WorldWideScience

Sample records for wireless electronics manufacturing

  1. Wireless Biological Electronic Sensors.

    Science.gov (United States)

    Cui, Yue

    2017-10-09

    The development of wireless biological electronic sensors could open up significant advances for both fundamental studies and practical applications in a variety of areas, including medical diagnosis, environmental monitoring, and defense applications. One of the major challenges in the development of wireless bioelectronic sensors is the successful integration of biosensing units and wireless signal transducers. In recent years, there are a few types of wireless communication systems that have been integrated with biosensing systems to construct wireless bioelectronic sensors. To successfully construct wireless biological electronic sensors, there are several interesting questions: What types of biosensing transducers can be used in wireless bioelectronic sensors? What types of wireless systems can be integrated with biosensing transducers to construct wireless bioelectronic sensors? How are the electrical sensing signals generated and transmitted? This review will highlight the early attempts to address these questions in the development of wireless biological electronic sensors.

  2. Wireless device monitoring methods, wireless device monitoring systems, and articles of manufacture

    Science.gov (United States)

    McCown, Steven H [Rigby, ID; Derr, Kurt W [Idaho Falls, ID; Rohde, Kenneth W [Idaho Falls, ID

    2012-05-08

    Wireless device monitoring methods, wireless device monitoring systems, and articles of manufacture are described. According to one embodiment, a wireless device monitoring method includes accessing device configuration information of a wireless device present at a secure area, wherein the device configuration information comprises information regarding a configuration of the wireless device, accessing stored information corresponding to the wireless device, wherein the stored information comprises information regarding the configuration of the wireless device, comparing the device configuration information with the stored information, and indicating the wireless device as one of authorized and unauthorized for presence at the secure area using the comparing.

  3. Communications device identification methods, communications methods, wireless communications readers, wireless communications systems, and articles of manufacture

    Science.gov (United States)

    Steele, Kerry D [Kennewick, WA; Anderson, Gordon A [Benton City, WA; Gilbert, Ronald W [Morgan Hill, CA

    2011-02-01

    Communications device identification methods, communications methods, wireless communications readers, wireless communications systems, and articles of manufacture are described. In one aspect, a communications device identification method includes providing identification information regarding a group of wireless identification devices within a wireless communications range of a reader, using the provided identification information, selecting one of a plurality of different search procedures for identifying unidentified ones of the wireless identification devices within the wireless communications range, and identifying at least some of the unidentified ones of the wireless identification devices using the selected one of the search procedures.

  4. Foundations of wireless and electronics

    CERN Document Server

    Scroggie, M G

    1984-01-01

    Foundations of Wireless and Electronics, 10th Edition covers the cathode-ray and microwave tubes; modern pulse methods; f.m. detectors; basic processes of transmission; and reception, computers, and non-sinusoidal signal amplification. The book starts by giving a general overview of a complete electronic system, electricity and circuits, capacitance, and inductance. The text also discusses alternating currents (a.c.), including the frequency and phase of a.c.; the capacitance and inductance in a.c. circuits; and the capacitance and inductance in a series. Diodes, triode, transistor equivalent

  5. Wireless embedded control system for atomically precise manufacturing

    KAUST Repository

    Khan, Yasser; Randall, John N.

    2011-01-01

    This paper will explore the possibilities of implementing a wireless embedded control system for atomically precise manufacturing. The manufacturing process, similar to Scanning Tunneling Microscopy, takes place within an Ultra High Vacuum (UHV) chamber at a pressure of 10-10 torr. In order to create vibration isolation, and to keep internal noise to a minimum, a wireless link inside the UHV chamber becomes essential. We present a MATLAB simulation of the problem, and then demonstrate a hardware scheme between a Gumstix computer and a Linux based laptop for controlling nano-manipulators with three degrees of freedom. © 2011 IEEE.

  6. Wireless embedded control system for atomically precise manufacturing

    KAUST Repository

    Khan, Yasser

    2011-04-01

    This paper will explore the possibilities of implementing a wireless embedded control system for atomically precise manufacturing. The manufacturing process, similar to Scanning Tunneling Microscopy, takes place within an Ultra High Vacuum (UHV) chamber at a pressure of 10-10 torr. In order to create vibration isolation, and to keep internal noise to a minimum, a wireless link inside the UHV chamber becomes essential. We present a MATLAB simulation of the problem, and then demonstrate a hardware scheme between a Gumstix computer and a Linux based laptop for controlling nano-manipulators with three degrees of freedom. © 2011 IEEE.

  7. "Cut-and-paste" manufacture of multiparametric epidermal electronic systems

    Science.gov (United States)

    Lu, Nanshu; Yang, Shixuan; Wang, Pulin

    2016-05-01

    Epidermal electronics is a class of noninvasive and unobstructive skin-mounted, tattoo-like sensors and electronics capable of vital sign monitoring and establishing human-machine interface. The high cost of manpower, materials, vacuum equipment, and photolithographic facilities associated with its manufacture greatly hinders the widespread use of disposable epidermal electronics. Here we report a cost and time effective, completely dry, benchtop "cut-and-paste" method for the freeform and portable manufacture of multiparametric epidermal sensor systems (ESS) within minutes. This versatile method works for all types of thin metal and polymeric sheets and is compatible with any tattoo adhesives or medical tapes. The resulting ESS are multimaterial and multifunctional and have been demonstrated to noninvasively but accurately measure electrophysiological signals, skin temperature, skin hydration, as well as respiratory rate. In addition, planar stretchable coils exploiting double-stranded serpentine design have been successfully applied as wireless, passive epidermal strain sensors.

  8. Research, Designing And Manufacture Of Gamma Dosimeter Wireless Data Transfer

    International Nuclear Information System (INIS)

    Bui Trong Duy; Phan Quoc Minh; Dinh Thi Hien; Ngo Duc Tin; Le Trong Nghia

    2013-01-01

    The system equipment of wireless data transmission Gamma dosimeter consist of standard RF Gamma dosimeter wireless data transmission and wireless data transceiver connection with a computer via RS232 port. The system is designed based on the PIC processor, Geiger-Muller (GM) counter tube used to measure Gamma radiation and measured results show the equivalent dose rate in microsievert units of the SI system. The data has been displayed on the LCD screen of the meter and at the same time has been sent to the wireless receiving host computer located in the control room at distance of about 300 m via standard RF. The equipment used high-voltage 300-500 VDC. The GM counting tube used as radiation detectors to convert quantum Gamma radiation into electrical impulses, these impulses are counted continuously by microprocessor to compute the counter speed of average dose as well as equivalence dose. The processor automatically set measurement time depends on the different dose rates: In the natural foundation, time is approximately 36 seconds, when the dose rate increases, the time reduced to 1 second. The cumulative dose rate values are displayed on the LCD screen with the unit of measurement for dose rate is µSv/h and µSv for the cumulative dose, the measurement range is set automatically according to the scale of: from 10 to 100 µSv/h. All the electronic components function of low power consumption of about 10 mA plus the consumption of RF module about 20 mA when working in the sending state and 1 mA in standby state. Such devices can operate with type 9 V Alkaline battery placed inside while using portable mode, displaying the results on the LCD screen which does not release data on the host computer. In case meter is fixed to measure continuous for long days, the device will be linked to 9 VDC power, supplied from a rectifier 220 VAC mains to the 9 VDC source. (author)

  9. Subcontracting in electronics : from contract manufacturers to providers of electronic manufacturing services (EMS)

    OpenAIRE

    Liemt van, Gijsbert

    2007-01-01

    Discusses how the top contract manufacturers in the electronics industry try to become providers of electronic manufacturing services by deepening and broadening the rage of services that they offer and by diversifying into markets other than computing and telecommunications.

  10. Electronic manufacturing and packaging in Japan

    Science.gov (United States)

    Kelly, Michael J.; Boulton, William R. (Editor); Kukowski, John A.; Meieran, Eugene S.; Pecht, Michael; Peeples, John W.; Tummala, Rao R.

    1995-01-01

    This report summarizes the status of electronic manufacturing and packaging technology in Japan in comparison to that in the United States, and its impact on competition in electronic manufacturing in general. In addition to electronic manufacturing technologies, the report covers technology and manufacturing infrastructure, electronics manufacturing and assembly, quality assurance and reliability in the Japanese electronics industry, and successful product realization strategies. The panel found that Japan leads the United States in almost every electronics packaging technology. Japan clearly has achieved a strategic advantage in electronics production and process technologies. Panel members believe that Japanese competitors could be leading U.S. firms by as much as a decade in some electronics process technologies. Japan has established this marked competitive advantage in electronics as a consequence of developing low-cost, high-volume consumer products. Japan's infrastructure, and the remarkable cohesiveness of vision and purpose in government and industry, are key factors in the success of Japan's electronics industry. Although Japan will continue to dominate consumer electronics in the foreseeable future, opportunities exist for the United States and other industrial countries to capture an increasingly large part of the market. The JTEC panel has identified no insurmountable barriers that would prevent the United States from regaining a significant share of the consumer electronics market; in fact, there is ample evidence that the United States needs to aggressively pursue high-volume, low-cost electronic assembly, because it is a critical path leading to high-performance electronic systems.

  11. Convergence of Photonics and Electronics for Terahertz Wireless Communications

    DEFF Research Database (Denmark)

    Salazar, Adrian Ruiz; Rommel, Simon; Anufriyev, E.

    2016-01-01

    Terahertz wireless communications are expected to offer the required high capacity and low latency performance necessary for short-range wireless access and control applications. We present an overview of some the activities in this area in the newly started H2020 ITN project CELTA: Convergence o...... of Electronics and Photonics Technologies Enabling Terahertz Applications....

  12. Green electronics manufacturing creating environmental sensible products

    CERN Document Server

    Wang, John X

    2012-01-01

    Going ""green"" is becoming a major component of the mission for electronics manufacturers worldwide. While this goal seems simplistic, it poses daunting dilemmas. Yet, to compete effectively in the global economy, manufacturers must take the initiative to drive this crucial movement. Green Electronics Manufacturing: Creating Environmental Sensible Products provides you with a complete reference to design, develop, build, and install an electronic product with special consideration for the product's environmental impacts during its whole life cycle. The author discusses how to integrate the st

  13. Wound dressing with reusable electronics for wireless monitoring

    KAUST Repository

    Shamim, Atif

    2016-10-20

    A wound dressing device with reusable electronics for wireless monitoring and a method of making the same are provided. The device can be a smart device. In an embodiment, the device has a disposable portion including one or more sensors and a reusable portion including wireless electronics. The one or more sensors can be secured to a flexible substrate and can be printed by non-contact printing on the substrate. The disposable portion can be removably coupled to the one or more sensors. The device can include one or more sensors for wireless monitoring of a wound, a wound dressing, a body fluid exuded by the wound and/or wearer health.

  14. 78 FR 34669 - Certain Electronic Devices, Including Wireless Communication Devices, Portable Music and Data...

    Science.gov (United States)

    2013-06-10

    ..., Including Wireless Communication Devices, Portable Music and Data Processing Devices, and Tablet Computers... importing wireless communication devices, portable music and data processing devices, and tablet computers... certain electronic devices, including wireless communication devices, portable music and data processing...

  15. Developing a Framework for E-Manufacturing Based on Wireless Sensor Network

    Directory of Open Access Journals (Sweden)

    Xu Xi

    2013-06-01

    Full Text Available This paper analyzes the current situation of business environment and business intelligence systems integration at first. With emerging applications of internet and wireless communication technologies, e-manufacturing is focused on the use of internet, monitoring and communications technologies to make things happen collaboratively on a global basis. A wireless sensor network based data acquisition system gives enormous benefits such as ease and flexibility of deployment in addition to low maintenance and deployment costs. This paper reviews wireless sensor network and its application for e-manufacturing. To provide a dependable, non-intrusive, secure, real-time automated health monitoring, a distributed reconfigurable sensor network is introduced which consists of real and virtual sensor nodes over a communication wireless sensor network using Mica2 motes.

  16. Design of electronic pen pocket dosimeter with wireless battery charger

    International Nuclear Information System (INIS)

    Abdelwahab, S.A.; Abdelkhalek, K.L.

    2009-01-01

    this paper presents the design of pen-thin electronic pocket dosimeter with high accuracy to measure personal accumulated quantities of gamma rays and the strength of the radiation field and display them on the integrated alphanumerical liquid crystal display (LCD). to overcome the need of removing the micro controller from the PCB to reprogram it , we use in circuit serial programming (ICSP) method which enhances the flexibility of the pocket dosimeter design as it reduces costs of field upgrades, reduces time to market, allows easy calibration of our system during manufacturing and allows adding a unique identification code (ID) to each instrument. the design of this device is based on the PIC16F876 micro controller and powered from two AAA size, 250 m Ah rechargeable batteries. recharging of these batteries is done using wireless charger which is the new trend now in charging devices. the design of this charger is based on the principle of magnetic inductive power transfer by sending the power through an air gap between a transmitting circuit in the attached docking station and receiving circuit which is built in the instrument

  17. Additively Manufactured IN718 Components with Wirelessly Powered and Interrogated Embedded Sensing

    Energy Technology Data Exchange (ETDEWEB)

    Attridge, Paul [United Technologies Research Center, East Hartford, CT (United States); Bajekal, Sanjay [United Technologies Research Center, East Hartford, CT (United States); Klecka, Michael [United Technologies Research Center, East Hartford, CT (United States); Wu, Xin [United Technologies Research Center, East Hartford, CT (United States); Savulak, Steve [United Technologies Research Center, East Hartford, CT (United States); Viens, Dan [United Technologies Research Center, East Hartford, CT (United States); Carey, Michael [United Technologies Research Center, East Hartford, CT (United States); Miano, John [United Technologies Research Center, East Hartford, CT (United States); Rioux, William [United Technologies Research Center, East Hartford, CT (United States); Zacchio, Joseph [United Technologies Research Center, East Hartford, CT (United States); Dunst, Richard [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States); Straub, Doug [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States); Mantese, Joseph [United Technologies Research Center, East Hartford, CT (United States)

    2017-07-14

    A methodology is described for embedding commercial-off-the-shelf sensors together with wireless communication and power circuit elements using direct laser metal sintered additively manufactured components. Physics based models of the additive manufacturing processes and sensor/wireless level performance models guided the design and embedment processes. A combination of cold spray deposition and laser engineered net shaping was used to fashion the transmitter/receiving elements and embed the sensors, thereby providing environmental protection and component robustness/survivability for harsh conditions. By design, this complement of analog and digital sensors were wirelessly powered and interrogated using a health and utilization monitoring system; enabling real-time, in situ prognostics and diagnostics.

  18. The Impact of Wireless Technology Feedback on Inventory Management at a Dairy Manufacturing Plant

    Science.gov (United States)

    Goomas, David T.

    2012-01-01

    Replacing the method of counting inventory from paper count sheets to that of wireless reliably reduced the elapsed time to complete a daily inventory of the storage cooler in a dairy manufacturing plant. The handheld computers delivered immediate prompts as well as auditory and visual feedback. Reducing the time to complete the daily inventory…

  19. 78 FR 16865 - Certain Electronic Devices, Including Wireless Communication Devices, Portable Music and Data...

    Science.gov (United States)

    2013-03-19

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-794] Certain Electronic Devices, Including Wireless Communication Devices, Portable Music and Data Processing Devices, and Tablet Computers... certain electronic devices, including wireless communication devices, portable music and data processing...

  20. Wound dressing with reusable electronics for wireless monitoring

    KAUST Repository

    Shamim, Atif; Farooqui, Muhammad Fahad

    2016-01-01

    A wound dressing device with reusable electronics for wireless monitoring and a method of making the same are provided. The device can be a smart device. In an embodiment, the device has a disposable portion including one or more sensors and a

  1. Electronics manufacturing and assembly in Japan

    Science.gov (United States)

    Kukowski, John A.; Boulton, William R.

    1995-02-01

    In the consumer electronics industry, precision processing technology is the basis for enhancing product functions and for minimizing components and end products. Throughout Japan, manufacturing technology is seen as critical to the production and assembly of advanced products. While its population has increased less than 30 percent over twenty-five years, Japan's gross national product has increase thirtyfold; this growth has resulted in large part from rapid replacement of manual operations with innovative, high-speed, large-scale, continuously running, complex machines that process a growing number of miniaturized components. The JTEC panel found that introduction of next-generation electronics products in Japan goes hand-in-hand with introduction of new and improved production equipment. In the panel's judgment, Japan's advanced process technologies and equipment development and its highly automated factories are crucial elements of its domination of the consumer electronics marketplace - and Japan's expertise in manufacturing consumer electronics products gives it potentially unapproachable process expertise in all electronics markets.

  2. Wireless implantable electronic platform for chronic fluorescent-based biosensors.

    Science.gov (United States)

    Valdastri, Pietro; Susilo, Ekawahyu; Förster, Thilo; Strohhöfer, Christof; Menciassi, Arianna; Dario, Paolo

    2011-06-01

    The development of a long-term wireless implantable biosensor based on fluorescence intensity measurement poses a number of technical challenges, ranging from biocompatibility to sensor stability over time. One of these challenges is the design of a power efficient and miniaturized electronics, enabling the biosensor to move from bench testing to long term validation, up to its final application in human beings. In this spirit, we present a wireless programmable electronic platform for implantable chronic monitoring of fluorescent-based autonomous biosensors. This system is able to achieve extremely low power operation with bidirectional telemetry, based on the IEEE802.15.4-2003 protocol, thus enabling over three-year battery lifetime and wireless networking of multiple sensors. During the performance of single fluorescent-based sensor measurements, the circuit drives a laser diode, for sensor excitation, and acquires the amplified signals from four different photodetectors. In vitro functionality was preliminarily tested for both glucose and calcium monitoring, simply by changing the analyte-binding protein of the biosensor. Electronics performance was assessed in terms of timing, power consumption, tissue exposure to electromagnetic fields, and in vivo wireless connectivity. The final goal of the presented platform is to be integrated in a complete system for blood glucose level monitoring that may be implanted for at least one year under the skin of diabetic patients. Results reported in this paper may be applied to a wide variety of biosensors based on fluorescence intensity measurement.

  3. 77 FR 70464 - Certain Electronic Devices, Including Wireless Communication Devices, Portable Music and Data...

    Science.gov (United States)

    2012-11-26

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-794] Certain Electronic Devices, Including Wireless Communication Devices, Portable Music and Data Processing Devices, and Tablet Computers... wireless communication devices, portable music and data processing devices, and tablet computers, by reason...

  4. JTEC Panel report on electronic manufacturing and packaging in Japan

    Science.gov (United States)

    Kelly, Michael J.; Boulton, William R. (Editor); Kukowski, John; Meieran, Gene; Pecht, Michael; Peeples, John; Tummala, Rao; Dehaemer, Michael J.; Holdridge, Geoff (Editor); Gamota, George

    1995-01-01

    This report summarizes the status of electronic manufacturing and packaging technology in Japan in comparison to that in the United States, and its impact on competition in electronic manufacturing in general. In addition to electronic manufacturing technologies, the report covers technology and manufacturing infrastructure, electronics manufacturing and assembly, quality assurance and reliability in the Japanese electronics industry, and successful product realization strategies. The panel found that Japan leads the United States in almost every electronics packaging technology. Japan clearly has achieved a strategic advantage in electronics production and process technologies. Panel members believe that Japanese competitors could be leading U.S. firms by as much as a decade in some electronics process technologies.

  5. Power electronic modules design and manufacture

    CERN Document Server

    Sheng, William W

    2004-01-01

    IntroductionSelection ProcedureMaterialsInsulating Substrate and MetallizationBase PlateBonding MaterialPower Interconnection and TerminalEncapsulantPlastic Case and Cover Manufacturing of Power IGBT ModulesManufacturing Process Process Control/Long-Term ReliabilityManufacturing FacilitiesManufacturing Flow Charts DesignThermal ManagementCircuit PartitioningDesign Guidelines and ConsiderationsThermal Results of Different Samples

  6. High Temperature Wireless Communication And Electronics For Harsh Environment Applications

    Science.gov (United States)

    Hunter, G. W.; Neudeck, P. G.; Beheim, G. M.; Ponchak, G. E.; Chen, L.-Y

    2007-01-01

    In order for future aerospace propulsion systems to meet the increasing requirements for decreased maintenance, improved capability, and increased safety, the inclusion of intelligence into the propulsion system design and operation becomes necessary. These propulsion systems will have to incorporate technology that will monitor propulsion component conditions, analyze the incoming data, and modify operating parameters to optimize propulsion system operations. This implies the development of sensors, actuators, and electronics, with associated packaging, that will be able to operate under the harsh environments present in an engine. However, given the harsh environments inherent in propulsion systems, the development of engine-compatible electronics and sensors is not straightforward. The ability of a sensor system to operate in a given environment often depends as much on the technologies supporting the sensor element as the element itself. If the supporting technology cannot handle the application, then no matter how good the sensor is itself, the sensor system will fail. An example is high temperature environments where supporting technologies are often not capable of operation in engine conditions. Further, for every sensor going into an engine environment, i.e., for every new piece of hardware that improves the in-situ intelligence of the components, communication wires almost always must follow. The communication wires may be within or between parts, or from the engine to the controller. As more hardware is added, more wires, weight, complexity, and potential for unreliability is also introduced. Thus, wireless communication combined with in-situ processing of data would significantly improve the ability to include sensors into high temperature systems and thus lead toward more intelligent engine systems. NASA Glenn Research Center (GRC) is presently leading the development of electronics, communication systems, and sensors capable of prolonged stable

  7. 76 FR 59542 - Mandatory Reporting of Greenhouse Gases: Changes to Provisions for Electronics Manufacturing To...

    Science.gov (United States)

    2011-09-27

    ... Mandatory Reporting of Greenhouse Gases: Changes to Provisions for Electronics Manufacturing To Provide... regulation to amend the calculation and monitoring provisions in the Electronics Manufacturing portion of the... Electronics Manufacturing 334111 Microcomputer manufacturing facilities. 334413 Semiconductor, photovoltaic...

  8. A Technical and Business Perspective on Wireless Sensor Network for Manufacturing Execution System

    Directory of Open Access Journals (Sweden)

    Wei Xu

    2015-01-01

    Full Text Available Motivated by the complex production management with difficulties in error-prone assembly system and inaccurate supply chain inventory, this paper designs a novel manufacturing execution system (MES architecture for intelligent monitoring based on wireless sensor network (WSN. The technical perspective includes analysis on the proposed manufacturing resource mutual inductance method under active sensing network, appreciation technology of multisource information, and dynamic optimization technology for manufacturing execution processes. From business perspective, this paper elaborates the impact of RFID investment on complex product by establishing a three-stage supply chain model that involves two suppliers carrying out Stackelberg games (manufacturer and retailer. The optimal cost threshold values of technology investment are examined for both the centralized and the decentralized scenarios utilizing quantitative modeling methods. By analyzing and comparing the optimal profit with or without investment on WSN, this paper establishes a supply chain coordination and boosting model. The results of this paper have contributed significantly for one to make decision on whether RFID should be adopted among its members in supply chain. The system performance and model extension are verified via numerical analyses.

  9. 78 FR 18234 - Service of Process on Manufacturers; Manufacturers Importing Electronic Products Into the United...

    Science.gov (United States)

    2013-03-26

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration 21 CFR Part 1005 [Docket No. FDA-2007-N-0091; (formerly 2007N-0104)] Service of Process on Manufacturers; Manufacturers Importing Electronic Products Into the United States; Agent Designation; Change of Address AGENCY: Food and Drug...

  10. 76 FR 45860 - In the Matter of Certain Electronic Devices, Including Wireless Communication Devices, Portable...

    Science.gov (United States)

    2011-08-01

    ..., Including Wireless Communication Devices, Portable Music and Data Processing Devices, and Tablet Computers... electronic devices, including wireless communication devices, portable music and data processing devices, and...''). The complaint further alleges that an industry in the United States exists or is in the process of...

  11. Convergence of photonics and electronics for Terahertz wireless communications – the ITN CELTA project

    DEFF Research Database (Denmark)

    Tafur Monroy, Idelfonso

    2016-01-01

    Terahertz wireless communications is expected to offer the required high capacity and low latency performance required from short-range wireless access and control applications. We present an overview of some the activities in this area in the newly started H2020 ITN project CELTA: convergence of...... of electronics and photonics technologies enabling Terahertz applications...

  12. 76 FR 36472 - Mandatory Reporting of Greenhouse Gases; Changes to Provisions for Electronics Manufacturing...

    Science.gov (United States)

    2011-06-22

    ... Mandatory Reporting of Greenhouse Gases; Changes to Provisions for Electronics Manufacturing (Subpart I) To... proposing changes to the calculation and monitoring provisions in the Electronics Manufacturing portion... Category Examples of affected Category NAICS facilities Electronics Manufacturing......... 334111...

  13. 77 FR 60720 - Certain Electronic Devices, Including Wireless Commmunication Devices, Portable Music and Data...

    Science.gov (United States)

    2012-10-04

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-794] Certain Electronic Devices, Including Wireless Commmunication Devices, Portable Music and Data Processing Devices, and Tablet Computers... communication devices, portable music and data processing devices, and tablet computers, imported by Apple Inc...

  14. Multilayer electronic component systems and methods of manufacture

    Science.gov (United States)

    Thompson, Dane (Inventor); Wang, Guoan (Inventor); Kingsley, Nickolas D. (Inventor); Papapolymerou, Ioannis (Inventor); Tentzeris, Emmanouil M. (Inventor); Bairavasubramanian, Ramanan (Inventor); DeJean, Gerald (Inventor); Li, RongLin (Inventor)

    2010-01-01

    Multilayer electronic component systems and methods of manufacture are provided. In this regard, an exemplary system comprises a first layer of liquid crystal polymer (LCP), first electronic components supported by the first layer, and a second layer of LCP. The first layer is attached to the second layer by thermal bonds. Additionally, at least a portion of the first electronic components are located between the first layer and the second layer.

  15. Low-Cost Wireless Temperature Measurement: Design, Manufacture, and Testing of a PCB-Based Wireless Passive Temperature Sensor.

    Science.gov (United States)

    Yan, Dan; Yang, Yong; Hong, Yingping; Liang, Ting; Yao, Zong; Chen, Xiaoyong; Xiong, Jijun

    2018-02-10

    Low-cost wireless temperature measurement has significant value in the food industry, logistics, agriculture, portable medical equipment, intelligent wireless health monitoring, and many areas in everyday life. A wireless passive temperature sensor based on PCB (Printed Circuit Board) materials is reported in this paper. The advantages of the sensor include simple mechanical structure, convenient processing, low-cost, and easiness in integration. The temperature-sensitive structure of the sensor is a dielectric-loaded resonant cavity, consisting of the PCB substrate. The sensitive structure also integrates a patch antenna for the transmission of temperature signals. The temperature sensing mechanism of the sensor is the dielectric constant of the PCB substrate changes with temperature, which causes the resonant frequency variation of the resonator. Then the temperature can be measured by detecting the changes in the sensor's working frequency. The PCB-based wireless passive temperature sensor prototype is prepared through theoretical design, parameter analysis, software simulation, and experimental testing. The high- and low-temperature sensing performance of the sensor is tested, respectively. The resonant frequency decreases from 2.434 GHz to 2.379 GHz as the temperature increases from -40 °C to 125 °C. The fitting curve proves that the experimental data have good linearity. Three repetitive tests proved that the sensor possess well repeatability. The average sensitivity is 347.45 KHz / ℃ from repetitive measurements conducted three times. This study demonstrates the feasibility of the PCB-based wireless passive sensor, which provides a low-cost temperature sensing solution for everyday life, modern agriculture, thriving intelligent health devices, and so on, and also enriches PCB product lines and applications.

  16. Materials, Processes, and Facile Manufacturing for Bioresorbable Electronics: A Review.

    Science.gov (United States)

    Yu, Xiaowei; Shou, Wan; Mahajan, Bikram K; Huang, Xian; Pan, Heng

    2018-05-07

    Bioresorbable electronics refer to a new class of advanced electronics that can completely dissolve or disintegrate with environmentally and biologically benign byproducts in water and biofluids. They have provided a solution to the growing electronic waste problem with applications in temporary usage of electronics such as implantable devices and environmental sensors. Bioresorbable materials such as biodegradable polymers, dissolvable conductors, semiconductors, and dielectrics are extensively studied, enabling massive progress of bioresorbable electronic devices. Processing and patterning of these materials are predominantly relying on vacuum-based fabrication methods so far. However, for the purpose of commercialization, nonvacuum, low-cost, and facile manufacturing/printing approaches are the need of the hour. Bioresorbable electronic materials are generally more chemically reactive than conventional electronic materials, which require particular attention in developing the low-cost manufacturing processes in ambient environment. This review focuses on material reactivity, ink availability, printability, and process compatibility for facile manufacturing of bioresorbable electronics. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Batteryless wireless transmission system for electronic drum uses piezoelectric generator for play signal and power source

    International Nuclear Information System (INIS)

    Nishikawa, H; Yoshimi, A; Takemura, K; Tanaka, A; Douseki, T

    2015-01-01

    A batteryless self-powered wireless transmission system has been developed that sends a signal from a drum pad to a synthesizer. The power generated by a piezoelectric generator functions both as the “Play” signal for the synthesizer and as the power source for the transmitter. An FM transmitter, which theoretically operates with zero latency, and a receiver with quick-response squelch of the received signal were developed for wireless transmission with a minimum system delay. Experimental results for an electronic drum without any connecting wires fully demonstrated the feasibility of self-powered wireless transmission with a latency of 900 μs. (paper)

  18. Bi-directional magnetic resonance based wireless power transfer for electronic devices

    International Nuclear Information System (INIS)

    Kar, Durga P.; Nayak, Praveen P.; Bhuyan, Satyanarayan; Mishra, Debasish

    2015-01-01

    In order to power or charge electronic devices wirelessly, a bi-directional wireless power transfer method has been proposed and experimentally investigated. In the proposed design, two receiving coils are used on both sides of a transmitting coil along its central axis to receive the power wirelessly from the generated magnetic fields through strongly coupled magnetic resonance. It has been observed experimentally that the maximum power transfer occurs at the operating resonant frequency for optimum electric load connected across the receiving coils on both side. The optimum wireless power transfer efficiency is 88% for the bi-directional power transfer technique compared 84% in the one side receiver system. By adopting the developed bi-directional power transfer method, two electronic devices can be powered up or charged simultaneously instead of a single device through usual one side receiver system without affecting the optimum power transfer efficiency

  19. Bi-directional magnetic resonance based wireless power transfer for electronic devices

    Energy Technology Data Exchange (ETDEWEB)

    Kar, Durga P.; Nayak, Praveen P.; Bhuyan, Satyanarayan; Mishra, Debasish [Department of Electronics and Instrumentation Engineering, Institute of Technical Education and Research, Siksha ‘O’ Anushandhan University, Bhubaneswar 751030 (India)

    2015-09-28

    In order to power or charge electronic devices wirelessly, a bi-directional wireless power transfer method has been proposed and experimentally investigated. In the proposed design, two receiving coils are used on both sides of a transmitting coil along its central axis to receive the power wirelessly from the generated magnetic fields through strongly coupled magnetic resonance. It has been observed experimentally that the maximum power transfer occurs at the operating resonant frequency for optimum electric load connected across the receiving coils on both side. The optimum wireless power transfer efficiency is 88% for the bi-directional power transfer technique compared 84% in the one side receiver system. By adopting the developed bi-directional power transfer method, two electronic devices can be powered up or charged simultaneously instead of a single device through usual one side receiver system without affecting the optimum power transfer efficiency.

  20. Deployment of vendor innovation capability in contract electronic manufacturing

    DEFF Research Database (Denmark)

    Perunovic, Zoran; Mefford, Robert N.

    2012-01-01

    This paper explores deployment of innovation capability in outsourcing from the vendor perspective. Vendor’s innovation-related competences are used to capture vendor innovativeness. A multiple-case study was applied with two Contract Electronic Manufacturers. Based on the data analysis we propose...

  1. A wearable “electronic patch” for wireless continuous monitoring of chronically diseased patients

    DEFF Research Database (Denmark)

    Haahr, Rasmus Grønbek; Duun, Sune; Thomsen, Erik Vilain

    2008-01-01

    We present a wearable health system (WHS) for non-invasive and wireless monitoring of physiological signals. The system is made as an electronic patch where sensors, low power electronics, and radio communication are integrated in an adhesive material of hydrocolloid polymer making it a sticking...

  2. Lean manufacturing implementation in reducing waste for electronic assembly line

    Directory of Open Access Journals (Sweden)

    Zakaria Nurul Husna

    2017-01-01

    Full Text Available Lean manufacturing is the most convenient way to eliminate unnecessary waste and can provide what customers demand. This paper presents possibilities and sustainability of application of lean manufacturing method by using a virtual simulation of the workers performance in a line production of small and medium industry. Actual case study and Witness simulation were used in this study to find the waste that exists in the production and identified the performance of workers in the production line. Lean manufacturing concept has identified and rectified problems related to low productivity in the assembly line. The case study is involved a line production for electronic part assembly. The result of this preliminary study should illustrate the relationship of worker’s performance by lean manufacturing method as well as the productivity improvements which help to reduce cost for manufacturer. Lean manufacturing method has been used during the study to reduce the cost when waste is eliminated by reducing the workstation without reducing the performance of the production. The performance of the production is increased when allocating the labor in a needed working area. Lastly, the study also proves that the new layout has improved the process to be used for future production process.

  3. Electronic device and method of manufacturing an electronic device

    NARCIS (Netherlands)

    2009-01-01

    An electronic device comprising at least one die stack having at least a first die (D1) comprising a first array of light emitting units (OLED) for emitting light, a second layer (D2) comprising a second array of via holes (VH) and a third die (D3) comprising a third array of light detecting units

  4. Electron beam curing - taking good ideas to the manufacturing floor

    International Nuclear Information System (INIS)

    Saunders, C.; Lopata, V.; Barnard, J.; Stepanik, T.

    2000-01-01

    Acsion is exploiting several emerging electron beam EB applications ranging from composite curing and repair to viscose manufacturing. EB curing of composite structures offers several advantages: significantly reduced curing times; improvements in part quality and performance; reduced environmental and health concerns; improvements in material handling; and reduced overall manufacturing costs compared to thermal curing. The aerospace industry is developing EB technology in all of their market sectors, including military aviation and space products. Some specific products include cryogenic fuel tanks, improved canopy frames for jet aircraft, and the all-composite military aircraft. This paper discusses each of these opportunities. (author)

  5. A content analysis of electronic cigarette manufacturer websites in China.

    Science.gov (United States)

    Yao, Tingting; Jiang, Nan; Grana, Rachel; Ling, Pamela M; Glantz, Stanton A

    2016-03-01

    The goal of this study was to summarise the websites of electronic cigarette (e-cigarette) manufacturers in China and describe how they market their products. From March to April 2013, we used two search keywords 'electronic cigarette' (Dian Zi Xiang Yan in Chinese) and 'manufacturer' (Sheng Chan Chang Jia in Chinese) to search e-cigarette manufacturers in China on Alibaba, an internet-based e-commerce business that covers business-to-business online marketplaces, retail and payment platforms, shopping search engine and data-centric cloud computing services. A total of 18 websites of 12 e-cigarette manufacturers in China were analysed by using a coding guide which includes 14 marketing claims. Health-related benefits were claimed most frequently (89%), followed by the claims of no secondhand smoke (SHS) exposure (78%), and utility for smoking cessation (67%). A wide variety of flavours, celebrity endorsements and e-cigarettes specifically for women were presented. None of the websites had any age restriction on access, references to government regulation or lawsuits. Instruction on how to use e-cigarettes was on 17% of the websites. Better regulation of e-cigarette marketing messages on manufacturers' websites is needed in China. The frequent claims of health benefits, smoking cessation, strategies appealing to youth and women are concerning, especially targeting women. Regulators should prohibit marketing claims of health benefits, no SHS exposure and value for smoking cessation in China until health-related, quality and safety issues have been adequately addressed. To avoid e-cigarette use for initiation to nicotine addiction, messages targeting youth and women should be prohibited. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  6. Smart home design for electronic devices monitoring based wireless gateway network using cisco packet tracer

    Science.gov (United States)

    Sihombing, Oloan; Zendrato, Niskarto; Laia, Yonata; Nababan, Marlince; Sitanggang, Delima; Purba, Windania; Batubara, Diarmansyah; Aisyah, Siti; Indra, Evta; Siregar, Saut

    2018-04-01

    In the era of technological development today, the technology has become the need for the life of today's society. One is needed to create a smart home in turning on and off electronic devices via smartphone. So far in turning off and turning the home electronic device is done by pressing the switch or remote button, so in control of electronic device control less effective. The home smart design is done by simulation concept by testing system, network configuration, and wireless home gateway computer network equipment required by a smart home network on cisco packet tracer using Internet Thing (IoT) control. In testing the IoT home network wireless network gateway system, multiple electronic devices can be controlled and monitored via smartphone based on predefined configuration conditions. With the Smart Ho me can potentially increase energy efficiency, decrease energy usage costs, control electronics and change the role of residents.

  7. Research on Electronic-nose Application Based on Wireless Sensor Networks

    International Nuclear Information System (INIS)

    Zhao, A; Wang, L; Yao, C H

    2006-01-01

    The paper proposed a structure of Wireless Sensor Networks based Electronic-nose system to monitors air quality in the building. In the study, the authors researched a data processing algorithm: fuzzy neural network based on RBF(Radial Basis Function) network model, to quantitatively analyze the gas ingredient and put forward a routing protocol for the system

  8. 75 FR 10502 - In the Matter of Certain Electronic Devices, Including Handheld Wireless Communications Devices...

    Science.gov (United States)

    2010-03-08

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-667; Investigation No. 337-TA-673] In the Matter of Certain Electronic Devices, Including Handheld Wireless Communications Devices; Notice of... Entirety AGENCY: U.S. International Trade Commission. ACTION: Notice. SUMMARY: Notice is hereby given that...

  9. Electron beam additive manufacturing with wire - Analysis of the process

    Science.gov (United States)

    Weglowski, Marek St.; Błacha, Sylwester; Pilarczyk, Jan; Dutkiewicz, Jan; Rogal, Łukasz

    2018-05-01

    The electron beam additive manufacturing process with wire is a part of global trend to find fast and efficient methods for producing complex shapes elements from costly metal alloys such as stainless steels, nickel alloys, titanium alloys etc. whose production by other conventional technologies is unprofitable or technically impossible. Demand for additive manufacturing is linked to the development of new technologies in the automotive, aerospace and machinery industries. The aim of the presented work was to carried out research on electron beam additive manufacturing with a wire as a deposited (filler) material. The scope of the work was to investigate the influence of selected technological parameters such as: wire feed rate, beam current, travelling speed, acceleration voltage on stability of the deposition process and geometric dimensions of the padding welds. The research revealed that, at low beam currents, the deposition process is unstable. The padding weld reinforcement is non-uniform. Irregularity of the width, height and straightness of the padding welds can be observed. At too high acceleration voltage and beam current, burn-through of plate and excess penetration weld can be revealed. The achieved results and gained knowledge allowed to produce, based on EBAM with wire process, whole structure from stainless steel.

  10. Selective Electron Beam Melting Manufacturing of Electrically Small Antennas

    Directory of Open Access Journals (Sweden)

    Saad Mufti

    2017-11-01

    Full Text Available Real estate pressures in modern electronics have resulted in the need for electrically small antennas, which have subsequently garnered interest amongst researchers and industry alike. These antennas are characterized by their largest dimensions translating to a fraction of the operating wavelength; such a diminutive size comes at the expense of reduced gain and efficiency, and a worse overall match to a corresponding power source. In order to compensate for this deterioration in performance, antenna designers must turn towards increasingly complex and voluminous geometries, well beyond the capabilities of traditional manufacturing techniques. We present voluminous metal antennas, based on a novel inverted-F design, and fabricated using the emergent selective electron beam melting manufacturing technique, a type of powder bed fusion process. As predicted by small antenna theory, simulation results presented show in increase in the antenna’s efficiency as it is voluminously expanded into the third dimension. Measurement results illustrate that key trends observed from simulations are upheld; however, further understanding of the electromagnetic properties of raw materials, in particular how these change during the printing process, is needed. Nevertheless, this type of additive manufacturing technique is suitable for rapid prototyping of novel and complex antenna geometries, and is a promising avenue for further research and maturation.

  11. Electronic Devices, Methods, and Computer Program Products for Selecting an Antenna Element Based on a Wireless Communication Performance Criterion

    DEFF Research Database (Denmark)

    2014-01-01

    A method of operating an electronic device includes providing a plurality of antenna elements, evaluating a wireless communication performance criterion to obtain a performance evaluation, and assigning a first one of the plurality of antenna elements to a main wireless signal reception...... and transmission path and a second one of the plurality of antenna elements to a diversity wireless signal reception path based on the performance evaluation....

  12. A Framework Based on OEE and Wireless Technology for Improving Overall Manufacturing Operations

    OpenAIRE

    Garcia , Martha-Patricia; Santos , Javier; Arcelus , Mikel; Viles , Elisabeth

    2011-01-01

    Part 1: Production Process; International audience; Manufacturers have the challenge to increase productivity given complex manufacturing environments. A source that provides substantial levels of productivity is the overall equipment effectiveness (OEE) metric, which is an indicator to improve not only equipment utilization; but also the overall manufacturing operations, because of the valuable information that comes from the availability, performance and quality rates. Although information ...

  13. Manufacture of polyethylene foam by electron beam cross-linking

    International Nuclear Information System (INIS)

    Tamai, Isamu

    1976-01-01

    The manufacturing process of polyethylene foam, comparison between electron beam cross-linking process and chemical cross-linking process, the electron beam irradiation technique for continuous sheets, the characteristics and uses of polyethylene foam are reviewed. The pore diameter can be controlled by selecting the dose rate, because there is strong relationship between the pore diameter and the dose rate. As the dose if higher, the foam becomes finer. The electron accelerators having large capacity show the lowest cost as the radiation source, and are applicable industrially. If the production capacity exceeds about 200 tons per month, the costs of electron beam irradiation process may be more advantageous than that of chemical process according to the circumstances. It is difficult to obtain the uniform distribution of absorption dose in the direction of thickness. General characteristics of cross-linked polyethylene foam are listed. The special feature of electron beam process is that the degree of cross-linking can be controlled arbitrarily before foaming. The products obtained by the electron beam cross-linking process have finer foams and smoother surfaces than those obtained by the chemical process, because the separation of the decomposition of foaming agents from that of cross-linking agents in the chemical cross-linking is difficult. (Iwakiri, K.)

  14. Powder bed charging during electron-beam additive manufacturing

    International Nuclear Information System (INIS)

    Cordero, Zachary C.; Meyer, Harry M.; Nandwana, Peeyush; Dehoff, Ryan R.

    2017-01-01

    Electrons injected into the build envelope during powder bed electron-beam additive manufacturing can accumulate on the irradiated particles and cause them to repel each other. Under certain conditions, these electrostatic forces can grow so large that they drive the particles out of the build envelope in a process known as “smoking”. In the present work, we investigate the causes of powder bed charging and smoking during electron-beam additive manufacturing. In the first part of the paper, we characterize the surface chemistry of a common feedstock material—gas-atomized Ti-6Al-4V powder—and find that a thick, electrically insulating oxide overlayer encapsulates the particles. Based on these experimental results, we then formulate an analytical model of powder bed charging in which each particle is approximated as a capacitor, where the particle and its substrate are the electrodes and the oxide overlayer is the dielectric. Using this model, we estimate the charge distribution in the powder bed, the electrostatic forces acting on the particles, and the conditions under which the powder bed will smoke. It is found that the electrical resistivity of the oxide overlayer strongly influences the charging behavior of the powder bed and that a high resistivity promotes charge accumulation and consequent smoking. This analysis suggests new quality control and process design measures that can help suppress smoking.

  15. A content analysis of electronic cigarette manufacturer websites in China

    Science.gov (United States)

    Yao, Tingting; Jiang, Nan; Grana, Rachel; Ling, Pamela M; Glantz, Stanton A

    2014-01-01

    Objective The goal of this study was to summarise the websites of electronic cigarette (e-cigarette) manufacturers in China and describe how they market their products. Methods From March to April 2013, we used two search keywords ‘electronic cigarette’ (Dian Zi Xiang Yan in Chinese) and ‘manufacturer’ (Sheng Chan Chang Jia in Chinese) to search e-cigarette manufacturers in China on Alibaba, an internet-based e-commerce business that covers business-to-business online marketplaces, retail and payment platforms, shopping search engine and data-centric cloud computing services. A total of 18 websites of 12 e-cigarette manufacturers in China were analysed by using a coding guide which includes 14 marketing claims. Results Health-related benefits were claimed most frequently (89%), followed by the claims of no secondhand smoke (SHS) exposure (78%), and utility for smoking cessation (67%). A wide variety of flavours, celebrity endorsements and e-cigarettes specifically for women were presented. None of the websites had any age restriction on access, references to government regulation or lawsuits. Instruction on how to use e-cigarettes was on 17% of the websites. Conclusions Better regulation of e-cigarette marketing messages on manufacturers’ websites is needed in China. The frequent claims of health benefits, smoking cessation, strategies appealing to youth and women are concerning, especially targeting women. Regulators should prohibit marketing claims of health benefits, no SHS exposure and value for smoking cessation in China until health-related, quality and safety issues have been adequately addressed. To avoid e-cigarette use for initiation to nicotine addiction, messages targeting youth and women should be prohibited. PMID:25335902

  16. Electron Beam Melting Manufacturing Technology for Individually Manufactured Jaw Prosthesis: A Case Report.

    Science.gov (United States)

    Suska, Felicia; Kjeller, Göran; Tarnow, Peter; Hryha, Eduard; Nyborg, Lars; Snis, Anders; Palmquist, Anders

    2016-08-01

    In the field of maxillofacial reconstruction, additive manufacturing technologies, specifically electron beam melting (EBM), offer clinicians the potential for patient-customized design of jaw prostheses, which match both load-bearing and esthetic demands. The technique allows an innovative, functional design, combining integrated porous regions for bone ingrowth and secondary biological fixation with solid load-bearing regions ensuring the biomechanical performance. A patient-specific mandibular prosthesis manufactured using EBM was successfully used to reconstruct a patient's mandibular defect after en bloc resection. Over a 9-month follow-up period, the patient had no complications. A short operating time, good esthetic outcome, and high level of patient satisfaction as measured by quality-of-life questionnaires-the European Organisation for Research and Treatment of Cancer QLQ-C30 (30-item quality-of-life core questionnaire) and H&N35 (head and neck cancer module)-were reported for this case. Individually planned and designed EBM-produced prostheses may be suggested as a possible future alternative to fibular grafts or other reconstructive methods. However, the role of porosity, the role of geometry, and the optimal combination of solid and porous parts, as well as surface properties in relation to soft tissues, should be carefully evaluated in long-term clinical trials. Copyright © 2016 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.

  17. Precision laser processing for micro electronics and fiber optic manufacturing

    Science.gov (United States)

    Webb, Andrew; Osborne, Mike; Foster-Turner, Gideon; Dinkel, Duane W.

    2008-02-01

    The application of laser based materials processing for precision micro scale manufacturing in the electronics and fiber optic industry is becoming increasingly widespread and accepted. This presentation will review latest laser technologies available and discuss the issues to be considered in choosing the most appropriate laser and processing parameters. High repetition rate, short duration pulsed lasers have improved rapidly in recent years in terms of both performance and reliability enabling flexible, cost effective processing of many material types including metal, silicon, plastic, ceramic and glass. Demonstrating the relevance of laser micromachining, application examples where laser processing is in use for production will be presented, including miniaturization of surface mount capacitors by applying a laser technique for demetalization of tracks in the capacitor manufacturing process and high quality laser machining of fiber optics including stripping, cleaving and lensing, resulting in optical quality finishes without the need for traditional polishing. Applications include telecoms, biomedical and sensing. OpTek Systems was formed in 2000 and provide fully integrated systems and sub contract services for laser processes. They are headquartered in the UK and are establishing a presence in North America through a laser processing facility in South Carolina and sales office in the North East.

  18. Manufacturing of Liquid-Embedded Elastomers for Stretchable Electronics

    Science.gov (United States)

    Kramer, Rebecca; Majidi, Carmel; Weaver, James; Wood, Robert

    2013-03-01

    Future generations of robots, electronics, and assistive medical devices will include systems that are soft, elastically deformable, and may adapt their functionality in unstructured environments. This will require soft active materials for power circuits and sensing of deformation and contact pressure. As the demand for increased elasticity of electrical components heightens, the challenges for functionality revert to basic questions of fabrication, materials, and design. Several designs for soft sensory skins (including strain, pressure and curvature sensors) based on a liquid-embedded-elastomer approach have been developed. This talk will highlight new ``soft MEMS'' manufacturing techniques based on wetting behavior between gallium-indium alloys and elastomers with varying microtextured surface topography. Supported by Harvard MRSEC and the Wyss Institute

  19. From early wireless to Everest.

    Science.gov (United States)

    Allen, A

    1998-01-01

    Medical information has been transmitted using wireless technologies for almost 80 years. A "wired wireless" electronic stethoscope was developed by the U.S. Army Signal Corps in the early 1920's, for potential use in ship-to-shore transmission of cardiac sounds. [Winters SR. Diagnosis by wireless. Scientific American June 11, 1921, p. 465] Today, wireless is used in a wide range of medical applications and at sites from transoceanic air flights to offshore oil platforms to Mt. Everest. 'Wireless LANs' are often used in medical environments. Typically, nurses and physicians in a hospital or clinic use hand-held "wireless thin client" pen computers that exchange patient information and images with the hospital server. Numerous companies, such as Fujitsu (article below) and Cruise Technologies (www.cruisetech.com) manufacture handheld pen-entry computers. One company, LXE, integrates radio-frequency (RF) enhanced hand-held computers specifically designed for production use within a wireless LAN (www.lxe.com). Other companies (Proxim, Symbol, and others) supply the wireless RF LAN infrastructure for the enterprise. Unfortunately, there have been problems with widespread deployment of wireless LANs. Perhaps the biggest impediment has been the lack of standards. Although an international standard (IEEE 802.11) was adopted in 1997, most wireless LAN products still are not compatible with the equipment of competing companies. A problem with the current standard for LAN adapters is that throughput is limited to 3 Mbps--compared to at least 10 Mbps, and often 100 Mbps, in a hard-wired Ethernet LAN. An II Mbps standard is due out in the next year or so, but it will be at least 2 years before standards-compliant products are available. This story profiles some of the ways that wireless is being used to overcome gaps in terrestrial and within-enterprise communication.

  20. Flexible structured high-frequency film bulk acoustic resonator for flexible wireless electronics

    International Nuclear Information System (INIS)

    Zhou, Changjian; Shu, Yi; Yang, Yi; Ren, Tian-Ling; Jin, Hao; Dong, Shu-Rong; Chan, Mansun

    2015-01-01

    Flexible electronics have inspired many novel and very important applications in recent years and various flexible electronic devices such as diodes, transistors, circuits, sensors, and radiofrequency (RF) passive devices including antennas and inductors have been reported. However, the lack of a high-performance RF resonator is one of the key bottlenecks to implement flexible wireless electronics. In this study, for the first time, a novel ultra-flexible structured film bulk acoustic resonator (FBAR) is proposed. The flexible FBAR is fabricated on a flexible polyimide substrate using piezoelectric thin film aluminum nitride (AlN) for acoustic wave excitation. Both the shear wave and longitudinal wave can be excited under the surface interdigital electrodes configuration we proposed. In the case of the thickness extension mode, a flexible resonator with a working frequency as high as of 5.2325 GHz has been realized. The resonators stay fully functional under bending status and after repeated bending and re-flattening operations. This flexible high-frequency resonator will serve as a key building block for the future flexible wireless electronics, greatly expanding the application scope of flexible electronics. (paper)

  1. 78 FR 1247 - Certain Electronic Devices, Including Wireless Communication Devices, Tablet Computers, Media...

    Science.gov (United States)

    2013-01-08

    ... Wireless Communication Devices, Tablet Computers, Media Players, and Televisions, and Components Thereof... devices, including wireless communication devices, tablet computers, media players, and televisions, and... wireless communication devices, tablet computers, media players, and televisions, and components thereof...

  2. Hybrid additive manufacturing of 3D electronic systems

    International Nuclear Information System (INIS)

    Li, J; Wasley, T; Nguyen, T T; Kay, R; Ta, V D; Shephard, J D; Stringer, J; Smith, P; Esenturk, E; Connaughton, C

    2016-01-01

    A novel hybrid additive manufacturing (AM) technology combining digital light projection (DLP) stereolithography (SL) with 3D micro-dispensing alongside conventional surface mount packaging is presented in this work. This technology overcomes the inherent limitations of individual AM processes and integrates seamlessly with conventional packaging processes to enable the deposition of multiple materials. This facilitates the creation of bespoke end-use products with complex 3D geometry and multi-layer embedded electronic systems. Through a combination of four-point probe measurement and non-contact focus variation microscopy, it was identified that there was no obvious adverse effect of DLP SL embedding process on the electrical conductivity of printed conductors. The resistivity maintained to be less than 4  ×  10 −4 Ω · cm before and after DLP SL embedding when cured at 100 °C for 1 h. The mechanical strength of SL specimens with thick polymerized layers was also identified through tensile testing. It was found that the polymerization thickness should be minimised (less than 2 mm) to maximise the bonding strength. As a demonstrator a polymer pyramid with embedded triple-layer 555 LED blinking circuitry was successfully fabricated to prove the technical viability. (paper)

  3. Wireless Power Transfer to Millimeter-Sized Gastrointestinal Electronics Validated in a Swine Model.

    Science.gov (United States)

    Abid, Abubakar; O'Brien, Jonathan M; Bensel, Taylor; Cleveland, Cody; Booth, Lucas; Smith, Brian R; Langer, Robert; Traverso, Giovanni

    2017-04-27

    Electronic devices placed in the gastrointestinal (GI) tract for prolonged periods have the potential to transform clinical evaluation and treatment. One challenge to the deployment of such gastroresident electronics is the difficulty in powering millimeter-sized electronics devices without using batteries, which compromise biocompatibility and long-term residence. We examined the feasibility of leveraging mid-field wireless powering to transfer power from outside of the body to electronics at various locations along the GI tract. Using simulations and ex vivo measurements, we designed mid-field antennas capable of operating efficiently in tissue at 1.2 GHz. These antennas were then characterized in vivo in five anesthetized pigs, by placing one antenna outside the body, and the other antenna inside the body endoscopically, at the esophagus, stomach, and colon. Across the animals tested, mean transmission efficiencies of -41.2, -36.1, and -34.6 dB were achieved in vivo while coupling power from outside the body to the esophagus, stomach, and colon, respectively. This corresponds to power levels of 37.5 μW, 123 μW and 173 μW received by antennas in the respective locations, while keeping radiation exposure levels below safety thresholds. These power levels are sufficient to wirelessly power a range of medical devices from outside of the body.

