the environment by the sensor will be sent to the meshlium gateway using IEEE 802.15.4 Zigbee communications and processed by the gateway in order to be sent to the computer server. The data is stored in meshlium gateway using MySQL database as a backup, and it will be synchronized to the MySQL database in the computer server. We provide services for public to access the information in database server through a desktop and website application.

  17. A Real-Time Wireless Sweat Rate Measurement System for Physical Activity Monitoring.

    Science.gov (United States)

    Brueck, Andrew; Iftekhar, Tashfin; Stannard, Alicja B; Yelamarthi, Kumar; Kaya, Tolga

    2018-02-10

    There has been significant research on the physiology of sweat in the past decade, with one of the main interests being the development of a real-time hydration monitor that utilizes sweat. The contents of sweat have been known for decades; sweat provides significant information on the physiological condition of the human body. However, it is important to know the sweat rate as well, as sweat rate alters the concentration of the sweat constituents, and ultimately affects the accuracy of hydration detection. Towards this goal, a calorimetric based flow-rate detection system was built and tested to determine sweat rate in real time. The proposed sweat rate monitoring system has been validated through both controlled lab experiments (syringe pump) and human trials. An Internet of Things (IoT) platform was embedded, with the sensor using a Simblee board and Raspberry Pi. The overall prototype is capable of sending sweat rate information in real time to either a smartphone or directly to the cloud. Based on a proven theoretical concept, our overall system implementation features a pioneer device that can truly measure the rate of sweat in real time, which was tested and validated on human subjects. Our realization of the real-time sweat rate watch is capable of detecting sweat rates as low as 0.15 µL/min/cm², with an average error in accuracy of 18% compared to manual sweat rate readings.

  18. A blade deflection monitoring system

    DEFF Research Database (Denmark)

    2017-01-01

    A wind turbine blade comprising a system for monitoring the deflection of a wind turbine blade is described. The system comprises a wireless range-measurement system, having at least one wireless communication device located towards the root end of the blade and at least one wireless communication...

  19. Wireless Power Supply via Coupled Magnetic Resonance for on-line Monitoring Wireless Sensor of High-voltage Electrical Equipment

    DEFF Research Database (Denmark)

    Xingkui, Mao; Qisheng, Huang; Yudi, Xiao

    2016-01-01

    On-line monitoring of high-voltage electrical equipment (HV-EE) aiming to detect faults effectively has become crucial to avoid serious accidents. Moreover, highly reliable power supplies are the key component for the wireless sensors equipped in such on-line monitoring systems. Therefore......, in this paper, the wireless power supply via coupled magnetic resonance (MR-WPS) is proposed for powering the wireless sensor and the associated wireless sensor solution is also proposed. The key specifications of the MR-WPS working in switchgear cabinet with a harsh operation environment are analyzed...

  20. A wireless electronic monitoring system for securing milk from farm to processor

    Science.gov (United States)

    Womble, Phillip; Hopper, Lindsay; Thompson, Chris; Alexander, Suraj M.; Crist, William; Payne, Fred; Stombaugh, Tim; Paschal, Jon; Moore, Ryan; Luck, Brian; Tabayehnejab, Nasrin

    2008-04-01

    The Department of Homeland Security and the Department of Health and Human Services have targeted bulk food contamination as a focus for attention. The contamination of bulk food poses a high consequence threat to our society. Milk transport falls into three of the 17 targeted NIPP (National Infrastructure Protection Plan) sectors including agriculture-food, public health, and commercial facilities. Minimal security safeguards have been developed for bulk milk transport. The current manual methods of securing milk are paper intensive and prone to errors. The bulk milk transportation sector requires a security enhancement that will both reduce recording errors and enable normal transport activities to occur while providing security against unauthorized access. Milk transportation companies currently use voluntary seal programs that utilize plastic, numbered seals on milk transport tank openings. Our group has developed a Milk Transport Security System which is an electromechanical access control and communication system that assures the secure transport of milk, milk samples, milk data, and security data between locations and specifically between dairy farms, transfer stations, receiving stations, and milk plants. It includes a security monitoring system installed on the milk transport tank, a hand held device, optional printers, data server, and security evaluation software. The system operates automatically and requires minimal or no attention by the bulk milk hauler/sampler. The system is compatible with existing milk transport infrastructure, and has the support of the milk producers, milk transportation companies, milk marketing agencies, and dairy processors. The security protocol developed is applicable for transport of other bulk foods both nationally and internationally. This system adds significantly to the national security infrastructure for bulk food transport. We are currently demonstrating the system in central Kentucky and will report on the results

  1. Study of the Ubiquitous Hog Farm System Using Wireless Sensor Networks for Environmental Monitoring and Facilities Control

    Directory of Open Access Journals (Sweden)

    Jeonghwan Hwang

    2010-12-01

    Full Text Available Many hog farmers are now suffering from high pig mortality rates due to various wasting diseases and increased breeding costs, etc. It is therefore necessary for hog farms to implement systematic and scientific pig production technology to increase productivity and produce high quality pork in order to solve these problems. In this study, we describe such a technology by suggesting a ubiquitous hog farm system which applies WSN (Wireless Sensor Network technology to the pig industry. We suggest that a WSN and CCTV (Closed-circuit television should be installed on hog farms to collect environmental and image information which shall then help producers not only in monitoring the hog farm via the Web from outside the farm, but also facilitate the control of hog farm facilities in remote locations. In addition, facilities can be automatically controlled based on breeding environment parameters which are already set up and a SMS notice service to notify of deviations shall provide users with convenience. Hog farmers may increase production and improve pork quality through this ubiquitous hog farm system and prepare a database with information collected from environmental factors and the hog farm control devices, which is expected to provide information needed to design and implement suitable control strategies for hog farm operation.

  2. Study of the ubiquitous hog farm system using wireless sensor networks for environmental monitoring and facilities control.

    Science.gov (United States)

    Hwang, Jeonghwan; Yoe, Hyun

    2010-01-01

    Many hog farmers are now suffering from high pig mortality rates due to various wasting diseases and increased breeding costs, etc. It is therefore necessary for hog farms to implement systematic and scientific pig production technology to increase productivity and produce high quality pork in order to solve these problems. In this study, we describe such a technology by suggesting a ubiquitous hog farm system which applies WSN (Wireless Sensor Network) technology to the pig industry. We suggest that a WSN and CCTV (Closed-circuit television) should be installed on hog farms to collect environmental and image information which shall then help producers not only in monitoring the hog farm via the Web from outside the farm, but also facilitate the control of hog farm facilities in remote locations. In addition, facilities can be automatically controlled based on breeding environment parameters which are already set up and a SMS notice service to notify of deviations shall provide users with convenience. Hog farmers may increase production and improve pork quality through this ubiquitous hog farm system and prepare a database with information collected from environmental factors and the hog farm control devices, which is expected to provide information needed to design and implement suitable control strategies for hog farm operation.

  3. Wireless cortical implantable systems

    CERN Document Server

    Majidzadeh Bafar, Vahid

    2013-01-01

    Wireless Cortical Implantable Systems examines the design for data acquisition and transmission in cortical implants. The first part of the book covers existing system-level cortical implants, as well as future devices. The authors discuss the major constraints in terms of microelectronic integration. The second part of the book focuses on system-level as well as circuit and system level solutions to the development of ultra low-power and low-noise microelectronics for cortical implants. Existing solutions are presented and novel methods and solutions proposed. The third part of the book focuses on the usage of digital impulse radio ultra wide-band transmission as an efficient method to transmit cortically neural recorded data at high data-rate to the outside world. Original architectural and circuit and system solutions are discussed.

  4. The development of wireless radiation dose monitoring using smart phone

    International Nuclear Information System (INIS)

    Lee, Jin Woo; Jeong, Gyo Seong; Lee, Yun Jong; Kim, Chong Yeal; Lim, Chai Wan

    2016-01-01

    Radiation workers at a nuclear facility or radiation working area should hold personal dosimeters. some types of dosimeters have functions to generate audible or visible alarms to radiation workers. However, such devices used in radiation fields these days have no functions to communicate with other equipment or the responsible personnel. our project aims at the development of a remote wireless radiation dose monitoring system that can be utilized to monitor the radiation dose for radiation workers and to notify the radiation protection manager of the dose information in real time. We use a commercial survey meter for personal radiation measurement and a smart phone for a mobile wireless communication tool and a Beacon for position detection of radiation workers using Blue tooth communication. In this report, the developed wireless dose monitoring of cellular phone is introduced

  5. Through Wall Wireless Intelligent Sensor and Health Monitoring (TWall-ISHM) System, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA's strategic needs include those related to flexible instrumentation capable of monitoring remote or inaccessible measurement locations within Stennis Space...

  6. Wireless Structural Sensing for Health Monitoring and Control Applications

    Science.gov (United States)

    Lynch, J. P.

    2003-12-01

    The economic and societal impact of civil structures under-performing during large earthquakes can be significant. While in recent years the structural engineering community has made great strides in advancing knowledge of structural behavior under extreme loads, a need still exists for the rapid assessment of structural performance during seismic events. Numerous options are commercially available to facility owners who wish to install a structural monitoring system within their structures. However, these structural monitoring systems are defined by their use of coaxial cables for the transfer of response measurements from sensors to centralized data servers. The installation and maintenance of cables within a civil structure often drive system costs high thereby preventing widespread industry adoption. In response to these limitations, the integration of information technologies such as wireless communications and microcontrollers have been explored for the creation of alternative structural monitoring systems defined by low installation costs and decentralized computational frameworks. In particular, a novel wireless structural monitoring system assembled from a dense network of inexpensive wireless sensing units has been designed and fabricated. The wireless sensing unit architecture consists of three functional components: a data acquisition interface for the collection of data from attached sensors, a computational core for data interrogation, and a wireless communication channel for the transfer of data to the sensor network. The use of wireless modems drastically reduces the efforts and costs of system installations rendering the technology attractive for widespread adoption in a broad class of civil structures. A second innovation of the system is the inclusion of computational power within each wireless sensing unit allowing for local execution of embedded engineering analyses. In particular, analyses for the detection of damage in structures (structural

  7. Wireless sensor networks for monitoring physiological signals of multiple patients.

    Science.gov (United States)

    Dilmaghani, R S; Bobarshad, H; Ghavami, M; Choobkar, S; Wolfe, C

    2011-08-01

    This paper presents the design of a novel wireless sensor network structure to monitor patients with chronic diseases in their own homes through a remote monitoring system of physiological signals. Currently, most of the monitoring systems send patients' data to a hospital with the aid of personal computers (PC) located in the patients' home. Here, we present a new design which eliminates the need for a PC. The proposed remote monitoring system is a wireless sensor network with the nodes of the network installed in the patients' homes. These nodes are then connected to a central node located at a hospital through an Internet connection. The nodes of the proposed wireless sensor network are created by using a combination of ECG sensors, MSP430 microcontrollers, a CC2500 low-power wireless radio, and a network protocol called the SimpliciTI protocol. ECG signals are first sampled by a small portable device which each patient carries. The captured signals are then wirelessly transmitted to an access point located within the patients' home. This connectivity is based on wireless data transmission at 2.4-GHz frequency. The access point is also a small box attached to the Internet through a home asynchronous digital subscriber line router. Afterwards, the data are sent to the hospital via the Internet in real time for analysis and/or storage. The benefits of this remote monitoring are wide ranging: the patients can continue their normal lives, they do not need a PC all of the time, their risk of infection is reduced, costs significantly decrease for the hospital, and clinicians can check data in a short time.

  8. An Air-Ground Wireless Sensor Network for Crop Monitoring

    Directory of Open Access Journals (Sweden)

    Claudio Rossi

    2011-06-01

    Full Text Available This paper presents a collaborative system made up of a Wireless Sensor Network (WSN and an aerial robot, which is applied to real-time frost monitoring in vineyards. The core feature of our system is a dynamic mobile node carried by an aerial robot, which ensures communication between sparse clusters located at fragmented parcels and a base station. This system overcomes some limitations of the wireless networks in areas with such characteristics. The use of a dedicated communication channel enables data routing to/from unlimited distances.

  9. Design of Wireless Sensors for Intelligent Manufacture Monitoring

    OpenAIRE

    Chia-Chan Chang; Chung-Yi Liu; Kui-Hua Huang; Guo-Hua Feng

    2014-01-01

    The continuous monitoring on the operated machine can allow the industrial manufacturers to proactively react to the degenerations of the parts. Therefore, development of precise and cost-effective sensing system gains a lot of interest lately. In this paper we proposed and demonstrated a wireless sensing system, which is composed by a temperature sensor module and a Wi-Fi transceiver module, aiming to ball screw health monitoring. This sensing unit is built up by SMD-type glass PT-100 under ...

  10. Intrusion detection and monitoring for wireless networks.

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Eric D.; Van Randwyk, Jamie A.; Lee, Erik J.; Stephano, Amanda (Indiana University); Tabriz, Parisa (University of Illinois at Urbana-Champaign); Pelon, Kristen (Cedarville University); McCoy, Damon (University of Colorado, Boulder); Lodato, Mark (Lafayette College); Hemingway, Franklin (University of New Mexico); Custer, Ryan P.; Averin, Dimitry (Polytechnic University); Franklin, Jason (Carnegie Mellon University); Kilman, Dominique Marie

    2005-11-01

    complete network coverage for use by emergency responders and other municipal agencies. In short, these Wi-Fi networks are being deployed everywhere. Much thought has been and is being put into evaluating cost-benefit analyses of wired vs. wireless networks and issues such as how to effectively cover an office building or municipality, how to efficiently manage a large network of wireless access points (APs), and how to save money by replacing an Internet service provider (ISP) with 802.11 technology. In comparison, very little thought and money are being focused on wireless security and monitoring for security purposes.

  11. Wireless-accessible sensor populations for monitoring biological variables

    NARCIS (Netherlands)

    Mazzu, Marco; Scalvini, Simonetta; Giordano, A.; Frumento, E.; Wells, Hannah; Lokhorst, C.; Glisenti, Fulvio

    2008-01-01

    The current health-care infrastructure is generally considered to be inadequate to meet the needs of an increasingly older population. We have investigated the feasibility of a passive in-home monitoring system based on wireless accessible sensor populations (WASP). In an EU-funded project we have

  12. Increasing Reliability with Wireless Instrumentation Systems from Space Shuttle to 'Fly-By-Wireless'

    Science.gov (United States)

    Studor, George

    2004-01-01

    This slide presentation discusses some of the requirements to allow for "Fly by Wireless". Included in the discussion are: a review of new technologies by decades starting with the 1930's and going through the current decade, structural health monitoring, the requisite system designs, and the vision of flying by wireless.

  13. A Piezoelectric Passive Wireless Sensor for Monitoring Strain

    Science.gov (United States)

    Zou, Xiyue; Ferri, Paul N.; Hogan, Ben; Mazzeo, Aaron D.; Hull. Patrick V.

    2017-01-01

    Interest in passive wireless sensing has grown over the past few decades to meet demands in structural health monitoring.(Deivasigamani et al., 2013; Wilson and Juarez, 2014) This work describes a passive wireless sensor for monitoring strain, which does not have an embedded battery or chip. Without an embedded battery, the passive wireless sensor has the potential to maintain its functionality over long periods in remote/harsh environments. This work also focuses on monitoring small strain (less than 1000 micro-?). The wireless sensing system includes a reader unit, a coil-like transponder, and a sensing unit. It operates in the Megahertz (MHz) frequency range, which allows for a few centimeters of separation between the reader and sensing unit during measurements. The sensing unit is a strain-sensitive piezoelectric resonator that maximizes the energy efficiency at the resonance frequency, so it converts nanoscale mechanical variations to detectable differences in electrical signal. In response to an external loading, the piezoelectric sensor breaks from its original electromechanical equilibrium, and the resonant frequency shifts as the system reaches a new balanced equilibrium. In this work, the fixture of the sensing unit is a small, sticker-like package that converts the surface strain of a test material to measurable shifts in resonant frequencies. Furthermore, electromechanical modeling provides a lumped-parameter model of the system to describe and predict the measured wireless signals of the sensor. Detailed characterization demonstrates how this wireless sensor has resolution comparable to that of conventional wired strain sensors for monitoring small strain.

  14. Data-Based Energy Efficient Clustered Routing Protocol for Wireless Sensors Networks – Tabuk Flood Monitoring System Case Study

    Directory of Open Access Journals (Sweden)

    Ammar Babiker

    2017-10-01

    Full Text Available Energy efficiency has been considered as the most important issue in wireless sensor networks. As in many applications, wireless sensors are scattered in a wide harsh area, where the battery replacement or charging will be quite difficult and it is the most important challenge. Therefore, the design of energy saving mechanism becomes mandatory in most recent research. In this paper, a new energy efficient clustered routing protocol is proposed: the proposed protocol is based on analyzing the data collected from the sensors in a base-station. Based on this analysis the cluster head will be selected as the one with the most useful data. Then, a variable time slot is specified to each sensor to minimize the transmission of repetitive and un-useful data. The proposed protocol Data-Based Energy Efficient Clustered Routing Protocol for Wireless Sensors Networks (DCRP was compared with the famous energy efficient LEACH protocol and also with one of the recent energy efficient routing protocols named Position Responsive Routing Protocol (PRRP. DCRP has been used in monitoring the floods in Tabuk area –Saudi Arabia. It shows comparatively better results.

  15. A new type of intelligent wireless sensing network for health monitoring of large-size structures

    Science.gov (United States)

    Lei, Ying; Liu, Ch.; Wu, D. T.; Tang, Y. L.; Wang, J. X.; Wu, L. J.; Jiang, X. D.

    2009-07-01

    In recent years, some innovative wireless sensing systems have been proposed. However, more exploration and research on wireless sensing systems are required before wireless systems can substitute for the traditional wire-based systems. In this paper, a new type of intelligent wireless sensing network is proposed for the heath monitoring of large-size structures. Hardware design of the new wireless sensing units is first studied. The wireless sensing unit mainly consists of functional modules of: sensing interface, signal conditioning, signal digitization, computational core, wireless communication and battery management. Then, software architecture of the unit is introduced. The sensing network has a two-level cluster-tree architecture with Zigbee communication protocol. Important issues such as power saving and fault tolerance are considered in the designs of the new wireless sensing units and sensing network. Each cluster head in the network is characterized by its computational capabilities that can be used to implement the computational methodologies of structural health monitoring; making the wireless sensing units and sensing network have "intelligent" characteristics. Primary tests on the measurement data collected by the wireless system are performed. The distributed computational capacity of the intelligent sensing network is also demonstrated. It is shown that the new type of intelligent wireless sensing network provides an efficient tool for structural health monitoring of large-size structures.

  16. Efficient and automatic wireless geohazard monitoring

    Science.gov (United States)

    Rubin, Marc J.

    In this dissertation, we present our research contributions geared towards creating an automated and efficient wireless sensor network (WSN) for geohazard monitoring. Specifically, this dissertation addresses three overall technical research problems inherent in implementing and deploying such a WSN, i.e., 1) automated event detection from geophysical data, 2) efficient wireless transmission, and 3) low-cost wireless hardware. In addition, after presenting algorithms, experimentation, and results from these three overall problems, we take a step back and discuss how, when, and why such scientific work matters in a geohazardous risk scenario. First, in Chapter 2, we discuss automated geohazard event detection within geophysical data. In particular, we present our pattern recognition workflow that can automatically detect snow avalanche events in seismic (geophone sensor) data. This workflow includes customized signal preprocessing for feature extraction, cluster-based stratified sub-sampling for majority class reduction, and experimentation with 12 different machine learning algorithms; results show that a decision stump classifier achieved 99.8% accuracy, 88.8% recall, and 13.2% precision in detecting avalanches within seismic data collected in the mountains above Davos, Switzerland, an improvement on previous work in the field. To address the second overall research problem (i.e., efficient wireless transmission), we present and evaluate our on-mote compressive sampling algorithm called Randomized Timing Vector (RTV) in Chapter 3 and compare our approach to four other on-mote, lossy compression algorithms in Chapter 4. Results from our work show that our RTV algorithm outperforms current on-mote compressive sampling algorithms and performs comparably to (and in many cases better than) the four state-of-the-art, on-mote lossy compression techniques. The main benefit of RTV is that it can guarantee a desired level of compression performance (and thus, radio usage

  17. A New Mechanism for Network Monitoring and Shielding in Wireless LAN

    Directory of Open Access Journals (Sweden)

    Jiujun Cheng

    2014-01-01

    Full Text Available Wireless LAN (WLAN technology is developing rapidly with the help of wireless communication technology and social demand. During the development of WLAN, the security is more and more important, and wireless monitoring and shielding are of prime importance for network security. In this paper, we have explored various security issues of IEEE 802.11 based wireless network and analyzed numerous problems in implementing the wireless monitoring and shielding system. We identify the challenges which monitoring and shielding system needs to be aware of, and then provide a feasible mechanism to avoid those challenges. We implemented an actual wireless LAN monitoring and shielding system on Maemo operating system to monitor wireless network data stream efficiently and solve the security problems of mobile users. More importantly, the system analyzes wireless network protocols efficiently and flexibly, reveals rich information of the IEEE 802.11 protocol such as traffic distribution and different IP connections, and graphically displays later. Moreover, the system running results show that the system has the capability to work stably, and accurately and analyze the wireless protocols efficiently.

  18. Design and development of wireless baby monitors

    OpenAIRE

    Jen, Yi-Kuo Eric

    2008-01-01

    The Philips DAP SCD510, SCD520, SCD530, and SCD540 1.8GHz/1.9GHz DECT Digital Wireless Baby Monitors are part of the next generation digital baby monitor products that emphasize on small form factor, innovative feature set, and cost effective bill of materials. New product features include wideband audio, ambient relative humidity measurement, and carbon monoxide detection. The objectives of this project are to design and develop these four baby monitor products and begin mass production for ...

  19. Distributed Wireless Monitoring System for Ullage and Temperature in Wine Barrels

    Science.gov (United States)

    Zhang, Wenqi; Skouroumounis, George K.; Monro, Tanya M.; Taylor, Dennis K.

    2015-01-01

    This paper presents a multipurpose and low cost sensor for the simultaneous monitoring of temperature and ullage of wine in barrels in two of the most important stages of winemaking, that being fermentation and maturation. The distributed sensor subsystem is imbedded within the bung of the barrel and runs on battery for a period of at least 12 months and costs around $27 AUD for all parts. In addition, software was designed which allows for the remote transmission and easy visual interpretation of the data for the winemaker. Early warning signals can be sent when the temperature or ullage deviates from a winemakers expectations so remedial action can be taken, such as when topping is required or the movement of the barrels to a cooler cellar location. Such knowledge of a wine’s properties or storage conditions allows for a more precise control of the final wine quality. PMID:26266410

  20. Combination of Multi-Agent Systems and Wireless Sensor Networks for the Monitoring of Cattle.

    Science.gov (United States)

    Barriuso, Alberto L; Villarrubia González, Gabriel; De Paz, Juan F; Lozano, Álvaro; Bajo, Javier

    2018-01-02

    Precision breeding techniques have been widely used to optimize expenses and increase livestock yields. Notwithstanding, the joint use of heterogeneous sensors and artificial intelligence techniques for the simultaneous analysis or detection of different problems that cattle may present has not been addressed. This study arises from the necessity to obtain a technological tool that faces this state of the art limitation. As novelty, this work presents a multi-agent architecture based on virtual organizations which allows to deploy a new embedded agent model in computationally limited autonomous sensors, making use of the Platform for Automatic coNstruction of orGanizations of intElligent Agents (PANGEA). To validate the proposed platform, different studies have been performed, where parameters specific to each animal are studied, such as physical activity, temperature, estrus cycle state and the moment in which the animal goes into labor. In addition, a set of applications that allow farmers to remotely monitor the livestock have been developed.

  1. Distributed Wireless Monitoring System for Ullage and Temperature in Wine Barrels

    Directory of Open Access Journals (Sweden)

    Wenqi Zhang

    2015-08-01

    Full Text Available This paper presents a multipurpose and low cost sensor for the simultaneous monitoring of temperature and ullage of wine in barrels in two of the most important stages of winemaking, that being fermentation and maturation. The distributed sensor subsystem is imbedded within the bung of the barrel and runs on battery for a period of at least 12 months and costs around $27 AUD for all parts. In addition, software was designed which allows for the remote transmission and easy visual interpretation of the data for the winemaker. Early warning signals can be sent when the temperature or ullage deviates from a winemakers expectations so remedial action can be taken, such as when topping is required or the movement of the barrels to a cooler cellar location. Such knowledge of a wine’s properties or storage conditions allows for a more precise control of the final wine quality.

  2. 75 FR 8400 - In the Matter of Certain Wireless Communications System Server Software, Wireless Handheld...

    Science.gov (United States)

    2010-02-24

    ... Communications System Server Software, Wireless Handheld Devices and Battery Packs; Notice of Investigation... within the United States after importation of certain wireless communications system server software... certain wireless communications system server software, wireless handheld devices or battery packs that...

  3. Wireless System for Continuous Cardiopulmonary Monitoring in a Space Environment, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to develop the NJM Sense-It system based on small sensor tags, which include a cardiopulmonary MEMS sensor for measuring heartbeat and breath rates...

  4. Wireless System for Continuous Cardiopulmonary Monitoring in a Space Environment, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to develop the NJM Sense-It system based on small sensor tags, which include a cardiopulmonary MEMS sensor for measuring heartbeat and breath rates...

  5. Combination of Multi-Agent Systems and Wireless Sensor Networks for the Monitoring of Cattle

    Science.gov (United States)

    Barriuso, Alberto L.; De Paz, Juan F.; Lozano, Álvaro

    2018-01-01

    Precision breeding techniques have been widely used to optimize expenses and increase livestock yields. Notwithstanding, the joint use of heterogeneous sensors and artificial intelligence techniques for the simultaneous analysis or detection of different problems that cattle may present has not been addressed. This study arises from the necessity to obtain a technological tool that faces this state of the art limitation. As novelty, this work presents a multi-agent architecture based on virtual organizations which allows to deploy a new embedded agent model in computationally limited autonomous sensors, making use of the Platform for Automatic coNstruction of orGanizations of intElligent Agents (PANGEA). To validate the proposed platform, different studies have been performed, where parameters specific to each animal are studied, such as physical activity, temperature, estrus cycle state and the moment in which the animal goes into labor. In addition, a set of applications that allow farmers to remotely monitor the livestock have been developed. PMID:29301310

  6. Wireless Damage Location Sensing System

    Science.gov (United States)

    Woodard, Stanley E. (Inventor); Taylor, Bryant Douglas (Inventor)

    2012-01-01

    A wireless damage location sensing system uses a geometric-patterned wireless sensor that resonates in the presence of a time-varying magnetic field to generate a harmonic response that will experience a change when the sensor experiences a change in its geometric pattern. The sensing system also includes a magnetic field response recorder for wirelessly transmitting the time-varying magnetic field and for wirelessly detecting the harmonic response. The sensing system compares the actual harmonic response to a plurality of predetermined harmonic responses. Each predetermined harmonic response is associated with a severing of the sensor at a corresponding known location thereof so that a match between the actual harmonic response and one of the predetermined harmonic responses defines the known location of the severing that is associated therewith.

  7. Wireless Communications for Monitoring Nuclear Material Processes Part 2: Wireless In-plant Data Transmission

    International Nuclear Information System (INIS)

    Braina, F.; Goncalves, J.M.C.; Versino, C.; Heppleston, M.; Ottesen, C.; Schoeneman, B.; Tolk, K.

    2008-01-01

    The wireless transmission of data from sensors, monitoring both static and dynamic safeguards processes, is highly appealing for the simple fact that there are no wires. In a nuclear safeguards regime, this has the implied benefits of low-cost installations, versatile configurations, and the elimination of conduits to inspect. However, with the implied solutions of wireless, we are presented with a new set of problems for system implementation and operation management, in particular (1) Radio Frequency (RF) interference and (2) security in information transmission. These problems are addressable. This paper looks at the clear benefits of wireless technologies and the cautions regarding the possible pitfalls of poorly applied technology, discusses the integration of radio frequency in existing and new facilities, provides high-level considerations for information security, and reviews prospects for the future

  8. Patient monitoring using infrastructure-oriented wireless LANs.

    Science.gov (United States)

    Varshney, Upkar

    2006-01-01

    There is considerable interest in using wireless and mobile technologies in patient monitoring in diverse environments including hospitals and nursing homes. However, there has not been much work in determining the requirements of patient monitoring and satisfying these requirements using infrastructure-oriented wireless networks. In this paper, we derive several requirements of patient monitoring and show how infrastructure-oriented wireless LANs, such as versions of IEEE 802.11, can be used to support patient monitoring in diverse environments.

  9. 75 FR 43206 - In the Matter of Certain Wireless Communications System Server Software, Wireless Handheld...

    Science.gov (United States)

    2010-07-23

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-706] In the Matter of Certain Wireless Communications System Server Software, Wireless Handheld Devices and Battery Packs: Notice of Commission... United States after importation of certain wireless communications system server software, wireless...

  10. Wireless Sensor Networks for Environmental Monitoring

    Science.gov (United States)

    Liang, X.; Liang, Y.; Navarro, M.; Zhong, X.; Villalba, G.; Li, Y.; Davis, T.; Erratt, N.

    2015-12-01

    Wireless sensor networks (WSNs) have gained an increasing interest in a broad range of new scientific research and applications. WSN technologies can provide high resolution for spatial and temporal data which has not been possible before, opening up new opportunities. On the other hand, WSNs, particularly outdoor WSNs in harsh environments, present great challenges for scientists and engineers in terms of the network design, deployment, operation, management, and maintenance. Since 2010, we have been working on the deployment of an outdoor multi-hop WSN testbed for hydrological/environmental monitoring in a forested hill-sloped region at the Audubon Society of Western Pennsylvania (ASWP), Pennsylvania, USA. The ASWP WSN testbed has continuously evolved and had more than 80 nodes by now. To our knowledge, the ASWP WSN testbed represents one of the first known long-term multi-hop WSN deployments in an outdoor environment. As simulation and laboratory methods are unable to capture the complexity of outdoor environments (e.g., forests, oceans, mountains, or glaciers), which significantly affect WSN operations and maintenance, experimental deployments are essential to investigate and understand WSN behaviors and performances as well as its maintenance characteristics under these harsh conditions. In this talk, based on our empirical studies with the ASWP WSN testbed, we will present our discoveries and investigations on several important aspects including WSN energy profile, node reprogramming, network management system, and testbed maintenance. We will then provide our insight into these critical aspects of outdoor WSN deployments and operations.

  11. Wireless sensor networks for structural health monitoring

    CERN Document Server

    Cao, Jiannong

    2016-01-01

    This brief covers the emerging area of wireless sensor network (WSN)-based structural health monitoring (SHM) systems, and introduces the authors’ WSN-based platform called SenetSHM. It helps the reader differentiate specific requirements of SHM applications from other traditional WSN applications, and demonstrates how these requirements are addressed by using a series of systematic approaches. The brief serves as a practical guide, explaining both the state-of-the-art technologies in domain-specific applications of WSNs, as well as the methodologies used to address the specific requirements for a WSN application. In particular, the brief offers instruction for problem formulation and problem solving based on the authors’ own experiences implementing SenetSHM. Seven concise chapters cover the development of hardware and software design of SenetSHM, as well as in-field experiments conducted while testing the platform. The brief’s exploration of the SenetSHM platform is a valuable feature for civil engine...

  12. Wireless plataforms for the monitoring of biomedical variables

    International Nuclear Information System (INIS)

    Bianco, Roman; Laprovitta, AgustIn; Misa, Alberto; Toselli, Eduardo; Castagnola, Juan Luis

    2007-01-01

    The present paper aims to analyze and to compare two wireless platforms for the monitoring of biomedical variables. They must obtain the vital signals of the patients, transmit them through a radio frequency bond and centralize them for their process, storage and monitoring in real time. The implementation of this system permit us to obtain two important benefits; The patient will enjoy greater comfort during the internment, and the doctors will be able to know the state of the biomedical variables of each patient, in simultaneous form. In order to achieve the objective of this work, two communication systems for wireless transmissions data were developed and implemented. The CC1000 transceiver was used in the first system and the Bluetooth module was used in the other system

  13. Wireless Sensor Network Powered by a Terrestrial Microbial Fuel Cell as a Sustainable Land Monitoring Energy System

    Directory of Open Access Journals (Sweden)

    Andrea Pietrelli

    2014-10-01

    Full Text Available This work aims at investigating the possibility of a wireless sensor network powered by an energy harvesting technology, such as a microbial fuel cell (MFC. An MFC is a bioreactor that transforms energy stored in chemical bonds of organic compounds into electrical energy. This process takes place through catalytic reactions of microorganisms under anaerobic conditions. An anode chamber together with a cathode chamber composes a conventional MFC reactor. The protons generated in the anode chamber are then transferred into the cathode chamber through a proton exchange membrane (PEM. A possible option is to use the soil itself as the membrane. In this case, we are referring to, more properly, a terrestrial microbial fuel cell (TMFC. This research examines the sustainability of a wireless sensor network powered by TMFC for land monitoring and precision agriculture. Acting on several factors, such as pH, temperature, humidity and type of soil used, we obtained minimum performance requirements in terms of the output power of the TMFC. In order to identify some of the different network node configurations and to compare the resulting performance, we investigated the energy consumption of the core components of a node, e.g., the transceiver and microcontroller, looking for the best performance.

  14. Wireless sensor network for monitoring soil moisture and weather conditions

    Science.gov (United States)

    A wireless sensor network (WSN) was developed and deployed in three fields to monitor soil water status and collect weather data for irrigation scheduling. The WSN consists of soil-water sensors, weather sensors, wireless data loggers, and a wireless modem. Soil-water sensors were installed at three...

  15. Design and implementation of the wireless high voltage control system

    International Nuclear Information System (INIS)

    Srivastava, Saurabh; Misra, A.; Pandey, H.K.; Thakur, S.K.; Pandit, V.S.

    2011-01-01

    In this paper we will describe the implementation of the wireless link for controlling and monitoring the serial data between control PC and the interface card (general DAQ card), by replacing existing RS232 based remote control system for controlling and monitoring High Voltage Power Supply (120kV/50mA). The enhancement in the reliability is achieved by replacing old RS232 based control system with wireless system by isolating ground loop. (author)

  16. The Wireless Nursing Call System

    DEFF Research Database (Denmark)

    Jensen, Casper Bruun

    2006-01-01

    This paper discusses a research project in which social scientists were involved both as analysts and supporters during a pilot with a new wireless nursing call system. The case thus exemplifies an attempt to participate in developing dependable health care systems and offers insight into the cha......This paper discusses a research project in which social scientists were involved both as analysts and supporters during a pilot with a new wireless nursing call system. The case thus exemplifies an attempt to participate in developing dependable health care systems and offers insight...

  17. A Wireless MEMS-Based Inclinometer Sensor Node for Structural Health Monitoring

    Science.gov (United States)

    Ha, Dae Woong; Park, Hyo Seon; Choi, Se Woon; Kim, Yousok

    2013-01-01

    This paper proposes a wireless inclinometer sensor node for structural health monitoring (SHM) that can be applied to civil engineering and building structures subjected to various loadings. The inclinometer used in this study employs a method for calculating the tilt based on the difference between the static acceleration and the acceleration due to gravity, using a micro-electro-mechanical system (MEMS)-based accelerometer. A wireless sensor node was developed through which tilt measurement data are wirelessly transmitted to a monitoring server. This node consists of a slave node that uses a short-distance wireless communication system (RF 2.4 GHz) and a master node that uses a long-distance telecommunication system (code division multiple access—CDMA). The communication distance limitation, which is recognized as an important issue in wireless monitoring systems, has been resolved via these two wireless communication components. The reliability of the proposed wireless inclinometer sensor node was verified experimentally by comparing the values measured by the inclinometer and subsequently transferred to the monitoring server via wired and wireless transfer methods to permit a performance evaluation of the wireless communication sensor nodes. The experimental results indicated that the two systems (wired and wireless transfer systems) yielded almost identical values at a tilt angle greater than 1°, and a uniform difference was observed at a tilt angle less than 0.42° (approximately 0.0032° corresponding to 0.76% of the tilt angle, 0.42°) regardless of the tilt size. This result was deemed to be within the allowable range of measurement error in SHM. Thus, the wireless transfer system proposed in this study was experimentally verified for practical application in a structural health monitoring system. PMID:24287533

  18. Campaign monitoring of railroad bridges in high-speed rail shared corridors using wireless smart sensors.

    Science.gov (United States)

    2015-06-01

    This research project used wireless smart sensors to develop a cost-effective and practical portable structural health monitoring : system for railroad bridges in North America. The system is designed for periodic deployment rather than as a permanen...

  19. Wearable and Implantable Wireless Sensor Network Solutions for Healthcare Monitoring

    OpenAIRE

    Darwish, Ashraf; Hassanien, Aboul Ella

    2011-01-01

    Wireless sensor network (WSN) technologies are considered one of the key research areas in computer science and the healthcare application industries for improving the quality of life. The purpose of this paper is to provide a snapshot of current developments and future direction of research on wearable and implantable body area network systems for continuous monitoring of patients. This paper explains the important role of body sensor networks in medicine to minimize the need for caregivers ...

  20. Application for vibration monitoring of aspheric surface machining based on wireless sensor networks

    Science.gov (United States)

    Han, Chun Guang; Guo, Yin Biao; Jiang, Chen

    2010-05-01

    Any kinds of tiny vibration of machine tool parts will have a great influence on surface quality of the workpiece at ultra-precise machining process of aspheric surface. At present the major way for decreasing influence of vibration is machining compensation technology. Therefore it is important for machining compensation control to acquire and transmit these vibration signals effectively. This paper presents a vibration monitoring system of aspheric surface machining machine tool based on wireless sensor networks (WSN). Some key issues of wireless sensor networks for vibration monitoring system of aspheric surface machining are discussed. The reliability of data transmission, network communication protocol and synchronization mechanism of wireless sensor networks are studied for the vibration monitoring system. The proposed system achieves multi-sensors vibration monitoring involving the grinding wheel, the workpiece and the workbench spindle. The wireless transmission of vibration signals is achieved by the combination with vibration sensor nodes and wireless network. In this paper, these vibration sensor nodes are developed. An experimental platform is structured which employs wireless sensor networks to the vibration monitoring system in order to test acquisition and wireless transmission of vibration signal. The test results show that the proposed system can achieve vibration data transmission effectively and reliability and meet the monitoring requirements of aspheric surface machining machine tool.

  1. OFDM systems for wireless communications

    CERN Document Server

    Narasimhamurthy, Adarsh

    2010-01-01

    Orthogonal Frequency Division Multiplexing (OFDM) systems are widely used in the standards for digital audio/video broadcasting, WiFi and WiMax. Being a frequency-domain approach to communications, OFDM has important advantages in dealing with the frequency-selective nature of high data rate wireless communication channels. As the needs for operating with higher data rates become more pressing, OFDM systems have emerged as an effective physical-layer solution.This short monograph is intended as a tutorial which highlights the deleterious aspects of the wireless channel and presents why OFDM is

  2. Investigation of Wireless Sensor Networks for Structural Health Monitoring

    Directory of Open Access Journals (Sweden)

    Ping Wang

    2012-01-01

    Full Text Available Wireless sensor networks (WSNs are one of the most able technologies in the structural health monitoring (SHM field. Through intelligent, self-organising means, the contents of this paper will test a variety of different objects and different working principles of sensor nodes connected into a network and integrated with data processing functions. In this paper the key issues of WSN applied in SHM are discussed, including the integration of different types of sensors with different operational modalities, sampling frequencies, issues of transmission bandwidth, real-time ability, and wireless transmitter frequency. Furthermore, the topology, data fusion, integration, energy saving, and self-powering nature of different systems will be investigated. In the FP7 project “Health Monitoring of Offshore Wind Farms,” the above issues are explored.