  4. Wireless Power Transfer to Millimeter-Sized Gastrointestinal Electronics Validated in a Swine Model

    Science.gov (United States)

    Abid, Abubakar; O'Brien, Jonathan M.; Bensel, Taylor; Cleveland, Cody; Booth, Lucas; Smith, Brian R.; Langer, Robert; Traverso, Giovanni

    2017-04-01

    Electronic devices placed in the gastrointestinal (GI) tract for prolonged periods have the potential to transform clinical evaluation and treatment. One challenge to the deployment of such gastroresident electronics is the difficulty in powering millimeter-sized electronics devices without using batteries, which compromise biocompatibility and long-term residence. We examined the feasibility of leveraging mid-field wireless powering to transfer power from outside of the body to electronics at various locations along the GI tract. Using simulations and ex vivo measurements, we designed mid-field antennas capable of operating efficiently in tissue at 1.2 GHz. These antennas were then characterized in vivo in five anesthetized pigs, by placing one antenna outside the body, and the other antenna inside the body endoscopically, at the esophagus, stomach, and colon. Across the animals tested, mean transmission efficiencies of -41.2, -36.1, and -34.6 dB were achieved in vivo while coupling power from outside the body to the esophagus, stomach, and colon, respectively. This corresponds to power levels of 37.5 μW, 123 μW and 173 μW received by antennas in the respective locations, while keeping radiation exposure levels below safety thresholds. These power levels are sufficient to wirelessly power a range of medical devices from outside of the body.

  5. 77 FR 10373 - Greenhouse Gas Reporting Program: Electronics Manufacturing: Revisions to Heat Transfer Fluid...

    Science.gov (United States)

    2012-02-22

    ... Greenhouse Gas Reporting Program: Electronics Manufacturing: Revisions to Heat Transfer Fluid Provisions... technical revisions to the electronics manufacturing source category of the Greenhouse Gas Reporting Rule... final rule will also be available through the WWW on the EPA's Greenhouse Gas Reporting Program Web site...

  6. Wireless, intraoral hybrid electronics for real-time quantification of sodium intake toward hypertension management.

    Science.gov (United States)

    Lee, Yongkuk; Howe, Connor; Mishra, Saswat; Lee, Dong Sup; Mahmood, Musa; Piper, Matthew; Kim, Youngbin; Tieu, Katie; Byun, Hun-Soo; Coffey, James P; Shayan, Mahdis; Chun, Youngjae; Costanzo, Richard M; Yeo, Woon-Hong

    2018-05-22

    Recent wearable devices offer portable monitoring of biopotentials, heart rate, or physical activity, allowing for active management of human health and wellness. Such systems can be inserted in the oral cavity for measuring food intake in regard to controlling eating behavior, directly related to diseases such as hypertension, diabetes, and obesity. However, existing devices using plastic circuit boards and rigid sensors are not ideal for oral insertion. A user-comfortable system for the oral cavity requires an ultrathin, low-profile, and soft electronic platform along with miniaturized sensors. Here, we introduce a stretchable hybrid electronic system that has an exceptionally small form factor, enabling a long-range wireless monitoring of sodium intake. Computational study of flexible mechanics and soft materials provides fundamental aspects of key design factors for a tissue-friendly configuration, incorporating a stretchable circuit and sensor. Analytical calculation and experimental study enables reliable wireless circuitry that accommodates dynamic mechanical stress. Systematic in vitro modeling characterizes the functionality of a sodium sensor in the electronics. In vivo demonstration with human subjects captures the device feasibility for real-time quantification of sodium intake, which can be used to manage hypertension.

  7. An optimized electronic device for solar power harvesting dedicated to wireless sensor networks

    Energy Technology Data Exchange (ETDEWEB)

    Le Cam, Vincent; Le Maulf, Regis; Lemarchand, Laurent; Martin, William; Le Pen, Mathieu [LUNAM Univ., Bouguenais (France). IFSTTAR, MACS Dept.

    2012-07-01

    For economics as for practical reasons, this last decade, the use and dissemination of wireless sensor networks (WSN) became obvious; particularly in structural heath monitoring (SHM) use-cases where distances between sensors could be long and access to the structure quite difficult. Even if efforts are leaded to design small components and RF modules that ask for low-power, the need of an external source is often necessary. After have acquired knowledge in solar cells as in batteries technologies and methods to control charge/discharge phases as in optimizing algorithms, IFSTTAR laboratory has designed an electronic device that integrates those progress. This electronic device has a quite generic mission: for a panel of batteries chemistry (Lithium, NiMh) and a panel of solar cells sources (frome mW to some W), the system acts as an improved battery charger whatever the load ask for power. The system applies control algorithms based on battery capacity and chemistry profile. It also applies the MPPT (Maximum Power Point Tracking) algorithm. At any time, battery State Of Charge (SOC) can be requested via I2C bus as well as a warning signal is output when SOC becomes critical. Through standard pin connectors and a simple I2C interface, the system can be used by many wireless devices (sensors) that have to run autonomously. After the presentation of this system, a focus on its application on a real use-case will be given. (orig.)

  8. A Harsh Environment Wireless Pressure Sensing Solution Utilizing High Temperature Electronics

    Science.gov (United States)

    Yang, Jie

    2013-01-01

    Pressure measurement under harsh environments, especially at high temperatures, is of great interest to many industries. The applicability of current pressure sensing technologies in extreme environments is limited by the embedded electronics which cannot survive beyond 300 °C ambient temperature as of today. In this paper, a pressure signal processing and wireless transmission module based on the cutting-edge Silicon Carbide (SiC) devices is designed and developed, for a commercial piezoresistive MEMS pressure sensor from Kulite Semiconductor Products, Inc. Equipped with this advanced high-temperature SiC electronics, not only the sensor head, but the entire pressure sensor suite is capable of operating at 450 °C. The addition of wireless functionality also makes the pressure sensor more flexible in harsh environments by eliminating the costly and fragile cable connections. The proposed approach was verified through prototype fabrication and high temperature bench testing from room temperature up to 450 °C. This novel high-temperature pressure sensing technology can be applied in real-time health monitoring of many systems involving harsh environments, such as military and commercial turbine engines. PMID:23447006

  9. Extending the Limits of Wireless Power Transfer to Miniaturized Implantable Electronic Devices

    Directory of Open Access Journals (Sweden)

    Hugo Dinis

    2017-12-01

    Full Text Available Implantable electronic devices have been evolving at an astonishing pace, due to the development of fabrication techniques and consequent miniaturization, and a higher efficiency of sensors, actuators, processors and packaging. Implantable devices, with sensing, communication, actuation, and wireless power are of high demand, as they pave the way for new applications and therapies. Long-term and reliable powering of such devices has been a challenge since they were first introduced. This paper presents a review of representative state of the art implantable electronic devices, with wireless power capabilities, ranging from inductive coupling to ultrasounds. The different power transmission mechanisms are compared, to show that, without new methodologies, the power that can be safely transmitted to an implant is reaching its limit. Consequently, a new approach, capable of multiplying the available power inside a brain phantom for the same specific absorption rate (SAR value, is proposed. In this paper, a setup was implemented to quadruple the power available in the implant, without breaking the SAR limits. A brain phantom was used for concept verification, with both simulation and measurement data.

  10. Linear electron accelerator body and method of its manufacture

    International Nuclear Information System (INIS)

    Landa, V.; Maresova, V.; Lucek, J.; Prusa, F.

    1988-01-01

    The accelerator body consists of a hollow casing made of a high electric conductivity metal. The inside is partitioned with a system of resonators. The resonator body is made of one piece of the same metal as the casing or a related one (e.g., copper -coper, silver-copper, copper-copper alloy). The accelerator body is manufactured using the cathodic process on the periphery of a system of metal partitions and negative models of resonator cavities fitted to a metal pin. The pin is then removed from the system and the soluble models of the cavities are dissolved in a solvent. The advantage of the design and the method of manufacture is that the result is a compact, perfectly tight body with a perfectly lustre surface. The casing wall can be very thin, which improves accelerator performance. The claimed method can also be used in manufacturing miniature accelerators. (E.J.). 1 fig

  11. Plant Layout Analysis by Computer Simulation for Electronic Manufacturing Service Plant

    OpenAIRE

    Visuwan D.; Phruksaphanrat B

    2014-01-01

    In this research, computer simulation is used for Electronic Manufacturing Service (EMS) plant layout analysis. The current layout of this manufacturing plant is a process layout, which is not suitable due to the nature of an EMS that has high-volume and high-variety environment. Moreover, quick response and high flexibility are also needed. Then, cellular manufacturing layout design was determined for the selected group of products. Systematic layout planning (SLP) was used to analyze and de...

  12. Manufacturing: SiC Power Electronics for Variable Frequency Motor Drives

    Energy Technology Data Exchange (ETDEWEB)

    Horowitz, Kelsey A [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Bench Reese, Samantha R [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Remo, Timothy W [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-08-15

    This brochure, published as an annual research highlight of the Clean Energy Manufacturing Analysis Center (CEMAC), summarizes CEMAC analysis of silicon carbide (SiC) power electronics for variable frequency motor drives. The key finding presented is that variations in manufacturing expertise, yields, and access to existing facilities impact regional costs and manufacturing location decisions for SiC ingots, wafers, chips, and power modules more than do core country-specific factors such as labor and electricity costs.

  13. Manufacturing prepainted steel sheet by electron beam curing

    International Nuclear Information System (INIS)

    Oka, Joji

    1987-01-01

    Several advantages are offered by electron beam curing. A formidably hard and stain resistant paint film which is difficult to obtain by heat curing paint is developed. As a result, a unique new prepainted steel is produced. Four technologies are involved: development high-quality paint, selection of optimum electron beam processor, technology to control electron beam processing atmosphere and secondary X-ray shield technology. These technologies are described in detail. (A.J.)

  14. [Occupational health status of electronics manufacturing female employees in China].

    Science.gov (United States)

    Wei, T T; Mei, L Y

    2018-02-06

    Electronics industry is a typical labor-intensive industry in China. There are a lot of female workers and various occupational hazard factors in the workplace. This article reviewed the characteristics of employment of women in electronics industry, occupational hazards of exposure, protective measures, occupational disease situation, influence of reproductive health and mental health, and occupational health management. Electronics female emplyees have the priority in reproductive health and mental health. Besides, this group has poor protective measures, occupational health management and policy should be taken to enhance the level of women health in electronics industry.

  15. 3-Coil resonance-based wireless power transfer system for implantable electronic

    KAUST Repository

    Yi, Ying

    2013-05-01

    This paper presents a 3-coil resonance-based wireless power transfer (R-WPT) system using a single layer of inductor coil windings, in a pancake configuration, in order to obtain a compact system for implantable electronic applications. A theoretical analysis and experimental measurements in terms of quality factor Q and power transfer efficiency (PTE), was done. Our proposed 3-coil scheme can achieve a high PTE with a resonance frequency of 2.46 MHz over a transfer distance of up to 30 mm, by using two 15-mm radius implant coils. The achieved experimental PTE is more than 85%at a 5 mm separation distance, and about 50% PTE at a distance of 20 mm. © 2013 IEEE.

  16. 3-Coil resonance-based wireless power transfer system for implantable electronic

    KAUST Repository

    Yi, Ying; Buttner, Ulrich; Fan, Yiqiang; Foulds, Ian G.

    2013-01-01

    This paper presents a 3-coil resonance-based wireless power transfer (R-WPT) system using a single layer of inductor coil windings, in a pancake configuration, in order to obtain a compact system for implantable electronic applications. A theoretical analysis and experimental measurements in terms of quality factor Q and power transfer efficiency (PTE), was done. Our proposed 3-coil scheme can achieve a high PTE with a resonance frequency of 2.46 MHz over a transfer distance of up to 30 mm, by using two 15-mm radius implant coils. The achieved experimental PTE is more than 85%at a 5 mm separation distance, and about 50% PTE at a distance of 20 mm. © 2013 IEEE.

  17. Power Electronics Design of a Solar Powered In-car Wireless Tag for Asset Tracking and Parking Applications

    International Nuclear Information System (INIS)

    Zhu, D; Beeby, S P; Henaut, J

    2014-01-01

    This paper reports the design and testing of a power conditioning circuit for a solar powered in-car wireless tag for asset tracking and parking application. Existing long range asset tracking is based on the GSM/GPRS network, which requires expensive subscriptions. The EU FP7 project CEWITT aims at developing a credit card sized autonomous wireless tag with GNSS geo-positioning capabilities to ensure the integrity and cost effectiveness for parking applications. It was found in previous research that solar cells are the most suitable energy sources for this application. This study focused on the power electronics design for the wireless tag. A suitable solar cell was chosen for its high power density. Charging circuit, hysteresis control circuit and LDO were designed and integrated to meet the system requirement. Test results showed that charging efficiency of 80 % had been achieved

  18. Power Electronics Design of a Solar Powered In-car Wireless Tag for Asset Tracking and Parking Applications

    Science.gov (United States)

    Zhu, D.; Henaut, J.; Beeby, S. P.

    2014-11-01

    This paper reports the design and testing of a power conditioning circuit for a solar powered in-car wireless tag for asset tracking and parking application. Existing long range asset tracking is based on the GSM/GPRS network, which requires expensive subscriptions. The EU FP7 project CEWITT aims at developing a credit card sized autonomous wireless tag with GNSS geo-positioning capabilities to ensure the integrity and cost effectiveness for parking applications. It was found in previous research that solar cells are the most suitable energy sources for this application. This study focused on the power electronics design for the wireless tag. A suitable solar cell was chosen for its high power density. Charging circuit, hysteresis control circuit and LDO were designed and integrated to meet the system requirement. Test results showed that charging efficiency of 80 % had been achieved.

  19. China's Industrial Policy in Relation to Electronics Manufacturing

    Institute of Scientific and Technical Information of China (English)

    Zhongxiu Zhao; Xiaoling Huang; Dongya Ye; Paul Gentle

    2007-01-01

    China has become the biggest exporter of electronic products in the world. Government policy intervention has contributed significantly to the rapid expansion of the electronics industry. The present paper examines the evolutionary development of industrial policies related to the electronics industry in China and the impacts of such policies on the shaping of the industry. In particular, the relationship between foreign funded enterprises and domestic firms are examined in detail. The future trend of the industry is also discussed in the paper, and the policy focus of the Chinese Government is predicted.

  20. Additive Manufacturing in Offsite Repair of Consumer Electronics

    Science.gov (United States)

    Chekurov, Sergei; Salmi, Mika

    Spare parts for products that are at the end of their life cycles, but still under warranty, are logistically difficult because they are commonly not stored in the central warehouse. These uncommon spare parts occupy valuable space in smaller inventories and take a long time to be transported to the point of need, thus delaying the repair process. This paper proposes that storing the spare parts on a server and producing them with additive manufacturing (AM) on demand can shorten the repair cycle by simplifying the logistics. Introducing AM in the repair supply chain lowers the number of products that need to be reimbursed to the customer due to lengthy repairs, improves the repair statistics of the repair shops, and reduces the number of items that are held in stock. For this paper, the functionality of the concept was verified by reverse engineering a memory cover of a portable computer and laser sintering it from polyamide 12. The additively manufactured component fit well and the computer operated normally after the replacement. The current spare part supply chain model and models with AM machinery located at the repair shop, the centralized spare part provider, and the original equipment manufacturer were provided. The durations of the repair process in the models were compared by simulating two scenarios with the Monte Carlo method. As the biggest improvement, the model with the AM machine in the repair shop reduced the duration of the repair process from 14 days to three days. The result points to the conclusion that placing the machine as close to the need as possible is the best option, if there is enough demand. The spare parts currently compatible with AM are plastic components without strict surface roughness requirements, but more spare parts will become compatible with the development of AM.

  1. The Language of Glove: Wireless gesture decoder with low-power and stretchable hybrid electronics.

    Directory of Open Access Journals (Sweden)

    Timothy F O'Connor

    Full Text Available This communication describes a glove capable of wirelessly translating the American Sign Language (ASL alphabet into text displayable on a computer or smartphone. The key components of the device are strain sensors comprising a piezoresistive composite of carbon particles embedded in a fluoroelastomer. These sensors are integrated with a wearable electronic module consisting of digitizers, a microcontroller, and a Bluetooth radio. Finite-element analysis predicts a peak strain on the sensors of 5% when the knuckles are fully bent. Fatigue studies suggest that the sensors successfully detect the articulation of the knuckles even when bent to their maximal degree 1,000 times. In concert with an accelerometer and pressure sensors, the glove is able to translate all 26 letters of the ASL alphabet. Lastly, data taken from the glove are used to control a virtual hand; this application suggests new ways in which stretchable and wearable electronics can enable humans to interface with virtual environments. Critically, this system was constructed of components costing less than $100 and did not require chemical synthesis or access to a cleanroom. It can thus be used as a test bed for materials scientists to evaluate the performance of new materials and flexible and stretchable hybrid electronics.

  2. The Language of Glove: Wireless gesture decoder with low-power and stretchable hybrid electronics.

    Science.gov (United States)

    O'Connor, Timothy F; Fach, Matthew E; Miller, Rachel; Root, Samuel E; Mercier, Patrick P; Lipomi, Darren J

    2017-01-01

    This communication describes a glove capable of wirelessly translating the American Sign Language (ASL) alphabet into text displayable on a computer or smartphone. The key components of the device are strain sensors comprising a piezoresistive composite of carbon particles embedded in a fluoroelastomer. These sensors are integrated with a wearable electronic module consisting of digitizers, a microcontroller, and a Bluetooth radio. Finite-element analysis predicts a peak strain on the sensors of 5% when the knuckles are fully bent. Fatigue studies suggest that the sensors successfully detect the articulation of the knuckles even when bent to their maximal degree 1,000 times. In concert with an accelerometer and pressure sensors, the glove is able to translate all 26 letters of the ASL alphabet. Lastly, data taken from the glove are used to control a virtual hand; this application suggests new ways in which stretchable and wearable electronics can enable humans to interface with virtual environments. Critically, this system was constructed of components costing less than $100 and did not require chemical synthesis or access to a cleanroom. It can thus be used as a test bed for materials scientists to evaluate the performance of new materials and flexible and stretchable hybrid electronics.

  3. Research and Assessment of Learning Environments through Photoelicitation: Graduate Student Perceptions of Electronics Manufacturing in India

    Science.gov (United States)

    Berdanier, Catherine G. P.; Cox, Monica F.

    2015-01-01

    This research studies the positive and negative perceptions of graduate students from the United States studying issues of sustainable electronics and electronics manufacturing in India as part of a National Science Foundation Integrative Graduate Education and Research Traineeship (IGERT) curriculum. The purpose of this paper is to discuss the…

  4. 75 FR 4343 - Foreign-Trade Zone 22-Chicago, IL; Application for Manufacturing Authority; LG Electronics...

    Science.gov (United States)

    2010-01-27

    ... DEPARTMENT OF COMMERCE Foreign-Trade Zones Board [Docket 3-2010] Foreign-Trade Zone 22--Chicago, IL; Application for Manufacturing Authority; LG Electronics MobileComm USA, Inc. (Cell Phone Kitting... authority on behalf of LG Electronics MobileComm USA, Inc. (LGEMU), located in Bolingbrook, Illinois. The...

  5. 75 FR 30372 - Foreign-Trade Zone 196 Temporary/Interim Manufacturing Authority ATC Logistics & Electronics...

    Science.gov (United States)

    2010-06-01

    ... DEPARTMENT OF COMMERCE Foreign-Trade Zones Board [Docket T-2-2010] Foreign-Trade Zone 196 Temporary/Interim Manufacturing Authority ATC Logistics & Electronics (Cell Phone Kitting and Distribution... filed an application submitted by the ATC Logistics & Electronics, operator of Site 2, FTZ 196...

  6. A Wireless Electronic Esophageal Stethoscope for Continuous Monitoring of Cardiovascular and Respiratory Systems during Anaesthesia

    Directory of Open Access Journals (Sweden)

    Parsaei H.

    2017-03-01

    Full Text Available Background: The basic requirements for monitoring anesthetized patients during surgery are assessing cardiac and respiratory function. Esophageal stethoscopes have been developed for this purpose, but these devices may not provide clear heart and lung sound due to existence of various noises in operating rooms. In addition, the stethoscope is not applicable for continues monitoring, and it is unsuitable for observing inaccessible patients in some conditions such as during CT scan. Objective: A wireless electronic esophageal stethoscope is designed for continues auscultation of heart and lung sounds in anesthetized patients. The system consists of a transmitter and a receiver. The former acquires, amplifies and transmits the acquired sound signals to the latter via a frequency modulation transmitter. The receiver demodulates, amplifies, and delivers the received signal to a headphone to be heard by anesthesiologist. Results: The usability and effectiveness of the designed system was qualitatively evaluated by 5 anesthesiologists in Namazi Hospital and Shahid Chamran Hospital, Shiraz, Iran on 30 patients in several operating rooms in different conditions; e.g., when electro surgery instruments are working. Fortunately, the experts on average ranked good quality for the heard heart and lung sounds and very good on the user friendly being of the instrument. Conclusion: Evaluation results demonstrate that the developed system is capable of capturing and transmitting heart and lung sounds successfully. Therefore, it can be used to continuously monitor anesthetized patients’ cardiac and respiratory function. Since via the instrument wireless auscultation is possible, it could be suitable for observing inaccessible patients in several conditions such as during CT scan.

  7. A Wireless Electronic Esophageal Stethoscope for Continuous Monitoring of Cardiovascular and Respiratory Systems during Anaesthesia

    Science.gov (United States)

    Parsaei, H.; Vakily, A.; Shafiei, A.M.

    2017-01-01

    Background: The basic requirements for monitoring anesthetized patients during surgery are assessing cardiac and respiratory function. Esophageal stethoscopes have been developed for this purpose, but these devices may not provide clear heart and lung sound due to existence of various noises in operating rooms. In addition, the stethoscope is not applicable for continues monitoring, and it is unsuitable for observing inaccessible patients in some conditions such as during CT scan. Objective: A wireless electronic esophageal stethoscope is designed for continues auscultation of heart and lung sounds in anesthetized patients. The system consists of a transmitter and a receiver. The former acquires, amplifies and transmits the acquired sound signals to the latter via a frequency modulation transmitter. The receiver demodulates, amplifies, and delivers the received signal to a headphone to be heard by anesthesiologist. Results: The usability and effectiveness of the designed system was qualitatively evaluated by 5 anesthesiologists in Namazi Hospital and Shahid Chamran Hospital, Shiraz, Iran on 30 patients in several operating rooms in different conditions; e.g., when electro surgery instruments are working. Fortunately, the experts on average ranked good quality for the heard heart and lung sounds and very good on the user friendly being of the instrument. Conclusion: Evaluation results demonstrate that the developed system is capable of capturing and transmitting heart and lung sounds successfully. Therefore, it can be used to continuously monitor anesthetized patients’ cardiac and respiratory function. Since via the instrument wireless auscultation is possible, it could be suitable for observing inaccessible patients in several conditions such as during CT scan. PMID:28451580

  8. Wireless connection of continuous glucose monitoring system to the electronic patient record

    Science.gov (United States)

    Murakami, Alexandre; Gutierrez, Marco A.; Lage, Silvia G.; Rebelo, Marina S.; Granja, Luiz A. R.; Ramires, Jose A. F.

    2005-04-01

    The control of blood sugar level (BSL) at near-normal levels has been documented to reduce both acute and chronic complications of diabetes mellitus. Recent studies suggested, the reduction of mortality in a surgical intensive care unit (ICU), when the BSL are maintained at normal levels. Despite of the benefits appointed by these and others clinical studies, the strict BSL control in critically ill patients suffers from some difficulties: a) medical staff need to measure and control the patient"s BSL using blood sample at least every hour. This is a complex and time consuming task; b) the inaccuracy of standard capillary glucose monitoring (fingerstick) in hypotensive patients and, if frequently used to sample arterial or venous blood, may lead to excess phlebotomy; c) there is no validated procedure for continuously monitoring of BSL levels. This study used the MiniMed CGMS in ill patients at ICU to send, in real-time, BSL values to a Web-Based Electronic Patient Record. The BSL values are parsed and delivered through a wireless network as an HL7 message. The HL7 messages with BSL values are collected, stored into the Electronic Patient Record and presented into a bed-side monitor at the ICU together with other relevant patient information.

  9. Manufacture of electron beam irradiation vessel and its characteristics

    International Nuclear Information System (INIS)

    Kanazawa, Takao; Haruyama, Yasuyuki; Yotsumoto, Keiichi

    1992-05-01

    Electron beam irradiation vessel, which is used for the irradiation of samples under an inert or a vacuum atmosphere, is made by considering the temperature control during or after irradiation. The vessel was composed of the temperature controlable samples supporting plate, beam slit with water cooling plate and the insert of thermosensor. The four samples supporting plate was produced with the materials made up of aluminium, stainless steel (SUS304), and copper. The stainless steel supporting plate has a heater inside the cooling pipes for the high temperature treatment of samples without exposure to atmosphere after the irradiation. In this report, the temperature distribution and dose characteristics such as dose distribution and effects of backscattered electron were studied by using several supporting plate and the comparison of the experimental results with the simulated results was also carried out. (author)

  10. Models for formation and choice of variants for organizing digital electronics manufacturing

    Science.gov (United States)

    Korshunov, G. I.; Lapkova, M. Y.; Polyakov, S. L.; Frolova, E. A.

    2018-03-01

    The directions of organizing digital electronics manufacturing are considered by the example of surface mount technology. The basic equipment choice has to include not only individual characteristics, but also mutual influence of individual machines and the results of design for manufacturing. Application of special cases of the Utility function which are complicated in the general representation of polynomial functions are proposed for estimation of product quality in a staged automation.

  11. Design and evaluation of a wireless electronic health records system for field care in mass casualty settings.

    Science.gov (United States)

    Lenert, L A; Kirsh, D; Griswold, W G; Buono, C; Lyon, J; Rao, R; Chan, T C

    2011-01-01

    There is growing interest in the use of technology to enhance the tracking and quality of clinical information available for patients in disaster settings. This paper describes the design and evaluation of the Wireless Internet Information System for Medical Response in Disasters (WIISARD). WIISARD combined advanced networking technology with electronic triage tags that reported victims' position and recorded medical information, with wireless pulse-oximeters that monitored patient vital signs, and a wireless electronic medical record (EMR) for disaster care. The EMR system included WiFi handheld devices with barcode scanners (used by front-line responders) and computer tablets with role-tailored software (used by managers of the triage, treatment, transport and medical communications teams). An additional software system provided situational awareness for the incident commander. The WIISARD system was evaluated in a large-scale simulation exercise designed for training first responders. A randomized trial was overlaid on this exercise with 100 simulated victims, 50 in a control pathway (paper-based), and 50 in completely electronic WIISARD pathway. All patients in the electronic pathway were cared for within the WIISARD system without paper-based workarounds. WIISARD reduced the rate of the missing and/or duplicated patient identifiers (0% vs 47%, pwireless EMR systems for care of the victims of disasters would be complex to develop but potentially feasible to build and deploy, and likely to improve the quality of information available for the delivery of care during disasters.

  12. Metallization of bacterial cellulose for electrical and electronic device manufacture

    Science.gov (United States)

    Evans, Barbara R [Oak Ridge, TN; O'Neill, Hugh M [Knoxville, TN; Jansen, Valerie Malyvanh [Memphis, TN; Woodward, Jonathan [Knoxville, TN

    2010-09-28

    A method for the deposition of metals in bacterial cellulose and for the employment of the metallized bacterial cellulose in the construction of fuel cells and other electronic devices is disclosed. The method for impregnating bacterial cellulose with a metal comprises placing a bacterial cellulose matrix in a solution of a metal salt such that the metal salt is reduced to metallic form and the metal precipitates in or on the matrix. The method for the construction of a fuel cell comprises placing a hydrated bacterial cellulose support structure in a solution of a metal salt such that the metal precipitates in or on the support structure, inserting contact wires into two pieces of the metal impregnated support structure, placing the two pieces of metal impregnated support structure on opposite sides of a layer of hydrated bacterial cellulose, and dehydrating the three layer structure to create a fuel cell.

  13. Development strategy and process models for phased automation of design and digital manufacturing electronics

    Science.gov (United States)

    Korshunov, G. I.; Petrushevskaya, A. A.; Lipatnikov, V. A.; Smirnova, M. S.

    2018-03-01

    The strategy of quality of electronics insurance is represented as most important. To provide quality, the processes sequence is considered and modeled by Markov chain. The improvement is distinguished by simple database means of design for manufacturing for future step-by-step development. Phased automation of design and digital manufacturing electronics is supposed. The MatLab modelling results showed effectiveness increase. New tools and software should be more effective. The primary digital model is proposed to represent product in the processes sequence from several processes till the whole life circle.

  14. Wireless communication technology NFC

    OpenAIRE

    MÁROVÁ, Kateřina

    2014-01-01

    Aim of this bachelor thesis is to handle the issue of new wireless communication technology NFC (Near Field Communication) including a comparison of advantages and disadvantages of NFC with other wireless technologies (Bluetooth, Wi-Fi, etc.). NFC is a technology for wireless communications between different electronic devices, one of which is typically a mobile phone. Near Field Communication allows wireless communication at very short distance by approaching or enclosing two devices and can...

  15. Porous polymer composite membrane based nanogenerator: A realization of self-powered wireless green energy source for smart electronics applications

    Science.gov (United States)

    Ghosh, Sujoy Kumar; Sinha, Tridib Kumar; Mahanty, Biswajit; Jana, Santanu; Mandal, Dipankar

    2016-11-01

    An efficient, flexible and unvaryingly porous polymer composite membrane based nanogenerator (PPCNG) without any electrical poling treatment has been realised as wireless green energy source to power up smart electronic gadgets. Owing to self-polarized piezo- and ferro-electretic phenomenon of in situ platinum nanoparticles (Pt-NPs) doped porous poly(vinylidenefluoride-co-hexafluoropropylene)-membrane, a simple, inexpensive and scalable PPCNG fabrication is highlighted. The molecular orientations of the -CH2/-CF2 dipoles that cause self-polarization phenomenon has been realized by angular dependent near edge X-ray absorption fine structure spectroscopy. The square-like hysteresis loop with giant remnant polarization, Pr ˜ 68 μC/cm2 and exceptionally high piezoelectric charge coefficient, d33 ˜ - 836 pC/N promises a best suited ferro- and piezo-electretic membrane. The PPCNG exhibits a high electrical throughput such as, ranging from 2.7 V to 23 V of open-circuit voltage (Voc) and 2.9 μA to 24.7 μA of short-circuit current (Isc) under 0.5 MPa to 4.3 MPa of imparted stress amplitude by periodic human finger motion. The harvested mechanical and subsequent electrical energy by PPCNG is shown to transfer wirelessly via visible and infrared transmitter-receiver systems, where 17% and 49% of wireless power transfer efficiency, respectively, has been realized to power up several consumer electronics.

  16. Progress of alternative sintering approaches of inkjet-printed metal inks and their application for manufacturing of flexible electronic devices

    NARCIS (Netherlands)

    Wünscher, S.; Abbel, R.; Perelaer, J.; Schubert, U.S.

    2014-01-01

    Well-defined high resolution structures with excellent electrical conductivities are key components of almost every electronic device. Producing these by printing metal based conductive inks on polymer foils represents an important step forward towards the manufacturing of plastic electronic

  17. Electron beam curing — taking good ideas to the manufacturing floor

    Science.gov (United States)

    Saunders, C.; Lopata, V.; Barnard, J.; Stepanik, T.

    2000-03-01

    Acsion is exploiting several emerging electron beam EB applications ranging from composite curing and repair to viscose manufacturing. EB curing of composite structures offers several advantages: significantly reduced curing times; improvements in part quality and performance; reduced environmental and health concerns; improvements in material handling; and reduced overall manufacturing costs compared to thermal curing. The aerospace industry is developing EB technology in all of their market sectors, including military aviation and space products. Some specific products include cryogenic fuel tanks, improved canopy frames for jet aircraft, and the all-composite military aircraft. This paper discusses each of these opportunities.

  18. The benefit of manufacturing postponement in consumer electronics distribution and retailing

    DEFF Research Database (Denmark)

    Appelqvist, P.; Gubi, Ebbe

    2004-01-01

    is required to balance the savings in shops with additional efforts in product development and the complexity of maintaining additional supply chain concepts. The case company is a manufacturer of consumer electronics with over 1200 dedicated retail outlets worldwide. We first interviewed case company....... Results indicate that shop inventory is necessary for high-volume, low-variety products. Manufacturing postponement seems most beneficial when: 1) Customers require a delivery time that is too short to enable ship to order from a central location 2) Product value is high enough to justify additional...

  19. Dynamics of vendor innovation capability: Evidence from the Electronics Manufacturing Services industry

    DEFF Research Database (Denmark)

    Perunovic, Zoran; Mefford, Robert; Christoffersen, Mads

    2012-01-01

    and innovation. The first is the realization that vendor capabilities have been recognized as one of the most important factors for the success of outsourcing. The second refers to the fact that, even though innovation capability is required, vendors are still being selected, and their performance evaluated......, by traditional manufacturing capabilities, such as cost, quality, delivery, and flexibility. Taking a vendor’s perspective in outsourcing, we develop and present a conceptual framework for studying vendor innovation capability. We propose to test this framework in the Electronic Manufacturing Services Industry....

  20. 75 FR 13484 - Foreign-Trade Zone 22; Temporary/Interim Manufacturing Authority; LG Electronics Mobilecomm USA...

    Science.gov (United States)

    2010-03-22

    ... DEPARTMENT OF COMMERCE [Docket T-1-2010] Foreign-Trade Zones Board Foreign-Trade Zone 22; Temporary/Interim Manufacturing Authority; LG Electronics Mobilecomm USA, Inc. (Cell Phones); Notice of.../ interim manufacturing (T/IM) authority, on behalf of LG Electronics Mobilecomm USA, Inc. (LGEMU), to...

  1. A distributed system of wireless signs using Gyricon electronic paper displays

    Science.gov (United States)

    Sprague, Robert A.

    2006-04-01

    The proliferation of digital information is leading to a wide range of applications which make it desirable to display data easily in many locations, all changeable and updateable. The difficulty in achieving such ubiquitous displays is the cost of signage, the cost of installation, and the software and systems to control the information being sent to each of these signs. In this paper we will talk about a networked system of such signs which are made from gyricon electronic paper. Gyricon electronic paper is a reflective, bistable display which can be made in large web sheets at a reasonable price. Since it does not require a backlight nor does it require power to refresh the display image, such technology is ideal for making signs which can be run on batteries with extremely long battery life, often not needing replacement for years. The display also has a very broad illumination scattering profile which makes it readily viewable from any angle. The basic operating mechanism of the display, its manufacturing technique, and achieved performance will be described, along with the description of a networked solution using many such signs controlled with system software to identify speakers and meetings in conference rooms, hospitality suites, or classrooms in universities. Systems will also be shown which are adapted to retail pricing signage and others which can be used for large format outdoor billboards.

  2. Additive Manufacturing Processes: Selective Laser Melting, Electron Beam Melting and Binder Jetting—Selection Guidelines

    Science.gov (United States)

    Konda Gokuldoss, Prashanth; Kolla, Sri; Eckert, Jürgen

    2017-01-01

    Additive manufacturing (AM), also known as 3D printing or rapid prototyping, is gaining increasing attention due to its ability to produce parts with added functionality and increased complexities in geometrical design, on top of the fact that it is theoretically possible to produce any shape without limitations. However, most of the research on additive manufacturing techniques are focused on the development of materials/process parameters/products design with different additive manufacturing processes such as selective laser melting, electron beam melting, or binder jetting. However, we do not have any guidelines that discuss the selection of the most suitable additive manufacturing process, depending on the material to be processed, the complexity of the parts to be produced, or the design considerations. Considering the very fact that no reports deal with this process selection, the present manuscript aims to discuss the different selection criteria that are to be considered, in order to select the best AM process (binder jetting/selective laser melting/electron beam melting) for fabricating a specific component with a defined set of material properties. PMID:28773031

  3. Additive Manufacturing Processes: Selective Laser Melting, Electron Beam Melting and Binder Jetting-Selection Guidelines.

    Science.gov (United States)

    Gokuldoss, Prashanth Konda; Kolla, Sri; Eckert, Jürgen

    2017-06-19

    Additive manufacturing (AM), also known as 3D printing or rapid prototyping, is gaining increasing attention due to its ability to produce parts with added functionality and increased complexities in geometrical design, on top of the fact that it is theoretically possible to produce any shape without limitations. However, most of the research on additive manufacturing techniques are focused on the development of materials/process parameters/products design with different additive manufacturing processes such as selective laser melting, electron beam melting, or binder jetting. However, we do not have any guidelines that discuss the selection of the most suitable additive manufacturing process, depending on the material to be processed, the complexity of the parts to be produced, or the design considerations. Considering the very fact that no reports deal with this process selection, the present manuscript aims to discuss the different selection criteria that are to be considered, in order to select the best AM process (binder jetting/selective laser melting/electron beam melting) for fabricating a specific component with a defined set of material properties.

  4. Structure and properties of parts produced by electron-beam additive manufacturing

    Science.gov (United States)

    Klimenov, Vasilii; Klopotov, Anatolii; Fedorov, Vasilii; Abzaev, Yurii; Batranin, Andrey; Kurgan, Kirill; Kairalapov, Daniyar

    2017-12-01

    The paper deals with the study of structure, microstructure, composition and microhardness of a tube processed by electron-beam additive manufacturing using optical and scanning electron microscopy. The structure and macrodefects of a tube made of Grade2 titanium alloy is studied using the X-ray computed tomography. The principles of layer-by-layer assembly and boundaries after powder sintering are set out in this paper. It is found that the titanium alloy has two phases. Future work will involve methods to improve properties of created parts.

  5. Design and Implementation of Electronic Batch Record Systems for Pharmaceutical Manufacturing Documentation

    International Nuclear Information System (INIS)

    Abdul Jalil Abd Hamid; Shafii Khamis; Rehir Dahalan

    2011-01-01

    Paper batch records have been used for decades to record procedures, the types and quantities of each material used, and the status of each step in the manufacturing process for both pharmaceuticals and medical devices. Although paper batch records are well established in its implementation, the system is laborious to maintain and prone to human error, particularly as manufacturing operations become increasingly complicated. Many pharmaceutical manufacturers are currently evaluating the feasibility of Electronic Batch Record (EBR) system. An integrated EBR system has been developed by Medical Technology Division of Nuclear Malaysia to monitor process and equipment used in the manufacture of pharmaceuticals and medical devices. The system architecture consists of an iPAN7 data processing system operating under Microsoft Windows Embedded CE 6.0 R2. The system serves as a common data bank and an input/output device for the iPAN7 processors. Full traceability from component material to finished product is maintained. Properly implemented, EBR eliminate paperwork, speed up information distribution, and provide useful tools for improving quality and efficiency. This paper discusses the general system requirements and specifications along with the hardware and software required to implement those requirements and specifications. Also discussed are problems which were encountered after initial development and plans for future development, and a plan for extending and commercializing this technology. (author)

  6. A taxonomy of green supply chain management capability among electronics-related manufacturing firms in Taiwan.

    Science.gov (United States)

    Shang, Kuo-Chung; Lu, Chin-Shan; Li, Shaorui

    2010-05-01

    This study investigated crucial green supply chain management (GSCM) capability dimensions and firm performance based on electronics-related manufacturing firms in Taiwan. On the basis of a factor analysis, six green supply chain management dimensions were identified: green manufacturing and packaging, environmental participation, green marketing, green suppliers, green stock, and green eco-design. According to their factor scores in the GSCM dimensions, a cluster analysis subsequently assigned responding firms into four groups, namely, the weak GSCM oriented group, the green marketing oriented group, the green supplier oriented group, and the green stock oriented group. Differences in firm performance and GSCM dimensions among groups were examined. Results indicated that the green marketing oriented group performed best. Based on the resource-based view (RBV), the capability of the green marketing oriented group was considered to be the deployment of a collection of resources that enables it to successfully compete against rivals. The importance of green marketing as a GSCM capability and strategic asset/critical resources for electronics-related manufacturing firms to obtain a competitive edge is therefore highlighted in this study. Copyright 2010 Elsevier Ltd. All rights reserved.

  7. Properties of Inconel 625 mesh structures grown by electron beam additive manufacturing

    International Nuclear Information System (INIS)

    List, F.A.; Dehoff, R.R.; Lowe, L.E.; Sames, W.J.

    2014-01-01

    Relationships between electron beam parameters (beam current, beam speed, and beam focus) and physical properties (mass, diameter, elastic modulus, and yield strength) have been investigated for Inconel 625 mesh cubes fabricated using an additive manufacturing technology based on electron beam melting. The elastic modulus and yield strength of the mesh cubes have been systematically varied by approximately a factor of ten by changing the electron beam parameters. Simple models have been used to understand these relationships. Structural anisotropies of the mesh associated with the layered build architecture have been observed and may contribute, along with microstructural anisotropies, to the anisotropic mechanical properties of the mesh. Knowledge of this kind is likely applicable to other metal and alloy systems and is essential to rapidly realize the full potential of this burgeoning technology

  8. Properties of Inconel 625 mesh structures grown by electron beam additive manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    List, F.A., E-mail: listfaiii@ornl.gov [Oak Ridge National Laboratory, 1 Bethel Valley Rd., Oak Ridge, TN (United States); Dehoff, R.R.; Lowe, L.E. [Oak Ridge National Laboratory, 1 Bethel Valley Rd., Oak Ridge, TN (United States); Sames, W.J. [Texas A and M University, College Station, TX (United States)

    2014-10-06

    Relationships between electron beam parameters (beam current, beam speed, and beam focus) and physical properties (mass, diameter, elastic modulus, and yield strength) have been investigated for Inconel 625 mesh cubes fabricated using an additive manufacturing technology based on electron beam melting. The elastic modulus and yield strength of the mesh cubes have been systematically varied by approximately a factor of ten by changing the electron beam parameters. Simple models have been used to understand these relationships. Structural anisotropies of the mesh associated with the layered build architecture have been observed and may contribute, along with microstructural anisotropies, to the anisotropic mechanical properties of the mesh. Knowledge of this kind is likely applicable to other metal and alloy systems and is essential to rapidly realize the full potential of this burgeoning technology.

  9. Highly Manufacturable Deep (Sub-Millimeter) Etching Enabled High Aspect Ratio Complex Geometry Lego-Like Silicon Electronics

    KAUST Repository

    Ghoneim, Mohamed T.; Hussain, Muhammad Mustafa

    2017-01-01

    A highly manufacturable deep reactive ion etching based process involving a hybrid soft/hard mask process technology shows high aspect ratio complex geometry Lego-like silicon electronics formation enabling free-form (physically flexible

  10. [Occupational stress and early health effects in migrant workers in an electronics manufacturing service enterprise].

    Science.gov (United States)

    Liu, X M; Li, S; Zhang, Q Y; Wang, C; Ji, Y Q; Wang, J; Shi, J

    2016-10-20

    Objective: To investigate occupational stress in migrant workers in an electronics manufacturing service enterprise and the association between occupational stress and early health effects, such as job burnout, depressive tendency, and insomnia. Methods: In August 2015, stratified random cluster sampling was used to select 1 097 migrant workers in an electronics manufacturing service enterprise. The Job Demand-Autonomy Questionnaire and effort-reward imbalance questionnaire were used to investigate occupational stress with the types of high workload and effort-reward imbalance, and Burnout Inventory, depression scale, and self-management sleep questionnaire were used to investigate the early health effects of occupational stress. Results: In these migrant workers, the detection rates of occupational stress with the types of high workload and effort-reward imbalance were 69.8%(766/1 097) and 11.9%(131/1 097). The multivariate logistic regression analysis showed that the workers who had occupational stress with the types of high workload and effort-reward imbalance had significantly higher risks of job burnout and depressive tendencies than those who did not have these two types of occupational stress ( P workers who had occupational stress with the type of effort-reward imbalance had a significantly higher ability to predict the risks of job burnout and depressive tendencies than those who had occupational stress with the type of high workload ( P health effects, such as job burnout, depressive tendency, and insomnia, in the migrant workers in this electronics manufacturing service enterprise. The workers who have occupational stress with the type of effort-reward imbalance have higher risks of job burnout and depressive tendencies than those who have occupational stress with the type of high workload.

  11. Carbon doped PDMS: conductance stability over time and implications for additive manufacturing of stretchable electronics

    International Nuclear Information System (INIS)

    Tavakoli, Mahmoud; Rocha, Rui; Osorio, Luis; Almeida, Miguel; De Almeida, Anibal; Ramachandran, Vivek; Tabatabai, Arya; Lu, Tong; Majidi, Carmel

    2017-01-01

    Carbon doped PDMS (cPDMS), has been used as a conductive polymer for stretchable electronics. Compared to liquid metals, cPDMS is low cost and is easier to process or to print with an additive manufacturing process. However, changes on the conductance of the carbon based conductive PDMS (cPDMS) were observed over time, in particular after integration of cPDMS and the insulating polymer. In this article we investigate the process parameters that lead to improved stability over conductance of the cPDMS over time. Slight modifications to the fabrication process parameters were conducted and changes on the conductance of the samples for each method were monitored. Results suggested that change of the conductance happens mostly after integration of a pre-polymer over a cured cPDMS, and not after integration of the cPDMS over a cured insulating polymer. We show that such changes can be eliminated by adjusting the integration priority between the conductive and insulating polymers, by selecting the right curing temperature, changing the concentration of the carbon particles and the thickness of the conductive traces, and when possible by changing the insulating polymer material. In this way, we obtained important conclusions regarding the effect of these parameters on the change of the conductance over time, that should be considered for additive manufacturing of soft electronics. Also, we show that these changes can be possibly due to the diffusion from PDMS into cPDMS. (paper)

  12. Characterization of Ti-6Al-4V produced via electron beam additive manufacturing

    Science.gov (United States)

    Hayes, Brian J.

    In recent years, additive manufacturing (AM) has become an increasingly promising method used for the production of structural metallic components. There are a number of reasons why AM methods are attractive, including the ability to produce complex geometries into a near-net shape and the rapid transition from design to production. Ti-6Al-4V is a titanium alloy frequently used in the aerospace industry which is receiving considerable attention as a good candidate for processing via electron beam additive manufacturing (EBAM). The Sciaky EBAM method combines a high-powered electron beam, weld-wire feedstock, and a large build chamber, enabling the production of large structural components. In order to gain wide acceptance of EBAM of Ti-6Al-4V as a viable manufacturing method, it is important to understand broadly the microstructural features that are present in large-scale depositions, including specifically: the morphology, distribution and texture of the phases present. To achieve such an understanding, stereological methods were used to populate a database quantifying key microstructural features in Ti-6Al-4V including volume fraction of phases, alpha lath width, colony scale factor, and volume fraction of basket weave type microstructure. Microstructural features unique to AM, such as elongated grains and banded structures, were also characterized. Hardness and tensile testing were conducted and the results were related to the microstructural morphology and sample orientation. Lastly, fractured surfaces and defects were investigated. The results of these activities provide insight into the process-structure-properties relationships found in EBAM processed Ti-6Al-4V.

  13. Integrating Hazardous Materials Characterization and Assessment Tools to Guide Pollution Prevention in Electronic Products and Manufacturing

    Science.gov (United States)

    Lam, Carl

    Due to technology proliferation, the environmental burden attributed to the production, use, and disposal of hazardous materials in electronics have become a worldwide concern. The major theme of this dissertation is to develop and apply hazardous materials assessment tools to systematically guide pollution prevention opportunities in the context of electronic product design, manufacturing and end-of-life waste management. To this extent, a comprehensive review is first provided on describing hazard traits and current assessment methods to evaluate hazardous materials. As a case study at the manufacturing level, life cycle impact assessment (LCIA)-based and risk-based screening methods are used to quantify chemical and geographic environmental impacts in the U.S. printed wiring board (PWB) industry. Results from this industrial assessment clarify priority waste streams and States to most effectively mitigate impact. With further knowledge of PWB manufacturing processes, select alternative chemical processes (e.g., spent copper etchant recovery) and material options (e.g., lead-free etch resist) are discussed. In addition, an investigation on technology transition effects for computers and televisions in the U.S. market is performed by linking dynamic materials flow and environmental assessment models. The analysis forecasts quantities of waste units generated and maps shifts in environmental impact potentials associated with metal composition changes due to product substitutions. This insight is important to understand the timing and waste quantities expected and the emerging toxic elements needed to be addressed as a consequence of technology transition. At the product level, electronic utility meter devices are evaluated to eliminate hazardous materials within product components. Development and application of a component Toxic Potential Indicator (TPI) assessment methodology highlights priority components requiring material alternatives. Alternative

  14. Chromium Waste Treatment from Leather Manufacture Using Electron Beam Radiation Technic

    International Nuclear Information System (INIS)

    Didiek Herhady, R.; Sukarsono, R.

    2007-01-01

    Leather manufacture chromium waste treatment using chemical methods have an essential disadvantage, because of the production of the secondary contamination of wastes and separated sediments used by reagents. Therefore, a new technique is needed to solve this problem. The aim of the research to learn the advantages of electron beam radiation for chromium waste treatment. Water radiolysis can be produced by the interaction between electron beam and water or liquid substances. This phenomenon produces many reducing agents and ions that could reduce chromium concentrations in the liquid waste. Ethyl alcohol as a scavenger was added in the waste samples, then the pH of varied from 1, 4, 8 to 12, then were irradiated. Irradiation were done by Electron Beam Machine with dose 15, 25, and 35 kGy. After irradiation, chromium concentration in the samples were analyzed by AAS and UV-vis spectrophotometer. The results had shown that chromium could be reduced by high dose electron beam. The optimum reduction of chromium was achieved at liquid waste pH 8 and irradiation dose 35 kGy. (author)

  15. An electronic-nose sensor node based on a polymer-coated surface acoustic wave array for wireless sensor network applications.

    Science.gov (United States)

    Tang, Kea-Tiong; Li, Cheng-Han; Chiu, Shih-Wen

    2011-01-01

    This study developed an electronic-nose sensor node based on a polymer-coated surface acoustic wave (SAW) sensor array. The sensor node comprised an SAW sensor array, a frequency readout circuit, and an Octopus II wireless module. The sensor array was fabricated on a large K(2) 128° YX LiNbO3 sensing substrate. On the surface of this substrate, an interdigital transducer (IDT) was produced with a Cr/Au film as its metallic structure. A mixed-mode frequency readout application specific integrated circuit (ASIC) was fabricated using a TSMC 0.18 μm process. The ASIC output was connected to a wireless module to transmit sensor data to a base station for data storage and analysis. This sensor node is applicable for wireless sensor network (WSN) applications.

  16. An Electronic-Nose Sensor Node Based on a Polymer-Coated Surface Acoustic Wave Array for Wireless Sensor Network Applications

    Science.gov (United States)

    Tang, Kea-Tiong; Li, Cheng-Han; Chiu, Shih-Wen

    2011-01-01

    This study developed an electronic-nose sensor node based on a polymer-coated surface acoustic wave (SAW) sensor array. The sensor node comprised an SAW sensor array, a frequency readout circuit, and an Octopus II wireless module. The sensor array was fabricated on a large K2 128° YX LiNbO3 sensing substrate. On the surface of this substrate, an interdigital transducer (IDT) was produced with a Cr/Au film as its metallic structure. A mixed-mode frequency readout application specific integrated circuit (ASIC) was fabricated using a TSMC 0.18 μm process. The ASIC output was connected to a wireless module to transmit sensor data to a base station for data storage and analysis. This sensor node is applicable for wireless sensor network (WSN) applications. PMID:22163865

  17. An Electronic-Nose Sensor Node Based on a Polymer-Coated Surface Acoustic Wave Array for Wireless Sensor Network Applications

    Directory of Open Access Journals (Sweden)

    Kea-Tiong Tang

    2011-04-01

    Full Text Available This study developed an electronic-nose sensor node based on a polymer-coated surface acoustic wave (SAW sensor array. The sensor node comprised an SAW sensor array, a frequency readout circuit, and an Octopus II wireless module. The sensor array was fabricated on a large K2 128° YX LiNbO3 sensing substrate. On the surface of this substrate, an interdigital transducer (IDT was produced with a Cr/Au film as its metallic structure. A mixed-mode frequency readout application specific integrated circuit (ASIC was fabricated using a TSMC 0.18 μm process. The ASIC output was connected to a wireless module to transmit sensor data to a base station for data storage and analysis. This sensor node is applicable for wireless sensor network (WSN applications.

  18. Highly Manufacturable Deep (Sub-Millimeter) Etching Enabled High Aspect Ratio Complex Geometry Lego-Like Silicon Electronics.

    Science.gov (United States)

    Ghoneim, Mohamed Tarek; Hussain, Muhammad Mustafa

    2017-04-01

    A highly manufacturable deep reactive ion etching based process involving a hybrid soft/hard mask process technology shows high aspect ratio complex geometry Lego-like silicon electronics formation enabling free-form (physically flexible, stretchable, and reconfigurable) electronic systems. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Highly Manufacturable Deep (Sub-Millimeter) Etching Enabled High Aspect Ratio Complex Geometry Lego-Like Silicon Electronics

    KAUST Repository

    Ghoneim, Mohamed T.

    2017-02-01

    A highly manufacturable deep reactive ion etching based process involving a hybrid soft/hard mask process technology shows high aspect ratio complex geometry Lego-like silicon electronics formation enabling free-form (physically flexible, stretchable, and reconfigurable) electronic systems.

  20. Analysis of the effect of the Electron-Beam welding sequence for a fixed manufacturing route using finite element simulations applied to ITER vacuum vessel manufacture

    Energy Technology Data Exchange (ETDEWEB)

    Martín-Menéndez, Cristina, E-mail: cristina@natec-ingenieros.com [Numerical Analysis Technologies, S.L. Marqués de San Esteban No. 52, 33206 Gijón (Spain); Rodríguez, Eduardo [Department of Mechanical Engineering, University of Oviedo, Campus de Gijón, 33203 Gijón (Spain); Ottolini, Marco [Ansaldo Nucleare S.p.A., Corso Perrone 25, 16152 Genova (Italy); Caixas, Joan [F4E, c/Josep Pla, n.2, Torres Diagonal Litoral, Edificio B3, E-08019 Barcelona (Spain); Guirao, Julio [Numerical Analysis Technologies, S.L. Marqués de San Esteban No. 52, 33206 Gijón (Spain)

    2016-03-15

    Highlights: • The simulation methodology employed in this paper is able to adapt inside a complex manufacturing route. • The effect of the sequence is lower in a highly constrained assembly than in a lowly constrained one. • The most relevant influence on the distortions is the jigs design, instead of the welding sequence. • The welding distortion analysis should be used as a guidance to design and improve the manufacturing strategy. - Abstract: The ITER Vacuum Vessel Sectors have very tight tolerances and high density of welding. Therefore, prediction and reduction of welding distortion are critical to allow the final assembly with the other Vacuum Vessel Sectors without the production of a full scale prototype. In this paper, the effect of the welding sequence in the distortions inside a fixed manufacturing route and in a highly constrained assembly is studied in the poloidal segment named inboard (PS1). This is one of the four poloidal segments (PS) assembled for the sector. Moreover, some restrictions and limitations in the welding sequence related to the manufacturing process are explained. The results obtained show that the effect of the sequence is lower in a highly constrained assembly than in a low constrained one. A prototype manufactured by AMW consortium (PS1 mock-up) is used in order to validate the finite element method welding simulation employed. The obtained results confirmed that for Electron-Beam welds, both the welding simulation and the mock-up show a low value of distortions.

  1. Wireless electronic-tattoo for long-term high fidelity facial muscle recordings

    Science.gov (United States)

    Inzelberg, Lilah; David Pur, Moshe; Steinberg, Stanislav; Rand, David; Farah, Maroun; Hanein, Yael

    2017-05-01

    Facial surface electromyography (sEMG) is a powerful tool for objective evaluation of human facial expressions and was accordingly suggested in recent years for a wide range of psychological and neurological assessment applications. Owing to technical challenges, in particular the cumbersome gelled electrodes, the use of facial sEMG was so far limited. Using innovative facial temporary tattoos optimized specifically for facial applications, we demonstrate the use of sEMG as a platform for robust identification of facial muscle activation. In particular, differentiation between diverse facial muscles is demonstrated. We also demonstrate a wireless version of the system. The potential use of the presented technology for user-experience monitoring and objective psychological and neurological evaluations is discussed.

  2. The Effect of Ultrasonic Additive Manufacturing on Integrated Printed Electronic Conductors

    Science.gov (United States)

    Bournias-Varotsis, Alkaios; Wang, Shanda; Hutt, David; Engstrøm, Daniel S.

    2018-03-01

    Ultrasonic additive manufacturing (UAM) is a low temperature manufacturing method capable of embedding printed electronics in metal components. The effect of UAM processing on the resistivity of conductive tracks printed with five different conductive pastes based on silver, copper or carbon flakes/particles in either a thermoplastic or thermoset filler binder are investigated. For all but the carbon-based paste, the resistivity changed linearly with the UAM energy input. After UAM processing, a resistivity increase of more than 150 times was recorded for the copper based thermoset paste. The silver based pastes showed a resistivity increase of between 1.1 and 50 times from their initial values. The carbon-based paste showed no change in resistivity after UAM processing. Focussed ion beam microstructure analysis of the printed conductive tracks before and after UAM processing showed that the silver particles and flakes in at least one of the pastes partly dislodged from their thermoset filler creating voids, thereby increasing the resistivity, whereas the silver flakes in a thermoplastic filler did not dislodge due to material flow of the polymer binder. The lowest resistivity (8 × 10-5 Ω cm) after UAM processing was achieved for a thermoplastic paste with silver flakes at low UAM processing energy.

  3. Transportation Accessibility and Location Choice of Japanese-Funded Electronic Information Manufacturing Firms in Shanghai

    Directory of Open Access Journals (Sweden)

    Haining Jiang

    2018-02-01

    Full Text Available With the rapid development of globalization, information communication and transportation, it is argued that the effect of transportation accessibility in the location choice of manufacturing firms has diminished. However, comprehensive and systematic research on the impact of transportation accessibility on firm location choice in cities remains scarce. Taking Shanghai as the research area, this paper uses a catalog of Japanese-funded electronic information manufacturing firms to explore the influence of transportation accessibility on their location choice. The paper first describes firm distribution using the nuclear density estimation method. The Poisson regression model is then used to estimate the significance of transportation accessibility in influencing firm location. The empirical results show that most of the firms are concentrated in the inner suburbs of Shanghai, with only a small number in the outer suburban areas. The spatial coupling relationship between firm distribution and transportation accessibility is significant. These firms tend to choose areas with good accessibility to transportation infrastructure, and, in particular, the effect of airport accessibility is significant. Compared with the joint venture enterprises, wholly-owned Japanese enterprises are more inclined to be in areas with better transportation accessibility.

  4. The Effect of Ultrasonic Additive Manufacturing on Integrated Printed Electronic Conductors

    Science.gov (United States)

    Bournias-Varotsis, Alkaios; Wang, Shanda; Hutt, David; Engstrøm, Daniel S.

    2018-07-01

    Ultrasonic additive manufacturing (UAM) is a low temperature manufacturing method capable of embedding printed electronics in metal components. The effect of UAM processing on the resistivity of conductive tracks printed with five different conductive pastes based on silver, copper or carbon flakes/particles in either a thermoplastic or thermoset filler binder are investigated. For all but the carbon-based paste, the resistivity changed linearly with the UAM energy input. After UAM processing, a resistivity increase of more than 150 times was recorded for the copper based thermoset paste. The silver based pastes showed a resistivity increase of between 1.1 and 50 times from their initial values. The carbon-based paste showed no change in resistivity after UAM processing. Focussed ion beam microstructure analysis of the printed conductive tracks before and after UAM processing showed that the silver particles and flakes in at least one of the pastes partly dislodged from their thermoset filler creating voids, thereby increasing the resistivity, whereas the silver flakes in a thermoplastic filler did not dislodge due to material flow of the polymer binder. The lowest resistivity (8 × 10-5 Ω cm) after UAM processing was achieved for a thermoplastic paste with silver flakes at low UAM processing energy.

  5. Additive manufacturing of a high niobium-containing titanium aluminide alloy by selective electron beam melting

    International Nuclear Information System (INIS)

    Tang, H.P.; Yang, G.Y.; Jia, W.P.; He, W.W.; Lu, S.L.; Qian, M.

    2015-01-01

    Additive manufacturing (AM) offers a radical net-shape manufacturing approach for titanium aluminide alloys but significant challenges still remain. A study has been made of the AM of a high niobium-containing titanium aluminide alloy (Ti–45Al–7Nb–0.3W, in at% throughout the paper) using selective electron beam melting (SEBM). The formation of various types of microstructural defects, including banded structures caused by the vaporization of aluminum, was investigated with respect to different processing parameters. To avoid both micro- and macro-cracks, the use of higher preheating temperatures and an intermediate reheating process (to reheat each solidified layer during SEBM) was assessed in detail. These measures enabled effective release of the thermal stress that developed during SEBM and therefore the avoidance of cracks. In addition, the processing conditions for the production of a fine full lamellar microstructure were identified. As a result, the Ti–45Al–7Nb–0.3W alloy fabricated showed outstanding properties (compression strength: 2750 MPa; strain-to-fracture: 37%). SEBM can be used to fabricate high performance titanium aluminide alloys with appropriate processing parameters and pathways

  6. Additive manufacturing of a high niobium-containing titanium aluminide alloy by selective electron beam melting

    Energy Technology Data Exchange (ETDEWEB)

    Tang, H.P., E-mail: thpfys@126.com [State Key Laboratory of Porous Metal Materials, Northwest Institute for Nonferrous Metal Research, Xi' an 710016 (China); Yang, G.Y.; Jia, W.P.; He, W.W.; Lu, S.L. [State Key Laboratory of Porous Metal Materials, Northwest Institute for Nonferrous Metal Research, Xi' an 710016 (China); Qian, M., E-mail: ma.qian@rmit.edu.au [State Key Laboratory of Porous Metal Materials, Northwest Institute for Nonferrous Metal Research, Xi' an 710016 (China); RMIT University, School of Aerospace, Mechanical and Manufacturing Engineering, Centre for Additive Manufacturing, Melbourne, VIC 3001 (Australia)

    2015-06-11

    Additive manufacturing (AM) offers a radical net-shape manufacturing approach for titanium aluminide alloys but significant challenges still remain. A study has been made of the AM of a high niobium-containing titanium aluminide alloy (Ti–45Al–7Nb–0.3W, in at% throughout the paper) using selective electron beam melting (SEBM). The formation of various types of microstructural defects, including banded structures caused by the vaporization of aluminum, was investigated with respect to different processing parameters. To avoid both micro- and macro-cracks, the use of higher preheating temperatures and an intermediate reheating process (to reheat each solidified layer during SEBM) was assessed in detail. These measures enabled effective release of the thermal stress that developed during SEBM and therefore the avoidance of cracks. In addition, the processing conditions for the production of a fine full lamellar microstructure were identified. As a result, the Ti–45Al–7Nb–0.3W alloy fabricated showed outstanding properties (compression strength: 2750 MPa; strain-to-fracture: 37%). SEBM can be used to fabricate high performance titanium aluminide alloys with appropriate processing parameters and pathways.

  7. Characterization of titanium aluminide alloy components fabricated by additive manufacturing using electron beam melting

    International Nuclear Information System (INIS)

    Murr, L.E.; Gaytan, S.M.; Ceylan, A.; Martinez, E.; Martinez, J.L.; Hernandez, D.H.; Machado, B.I.; Ramirez, D.A.; Medina, F.; Collins, S.; Wicker, R.B.

    2010-01-01

    Intermetallic, γ-TiAl, equiaxed, small-grain (∼2 μm) structures with lamellar γ/α 2 -Ti 3 Al colonies with average spacing of 0.6 μm have been fabricated by additive manufacturing using electron beam melting (EBM) of precursor, atomized powder. The residual microindentation (Vickers) hardness (HV) averaged 4.1 GPa, corresponding to a nominal yield strength of ∼1.4 GPa (∼HV/3), and a specific yield strength of 0.37 GPa cm 3 g -1 (for a density of 3.76 g cm -3 ), in contrast to 0.27 GPa cm 3 g -1 for EBM-fabricated Ti-6Al-4V components. These results demonstrate the potential to fabricate near net shape and complex titanium aluminide products directly using EBM technology in important aerospace and automotive applications.

  8. Manufacturing of a superconducting magnet system for 28 GHz electron cyclotron resonance ion source at KBSI.

    Science.gov (United States)

    Lee, B S; Choi, S; Yoon, J H; Park, J Y; Won, M S

    2012-02-01

    A magnet system for a 28 GHz electron cyclotron resonance ion source is being developed by the Korea Basic Science Institute. The configuration of the magnet system consists of 3 solenoid coils for a mirror magnetic field and 6 racetrack coils for a hexapole magnetic field. They can generate axial magnetic fields of 3.6 T at the beam injection part and 2.2 T at the extraction part. A radial magnetic field of 2.1 T is achievable at the plasma chamber wall. A step type winding process was employed in fabricating the hexapole coil. The winding technique was confirmed through repeated cooling tests. Superconducting magnets and a cryostat system are currently being manufactured.

  9. Surface modification of additive manufactured metal products by an intense electron beam

    Science.gov (United States)

    Teresov, A. D.; Koval, N. N.; Ivanov, Yu F.; Petrikova, E. A.; Krysina, O. V.

    2017-11-01

    On the example of VT6 titanium alloy it is shown that successive surface modification of additive manufactured metal specimens in vacuum at an argon pressure of 3.5·10-2 by ten pulses with 200 μs, 45 J/cm2 and then by three pulses with 50 μm, 20 J/cm2 provides a considerable decrease in their porosity and surface roughness (20 times for Ra) while their surface microhardness, friction coefficient, and wear level remain almost unchanged. After electron beam irradiation, the ultimate tensile strength of the material increases 1.33 times, and its tensile strain 1.18 times. For specimens obtained by conventional metallurgy and irradiated in the same modes, no such effects are observed.

  10. An analysis of vendor innovation capability in the contract electronics manufacturing industry

    DEFF Research Database (Denmark)

    Perunovic, Zoran; Mefford, Robert; Christoffersen, Mads

    2016-01-01

    the contract, vendors can use different configurations of the competitive priorities of cost, quality, delivery and flexibility. The research aggregates the capabilities that influence the innovative capability of a vendor into the innovation-related capabilities (IRCs) of design, new product introduction......Limited academic research has been given to analysing the innovation capabilities of vendors in outsourcing contracts. This paper seeks to address this gap in the literature by enhancing our understanding of how the innovation capability of vendors is deployed to win, run and renew outsourcing...... contracts with their customers. Employing the resource-based view as a theoretical basis and undertaking in-depth case study analysis of three vendors in the electronic manufacturing services industry, the research shows that to achieve the outsourcing objectives of winning, running and renewing...

  11. Industrial assessment of radiofrequency and microwave radiations: case study at electronic manufacturing industries in Penang

    International Nuclear Information System (INIS)

    Mohd Zaid Abdullah

    1996-01-01

    In electronic manufacturing industry, the applications of an equipment emitting radiofrequency radiation (RFR) are numerous and Increasing. It is known that exposure to RFR at sufficiently high intensity and duration can produce a variety of adverse health effects. This paper presents some results from an extensive studies in the RFR field measurements at frequency range from 100 MHz to 1 GHz. All measurements were performed inside factories located at the Penang Free Trade Zone. In this case, the factories chosen are those that manufacture the electronic components whereby the applications of RFR equipment are likely to be intensive compared to other type of industries. The measurement system used in this study are the portable spectrum-analyzer, the passive log-periodic antenna and a desktop computer for data analysis. Results from this study have indicated that the RFR exposure levels in most factories are in the range of 7.7 x 10 sup -4 - 4.31 x 10 sup -3 Wm sup -2 and 0.01 - 0. 741 Vm sup -1 for power density and electric strength measurement respectively. These ranges are at least 100 times lower compared to the RFR protection guidelines proposed by the American National Standard Institute (ANSI). However, the exposure levels inside the factory are consistently 10 sup -3 - 10 sup -4 higher than the levels caused by natural sources and is about 10 sup 2 - 10 sup 6 higher than the levels measured at a distance of 30 m from a low-power output mobile phone transmitter. In the case of the health effect assessment, no sufficient evidence has been found to indicate the potential consequences resulting from excessive RFR exposure. Nonetheless, many factories surveyed are unaware of the existence of the international guidelines and codes on the safe use of radiofrequency energy even though, some measures are being taken to protect their employees against RFR

  12. Increasing supplemental nutrition assistance program/electronic benefits transfer sales at farmers' markets with vendor-operated wireless point-of-sale terminals.

    Science.gov (United States)

    Buttenheim, Alison M; Havassy, Joshua; Fang, Michelle; Glyn, Jonathan; Karpyn, Allison E

    2012-05-01

    Supplemental Nutrition Assistance Program (SNAP) (formerly Food Stamp Program) participants can use their benefits at many farmers' markets. However, most markets have only one market-operated wireless point-of-sale (POS) card swipe terminal for electronic benefits transfer (EBT) transactions. It is not known whether providing each farmer/vendor with individual wireless POS terminals and subsidizing EBT fees will increase SNAP/EBT purchases at farmers' markets. To evaluate the effects of multiple vendor-operated wireless POS terminals (vs a single market-operated terminal) on use of SNAP benefits at an urban farmers' market. Time-series analyses of SNAP/EBT sales. The Clark Park farmers' market in West Philadelphia, PA, which accounts for one quarter of all SNAP/EBT sales at farmers' markets in Pennsylvania. Vendors were provided with individual wireless POS terminals for 9 months (June 2008-February 2009.) The pilot program covered all equipment and wireless service costs and transaction fees associated with SNAP/EBT, credit, and debit sales. Monthly SNAP/EBT sales at the Clark Park farmers' market. SNAP/EBT sales data were collected for 48 months (January 2007-December 2010). Time-series regression analysis was used to estimate the effect of the intervention period (June 2008-February 2009) on SNAP/EBT sales, controlling for seasonal effects and total SNAP benefits issued in Philadelphia. The intervention was associated with a 38% increase in monthly SNAP/EBT sales. Effects were greatest during the busy fall market seasons. SNAP/EBT sales did not remain significantly higher after the intervention period. Providing individual wireless POS terminals to farmers' market vendors leads to increased sales. However, market vendors indicated that subsidies for equipment costs and fees would be needed to break even. Currently, SNAP provides some support for these services for supermarket and other SNAP retailers with landline access, but not for farmers' markets. Copyright

  13. A Wireless and Portable Electronic Nose to Differentiate Musts of Different Ripeness Degree and Grape Varieties

    Directory of Open Access Journals (Sweden)

    Manuel Aleixandre

    2015-04-01

    Full Text Available Two novel applications using a portable and wireless sensor system (e-nose for the wine producing industry—The recognition and classification of musts coming from different grape ripening times and from different grape varieties—Are reported in this paper. These applications are very interesting because a lot of varieties of grapes produce musts with low and similar aromatic intensities so they are very difficult to distinguish using a sensory panel. Therefore the system could be used to monitor the ripening evolution of the different types of grapes and to assess some useful characteristics, such as the identification of the grape variety origin and to prediction of the wine quality. Ripening grade of collected samples have been also evaluated by classical analytical techniques, measuring physicochemical parameters, such as, pH, Brix, Total Acidity (TA and Probable Grade Alcoholic (PGA. The measurements were carried out for two different harvests, using different red (Barbera, Petit Verdot, Tempranillo, and Touriga and white (Malvar, Malvasía, Chenin Blanc, and Sauvignon Blanc grape musts coming from the experimental cellar of the IMIDRA at Madrid. Principal Component Analysis (PCA and Probabilistic Neural Networks (PNN have been used to analyse the obtained data by e-nose. In addition, and the Canonical Correlation Analysis (CCA method has been carried out to correlate the results obtained by both technologies.

  14. Open-cellular copper structures fabricated by additive manufacturing using electron beam melting

    International Nuclear Information System (INIS)

    Ramirez, D.A.; Murr, L.E.; Li, S.J.; Tian, Y.X.; Martinez, E.; Martinez, J.L.; Machado, B.I.; Gaytan, S.M.; Medina, F.; Wicker, R.B.

    2011-01-01

    Highlights: → Relative stiffness versus relative density measurements for reticulated mesh and stochastic open cellular copper were shown to follow the Gibson-Ashby foam model. → Microstructures for the mesh struts and foam ligaments illustrated a propensity of copper oxide precipitates which provided structural hardness and strength. → These components, fabricated by electron beam melting, exhibit interesting prospects for specialized, complex heat-transfer devices. - Abstract: Cu reticulated mesh and stochastic open cellular foams were fabricated by additive manufacturing using electron beam melting. Fabricated densities ranged from 0.73 g/cm 3 to 6.67 g/cm 3 . The precursor Cu powder contained Cu 2 O precipitates and the fabricated components contained arrays of Cu 2 O precipitates and interconnected dislocation microstructures having average spacings of ∼2 μm, which provide hardness values ∼75% above commercial Cu products. Plots of stiffness (Young's modulus) versus density and relative stiffness versus relative density were in very close agreement with the Gibson-Ashby model for open cellular foams. These open cellular structure components exhibit considerable potential for novel, complex, multi-functional electrical and thermal management systems, especially complex, monolithic heat exchange devices.

  15. The Key Factors of Selecting Electronics Manufacturing Service Suppliers – an Example of Company U in Taiwan

    Directory of Open Access Journals (Sweden)

    Chiu Hui-Feng

    2015-12-01

    Full Text Available In a highly competitive environment with a developed network, the customers of electronics manufacturing service (EMS manufacturers always seek a wide range of choices. EMS manufacturers can attract loyal customers and establish long-term partnerships if they understand and satisfy their customers’ needs to execute a response plan successfully with limited resources. If these conditions are met, EMS manufacturers can create high customer equity. This study investigates how the demand of downstream enterprises can be satisfied on the basis of the opinion of upstream suppliers in the electronics manufacturing industry. Domestic and foreign literature related to the dimensions and elements of supplier evaluation criteria were investigated to extract 22 elements of supplier selection by corporate customers. Five supplier evaluation dimensions were then established through interviews with the internal experts of the case company. An analytic hierarchy process-based (AHP-based approach is used to design the questionnaire for the external corporate customers of the case company. The questionnaire is then used to investigate the supplier evaluation criteria of the customers of EMS manufacturers. Conclusions and suggestions are provided on the basis of the results to provide the case company with references that can be used to develop and maintain customer relationship and create high customer equity.

  16. Design and research on the platform of network manufacture product electronic trading

    Science.gov (United States)

    Zhou, Zude; Liu, Quan; Jiang, Xuemei

    2003-09-01

    With the rapid globalization of market and business, E-trading affects every manufacture enterprise. However, the security of network manufacturing products of transmission on Internet is very important. In this paper we discussed the protocol of fair exchange and platform for network manufacture products E-trading based on fair exchange protocol and digital watermarking techniques. The platform realized reliable and copyright protection.

  17. Passive wireless sensing tags NASA inflatable structures.

    Energy Technology Data Exchange (ETDEWEB)

    Brocato, Robert Wesley

    2006-03-01

    This report gives a description of several types of wireless, unpowered remote sensors. Surface acoustic wave (SAW) devices were coupled with conventional sensors to create entirely new types of sensors. These sensors report physically measurable data in the same manner as the conventional sensors, but they do it remotely and without any local power source. The sensors are measured remotely using a radar-like interrogation device, and the sensors and their related communication electronics draw all of the power needed for communicating from the radar pulse. The report covers only a description of prototype sensors and not of the manufacturing requirements of these devices.

  18. Undergraduate Electronics Projects Based on the Design of an Optical Wireless Audio Transmission System

    Science.gov (United States)

    Oliveira, Luis Bica; Paulino, Nuno; Oliveira, João P.; Santos-Tavares, Rui; Pereira, Nuno; Goes, João

    2017-01-01

    The two projects presented in this paper can be used either as two separate assignments in two different semesters or as a final assignment for undergraduate students of electrical engineering. They have two main objectives: first, to teach basic electronic circuit design concepts and, second, to motivate the students to learn more about analog…

  19. Laser and Electron Beam Additive Manufacturing Methods of Fabricating Titanium Bone Implants

    Directory of Open Access Journals (Sweden)

    Bartłomiej Wysocki

    2017-06-01

    Full Text Available Additive Manufacturing (AM methods are generally used to produce an early sample or near net-shape elements based on three-dimensional geometrical modules. To date, publications on AM of metal implants have mainly focused on knee and hip replacements or bone scaffolds for tissue engineering. The direct fabrication of metallic implants can be achieved by methods, such as Selective Laser Melting (SLM or Electron Beam Melting (EBM. This work compares the SLM and EBM methods used in the fabrication of titanium bone implants by analyzing the microstructure, mechanical properties and cytotoxicity. The SLM process was conducted in an environmental chamber using 0.4–0.6 vol % of oxygen to enhance the mechanical properties of a Ti-6Al-4V alloy. SLM processed material had high anisotropy of mechanical properties and superior UTS (1246–1421 MPa when compared to the EBM (972–976 MPa and the wrought material (933–942 MPa. The microstructure and phase composition depended on the used fabrication method. The AM methods caused the formation of long epitaxial grains of the prior β phase. The equilibrium phases (α + β and non-equilibrium α’ martensite was obtained after EBM and SLM, respectively. Although it was found that the heat transfer that occurs during the layer by layer generation of the component caused aluminum content deviations, neither methods generated any cytotoxic effects. Furthermore, in contrast to SLM, the EBM fabricated material met the ASTMF136 standard for surgical implant applications.

  20. Tailoring the thermal conductivity of the powder bed in Electron Beam Melting (EBM) Additive Manufacturing.

    Science.gov (United States)

    Smith, C J; Tammas-Williams, S; Hernandez-Nava, E; Todd, I

    2017-09-05

    Metallic powder bed additive manufacturing is capable of producing complex, functional parts by repeatedly depositing thin layers of powder particles atop of each other whilst selectively melting the corresponding part cross-section into each layer. A weakness with this approach arises when melting overhanging features, which have no prior melted material directly beneath them. This is due to the lower thermal conductivity of the powder relative to solid material, which as a result leads to an accumulation of heat and thus distortion. The Electron Beam Melting (EBM) process alleviates this to some extent as the powder must first be sintered (by the beam itself) before it is melted, which results in the added benefit of increasing the thermal conductivity. This study thus sought to investigate to what extent the thermal conductivity of local regions in a titanium Ti-6Al-4V powder bed could be varied by imparting more energy from the beam. Thermal diffusivity and density measurements were taken of the resulting sintered samples, which ranged from being loosely to very well consolidated. It was found that the calculated thermal conductivity at two temperatures, 40 and 730 °C, was more than doubled over the range of input energies explored.

  1. An inkjet printed near isotropic 3-D antenna with embedded electronics for wireless sensor applications

    KAUST Repository

    Farooqui, Muhammad Fahad

    2014-07-01

    A 3-D (cube-shaped) antenna, which has been inkjet printed on a paper substrate and integrated with embedded electronics, is presented for the first time. A 1.5λ0 dipole is uniquely implemented on all the faces of the cube to achieve near isotropic radiation pattern. The antenna measures 13mm × 13mm × 13mm, where each side of the cube corresponds to only 0.1λ0 (at 2.4 GHz). Measurements with driving electronics placed inside the cube have shown that the antenna performance is not affected by the presence of embedded circuits. The cube antenna design is highly suitable for mobile sensing applications.

  2. Wireless Access

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. Wireless Access. Wireless connect to the Base station. Easy and Convenient access. Costlier as compared to the wired technology. Reliability challenges. We see it as a complementary technology to the DSL.

  3. Wireless sensor platform

    Science.gov (United States)

    Joshi, Pooran C.; Killough, Stephen M.; Kuruganti, Phani Teja

    2017-08-08

    A wireless sensor platform and methods of manufacture are provided. The platform involves providing a plurality of wireless sensors, where each of the sensors is fabricated on flexible substrates using printing techniques and low temperature curing. Each of the sensors can include planar sensor elements and planar antennas defined using the printing and curing. Further, each of the sensors can include a communications system configured to encode the data from the sensors into a spread spectrum code sequence that is transmitted to a central computer(s) for use in monitoring an area associated with the sensors.

  4. Expandable Polymer Enabled Wirelessly Destructible High-Performance Solid State Electronics

    KAUST Repository

    Gumus, Abdurrahman; Alam, Arsalan; Hussain, Aftab M.; Mishra, Kush; Wicaksono, Irmandy; Sevilla, Galo T.; Shaikh, Sohail F.; Diaz, Marlon; Velling, Seneca; Ghoneim, Mohamed T.; Ahmed, Sally; Hussain, Muhammad Mustafa

    2017-01-01

    In today's digital age, the increasing dependence on information also makes us vulnerable to potential invasion of privacy and cyber security. Consider a scenario in which a hard drive is stolen, lost, or misplaced, which contains secured and valuable information. In such a case, it is important to have the ability to remotely destroy the sensitive part of the device (e.g., memory or processor) if it is not possible to regain it. Many emerging materials and even some traditional materials like silicon, aluminum, zinc oxide, tungsten, and magnesium, which are often used for logic processor and memory, show promise to be gradually dissolved upon exposure of various liquid medium. However, often these wet processes are too slow, fully destructive, and require assistance from the liquid materials and their suitable availability at the time of need. This study shows Joule heating effect induced thermal expansion and stress gradient between thermally expandable advanced polymeric material and flexible bulk monocrystalline silicon (100) to destroy high-performance solid state electronics as needed and under 10 s. This study also shows different stimuli-assisted smartphone-operated remote destructions of such complementary metal oxide semiconductor electronics.

  5. Expandable Polymer Enabled Wirelessly Destructible High-Performance Solid State Electronics

    KAUST Repository

    Gumus, Abdurrahman

    2017-03-29

    In today\\'s digital age, the increasing dependence on information also makes us vulnerable to potential invasion of privacy and cyber security. Consider a scenario in which a hard drive is stolen, lost, or misplaced, which contains secured and valuable information. In such a case, it is important to have the ability to remotely destroy the sensitive part of the device (e.g., memory or processor) if it is not possible to regain it. Many emerging materials and even some traditional materials like silicon, aluminum, zinc oxide, tungsten, and magnesium, which are often used for logic processor and memory, show promise to be gradually dissolved upon exposure of various liquid medium. However, often these wet processes are too slow, fully destructive, and require assistance from the liquid materials and their suitable availability at the time of need. This study shows Joule heating effect induced thermal expansion and stress gradient between thermally expandable advanced polymeric material and flexible bulk monocrystalline silicon (100) to destroy high-performance solid state electronics as needed and under 10 s. This study also shows different stimuli-assisted smartphone-operated remote destructions of such complementary metal oxide semiconductor electronics.

  6. [Occupational stress in assembly line workers in electronics manufacturing service and related influencing factors].

    Science.gov (United States)

    Ji, Y Q; Li, S; Wang, C; Wang, J; Liu, X M

    2016-10-20

    Objective: To investigate occupational stress in assembly line workers in electronics manu-facturing service (EMS) and related influencing factors. Methods: From June to October, 2015, a cross-sectional survey was performed for 5 944 assembly line workers in EMS (observation group) and 6 270 workers from other posts (non-assembly line workers and management personnel; control group) using the self-made questionnaire for basic information, job demand-control (JDC) model questionnaire, and effort-reward imbalance (ERI) model questionnaire to collect respondents' basic information and occupational stress. Results: The observation group had significantly lower work autonomy, social support, and work reward scores than the control group (2.72 ± 0.63/3.64 ± 0.68/4.06 ± 0.80 vs 3.00 ± 0.67/3.83 ± 0.68/4.24 ± 0.75, t =23.53, 15.41, and 12.70, all P occupational stress determined by JDC and ERI models than the control group (64.5%/12.7% vs 52.6%/9.9%, χ 2 =182.26 and 23.41, both P 60 hours/week, and sleeping time occupational stress in JDC model; education background of Bachelor's degree or above, working time >60 hours/week, and sleeping timeoccupational stress in ERI model, while female sex and a high monthly income reduced the risk of occupational stress in ERI model. Conclusion: Assembly line workers in EMS are a relatively vulnerable group and have a high degree of occupational stress. Working time >60 hours/week and sleeping time occupational stress.

  7. Digital image correlation analysis of local strain fields on Ti6Al4V manufactured by electron beam melting

    International Nuclear Information System (INIS)

    Karlsson, Joakim; Sjögren, Torsten; Snis, Anders; Engqvist, Håkan; Lausmaa, Jukka

    2014-01-01

    Additive manufacturing, or 3D-printing as it is often called, build parts in a layer-by-layer fashion. A common concern, regardless of the specific additive manufacturing technique used, is the risk of inadequate fusion between the adjacent layers which in turn may cause inferior mechanical properties. In this work, the local strain properties of titanium parts produced by Electron Beam Melting (EBM ® ) were studied in order to gain information about the quality of fusion of the stock powder material used in the process. By using Digital Image Correlation (DIC) the strain fields in the individual layers were analyzed, as well as the global strain behavior of the bulk material. The results show that fully solid titanium parts manufactured by EBM are homogenous and do not experience local deformation behavior, neither on local nor on a global level

  8. Digital image correlation analysis of local strain fields on Ti6Al4V manufactured by electron beam melting

    Energy Technology Data Exchange (ETDEWEB)

    Karlsson, Joakim, E-mail: Joakim.karlsson@sp.se [SP Technical Research Institute of Sweden, Box 857, SE-501 15, Borås (Sweden); Division of Applied Materials Science, Department of Engineering Sciences, Ångström Laboratory, Uppsala University, Box 534, SE-751 21 Uppsala (Sweden); Sjögren, Torsten [SP Technical Research Institute of Sweden, Box 857, SE-501 15, Borås (Sweden); Snis, Anders [Arcam AB, Krokslätts fabriker 27 A, SE-431 37, Mölndal (Sweden); Engqvist, Håkan [Division of Applied Materials Science, Department of Engineering Sciences, Ångström Laboratory, Uppsala University, Box 534, SE-751 21 Uppsala (Sweden); Lausmaa, Jukka [SP Technical Research Institute of Sweden, Box 857, SE-501 15, Borås (Sweden)

    2014-11-17

    Additive manufacturing, or 3D-printing as it is often called, build parts in a layer-by-layer fashion. A common concern, regardless of the specific additive manufacturing technique used, is the risk of inadequate fusion between the adjacent layers which in turn may cause inferior mechanical properties. In this work, the local strain properties of titanium parts produced by Electron Beam Melting (EBM{sup ®}) were studied in order to gain information about the quality of fusion of the stock powder material used in the process. By using Digital Image Correlation (DIC) the strain fields in the individual layers were analyzed, as well as the global strain behavior of the bulk material. The results show that fully solid titanium parts manufactured by EBM are homogenous and do not experience local deformation behavior, neither on local nor on a global level.

  9. Electronic prescribing: criteria for evaluating handheld prescribing systems and an evaluation of a new, handheld, wireless wide area network (WWAN) prescribing system.

    Science.gov (United States)

    Goldblum, O M

    2001-02-01

    The objectives of this study were: 1) to establish criteria for evaluating handheld computerized prescribing systems; and 2) to evaluate out-of-box performance and features of a new, Palm Operating System (OS)-based, handheld, wireless wide area network (WWAN) prescribing system. The system consisted of a Palm Vx handheld organizer, a Novatel Minstrel V wireless modem, OmniSky wireless internet access and ePhysician ePad 1.1, the Palm OS electronic prescribing software program. A dermatologist familiar with healthcare information technology conducted an evaluation of the performance and features of a new, handheld, WWAN electronic prescribing system in an office practice during a three-month period in 2000. System performance, defined as transmission success rate, was determined from data collected during the three-month trial. Evaluation criteria consisted of an analysis of features found in electronic prescribing systems. All prescriptions written for all patients seen during a three-month period (August - November, 2000) were eligible for inclusion. Prescriptions written for patients who intended to fill them at pharmacies without known facsimile receiving capabilities were excluded from the study. The performance of the system was evaluated using data collected during the study. Criteria for evaluating features of electronic prescribing systems were developed and used to analyze the system employed in this study. During this three-month trial, 200 electronic prescriptions were generated for 132 patients included in the study. Of these prescriptions, 92.5 percent were successfully transmitted to pharmacies. Transmission failures resulted from incorrect facsimile numbers and non-functioning facsimile machines. Criteria established for evaluation of electronic prescribing systems included System (Hardware & Software), Costs, System Features, Printing & Transmission, Formulary & Insurance, Customization, Drug Safety and Security. This study is the first effort to

  10. Additive manufacturing of ITER first wall panel parts by two approaches: Selective laser melting and electron beam melting

    International Nuclear Information System (INIS)

    Zhong, Yuan; Rännar, Lars-Erik; Wikman, Stefan; Koptyug, Andrey; Liu, Leifeng; Cui, Daqing; Shen, Zhijian

    2017-01-01

    Highlights: • A novel way using additive manufacturing to fabricated ITER First Wall Panel parts is proposed. • ITER First Wall Panel parts successfully manufactured by both SLM and EBM are compared. • Physical and mechanical properties of SLM and EBM SS316L are clearly compared. • Problems encountered for large scale part building were discussed and possible solutions are given. - Abstract: Fabrication of ITER First Wall (FW) Panel parts by two additive manufacturing (AM) technologies, selective laser melting (SLM) and electron beam melting (EBM), was supported by Fusion for Energy (F4E). For the first time, AM is applied to manufacture ITER In-Vessel parts with complex design. Fully dense SS316L was prepared by both SLM and EBM after developing optimized laser/electron beam parameters. Characterizations on the density, magnetic permeability, microstructure, defects and inclusions were carried out. Tensile properties, Charpy-impact properties and fatigue properties of SLM and EBM SS316L were also compared. ITER FW Panel parts were successfully fabricated by both SLM and EBM in a one-step building process. The SLM part has smoother surface, better size accuracy while the EBM part takes much less time to build. Issues with removing support structures might be solved by slightly changing the design of the internal cooling system. Further investigation of the influence of neutron irradiation on materials properties between the two AM technologies is needed.

  11. Additive manufacturing of ITER first wall panel parts by two approaches: Selective laser melting and electron beam melting

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, Yuan [Department of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm (Sweden); Rännar, Lars-Erik [Department of Quality Technology, Mechanical Engineering and Mathematics, Sports Tech Research Centre, Mid Sweden University, SE-831 25 Östersund (Sweden); Wikman, Stefan [Fusion for Energy, Torres Diagonal Litoral B3, Josep Pla 2, 08019 Barcelona (Spain); Koptyug, Andrey [Department of Quality Technology, Mechanical Engineering and Mathematics, Sports Tech Research Centre, Mid Sweden University, SE-831 25 Östersund (Sweden); Liu, Leifeng; Cui, Daqing [Department of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm (Sweden); Shen, Zhijian, E-mail: shen@mmk.su.se [Department of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm (Sweden)

    2017-03-15

    Highlights: • A novel way using additive manufacturing to fabricated ITER First Wall Panel parts is proposed. • ITER First Wall Panel parts successfully manufactured by both SLM and EBM are compared. • Physical and mechanical properties of SLM and EBM SS316L are clearly compared. • Problems encountered for large scale part building were discussed and possible solutions are given. - Abstract: Fabrication of ITER First Wall (FW) Panel parts by two additive manufacturing (AM) technologies, selective laser melting (SLM) and electron beam melting (EBM), was supported by Fusion for Energy (F4E). For the first time, AM is applied to manufacture ITER In-Vessel parts with complex design. Fully dense SS316L was prepared by both SLM and EBM after developing optimized laser/electron beam parameters. Characterizations on the density, magnetic permeability, microstructure, defects and inclusions were carried out. Tensile properties, Charpy-impact properties and fatigue properties of SLM and EBM SS316L were also compared. ITER FW Panel parts were successfully fabricated by both SLM and EBM in a one-step building process. The SLM part has smoother surface, better size accuracy while the EBM part takes much less time to build. Issues with removing support structures might be solved by slightly changing the design of the internal cooling system. Further investigation of the influence of neutron irradiation on materials properties between the two AM technologies is needed.

  12. A Manufacturing Cost and Supply Chain Analysis of SiC Power Electronics Applicable to Medium-Voltage Motor Drives

    Energy Technology Data Exchange (ETDEWEB)

    Horowitz, Kelsey [National Renewable Energy Lab. (NREL), Golden, CO (United States); Remo, Timothy [National Renewable Energy Lab. (NREL), Golden, CO (United States); Reese, Samantha [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2017-03-24

    Wide bandgap (WBG) semiconductor devices are increasingly being considered for use in certain power electronics applications, where they can improve efficiency, performance, footprint, and, potentially, total system cost compared to systems using traditional silicon (Si) devices. Silicon carbide (SiC) devices in particular -- which are currently more mature than other WBG devices -- are poised for growth in the coming years. Today, the manufacturing of SiC wafers is concentrated in the United States, and chip production is split roughly equally between the United States, Japan, and Europe. Established contract manufacturers located throughout Asia typically carry out manufacturing of WBG power modules. We seek to understand how global manufacturing of SiC components may evolve over time by illustrating the regional cost drivers along the supply chain and providing an overview of other factors that influence where manufacturing is sited. We conduct this analysis for a particular case study where SiC devices are used in a medium-voltage motor drive.

  13. Additive Manufacturing Modeling and Simulation A Literature Review for Electron Beam Free Form Fabrication

    Science.gov (United States)

    Seufzer, William J.

    2014-01-01

    Additive manufacturing is coming into industrial use and has several desirable attributes. Control of the deposition remains a complex challenge, and so this literature review was initiated to capture current modeling efforts in the field of additive manufacturing. This paper summarizes about 10 years of modeling and simulation related to both welding and additive manufacturing. The goals were to learn who is doing what in modeling and simulation, to summarize various approaches taken to create models, and to identify research gaps. Later sections in the report summarize implications for closed-loop-control of the process, implications for local research efforts, and implications for local modeling efforts.

  14. Graphene for future electronics

    International Nuclear Information System (INIS)

    Pasanen, Pirjo; Voutilainen, Martti; Helle, Meri; Song Xuefeng; Hakonen, Pertti J

    2012-01-01

    We discuss some aspects of how graphene could be used in mainstream electronic devices. The main focus is on signal processing applications in high-volume, industrially manufactured battery-powered devices, e.g. mobile phones and laptop computers, but we will also discuss applicability to other components like interconnects, wireless communication antennae and camera sensors, as well as novel types of signal processing devices, based on the unique physical properties of graphene.

  15. Wireless steganography

    Science.gov (United States)

    Agaian, Sos S.; Akopian, David; D'Souza, Sunil

    2006-02-01

    Modern mobile devices are some of the most technologically advanced devices that people use on a daily basis and the current trends in mobile phone technology indicate that tasks achievable by mobile devices will soon exceed our imagination. This paper undertakes a case study of the development and implementation of one of the first known steganography (data hiding) applications on a mobile device. Steganography is traditionally accomplished using the high processing speeds of desktop or notebook computers. With the introduction of mobile platform operating systems, there arises an opportunity for the users to develop and embed their own applications. We take advantage of this opportunity with the introduction of wireless steganographic algorithms. Thus we demonstrates that custom applications, popular with security establishments, can be developed also on mobile systems independent of both the mobile device manufacturer and mobile service provider. For example, this might be a very important feature if the communication is to be controlled exclusively by authorized personnel. The paper begins by reviewing the technological capabilities of modern mobile devices. Then we address a suitable development platform which is based on Symbian TM/Series60 TM architecture. Finally, two data hiding applications developed for Symbian TM/Series60 TM mobile phones are presented.

  16. Electronic business model for small- and medium-sized manufacturing enterprises (SME): a case study

    Science.gov (United States)

    Yuen, Karina; Chung, Walter W.

    2001-10-01

    This paper identifies three essential factors (information infrastructure, executive information system and a new manufacturing paradigm) that are used to support the development of a new business model for competitiveness. They facilitate changes in organization structure in support of business transformation. A SME can source a good manufacturing practice using a model of academic-university collaboration to gain competitive advantage in the e-business world. The collaboration facilitates the change agents to use information systems development as a vehicle to increase the capability of executives in using information and knowledge management to gain higher responsiveness and customer satisfaction. The case company is used to illustrate the application of a web-based executive information system to interface internal communications with external operation. It explains where a good manufacturing practice may be re-applied by other SMEs to acquire skills as a learning organization grows in an extended enterprise setting.

  17. 75 FR 64248 - Approval for Manufacturing Authority Foreign-Trade Zone 196 ATC Logistics & Electronics (Cell...

    Science.gov (United States)

    2010-10-19

    ... Authority Foreign-Trade Zone 196 ATC Logistics & Electronics (Cell Phone Kitting) Fort Worth, TX Pursuant to... Foreign-Trade Zones Board (the Board) adopts the following Order: Whereas, ATC Logistics & Electronics... Logistics & Electronics, as described in the application and Federal Register notice, is approved, subject...

  18. Laser and electron-beam powder-bed additive manufacturing of metallic implants: A review on processes, materials and designs.

    Science.gov (United States)

    Sing, Swee Leong; An, Jia; Yeong, Wai Yee; Wiria, Florencia Edith

    2016-03-01

    Additive manufacturing (AM), also commonly known as 3D printing, allows the direct fabrication of functional parts with complex shapes from digital models. In this review, the current progress of two AM processes suitable for metallic orthopaedic implant applications, namely selective laser melting (SLM) and electron beam melting (EBM) are presented. Several critical design factors such as the need for data acquisition for patient-specific design, design dependent porosity for osteo-inductive implants, surface topology of the implants and design for reduction of stress-shielding in implants are discussed. Additive manufactured biomaterials such as 316L stainless steel, titanium-6aluminium-4vanadium (Ti6Al4V) and cobalt-chromium (CoCr) are highlighted. Limitations and future potential of such technologies are also explored. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  19. Wireless virtualization

    CERN Document Server

    Wen, Heming; Le-Ngoc, Tho

    2013-01-01

    This SpringerBriefs is an overview of the emerging field of wireless access and mobile network virtualization. It provides a clear and relevant picture of the current virtualization trends in wireless technologies by summarizing and comparing different architectures, techniques and technologies applicable to a future virtualized wireless network infrastructure. The readers are exposed to a short walkthrough of the future Internet initiative and network virtualization technologies in order to understand the potential role of wireless virtualization in the broader context of next-generation ubiq

  20. Night-shift work and risk of compromised visual acuity among the workers in an electronics manufacturing company.

    Science.gov (United States)

    Lin, Yu-Cheng; Ho, Kuo-Jung

    2018-01-01

    To evaluate the association between night-shift work exposure and visual health, this cross-sectional study utilized visual acuity, a surrogate measure for visual function, as a parameter, and performed an analysis comparing visual acuity between daytime and nighttime employees in an electronics manufacturing company. Data of personal histories, occupational records, physical examinations and blood tests was obtained from the electronic health records of workers. The total of 8280 workers including 3098 women and 5182 men, wearing their own daily used eyeglasses, were included in the final analysis. The mean age of the sample population was 34.7 years old (standard deviation = 5.4 years). All workers were divided into 3 work categories - consistent daytime worker (CDW), day-shift worker (DSW) and night-shift worker (NSW). The check-up results of glasses-corrected visual acuity (c-VA) were utilized to classify individuals as good (≥ 1.2, both eyes) and inadequate (electronics manufacturing company. Int J Occup Med Environ Health 2018;31(1):71-79. This work is available in Open Access model and licensed under a CC BY-NC 3.0 PL license.

  1. Green Supply Chain Management in Chinese Electronic Manufacturing Organisations: An Analysis of Senior Managements' Perceptions

    OpenAIRE

    Eoin Plant; Yusen Xu; Gareth R.T. White

    2015-01-01

    Green supply chain management and reverse logistics has emerged as a key area of research interest. Recent environmental regulations have also stimulated interest in this field. However, information sharing is a prerequisite to efficient and effective logistics utilisation. Manufacturing organisations in China were argued to be 10-20 years behind their Western counterparts in relation to information sharing in their supply chains (). This barrier needs to be addressed if China is going to mai...

  2. Effect of Hypoeutectic Boron Additions on the Grain Size and Mechanical Properties of Ti-6Al-4V Manufactured with Powder Bed Electron Beam Additive Manufacturing

    Science.gov (United States)

    Mahbooba, Zaynab; West, Harvey; Harrysson, Ola; Wojcieszynski, Andrzej; Dehoff, Ryan; Nandwana, Peeyush; Horn, Timothy

    2017-03-01

    In additive manufacturing, microstructural control is feasible via processing parameter alteration. However, the window for parameter variation for certain materials, such as Ti-6Al-4V, is limited, and alternative methods must be employed to customize microstructures. Grain refinement and homogenization in cast titanium alloys has been demonstrated through the addition of hypoeutectic concentrations of boron. This work explores the influence of 0.00 wt.%, 0.25 wt.%, 0.50 wt.%, and 1.0 wt.% boron additions on the microstructure and bulk mechanical properties of Ti-6Al-4V samples fabricated in an Arcam A2 electron beam melting (EBM) system with commercial processing parameters for Ti-6Al-4V. Analyses of EBM fabricated Ti-6Al-4V + B indicate that the addition of 0.25-1.0 wt.% boron progressively refines the grain structure, and it improves hardness and elastic modulus. Despite a reduction in size, the β grain structure remained columnar as a result of directional heat transfer during EBM fabrication.

  3. Wireless Internet

    NARCIS (Netherlands)

    el Zarki, M.; Heijenk, Geert; Lee, Kenneth S.; Bidgoli, H.

    This chapter addresses the topic of wireless Internet, the extension of the wireline Internet architecture to the wireless domain. As such the chapter introduces the reader to the dominant characteristics of the Internet, from its structure to the protocols that control the forwarding of data and

  4. A Personal Desktop Liquid-Metal Printer as a Pervasive Electronics Manufacturing Tool for Society in the Near Future

    Directory of Open Access Journals (Sweden)

    Jun Yang

    2015-12-01

    Full Text Available It has long been a dream in the electronics industry to be able to write out electronics directly, as simply as printing a picture onto paper with an office printer. The first-ever prototype of a liquid-metal printer has been invented and demonstrated by our lab, bringing this goal a key step closer. As part of a continuous endeavor, this work is dedicated to significantly extending such technology to the consumer level by making a very practical desktop liquid-metal printer for society in the near future. Through the industrial design and technical optimization of a series of key technical issues such as working reliability, printing resolution, automatic control, human-machine interface design, software, hardware, and integration between software and hardware, a high-quality personal desktop liquid-metal printer that is ready for mass production in industry was fabricated. Its basic features and important technical mechanisms are explained in this paper, along with demonstrations of several possible consumer end-uses for making functional devices such as light-emitting diode (LED displays. This liquid-metal printer is an automatic, easy-to-use, and low-cost personal electronics manufacturing tool with many possible applications. This paper discusses important roles that the new machine may play for a group of emerging needs. The prospective future of this cutting-edge technology is outlined, along with a comparative interpretation of several historical printing methods. This desktop liquid-metal printer is expected to become a basic electronics manufacturing tool for a wide variety of emerging practices in the academic realm, in industry, and in education as well as for individual end-users in the near future.

  5. Impact of information technology on vendor objectives, capabilities, and competences in contract electronic manufacturing

    DEFF Research Database (Denmark)

    Perunovic, Zoran; Mefford, Robert; Christoffersen, Mads

    2012-01-01

    IT impacts vendor capabilities. The research framework integrates four concepts/theories: the resource-based view (RBV), the concept of manufacturing strategy, the concept of business performance, and the concept of IT impact on business performance. Two case companies are studied, one with a high level...... proposed. The method gives valuable insights into how IT enables competences, enhances capabilities, and contributes to the fulfillment of vendor objectives. A model of how IT affects a vendor's competitiveness is proposed. In addition, two initiatives for optimizing the utilization of IT are suggested....

  6. Dynamic tensile behavior of electron beam additive manufactured Ti6Al4V

    International Nuclear Information System (INIS)

    Rodriguez, O.L.; Allison, P.G.; Whittington, W.R.; Francis, D.K.; Rivera, O.G.; Chou, K.; Gong, X.; Butler, T.M.; Burroughs, J.F.

    2015-01-01

    High rate and quasi-static tensile experiments examined strain rate dependence on flow stress and strain hardening of additive manufactured Ti6Al4V. Variations on strain-hardening coefficient indicate that the rate of thermal softening is greater than strain hardening during plastic deformation. Strain rate sensitivity calculations within the plastic strain regime suggest changes in deformation mechanisms. Fractography revealed cup-and-cone fracture for quasi-static samples and shear mechanisms for high rate samples. As-deposited microstructure consisted of bimodal α+β with the presence of secondary martensitic phase

  7. Dynamic tensile behavior of electron beam additive manufactured Ti6Al4V

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, O.L. [Department of Mechanical Engineering, University of Alabama, Tuscaloosa, AL 35487 (United States); Allison, P.G., E-mail: pallison@eng.ua.edu [Department of Mechanical Engineering, University of Alabama, Tuscaloosa, AL 35487 (United States); Whittington, W.R.; Francis, D.K. [Department of Mechanical Engineering, Mississippi State University, Starkville, MS 35759 (United States); Rivera, O.G.; Chou, K.; Gong, X. [Department of Mechanical Engineering, University of Alabama, Tuscaloosa, AL 35487 (United States); Butler, T.M. [Department of Metallurgical Engineering, University of Alabama, Tuscaloosa, AL 35487 (United States); Burroughs, J.F. [Geotechnical & Structures Laboratory, US Army ERDC, Vicksburg, MS 39180 (United States)

    2015-08-12

    High rate and quasi-static tensile experiments examined strain rate dependence on flow stress and strain hardening of additive manufactured Ti6Al4V. Variations on strain-hardening coefficient indicate that the rate of thermal softening is greater than strain hardening during plastic deformation. Strain rate sensitivity calculations within the plastic strain regime suggest changes in deformation mechanisms. Fractography revealed cup-and-cone fracture for quasi-static samples and shear mechanisms for high rate samples. As-deposited microstructure consisted of bimodal α+β with the presence of secondary martensitic phase.

  8. Work-related musculoskeletal disorders (WMDs) risk assessment at core assembly production of electronic components manufacturing company

    Science.gov (United States)

    Yahya, N. M.; Zahid, M. N. O.

    2018-03-01

    This study conducted to assess the work-related musculoskeletal disorders (WMDs) among the workers at core assembly production in an electronic components manufacturing company located in Pekan, Pahang, Malaysia. The study is to identify the WMDs risk factor and risk level. A set of questionnaires survey based on modified Nordic Musculoskeletal Disorder Questionnaires have been distributed to respective workers to acquire the WMDs risk factor identification. Then, postural analysis was conducted in order to measure the respective WMDs risk level. The analysis were based on two ergonomics assessment tools; Rapid Upper Limb Assessment (RULA) and Rapid Entire Body Assessment (REBA). The study found that 30 respondents out of 36 respondents suffered from WMDs especially at shoulder, wrists and lower back. The WMDs risk have been identified from unloading process, pressing process and winding process. In term of the WMDs risk level, REBA and RULA assessment tools have indicated high risk level to unloading and pressing process. Thus, this study had established the WMDs risk factor and risk level of core assembly production in an electronic components manufacturing company at Malaysia environment.

  9. Assessment of Electromagnetic Interference with Active Cardiovascular Implantable Electronic Devices (CIEDs) Caused by the Qi A13 Design Wireless Charging Board.

    Science.gov (United States)

    Seckler, Tobias; Jagielski, Kai; Stunder, Dominik

    2015-05-27

    Electromagnetic interference is a concern for people wearing cardiovascular implantable electronic devices (CIEDs). The aim of this study was to assess the electromagnetic compatibility between CIEDs and the magnetic field of a common wireless charging technology. To do so the voltage induced in CIEDs by Qi A13 design magnetic fields were measured and compared with the performance limits set by ISO 14117. In order to carry this out a measuring circuit was developed which can be connected with unipolar or bipolar pacemaker leads. The measuring system was positioned at the four most common implantation sites in a torso phantom filled with physiological saline solution. The phantom was exposed by using Helmholtz coils from 5 µT to 27 µT with 111 kHz sine‑bursts or by using a Qi A13 design wireless charging board (Qi‑A13‑Board) in two operating modes "power transfer" and "pinging". With the Helmholtz coils the lowest magnetic flux density at which the performance limit was exceeded is 11 µT. With the Qi‑A13‑Board in power transfer mode 10.8% and in pinging mode 45.7% (2.2% at 10 cm distance) of the performance limit were reached at maximum. In neither of the scrutinized cases, did the voltage induced by the Qi‑A13‑Board exceed the performance limits.