  3. Embracing interference in wireless systems

    CERN Document Server

    Gollakota, Shyamnath

    2014-01-01

    The wireless medium is a shared resource. If nearby devices transmit at thesame time, their signals interfere, resulting in a collision. In traditionalnetworks, collisions cause the loss of the transmitted information. For thisreason, wireless networks have been designed with the assumption thatinterference is intrinsically harmful and must be avoided.This book, a revised version of the author's award-winning Ph.D.dissertation, takes an alternate approach: Instead of viewing interferenceas an inherently counterproductive phenomenon that should to be avoided, wedesign practical systems that tra

  4. Developing wireless sensor networks for monitoring crop canopy temperature using a moving sprinkler system as a platform

    Science.gov (United States)

    The objectives of this study were to characterize wireless sensor nodes that we developed in terms of power consumption and functionality, and compare the performance of mesh and non-mesh wireless sensor networks (WSNs) comprised mainly of infrared thermometer thermocouples located on a center pivot...

  5. An Efficient Wireless Sensor Network for Industrial Monitoring and Control

    Directory of Open Access Journals (Sweden)

    Juan Aponte-Luis

    2018-01-01

    Full Text Available This paper presents the design of a wireless sensor network particularly designed for remote monitoring and control of industrial parameters. The article describes the network components, protocol and sensor deployment, aimed to accomplish industrial constraint and to assure reliability and low power consumption. A particular case of study is presented. The system consists of a base station, gas sensing nodes, a tree-based routing scheme for the wireless sensor nodes and a real-time monitoring application that operates from a remote computer and a mobile phone. The system assures that the industrial safety quality and the measurement and monitoring system achieves an efficient industrial monitoring operations. The robustness of the developed system and the security in the communications have been guaranteed both in hardware and software level. The system is flexible and can be adapted to different environments. The testing of the system confirms the feasibility of the proposed implementation and validates the functional requirements of the developed devices, the networking solution and the power consumption management.

  6. An Efficient Wireless Sensor Network for Industrial Monitoring and Control.

    Science.gov (United States)

    Aponte-Luis, Juan; Gómez-Galán, Juan Antonio; Gómez-Bravo, Fernando; Sánchez-Raya, Manuel; Alcina-Espigado, Javier; Teixido-Rovira, Pedro Miguel

    2018-01-10

    This paper presents the design of a wireless sensor network particularly designed for remote monitoring and control of industrial parameters. The article describes the network components, protocol and sensor deployment, aimed to accomplish industrial constraint and to assure reliability and low power consumption. A particular case of study is presented. The system consists of a base station, gas sensing nodes, a tree-based routing scheme for the wireless sensor nodes and a real-time monitoring application that operates from a remote computer and a mobile phone. The system assures that the industrial safety quality and the measurement and monitoring system achieves an efficient industrial monitoring operations. The robustness of the developed system and the security in the communications have been guaranteed both in hardware and software level. The system is flexible and can be adapted to different environments. The testing of the system confirms the feasibility of the proposed implementation and validates the functional requirements of the developed devices, the networking solution and the power consumption management.

  7. Wireless Sensor Network for Electric Transmission Line Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Alphenaar, Bruce

    2009-06-30

    Generally, federal agencies tasked to oversee power grid reliability are dependent on data from grid infrastructure owners and operators in order to obtain a basic level of situational awareness. Since there are many owners and operators involved in the day-to-day functioning of the power grid, the task of accessing, aggregating and analyzing grid information from these sources is not a trivial one. Seemingly basic tasks such as synchronizing data timestamps between many different data providers and sources can be difficult as evidenced during the post-event analysis of the August 2003 blackout. In this project we investigate the efficacy and cost effectiveness of deploying a network of wireless power line monitoring devices as a method of independently monitoring key parts of the power grid as a complement to the data which is currently available to federal agencies from grid system operators. Such a network is modeled on proprietary power line monitoring technologies and networks invented, developed and deployed by Genscape, a Louisville, Kentucky based real-time energy information provider. Genscape measures transmission line power flow using measurements of electromagnetic fields under overhead high voltage transmission power lines in the United States and Europe. Opportunities for optimization of the commercial power line monitoring technology were investigated in this project to enable lower power consumption, lower cost and improvements to measurement methodologies. These optimizations were performed in order to better enable the use of wireless transmission line monitors in large network deployments (perhaps covering several thousand power lines) for federal situational awareness needs. Power consumption and cost reduction were addressed by developing a power line monitor using a low power, low cost wireless telemetry platform known as the ''Mote''. Motes were first developed as smart sensor nodes in wireless mesh networking applications

  8. Application of wireless sensor network technology in logistics information system

    Science.gov (United States)

    Xu, Tao; Gong, Lina; Zhang, Wei; Li, Xuhong; Wang, Xia; Pan, Wenwen

    2017-04-01

    This paper introduces the basic concepts of active RFID (WSN-ARFID) based on wireless sensor networks and analyzes the shortcomings of the existing RFID-based logistics monitoring system. Integrated wireless sensor network technology and the scrambling point of RFID technology. A new real-time logistics detection system based on WSN and RFID, a model of logistics system based on WSN-ARFID is proposed, and the feasibility of this technology applied to logistics field is analyzed.

  9. Applications of smart piezoelectric materials in a wireless admittance monitoring system (WiAMS to Structures—Tests in RC elements

    Directory of Open Access Journals (Sweden)

    Constantin E. Chalioris

    2016-12-01

    Full Text Available The application of an innovative real-time structural health monitoring system is studied through tests performed on flexural and shear-critical reinforced concrete elements subjected to monotonic and cyclic loading. The test set-up involves a Wireless impedance/Admittance Monitoring System (WiAMS that comprises specially manufactured small-sized portable devices to collect the voltage frequency responses of an array of smart piezoelectric transducers mounted on structural members of reinforced concrete constructions. Damage detection and evaluation is achieved using the in-situ measurements of the integrated piezoelectric sensors/actuators signals at the healthy state of the member and at various levels of damage during testing. Three different installations of Piezoelectric lead Zirconate Titanate (PZT transducers are examined: (a epoxy bonded PZTs on the surface of the steel reinforcing bars of the flexural elements, (b PZTs embedded inside the concrete mass of the shear-critical beams and (c externally epoxy bonded PZTs attached to the concrete surface of the tested elements. The smart piezoelectric materials have been pre-installed before testing based on the potential flexural and shear cracking of the elements. Quantitative assessment of the examined damage levels using values for the statistical damage index is also presented and discussed. Voltage signals and index values acquired from the PZTs’ measurements using the proposed wireless monitoring technique demonstrated obvious discrepancies between the frequency response of the healthy and the examined damage levels for every tested element. These differences clearly indicate the presence of damage, whereas their gradation reveals the magnitude of the occurred damage. Promising results concerning the prediction of the forthcoming fatal failures at early damage stages have also been derived.

  10. Low-cost wireless voltage & current grid monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Hines, Jacqueline [SenSanna Inc., Arnold, MD (United States)

    2016-12-31

    This report describes the development and demonstration of a novel low-cost wireless power distribution line monitoring system. This system measures voltage, current, and relative phase on power lines of up to 35 kV-class. The line units operate without any batteries, and without harvesting energy from the power line. Thus, data on grid condition is provided even in outage conditions, when line current is zero. This enhances worker safety by detecting the presence of voltage and current that may appear from stray sources on nominally isolated lines. Availability of low-cost power line monitoring systems will enable widespread monitoring of the distribution grid. Real-time data on local grid operating conditions will enable grid operators to optimize grid operation, implement grid automation, and understand the impact of solar and other distributed sources on grid stability. The latter will enable utilities to implement eneygy storage and control systems to enable greater penetration of solar into the grid.

  11. Wireless and mobile systems in telemedicine

    Directory of Open Access Journals (Sweden)

    Reza Safdari

    2012-12-01

    Full Text Available Background: It is necessary to deploy mobile and wireless systems in healthcare, because they have many benefits for healthcare systems. The objectives of this article were introducing various systems, applications, and standards of the wireless and mobile telemedicine. Material and Methods: This review study was conducted in 2010. To conduct the study, published articles in the years 2005 to 2012, in English with an emphasis on wireless and mobile technologies in health were studied. Search was done with key words include telemedicine, wireless health systems, health and telecommunications technology in databases including Pubmed, Science Direct, Google Scholar, Web of Sciences, Proquest. The collected data were analyzed. Results: Telemedicine system in the ambulance, telemedicine systems in space, telecardiology systems, EEG system, ultrasound system are some types of wireless and mobile systems in telemedicine. PDA-based mobile and wireless telemedicine application, based PDA drug application, and patient tracking application are some of wireless and mobile applications of telemedicine. The most important standards of wireless and mobile telemedicine are HL7, DICOM, SNOMed, and ICD-9-CM. Conclusion: There are many challenges in the wireless and mobile systems in telemedicine, despite the many benefits. Slow speed in sending pictures and video, lack of attention to the privacy in the design of these systems, environmental variables and the number of users during the day are some of these challenges. It is recommended to consider these challenges during the planning and designing of wireless and mobile systems in telemedicine.

  12. Wireless Sensor Networks for Long Distance Pipeline Monitoring

    OpenAIRE

    Augustine C. Azubogu; Victor E. Idigo; Schola U. Nnebe; Obinna S. Oguejiofor; Simon E.

    2013-01-01

    The main goal of this seminal paper is to introduce the application of Wireless Sensor Networks (WSN) in long distance infrastructure monitoring (in particular in pipeline infrastructure monitoring) – one of the on-going research projects by the Wireless Communication Research Group at the department of Electronic and Computer Engineering, Nnamdi Azikiwe University, Awka. The current sensor network architectures for monitoring long distance pipeline infrastructures are pr...

  13. Computer-Based Wireless Advertising Communication System

    Directory of Open Access Journals (Sweden)

    Anwar Al-Mofleh

    2009-10-01

    Full Text Available In this paper we developed a computer based wireless advertising communication system (CBWACS that enables the user to advertise whatever he wants from his own office to the screen in front of the customer via wireless communication system. This system consists of two PIC microcontrollers, transmitter, receiver, LCD, serial cable and antenna. The main advantages of the system are: the wireless structure and the system is less susceptible to noise and other interferences because it uses digital communication techniques.

  14. Development of a PZT-based wireless digital monitor for composite impact monitoring

    International Nuclear Information System (INIS)

    Liu, Peipei; Yuan, Shenfang; Qiu, Lei

    2012-01-01

    One of the major concerns in the whole lifetime of composite materials in aircraft is their susceptibility to impact damage. And there has existed a need in recent years to develop an online structural health monitoring (SHM) system for impact monitoring. This paper proposes a new PZT-based wireless digital impact monitoring system development method aimed at giving a localized area for further inspection. Based on this method, a PZT-based wireless digital impact monitor (WDIM) with advantages of compactness, light weight, low power consumption and high efficiency is developed. Differently from conventional SHM systems, the complex analog circuits are removed and the whole process is achieved in a digital way by turning the output of the PZT sensor directly into a digital queue through a comparator. A simple but efficient sub-region location method is implemented in a field programmable gate array (FPGA) as the processing core of the WDIM to detect and record the impact events. In addition, wireless communication technology is used in the WDIM to transmit data and form a monitoring network. To illustrate the capability of the WDIM, a complete process dealing with an impact event is investigated and the stability of the WDIM is also evaluated in this paper. The WDIM shows its potential for real online applications in aircraft. (paper)

  15. Wound dressing with reusable electronics for wireless monitoring

    KAUST Repository

    Shamim, Atif

    2016-10-20

    A wound dressing device with reusable electronics for wireless monitoring and a method of making the same are provided. The device can be a smart device. In an embodiment, the device has a disposable portion including one or more sensors and a reusable portion including wireless electronics. The one or more sensors can be secured to a flexible substrate and can be printed by non-contact printing on the substrate. The disposable portion can be removably coupled to the one or more sensors. The device can include one or more sensors for wireless monitoring of a wound, a wound dressing, a body fluid exuded by the wound and/or wearer health.

  16. A wireless smart sensor network for automated monitoring of cable tension

    International Nuclear Information System (INIS)

    Sim, Sung-Han; Cho, Soojin; Li, Jian; Jo, Hongki; Park, Jong-Woong; Jung, Hyung-Jo; Spencer Jr, Billie F

    2014-01-01

    As cables are primary load carrying members in cable-stayed bridges, monitoring the tension forces of the cables provides valuable information regarding structural soundness. Incorporating wireless smart sensors with vibration-based tension estimation methods provides an efficient means of autonomous long-term monitoring of cable tensions. This study develops a wireless cable tension monitoring system using MEMSIC’s Imote2 smart sensors. The monitoring system features autonomous operation, sustainable energy harvesting and power consumption, and remote access using the internet. To obtain the tension force, an in-network data processing strategy associated with the vibration-based tension estimation method is implemented on the Imote2-based sensor network, significantly reducing the wireless data transmission and the power consumption. The proposed monitoring system has been deployed and validated on the Jindo Bridge, a cable-stayed bridge located in South Korea. (paper)

  17. A wireless smart sensor network for automated monitoring of cable tension

    Science.gov (United States)

    Sim, Sung-Han; Li, Jian; Jo, Hongki; Park, Jong-Woong; Cho, Soojin; Spencer, Billie F., Jr.; Jung, Hyung-Jo

    2014-02-01

    As cables are primary load carrying members in cable-stayed bridges, monitoring the tension forces of the cables provides valuable information regarding structural soundness. Incorporating wireless smart sensors with vibration-based tension estimation methods provides an efficient means of autonomous long-term monitoring of cable tensions. This study develops a wireless cable tension monitoring system using MEMSIC’s Imote2 smart sensors. The monitoring system features autonomous operation, sustainable energy harvesting and power consumption, and remote access using the internet. To obtain the tension force, an in-network data processing strategy associated with the vibration-based tension estimation method is implemented on the Imote2-based sensor network, significantly reducing the wireless data transmission and the power consumption. The proposed monitoring system has been deployed and validated on the Jindo Bridge, a cable-stayed bridge located in South Korea.

  18. Implementation of a Low-Cost Energy and Environment Monitoring System Based on a Hybrid Wireless Sensor Network

    Directory of Open Access Journals (Sweden)

    Dong Sik Kim

    2017-01-01

    Full Text Available A low-cost hybrid wireless sensor network (WSN that utilizes the 917 MHz band Wireless Smart Utility Network (Wi-SUN and a 447 MHz band narrow bandwidth communication network is implemented for electric metering and room temperature, humidity, and CO2 gas measurements. A mesh network connection that is commonly utilized for the Internet of Things (IoT is used for the Wi-SUN under the Contiki OS, and a star connection is used for the narrow bandwidth network. Both a duty-cycling receiver algorithm and a digitally controlled temperature-compensated crystal oscillator algorithm for frequency reference are implemented at the physical layer of the receiver to accomplish low-power and low-cost wireless sensor node design. A two-level temperature-compensation approach, in which first a fixed third-order curve and then a sample-based first-order curve are applied, is proposed using a conventional AT-cut quartz crystal resonator. The developed WSN is installed in a home and provides reliable data collection with low construction complexity and power consumption.

  19. Bluetooth low energy: wireless connectivity for medical monitoring.

    Science.gov (United States)

    Omre, Alf Helge

    2010-03-01

    Electronic wireless sensors could cut medical costs by enabling physicians to remotely monitor vital signs such as blood pressure, blood glucose, and blood oxygenation while patients remain at home. According to the IDC report "Worldwide Bluetooth Semiconductor 2008-2012 Forecast," published November 2008, a forthcoming radio frequency communication ("wireless connectivity") standard, Bluetooth low energy, will link wireless sensors via radio signals to the 70% of cell phones and computers likely to be fitted with the next generation of Bluetooth wireless technology, leveraging a ready-built infrastructure for data transmission. Analysis of trends indicated by this data can help physicians better manage diseases such as diabetes. The technology also addresses the concerns of cost, compatibility, and interoperability that have previously stalled widespread adoption of wireless technology in medical applications. (c) 2010 Diabetes Technology Society.

  20. Wireless Sensor Network Based Smart Parking System

    Directory of Open Access Journals (Sweden)

    Jeffrey JOSEPH

    2014-01-01

    Full Text Available Ambient Intelligence is a vision in which various devices come together and process information from multiple sources in order to exert control on the physical environment. In addition to computation and control, communication plays a crucial role in the overall functionality of such a system. Wireless Sensor Networks are one such class of networks, which meet these criteria. These networks consist of spatially distributed sensor motes which work in a co-operative manner to sense and control the environment. In this work, an implementation of an energy-efficient and cost-effective, wireless sensor networks based vehicle parking system for a multi-floor indoor parking facility has been introduced. The system monitors the availability of free parking slots and guides the vehicle to the nearest free slot. The amount of time the vehicle has been parked is monitored for billing purposes. The status of the motes (dead/alive is also recorded. Information like slot allocated, directions to the slot and billing data is sent as a message to customer’s mobile phones. This paper extends our previous work 1 with the development of a low cost sensor mote, about one tenth the cost of a commercially available mote, keeping in mind the price sensitive markets of the developing countries.

  1. Filtering and control of wireless networked systems

    CERN Document Server

    Zhang, Dan; Yu, Li

    2017-01-01

    This self-contained book, written by leading experts, offers a cutting-edge, in-depth overview of the filtering and control of wireless networked systems. It addresses the energy constraint and filter/controller gain variation problems, and presents both the centralized and the distributed solutions. The first two chapters provide an introduction to networked control systems and basic information on system analysis. Chapters (3–6) then discuss the centralized filtering of wireless networked systems, presenting different approaches to deal with energy efficiency and filter/controller gain variation problems. The next part (chapters 7–10) explores the distributed filtering of wireless networked systems, addressing the main problems of energy constraint and filter gain variation. The final part (chapters 11–14) focuses on the distributed control of wireless networked systems. wireless networked systems for communication and control applications, the bo...

  2. Integrating wireless sensor network for monitoring subsidence phenomena

    Science.gov (United States)

    Marturià, Jordi; Lopez, Ferran; Gigli, Giovanni; Intrieri, Emanuele; Mucchi, Lorenzo; Fornaciai, Alessandro

    2016-04-01

    An innovative wireless sensor network (WSN) for the 3D superficial monitoring of deformations (such as landslides and subsidence) is being developed in the frame of the Wi-GIM project (Wireless sensor network for Ground Instability Monitoring - LIFE12 ENV/IT/001033). The surface movement is detected acquiring the position (x, y and z) by integrating large bandwidth technology able to detect the 3D coordinates of the sensor with a sub-meter error, with continuous wave radar, which allows decreasing the error down to sub-cm. The Estació neighborhood in Sallent is located over the old potassium mine Enrique. This zone has been affected by a subsidence process over more than twenty years. The implementation of a wide network for ground auscultation has allowed monitoring the process of subsidence since 1997. This network consists of: i) a high-precision topographic leveling network to control the subsidence in surface; ii) a rod extensometers network to monitor subsurface deformation; iii) an automatic Leica TCA Total Station to monitor building movements; iv) an inclinometers network to measure the horizontal displacements on subsurface and v) a piezometer to measure the water level. Those networks were implemented within an alert system for an organized an efficient response of the civil protection authorities in case of an emergency. On 23rd December 2008, an acceleration of subsoil movements (of approx. 12-18 cm/year) provoked the activation of the emergency plan by the Catalan Civil Protection. This implied the preventive and scheduled evacuation of the neighbours (January 2009) located in the area with a higher risk of collapse: around 120 residents of 43 homes. As a consequence, the administration implemented a compensation plan for the evacuation of the whole neighbourhood residents and the demolition of 405 properties. In this work, the adaptation and integration process of Wi-GIM system with those conventional monitoring network are presented for its testing

  3. FPGA based Smart Wireless MIMO Control System

    International Nuclear Information System (INIS)

    Ali, Syed M Usman; Hussain, Sajid; Siddiqui, Ali Akber; Arshad, Jawad Ali; Darakhshan, Anjum

    2013-01-01

    In our present work, we have successfully designed, and developed an FPGA based smart wireless MIMO (Multiple Input and Multiple Output) system capable of controlling multiple industrial process parameters such as temperature, pressure, stress and vibration etc. To achieve this task we have used Xilin x Spartan 3E FPGA (Field Programmable Gate Array) instead of conventional microcontrollers. By employing FPGA kit to PC via RF transceivers which has a working range of about 100 meters. The developed smart system is capable of performing the control task assigned to it successfully. We have also provided a provision to our proposed system that can be accessed for monitoring and control through the web and GSM as well. Our proposed system can be equally applied to all the hazardous and rugged industrial environments where a conventional system cannot work effectively

  4. FPGA based Smart Wireless MIMO Control System

    Science.gov (United States)

    Usman Ali, Syed M.; Hussain, Sajid; Akber Siddiqui, Ali; Arshad, Jawad Ali; Darakhshan, Anjum

    2013-12-01

    In our present work, we have successfully designed, and developed an FPGA based smart wireless MIMO (Multiple Input & Multiple Output) system capable of controlling multiple industrial process parameters such as temperature, pressure, stress and vibration etc. To achieve this task we have used Xilin x Spartan 3E FPGA (Field Programmable Gate Array) instead of conventional microcontrollers. By employing FPGA kit to PC via RF transceivers which has a working range of about 100 meters. The developed smart system is capable of performing the control task assigned to it successfully. We have also provided a provision to our proposed system that can be accessed for monitoring and control through the web and GSM as well. Our proposed system can be equally applied to all the hazardous and rugged industrial environments where a conventional system cannot work effectively.

  5. An Improved Wireless Battery Charging System

    Directory of Open Access Journals (Sweden)

    Woo-Seok Lee

    2018-03-01

    Full Text Available This paper presents a direct wireless battery charging system. The output current of the series-series compensated wireless power transfer (SS-WPT system is used as a current source, and the output voltage of AC-DC converter controls the current source. Therefore, the proposed wireless battery charging system needs no battery charging circuit to carry out charging profiles, and can solve space constraints and thermal problems in many battery applications. In addition, the proposed wireless battery charging system can implement easily most other charging profiles. In this paper, the proposed wireless battery charging system is implemented and the feasibility is verified experimentally according to constant-current constant-voltage charging profile or multi-step current charging profile.

  6. Monitoring of traffic noise in an urban area using a wireless sensor network

    NARCIS (Netherlands)

    Wessels, P.W.; Basten, T.G.H.; Eerden, F.J.M. van der; Graafland, F.

    2014-01-01

    Developments in systems for monitoring environmental noise have made it possible to monitor the acoustic situation within large urban areas. The developments in hardware size and costs, combined with the developments in wireless communication allow to deploy networks with many acoustic sensors

  7. Applications of wireless sensor networks in marine environment monitoring: a survey.

    Science.gov (United States)

    Xu, Guobao; Shen, Weiming; Wang, Xianbin

    2014-09-11

    With the rapid development of society and the economy, an increasing number of human activities have gradually destroyed the marine environment. Marine environment monitoring is a vital problem and has increasingly attracted a great deal of research and development attention. During the past decade, various marine environment monitoring systems have been developed. The traditional marine environment monitoring system using an oceanographic research vessel is expensive and time-consuming and has a low resolution both in time and space. Wireless Sensor Networks (WSNs) have recently been considered as potentially promising alternatives for monitoring marine environments since they have a number of advantages such as unmanned operation, easy deployment, real-time monitoring, and relatively low cost. This paper provides a comprehensive review of the state-of-the-art technologies in the field of marine environment monitoring using wireless sensor networks. It first describes application areas, a common architecture of WSN-based oceanographic monitoring systems, a general architecture of an oceanographic sensor node, sensing parameters and sensors, and wireless communication technologies. Then, it presents a detailed review of some related projects, systems, techniques, approaches and algorithms. It also discusses challenges and opportunities in the research, development, and deployment of wireless sensor networks for marine environment monitoring.

  8. Applications of Wireless Sensor Networks in Marine Environment Monitoring: A Survey

    Directory of Open Access Journals (Sweden)

    Guobao Xu

    2014-09-01

    Full Text Available With the rapid development of society and the economy, an increasing number of human activities have gradually destroyed the marine environment. Marine environment monitoring is a vital problem and has increasingly attracted a great deal of research and development attention. During the past decade, various marine environment monitoring systems have been developed. The traditional marine environment monitoring system using an oceanographic research vessel is expensive and time-consuming and has a low resolution both in time and space. Wireless Sensor Networks (WSNs have recently been considered as potentially promising alternatives for monitoring marine environments since they have a number of advantages such as unmanned operation, easy deployment, real-time monitoring, and relatively low cost. This paper provides a comprehensive review of the state-of-the-art technologies in the field of marine environment monitoring using wireless sensor networks. It first describes application areas, a common architecture of WSN-based oceanographic monitoring systems, a general architecture of an oceanographic sensor node, sensing parameters and sensors, and wireless communication technologies. Then, it presents a detailed review of some related projects, systems, techniques, approaches and algorithms. It also discusses challenges and opportunities in the research, development, and deployment of wireless sensor networks for marine environment monitoring.

  9. Applications of Wireless Sensor Networks in Marine Environment Monitoring: A Survey

    Science.gov (United States)

    Xu, Guobao; Shen, Weiming; Wang, Xianbin

    2014-01-01

    With the rapid development of society and the economy, an increasing number of human activities have gradually destroyed the marine environment. Marine environment monitoring is a vital problem and has increasingly attracted a great deal of research and development attention. During the past decade, various marine environment monitoring systems have been developed. The traditional marine environment monitoring system using an oceanographic research vessel is expensive and time-consuming and has a low resolution both in time and space. Wireless Sensor Networks (WSNs) have recently been considered as potentially promising alternatives for monitoring marine environments since they have a number of advantages such as unmanned operation, easy deployment, real-time monitoring, and relatively low cost. This paper provides a comprehensive review of the state-of-the-art technologies in the field of marine environment monitoring using wireless sensor networks. It first describes application areas, a common architecture of WSN-based oceanographic monitoring systems, a general architecture of an oceanographic sensor node, sensing parameters and sensors, and wireless communication technologies. Then, it presents a detailed review of some related projects, systems, techniques, approaches and algorithms. It also discusses challenges and opportunities in the research, development, and deployment of wireless sensor networks for marine environment monitoring. PMID:25215942

  10. Wireless sensor networks for indoor air quality monitoring.

    Science.gov (United States)

    Yu, Tsang-Chu; Lin, Chung-Chih; Chen, Chun-Chang; Lee, Wei-Lun; Lee, Ren-Guey; Tseng, Chao-Heng; Liu, Shi-Ping

    2013-02-01

    The purpose of this study is to build an indoor air quality monitoring system based on wireless sensor networks (WSNs) technology. The main functions of the system include (1) remote parameter adjustment and firmware update mechanism for the sensors to enhance the flexibility and convenience of the system, (2) sensor nodes are designed by referring to the IEEE 1451.4 standard. This way, sensor nodes can automatically adjust and be plug and play, and (3) calibration method to strength the measurement value's sensitivity and accuracy. The experimental results show that transmission speed improves 30% than Trickle, transmission volume reduced to 42% of the original volume, updating task in 5*5 network topology can be executed 1.79 times and power consumption reduced to 30%. When baseline drifts, we can use the firmware update mechanism to adjust the reference value. The way can reduce error percentage from 15% to 7%. Copyright © 2011 IPEM. Published by Elsevier Ltd. All rights reserved.

  11. Review of Radio Frequency Identification and Wireless Technology for Structural Health Monitoring

    International Nuclear Information System (INIS)

    Dhital, Dipesh; Chia, Chen Ciang; Lee, Jung Ryul; Park, Chan Yik

    2010-01-01

    Radio frequency identification(RFID) combined with wireless technology has good potential for structural health monitoring(SHM). We describe several advantages of RFID and wireless technologies for SHM, and review SHM examples with working principles, design and technical details for damage detection, heat exposure monitoring, force/strain sensing, and corrosion detection in concrete, steel, carbon fiber reinforced polymer(CFRP), and other materials. Various sensors combined with wireless communication are also discussed. These methodologies can be readily developed, implemented, and customized. There are some technical difficulties, but solutions are being addressed. Lastly, a surface acoustic wave-based RFID system is presented, and possible future trends of SHM based on RFID and wireless technology are presented

  12. A mobile-agent based wireless sensing network for structural monitoring applications

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, Stuart G [Los Alamos National Laboratory; Farinholt, Kevin M [Los Alamos National Laboratory; Figueiredo, Eloi [Los Alamos National Laboratory; Park, Gyuhae [Los Alamos National Laboratory; Farrar, Charles R [Los Alamos National Laboratory; Flynn, Eric B [UCSD; Mascarenas, David L [UCSD; Todd, Michael D [UCSD

    2008-01-01

    A new wireless sensing network paradigm is presented for structural monitoring applications. In this approach, both power and data interrogation commands are conveyed via a mobile agent that is sent to sensor nodes to perform intended interrogations, which can alleviate several limitations of the traditional sensing networks. Furthermore, the mobile agent provides computational power to make near real-time assessments on the structural conditions. This paper will discuss such prototype systems, which are used to interrogate impedance-based sensors for structural health monitoring applications. Our wireless sensor node is specifically designed to accept various energy sources, including wireless energy transmission, and to be wirelessly triggered on an as-needed basis by the mobile agent or other sensor nodes. The capabilities of this proposed sensing network paradigm are demonstrated in the laboratory and the field.

  13. Passive wireless strain monitoring of tyres using capacitance and tuning frequency changes

    Science.gov (United States)

    Matsuzaki, Ryosuke; Todoroki, Akira

    2005-08-01

    In-service strain monitoring of tyres of automobiles is quite effective for improving the reliability of tyres and anti-lock braking systems (ABS). Conventional strain gauges have high stiffness and require lead wires. Therefore, they are cumbersome for tyre strain measurements. In a previous study, the authors proposed a new wireless strain monitoring method that adopts the tyre itself as a sensor, with an oscillating circuit. This method is very simple and useful, but it requires a battery to activate the oscillating circuit. In the present study, the previous method for wireless tyre monitoring is improved to produce a passive wireless sensor. A specimen made from a commercially available tyre is connected to a tuning circuit comprising an inductance and a capacitance as a condenser. The capacitance change of the tyre alters the tuning frequency. This change of the tuned radio wave facilitates wireless measurement of the applied strain of the specimen without any power supply. This passive wireless method is applied to a specimen and the static applied strain is measured. Experiments demonstrate that the method is effective for passive wireless strain monitoring of tyres.

  14. Experiment of Wireless Sensor Network to Monitor Field Data

    Directory of Open Access Journals (Sweden)

    Kwang Sik Kim

    2009-08-01

    Full Text Available Recently the mobile wireless network has been drastically enhanced and one of the most efficient ways to realize the ubiquitous network will be to develop the converged network by integrating the mobile wireless network with other IP fixed network like NGN (Next Generation Network. So in this paper the term of the wireless ubiquitous network is used to describe this approach. In this paper, first, the wireless ubiquitous network architecture is described based on IMS which has been standardized by 3GPP (3rd Generation Partnership Program. Next, the field data collection system to match the satellite data using location information is proposed based on the concept of the wireless ubiquitous network architecture. The purpose of the proposed system is to provide more accurate analyzing method with the researchers in the remote sensing area.

  15. Industrial wireless monitoring with energy-harvesting devices

    NARCIS (Netherlands)

    Brian Blake, M.; Das, Kallol; Zand, P.; Havinga, Paul J.M.

    Vibration monitoring and analysis techniques are used increasingly for predictive maintenance. While traditional vibration monitoring relies on wired sensor networks, recent industrial technologies such as WirelessHART, ISA100.11a, and IEEE802.15.4e have brought a paradigm shift in the automation

  16. Radio/Antenna Mounting System for Wireless Networking under Row-Crop Agriculture Conditions

    OpenAIRE

    Daniel K. Fisher

    2015-01-01

    Interest in and deployment of wireless monitoring systems is increasing in many diverse environments, including row-crop agricultural fields. While many studies have been undertaken to evaluate various aspects of wireless monitoring and networking, such as electronic hardware components, data-collection procedures, power management, and communication protocols, little information related to physical deployment issues has been reported. To achieve acceptable wireless transmission capability, t...

  17. Wireless motion sensor network for monitoring motion in a process, wireless sensor node, reasoning node, and feedback and/or actuation node for such wireless motion sensor network

    NARCIS (Netherlands)

    Havinga, Paul J.M.; Marin Perianu, Raluca; Marin Perianu, Mihai

    2010-01-01

    Wireless motion sensor network for monitoring motion in a process comprising at least one wireless sensor node for measuring at least one physical quantity related to motion or orientation, feature extraction means for deriving a feature for the measured quantities, a wireless transmitter connected

  18. NFC like wireless technology for monitoring purposes in scientific/industrial facilities

    International Nuclear Information System (INIS)

    Badillo, I.; Eguiraun, M.; Jugo, J.

    2012-01-01

    Wireless technologies are becoming more and more used in large industrial and scientific facilities like particle accelerators for facilitating the monitoring and indeed sensing in these kind of large environments. Cabled equipment means little flexibility in placement and is very expensive in both money and effort whenever reorganization or new installation is needed. So, when cabling is not really needed for performance reasons wireless monitoring and control is a good option, due to the speed of implementation. There are several wireless flavors to choose, as Bluetooth, Zigbee, WiFi, etc. depending on the requirements of each specific application. In this work a wireless monitoring system for EPICS (Experimental and Industrial Control System) is presented. The desired control system variables are acquired over the network and published in a mobile device, allowing the operator to check process variables everywhere the signal spreads. In this approach, a Python based server will be continuously getting EPICS Process Variables via Channel Access protocol and sending them through a WiFi standard 802.11 network using ICE middle-ware. ICE is a tool-kit oriented to build distributed applications. Finally, the mobile device will read the data and show it to the operator. The security of the communication can be improved by means of a weak wireless signal, following the same idea as in Near Field Communication (NFC), but for more large distances. With this approach, local monitoring and control applications, as for example a vacuum control system for several pumps, are currently implemented. (authors)

  19. Ultra low power signal oriented approach for wireless health monitoring.

    Science.gov (United States)

    Marinkovic, Stevan; Popovici, Emanuel

    2012-01-01

    In recent years there is growing pressure on the medical sector to reduce costs while maintaining or even improving the quality of care. A potential solution to this problem is real time and/or remote patient monitoring by using mobile devices. To achieve this, medical sensors with wireless communication, computational and energy harvesting capabilities are networked on, or in, the human body forming what is commonly called a Wireless Body Area Network (WBAN). We present the implementation of a novel Wake Up Receiver (WUR) in the context of standardised wireless protocols, in a signal-oriented WBAN environment and present a novel protocol intended for wireless health monitoring (WhMAC). WhMAC is a TDMA-based protocol with very low power consumption. It utilises WBAN-specific features and a novel ultra low power wake up receiver technology, to achieve flexible and at the same time very low power wireless data transfer of physiological signals. As the main application is in the medical domain, or personal health monitoring, the protocol caters for different types of medical sensors. We define four sensor modes, in which the sensors can transmit data, depending on the sensor type and emergency level. A full power dissipation model is provided for the protocol, with individual hardware and application parameters. Finally, an example application shows the reduction in the power consumption for different data monitoring scenarios.

  20. Wireless Impedance Sensor with PZT-Interface for Prestress-Loss Monitoring in Prestressed Concrete Girder

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Khac Duy; Lee, So Young; Kim, Jeong Tae [Pukyong National University, Busan (Korea, Republic of)

    2011-12-15

    Ensuring the designed prestress force is very important for the safety of prestressed concrete bridge. The loss of prestress force in tendon could significantly reduce load carrying capacity of the structure. In this study, an automated prestress-loss monitoring system for prestressed concrete girder using PZT-interface and wireless impedance sensor node is presented. The following approaches are carried out to achieve the objective. Firstly, wireless impedance sensor nodes are designed for automated impedance-based monitoring technique. The sensor node is mounted on the high-performance Imote2 sensor platform to fulfill high operating speed, low power requirement and large storage memory. Secondly, a smart PZT-interface designed for monitoring prestress force is described. A linear regression model is established to predict prestress-loss. Finally, a system of the PZT-interface interacted with the wireless sensor node is evaluated from a lab-scale tendon-anchorage connection of a prestressed concrete girder.

  1. Wireless Impedance Sensor with PZT-Interface for Prestress-Loss Monitoring in Prestressed Concrete Girder

    International Nuclear Information System (INIS)

    Nguyen, Khac Duy; Lee, So Young; Kim, Jeong Tae

    2011-01-01

    Ensuring the designed prestress force is very important for the safety of prestressed concrete bridge. The loss of prestress force in tendon could significantly reduce load carrying capacity of the structure. In this study, an automated prestress-loss monitoring system for prestressed concrete girder using PZT-interface and wireless impedance sensor node is presented. The following approaches are carried out to achieve the objective. Firstly, wireless impedance sensor nodes are designed for automated impedance-based monitoring technique. The sensor node is mounted on the high-performance Imote2 sensor platform to fulfill high operating speed, low power requirement and large storage memory. Secondly, a smart PZT-interface designed for monitoring prestress force is described. A linear regression model is established to predict prestress-loss. Finally, a system of the PZT-interface interacted with the wireless sensor node is evaluated from a lab-scale tendon-anchorage connection of a prestressed concrete girder

  2. The theories and key technologies for the new generation mine wireless information system

    Energy Technology Data Exchange (ETDEWEB)

    Yang, W.; Feng, X.; Cheng, S.; Sun, J. [Beijing Jiaotong University, Beijing (China). Key Laboratory of ARP Optical Network and Advanced Telecommunication Network

    2004-07-01

    Breaking through the traditional mine wireless communication theories and technologies, combining advanced wireless communication technologies, wireless network technologies with optical fiber communication technologies have been proposed to construct a new generation mine wireless information system. This has a full range of functions such as managing mobile communications, vehicle positioning and navigation, personnel positioning and tracing, wireless multimedia surveillance, mobile computing and mine environment parameters monitoring. The relevant theories and key technologies were proposed. The urgency to do research work for China is stressed. 10 refs., 2 figs.

  3. System-level Modeling of Wireless Integrated Sensor Networks

    DEFF Research Database (Denmark)

    Virk, Kashif M.; Hansen, Knud; Madsen, Jan

    2005-01-01

    Wireless integrated sensor networks have emerged as a promising infrastructure for a new generation of monitoring and tracking applications. In order to efficiently utilize the extremely limited resources of wireless sensor nodes, accurate modeling of the key aspects of wireless sensor networks...... is necessary so that system-level design decisions can be made about the hardware and the software (applications and real-time operating system) architecture of sensor nodes. In this paper, we present a SystemC-based abstract modeling framework that enables system-level modeling of sensor network behavior...... by modeling the applications, real-time operating system, sensors, processor, and radio transceiver at the sensor node level and environmental phenomena, including radio signal propagation, at the sensor network level. We demonstrate the potential of our modeling framework by simulating and analyzing a small...

  4. Design and implementation of an Internet based effective controlling and monitoring system with wireless fieldbus communications technologies for process automation--an experimental study.

    Science.gov (United States)

    Cetinceviz, Yucel; Bayindir, Ramazan

    2012-05-01

    The network requirements of control systems in industrial applications increase day by day. The Internet based control system and various fieldbus systems have been designed in order to meet these requirements. This paper describes an Internet based control system with wireless fieldbus communication designed for distributed processes. The system was implemented as an experimental setup in a laboratory. In industrial facilities, the process control layer and the distance connection of the distributed control devices in the lowest levels of the industrial production environment are provided with fieldbus networks. In this paper, the Internet based control system that will be able to meet the system requirements with a new-generation communication structure, which is called wired/wireless hybrid system, has been designed on field level and carried out to cover all sectors of distributed automation, from process control, to distributed input/output (I/O). The system has been accomplished by hardware structure with a programmable logic controller (PLC), a communication processor (CP) module, two industrial wireless modules and a distributed I/O module, Motor Protection Package (MPP) and software structure with WinCC flexible program used for the screen of Scada (Supervisory Control And Data Acquisition), SIMATIC MANAGER package program ("STEP7") used for the hardware and network configuration and also for downloading control program to PLC. Copyright © 2012 ISA. Published by Elsevier Ltd. All rights reserved.

  5. Simulation of Wireless Digital Communication Systems

    Directory of Open Access Journals (Sweden)

    A. Mohammed

    2004-12-01

    Full Text Available Due to the explosive demands for high speed wireless services, suchas wireless Internet, email and cellular video conferencing, digitalwireless communications has become one of the most exciting researchtopics in electrical and electronic engineering field. The never-endingdemand for such personal and multimedia services, however, demandstechnologies operating at higher data rates and broader bandwidths. Inaddition, the complexity of wireless communication and signalprocessing systems has grown considerably during the past decade.Therefore, powerful computer­aided techniques are required for theprocess of modeling, designing, analyzing and evaluating theperformance of digital wireless communication systems. In this paper wediscuss the basic propagation mechanisms affecting the performance ofwireless communication systems, and present a simple, powerful andefficient way to simulate digital wireless communication systems usingMatlab. The simulated results are compared with the theoreticalanalysis to validate the simulator. The simulator is useful inevaluating the performance of wireless multimedia services and theassociated signal processing structures and algorithms for current andnext generation wireless mobile communication systems.

  6. Development of mediator-type biosensor to wirelessly monitor whole cholesterol concentration in fish.

    Science.gov (United States)

    Takase, Mai; Murata, Masataka; Hibi, Kyoko; Huifeng, Ren; Endo, Hideaki

    2014-04-01

    We developed a wireless monitoring system to monitor fish condition by tracking the change in whole cholesterol concentration. The whole cholesterol concentration of fish is a source of steroid hormones or indicator of immunity level, which makes its detection important for tracking physiological condition of fish. Wireless monitoring system comprises of mediator-type biosensor and wireless transmission device. Biosensor is implantable to fish body, and transmission device is so light, in that fish is allowed to swim freely during monitoring. Cholesterol esterase and oxidase were fixated on to the detection site of biosensor and used to detect the whole cholesterol concentration. However, cholesterol oxidase incorporates oxidation-reduction reaction of oxygen for detection, which concentration fluctuates easily due to change in environmental condition. Meanwhile, mediator-type biosensor enables monitoring of whole cholesterol concentration by using mediator to substitute that oxidation-reduction reaction of oxygen. Characteristic of fabricated mediator-type biosensor was tested. The sensor output current of mediator-type biosensor remained stable compared to output current of non-mediator-type biosensor under fluctuating oxygen concentration of 0-8 ppm, which implied that this sensor is less affected by change in dissolved oxygen concentration. That biosensor was then implanted into fish for wireless monitoring. As a result, approximately 48 h of real-time monitoring was successful.

  7. A wearable “electronic patch” for wireless continuous monitoring of chronically diseased patients

    DEFF Research Database (Denmark)

    Haahr, Rasmus Grønbek; Duun, Sune; Thomsen, Erik Vilain

    2008-01-01

    We present a wearable health system (WHS) for non-invasive and wireless monitoring of physiological signals. The system is made as an electronic patch where sensors, low power electronics, and radio communication are integrated in an adhesive material of hydrocolloid polymer making it a sticking...

  8. MobiHealth: Ambulant Patient Monitoring Over Next Generation Public Wireless Networks

    NARCIS (Netherlands)

    van Halteren, Aart; Konstantas, D.; Bults, Richard G.A.; Wac, K.E.; Dokovski, N.T.; Koprinkov, G.T.; Jones, Valerie M.; Widya, I.A.; Demiris, G.

    2004-01-01

    The wide availability of high bandwidth public wireless networks as well as the miniaturisation of medical sensors and network access hardware allows the development of advanced ambulant patient monitoring systems. The MobiHealth project developed a complete system and service that allows the

  9. EM threat analysis for wireless systems.

    Energy Technology Data Exchange (ETDEWEB)

    Burkholder, R. J. (Ohio State University Electroscience Laboratory); Mariano, Robert J.; Schniter, P. (Ohio State University Electroscience Laboratory); Gupta, I. J. (Ohio State University Electroscience Laboratory)

    2006-06-01

    Modern digital radio systems are complex and must be carefully designed, especially when expected to operate in harsh propagation environments. The ability to accurately predict the effects of propagation on wireless radio performance could lead to more efficient radio designs as well as the ability to perform vulnerability analyses before and after system deployment. In this report, the authors--experts in electromagnetic (EM) modeling and wireless communication theory--describe the construction of a simulation environment that is capable of quantifying the effects of wireless propagation on the performance of digital communication.

  10. A deflection monitoring system for a wind turbine blade

    DEFF Research Database (Denmark)

    2017-01-01

    A wind turbine blade comprising a system for monitoring the deflection of a wind turbine blade is described. The system comprises a wireless range-measurement system, having at least one wireless communication device located towards the root end of the blade and at least one wireless communication...

  11. Modeling Wireless Sensor Networks for Monitoring in Biological Processes

    DEFF Research Database (Denmark)

    Nadimi, Esmaeil

    (MMAE) approach to the data resulted in the highest classification success rate, due to the use of precise forth-order mathematical models which relate the feed offer to the pitch angle of the neck. This thesis shows that wireless sensor networks can be successfully employed to monitor the behavior...... parameters, as the use of wired sensors is impractical. In this thesis, a ZigBee based wireless sensor network was employed and only a part of the herd was monitored, as monitoring each individual animal in a large herd under practical conditions is inefficient. Investigations to show that the monitored...... signal strength). Fusing the two measured behavioral data resulted in an improvement of the classification results regarding the animal behavior mode (activity/inactivity), compared to the results achieved by only monitoring one of the behavioral parameters. Applying a multiple-model adaptive estimation...

  12. Wireless sensor placement for structural monitoring using information-fusing firefly algorithm

    Science.gov (United States)

    Zhou, Guang-Dong; Yi, Ting-Hua; Xie, Mei-Xi; Li, Hong-Nan

    2017-10-01

    Wireless sensor networks (WSNs) are promising technology in structural health monitoring (SHM) applications for their low cost and high efficiency. The limited wireless sensors and restricted power resources in WSNs highlight the significance of optimal wireless sensor placement (OWSP) during designing SHM systems to enable the most useful information to be captured and to achieve the longest network lifetime. This paper presents a holistic approach, including an optimization criterion and a solution algorithm, for optimally deploying self-organizing multi-hop WSNs on large-scale structures. The combination of information effectiveness represented by the modal independence and the network performance specified by the network connectivity and network lifetime is first formulated to evaluate the performance of wireless sensor configurations. Then, an information-fusing firefly algorithm (IFFA) is developed to solve the OWSP problem. The step sizes drawn from a Lévy distribution are adopted to drive fireflies toward brighter individuals. Following the movement with Lévy flights, information about the contributions of wireless sensors to the objective function as carried by the fireflies is fused and applied to move inferior wireless sensors to better locations. The reliability of the proposed approach is verified via a numerical example on a long-span suspension bridge. The results demonstrate that the evaluation criterion provides a good performance metric of wireless sensor configurations, and the IFFA outperforms the simple discrete firefly algorithm.

  13. Raspberry Pi Based Intelligent Wireless Sensor Node for Localized Torrential Rain Monitoring

    Directory of Open Access Journals (Sweden)

    Zhaozhuo Xu

    2016-01-01

    Full Text Available Wireless sensor networks are proved to be effective in long-time localized torrential rain monitoring. However, the existing widely used architecture of wireless sensor networks for rain monitoring relies on network transportation and back-end calculation, which causes delay in response to heavy rain in localized areas. Our work improves the architecture by applying logistic regression and support vector machine classification to an intelligent wireless sensor node which is created by Raspberry Pi. The sensor nodes in front-end not only obtain data from sensors, but also can analyze the probabilities of upcoming heavy rain independently and give early warnings to local clients in time. When the sensor nodes send the probability to back-end server, the burdens of network transport are released. We demonstrate by simulation results that our sensor system architecture has potentiality to increase the local response to heavy rain. The monitoring capacity is also raised.

  14. Monitoring of slope-instabilities and deformations with Micro-Electro-Mechanical-Systems (MEMS) in wireless ad-hoc Sensor Networks

    Science.gov (United States)

    Arnhardt, C.; Fernández-Steeger, T. M.; Azzam, R.

    2009-04-01

    In most mountainous regions, landslides represent a major threat to human life, properties and infrastructures. Nowadays existing landslide monitoring systems are often characterized by high efforts in terms of purchase, installation, maintenance, manpower and material. In addition (or because of this) only small areas or selective points of the endangered zone can be observed by the system. Therefore the improvement of existing and the development of new monitoring and warning systems are of high relevance. The joint project "Sensor based Landslide Early Warning Systems" (SLEWS) deals with the development of a prototypic Alarm- and Early Warning system (EWS) for different types of landslides using low-cost micro-sensors (MEMS) integrated in a wireless sensor network (WSN). Modern so called Ad-Hoc, Multi-Hop wireless sensor networks (WSN) are characterized by a self organizing and self-healing capacity of the system (autonomous systems). The network consists of numerous individual and own energy-supply operating sensor nodes, that can send data packages from their measuring devices (here: MEMS) over other nodes (Multi-Hop) to a collection point (gateway). The gateway provides the interface to central processing and data retrieval units (PC, Laptop or server) outside the network. In order to detect and monitor the different landslide processes (like fall, topple, spreading or sliding) 3D MEMS capacitive sensors made from single silicon crystals and glass were chosen to measure acceleration, tilting and altitude changes. Based on the so called MEMS (Micro-Electro-Mechanical Systems) technology, the sensors combine very small mechanical and electronic units, sensing elements and transducers on a small microchip. The mass production of such type of sensors allows low cost applications in different areas (like automobile industries, medicine, and automation technology). Apart from the small and so space saving size and the low costs another advantage is the energy

  15. An Embedded Wireless Sensor Network with Wireless Power Transmission Capability for the Structural Health Monitoring of Reinforced Concrete Structures.

    Science.gov (United States)

    Gallucci, Luca; Menna, Costantino; Angrisani, Leopoldo; Asprone, Domenico; Moriello, Rosario Schiano Lo; Bonavolontà, Francesco; Fabbrocino, Francesco

    2017-11-07

    Maintenance strategies based on structural health monitoring can provide effective support in the optimization of scheduled repair of existing structures, thus enabling their lifetime to be extended. With specific regard to reinforced concrete (RC) structures, the state of the art seems to still be lacking an efficient and cost-effective technique capable of monitoring material properties continuously over the lifetime of a structure. Current solutions can typically only measure the required mechanical variables in an indirect, but economic, manner, or directly, but expensively. Moreover, most of the proposed solutions can only be implemented by means of manual activation, making the monitoring very inefficient and then poorly supported. This paper proposes a structural health monitoring system based on a wireless sensor network (WSN) that enables the automatic monitoring of a complete structure. The network includes wireless distributed sensors embedded in the structure itself, and follows the monitoring-based maintenance (MBM) approach, with its ABCDE paradigm, namely: accuracy, benefit, compactness, durability, and easiness of operations. The system is structured in a node level and has a network architecture that enables all the node data to converge in a central unit. Human control is completely unnecessary until the periodic evaluation of the collected data. Several tests are conducted in order to characterize the system from a metrological point of view and assess its performance and effectiveness in real RC conditions.

  16. An Embedded Wireless Sensor Network with Wireless Power Transmission Capability for the Structural Health Monitoring of Reinforced Concrete Structures

    Directory of Open Access Journals (Sweden)

    Luca Gallucci

    2017-11-01

    Full Text Available Maintenance strategies based on structural health monitoring can provide effective support in the optimization of scheduled repair of existing structures, thus enabling their lifetime to be extended. With specific regard to reinforced concrete (RC structures, the state of the art seems to still be lacking an efficient and cost-effective technique capable of monitoring material properties continuously over the lifetime of a structure. Current solutions can typically only measure the required mechanical variables in an indirect, but economic, manner, or directly, but expensively. Moreover, most of the proposed solutions can only be implemented by means of manual activation, making the monitoring very inefficient and then poorly supported. This paper proposes a structural health monitoring system based on a wireless sensor network (WSN that enables the automatic monitoring of a complete structure. The network includes wireless distributed sensors embedded in the structure itself, and follows the monitoring-based maintenance (MBM approach, with its ABCDE paradigm, namely: accuracy, benefit, compactness, durability, and easiness of operations. The system is structured in a node level and has a network architecture that enables all the node data to converge in a central unit. Human control is completely unnecessary until the periodic evaluation of the collected data. Several tests are conducted in order to characterize the system from a metrological point of view and assess its performance and effectiveness in real RC conditions.

  17. An Intelligent Logistics Tracking System Based on Wireless Sensor Network

    Directory of Open Access Journals (Sweden)

    Xing Jijun

    2018-01-01

    Full Text Available In view of the shortcomings in information collection and tracking management in existing logistics, the key technologies of wireless sensor network and the basic concepts and methods of Information Technology Infrastructure Library(ITIL is studied. The basic structure and main functions of the logistics tracking system based on wireless sensor network is put forward. It can effectively solve the detection, location, recognition and automatic processing of fault events and other issues of goods in the process of logistics tracking management. In addition, combined with the GIS software, the logistics tracking and monitoring system based on the wireless sensor network is realized by using Java language coding. The results show that this system can realize the tracking, visualization and automatic management of the information in the process of goods transportation. Therefore, the proposed method significantly improves the accuracy, rapidity and intuition of the logistics information management.

  18. Accuracy and User Performance Evaluation of a New, Wireless-enabled Blood Glucose Monitoring System That Links to a Smart Mobile Device.

    Science.gov (United States)

    Bailey, Timothy S; Wallace, Jane F; Pardo, Scott; Warchal-Windham, Mary Ellen; Harrison, Bern; Morin, Robert; Christiansen, Mark

    2017-07-01

    The new Contour ® Plus ONE blood glucose monitoring system (BGMS) features an easy-to-use, wireless-enabled blood glucose meter that links to a smart mobile device via Bluetooth ® connectivity and can sync with the Contour ™ Diabetes app on a smartphone or tablet. The accuracy of the new BGMS was assessed in 2 studies according to ISO 15197:2013 criteria. In Study 1 (laboratory study), fingertip capillary blood samples from 100 subjects were tested in duplicate using 3 test strip lots. In Study 2 (clinical study), 134 subjects with type 1 or type 2 diabetes enrolled at 2 clinical sites. BGMS results and YSI analyzer (YSI) reference results were compared for fingertip blood obtained by untrained subjects' self-testing and for study staff-obtained fingertip, subject palm, and venous results. In Study 1, 99.0% (594/600) of combined results for all 3 test strip lots fulfilled ISO 15197:2013 Section 6.3 accuracy criteria. In Study 2, 99.2% (133/134) of subject-obtained capillary fingertip results, 99.2% (133/134) of study staff-obtained fingertip results, 99.2% (125/126) of subject-obtained palm results, and 100% (132/132) of study staff-obtained venous results met ISO 15197:2013 Section 8 accuracy criteria. Moreover, 95.5% (128/134) of subject-obtained fingertip self-test results were within ±10 mg/dl (±0.6 mmol/L) or ±10% of the YSI reference result. Questionnaire results showed that most subjects found the BGMS easy to use. The BGMS exceeded ISO 15197:2013 accuracy criteria both in the laboratory and in a clinical setting when used by untrained subjects with diabetes.

  19. Challenges and Prospects of Equipment Health Monitoring with Wireless Sensor Network in Nuclear Power Plants

    International Nuclear Information System (INIS)

    Chen, Dongyi; Jiang, Jin; Bari, Ataul; Wang, Quan; Hashemian, Hash-M.

    2014-01-01

    A wireless sensor network (WSN) system can offer tremendous benefits to equipment condition monitoring in newly-constructed and/or refurbished nuclear power plants (NPPs). However, it has not been widely accepted so far because of the following requirements by the NPP operators ectromagnetic (EM) emissions from the wireless transceivers must not interfere with the functionalities of the sensitive safety and protection systems in the plant, WSN must perform reliably in the presence of high levels of EM interference from devices such as relays and motor driven pumps, and ionizing radiation sources, dependable WSN performance in harsh industrial environments that are cluttered with cable trays, piping, valves, pumps, motors, and concrete and steel structures, and trict compliance with nuclear regulatory guidelines on EM emissions by the wireless devices. This paper will review the key issues associated with the deployment of WSN for equipment condition monitoring in NPPs. Some promising WSN technologies that can be used in NPP applications are also discussed

  20. Wireless Monitoring of Induction Machine Rotor Physical Variables.

    Science.gov (United States)

    Doolan Fernandes, Jefferson; Carvalho Souza, Francisco Elvis; Cipriano Maniçoba, Glauco George; Salazar, Andrés Ortiz; de Paiva, José Alvaro

    2017-11-18

    With the widespread use of electric machines, there is a growing need to extract information from the machines to improve their control systems and maintenance management. The present work shows the development of an embedded system to perform the monitoring of the rotor physical variables of a squirrel cage induction motor. The system is comprised of: a circuit to acquire desirable rotor variable(s) and value(s) that send it to the computer; a rectifier and power storage circuit that converts an alternating current in a continuous current but also stores energy for a certain amount of time to wait for the motor's shutdown; and a magnetic generator that harvests energy from the rotating field to power the circuits mentioned above. The embedded system is set on the rotor of a 5 HP squirrel cage induction motor, making it difficult to power the system because it is rotating. This problem can be solved with the construction of a magnetic generator device to avoid the need of using batteries or collector rings and will send data to the computer using a wireless NRF24L01 module. For the proposed system, initial validation tests were made using a temperature sensor (DS18b20), as this variable is known as the most important when identifying the need for maintenance and control systems. Few tests have shown promising results that, with further improvements, can prove the feasibility of using sensors in the rotor.

  1. Wireless Monitoring of Induction Machine Rotor Physical Variables

    Directory of Open Access Journals (Sweden)

    Jefferson Doolan Fernandes

    2017-11-01

    Full Text Available With the widespread use of electric machines, there is a growing need to extract information from the machines to improve their control systems and maintenance management. The present work shows the development of an embedded system to perform the monitoring of the rotor physical variables of a squirrel cage induction motor. The system is comprised of: a circuit to acquire desirable rotor variable(s and value(s that send it to the computer; a rectifier and power storage circuit that converts an alternating current in a continuous current but also stores energy for a certain amount of time to wait for the motor’s shutdown; and a magnetic generator that harvests energy from the rotating field to power the circuits mentioned above. The embedded system is set on the rotor of a 5 HP squirrel cage induction motor, making it difficult to power the system because it is rotating. This problem can be solved with the construction of a magnetic generator device to avoid the need of using batteries or collector rings and will send data to the computer using a wireless NRF24L01 module. For the proposed system, initial validation tests were made using a temperature sensor (DS18b20, as this variable is known as the most important when identifying the need for maintenance and control systems. Few tests have shown promising results that, with further improvements, can prove the feasibility of using sensors in the rotor.

  2. Wireless system controlling of electromagnetic wave distribution in nuclear power plant use

    International Nuclear Information System (INIS)

    Kuroda, Hidehiko; Kume, Naoto; Oshima, Tomomi; Takakura, Kei; Oda, Naotaka; Hasegawa, Takeshi; Odanaka, Shigeru

    2017-01-01

    Recently, wireless technologies have rapidly spread by cellular phones, smartphones and tablet devices. Wireless systems in the nuclear power plant are expected to bring various advantages such as shortening of the inspection time, online monitoring, remote control and cable reduction, etc. However, wireless systems have hardly applied to the nuclear power plant, from the point of security and electromagnetic interference (EMI). We propose a new wireless system controlling automatically electromagnetic wave distribution. In our wireless system, the transmitter / receiver modules automatically measure the wave strength and adjust the power and directivity of the wave, resulting in wireless communication only in target zones, i.e. non-influence to safety-related instruments and non-leakage of information. We will present the algorithm of the electromagnetic wave controlling and experimental results about the proposed system. (author)

  3. On the Relevance of Using OpenWireless Sensor Networks in Environment Monitoring

    Directory of Open Access Journals (Sweden)

    Antoine B. Bagula

    2009-06-01

    Full Text Available This paper revisits the problem of the readiness for field deployments of wireless- sensor networks by assessing the relevance of using Open Hardware and Software motes for environment monitoring. We propose a new prototype wireless sensor network that finetunes SquidBee motes to improve the life-time and sensing performance of an environment monitoring system that measures temperature, humidity and luminosity. Building upon two outdoor sensing scenarios, we evaluate the performance of the newly proposed energy-aware prototype solution in terms of link quality when expressed by the Received Signal Strength, Packet Loss and the battery lifetime. The experimental results reveal the relevance of using the Open Hardware and Software motes when setting up outdoor wireless sensor networks.

  4. Wireless Augmented Reality Communication System

    Science.gov (United States)

    Devereaux, Ann (Inventor); Jedrey, Thomas (Inventor); Agan, Martin (Inventor)

    2017-01-01

    A portable unit is for video communication to select a user name in a user name network. A transceiver wirelessly accesses a communication network through a wireless connection to a general purpose node coupled to the communication network. A user interface can receive user input to log on to a user name network through the communication network. The user name network has a plurality of user names, at least one of the plurality of user names is associated with a remote portable unit, logged on to the user name network and available for video communication.

  5. Continuous wireless pressure monitoring and mapping with ultra-small passive sensors for health monitoring and critical care.

    Science.gov (United States)

    Chen, Lisa Y; Tee, Benjamin C-K; Chortos, Alex L; Schwartz, Gregor; Tse, Victor; Lipomi, Darren J; Wong, H-S Philip; McConnell, Michael V; Bao, Zhenan

    2014-10-06

    Continuous monitoring of internal physiological parameters is essential for critical care patients, but currently can only be practically achieved via tethered solutions. Here we report a wireless, real-time pressure monitoring system with passive, flexible, millimetre-scale sensors, scaled down to unprecedented dimensions of 1 × 1 × 0.1 cubic millimeters. This level of dimensional scaling is enabled by novel sensor design and detection schemes, which overcome the operating frequency limits of traditional strategies and exhibit insensitivity to lossy tissue environments. We demonstrate the use of this system to capture human pulse waveforms wirelessly in real time as well as to monitor in vivo intracranial pressure continuously in proof-of-concept mice studies using sensors down to 2.5 × 2.5 × 0.1 cubic millimeters. We further introduce printable wireless sensor arrays and show their use in real-time spatial pressure mapping. Looking forward, this technology has broader applications in continuous wireless monitoring of multiple physiological parameters for biomedical research and patient care.

  6. NASA Lunar Base Wireless System Propagation Analysis

    Science.gov (United States)

    Hwu, Shian U.; Upanavage, Matthew; Sham, Catherine C.

    2007-01-01

    There have been many radio wave propagation studies using both experimental and theoretical techniques over the recent years. However, most of studies have been in support of commercial cellular phone wireless applications. The signal frequencies are mostly at the commercial cellular and Personal Communications Service bands. The antenna configurations are mostly one on a high tower and one near the ground to simulate communications between a cellular base station and a mobile unit. There are great interests in wireless communication and sensor systems for NASA lunar missions because of the emerging importance of establishing permanent lunar human exploration bases. Because of the specific lunar terrain geometries and RF frequencies of interest to the NASA missions, much of the published literature for the commercial cellular and PCS bands of 900 and 1800 MHz may not be directly applicable to the lunar base wireless system and environment. There are various communication and sensor configurations required to support all elements of a lunar base. For example, the communications between astronauts, between astronauts and the lunar vehicles, between lunar vehicles and satellites on the lunar orbits. There are also various wireless sensor systems among scientific, experimental sensors and data collection ground stations. This presentation illustrates the propagation analysis of the lunar wireless communication and sensor systems taking into account the three dimensional terrain multipath effects. It is observed that the propagation characteristics are significantly affected by the presence of the lunar terrain. The obtained results indicate the lunar surface material, terrain geometry and antenna location are the important factors affecting the propagation characteristics of the lunar wireless systems. The path loss can be much more severe than the free space propagation and is greatly affected by the antenna height, surface material and operating frequency. The

  7. Use of Local Intelligence to Reduce Energy Consumption of Wireless Sensor Nodes in Elderly Health Monitoring Systems

    Directory of Open Access Journals (Sweden)

    Thomas J. Lampoltshammer

    2014-03-01

    Full Text Available The percentage of elderly people in European countries is increasing. Such conjuncture affects socio-economic structures and creates demands for resourceful solutions, such as Ambient Assisted Living (AAL, which is a possible methodology to foster health care for elderly people. In this context, sensor-based devices play a leading role in surveying, e.g., health conditions of elderly people, to alert care personnel in case of an incident. However, the adoption of such devices strongly depends on the comfort of wearing the devices. In most cases, the bottleneck is the battery lifetime, which impacts the effectiveness of the system. In this paper we propose an approach to reduce the energy consumption of sensors’ by use of local sensors’ intelligence. By increasing the intelligence of the sensor node, a substantial decrease in the necessary communication payload can be achieved. The results show a significant potential to preserve energy and decrease the actual size of the sensor device units.

  8. Use of Local Intelligence to Reduce Energy Consumption of Wireless Sensor Nodes in Elderly Health Monitoring Systems

    Science.gov (United States)

    Lampoltshammer, Thomas J.; de Freitas, Edison Pignaton; Nowotny, Thomas; Plank, Stefan; da Costa, João Paulo Carvalho Lustosa; Larsson, Tony; Heistracher, Thomas

    2014-01-01

    The percentage of elderly people in European countries is increasing. Such conjuncture affects socio-economic structures and creates demands for resourceful solutions, such as Ambient Assisted Living (AAL), which is a possible methodology to foster health care for elderly people. In this context, sensor-based devices play a leading role in surveying, e.g., health conditions of elderly people, to alert care personnel in case of an incident. However, the adoption of such devices strongly depends on the comfort of wearing the devices. In most cases, the bottleneck is the battery lifetime, which impacts the effectiveness of the system. In this paper we propose an approach to reduce the energy consumption of sensors' by use of local sensors' intelligence. By increasing the intelligence of the sensor node, a substantial decrease in the necessary communication payload can be achieved. The results show a significant potential to preserve energy and decrease the actual size of the sensor device units. PMID:24618777

  9. Wireless sensing of substation parameters for remote monitoring and analysis

    Directory of Open Access Journals (Sweden)

    Ayindrila Roy

    2015-03-01

    Full Text Available This paper aimed to monitor the different bus parameters in a substation from a centralized control room with the help of Zigbee enabled wireless sensor network (WSN. The parameters such as magnitude and phase angles of voltage and current, frequency, rate-of-change-of-frequency (ROCOF, active and reactive powers are measured using a state-of-the-art customized Zigbee enabled phasor measurement unit (ZPMU. The data from different ZPMUs at different bus nodes are acquired with the help of WSN system in order to have a centralized monitoring of different equipments load status. The coordination among different parameters for different buses and/or equipment is done from a centralized control room within the substation or plant with the help of substation management software and Zigbee networking. The data thus collected are utilized to study the power flow status of the different buses on real time basis and are stored within a server based database for future analysis purposes.

  10. Telescope Array Control System Based on Wireless Touch Screen Platform

    Science.gov (United States)

    Fu, Xia-nan; Huang, Lei; Wei, Jian-yan

    2017-10-01

    Ground-based Wide Angle Cameras (GMAC) are the ground-based observational facility for the SVOM (Space Variable Object Monitor) astronomical satellite of Sino-French cooperation, and Mini-GWAC is the pathfinder and supplement of GWAC. In the context of the Mini-GWAC telescope array, this paper introduces the design and implementation of a kind of telescope array control system based on the wireless touch screen platform. We describe the development and implementation of the system in detail in terms of control system principle, system hardware structure, software design, experiment, and test etc. The system uses a touch-control PC which is based on the Windows CE system as the upper computer, while the wireless transceiver module and PLC (Programmable Logic Controller) are taken as the system kernel. It has the advantages of low cost, reliable data transmission, and simple operation. And the control system has been applied to the Mini-GWAC successfully.

  11. Partnership Opportunities with AFRC for Wireless Systems Flight Testing

    Science.gov (United States)

    Hang, Richard

    2015-01-01

    The presentation will overview the flight test capabilities at NASA Armstrong Flight Research Center (AFRC), to open up partnership collaboration opportunities for Wireless Community to conduct flight testing of aerospace wireless technologies. Also, it will brief the current activities on wireless sensor system at AFRC through SBIR (Small Business Innovation Research) proposals, and it will show the current areas of interest on wireless technologies that AFRC would like collaborate with Wireless Community to further and testing.

  12. Energy Efficient Cross-Layer Design for Wireless Body Area Monitoring Networks in Healthcare Applications

    OpenAIRE

    Awad, Alaa; Mohamed, Amr; El-Sherif, Amr A.

    2013-01-01

    Growing number of patients with chronic diseases requiring constant monitoring has created a major impetus to developing scalable Body Area Sensor Networks (BASNs) for remote health applications. In this paper, to anatomize, control, and optimize the behavior of the wireless EEG monitoring system under the energy constraint, we develop an Energy-Rate-Distortion (E-R-D) analysis framework. This framework extends the traditional distortion analysis by including the energy consumption dimension....

  13. Wave Monitoring with Wireless Sensor Networks

    NARCIS (Netherlands)

    Marin Perianu, Mihai; Chatterjea, Supriyo; Marin Perianu, Raluca; Bosch, S.; Dulman, S.O.; Kininmonth, Stuart; Havinga, Paul J.M.

    2008-01-01

    Real-time collection of wave information is required for short and long term investigations of natural coastal processes. Current wave monitoring techniques use only point-measurements, which are practical where the bathymetry is relatively uniform. We propose a wave monitoring method that is

  14. A wireless telecommunications network for real-time monitoring of greenhouse microclimate

    Directory of Open Access Journals (Sweden)

    Giuliano Vox

    2014-10-01

    Full Text Available An innovative wireless monitoring system for measuring greenhouse climatic parameters was developed to overcome the problems related to wires cabling such as presence of a dense net of wires hampering the cultivation practices, wires subjected to high temperature and relative humidity, rodents that can damage wires. The system exploits battery-powered environmental sensors, such as air temperature and relative humidity sensors, wind speed and direction, and solar radiation sensors, integrated in the contest of an 802.15.4-based wireless sensors network. Besides, a fruit diameter measurement sensor was integrated into the system. This approach guarantees flexibility, ease of deployment and low power consumption. Data collected from the greenhouse are then sent to a remote server via a general packet radio service link. The proposed solution has been implemented in a real environment. The test of the communication system showed that 0.3% of the sent data packed were lost; the climatic parameters measured with the wireless system were compared with data collected by the wired system showing a mean value of the absolute difference equal to 0.6°C for the value of the greenhouse air temperature. The wireless climate monitoring system showed a good reliability, while the sensor node batteries showed a lifetime of 530 days.

  15. Wireless soil moisture sensor networks for environmental monitoring and irrigation

    Science.gov (United States)

    Hübner, Christof; Cardell-Oliver, Rachel; Becker, Rolf; Spohrer, Klaus; Jotter, Kai; Wagenknecht, Tino

    2010-05-01

    Dependable spatial-temporal soil parameter data is required for informed decision making in precision farming and hydrological applications. Wireless sensor networks are seen as a key technology to satisfy these demands. Hence, research and development focus is on reliable outdoor applications. This comprises sensor design improvement, more robust communication protocols, less power consumption as well as better deployment strategies and tools. Field trials were performed to investigate and iteratively improve wireless sensor networks in the above-mentioned areas. They accounted for different climate conditions, soil types and salinity, irrigation practices, solar power availability and also for different radio spectrum use which affects the reliability of the wireless links. E.g. 868 MHz and 2.4 GHz wireless nodes were compared in the field with regard to range. Furthermore a low-cost soil moisture sensor was developed to allow for large-scale field experiments. It is based on the measurement of the high frequency dielectric properties of the soil. Two agricultural sites were equipped with 80 sensors and 20 wireless nodes each. The soil moisture data is collected in regular intervals, aggregated in a base station and visualized through a web-based geographical information system. The complete system and results of field experiments are presented.

  16. A New Wireless Biosensor for Intra-Vaginal Temperature Monitoring

    Directory of Open Access Journals (Sweden)

    Isabel de la Torre

    2010-11-01

    Full Text Available Wireless Body Sensors for medical purposes offer valuable contributions to improve patients’ healthcare, including diagnosis and/or therapeutics monitoring. Body temperature is a crucial parameter in healthcare diagnosis. In gynecology and obstetrics it is measured at the skin’s surface, which is very influenced by the environment. This paper proposes a new intra-body sensor for long-term intra-vaginal temperature collection. The embedded IEEE 802.15.4 communication module allows the integration of this sensor in a Wireless Sensor Network (WSN for remote data access and monitoring. We present the sensor architecture, the construction of the corresponding testbed, and its performance evaluation. This sensor may be used in different medical applications, including preterm labor prevention and fertility and ovulation period detection. The features of the constructed testbed were validated in laboratory tests verifying its accuracy and performance.

  17. Design of Smart Energy Monitoring System for Green IT Life

    OpenAIRE

    Min Goo Lee; Yong Kuk Park; Kyung Kwon Jung; Jun Jae Yoo

    2012-01-01

    This paper describes the smart energy monitoring system with a wireless sensor network for monitoring of electrical usage in smart house. Proposed system is composed of wireless plugs and energy control wallpad server. The wireless plug integrates an AC power socket, a relay to switch the socket ON/OFF, a Hall effect sensor to sense current of load appliance and a Kmote. The Kmote is a wireless communication interface based on TinyOS. We evaluated wireless plug in a laboratory, analyzed and p...

  18. Wearable and Implantable Wireless Sensor Network Solutions for Healthcare Monitoring

    Science.gov (United States)

    Darwish, Ashraf; Hassanien, Aboul Ella

    2011-01-01

    Wireless sensor network (WSN) technologies are considered one of the key research areas in computer science and the healthcare application industries for improving the quality of life. The purpose of this paper is to provide a snapshot of current developments and future direction of research on wearable and implantable body area network systems for continuous monitoring of patients. This paper explains the important role of body sensor networks in medicine to minimize the need for caregivers and help the chronically ill and elderly people live an independent life, besides providing people with quality care. The paper provides several examples of state of the art technology together with the design considerations like unobtrusiveness, scalability, energy efficiency, security and also provides a comprehensive analysis of the various benefits and drawbacks of these systems. Although offering significant benefits, the field of wearable and implantable body sensor networks still faces major challenges and open research problems which are investigated and covered, along with some proposed solutions, in this paper. PMID:22163914

  19. Low-power wireless sensor networks for environmental monitoring

    Science.gov (United States)

    Musaloiu-Elefteri, Razvan

    Significant progress has been made in the field of Wireless Sensor Networks in the decade that passed since its inception. This thesis presents several advances intended to make these networks a suitable instrument for environmental monitoring. The thesis first describes Koala, a low-power data-retrieval system that can achieve duty cycles below 1% by using bulk transfers, and Low Power Probing, a novel mechanism to efficiently wake up a network. The second contribution is Serendipity, another data-retrieval system, which takes advantage of the random rendezvous inherent in the Low Power Probing mechanism to achieve a very low duty cycle for low data rate networks. The third part explores the problem of and presents a solution for the interference between WSNs using IEEE 802.15.4 radios and the ubiquitous WiFi networks in the 2.4 GHz spectrum bandwidth. The last contribution of this thesis is Latte, a restricted version of the JavaScript language, that not only can be compiled to C and dynamically loaded on a sensing node, but can also be simulated and debugged in a JavaScript-enabled browser.

  20. Wearable and Implantable Wireless Sensor Network Solutions for Healthcare Monitoring

    Directory of Open Access Journals (Sweden)

    Ashraf Darwish

    2011-05-01

    Full Text Available Wireless sensor network (WSN technologies are considered one of the key research areas in computer science and the healthcare application industries for improving the quality of life. The purpose of this paper is to provide a snapshot of current developments and future direction of research on wearable and implantable body area network systems for continuous monitoring of patients. This paper explains the important role of body sensor networks in medicine to minimize the need for caregivers and help the chronically ill and elderly people live an independent life, besides providing people with quality care. The paper provides several examples of state of the art technology together with the design considerations like unobtrusiveness, scalability, energy efficiency, security and also provides a comprehensive analysis of the various benefits and drawbacks of these systems. Although offering significant benefits, the field of wearable and implantable body sensor networks still faces major challenges and open research problems which are investigated and covered, along with some proposed solutions, in this paper.

  1. Low Power Consumption Wireless Sensor Communication System Integrated with an Energy Harvesting Power Source

    Directory of Open Access Journals (Sweden)

    Vlad MARSIC

    2013-01-01

    Full Text Available This paper presents the testing results of a wireless sensor communication system with low power consumption integrated with an energy harvesting power source. The experiments focus on the system’s capability to perform continuous monitoring and to wirelessly transmit the data acquired from the sensors to a user base station, for realization of completely battery-free wireless sensor system. Energy harvesting technologies together with system design optimization for power consumption minimization ensure the system’s energy autonomous capability demonstrated in this paper by presenting the promising testing results achieved following its integration with structural health monitoring and body area network applications.

  2. 3D inkjet printed disposable environmental monitoring wireless sensor node

    KAUST Repository

    Farooqui, Muhammad Fahad

    2017-10-24

    We propose a disposable, miniaturized, moveable, fully integrated 3D inkjet-printed wireless sensor node for large area environmental monitoring applications. As a proof of concept, we show the wireless sensing of temperature, humidity and H2S levels which are important for early warnings of two critical environmental conditions namely forest fires and industrial gas leaks. The temperature sensor has TCR of -0.018/°, the highest of any inkjet-printed sensor and the H2S sensor can detect as low as 3 ppm of gas. These sensors and an antenna have been realized on the walls of a 3D-printed cubic package which encloses the microelectronics developed on a 3D-printed circuit board. Hence, 3D printing and inkjet printing have been combined in order to realize a unique low-cost, fully integrated wireless sensor node. Field tests show that these sensor nodes can wirelessly communicate up to a distance of over 100m. Our proposed sensor node can be a part of internet of things with the aim of providing a better and safe living.

  3. Monitoring network for doserate-measurements with wireless datatransmitting in Baden-Wuerttemberg

    International Nuclear Information System (INIS)

    Aures, R.; Wenzel, H.

    2003-01-01

    In the environment of the nuclear power plants Philippsburg, Obrigheim and Neckarwestheim in Baden-Wuerttemberg there is a monitoring network with 90 stations. They are measuring the gamma-dose rate. In the meantime these monitoring stations are nearly 20 years old and now it is time to substitute old technology by a new one. The aim is a mix of monitoring stations with phone wire- and wireless data transmission (Skylink). Thinkable is a part of 50 % of Skylink-tubes in the monitoring network and some for mobile performance. The main aspect of the planned substitution is a second independent way of data transmission. Normally there are no problems for data transmission. But in case of emergency the data transmissions which depends from phone wires could be delayed if there are too much dates. So the second way, the way of wireless data transmissions becomes important. The Landesanstalt fuer Umweltschutz in Karlsruhe has bought a complete system from the company Genitron in Frankfurt/Main. The system (Skylink) consists of the receiver and the does rate-monitoring stations. Such a system was tested successfully in a region with many mountains and deep valleys. Since July 2000 the Skylink-system is performed in the ''Nuclear power monitoring system'' (KFUe) in Baden-Wuerttemberg. The receiver is on the Koenigstuhl (630 m) near Heidelberg. This is a very good position to receive the wireless transmitted dates from every monitoring station (Skylink Gammatracer) of the monitoring network. Now there are 27 Skylink Gammatracer spread in the monitoring network. At time they are placed near the dose rate tubes of the old monitoring stations for comparing the dose rates and they are working with best results. (orig.)