  10. Electron beam related manufacturing technology development at Lawrence Livermore National Laboratory

    International Nuclear Information System (INIS)

    Anklam, T.M.

    1995-01-01

    In the defense community, certain uranium-alloy components have been manufactured by methods which generate large quantities of uranium bearing waste. Our estimates show that these components can be fabricated by vapor deposition and reduce waste generation by more than an order of magnitude. We present results from a series of uranium-alloy vapor deposition tests designed to produce samples of free-standing structures. Both flat plate and cylindrical shells were produced. The deposits were fully dense, defect free and displayed a high quality surface finish. The uranium-alloy was co-evaporated from a single source. Bulk chemistry specifications for the material were met, although some residual variation in chemistry was observed in sample cross sections. After heat treatment, the vapor deposited samples exhibited tensile properties similar to conventional ingot processed material

  11. Interface Engineering for Organic Electronics; Manufacturing of Hybrid Inorganic-Organic Molecular Crystal Devices

    NARCIS (Netherlands)

    de Veen, P.J.

    2011-01-01

    Organic semiconductors are at the basis of Organic Electronics. Objective of this dissertation is “to fabricate high-quality organic molecular single-crystal devices”, to explore the intrinsic properties of organic semiconductors. To achieve this, the in situ fabrication of complete field-effect

  12. Solar heating for an electronics manufacturing plant--Blue Earth, Minnesota

    Science.gov (United States)

    1981-01-01

    Partial space heating for 97,000 square foot plant is supplied by 360 flat plate solar collectors; energy is sorted as heat in indoor 20,000 gallon water tank. System includes all necessary control electronics for year round operation. During December 1978, solar energy supplied 24.4 percent of building's space heating load.

  13. Wireless Cybersecurity

    Science.gov (United States)

    2013-04-01

    completely change the entire landscape. For example, under the quantum computing regime, factoring prime numbers requires only polynomial time (i.e., Shor’s...AFRL-OSR-VA-TR-2013-0206 Wireless Cybersecurity Biao Chen Syracuse University April 2013 Final Report DISTRIBUTION A...19a. NAME OF RESPONSIBLE PERSON 19b. TELEPHONE NUMBER (Include area code) 21-02-2013 FINAL REPORT 01-04-2009 TO 30-11-2012 Wireless Cybersecurity

  14. Design and R and D for manufacturing the MITICA Neutraliser and Electron Dump

    Energy Technology Data Exchange (ETDEWEB)

    Dalla Palma, Mauro, E-mail: mauro.dallapalma@igi.cnr.it [Consorzio RFX, Associazione Euratom-ENEA sulla Fusione, Padova (Italy); Sartori, Emanuele; Gonzalez, Winder [Università degli Studi di Padova, Padova (Italy); Tiso, Andrea; Trevisan, Lauro; Zaccaria, Pierluigi [Consorzio RFX, Associazione Euratom-ENEA sulla Fusione, Padova (Italy)

    2013-10-15

    Highlights: ► Analyses and verifications supporting the design of the MITICA Neutraliser and Electron Dump. ► Instrumentation and control systems have been analysed for protection, calorimetry, interlock. ► Assembly procedure, acceptance tests, and RH compatibility have been verified. ► R and D activities for design validation are ongoing to demonstrate the technical feasibility. -- Abstract: One MeV negative particle beam accelerated in the beam source of the ITER Neutral Beam Injectors (NBIs) will be neutralised in the Neutraliser gas cell. Four narrow beam channels are foreseen in the Neutraliser where the neutralisation process will occur with controlled gas pressure being the four channels delimited by five copper wall panels. Stray particles will be dumped on the copper Electron Dump and CuCrZr leading edges to be installed at the Neutraliser frontal section: the Electron Dump will intercept stray electrons in order to reduce the cryo pump thermal load; enhanced heat transfer in subcooled boiling conditions will occur in the panel leading edges with twisted tapes as turbulence promoters. The copper panels will be thermally controlled by means of embedded cooling circuits; thermo-hydraulic and thermo-mechanical analyses and verifications have been carried out considering several load combinations and satisfying the design rules as for ITER structural design criteria for in vessel components. Gas flow analyses have been carried out with molecular flow in the in-vessel vacuum environment to evaluate the gas pressure profile along the beam line also considering the presence of the Electron Dump. Furthermore, transient analyses of the gas flow inside channels have been performed to simulate the effect of last valve closure; analysis results demonstrate that gas flow variations can be detected by thermal measurements. The Neutraliser assembly, installation, and positioning inside the vacuum vessel have been verified considering alignment requirements and

  15. Current status and manufacturing technologies of magnesium alloy parts in Japanese home electronics

    Energy Technology Data Exchange (ETDEWEB)

    Nishikawa, Y.; Takara, A. [Corporate Production Engineering Div., Matsushita Electric Industrial Co., Ltd., Osaka (Japan)

    2003-07-01

    The Japanese home electronics market has demanded that the newer products must be smaller, thinner and lighter. The use of magnesium alloys for Japanese home electronics has increased since the latter half of the 1990's. Magnesium alloys have been used mainly for the outer cases of portable electric products, because of their lightness and rigidness. Magnesium is also a promising material from the viewpoint of recycling. Magnesium alloy parts have been mass-produced for the outer cases of portable home electronics, such as, mini-disc player, notebook type personal computer or cell phone. The parts have the characteristics of high quality in appearance and thin walled, complicated shape with rib or boss. Most of them are formed by die-casting or injection molding technologies. After casting, the parts are treated precise machining to clear minute surface cracks or voids. Subsequently, they are operated anti-corrosion treatment and spray coating. Recycling have already carried out for magnesium alloy scraps to be cast again. Paint stripping before remelting is performed by alkali solutions or sandblast techniques for coated scraps. Finally, the development of promising press forming technologies is also introduced. (orig.)

  16. Proliferation of mouse fibroblast-like and osteoblast-like cells on pure titanium films manufactured by electron beam melting.

    Science.gov (United States)

    Kawase, Mayu; Hayashi, Tatsuhide; Asakura, Masaki; Tomino, Masafumi; Mieki, Akimichi; Kawai, Tatsushi

    2016-10-01

    The physical characteristics and biological compatibility of surfaces produced by electron beam melting (EBM) are not well known. In particular, there are not many reports on biocompatibility qualities. In this study, pure Ti films were manufactured using EBM. While it is reported that moderately hydrophilic biomaterial surfaces display improved cell growth and biocompatibility, contact angle measurements on the EBM-produced pure Ti films showed slight hydrophobicity. Nonetheless, we found the cell count of both fibroblast-like cells (L929) and osteoblast-like cells (MC3T3-E1) increased on pure Ti films, especially the MC3T3-E1, which increased more than that of the control. In addition, the morphology of L929 and MC3T3-E1 was polygonal and spindle-shaped and the cytoskeleton was well developed in the pure Ti surface groups. Upon staining with Alizarin red S, a slight calcium deposition was observed and this level gradually rose to a remarkable level. These results indicate that pure Ti films manufactured by EBM have good biocompatibility and could be widely applied as biomedical materials in the near future. © 2016 International Federation for Cell Biology.

  17. Developing novel 3D antennas using advanced additive manufacturing technology

    Science.gov (United States)

    Mirzaee, Milad

    In today's world of wireless communication systems, antenna engineering is rapidly advancing as the wireless services continue to expand in support of emerging commercial applications. Antennas play a key role in the performance of advanced transceiver systems where they serve to convert electric power to electromagnetic waves and vice versa. Researchers have held significant interest in developing this crucial component for wireless communication systems by employing a variety of design techniques. In the past few years, demands for electrically small antennas continues to increase, particularly among portable and mobile wireless devices, medical electronics and aerospace systems. This trend toward smaller electronic devices makes the three dimensional (3D) antennas very appealing, since they can be designed in a way to use every available space inside the devise. Additive Manufacturing (AM) method could help to find great solutions for the antennas design for next generation of wireless communication systems. In this thesis, the design and fabrication of 3D printed antennas using AM technology is studied. To demonstrate this application of AM, different types of antennas structures have been designed and fabricated using various manufacturing processes. This thesis studies, for the first time, embedded conductive 3D printed antennas using PolyLactic Acid (PLA) and Acrylonitrile Butadiene Styrene (ABS) for substrate parts and high temperature carbon paste for conductive parts which can be a good candidate to overcome the limitations of direct printing on 3D surfaces that is the most popular method to fabricate conductive parts of the antennas. This thesis also studies, for the first time, the fabrication of antennas with 3D printed conductive parts which can contribute to the new generation of 3D printed antennas.

  18. Characterization of Ti-6Al-4V open cellular foams fabricated by additive manufacturing using electron beam melting

    International Nuclear Information System (INIS)

    Murr, L.E.; Gaytan, S.M.; Medina, F.; Martinez, E.; Martinez, J.L.; Hernandez, D.H.; Machado, B.I.; Ramirez, D.A.; Wicker, R.B.

    2010-01-01

    Ti-6Al-4V open cellular foams were fabricated by additive manufacturing using electron beam melting (EBM). Foam models were developed from CT-scans of aluminum open cellular foams and embedded in CAD for EBM. These foams were fabricated with solid cell structures as well as hollow cell structures and exhibit tailorable stiffness and strength. The strength in proportion to the measured microindentation hardness is as much as 40% higher for hollow cell (wall) structures in contrast to solid, fully dense EBM fabricated components. Plots of relative stiffness versus relative density were in good agreement with the Gibson-Ashby model for open cellular foam materials. Stiffness or Young's modulus values measured using a resonant frequency-damping analysis technique were found to vary inversely with porosity especially for solid cell wall, open cellular structure foams. These foams exhibit the potential for novel biomedical, aeronautics, and automotive applications.

  19. Failure analysis a practical guide for manufacturers of electronic components and systems

    CERN Document Server

    Bâzu, Marius

    2011-01-01

    Failure analysis is the preferred method to investigate product or process reliability and to ensure optimum performance of electrical components and systems. The physics-of-failure approach is the only internationally accepted solution for continuously improving the reliability of materials, devices and processes. The models have been developed from the physical and chemical phenomena that are responsible for degradation or failure of electronic components and materials and now replace popular distribution models for failure mechanisms such as Weibull or lognormal. Reliability engineers nee

  20. [Characteristics of volatile organic compounds (VOCs) emission from electronic products processing and manufacturing factory].

    Science.gov (United States)

    Cui, Ru; Ma, Yong-Liang

    2013-12-01

    Based on the EPA method T0-11 and 14/15 for measurement of toxic organics in air samples, fast VOCs detector, Summa canister and DNPH absorbent were used to determine the VOCs concentrations and the compositions in the ambient air of the workshops for different processes as well as the emission concentration in the exhaust gas. In all processes that involved VOCs release, concentrations of total VOCs in the workshops were 0.1-0.5 mg x m(-3), 1.5-2.5 mg x m(-3) and 20-200 mg x m(-3) for casting, cutting and painting respectively. Main compositions of VOCs in those workshops were alkanes, eneynes, aromatics, ketones, esters and ethers, totally over 20 different species. The main compositions in painting workshop were aromatics and ketones, among which the concentration of benzene was 0.02-0.34 mg x m(-3), toluene was 0.24-3.35 mg x m(-3), ethyl benzene was 0.04-1.33 mg x m(-3), p-xylene was 0.13-0.96 mg x m(-3), m-xylene was 0.02-1.18 mg x m(-3), acetone was 0.29-15.77 mg x m(-3), 2-butanone was 0.06-22.88 mg x m(-3), cyclohexene was 0.02-25.79 mg x m(-3), and methyl isobutyl ketone was 0-21.29 mg x m(-3). The VOCs emission from painting process was about 14 t x a(-1) for one single manufacturing line, and 840 t x a(-1) for the whole factory. According to the work flows and product processes, the solvent used during painting process was the main source of VOCs emission, and the exhaust gas was the main emission point.

  1. History of the development and manufacture of Czechoslovak high-frequency linear electron accelerators

    International Nuclear Information System (INIS)

    Cerny, R.

    2007-01-01

    The paper is structured as follows: History of linear accelerators worldwide (beginnings); Development of the Czechoslovak high-frequency linear electron accelerator (Layout and working principle; The first model of the accelerator and the Faculty of Technical and Nuclear Physics and cooperation with the Research Institute for Vacuum Electronics (VUVET); Continuing development of the accelerator at VUVET); Construction of linear accelerators at VUVET and their application (Construction of the accelerating unit; UR 4/1200 accelerator for radiation technology tests at VUVET; UR 4PR ('LUPUR') accelerator for the Nuclear Research Institute at Rez; UR 4/1200 technological accelerator for the Nuclear Research Institute at Rez; LPR4 accelerator for the Hungarian Academy of Sciences; L 4/1200 accelerators for the Research Institute of Cables and Insulators in Bratislava, CKD Semiconductors in Prague, Animal Feed Research Institute at Ivanka pri Dunaji, and Synthesia Semtin). Appendix contains paragraphs devoted to the Accelerator Dept. staff and equipment, key accelerator spare parts, and radiation safety at the accelerator department, (P.A.)

  2. A low-cost technique to manufacture a container to process meiofauna for scanning electron microscopy.

    Science.gov (United States)

    Abolafia, J

    2015-09-01

    An easy and low-cost method to elaborate a container to dehydrate nematodes and other meiofauna in order to process them for scanning electron microscopy (SEM) is presented. Illustrations of its elaboration, step by step, are included. In addition, a brief methodology to process meiofauna, especially nematodes and kinorhynchs, and illustrations are provided. With this methodology it is possible to easily introduce the specimens, to lock them in a closed chamber allowing the infiltration of fluids and gases (ethanol, acetone, carbon dioxide) but avoiding losing the specimens. After using this meiofauna basket for SEM the results are efficient. Examples of nematode and kinorhynch SEM pictures obtained using this methodology are also included. © 2015 Wiley Periodicals, Inc.

  3. Efficient composite fabrication using electron-beam rapidly cured polymers engineered for several manufacturing processes

    International Nuclear Information System (INIS)

    Walton, T.C.; Crivello, J.V.

    1995-01-01

    Low cost, efficiently processed ultra high specific strength and stiffness graphite fiber reinforced polymeric composite materials are of great interest to commercial transportation, construction and aerospace industries for use in various components with enhanced degrees of weight reduction, corrosion/erosion resistance and fatigue resistance. 10 MeV Electron Beam cure processing has been found to increase the cure rate by an order of magnitude over thermally cured systems yet provide less molded in stresses and high T g s. However, a limited range of resins are available which are easily processed with low shrinkage and with performance properties equal or exceeding those of state of the art toughened epoxies and BMI's. The technology, introduced by an academia-industry partnership sparked by Langley Research Center utilizes a cost effective, rapid curing polymeric composite processing technique which effectively reduces the need for expensive tooling and energy inefficient autoclave processing and can cure the laminate in seconds (compared to hours for thermal curing) in ambient or sub-ambient conditions. The process is based on electron beam (E-Beam) curing of a new series of (65 to 1,000,000 cPs.) specially formulated resins that have been shown to exhibit excellent mechanical and physical properties once cured. Fabrication processes utilizing these specially formulated and newly commercialized resins, (e.g. including Vacuum Assist Resin Transfer molding (VARTM), vacuum bag prepreg layup, pultrusion and filament winding grades) are engineered to cure with low shrinkage, provide excellent mechanical properties, be processed solventless (environmentally friendly) and are inherently non toxic

  4. Studying the issues in the additive manufacturing of dental implants by Electron Beam MeltingRTM (EBM)

    Science.gov (United States)

    Jamshidinia, Mahdi

    The ability of additive manufacturing (AM) processes to produce complex geometries is resulting in their rapid acceptance by a number of industries. This unique capability could be used for the optimization of the design of functional components that could find an application in different industries such as aerospace, automotive, energy, medical, and implants. However, there are still some challenges confronting this technology such as surface finish, residual stress, dimensional tolerance, processing speed, and anisotropy in microstructure and mechanical properties. Any of the mentioned issues could be influenced by the thermal history of a 3D printed component during the layer-by-layer manufacturing. Therefore, an understanding of the thermal cycling during the AM process is essential. In recent years, significant advances have been achieved in the design, manufacturing, and materials used for dental implants. However, there are still some differences between the natural tooth and a dental implant that might decrease patient satisfaction. One of the differences between the natural tooth and a dental implant is in its modulus of elasticity, which could result in an issue known as bone atrophy. The second important difference between a dental implant and a natural tooth is the fact that a natural tooth is surrounded by a periodontal ligament that allows the tooth to move in three directions. However, the periodontal ligament is destroyed during the extraction of a natural tooth. In the absence of the periodontal ligament, the biting force is directly transferred to the jawbone, resulting in discomfort for the patient. Also, the implant cannot be incorporated with the surrounding natural tooth and form a bridge. In this study, the application of a lattice structure for the manufacturing of a biocompatible dental implant is investigated. Three different lattice structures with different unit cell sizes were experimentally and numerically analyzed. The mechanical

  5. Characterization of an Additive Manufactured TiAl Alloy-Steel Joint Produced by Electron Beam Welding.

    Science.gov (United States)

    Basile, Gloria; Baudana, Giorgio; Marchese, Giulio; Lorusso, Massimo; Lombardi, Mariangela; Ugues, Daniele; Fino, Paolo; Biamino, Sara

    2018-01-17

    In this work, the characterization of the assembly of a steel shaft into a γ-TiAl part for turbocharger application, obtained using Electron Beam Welding (EBW) technology with a Ni-based filler, was carried out. The Ti-48Al-2Nb-0.7Cr-0.3Si (at %) alloy part was produced by Electron Beam Melting (EBM). This additive manufacturing technology allows the production of a lightweight part with complex shapes. The replacement of Nickel-based superalloys with TiAl alloys in turbocharger automotive applications will lead to an improvement of the engine performance and a substantial reduction in fuel consumption and emission. The welding process allows a promising joint to be obtained, not affecting the TiAl microstructure. Nevertheless, it causes the formation of diffusive layers between the Ni-based filler and both steel and TiAl, with the latter side being characterized by a very complex microstructure, which was fully characterized in this paper by means of Scanning Electron Microscopy, Energy Dispersive X-ray Spectroscopy, and nanoindentation. The diffusive interface has a thickness of about 6 µm, and it is composed of several layers. Specifically, from the TiAl alloy side, we find a layer of Ti₃Al followed by Al₃NiTi₂ and AlNi₂Ti. Subsequently Ni becomes more predominant, with a first layer characterized by abundant carbide/boride precipitation, and a second layer characterized by Si-enrichment. Then, the chemical composition of the Ni-based filler is gradually reached.

  6. Characterization of an Additive Manufactured TiAl Alloy—Steel Joint Produced by Electron Beam Welding

    Directory of Open Access Journals (Sweden)

    Gloria Basile

    2018-01-01

    Full Text Available In this work, the characterization of the assembly of a steel shaft into a γ-TiAl part for turbocharger application, obtained using Electron Beam Welding (EBW technology with a Ni-based filler, was carried out. The Ti-48Al-2Nb-0.7Cr-0.3Si (at % alloy part was produced by Electron Beam Melting (EBM. This additive manufacturing technology allows the production of a lightweight part with complex shapes. The replacement of Nickel-based superalloys with TiAl alloys in turbocharger automotive applications will lead to an improvement of the engine performance and a substantial reduction in fuel consumption and emission. The welding process allows a promising joint to be obtained, not affecting the TiAl microstructure. Nevertheless, it causes the formation of diffusive layers between the Ni-based filler and both steel and TiAl, with the latter side being characterized by a very complex microstructure, which was fully characterized in this paper by means of Scanning Electron Microscopy, Energy Dispersive X-ray Spectroscopy, and nanoindentation. The diffusive interface has a thickness of about 6 µm, and it is composed of several layers. Specifically, from the TiAl alloy side, we find a layer of Ti3Al followed by Al3NiTi2 and AlNi2Ti. Subsequently Ni becomes more predominant, with a first layer characterized by abundant carbide/boride precipitation, and a second layer characterized by Si-enrichment. Then, the chemical composition of the Ni-based filler is gradually reached.

  7. Get certified a guide to wireless communication engineering technologies

    CERN Document Server

    Ahson, Syed A

    2009-01-01

    The Institute of Electrical and Electronics Engineers (IEEE) Communications Society designed the IEEE wireless communication engineering technologies (WCET) certification program to address the wireless industry's growing need for communications professionals with practical problem-solving skills in real-world situations. Individuals who achieve this prestigious certification are recognized as possessing the required knowledge, skill, and abilities to meet wireless challenges in various industry, business, corporate, and organizational settings. Presenting contributions from 50 wireless commun

  8. Wireless Tots

    Science.gov (United States)

    Scott, Lee-Allison

    2003-01-01

    The first wireless technology program for preschoolers was implemented in January at the Primrose School at Bentwater in Atlanta, Georgia, a new corporate school operated by Primrose School Franchising Co. The new school serves as a testing and training facility for groundbreaking educational approaches, including emerging innovations in…

  9. Wireless Technician

    Science.gov (United States)

    Tech Directions, 2011

    2011-01-01

    One of the hottest areas in technology is invisible. Wireless communications allow people to transmit voice messages, data, and other signals through the air without physically connecting senders to receivers with cables or wires. And the technology is spreading at lightning speed. Cellular phones, personal digital assistants, and wireless…

  10. Wireless multimedia communication systems design, analysis, and implementation

    CERN Document Server

    Rao, KR; Bakmaz, Bojan M

    2014-01-01

    Rapid progress in software, hardware, mobile networks, and the potential of interactive media poses many questions for researchers, manufacturers, and operators of wireless multimedia communication systems. Wireless Multimedia Communication Systems: Design, Analysis, and Implementation strives to answer those questions by not only covering the underlying concepts involved in the design, analysis, and implementation of wireless multimedia communication systems, but also by tackling advanced topics such as mobility management, security components, and smart grids.Offering an accessible treatment

  11. Effects of Processing Parameters on Surface Roughness of Additive Manufactured Ti-6Al-4V via Electron Beam Melting

    Science.gov (United States)

    Sin, Wai Jack; Nai, Mui Ling Sharon; Wei, Jun

    2017-01-01

    As one of the powder bed fusion additive manufacturing technologies, electron beam melting (EBM) is gaining more and more attention due to its near-net-shape production capacity with low residual stress and good mechanical properties. These characteristics also allow EBM built parts to be used as produced without post-processing. However, the as-built rough surface introduces a detrimental influence on the mechanical properties of metallic alloys. Thereafter, understanding the effects of processing parameters on the part’s surface roughness, in turn, becomes critical. This paper has focused on varying the processing parameters of two types of contouring scanning strategies namely, multispot and non-multispot, in EBM. The results suggest that the beam current and speed function are the most significant processing parameters for non-multispot contouring scanning strategy. While for multispot contouring scanning strategy, the number of spots, spot time, and spot overlap have greater effects than focus offset and beam current. The improved surface roughness has been obtained in both contouring scanning strategies. Furthermore, non-multispot contouring scanning strategy gives a lower surface roughness value and poorer geometrical accuracy than the multispot counterpart under the optimized conditions. These findings could be used as a guideline for selecting the contouring type used for specific industrial parts that are built using EBM. PMID:28937638

  12. Cell-Phone Tower Power System Prototype Testing for Verizon Wireless |

    Science.gov (United States)

    Advanced Manufacturing Research | NREL Cell-Phone Tower Power System Prototype Testing for Verizon Wireless Cell-Phone Tower Power System Prototype Testing for Verizon Wireless For Verizon Wireless , NREL tested a new cell-phone tower power system prototype based on DC interconnection and photovoltaics

  13. The MAGCLOUD wireless sensor network

    OpenAIRE

    Cuartero Moya, Narciso; Quintana Alcaraz, Sergio

    2011-01-01

    Initially, the aim of this project consisted in manufacturing some nodes for a wireless sensor network by hand. If this document concludes that they can be properly produced in the EETAC lab, the cost of a future large deployment using raw components would be much lower than in the case of acquiring the genuine factory assembled hardware. Also, the future students involved in the process could learn many useful advanced techniques along the way. The project ended sowing a future WSN con...

  14. Numerical modeling of heat-transfer and the influence of process parameters on tailoring the grain morphology of IN718 in electron beam additive manufacturing

    International Nuclear Information System (INIS)

    Raghavan, Narendran; Dehoff, Ryan; Pannala, Sreekanth; Simunovic, Srdjan; Kirka, Michael; Turner, John; Carlson, Neil; Babu, Sudarsanam S.

    2016-01-01

    The fabrication of 3-D parts from CAD models by additive manufacturing (AM) is a disruptive technology that is transforming the metal manufacturing industry. The correlation between solidification microstructure and mechanical properties has been well understood in the casting and welding processes over the years. This paper focuses on extending these principles to additive manufacturing to understand the transient phenomena of repeated melting and solidification during electron beam powder melting process to achieve site-specific microstructure control within a fabricated component. In this paper, we have developed a novel melt scan strategy for electron beam melting of nickel-base superalloy (Inconel 718) and also analyzed 3-D heat transfer conditions using a parallel numerical solidification code (Truchas) developed at Los Alamos National Laboratory. The spatial and temporal variations of temperature gradient (G) and growth velocity (R) at the liquid-solid interface of the melt pool were calculated as a function of electron beam parameters. By manipulating the relative number of voxels that lie in the columnar or equiaxed region, the crystallographic texture of the components can be controlled to an extent. The analysis of the parameters provided optimum processing conditions that will result in columnar to equiaxed transition (CET) during the solidification. The results from the numerical simulations were validated by experimental processing and characterization thereby proving the potential of additive manufacturing process to achieve site-specific crystallographic texture control within a fabricated component.

  15. Analysis of phthalate esters in soils near an electronics manufacturing facility and from a non-industrialized area by gas purge microsyringe extraction and gas chromatography

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Wei [MOE Key Laboratory of Environment and Health, Institute of Environmental Medicine, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei (China); Hu, Jia [Suzhou Center for Disease Prevention and Control, Suzhou, Jiangsu (China); Wang, Jinqi; Chen, Xuerong; Yao, Na [MOE Key Laboratory of Environment and Health, Institute of Environmental Medicine, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei (China); Tao, Jing, E-mail: jingtao1982@126.com [MOE Key Laboratory of Environment and Health, Institute of Environmental Medicine, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei (China); Zhou, Yi-Kai, E-mail: zhouyk@mails.tjmu.edu.cn [MOE Key Laboratory of Environment and Health, Institute of Environmental Medicine, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei (China)

    2015-03-01

    Here, a novel technique is described for the extraction and quantitative determination of six phthalate esters (PAEs) from soils by gas purge microsyringe extraction and gas chromatography. Recovery of PAEs ranged from 81.4% to 120.3%, and the relative standard deviation (n = 6) ranged from 5.3% to 10.5%. Soil samples were collected from roadsides, farmlands, residential areas, and non-cultivated areas in a non-industrialized region, and from the same land-use types within 1 km of an electronics manufacturing facility (n = 142). Total PAEs varied from 2.21 to 157.62 mg kg{sup −1} in non-industrialized areas and from 8.63 to 171.64 mg kg{sup −1} in the electronics manufacturing area. PAE concentrations in the non-industrialized area were highest in farmland, followed (in decreasing order) by roadsides, residential areas, and non-cultivated soil. In the electronics manufacturing area, PAE concentrations were highest in roadside soils, followed by residential areas, farmland, and non-cultivated soils. Concentrations of dimethyl phthalate (DMP), diethyl phthalate (DEP), and di-n-butyl phthalate (DnBP) differed significantly (P < 0.01) between the industrial and non-industrialized areas. Principal component analysis indicated that the strongest explanatory factor was related to DMP and DnBP in non-industrialized soils and to butyl benzyl phthalate (BBP) and DMP in soils near the electronics manufacturing facility. Congener-specific analysis confirmed that diethylhexyl phthalate (DEHP) was a predictive indication both in the non-industrialized area (r{sup 2} = 0.944, P < 0.01) and the industrialized area (r{sup 2} = 0.860, P < 0.01). The higher PAE contents in soils near the electronics manufacturing facility are of concern, considering the large quantities of electronic wastes generated with ongoing industrialization. - Highlights: • A new method for determining phthalate esters in soil samples was developed. • Investigate six phthalates near an industry and a

  16. Low-Power Wireless Sensor Network Infrastructures

    DEFF Research Database (Denmark)

    Hansen, Morten Tranberg

    Advancements in wireless communication and electronics improving form factor and hardware capabilities has expanded the applicability of wireless sensor networks. Despite these advancements, devices are still limited in terms of energy which creates the need for duty-cycling and low-power protocols...... peripherals need to by duty-cycled and the low-power wireless radios are severely influenced by the environmental effects causing bursty and unreliable wireless channels. This dissertation presents a communication stack providing services for low-power communication, secure communication, data collection......, and network management which enables construction of low-power wireless sensor network applications. More specifically, these services are designed with the extreme low-power scenarios of the SensoByg project in mind and are implemented as follows. First, low-power communication is implemented with Auto...

  17. Wireless IP and building the mobile Internet

    National Research Council Canada - National Science Library

    Dixit, Sudhir; Prasad, Ramjee

    2003-01-01

    ..., as well as the shortage of technical material in a single place in the field of wireless IP and closely related technologies that form the critical success factors. Therefore, we decided to invite the experts who are truly active in the field: the equipment manufacturers, mobile operators, and those working in research laboratories and unive...

  18. Influence of Manufacturing Parameters on Microstructure and Hydrogen Sorption Behavior of Electron Beam Melted Titanium Ti-6Al-4V Alloy.

    Science.gov (United States)

    Pushilina, Natalia; Syrtanov, Maxim; Kashkarov, Egor; Murashkina, Tatyana; Kudiiarov, Viktor; Laptev, Roman; Lider, Andrey; Koptyug, Andrey

    2018-05-10

    Influence of manufacturing parameters (beam current from 13 to 17 mA, speed function 98 and 85) on microstructure and hydrogen sorption behavior of electron beam melted (EBM) Ti-6Al-4V parts was investigated. Optical and scanning electron microscopies as well as X-ray diffraction were used to investigate the microstructure and phase composition of EBM Ti-6Al-4V parts. The average α lath width decreases with the increase of the speed function at the fixed beam current (17 mA). Finer microstructure was formed at the beam current 17 mA and speed function 98. The hydrogenation of EBM Ti-6Al-4V parts was performed at the temperatures 500 and 650 °С at the constant pressure of 1 atm up to 0.3 wt %. The correlation between the microstructure and hydrogen sorption kinetics by EBM Ti-6Al-4V parts was demonstrated. Lower average hydrogen sorption rate at 500 °C was in the sample with coarser microstructure manufactured at the beam current 17 mA and speed function 85. The difference of hydrogen sorption kinetics between the manufactured samples at 650 °C was insignificant. The shape of the kinetics curves of hydrogen sorption indicates the phase transition α H + β H →β H .

  19. Influence of Manufacturing Parameters on Microstructure and Hydrogen Sorption Behavior of Electron Beam Melted Titanium Ti-6Al-4V Alloy

    Directory of Open Access Journals (Sweden)

    Natalia Pushilina

    2018-05-01

    Full Text Available Influence of manufacturing parameters (beam current from 13 to 17 mA, speed function 98 and 85 on microstructure and hydrogen sorption behavior of electron beam melted (EBM Ti-6Al-4V parts was investigated. Optical and scanning electron microscopies as well as X-ray diffraction were used to investigate the microstructure and phase composition of EBM Ti-6Al-4V parts. The average α lath width decreases with the increase of the speed function at the fixed beam current (17 mA. Finer microstructure was formed at the beam current 17 mA and speed function 98. The hydrogenation of EBM Ti-6Al-4V parts was performed at the temperatures 500 and 650 °С at the constant pressure of 1 atm up to 0.3 wt %. The correlation between the microstructure and hydrogen sorption kinetics by EBM Ti-6Al-4V parts was demonstrated. Lower average hydrogen sorption rate at 500 °C was in the sample with coarser microstructure manufactured at the beam current 17 mA and speed function 85. The difference of hydrogen sorption kinetics between the manufactured samples at 650 °C was insignificant. The shape of the kinetics curves of hydrogen sorption indicates the phase transition αH + βH→βH.

  20. Wireless Power Transfer Impact on Data Channel

    OpenAIRE

    Baikova, Elena N.; Valtchev, Stanimir S.; Melício, R.; Fernão Pires, V.

    2016-01-01

    Trabalho apresentado no 23rd International Symposium on Power Electronics, Electrical Drives, Automation and Motion (Speedam, 2016), 22-24 junho de 2016, Capri, Itália This paper presents measurement results and analysis of the interference produced by the high-power electromagnetic field in a wireless energy transfer system. Through this analysis it is expected to be possible to evaluate the influence of the strong electromagnetic field on the data transmission channel. The wireless power...

  1. A wireless sensor enabled by wireless power.

    Science.gov (United States)

    Lee, Da-Sheng; Liu, Yu-Hong; Lin, Chii-Ruey

    2012-11-22

    Through harvesting energy by wireless charging and delivering data by wireless communication, this study proposes the concept of a wireless sensor enabled by wireless power (WPWS) and reports the fabrication of a prototype for functional tests. One WPWS node consists of wireless power module and sensor module with different chip-type sensors. Its main feature is the dual antenna structure. Following RFID system architecture, a power harvesting antenna was designed to gather power from a standard reader working in the 915 MHz band. Referring to the Modbus protocol, the other wireless communication antenna was integrated on a node to send sensor data in parallel. The dual antenna structure integrates both the advantages of an RFID system and a wireless sensor. Using a standard UHF RFID reader, WPWS can be enabled in a distributed area with a diameter up to 4 m. Working status is similar to that of a passive tag, except that a tag can only be queried statically, while the WPWS can send dynamic data from the sensors. The function is the same as a wireless sensor node. Different WPWSs equipped with temperature and humidity, optical and airflow velocity sensors are tested in this study. All sensors can send back detection data within 8 s. The accuracy is within 8% deviation compared with laboratory equipment. A wireless sensor network enabled by wireless power should be a totally wireless sensor network using WPWS. However, distributed WPWSs only can form a star topology, the simplest topology for constructing a sensor network. Because of shielding effects, it is difficult to apply other complex topologies. Despite this limitation, WPWS still can be used to extend sensor network applications in hazardous environments. Further research is needed to improve WPWS to realize a totally wireless sensor network.

  2. Wireless energy transfer: Dielectric lens antennas for beam shaping in wireless power-transfer applications

    Science.gov (United States)

    Gonçalves, Ricardo; Carvalho, Nuno B.; Pinho, Pedro

    2017-02-01

    In the current contest of wireless systems, the last frontier remains the cut of the power cord. In that sense, the interest over wireless energy transfer technologies in the past years has grown exponentially. However, there are still many challenges to be overcome in order to enable wireless energy transfer full potential. One of the focus in the development of such systems is the design of very-high-gain, highly efficient, antennas that can compensate for the propagation loss of radio signals over the air. In this paper, we explore the design and manufacturing process of dielectric lenses, fabricated using a professional-grade desktop 3D printer. Lens antennas are used in order to increase beam efficiency and therefore maximize the efficiency of a wireless power-transfer system operating at microwave frequencies in the Ku band. Measurements of two fabricated prototypes showcase a large directivity, as predicted with simulations. xml:lang="fr"

  3. Simulation of Wireless Digital Communication Systems

    Directory of Open Access Journals (Sweden)

    A. Mohammed

    2004-12-01

    Full Text Available Due to the explosive demands for high speed wireless services, suchas wireless Internet, email and cellular video conferencing, digitalwireless communications has become one of the most exciting researchtopics in electrical and electronic engineering field. The never-endingdemand for such personal and multimedia services, however, demandstechnologies operating at higher data rates and broader bandwidths. Inaddition, the complexity of wireless communication and signalprocessing systems has grown considerably during the past decade.Therefore, powerful computer­aided techniques are required for theprocess of modeling, designing, analyzing and evaluating theperformance of digital wireless communication systems. In this paper wediscuss the basic propagation mechanisms affecting the performance ofwireless communication systems, and present a simple, powerful andefficient way to simulate digital wireless communication systems usingMatlab. The simulated results are compared with the theoreticalanalysis to validate the simulator. The simulator is useful inevaluating the performance of wireless multimedia services and theassociated signal processing structures and algorithms for current andnext generation wireless mobile communication systems.

  4. Wireless ATM : handover issues

    OpenAIRE

    Jiang, Fan; Käkölä, Timo

    1998-01-01

    Basic aspects of cellular systems and the ATM transmission technology are introduced. Wireless ATM is presented as a combination of radio ATM and mobile ATM. Radio ATM is a wireless extension of an ATM connection while mobile ATM contains the necessary extensions to ATM to support mobility. Because the current ATM technology does not support mobility, handover becomes one of the most important research issues for wireless ATM. Wireless ATM handover requirements are thus analysed. A handover s...

  5. Manufacturing Initiative

    Data.gov (United States)

    National Aeronautics and Space Administration — The Advanced Manufacturing Technologies (AMT) Project supports multiple activities within the Administration's National Manufacturing Initiative. A key component of...

  6. Wireless Communication Technologies

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. Wireless Communication Technologies. Since 1999, the wireless LAN has experienced a tremendous growth. Reasons: Adoption of industry standards. Interoperability testing. The progress of wireless equipments to higher data rates. Rapid decrease in product ...

  7. Wireless Sensor Node for Surface Seawater Density Measurements

    Directory of Open Access Journals (Sweden)

    Roberto Saletti

    2012-03-01

    Full Text Available An electronic meter to measure surface seawater density is presented. It is based on the measurement of the difference in displacements of a surface level probe and a weighted float, which according to Archimedes’ law depends on the density of the water. The displacements are simultaneously measured using a high-accuracy magnetostrictive sensor, to which a custom electronic board provides a wireless connection and power supply so that it can become part of a wireless sensor network. The electronics are designed so that different kinds of wireless networks can be used, by simply changing the wireless module and the relevant firmware of the microcontroller. Lastly, laboratory and at-sea tests are presented and discussed in order to highlight the functionality and the performance of a prototype of the wireless density meter node in a Bluetooth radio network. The experimental results show a good agreement of the values of the calculated density compared to reference hydrometer readings.

  8. Wireless sensor node for surface seawater density measurements.

    Science.gov (United States)

    Baronti, Federico; Fantechi, Gabriele; Roncella, Roberto; Saletti, Roberto

    2012-01-01

    An electronic meter to measure surface seawater density is presented. It is based on the measurement of the difference in displacements of a surface level probe and a weighted float, which according to Archimedes' law depends on the density of the water. The displacements are simultaneously measured using a high-accuracy magnetostrictive sensor, to which a custom electronic board provides a wireless connection and power supply so that it can become part of a wireless sensor network. The electronics are designed so that different kinds of wireless networks can be used, by simply changing the wireless module and the relevant firmware of the microcontroller. Lastly, laboratory and at-sea tests are presented and discussed in order to highlight the functionality and the performance of a prototype of the wireless density meter node in a Bluetooth radio network. The experimental results show a good agreement of the values of the calculated density compared to reference hydrometer readings.

  9. Evaluation of a Prototype Low-Cost, Modular, Wireless Electroencephalography (EEG) Headset Design for Widespread Application

    Science.gov (United States)

    2016-06-01

    therefore did not implement or test actual sensors or electronic components (analog-to-digital conversion, power , and the wireless transmission ...ARL-TR-7703 ● JUNE 2016 US Army Research Laboratory Evaluation of a Prototype Low-Cost, Modular, Wireless Electroencephalography...originator. ARL-TR-7703 ● JUNE 2016 US Army Research Laboratory Evaluation of a Prototype Low-Cost, Modular, Wireless

  10. CCNA Wireless Study Guide

    CERN Document Server

    Lammle, Todd

    2010-01-01

    A complete guide to the CCNA Wireless exam by leading networking authority Todd Lammle. The CCNA Wireless certification is the most respected entry-level certification in this rapidly growing field. Todd Lammle is the undisputed authority on networking, and this book focuses exclusively on the skills covered in this Cisco certification exam. The CCNA Wireless Study Guide joins the popular Sybex study guide family and helps network administrators advance their careers with a highly desirable certification.: The CCNA Wireless certification is the most respected entry-level wireless certification

  11. Design issues and applications of wireless sensor networks ...

    African Journals Online (AJOL)

    ... using tiny wireless sensor motes known as “smart dusts”, which have been made possible by advances in micro-electromechanical systems (MEMS) technology, wireless communications and digital electronics. Design considerations for the hardware and the topology necessary to realize these networks were evaluated.

  12. Streaming-aware channel utilization improvement for wireless home networks

    NARCIS (Netherlands)

    Aslam, W.; Lukkien, J.J.

    2012-01-01

    A wireless network of consumer electronic (CE) devices in a modern home, is typically running streaming services with heterogeneous bandwidth demands. Satisfying these demands offers the challenge of mapping them efficiently onto scarce wireless channel bandwidth. This mapping is supported by the

  13. The Wireless ATM Architecture

    Directory of Open Access Journals (Sweden)

    R. Palitefka

    1998-06-01

    Full Text Available An overview of the proposed wireless ATM structure is provided. Wireless communication have been developed to a level where offered services can now be extended beyond voice and data. There are already wireless LANs, cordless systems offering data services and mobile data. Wireless LAN systems are basically planned for local, on-promises and in-house networking providing short distance radio or infrared links between computer system. The main challenge of wireless ATM is to harmonise the development of broadband wireless system with service B -ISDN/ATM and ATM LANs, and offer multimedia multiservice features for the support of time-sensitive voice communication, video, desktop multimedia applications, and LAN data traffic for the wireless user.

  14. Social manufacturing

    OpenAIRE

    Hamalainen, Markko; Karjalainen, Jesse

    2017-01-01

    New business models harnessing the power of individuals have already revolutionized service industries and digital content production. In this study, we investigate whether a similar phenomenon is taking place in manufacturing industries. We start by conceptually defining two distinct forms of firm-individual collaboration in manufacturing industries: (1) social cloud manufacturing, in which firms outsource manufacturing to individuals, and (2) social platform manufacturing, in which firms pr...

  15. WiMax taking wireless to the max

    CERN Document Server

    Pareek, Deepak

    2006-01-01

    With market value expected to reach 5 billion by 2007 and the endorsement of some of the biggest names in telecommunications, World Interoperability for Microwave Access (WiMAX) is poised to change the broadband wireless landscape. But how much of WiMAX's touted potential is merely hype? Now that several pre-WiMAX networks have been deployed, what are the operators saying about QoS and ROI? How and when will device manufacturers integrate WiMAX into their products? What is the business case for using WiMAX rather than any number of other established wireless alternatives?WiMAX: Taking Wireless

  16. Symmetric Encryption Relying on Chaotic Henon System for Secure Hardware-Friendly Wireless Communication of Implantable Medical Systems

    Directory of Open Access Journals (Sweden)

    Taha Belkhouja

    2018-05-01

    Full Text Available Healthcare remote devices are recognized as a promising technology for treating health related issues. Among them are the wireless Implantable Medical Devices (IMDs: These electronic devices are manufactured to treat, monitor, support or replace defected vital organs while being implanted in the human body. Thus, they play a critical role in healing and even saving lives. Current IMDs research trends concentrate on their medical reliability. However, deploying wireless technology in such applications without considering security measures may offer adversaries an easy way to compromise them. With the aim to secure these devices, we explore a new scheme that creates symmetric encryption keys to encrypt the wireless communication portion. We will rely on chaotic systems to obtain a synchronized Pseudo-Random key. The latter will be generated separately in the system in such a way that avoids a wireless key exchange, thus protecting patients from the key theft. Once the key is defined, a simple encryption system that we propose in this paper will be used. We analyze the performance of this system from a cryptographic point of view to ensure that it offers a better safety and protection for patients.

  17. Wireless mesh networks.

    Science.gov (United States)

    Wang, Xinheng

    2008-01-01

    Wireless telemedicine using GSM and GPRS technologies can only provide low bandwidth connections, which makes it difficult to transmit images and video. Satellite or 3G wireless transmission provides greater bandwidth, but the running costs are high. Wireless networks (WLANs) appear promising, since they can supply high bandwidth at low cost. However, the WLAN technology has limitations, such as coverage. A new wireless networking technology named the wireless mesh network (WMN) overcomes some of the limitations of the WLAN. A WMN combines the characteristics of both a WLAN and ad hoc networks, thus forming an intelligent, large scale and broadband wireless network. These features are attractive for telemedicine and telecare because of the ability to provide data, voice and video communications over a large area. One successful wireless telemedicine project which uses wireless mesh technology is the Emergency Room Link (ER-LINK) in Tucson, Arizona, USA. There are three key characteristics of a WMN: self-organization, including self-management and self-healing; dynamic changes in network topology; and scalability. What we may now see is a shift from mobile communication and satellite systems for wireless telemedicine to the use of wireless networks based on mesh technology, since the latter are very attractive in terms of cost, reliability and speed.

  18. High capacity wireless data links in the W-band using hybrid photonics-electronic techniques for signal generation and detection

    DEFF Research Database (Denmark)

    Vegas Olmos, Juan José; Tafur Monroy, Idelfonso

    2014-01-01

    Seamless convergence of fiber-optic and the wireless networks is of great interest for enabling transparent delivery of broadband services to users in different locations, including both metropolitan and rural areas. Current demand of bandwidth by end-users, especially using mobile devices...... latest findings and experimental results on the W-band, specifically on its 81–86GHz sub-band. These include photonic generation of millimeter-wave carriers and transmission performance of broadband signals on different types of fibers and span lengths....

  19. The Organic Power Transistor: Roll-to-Roll Manufacture, Thermal Behavior, and Power Handling When Driving Printed Electronics

    DEFF Research Database (Denmark)

    Pastorelli, Francesco; Schmidt, Thomas Mikael; Hösel, Markus

    2016-01-01

    to drive large currents while handling the thermal aspects in operation together with other organic printed electronics technologies such as large area organic photovoltaics (OPV)[2] and large area electrochromic displays (EC).[3] We find especially that an elevated operational temperature is beneficial...... with respect to both transconductance and on/off ratio. We achieve high currents of up to 45mA at a temperature of 80 C with an on/ off ratio of 100 which is sufficient to drive large area organic electronics such as an EC device powered by OPV devices that we also demonstrate. Finally, we observe......We present flexible organic power transistors prepared by fast (20mmin1) roll-to-roll (R2R) flexographic printing[1] of the drain (D) and source (S) electrode structures directly on polyester foil. The devices have top gate architecture and were completed by spin coating or slot-die coating...

  20. XCT analysis of the influence of melt strategies on defect population in Ti–6Al–4V components manufactured by Selective Electron Beam Melting

    International Nuclear Information System (INIS)

    Tammas-Williams, S.; Zhao, H.; Léonard, F.; Derguti, F.; Todd, I.; Prangnell, P.B.

    2015-01-01

    Selective Electron Beam Melting (SEBM) is a promising powder bed Additive Manufacturing technique for near-net-shape manufacture of high-value titanium components. However without post-manufacture HIPing the fatigue life of SEBM parts is currently dominated by the presence of porosity. In this study, the size, volume fraction, and spatial distribution of the pores in model samples have been characterised in 3D, using X-ray Computed Tomography, and correlated to the process variables. The average volume fraction of the pores (< 0.2%) was measured to be lower than that usually observed in competing processes, such as selective laser melting, but a strong relationship was found with the different beam strategies used to contour, and infill by hatching, a part section. The majority of pores were found to be small spherical gas pores, concentrated in the infill hatched region; this was attributed to the lower energy density and less focused beam used in the infill strategy allowing less opportunity for gas bubbles to escape the melt pool. Overall, increasing the energy density or focus of the beam was found to correlate strongly to a reduction in the level of gas porosity. Rarer irregular shaped pores were mostly located in the contour region and have been attributed to a lack of fusion between powder particles. - Graphical abstract: Display Omitted - Highlights: • Vast majority of defects detected were small spherical gas pores. • Gas bubbles trapped in the powder granules expand and coalesce in the melt pool. • Pores have been shown not to be randomly distributed. • Larger and deeper melt pools give more opportunity for gas to escape. • Minor changes to melt strategy result in significant reductions in pore population

  1. XCT analysis of the influence of melt strategies on defect population in Ti–6Al–4V components manufactured by Selective Electron Beam Melting

    Energy Technology Data Exchange (ETDEWEB)

    Tammas-Williams, S., E-mail: Samuel.tammas-wiliams@manchester.ac.uk [School of Materials, University of Manchester, Manchester M13 9PL (United Kingdom); Department of Materials Science and Engineering, University of Sheffield, Sheffield S1 3JD (United Kingdom); Zhao, H. [School of Materials, University of Manchester, Manchester M13 9PL (United Kingdom); Department of Materials Science and Engineering, University of Sheffield, Sheffield S1 3JD (United Kingdom); Léonard, F. [School of Materials, University of Manchester, Manchester M13 9PL (United Kingdom); Derguti, F.; Todd, I. [Department of Materials Science and Engineering, University of Sheffield, Sheffield S1 3JD (United Kingdom); Prangnell, P.B. [School of Materials, University of Manchester, Manchester M13 9PL (United Kingdom)

    2015-04-15

    Selective Electron Beam Melting (SEBM) is a promising powder bed Additive Manufacturing technique for near-net-shape manufacture of high-value titanium components. However without post-manufacture HIPing the fatigue life of SEBM parts is currently dominated by the presence of porosity. In this study, the size, volume fraction, and spatial distribution of the pores in model samples have been characterised in 3D, using X-ray Computed Tomography, and correlated to the process variables. The average volume fraction of the pores (< 0.2%) was measured to be lower than that usually observed in competing processes, such as selective laser melting, but a strong relationship was found with the different beam strategies used to contour, and infill by hatching, a part section. The majority of pores were found to be small spherical gas pores, concentrated in the infill hatched region; this was attributed to the lower energy density and less focused beam used in the infill strategy allowing less opportunity for gas bubbles to escape the melt pool. Overall, increasing the energy density or focus of the beam was found to correlate strongly to a reduction in the level of gas porosity. Rarer irregular shaped pores were mostly located in the contour region and have been attributed to a lack of fusion between powder particles. - Graphical abstract: Display Omitted - Highlights: • Vast majority of defects detected were small spherical gas pores. • Gas bubbles trapped in the powder granules expand and coalesce in the melt pool. • Pores have been shown not to be randomly distributed. • Larger and deeper melt pools give more opportunity for gas to escape. • Minor changes to melt strategy result in significant reductions in pore population.

  2. Method for Designing Electronic Assemblies without Potting for Gun Launched Applications Through the Use of Additive Manufacturing

    Science.gov (United States)

    2016-12-01

    Respondents should be aware that notwithstanding any other provision of law , no person shall be subject to any penalty for failing to comply with a...catch (SCAT) gun Guidance electronics On-board recorder (OBR) Precision guided munition (PGM) 16. SECURITY CLASSIFICATION OF: 17...12 All 22 spacer revisions in order from left to right and top to bottom 12 13 Reference for dimension definitions for revisions 1 through 9 13 14

  3. Characterization and design of a low-power wireless power delivery system

    Science.gov (United States)

    Falkenstein, Erez Avigdor

    There is an increased demand for wireless sensors for data gathering and transmission where running wires to power a device or changing/charging batteries is difficult. Often the data is gathered at locations that are difficult to access, that need to be covert, and/or where the sensors cannot be easily maintained. Some examples are implanted sensors for medical diagnostics and therapy, structural monitoring sensors, sensors inside hazardous manufacturing or other hazardous environments, etc. For any low power sensor that operates at a low duty cycle, and in an environment with low levels of light or vibration, RF wireless powering offers the potential for maintenance-free operation. The thesis focuses on a design methodology for low-power non-directional far-field wireless powering. The power receiver consists of one or more antennae which receive plane waves transmitted by the powering source, and deliver the RF power to a rectifying element. The resulting DC power is optimally transferred to the electronic application via a power management circuit. The powering is independent of the electronic application which can include wireless transmission of sensor data. The design and implementation of an integrated rectifier-antenna at low incident power densities (from 25--200 muW/cm2) is presented. Nonlinear source-pull measurements and harmonic balance simulations are used for finding the optimal rectifying device RF and DC impedances for efficient rectification. Experimental results show that an antenna design with a specific complex impedance reaches the highest rectification efficiency. Several examples of the design methodology will be shown. In specific, characterization of a rectifying patch antenna at frequency of 2.45GHz will be detailed, with an optimal RF impedance of 137+j149O and an optimal DC load of 365O resulting in RF to DC conversion efficiency of 63% for the rectifier alone and 56% for the total rectifying antenna.

  4. Overall Equipment Efficiency (OEE Enhancement in Manufacture of Electronic Components & Boards Industry through Total Productive Maintenance Practices

    Directory of Open Access Journals (Sweden)

    Fam Soo-Fen

    2018-01-01

    Full Text Available In an environment of intense global competition, both creative and proven strategies need to be considered in order to bring about the effectiveness and efficiency in manufacturing operation. Total Productive Maintenance (TPM is one of the effective maintenance strategy in enhancing the equipment effectiveness and to achieve a significant competitive advantage. This research paper addresses the impact of three TPM pillars namely planned maintenance (PM, autonomous maintenance (AM and focused maintenance (FM on overall equipment effectiveness (OEE of die attach equipment in the production line of semiconductor industry. The effect of TPM on the OEE is also investigated depending on the equipment types, in where die attach process consist of two models-CANON and ESEC. The primary data was collected from an organization's database and was analysed by SPSS V23. The preliminary results of the analysis showed that the performance of OEE in ESEC is better than the CANON after the implementation of TPM. The analysis also showed that out of the three TPM practices deployed, planned maintenance of equipment by production and maintenance team played the biggest role in increasing the equipment effectiveness. In conclusion, this study provides insights the importance of implementing TPM in order to succeed in a highly demanding market arena.

  5. Integrated Frequency Synthesis for Convergent Wireless Solutions

    CERN Document Server

    Atallah, Jad G

    2012-01-01

    This book describes the design and implementation of an electronic subsystem called the frequency synthesizer, which is a very important building block for any wireless transceiver. The discussion includes several new techniques for the design of such a subsystem which include the usage modes of the wireless device, including its support for several leading-edge wireless standards. This new perspective for designing such a demanding subsystem is based on the fact that optimizing the performance of a complete system is not always achieved by optimizing the performance of its building blocks separately.  This book provides “hands-on” examples of this sort of co-design of optimized subsystems, which can make the vision of an always-best-connected scenario a reality. Provides up-to-date design information regarding one of the most complex subsystems used in state-of-the-art wireless devices; Describes a wireless front-end solution designed to provide an always-best-connected solution, based on a wireless det...

  6. Localized melt-scan strategy for site specific control of grain size and primary dendrite arm spacing in electron beam additive manufacturing

    International Nuclear Information System (INIS)

    Raghavan, Narendran; Simunovic, Srdjan; Dehoff, Ryan; Plotkowski, Alex; Turner, John; Kirka, Michael; Babu, Suresh

    2017-01-01

    In addition to design geometry, surface roughness, and solid-state phase transformation, solidification microstructure plays a crucial role in controlling the performance of additively manufactured components. Crystallographic texture, primary dendrite arm spacing (PDAS), and grain size are directly correlated to local solidification conditions. We have developed a new melt-scan strategy for inducing site specific, on-demand control of solidification microstructure. We were able to induce variations in grain size (30 μm–150 μm) and PDAS (4 μm - 10 μm) in Inconel 718 parts produced by the electron beam additive manufacturing system (Arcam ® ). A conventional raster melt-scan resulted in a grain size of about 600 μm. The observed variations in grain size with different melt-scan strategies are rationalized using a numerical thermal and solidification model which accounts for the transient curvature of the melt pool and associated thermal gradients and liquid-solid interface velocities. The refinement in grain size at high cooling rates (>10 4  K/s) is also attributed to the potential heterogeneous nucleation of grains ahead of the epitaxially growing solidification front. The variation in PDAS is rationalized using a coupled numerical-theoretical model as a function of local solidification conditions (thermal gradient and liquid-solid interface velocity) of the melt pool.

  7. X-ray fluorescence (conventional and 3D) and scanning electron microscopy for the investigation of Portuguese polychrome glazed ceramics: Advances in the knowledge of the manufacturing techniques

    Energy Technology Data Exchange (ETDEWEB)

    Guilherme, A. [Departamento de Fisica da Faculdade de Ciencias, Centro de Fisica Atomica da Universidade de Lisboa, Av. Prof. Gama Pinto, 2, 1649-003 Lisboa (Portugal); Coroado, J. [Instituto Politecnico Tomar, Dep. Arte Conservacao and Restauro, P-2300313 Tomar (Portugal); Santos, J.M.F. dos [GIAN, Departamento de Fisica, Universidade de Coimbra, 3004-516 Coimbra (Portugal); Luehl, L.; Wolff, T.; Kanngiesser, B. [Institut fuer Optik und Atomare Physik, Technische Universitaet Berlin, Hardenbergstr. 36 D-10623 Berlin (Germany); Carvalho, M.L., E-mail: luisa@cii.fc.ul.pt [Departamento de Fisica da Faculdade de Ciencias, Centro de Fisica Atomica da Universidade de Lisboa, Av. Prof. Gama Pinto, 2, 1649-003 Lisboa (Portugal)

    2011-05-15

    This work shows the first analytical results obtained by X-Ray Fluorescence (XRF) (conventional and 3D) and Scanning Electron Microscopy with Energy Dispersive System (SEM-EDS) on original Portuguese ceramic pieces produced between the 16th and 18th centuries in Coimbra and Lisbon. Experts distinguished these productions based only on the color, texture and brightness, which originates mislabeling in some cases. Thanks to lateral and spatial resolution in the micrometer regime, the results obtained with {mu}-XRF were essential in determining the glaze and pigment thicknesses by monitoring the profile of the most abundant element in each 'layer'. Furthermore, the dissemination of these elements throughout the glaze is different depending on the glaze composition, firing temperature and on the pigment itself. Hence, the crucial point of this investigation was to analyze and understand the interfaces color/glaze and glaze/ceramic support. Together with the XRF results, images captured by SEM and the corresponding semi-quantitative EDS data revealed different manufacturing processes used by the two production centers. Different capture modes were suitable to distinguish different crystals from the minerals that confer the color of the pigments used and to enhance the fact that some of them are very well spread through the glassy matrix, sustaining the theory of an evolved and careful procedure in the manufacturing process of the glaze.

  8. Influence of Inherent Surface and Internal Defects on Mechanical Properties of Additively Manufactured Ti6Al4V Alloy: Comparison between Selective Laser Melting and Electron Beam Melting.

    Science.gov (United States)

    Fousová, Michaela; Vojtěch, Dalibor; Doubrava, Karel; Daniel, Matěj; Lin, Chiu-Feng

    2018-03-31

    Additive manufacture (AM) appears to be the most suitable technology to produce sophisticated, high quality, lightweight parts from Ti6Al4V alloy. However, the fatigue life of AM parts is of concern. In our study, we focused on a comparison of two techniques of additive manufacture-selective laser melting (SLM) and electron beam melting (EBM)-in terms of the mechanical properties during both static and dynamic loading. All of the samples were untreated to focus on the influence of surface condition inherent to SLM and EBM. The EBM samples were studied in the as-built state, while SLM was followed by heat treatment. The resulting similarity of microstructures led to comparable mechanical properties in tension, but, due to differences in surface roughness and specific internal defects, the fatigue strength of the EBM samples reached only half the value of the SLM samples. Higher surface roughness that is inherent to EBM contributed to multiple initiations of fatigue cracks, while only one crack initiated on the SLM surface. Also, facets that were formed by an intergranular cleavage fracture were observed in the EBM samples.

  9. Low-Cost Inkjet-Printed Wireless Sensor Nodes for Environmental and Health Monitoring Applications

    KAUST Repository

    Farooqui, Muhammad Fahad

    2016-11-01

    Increase in population and limited resources have created a growing demand for a futuristic living environment where technology enables the efficient utilization and management of resources in order to increase quality of life. One characteristic of such a society, which is often referred to as a ‘Smart City’, is that the people are well informed about their physiological being as well as the environment around them, which makes them better equipped to handle crisis situations. There is a need, therefore, to develop wireless sensors which can provide early warnings and feedback during calamities such as floods, fires, and industrial leaks, and provide remote health care facilities. For these situations, low-cost sensor nodes with small form factors are required. For this purpose, the use of a low-cost, mass manufacturing technique such as inkjet printing can be beneficial due to its digitally controlled additive nature of depositing material on a variety of substrates. Inkjet printing can permit economical use of material on cheap flexible substrates that allows for the development of miniaturized freeform electronics. This thesis describes how low-cost, inkjet-printed, wireless sensors have been developed for real-time monitoring applications. A 3D buoyant mobile wireless sensor node has been demonstrated that can provide early warnings as well as real-time data for flood monitoring. This disposable paper-based module can communicate while floating in water up to a distance of 50 m, regardless of its orientation in the water. Moreover, fully inkjet-printed sensors have been developed to monitor temperature, humidity and gas levels for wireless environmental monitoring. The sensors are integrated and packaged using 3D inkjet printing technology. Finally, in order to demonstrate the benefits of such wireless sensor systems for health care applications, a low-cost, wearable, wireless sensing system has been developed for chronic wound monitoring. The system

  10. Intelligent Wireless Sensor Network

    OpenAIRE

    Saeed, Bakhtiar I.; Mehrdadi, Bruce

    2010-01-01

    In recent years, there has been significant increase in utilisation of embedded-microcontrollers in broad range of applications extending from commercial products to industrial process system monitoring. Furthermore, improvements in speed, size and power consumption of microcontrollers with added wireless capabilities has provided new generation of applications. These include versatile and\\ud low cost solutions in wireless sensor networking applications such as wireless system monitoring and ...

  11. Getting ahead of the curve in wireless communications | IDRC ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    IDRC Research Chair in Wireless Communications Indian Institute of Technology ... of Engineering and Technology, UK, and the Institution of Electronics and ... He has also received a number of best paper awards and is the Area Editor for ...

  12. Wireless security in mobile health.

    Science.gov (United States)

    Osunmuyiwa, Olufolabi; Ulusoy, Ali Hakan

    2012-12-01

    Mobile health (m-health) is an extremely broad term that embraces mobile communication in the health sector and data packaging. The four broad categories of wireless networks are wireless personal area network, wireless metropolitan area network, wireless wide area network, and wireless local area network. Wireless local area network is the most notable of the wireless networking tools obtainable in the health sector. Transfer of delicate and critical information on radio frequencies should be secure, and the right to use must be meticulous. This article covers the business opportunities in m-health, threats faced by wireless networks in hospitals, and methods of mitigating these threats.

  13. Wireless Emulation Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Wireless Emulation Laboratory (WEL) is a researchtest bed used to investigate fundamental issues in networkscience. It is a research infrastructure that emulates...

  14. Lean assessment for manufacturing of small and medium enterprises (SMEs: A case study of electronics industry in the Northeast of Thailand

    Directory of Open Access Journals (Sweden)

    Chanchai Laoha

    2015-09-01

    Full Text Available This research was aimed at assessing for manufacturing a small and medium enterprise of electronic industry case study in the Northeast of Thailand. Electronic industry produces integrated circuits products (IC. We use lean assessment tools with 14 lean technique and tools. The value of lean assessment are scoring system derived from the malcolm baldrige national quality award, the two-dimensioned scoring system composing of the process; approach, deployment, learning, and integration. There are reveal operations of each of lean techniques and tools, and the performance; the 0 - 4 level needed to be improved in depth and hence would reflect operations requiring sustainable outcomes. This lean assessment is a systematic approach, assessor come to sit, examine operations from a lean perspective and assessed the situation as prior. The purposes of this visit were to introduced to production or factory manager or window person of SMEs who gave assessor a tour of the plant. Assessor also got a chance to explain lean assessment criteria on the shop floor. Assessor selects a value streaming line that produce most goods or main production line to assess. Assessor takes 1 day to assess and discuss the lean assessment. As a result, the lean assessment survey should be adjusted to fit the systems adaptively. Three plants of electronic industries were leanness of 1.06 or 26%. Five plants of garment industry were leanness of 1.13 or 28%. Four plants of shoe industry were leanness of 1.39 or 34%. Shoe industry had high leanness all unless quick changeover and multi skill. The quick changeover and multi skill were high score on garment industry. Electronics industry has not the lead but second in visual management, 5s, operation base layout, quick changeover, multi skill, standard operation procedures, and policy deployment.

  15. Graded microstructure and mechanical properties of additive manufactured Ti–6Al–4V via electron beam melting

    International Nuclear Information System (INIS)

    Tan, Xipeng; Kok, Yihong; Tan, Yu Jun; Descoins, Marion; Mangelinck, Dominique; Tor, Shu Beng; Leong, Kah Fai; Chua, Chee Kai

    2015-01-01

    Electron beam melting (EBM®)-built Ti–6Al–4V has increasingly shown great potential for orthopedic implant and aerospace applications in recent years. The microstructure and mechanical properties of EBM-built Ti–6Al–4V have been systematically investigated in this work. Its microstructure consists of columnar prior β grains delineated by wavy grain boundary α and transformed α/β structures with both cellular colony and basket-weave morphology as well as numerous singular α bulges within the prior β grains. The β phase is found to form as discrete flat rods embedded in continuous α phase and its volume fraction is determined to be ∼3.6%. Moreover, α′ martensite was not observed as it has decomposed into α and β phases. In particular, the α/β interface was studied in detail combined transmission electron microscopy with atom probe tomography. Of note is that graded Ti–6Al–4V microstructure i.e. both prior β grain width and β phase interspacing continuously increase with the build height, was observed, which mainly arises from the decreasing cooling rate. Furthermore, an increasingly pronounced strain hardening effect was also observed as the previously built layers undergo a longer annealing compared to the subsequent layers. As a result, graded mechanical properties of Ti–6Al–4V with degraded microhardness and tensile properties were found. A good agreement with the Hall–Petch relation indicates that the graded property takes place mainly due to the graded microstructure. In addition, this graded microstructure and mechanical properties were discussed based on a quantitative characterization

  16. OIT Wireless Telemetry for Industrial Applications

    Energy Technology Data Exchange (ETDEWEB)

    Manges, WW

    2002-09-03

    The need for advanced wireless technology has been identified in the National Research Council publication (1) ''Manufacturing Process Controls for the Industries of the Future as a Critical Technology for the Future''. The deployment challenges to be overcome in order for wireless to be a viable option include: (1) eliminating interference (assuring reliable communications); (2) easing the deployment of intelligent, wireless sensors; (3) developing reliable networks (robust architectures); (4) developing remote power (long-lasting and reliable); and (5) developing standardized communication protocols. This project demonstrated the feasibility of robust wireless sensor networks that could meet these requirements for the harsh environments common to the DOE/OIT Industries of the Future. It resulted in a wireless test bed that was demonstrated in a paper mill and a steel plant. The test bed illustrated key protocols and components that would be required in a real-life, wireless network. The technologies for low power connectivity developed and demonstrated at the plant eased fears that the radios would interfere with existing control equipment. The same direct sequence, spread spectrum (DSSS) technology that helped assure the reliability of the connection also demonstrated that wireless communication was feasible in these plants without boosting the transmitted power to dangerous levels. Our experience and research have indicated that two key parameters are of ultimate importance: (1) reliability and (2) inter-system compatibility. Reliability is the key to immediate acceptance among industrial users. The importance cannot be overstated, because users will not tolerate an unreliable information network. A longer term issue that is at least as important as the reliability of a single system is the inter-system compatibility between these wireless sensor networks and other wireless systems that are part of our industries. In the long run, the

  17. Precision manufacturing

    CERN Document Server

    Dornfeld, David

    2008-01-01

    Today there is a high demand for high-precision products. The manufacturing processes are now highly sophisticated and derive from a specialized genre called precision engineering. Precision Manufacturing provides an introduction to precision engineering and manufacturing with an emphasis on the design and performance of precision machines and machine tools, metrology, tooling elements, machine structures, sources of error, precision machining processes and precision process planning. As well as discussing the critical role precision machine design for manufacturing has had in technological developments over the last few hundred years. In addition, the influence of sustainable manufacturing requirements in precision processes is introduced. Drawing upon years of practical experience and using numerous examples and illustrative applications, David Dornfeld and Dae-Eun Lee cover precision manufacturing as it applies to: The importance of measurement and metrology in the context of Precision Manufacturing. Th...

  18. Passive Classification of Wireless NICs during Rate Switching

    Directory of Open Access Journals (Sweden)

    Cherita L. Corbett

    2008-02-01

    Full Text Available Computer networks have become increasingly ubiquitous. However, with the increase in networked applications, there has also been an increase in difficulty to manage and secure these networks. The proliferation of 802.11 wireless networks has heightened this problem by extending networks beyond physical boundaries. We propose the use of spectral analysis to identify the type of wireless network interface card (NIC. This mechanism can be applied to support the detection of unauthorized systems that use NICs which are different from that of a legitimate system. We focus on rate switching, a vaguely specified mechanism required by the 802.11 standard that is implemented in the hardware and software of the wireless NIC. We show that the implementation of this function influences the transmission patterns of a wireless stream, which are observable through traffic analysis. Our mechanism for NIC identification uses signal processing to analyze the periodicity embedded in the wireless traffic caused by rate switching. A stable spectral profile is created from the periodic components of the traffic and used for the identity of the wireless NIC. We show that we can distinguish between NICs manufactured by different vendors and NICs manufactured by the same vendor using their spectral profiles.

  19. Passive Classification of Wireless NICs during Rate Switching

    Directory of Open Access Journals (Sweden)

    Beyah RaheemA

    2008-01-01

    Full Text Available Abstract Computer networks have become increasingly ubiquitous. However, with the increase in networked applications, there has also been an increase in difficulty to manage and secure these networks. The proliferation of 802.11 wireless networks has heightened this problem by extending networks beyond physical boundaries. We propose the use of spectral analysis to identify the type of wireless network interface card (NIC. This mechanism can be applied to support the detection of unauthorized systems that use NICs which are different from that of a legitimate system. We focus on rate switching, a vaguely specified mechanism required by the 802.11 standard that is implemented in the hardware and software of the wireless NIC. We show that the implementation of this function influences the transmission patterns of a wireless stream, which are observable through traffic analysis. Our mechanism for NIC identification uses signal processing to analyze the periodicity embedded in the wireless traffic caused by rate switching. A stable spectral profile is created from the periodic components of the traffic and used for the identity of the wireless NIC. We show that we can distinguish between NICs manufactured by different vendors and NICs manufactured by the same vendor using their spectral profiles.

  20. Effect of Energy Input on Microstructure and Mechanical Properties of Titanium Aluminide Alloy Fabricated by the Additive Manufacturing Process of Electron Beam Melting.

    Science.gov (United States)

    Mohammad, Ashfaq; Alahmari, Abdulrahman M; Mohammed, Muneer Khan; Renganayagalu, Ravi Kottan; Moiduddin, Khaja

    2017-02-21

    Titanium aluminides qualify adequately for advanced aero-engine applications in place of conventional nickel based superalloys. The combination of high temperature properties and lower density gives an edge to the titanium aluminide alloys. Nevertheless, challenges remain on how to process these essentially intermetallic alloys in to an actual product. Electron Beam Melting (EBM), an Additive Manufacturing Method, can build complex shaped solid parts from a given feedstock powder, thus overcoming the shortcomings of the conventional processing techniques such as machining and forging. The amount of energy supplied by the electron beam has considerable influence on the final build quality in the EBM process. Energy input is decided by the beam voltage, beam scan speed, beam current, and track offset distance. In the current work, beam current and track offset were varied to reflect three levels of energy input. Microstructural and mechanical properties were evaluated for these samples. The microstructure gradually coarsened from top to bottom along the build direction. Whereas higher energy favored lath microstructure, lower energy tended toward equiaxed grains. Computed tomography analysis revealed a greater amount of porosity in low energy samples. In addition, the lack of bonding defects led to premature failure in the tension test of low energy samples. Increase in energy to a medium level largely cancelled out the porosity, thereby increasing the strength. However, this trend did not continue with the high energy samples. Electron microscopy and X-ray diffraction investigations were carried out to understand this non-linear behavior of the strength in the three samples. Overall, the results of this work suggest that the input energy should be considered primarily whenever any new alloy system has to be processed through the EBM route.

  1. Effect of Energy Input on Microstructure and Mechanical Properties of Titanium Aluminide Alloy Fabricated by the Additive Manufacturing Process of Electron Beam Melting

    Directory of Open Access Journals (Sweden)

    Ashfaq Mohammad

    2017-02-01

    Full Text Available Titanium aluminides qualify adequately for advanced aero-engine applications in place of conventional nickel based superalloys. The combination of high temperature properties and lower density gives an edge to the titanium aluminide alloys. Nevertheless, challenges remain on how to process these essentially intermetallic alloys in to an actual product. Electron Beam Melting (EBM, an Additive Manufacturing Method, can build complex shaped solid parts from a given feedstock powder, thus overcoming the shortcomings of the conventional processing techniques such as machining and forging. The amount of energy supplied by the electron beam has considerable influence on the final build quality in the EBM process. Energy input is decided by the beam voltage, beam scan speed, beam current, and track offset distance. In the current work, beam current and track offset were varied to reflect three levels of energy input. Microstructural and mechanical properties were evaluated for these samples. The microstructure gradually coarsened from top to bottom along the build direction. Whereas higher energy favored lath microstructure, lower energy tended toward equiaxed grains. Computed tomography analysis revealed a greater amount of porosity in low energy samples. In addition, the lack of bonding defects led to premature failure in the tension test of low energy samples. Increase in energy to a medium level largely cancelled out the porosity, thereby increasing the strength. However, this trend did not continue with the high energy samples. Electron microscopy and X-ray diffraction investigations were carried out to understand this non-linear behavior of the strength in the three samples. Overall, the results of this work suggest that the input energy should be considered primarily whenever any new alloy system has to be processed through the EBM route.

  2. A Remote WIRELESS Facility

    Directory of Open Access Journals (Sweden)

    Kees Uiterwijk

    2007-10-01

    Full Text Available Continuing need for available distance learning facilities has led to the development of a remote lab facility focusing on wireless technology. In the field of engineering there is a student need of gaining experience in set-up, monitoring and maintenance of 802.11A/B/G based wireless LAN environments.

  3. Warming Up to Wireless

    Science.gov (United States)

    Milner, Jacob

    2005-01-01

    In districts big and small across the U.S., students, teachers, and administrators alike have come to appreciate the benefits of wireless technology. Because the technology delivers Internet signals on airborne radio frequencies, wireless networking allows users of all portable devices to move freely on a school's campus and stay connected to the…

  4. Wireless mobile Internet security

    CERN Document Server

    Rhee, Man Young

    2013-01-01

      The mobile industry for wireless cellular services has grown at a rapid pace over the past decade. Similarly, Internet service technology has also made dramatic growth through the World Wide Web with a wire line infrastructure. Realization for complete wired/wireless mobile Internet technologies will become the future objectives for convergence of these technologies thr

  5. Application of wireless monitoring and communication systems in the power engineering

    Directory of Open Access Journals (Sweden)

    Grechikhin V. A.

    2012-06-01

    Full Text Available The article describes some achievements of modern radio electronics, which prove a huge potential of modern wireless engineering for using in the fuel-energy complex. Wireless corporation communication systems, application of short-range radar measuring systems on the power engineering objects, prospects of laser measuring systems, methods of radio thermography and radio spectroscopy, wireless acoustic-electronic sensors are discussed.

  6. Wireless adiabatic power transfer

    International Nuclear Information System (INIS)

    Rangelov, A.A.; Suchowski, H.; Silberberg, Y.; Vitanov, N.V.

    2011-01-01

    Research highlights: → Efficient and robust mid-range wireless energy transfer between two coils. → The adiabatic energy transfer is analogous to adiabatic passage in quantum optics. → Wireless energy transfer is insensitive to any resonant constraints. → Wireless energy transfer is insensitive to noise in the neighborhood of the coils. - Abstract: We propose a technique for efficient mid-range wireless power transfer between two coils, by adapting the process of adiabatic passage for a coherently driven two-state quantum system to the realm of wireless energy transfer. The proposed technique is shown to be robust to noise, resonant constraints, and other interferences that exist in the neighborhood of the coils.

  7. Wireless powering of e -swimmers

    Science.gov (United States)

    Roche, Jérome; Carrara, Serena; Sanchez, Julien; Lannelongue, Jérémy; Loget, Gabriel; Bouffier, Laurent; Fischer, Peer; Kuhn, Alexander

    2014-10-01

    Miniaturized structures that can move in a controlled way in solution and integrate various functionalities are attracting considerable attention due to the potential applications in fields ranging from autonomous micromotors to roving sensors. Here we introduce a concept which allows, depending on their specific design, the controlled directional motion of objects in water, combined with electronic functionalities such as the emission of light, sensing, signal conversion, treatment and transmission. The approach is based on electric field-induced polarization, which triggers different chemical reactions at the surface of the object and thereby its propulsion. This results in a localized electric current that can power in a wireless way electronic devices in water, leading to a new class of electronic swimmers (e-swimmers).

  8. Bluetooth low energy: wireless connectivity for medical monitoring.

    Science.gov (United States)

    Omre, Alf Helge

    2010-03-01

    Electronic wireless sensors could cut medical costs by enabling physicians to remotely monitor vital signs such as blood pressure, blood glucose, and blood oxygenation while patients remain at home. According to the IDC report "Worldwide Bluetooth Semiconductor 2008-2012 Forecast," published November 2008, a forthcoming radio frequency communication ("wireless connectivity") standard, Bluetooth low energy, will link wireless sensors via radio signals to the 70% of cell phones and computers likely to be fitted with the next generation of Bluetooth wireless technology, leveraging a ready-built infrastructure for data transmission. Analysis of trends indicated by this data can help physicians better manage diseases such as diabetes. The technology also addresses the concerns of cost, compatibility, and interoperability that have previously stalled widespread adoption of wireless technology in medical applications. (c) 2010 Diabetes Technology Society.

  9. Experimental validation of wireless communication with chaos

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Hai-Peng; Bai, Chao; Liu, Jian [Shaanxi Key Laboratory of Complex System Control and Intelligent Information Processing, Xian University of Technology, Xian 710048 (China); Baptista, Murilo S.; Grebogi, Celso [Institute for Complex System and Mathematical Biology, SUPA, University of Aberdeen, Aberdeen AB24 3UE (United Kingdom)

    2016-08-15

    The constraints of a wireless physical media, such as multi-path propagation and complex ambient noises, prevent information from being communicated at low bit error rate. Surprisingly, it has only recently been shown that, from a theoretical perspective, chaotic signals are optimal for communication. It maximises the receiver signal-to-noise performance, consequently minimizing the bit error rate. This work demonstrates numerically and experimentally that chaotic systems can in fact be used to create a reliable and efficient wireless communication system. Toward this goal, we propose an impulsive control method to generate chaotic wave signals that encode arbitrary binary information signals and an integration logic together with the match filter capable of decreasing the noise effect over a wireless channel. The experimental validation is conducted by inputting the signals generated by an electronic transmitting circuit to an electronic circuit that emulates a wireless channel, where the signals travel along three different paths. The output signal is decoded by an electronic receiver, after passing through a match filter.

  10. Experimental validation of wireless communication with chaos

    International Nuclear Information System (INIS)

    Ren, Hai-Peng; Bai, Chao; Liu, Jian; Baptista, Murilo S.; Grebogi, Celso

    2016-01-01

    The constraints of a wireless physical media, such as multi-path propagation and complex ambient noises, prevent information from being communicated at low bit error rate. Surprisingly, it has only recently been shown that, from a theoretical perspective, chaotic signals are optimal for communication. It maximises the receiver signal-to-noise performance, consequently minimizing the bit error rate. This work demonstrates numerically and experimentally that chaotic systems can in fact be used to create a reliable and efficient wireless communication system. Toward this goal, we propose an impulsive control method to generate chaotic wave signals that encode arbitrary binary information signals and an integration logic together with the match filter capable of decreasing the noise effect over a wireless channel. The experimental validation is conducted by inputting the signals generated by an electronic transmitting circuit to an electronic circuit that emulates a wireless channel, where the signals travel along three different paths. The output signal is decoded by an electronic receiver, after passing through a match filter.

  11. Experimental validation of wireless communication with chaos.

    Science.gov (United States)

    Ren, Hai-Peng; Bai, Chao; Liu, Jian; Baptista, Murilo S; Grebogi, Celso

    2016-08-01

    The constraints of a wireless physical media, such as multi-path propagation and complex ambient noises, prevent information from being communicated at low bit error rate. Surprisingly, it has only recently been shown that, from a theoretical perspective, chaotic signals are optimal for communication. It maximises the receiver signal-to-noise performance, consequently minimizing the bit error rate. This work demonstrates numerically and experimentally that chaotic systems can in fact be used to create a reliable and efficient wireless communication system. Toward this goal, we propose an impulsive control method to generate chaotic wave signals that encode arbitrary binary information signals and an integration logic together with the match filter capable of decreasing the noise effect over a wireless channel. The experimental validation is conducted by inputting the signals generated by an electronic transmitting circuit to an electronic circuit that emulates a wireless channel, where the signals travel along three different paths. The output signal is decoded by an electronic receiver, after passing through a match filter.

  12. [Commissioning of the newly constructed Beijing electron-positron collider BEPC, Beijing, China, and visit to SRRC to discuss magnet manufacturing and measurement methods, Taipei, Taiwan, November 11--27, 1988]: Foreign trip report

    International Nuclear Information System (INIS)

    Weng, W.T.

    1988-01-01

    The traveller was invited to IHEP to participate in the commissioning of the newly constructed Beijing electron-positron collider BEPC, give a status report on the AGS Booster Project and to assess the feasibility of sub-contracting booster sextupoles to IHEP. The trip to SRRC was undertaken to discuss magnet manufacturing and measurement methods

  13. Security for multihop wireless networks

    CERN Document Server

    Khan, Shafiullah

    2014-01-01

    Security for Multihop Wireless Networks provides broad coverage of the security issues facing multihop wireless networks. Presenting the work of a different group of expert contributors in each chapter, it explores security in mobile ad hoc networks, wireless sensor networks, wireless mesh networks, and personal area networks.Detailing technologies and processes that can help you secure your wireless networks, the book covers cryptographic coprocessors, encryption, authentication, key management, attacks and countermeasures, secure routing, secure medium access control, intrusion detection, ep

  14. Additive manufacturing.

    Science.gov (United States)

    Mumith, A; Thomas, M; Shah, Z; Coathup, M; Blunn, G

    2018-04-01

    Increasing innovation in rapid prototyping (RP) and additive manufacturing (AM), also known as 3D printing, is bringing about major changes in translational surgical research. This review describes the current position in the use of additive manufacturing in orthopaedic surgery. Cite this article: Bone Joint J 2018;100-B:455-60.

  15. Manufacturing technologies

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    The Manufacturing Technologies Center is an integral part of Sandia National Laboratories, a multiprogram engineering and science laboratory, operated for the Department of Energy (DOE) with major facilities at Albuquerque, New Mexico, and Livermore, California. Our Center is at the core of Sandia`s Advanced Manufacturing effort which spans the entire product realization process.

  16. The wireless internet explained

    CERN Document Server

    Rhoton, John

    2001-01-01

    The Wireless Internet Explained covers the full spectrum of wireless technologies from a wide range of vendors, including initiatives by Microsoft and Compaq. The Wireless Internet Explained takes a practical look at wireless technology. Rhoton explains the concepts behind the physics, and provides an overview that clarifies the convoluted set of standards heaped together under the umbrella of wireless. It then expands on these technical foundations to give a panorama of the increasingly crowded landscape of wireless product offerings. When it comes to actual implementation the book gives abundant down-to-earth advice on topics ranging from the selection and deployment of mobile devices to the extremely sensitive subject of security.Written by an expert on Internet messaging, the author of Digital Press''s successful Programmer''s Guide to Internet Mail and X.400 and SMTP: Battle of the E-mail Protocols, The Wireless Internet Explained describes and evaluates the current state of the fast-growing and crucial...

  17. The Influence of As-Built Surface Conditions on Mechanical Properties of Ti-6Al-4V Additively Manufactured by Selective Electron Beam Melting

    Science.gov (United States)

    Sun, Y. Y.; Gulizia, S.; Oh, C. H.; Fraser, D.; Leary, M.; Yang, Y. F.; Qian, M.

    2016-03-01

    Achieving a high surface finish is a major challenge for most current metal additive manufacturing processes. We report the first quantitative study of the influence of as-built surface conditions on the tensile properties of Ti-6Al-4V produced by selective electron beam melting (SEBM) in order to better understand the SEBM process. Tensile ductility was doubled along with noticeable improvements in tensile strengths after surface modification of the SEBM-fabricated Ti-6Al-4V by chemical etching. The fracture surfaces of tensile specimens with different surface conditions were characterised and correlated with the tensile properties obtained. The removal of a 650- μm-thick surface layer by chemical etching was shown to be necessary to eliminate the detrimental influence of surface defects on mechanical properties. The experimental results and analyses underline the necessity to modify the surfaces of SEBM-fabricated components for structural applications, particularly for those components which contain complex internal concave and convex surfaces and channels.

  18. Selective Electron Beam Manufacturing of Ti-6Al-4V Strips: Effect of Build Orientation, Columnar Grain Orientation, and Hot Isostatic Pressing on Tensile Properties

    Science.gov (United States)

    Wang, J.; Tang, H. P.; Yang, K.; Liu, N.; Jia, L.; Qian, M.

    2018-03-01

    Many novel designs for additive manufacturing (AM) contain thin-walled (≤ 3 mm) sections in different orientations. Selective electron beam melting (SEBM) is particularly suited to AM of such thin-walled titanium components because of its high preheating temperature and high vacuum. However, experimental data on SEBM of Ti-6Al-4V thin sections remains scarce because of the difficulty and high cost of producing long, thin and smooth strip tensile specimens (see Fig. 1). In this study, 80 SEBM Ti-6Al-4V strips (180 mm long, 42 mm wide, 3 mm thick) were built both vertically (V-strips) and horizontally (H-strips). Their density, microstructure and tensile properties were investigated. The V-strips showed clearly higher tensile strengths but lower elongation than the H-strips. Hot isostatic pressing (HIP) produced the same lamellar α-β microstructures in terms of the average α-lath thickness in both types of strips. The retained prior-β columnar grain boundaries after HIP showed no measurable influence on the tensile properties, irrespective of their length and orientation, because of the formation of randomly distributed fine α-laths.[Figure not available: see fulltext.

  19. Using the Job Burden-Capital Model of Occupational Stress to Predict Depression and Well-Being among Electronic Manufacturing Service Employees in China

    Directory of Open Access Journals (Sweden)

    Chao Wang

    2016-08-01

    Full Text Available Background: This study aimed to identify the association between occupational stress and depression-well-being by proposing a comprehensive and flexible job burden-capital model with its corresponding hypotheses. Methods: For this research, 1618 valid samples were gathered from the electronic manufacturing service industry in Hunan Province, China; self-rated questionnaires were administered to participants for data collection after obtaining their written consent. The proposed model was fitted and tested through structural equation model analysis. Results: Single-factor correlation analysis results indicated that coefficients between all items and dimensions had statistical significance. The final model demonstrated satisfactory global goodness of fit (CMIN/DF = 5.37, AGFI = 0.915, NNFI = 0.945, IFI = 0.952, RMSEA = 0.052. Both the measurement and structural models showed acceptable path loadings. Job burden and capital were directly associated with depression and well-being or indirectly related to them through personality. Multi-group structural equation model analyses indicated general applicability of the proposed model to basic features of such a population. Gender, marriage and education led to differences in the relation between occupational stress and health outcomes. Conclusions: The job burden-capital model of occupational stress-depression and well-being was found to be more systematic and comprehensive than previous models.

  20. Using the Job Burden-Capital Model of Occupational Stress to Predict Depression and Well-Being among Electronic Manufacturing Service Employees in China.

    Science.gov (United States)

    Wang, Chao; Li, Shuang; Li, Tao; Yu, Shanfa; Dai, Junming; Liu, Xiaoman; Zhu, Xiaojun; Ji, Yuqing; Wang, Jin

    2016-08-12

    This study aimed to identify the association between occupational stress and depression-well-being by proposing a comprehensive and flexible job burden-capital model with its corresponding hypotheses. For this research, 1618 valid samples were gathered from the electronic manufacturing service industry in Hunan Province, China; self-rated questionnaires were administered to participants for data collection after obtaining their written consent. The proposed model was fitted and tested through structural equation model analysis. Single-factor correlation analysis results indicated that coefficients between all items and dimensions had statistical significance. The final model demonstrated satisfactory global goodness of fit (CMIN/DF = 5.37, AGFI = 0.915, NNFI = 0.945, IFI = 0.952, RMSEA = 0.052). Both the measurement and structural models showed acceptable path loadings. Job burden and capital were directly associated with depression and well-being or indirectly related to them through personality. Multi-group structural equation model analyses indicated general applicability of the proposed model to basic features of such a population. Gender, marriage and education led to differences in the relation between occupational stress and health outcomes. The job burden-capital model of occupational stress-depression and well-being was found to be more systematic and comprehensive than previous models.

  1. Influence of Inherent Surface and Internal Defects on Mechanical Properties of Additively Manufactured Ti6Al4V Alloy: Comparison between Selective Laser Melting and Electron Beam Melting

    Directory of Open Access Journals (Sweden)

    Michaela Fousová

    2018-03-01

    Full Text Available Additive manufacture (AM appears to be the most suitable technology to produce sophisticated, high quality, lightweight parts from Ti6Al4V alloy. However, the fatigue life of AM parts is of concern. In our study, we focused on a comparison of two techniques of additive manufacture—selective laser melting (SLM and electron beam melting (EBM—in terms of the mechanical properties during both static and dynamic loading. All of the samples were untreated to focus on the influence of surface condition inherent to SLM and EBM. The EBM samples were studied in the as-built state, while SLM was followed by heat treatment. The resulting similarity of microstructures led to comparable mechanical properties in tension, but, due to differences in surface roughness and specific internal defects, the fatigue strength of the EBM samples reached only half the value of the SLM samples. Higher surface roughness that is inherent to EBM contributed to multiple initiations of fatigue cracks, while only one crack initiated on the SLM surface. Also, facets that were formed by an intergranular cleavage fracture were observed in the EBM samples.

  2. Using the Job Burden-Capital Model of Occupational Stress to Predict Depression and Well-Being among Electronic Manufacturing Service Employees in China

    Science.gov (United States)

    Wang, Chao; Li, Shuang; Li, Tao; Yu, Shanfa; Dai, Junming; Liu, Xiaoman; Zhu, Xiaojun; Ji, Yuqing; Wang, Jin

    2016-01-01

    Background: This study aimed to identify the association between occupational stress and depression-well-being by proposing a comprehensive and flexible job burden-capital model with its corresponding hypotheses. Methods: For this research, 1618 valid samples were gathered from the electronic manufacturing service industry in Hunan Province, China; self-rated questionnaires were administered to participants for data collection after obtaining their written consent. The proposed model was fitted and tested through structural equation model analysis. Results: Single-factor correlation analysis results indicated that coefficients between all items and dimensions had statistical significance. The final model demonstrated satisfactory global goodness of fit (CMIN/DF = 5.37, AGFI = 0.915, NNFI = 0.945, IFI = 0.952, RMSEA = 0.052). Both the measurement and structural models showed acceptable path loadings. Job burden and capital were directly associated with depression and well-being or indirectly related to them through personality. Multi-group structural equation model analyses indicated general applicability of the proposed model to basic features of such a population. Gender, marriage and education led to differences in the relation between occupational stress and health outcomes. Conclusions: The job burden-capital model of occupational stress-depression and well-being was found to be more systematic and comprehensive than previous models. PMID:27529267

  3. Wireless rechargeable sensor networks

    CERN Document Server

    Yang, Yuanyuan

    2015-01-01

    This SpringerBrief provides a concise guide to applying wireless energy transfer techniques in traditional battery-powered sensor networks. It examines the benefits and challenges of wireless power including efficiency and reliability. The authors build a wireless rechargeable sensor networks from scratch and aim to provide perpetual network operation. Chapters cover a wide range of topics from the collection of energy information and recharge scheduling to joint design with typical sensing applications such as data gathering. Problems are approached using a natural combination of probability

  4. Wireless network pricing

    CERN Document Server

    Huang, Jianwei

    2013-01-01

    Today's wireless communications and networking practices are tightly coupled with economic considerations, to the extent that it is almost impossible to make a sound technology choice without understanding the corresponding economic implications. This book aims at providing a foundational introduction on how microeconomics, and pricing theory in particular, can help us to understand and build better wireless networks. The book can be used as lecture notes for a course in the field of network economics, or a reference book for wireless engineers and applied economists to understand how pricing

  5. Competitive manufacturing strategies for the manufacturing industries in Turkey

    OpenAIRE

    Ulusoy, Gündüz; Ulusoy, Gunduz

    2003-01-01

    In this study, results of the research into competitive manufacturing strategies of companies in four different sector studies covering 82 companies from the electronics, cement, automotive manufacturers, and appliances part and component suppliers in Turkey are presented. The data used in the study are gathered by conducting four sector surveys in 1997 and 1998 using a questionnaire supported by some follow-up interviews and site visits. A competitive manufacturing strategy is represented he...

  6. Wireless physiological monitoring system for psychiatric patients.

    Science.gov (United States)

    Rademeyer, A J; Blanckenberg, M M; Scheffer, C

    2009-01-01

    Patients in psychiatric hospitals that are sedated or secluded are at risk of death or injury if they are not continuously monitored. Some psychiatric patients are restless and aggressive, and hence the monitoring device should be robust and must transmit the data wirelessly. Two devices, a glove that measures oxygen saturation and a dorsally-mounted device that measures heart rate, skin temperature and respiratory rate were designed and tested. Both devices connect to one central monitoring station using two separate Bluetooth connections, ensuring a completely wireless setup. A Matlab graphical user interface (GUI) was developed for signal processing and monitoring of the vital signs of the psychiatric patient. Detection algorithms were implemented to detect ECG arrhythmias such as premature ventricular contraction and atrial fibrillation. The prototypes were manufactured and tested in a laboratory setting on healthy volunteers.

  7. Japan's technology and manufacturing infrastructure

    Science.gov (United States)

    Boulton, William R.; Meieran, Eugene S.; Tummala, Rao R.

    1995-02-01

    The JTEC panel found that, after four decades of development in electronics and manufacturing technologies, Japanese electronics companies are leaders in the development, support, and management of complex, low-cost packaging and assembly technologies used in the production of a broad range of consumer electronics products. The electronics industry's suppliers provide basic materials and equipment required for electronic packaging applications. Panelists concluded that some Japanese firms could be leading U.S. competitors by as much as a decade in these areas. Japan's technology and manufacturing infrastructure is an integral part of its microelectronics industry's success.

  8. A multi-port power electronics interface for battery powered electric vehicles: Application of inductively coupled wireless power transfer and hybrid energy storage system

    Science.gov (United States)

    McDonough, Matthew Kelly

    Climate change, pollution, and geopolitical conflicts arising from the extreme wealth concentrations caused by fossil fuel deposits are just a few of the side-effects of the way that we fuel our society. A new method to power our civilization is becoming more and more necessary. Research for new, more sustainable fuel sources is already underway due to research in wind, solar, geothermal, and hydro power. However this focus is mainly on stationary applications. A large portion of fossil fuel usage comes from transportation. Unfortunately, the transition to cleaner transportation fuels is being stunted by the inability to store adequate amounts of energy in electro-chemical batteries. The idea of charging while driving has been proposed by many researchers, however several challenges still exist. In this work some of these challenges are addressed. Specifically, the ability to route power from multiple sources/loads is investigated. Special attention is paid to adjusting the time constant of particular converters, namely the battery and ultra-capacitor converters to reduce the high frequency and high magnitude current components applied to the battery terminals. This is done by developing a closed loop model of the entire multi-port converter, including the state of charge of the ultra-capacitors. The development of closed loop models and two experimental testbeds for use as stationary vehicle charging platforms with their unique set of sources/loads are presented along-side an on-board charger to demonstrate the similarities and differences between stationary charging and mobile charging. Experimental results from each are given showing that it is not only possible, but feasible to utilize Inductively Coupled Wireless Power Transfer (ICWPT) to charge a battery powered electric vehicle while driving and still protect the life-span of the batteries under the new, harsher conditions generated by the ICWPT system.

  9. Green heterogeneous wireless networks

    CERN Document Server

    Ismail, Muhammad; Nee, Hans-Peter; Qaraqe, Khalid A; Serpedin, Erchin

    2016-01-01

    This book focuses on the emerging research topic "green (energy efficient) wireless networks" which has drawn huge attention recently from both academia and industry. This topic is highly motivated due to important environmental, financial, and quality-of-experience (QoE) considerations. Specifically, the high energy consumption of the wireless networks manifests in approximately 2% of all CO2 emissions worldwide. This book presents the authors’ visions and solutions for deployment of energy efficient (green) heterogeneous wireless communication networks. The book consists of three major parts. The first part provides an introduction to the "green networks" concept, the second part targets the green multi-homing resource allocation problem, and the third chapter presents a novel deployment of device-to-device (D2D) communications and its successful integration in Heterogeneous Networks (HetNets). The book is novel in that it specifically targets green networking in a heterogeneous wireless medium, which re...

  10. Wireless radio a history

    CERN Document Server

    Coe, Lewis

    2006-01-01

    ""Informative...recommended""--Choice; ""interesting...a good read...well worth reading""--Contact Magazine. This history first looks at Marconi's wireless communications system and then explores its many applications, including marine radio, cellular telephones, police and military uses, television and radar. Radio collecting is also discussed, and brief biographies are provided for the major figures in the development and use of the wireless.

  11. Micro Manufacturing

    DEFF Research Database (Denmark)

    Hansen, Hans Nørgaard

    2003-01-01

    Manufacturing deals with systems that include products, processes, materials and production systems. These systems have functional requirements, constraints, design parameters and process variables. They must be decomposed in a systematic manner to achieve the best possible system performance....... If a micro manufacturing system isn’t designed rationally and correctly, it will be high-cost, unreliable, and not robust. For micro products and systems it is a continuously increasing challenge to create the operational basis for an industrial production. As the products through product development...... processes are made applicable to a large number of customers, the pressure in regard to developing production technologies that make it possible to produce the products at a reasonable price and in large numbers is growing. The micro/nano manufacturing programme at the Department of Manufacturing...

  12. Smart Manufacturing.

    Science.gov (United States)

    Davis, Jim; Edgar, Thomas; Graybill, Robert; Korambath, Prakashan; Schott, Brian; Swink, Denise; Wang, Jianwu; Wetzel, Jim

    2015-01-01

    Historic manufacturing enterprises based on vertically optimized companies, practices, market share, and competitiveness are giving way to enterprises that are responsive across an entire value chain to demand dynamic markets and customized product value adds; increased expectations for environmental sustainability, reduced energy usage, and zero incidents; and faster technology and product adoption. Agile innovation and manufacturing combined with radically increased productivity become engines for competitiveness and reinvestment, not simply for decreased cost. A focus on agility, productivity, energy, and environmental sustainability produces opportunities that are far beyond reducing market volatility. Agility directly impacts innovation, time-to-market, and faster, broader exploration of the trade space. These changes, the forces driving them, and new network-based information technologies offering unprecedented insights and analysis are motivating the advent of smart manufacturing and new information technology infrastructure for manufacturing.

  13. Adoption of wireless internet parks: An empirical study in Qatar

    OpenAIRE

    Weerakkody, V

    2008-01-01

    This paper examines the adoption of free wireless internet parks (iPark) by Qatari citizens as means of accessing electronic services from public parks. The Qatar government has launched the iPark concept with a view of providing free internet access for all citizens while enjoying the outdoors. By offering free wireless Internet access, the Qatari government encourages its citizen's to actively participate in the global information society with a view of bridging the digital divide. Using a ...

  14. Wireless Sensor Networks for Long Distance Pipeline Monitoring

    OpenAIRE

    Augustine C. Azubogu; Victor E. Idigo; Schola U. Nnebe; Obinna S. Oguejiofor; Simon E.

    2013-01-01

    The main goal of this seminal paper is to introduce the application of Wireless Sensor Networks (WSN) in long distance infrastructure monitoring (in particular in pipeline infrastructure monitoring) – one of the on-going research projects by the Wireless Communication Research Group at the department of Electronic and Computer Engineering, Nnamdi Azikiwe University, Awka. The current sensor network architectures for monitoring long distance pipeline infrastructures are pr...

  15. Wireless Networks: New Meaning to Ubiquitous Computing.

    Science.gov (United States)

    Drew, Wilfred, Jr.

    2003-01-01

    Discusses the use of wireless technology in academic libraries. Topics include wireless networks; standards (IEEE 802.11); wired versus wireless; why libraries implement wireless technology; wireless local area networks (WLANs); WLAN security; examples of wireless use at Indiana State University and Morrisville College (New York); and useful…

  16. Ultra Secure High Reliability Wireless Radiation Monitor

    International Nuclear Information System (INIS)

    Cordaro, J.; Shull, D.; Farrar, M.; Reeves, G.

    2011-01-01

    Radiation monitoring in nuclear facilities is essential to safe operation of the equipment as well as protecting personnel. In specific, typical air monitoring of radioactive gases or particulate involves complex systems of valves, pumps, piping and electronics. The challenge is to measure a representative sample in areas that are radioactively contaminated. Running cables and piping to these locations is very expensive due to the containment requirements. Penetration into and out of an airborne or containment area is complex and costly. The process rooms are built with thick rebar-enforced concrete walls with glove box containment chambers inside. Figure 1 shows high temperature radiation resistance cabling entering the top of a typical glove box. In some case, the entire processing area must be contained in a 'hot cell' where the only access into the chamber is via manipulators. An example is shown in Figure 2. A short range wireless network provides an ideal communication link for transmitting the data from the radiation sensor to a 'clean area', or area absent of any radiation fields or radioactive contamination. Radiation monitoring systems that protect personnel and equipment must meet stringent codes and standards due to the consequences of failure. At first glance a wired system would seem more desirable. Concerns with wireless communication include latency, jamming, spoofing, man in the middle attacks, and hacking. The Department of Energy's Savannah River National Laboratory (SRNL) has developed a prototype wireless radiation air monitoring system that address many of the concerns with wireless and allows quick deployment in radiation and contamination areas. It is stand alone and only requires a standard 120 VAC, 60 Hz power source. It is designed to be mounted or portable. The wireless link uses a National Security Agency (NSA) Suite B compliant wireless network from Fortress Technologies that is considered robust enough to be used for classified data

  17. ULTRA SECURE HIGH RELIABILITY WIRELESS RADIATION MONITOR

    Energy Technology Data Exchange (ETDEWEB)

    Cordaro, J.; Shull, D.; Farrar, M.; Reeves, G.

    2011-08-03

    Radiation monitoring in nuclear facilities is essential to safe operation of the equipment as well as protecting personnel. In specific, typical air monitoring of radioactive gases or particulate involves complex systems of valves, pumps, piping and electronics. The challenge is to measure a representative sample in areas that are radioactively contaminated. Running cables and piping to these locations is very expensive due to the containment requirements. Penetration into and out of an airborne or containment area is complex and costly. The process rooms are built with thick rebar-enforced concrete walls with glove box containment chambers inside. Figure 1 shows high temperature radiation resistance cabling entering the top of a typical glove box. In some case, the entire processing area must be contained in a 'hot cell' where the only access into the chamber is via manipulators. An example is shown in Figure 2. A short range wireless network provides an ideal communication link for transmitting the data from the radiation sensor to a 'clean area', or area absent of any radiation fields or radioactive contamination. Radiation monitoring systems that protect personnel and equipment must meet stringent codes and standards due to the consequences of failure. At first glance a wired system would seem more desirable. Concerns with wireless communication include latency, jamming, spoofing, man in the middle attacks, and hacking. The Department of Energy's Savannah River National Laboratory (SRNL) has developed a prototype wireless radiation air monitoring system that address many of the concerns with wireless and allows quick deployment in radiation and contamination areas. It is stand alone and only requires a standard 120 VAC, 60 Hz power source. It is designed to be mounted or portable. The wireless link uses a National Security Agency (NSA) Suite B compliant wireless network from Fortress Technologies that is considered robust enough to be

  18. Wireless Sensor Network for Indoor Air Quality Monitoring

    Directory of Open Access Journals (Sweden)

    Jun Li

    2014-06-01

    Full Text Available Indoor air quality monitoring system consists of wireless sensor device, nRF24L01 wireless transceiver modules, C8051MCU, STM32103 remote monitoring platform, alarm device and data server. Distributed in the interior space of wireless sensors measure parameters of the local air quality, wireless transceiver module of the MCU to transmit data to the remote monitoring platform for analysis which displayed and stored field environment data or charts. The data collecting from wireless sensors to be send by wireless Access Point to the remote data server based on B/S architecture, intelligent terminals such as mobile phone, laptop, tablet PC on the Internet monitor indoor air quality in real-time. When site environment air quality index data exceeds the threshold in the monitoring device, the remote monitoring platform sends out the alarm SMS signal to inform user by GSM module. Indoor air quality monitoring system uses modular design method, has the portability and scalability has the low manufacture cost, real-time monitoring data and man-machine interaction.

  19. Sticker electronics

    KAUST Repository

    Hussain, Muhammad Mustafa; Torres Sevilla, Galo Andres; Diaz Cordero, Marlon Steven

    2017-01-01

    Electronic stickers may be manufactured on flexible substrates (110, 120, 130) as layers and packaged together. The package may then have an adhesive applied to one side to provide capability for sticking the electronic devices to surfaces

  20. FY 2000 report on the results of the regional consortium R and D project - Regional consortium energy R and D. Final year report. Development of the measuring control technology supporting energy conservation in the manufacturing process of electronics (Design and trial manufacture of IMI); 2000 nendo chiiki consortium kenkyu kaihatsu jigyo - chiiki consortium energy kenkyu kaihatsu. Denshi kikirui seizo process no sho energy shien keisoku seigyo gijutsu no kaihatsu - IMI no sekkei to shisaku (saishu nendo) seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    As measures taken for energy conservation in the manufacturing plant of electronic devices/equipment such as IC, the development was proceeded with a chlorine gas radio sensing system and a liquid crystal driver IC probe, according to the survey results that it is possible to control energy consumption in air conditioning by completely furnishing poisonous gas monitor in clean room and conserve energy related to the manufacture of IC and LSI tester by using Si for IC probe cards. The following four were carried out: 1) development/trial manufacture of chlorine sensing system; 2) development/trial manufacture of LCD (liquid crystal driver) IC probe; 3) support of trial manufacture of key element technology; 4) comprehensive investigational study of IMI (Intelligent Micro-Instrument). In FY 2000, study was focused on 1) and 2). In 1), a planar type micro-structure sensor was developed, and the trial-manufactured system brought favorable results in sensitivity, response speed and reproductivity. (NEDO)

  1. Extreme-Environment Silicon-Carbide (SiC) Wireless Sensor Suite

    Science.gov (United States)

    Yang, Jie

    2015-01-01

    Phase II objectives: Develop an integrated silicon-carbide wireless sensor suite capable of in situ measurements of critical characteristics of NTP engine; Compose silicon-carbide wireless sensor suite of: Extreme-environment sensors center, Dedicated high-temperature (450 deg C) silicon-carbide electronics that provide power and signal conditioning capabilities as well as radio frequency modulation and wireless data transmission capabilities center, An onboard energy harvesting system as a power source.

  2. Survey of Energy Harvesting Systems for Wireless Sensor Networks in Environmental Monitoring

    Directory of Open Access Journals (Sweden)

    Dziadak Bogdan

    2016-12-01

    Full Text Available Wireless Sensor Networks (WSNs have existed for many years and had assimilated many interesting innovations. Advances in electronics, radio transceivers, processes of IC manufacturing and development of algorithms for operation of such networks now enable creating energy-efficient devices that provide practical levels of performance and a sufficient number of features. Environmental monitoring is one of the areas in which WSNs can be successfully used. At the same time this is a field where devices must either bring their own power reservoir, such as a battery, or scavenge energy locally from some natural phenomena. Improving the efficiency of energy harvesting methods reduces complexity of WSN structures. This survey is based on practical examples from the real world and provides an overview of state-of-the-art methods and techniques that are used to create energyefficient WSNs with energy harvesting.

  3. Evolution of Heterogeneous Wireless Networks

    DEFF Research Database (Denmark)

    Zhang, Q.; Fitzek, Frank; Katz, Marcos

    2006-01-01

    Mobile and wireless content, services and networks - Short-term and long-term development trends......Mobile and wireless content, services and networks - Short-term and long-term development trends...