  4. Wireless Biological Electronic Sensors.

    Science.gov (United States)

    Cui, Yue

    2017-10-09

    The development of wireless biological electronic sensors could open up significant advances for both fundamental studies and practical applications in a variety of areas, including medical diagnosis, environmental monitoring, and defense applications. One of the major challenges in the development of wireless bioelectronic sensors is the successful integration of biosensing units and wireless signal transducers. In recent years, there are a few types of wireless communication systems that have been integrated with biosensing systems to construct wireless bioelectronic sensors. To successfully construct wireless biological electronic sensors, there are several interesting questions: What types of biosensing transducers can be used in wireless bioelectronic sensors? What types of wireless systems can be integrated with biosensing transducers to construct wireless bioelectronic sensors? How are the electrical sensing signals generated and transmitted? This review will highlight the early attempts to address these questions in the development of wireless biological electronic sensors.

  5. A Model for Field Deployment of Wireless Sensor Networks (WSNs) within the Domain of Microclimate Habitat Monitoring

    Science.gov (United States)

    Sanborn, Mark

    2011-01-01

    Wireless sensor networks (WSNs) represent a class of miniaturized information systems designed to monitor physical environments. These smart monitoring systems form collaborative networks utilizing autonomous sensing, data-collection, and processing to provide real-time analytics of observed environments. As a fundamental research area in…

  6. MONITORING BABY INCUBATOR SENTRAL DENGAN KOMUNIKASI WIRELESS

    Directory of Open Access Journals (Sweden)

    Ary Sulistyo Utomo

    2018-04-01

    180m. Pengujian suhu ruang baby incubator menggunakan termometer sebagai perbandingan dengan nilai suhu yang dibaca pada alat. Dari pengukuran diperoleh tingkat perbedaan 0% pada suhu 30oC dan 2,8% pada suhu 37oC.   Kata kunci: baby incubator, sistem monitoring sentral, microsoft visual studio, arduino.

  7. Airborne wireless communication systems, airborne communication methods, and communication methods

    Science.gov (United States)

    Deaton, Juan D [Menan, ID; Schmitt, Michael J [Idaho Falls, ID; Jones, Warren F [Idaho Falls, ID

    2011-12-13

    An airborne wireless communication system includes circuitry configured to access information describing a configuration of a terrestrial wireless communication base station that has become disabled. The terrestrial base station is configured to implement wireless communication between wireless devices located within a geographical area and a network when the terrestrial base station is not disabled. The circuitry is further configured, based on the information, to configure the airborne station to have the configuration of the terrestrial base station. An airborne communication method includes answering a 911 call from a terrestrial cellular wireless phone using an airborne wireless communication system.

  8. Implementasi Wireless Monitoring Energi Listrik Berbasis Web Database

    Directory of Open Access Journals (Sweden)

    Irwan Dinata

    2015-03-01

    Full Text Available Web Database based wireless device for monitoring electricity consumption is designed to substitute manual and conventional measurement system. This device consists of sensor, processor, display and network. The sensor consists of current transformer and AC to AC Power Adapter. The processor is Arduino UNO which process sensor output. Liquid crystal device (LCD is used to display real time output. The last part of the device is network composed of Ethernet Shield, 3G Modem for communication with Database Server as data further processing and storage. The testing with nominal total load 120 watt shows that Vrms value on LCD of the device is 218 volt, Vrms value measured with clamp meter is 216 volt. Irms value on LCD of the device is 0,44 ampere, Irms value measured with clamp meter 0,5 ampere. The real power value on LCD of the device is 92 watt, the real power value measured with clamp meter is 84 watt. The power factor value on LCD of the device is 0,97, the power factor value measured with clamp meter is 0,99.

  9. Event localization in underwater wireless sensor networks using Monitoring Courses

    KAUST Repository

    Debont, Matthew John Robert

    2012-08-01

    We propose m-courses (Monitoring Courses), a novel solution to localize events in an underwater wireless sensor network. These networks consists of surface gateways and relay nodes. GPS can localize the position of surface gateways which can then distribute their locations through the network using acoustic modems. Relay nodes are deployed to remain static, but these untethered nodes may drift due to water currents, resulting in disruption of communication links. We develop a novel underwater alarm system using a cyclic graph model. In the event of link failure, a series of alarm packets are broadcast in the network. These alarms are then captured by the underwater m-courses, which can also be used to assure network connectivity and identify node failures. M-courses also allow the network to localize events and identify network issues locally before forwarding results upwards to a Surface Gateway node. This reduces communication overhead and allows for efficient management of nodes in a mobile network. Our results show that m-course routing reduces the number of sends required to report an event to a Surface Gateway by up to 80% when compared to a naïve routing implementation.

  10. Low-Cost Inkjet-Printed Wireless Sensor Nodes for Environmental and Health Monitoring Applications

    KAUST Repository

    Farooqui, Muhammad Fahad

    2016-11-01

    Increase in population and limited resources have created a growing demand for a futuristic living environment where technology enables the efficient utilization and management of resources in order to increase quality of life. One characteristic of such a society, which is often referred to as a ‘Smart City’, is that the people are well informed about their physiological being as well as the environment around them, which makes them better equipped to handle crisis situations. There is a need, therefore, to develop wireless sensors which can provide early warnings and feedback during calamities such as floods, fires, and industrial leaks, and provide remote health care facilities. For these situations, low-cost sensor nodes with small form factors are required. For this purpose, the use of a low-cost, mass manufacturing technique such as inkjet printing can be beneficial due to its digitally controlled additive nature of depositing material on a variety of substrates. Inkjet printing can permit economical use of material on cheap flexible substrates that allows for the development of miniaturized freeform electronics. This thesis describes how low-cost, inkjet-printed, wireless sensors have been developed for real-time monitoring applications. A 3D buoyant mobile wireless sensor node has been demonstrated that can provide early warnings as well as real-time data for flood monitoring. This disposable paper-based module can communicate while floating in water up to a distance of 50 m, regardless of its orientation in the water. Moreover, fully inkjet-printed sensors have been developed to monitor temperature, humidity and gas levels for wireless environmental monitoring. The sensors are integrated and packaged using 3D inkjet printing technology. Finally, in order to demonstrate the benefits of such wireless sensor systems for health care applications, a low-cost, wearable, wireless sensing system has been developed for chronic wound monitoring. The system

  11. Optimization of piezoelectric energy harvester for wireless smart sensors in railway health monitoring

    Science.gov (United States)

    Li, Jingcheng; Jang, Shinae; Tang, Jiong

    2013-04-01

    Wireless sensor network is one of the prospective methods for railway monitoring due to the long-term operation and low-maintenance performances. How to supply power to the wireless sensor nodes has drawn much attention recently. In railway monitoring, the idea of converting ambient vibration energy from vibration of railway track induced by passing trains to electric energy has made it a potential way for powering the wireless sensor nodes. Nowadays, most of vibration based energy harvesters are designed at resonance. However, as railway vibration frequency is a wide band range, how to design an energy harvester working at that range is critical. In this paper, the energy consumption of the wireless smart sensor platform, Imote2, at different working states were investigated. Based on the energy consumption, a design of a bimorph cantilever piezoelectric energy harvester has been optimized to generate maximum average power between a wide-band frequency range. Significant power and current outputs have been increased after optimal design. Finally, the rechargeable battery life for supplying the Imote2 for railway monitoring is predicted by using the optimized piezoelectric energy harvesting system.

  12. Miniaturized, low power FGMOSFET radiation sensor and wireless dosimeter system

    KAUST Repository

    Arsalan, Muhammad

    2013-08-27

    A miniaturized floating gate (FG) MOSFET radiation sensor system is disclosed, The sensor preferably comprises a matched pair of sensor and reference FGMOSFETs wherein the sensor FGMOSFET has a larger area floating gate with an extension over a field oxide layer, for accumulation of charge and increased sensitivity. Elimination of a conventional control gate and injector gate reduces capacitance, and increases sensitivity, and allows for fabrication using standard low cost CMOS technology. A sensor system may be provided with integrated signal processing electronics, for monitoring a change in differential channel current I.sub.D, indicative of radiation dose, and an integrated negative bias generator for automatic pre-charging from a low voltage power source. Optionally, the system may be coupled to a wireless transmitter. A compact wireless sensor System on Package solution is presented, suitable for dosimetry for radiotherapy or other biomedical applications.

  13. A Wireless Sensor Network for Structural Health Monitoring: Performance and Experience

    OpenAIRE

    Paek, Jeongyeup; Chintalapudi, Krishna; Caffrey, John; Govindan, Ramesh; Masri, Sami

    2005-01-01

    While sensor network research has made significant strides in the past few years, the literature has relatively few examples of papers that have evaluated and validated a complete experimental system. In this paper we discuss our deployment experiences and evaluate the performance of a multi-hop wireless data acquisition system (called Wisden) for structural health monitoring (SHM) on a large seismic test structure used by civil engineers. Our experiments indicate that, with the latest sensor...

  14. A wireless telecommunications network for real-time monitoring of greenhouse microclimate

    OpenAIRE

    Giuliano Vox; Pierfrancesco Losito; Fabio Valente; Rinaldo Consoletti; Giacomo Scarascia-Mugnozza; Evelia Schettini; Cristoforo Marzocca; Francesco Corsi

    2014-01-01

    An innovative wireless monitoring system for measuring greenhouse climatic parameters was developed to overcome the problems related to wires cabling such as presence of a dense net of wires hampering the cultivation practices, wires subjected to high temperature and relative humidity, rodents that can damage wires. The system exploits battery-powered environmental sensors, such as air temperature and relative humidity sensors, wind speed and direction, and solar radiation sensors, integrated...

  15. Wireless power transfer and data communication for neural implants case study : epilepsy monitoring

    CERN Document Server

    Yilmaz, Gürkan

    2017-01-01

    This book presents new circuits and systems for implantable biomedical applications targeting neural recording. The authors describe a system design adapted to conform to the requirements of an epilepsy monitoring system. Throughout the book, these requirements are reflected in terms of implant size, power consumption, and data rate. In addition to theoretical background which explains the relevant technical challenges, the authors provide practical, step-by-step solutions to these problems. Readers will gain understanding of the numerical values in such a system, enabling projections for feasibility of new projects. Provides complete, system-level perspective for implantable batteryless biomedical system; Extends design example to implementation and long term in-vitro validation; Discusses system design concerns regarding wireless power transmission and wireless data communication, particularly for systems in which both are performed on the same channel/frequency; Presents fully-integrated, implantable syste...

  16. Smart Systems Integration for Autonomous Wireless Communications

    NARCIS (Netherlands)

    Danesh, M.

    2012-01-01

    Integration of sensors and wireless transceivers for system networking aims at emerging applications that are highly integrated, self-powered, and low cost, relying on efficient power management schemes to prolong lifetime, thus eliminating the need for batteries as a limited primary source of

  17. Wireless Battery Management System of Electric Transport

    Science.gov (United States)

    Rahman, Ataur; Rahman, Mizanur; Rashid, Mahbubur

    2017-11-01

    Electric vehicles (EVs) are being developed and considered as the future transportation to reduce emission of toxic gas, cost and weight. The battery pack is one of the main crucial parts of the electric vehicle. The power optimization of the battery pack has been maintained by developing a two phase evaporative thermal management system which operation has been controlled by using a wireless battery management system. A large number of individual cells in a battery pack have many wire terminations that are liable for safety failure. To reduce the wiring problem, a wireless battery management system based on ZigBee communication protocol and point-to-point wireless topology has been presented. Microcontrollers and wireless modules are employed to process the information from several sensors (voltage, temperature and SOC) and transmit to the display devices respectively. The WBMS multistage charge balancing system offering more effective and efficient responses for several numbers of series connected battery cells. The concept of double tier switched capacitor converter and resonant switched capacitor converter is used for reducing the charge balancing time of the cells. The balancing result for 2 cells and 16 cells are improved by 15.12% and 25.3% respectively. The balancing results are poised to become better when the battery cells are increased.

  18. Free positioning for inductive wireless power system

    NARCIS (Netherlands)

    Waffenschmidt, E.

    2012-01-01

    In inductive wireless power transmission system a lateral displacement of the receiver coil to the transmitter coil leads to a change ofthe coupling factor and thus an unwanted variation of the power transfer. Here, an algorithm to determine the turn distribution to achieve homogeneous coupling

  19. Structural Health Monitoring Using Wireless Technologies: An Ambient Vibration Test on the Adolphe Bridge, Luxembourg City

    Directory of Open Access Journals (Sweden)

    Adrien Oth

    2012-01-01

    Full Text Available Major threats to bridges primarily consist of the aging of the structural elements, earthquake-induced shaking and standing waves generated by windstorms. The necessity of information on the state of health of structures in real-time, allowing for timely warnings in the case of damaging events, requires structural health monitoring (SHM systems that allow the risks of these threats to be mitigated. Here we present the results of a short-duration experiment carried out with low-cost wireless instruments for monitoring the vibration characteristics and dynamic properties of a strategic civil infrastructure, the Adolphe Bridge in Luxembourg City. The Adolphe Bridge is a masonry arch construction dating from 1903 and will undergo major renovation works in the upcoming years. Our experiment shows that a network of these wireless sensing units is well suited to monitor the vibration characteristics of such a historical arch bridge and hence represents a low-cost and efficient solution for SHM.

  20. Securing a medical wireless LAN system

    OpenAIRE

    Owens, TJ; Tachakra, S; Banitsas, KA; Istepanian, RSH

    2001-01-01

    Recently the concept of MedLAN systems dedicated to application scenarios for wireless local area networks (WLAN) in hospital A&E departments has been presented. An essential element in the acceptance of the system will be reassuring all stakeholders in the system that data transmitted using the system is secure. In order for the stakeholders to be reassured technical and managerial issues have to be addressed. Technical issues to be addressed include selection of a suitable encryption algori...

  1. Development of a High-Sensitivity Wireless Accelerometer for Structural Health Monitoring

    Science.gov (United States)

    Zhu, Li; Fu, Yuguang; Chow, Raymond; Spencer, Billie F.; Park, Jong Woong; Mechitov, Kirill

    2018-01-01

    Structural health monitoring (SHM) is playing an increasingly important role in ensuring the safety of structures. A shift of SHM research away from traditional wired methods toward the use of wireless smart sensors (WSS) has been motivated by the attractive features of wireless smart sensor networks (WSSN). The progress achieved in Micro Electro-Mechanical System (MEMS) technologies and wireless data transmission, has extended the effectiveness and range of applicability of WSSNs. One of the most common sensors employed in SHM strategies is the accelerometer; however, most accelerometers in WSS nodes have inadequate resolution for measurement of the typical accelerations found in many SHM applications. In this study, a high-resolution and low-noise tri-axial digital MEMS accelerometer is incorporated in a next-generation WSS platform, the Xnode. In addition to meeting the acceleration sensing demands of large-scale civil infrastructure applications, this new WSS node provides powerful hardware and a robust software framework to enable edge computing that can deliver actionable information. Hardware and software integration challenges are presented, and the associate resolutions are discussed. The performance of the wireless accelerometer is demonstrated experimentally through comparison with high-sensitivity wired accelerometers. This new high-sensitivity wireless accelerometer will extend the use of WSSN to a broader class of SHM applications. PMID:29342102

  2. Development of a High-Sensitivity Wireless Accelerometer for Structural Health Monitoring.

    Science.gov (United States)

    Zhu, Li; Fu, Yuguang; Chow, Raymond; Spencer, Billie F; Park, Jong Woong; Mechitov, Kirill

    2018-01-17

    Structural health monitoring (SHM) is playing an increasingly important role in ensuring the safety of structures. A shift of SHM research away from traditional wired methods toward the use of wireless smart sensors (WSS) has been motivated by the attractive features of wireless smart sensor networks (WSSN). The progress achieved in Micro Electro-Mechanical System (MEMS) technologies and wireless data transmission, has extended the effectiveness and range of applicability of WSSNs. One of the most common sensors employed in SHM strategies is the accelerometer; however, most accelerometers in WSS nodes have inadequate resolution for measurement of the typical accelerations found in many SHM applications. In this study, a high-resolution and low-noise tri-axial digital MEMS accelerometer is incorporated in a next-generation WSS platform, the Xnode. In addition to meeting the acceleration sensing demands of large-scale civil infrastructure applications, this new WSS node provides powerful hardware and a robust software framework to enable edge computing that can deliver actionable information. Hardware and software integration challenges are presented, and the associate resolutions are discussed. The performance of the wireless accelerometer is demonstrated experimentally through comparison with high-sensitivity wired accelerometers. This new high-sensitivity wireless accelerometer will extend the use of WSSN to a broader class of SHM applications.

  3. A Wireless Sensor Network for Vineyard Monitoring That Uses Image Processing

    Science.gov (United States)

    Lloret, Jaime; Bosch, Ignacio; Sendra, Sandra; Serrano, Arturo

    2011-01-01

    The first step to detect when a vineyard has any type of deficiency, pest or disease is to observe its stems, its grapes and/or its leaves. To place a sensor in each leaf of every vineyard is obviously not feasible in terms of cost and deployment. We should thus look for new methods to detect these symptoms precisely and economically. In this paper, we present a wireless sensor network where each sensor node takes images from the field and internally uses image processing techniques to detect any unusual status in the leaves. This symptom could be caused by a deficiency, pest, disease or other harmful agent. When it is detected, the sensor node sends a message to a sink node through the wireless sensor network in order to notify the problem to the farmer. The wireless sensor uses the IEEE 802.11 a/b/g/n standard, which allows connections from large distances in open air. This paper describes the wireless sensor network design, the wireless sensor deployment, how the node processes the images in order to monitor the vineyard, and the sensor network traffic obtained from a test bed performed in a flat vineyard in Spain. Although the system is not able to distinguish between deficiency, pest, disease or other harmful agents, a symptoms image database and a neuronal network could be added in order learn from the experience and provide an accurate problem diagnosis. PMID:22163948

  4. Application of wireless LAN technology to remote monitoring for inspection equipment

    International Nuclear Information System (INIS)

    Ishiyama, Koichi; Kimura, Takashi; Miura, Yasushi; Yamaguchi, Katsuhiro; Kabuki, Toshihide

    2011-01-01

    To support inspections under an Integrated Safeguards regime into Tokai Reprocessing Plant (TRP), the IAEA suggested making use of Remote Monitoring (RM) capabilities to the inspection equipment (surveillance camera and NDA systems) installed in the spent fuel storage area at TRP. Since TRP had no pre-prepared cabling infrastructure for data transmission in the spent fuel storage area, the option of wireless LAN was chosen over the telephone line due to its lower installation costs. Feasibility studies and tests were performed by TRP on communication and particularly on long-term continuous communication using wireless LAN equipment composed of APs (AP: Access Point) and the external antennas for introducing wireless LAN technology to RM. As a result it was recognized that wireless LAN has enough ability to communicate for long periods of time and consequently the IAEA installed the AP and the external antenna to each inspection equipment and the wireless LAN technology was applied for RM. In this paper, the summary of each test and the results are reported. (author)

  5. A wireless sensor network for vineyard monitoring that uses image processing.

    Science.gov (United States)

    Lloret, Jaime; Bosch, Ignacio; Sendra, Sandra; Serrano, Arturo

    2011-01-01

    The first step to detect when a vineyard has any type of deficiency, pest or disease is to observe its stems, its grapes and/or its leaves. To place a sensor in each leaf of every vineyard is obviously not feasible in terms of cost and deployment. We should thus look for new methods to detect these symptoms precisely and economically. In this paper, we present a wireless sensor network where each sensor node takes images from the field and internally uses image processing techniques to detect any unusual status in the leaves. This symptom could be caused by a deficiency, pest, disease or other harmful agent. When it is detected, the sensor node sends a message to a sink node through the wireless sensor network in order to notify the problem to the farmer. The wireless sensor uses the IEEE 802.11 a/b/g/n standard, which allows connections from large distances in open air. This paper describes the wireless sensor network design, the wireless sensor deployment, how the node processes the images in order to monitor the vineyard, and the sensor network traffic obtained from a test bed performed in a flat vineyard in Spain. Although the system is not able to distinguish between deficiency, pest, disease or other harmful agents, a symptoms image database and a neuronal network could be added in order learn from the experience and provide an accurate problem diagnosis.

  6. Low Cost Wireless Sensor Network for Continuous Bridge monitoring

    DEFF Research Database (Denmark)

    Han, Bo; Kalis, A; Tragas, P

    2012-01-01

    Continuous monitoring wireless sensor networks (WSN) are considered as one of the most promising means to harvest information from large structures in order to assist in structural health monitoring and management. At the same time, continuous monitoring WSNs suffer from limited network lifetimes...... the network increases. Therefore, in order for WSNs to be considered as an efficient tool to monitor the health state of large structures, their energy consumption should be reduced to a bare minimum. In this work we consider a couple of novel techniques for increasing the life-time of the sensor network......, since they need to propagate large amounts of data over regular time intervals towards a single destination in the network. Propagation of information is done through multiple hops, suffering from collisions, retransmis-sions and therefore high energy consumption. Moreover, since there is a bottleneck...

  7. Terahertz (THz) Wireless Systems for Space Applications

    Science.gov (United States)

    Hwu, Shian U.; deSilva, Kanishka B.; Jih, Cindy T.

    2013-01-01

    NASA has been leading the Terahertz (THz) technology development for the sensors and instruments in astronomy in the past 20 years. THz technologies are expanding into much broader applications in recent years. Due to the vast available multiple gigahertz (GHz) broad bandwidths, THz radios offer the possibility for wireless transmission of high data rates. Multi-Gigabits per second (MGbps) broadband wireless access based on THz waves are closer to reality. The THz signal high atmosphere attenuation could significantly decrease the communication ranges and transmittable data rates for the ground systems. Contrary to the THz applications on the ground, the space applications in the atmosphere free environment do not suffer the atmosphere attenuation. The manufacturing technologies for the THz electronic components are advancing and maturing. There is great potential for the NASA future high data wireless applications in environments with difficult cabling and size/weight constraints. In this study, the THz wireless systems for potential space applications were investigated. The applicability of THz systems for space applications was analyzed. The link analysis indicates that MGbps data rates are achievable with compact sized high gain antennas.

  8. Wireless nanosensors for monitoring concussion of football players

    Science.gov (United States)

    Ramasamy, Mouli; Harbaugh, Robert E.; Varadan, Vijay K.

    2015-04-01

    Football players are more to violent impacts and injuries more than any athlete in any other sport. Concussion or mild traumatic brain injuries were one of the lesser known sports injuries until the last decade. With the advent of modern technologies in medical and engineering disciplines, people are now more aware of concussion detection and prevention. These concussions are often overlooked by football players themselves. The cumulative effect of these mild traumatic brain injuries can cause long-term residual brain dysfunctions. The principle of concussion is based the movement of the brain in the neurocranium and viscerocranium. The brain is encapsulated by the cerebrospinal fluid which acts as a protective layer for the brain. This fluid can protect the brain against minor movements, however, any rapid movements of the brain may mitigate the protective capability of the cerebrospinal fluid. In this paper, we propose a wireless health monitoring helmet that addresses the concerns of the current monitoring methods - it is non-invasive for a football player as helmet is not an additional gear, it is efficient in performance as it is equipped with EEG nanosensors and 3D accelerometer, it does not restrict the movement of the user as it wirelessly communicates to the remote monitoring station, requirement of individual monitoring stations are not required for each player as the ZigBee protocol can couple multiple transmitters with one receiver. A helmet was developed and validated according to the above mentioned parameters.

  9. Using Wireless Sensor Networks to Achieve Intelligent Monitoring for High-Temperature Gas-Cooled Reactor

    Directory of Open Access Journals (Sweden)

    Jianghai Li

    2017-01-01

    Full Text Available High-temperature gas-cooled reactors (HTGR can incorporate wireless sensor network (WSN technology to improve safety and economic competitiveness. WSN has great potential in monitoring the equipment and processes within nuclear power plants (NPPs. This technology not only reduces the cost of regular monitoring but also enables intelligent monitoring. In intelligent monitoring, large sets of heterogeneous data collected by the WSN can be used to optimize the operation and maintenance of the HTGR. In this paper, WSN-based intelligent monitoring schemes that are specific for applications of HTGR are proposed. Three major concerns regarding wireless technology in HTGR are addressed: wireless devices interference, cybersecurity of wireless networks, and wireless standards selected for wireless platform. To process nonlinear and non-Gaussian data obtained by WSN for fault diagnosis, novel algorithms combining Kernel Entropy Component Analysis (KECA and support vector machine (SVM are developed.

  10. Future Wireless Networks and Information Systems Volume 1

    CERN Document Server

    2012-01-01

    This volume contains revised and extended research articles written by prominent researchers participating in ICFWI 2011 conference. The 2011 International Conference on Future Wireless Networks and Information Systems (ICFWI 2011) has been held on November 30 ~ December 1, 2011, Macao, China. Topics covered include Wireless Information Networks, Wireless Networking Technologies, Mobile Software and Services, intelligent computing, network management, power engineering, control engineering, Signal and Image Processing, Machine Learning, Control Systems and Applications, The book will offer the states of arts of tremendous advances in Wireless Networks and Information Systems and also serve as an excellent reference work for researchers and graduate students working on Wireless Networks and Information Systems.

  11. Secure and Time-Aware Communication of Wireless Sensors Monitoring Overhead Transmission Lines.

    Science.gov (United States)

    Mazur, Katarzyna; Wydra, Michal; Ksiezopolski, Bogdan

    2017-07-11

    Existing transmission power grids suffer from high maintenance costs and scalability issues along with a lack of effective and secure system monitoring. To address these problems, we propose to use Wireless Sensor Networks (WSNs) as a technology to achieve energy efficient, reliable, and low-cost remote monitoring of transmission grids. With WSNs, smart grid enables both utilities and customers to monitor, predict and manage energy usage effectively and react to possible power grid disturbances in a timely manner. However, the increased application of WSNs also introduces new security challenges, especially related to privacy, connectivity, and security management, repeatedly causing unpredicted expenditures. Monitoring the status of the power system, a large amount of sensors generates massive amount of sensitive data. In order to build an effective Wireless Sensor Network (WSN) for a smart grid, we focus on designing a methodology of efficient and secure delivery of the data measured on transmission lines. We perform a set of simulations, in which we examine different routing algorithms, security mechanisms and WSN deployments in order to select the parameters that will not affect the delivery time but fulfill their role and ensure security at the same time. Furthermore, we analyze the optimal placement of direct wireless links, aiming at minimizing time delays, balancing network performance and decreasing deployment costs.

  12. Development of a wearable wireless body area network for health monitoring of the elderly and disabled

    Science.gov (United States)

    Rushambwa, Munyaradzi C.; Gezimati, Mavis; Jeeva, J. B.

    2017-11-01

    Novel advancements in systems miniaturization, electronics in health care and communication technologies are enabling the integration of both patients and doctors involvement in health care system. A Wearable Wireless Body Area Network (WWBAN) provides continuous, unobtrusive ambulatory, ubiquitous health monitoring, and provide real time patient’s status to the physician without any constraint on their normal daily life activities. In this project we developed a wearable wireless body area network system that continuously monitor the health of the elderly and the disabled and provide them with independent, safe and secure living. The WWBAN system monitors the following parameters; blood oxygen saturation using a pulse oximeter sensor (SpO2), heart rate (HR) pulse sensor, Temperature, hydration, glucose level and fall detection. When the wearable system is put on, the sensor values are processed and analysed. If any of the monitored parameter values falls below or exceeds the normal range, there is trigger of remote alert by which an SMS is send to a doctor or physician via GSM module and network. The developed system offers flexibility and mobility to the user; it is a real time system and has significance in revolutionizing health care system by enabling non-invasive, inexpensive, continuous health monitoring.

  13. Application of a wireless sensor node to health monitoring of operational wind turbine blades

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, Stuart G [Los Alamos National Laboratory; Farinholt, Kevin M [Los Alamos National Laboratory; Park, Gyuhae [Los Alamos National Laboratory; Farrar, Charles R [Los Alamos National Laboratory; Todd, Michael D [UCSD

    2009-01-01

    Structural health monitoring (SHM) is a developing field of research with a variety of applications including civil structures, industrial equipment, and energy infrastructure. An SHM system requires an integrated process of sensing, data interrogation and statistical assessment. The first and most important stage of any SHM system is the sensing system, which is traditionally composed of transducers and data acquisition hardware. However, such hardware is often heavy, bulky, and difficult to install in situ. Furthermore, physical access to the structure being monitored may be limited or restricted, as is the case for rotating wind turbine blades or unmanned aerial vehicles, requiring wireless transmission of sensor readings. This study applies a previously developed compact wireless sensor node to structural health monitoring of rotating small-scale wind turbine blades. The compact sensor node collects low-frequency structural vibration measurements to estimate natural frequencies and operational deflection shapes. The sensor node also has the capability to perform high-frequency impedance measurements to detect changes in local material properties or other physical characteristics. Operational measurements were collected using the wireless sensing system for both healthy and damaged blade conditions. Damage sensitive features were extracted from the collected data, and those features were used to classify the structural condition as healthy or damaged.

  14. Ubiquitous Monitoring Solution for Wireless Sensor Networks with Push Notifications and End-to-End Connectivity

    Directory of Open Access Journals (Sweden)

    Luis M. L. Oliveira

    2014-01-01

    Full Text Available Wireless Sensor Networks (WSNs belongs to a new trend in technology in which tiny and resource constrained devices are wirelessly interconnected and are able to interact with the surrounding environment by collecting data such as temperature and humidity. Recently, due to the huge growth in the use of mobile devices with Internet connection, smartphones are becoming the center of future ubiquitous wireless networks. Interconnecting WSNs with smartphones and the Internet is a big challenge and new architectures are required due to the heterogeneity of these devices. Taking into account that people are using smartphones with Internet connection, there is a good opportunity to propose a new architecture for wireless sensors monitoring using push notifications and smartphones. Then, this paper proposes a ubiquitous approach for WSN monitoring based on a REST Web Service, a relational database, and an Android mobile application. Real-time data sensed by WSNs are sent directly to a smartphone or stored in a database and requested by the mobile application using a well-defined RESTful interface. A push notification system was created in order to alert mobile users when a sensor parameter overcomes a given threshold. The proposed architecture and mobile application were evaluated and validated using a laboratory WSN testbed and are ready for use.

  15. Ceramic MEMS Designed for Wireless Pressure Monitoring in the Industrial Environment

    OpenAIRE

    Pavlin, Marko; Belavic, Darko; Novak, Franc

    2011-01-01

    This paper presents the design of a wireless pressure-monitoring system for harsh-environment applications. Two types of ceramic pressure sensors made with a low-temperature cofired ceramic (LTCC) were considered. The first type is a piezoresistive strain gauge pressure sensor. The second type is a capacitive pressure sensor, which is based on changes of the capacitance values between two electrodes: one electrode is fixed and the other is movable under an applied pressure. The design was pri...

  16. CropNET: A Wireless Multimedia Sensor Network for Agricultural Monitoring

    Science.gov (United States)

    Yin, Shouyi; Sun, Zhongfu; Liu, Leibo; Wei, Shaojun

    Motivated by the needs of modern agriculture, in this paper we present CropNET, a wireless multimedia sensor network system for agriculture monitoring. Both hardware and software designs of CropNET are tailored for sensing in wide farmland without human supervision. We have carried out multiple rounds of deployments. The evaluation results show that CropNET performs well and facilitates modern agriculture.

  17. Apparatus And Method For Wireless Monitoring Using Ultra-wideband Frequencies

    KAUST Repository

    Sana, Furrukh

    2015-04-23

    A system for and a method of wirelessly monitoring one or more patients can include transmitting ultra-wideband pulses toward the one or more patients, receiving ultra-wideband signals, and sampling the ultra-wideband signals. Sampling the ultra-wideband pulses can be performed with a sample rate that is less than the Nyquist rate. Impulse response can be estimated and/or recovered by exploiting sparsity of the impulse response.

  18. Smart rocks and wireless communication system for real-time monitoring and mitigation of bridge scour : a proof-of-concept study.

    Science.gov (United States)

    2013-12-01

    This study aims to integrate commercial measurement and communication components into a scour : monitoring system with magnets or electronics embedded in smart rocks, and evaluate and improve its : performance in laboratory and field conditions for t...

  19. Development of low cost wireless radiation monitoring station using GSM network

    International Nuclear Information System (INIS)

    Nur Aira Abd Rahman; Mohd Ashhar Khalid; Nor Arymaswati Abdullah; Roslan Md Dan

    2006-01-01

    SMS or Short Message Service is a mean of GSM wireless communication that allow text messages to be sent to and from mobile cell phones. While SMS communication is mainly utilized at personal level or person to person basis; the usage of SMS can be extended into nuclear application specifically in radiation monitoring. This paper explains the development of a wireless station assembled by using a recycled Siemens M50 cell phone as substitutes to GSM modem, a PIC micro controller, and MINT-ISG home made digital survey meter at the remote transmitting site. While at the receiving end; an online monitoring system is set-up by using a Bluetooth enabled cell phone, a Bluetooth dongle, and a PC with Labview 8.0 software written as the Data logger which also served as the PC-Bluetooth interface platform. Wireless station at the remote area operates by continuously sending SMS in every 3 minutes to a predefined cellular number located at the monitoring system. The SMS consists of 6 data which individually is a survey meter readings recorded at each 30 seconds duration. At the receiver, Data logger program will retrieve the SMS from the cell phone via Bluetooth and extract the original 6 readings to be displayed on PC. The system has been successfully tested to detect and log radiation data for extended period of time. (Author)

  20. Implementation and Validation of a Real-Time Wireless Non-Invasive Physiological Monitoring System in a High-G Environment

    Science.gov (United States)

    2003-03-01

    and Device that is integrated with a Personal Physiological Monitoring System (PPM), a Personal Environmental Monitoring System ( PEM ), and a...identified this as a problem, nor is it reported in the literature. e) Breast support: The forces experienced during acceleration exposures...under this protocol indicate that breast support must be used. The presence of breast implants will preclude participation in this protocol. 3

  1. A Wearable Wireless Sensor Network for Indoor Smart Environment Monitoring in Safety Applications

    Directory of Open Access Journals (Sweden)

    Diego Antolín

    2017-02-01

    Full Text Available This paper presents the implementation of a wearable wireless sensor network aimed at monitoring harmful gases in industrial environments. The proposed solution is based on a customized wearable sensor node using a low-power low-rate wireless personal area network (LR-WPAN communications protocol, which as a first approach measures CO2 concentration, and employs different low power strategies for appropriate energy handling which is essential to achieving long battery life. These wearables nodes are connected to a deployed static network and a web-based application allows data storage, remote control and monitoring of the complete network. Therefore, a complete and versatile remote web application with a locally implemented decision-making system is accomplished, which allows early detection of hazardous situations for exposed workers.

  2. Wireless Communications for Monitoring Nuclear Material Processes part 1.: Context and Technologies

    International Nuclear Information System (INIS)

    Braina, F.; Goncalves, J.C.M.; Versino, C.; Heppleston, M.; Schoeneman, B.; Tolk, K.

    2007-01-01

    Recent advances in radio frequency communication technologies offer the motivation to consider the use of wireless communication in nuclear safeguards applications. From the Nuclear Safeguards Inspectorate' (NSI) point of view, wireless data transmission, which would be supplemental to wired communication is attractive for the ease of installation and the ability to respond to the changing requirements as the inspection approach evolves, resulting in a reduction of costs. However, for wireless technologies to be considered as a viable complement to cables, a number of concerns have to be addressed. First, nuclear operators need to be guaranteed that RF transmission will not interfere with the facilities safety and physical security systems. On their side, the NSI must be satisfied that Containment and Surveillance equipment and data transmission processes will not be affected by the other existing RF equipment. Second, it is desirable, both for the NSI and the operators, that the data being transmitted is not available for analysis by a third party. In addition, the NSI require data to be authenticated as close to the point of acquisition as possible. This paper was prepared as an account of work performed and approved by the ESARDA Working Group on Containment and Surveillance. It is the first of a suite dedicated to bridging RF technologies with safeguards monitoring applications. The paper focuses on technological issues: it introduces basic concepts underlying wireless communication, including methods for transmission, issues on power consumption, frequency, range, and considerations on interference and noise resilience. It overviews state-of-the-art wireless technologies and presents a projection on wireless capabilities that are likely to be reached in the near future

  3. Monitoring the Environment in a Lava Tube with a Wireless Sensor Network

    Science.gov (United States)

    Li, Y.; Jorgensen, A. M.; Wilson, J. L.; Rendon, N. M.

    2010-12-01

    Monitoring cave environments is important for several reasons. For instance, through the studies of cave environments, we can better protect cave ecology. Past experiments have monitored cave environments, although most of those were based on individual sensor nodes such as data loggers. In this paper we introduce and discuss a ZigBee wireless sensor network-based platform used for cave environment monitoring. The platform is based on a Freescale ZigBee evaluation kit. We carried out a proof-of-concept experiment in Junction Cave, a lava tube, at El Malpais National Monument in New Mexico. That experiment monitored temperature, humidity, and air turbulence inside the cave. The instrumentation consisted of a turbulence tower with five thermocouple-based sensors, reaching from the floor to the ceiling of the cave, temperature/humidity sensors distributed throughout the cave, and a low-power embedded Linux computer for data collection and storage. The experiment measured interesting air turbulence variations at different heights, which we related to to weather changes outside the cave and human activities inside the cave. The experiment also observed variations of air temperature at different locations inside the cave. In this presentation we will discuss the instrumentation as well as interpretations of the observations. The experiment demonstrated that a ZigBee wireless sensor network-based monitoring system is a potentially feasible platform for a cave environment monitoring system. We also found that network reliability, node cost, and power consumption need to be improved for future systems.

  4. Design and QoS of a wireless system for real-time remote electrocardiography.

    Science.gov (United States)

    Kang, Kyungtae; Ryu, Junhee; Hur, Junbeom; Sha, Lui

    2013-05-01

    Quality of service (QoS) and, in particular, reliability and a bounded low latency are essential attributes of safety-critical wireless systems for medical applications. However, wireless links are typically prone to bursts of errors, with characteristics which vary over time.We propose a wireless system suitable for real-time remote patient monitoring in which the necessary reliability and guaranteed latency are both achieved by an efficient error control scheme. We have paired an example remote electrocardiography application to this wireless system. We also developed a tool chain that uses a formal description of the proposed wireless medical system architecture in the architecture analysis and design language to assess various combinations of system parameters: we can determine the QoS in terms of packet-delivery ratio and the service latency, and also the size of jitter buffer required for seamless ECG monitoring. A realistic assessment, based on data from the MIT-BIT arrhythmia database, shows that the proposed wireless system can achieve an appropriate level of QoS for real-time ECG monitoring if link-level error control is correctly implemented. Additionally, we present guidelines for the design of energy-efficient link-level error control, derived from energy data, obtained from simulations.

  5. Application of wireless intelligent control system for HPS lamps and LEDs combined illumination in road tunnel.

    Science.gov (United States)

    Lai, Jinxing; Qiu, Junling; Chen, Jianxun; Wang, Yaqiong; Fan, Haobo

    2014-01-01

    Because of the particularity of the environment in the tunnel, the rational tunnel illumination system should be developed, so as to optimize the tunnel environment. Considering the high cost of traditional tunnel illumination system with high-pressure sodium (HPS) lamps as well as the effect of a single light source on tunnel entrance, the energy-saving illumination system with HPS lamps and LEDs combined illumination in road tunnel, which could make full use of these two kinds of lamps, was proposed. The wireless intelligent control system based on HPS lamps and LEDs combined illumination and microcontrol unit (MCU) Si1000 wireless communication technology was designed. And the remote monitoring, wireless communication, and PWM dimming module of this system were designed emphatically. Intensity detector and vehicle flow detector can be configured in wireless intelligent control system, which gather the information to the master control unit, and then the information is sent to the monitoring center through the Ethernet. The control strategies are got by the monitoring center according to the calculated results, and the control unit wirelessly sends parameters to lamps, which adjust the luminance of each segment of the tunnel and realize the wireless intelligent control of combined illumination in road tunnel.

  6. Wireless ZigBee home automation system

    Science.gov (United States)

    Craciunescu, Razvan; Halunga, Simona; Fratu, Octavian

    2015-02-01

    The home automation system concept existed for many years but in the last decade, due to the rapid development of sensors and wireless technologies, a large number of various such "intelligent homes" have been developed. The purpose of the present paper is to demonstrate the flexibility, reliability and affordability of home automation projects, based on a simple and affordable implementation. A wireless sensing and control system have been developed and tested, having a number of basic functionalities such as switching on/off the light according to ambient lighting and turning on/off the central heating. The system has been built around low power microcontrollers and ZigBee modems for wireless communication, using a set of Vishay 640 thermistor sensors for temperature measurements and Vishay LDR07 photo-resistor for humidity measurements. A trigger is activated when the temperature or light measurements are above/below a given threshold and a command is transmitted to the central unit through the ZigBee radio module. All the data processing is performed by a low power microcontroller both at the sensing device and at the control unit.

  7. Condition Monitoring of a Process Filter Applying Wireless Vibration Analysis

    Directory of Open Access Journals (Sweden)

    Pekka KOSKELA

    2011-05-01

    Full Text Available This paper presents a novel wireless vibration-based method for monitoring the degree of feed filter clogging. In process industry, these filters are applied to prevent impurities entering the process. During operation, the filters gradually become clogged, decreasing the feed flow and, in the worst case, preventing it. The cleaning of the filter should therefore be carried out predictively in order to avoid equipment damage and unnecessary process downtime. The degree of clogging is estimated by first calculating the time domain indices from low frequency accelerometer samples and then taking the median of the processed values. Nine different statistical quantities are compared based on the estimation accuracy and criteria for operating in resource-constrained environments with particular focus on energy efficiency. The initial results show that the method is able to detect the degree of clogging, and the approach may be applicable to filter clogging monitoring.

  8. Traffic & rural intersection monitoring with a solar-based infrared wireless system : phase 2 final report, long term effect and justification for further analysis, May 2008 [summary].

    Science.gov (United States)

    2008-05-01

    This study concerns the development and evaluation of a dynamic speed monitoring (DSM) system for use at rural intersections. The purpose of the DSM system is to give traffic speed feedback to drivers via an advisory sign, with the goals of improving...

  9. Fading and shadowing in wireless systems

    CERN Document Server

    Shankar, P Mohana

    2017-01-01

    This book offers a comprehensive overview of fading and shadowing in wireless channels. A number of statistical models including simple, hybrid, compound and cascaded ones are presented along with a detailed discussion of diversity techniques employed to mitigate the effects of fading and shadowing. The effects of co-channel interference before and after the implementation of diversity are also analyzed. To facilitate easy understanding of the models and the analysis, the background on probability and random variables is presented with relevant derivations of densities of the sums, products, ratios as well as order statistics of random variables. The book also provides material on digital modems of interest in wireless systems. The updated edition expands the background materials on probability by offering sections on Laplace and Mellin transforms, parameter estimation, statistical testing and receiver operating characteristics. Newer models for fading, shadowing and shadowed fading are included along with th...

  10. Fading and Shadowing in Wireless Systems

    CERN Document Server

    Shankar, P Mohana

    2012-01-01

    In recent decades, growth in the field of wireless communications has led to an exponential rise in the number of journals catering to the research community. Still unmet, however, is the need to fully and comprehensively understand the effects of channel degradation brought on by the statistical fluctuations in the channel. These fluctuations mainly manifest as variations in signal power observed in the channel generally modeled using a variety of probability distributions, both in straight forms as well as in compound forms. While the former might explain some of the effects, it is the latter, namely, the compound models, which incorporate both short term and long term power fluctuations in the channel, explain the much more complex nature of the signals in these channels. Fading and Shadowing in Wireless Systems offers a pedagogical approach to the topic, with insight into the modeling and analysis of fading and shadowing. Beginning with statistical background and digital communications, the book is formul...

  11. A wireless computational platform for distributed computing based traffic monitoring involving mixed Eulerian-Lagrangian sensing

    KAUST Repository

    Jiang, Jiming

    2013-06-01

    This paper presents a new wireless platform designed for an integrated traffic monitoring system based on combined Lagrangian (mobile) and Eulerian (fixed) sensing. The sensor platform is built around a 32-bit ARM Cortex M4 micro-controller and a 2.4GHz 802.15.4 ISM compliant radio module, and can be interfaced with fixed traffic sensors, or receive data from vehicle transponders. The platform is specially designed and optimized to be integrated in a solar-powered wireless sensor network in which traffic flow maps are computed by the nodes directly using distributed computing. A MPPT circuitry is proposed to increase the power output of the attached solar panel. A self-recovering unit is designed to increase reliability and allow periodic hard resets, an essential requirement for sensor networks. A radio monitoring circuitry is proposed to monitor incoming and outgoing transmissions, simplifying software debug. An ongoing implementation is briefly discussed, and compared with existing platforms used in wireless sensor networks. © 2013 IEEE.

  12. Wireless system for location of permanent faults by short circuit current monitoring in electric power distribution network; Sistema wireless para localizacao de faltas permanentes atraves da monitoracao da corrente de curto-circuito em redes de distribuicao de energia eletrica

    Energy Technology Data Exchange (ETDEWEB)

    Machado, A.G.; Correa, A.C.; Machado, R.N. das M.; Ferreira, A.M.D.; Pinto, J.A.C. [Instituto Federal de Educacao, Ciencia e Tecnologia do Para (IFPA), Belem, PA (Brazil)], E-mail: alcidesmachado000@yahoo.com.br; Barra Junior, W. [Universidade Federal do Para (UFPA), Belem, PA (Brazil). Inst. de Tecnologia. Faculdade de Engenharia Eletrica], E-mail: walbarra@ufpa.br

    2009-07-01

    This paper presents the development of an automatic system for permanent short-circuits location in medium voltage (13.8 kV) electric power system distribution feeders, by indirect monitoring of the line current. When a permanent failure occurs, the developed system uses mobile telephony (GSM) text messages (SMS) to inform the power company operation center where the failure most likely took place. With this information in real time, the power company operation center may provide the network restoration in a faster and efficient way. (author)

  13. A preliminary study of the effect of electrode placement in order to define a suitable location for two electrodes and obtain sufficiently reliable ECG signals when monitoring with wireless system.

    Science.gov (United States)

    Noh, Hyung Wook; Jang, Yongwon; Lee, I B; Song, Yoonseon; Jeong, Ji-Wook; Lee, Sooyeul

    2012-01-01

    Most countries face high and increasing rates of cardiovascular disease. Each year, heart disease kills more Americans than cancer. Therefore, there has been a promising market for portable ECG equipment and it is increasing. To use portable ECG measuring devices, it is essential to define a suitable location for the measuring as we need to reduced electrode size and distance. This research proposes to study how the inter-electrode distance affects the signal and how the electrode pair should be placed on the chest in order to obtain a sufficiently reliable ECG signal to detect heart arrhythmias in any environment, such as home or work. Therefore, we developed a compact, portable patch type ambulatory ECG monitoring system, Heart Tracker, using a microprocessor for preliminary study of signal analysis. To optimize the electrode arrangement in wireless environment, we compared HT and standard 12 lead with changing electrode position.

  14. Capacity on wireless quantum cellular communication system

    Science.gov (United States)

    Zhou, Xiang-Zhen; Yu, Xu-Tao; Zhang, Zai-Chen

    2018-03-01

    Quantum technology is making excellent prospects in future communication networks. Entanglement generation and purification are two major components in quantum networks. Combining these two techniques with classical cellular mobile communication, we proposed a novel wireless quantum cellular(WQC) communication system which is possible to realize commercial mobile quantum communication. In this paper, the architecture and network topology of WQC communication system are discussed, the mathematical model of WQC system is extracted and the serving capacity, indicating the ability to serve customers, is defined and calculated under certain circumstances.

  15. Wireless multimedia communication systems design, analysis, and implementation

    CERN Document Server

    Rao, KR; Bakmaz, Bojan M

    2014-01-01

    Rapid progress in software, hardware, mobile networks, and the potential of interactive media poses many questions for researchers, manufacturers, and operators of wireless multimedia communication systems. Wireless Multimedia Communication Systems: Design, Analysis, and Implementation strives to answer those questions by not only covering the underlying concepts involved in the design, analysis, and implementation of wireless multimedia communication systems, but also by tackling advanced topics such as mobility management, security components, and smart grids.Offering an accessible treatment

  16. Streetlight Control System Based on Wireless Communication over DALI Protocol

    Science.gov (United States)

    Bellido-Outeiriño, Francisco José; Quiles-Latorre, Francisco Javier; Moreno-Moreno, Carlos Diego; Flores-Arias, José María; Moreno-García, Isabel; Ortiz-López, Manuel

    2016-01-01

    Public lighting represents a large part of the energy consumption of towns and cities. Efficient management of public lighting can entail significant energy savings. This work presents a smart system for managing public lighting networks based on wireless communication and the DALI protocol. Wireless communication entails significant economic savings, as there is no need to install new wiring and visual impacts and damage to the facades of historical buildings in city centers are avoided. The DALI protocol uses bidirectional communication with the ballast, which allows its status to be controlled and monitored at all times. The novelty of this work is that it tackles all aspects related to the management of public lighting: a standard protocol, DALI, was selected to control the ballast, a wireless node based on the IEEE 802.15.4 standard with a DALI interface was designed, a network layer that considers the topology of the lighting network has been developed, and lastly, some user-friendly applications for the control and maintenance of the system by the technical crews of the different towns and cities have been developed. PMID:27128923

  17. Streetlight Control System Based on Wireless Communication over DALI Protocol

    Directory of Open Access Journals (Sweden)

    Francisco José Bellido-Outeiriño

    2016-04-01

    Full Text Available Public lighting represents a large part of the energy consumption of towns and cities. Efficient management of public lighting can entail significant energy savings. This work presents a smart system for managing public lighting networks based on wireless communication and the DALI protocol. Wireless communication entails significant economic savings, as there is no need to install new wiring and visual impacts and damage to the facades of historical buildings in city centers are avoided. The DALI protocol uses bidirectional communication with the ballast, which allows its status to be controlled and monitored at all times. The novelty of this work is that it tackles all aspects related to the management of public lighting: a standard protocol, DALI, was selected to control the ballast, a wireless node based on the IEEE 802.15.4 standard with a DALI interface was designed, a network layer that considers the topology of the lighting network has been developed, and lastly, some user-friendly applications for the control and maintenance of the system by the technical crews of the different towns and cities have been developed.

  18. Streetlight Control System Based on Wireless Communication over DALI Protocol.

    Science.gov (United States)

    Bellido-Outeiriño, Francisco José; Quiles-Latorre, Francisco Javier; Moreno-Moreno, Carlos Diego; Flores-Arias, José María; Moreno-García, Isabel; Ortiz-López, Manuel

    2016-04-27

    Public lighting represents a large part of the energy consumption of towns and cities. Efficient management of public lighting can entail significant energy savings. This work presents a smart system for managing public lighting networks based on wireless communication and the DALI protocol. Wireless communication entails significant economic savings, as there is no need to install new wiring and visual impacts and damage to the facades of historical buildings in city centers are avoided. The DALI protocol uses bidirectional communication with the ballast, which allows its status to be controlled and monitored at all times. The novelty of this work is that it tackles all aspects related to the management of public lighting: a standard protocol, DALI, was selected to control the ballast, a wireless node based on the IEEE 802.15.4 standard with a DALI interface was designed, a network layer that considers the topology of the lighting network has been developed, and lastly, some user-friendly applications for the control and maintenance of the system by the technical crews of the different towns and cities have been developed.

  19. Design and deployment of a new wireless sensor node platform for building environmental monitoring and control

    Directory of Open Access Journals (Sweden)

    Essa Jafer

    2011-12-01

    Full Text Available It is commonly agreed that a 15–40% reduction of building energy consumption is achievable by efficiently operated buildings when compared with typical practice. Existing research has identified that the level of information available to Building Managers with existing Building Management Systems and Environmental Monitoring Systems is insufficient to perform the required performance-based building assessment. The majority of today’s buildings are insufficiently sensored to obtain an unambiguous understanding of performance. The cost of installing additional sensors and meters is extremely high, primarily due to the estimated cost of wiring and the needed labour. From these perspectives wireless sensors technology proves to have a greater cost-efficiency while maintaining high levels of functionality and reliability. In this paper, a wireless sensor network mote hardware design and implementation are introduced particularly for building deployment application. The core of the mote design is based on the 8-bit AVR microcontroller, Atmega1281 and 2.4 GHz wireless communication chip, CC2420. The sensors were selected carefully to meet both the building monitoring and design requirements. Beside the sensing capability, actuation and interfacing to external meters/sensors are provided to perform different management control and data recording tasks.

  20. A video wireless capsule endoscopy system powered wirelessly: design, analysis and experiment

    Science.gov (United States)

    Pan, Guobing; Xin, Wenhui; Yan, Guozheng; Chen, Jiaoliao

    2011-06-01

    Wireless capsule endoscopy (WCE), as a relatively new technology, has brought about a revolution in the diagnosis of gastrointestinal (GI) tract diseases. However, the existing WCE systems are not widely applied in clinic because of the low frame rate and low image resolution. A video WCE system based on a wireless power supply is developed in this paper. This WCE system consists of a video capsule endoscope (CE), a wireless power transmission device, a receiving box and an image processing station. Powered wirelessly, the video CE has the abilities of imaging the GI tract and transmitting the images wirelessly at a frame rate of 30 frames per second (f/s). A mathematical prototype was built to analyze the power transmission system, and some experiments were performed to test the capability of energy transferring. The results showed that the wireless electric power supply system had the ability to transfer more than 136 mW power, which was enough for the working of a video CE. In in vitro experiments, the video CE produced clear images of the small intestine of a pig with the resolution of 320 × 240, and transmitted NTSC format video outside the body. Because of the wireless power supply, the video WCE system with high frame rate and high resolution becomes feasible, and provides a novel solution for the diagnosis of the GI tract in clinic.

  1. A video wireless capsule endoscopy system powered wirelessly: design, analysis and experiment

    International Nuclear Information System (INIS)

    Pan, Guobing; Chen, Jiaoliao; Xin, Wenhui; Yan, Guozheng

    2011-01-01

    Wireless capsule endoscopy (WCE), as a relatively new technology, has brought about a revolution in the diagnosis of gastrointestinal (GI) tract diseases. However, the existing WCE systems are not widely applied in clinic because of the low frame rate and low image resolution. A video WCE system based on a wireless power supply is developed in this paper. This WCE system consists of a video capsule endoscope (CE), a wireless power transmission device, a receiving box and an image processing station. Powered wirelessly, the video CE has the abilities of imaging the GI tract and transmitting the images wirelessly at a frame rate of 30 frames per second (f/s). A mathematical prototype was built to analyze the power transmission system, and some experiments were performed to test the capability of energy transferring. The results showed that the wireless electric power supply system had the ability to transfer more than 136 mW power, which was enough for the working of a video CE. In in vitro experiments, the video CE produced clear images of the small intestine of a pig with the resolution of 320 × 240, and transmitted NTSC format video outside the body. Because of the wireless power supply, the video WCE system with high frame rate and high resolution becomes feasible, and provides a novel solution for the diagnosis of the GI tract in clinic

  2. RFID Tag Helix Antenna Sensors for Wireless Drug Dosage Monitoring

    Science.gov (United States)

    Huang, Haiyu; Zhao, Peisen; Chen, Pai-Yen; Ren, Yong; Liu, Xuewu; Ferrari, Mauro; Hu, Ye; Akinwande, Deji

    2014-01-01

    Miniaturized helix antennas are integrated with drug reservoirs to function as RFID wireless tag sensors for real-time drug dosage monitoring. The general design procedure of this type of biomedical antenna sensors is proposed based on electromagnetic theory and finite element simulation. A cost effective fabrication process is utilized to encapsulate the antenna sensor within a biocompatible package layer using PDMS material, and at the same time form a drug storage or drug delivery unit inside the sensor. The in vitro experiment on two prototypes of antenna sensor-drug reservoir assembly have shown the ability to monitor the drug dosage by tracking antenna resonant frequency shift from 2.4–2.5-GHz ISM band with realized sensitivity of 1.27 \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} }{}$\\mu~{\\rm l}/{\\rm MHz}$\\end{document} for transdermal drug delivery monitoring and 2.76-\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} }{}$\\mu~{\\rm l}/{\\rm MHz}$\\end{document} sensitivity for implanted drug delivery monitoring. PMID:27170865

  3. Propagation handbook for wireless communication system design

    CERN Document Server

    Crane, Robert K

    2003-01-01

    PROPAGATION PHENOMENA AFFECTING WIRELESS SYSTEMS Types of SystemsDesign Criteria Antenna Considerations Propagation Effects Propagation Models Model Verification Statistics and RiskList of Symbols ReferencesPROPAGATION FUNDAMENTALSMaxwell's EquationsPlane Waves Spherical Waves Reflection and Refraction Geometrical OpticsRay TracingScalar Diffraction Theory Geometrical Theory of Diffraction List of Symbols ReferencesABSORPTION Molecular Absorption Absorption on a Slant Path ACTS Statistics List of Symbols ReferencesREFRACTION Ray BendingPath Delay ScintillationList of Symbols ReferencesATTENUAT

  4. Hadoop-Based Healthcare Information System Design and Wireless Security Communication Implementation

    Directory of Open Access Journals (Sweden)

    Hongsong Chen

    2015-01-01

    Full Text Available Human health information from healthcare system can provide important diagnosis data and reference to doctors. However, continuous monitoring and security storage of human health data are challenging personal privacy and big data storage. To build secure and efficient healthcare application, Hadoop-based healthcare security communication system is proposed. In wireless biosensor network, authentication and key transfer should be lightweight. An ECC (Elliptic Curve Cryptography based lightweight digital signature and key transmission method are proposed to provide wireless secure communication in healthcare information system. Sunspot wireless sensor nodes are used to build healthcare secure communication network; wireless nodes and base station are assigned different tasks to achieve secure communication goal in healthcare information system. Mysql database is used to store Sunspot security entity table and measure entity table. Hadoop is used to backup and audit the Sunspot security entity table. Sqoop tool is used to import/export data between Mysql database and HDFS (Hadoop distributed file system. Ganglia is used to monitor and measure the performance of Hadoop cluster. Simulation results show that the Hadoop-based healthcare architecture and wireless security communication method are highly effective to build a wireless healthcare information system.

  5. Two-Layer Hierarchy Optimization Model for Communication Protocol in Railway Wireless Monitoring Networks

    Directory of Open Access Journals (Sweden)

    Xiaoping Ma

    2018-01-01

    Full Text Available The wireless monitoring system is always destroyed by the insufficient energy of the sensors in railway. Hence, how to optimize the communication protocol and extend the system lifetime is crucial to ensure the stability of system. However, the existing studies focused primarily on cluster-based or multihop protocols individually, which are ineffective in coping with the complex communication scenarios in the railway wireless monitoring system (RWMS. This study proposes a hybrid protocol which combines the cluster-based and multihop protocols (CMCP to minimize and balance the energy consumption in different sections of the RWMS. In the first hierarchy, the total energy consumption is minimized by optimizing the cluster quantities in the cluster-based protocol and the number of hops and the corresponding hop distances in the multihop protocol. In the second hierarchy, the energy consumption is balanced through rotating the cluster head (CH in the subnetworks and further optimizing the hops and the corresponding hop distances in the backbone network. On this basis, the system lifetime is maximized with the minimum and balance energy consumption among the sensors. Furthermore, the hybrid particle swarm optimization and genetic algorithm (PSO-GA are adopted to optimize the energy consumption from the two-layer hierarchy. Finally, the effectiveness of the proposed CMCP is verified in the simulation. The performances of the proposed CMCP in system lifetime, residual energy, and the corresponding variance are all superior to the LEACH protocol widely applied in the previous research. The effective protocol proposed in this study can facilitate the application of the wireless monitoring network in the railway system and enhance safety operation of the railway.

  6. Event Localization in Underwater Wireless Sensor Networks using Monitoring Courses

    KAUST Repository

    Debont, Matthew

    2011-11-01

    In this thesis we consider different methods to localize events in a multi-hop wireless sensor network operating underwater using acoustic modems. The network consists of surface gateway nodes and relay nodes. Localization of surface gateways can be achieved through GPS, but we cannot rely on this technology for localizing underwater nodes. Surface Gateway nodes can distribute their locations through the network using the incoming signals by the acoustic modems from the relay nodes. Relay nodes are deployed to remain static but due to water currents, floating, and the untethered nature of the nodes, they often suffer from frequent drifting which can result in a deployed network suffering link failures. In this work, we developed a novel concept of an underwater alarming system, which adapts a cyclic graph model. In the event of link failure, a series of alarm packets are broadcasted in the network. These alarms are then captured through a novel concept of underwater Monitoring Courses (M-Courses), which can also be used to assure network connectivity and identify node faults. M-Courses also allow the network to localize events and identify network issues at a local level before forwarding any results upwards to a Surface Gateway nodes. This reduces the amount of communication overhead needed and allowing for distributed management of nodes in a network which may be constantly moving. We show that the proposed algorithms can reduce the number of send operations needed for an event to be localized in a network. We have found that M-Course routing reduces the number of sends required to report an event to a Surface Gateway by up to 80% in some cases when compared to a naive routing implementation. But this is achieved by increasing the time for an event to reach a Surface Gateway. These effects are both due to the buffering effect of M-Course routing, which allows us to efficiently deal with multiple events in an local area and we find that the performance of M

  7. Data Center Equipment Location and Monitoring System

    DEFF Research Database (Denmark)

    2013-01-01

    Abstract: Data center equipment location systems include hardware and software to provide information on the location, monitoring, and security of servers and other equipment in equipment racks. The systems provide a wired alternative to the wireless RFID tag system by using electronic ID tags...

  8. Ultra-Reliable Communication in 5G Wireless Systems

    DEFF Research Database (Denmark)

    Popovski, Petar

    2014-01-01

    Wireless 5G systems will not only be “4G, but faster”. One of the novel features discussed in relation to 5G is Ultra-Reliable Communication (URC), an operation mode not present in today’s wireless systems. URC refers to provision of certain level of communication service almost 100 % of the time....... Example URC applications include reliable cloud connectivity, critical connections for industrial automation and reliable wireless coordination among vehicles. This paper puts forward a systematic view on URC in 5G wireless systems. It starts by analyzing the fundamental mechanisms that constitute...

  9. Low Cost Inkjet Printed Smart Bandage for Wireless Monitoring of Chronic Wounds.

    Science.gov (United States)

    Farooqui, Muhammad Fahad; Shamim, Atif

    2016-06-29

    Chronic wounds affect millions of patients around the world and their treatment is challenging as the early signs indicating their development are subtle. In addition, a type of chronic wound, known as pressure ulcer, develops in patients with limited mobility. Infection and frequent bleeding are indicators of chronic wound development. In this article, we present an unprecedented low cost continuous wireless monitoring system, realized through inkjet printing on a standard bandage, which can send early warnings for the parameters like irregular bleeding, variations in pH levels and external pressure at wound site. In addition to the early warnings, this smart bandage concept can provide long term wound progression data to the health care providers. The smart bandage comprises a disposable part which has the inkjet printed sensors and a reusable part constituting the wireless electronics. This work is an important step towards futuristic wearable sensors for remote health care applications.

  10. Low Cost Inkjet Printed Smart Bandage for Wireless Monitoring of Chronic Wounds

    KAUST Repository

    Farooqui, Muhammad Fahad

    2016-06-29

    Chronic wounds affect millions of patients around the world and their treatment is challenging as the early signs indicating their development are subtle. In addition, a type of chronic wound, known as pressure ulcer, develops in patients with limited mobility. Infection and frequent bleeding are indicators of chronic wound development. In this article, we present an unprecedented low cost continuous wireless monitoring system, realized through inkjet printing on a standard bandage, which can send early warnings for the parameters like irregular bleeding, variations in pH levels and external pressure at wound site. In addition to the early warnings, this smart bandage concept can provide long term wound progression data to the health care providers. The smart bandage comprises a disposable part which has the inkjet printed sensors and a reusable part constituting the wireless electronics. This work is an important step towards futuristic wearable sensors for remote health care applications.

  11. Apparatus, System, And Method For Roadway Monitoring

    KAUST Repository

    Claudel, Christian G.

    2015-06-02

    An apparatus, system, and method for monitoring traffic and roadway water conditions. Traffic flow and roadway flooding is monitored concurrently through a wireless sensor network. The apparatus and system comprises ultrasound rangefinders monitoring traffic flow, flood water conditions, or both. Routing information may be calculated from the traffic conditions, such that routes are calculated to avoid roadways that are impassable or are slow due to traffic conditions.

  12. Integration of wireless sensor network and remote sensing for monitoring and determining irrigation demand in Cyprus

    Science.gov (United States)

    Agapiou, Athos; Papadavid, George; Hadjimitsis, Diofantos G.

    2009-09-01

    This paper aims to highlight the benefits from the integration of wireless sensor network / meteorological data and remote sensing for monitoring and determine irrigation demand in Cyprus. Estimating evapotranspiration in Cyprus will help, in taking measures for an effective irrigation water management in the future in the island. For this purpose both multi-spectral satellite images (Landsat 7 ETM+ and ASTER) and hydro-meteorological data from wireless sensors and automatic meteorological stations have been used. The wireless sensor network, which consist approximately twenty wireless nodes, was placed in our case study. The wireless sensor network acts as a wide area distributed data collection system deployed to collect and reliably transmit soil and air environmental data to a remote base-station hosted at Cyprus University of Technology. Furthermore auxiliary meteorological field data, from an automatic meteorological station, nearby our case study, where used such as solar radiation, air temperature, air humidity and wind speed. These data were used in conjunction with remote sensing results. Satellite images where used in ERDAS Imagine Software after the necessary processing: geometric rectification, radiometric calibration and atmospheric corrections. The satellite images were atmospheric corrected and calibrated using spectro-radiometers and sun-photometers measurements taken in situ, in an agricultural area, south-west of the island of Cyprus. Evapotranspiration is difficult to determine since it combines various meteorological and field parameters while in literature quite many different models for estimating ET are indicated. For estimating evapotranspiration from satellite images and the hydro-meteorological data different methods have been evaluated such as FAO Penman-Monteith, Carlson-Buffum and Granger methods. These results have been compared with E-pan methods. Finally a water management irrigation schedule has been applied. The final results are

  13. Slot Antenna for Wireless Temperature Measurement Systems

    DEFF Research Database (Denmark)

    Acar, Öncel; Jakobsen, Kaj Bjarne

    2016-01-01

    This paper presents a novel clover-slot antenna for a surface-acoustic-wave sensor based wireless temperature measurement system. The slot is described by a parametric locus curve that has the shape of a clover. The antenna is operated at high temperatures, in rough environments, and has a 43......% fractional bandwidth at the 2.4 GHz ISM-band. The slot antenna has been optimized for excitation by a passive chip soldered onto it. Measurement results are compared with simulation results and show good agreements....

  14. Attacks to Cryptography Protocols of Wireless Industrial Communication Systems

    Directory of Open Access Journals (Sweden)

    Tomas Ondrasina

    2010-01-01

    Full Text Available The paper deals with problems of safety and security principles within wireless industrial communication systems. First safety requirements to wireless industrial communication system, summarisation of attack methods and the available measures for risks elimination are described with orientation to safety critical applications. The mainly part is oriented to identification of risks and summarisation of defensive methods of wireless communication based on cryptographic techniques. Practical part the cryptoanalytic’s attacks to COTS (Commercial Off-The-Shelf wireless communications are mentioned based on the IEEE 802.11 standards.

  15. Monitoring Architectural Heritage by Wireless Sensors Networks: San Gimignano — A Case Study

    Science.gov (United States)

    Mecocci, Alessandro; Abrardo, Andrea

    2014-01-01

    This paper describes a wireless sensor network (WSN) used to monitor the health state of architectural heritage in real-time. The WSN has been deployed and tested on the “Rognosa” tower in the medieval village of San Gimignano, Tuscany, Italy. This technology, being non-invasive, mimetic, and long lasting, is particularly well suited for long term monitoring and on-line diagnosis of the conservation state of heritage buildings. The proposed monitoring system comprises radio-equipped nodes linked to suitable sensors capable of monitoring crucial parameters like: temperature, humidity, masonry cracks, pouring rain, and visual light. The access to data is granted by a user interface for remote control. The WSN can autonomously send remote alarms when predefined thresholds are reached. PMID:24394600

  16. Wireless distributed functional electrical stimulation system.

    Science.gov (United States)

    Jovičić, Nenad S; Saranovac, Lazar V; Popović, Dejan B

    2012-08-09

    The control of movement in humans is hierarchical and distributed and uses feedback. An assistive system could be best integrated into the therapy of a human with a central nervous system lesion if the system is controlled in a similar manner. Here, we present a novel wireless architecture and routing protocol for a distributed functional electrical stimulation system that enables control of movement. The new system comprises a set of miniature battery-powered devices with stimulating and sensing functionality mounted on the body of the subject. The devices communicate wirelessly with one coordinator device, which is connected to a host computer. The control algorithm runs on the computer in open- or closed-loop form. A prototype of the system was designed using commercial, off-the-shelf components. The propagation characteristics of electromagnetic waves and the distributed nature of the system were considered during the development of a two-hop routing protocol, which was implemented in the prototype's software. The outcomes of this research include a novel system architecture and routing protocol and a functional prototype based on commercial, off-the-shelf components. A proof-of-concept study was performed on a hemiplegic subject with paresis of the right arm. The subject was tasked with generating a fully functional palmar grasp (closing of the fingers). One node was used to provide this movement, while a second node controlled the activation of extensor muscles to eliminate undesired wrist flexion. The system was tested with the open- and closed-loop control algorithms. The system fulfilled technical and application requirements. The novel communication protocol enabled reliable real-time use of the system in both closed- and open-loop forms. The testing on a patient showed that the multi-node system could operate effectively to generate functional movement.

  17. Wireless distributed functional electrical stimulation system

    Directory of Open Access Journals (Sweden)

    Jovičić Nenad S

    2012-08-01

    Full Text Available Abstract Background The control of movement in humans is hierarchical and distributed and uses feedback. An assistive system could be best integrated into the therapy of a human with a central nervous system lesion if the system is controlled in a similar manner. Here, we present a novel wireless architecture and routing protocol for a distributed functional electrical stimulation system that enables control of movement. Methods The new system comprises a set of miniature battery-powered devices with stimulating and sensing functionality mounted on the body of the subject. The devices communicate wirelessly with one coordinator device, which is connected to a host computer. The control algorithm runs on the computer in open- or closed-loop form. A prototype of the system was designed using commercial, off-the-shelf components. The propagation characteristics of electromagnetic waves and the distributed nature of the system were considered during the development of a two-hop routing protocol, which was implemented in the prototype’s software. Results The outcomes of this research include a novel system architecture and routing protocol and a functional prototype based on commercial, off-the-shelf components. A proof-of-concept study was performed on a hemiplegic subject with paresis of the right arm. The subject was tasked with generating a fully functional palmar grasp (closing of the fingers. One node was used to provide this movement, while a second node controlled the activation of extensor muscles to eliminate undesired wrist flexion. The system was tested with the open- and closed-loop control algorithms. Conclusions The system fulfilled technical and application requirements. The novel communication protocol enabled reliable real-time use of the system in both closed- and open-loop forms. The testing on a patient showed that the multi-node system could operate effectively to generate functional movement.

  18. Wireless Communications in Smart Rail Transportation Systems

    Directory of Open Access Journals (Sweden)

    César Briso-Rodríguez

    2017-01-01

    Full Text Available Railway, subway, airplane, and other transportation systems have drawn an increasing interest on the use of wireless communications for critical and noncritical services to improve performance, reliability, and passengers experience. Smart transportation systems require the use of critical communications for operation and control, and wideband services can be provided using noncritical communications. High speed train (HST is one of the best test cases for the analysis of communication links and specification of the general requirements for train control and supervision, passenger communications, and onboard and infrastructure wireless sensors. In this paper, we analyze in detail critical and noncritical networks mainly using the HST as a test case. First, the different types of links for smart rail transportation are described, specifying the main requirements of the transportation systems, communications, and their applications for different services. Then, we propose a network architecture and requirements of the communication technologies for critical and noncritical data. Finally, an analysis is made for the future technologies, including the fifth-generation (5G communications, millimeter wave (mmWave, terahertz (THz, and satellites for critical and high-capacity communications in transportation.

  19. Development & Implementation of Electric Tram System with Wireless Charging Technology

    Directory of Open Access Journals (Sweden)

    DongHo Cho

    2015-06-01

    Full Text Available In this paper, an electric tram system with a wireless power transfer system based on SMFIR technology is presented. The detailed technology of power-line infra, regulator, and pick-up device is described for train application, respectively. Furthermore, implementation and experimental results for wireless power transfer electric tram are presented

  20. Development & Implementation of Electric Tram System with Wireless Charging Technology

    OpenAIRE

    DongHo Cho; GuHo Jung; Uooyeol Yoon; Byungsong Lee

    2015-01-01

    In this paper, an electric tram system with a wireless power transfer system based on SMFIR technology is presented. The detailed technology of power-line infra, regulator, and pick-up device is described for train application, respectively. Furthermore, implementation and experimental results for wireless power transfer electric tram are presented

  1. Overhead traveling crane vibration research using experimental wireless measuring system

    Directory of Open Access Journals (Sweden)

    Tomasz HANISZEWSKI

    2013-01-01

    Full Text Available The paper contains an operations and constructions description of theexperimental wireless measuring system for measuring accelerations in bridge cranes,based on PHIDGET 1056 sensors. Developed experimental research and measuringmethodology allows the use of the proposed wireless system on other cranesconstructions. The paper also shows examples of the results of vibration measurementsand FFT spectra, obtained on the basis of accelerations measurements.

  2. A wireless actuating drug delivery system

    International Nuclear Information System (INIS)

    Jo, Won-Jun; Baek, Seung-Ki; Park, Jung-Hwan

    2015-01-01

    A wireless actuating drug delivery system was devised. The system is based on induction heating for drug delivery. In this study, thermally generated nitrogen gas produced by induction heating of azobisisobutyronitrile (AIBN) was utilized for pressure-driven release of the drug. The delivery device consists of an actuator chamber, a drug reservoir, and a microchannel. A semicircular copper disc (5 and 6 mm in diameter and 100 µm thick), and thermal conductive tape were integrated as the heating element in the actuator chamber. The final device was 2.7 mm thick. 28 µl of drug solution were placed in the reservoir and the device released the drug quickly at the rate of 6 µl s −1 by induction heating at 160 µT of magnetic intensity. The entire drug solution was released and dispersed after subcutaneous implantation under identical experimental condition. This study demonstrates that the device was simply prepared and drug delivery could be achieved by wireless actuation of a thin, pressure-driven actuator. (paper)

  3. Wireless hydrotherapy smart suit for monitoring handicapped people

    Science.gov (United States)

    Correia, Jose H.; Mendes, Paulo M.

    2005-02-01

    This paper presents a smart suit, water impermeable, containing sensors and electronics for monitoring handicapped people at hydrotherapy sessions in swimming-pools. For integration into textiles, electronic components should be designed in a functional, robust and inexpensive way. Therefore, small-size electronics microsystems are a promising approach. The smart suit allows the monitoring of individual biometric data, such as heart rate, temperature and movement of the body. Two solutions for transmitting the data wirelessly are presented: through a low-voltage (3.0 V), low-power, CMOS RF IC (1.6 mm x 1.5 mm size dimensions) operating at 433 MHz, with ASK modulation and a patch antenna built on lossy substrates compatible with integrated circuits fabrication. Two different substrates were used for antenna implementation: high-resistivity silicon (HRS) and Corning Pyrex #7740 glass. The antenna prototypes were built to operate close to the 5 GHz ISM band. They operate at a center frequency of 5.705 GHz (HRS) and 5.995 GHz (Pyrex). The studied parameters were: substrate thickness, substrate losses, oxide thickness, metal conductivity and thickness. The antenna on HRS uses an area of 8 mm2, providing a 90 MHz bandwidth and ~0.3 dBi of gain. On a glass substrate, the antenna uses 12 mm2, provides 100 MHz bandwidth and ~3 dBi of gain.

  4. A Low-Cost, Portable, High-Throughput Wireless Sensor System for Phonocardiography Applications

    Directory of Open Access Journals (Sweden)

    Akkarapol Sa-ngasoongsong

    2012-08-01

    Full Text Available This paper presents the design and testing of a wireless sensor system developed using a Microchip PICDEM developer kit to acquire and monitor human heart sounds for phonocardiography applications. This system can serve as a cost-effective option to the recent developments in wireless phonocardiography sensors that have primarily focused on Bluetooth technology. This wireless sensor system has been designed and developed in-house using off-the-shelf components and open source software for remote and mobile applications. The small form factor (3.75 cm ´ 5 cm ´ 1 cm, high throughput (6,000 Hz data streaming rate, and low cost ($13 per unit for a 1,000 unit batch of this wireless sensor system make it particularly attractive for phonocardiography and other sensing applications. The experimental results of sensor signal analysis using several signal characterization techniques suggest that this wireless sensor system can capture both fundamental heart sounds (S1 and S2, and is also capable of capturing abnormal heart sounds (S3 and S4 and heart murmurs without aliasing. The results of a denoising application using Wavelet Transform show that the undesirable noises of sensor signals in the surrounding environment can be reduced dramatically. The exercising experiment results also show that this proposed wireless PCG system can capture heart sounds over different heart conditions simulated by varying heart rates of six subjects over a range of 60–180 Hz through exercise testing.

  5. A low-cost, portable, high-throughput wireless sensor system for phonocardiography applications.

    Science.gov (United States)

    Sa-Ngasoongsong, Akkarapol; Kunthong, Jakkrit; Sarangan, Venkatesh; Cai, Xinwei; Bukkapatnam, Satish T S

    2012-01-01

    This paper presents the design and testing of a wireless sensor system developed using a Microchip PICDEM developer kit to acquire and monitor human heart sounds for phonocardiography applications. This system can serve as a cost-effective option to the recent developments in wireless phonocardiography sensors that have primarily focused on Bluetooth technology. This wireless sensor system has been designed and developed in-house using off-the-shelf components and open source software for remote and mobile applications. The small form factor (3.75 cm × 5 cm × 1 cm), high throughput (6,000 Hz data streaming rate), and low cost ($13 per unit for a 1,000 unit batch) of this wireless sensor system make it particularly attractive for phonocardiography and other sensing applications. The experimental results of sensor signal analysis using several signal characterization techniques suggest that this wireless sensor system can capture both fundamental heart sounds (S1 and S2), and is also capable of capturing abnormal heart sounds (S3 and S4) and heart murmurs without aliasing. The results of a denoising application using Wavelet Transform show that the undesirable noises of sensor signals in the surrounding environment can be reduced dramatically. The exercising experiment results also show that this proposed wireless PCG system can capture heart sounds over different heart conditions simulated by varying heart rates of six subjects over a range of 60-180 Hz through exercise testing.