  4. Industrial Wireless Technology for the 21st Century

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2002-12-01

    In July 2002, the U.S. Department of Energy's Industrial Technologies Program sponsored the Industrial Wireless Workshop as a forum for articulating some long-term goals that may help guide the development of industrial wireless sensor systems. Over 30 individuals, representing manufacturers and suppliers, end users, universities, and national laboratories, attended the workshop in San Francisco and participated in a series of facilitated sessions. The workshop participants cooperatively developed a unified vision for the future and defined specific goals and challenges. This document presents the results of the workshop as well as some context for non-experts.

  5. OPTICAL WIRELESS COMMUNICATION SYSTEM

    Directory of Open Access Journals (Sweden)

    JOSHUA L.Y. CHIENG

    2016-02-01

    Full Text Available The growing demand of bandwidth in this modern internet age has been testing the existing telecommunication infrastructures around the world. With broadband speeds moving towards the region of Gbps and Tbps, many researches have begun on the development of using optical wireless technology as feasible and future methods to the current wireless technology. Unlike the existing radio frequency wireless applications, optical wireless uses electromagnetic spectrums that are unlicensed and free. With that, this project aim to understand and gain better understanding of optical wireless communication system by building an experimental and simulated model. The quality of service and system performance will be investigated and reviewed. This project employs laser diode as the propagation medium and successfully transferred audio signals as far as 15 meters. On its quality of service, results of the project model reveal that the bit error rate increases, signal-to-noise ratio and quality factor decreases as the link distance between the transmitter and receiver increases. OptiSystem was used to build the simulated model and MATLAB was used to assist signal-to-noise ratio calculations. By comparing the simulated and experimental receiver’s power output, the experimental model’s efficiency is at 66.3%. Other than the system’s performance, challenges and factors affecting the system have been investigated and discussed. Such challenges include beam divergence, misalignment and particle absorption.

  6. Magnetic resonance for wireless power transfer

    OpenAIRE

    Hui, SYR

    2016-01-01

    Magnetic resonance has been a cornerstone of nonradiative wireless power transfer (WPT) since the late 19th century. However, some researchers have the misconception that magnetic resonance for WPT was developed recently. This article traces some early work of Tesla and other researchers related to the use of magnetic resonance in WPT. Included are some examples of magnetic resonance-based WPT projects conducted by researchers in the biomedical and power electronics communities over the last ...

  7. Wireless communications resource management

    CERN Document Server

    Lee, B; Seo, H

    2009-01-01

    Wireless technologies continue to evolve to address the insatiable demand for faster response times, larger bandwidth, and reliable transmission. Yet as the industry moves toward the development of post 3G systems, engineers have consumed all the affordable physical layer technologies discovered to date. This has necessitated more intelligent and optimized utilization of available wireless resources. Wireless Communications Resource Managem ent, Lee, Park, and Seo cover all aspects of this critical topic, from the preliminary concepts and mathematical tools to detailed descriptions of all the resource management techniques. Readers will be able to more effectively leverage limited spectrum and maximize device battery power, as well as address channel loss, shadowing, and multipath fading phenomena.

  8. Wireless physical layer security

    Science.gov (United States)

    Poor, H. Vincent; Schaefer, Rafael F.

    2017-01-01

    Security in wireless networks has traditionally been considered to be an issue to be addressed separately from the physical radio transmission aspects of wireless systems. However, with the emergence of new networking architectures that are not amenable to traditional methods of secure communication such as data encryption, there has been an increase in interest in the potential of the physical properties of the radio channel itself to provide communications security. Information theory provides a natural framework for the study of this issue, and there has been considerable recent research devoted to using this framework to develop a greater understanding of the fundamental ability of the so-called physical layer to provide security in wireless networks. Moreover, this approach is also suggestive in many cases of coding techniques that can approach fundamental limits in practice and of techniques for other security tasks such as authentication. This paper provides an overview of these developments.

  9. LEAN Manufacturing

    DEFF Research Database (Denmark)

    Bilberg, Arne

    . The mission with the strategy is to obtain competitive production in Denmark and in Western Europe based on the right combination of manufacturing principles, motivated and trained employees, level of automation, and cooperation with suppliers and customers worldwide. The strategy has resulted in technical...

  10. Effect of build geometry on the β-grain structure and texture in additive manufacture of Ti-6Al-4V by selective electron beam melting

    International Nuclear Information System (INIS)

    Antonysamy, A.A.; Meyer, J.; Prangnell, P.B.

    2013-01-01

    With titanium alloys, the solidification conditions in Additive Manufacturing (AM) frequently lead to coarse columnar β-grain structures. The effect of geometry on the variability in the grain structure and texture, seen in Ti-6Al-4V alloy components produced by Selective Electron Beam Melting (SEBM), has been investigated. Reconstruction of the primary β-phase, from α-phase EBSD data, has confirmed that in bulk sections where in-fill “hatching” is employed growth selection favours columnar grains aligned with an β direction normal to the deposited powder layers; this results in a coarse β-grain structure with a strong β fibre texture (up 8 x random) that can oscillate between a near random distribution around the fibre axis and cube reinforcement with build height. It is proposed that this behaviour is related to the highly elongated melt pool and the raster directions alternating between two orthogonal directions every layer, which on average favours grains with cube alignment. In contrast, the outline, or “contour”, pass produces a distinctly different grain structure and texture resulting in a skin layer on wall surfaces, where nucleation occurs off the surrounding powder and growth follows the curved surface of the melt pool. This structure becomes increasingly important in thin sections. Local heterogeneities have also been found within different section transitions, resulting from the growth of skin grain structures into thicker sections. Texture simulations have shown that the far weaker α-texture (∼ 3 x random), seen in the final product, arises from transformation on cooling occurring with a near random distribution of α-plates across the 12 variants possible from the Burgers relationship. - Highlights: • Distinctly different skin and bulk structures are produced by the contour and hatching passes. • Bulk sections contain coarse β-grains with a fibre texture in the build direction. • This oscillates between a random distribution

  11. Effect of build geometry on the β-grain structure and texture in additive manufacture of Ti-6Al-4V by selective electron beam melting

    Energy Technology Data Exchange (ETDEWEB)

    Antonysamy, A.A., E-mail: alphons.antonysamy@GKNAerospace.com [Additive Manufacturing Centre, GKN Aerospace, P.O. Box 500, Golf Course Lane, Filton, BS34 9 AU (United Kingdom); Meyer, J., E-mail: jonathan.meyer@eads.com [EADS Innovation Works, 20A1 Building, Golf Course Lane, Filton, Bristol, BS997AR (United Kingdom); Prangnell, P.B., E-mail: philip.prangnell@manchester.ac.uk [School of Materials, University of Manchester, Manchester M13 9PL (United Kingdom)

    2013-10-15

    With titanium alloys, the solidification conditions in Additive Manufacturing (AM) frequently lead to coarse columnar β-grain structures. The effect of geometry on the variability in the grain structure and texture, seen in Ti-6Al-4V alloy components produced by Selective Electron Beam Melting (SEBM), has been investigated. Reconstruction of the primary β-phase, from α-phase EBSD data, has confirmed that in bulk sections where in-fill “hatching” is employed growth selection favours columnar grains aligned with an <001> {sub β} direction normal to the deposited powder layers; this results in a coarse β-grain structure with a strong < 001 > {sub β} fibre texture (up 8 x random) that can oscillate between a near random distribution around the fibre axis and cube reinforcement with build height. It is proposed that this behaviour is related to the highly elongated melt pool and the raster directions alternating between two orthogonal directions every layer, which on average favours grains with cube alignment. In contrast, the outline, or “contour”, pass produces a distinctly different grain structure and texture resulting in a skin layer on wall surfaces, where nucleation occurs off the surrounding powder and growth follows the curved surface of the melt pool. This structure becomes increasingly important in thin sections. Local heterogeneities have also been found within different section transitions, resulting from the growth of skin grain structures into thicker sections. Texture simulations have shown that the far weaker α-texture (∼ 3 x random), seen in the final product, arises from transformation on cooling occurring with a near random distribution of α-plates across the 12 variants possible from the Burgers relationship. - Highlights: • Distinctly different skin and bulk structures are produced by the contour and hatching passes. • Bulk sections contain coarse β-grains with a < 001 > fibre texture in the build direction. • This

  12. Multichannel wireless ECoG array ASIC devices.

    Science.gov (United States)

    DeMichele, Glenn A; Cogan, Stuart F; Troyk, Philip R; Chen, Hongnan; Hu, Zhe

    2014-01-01

    Surgical resection of epileptogenic foci is often a beneficial treatment for patients suffering debilitating seizures arising from intractable epilepsy [1], [2], [3]. Electrodes placed subdurally on the surface of the brain in the form of an ECoG array is one of the multiple methods for localizing epileptogenic zones for the purpose of defining the region for surgical resection. Currently, transcutaneous wires from ECoG grids limit the duration of time that implanted grids can be used for diagnosis. A wireless ECoG recording and stimulation system may be a solution to extend the diagnostic period. To avoid the transcutaneous connections, a 64-channel wireless silicon recording/stimulating ASIC was developed as the electronic component of a wireless ECoG array that uses SIROF electrodes on a polyimide substrate[4]. Here we describe two new ASIC devices that have been developed and tested as part of the on-going wireless ECoG system design.

  13. Terabit Wireless Communication Challenges

    Science.gov (United States)

    Hwu, Shian U.

    2012-01-01

    This presentation briefly discusses a research effort on Terabit Wireless communication systems for possible space applications. Recently, terahertz (THz) technology (300-3000 GHz frequency) has attracted a great deal of interest from academia and industry. This is due to a number of interesting features of THz waves, including the nearly unlimited bandwidths available, and the non-ionizing radiation nature which does not damage human tissues and DNA with minimum health threat. Also, as millimeter-wave communication systems mature, the focus of research is, naturally, moving to the THz range. Many scientists regard THz as the last great frontier of the electromagnetic spectrum, but finding new applications outside the traditional niches of radio astronomy, Earth and planetary remote sensing, and molecular spectroscopy particularly in biomedical imaging and wireless communications has been relatively slow. Radiologists find this area of study so attractive because t-rays are non-ionizing, which suggests no harm is done to tissue or DNA. They also offer the possibility of performing spectroscopic measurements over a very wide frequency range, and can even capture signatures from liquids and solids. According to Shannon theory, the broad bandwidth of the THz frequency bands can be used for terabit-per-second (Tb/s) wireless communication systems. This enables several new applications, such as cell phones with 360 degrees autostereoscopic displays, optic-fiber replacement, and wireless Tb/s file transferring. Although THz technology could satisfy the demand for an extremely high data rate, a number of technical challenges need to be overcome before its development. This presentation provides an overview the state-of-the- art in THz wireless communication and the technical challenges for an emerging application in Terabit wireless systems. The main issue for THz wave propagation is the high atmospheric attenuation, which is dominated by water vapor absorption in the THz

  14. Wireless Testbed Bonsai

    Science.gov (United States)

    2006-02-01

    wireless sensor device network, and a about 200 Stargate nodes higher-tier multi-hop peer- to-peer 802.11b wireless network. Leading up to the full ExScal...deployment, we conducted spatial scaling tests on our higher-tier protocols on a 7 × 7 grid of Stargates nodes 45m and with 90m separations respectively...onW and its scaled version W̃ . III. EXPERIMENTAL SETUP Description of Kansei testbed. A stargate is a single board linux-based computer [7]. It uses a

  15. Wireless telecommunication systems

    CERN Document Server

    Terré, Michel; Vivier, Emmanuelle

    2013-01-01

    Wireless telecommunication systems generate a huge amount of interest. In the last two decades, these systems have experienced at least three major technological leaps, and it has become impossible to imagine how society was organized without them. In this book, we propose a macroscopic approach on wireless systems, and aim at answering key questions about power, data rates, multiple access, cellular engineering and access networks architectures.We present a series of solved problems, whose objective is to establish the main elements of a global link budget in several radiocommunicati

  16. Pervasive wireless environments

    CERN Document Server

    Yang, Jie; Trappe, Wade; Cheng, Jerry

    2014-01-01

    This Springer Brief provides a new approach to prevent user spoofing by using the physical properties associated with wireless transmissions to detect the presence of user spoofing. The most common method, applying cryptographic authentication, requires additional management and computational power that cannot be deployed consistently. The authors present the new approach by offering a summary of the recent research and exploring the benefits and potential challenges of this method. This brief discusses the feasibility of launching user spoofing attacks and their impact on the wireless and sen

  17. Wireless optical telecommunications

    CERN Document Server

    Bouchet, Olivier

    2013-01-01

    Wireless optical communication refers to communication based on the unguided propagation of optical waves. The past 30 years have seen significant improvements in this technique - a wireless communication solution for the current millennium - that offers an alternative to radio systems; a technique that could gain attractiveness due to recent concerns regarding the potential effects of radiofrequency waves on human health.The aim of this book is to look at the free space optics that are already used for the exchange of current information; its many benefits, such as incorporating chan

  18. Sustainable wireless networks

    CERN Document Server

    Zheng, Zhongming; Xuemin

    2013-01-01

    This brief focuses on network planning and resource allocation by jointly considering cost and energy sustainability in wireless networks with sustainable energy. The characteristics of green energy and investigating existing energy-efficient green approaches for wireless networks with sustainable energy is covered in the first part of this brief. The book then addresses the random availability and capacity of the energy supply. The authors explore how to maximize the energy sustainability of the network and minimize the failure probability that the mesh access points (APs) could deplete their

  19. Data converters for wireless standards

    CERN Document Server

    Shi, Chunlei

    2002-01-01

    Wireless communication is witnessing tremendous growth with proliferation of different standards covering wide, local and personal area networks (WAN, LAN and PAN). The trends call for designs that allow 1) smooth migration to future generations of wireless standards with higher data rates for multimedia applications, 2) convergence of wireless services allowing access to different standards from the same wireless device, 3) inter-continental roaming. This requires designs that work across multiple wireless standards, can easily be reused, achieve maximum hardware share at a minimum power consumption levels particularly for mobile battery-operated devices.

  20. 75 FR 8400 - In the Matter of Certain Wireless Communications System Server Software, Wireless Handheld...

    Science.gov (United States)

    2010-02-24

    ... Communications System Server Software, Wireless Handheld Devices and Battery Packs; Notice of Investigation... within the United States after importation of certain wireless communications system server software... certain wireless communications system server software, wireless handheld devices or battery packs that...

  1. 75 FR 43206 - In the Matter of Certain Wireless Communications System Server Software, Wireless Handheld...

    Science.gov (United States)

    2010-07-23

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-706] In the Matter of Certain Wireless Communications System Server Software, Wireless Handheld Devices and Battery Packs: Notice of Commission... United States after importation of certain wireless communications system server software, wireless...

  2. Energy harvesting for wireless sensors by using piezoelectric transducers

    Energy Technology Data Exchange (ETDEWEB)

    Duerager, Christian [Empa, Swiss Federal Laboratories for Materials Science and Technology, Duebendorf (Switzerland)

    2012-07-01

    Wireless sensor technology, which integrates transducers, measurement electronics and wireless communication, has become increasingly vital in structural health monitoring (SHM) applications. Compared to traditional wired systems, wireless solutions reduce the installation time and costs and are not subjected to breakage caused by harsh weather conditions or other extreme events. Because of the low installation costs, wireless sensor networks allow the deployment of a big number of wireless sensor nodes on the structures. Moreover, the nodes can be placed on particularly critical components of the structure difficult to reach by wires. In most of the cases the power supply are conventional batteries, which could be a problem because of their finite life span. Furthermore, in the case of wireless sensor nodes located on structures, it is often advantageous to embed them, which makes an access impossible. Therefore, if a method of obtaining the untapped energy surrounding these sensors was implemented, significant life could be added to the power supply. Various approaches to energy harvesting and energy storage are discussed and limitations associated with the current technology are addressed. In this paper we first discuss the research that has been performed in the area of energy harvesting for wireless sensor technologies by using the ambient vibration energy. In many cases the energy produced by the ambient vibrations is far too small to directly power a wireless sensor node. Therefore, in a second step we discuss the development process for an electronic energy harvesting circuit optimized for piezoelectric transducers. In the last part of this paper an experiment with different piezoelectric transducers and their applicability for energy harvesting applications on vibrating structures will be discussed. (orig.)

  3. Radio/antenna mounting system for wireless networking under row-crop agriculture conditions

    Science.gov (United States)

    Interest in and deployment of wireless monitoring systems is increasing in many diverse environments, including row-crop agricultural fields. While many studies have been undertaken to evaluate various aspects of wireless monitoring and networking, such as electronic hardware components, data-colle...

  4. Pervasive Mobile and Ambient Wireless Communications COST Action 2100

    CERN Document Server

    Zanella, Alberto

    2012-01-01

    Pervasive Mobile and Ambient Wireless Communications reports the findings of COST 2100, a project of the European intergovernmental COST framework addressing various topics currently emerging in mobile and wireless communications. Drawing on experience developed in this and earlier COST projects, the text represents the final outcome of collaborative work involving more than 500 researchers in 140 institutions and 30 countries (including outside Europe). The book’s subject matter includes: • transmission techniques; • signal processing; • radio channel modelling and measurement; • radio network issues; and • recent paradigms including ultra-wideband, cooperative, vehicle-to-vehicle and body communications. The research reported comes from a variety of backgrounds: academic, equipment-manufacturing and operational. The information contained in this book will bring the study reported to a wider audience from all those spheres of work. Pervasive Mobile and Ambient Wireless Communications will be of i...

  5. A solar powered wireless computer mouse. Industrial design concepts

    Energy Technology Data Exchange (ETDEWEB)

    Reich, N.H.; Van Sark, W.G.J.H.M.; Alsema, E.A.; Turkenburg, W.C. [Department of Science, Technology and Society, Copernicus Institute, Utrecht University, Heidelberglaan 2, 3584 CS Utrecht (Netherlands); Veefkind, M.; Silvester, S. [Industrial Design Engineering, Delft University of Technology, Landbergstraat 15, 2628 CE Delft (Netherlands)

    2009-02-15

    A solar powered wireless computer mouse (SPM) was chosen to serve as a case study for the evaluation and optimization of industrial design processes of photovoltaic (PV) powered consumer systems. As the design process requires expert knowledge in various technical fields, we assessed and compared the following: appropriate selection of integrated PV type, battery capacity and type, possible electronic circuitries for PV-battery coupling, and material properties concerning mechanical incorporation of PV into the encasing. Besides technical requirements, ergonomic aspects and design aesthetics with respect to good 'sun-harvesting' properties influenced the design process. This is particularly important as simulations show users can positively influence energy balances by 'sun-bathing' the PV mouse. A total of 15 SPM prototypes were manufactured and tested by actual users. Although user satisfaction proved the SPM concept to be feasible, future research still needs to address user acceptance related to product dimensions and user willingness to pro-actively 'sun-bath' PV powered products in greater detail. (author)

  6. Semiconductor Manufacturing equipment introduction

    International Nuclear Information System (INIS)

    Im, Jong Sun

    2001-02-01

    This book deals with semiconductor manufacturing equipment. It is comprised of nine chapters, which are manufacturing process of semiconductor device, history of semiconductor manufacturing equipment, kinds and role of semiconductor manufacturing equipment, construction and method of semiconductor manufacturing equipment, introduction of various semiconductor manufacturing equipment, spots of semiconductor manufacturing, technical elements of semiconductor manufacturing equipment, road map of technology of semiconductor manufacturing equipment and semiconductor manufacturing equipment in the 21st century.

  7. Technical Survey on Applications of Wireless Sensor Networks in Nuclear Power Plants

    International Nuclear Information System (INIS)

    Jiang, Jin; Bari, Ataul; Chen, Dongyi; Hashemian, Hash M.

    2014-01-01

    Even though there is no general consensus on using wireless technologies in nuclear power plants, potential applications of wireless sensor networks within nuclear power plants (NPPs) has been investigated. The topics of interests include potential interaction of wireless sensor networks with the sensitive protection equipment, radiation damage of the electronics on board sensor nodes, optimal placement of relay nodes that collect and forward data in the network, and possible applications, such as radiation dose and level monitoring, and equipment condition monitoring. Several wireless sensor networks have been deployed on site of NPPs on a trial basis to perform these tasks. Different aspects of deployment of such wireless sensor networks in NPPs have also been examined. Industrial standards or guidelines for deployment of WSNs in NPPs are also been considered. This paper examines the state of the art of wireless sensor networks in NPPs

  8. Experience of wireless local area network in a radiation oncology department.

    Science.gov (United States)

    Mandal, Abhijit; Asthana, Anupam Kumar; Aggarwal, Lalit Mohan

    2010-01-01

    The aim of this work is to develop a wireless local area network (LAN) between different types of users (Radiation Oncologists, Radiological Physicists, Radiation Technologists, etc) for efficient patient data management and to made easy the availability of information (chair side) to improve the quality of patient care in Radiation Oncology department. We have used mobile workstations (Laptops) and stationary workstations, all equipped with wireless-fidelity (Wi-Fi) access. Wireless standard 802.11g (as recommended by Institute of Electrical and Electronic Engineers (IEEE, Piscataway, NJ) has been used. The wireless networking was configured with the Service Set Identifier (SSID), Media Access Control (MAC) address filtering, and Wired Equivalent Privacy (WEP) network securities. We are successfully using this wireless network in sharing the indigenously developed patient information management software. The proper selection of the hardware and the software combined with a secure wireless LAN setup will lead to a more efficient and productive radiation oncology department.

  9. Technical Survey on Applications of Wireless Sensor Networks in Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Jin; Bari, Ataul [University of Western Ontario, Ontario (Canada); Chen, Dongyi [University of Electronic Science and Technology of China, Chengdu (China); Hashemian, Hash M. [AMS Technology Center, Knoxville (United States)

    2014-08-15

    Even though there is no general consensus on using wireless technologies in nuclear power plants, potential applications of wireless sensor networks within nuclear power plants (NPPs) has been investigated. The topics of interests include potential interaction of wireless sensor networks with the sensitive protection equipment, radiation damage of the electronics on board sensor nodes, optimal placement of relay nodes that collect and forward data in the network, and possible applications, such as radiation dose and level monitoring, and equipment condition monitoring. Several wireless sensor networks have been deployed on site of NPPs on a trial basis to perform these tasks. Different aspects of deployment of such wireless sensor networks in NPPs have also been examined. Industrial standards or guidelines for deployment of WSNs in NPPs are also been considered. This paper examines the state of the art of wireless sensor networks in NPPs.

  10. Green Manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Patten, John

    2013-12-31

    Green Manufacturing Initiative (GMI): The initiative provides a conduit between the university and industry to facilitate cooperative research programs of mutual interest to support green (sustainable) goals and efforts. In addition to the operational savings that greener practices can bring, emerging market demands and governmental regulations are making the move to sustainable manufacturing a necessity for success. The funding supports collaborative activities among universities such as the University of Michigan, Michigan State University and Purdue University and among 40 companies to enhance economic and workforce development and provide the potential of technology transfer. WMU participants in the GMI activities included 20 faculty, over 25 students and many staff from across the College of Engineering and Applied Sciences; the College of Arts and Sciences' departments of Chemistry, Physics, Biology and Geology; the College of Business; the Environmental Research Institute; and the Environmental Studies Program. Many outside organizations also contribute to the GMI's success, including Southwest Michigan First; The Right Place of Grand Rapids, MI; Michigan Department of Environmental Quality; the Michigan Department of Energy, Labor and Economic Growth; and the Michigan Manufacturers Technical Center.

  11. Networking wireless sensors

    National Research Council Canada - National Science Library

    Krishnamachari, Bhaskar

    2005-01-01

    ... by networking techniques across multiple layers. The topics covered include network deployment, localization, time synchronization, wireless radio characteristics, medium-access, topology control, routing, data-centric techniques, and transport protocols. Ideal for researchers and designers seeking to create new algorithms and protocols and enginee...

  12. Miniaturized wireless sensor network

    OpenAIRE

    Lecointre , Aubin; Dragomirescu , Daniela; Dubuc , David; Grenier , Katia; Pons , Patrick; Aubert , Hervé; Müller , A.; Berthou , Pascal; Gayraud , Thierry; Plana , Robert

    2006-01-01

    This paper addresses an overview of the wireless sensor networks. It is shown that MEMS/NEMS technologies and SIP concept are well suited for advanced architectures. It is also shown analog architectures have to be compatible with digital signal techniques to develop smart network of microsystem.

  13. Investigating Wireless Power Transfer

    Science.gov (United States)

    St. John, Stuart A.

    2017-01-01

    Understanding Physics is a great end in itself, but is also crucial to keep pace with developments in modern technology. Wireless power transfer, known to many only as a means to charge electric toothbrushes, will soon be commonplace in charging phones, electric cars and implanted medical devices. This article outlines how to produce and use a…

  14. Future of wireless communication

    Energy Technology Data Exchange (ETDEWEB)

    Barker, M

    1996-12-31

    This document reproduces slides from a conference presentation giving an overview of current and upcoming wireless communication methods of interest to Canadian electric utilities. Both voice and data communication methods are considered, including cellular telephone, satellite communications, personal communication services, regulated licensed arrowband data systems, and integrated services.

  15. Wired vs. Wireless.

    Science.gov (United States)

    Fielding, Randall

    2000-01-01

    Presents a debate on which technology will be in tomorrow's classrooms and the pros and cons of wiring classrooms and using a wireless network. Concluding comments address the likelihood, and desirability, of placing computers throughout the entire educational process and what types of computers and capabilities are needed. (GR)

  16. Wireless Remote Control System

    Directory of Open Access Journals (Sweden)

    Adrian Tigauan

    2012-06-01

    Full Text Available This paper presents the design of a wireless remote control system based on the ZigBee communication protocol. Gathering data from sensors or performing control tasks through wireless communication is advantageous in situations in which the use of cables is impractical. An Atmega328 microcontroller (from slave device is used for gathering data from the sensors and transmitting it to a coordinator device with the help of the XBee modules. The ZigBee standard is suitable for low-cost, low-data-rate and low-power wireless networks implementations. The XBee-PRO module, designed to meet ZigBee standards, requires minimal power for reliable data exchange between devices over a distance of up to 1600m outdoors. A key component of the ZigBee protocol is the ability to support networking and this can be used in a wireless remote control system. This system may be employed e.g. to control temperature and humidity (SHT11 sensor and light intensity (TSL230 sensor levels inside a commercial greenhouse.

  17. Insecurity of Wireless Networks

    Energy Technology Data Exchange (ETDEWEB)

    Sheldon, Frederick T [ORNL; Weber, John Mark [Dynetics, Inc.; Yoo, Seong-Moo [University of Alabama, Huntsville; Pan, W. David [University of Alabama, Huntsville

    2012-01-01

    Wireless is a powerful core technology enabling our global digital infrastructure. Wi-Fi networks are susceptible to attacks on Wired Equivalency Privacy, Wi-Fi Protected Access (WPA), and WPA2. These attack signatures can be profiled into a system that defends against such attacks on the basis of their inherent characteristics. Wi-Fi is the standard protocol for wireless networks used extensively in US critical infrastructures. Since the Wired Equivalency Privacy (WEP) security protocol was broken, the Wi-Fi Protected Access (WPA) protocol has been considered the secure alternative compatible with hardware developed for WEP. However, in November 2008, researchers developed an attack on WPA, allowing forgery of Address Resolution Protocol (ARP) packets. Subsequent enhancements have enabled ARP poisoning, cryptosystem denial of service, and man-in-the-middle attacks. Open source systems and methods (OSSM) have long been used to secure networks against such attacks. This article reviews OSSMs and the results of experimental attacks on WPA. These experiments re-created current attacks in a laboratory setting, recording both wired and wireless traffic. The article discusses methods of intrusion detection and prevention in the context of cyber physical protection of critical Internet infrastructure. The basis for this research is a specialized (and undoubtedly incomplete) taxonomy of Wi-Fi attacks and their adaptations to existing countermeasures and protocol revisions. Ultimately, this article aims to provide a clearer picture of how and why wireless protection protocols and encryption must achieve a more scientific basis for detecting and preventing such attacks.

  18. Building the Wireless Campus

    Science.gov (United States)

    Gerraughty, James F.; Shanafelt, Michael E.

    2005-01-01

    This prototype is a continuation of a series of wireless prototypes which began in August 2001 and was reported on again in August 2002. This is the final year of this prototype. This continuation allowed Saint Francis University's Center of Excellence for Remote and Medically Under-Served Areas (CERMUSA) to refine the existing WLAN for the Saint…

  19. Wireless networks; Traadloese nettverk

    Energy Technology Data Exchange (ETDEWEB)

    2008-07-01

    Wireless Local Area Networks - WLAN, is being installed in homes, offices, schools and city areas with an increasing speed. Computers communicate with each other through networks by using radio signals. Base stations make sure there is sufficient radio coverage in the current areas. The effects on human and if it is dangerous is discussed

  20. Wireless networked music performance

    CERN Document Server

    Gabrielli, Leonardo

    2016-01-01

    This book presents a comprehensive overview of the state of the art in Networked Music Performance (NMP) and a historical survey of computer music networking. It introduces current technical trends in NMP and technical issues yet to be addressed. It also lists wireless communication protocols and compares these to the requirements of NMP. Practical use cases and advancements are also discussed.

  1. NASA Bluetooth Wireless Communications

    Science.gov (United States)

    Miller, Robert D.

    2007-01-01

    NASA has been interested in wireless communications for many years, especially when the crew size of the International Space Station (ISS) was reduced to two members. NASA began a study to find ways to improve crew efficiency to make sure the ISS could be maintained with limited crew capacity and still be a valuable research testbed in Low-Earth Orbit (LEO). Currently the ISS audio system requires astronauts to be tethered to the audio system, specifically a device called the Audio Terminal Unit (ATU). Wireless communications would remove the tether and allow astronauts to freely float from experiment to experiment without having to worry about moving and reconnecting the associated cabling or finding the space equivalent of an extension cord. A wireless communication system would also improve safety and reduce system susceptibility to Electromagnetic Interference (EMI). Safety would be improved because a crewmember could quickly escape a fire while maintaining communications with the ground and other crewmembers at any location. In addition, it would allow the crew to overcome the volume limitations of the ISS ATU. This is especially important to the Portable Breathing Apparatus (PBA). The next generation of space vehicles and habitats also demand wireless attention. Orion will carry up to six crewmembers in a relatively small cabin. Yet, wireless could become a driving factor to reduce launch weight and increase habitable volume. Six crewmembers, each tethered to a panel, could result in a wiring mess even in nominal operations. In addition to Orion, research is being conducted to determine if Bluetooth is appropriate for Lunar Habitat applications.

  2. ``Low Power Wireless Technologies: An Approach to Medical Applications''

    Science.gov (United States)

    Bellido O., Francisco J.; González R., Miguel; Moreno M., Antonio; de La Cruz F, José Luis

    Wireless communication supposed a great both -quantitative and qualitative, jump in the management of the information, allowing the access and interchange of it without the need of a physical cable connection. The wireless transmission of voice and information has remained in constant evolution, arising new standards like BluetoothTM, WibreeTM or ZigbeeTM developed under the IEEE 802.15 norm. These newest wireless technologies are oriented to systems of communication of short-medium distance and optimized for a low cost and minor consume, becoming recognized as a flexible and reliable medium for data communications across a broad range of applications due to the potential that the wireless networks presents to operate in demanding environments providing clear advantages in cost, size, power, flexibility, and distributed intelligence. About the medical applications, the remote health or telecare (also called eHealth) is getting a bigger place into the manufacturers and medical companies, in order to incorporate products for assisted living and remote monitoring of health parameteres. At this point, the IEEE 1073, Personal Health Devices Working Group, stablish the framework for these kind of applications. Particularly, the 1073.3.X describes the physical and transport layers, where the new ultra low power short range wireless technologies can play a big role, providing solutions that allow the design of products which are particularly appropriate for monitor people’s health with interoperability requirements.

  3. Aircraft, Missile, and Spacecraft; Office Machine and Computer; Electronics; and Motor Vehicle and Equipment Manufacturing Industries. Reprinted from the Occupational Outlook Handbook, 1978-79 Edition.

    Science.gov (United States)

    Bureau of Labor Statistics (DOL), Washington, DC.

    Focusing on occupations in various manufacturing industries, this document is one in a series of forty-one reprints from the Occupational Outlook Handbook providing current information and employment projections for individual occupations and industries through 1985. The specific occupations covered in this document include occupations in…

  4. 11th International Conference On Broad-Band Wireless Computing, Communication and Applications

    CERN Document Server

    Xhafa, Fatos; Yim, Kangbin

    2017-01-01

    The success of all-IP networking and wireless technology has changed the ways of living the people around the world. The progress of electronic integration and wireless communications is going to pave the way to offer people the access to the wireless networks on the fly, based on which all electronic devices will be able to exchange the information with each other in ubiquitous way whenever necessary. The aim of the volume is to provide latest research findings, innovative research results, methods and development techniques from both theoretical and practical perspectives related to the emerging areas of broadband and wireless computing. This proceedings volume presents the results of the 11th International Conference on Broad-Band Wireless Computing, Communication And Applications (BWCCA-2016), held November 5-7, 2016, at Soonchunhyang University, Asan, Korea. .

  5. Wireless Communications Device Wakeup Method and System

    NARCIS (Netherlands)

    Drago, S.; Sebastiano, F.; Leenaerts, D.M.W.; Breems, L.J.

    2008-01-01

    Abstract of WO 2009044368 Disclosed are wakeable wireless communications devices, and methods for waking wireless communications devices, for use in a wireless network of such devices. The devices communicate during respectively-designated timeslots according to a communications protocol. The

  6. Guidelines for wireless technology in nuclear power plants

    International Nuclear Information System (INIS)

    Shankar, Ramesh

    2003-01-01

    As a result of technological breakthroughs, increased demand for the use of wireless technology is common in all industries today, and the electric power industry is no exception. Already, wireless technology has many applications in our industry, including - but not limited to - cellular phone systems, paging systems, two-way radio communication systems, dose management and tracking systems, and operator logs. EPRI has prepared a comprehensive guidelines document to support evaluation of wireless technologies in power plants for integrated (voice/data/video) communication, remote equipment and system monitoring, and to complement an electronic procedures support system (EPSS). The guidelines effort focuses on the development of a rules structure to support the deployment of wireless devices in a plant without compromising continuous, safe, and reliable operation. The guidelines document consists of two volumes. The first volume is introductory in nature and lays out the business case for applying wireless technologies. The intended audience is senior plant management personnel and utility industry executives. This volume contains background information, templates, worksheets, processes, and presentations that will allow internal sponsors to create business cases for piloting wireless projects. The second volume includes guidance on implementation and regulatory issues relevant to plant implementation. It covers the following application areas: implementation of integrated communication capability, equipment monitoring, work quality control, time and knowledge management, and business process automation. It details regulatory issues relevant to the adoption of wireless technology within nuclear power plants and offers guidance on preparing for and executing pilot and implementations of wireless technologies. The paper will cover important aspects on the guidelines. (author)

  7. Active learners in sustainable electronics and it

    DEFF Research Database (Denmark)

    Schultz, Ole

    This poster-presentation is about active learning in a course sustainable wireless electronics and it. Active learning understood as practical lab-exercises and a team chosen project.......This poster-presentation is about active learning in a course sustainable wireless electronics and it. Active learning understood as practical lab-exercises and a team chosen project....

  8. The Lure of Wireless Encryption

    CERN Multimedia

    Computer Security Team

    2013-01-01

    Following our article entitled “Jekyll or Hyde? Better browse securely” in the last issue of the Bulletin, some people wondered why the CERN wireless network is not encrypted…   There are many arguments why it is not. The simplest is usability: the communication and management of the corresponding access keys would be challenging given the sheer number of wireless devices the CERN network hosts. Keys would quickly become public, e.g. at conferences, and might be shared, written on whiteboards, etc. Then there are all the devices which cannot be easily configured to use encryption protocols - a fact which would create plenty of calls to the CERN Service Desk… But our main argument is that wireless encryption is DECEPTIVE. Wireless encryption is deceptive as it only protects the wireless network against unauthorised access (and the CERN network already has other means to protect against that). Wireless encryption however, does not really help you. You ...

  9. Electronics

    Science.gov (United States)

    2001-01-01

    International Acer Incorporated, Hsin Chu, Taiwan Aerospace Industrial Development Corporation, Taichung, Taiwan American Institute of Taiwan, Taipei, Taiwan...Singapore and Malaysia .5 - 4 - The largest market for semiconductor products is the high technology consumer electronics industry that consumes up...Singapore, and Malaysia . A new semiconductor facility costs around $3 billion to build and takes about two years to become operational

  10. Security For Wireless Sensor Network

    OpenAIRE

    Saurabh Singh,; Dr. Harsh Kumar Verma

    2011-01-01

    Wireless sensor network is highly vulnerable to attacks because it consists of various resourceconstrained devices with their low battery power, less memory, and associated low energy. Sensor nodescommunicate among themselves via wireless links. However, there are still a lot of unresolved issues in wireless sensor networks of which security is one of the hottest research issues. Sensor networks aredeployed in hostile environments. Environmental conditions along with resource-constraints give...

  11. Matching theory for wireless networks

    CERN Document Server

    Han, Zhu; Saad, Walid

    2017-01-01

    This book provides the fundamental knowledge of the classical matching theory problems. It builds up the bridge between the matching theory and the 5G wireless communication resource allocation problems. The potentials and challenges of implementing the semi-distributive matching theory framework into the wireless resource allocations are analyzed both theoretically and through implementation examples. Academics, researchers, engineers, and so on, who are interested in efficient distributive wireless resource allocation solutions, will find this book to be an exceptional resource. .

  12. Sticker electronics

    KAUST Repository

    Hussain, Muhammad Mustafa

    2017-09-08

    Electronic stickers may be manufactured on flexible substrates (110, 120, 130) as layers and packaged together. The package may then have an adhesive applied to one side to provide capability for sticking the electronic devices to surfaces. The stickers can be wrappable, placed on surfaces, glued on walls or mirrors or wood or stone, and have electronics (112, 122, 132) which may or may not be ultrathin. Packaging for the electronic sticker can use polymer on cellulose manufacturing and/or three dimensional (3-D) printing. The electronic stickers may provide lighting capability, sensing capability, and/or recharging capabilities.

  13. An Assessment of Emerging Wireless Broadband Technologies

    National Research Council Canada - National Science Library

    Fountanas, Leonidas

    2001-01-01

    ... technologies in providing broadband services today, emerging wireless broadband technologies are expected to significantly increase their market share over the next years, Deploying a wireless network...

  14. Photonics in wireless transceivers

    International Nuclear Information System (INIS)

    Bogani, A.; Ghelfi, P.

    2013-01-01

    During the last few years, the cross-fertilization between photonics and radio systems has been helping to overcome some major limitations of the classical radio technologies, setting new paradigms, and promising improved performance and new applications with strong benefits for public communications and safety. In particular, photonics-based wireless systems, albeit still at research level, are moving toward a new generation of multifunctional systems able to manage the wireless communication with several different frequencies and protocols, even simultaneously while also realizing surveillance operations. Photonics matches the new requirements of flexibility for software-defined architectures, thanks to its ultra-wide bandwidths and ease of tunability, and guarantees low footprint and weight, thanks to integrated photonic technologies. Moreover, photonics also allows increased resolution and sensitivity by means of the inherent low phase noise of lasers. (author)

  15. Wireless infrared computer control

    Science.gov (United States)

    Chen, George C.; He, Xiaofei

    2004-04-01

    Wireless mouse is not restricted by cable"s length and has advantage over its wired counterpart. However, all the mice available in the market have detection range less than 2 meters and angular coverage less than 180 degrees. Furthermore, commercial infrared mice are based on track ball and rollers to detect movements. This restricts them to be used in those occasions where users want to have dynamic movement, such as presentations and meetings etc. This paper presents our newly developed infrared wireless mouse, which has a detection range of 6 meters and angular coverage of 180 degrees. This new mouse uses buttons instead of traditional track ball and is developed to be a hand-held device like remote controller. It enables users to control cursor with a distance closed to computer and the mouse to be free from computer operation.

  16. Adaptive Wireless Transceiver, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Wireless technologies are an increasingly attractive means for spatial data, input, manipulation, and distribution. Mobitrum is proposing an innovative Adaptive...

  17. Some Challenges in Wireless Security

    National Research Council Canada - National Science Library

    Banerjee, Suman

    2007-01-01

    Wireless communication technologies provide users with significant flexibility and portability and hence is being widely adopted as a preferred mode of communication in many military and civilian applications...

  18. Cognitive wireless networks

    CERN Document Server

    Feng, Zhiyong; Zhang, Ping

    2015-01-01

    This brief examines the current research in cognitive wireless networks (CWNs). Along with a review of challenges in CWNs, this brief presents novel theoretical studies and architecture models for CWNs, advances in the cognitive information awareness and delivery, and intelligent resource management technologies. The brief presents the motivations and concepts of CWNs, including theoretical studies of temporal and geographic distribution entropy as well as cognitive information metrics. A new architecture model of CWNs is proposed with theoretical, functional and deployment architectures suppo

  19. Wearable wireless photoplethysmography sensors

    Science.gov (United States)

    Spigulis, Janis; Erts, Renars; Nikiforovs, Vladimirs; Kviesis-Kipge, Edgars

    2008-04-01

    Wearable health monitoring sensors may support early detection of abnormal conditions and prevention of their consequences. Recent designs of three wireless photoplethysmography monitoring devices embedded in hat, glove and sock, and connected to PC or mobile phone by means of the Bluetooth technology, are described. First results of distant monitoring of heart rate and pulse wave transit time using the newly developed devices are presented.

  20. Wireless Cellular Mobile Communications

    OpenAIRE

    Zalud, V.

    2002-01-01

    In this article is briefly reviewed the history of wireless cellular mobile communications, examined the progress in current second generation (2G) cellular standards and discussed their migration to the third generation (3G). The European 2G cellular standard GSM and its evolution phases GPRS and EDGE are described somewhat in detail. The third generation standard UMTS taking up on GSM/GPRS core network and equipped with a new advanced access network on the basis of code division multiple ac...

  1. Additive manufacturing of metals

    International Nuclear Information System (INIS)

    Herzog, Dirk; Seyda, Vanessa; Wycisk, Eric; Emmelmann, Claus

    2016-01-01

    Additive Manufacturing (AM), the layer-by layer build-up of parts, has lately become an option for serial production. Today, several metallic materials including the important engineering materials steel, aluminium and titanium may be processed to full dense parts with outstanding properties. In this context, the present overview article describes the complex relationship between AM processes, microstructure and resulting properties for metals. It explains the fundamentals of Laser Beam Melting, Electron Beam Melting and Laser Metal Deposition, and introduces the commercially available materials for the different processes. Thereafter, typical microstructures for additively manufactured steel, aluminium and titanium are presented. Special attention is paid to AM specific grain structures, resulting from the complex thermal cycle and high cooling rates. The properties evolving as a consequence of the microstructure are elaborated under static and dynamic loading. According to these properties, typical applications are presented for the materials and methods for conclusion.

  2. Additive manufacturing of Ka-band antennas for wireless communications

    DEFF Research Database (Denmark)

    Armendariz, Unai; Rommel, Simon; Rodríguez Páez, Juan Sebastián

    2016-01-01

    This paper presents the design and fabrication of WR-28 waveguide horn antennas operating in the Ka-band frequency range between 26.5 GHz and 40 GHz through 3D printing. Three different antennas are fabricated from polylactide acid filaments in conductive and non-conductive variants; the latter i...

  3. Deep Space Habitat Wireless Smart Plug

    Science.gov (United States)

    Morgan, Joseph A.; Porter, Jay; Rojdev, Kristina; Carrejo, Daniel B.; Colozza, Anthony J.

    2014-01-01

    NASA has been interested in technology development for deep space exploration, and one avenue of developing these technologies is via the eXploration Habitat (X-Hab) Academic Innovation Challenge. In 2013, NASA's Deep Space Habitat (DSH) project was in need of sensors that could monitor the power consumption of various devices in the habitat with added capability to control the power to these devices for load shedding in emergency situations. Texas A&M University's Electronic Systems Engineering Technology Program (ESET) in conjunction with their Mobile Integrated Solutions Laboratory (MISL) accepted this challenge, and over the course of 2013, several undergraduate students in a Capstone design course developed five wireless DC Smart Plugs for NASA. The wireless DC Smart Plugs developed by Texas A&M in conjunction with NASA's Deep Space Habitat team is a first step in developing wireless instrumentation for future flight hardware. This paper will further discuss the X-Hab challenge and requirements set out by NASA, the detailed design and testing performed by Texas A&M, challenges faced by the team and lessons learned, and potential future work on this design.

  4. 21 CFR 1005.25 - Service of process on manufacturers.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Service of process on manufacturers. 1005.25....25 Service of process on manufacturers. (a) Every manufacturer of electronic products, prior to... United States as the manufacturer's agent upon whom service of all processes, notices, orders, decisions...

  5. DOWNHOLE POWER GENERATION AND WIRELESS COMMUNICATIONS FOR INTELLIGENT COMPLETIONS APPLICATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Paul Tubel

    2003-10-14

    The fourth quarter of the project was dedicated to the manufacturing of the mechanical system for wireless communications and the power generation module and inspection pre assembly of the mechanical components. Another emphasis for the quarter was the development of filter control and signal detection software. The tasks accomplished during this report period were: (1) Dimensional issues were resolved and revised drawings for manufacturing of the wireless communications gauge and power generator were completed and sent to a machine shop for manufacturing. (2) Finalized the requirements and fittings and connections for testing the tool in the Halliburton flow loop. (3) The new acoustic generator was manufactured successfully and it was delivered during this quarter. The assembly will be outsourced for plastic coating in preparation for hostile environment use. (4) The acoustic two-way communications development continued to progress. The real time firmware for the surface system was developed and the processor was able to detect and process the data frame transmitted from downhole. The analog section of the tool was also developed and it is being tested for filtering capabilities and signal detection and amplification. (5) The new transformer to drive the acoustic generator assembly was manufactured and was successfully tested. Spring mandrel design showed increased acoustic output on the pipe and was implemented. (6) PCBA board carrier with board set was tested for function and fit and is 100% complete. (7) Filter control software is complete and software to allow modification of communication parameters dynamically is 50% complete. (8) All mechanical parts to assemble the wireless gauge and power generator have been received and verified to be within specification. (9) Acoustic generator has been assembled in the tool mandrel and tested successfully. (10) The circuit required to harvest the power generated downhole has been designed and the power generator

  6. Green Wireless Power Transfer Networks

    NARCIS (Netherlands)

    Liu, Q.; Golinnski, M.; Pawelczak, P.; Warnier, M.

    2016-01-01

    wireless power transfer network (WPTN) aims to support devices with cable-less energy on-demand. Unfortunately, wireless power transfer itself-especially through radio frequency radiation rectification-is fairly inefficient due to decaying power with distance, antenna polarization, etc.

  7. Smart Home Wireless Sensor Nodes

    DEFF Research Database (Denmark)

    Lynggaard, Per

    . This paper introduces an approach that considerably lowers the wireless sensor node power consumption and the amount of transmitted sensor events. It uses smart objects that include artificial intelligence to efficiently process the sensor event on location and thereby saves the costly wireless...

  8. Next Generation Intelligent Wireless Infrastructure

    DEFF Research Database (Denmark)

    Toftegaard, Thomas Skjødeberg

    2010-01-01

    Given the commercial success of wireless technologies that has already taken place over the last couple of decades, with a global mobile communication penetration beyond 3 billion subscribers as well as the enormous success of wireless data communication through IEEE 802.11x and Bluetooth, people...

  9. An Analysis Of Wireless Security

    OpenAIRE

    Salendra Prasad

    2017-01-01

    The WLAN security includes Wired Equivalent Primary WEP and WI-FI protected Access WPA. Today WEP is regarded as very poor security standard. WEP was regarded as very old security standard and has many security issues which users need to be addressed. In this Paper we will discuss Wireless Security and ways to improve on wireless security.

  10. Manufactured volvulus.

    Science.gov (United States)

    Zweifel, Noemi; Meuli, Martin; Subotic, Ulrike; Moehrlen, Ueli; Mazzone, Luca; Arlettaz, Romaine

    2013-06-01

    Malrotation with a common mesentery is the classical pathology allowing midgut volvulus to occur. There are only a few reports of small bowel volvulus without malrotation or other pathology triggering volvulation. We describe three cases of small bowel volvulus in very premature newborns with a perfectly normal intra-abdominal anatomy and focus on the question, what might have set off volvulation. In 2005 to 2008, three patients developed small bowel volvulus without any underlying pathology. Retrospective patient chart review was performed with special focus on clinical presentation, preoperative management, intraoperative findings, and potential causative explanations. Mean follow-up period was 46 months. All patients were born between 27 and 31 weeks (mean 28 weeks) with a birth weight between 800 and 1,000 g (mean 887 g). They presented with an almost identical pattern of symptoms including sudden abdominal distension, abdominal tenderness, erythema of the abdominal wall, high gastric residuals, and radiographic signs of ileus. All of them were treated with intensive abdominal massage or pelvic rotation to improve bowel movement before becoming symptomatic. Properistaltic maneuvers including abdominal massage and pelvic rotation may cause what we term a "manufactured" volvulus in very premature newborns. Thus, this practice was stopped. Georg Thieme Verlag KG Stuttgart · New York.

  11. Research Update: Nanogenerators for self-powered autonomous wireless sensors

    Science.gov (United States)

    Khan, Usman; Hinchet, Ronan; Ryu, Hanjun; Kim, Sang-Woo

    2017-07-01

    Largely distributed networks of sensors based on the small electronics have great potential for health care, safety, and environmental monitoring. However, in order to have a maintenance free and sustainable operation, such wireless sensors have to be self-powered. Among various energies present in our environment, mechanical energy is widespread and can be harvested for powering the sensors. Piezoelectric and triboelectric nanogenerators (NGs) have been recently introduced for mechanical energy harvesting. Here we introduce the architecture and operational modes of self-powered autonomous wireless sensors. Thereafter, we review the piezoelectric and triboelectric NGs focusing on their working mechanism, structures, strategies, and materials.

  12. NASA Fuel Tank Wireless Power and Signal Study

    Science.gov (United States)

    Merrill, Garrick

    2015-01-01

    Hydro Technologies has developed a custom electronics and mechanical framework for interfacing with off-the-shelf sensors to achieve through barrier sensing solutions. The core project technology relies on Hydro Technologies Wireless Power and Signal Interface (Wi psi) System for transmitting data and power wirelessly using magnetic fields. To accomplish this, Wi psi uses a multi-frequency local magnetic field to produce magnetic fields capable of carrying data and power through almost any material such as metals, seawater, concrete, and air. It will also work through layers of multiple materials.

  13. Wireless Technology in K-12 Education

    Science.gov (United States)

    Walery, Darrell

    2004-01-01

    Many schools begin implementing wireless technology slowly by creating wireless "hotspots" on the fly. This is accomplished by putting a wireless access point on a cart along with a set of wireless laptop computers. A teacher can then wheel the cart anywhere in the school that has a network drop, plug the access point in and have an…

  14. Applications and Security of Next-Generation, User-Centric Wireless Systems

    Directory of Open Access Journals (Sweden)

    Danfeng Yao

    2010-07-01

    Full Text Available Pervasive wireless systems have significantly improved end-users’ quality of life. As manufacturing costs decrease, communications bandwidth increases, and contextual information is made more readily available, the role of next generation wireless systems in facilitating users’ daily activities will grow. Unique security and privacy issues exist in these wireless, context-aware, often decentralized systems. For example, the pervasive nature of such systems allows adversaries to launch stealthy attacks against them. In this review paper, we survey several emergent personal wireless systems and their applications. These systems include mobile social networks, active implantable medical devices, and consumer products. We explore each system’s usage of contextual information and provide insight into its security vulnerabilities. Where possible, we describe existing solutions for defendingagainst these vulnerabilities. Finally, we point out promising future research directions for improving these systems’ robustness and security

  15. The impact of fit manufacturing on green manufacturing: A review

    Science.gov (United States)

    Qi, Ang Nian; Sin, Tan Chan; Fathullah, M.; Lee, C. C.

    2017-09-01

    Fit manufacturing and Green manufacturing are a new trend principle and concept. They are getting popular in industrial. This paper is identifying the impact between Fit manufacturing and Green manufacturing. Besides Fit manufacturing, Lean manufacturing, Agile manufacturing and Sustainable manufacturing gives big impacts to Green Manufacturing. On top of that, this paper also discuss the benefits of applying Fit manufacturing and Green manufacturing in industrial as well as environment. Hence, applications of Fit manufacturing and Green Manufacturing are increasing year by year.

  16. Wireless Distributed Antenna MIMO

    DEFF Research Database (Denmark)

    2015-01-01

    The present disclosure relates to system applications of multicore optical fibers. One embodiment relates to a base transceiver station for a wireless telecommunication system comprising a plurality of antenna units arranged in a MIMO configuration and adapted for transmission and/or reception...... of radio-frequency signals, an optical transmitter in the form of an electro-optic conversion unit for each of said plurality of antenna units, each electro-optic conversion unit adapted for converting an RF signal into an optical signal, a plurality of a single core optical fibers for guiding the optical...

  17. Dynamic wireless sensor networks

    CERN Document Server

    Oteafy, Sharief M A

    2014-01-01

    In this title, the authors leap into a novel paradigm of scalability and cost-effectiveness, on the basis of resource reuse. In a world with much abundance of wirelessly accessible devices, WSN deployments should capitalize on the resources already available in the region of deployment, and only augment it with the components required to meet new application requirements. However, if the required resources already exist in that region, WSN deployment converges to an assignment and scheduling scheme to accommodate for the new application given the existing resources. Such resources are polled

  18. Investigating wireless power transfer

    Science.gov (United States)

    St John, Stuart A.

    2017-09-01

    Understanding Physics is a great end in itself, but is also crucial to keep pace with developments in modern technology. Wireless power transfer, known to many only as a means to charge electric toothbrushes, will soon be commonplace in charging phones, electric cars and implanted medical devices. This article outlines how to produce and use a simple set of equipment to both demonstrate and investigate this phenomenon. It presents some initial findings and aims to encourage Physics educators and their students to conduct further research, pushing the bounds of their understanding.

  19. Deployable wireless Fresnel lens

    Science.gov (United States)

    Kennedy, Timothy F. (Inventor); Fink, Patrick W. (Inventor); Chu, Andrew W. (Inventor); Lin, Gregory Y. (Inventor)

    2013-01-01

    Apparatus and methods for enhancing the gain of a wireless signal are provided. In at least one specific embodiment, the apparatus can include a screen comprised of one or more electrically conductive regions for reflecting electromagnetic radiation and one or more non-conductive regions for permitting electromagnetic radiation therethrough. The one or more electrically conductive regions can be disposed adjacent to at least one of the one or more non-conductive regions. The apparatus can also include a support member disposed about at least a portion of the screen. The screen can be capable of collapsing by twisting the support member in opposite screw senses to form interleaved concentric sections.