  6. Wireless inclinometer acquisition system for reducing swing movement control module experiment of hook model

    Science.gov (United States)

    Yu, Yan; Ou, Jinping; Zhang, Chunwei; Li, Luyu

    2008-03-01

    Large Scale Heavy Derrick Lay Barge is very important for sea work. Under intense wind and wave load, the hook on the Barge will vibrate so large that in some cases it can not work. Through installing the Tuned Mass Damper(TMD) on the hook, the vibration will be reduced to a certain range to meet the demand on sea work, which is also important for increasing the efficiency of sea work. To design the suitable TMD for the hook, the dynamical parameters should be specified beforehand. Generally, the related dynamical parameters such as inclinometer and acceleration are measured by wire sensors. But due to the restriction of the actual condition, the wire sensors are very hard to implement. Recently, the wireless sensors have been presented to overcome the shortcomings of wire ones. It is more suitable and also convenient to utilize wireless sensors to acquire the useful data of large scale heavy derrick lay barge. In this paper, the hook reducing swing movement control module is designed for large scale heavy derrick lay barge. Secondly, wireless inclinometer sensor system is integrated using the technique of MEMS, sensing and wireless communication. Finally, the hook reducing swing movement control module is validated by the developed wireless inclinometer data acquisition system. The wireless inclinometer sensor can be used not only in swing monitoring for large scale heavy derrick lay barge's Hook, but also in vibration monitoring for TV tower, large crane. In general, it has great application foreground.

  7. Real-Time Wireless Data Acquisition System

    Science.gov (United States)

    Valencia, Emilio J.; Perotti, Jose; Lucena, Angel; Mata, Carlos

    2007-01-01

    Current and future aerospace requirements demand the creation of a new breed of sensing devices, with emphasis on reduced weight, power consumption, and physical size. This new generation of sensors must possess a high degree of intelligence to provide critical data efficiently and in real-time. Intelligence will include self-calibration, self-health assessment, and pre-processing of raw data at the sensor level. Most of these features are already incorporated in the Wireless Sensors Network (SensorNet(TradeMark)), developed by the Instrumentation Group at Kennedy Space Center (KSC). A system based on the SensorNet(TradeMark) architecture consists of data collection point(s) called Central Stations (CS) and intelligent sensors called Remote Stations (RS) where one or more CSs can be accommodated depending on the specific application. The CS's major function is to establish communications with the Remote Stations and to poll each RS for data and health information. The CS also collects, stores and distributes these data to the appropriate systems requiring the information. The system has the ability to perform point-to-point, multi-point and relay mode communications with an autonomous self-diagnosis of each communications link. Upon detection of a communication failure, the system automatically reconfigures to establish new communication paths. These communication paths are automatically and autonomously selected as the best paths by the system based on the existing operating environment. The data acquisition system currently under development at KSC consists of the SensorNet(TradeMark) wireless sensors as the remote stations and the central station called the Radio Frequency Health Node (RFHN). The RFF1N is the central station which remotely communicates with the SensorNet(TradeMark) sensors to control them and to receive data. The system's salient feature is the ability to provide deterministic sensor data with accurate time stamps for both time critical and non

  8. WIRELESS SENSOR SYSTEM FOR IMPLEMENTATION OF SMART SPACES

    Directory of Open Access Journals (Sweden)

    Gerardo Cázarez-Ayala

    2014-01-01

    Full Text Available This paper describes the design, implementation and application of a smart sensor system based in wireless communication protocol, which was developed with the main objective of facilitate the implementation of smart places, whereby monitoring and supervision of environmental physical variables in a residence or commercial buildings. Based in this system, we want to co-help taking advantage and save electric energy, optimizing the use of the lighting systems and air conditioner only in the schedules and under pre-established conditions for the final user. The system is based in a variety of nodes o modules of sensors like temperature, humidity, light, carbon monoxide, noise and LP gas which have the ability to work collaboratively in networks with topologies like star, tree and mesh.

  9. Development of Wireless System for Containment Integrated Leakage Rate Test

    International Nuclear Information System (INIS)

    Lee, Kwang-Dae; Oh, Eung-Se; Yang, Seung-Ok

    2006-01-01

    The containment system leakage rate should be estimated periodically with reliable test equipment. In light-water reactor nuclear power plants, ANSI/ANS- 56.8 is a basis for determining leakage rates. Two types of data acquisition system, centralized type and networked type, has been used. In centralized type, all sensors are connected directly from sensors in the containment to the measuring equipment outside the building. The other hand, the networked type has several branch chains which connect one group of the network-sensors together. To test leakage rate, more than 20 temperature sensors and 6 humidity sensors, which are different for each plant, should be installed on a specific level in the containment. A wireless technology gives the benefits such as reducing installation efforts, making pretest easy, so it is widely used more and more in the plant monitoring. As the containment system has many kinds of complex barriers to the radio frequency, the radio power and frequency band for better transmission rate as well as the interference by the radio frequency should be considered. The overview of the wireless sensor system for the containment leakage rate test is described here and the test results on Yonggwang unit 4 PWR plant is presented

  10. Radio Characterization for ISM 2.4 GHz Wireless Sensor Networks for Judo Monitoring Applications

    Directory of Open Access Journals (Sweden)

    Peio Lopez-Iturri

    2014-12-01

    Full Text Available In this work, the characterization of the radio channel for ISM 2.4GHz Wireless Sensor Networks (WSNs for judo applications is presented. The environments where judo activity is held are usually complex indoor scenarios in terms of radiopropagation due to their morphology, the presence of humans and the electromagnetic interference generated by personal portable devices, wireless microphones and other wireless systems used by the media. For the assessment of the impact that the topology and the morphology of these environments have on electromagnetic propagation, an in-house developed 3D ray-launching software has been used in this study. Time domain results as well as estimations of received power level have been obtained for the complete volume of a training venue of a local judo club’s facilities with a contest area with the dimensions specified by the International Judo Federation (IJF for international competitions. The obtained simulation results have been compared with measurements, which have been carried out deploying ZigBee-compliant XBee Pro modules at presented scenario, using approved Judogis (jacket, trousers and belt. The analysis is completed with the inclusion of an in-house human body computational model. Such analysis has allowed the design and development of an in house application devoted to monitor the practice of judo, in order to aid referee activities, training routines and to enhance spectator experience.

  11. A contact lens with integrated telecommunication circuit and sensors for wireless and continuous tear glucose monitoring

    International Nuclear Information System (INIS)

    Yao, H; Liao, Y; Lingley, A R; Afanasiev, A; Lähdesmäki, I; Otis, B P; Parviz, B A

    2012-01-01

    We present an integrated functional contact lens, composed of a differential glucose sensor module, metal interconnects, sensor read-out circuit, antenna and telecommunication circuit, to monitor tear glucose levels wirelessly, continuously and non-invasively. The electrochemical differential sensor module is based on immobilization of activated and de-activated glucose oxidase. We characterized the sensor on a model polymer eye and determined that it showed good repeatability, molecular interference rejection and linearity in the range of 0–2 mM glucose, covering normal tear glucose concentrations (0.1–0.6 mM). We also report the temperature, ageing and protein-fouling sensitivity of the sensor. We report the design and implementation of a low-power (3 µW) sensor read-out and telecommunication circuit to deliver wireless power and transmit data for the sensor module. Using this small chip (0.36 mm 2 ), we produced an integrated contact lens with sensors and demonstrated wireless operation of the system and glucose read-out over the distance of several centimeters. (paper)

  12. Radio characterization for ISM 2.4 GHz Wireless Sensor Networks for judo monitoring applications.

    Science.gov (United States)

    Lopez-Iturri, Peio; Aguirre, Erik; Azpilicueta, Leire; Astrain, José J; Villadangos, Jesús; Falcone, Francisco

    2014-12-12

    In this work, the characterization of the radio channel for ISM 2.4GHz Wireless Sensor Networks (WSNs) for judo applications is presented. The environments where judo activity is held are usually complex indoor scenarios in terms of radiopropagation due to their morphology, the presence of humans and the electromagnetic interference generated by personal portable devices, wireless microphones and other wireless systems used by the media. For the assessment of the impact that the topology and the morphology of these environments have on electromagnetic propagation, an in-house developed 3D ray-launching software has been used in this study. Time domain results as well as estimations of received power level have been obtained for the complete volume of a training venue of a local judo club's facilities with a contest area with the dimensions specified by the International Judo Federation (IJF) for international competitions. The obtained simulation results have been compared with measurements, which have been carried out deploying ZigBee-compliant XBee Pro modules at presented scenario, using approved Judogis (jacket, trousers and belt). The analysis is completed with the inclusion of an in-house human body computational model. Such analysis has allowed the design and development of an in house application devoted to monitor the practice of judo, in order to aid referee activities, training routines and to enhance spectator experience.

  13. Fundamental Analysis of Extremely Fast Photonic THz Wireless Communication Systems

    DEFF Research Database (Denmark)

    Yu, Xianbin; Zhang, Xianmin

    This talk will review the recent progress on developing THz communication systems for high speed wireless access, and fundamentally analyze the realistic throughput and accessible wireless range of a THz impulse radio communication link by employing a uni-travelling photodiode (UTC-PD) as emitter...

  14. Method and system for localization in a wireless network

    NARCIS (Netherlands)

    Havinga, Paul J.M.; Dil, B.J.

    2011-01-01

    The present invention relates to a method and system for localization in wireless networks. More in particular, the present invention is relates to Received Signal Strength (RSS) based localization in wireless networks, such as localization based on Radio Interferometric Positioning (RIP). Unlike

  15. Adaptive Wavelet Coding Applied in a Wireless Control System

    Science.gov (United States)

    Gama, Felipe O. S.; O. Salazar, Andrés

    2017-01-01

    Wireless control systems can sense, control and act on the information exchanged between the wireless sensor nodes in a control loop. However, the exchanged information becomes susceptible to the degenerative effects produced by the multipath propagation. In order to minimize the destructive effects characteristic of wireless channels, several techniques have been investigated recently. Among them, wavelet coding is a good alternative for wireless communications for its robustness to the effects of multipath and its low computational complexity. This work proposes an adaptive wavelet coding whose parameters of code rate and signal constellation can vary according to the fading level and evaluates the use of this transmission system in a control loop implemented by wireless sensor nodes. The performance of the adaptive system was evaluated in terms of bit error rate (BER) versus Eb/N0 and spectral efficiency, considering a time-varying channel with flat Rayleigh fading, and in terms of processing overhead on a control system with wireless communication. The results obtained through computational simulations and experimental tests show performance gains obtained by insertion of the adaptive wavelet coding in a control loop with nodes interconnected by wireless link. These results enable the use of this technique in a wireless link control loop. PMID:29236048

  16. Adaptive Wavelet Coding Applied in a Wireless Control System

    Directory of Open Access Journals (Sweden)

    Felipe O. S. Gama

    2017-12-01

    Full Text Available Wireless control systems can sense, control and act on the information exchanged between the wireless sensor nodes in a control loop. However, the exchanged information becomes susceptible to the degenerative effects produced by the multipath propagation. In order to minimize the destructive effects characteristic of wireless channels, several techniques have been investigated recently. Among them, wavelet coding is a good alternative for wireless communications for its robustness to the effects of multipath and its low computational complexity. This work proposes an adaptive wavelet coding whose parameters of code rate and signal constellation can vary according to the fading level and evaluates the use of this transmission system in a control loop implemented by wireless sensor nodes. The performance of the adaptive system was evaluated in terms of bit error rate (BER versus E b / N 0 and spectral efficiency, considering a time-varying channel with flat Rayleigh fading, and in terms of processing overhead on a control system with wireless communication. The results obtained through computational simulations and experimental tests show performance gains obtained by insertion of the adaptive wavelet coding in a control loop with nodes interconnected by wireless link. These results enable the use of this technique in a wireless link control loop.

  17. A low-cost biomedical signal transceiver based on a Bluetooth wireless system.

    Science.gov (United States)

    Fazel-Rezai, Reza; Pauls, Mark; Slawinski, David

    2007-01-01

    Most current wireless biomedical signal transceivers use range-limiting communication. This work presents a low-cost biomedical signal transceiver that uses Bluetooth wireless technology. The design is implemented in a modular form to be adaptable to different types of biomedical signals. The signal front end obtains and processes incoming signals, which are then transmitted via a microcontroller and wireless module. Near real-time receive software in LabVIEW was developed to demonstrate the system capability. The completed transmitter prototype successfully transmits ECG signals, and is able to simultaneously send multiple signals. The sampling rate of the transmitter is fast enough to send up to thirteen ECG signals simultaneously, with an error rate below 0.1% for transmission exceeding 65 meters. A low-cost wireless biomedical transceiver has many applications, such as real-time monitoring of patients with a known condition in non-clinical settings.

  18. Wireless Magnetic Sensor Network for Road Traffic Monitoring and Vehicle Classification

    Directory of Open Access Journals (Sweden)

    Velisavljevic Vladan

    2016-12-01

    Full Text Available Efficiency of transportation of people and goods is playing a vital role in economic growth. A key component for enabling effective planning of transportation networks is the deployment and operation of autonomous monitoring and traffic analysis tools. For that reason, such systems have been developed to register and classify road traffic usage. In this paper, we propose a novel system for road traffic monitoring and classification based on highly energy efficient wireless magnetic sensor networks. We develop novel algorithms for vehicle speed and length estimation and vehicle classification that use multiple magnetic sensors. We also demonstrate that, using such a low-cost system with simplified installation and maintenance compared to current solutions, it is possible to achieve highly accurate estimation and a high rate of positive vehicle classification.

  19. Novel Reduced-Feedback Wireless Communication Systems

    KAUST Repository

    Shaqfeh, Mohammad Obaidah

    2011-11-20

    Modern communication systems apply channel-aware adaptive transmission techniques and dynamic resource allocation in order to exploit the peak conditions of the fading wireless links and to enable significant performance gains. However, conveying the channel state information among the users’ mobile terminals into the access points of the network consumes a significant portion of the scarce air-link resources and depletes the battery resources of the mobile terminals rapidly. Despite its evident drawbacks, the channel information feedback cannot be eliminated in modern wireless networks because blind communication technologies cannot support the ever-increasing transmission rates and high quality of experience demands of current ubiquitous services. Developing new transmission technologies with reduced-feedback requirements is sought. Network operators will benefit from releasing the bandwidth resources reserved for the feedback communications and the clients will enjoy the extended battery life of their mobile devices. The main technical challenge is to preserve the prospected transmission rates over the network despite decreasing the channel information feedback significantly. This is a noteworthy research theme especially that there is no mature theory for feedback communication in the existing literature despite the growing number of publications about the topic in the last few years. More research efforts are needed to characterize the trade-off between the achievable rate and the required channel information and to design new reduced-feedback schemes that can be flexibly controlled based on the operator preferences. Such schemes can be then introduced into the standardization bodies for consideration in next generation broadband systems. We have recently contributed to this field and published several journal and conference papers. We are the pioneers to propose a novel reduced-feedback opportunistic scheduling scheme that combines many desired features

  20. Wireless SAW Interrogator and Sensor System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Wireless, passive, Surface Acoustic Wave (SAW), Orthogonal Frequency Coded (OFC) temperature sensors, operating in a multi-sensor environment, developed at the...

  1. Structural Health Monitoring of Wind Turbine Blades: Acoustic Source Localization Using Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Omar Mabrok Bouzid

    2015-01-01

    Full Text Available Structural health monitoring (SHM is important for reducing the maintenance and operation cost of safety-critical components and systems in offshore wind turbines. This paper proposes an in situ wireless SHM system based on an acoustic emission (AE technique. By using this technique a number of challenges are introduced due to high sampling rate requirements, limitations in the communication bandwidth, memory space, and power resources. To overcome these challenges, this paper focused on two elements: (1 the use of an in situ wireless SHM technique in conjunction with the utilization of low sampling rates; (2 localization of acoustic sources which could emulate impact damage or audible cracks caused by different objects, such as tools, bird strikes, or strong hail, all of which represent abrupt AE events and could affect the structural health of a monitored wind turbine blade. The localization process is performed using features extracted from aliased AE signals based on a developed constraint localization model. To validate the performance of these elements, the proposed system was tested by testing the localization of the emulated AE sources acquired in the field.

  2. Wireless Concrete Strength Monitoring of Wind Turbine Foundations.

    Science.gov (United States)

    Perry, Marcus; Fusiek, Grzegorz; Niewczas, Pawel; Rubert, Tim; McAlorum, Jack

    2017-12-16

    Wind turbine foundations are typically cast in place, leaving the concrete to mature under environmental conditions that vary in time and space. As a result, there is uncertainty around the concrete's initial performance, and this can encourage both costly over-design and inaccurate prognoses of structural health. Here, we demonstrate the field application of a dense, wireless thermocouple network to monitor the strength development of an onshore, reinforced-concrete wind turbine foundation. Up-to-date methods in fly ash concrete strength and maturity modelling are used to estimate the distribution and evolution of foundation strength over 29 days of curing. Strength estimates are verified by core samples, extracted from the foundation base. In addition, an artificial neural network, trained using temperature data, is exploited to demonstrate that distributed concrete strengths can be estimated for foundations using only sparse thermocouple data. Our techniques provide a practical alternative to computational models, and could assist site operators in making more informed decisions about foundation design, construction, operation and maintenance.

  3. Wireless chest wearable vital sign monitoring platform for hypertension.

    Science.gov (United States)

    Janjua, G; Guldenring, D; Finlay, D; McLaughlin, J

    2017-07-01

    Hypertension, a silent killer, is the biggest challenge of the 21 st century in public health agencies worldwide [1]. World Health Organization (WHO) statistic shows that the mortality rate of hypertension is 9.4 million per year and causes 55.3% of total deaths in cardiovascular (CV) patients [2]. Early detection and prevention of hypertension can significantly reduce the CV mortality. We are presenting a wireless chest wearable vital sign monitoring platform. It measures Electrocardiogram (ECG), Photoplethsmogram (PPG) and Ballistocardiogram (BCG) signals and sends data over Bluetooth low energy (BLE) to mobile phone-acts as a gateway. A custom android application relays the data to thingspeak server where MATLAB based offline analysis estimates the blood pressure. A server reacts on the health of subject to friends & family on the social media - twitter. The chest provides a natural position for the sensor to capture legitimate signals for hypertension condition. We have done a clinical technical evaluation of prototypes on 11 normotensive subjects, 9 males 2 females.

  4. Increased Efficiency of Face Recognition System using Wireless Sensor Network

    Directory of Open Access Journals (Sweden)

    Rajani Muraleedharan

    2006-02-01

    Full Text Available This research was inspired by the need of a flexible and cost effective biometric security system. The flexibility of the wireless sensor network makes it a natural choice for data transmission. Swarm intelligence (SI is used to optimize routing in distributed time varying network. In this paper, SI maintains the required bit error rate (BER for varied channel conditions while consuming minimal energy. A specific biometric, the face recognition system, is discussed as an example. Simulation shows that the wireless sensor network is efficient in energy consumption while keeping the transmission accuracy, and the wireless face recognition system is competitive to the traditional wired face recognition system in classification accuracy.

  5. Battery management system with distributed wireless sensors

    Science.gov (United States)

    Farmer, Joseph C.; Bandhauer, Todd M.

    2016-02-23

    A system for monitoring parameters of an energy storage system having a multiplicity of individual energy storage cells. A radio frequency identification and sensor unit is connected to each of the individual energy storage cells. The radio frequency identification and sensor unit operates to sense the parameter of each individual energy storage cell and provides radio frequency transmission of the parameters of each individual energy storage cell. A management system monitors the radio frequency transmissions from the radio frequency identification and sensor units for monitoring the parameters of the energy storage system.

  6. Energy efficiency in wireless communication systems

    Science.gov (United States)

    Caffrey, Michael Paul; Palmer, Joseph McRae

    2012-12-11

    Wireless communication systems and methods utilize one or more remote terminals, one or more base terminals, and a communication channel between the remote terminal(s) and base terminal(s). The remote terminal applies a direct sequence spreading code to a data signal at a spreading factor to provide a direct sequence spread spectrum (DSSS) signal. The DSSS signal is transmitted over the communication channel to the base terminal which can be configured to despread the received DSSS signal by a spreading factor matching the spreading factor utilized to spread the data signal. The remote terminal and base terminal can dynamically vary the matching spreading factors to adjust the data rate based on an estimation of operating quality over time between the remote terminal and base terminal such that the amount of data being transmitted is substantially maximized while providing a specified quality of service.

  7. GTSO: Global Trace Synchronization and Ordering Mechanism for Wireless Sensor Network Monitoring Platforms.

    Science.gov (United States)

    Navia, Marlon; Campelo, José Carlos; Bonastre, Alberto; Ors, Rafael

    2017-12-23

    Monitoring is one of the best ways to evaluate the behavior of computer systems. When the monitored system is a distributed system-such as a wireless sensor network (WSN)-the monitoring operation must also be distributed, providing a distributed trace for further analysis. The temporal sequence of occurrence of the events registered by the distributed monitoring platform (DMP) must be correctly established to provide cause-effect relationships between them, so the logs obtained in different monitor nodes must be synchronized. Many of synchronization mechanisms applied to DMPs consist in adjusting the internal clocks of the nodes to the same value as a reference time. However, these mechanisms can create an incoherent event sequence. This article presents a new method to achieve global synchronization of the traces obtained in a DMP. It is based on periodic synchronization signals that are received by the monitor nodes and logged along with the recorded events. This mechanism processes all traces and generates a global post-synchronized trace by scaling all times registered proportionally according with the synchronization signals. It is intended to be a simple but efficient offline mechanism. Its application in a WSN-DMP demonstrates that it guarantees a correct ordering of the events, avoiding the aforementioned issues.

  8. GPS-WIRELESS SENSOR NETWORK FOR MONITORING QUASI-STATIC DISPLACEMENT

    Science.gov (United States)

    Saeki, Masayuki; Sawada, Mai; Shiba, Yukio; Oguni, Kenji

    This paper presents the displacement monitoring system named "GPS wireless sensor network". This system employs a low cost L1 GPS (Global Positioning System) receiver and wireless sensor network. Low cost sensor node and cable-less system enable dense deployment of observation points. In this research, it is required to solve the trade-off between energy consumption and accuracy of displacement measurements. Measuring continuous data and applying a trend analysis or Kalman filter might yield high accuracy displacement estimation but also needs much energy dissipation. To solve the trade-off relationship, a data compression method and a static GPS positioning analysis method are newly developed and implemented in the system. In these methods, assumption of quasi-static displacement is taken into account. A prototype system is developed and experiments are conducted in a construction site and an ideal condition using the developed prototype. The experimental results show that the prototype works properly and is able to measure displacements in sub-centimeters accuracy.

  9. MedMon: securing medical devices through wireless monitoring and anomaly detection.

    Science.gov (United States)

    Zhang, Meng; Raghunathan, Anand; Jha, Niraj K

    2013-12-01

    Rapid advances in personal healthcare systems based on implantable and wearable medical devices promise to greatly improve the quality of diagnosis and treatment for a range of medical conditions. However, the increasing programmability and wireless connectivity of medical devices also open up opportunities for malicious attackers. Unfortunately, implantable/wearable medical devices come with extreme size and power constraints, and unique usage models, making it infeasible to simply borrow conventional security solutions such as cryptography. We propose a general framework for securing medical devices based on wireless channel monitoring and anomaly detection. Our proposal is based on a medical security monitor (MedMon) that snoops on all the radio-frequency wireless communications to/from medical devices and uses multi-layered anomaly detection to identify potentially malicious transactions. Upon detection of a malicious transaction, MedMon takes appropriate response actions, which could range from passive (notifying the user) to active (jamming the packets so that they do not reach the medical device). A key benefit of MedMon is that it is applicable to existing medical devices that are in use by patients, with no hardware or software modifications to them. Consequently, it also leads to zero power overheads on these devices. We demonstrate the feasibility of our proposal by developing a prototype implementation for an insulin delivery system using off-the-shelf components (USRP software-defined radio). We evaluate its effectiveness under several attack scenarios. Our results show that MedMon can detect virtually all naive attacks and a large fraction of more sophisticated attacks, suggesting that it is an effective approach to enhancing the security of medical devices.

  10. Optimum wireless sensor deployment scheme for structural health monitoring: a simulation study

    Science.gov (United States)

    Liu, Chengyin; Fang, Kun; Teng, Jun

    2015-11-01

    With the rapid advancements in smart sensing technology and wireless communication technology, the wireless sensor network (WSN) offers an alternative solution to structural health monitoring (SHM). In WSNs, dense deployment of wireless nodes aids the identification of structural dynamic characteristics, while data transmission is a significant issue since wireless channels typically have a lower bandwidth and a limited power supply. This paper provides a wireless sensor deployment optimization scheme for SHM, in terms of both energy consumption and modal identification accuracy. A spherical energy model is established to formulate the energy consumption within a WSN. The optimal number of sensors and their locations are obtained through solving a multi-objective function with weighting factors on energy consumption and modal identification accuracy using a genetic algorithm (GA). Simulation and comparison results with traditional sensor deployment methods demonstrate the efficiency of the proposed optimization scheme.

  11. Optical wireless communications system and channel modelling with Matlab

    CERN Document Server

    Ghassemlooy, Z

    2012-01-01

    Detailing a systems approach, Optical Wireless Communications: System and Channel Modelling with MATLAB(R), is a self-contained volume that concisely and comprehensively covers the theory and technology of optical wireless communications systems (OWC) in a way that is suitable for undergraduate and graduate-level students, as well as researchers and professional engineers. Incorporating MATLAB(R) throughout, the authors highlight past and current research activities to illustrate optical sources, transmitters, detectors, receivers, and other devices used in optical wireless communications. The

  12. SoundProof: A Smartphone Platform for Wireless Monitoring of Wildlife and Environment

    Science.gov (United States)

    Lukac, M.; Monibi, M.; Lane, M. L.; Howell, L.; Ramanathan, N.; Borker, A.; McKown, M.; Croll, D.; Terschy, B.

    2011-12-01

    We are developing an open-source, low-cost wildlife and environmental monitoring solution based on Android smartphones. Using a smartphone instead of a traditional microcontroller or single board computer has several advantages: smartphones are single integrated devices with multiple radios and a battery; they have a robust software interface which enables customization; and are field-tested by millions of users daily. Consequently, smartphones can improve the cost, configurability, and real-time access to data for environmental monitoring, ultimately replacing existing monitoring solutions which are proprietary, difficult to customize, expensive, and require labor-intensive maintenance. While smartphones can radically change environmental and wildlife monitoring, there are a number of technical challenges to address. We present our smartphone-based platform, SoundProof, discuss the challenges of building an autonomous system based on Android phones, and our ongoing efforts to enable environmental monitoring. Our system is built using robust off-the-shelf hardware and mature open-source software where available, to increase scalability and ease of installation. Key features include: * High-quality acoustic signal collection from external microphones to monitor wildlife populations. * Real-time data access, remote programming, and configuration of the field sensor via wireless cellular or WiFi channels, accessible from a website. * Waterproof packaging and solar charger setup for long-term field deployments. * Rich instrumentation of the end-to-end system to quickly identify and debug problems. * Supplementary mesh networking system with long-range wireless antennae to provide coverage when no cell network is available. We have deployed this system to monitor Rufous Crowned Sparrows on Anacapa Island, Chinese Crested Turns on the Matsu Islands in Taiwan, and Ashy Storm Petrels on South East Farallon Island. We have testbeds at two UC Natural Reserves to field

  13. Ceramic MEMS Designed for Wireless Pressure Monitoring in the Industrial Environment

    Directory of Open Access Journals (Sweden)

    Marko Pavlin

    2011-12-01

    Full Text Available This paper presents the design of a wireless pressure-monitoring system for harsh-environment applications. Two types of ceramic pressure sensors made with a low-temperature cofired ceramic (LTCC were considered. The first type is a piezoresistive strain gauge pressure sensor. The second type is a capacitive pressure sensor, which is based on changes of the capacitance values between two electrodes: one electrode is fixed and the other is movable under an applied pressure. The design was primarily focused on low power consumption. Reliable operation in the presence of disturbances, like electromagnetic interference, parasitic capacitances, etc., proved to be contradictory constraints. A piezoresistive ceramic pressure sensor with a high bridge impedance was chosen for use in a wireless pressure-monitoring system and an acceptable solution using energy-harvesting techniques has been achieved. The described solution allows for the integration of a sensor element with an energy harvester that has a printed thick-film battery and complete electronics in a single substrate packaged inside a compact housing.

  14. Ceramic MEMS designed for wireless pressure monitoring in the industrial environment.

    Science.gov (United States)

    Pavlin, Marko; Belavic, Darko; Novak, Franc

    2012-01-01

    This paper presents the design of a wireless pressure-monitoring system for harsh-environment applications. Two types of ceramic pressure sensors made with a low-temperature cofired ceramic (LTCC) were considered. The first type is a piezoresistive strain gauge pressure sensor. The second type is a capacitive pressure sensor, which is based on changes of the capacitance values between two electrodes: one electrode is fixed and the other is movable under an applied pressure. The design was primarily focused on low power consumption. Reliable operation in the presence of disturbances, like electromagnetic interference, parasitic capacitances, etc., proved to be contradictory constraints. A piezoresistive ceramic pressure sensor with a high bridge impedance was chosen for use in a wireless pressure-monitoring system and an acceptable solution using energy-harvesting techniques has been achieved. The described solution allows for the integration of a sensor element with an energy harvester that has a printed thick-film battery and complete electronics in a single substrate packaged inside a compact housing.

  15. Ceramic MEMS Designed for Wireless Pressure Monitoring in the Industrial Environment

    Science.gov (United States)

    Pavlin, Marko; Belavic, Darko; Novak, Franc

    2012-01-01

    This paper presents the design of a wireless pressure-monitoring system for harsh-environment applications. Two types of ceramic pressure sensors made with a low-temperature cofired ceramic (LTCC) were considered. The first type is a piezoresistive strain gauge pressure sensor. The second type is a capacitive pressure sensor, which is based on changes of the capacitance values between two electrodes: one electrode is fixed and the other is movable under an applied pressure. The design was primarily focused on low power consumption. Reliable operation in the presence of disturbances, like electromagnetic interference, parasitic capacitances, etc., proved to be contradictory constraints. A piezoresistive ceramic pressure sensor with a high bridge impedance was chosen for use in a wireless pressure-monitoring system and an acceptable solution using energy-harvesting techniques has been achieved. The described solution allows for the integration of a sensor element with an energy harvester that has a printed thick-film battery and complete electronics in a single substrate packaged inside a compact housing. PMID:22368471

  16. Wireless Remote Monitoring of Glucose Using a Functionalized ZnO Nanowire Arrays Based Sensor

    Directory of Open Access Journals (Sweden)

    Magnus Willander

    2011-08-01

    Full Text Available This paper presents a prototype wireless remote glucose monitoring system interfaced with a ZnO nanowire arrays-based glucose sensor, glucose oxidase enzyme immobilized onto ZnO nanowires in conjunction with a Nafion® membrane coating, which can be effectively applied for the monitoring of glucose levels in diabetics. Global System for Mobile Communications (GSM services like General Packet Radio Service (GPRS and Short Message Service (SMS have been proven to be logical and cost effective methods for gathering data from remote locations. A communication protocol that facilitates remote data collection using SMS has been utilized for monitoring a patient’s sugar levels. In this study, we demonstrate the remote monitoring of the glucose levels with existing GPRS/GSM network infra-structures using our proposed functionalized ZnO nanowire arrays sensors integrated with standard readily available mobile phones. The data can be used for centralized monitoring and other purposes. Such applications can reduce health care costs and allow caregivers to monitor and support to their patients remotely, especially those located in rural areas.

  17. A Wireless Monitoring Sub-nA Resolution Test Platform for Nanostructure Sensors

    Directory of Open Access Journals (Sweden)

    Young Min Jhon

    2013-06-01

    Full Text Available We have constructed a wireless monitoring test platform with a sub-nA resolution signal amplification/processing circuit (SAPC and a wireless communication network to test the real-time remote monitoring of the signals from carbon nanotube (CNT sensors. The operation characteristics of the CNT sensors can also be measured by the ISD-VSD curve with the SAPC. The SAPC signals are transmitted to a personal computer by Bluetooth communication and the signals from the computer are transmitted to smart phones by Wi-Fi communication, in such a way that the signals from the sensors can be remotely monitored through a web browser. Successful remote monitoring of signals from a CNT sensor was achieved with the wireless monitoring test platform for detection of 0.15% methanol vapor with 0.5 nA resolution and 7 Hz sampling rate.

  18. Nonlinear distortion in wireless systems modeling and simulation with Matlab

    CERN Document Server

    Gharaibeh, Khaled M

    2011-01-01

    This book covers the principles of modeling and simulation of nonlinear distortion in wireless communication systems with MATLAB simulations and techniques In this book, the author describes the principles of modeling and simulation of nonlinear distortion in single and multichannel wireless communication systems using both deterministic and stochastic signals. Models and simulation methods of nonlinear amplifiers explain in detail how to analyze and evaluate the performance of data communication links under nonlinear amplification. The book addresses the analysis of nonlinear systems

  19. Development of Wireless Dimming Control System for LED Stage Light

    OpenAIRE

    Wang Hui Qin; Bai Shi Lei

    2016-01-01

    Compared with the existing wire dimming system of LED stage light which uses the heavy light operating console to adjust the brightness of stage light, a portable wireless dimming control system for LED stage lighting is proposed, fabricated and tested in this paper. The scheme with the core of ATmega16L microcontroller is composed of wireless transmission and reception units, constant current driving circuit of LED, and the control circuit between this two modules. Through the system present...

  20. Real-time monitoring of ubiquitous wireless ECG sensor node for medical care using ZigBee

    Science.gov (United States)

    Vijayalakshmi, S. R.; Muruganand, S.

    2012-01-01

    Sensor networks have the potential to impact many aspects of medical care greatly. By outfitting patients with wireless, wearable vital sign sensors, collecting detailed real-time data on physiological status can be greatly simplified. In this article, we propose the system architecture for smart sensor platform based on advanced wireless sensor networks. An emerging application for wireless sensor networks involves their use in medical care. In hospitals or clinics, outfitting every patient with tiny, wearable wireless vital sign sensors would allow doctors, nurses and other caregivers to continuously monitor the status of their patients. In an emergency or disaster scenario, the same technology would enable medics to more effectively care for a large number of casualties. First responders could receive immediate notifications on any changes in patient status, such as respiratory failure or cardiac arrest. Wireless sensor network is a set of small, autonomous devices, working together to solve different problems. It is a relatively new technology, experiencing true expansion in the past decade. People have realised that integration of small and cheap microcontrollers with sensors can result in the production of extremely useful devices, which can be used as an integral part of the sensor nets. These devices are called sensor nodes. Today, sensor nets are used in agriculture, ecology and tourism, but medicine is the area where they certainly meet the greatest potential. This article presents a medical smart sensor node platform. This article proposes a wireless two-lead EKG. These devices collect heart rate and EKG data and relay it over a short-range (300 m) wireless network to any number of receiving devices, including PDAs, laptops or ambulance-based terminals.

  1. An implantable wireless optogenetic stimulation system for peripheral nerve control.

    Science.gov (United States)

    Kang-Il Song; Park, Sunghee E; Myoung-Soo Kim; Chulmin Joo; Yong-Jun Kim; Suh, Jun-Kyo F; Dosik Hwang; Inchan Youn

    2015-08-01

    An implantable wireless optogenetic stimulation system with an LED-based optical stimulation cuff electrode was developed for peripheral nerve control. The proposed system consisted of a battery-powered optical cuff electrode, optical stimulation controller, and wireless communication system. The optical cuff electrode had a polydimethylsiloxane (PDMS) structure was designed to illuminate the entire sciatic nerve. The wireless communication system was designed to comply with medical implant communication service (MICS) regulations. To evaluate the proposed system, optogenetic stimulation was performed in optogenetic transgenic mice (Thy1::ChR2). The optical cuff electrode was implanted on the sciatic nerve, and movement was elicited during optical stimulation. The experimental results show that ankle movement can be generated wirelessly using optical stimulation pulse parameters.

  2. Comparing lower lumbar kinematics in cyclists with low back pain (flexion pattern) versus asymptomatic controls--field study using a wireless posture monitoring system.

    Science.gov (United States)

    Van Hoof, Wannes; Volkaerts, Koen; O'Sullivan, Kieran; Verschueren, Sabine; Dankaerts, Wim

    2012-08-01

    The aim of this study was to examine lower lumbar kinematics in cyclists with and without non-specific chronic low back pain (NS-CLBP) during a cross-sectional cycling field study. Although LBP is a common problem among cyclists, studies investigating the causes of LBP during cycling are scarce and are mainly focussed on geometric bike-related variables. Until now no cycling field studies have investigated the relationship between maladaptive lumbar kinematics and LBP during cycling. Eight cyclists with NS-CLBP classified as having a 'Flexion Pattern' (FP) disorder and nine age- and gender-matched asymptomatic cyclists were tested. Subjects performed a 2 h outdoor cycling task on their personal race bike. Lower lumbar kinematics was measured with the BodyGuard™ monitoring system. Pain intensity during and after cycling was measured using a numerical pain rating scale. The NS-CLBP (FP) subjects were significantly more flexed at the lower lumbar spine during cycling compared to healthy controls (p = 0.018), and reported a significant increase in pain over the 2 h of cycling (p posture between groups did not change over time. These findings suggest that a subgroup of cyclists with NS-CLBP (FP) demonstrate an underlying maladaptive motor control pattern resulting in greater lower lumbar flexion during cycling which is related to a significant increase in pain. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Secure wireless embedded systems via component-based design

    DEFF Research Database (Denmark)

    Hjorth, T.; Torbensen, R.

    2010-01-01

    communication component for distributed wireless embedded devices. The components communicate using the Secure Embedded Exchange Protocol (SEEP), which has been designed for flexible trust establishment so that small, resource-constrained, wireless embedded systems are able to communicate short command messages......This paper introduces the method secure-by-design as a way of constructing wireless embedded systems using component-based modeling frameworks. This facilitates design of secure applications through verified, reusable software. Following this method we propose a security framework with a secure...

  4. Safe Cooperating Cyber-Physical Systems using Wireless Communication

    DEFF Research Database (Denmark)

    Pop, Paul; Scholle, Detlef; Sljivo, Irfan

    2017-01-01

    detection of abnormal behaviour, triggering if needed a safe degraded mode. SafeCOP will also develop methods and tools, which will be used to produce safety assurance evidence needed to certify cooperative functions. SafeCOP will extend current wireless technologies to ensure safe and secure cooperation......This paper presents an overview of the ECSEL project entitled ―Safe Cooperating Cyber-Physical Systems using Wireless Communication‖ (SafeCOP), which runs during the period 2016–2019. SafeCOP targets safety-related Cooperating Cyber-Physical Systems (CO-CPS) characterised by use of wireless...