  20. Wireless Headset Communication System

    Science.gov (United States)

    Lau, Wilfred K.; Swanson, Richard; Christensen, Kurt K.

    1995-01-01

    System combines features of pagers, walkie-talkies, and cordless telephones. Wireless headset communication system uses digital modulation on spread spectrum to avoid interference among units. Consists of base station, 4 radio/antenna modules, and as many as 16 remote units with headsets. Base station serves as network controller, audio-mixing network, and interface to such outside services as computers, telephone networks, and other base stations. Developed for use at Kennedy Space Center, system also useful in industrial maintenance, emergency operations, construction, and airport operations. Also, digital capabilities exploited; by adding bar-code readers for use in taking inventories.

  1. Wired or Wireless Internet?

    DEFF Research Database (Denmark)

    Gimpel, Gregory

    2010-01-01

    This paper finds that network externalities play a minimal role in the choice of internet access technology. Potential adopters of mobile laptop internet view broadband technology as a black box, the technological details of which donot matter. The study uses qualitative techniques to explore how...... the speed of technological obsolescence, market share dominance, and the black boxing of technology influence consumer intention to adopt WiMax and 3G wireless internet for their laptop computers. The results, implications for industry, and areas for further research are discussed....

  2. Wireless passive radiation sensor

    Science.gov (United States)

    Pfeifer, Kent B; Rumpf, Arthur N; Yelton, William G; Limmer, Steven J

    2013-12-03

    A novel measurement technique is employed using surface acoustic wave (SAW) devices, passive RF, and radiation-sensitive films to provide a wireless passive radiation sensor that requires no batteries, outside wiring, or regular maintenance. The sensor is small (<1 cm.sup.2), physically robust, and will operate unattended for decades. In addition, the sensor can be insensitive to measurement position and read distance due to a novel self-referencing technique eliminating the need to measure absolute responses that are dependent on RF transmitter location and power.

  3. Wireless installation standard

    International Nuclear Information System (INIS)

    Lim, Hwang Bin

    2007-12-01

    This is divided six parts which are radio regulation law on securing of radio resource, use of radio resource, protection of radio resource, radio regulation enforcement ordinance with securing, distribution and assignment of radio regulation, radio regulation enforcement regulation on utility of radio resource and technical qualification examination, a wireless installation regulation of technique standard and safety facility standard, radio regulation such as certification regulation of information communicative machines and regulation of radio station on compliance of signal security, radio equipment in radio station, standard frequency station and emergency communication.

  4. Wireless Cellular Mobile Communications

    Directory of Open Access Journals (Sweden)

    V. Zalud

    2002-12-01

    Full Text Available In this article is briefly reviewed the history of wireless cellularmobile communications, examined the progress in current secondgeneration (2G cellular standards and discussed their migration to thethird generation (3G. The European 2G cellular standard GSM and itsevolution phases GPRS and EDGE are described somewhat in detail. Thethird generation standard UMTS taking up on GSM/GPRS core network andequipped with a new advanced access network on the basis of codedivision multiple access (CDMA is investigated too. A sketch of theperspective of mobile communication beyond 3G concludes this article.

  5. Wireless sensor networks architectures and protocols

    CERN Document Server

    Callaway, Jr, Edgar H

    2003-01-01

    Introduction to Wireless Sensor NetworksApplications and MotivationNetwork Performance ObjectivesContributions of this BookOrganization of this BookThe Development of Wireless Sensor NetworksEarly Wireless NetworksWireless Data NetworksWireless Sensor and Related NetworksConclusionThe Physical LayerSome Physical Layer ExamplesA Practical Physical Layer for Wireless Sensor NetworksSimulations and ResultsConclusionThe Data Link LayerMedium Access Control TechniquesThe Mediation DeviceSystem Analysis and SimulationConclusionThe Network LayerSome Network Design ExamplesA Wireless Sensor Network De

  6. LASER APPLICATIONS AND OTHER TOPICS IN QUANTUM ELECTRONICS: Laser-induced extreme UV radiation sources for manufacturing next-generation integrated circuits

    Science.gov (United States)

    Borisov, V. M.; Vinokhodov, A. Yu; Ivanov, A. S.; Kiryukhin, Yu B.; Mishchenko, V. A.; Prokof'ev, A. V.; Khristoforov, O. B.

    2009-10-01

    The development of high-power discharge sources emitting in the 13.5±0.135-nm spectral band is of current interest because they are promising for applications in industrial EUV (extreme ultraviolet) lithography for manufacturing integrated circuits according to technological precision standards of 22 nm and smaller. The parameters of EUV sources based on a laser-induced discharge in tin vapours between rotating disc electrodes are investigated. The properties of the discharge initiation by laser radiation at different wavelengths are established and the laser pulse parameters providing the maximum energy characteristics of the EUV source are determined. The EUV source developed in the study emits an average power of 276 W in the 13.5±0.135-nm spectral band on conversion to the solid angle 2π sr in the stationary regime at a pulse repetition rate of 3000 Hz.

  7. Development of smart wireless detector system for gamma ray detection

    International Nuclear Information System (INIS)

    Nolida Yussup; Nur Aira Abdul Rahman; Ismail Mustapha; Jaafar Abdullah; Mohd Ashhar Khalid; Hearie Hassan; Yoong, Chong Foh

    2012-01-01

    Data transmission in field works especially that is related to industry, gas and chemical is paramount importance to ensure data accuracy and delivery time. A development of wireless detector system for remote data acquisition to be applied in conducting fieldwork in industry is described in this paper. A wireless communication which is applied in the project development is a viable and cost-effective method of transmitting data from the detector to the laptop on the site to facilitate data storage and analysis automatically, which can be used in various applications such as column scanning. The project involves hardware design for the detector and electronics parts besides programming for control board and user interface. A prototype of a wireless gamma scintillation detector is developed with capabilities of transmitting data to computer via radio frequency (RF) and recording the data within the 433 MHz band at baud rate of 19200. (author)

  8. Development of smart wireless detector system for gamma ray detection

    International Nuclear Information System (INIS)

    Nolida Yussup; Nur Aira Abd. Rahman; Chong, Foh Yoong; Mohd Ashhar Khalid; Ismail Mustapha; Jaafar Abdullah; Hearie Hassan

    2010-01-01

    Data transmission in field works especially that is related to industry, gas and chemical is paramount importance to ensure data accuracy and delivery time. A development of wireless detector system for remote data acquisition to be applied in conducting fieldwork in industry is described in this paper. A wireless communication which is applied in the project development is a viable and cost-effective method of transmitting data from the detector to the laptop on the site to facilitate data storage and analysis automatically, which can be used in various applications such as column scanning. The project involves hardware design for the detector and electronics parts besides programming for control board and user interface. A prototype of a wireless gamma scintillation detector is developed with capabilities of transmitting data to computer via radio frequency (RF) and recording the data within the 433 MHz band at baud rate of 19200. (author)

  9. Modular Lego-Electronics

    KAUST Repository

    Shaikh, Sohail F.; Ghoneim, Mohamed T.; Bahabry, Rabab R.; Khan, Sherjeel M.; Hussain, Muhammad Mustafa

    2017-01-01

    . Here, a generic manufacturable method of converting state-of-the-art complementary metal oxide semiconductor-based ICs into modular Lego-electronics is shown with unique geometry that is physically identifiable to ease manufacturing and enhance

  10. A physically transient form of silicon electronics.

    Science.gov (United States)

    Hwang, Suk-Won; Tao, Hu; Kim, Dae-Hyeong; Cheng, Huanyu; Song, Jun-Kyul; Rill, Elliott; Brenckle, Mark A; Panilaitis, Bruce; Won, Sang Min; Kim, Yun-Soung; Song, Young Min; Yu, Ki Jun; Ameen, Abid; Li, Rui; Su, Yewang; Yang, Miaomiao; Kaplan, David L; Zakin, Mitchell R; Slepian, Marvin J; Huang, Yonggang; Omenetto, Fiorenzo G; Rogers, John A

    2012-09-28

    A remarkable feature of modern silicon electronics is its ability to remain physically invariant, almost indefinitely for practical purposes. Although this characteristic is a hallmark of applications of integrated circuits that exist today, there might be opportunities for systems that offer the opposite behavior, such as implantable devices that function for medically useful time frames but then completely disappear via resorption by the body. We report a set of materials, manufacturing schemes, device components, and theoretical design tools for a silicon-based complementary metal oxide semiconductor (CMOS) technology that has this type of transient behavior, together with integrated sensors, actuators, power supply systems, and wireless control strategies. An implantable transient device that acts as a programmable nonantibiotic bacteriocide provides a system-level example.

  11. Integrated wireless systems: The future has arrived (Keynote Address)

    Science.gov (United States)

    Rivoir, Roberto

    2005-06-01

    It is believed that we are just at the beginning with wireless, and that a new age is dawning for this breakthrough technology. Thanks to several years of industrial manufacturing in mass-market applications such as cellular phones, wireless technology has nowadays reached a level of maturity that, combined with other achievements arising from different fields, such as information technology, artificial intelligence, pervasive computing, science of new materials, and micro-electro-mechanical systems (MEMS), will enable the realization of a networked stream-flow of real-time information, that will accompany us in our daily life, in a total seamless, transparent fashion. As almost any application scenario will require the deployment of complex, miniaturized, almost "invisible" systems, operating with different wireless standards, hard technological challenges will have to be faced for designing and fabricating ultra-low-cost, reconfigurable, and multi-mode heterogeneous smart micro-devices. But ongoing, unending progresses on wireless technology keeps the promise of helping to solve important societal problems in the health-care, safety, security, industry, environment sectors, and in general opening the possibility for an improved quality of life at work, on travel, at home, practically "everywhere, anytime".

  12. Wireless network security theories and applications

    CERN Document Server

    Chen, Lei; Zhang, Zihong

    2013-01-01

    Wireless Network Security Theories and Applications discusses the relevant security technologies, vulnerabilities, and potential threats, and introduces the corresponding security standards and protocols, as well as provides solutions to security concerns. Authors of each chapter in this book, mostly top researchers in relevant research fields in the U.S. and China, presented their research findings and results about the security of the following types of wireless networks: Wireless Cellular Networks, Wireless Local Area Networks (WLANs), Wireless Metropolitan Area Networks (WMANs), Bluetooth

  13. Advanced Manufacturing Technologies

    Science.gov (United States)

    Fikes, John

    2016-01-01

    Advanced Manufacturing Technologies (AMT) is developing and maturing innovative and advanced manufacturing technologies that will enable more capable and lower-cost spacecraft, launch vehicles and infrastructure to enable exploration missions. The technologies will utilize cutting edge materials and emerging capabilities including metallic processes, additive manufacturing, composites, and digital manufacturing. The AMT project supports the National Manufacturing Initiative involving collaboration with other government agencies.

  14. Biomonitoring with Wireless Communications

    Energy Technology Data Exchange (ETDEWEB)

    Budinger, Thomas F.

    2003-03-01

    This review is divided into three sections: technologies for monitoring physiological parameters; biosensors for chemical assays and wireless communications technologies including image transmissions. Applications range from monitoring high risk patients for heart, respiratory activity and falls to sensing levels of physical activity in military, rescue, and sports personnel. The range of measurements include, heart rate, pulse wave form, respiratory rate, blood oxygen, tissue pCO2, exhaled carbon dioxide and physical activity. Other feasible measurements will employ miniature chemical laboratories on silicon or plastic chips. The measurements can be extended to clinical chemical assays ranging from common blood assays to protein or specialized protein measurements (e.g., troponin, creatine, and cytokines such as TNF and IL6). Though the feasibility of using wireless technology to communicate vital signs has been demonstrated 32 years ago (1) it has been only recently that practical and portable devices and communications net works have become generally available for inexpensive deployment of comfortable and affordable devices and systems.

  15. Household wireless electroencephalogram hat

    Science.gov (United States)

    Szu, Harold; Hsu, Charles; Moon, Gyu; Yamakawa, Takeshi; Tran, Binh

    2012-06-01

    We applied Compressive Sensing to design an affordable, convenient Brain Machine Interface (BMI) measuring the high spatial density, and real-time process of Electroencephalogram (EEG) brainwaves by a Smartphone. It is useful for therapeutic and mental health monitoring, learning disability biofeedback, handicap interfaces, and war gaming. Its spec is adequate for a biomedical laboratory, without the cables hanging over the head and tethered to a fixed computer terminal. Our improved the intrinsic signal to noise ratio (SNR) by using the non-uniform placement of the measuring electrodes to create the proximity of measurement to the source effect. We computing a spatiotemporal average the larger magnitude of EEG data centers in 0.3 second taking on tethered laboratory data, using fuzzy logic, and computing the inside brainwave sources, by Independent Component Analysis (ICA). Consequently, we can overlay them together by non-uniform electrode distribution enhancing the signal noise ratio and therefore the degree of sparseness by threshold. We overcame the conflicting requirements between a high spatial electrode density and precise temporal resolution (beyond Event Related Potential (ERP) P300 brainwave at 0.3 sec), and Smartphone wireless bottleneck of spatiotemporal throughput rate. Our main contribution in this paper is the quality and the speed of iterative compressed image recovery algorithm based on a Block Sparse Code (Baranuick et al, IEEE/IT 2008). As a result, we achieved real-time wireless dynamic measurement of EEG brainwaves, matching well with traditionally tethered high density EEG.

  16. Energy-autonomous wireless vibration sensor for condition-based maintenance of machinery

    NARCIS (Netherlands)

    Wang, Z.; Bouwens, F.; Vullers, R.; Petré, F.; Devos, S.

    2011-01-01

    This paper addresses the development of an energy-autonomous wireless vibration sensor for condition-based monitoring of machinery. Such technology plays an increasingly important role in modern manufacturing industry. In this work, energy harvesting is realized by resorting to a custom designed

  17. Microstructure and Mechanical Properties of Long Ti-6Al-4V Rods Additively Manufactured by Selective Electron Beam Melting Out of a Deep Powder Bed and the Effect of Subsequent Hot Isostatic Pressing

    Science.gov (United States)

    Lu, S. L.; Tang, H. P.; Ning, Y. P.; Liu, N.; StJohn, D. H.; Qian, M.

    2015-09-01

    An array of eight long Ti-6Al-4V rods (diameter: 12 mm; height: 300 mm) have been additively manufactured, vertically and perpendicular to the powder bed, by selective electron beam melting (SEBM). The purpose was to identify and understand the challenges of fabricating Ti-6Al-4V samples or parts from a deep powder bed (more than 200-mm deep) by SEBM and the necessity of applying post heat treatment. The resulting microstructure and mechanical properties of these Ti-6Al-4V rods were characterized along their building ( i.e., axial) direction by dividing each rod into three segments (top, middle, and bottom), both before ( i.e., as-built) and after hot isostatic pressing (HIP). The as-built microstructure of each rod was inhomogeneous; it was coarsest in the top segment, which showed a near equilibrium α- β lamellar structure, and finest in the bottom segment, which featured a non-equilibrium mixed structure. The tensile properties varied along the rod axis, especially the ductility, but all tensile properties met the requirements specified by ASTM F3001-14. HIP increased the relative density from 99.03 pct of the theoretical density (TD) to 99.90 pct TD and homogenized the microstructure thereby leading to highly consistent tensile properties along the rod axis. The temperature of the stainless steel substrate used in the powder bed was monitored. The as-built inhomogeneous microstructure is attributed to the temperature gradient in the deep powder bed. Post heat treatment is thus necessary for Ti-6Al-4V samples or parts manufactured from a deep powder bed by SEBM. This differs from the additive manufacturing of small samples or parts from a shallow powder bed (less than 100-mm deep) by SEBM.

  18. Flexibilidade de manufatura na indústria eletroeletrônica: percepção gerencial e aplicação Manufacturing flexibility in the consumer electronics industry: managerial perception and application

    Directory of Open Access Journals (Sweden)

    Paulo R. T. Dalcol

    1998-04-01

    Full Text Available As empresas estão crescentemente percebendo a flexibilidade como uma estratégia para alcançar vantagem competitiva na manufatura. Este artigo visa fornecer conhecimentos recentes de como empresas da indústria eletroeletrônica estão lidando com a questão da flexibilidade. São apresentados e analisados alguns dos resultados mais relevantes da investigação empírica dos autores sobre manufatura de resposta rápida em 16 empresas líderes em 5 estados brasileiros, incluindo multinacionais. A pesquisa examina a percepção gerencial da importância das estratégias de flexibilidade. Ela também explora como essas empresas estão utilizando industrialmente conceitos e técnicas que melhoram a flexibilidade de manufatura da firma, em termos de freqüência de mudança e variedade de produtos.Companies are increasingly focusing on flexibility as a way to achieve competitive advantage in manufacturing. This paper aims at providing fresh insights on how consumer electronics companies are dealing with the flexibility issue. It presents and analyses some of the most relevant results of the authors' empirical investigation into rapid response manufacturing in 16 leading firms in Brazil, including multinationals. The survey examines the managers' perception of the importance of flexibility strategies. It also explores how these companies are applying concepts and techniques that improve the manufacturing flexibility of the firm, in terms of changeover frequency and range of products.

  19. Circuits and Systems for Low-Power Miniaturized Wireless Sensors

    Science.gov (United States)

    Nagaraju, Manohar

    The field of electronic sensors has witnessed a tremendous growth over the last decade particularly with the proliferation of mobile devices. New applications in Internet of Things (IoT), wearable technology, are further expected to fuel the demand for sensors from current numbers in the range of billions to trillions in the next decade. The main challenges for a trillion sensors are continued miniaturization, low-cost and large-scale manufacturing process, and low power consumption. Traditional integration and circuit design techniques in sensor systems are not suitable for applications in smart dust, IoT etc. The first part of this thesis demonstrates an example sensor system for biosignal recording and illustrates the tradeoffs in the design of low-power miniaturized sensors. The different components of the sensor system are integrated at the board level. The second part of the thesis demonstrates fully integrated sensors that enable extreme miniaturization of a sensing system with the sensor element, processing circuitry, a frequency reference for communication and the communication circuitry in a single hermetically sealed die. Design techniques to reduce the power consumption of the sensor interface circuitry at the architecture and circuit level are demonstrated. The principles are used to design sensors for two of the most common physical variables, mass and pressure. A low-power wireless mass and pressure sensor suitable for a wide variety of biological/chemical sensing applications and Tire Pressure Monitoring Systems (TPMS) respectively are demonstrated. Further, the idea of using high-Q resonators for a Voltage Controlled Oscillator (VCO) is proposed and a low-noise, wide bandwidth FBAR-based VCO is presented.

  20. Microwave materials for wireless applications

    CERN Document Server

    Cruickshank, David B

    2011-01-01

    This practical resource offers you an in-depth, up-to-date understanding of the use of microwave magnetic materials for cutting-edge wireless applications. The book discusses device applications used in wireless infrastructure base stations, point-to-point radio links, and a range of more specialized microwave systems. You find detailed discussions on the attributes of each family of magnetic materials with respect to specific wireless applications. Moreover, the book addresses two of the hottest topics in the field today - insertion loss and intermodulation. This comprehensive reference also

  1. Wireless home networking for dummies

    CERN Document Server

    Briere, Danny; Ferris, Edward

    2010-01-01

    The perennial bestseller shows you how share your files and Internet connection across a wireless network. Fully updated for Windows 7 and Mac OS X Snow Leopard, this new edition of this bestseller returns with all the latest in wireless standards and security. This fun and friendly guide shows you how to integrate your iPhone, iPod touch, smartphone, or gaming system into your home network. Veteran authors escort you through the various financial and logisitical considerations that you need to take into account before building a wireless network at home.: Covers the basics of planning, instal

  2. Structural processing for wireless communications

    CERN Document Server

    Lu, Jianhua; Ge, Ning

    2015-01-01

    This brief presents an alternative viewpoint on processing technology for wireless communications based on recent research advances. As a lever in emerging processing technology, the structure perspective addresses the complexity and uncertainty issues found in current wireless applications. Likewise, this brief aims at providing a new prospective to the development of communication technology and information science, while stimulating new theories and technologies for wireless systems with ever-increasing complexity. Readers of this brief may range from graduate students to researchers in related fields.

  3. Wireless Communications in Smart Grid

    Science.gov (United States)

    Bojkovic, Zoran; Bakmaz, Bojan

    Communication networks play a crucial role in smart grid, as the intelligence of this complex system is built based on information exchange across the power grid. Wireless communications and networking are among the most economical ways to build the essential part of the scalable communication infrastructure for smart grid. In particular, wireless networks will be deployed widely in the smart grid for automatic meter reading, remote system and customer site monitoring, as well as equipment fault diagnosing. With an increasing interest from both the academic and industrial communities, this chapter systematically investigates recent advances in wireless communication technology for the smart grid.

  4. Measurements on wireless transmission of ECG signals

    International Nuclear Information System (INIS)

    Gabrielli, A.; Lax, I.

    2016-01-01

    The scope of this research is to design an electronic prototype, an operative system as a proof of concept, to transmit and receive biological parameters, in particular electrocardiogram signals, through dedicated wireless circuits. The apparatus features microelectronics chips that were developed for more general biomedical applications, here adapted to deal with cardiac signals. The paper mainly focuses on the electronic aspects, as in this study we do not face medical or clinical aspects of the system. The transmitter circuit uses a commercial instrumentation amplifier and the receiver has been equipped with wide-band amplifiers along with made-in-the-lab band-pass filters centered at the carrier. We have been able to mount the entire system prototype into a preliminary data acquisition chain that reads out the electrocardiogram signal. The prototype allows acquiring the waveform, converting it to a digital pattern and open the transmission through a series of high-frequency packets exploiting the Ultra Wide Band protocol. The sensor value is embedded in the transmission through the rate of the digital packets. In fact, these are sent wireless at a specific packet-frequency that depends on the sensor amplitude and are detected into a receiver circuit that recovers the information.

  5. Measurements on wireless transmission of ECG signals

    Science.gov (United States)

    Gabrielli, A.; Lax, I.

    2016-12-01

    The scope of this research is to design an electronic prototype, an operative system as a proof of concept, to transmit and receive biological parameters, in particular electrocardiogram signals, through dedicated wireless circuits. The apparatus features microelectronics chips that were developed for more general biomedical applications, here adapted to deal with cardiac signals. The paper mainly focuses on the electronic aspects, as in this study we do not face medical or clinical aspects of the system. The transmitter circuit uses a commercial instrumentation amplifier and the receiver has been equipped with wide-band amplifiers along with made-in-the-lab band-pass filters centered at the carrier. We have been able to mount the entire system prototype into a preliminary data acquisition chain that reads out the electrocardiogram signal. The prototype allows acquiring the waveform, converting it to a digital pattern and open the transmission through a series of high-frequency packets exploiting the Ultra Wide Band protocol. The sensor value is embedded in the transmission through the rate of the digital packets. In fact, these are sent wireless at a specific packet-frequency that depends on the sensor amplitude and are detected into a receiver circuit that recovers the information.

  6. Tribology in Manufacturing Technology

    CERN Document Server

    2013-01-01

    The present book aims to provide research advances on tribology in manufacturing technology for modern industry. This book can be used as a research book for final undergraduate engineering course (for example, mechanical, manufacturing, materials, etc) or as a subject on manufacturing at the postgraduate level. Also, this book can serve as a useful reference for academics, manufacturing and tribology researchers, mechanical, mechanical, manufacturing and materials engineers, professionals in related industries with manufacturing and tribology.

  7. Wireless Power Transfer and Data Collection in Wireless Sensor Networks

    OpenAIRE

    Li, Kai; Ni, Wei; Duan, Lingjie; Abolhasan, Mehran; Niu, Jianwei

    2017-01-01

    In a rechargeable wireless sensor network, the data packets are generated by sensor nodes at a specific data rate, and transmitted to a base station. Moreover, the base station transfers power to the nodes by using Wireless Power Transfer (WPT) to extend their battery life. However, inadequately scheduling WPT and data collection causes some of the nodes to drain their battery and have their data buffer overflow, while the other nodes waste their harvested energy, which is more than they need...

  8. Optical wireless communications to OC-768 and beyond

    Science.gov (United States)

    Medved, David B.; Davidovich, Leonid

    2001-10-01

    Laser and LED-based wireless communication systems are currently providing license-free interconnection for broadband voice, data and video transport. These systems allow for the immediate, reliable and low-cost extension of copper and fiber-based networks to any end user, providing efficient First Mile bypass access to high data rate backbone networks at speeds ranging from T-1 voice to full throughput ATM at 155 Mbps and up to Gigabit Ethernet. These wireless optical beams constitute a Virtual Fiber in the air, providing the capabilities of fiber in situations where wired connectivity is unavailable, impractical, expensive or slow-to-implement, while achieving a combination of low cost, speed and reliability that cannot be matched by microwave, mm wave, spread spectrum or other competing (actually complementary) wireless technologies. The carrier frequency of the optical beam is about 10,000 times higher than the highest frequencies used by the millimeter wave technology. By means of Wavelength Division Multiplexing more than 1000 independent data channels can be projected into the air on a single beam thus providing a potential bandwidth ten million times that of any RF solution. The twin barriers of physics and regulatory bureaucracy to this essentially infinite wireless bandwidth are thus eliminated by this Virtual Fiber. As user density and individual bandwidth needs escalate, the optical wireless will be the preferred medium of choice in both network and cellular interconnection. A mesh topology which integrates our optical wireless systems with the latest Optical Access switches and routing equipment will be described using case study examples from Japan to South America. As the Bandwidth Blowout continues to push the limits of electronics and especially in the case of DWDM (Dense Wavelength Division Multiples), the conventional optical wireless solutions are no longer feasible. Instead of using f.o. transceivers to convert photons to electrons and thence

  9. Ultrasonic wireless health monitoring

    Science.gov (United States)

    Petit, Lionel; Lefeuvre, Elie; Guyomar, Daniel; Richard, Claude; Guy, Philippe; Yuse, Kaori; Monnier, Thomas

    2006-03-01

    The integration of autonomous wireless elements in health monitoring network increases the reliability by suppressing power supplies and data transmission wiring. Micro-power piezoelectric generators are an attractive alternative to primary batteries which are limited by a finite amount of energy, a limited capacity retention and a short shelf life (few years). Our goal is to implement such an energy harvesting system for powering a single AWT (Autonomous Wireless Transmitter) using our SSH (Synchronized Switch Harvesting) method. Based on a non linear process of the piezoelement voltage, this SSH method optimizes the energy extraction from the mechanical vibrations. This AWT has two main functions : The generation of an identifier code by RF transmission to the central receiver and the Lamb wave generation for the health monitoring of the host structure. A damage index is derived from the variation between the transmitted wave spectrum and a reference spectrum. The same piezoelements are used for the energy harvesting function and the Lamb wave generation, thus reducing mass and cost. A micro-controller drives the energy balance and synchronizes the functions. Such an autonomous transmitter has been evaluated on a 300x50x2 mm 3 composite cantilever beam. Four 33x11x0.3 mm 3 piezoelements are used for the energy harvesting and for the wave lamb generation. A piezoelectric sensor is placed at the free end of the beam to track the transmitted Lamb wave. In this configuration, the needed energy for the RF emission is 0.1 mJ for a 1 byte-information and the Lamb wave emission requires less than 0.1mJ. The AWT can harvested an energy quantity of approximately 20 mJ (for a 1.5 Mpa lateral stress) with a 470 μF storage capacitor. This corresponds to a power density near to 6mW/cm 3. The experimental AWT energy abilities are presented and the damage detection process is discussed. Finally, some envisaged solutions are introduced for the implementation of the required data

  10. Bluetooth: The invisible connector. Short-range wireless technology for the contemporary orthodontic practice.

    Science.gov (United States)

    Mupparapu, Muralidhar

    2007-06-01

    Although it sounds like a nonvital tooth, Bluetooth is actually one of technology's hottest trends. It is an industrial specification for wireless personal area networks, but for a busy orthodontic practice, it translates to freedom from cables and cords. Despite its enigmatic name, Bluetooth-based devices and the wireless technology that these gadgets work with are here to stay. They promise to make life easier for the electronic-device users of all stripes, and orthodontists are no exception. The purpose of this article is to orient orthodontists, office staff, and auxiliary personnel to this universal wireless technology that is slowly becoming an integral part of every office.

  11. Optical wireless link between a nanoscale antenna and a transducing rectenna.

    Science.gov (United States)

    Dasgupta, Arindam; Mennemanteuil, Marie-Maxime; Buret, Mickaël; Cazier, Nicolas; Colas-des-Francs, Gérard; Bouhelier, Alexandre

    2018-05-18

    Initiated as a cable-replacement solution, short-range wireless power transfer has rapidly become ubiquitous in the development of modern high-data throughput networking in centimeter to meter accessibility range. Wireless technology is now penetrating a higher level of system integration for chip-to-chip and on-chip radiofrequency interconnects. However, standard CMOS integrated millimeter-wave antennas have typical size commensurable with the operating wavelength, and are thus an unrealistic solution for downsizing transmitters and receivers to the micrometer and nanometer scale. Herein, we demonstrate a light-in and electrical signal-out, on-chip wireless near-infrared link between a 220 nm optical antenna and a sub-nanometer rectifying antenna converting the transmitted optical energy into direct electrical current. The co-integration of subwavelength optical functional devices with electronic transduction offers a disruptive solution to interface photons and electrons at the nanoscale for on-chip wireless optical interconnects.

  12. Wireless sensor network topology control

    OpenAIRE

    Zuk, Olexandr; Romanjuk, Valeriy; Sova, Oleg

    2010-01-01

    Topology control process for the wireless sensor network is considered. In this article the use of rule base for making decision on the search of optimum network topology is offered for the realization of different aims of network management.

  13. Introduction to wireless sensor networks

    CERN Document Server

    Forster, Anna

    2016-01-01

    Explores real-world wireless sensor network development, deployment, and applications. The book begins with an introduction to wireless sensor networks and their fundamental concepts. Hardware components, operating systems, protocols, and algorithms that make up the anatomy of a sensor node are described in chapter two. Properties of wireless communications, medium access protocols, wireless links, and link estimation protocols are described in chapter three and chapter four. Routing basics and metrics, clustering techniques, time synchronization and localization protocols, as well as sensing techniques are introduced in chapter five to nine. The concluding chapter summarizes the learnt methods and shows how to use them to deploy real-world sensor networks in a structured way.

  14. Wireless Damage Location Sensing System

    Science.gov (United States)

    Woodard, Stanley E. (Inventor); Taylor, Bryant Douglas (Inventor)

    2012-01-01

    A wireless damage location sensing system uses a geometric-patterned wireless sensor that resonates in the presence of a time-varying magnetic field to generate a harmonic response that will experience a change when the sensor experiences a change in its geometric pattern. The sensing system also includes a magnetic field response recorder for wirelessly transmitting the time-varying magnetic field and for wirelessly detecting the harmonic response. The sensing system compares the actual harmonic response to a plurality of predetermined harmonic responses. Each predetermined harmonic response is associated with a severing of the sensor at a corresponding known location thereof so that a match between the actual harmonic response and one of the predetermined harmonic responses defines the known location of the severing that is associated therewith.

  15. Wireless sensor network adaptive cooling

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, T. [SynapSense Corp., Folsom, CA (United States)

    2009-07-01

    Options for reducing data centre cooling energy requirements and their cost savings were discussed with particular reference to a wireless control solution developed by SynapSense Corporation. The wireless sensor network reduces cooling energy use at data centres by providing improved air flow management through the installation of cold aisle containment. The use of this low cost, non-invasive wireless sensor network has reduced the cooling energy use in a data center at BC Hydro by 30 per cent. The system also reduced the server and storage fan energy by 3 per cent by maintaining inlet air temperature below ASHRAE recommended operating range. The distribution of low power, low cost wireless sensors has enabled visualization tools that are changing the way that data centres are managed. The annual savings have been estimated at 4,560,000 kWh and the annual carbon dioxide abatement is approximately 1,400 metric tons. tabs., figs.

  16. Cooperative Diversity in Wireless Networks

    Directory of Open Access Journals (Sweden)

    A. Mahmood

    2010-01-01

    Full Text Available Transmit Diversity is an effective methodology for improving the quality and reliability of a wireless network by reducingthe effects of fading. As majority of the wireless devices (i.e. mobile handsets, etc are limited to only one antenna, especiallydue to hardware constraints, size and cost factors; cooperative communication can be utilized in order to generatetransmit diversity [1]. This enables single antenna wireless devices to share their antennas during transmission in such amanner that creates a virtual MIMO (multiple-input and multiple-output system [2] [3]. In this paper, we will analyze therecent developments and trends in this promising area of wireless Ad hoc networks. The article will also discuss variousmain cooperative signaling methods and will also observe their performance.

  17. Wireless Ad Hoc Networks

    Directory of Open Access Journals (Sweden)

    Hong-Chuan Yang

    2007-01-01

    Full Text Available We study the energy-efficient configuration of multihop paths with automatic repeat request (ARQ mechanism in wireless ad hoc networks. We adopt a cross-layer design approach and take both the quality of each radio hop and the battery capacity of each transmitting node into consideration. Under certain constraints on the maximum tolerable transmission delay and the required packet delivery ratio, we solve optimization problems to jointly schedule the transmitting power of each transmitting node and the retransmission limit over each hop. Numerical results demonstrate that the path configuration methods can either significantly reduce the average energy consumption per packet delivery or considerably extend the average lifetime of the multihop route.

  18. Wireless transmission of power

    International Nuclear Information System (INIS)

    Grotz, T.

    1991-01-01

    This paper reports that it has been proven by researchers that electrical energy can be propagated around the world between the surface of the Earth and the ionosphere at extremely low frequencies in what is known as the Schumann Cavity. Experiments to data have shown that electromagnetic waves with frequencies in the range of 8 Hz, the fundamental Schumann Resonance frequency, propagate with litter attenuation around the planet within the Schumann Cavity. It is the intent of this research to determine if the Schumann Cavity can be resonated, if the power that is delivered to the cavity propagated with very low losses, and if power can be extracted at other locations within the cavity. Experimental data collected and calculations made in recent years support the hypothesis that wireless power transmission is a viable and practical alternative to the present systems of power transmission

  19. Wireless power transfer system

    Science.gov (United States)

    Wu, Hunter; Sealy, Kylee; Gilchrist, Aaron

    2016-02-23

    A system includes a first stage of an inductive power transfer system with an LCL load resonant converter with a switching section, an LCL tuning circuit, and a primary receiver pad. The IPT system includes a second stage with a secondary receiver pad, a secondary resonant circuit, a secondary rectification circuit, and a secondary decoupling converter. The secondary receiver pad connects to the secondary resonant circuit. The secondary resonant circuit connects to the secondary rectification circuit. The secondary rectification circuit connects to the secondary decoupling converter. The second stage connects to a load. The load includes an energy storage element. The second stage and load are located on a vehicle and the first stage is located at a fixed location. The primary receiver pad wirelessly transfers power to the secondary receiver pad across a gap when the vehicle positions the secondary receiver pad with respect to the primary receiver pad.

  20. WIRELESS MINE WIDE TELECOMMUNICATIONS TECHNOLOGY

    International Nuclear Information System (INIS)

    Zvi H. Meiksin

    2002-01-01

    Two industrial prototype units for through-the-earth wireless communication were constructed and tested. Preparation for a temporary installation in NIOSH's Lake Lynn mine for the through-the-earth and the in-mine system were completed. Progress was made in the programming of the in-mine system to provide data communication. Work has begun to implement a wireless interface between equipment controllers and our in-mine system

  1. Wireless data link for FBTR

    International Nuclear Information System (INIS)

    Sundararajan, M.K.; Prabhakara Rao, G.; Ilango Sambasivan, S.; Swaminathan, P.; Ramakrishna, P.V.

    2004-01-01

    This paper deals with the design and development of a wireless data link for transmission of block pile signals at the Fast Breeder Test Reactor (FBTR) of Indira Gandhi Center for Atomic Research (IGCAR). This link is to establish wireless connectivity, typically at RS232C rates, over distances of the order of 50 m, and is expected to operate under electrically hostile conditions. (author)

  2. Wireless Sensor Network Safety Study

    OpenAIRE

    M.Shankar; Dr.M.Sridar; Dr.M.Rajani

    2012-01-01

    Few security mechanisms in wireless sensor networks (WSNs) have been implemented, and even fewer have been applied in real deployments. The limited resources of each sensor node makes security in WSNs hard, as the tradeoff between security and practicality must be carefully considered. These complex systems include in their design different types of information and communication technology systems, such as wireless (mesh) sensor networks, to carry out control processes in real time. This fact...

  3. Wireless data signal transmission system

    DEFF Research Database (Denmark)

    2014-01-01

    The present invention relates to a method for providing a radio frequency signal for transmission, a system for providing a radio frequency signal for transmission and a method for wireless data transmission between a transmitter and a receiver.......The present invention relates to a method for providing a radio frequency signal for transmission, a system for providing a radio frequency signal for transmission and a method for wireless data transmission between a transmitter and a receiver....

  4. Wireless Smart Systems Beyond RFID

    OpenAIRE

    Vermesan, Ovidiu

    2008-01-01

    It is expected that in the coming 20 years the IoT will be pervasive, and ubiquitous: smart devices, embedded in smart materials, will work in synergy to improve the quality of our lives. In this context wireless smart systems will play an essential role that is far beyond the ID information that is part of RFID devices today. Wireless Smart Systems Beyond RFID

  5. Secure positioning in wireless networks

    DEFF Research Database (Denmark)

    Capkun, Srdjan; Hubaux, Jean-Pierre

    2006-01-01

    So far, the problem of positioning in wireless networks has been studied mainly in a non-adversarial settings. In this work, we analyze the resistance of positioning techniques to position and distance spoofing attacks. We propose a mechanism for secure positioning of wireless devices, that we call...... Verifiable Multilateration. We then show how this mechanism can be used to secure positioning in sensor networks. We analyze our system through simulations....

  6. WIRELESS MINE WIDE TELECOMMUNICATIONS TECHNOLOGY

    Energy Technology Data Exchange (ETDEWEB)

    Zvi H. Meiksin

    2002-04-01

    Two industrial prototype units for through-the-earth wireless communication were constructed and tested. Preparation for a temporary installation in NIOSH's Lake Lynn mine for the through-the-earth and the in-mine system were completed. Progress was made in the programming of the in-mine system to provide data communication. Work has begun to implement a wireless interface between equipment controllers and our in-mine system.

  7. Wireless sensor network

    Science.gov (United States)

    Perotti, Jose M.; Lucena, Angel R.; Mullenix, Pamela A.; Mata, Carlos T.

    2006-05-01

    Current and future requirements of aerospace sensors and transducers demand the design and development of a new family of sensing devices, with emphasis on reduced weight, power consumption, and physical size. This new generation of sensors and transducers will possess a certain degree of intelligence in order to provide the end user with critical data in a more efficient manner. Communication between networks of traditional or next-generation sensors can be accomplished by a Wireless Sensor Network (WSN) developed by NASA's Instrumentation Branch and ASRC Aerospace Corporation at Kennedy Space Center (KSC), consisting of at least one central station and several remote stations and their associated software. The central station is application-dependent and can be implemented on different computer hardware, including industrial, handheld, or PC-104 single-board computers, on a variety of operating systems: embedded Windows, Linux, VxWorks, etc. The central stations and remote stations share a similar radio frequency (RF) core module hardware that is modular in design. The main components of the remote stations are an RF core module, a sensor interface module, batteries, and a power management module. These modules are stackable, and a common bus provides the flexibility to stack other modules for additional memory, increased processing, etc. WSN can automatically reconfigure to an alternate frequency if interference is encountered during operation. In addition, the base station will autonomously search for a remote station that was perceived to be lost, using relay stations and alternate frequencies. Several wireless remote-station types were developed and tested in the laboratory to support different sensing technologies, such as resistive temperature devices, silicon diodes, strain gauges, pressure transducers, and hydrogen leak detectors.

  8. REAL TIME ANALYSIS OF WIRELESS CONTROLLER AREA NETWORK

    Directory of Open Access Journals (Sweden)

    Gerardine Immaculate Mary

    2014-09-01

    Full Text Available It is widely known that Control Area Networks (CAN are used in real-time, distributed and parallel processing which cover manufacture plants, humanoid robots, networking fields, etc., In applications where wireless conditions are encountered it is convenient to continue the exchange of CAN frames within the Wireless CAN (WCAN. The WCAN considered in this research is based on wireless token ring protocol (WTRP; a MAC protocol for wireless networks to reduce the number of retransmissions due to collision and the wired counterpart CAN attribute on message based communication. WCAN uses token frame method to provide channel access to the nodes in the system. This method allow all the nodes to share common broadcast channel by taken turns in transmitting upon receiving the token frame which is circulating within the network for specified amount of time. This method provides high throughput in bounded latency environment, consistent and predictable delays and good packet delivery ratio. The most important factor to consider when evaluating a control network is the end-to-end time delay between sensors, controllers, and actuators. The correct operation of a control system depends on the timeliness of the data coming over the network, and thus, a control network should be able to guarantee message delivery within a bounded transmission time. The proposed WCAN is modeled and simulated using QualNet, and its average end to end delay and packet delivery ratio (PDR are calculated. The parameters boundaries of WCAN are evaluated to guarantee a maximum throughput and a minimum latency time, in the case of wireless communications, precisely WCAN.

  9. Novel wireless sensors for in situ measurement of sub-ice hydrologic systems

    OpenAIRE

    Bagshaw, E; Lishman, B; Wadham, J; Bowden, J; Burrow, S; Clare, L; Chandler, D

    2014-01-01

    Wireless sensors have the potential to provide significant insight into in situ physical and biogeochemical processes in sub-ice hydrologic systems. However, the nature of the glacial environment means that sensor deployment and data return is challenging. We describe two bespoke sensor platforms, electronic tracers or ‘ETracers’, and ‘cryoegg’, for untethered, wireless data collection from glacial hydrologic systems, including subglacial channels. Both employ radio frequencies for data trans...

  10. Applying an intelligent and automated emissions measurement system to characterize the RF environment for supporting wireless technologies

    International Nuclear Information System (INIS)

    Keebler, P. F.; Phipps, K. O.

    2006-01-01

    The use of wireless technologies in commercial and industrial facilities has grown significantly in the past several years. New applications of wireless technologies with increasing frequency and varying radiated power are being developed everyday. Wireless application specialists and end users have already identified several sources of electromagnetic interference (EMI) in these facilities. Interference has been reported between wireless devices and between these devices and other types of electronic equipment either using frequencies in the unlicensed wireless spectrum or equipment that may generate undesired man-made noise in this spectrum. Facilities that are not using the wireless band should verify the spectral quality of that band and the electromagnetic compatibility (EMC) integrity of safety-related power and signal cables before installing wireless technologies. With the introduction of new wireless devices in the same electromagnetic space where analog and digital I and C systems and cables must co-exist, the ability of facility managers to manage their spectra will dictate the degree of interference between wireless devices and other electronic equipment. Because of the unknowns associated with interference with analog and digital I and C systems in the wireless band, nuclear power plants have been slow to introduce wireless technologies in plant areas. With the application of newly developed advanced radiated emissions measurement systems that can record, process, and analyze radiated and conducted emissions in a cost-effective manner, facility managers can more reliably characterize potential locations for wireless technologies, including potential coupling effects with safety-related power and signal cables, with increased confidence that the risks associated with creating an interference can be significantly reduced. This paper will present an effective philosophy already being used in other mission-critical applications for managing EMC, an

  11. Manufacturing network evolution

    DEFF Research Database (Denmark)

    Yang, Cheng; Farooq, Sami; Johansen, John

    2011-01-01

    Purpose – This paper examines the effect of changes at the manufacturing plant level on other plants in the manufacturing network and also investigates the role of manufacturing plants on the evolution of a manufacturing network. Design/methodology/approach –The research questions are developed...... different manufacturing plants in the network and their impact on network transformation. Findings – The paper highlights the dominant role of manufacturing plants in the continuously changing shape of a manufacturing network. The paper demonstrates that a product or process change at one manufacturing...... by identifying the gaps in the reviewed literature. The paper is based on three case studies undertaken in Danish manufacturing companies to explore in detail their manufacturing plants and networks. The cases provide a sound basis for developing the research questions and explaining the interaction between...

  12. An ergonomics prototype of adjustable chin stands aid for visual mechanical inspection at electronic manufacturing-based company in Kuantan, Malaysia

    Science.gov (United States)

    Elias, Nurainaa; Mat Yahya, Nafrizuan

    2018-04-01

    Chin stands aid is a device designed to reduce fatigue on the chin during the Visual Mechanical Inspection (VMI) task for operators in TT Electronic Sdn Bhd, Kuantan, Malaysia. It is also used to reduce cycle time and also improve employee well-being in terms of comfort. In this project, a 3D model of chin stands aid with an ergonomics approach is created using SOLIDWORKS software. Two different concepts were designed and the best one is chosen based on the Pugh concept selection method, concept screening and also concept scoring. After the selection of concepts is done, a prototype of chin stands aid will be developed and a simulation of the prototype is performed. The simulation has been executed by using Workbench ANSYS software as a tool. Stress analysis, deformation analysis, and fatigue analysis have been done to know the strength and lifespan of the product. The prototype also has been tested to know the functionality and also comfortability for the user to use the chin stands aid.

  13. Traffic Profiling in Wireless Sensor Networks

    National Research Council Canada - National Science Library

    Kirykos, Georgios

    2006-01-01

    .... Wireless sensor networks pose unique challenges and limitations to the traditional schemes, which are used in the other wireless networks for security protection, and are due mainly to the increased...

  14. Wireless Connectivity to ATM Communication Grid

    National Research Council Canada - National Science Library

    Rajaravivarma, Veeramuthu

    1998-01-01

    The AFOSR funds were used to purchase a 12 port Fore ATM switch, ATM network interface cards, a SUN UltraSPARC workstation, Lucent WavePoint wireless bridge, and Lucent WaveLAN wireless network interface cards...

  15. Novel Concepts of Cooperative Wireless Networking

    DEFF Research Database (Denmark)

    Zhang, Qi

    2008-01-01

    ; secondly, the increasing density of the wireless devices makes cooperation possible; last, the cost of information exchange (i.e. transmission power, transmission time, spectrum, etc.) is very low if information exchange over short-range link is needed. Cooperation changes the way of information delivery......Although wireless networks have achieved great success in the lastest two decades, the current wireless networks have difficulties to fulll users' ever-increasing expectations and needs. It is mainly due to available spectrum resource scarcity, limited battery capacity of wireless device......, unreliable wireless radio link, etc. To tackle these issues, a new telecommunication paradigm has been proposed, referred to as cooperative wireless networking [1]. The basic idea of cooperative wireless networking is that wireless devices work together to achieve their individual goals or one common goal...

  16. Energy efficiency in future wireless broadband networks

    CSIR Research Space (South Africa)

    Masonta, MT

    2012-10-01

    Full Text Available greener economy and environment. In this research, we investigate the concept of green radio communications in wireless networks and discuss approaches for energy efficient solutions in wireless broadband network deployments. These solutions include...

  17. REVIEW OF WIRELESS MIMO CHANNEL MODELS

    African Journals Online (AJOL)

    user

    MIMO wireless system, the transmitted signal interacts ... delay spread information, power delay profile, angle of arrival and ... With the advent of the MIMO wireless systems, there arose a ..... associated with channel transmission and reception.

  18. DISA Wireless E-Mail Trial

    National Research Council Canada - National Science Library

    Haney, Steven

    1997-01-01

    .... Correspondingly unique wireless modems were obtained and mated to the PCMCIA slot of notebook computers in the user/evaluation population, consisting of InfoTac and Mobedem wireless modems for use...

  19. Kali Linux wireless penetration testing beginner's guide

    CERN Document Server

    Ramachandran, Vivek

    2015-01-01

    If you are a security professional, pentester, or anyone interested in getting to grips with wireless penetration testing, this is the book for you. Some familiarity with Kali Linux and wireless concepts is beneficial.

  20. Wireless Physical Layer Security with CSIT Uncertainty

    KAUST Repository

    Hyadi, Amal

    2017-01-01

    Recent years have been marked by an enormous growth of wireless communication networks and an extensive use of wireless applications. In return, this phenomenal expansion induced more concerns about the privacy and the security of the users

  1. Electric Vehicle and Wireless Charging Laboratory

    Science.gov (United States)

    2018-03-23

    Wireless charging tests of electric vehicles (EV) have been conducted at the EVTC Wireless Laboratory located at the Florida Solar Energy Center, Cocoa, FL. These tests were performed to document testing protocols, evaluate standards and evaluate ope...

  2. A wireless trust model for healthcare.

    Science.gov (United States)

    Wickramasinghe, Nilmini; Misra, Santosh K

    2004-01-01

    In today's context of escalating costs, managed care, regulations such as the Health Insurance Portability and Accountability Act (HIPAA) and a technology savvy patient, the healthcare industry can no longer be complacent regarding embracing technologies to enable better, more effective and efficient practice management. In such an environment, many healthcare organisations are turning to m-commerce or wireless solutions. These solutions, in particular the mobile electronic patient record, have many advantages over their wired counterparts, including significant cost advantages, higher levels of physician acceptance, more functionalities as well as enabling easy accessibility to healthcare in remote geographic regions, however, they also bring with them challenges of their own. One such major challenge is security. To date, few models exist that help establish an appropriate framework, in the context of wireless in healthcare, in which to understand and evaluate all the security issues let alone facilitate the development of systematic and robust solutions. Our paper addresses this need by outlining an appropriate mobile trust model for such a scenario in healthcare organisations.

  3. Wireless Power Transfer Strategies for Implantable Bioelectronics.

    Science.gov (United States)

    Agarwal, Kush; Jegadeesan, Rangarajan; Guo, Yong-Xin; Thakor, Nitish V

    2017-01-01

    Neural implants have emerged over the last decade as highly effective solutions for the treatment of dysfunctions and disorders of the nervous system. These implants establish a direct, often bidirectional, interface to the nervous system, both sensing neural signals and providing therapeutic treatments. As a result of the technological progress and successful clinical demonstrations, completely implantable solutions have become a reality and are now commercially available for the treatment of various functional disorders. Central to this development is the wireless power transfer (WPT) that has enabled implantable medical devices (IMDs) to function for extended durations in mobile subjects. In this review, we present the theory, link design, and challenges, along with their probable solutions for the traditional near-field resonant inductively coupled WPT, capacitively coupled short-ranged WPT, and more recently developed ultrasonic, mid-field, and far-field coupled WPT technologies for implantable applications. A comparison of various power transfer methods based on their power budgets and WPT range follows. Power requirements of specific implants like cochlear, retinal, cortical, and peripheral are also considered and currently available IMD solutions are discussed. Patient's safety concerns with respect to electrical, biological, physical, electromagnetic interference, and cyber security from an implanted neurotech device are also explored in this review. Finally, we discuss and anticipate future developments that will enhance the capabilities of current-day wirelessly powered implants and make them more efficient and integrable with other electronic components in IMDs.

  4. Development and application of a modified wireless tracer for disaster prevention

    Science.gov (United States)

    Chung Yang, Han; Su, Chih Chiang

    2016-04-01

    Typhoon-induced flooding causes water overflow in a river channel, which results in general and bridge scour and soil erosion, thus leading to bridge failure, debris flow and landslide collapse. Therefore, dynamic measurement technology should be developed to assess scour in channels and landslide as a disaster-prevention measure against bridge failure and debris flow. This paper presents a wireless tracer that enables monitoring general scour in river channels and soil erosion in hillsides. The wireless tracer comprises a wireless high-power radio modem, various electronic components, and a self-designed printed circuit board that are all combined with a 9-V battery pack and an auto switch. The entire device is sealed in a jar by silicon. After it was modified, the wireless tracer underwent the following tests for practical applications: power continuation and durability, water penetration, and signal transmission during floating. A regression correlation between the wireless tracer's transmission signal and distance was also established. This device can be embedded at any location where scouring is monitored, and, in contrast to its counterparts that detect scour depth by identifying and analyzing received signals, it enables real-time observation of the scouring process. In summary, the wireless tracer developed in this study provides a dynamic technology for real-time monitoring of scouring (or erosion) and forecasting of landslide hazards. Keywords: wireless tracer; scour; real-time monitoring; landslide hazard.

  5. Wireless Interconnect in Multilayer Chip-Area-Networks for Future Multimaterial High-Speed Systems Design

    Directory of Open Access Journals (Sweden)

    Oluwole John Famoriji

    2017-01-01

    Full Text Available Wireless chip area network which enables wireless communication among chips fosters development in wireless communication and it is envisioned that future hardware system and developmental functionality will require multimaterial. However, the traditional system architecture is limited by channel bandwidth-limited interfaces, throughput, delay, and power consumption and as a result limits the efficiency and system performance. Wireless interconnect has been proposed to overcome scalability and performance limitations of multihop wired architectures. Characterization and modeling of channel become more important for specification of choice of modulation or demodulation techniques, channel bandwidths, and other mitigation techniques for channel distortion and interference such as equalization. This paper presents an analytical channel model for characterization, modeling, and analysis of wireless chip-to-chip or interchip interconnects in wireless chip area network with a particular focus on large-scale analysis. The proposed model accounts for both static and dynamic channel losses/attenuation in high-speed systems. Simulation and evaluation of the model with experimental data conducted in a computer desktop casing depict that proposed model matched measurement data very closely. The transmission of EM waves via a medium introduces molecular absorption due to various molecules within the material substance. This model is a representative of channel loss profile in wireless chip-area-network communication and good for future electronic circuits and high-speed systems design.

  6. Propagation modeling in a manufacturing environment

    Energy Technology Data Exchange (ETDEWEB)

    Birdwell, J.D.; Horn, R.D.; Rader, M.S. [Univ. of Tennessee, Knoxville, TN (United States). Dept. of Electrical Engineering; Shourbaji, A.A. [Oak Ridge Centers for Mfg. Technology, TN (United States)

    1995-12-31

    Wireless sensors which utilize low power spread spectrum data transmission have significant potential in industrial environments due to low cabling and installation costs. In addition, this technology imposes fewer constraints upon placement due to cable routing, allowing sensors to be installed in areas with poor access. Limitations are imposed on sensor and receiver placement by electromagnetic propagation effects in the industrial environment, including multipath and the presence of absorbing media. This paper explores the electromagnetic analysis of potential wireless sensor applications using commercially available finite element software. In addition, since the applications environment is often at least partially specified in electronic form using computer-aided drafting software, the importation of information from this software is discussed. Both three-dimensional and two-dimensional examples are presented which demonstrate the utility and limitations of the method.