  5. Development of a Wireless Sensor Network for Individual Monitoring of Panels in a Photovoltaic Plant

    Directory of Open Access Journals (Sweden)

    Miguel J. Prieto

    2014-01-01

    Full Text Available With photovoltaic (PV systems proliferating in the last few years due to the high prices of fossil fuels and pollution issues, among others, it is extremely important to monitor the efficiency of these plants and optimize the energy production process. This will also result in improvements related to the maintenance and security of the installation. In order to do so, the main parameters in the plant must be continuously monitored so that the appropriate actions can be carried out. This monitoring should not only be carried out at a global level, but also at panel-level, so that a better understanding of what is actually happening in the PV plant can be obtained. This paper presents a system based on a wireless sensor network (WSN that includes all the components required for such monitoring as well as a power supply obtaining the energy required by the sensors from the photovoltaic panels. The system proposed succeeds in identifying all the nodes in the network and provides real-time monitoring while tracking efficiency, features, failures and weaknesses from a single cell up to the whole infrastructure. Thus, the decision-making process is simplified, which contributes to reducing failures, wastes and, consequently, costs.

  6. Development of a wireless sensor network for individual monitoring of panels in a photovoltaic plant.

    Science.gov (United States)

    Prieto, Miguel J; Pernía, Alberto M; Nuño, Fernando; Díaz, Juan; Villegas, Pedro J

    2014-01-30

    With photovoltaic (PV) systems proliferating in the last few years due to the high prices of fossil fuels and pollution issues, among others, it is extremely important to monitor the efficiency of these plants and optimize the energy production process. This will also result in improvements related to the maintenance and security of the installation. In order to do so, the main parameters in the plant must be continuously monitored so that the appropriate actions can be carried out. This monitoring should not only be carried out at a global level, but also at panel-level, so that a better understanding of what is actually happening in the PV plant can be obtained. This paper presents a system based on a wireless sensor network (WSN) that includes all the components required for such monitoring as well as a power supply obtaining the energy required by the sensors from the photovoltaic panels. The system proposed succeeds in identifying all the nodes in the network and provides real-time monitoring while tracking efficiency, features, failures and weaknesses from a single cell up to the whole infrastructure. Thus, the decision-making process is simplified, which contributes to reducing failures, wastes and, consequently, costs.

  7. Low-complexity Wireless Monitoring of Respiratory Movements Using Ultra-wideband Impulse Response Estimation

    KAUST Repository

    Sana, Furrukh

    2014-03-01

    In this paper; we present a comprehensive scheme for wireless monitoring of the respiratory movements in humans. Our scheme overcomes the challenges low signal-to-noise ratio, background clutter and high sampling rates. It is based on the estimation of the ultra-wideband channel impulse response. We suggest techniques for dealing with background clutter in situations when it might be time variant. We also present a novel methodology for reducing the required sampling rate of the system significantly while achieving the accuracy offered by the Nyquist rate. Performance results from simulations conducted with pre-recorded respiratory signals demonstrate the robustness of our scheme for tackling the above challenges and providing a low-complexity solution for the monitoring of respiratory movements.

  8. An inversion strategy for energy saving in smart building through wireless monitoring

    Science.gov (United States)

    Anselmi, N.; Moriyama, T.

    2017-10-01

    The building plants represent one of the main sources of power consumption and of greenhouse gases emission in urban scenarios. The efficiency of energy management is also related to the indoor environmental conditions that reflect on the user comfort. The constant monitoring of comfort indicators enables the accurate management of building plants with the final objective of reducing energy waste and satisfying the user needs. This paper presents an inversion methodology based on support vector regression for the reconstruction and forecasting of the thermal comfort of users starting from the indoor environmental features of the building. The environmental monitoring is performed by means of a wireless sensor network, which pervasively measures the spatial variability of indoor conditions. The proposed system has been experimentally validated in a real test-site to assess the advantages and the limitations in supporting the management of the building plants towards energy saving.

  9. Real-Time Alpine Measurement System Using Wireless Sensor Networks.

    Science.gov (United States)

    Malek, Sami A; Avanzi, Francesco; Brun-Laguna, Keoma; Maurer, Tessa; Oroza, Carlos A; Hartsough, Peter C; Watteyne, Thomas; Glaser, Steven D

    2017-11-09

    Monitoring the snow pack is crucial for many stakeholders, whether for hydro-power optimization, water management or flood control. Traditional forecasting relies on regression methods, which often results in snow melt runoff predictions of low accuracy in non-average years. Existing ground-based real-time measurement systems do not cover enough physiographic variability and are mostly installed at low elevations. We present the hardware and software design of a state-of-the-art distributed Wireless Sensor Network (WSN)-based autonomous measurement system with real-time remote data transmission that gathers data of snow depth, air temperature, air relative humidity, soil moisture, soil temperature, and solar radiation in physiographically representative locations. Elevation, aspect, slope and vegetation are used to select network locations, and distribute sensors throughout a given network location, since they govern snow pack variability at various scales. Three WSNs were installed in the Sierra Nevada of Northern California throughout the North Fork of the Feather River, upstream of the Oroville dam and multiple powerhouses along the river. The WSNs gathered hydrologic variables and network health statistics throughout the 2017 water year, one of northern Sierra's wettest years on record. These networks leverage an ultra-low-power wireless technology to interconnect their components and offer recovery features, resilience to data loss due to weather and wildlife disturbances and real-time topological visualizations of the network health. Data show considerable spatial variability of snow depth, even within a 1 km 2 network location. Combined with existing systems, these WSNs can better detect precipitation timing and phase in, monitor sub-daily dynamics of infiltration and surface runoff during precipitation or snow melt, and inform hydro power managers about actual ablation and end-of-season date across the landscape.

  10. Wireless communication for hearing aid system

    DEFF Research Database (Denmark)

    Nour, Baqer

    This thesis focuses on the wireless coupling between hearing aids close to a human head. Hearing aids constitute devices withadvanced technology and the wireless communication enables the introduction of a range of completely new functionalities. Such devices are small and the available power...... the ear-to-ear wireless communication channel by understanding the mechanisms that control the propagations of the signals and the losses. The second objective isto investigate the properties of magneto-dielectric materials and their potential in antenna miniaturization. There are three approaches...

  11. Applications of wireless sensor networks, soil water balance modeling, and satellite data for crop evapotranspiration monitoring and irrigation management support

    Science.gov (United States)

    Purdy, A. J.; Lund, C.; Pierce, L.; Melton, F. S.; Guzman, A.; Harlen, I.; Holloway, R.; Johnson, L.; Lee, C.; Nemani, R. R.; Rosevelt, C.; Fletcher, N.

    2011-12-01

    Irrigation scheduling systems can potentially be improved through the combined use of satellite driven estimates of crop evapotranspiration and real-time soil moisture data from wireless sensor networks. In order to analyze spatial and temporal patterns in soil moisture and evapotranspiration, we used wireless sensor networks deployed in operational agricultural fields across California to track evapotranspiration and soil moisture, and compute daily water budgets for multiple crops at the field scale. We present findings on efficacy and feasibility of using wireless sensor networks in an operational agricultural setting to monitor soil moisture and calculate a soil water balance. We compare estimated evapotranspiration rates from the wireless sensor networks against estimates from surface renewal instrumentation and satellite-derived estimates from the NASA Terrestrial Observation and Prediction System. Information from this research can lead to a better understanding of how to effectively monitor soil moisture levels at the field scale, and how to integrate satellite and sensor network data to support agricultural producers in optimizing irrigation scheduling.

  12. Broadband Loop Antenna on Soft Contact Lens for Wireless Ocular Physiological Monitoring

    Directory of Open Access Journals (Sweden)

    Ssu-Han Ting

    2014-01-01

    Full Text Available This paper presents a novel loop antenna with broadband for wireless ocular physiological monitoring (WOPM. The antenna is fabricated on a thin-film poly-para-xylylene C (parylene C substrate with a small thickness of 11 μm and dimension of π×6.5×6.5 mm2. With the advantage of small size, the proposed antenna is suitable to apply to the soft contact lens and transmit the signal in microelectromechanical Systems (MEMS. Because the pig's eye and human's eye have similar parameters of conductivity and permittivity, the experimental results are obtained by applying the proposed antenna on the pig's eye and cover from 1.54 to 6 GHz for ISM band (2.4 and 5.8 GHz applications. The measured antenna radiation patterns, antenna gains, and radiation efficiency will be demonstrated in this paper, which are suitable for application of wireless ocular physiological monitoring.

  13. Development of self-powered wireless high temperature electrochemical sensor for in situ corrosion monitoring of coal-fired power plant.

    Science.gov (United States)

    Aung, Naing Naing; Crowe, Edward; Liu, Xingbo

    2015-03-01

    Reliable wireless high temperature electrochemical sensor technology is needed to provide in situ corrosion information for optimal predictive maintenance to ensure a high level of operational effectiveness under the harsh conditions present in coal-fired power generation systems. This research highlights the effectiveness of our novel high temperature electrochemical sensor for in situ coal ash hot corrosion monitoring in combination with the application of wireless communication and an energy harvesting thermoelectric generator (TEG). This self-powered sensor demonstrates the successful wireless transmission of both corrosion potential and corrosion current signals to a simulated control room environment. Copyright © 2014 ISA. All rights reserved.

  14. Miniature Intelligent Wireless Fire Detector System, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of this project is to develop a wireless intelligent dual-band photodetector system for advanced fire detection/recognition, combining UV/IR III...

  15. Wireless Intra-vehicle Communication System (WICS) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Invocon's Wireless Intra-vehicle Communication System (WICS) is being designed as an enabling technology for low-cost launch vehicles. It will reduce the cost of...

  16. Connecting to concrete: wireless monitoring of chloride ions in concrete structures

    NARCIS (Netherlands)

    Abbas, Yawar; ten Have, Bas; Hoekstra, Gerrit I.; Douma, Arjan; de Bruijn, Douwe; Olthuis, Wouter; van den Berg, Albert

    2015-01-01

    For the first time, chloride ions are measured wirelessly in concrete. The half-cell potential of a silver/silver chloride (Ag/AgCl) electrode, which corresponds to the concentration of chloride ions, is measured wirelessly. The sensor system (the Ag/AgCl and a reference electrode) is embedded in

  17. Wireless Sensing Node Network Management for Monitoring Landslide Disaster

    International Nuclear Information System (INIS)

    Takayama, S; Akiyama, J; Fujiki, T; Mokhtar, N A B

    2013-01-01

    This paper shows the network management and operation to monitor landslide disaster at slop of mountain and hill. Natural disasters damage a measuring system easily. It is necessary for the measuring system to be flexible and robust. The measuring network proposed in this paper is the telemetry system consisted of host system (HS) and local sensing nodes network system (LSNNS). LSNNS operates autonomously and sometimes is controlled by commands from HS. HS collects data/information of landslide disaster from LSNNS, and controls LSNNS remotely. HS and LSNNS are communicated by using 'cloud' system. The dual communication is very effective and convenient to manage a network system operation

  18. Development of fast wireless detection system for fixed offshore platform

    Science.gov (United States)

    Li, Zhigang; Yu, Yan; Jiao, Dong; Wang, Jie; Li, Zhirui; Ou, Jinping

    2011-04-01

    Offshore platforms' security is concerned since in 1950s and 1960s, and in the early 1980s some important specifications and standards are built, and all these provide technical basis of fixed platform design, construction, installation and evaluation. With the condition that more and more platforms are in serving over age, the research about the evaluation and detection technology of offshore platform has been a hotspot, especially underwater detection, and assessment method based on the finite element calculation. For fixed platform structure detection, conventional NDT methods, such as eddy current, magnetic powder, permeate, X-ray and ultrasonic, etc, are generally used. These techniques are more mature, intuitive, but underwater detection needs underwater robot, the necessary supporting tools of auxiliary equipment, and trained professional team, thus resources and cost used are considerable, installation time of test equipment is long. This project presents a new kind of fast wireless detection and damage diagnosis system for fixed offshore platform using wireless sensor networks, that is, wireless sensor nodes can be put quickly on the offshore platform, detect offshore platform structure global status by wireless communication, and then make diagnosis. This system is operated simply, suitable for offshore platform integrity states rapid assessment. The designed system consists in intelligence acquisition equipment and 8 wireless collection nodes, the whole system has 64 collection channels, namely every wireless collection node has eight 16-bit accuracy of A/D channels. Wireless collection node, integrated with vibration sensing unit, embedded low-power micro-processing unit, wireless transceiver unit, large-capacity power unit, and GPS time synchronization unit, can finish the functions such as vibration data collection, initial analysis, data storage, data wireless transmission. Intelligence acquisition equipment, integrated with high

  19. Development of Self-Powered Wireless-Ready High Temperature Electrochemical Sensors for In-Situ Corrosion Monitoring for Boiler Tubes in Next Generation Coal-based Power Systems

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xingbo [West Virginia Univ., Morgantown, WV (United States)

    2015-06-30

    The key innovation of this project is the synergy of the high temperature sensor technology based on the science of electrochemical measurement and state-of-the-art wireless communication technology. A novel self-powered wireless high temperature electrochemical sensor system has been developed for coal-fired boilers used for power generation. An initial prototype of the in-situ sensor demonstrated the capability of the wireless communication system in the laboratory and in a pilot plant (Industrial USC Boiler Setting) environment to acquire electrochemical potential and current signals during the corrosion process. Uniform and localized under-coal ash deposit corrosion behavior of Inconel 740 superalloy has been studied at different simulated coal ash hot corrosion environments using the developed sensor. Two typical potential noise patterns were found to correlate with the oxidation and sulfidation stages in the hot coal ash corrosion process. Two characteristic current noise patterns indicate the extent of the corrosion. There was a good correlation between the responses of electrochemical test data and the results from corroded surface analysis. Wireless electrochemical potential and current noise signals from a simulated coal ash hot corrosion process were concurrently transmitted and recorded. The results from the performance evaluation of the sensor confirm a high accuracy in the thermodynamic and kinetic response represented by the electrochemical noise and impedance test data.

  20. Wireless alerting system using vibration for vehicles dashboard

    Science.gov (United States)

    Raj, Sweta; Rai, Shweta; Magaramagara, Wilbert; Sivacoumar, R.

    2017-11-01

    This paper aims at improving the engine life of any vehicle through a continuous measurement and monitoring of vital engine operational parameters and providing an effective alerting to drivers for any abnormality. Vehicles currently are using audio and visible alerting signals through alarms and light as a warning to the driver but these are not effective in noisy environments and during daylight. Through the use of the sense of feeling a driver can be alerted effectively. The need to no other vehicle parameter needs to be aided through the mobile display (phone).Thus a system is designed and implements to measure engine temperature, RPM, Oil level and Coolant level using appropriate sensors and a wireless communication (Bluetooth) is established to actuate a portable vibration control device and to read the different vehicle sensor readings through an android application for display and diagnosis.

  1. Next Generation RFID-Based Medical Service Management System Architecture in Wireless Sensor Network

    Science.gov (United States)

    Tolentino, Randy S.; Lee, Kijeong; Kim, Yong-Tae; Park, Gil-Cheol

    Radio Frequency Identification (RFID) and Wireless Sensor Network (WSN) are two important wireless technologies that have wide variety of applications and provide unlimited future potentials most especially in healthcare systems. RFID is used to detect presence and location of objects while WSN is used to sense and monitor the environment. Integrating RFID with WSN not only provides identity and location of an object but also provides information regarding the condition of the object carrying the sensors enabled RFID tag. However, there isn't any flexible and robust communication infrastructure to integrate these devices into an emergency care setting. An efficient wireless communication substrate for medical devices that addresses ad hoc or fixed network formation, naming and discovery, transmission efficiency of data, data security and authentication, as well as filtration and aggregation of vital sign data need to be study and analyze. This paper proposed an efficient next generation architecture for RFID-based medical service management system in WSN that possesses the essential elements of each future medical application that are integrated with existing medical practices and technologies in real-time, remote monitoring, in giving medication, and patient status tracking assisted by embedded wearable wireless sensors which are integrated in wireless sensor network.

  2. Integration of Wireless Sensor Networks into Cyberinfrastructure for Monitoring Hawaiian ``Mountain-to-Sea'' Environments

    Science.gov (United States)

    Kido, Michael H.; Mundt, Carsten W.; Montgomery, Kevin N.; Asquith, Adam; Goodale, David W.; Kaneshiro, Kenneth Y.

    2008-10-01

    Monitoring the complex environmental relationships and feedbacks of ecosystems on catchment (or mountain)-to-sea scales is essential for social systems to effectively deal with the escalating impacts of expanding human populations globally on watersheds. However, synthesis of emerging technologies into a robust observing platform for the monitoring of coupled human-natural environments on extended spatial scales has been slow to develop. For this purpose, the authors produced a new cyberinfrastructure for environmental monitoring which successfully merged the use of wireless sensor technologies, grid computing with three-dimensional (3D) geospatial data visualization/exploration, and a secured internet portal user interface, into a working prototype for monitoring mountain-to-sea environments in the high Hawaiian Islands. A use-case example is described in which native Hawaiian residents of Waipa Valley (Kauai) utilized the technology to monitor the effects of regional weather variation on surface water quality/quantity response, to better understand their local hydrologic cycle, monitor agricultural water use, and mitigate the effects of lowland flooding.

  3. Design of Wireless Readout System for Resonant Gas Sensors

    OpenAIRE

    S. Mohamed Rabeek; Mi Kyoung Park; M. Annamalai Arasu

    2016-01-01

    This paper presents a design of a wireless read out system for tracking the frequency shift of the polymer coated piezoelectric micro electromechanical resonator due to gas absorption. The measure of this frequency shift indicates the percentage of a particular gas the sensor is exposed to. It is measured using an oscillator and an FPGA based frequency counter by employing the resonator as a frequency determining element in the oscillator. This system consists of a Gas Sensing Wireless Readou...

  4. Sistema embarcado para monitoramento sem fio de sinais em soldagem a arco elétrico com abordagem tecnológica Embedded system for wireless signal monitoring during arc welding with technological approach

    Directory of Open Access Journals (Sweden)

    Marcus Vinícius Ribeiro Machado

    2012-06-01

    :2005, which say that the manufacturer must take measures to guarantee necessary quality, and also specify data to be monitored and equipment and measurement systems correct calibration. It, therefore, can be used to ensure process documentation and corrective actions taken. There are monitoring systems that perform satisfactorily, but the use of cable communication and/or dedicated computer restrict their industrial applications. Then, an independent embedded system, capable of monitoring different welding process signals and that communicates in a robust and flexible way to different devices is crucial for the industry. It must be a user-friendly system and use the state-of-the-art in communication technology. Because of this need, a system for wireless arc welding signals monitoring, called Moso WiFi, was then designed and built. Three acquisition channels are available (voltage, current and wire feed speed, and validated by instrumentation in TIG and MIG/MAG welding (short circuit, spray and pulsed, demonstrating wide applicability and robustness at a hardware low cost.

  5. A Wireless Portable High Temperature Data Monitor for Tunnel Ovens

    Directory of Open Access Journals (Sweden)

    Ricardo Mayo Bayón

    2014-08-01

    Full Text Available Tunnel ovens are widely used in the food industry to produce biscuits and pastries. In order to obtain a high quality product, it is very important to control the heat transferred to each piece of dough during baking. This paper proposes an innovative, non-distorting, low cost wireless temperature measurement system, called “eBiscuit”, which, due to its size, format and location in the metal rack conveyor belt in the oven, is able to measure the temperature a real biscuit experience while baking. The temperature conditions inside the oven are over 200 °C for several minutes, which could damage the “eBiscuit” electronics. This paper compares several thermal insulating materials that can be used in order to avoid exceeding the maximum operational conditions (80 °C in the interior of the “eBiscuit. The data registered is then transmitted to a base station where information can be processed to obtain an oven model. The experimental results with real tunnel ovens confirm its good performance, which allows detecting production anomalies early on.

  6. A wireless portable high temperature data monitor for tunnel ovens.

    Science.gov (United States)

    Mayo Bayón, Ricardo; González Suárez, Víctor M; Mateos Martín, Felipe; Lopera Ronda, Juan M; Álvarez Antón, Juan C

    2014-08-12

    Tunnel ovens are widely used in the food industry to produce biscuits and pastries. In order to obtain a high quality product, it is very important to control the heat transferred to each piece of dough during baking. This paper proposes an innovative, non-distorting, low cost wireless temperature measurement system, called "eBiscuit", which, due to its size, format and location in the metal rack conveyor belt in the oven, is able to measure the temperature a real biscuit experience while baking. The temperature conditions inside the oven are over 200 °C for several minutes, which could damage the "eBiscuit" electronics. This paper compares several thermal insulating materials that can be used in order to avoid exceeding the maximum operational conditions (80 °C) in the interior of the "eBiscuit. The data registered is then transmitted to a base station where information can be processed to obtain an oven model. The experimental results with real tunnel ovens confirm its good performance, which allows detecting production anomalies early on.

  7. A Survey on Data Quality for Dependable Monitoring in Wireless Sensor Networks.

    Science.gov (United States)

    Jesus, Gonçalo; Casimiro, António; Oliveira, Anabela

    2017-09-02

    Wireless sensor networks are being increasingly used in several application areas, particularly to collect data and monitor physical processes. Non-functional requirements, like reliability, security or availability, are often important and must be accounted for in the application development. For that purpose, there is a large body of knowledge on dependability techniques for distributed systems, which provide a good basis to understand how to satisfy these non-functional requirements of WSN-based monitoring applications. Given the data-centric nature of monitoring applications, it is of particular importance to ensure that data are reliable or, more generically, that they have the necessary quality. In this survey, we look into the problem of ensuring the desired quality of data for dependable monitoring using WSNs. We take a dependability-oriented perspective, reviewing the possible impairments to dependability and the prominent existing solutions to solve or mitigate these impairments. Despite the variety of components that may form a WSN-based monitoring system, we give particular attention to understanding which faults can affect sensors, how they can affect the quality of the information and how this quality can be improved and quantified.

  8. Historical Building Monitoring Using an Energy-Efficient Scalable Wireless Sensor Network Architecture

    Directory of Open Access Journals (Sweden)

    Alberto Bonastre

    2011-10-01

    Full Text Available We present a set of novel low power wireless sensor nodes designed for monitoring wooden masterpieces and historical buildings, in order to perform an early detection of pests. Although our previous star-based system configuration has been in operation for more than 13 years, it does not scale well for sensorization of large buildings or when deploying hundreds of nodes. In this paper we demonstrate the feasibility of a cluster-based dynamic-tree hierarchical Wireless Sensor Network (WSN architecture where realistic assumptions of radio frequency data transmission are applied to cluster construction, and a mix of heterogeneous nodes are used to minimize economic cost of the whole system and maximize power saving of the leaf nodes. Simulation results show that the specialization of a fraction of the nodes by providing better antennas and some energy harvesting techniques can dramatically extend the life of the entire WSN and reduce the cost of the whole system. A demonstration of the proposed architecture with a new routing protocol and applied to termite pest detection has been implemented on a set of new nodes and should last for about 10 years, but it provides better scalability, reliability and deployment properties.

  9. Historical building monitoring using an energy-efficient scalable wireless sensor network architecture.

    Science.gov (United States)

    Capella, Juan V; Perles, Angel; Bonastre, Alberto; Serrano, Juan J

    2011-01-01

    We present a set of novel low power wireless sensor nodes designed for monitoring wooden masterpieces and historical buildings, in order to perform an early detection of pests. Although our previous star-based system configuration has been in operation for more than 13 years, it does not scale well for sensorization of large buildings or when deploying hundreds of nodes. In this paper we demonstrate the feasibility of a cluster-based dynamic-tree hierarchical Wireless Sensor Network (WSN) architecture where realistic assumptions of radio frequency data transmission are applied to cluster construction, and a mix of heterogeneous nodes are used to minimize economic cost of the whole system and maximize power saving of the leaf nodes. Simulation results show that the specialization of a fraction of the nodes by providing better antennas and some energy harvesting techniques can dramatically extend the life of the entire WSN and reduce the cost of the whole system. A demonstration of the proposed architecture with a new routing protocol and applied to termite pest detection has been implemented on a set of new nodes and should last for about 10 years, but it provides better scalability, reliability and deployment properties.

  10. Radio/Antenna Mounting System for Wireless Networking under Row-Crop Agriculture Conditions

    Directory of Open Access Journals (Sweden)

    Daniel K. Fisher

    2015-07-01

    Full Text Available Interest in and deployment of wireless monitoring systems is increasing in many diverse environments, including row-crop agricultural fields. While many studies have been undertaken to evaluate various aspects of wireless monitoring and networking, such as electronic hardware components, data-collection procedures, power management, and communication protocols, little information related to physical deployment issues has been reported. To achieve acceptable wireless transmission capability, the radio/antenna must be positioned properly relative to the ground surface or crop canopy to minimize degradation of the radio signal, usually requiring the mounting of the radio/antenna above the canopy. This results in the presence of obstacles to normal agricultural equipment traffic and production operations and potential damage to the wireless monitoring system. A simple and rugged radio/antenna mounting system was designed which could be subjected to encounters with agricultural equipment without suffering physical damage. The mounting system was deployed and tested, and operated successfully following repeated encounters with various agricultural machines and implements. The radio/antenna mount is simple and inexpensive to fabricate using locally available components.

  11. Cyber Security Evaluation of the Wireless Communication for the Mobile Safeguard Systems in Nuclear Power Plants

    International Nuclear Information System (INIS)

    Lee, S.; Kim, Y.S.; Ye, S.H.

    2015-01-01

    This paper introduces cyber security evaluation results and a design of the wireless communication technology to apply to safeguard systems in nuclear power plants. While wireless communication technologies can generally make mobility and efficiency on plant operation, those have seldom been installed on the nuclear I&C systems due to the negative concern of unexpected outcomes that stem from electromagnetic interference and cyber attack. New design of advanced digital safeguard and I&C systems uses computer-based systems for the safeguard and safety functions. On the other hand, those are being exposed to various types of new and existing cyber threats, vulnerabilities and risks which significantly increase the likelihood that those could be compromised. In order to employ the wireless communication technology in safeguard function, licencees assess and manage the potential for adverse effects on safeguard and safety functions so as to provide high assurance that critical functions are properly protected cyber attack. It is expected that the safeguard function, specifically on the area of real-time monitoring, logging, can be enhanced by employing the mobile safeguard devices (: smart phone, laptop, smart pad, etc). In this paper, we deal with the cyber security evaluation, which consists of threat analysis, vulnerability test, establishment of security plan, and design solutions for the wireless communication on the basis of IEEE 802.11(Wi-Fi) protocol. Proposed evaluation and design solution could be a basis for the design of wireless communication and mobile safeguard systems in nuclear power plants. (author)

  12. IEEE 802.11-Based Wireless Sensor System for Vibration Measurement

    Directory of Open Access Journals (Sweden)

    Yutaka Uchimura

    2010-01-01

    Full Text Available Network-based wireless sensing has become an important area of research and various new applications for remote sensing are expected to emerge. One of the promising applications is structural health monitoring of building or civil engineering structure and it often requires vibration measurement. For the vibration measurement via wireless network, time synchronization is indispensable. In this paper, we introduce a newly developed time synchronized wireless sensor network system. The system employs IEEE 802.11 standard-based TSF-counter and sends the measured data with the counter value. TSF based synchronization enables consistency on common clock among different wireless nodes. We consider the scale effect on synchronization accuracy and evaluated the effect by taking beacon collisions into account. The scalability issue by numerical simulations is also studied. This paper also introduces a newly developed wireless sensing system and the hardware and software specifications are introduced. The experiments were conducted in a reinforced concrete building to evaluate synchronization accuracy. The developed system was also applied for a vibration measurement of a 22-story steel structured high rise building. The experimental results showed that the system performed more than sufficiently.

  13. A Wireless Sensor Network with Enhanced Power Efficiency and Embedded Strain Cycle Identification for Fatigue Monitoring of Railway Bridges

    Directory of Open Access Journals (Sweden)

    Glauco Feltrin

    2016-01-01

    Full Text Available Wireless sensor networks have been shown to be a cost-effective monitoring tool for many applications on civil structures. Strain cycle monitoring for fatigue life assessment of railway bridges, however, is still a challenge since it is data intensive and requires a reliable operation for several weeks or months. In addition, sensing with electrical resistance strain gauges is expensive in terms of energy consumption. The induced reduction of battery lifetime of sensor nodes increases the maintenance costs and reduces the competitiveness of wireless sensor networks. To overcome this drawback, a signal conditioning hardware was designed that is able to significantly reduce the energy consumption. Furthermore, the communication overhead is reduced to a sustainable level by using an embedded data processing algorithm that extracts the strain cycles from the raw data. Finally, a simple software triggering mechanism that identifies events enabled the discrimination of useful measurements from idle data, thus increasing the efficiency of data processing. The wireless monitoring system was tested on a railway bridge for two weeks. The monitoring system demonstrated a good reliability and provided high quality data.

  14. Wireless Industrial Monitoring and Control Networks: The Journey So Far and the Road Ahead

    Directory of Open Access Journals (Sweden)

    Paul Havinga

    2012-08-01

    Full Text Available While traditional wired communication technologies have played a crucial role in industrial monitoring and control networks over the past few decades, they are increasingly proving to be inadequate to meet the highly dynamic and stringent demands of today’s industrial applications, primarily due to the very rigid nature of wired infrastructures. Wireless technology, however, through its increased pervasiveness, has the potential to revolutionize the industry, not only by mitigating the problems faced by wired solutions, but also by introducing a completely new class of applications. While present day wireless technologies made some preliminary inroads in the monitoring domain, they still have severe limitations especially when real-time, reliable distributed control operations are concerned. This article provides the reader with an overview of existing wireless technologies commonly used in the monitoring and control industry. It highlights the pros and cons of each technology and assesses the degree to which each technology is able to meet the stringent demands of industrial monitoring and control networks. Additionally, it summarizes mechanisms proposed by academia, especially serving critical applications by addressing the real-time and reliability requirements of industrial process automation. The article also describes certain key research problems from the physical layer communication for sensor networks and the wireless networking perspective that have yet to be addressed to allow the successful use of wireless technologies in industrial monitoring and control networks.

  15. A Dual-Mode UWB Wireless Platform with Random Pulse Length Detection for Remote Patient Monitoring

    DEFF Research Database (Denmark)

    Reyes, Carlos; Bisbe, Sergi; Shen, Ming

    2013-01-01

    This paper presents a dual-mode ultra-wideband platform for wireless Remote Patient Monitoring (RPM). Existing RPM solutions are typically based on two different hardware platforms; one responsible for medical-data monitoring and one to handle data transmission. The proposed RPM topology is based...

  16. The Wireless Data Acquisition System for the Vibration Table

    Science.gov (United States)

    Teng, Y. T.; Hu, X.

    2014-12-01

    The vibration table is a large-scaled tool used for inspecting the performance of seismometers. The output from a seismometer on the table can be directly monitored when the vibration table moves in certain pattern. Compared with other inspection methods, inspecting seismometers' performance indicators (frequency response, degree of linearity, sensitivity, lateral inhibition and dynamic range etc). using vibration tables is more intuitive. Therefore, the vibration tables are an essential testing part in developing new seismometers and seismometer quality control. Whereas, in practice, a cable is needed to connect the seismometer to the ground equipments for its signal outputs and power supply, that means adding a time-varying nonlinear spring between the vibration table and ground. The cable adds nonlinear feature to the table, distorts the table-board movement and bring extra errors to the inspecting work and affected the testing accuracy and precision. In face of this problem, we developed a wireless acquiring system for the vibration table. The system is consisted of a three-channel analog-to-digital conversion, an acquisition control part, local data storage, network interface, wireless router and power management, etc. The analog-to-digital conversion part uses a 24-digit high-precision converter, which has a programmable amplifier at the front end of its artificial circuit, with the function of matching outputs with different amplifier from the vibration table. The acquisition control part uses a 32 bit ARM processor, with low-power dissipation, minute extension and high performance. The application software platform is written in Linux to make the system convenient for multitasking work. Large volume local digital storage is achieved by a 32G SD card, which is used for saving real time acquired data. Data transmission is achieved by network interface and wireless router, which can simplify the application software by the supported TCP/IP protocol. Besides

  17. A Decentralized Wireless Solution to Monitor and Diagnose PV Solar Module Performance Based on Symmetrized-Shifted Gompertz Functions

    OpenAIRE

    Molina-García, Angel; Campelo, José; Blanc, Sara; Serrano, Juan; García-Sánchez, Tania; Bueso, María

    2015-01-01

    This paper proposes and assesses an integrated solution to monitor and diagnose photovoltaic (PV) solar modules based on a decentralized wireless sensor acquisition system. Both DC electrical variables and environmental data are collected at PV module level using low-cost and high-energy efficiency node sensors. Data is real-time processed locally and compared with expected PV module performances obtained by a PV module model based on symmetrized-shifted Gompertz functions (as previously deve...

  18. Intelligent, net or wireless enabled fluorosensors for high throughput monitoring of assorted crops

    International Nuclear Information System (INIS)

    Barócsi, Attila

    2013-01-01

    Phenotypic characterization of assorted crops of different genotypes requires large data sets of diverse types for statistical reliability. Temporal monitoring of plant fluorescence is able to capture the dynamics of the photosynthesis process that is summarized in a number of parameters for which the genotypic heritability can be calculated. In this paper, an intelligent sensor system is presented that is capable of high-throughput production of baseline-corrected temporal fluorescence curves with many feature points. These are obtained by integrating several (direct and modulated) measurement methods applied at different wavelengths. Simultaneously, temporal change of the sample's emission and the ambient reference temperatures are recorded. Multiple sensors can be deployed easily in large span greenhouse environments with centralized data collection over wired or wireless infrastructure. The unique features of the sensors are a compact, embedded signal guiding fibre optic system, instrument-standard variable tubular detector and source modules, net or wireless enabling for remote control and fast, quasi real-time data collection. Along with the instrumentation, some representative phenotyping data are also presented that were taken on a subset of pepper recombinant inbred line population. It is also demonstrated that transient fluorescence feature points yield high heritability, offering a high confidence level for distinguishing the pepper genotypes. (paper)

  19. Automatic Supervision And Fault Detection In PV System By Wireless Sensors With Interfacing By Labview Program

    Directory of Open Access Journals (Sweden)

    Yousra M Abbas

    2015-08-01

    Full Text Available In this work a wireless monitoring system are designed for automatic detection localization fault in photovoltaic system. In order to avoid the use of modeling and simulation of the PV system we detected the fault by monitoring the output of each individual photovoltaic panel connected in the system by Arduino and transmit this data wirelessly to laptop then interface it by LabVIEW program which made comparison between this data and the measured data taking from reference module at the same condition. The proposed method is very simple but effective detecting and diagnosing the main faults of a PV system and was experimentally validated and has demonstrated its effectiveness in the detection and diagnosing of main faults present in the DC side of PV system.

  20. Mobile Wireless Sensor Networks for Advanced Soil Sensing and Ecosystem Monitoring

    Science.gov (United States)

    Mollenhauer, Hannes; Schima, Robert; Remmler, Paul; Mollenhauer, Olaf; Hutschenreuther, Tino; Toepfer, Hannes; Dietrich, Peter; Bumberger, Jan

    2015-04-01

    For an adequate characterization of ecosystems it is necessary to detect individual processes with suitable monitoring strategies and methods. Due to the natural complexity of all environmental compartments, single point or temporally and spatially fixed measurements are mostly insufficient for an adequate representation. The application of mobile wireless sensor networks for soil and atmosphere sensing offers significant benefits, due to the simple adjustment of the sensor distribution, the sensor types and the sample rate (e.g. by using optimization approaches or event triggering modes) to the local test conditions. This can be essential for the monitoring of heterogeneous and dynamic environmental systems and processes. One significant advantage in the application of mobile ad-hoc wireless sensor networks is their self-organizing behavior. Thus, the network autonomously initializes and optimizes itself. Due to the localization via satellite a major reduction in installation and operation costs and time is generated. In addition, single point measurements with a sensor are significantly improved by measuring at several optimized points continuously. Since performing analog and digital signal processing and computation in the sensor nodes close to the sensors a significant reduction of the data to be transmitted can be achieved which leads to a better energy management of nodes. Furthermore, the miniaturization of the nodes and energy harvesting are current topics under investigation. First results of field measurements are given to present the potentials and limitations of this application in environmental science. In particular, collected in-situ data with numerous specific soil and atmosphere parameters per sensor node (more than 25) recorded over several days illustrates the high performance of this system for advanced soil sensing and soil-atmosphere interaction monitoring. Moreover, investigations of biotic and abiotic process interactions and optimization

  1. On a digital wireless impact-monitoring network for large-scale composite structures

    International Nuclear Information System (INIS)

    Yuan, Shenfang; Mei, Hanfei; Qiu, Lei; Ren, Yuanqiang

    2014-01-01

    Impact, which may occur during manufacture, service or maintenance, is one of the major concerns to be monitored throughout the lifetime of aircraft composite structures. Aiming at monitoring impacts online while minimizing the weight added to the aircraft to meet the strict limitations of aerospace engineering, this paper puts forward a new digital wireless network based on miniaturized wireless digital impact-monitoring nodes developed for large-scale composite structures. In addition to investigations on the design methods of the network architecture, time synchronization and implementation method, a conflict resolution method based on the feature parameters of digital sequences is first presented to address impact localization conflicts when several nodes are arranged close together. To verify the feasibility and stability of the wireless network, experiments are performed on a complex aircraft composite wing box and an unmanned aerial vehicle (UAV) composite wing. Experimental results show the successful design of the presented network. (paper)

  2. Wireless system for explosion detection in underground structures

    Science.gov (United States)

    Chikhradze, M.; Bochorishvili, N.; Akhvlediani, I.; Kukhalashvili, D.; Kalichava, I.; Mataradze, E.

    2009-06-01

    Considering the growing threat of terrorist or accidental explosions in underground stations, underground highway and railway sections improvement of system for protecting people from explosions appears urgent. Current automatic protective devices with blast identification module and blast damping absorbers of various designs as their basic elements cannot be considered effective. Analysis revealed that low reliability of blast detection and delayed generation of start signal for the activation of an absorber are the major disadvantages of protective devices. Besides the transmission of trigger signal to an energy absorber through cable communication reduces the reliability of the operation of protective device due to a possible damage of electric wiring under blast or mechanical attack. This paper presents the outcomes of the studies conducted to select accurate criteria for blast identification and to design wireless system of activation of defensive device. The results of testing of blast detection methods (seismic, EMP, optical, on overpressure) showed that the proposed method, which implies constant monitoring of overpressure in terms of its reliability and response speed, best meets the requirements. Proposed wireless system for explosions identification and activation of protective device consists of transmitter and receiver modules. Transmitter module contains sensor and microprocessor equipped with blast identification software. Receiver module produces activation signal for operation of absorber. Tests were performed in the underground experimental base of Mining Institute. The time between the moment of receiving signal by the sensor and activation of absorber - 640 microsecond; distance between transmitter and receiver in direct tunnel - at least 150m; in tunnel with 900 bending - 50m. This research is sponsored by NATO's Public Diplomacy Division in the framework of "Science for Peace".

  3. Operating Systems for Wireless Sensor Networks: A Survey

    Science.gov (United States)

    Farooq, Muhammad Omer; Kunz, Thomas

    2011-01-01

    This paper presents a survey on the current state-of-the-art in Wireless Sensor Network (WSN) Operating Systems (OSs). In recent years, WSNs have received tremendous attention in the research community, with applications in battlefields, industrial process monitoring, home automation, and environmental monitoring, to name but a few. A WSN is a highly dynamic network because nodes die due to severe environmental conditions and battery power depletion. Furthermore, a WSN is composed of miniaturized motes equipped with scarce resources e.g., limited memory and computational abilities. WSNs invariably operate in an unattended mode and in many scenarios it is impossible to replace sensor motes after deployment, therefore a fundamental objective is to optimize the sensor motes’ life time. These characteristics of WSNs impose additional challenges on OS design for WSN, and consequently, OS design for WSN deviates from traditional OS design. The purpose of this survey is to highlight major concerns pertaining to OS design in WSNs and to point out strengths and weaknesses of contemporary OSs for WSNs, keeping in mind the requirements of emerging WSN applications. The state-of-the-art in operating systems for WSNs has been examined in terms of the OS Architecture, Programming Model, Scheduling, Memory Management and Protection, Communication Protocols, Resource Sharing, Support for Real-Time Applications, and additional features. These features are surveyed for both real-time and non-real-time WSN operating systems. PMID:22163934

  4. Operating systems for wireless sensor networks: a survey.

    Science.gov (United States)

    Farooq, Muhammad Omer; Kunz, Thomas

    2011-01-01

    This paper presents a survey on the current state-of-the-art in Wireless Sensor Network (WSN) Operating Systems (OSs). In recent years, WSNs have received tremendous attention in the research community, with applications in battlefields, industrial process monitoring, home automation, and environmental monitoring, to name but a few. A WSN is a highly dynamic network because nodes die due to severe environmental conditions and battery power depletion. Furthermore, a WSN is composed of miniaturized motes equipped with scarce resources e.g., limited memory and computational abilities. WSNs invariably operate in an unattended mode and in many scenarios it is impossible to replace sensor motes after deployment, therefore a fundamental objective is to optimize the sensor motes' life time. These characteristics of WSNs impose additional challenges on OS design for WSN, and consequently, OS design for WSN deviates from traditional OS design. The purpose of this survey is to highlight major concerns pertaining to OS design in WSNs and to point out strengths and weaknesses of contemporary OSs for WSNs, keeping in mind the requirements of emerging WSN applications. The state-of-the-art in operating systems for WSNs has been examined in terms of the OS Architecture, Programming Model, Scheduling, Memory Management and Protection, Communication Protocols, Resource Sharing, Support for Real-Time Applications, and additional features. These features are surveyed for both real-time and non-real-time WSN operating systems.

  5. Operating Systems for Wireless Sensor Networks: A Survey

    Directory of Open Access Journals (Sweden)

    Muhammad Omer Farooq

    2011-05-01

    Full Text Available This paper presents a survey on the current state-of-the-art in Wireless Sensor Network (WSN Operating Systems (OSs. In recent years, WSNs have received tremendous attention in the research community, with applications in battlefields, industrial process monitoring, home automation, and environmental monitoring, to name but a few. A WSN is a highly dynamic network because nodes die due to severe environmental conditions and battery power depletion. Furthermore, a WSN is composed of miniaturized motes equipped with scarce resources e.g., limited memory and computational abilities. WSNs invariably operate in an unattended mode and in many scenarios it is impossible to replace sensor motes after deployment, therefore a fundamental objective is to optimize the sensor motes’ life time. These characteristics of WSNs impose additional challenges on OS design for WSN, and consequently, OS design for WSN deviates from traditional OS design. The purpose of this survey is to highlight major concerns pertaining to OS design in WSNs and to point out strengths and weaknesses of contemporary OSs for WSNs, keeping in mind the requirements of emerging WSN applications. The state-of-the-art in operating systems for WSNs has been examined in terms of the OS Architecture, Programming Model, Scheduling, Memory Management and Protection, Communication Protocols, Resource Sharing, Support for Real-Time Applications, and additional features. These features are surveyed for both real-time and non-real-time WSN operating systems.

  6. Passive wireless surface acoustic wave sensors for monitoring sequestration sites CO2 emission

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yizhong [Univ. of Pittsburgh, PA (United States); Chyu, Minking [Univ. of Pittsburgh, PA (United States); Wang, Qing-Ming [Univ. of Pittsburgh, PA (United States)

    2013-02-14

    University of Pittsburgh’s Transducer lab has teamed with the U.S. Department of Energy’s National Energy Technology Laboratory (DOE NETL) to conduct a comprehensive study to develop/evaluate low-cost, efficient CO2 measuring technologies for geological sequestration sites leakage monitoring. A passive wireless CO2 sensing system based on surface acoustic wave technology and carbon nanotube nanocomposite was developed. Surface acoustic wave device was studied to determine the optimum parameters. Delay line structure was adopted as basic sensor structure. CNT polymer nanocomposite was fabricated and tested under different temperature and strain condition for natural environment impact evaluation. Nanocomposite resistance increased for 5 times under pure strain, while the temperature dependence of resistance for CNT solely was -1375ppm/°C. The overall effect of temperature on nanocomposite resistance was -1000ppm/°C. The gas response of the nanocomposite was about 10% resistance increase under pure CO2 . The sensor frequency change was around 300ppm for pure CO2 . With paralyne packaging, the sensor frequency change from relative humidity of 0% to 100% at room temperature decreased from over 1000ppm to less than 100ppm. The lowest detection limit of the sensor is 1% gas concentration, with 36ppm frequency change. Wireless module was tested and showed over one foot transmission distance at preferred parallel orientation.

  7. Compact Embedded Wireless Sensor-Based Monitoring of Concrete Curing

    Science.gov (United States)

    Cabezas, Joaquín; Sánchez-Rodríguez, Trinidad; González Carvajal, Ramón

    2018-01-01

    This work presents the design, construction and testing of a new embedded sensor system for monitoring concrete curing. A specific mote has been implemented to withstand the aggressive environment without affecting the measured variables. The system also includes a real-time monitoring application operating from a remote computer placed in a central location. The testing was done in two phases: the first in the laboratory, to validate the functional requirements of the developed devices; and the second on civil works to evaluate the functional features of the devices, such as range, robustness and flexibility. The devices were successfully implemented resulting in a low cost, highly reliable, compact and non-destructive solution. PMID:29543765

  8. An intelligent wireless sensor network applied research on dynamic physiological data monitoring of athletes

    Science.gov (United States)

    Xie, Ying; Wu, Fei-qing; Li, Lin-gong

    2008-12-01

    A wireless sensor network (WSN) monitoring system was designed, because of the big labour, time-consumption, and non-real-time monitoring of the true physiological data of athlete for wire communication, which were very important for their coach. The coach, who obtained the first material, can know the physiological sports status of althletes according to these data, can intervene on them and formulate a scientific training plan. The system has the characteristic of a random layout, arbitrary additions and combined network nodes. The performance of the system for 24 athletes who were trained has been tested in the system improved LEACH-c protocol and a threshold sensitive energy efficient protocol has been applied. The experimental results showed that, while the interval time of the contact was more than 15 seconds, the network packet loss rate was less than 3 percent. The operation of the network can be considered to be relatively stable. During the test, the MAC network capacity obtained by the actual tests in the implicit terminal mode was three packets per second. Considering the costs of a node sending routing maintenance packet, a network capacity of 2 was reasonable. Based on the performance of the system for testing, the results showed that the system was stable and reliable

  9. A Survey of Wireless Communications for the Electric Power System

    Energy Technology Data Exchange (ETDEWEB)

    Akyol, Bora A.; Kirkham, Harold; Clements, Samuel L.; Hadley, Mark D.

    2010-01-27

    A key mission of the U.S. Department of Energy (DOE) Office of Electricity Delivery and Energy Reliability (OE) is to enhance the security and reliability of the nation’s energy infrastructure. Improving the security of control systems, which enable the automated control of our energy production and distribution, is critical for protecting the energy infrastructure and the integral function that it serves in our lives. The DOE-OE Control Systems Security Program provides research and development to help the energy industry actively pursue advanced security solutions for control systems. The focus of this report is analyzing how, where, and what type of wireless communications are suitable for deployment in the electric power system and to inform implementers of their options in wireless technologies. The discussions in this report are applicable to enhancing both the communications infrastructure of the current electric power system and new smart system deployments. The work described in this report includes a survey of the following wireless technologies: • IEEE 802.16 d and e (WiMAX) • IEEE 802.11 (Wi-Fi) family of a, b, g, n, and s • Wireless sensor protocols that use parts of the IEEE 802.15.4 specification: WirelessHART, International Society of Automation (ISA) 100.11a, and Zigbee • The 2, 3, and 4 generation (G )cellular technologies of GPRS/EDGE/1xRTT, HSPA/EVDO, and Long-Term Evolution (LTE)/HSPA+UMTS.

  10. Energy Efficient Monitoring for Intrusion Detection in Battery-Powered Wireless Mesh Networks

    KAUST Repository

    Hassanzadeh, Amin

    2011-07-18

    Wireless Mesh Networks (WMN) are easy-to-deploy, low cost solutions for providing networking and internet services in environments with no network infrastructure, e.g., disaster areas and battlefields. Since electric power is not readily available in such environments battery-powered mesh routers, operating in an energy efficient manner, are required. To the best of our knowledge, the impact of energy efficient solutions, e.g., involving duty-cycling, on WMN intrusion detection systems, which require continuous monitoring, remains an open research problem. In this paper we propose that carefully chosen monitoring mesh nodes ensure continuous and complete detection coverage, while allowing non-monitoring mesh nodes to save energy through duty-cycling. We formulate the monitoring node selection problem as an optimization problem and propose distributed and centralized solutions for it, with different tradeoffs. Through extensive simulations and a proof-of-concept hardware/software implementation we demonstrate that our solutions extend the WMN lifetime by 8%, while ensuring, at the minimum, a 97% intrusion detection rate.

  11. A wireless implantable switched-capacitor based optogenetic stimulating system.

    Science.gov (United States)

    Lee, Hyung-Min; Kwon, Ki-Yong; Li, Wen; Ghovanloo, Maysam

    2014-01-01

    This paper presents a power-efficient implantable optogenetic interface using a wireless switched-capacitor based stimulating (SCS) system. The SCS efficiently charges storage capacitors directly from an inductive link and periodically discharges them into an array of micro-LEDs, providing high instantaneous power without affecting wireless link and system supply voltage. A custom-designed computer interface in LabVIEW environment wirelessly controls stimulation parameters through the inductive link, and an optrode array enables simultaneous neural recording along with optical stimulation. The 4-channel SCS system prototype has been implemented in a 0.35-μm CMOS process and combined with the optrode array. In vivo experiments involving light-induced local field potentials verified the efficacy of the SCS system. An implantable version of the SCS system with flexible hermetic sealing is under development for chronic experiments.

  12. A Wireless Implantable Switched-Capacitor Based Optogenetic Stimulating System

    Science.gov (United States)

    Lee, Hyung-Min; Kwon, Ki-Yong; Li, Wen

    2015-01-01

    This paper presents a power-efficient implantable optogenetic interface using a wireless switched-capacitor based stimulating (SCS) system. The SCS efficiently charges storage capacitors directly from an inductive link and periodically discharges them into an array of micro-LEDs, providing high instantaneous power without affecting wireless link and system supply voltage. A custom-designed computer interface in LabVIEW environment wirelessly controls stimulation parameters through the inductive link, and an optrode array enables simultaneous neural recording along with optical stimulation. The 4-channel SCS system prototype has been implemented in a 0.35-μm CMOS process and combined with the optrode array. In vivo experiments involving light-induced local field potentials verified the efficacy of the SCS system. An implantable version of the SCS system with flexible hermetic sealing is under development for chronic experiments. PMID:25570099

  13. Development and Application of Wireless Power Transmission Systems for Wireless ECG Sensors

    Directory of Open Access Journals (Sweden)

    Jin-Chul Heo

    2018-01-01

    Full Text Available We investigated the variations in the magnetic field distribution and power transmission efficiency, resulting from changes in the relative positions of the transmitting and receiving coils, for electromagnetic induction-type wireless power transmission using an elliptical receive coil. Results of simulations using a high-frequency structure simulator were compared to actual measurement results. The simulations showed that the transmission efficiency could be maintained relatively stable even if the alignment between the transmitting and receiving coils was changed to some extent. When the centre of the receiving coil was perfectly aligned with the centre of the transmitting coil, the transmission efficiency was in the maximum; however, the degree of decrease in the transmission efficiency was small even if the centre of the receiving coil moved by ±10 mm from the centre of the transmitting coil. Therefore, it is expected that the performance of the wireless power transmission system will not be degraded significantly even if perfect alignment is not maintained. Animal experiments confirmed good ECG signals for the simulation conditions. The results suggested a standardized application method of wireless transmission in the utilization of wireless power for implantable sensors.

  14. Wireless coordinated multicell systems architectures and precoding designs

    CERN Document Server

    Nguyen, Duy H N

    2014-01-01

    This SpringerBrief discusses the current research on coordinated multipoint transmission/reception (CoMP) in wireless multi-cell systems. This book analyzes the structure of the CoMP precoders and the message exchange mechanism in the CoMP system in order to reveal the advantage of CoMP. Topics include interference management in wireless cellular networks, joint signal processing, interference coordination, uplink and downlink precoding and system models. After an exploration of the motivations and concepts of CoMP, the authors present the architectures of a CoMP system. Practical implementati

  15. A Reliable Wireless Control System for Tomato Hydroponics

    Directory of Open Access Journals (Sweden)

    Hirofumi Ibayashi

    2016-05-01

    Full Text Available Agricultural systems using advanced information and communication (ICT technology can produce high-quality crops in a stable environment while decreasing the need for manual labor. The system collects a wide variety of environmental data and provides the precise cultivation control needed to produce high value-added crops; however, there are the problems of packet transmission errors in wireless sensor networks or system failure due to having the equipment in a hot and humid environment. In this paper, we propose a reliable wireless control system for hydroponic tomato cultivation using the 400 MHz wireless band and the IEEE 802.15.6 standard. The 400 MHz band, which is lower than the 2.4 GHz band, has good obstacle diffraction, and zero-data-loss communication is realized using the guaranteed time-slot method supported by the IEEE 802.15.6 standard. In addition, this system has fault tolerance and a self-healing function to recover from faults such as packet transmission failures due to deterioration of the wireless communication quality. In our basic experiments, the 400 MHz band wireless communication was not affected by the plants’ growth, and the packet error rate was less than that of the 2.4 GHz band. In summary, we achieved a real-time hydroponic liquid supply control with no data loss by applying a 400 MHz band WSN to hydroponic tomato cultivation.

  16. A Reliable Wireless Control System for Tomato Hydroponics.

    Science.gov (United States)

    Ibayashi, Hirofumi; Kaneda, Yukimasa; Imahara, Jungo; Oishi, Naoki; Kuroda, Masahiro; Mineno, Hiroshi

    2016-05-05

    Agricultural systems using advanced information and communication (ICT) technology can produce high-quality crops in a stable environment while decreasing the need for manual labor. The system collects a wide variety of environmental data and provides the precise cultivation control needed to produce high value-added crops; however, there are the problems of packet transmission errors in wireless sensor networks or system failure due to having the equipment in a hot and humid environment. In this paper, we propose a reliable wireless control system for hydroponic tomato cultivation using the 400 MHz wireless band and the IEEE 802.15.6 standard. The 400 MHz band, which is lower than the 2.4 GHz band, has good obstacle diffraction, and zero-data-loss communication is realized using the guaranteed time-slot method supported by the IEEE 802.15.6 standard. In addition, this system has fault tolerance and a self-healing function to recover from faults such as packet transmission failures due to deterioration of the wireless communication quality. In our basic experiments, the 400 MHz band wireless communication was not affected by the plants' growth, and the packet error rate was less than that of the 2.4 GHz band. In summary, we achieved a real-time hydroponic liquid supply control with no data loss by applying a 400 MHz band WSN to hydroponic tomato cultivation.

  17. A Reliable Wireless Control System for Tomato Hydroponics

    Science.gov (United States)

    Ibayashi, Hirofumi; Kaneda, Yukimasa; Imahara, Jungo; Oishi, Naoki; Kuroda, Masahiro; Mineno, Hiroshi

    2016-01-01

    Agricultural systems using advanced information and communication (ICT) technology can produce high-quality crops in a stable environment while decreasing the need for manual labor. The system collects a wide variety of environmental data and provides the precise cultivation control needed to produce high value-added crops; however, there are the problems of packet transmission errors in wireless sensor networks or system failure due to having the equipment in a hot and humid environment. In this paper, we propose a reliable wireless control system for hydroponic tomato cultivation using the 400 MHz wireless band and the IEEE 802.15.6 standard. The 400 MHz band, which is lower than the 2.4 GHz band, has good obstacle diffraction, and zero-data-loss communication is realized using the guaranteed time-slot method supported by the IEEE 802.15.6 standard. In addition, this system has fault tolerance and a self-healing function to recover from faults such as packet transmission failures due to deterioration of the wireless communication quality. In our basic experiments, the 400 MHz band wireless communication was not affected by the plants’ growth, and the packet error rate was less than that of the 2.4 GHz band. In summary, we achieved a real-time hydroponic liquid supply control with no data loss by applying a 400 MHz band WSN to hydroponic tomato cultivation. PMID:27164105

  18. 3D-Printed Disposable Wireless Sensors with Integrated Microelectronics for Large Area Environmental Monitoring

    KAUST Repository

    Farooqui, Muhammad Fahad

    2017-05-19

    Large area environmental monitoring can play a crucial role in dealing with crisis situations. However, it is challenging as implementing a fixed sensor network infrastructure over large remote area is economically unfeasible. This work proposes disposable, compact, dispersible 3D-printed wireless sensor nodes with integrated microelectronics which can be dispersed in the environment and work in conjunction with few fixed nodes for large area monitoring applications. As a proof of concept, the wireless sensing of temperature, humidity, and H2S levels are shown which are important for two critical environmental conditions namely forest fires and industrial leaks. These inkjet-printed sensors and an antenna are realized on the walls of a 3D-printed cubic package which encloses the microelectronics developed on a 3D-printed circuit board. Hence, 3D printing and inkjet printing are uniquely combined in order to realize a low-cost, fully integrated wireless sensor node.

  19. Wireless sensor technology for in-situ plasma process monitoring

    Science.gov (United States)

    Gahan, David

    2015-09-01

    There is an increasing demand for plasma measurement and control solutions to cope with the growing complexity of integrated circuit manufacture in the semiconductor industry. Standard plasma diagnostic instruments used in research, such as the Langmuir probe, are not suitable for use in the production environment for myriad reasons - contamination of the process being one of the main concerns. Silicon wafer based wireless sensors, which measure temperature during the process, have gained the most traction with tool manufacturers and chip makers - albeit during process development or the PM cycle rather than live production. In this presentation we will discuss two novel wireless technologies that have the potential for use in process tools. The first is an ion detector embedded in a silicon wafer. The sensor measures the average ion flux and the maximum ion energy during the process. This information is stored and is downloaded later for analysis. The second technology consists of a wireless sensor that sits inside the process and communicates data in real time to a detector installed on the rf power line. This platform is similar to RFID technology and can be combined with various sensor types to transmit data to the user during the process.

  20. Research on Linear Wireless Sensor Networks Used for Online Monitoring of Rolling Bearing in Freight Train

    International Nuclear Information System (INIS)

    Wang Nan; Meng Qingfeng; Zheng Bin; Li Tong; Ma Qinghai

    2011-01-01

    This paper presents a Wireless Sensor Networks (WSNs) technique for the purpose of on-line monitoring of rolling bearing in freight train. A new technical scheme including the arrangements of sensors, the design of sensor nodes and base station, routing protocols, signal acquirement, processing and transmission is described, and an on-line monitoring system is established. Considering the approximately linear arrangements of cars and the running state of freight train, a linear topology structure of WSNs is adopted and five linear routing protocols are discussed in detail as to obtain the desired minimum energy consumption of WSNs. By analysing the simulation results, an optimal multi-hop routing protocol named sub-section routing protocol according to equal distance is adopted, in which all sensor nodes are divided into different groups according to the equal transmission distance, the optimal transmission distance and number of hops of routing protocol are also studied. We know that the communication consumes significant power in WSNs, so, in order to save the limit power supply of WSNs, the data compression and coding scheme based on lifting integer wavelet and embedded zerotree wavelet (EZW) algorithms is studied to reduce the amounts of data transmitted. The experimental results of rolling bearing have been given at last to verify the effectiveness of data compression algorithm. The on-line monitoring system of rolling bearing in freight train will be applied to actual application in the near future.

  1. Secure Authentication for Remote Patient Monitoring with Wireless Medical Sensor Networks.

    Science.gov (United States)

    Hayajneh, Thaier; Mohd, Bassam J; Imran, Muhammad; Almashaqbeh, Ghada; Vasilakos, Athanasios V

    2016-03-24

    There is broad consensus that remote health monitoring will benefit all stakeholders in the healthcare system and that it has the potential to save billions of dollars. Among the major concerns that are preventing the patients from widely adopting this technology are data privacy and security. Wireless Medical Sensor Networks (MSNs) are the building blocks for remote health monitoring systems. This paper helps to identify the most challenging security issues in the existing authentication protocols for remote patient monitoring and presents a lightweight public-key-based authentication protocol for MSNs. In MSNs, the nodes are classified into sensors that report measurements about the human body and actuators that receive commands from the medical staff and perform actions. Authenticating these commands is a critical security issue, as any alteration may lead to serious consequences. The proposed protocol is based on the Rabin authentication algorithm, which is modified in this paper to improve its signature signing process, making it suitable for delay-sensitive MSN applications. To prove the efficiency of the Rabin algorithm, we implemented the algorithm with different hardware settings using Tmote Sky motes and also programmed the algorithm on an FPGA to evaluate its design and performance. Furthermore, the proposed protocol is implemented and tested using the MIRACL (Multiprecision Integer and Rational Arithmetic C/C++) library. The results show that secure, direct, instant and authenticated commands can be delivered from the medical staff to the MSN nodes.

  2. Wireless transceiver circuits system perspectives and design aspects

    CERN Document Server

    Rhee, Woogeun

    2015-01-01

    This cutting-edge work contains comprehensive coverage of integrated circuit (IC) design for modern transceiver circuits and wireless systems. Ranging in scope from system perspectives to practical circuit design for emerging wireless applications, the book includes detailed discussions of transceiver architectures and system parameters, mm-wave circuits, ultra-low-power radios for biomedical and sensor applications, and the latest circuit techniques. Written by renowned international experts in IC industry and academia, the text is an ideal reference for engineers and researchers in the area

  3. Portable emergency telemedicine system over wireless broadband and 3G networks.

    Science.gov (United States)

    Hong, SungHye; Kim, SangYong; Kim, JungChae; Lim, DongKyu; Jung, SeokMyung; Kim, DongKeun; Yoo, Sun K

    2009-01-01

    The telemedicine system aims at monitoring patients remotely without limit in time and space. However the existing telemedicine systems exchange medical information simply in a specified location. Due to increasing speed in processing data and expanding bandwidth of wireless networks, it is possible to perform telemedicine services on personal digital assistants (PDA). In this paper, a telemedicine system on PDA was developed using wideband mobile networks such as Wi-Fi, HSDPA, and WiBro for high speed bandwidths. This system enables to utilize and exchange variety and reliable patient information of video, biosignals, chatting messages, and triage data. By measuring bandwidths of individual data of the system over wireless networks, and evaluating the performance of this system using PDA, we demonstrated the feasibility of the designed portable emergency telemedicine system.

  4. Inductive Monitoring System (IMS)

    Data.gov (United States)

    National Aeronautics and Space Administration — IMS: Inductive Monitoring System The Inductive Monitoring System (IMS) is a tool that uses a data mining technique called clustering to extract models of normal...

  5. A Survey on Energy Efficient Wireless Sensor Networks for Bicycle Performance Monitoring Application

    Directory of Open Access Journals (Sweden)

    Sadik Kamel Gharghan

    2014-01-01

    Full Text Available Wireless sensor networks (WSNs have greatly advanced in the past few decades and are now widely used, especially for remote monitoring; the list of potential uses seems endless. Three types of wireless sensor technologies (Bluetooth, ZigBee, and ANT have been used to monitor the biomechanical and physiological activities of bicycles and cyclists, respectively. However, the wireless monitoring of these activities has faced some challenges. The aim of this paper is to highlight various methodologies for monitoring cycling to provide an effective and efficient way to overcome the various challenges and limitations of sports cycling using wireless sensor interfaces. Several design criteria were reviewed and compared with different solutions for the implementation of current WSN research, such as low power consumption, long distance communications, small size, and light weight. Conclusions were drawn after observing the example of an advanced and adaptive network technology (ANT network highlighting reduced power consumption and prolonged battery life. The power saving achieved in the slave node was 88–95% compared to the similar ANT protocol used in the medical rehabilitation.

  6. Monitoring and Modeling Temperature Variations Inside Silage Stack Using Novel Wireless Sensor Networks

    DEFF Research Database (Denmark)

    Green, Ole; Shahrak Nadimi, Esmaeil; Blanes-Vidal, Victoria

    2009-01-01

    Abstract: By monitoring silage temperature at different locations inside silage stacks, it is possible to detect any significant increases in temperature occurring during silage decomposition. The objectives of this study were: (1) to develop novel noninvasive wireless sensor nodes for measuring ...

  7. Monitoring and modeling temperature variations inside silage stacks using novel wireless sensor networks

    DEFF Research Database (Denmark)

    Green, O.; Nadimi, E.S.; Blanes-Vidal, V.

    2009-01-01

    By monitoring silage temperature at different locations inside silage stacks, it is possible to detect any significant increases in temperature occurring during silage decomposition. The objectives of this study were: (1) to develop novel noninvasive wireless sensor nodes for measuring the temper...

  8. Robust uncertainty evaluation for system identification on distributed wireless platforms

    Science.gov (United States)

    Crinière, Antoine; Döhler, Michael; Le Cam, Vincent; Mevel, Laurent

    2016-04-01

    Health monitoring of civil structures by system identification procedures from automatic control is now accepted as a valid approach. These methods provide frequencies and modeshapes from the structure over time. For a continuous monitoring the excitation of a structure is usually ambient, thus unknown and assumed to be noise. Hence, all estimates from the vibration measurements are realizations of random variables with inherent uncertainty due to (unknown) process and measurement noise and finite data length. The underlying algorithms are usually running under Matlab under the assumption of large memory pool and considerable computational power. Even under these premises, computational and memory usage are heavy and not realistic for being embedded in on-site sensor platforms such as the PEGASE platform. Moreover, the current push for distributed wireless systems calls for algorithmic adaptation for lowering data exchanges and maximizing local processing. Finally, the recent breakthrough in system identification allows us to process both frequency information and its related uncertainty together from one and only one data sequence, at the expense of computational and memory explosion that require even more careful attention than before. The current approach will focus on presenting a system identification procedure called multi-setup subspace identification that allows to process both frequencies and their related variances from a set of interconnected wireless systems with all computation running locally within the limited memory pool of each system before being merged on a host supervisor. Careful attention will be given to data exchanges and I/O satisfying OGC standards, as well as minimizing memory footprints and maximizing computational efficiency. Those systems are built in a way of autonomous operations on field and could be later included in a wide distributed architecture such as the Cloud2SM project. The usefulness of these strategies is illustrated on

  9. Smart Multi-Level Tool for Remote Patient Monitoring Based on a Wireless Sensor Network and Mobile Augmented Reality

    Directory of Open Access Journals (Sweden)

    Fernando Cornelio Jiménez González

    2014-09-01

    Full Text Available Technological innovations in the field of disease prevention and maintenance of patient health have enabled the evolution of fields such as monitoring systems. One of the main advances is the development of real-time monitors that use intelligent and wireless communication technology. In this paper, a system is presented for the remote monitoring of the body temperature and heart rate of a patient by means of a wireless sensor network (WSN and mobile augmented reality (MAR. The combination of a WSN and MAR provides a novel alternative to remotely measure body temperature and heart rate in real time during patient care. The system is composed of (1 hardware such as Arduino microcontrollers (in the patient nodes, personal computers (for the nurse server, smartphones (for the mobile nurse monitor and the virtual patient file and sensors (to measure body temperature and heart rate, (2 a network layer using WiFly technology, and (3 software such as LabView, Android SDK, and DroidAR. The results obtained from tests show that the system can perform effectively within a range of 20 m and requires ten minutes to stabilize the temperature sensor to detect hyperthermia, hypothermia or normal body temperature conditions. Additionally, the heart rate sensor can detect conditions of tachycardia and bradycardia.

  10. Effects of wireless packet loss in industrial process control systems.

    Science.gov (United States)

    Liu, Yongkang; Candell, Richard; Moayeri, Nader

    2017-05-01

    Timely and reliable sensing and actuation control are essential in networked control. This depends on not only the precision/quality of the sensors and actuators used but also on how well the communications links between the field instruments and the controller have been designed. Wireless networking offers simple deployment, reconfigurability, scalability, and reduced operational expenditure, and is easier to upgrade than wired solutions. However, the adoption of wireless networking has been slow in industrial process control due to the stochastic and less than 100% reliable nature of wireless communications and lack of a model to evaluate the effects of such communications imperfections on the overall control performance. In this paper, we study how control performance is affected by wireless link quality, which in turn is adversely affected by severe propagation loss in harsh industrial environments, co-channel interference, and unintended interference from other devices. We select the Tennessee Eastman Challenge Model (TE) for our study. A decentralized process control system, first proposed by N. Ricker, is adopted that employs 41 sensors and 12 actuators to manage the production process in the TE plant. We consider the scenario where wireless links are used to periodically transmit essential sensor measurement data, such as pressure, temperature and chemical composition to the controller as well as control commands to manipulate the actuators according to predetermined setpoints. We consider two models for packet loss in the wireless links, namely, an independent and identically distributed (IID) packet loss model and the two-state Gilbert-Elliot (GE) channel model. While the former is a random loss model, the latter can model bursty losses. With each channel model, the performance of the simulated decentralized controller using wireless links is compared with the one using wired links providing instant and 100% reliable communications. The sensitivity of the

  11. Data storage system for wireless sensor networks

    OpenAIRE

    Sacramento, David

    2015-01-01

    Dissertação de mestrado, Engenharia Informática, Faculdade de Ciências e Tecnologia, Universidade do Algarve, 2015 Wireless sensor networks (WSNs) are starting to have a high impact on our societies and, for next generation WSNs to become more integrated with the Internet, researchers recently proposed to embed Internet Protocol (IP) v6 into such very constrained networks. Also, Constrained Application Protocol (CoAP) and Observe have been proposed for RESTful services to be pr...

  12. SITHON: A Wireless Network of in Situ Optical Cameras Applied to the Early Detection-Notification-Monitoring of Forest Fires

    Science.gov (United States)

    Tsiourlis, Georgios; Andreadakis, Stamatis; Konstantinidis, Pavlos

    2009-01-01

    The SITHON system, a fully wireless optical imaging system, integrating a network of in-situ optical cameras linking to a multi-layer GIS database operated by Control Operating Centres, has been developed in response to the need for early detection, notification and monitoring of forest fires. This article presents in detail the architecture and the components of SITHON, and demonstrates the first encouraging results of an experimental test with small controlled fires over Sithonia Peninsula in Northern Greece. The system has already been scheduled to be installed in some fire prone areas of Greece. PMID:22408536

  13. Wireless condition monitoring for the RA-6 research reactor

    International Nuclear Information System (INIS)

    Garcia Peyrano, O.; Calzeta, O.; Rico, N.; Damiani, H.; Coutsiers, E.

    1999-01-01

    The vibration laboratory at C.A.B. has a great experience with the analysis and diagnostic of symptoms of failures in the rotating equipment of the R-6 research reactor and in our longest NPP (CANDU 600 Mw), located in Embalse town, Cordoba City, Argentina. Objective: The standard condition monitoring instrumentation system were designed for large equipment operating under different environmental conditions and sensitivities. The signal processing is not flexible and the diagnostic is an expensive method for the small poll type research reactors. This papers describes the research and development which are related whit the new concept, cheaper and flexible condition monitoring instrumentation system. Implementing a vibration analysis measurements technique with a sensor inside (in the pool) of the nuclear reactor RA-6, and mainly based on fft signal processing, an extensive program for vibration source identification was done. Different nuclear power conditions were monitored as full power and in zero power, also. This zero power shows the best acoustical environmental, because the cooling pumps are stop, and the core is cooling by natural convection. Two sensors were mainly used as the detector's subsystem. One of these detectors was an accelerometer attached to the top of the fine control rod and the other one was a water resistant omnidirectional microphone which was located underwater at different distances from the nuclear core. All the signal measurement by this two sensors were recorded and then was processed. Both signal was acquired at the same time for correlation analysis purposes. The analysis was composed by a 'Spectral Dynamics SD380' connected to a P.C. with dedicated post processing software. On the other hand, some calibration and sensitivity comparison was done using an SKFCM40, dual channel data collector and analyzer. (author)

  14. Ubiquitous Healthcare Data Analysis and Monitoring Using Multiple Wireless Sensors for Elderly Person

    Directory of Open Access Journals (Sweden)

    Sachin Bhardwaj

    2008-04-01

    Full Text Available Increasing life expectancy accompanied with decreasing dependency ratio in developed countries calls for new solutions to support independent living of the elderly. Ubiquitous computing technologies can be used to provide better solutions for healthcare of elderly person at home or hospital. Also, data fusion from multiple sensors shows itself the capability to have better monitoring of person. In this paper work, the healthcare parameters as like ECG and accelerometer are used to give a better treatment to the elderly person at home or hospital. Accumulated vital signs data through long-term monitoring is a valuable resource to assess personal health status and predict potential risk factors through the fusion monitoring of multiple sensors. The hardware allows data to be transmitted wirelessly from on-body sensors to a base station attached to server PC using IEEE802.15.4. If any abnormality occurs at server then the alarm condition sends to the doctor’s personal digital assistant (PDA. The system provides an application for recording activities, events and potentially important medical symptoms.

  15. Unmanned Aerial Vehicle Based Wireless Sensor Network for Marine-Coastal Environment Monitoring.

    Science.gov (United States)

    Trasviña-Moreno, Carlos A; Blasco, Rubén; Marco, Álvaro; Casas, Roberto; Trasviña-Castro, Armando

    2017-02-24

    Marine environments are delicate ecosystems which directly influence local climates, flora, fauna, and human activities. Their monitorization plays a key role in their preservation, which is most commonly done through the use of environmental sensing buoy networks. These devices transmit data by means of satellite communications or close-range base stations, which present several limitations and elevated infrastructure costs. Unmanned Aerial Vehicles (UAV) are another alternative for remote environmental monitoring which provide new types of data and ease of use. These aircraft are mainly used in video capture related applications, in its various light spectrums, and do not provide the same data as sensing buoys, nor can they be used for such extended periods of time. The aim of this research is to provide a flexible, easy to deploy and cost-effective Wireless Sensor Network (WSN) for monitoring marine environments. This proposal uses a UAV as a mobile data collector, low-power long-range communications and sensing buoys as part of a single WSN. A complete description of the design, development, and implementation of the various parts of this system is presented, as well as its validation in a real-world scenario.

  16. Wireless Sensor Networks of Infrastructure Health Monitoring for High-Speed Railway

    Directory of Open Access Journals (Sweden)

    Haijian Li

    2016-01-01

    Full Text Available High-speed railways (HSRs have been widely deployed all over the world in recent years and China has entered an era with both high investments and rapid expansion of HSR transport infrastructure. One of the most challenging issues is how to keep the security and safety of millions of HSR infrastructures. Meanwhile, the emerging sensing and wireless sensor network (WSN technologies for infrastructure health monitoring (IHM are being substituted for traditional tethered monitoring systems. This paper presents a two-layer architecture of WSN which will be appropriate for infrastructure health monitoring of HSR. The upper layer is named as tree access network and the lower layer is called star detection network. By adapting to the special characteristics of IHM network, we design a short network address and an optimized communication frame structure, which can satisfy the actual requirements and special characteristics of the IHM network. In order to implement a better transmission performance, we propose a novel transmission power based method which adopts the knowledge update mechanism to detect the optimization result. In the end, the details of address assignment and network construction are discussed, and the effectiveness of the proposed method is validated by a practical instance.

  17. The design of a wireless portable device for personalized ultraviolet monitoring

    Science.gov (United States)

    Amini, Navid; Matthews, Jerrid E.; Vahdatpour, Alireza; Sarrafzadeh, Majid

    2009-08-01

    The skin care product market is growing due to the threat of ultraviolet (UV) radiation caused by the destruction of the ozone layer, increasing demand for tanning, and the tendency to wear less clothing. Accordingly, there is a potential demand for a personalized UV monitoring system, which can play a fundamental role in skin cancer prevention by providing measurements of UV radiation intensities and corresponding recommendations. Furthermore, the need for such device becomes more vital since it has turned out that in some places (e.g., on snowy mountains) the UV exposure gets doubled, while individuals are unaware of this fact. This paper highlights the development and initial validation of a wireless and portable embedded system for personalized UV monitoring which is based on a novel software architecture, a high-end UV sensor, and conventional PDA (or a cell phone). In terms of short-term applications, by calculating the UV index, it informs the users about their maximum recommended sun exposure time by taking their skin type and sun protection factor (SPF) of the applied sunscreen into consideration. As for long-term applications, given that the damage caused by UV light is accumulated over days, it is able to keep a record of the amount of UV received over a certain course of time, from a single day to a month. Low energy consumption and high accuracy in estimating the UV index are salient features of this system.

  18. Wireless Monitoring of Changes in Crew Relations during Long-Duration Mission Simulation.

    Directory of Open Access Journals (Sweden)

    Bernd Johannes

    Full Text Available Group structure and cohesion along with their changes over time play an important role in the success of missions where crew members spend prolonged periods of time under conditions of isolation and confinement. Therefore, an objective system for unobtrusive monitoring of crew cohesion and possible individual stress reactions is of high interest. For this purpose, an experimental wireless group structure (WLGS monitoring system integrated into a mobile psychophysiological system was developed. In the presented study the WLGS module was evaluated separately in six male subjects (27-38 years old participating in a 520-day simulated mission to Mars. Two days per week, each crew member wore a small sensor that registered the presence and distance of the sensors either worn by the other subjects or strategically placed throughout the isolation facility. The registration between two sensors was on average 91.0% in accordance. A correspondence of 95.7% with the survey video on day 475 confirmed external reliability. An integrated score of the "crew relation time index" was calculated and analyzed over time. Correlation analyses of a sociometric questionnaire (r = .35-.55, p< .05 and an ethological group approach (r = .45-.66, p < 05 provided initial evidence of the method's validity as a measure of cohesion when taking behavioral and activity patterns into account (e.g. only including activity phases in the afternoon. This confirms our assumption that the registered amount of time spent together during free time is associated with the intensity of personal relationships.

  19. Physical layer approaches for securing wireless communication systems

    CERN Document Server

    Wen, Hong

    2013-01-01

    This book surveys the outstanding work of physical-layer (PHY) security, including  the recent achievements of confidentiality and authentication for wireless communication systems by channel identification. A practical approach to building unconditional confidentiality for Wireless Communication security by feedback and error correcting code is introduced and a framework of PHY security based on space time block code (STBC) MIMO system is demonstrated.  Also discussed is a scheme which combines cryptographic techniques implemented in the higher layer with the physical layer security approach

  20. The design and implementation of embedded wireless projection system

    Science.gov (United States)

    Long, Zhaohua; Xiong, Huawei; Liu, Daming

    2017-05-01

    In order to solve the problems of wiring trouble and switching time-consuming of PC projection, based on the deeply studies of H.264 coding and embedded development and researches on wireless transmission technology, a set of embedded wireless projection system has been implemented. And this can be achieved through PC data acquisition, coding and transmission. After testing, the system has a small transmission delay, a clear image display, and a good application scenario, which can meet the demands of the daily meeting and teaching.