  7. Sinkhole Avoidance Routing in Wireless Sensor Networks

    Science.gov (United States)

    2011-05-09

    COVERED (From- To) 09-05-2011 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Sinkhole Avoidance Routing in Wireless Sensor Networks 5b . GRANT NUMBER . 5c...reliability of wireless sensor networks. 15. SUBJECT TERMS wireless sensor networks, sinkhole attack, routing protocol 16. SECURITY CLASSIFICATION...Include area code) Standard Form 298 (Rev. 8/98) Prescribed by ANSI Std . Z39.18 1 Sinkhole Avoidance Routing in Wireless Sensor Networks MIDN 1/C

  8. Security for 5G Mobile Wireless Networks

    OpenAIRE

    Fang, Dongfeng; Qian, Yi; Qingyang Hu, Rose

    2017-01-01

    The advanced features of 5G mobile wireless network systems yield new security requirements and challenges. This paper presents a comprehensive survey on security of 5G wireless network systems compared to the traditional cellular networks. The paper starts with a review on 5G wireless networks particularities as well as on the new requirements and motivations of 5G wireless security. The potential attacks and security services with the consideration of new service requirements and new use ca...

  9. An Improved Wireless Battery Charging System

    OpenAIRE

    Woo-Seok Lee; Jin-Hak Kim; Shin-Young Cho; Il-Oun Lee

    2018-01-01

    This paper presents a direct wireless battery charging system. The output current of the series-series compensated wireless power transfer (SS-WPT) system is used as a current source, and the output voltage of AC-DC converter controls the current source. Therefore, the proposed wireless battery charging system needs no battery charging circuit to carry out charging profiles, and can solve space constraints and thermal problems in many battery applications. In addition, the proposed wireless b...

  10. Review: Security in Wireless Technologies in Business

    Science.gov (United States)

    Sattarova, F. Y.; Kim, Tai-Hoon

    Wireless technology seems to be everywhere now - but it is still relatively in its infancy. New standards and protocols continue to emerge and problems and bugs are discovered. Nevertheless, wireless networks make many things much more convenient and it appears that wireless networks are here to stay. The differences and similarities of wireless and wired security, the new threats brought by mobility, the security of networks and devices and effects of security, or lack of it are shortly discussed in this review paper.

  11. Security Threats on Wireless Sensor Network Protocols

    OpenAIRE

    H. Gorine; M. Ramadan Elmezughi

    2016-01-01

    In this paper, we investigate security issues and challenges facing researchers in wireless sensor networks and countermeasures to resolve them. The broadcast nature of wireless communication makes Wireless Sensor Networks prone to various attacks. Due to resources limitation constraint in terms of limited energy, computation power and memory, security in wireless sensor networks creates different challenges than wired network security. We will discuss several attempts at addressing the issue...

  12. Wireless Inductive Power Device Suppresses Blade Vibrations

    Science.gov (United States)

    Morrison, Carlos R.; Provenza, Andrew J.; Choi, Benjamin B.; Bakhle, Milind A.; Min, James B.; Stefko, George L.; Duffy, Kirsten P.; Fougers, Alan J.

    2011-01-01

    Vibration in turbomachinery can cause blade failures and leads to the use of heavier, thicker blades that result in lower aerodynamic efficiency and increased noise. Metal and/or composite fatigue in the blades of jet engines has resulted in blade destruction and loss of lives. Techniques for suppressing low-frequency blade vibration, such as gtuned circuit resistive dissipation of vibratory energy, h or simply "passive damping," can require electronics incorporating coils of unwieldy dimensions and adding unwanted weight to the rotor. Other approaches, using vibration-dampening devices or damping material, could add undesirable weight to the blades or hub, making them less efficient. A wireless inductive power device (WIPD) was designed, fabricated, and developed for use in the NASA Glenn's "Dynamic Spin Rig" (DSR) facility. The DSR is used to simulate the functionality of turbomachinery. The relatively small and lightweight device [10 lb (approx.=4.5 kg)] replaces the existing venerable and bulky slip-ring. The goal is the eventual integration of this technology into actual turbomachinery such as jet engines or electric power generators, wherein the device will facilitate the suppression of potentially destructive vibrations in fan blades. This technology obviates slip rings, which require cooling and can prove unreliable or be problematic over time. The WIPD consists of two parts: a remote element, which is positioned on the rotor and provides up to 100 W of electrical power to thin, lightweight piezoelectric patches strategically placed on/in fan blades; and a stationary base unit that wirelessly communicates with the remote unit. The base unit supplies inductive power, and also acts as an input and output corridor for wireless measurement, and active control command to the remote unit. Efficient engine operation necessitates minimal disturbance to the gas flow across the turbine blades in any effort to moderate blade vibration. This innovation makes it

  13. Flexible diodes for radio frequency (RF) electronics: a materials perspective

    KAUST Repository

    Semple, James

    2017-10-30

    Over the last decade, there has been increasing interest in transferring the research advances in radiofrequency (RF) rectifiers, the quintessential element of the chip in the RF identification (RFID) tags, obtained on rigid substrates onto plastic (flexible) substrates. The growing demand for flexible RFID tags, wireless communications applications and wireless energy harvesting systems that can be produced at a low-cost is a key driver for this technology push. In this topical review, we summarise recent progress and status of flexible RF diodes and rectifying circuits, with specific focus on materials and device processing aspects. To this end, different families of materials (e.g. flexible silicon, metal oxides, organic and carbon nanomaterials), manufacturing processes (e.g. vacuum and solution processing) and device architectures (diodes and transistors) are compared. Although emphasis is placed on performance, functionality, mechanical flexibility and operating stability, the various bottlenecks associated with each technology are also addressed. Finally, we present our outlook on the commercialisation potential and on the positioning of each material class in the RF electronics landscape based on the findings summarised herein. It is beyond doubt that the field of flexible high and ultra-high frequency rectifiers and electronics as a whole will continue to be an active area of research over the coming years.

  14. Flexible diodes for radio frequency (RF) electronics: a materials perspective

    KAUST Repository

    Semple, James; Georgiadou, Dimitra G; Wyatt-Moon, Gwenhivir; Gelinck, Gerwin; Anthopoulos, Thomas D.

    2017-01-01

    Over the last decade, there has been increasing interest in transferring the research advances in radiofrequency (RF) rectifiers, the quintessential element of the chip in the RF identification (RFID) tags, obtained on rigid substrates onto plastic (flexible) substrates. The growing demand for flexible RFID tags, wireless communications applications and wireless energy harvesting systems that can be produced at a low-cost is a key driver for this technology push. In this topical review, we summarise recent progress and status of flexible RF diodes and rectifying circuits, with specific focus on materials and device processing aspects. To this end, different families of materials (e.g. flexible silicon, metal oxides, organic and carbon nanomaterials), manufacturing processes (e.g. vacuum and solution processing) and device architectures (diodes and transistors) are compared. Although emphasis is placed on performance, functionality, mechanical flexibility and operating stability, the various bottlenecks associated with each technology are also addressed. Finally, we present our outlook on the commercialisation potential and on the positioning of each material class in the RF electronics landscape based on the findings summarised herein. It is beyond doubt that the field of flexible high and ultra-high frequency rectifiers and electronics as a whole will continue to be an active area of research over the coming years.

  15. Flexible diodes for radio frequency (RF) electronics: a materials perspective

    Science.gov (United States)

    Semple, James; Georgiadou, Dimitra G.; Wyatt-Moon, Gwenhivir; Gelinck, Gerwin; Anthopoulos, Thomas D.

    2017-12-01

    Over the last decade, there has been increasing interest in transferring the research advances in radiofrequency (RF) rectifiers, the quintessential element of the chip in the RF identification (RFID) tags, obtained on rigid substrates onto plastic (flexible) substrates. The growing demand for flexible RFID tags, wireless communications applications and wireless energy harvesting systems that can be produced at a low-cost is a key driver for this technology push. In this topical review, we summarise recent progress and status of flexible RF diodes and rectifying circuits, with specific focus on materials and device processing aspects. To this end, different families of materials (e.g. flexible silicon, metal oxides, organic and carbon nanomaterials), manufacturing processes (e.g. vacuum and solution processing) and device architectures (diodes and transistors) are compared. Although emphasis is placed on performance, functionality, mechanical flexibility and operating stability, the various bottlenecks associated with each technology are also addressed. Finally, we present our outlook on the commercialisation potential and on the positioning of each material class in the RF electronics landscape based on the findings summarised herein. It is beyond doubt that the field of flexible high and ultra-high frequency rectifiers and electronics as a whole will continue to be an active area of research over the coming years.

  16. Proposal of Wireless Traffic Control Schemes for Wireless LANs

    Science.gov (United States)

    Hiraguri, Takefumi; Ichikawa, Takeo; Iizuka, Masataka; Kubota, Shuji

    This paper proposes two traffic control schemes to support the communication quality of multimedia streaming services such as VoIP and audio/video over IEEE 802.11 wireless LAN systems. The main features of the proposed scheme are bandwidth control for each flow of the multimedia streaming service and load balancing between access points (APs) of the wireless LAN by using information of data link, network and transport layers. The proposed schemes are implemented on a Linux machine which is called the wireless traffic controller (WTC). The WTC connects a high capacity backbone network and an access network to which the APs are attached. We evaluated the performance of the proposed WTC and confirmed that the communication quality of the multimedia streaming would be greatly improved by using this technique.

  17. Roll-to-roll paper sensors (ROPAS); Wireless communicating sensors on paper in the logistic chain

    NARCIS (Netherlands)

    Rentrop, C.; Rubingh, J.E.J.M.; Lelieveld, R.; Sandberg, H.

    2014-01-01

    The ROPAS project (Roll-to-roll paper sensors) combines high end electronics and wireless sensors with low cost paper substrates and processing techniques that can be applied on a large scale. Paper is the next step in the printed electronics roadmap of utilising cheaper substrate materials as a

  18. Advanced Wireless Sensor Nodes - MSFC

    Science.gov (United States)

    Varnavas, Kosta; Richeson, Jeff

    2017-01-01

    NASA field center Marshall Space Flight Center (Huntsville, AL), has invested in advanced wireless sensor technology development. Developments for a wireless microcontroller back-end were primarily focused on the commercial Synapse Wireless family of devices. These devices have many useful features for NASA applications, good characteristics and the ability to be programmed Over-The-Air (OTA). The effort has focused on two widely used sensor types, mechanical strain gauges and thermal sensors. Mechanical strain gauges are used extensively in NASA structural testing and even on vehicle instrumentation systems. Additionally, thermal monitoring with many types of sensors is extensively used. These thermal sensors include thermocouples of all types, resistive temperature devices (RTDs), diodes and other thermal sensor types. The wireless thermal board will accommodate all of these types of sensor inputs to an analog front end. The analog front end on each of the sensors interfaces to the Synapse wireless microcontroller, based on the Atmel Atmega128 device. Once the analog sensor output data is digitized by the onboard analog to digital converter (A/D), the data is available for analysis, computation or transmission. Various hardware features allow custom embedded software to manage battery power to enhance battery life. This technology development fits nicely into using numerous additional sensor front ends, including some of the low-cost printed circuit board capacitive moisture content sensors currently being developed at Auburn University.

  19. The Effects of Space Environment on Wireless Communication Devices' Performance

    OpenAIRE

    Landon, Hillyard; Dennison, JR

    2012-01-01

    This project evaluates the effects of the space environment on small radio hardware devices called Bluetooth (a proprietary open wireless technology standard for exchanging data over short distances) chips (hoovers). When electronics are exposed to the harsh environment outside the Earth's atmosphere, they sometimes do not perform as expected. The USU Getaway Away Special (GAS) team is now in the design stages of launching a CubeSat (a 10 cm cubed autonomous satellite to fly in Low Earth Orbi...

  20. Energy storage management system with distributed wireless sensors

    Science.gov (United States)

    Farmer, Joseph C.; Bandhauer, Todd M.

    2015-12-08

    An energy storage system having a multiple different types of energy storage and conversion devices. Each device is equipped with one or more sensors and RFID tags to communicate sensor information wirelessly to a central electronic management system, which is used to control the operation of each device. Each device can have multiple RFID tags and sensor types. Several energy storage and conversion devices can be combined.

  1. High Power Wireless Transfer : For Charging High Power Batteries

    OpenAIRE

    Gill, Himmat

    2017-01-01

    Wireless power transfer (WPT) is developing with emerging of new technologies that has made it possible to transfer electricity over certain distances without any physical contact, offering significant benefits to modern automation systems, medical applications, consumer electronic, and especially in electric vehicle systems. The goal of this study is to provide a brief review of existing compensation topologies for the loosely coupled transformer. The technique used to simulate a co...

  2. Propagation Analysis for Wireless Sensor Networks Applied to Viticulture

    OpenAIRE

    Correia, Felipe Pinheiro; Alencar, Marcelo Sampaio de; Lopes, Waslon Terllizzie Araújo; Assis, Mauro Soares de; Leal, Brauliro Gonçalves

    2017-01-01

    Wireless sensor networks have been proposed as a solution to obtain soil and environment information in large distributed areas. The main economic activity of the São Francisco Valley region in the Northeast of Brazil is the irrigated fruit production. The region is one of the major agricultural regions of the country. Grape plantations receive large investments and provide good financial return. However, the region still lacks electronic sensing systems to extract adequate information from p...

  3. Power Analysis of an Enterprise Wireless Communication Architecture

    Science.gov (United States)

    2017-09-01

    command and control, C2, Internet of Things , IoT, model based systems engineering, MBSE, marine air-ground task force, MAGTF, command control and...Electronics Engineers InTop Integrated Topside IPS Instructions per Second IoT Internet of Things JTNC Joint Tactical Networking Center L-RTac...wireless communications in the military increases the amount of energy needed for missions. The Internet of Things (IoT) movement (Thomas, McPherson, and

  4. Techniques for Wireless Applications

    KAUST Repository

    Gaaloul, Fakhreddine

    2012-05-01

    Switching techniques have been first proposed as a spacial diversity techniques. These techniques have been shown to reduce considerably the processing load while letting multi-antenna systems achieve a specific target performance. In this thesis, we take a different look at the switching schemes by implementing them for different other wireless applications. More specifically, this thesis consists of three main parts, where the first part considers a multiuser environment and an adaptive scheduling algorithm based on the switching with post-selection scheme for statistically independent but non-identically distributed channel conditions. The performance of this switched based scheduler is investigated and a multitude of performance metrics are presented. In a second part, we propose and analyze the performance of three switched-based algorithms for interference reduction in the downlink of over-loaded femtocells. For instance, performance metrics are derived in closed-form and these metrics are used to compare these three proposed schemes. Finally in a third part, a switch based opportunistic channel access scheme is proposed for a cognitive radio system and its performance is analyzed in terms of two new proposed metrics namely the average cognitive radio access and the waiting time duration.

  5. Photonic-assisted ultrafast THz wireless access

    DEFF Research Database (Denmark)

    Yu, Xianbin; Chen, Ying; Galili, Michael

    THz technology has been considered feasible for ultrafast wireless data communi- cation, to meet the increasing demand on next-generation fast wireless access, e.g., huge data file transferring and fast mobile data stream access. This talk reviews recent progress in high-speed THz wireless...

  6. Wireless power transfer inspired by the modern trends in electromagnetics

    Science.gov (United States)

    Song, Mingzhao; Belov, Pavel; Kapitanova, Polina

    2017-06-01

    Since the beginning of the 20th century, researchers have been looking for an effective way to transfer power without wired connections, but the wireless power transfer technology started to attract extensive interest from the industry side only in 2007 when the first smartphone was released and a consumer electronics revolution was triggered. Currently, the modern technology of wireless power transfer already has a rich research and development history as well as outstanding advances in commercialization. This review is focused on the description of distinctive implementations of this technology inspired by the modern trends in electrodynamics. We compare the performances of the power transfer systems based on three kinds of resonators, i.e., metallic coil resonators, dielectric resonators, and cavity mode resonators. We argue that metamaterials and meta-atoms are powerful tools to improve the functionalities and to obtain novel properties of the systems. We review different approaches to enhance the functionality of the wireless power transfer systems including control of the power transfer path and increase of the operation range and efficiency. Various applications of wireless power transfer are discussed and currently available standards are reviewed.

  7. Autonomous solutions for powering wireless sensor nodes in rivers

    Science.gov (United States)

    Kamenar, E.; Maćešić, S.; Gregov, G.; Blažević, D.; Zelenika, S.; Marković, K.; Glažar, V.

    2015-05-01

    There is an evident need for monitoring pollutants and/or other conditions in river flows via wireless sensor networks. In a typical wireless sensor network topography, a series of sensor nodes is to be deployed in the environment, all wirelessly connected to each other and/or their gateways. Each sensor node is composed of active electronic devices that have to be constantly powered. In general, batteries can be used for this purpose, but problems may occur when they have to be replaced. In the case of large networks, when sensor nodes can be placed in hardly accessible locations, energy harvesting can thus be a viable powering solution. The possibility to use three different small-scale river flow energy harvesting principles is hence thoroughly studied in this work: a miniaturized underwater turbine, a so-called `piezoelectric eel' and a hybrid turbine solution coupled with a rigid piezoelectric beam. The first two concepts are then validated experimentally in laboratory as well as in real river conditions. The concept of the miniaturised hydro-generator is finally embedded into the actual wireless sensor node system and its functionality is confirmed.

  8. Method of manufacturing semiconductor devices

    International Nuclear Information System (INIS)

    Sun, Y.S.E.

    1980-01-01

    A method of improving the electrical characteristics of semiconductor devices such as SCR's, rectifiers and triacs during their manufacture is described. The system consists of electron irradiation at an energy in excess of 250 KeV and most preferably between 1.5 and 12 MeV, producing an irradiation dose of between 5.10 12 and 5.10 15 electrons per sq. cm., and at a temperature in excess of 100 0 C preferably between 150 and 375 0 C. (U.K.)

  9. Information Assurance in Wireless Networks

    Science.gov (United States)

    Kabara, Joseph; Krishnamurthy, Prashant; Tipper, David

    2001-09-01

    Emerging wireless networks will contain a hybrid infrastructure based on fixed, mobile and ad hoc topologies and technologies. In such a dynamic architecture, we define information assurance as the provisions for both information security and information availability. The implications of this definition are that the wireless network architecture must (a) provide sufficient security measures, (b) be survivable under node or link attack or failure and (c) be designed such that sufficient capacity remains for all critical services (and preferably most other services) in the event of attack or component failure. We have begun a research project to investigate the provision of information assurance for wireless networks viz. survivability, security and availability and here discuss the issues and challenges therein.

  10. [Development of Bluetooth wireless sensors].

    Science.gov (United States)

    Moor, C; Schwaibold, M; Roth, H; Schöchlin, J; Bolz, A

    2002-01-01

    Wireless communication could help to overcome current obstacles in medical devices and could enable medical services to offer completely new scenarios in health care. The Bluetooth technology which is the upcoming global market leader in wireless communication turned out to be perfectly suited not only for consumer market products but also in the medical environment [1]. It offers a low power, low cost connection in the medium range of 1-100 m with a bandwidth of currently 723.2 kbaud. This paper describes the development of a wireless ECG device and a Pulse Oximeter. Equipped with a Bluetooth port, the measurement devices are enabled to transmit data between the sensor and a Bluetooth-monitor. Therefore, CSR's Bluetooth protocol embedded two-processor and embedded single-processor architecture has been used.

  11. A Multi-Sensor RSS Spatial Sensing-Based Robust Stochastic Optimization Algorithm for Enhanced Wireless Tethering

    CERN Document Server

    Parasuraman, Ramviyas; Molinari, Luca; Kershaw, Keith; Di Castro, Mario; Masi, Alessandro; Ferre, Manuel

    2014-01-01

    The reliability of wireless communication in a network of mobile wireless robot nodes depends on the received radio signal strength (RSS). When the robot nodes are deployed in hostile environments with ionizing radiations (such as in some scientific facilities), there is a possibility that some electronic components may fail randomly (due to radiation effects), which causes problems in wireless connectivity. The objective of this paper is to maximize robot mission capabilities by maximizing the wireless network capacity and to reduce the risk of communication failure. Thus, in this paper, we consider a multi-node wireless tethering structure called the “server-relay-client” framework that uses (multiple) relay nodes in between a server and a client node. We propose a robust stochastic optimization (RSO) algorithm using a multi-sensor-based RSS sampling method at the relay nodes to efficiently improve and balance the RSS between the source and client nodes to improve the network capacity and to provide red...

  12. Appraising manufacturing location

    NARCIS (Netherlands)

    Steenhuis, H.J.; de Bruijn, E.J.

    2002-01-01

    International location of manufacturing activities is an issue for managers of manufacturing companies as well as public policy makers. For managers, the issue is relevant because international locations offer opportunities for lowering costs due to productivity improvements. For governments the

  13. Manufacturing engineering and technology

    CERN Document Server

    Kalpakjian, Serope; Vijai Sekar, K S

    2014-01-01

    For courses in manufacturing processes at two- or four-year schools. An up-to-date text that provides a solid background in manufacturing processes. Manufacturing Engineering and Technology, SI Edition, 7e, presents a mostly qualitative description of the science, technology, and practice of manufacturing. This includes detailed descriptions of manufacturing processes and the manufacturing enterprise that will help introduce students to important concepts. With a total of 120 examples and case studies, up-to-date and comprehensive coverage of all topics, and superior two-color graphics, this text provides a solid background for manufacturing students and serves as a valuable reference text for professionals. Teaching and Learning Experience To provide a better teaching and learning experience, for both instructors and students, this program will: * Apply Theory and/or Research: An excellent overview of manufacturing conceptswith a balance of relevant fundamentals and real-world practices. * Engage Students: E...

  14. The Wireless Nursing Call System

    DEFF Research Database (Denmark)

    Jensen, Casper Bruun

    2006-01-01

    This paper discusses a research project in which social scientists were involved both as analysts and supporters during a pilot with a new wireless nursing call system. The case thus exemplifies an attempt to participate in developing dependable health care systems and offers insight into the cha......This paper discusses a research project in which social scientists were involved both as analysts and supporters during a pilot with a new wireless nursing call system. The case thus exemplifies an attempt to participate in developing dependable health care systems and offers insight...

  15. OFDM systems for wireless communications

    CERN Document Server

    Narasimhamurthy, Adarsh

    2010-01-01

    Orthogonal Frequency Division Multiplexing (OFDM) systems are widely used in the standards for digital audio/video broadcasting, WiFi and WiMax. Being a frequency-domain approach to communications, OFDM has important advantages in dealing with the frequency-selective nature of high data rate wireless communication channels. As the needs for operating with higher data rates become more pressing, OFDM systems have emerged as an effective physical-layer solution.This short monograph is intended as a tutorial which highlights the deleterious aspects of the wireless channel and presents why OFDM is

  16. Artificial intelligence in wireless communications

    CERN Document Server

    Rondeau, Thomas W

    2009-01-01

    This cutting-edge resource offers practical overview of cognitive radio, a paradigm for wireless communications in which a network or a wireless node changes its transmission or reception parameters. The alteration of parameters is based on the active monitoring of several factors in the external and internal radio environment. This book offers a detailed description of cognitive radio and its individual parts. Practitioners learn how the basic processing elements and their capabilities are implemented as modular components. Moreover, the book explains how each component can be developed and t

  17. Wireless technology for ABC Assessment

    DEFF Research Database (Denmark)

    Kristensen, Margit; Kyng, Morten; Christensen, Erika Frischknecht

    are developing: A wireless biomonitoring system (WBMS), where data, collected from (injured) persons is distributed wirelessly to displays, available for any rescuer in need of accessing the data, independently of the rescuers location. A biosensor for measuring respiration sound and frequency, to give direct....... Firstly in the daily EMS work where the collected data can be available at the hospital before the victim arrives and data can be used in the before-arrival-planning process. Secondly in larger incidents with several victims where a WBMS can support rescuers at the incident site in the assessment...

  18. Wireless Augmented Reality Communication System

    Science.gov (United States)

    Devereaux, Ann (Inventor); Jedrey, Thomas (Inventor); Agan, Martin (Inventor)

    2017-01-01

    A portable unit is for video communication to select a user name in a user name network. A transceiver wirelessly accesses a communication network through a wireless connection to a general purpose node coupled to the communication network. A user interface can receive user input to log on to a user name network through the communication network. The user name network has a plurality of user names, at least one of the plurality of user names is associated with a remote portable unit, logged on to the user name network and available for video communication.

  19. Coherently Enhanced Wireless Power Transfer

    OpenAIRE

    Krasnok, Alex; Baranov, Denis G.; Generalov, Andrey; Li, Sergey; Alu, Andrea

    2017-01-01

    Extraction of electromagnetic energy by an antenna from impinging external radiation is at the basis of wireless communications and power transfer (WPT). The maximum of transferred energy is ensured when the antenna is conjugately matched, i.e., when it is resonant and it has an equal coupling with free space and its load, which is not easily implemented in near-field WPT. Here, we introduce the concept of coherently enhanced wireless power transfer. We show that a principle similar to the on...

  20. Embracing interference in wireless systems

    CERN Document Server

    Gollakota, Shyamnath

    2014-01-01

    The wireless medium is a shared resource. If nearby devices transmit at thesame time, their signals interfere, resulting in a collision. In traditionalnetworks, collisions cause the loss of the transmitted information. For thisreason, wireless networks have been designed with the assumption thatinterference is intrinsically harmful and must be avoided.This book, a revised version of the author's award-winning Ph.D.dissertation, takes an alternate approach: Instead of viewing interferenceas an inherently counterproductive phenomenon that should to be avoided, wedesign practical systems that tra

  1. Principles of wireless access and localization

    CERN Document Server

    Pahlavan, Kaveh

    2013-01-01

    A comprehensive, encompassing and accessible text examining a wide range of key Wireless Networking and Localization technologies This book provides a unified treatment of issues related to all wireless access and wireless localization techniques.  The book reflects principles of design and deployment of infrastructure for wireless access and localization for wide, local, and personal networking.   Description of wireless access methods includes design and deployment of traditional TDMA and CDMA technologies and emerging Long Term Evolution (LTE) techniques for wide area cellular networks, the

  2. Emerging wireless networks concepts, techniques and applications

    CERN Document Server

    Makaya, Christian

    2011-01-01

    An authoritative collection of research papers and surveys, Emerging Wireless Networks: Concepts, Techniques, and Applications explores recent developments in next-generation wireless networks (NGWNs) and mobile broadband networks technologies, including 4G (LTE, WiMAX), 3G (UMTS, HSPA), WiFi, mobile ad hoc networks, mesh networks, and wireless sensor networks. Focusing on improving the performance of wireless networks and provisioning better quality of service and quality of experience for users, it reports on the standards of different emerging wireless networks, applications, and service fr

  3. Converged Wireless Networking and Optimization for Next Generation Services

    Directory of Open Access Journals (Sweden)

    J. Rodriguez

    2010-01-01

    Full Text Available The Next Generation Network (NGN vision is tending towards the convergence of internet and mobile services providing the impetus for new market opportunities in combining the appealing services of internet with the roaming capability of mobile networks. However, this convergence does not go far enough, and with the emergence of new coexistence scenarios, there is a clear need to evolve the current architecture to provide cost-effective end-to-end communication. The LOOP project, a EUREKA-CELTIC driven initiative, is one piece in the jigsaw by helping European industry to sustain a leading role in telecommunications and manufacturing of high-value products and machinery by delivering pioneering converged wireless networking solutions that can be successfully demonstrated. This paper provides an overview of the LOOP project and the key achievements that have been tunneled into first prototypes for showcasing next generation services for operators and process manufacturers.

  4. Additive Manufacturing Infrared Inspection

    Science.gov (United States)

    Gaddy, Darrell; Nettles, Mindy

    2015-01-01

    The Additive Manufacturing Infrared Inspection Task started the development of a real-time dimensional inspection technique and digital quality record for the additive manufacturing process using infrared camera imaging and processing techniques. This project will benefit additive manufacturing by providing real-time inspection of internal geometry that is not currently possible and reduce the time and cost of additive manufactured parts with automated real-time dimensional inspections which deletes post-production inspections.

  5. On a digital wireless impact-monitoring network for large-scale composite structures

    International Nuclear Information System (INIS)

    Yuan, Shenfang; Mei, Hanfei; Qiu, Lei; Ren, Yuanqiang

    2014-01-01

    Impact, which may occur during manufacture, service or maintenance, is one of the major concerns to be monitored throughout the lifetime of aircraft composite structures. Aiming at monitoring impacts online while minimizing the weight added to the aircraft to meet the strict limitations of aerospace engineering, this paper puts forward a new digital wireless network based on miniaturized wireless digital impact-monitoring nodes developed for large-scale composite structures. In addition to investigations on the design methods of the network architecture, time synchronization and implementation method, a conflict resolution method based on the feature parameters of digital sequences is first presented to address impact localization conflicts when several nodes are arranged close together. To verify the feasibility and stability of the wireless network, experiments are performed on a complex aircraft composite wing box and an unmanned aerial vehicle (UAV) composite wing. Experimental results show the successful design of the presented network. (paper)

  6. The wireless Web and patient care.

    Science.gov (United States)

    Bergeron, B P

    2001-01-01

    Wireless computing, when integrated with the Web, is poised to revolutionize the practice and teaching of medicine. As vendors introduce wireless Web technologies in the medical community that have been used successfully in the business and consumer markets, clinicians can expect profound increases in the amount of patient data, as well as the ease with which those data are acquired, analyzed, and disseminated. The enabling technologies involved in this transformation to the wireless Web range from the new generation of wireless PDAs, eBooks, and wireless data acquisition peripherals to new wireless network protocols. The rate-limiting step in the application of this technology in medicine is not technology per se but rather how quickly clinicians and their patients come to accept and appreciate the benefits and limitations of the application of wireless Web technology.

  7. Introduction to Ultra Wideband for Wireless Communications

    DEFF Research Database (Denmark)

    Nikookar, Homayoun; Prasad, Ramjee

    wireless channels, interference, signal processing as well as applications and standardization activities are addressed. Introduction to Ultra Wideband for Wireless Communications provides easy-to-understand material to (graduate) students and researchers working in the field of commercial UWB wireless......Ultra Wideband (UWB) Technology is the cutting edge technology for wireless communications with a wide range of applications. In Introduction to Ultra Wideband for Wireless Communications UWB principles and technologies for wireless communications are explained clearly. Key issues such as UWB...... communications. Due to tutorial nature of the book it can also be adopted as a textbook on the subject in the Telecommunications Engineering curriculum. Problems at the end of each chapter extend the reader's understanding of the subject. Introduction to Ultra Wideband for Wireless Communications will aslo...

  8. Wireless Zigbee strain gage sensor system for structural health monitoring

    Science.gov (United States)

    Ide, Hiroshi; Abdi, Frank; Miraj, Rashid; Dang, Chau; Takahashi, Tatsuya; Sauer, Bruce

    2009-05-01

    A compact cell phone size radio frequency (ZigBee) wireless strain measurement sensor system to measure the structural strain deformation was developed. The developed system provides an accurate strain measurement data stream to the Internet for further Diagnostic and Prognostic (DPS) correlation. Existing methods of structural measurement by strain sensors (gauges) do not completely satisfy problems posed by continuous structural health monitoring. The need for efficient health monitoring methods with real-time requirements to bidirectional data flow from sensors and to a commanding device is becoming critical for keeping our daily life safety. The use of full-field strain measurement techniques could reduce costly experimental programs through better understanding of material behavior. Wireless sensor-network technology is a monitoring method that is estimated to grow rapidly providing potential for cost savings over traditional wired sensors. The many of currently available wireless monitoring methods have: the proactive and constant data rate character of the data streams rather than traditional reactive, event-driven data delivery; mostly static node placement on structures with limited number of nodes. Alpha STAR Electronics' wireless sensor network system, ASWN, addresses some of these deficiencies, making the system easier to operate. The ASWN strain measurement system utilizes off-the-shelf sensors, namely strain gauges, with an analog-to-digital converter/amplifier and ZigBee radio chips to keep cost lower. Strain data is captured by the sensor, converted to digital form and delivered to the ZigBee radio chip, which in turn broadcasts the information using wireless protocols to a Personal Data Assistant (PDA) or Laptop/Desktop computers. From here, data is forwarded to remote computers for higher-level analysis and feedback using traditional cellular and satellite communication or the Ethernet infrastructure. This system offers a compact size, lower cost

  9. A wireless sensor tag platform for container security and integrity

    Science.gov (United States)

    Amaya, Ivan A.; Cree, Johnathan V.; Mauss, Fredrick J.

    2011-04-01

    Cargo containers onboard ships are widely used in the global supply chain. The need for container security is evidenced by the Container Security Initiative launched by the U.S. Bureau of Customs and Border Protection (CBP). One method of monitoring cargo containers is using low power wireless sensor tags. The wireless sensor tags are used to set up a network that is comprised of tags internal to the container and a central device. The sensor network reports alarms and other anomalies to a central device, which then relays the message to an outside network upon arrival at the destination port. This allows the port authorities to have knowledge of potential security or integrity issues before physically examining the container. Challenges of using wireless sensor tag networks for container security include battery life, size, environmental conditions, information security, and cost among others. PNNL developed an active wireless sensor tag platform capable of reporting data wirelessly to a central node as well as logging data to nonvolatile memory. The tags, operate at 2.4 GHz over an IEEE 802.15.4 protocol, and were designed to be distributed throughout the inside of a shipping container in the upper support frame. The tags are mounted in a housing that allows for simple and efficient installation or removal prior to, during, or after shipment. The distributed tags monitor the entire container volume. The sensor tag platform utilizes low power electronics and provides an extensible sensor interface for incorporating a wide range of sensors including chemical, biological, and environmental sensors.

  10. Thermoelectric Powered Wireless Sensors for Dry-Cask Storage

    Science.gov (United States)

    Carstens, Thomas Alan

    thermoelectric voltage, DC/DC converter voltage, relative signal strength indicator, and counter number were measured and compared. The analysis estimates that a thermoelectric generator can produce enough power for a wireless sensor to function and transmit data from inside the dry-cask throughout its service life and beyond. Some of the electronics for the wireless sensor need to be properly protected to ensure it will function in an extreme environment.

  11. ACE - Manufacturer Identification Code (MID)

    Data.gov (United States)

    Department of Homeland Security — The ACE Manufacturer Identification Code (MID) application is used to track and control identifications codes for manufacturers. A manufacturer is identified on an...

  12. Wireless Crew Communication Feasibility Assessment

    Science.gov (United States)

    Archer, Ronald D.; Romero, Andy; Juge, David

    2016-01-01

    Ongoing discussions with crew currently onboard the ISS as well as the crew debriefs from completed ISS missions indicate that issues associated with the lack of wireless crew communication results in increased crew task completion times and lower productivity, creates cable management issues, and increases crew frustration.

  13. Consumer acceptance of wireless finance

    NARCIS (Netherlands)

    Kleijnen, M.; Wetzels, M.G.M.; Ruyter, de J.C.

    2004-01-01

    M-commerce has been heralded repeatedly as the new service frontier of the millennium. Present market reality, however, seems to be less optimistic. Therefore, the current study explores the factors contributing to the adoption of mobile services in a context of wireless finance. The technology

  14. Collective intelligent wireless sensor networks

    NARCIS (Netherlands)

    Mihaylov, M.; Nowe, A.; Tuyls, K.P.; Nijholt, A.; Pantic, M.

    2008-01-01

    In this paper we apply the COllective INtelligence (COIN) framework ofWolpert et al. toWireless Sensor Networks (WSNs) with the aim to increase the autonomous lifetime of the network in a decentralized manner. COIN describes how selfish agents can learn to optimize their own performance, so that the

  15. Wireless Power for Mobile Devices

    NARCIS (Netherlands)

    Waffenschmidt, E.

    2011-01-01

    Wireless power transfer allows a convenient, easy to use battery charging of mobile phones and other mobile devices. No hassle with cables and plugs, just place the device on a pad and that’s it. Such asystem even has the potential to become a standard charging solution. Where are the limits for

  16. The distributed wireless gathering problem

    NARCIS (Netherlands)

    Bonifaci, V.; Korteweg, P.; Marchetti Spaccamela, A.; Stougie, L.

    2011-01-01

    We address the problem of data gathering in a wireless network using multi-hop communication; our main goal is the analysis of simple algorithms suitable for implementation in realistic scenarios. We study the performance of distributed algorithms, which do not use any form of local coordination,

  17. Wireless Power Transfer, New Approach

    OpenAIRE

    Dr. Fawzy Mansour Al Zoreiqat

    2016-01-01

    Many configurations representing wireless power transfer have been applied for this purpose. A simple and effective circuit is used in this research that contains components which are easily located for constructing the complete suggested configuration; we were successful in using Li Fi technology in transmitting power from one side to another through air.

  18. Socially Aware Heterogeneous Wireless Networks.

    Science.gov (United States)

    Kosmides, Pavlos; Adamopoulou, Evgenia; Demestichas, Konstantinos; Theologou, Michael; Anagnostou, Miltiades; Rouskas, Angelos

    2015-06-11

    The development of smart cities has been the epicentre of many researchers' efforts during the past decade. One of the key requirements for smart city networks is mobility and this is the reason stable, reliable and high-quality wireless communications are needed in order to connect people and devices. Most research efforts so far, have used different kinds of wireless and sensor networks, making interoperability rather difficult to accomplish in smart cities. One common solution proposed in the recent literature is the use of software defined networks (SDNs), in order to enhance interoperability among the various heterogeneous wireless networks. In addition, SDNs can take advantage of the data retrieved from available sensors and use them as part of the intelligent decision making process contacted during the resource allocation procedure. In this paper, we propose an architecture combining heterogeneous wireless networks with social networks using SDNs. Specifically, we exploit the information retrieved from location based social networks regarding users' locations and we attempt to predict areas that will be crowded by using specially-designed machine learning techniques. By recognizing possible crowded areas, we can provide mobile operators with recommendations about areas requiring datacell activation or deactivation.

  19. Data centric wireless sensor networks

    NARCIS (Netherlands)

    Dulman, S.O.; Havinga, Paul J.M.

    2005-01-01

    The vision of wirteless sensing systems requires the development of devices and technologies that can be pervasive without being intrusive. The basic component of such a smart environment will be a small node with sensing and wireless communications capabilities, able to organize itself flexibly

  20. NextFlex Flexible Hybrid Electronics Manufacturing

    Science.gov (United States)

    2016-10-01

    of the power of silicon and the economies and unique capabilities of printed circuitry to form a new class of devices for the Internet of Things (IoT...innovative medical devices that can take Processor* Display* Memory + Polymer Solar Cell # Flexible Substrate Sensors* Antenna #Thin Film Battery

  1. Electronics Manufacturing Seminar Proceedings. 17th Annual

    Science.gov (United States)

    1992-12-01

    part of the standard library of AutoCAD commands (Zoom, for example), while others are custom AutoLISP routines (e.g., drawing defect marks on the DID...The menus are compiled at run time. AutoLISP is the AutoCAD programming language, a functional object-oriented implementation of LISP. In addition to...the custom features, all internal linking of the IWS programs and the data extraction to the database are accomplished in AutoLISP . AutoLISP controls

  2. Wireless energizing system for an automated implantable sensor

    Energy Technology Data Exchange (ETDEWEB)

    Swain, Biswaranjan; Nayak, Praveen P.; Kar, Durga P.; Bhuyan, Satyanarayan; Mishra, Laxmi P. [Department of Electronics and Instrumentation Engineering, Siksha ‘O’ Anusandhan University, Bhubaneswar 751030 (India)

    2016-07-15

    The wireless drive of an automated implantable electronic sensor has been explored for health monitoring applications. The proposed system comprises of an automated biomedical sensing system which is energized through resonant inductive coupling. The implantable sensor unit is able to monitor the body temperature parameter and sends back the corresponding telemetry data wirelessly to the data recoding unit. It has been observed that the wireless power delivery system is capable of energizing the automated biomedical implantable electronic sensor placed over a distance of 3 cm from the power transmitter with an energy transfer efficiency of 26% at the operating resonant frequency of 562 kHz. This proposed method ensures real-time monitoring of different human body temperatures around the clock. The monitored temperature data have been compared with a calibrated temperature measurement system to ascertain the accuracy of the proposed system. The investigated technique can also be useful for monitoring other body parameters such as blood pressure, bladder pressure, and physiological signals of the patient in vivo using various implantable sensors.

  3. Wireless energizing system for an automated implantable sensor

    International Nuclear Information System (INIS)

    Swain, Biswaranjan; Nayak, Praveen P.; Kar, Durga P.; Bhuyan, Satyanarayan; Mishra, Laxmi P.

    2016-01-01

    The wireless drive of an automated implantable electronic sensor has been explored for health monitoring applications. The proposed system comprises of an automated biomedical sensing system which is energized through resonant inductive coupling. The implantable sensor unit is able to monitor the body temperature parameter and sends back the corresponding telemetry data wirelessly to the data recoding unit. It has been observed that the wireless power delivery system is capable of energizing the automated biomedical implantable electronic sensor placed over a distance of 3 cm from the power transmitter with an energy transfer efficiency of 26% at the operating resonant frequency of 562 kHz. This proposed method ensures real-time monitoring of different human body temperatures around the clock. The monitored temperature data have been compared with a calibrated temperature measurement system to ascertain the accuracy of the proposed system. The investigated technique can also be useful for monitoring other body parameters such as blood pressure, bladder pressure, and physiological signals of the patient in vivo using various implantable sensors.

  4. Wireless energizing system for an automated implantable sensor.

    Science.gov (United States)

    Swain, Biswaranjan; Nayak, Praveen P; Kar, Durga P; Bhuyan, Satyanarayan; Mishra, Laxmi P

    2016-07-01

    The wireless drive of an automated implantable electronic sensor has been explored for health monitoring applications. The proposed system comprises of an automated biomedical sensing system which is energized through resonant inductive coupling. The implantable sensor unit is able to monitor the body temperature parameter and sends back the corresponding telemetry data wirelessly to the data recoding unit. It has been observed that the wireless power delivery system is capable of energizing the automated biomedical implantable electronic sensor placed over a distance of 3 cm from the power transmitter with an energy transfer efficiency of 26% at the operating resonant frequency of 562 kHz. This proposed method ensures real-time monitoring of different human body temperatures around the clock. The monitored temperature data have been compared with a calibrated temperature measurement system to ascertain the accuracy of the proposed system. The investigated technique can also be useful for monitoring other body parameters such as blood pressure, bladder pressure, and physiological signals of the patient in vivo using various implantable sensors.

  5. Near field wireless power transfer using curved relay resonators for extended transfer distance

    International Nuclear Information System (INIS)

    Zhu, D; Beeby, S P; Clare, L; Stark, B H

    2015-01-01

    This paper investigates the performance of a near field wireless power transfer system that uses curved relay resonator to extend transfer distance. Near field wireless power transfer operates based on the near-field electromagnetic coupling of coils. Such a system can transfer energy over a relatively short distance which is of the same order of dimensions of the coupled coils. The energy transfer distance can be increased using flat relay resonators. Recent developments in printing electronics and e-textiles have seen increasing demand of embedding electronics into fabrics. Near field wireless power transfer is one of the most promising methods to power electronics on fabrics. The concept can be applied to body-worn textiles by, for example, integrating a transmitter coil into upholstery, and a flexible receiver coil into garments. Flexible textile coils take on the shape of the supporting materials such as garments, and therefore curved resonator and receiver coils are investigated in this work. Experimental results showed that using curved relay resonator can effectively extend the wireless power transfer distance. However, as the curvature of the coil increases, the performance of the wireless power transfer, especially the maximum received power, deteriorates. (paper)

  6. Transformational electronics are now reconfiguring

    KAUST Repository

    Rojas, Jhonathan Prieto

    2015-05-22

    Current developments on enhancing our smart living experience are leveraging the increased interest for novel systems that can be compatible with foldable, wrinkled, wavy and complex geometries and surfaces, and thus become truly ubiquitous and easy to deploy. Therefore, relying on innovative structural designs we have been able to reconfigure the physical form of various materials, to achieve remarkable mechanical flexibility and stretchability, which provides us with the perfect platform to develop enhanced electronic systems for application in entertainment, healthcare, fitness and wellness, military and manufacturing industry. Based on these novel structural designs we have developed a siliconbased network of hexagonal islands connected through double-spiral springs, forming an ultra-stretchable (~1000%) array for full compliance to highly asymmetric shapes and surfaces, as well as a serpentine design used to show an ultrastretchable (~800%) and flexible, spatially reconfigurable, mobile, metallic thin film copper (Cu)-based, body-integrated and non-invasive thermal heater with wireless controlling capability, reusability, heating-adaptability and affordability due to low-cost complementary metal oxide semiconductor (CMOS)-compatible integration. © (2015) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.

  7. IO-Link Wireless enhanced factory automation communication for Industry 4.0 applications

    Directory of Open Access Journals (Sweden)

    R. Heynicke

    2018-03-01

    Full Text Available In the context of the Industry 4.0 initiative, Cyber-Physical Production Systems (CPPS or Cyber Manufacturing Systems (CMS can be characterized as advanced networked mechatronic production systems gaining their added value by interaction with the ambient Industrial Internet of Things (IIoT. In this context appropriate communication technologies and standards play a vital role to realize the manifold potential improvements in the production process. One of these standards is IO-Link. In 2016 more than 5 million IO-Link nodes have been produced and delivered, still gaining increasing acceptance for the communication between sensors, actuators and the control level. The steadily increasing demand for more flexibility in automation solutions can be fulfilled using wireless technologies. With the wireless extension for the IO-Link standard, which will be presented in this article, maximum cycle times of 5 ms can be achieved with a probability that this limit will be exceeded to be at maximum one part per billion. Also roaming capabilities, wireless coexistence mechanisms and the possibility to include battery-powered or energy-harvesting sensors with very limited energy resources in the realtime network were defined. For system planning, setup, operation and maintenance, the standard engineering tools of IO-Link can be employed so that the backward compatibility with wired IO-Link solutions can be guaranteed. Interoperability between manufacturers is a key requirement for any communication standard, thus a procedure for IO-Link Wireless testing is also suggested.

  8. Development of a piezoelectric energy harvesting system for implementing wireless sensors on the tires

    International Nuclear Information System (INIS)

    Lee, Jaeyun; Choi, Bumkyoo

    2014-01-01

    Highlights: • This study is focused on a stable energy source independent of vehicle speed. • It is ascertained that the use of a strain field is suitable for this purpose. • A piezo patch generates 380.2 μJ per revolution under 500 kgf load and 60 km/h. • A self-powered wireless sensor system is manufactured for application and tested during vehicle driving. • The system is applicable to intelligent tire sensor systems. - Abstract: The need for energy harvesting technology is steadily growing in the field of self-powered wireless sensor systems for intelligent tires. The purpose of this study is to mount an energy harvester inside the tire. In order to achieve this, we focus on a stable energy source almost independent of vehicle speed. It is ascertained that the use of a strain field is suitable for this purpose. In order to develop the energy harvester for the tire, modeling of tire behavior has been performed and verified through comparing with experimental results. From the results, a piezoelectric energy harvester generates 380.2 μJ per revolution under 500 kgf load and 60 km/h. A self-powered wireless sensor system is manufactured for application and tested during vehicle driving. The result of this study presents 1.37 μW/mm 3 of power generation from the performance of the energy harvester. This study concludes that the system is applicable to wireless tire sensor systems after making minor improvements

  9. Wireless and mobile systems in telemedicine

    Directory of Open Access Journals (Sweden)

    Reza Safdari

    2012-12-01

    Full Text Available Background: It is necessary to deploy mobile and wireless systems in healthcare, because they have many benefits for healthcare systems. The objectives of this article were introducing various systems, applications, and standards of the wireless and mobile telemedicine. Material and Methods: This review study was conducted in 2010. To conduct the study, published articles in the years 2005 to 2012, in English with an emphasis on wireless and mobile technologies in health were studied. Search was done with key words include telemedicine, wireless health systems, health and telecommunications technology in databases including Pubmed, Science Direct, Google Scholar, Web of Sciences, Proquest. The collected data were analyzed. Results: Telemedicine system in the ambulance, telemedicine systems in space, telecardiology systems, EEG system, ultrasound system are some types of wireless and mobile systems in telemedicine. PDA-based mobile and wireless telemedicine application, based PDA drug application, and patient tracking application are some of wireless and mobile applications of telemedicine. The most important standards of wireless and mobile telemedicine are HL7, DICOM, SNOMed, and ICD-9-CM. Conclusion: There are many challenges in the wireless and mobile systems in telemedicine, despite the many benefits. Slow speed in sending pictures and video, lack of attention to the privacy in the design of these systems, environmental variables and the number of users during the day are some of these challenges. It is recommended to consider these challenges during the planning and designing of wireless and mobile systems in telemedicine.

  10. Miniaturized, low power FGMOSFET radiation sensor and wireless dosimeter system

    KAUST Repository

    Arsalan, Muhammad

    2013-08-27

    A miniaturized floating gate (FG) MOSFET radiation sensor system is disclosed, The sensor preferably comprises a matched pair of sensor and reference FGMOSFETs wherein the sensor FGMOSFET has a larger area floating gate with an extension over a field oxide layer, for accumulation of charge and increased sensitivity. Elimination of a conventional control gate and injector gate reduces capacitance, and increases sensitivity, and allows for fabrication using standard low cost CMOS technology. A sensor system may be provided with integrated signal processing electronics, for monitoring a change in differential channel current I.sub.D, indicative of radiation dose, and an integrated negative bias generator for automatic pre-charging from a low voltage power source. Optionally, the system may be coupled to a wireless transmitter. A compact wireless sensor System on Package solution is presented, suitable for dosimetry for radiotherapy or other biomedical applications.

  11. Miniaturized, low power FGMOSFET radiation sensor and wireless dosimeter system

    KAUST Repository

    Arsalan, Muhammad; Shamim, Atif; Tarr, Nicholas Garry; Roy, Langis

    2013-01-01

    A miniaturized floating gate (FG) MOSFET radiation sensor system is disclosed, The sensor preferably comprises a matched pair of sensor and reference FGMOSFETs wherein the sensor FGMOSFET has a larger area floating gate with an extension over a field oxide layer, for accumulation of charge and increased sensitivity. Elimination of a conventional control gate and injector gate reduces capacitance, and increases sensitivity, and allows for fabrication using standard low cost CMOS technology. A sensor system may be provided with integrated signal processing electronics, for monitoring a change in differential channel current I.sub.D, indicative of radiation dose, and an integrated negative bias generator for automatic pre-charging from a low voltage power source. Optionally, the system may be coupled to a wireless transmitter. A compact wireless sensor System on Package solution is presented, suitable for dosimetry for radiotherapy or other biomedical applications.

  12. A Dual Band Additively Manufactured 3D Antenna on Package with Near-Isotropic Radiation Pattern

    KAUST Repository

    Su, Zhen

    2018-04-06

    Internet of things (IoT) applications need wireless connectivity on devices with very small footprints, and in RF obscure environments. The antenna for such applications must work on multiple GSM bands (preferred choice for network connectivity), provide near isotropic radiation pattern to maintain orientation insensitive communication, be small in size so that it can be integrated with futuristic miniaturized IoT devices, and be low in cost to be implemented on billions of devices. This paper presents a novel 3D dual band near-isotropic wideband GSM antenna to fulfill these requirements. The antenna has been realized on the package of electronics through additive manufacturing to ensure efficient utilization of available space and lower cost. The proposed antenna consists of a meander line antenna that is folded on the faces of a 3D package with two variations, 0.375λ length for narrowband version and 0.67λ length for the wideband version. Theoretical conditions to achieve near isotropic radiation pattern with bent wire antennas on a 3D surface have been derived. The antenna has been optimized to operate with embedded electronics and a large metallic battery. The antenna provides 8.9% and 34.4% bandwidths, at 900 and 1800 MHz respectively with decent near isotropic radiation behavior.

  13. Power requirements and battery life measurement for wireless transmission between two nodes in different mediums

    Directory of Open Access Journals (Sweden)

    Radouane Karli

    2017-06-01

    Full Text Available One of the most important roles of the wireless sensor networks (WSN is to avoid wiring costs, be self-sustainable and be able to function for several years. However, due to the slow progress in battery technology, power continues to be a limited resource in wireless sensor communication and electric energy storage remains to be an important issue. On the other hand, if batteries must be replaced often, many remote sensing applications may become impractical. Therefore, batteries with long life on the order of several years are needed. This paper is an extension of work originally presented in The 5th International Conference on Electronic Devices, Systems and Applications to investigate further the power requirements for wireless data transfer between two nodes using batteries with different capacities (55 mAh, 550 mAh and 5500 mAh. In particular, the effect of a propagation medium such as air, distilled water and engine oil on the wireless communication inside a one meter long metallic pipe was investigated. Our first result shows a successful transmission of wireless signal through air, distilled water and oil medium with very low transmission losses. The second result shows that an increase in the battery capacity will increase the two-node wireless sensor operation time even in different propagation medium. This result can be used to determine the required battery capacity for extending the WSN operation time.

  14. Seamless interworking architecture for WBAN in heterogeneous wireless networks with QoS guarantees.

    Science.gov (United States)

    Khan, Pervez; Ullah, Niamat; Ullah, Sana; Kwak, Kyung Sup

    2011-10-01

    The IEEE 802.15.6 standard is a communication standard optimized for low-power and short-range in-body/on-body nodes to serve a variety of medical, consumer electronics and entertainment applications. Providing high mobility with guaranteed Quality of Service (QoS) to a WBAN user in heterogeneous wireless networks is a challenging task. A WBAN uses a Personal Digital Assistant (PDA) to gather data from body sensors and forwards it to a remote server through wide range wireless networks. In this paper, we present a coexistence study of WBAN with Wireless Local Area Networks (WLAN) and Wireless Wide Area Networks (WWANs). The main issue is interworking of WBAN in heterogenous wireless networks including seamless handover, QoS, emergency services, cooperation and security. We propose a Seamless Interworking Architecture (SIA) for WBAN in heterogenous wireless networks based on a cost function. The cost function is based on power consumption and data throughput costs. Our simulation results show that the proposed scheme outperforms typical approaches in terms of throughput, delay and packet loss rate.

  15. Preliminary validation of a new magnetic wireless blood pump.

    Science.gov (United States)

    Kim, Sung Hoon; Ishiyama, Kazushi; Hashi, Shuichiro; Shiraishi, Yasuyuki; Hayatsu, Yukihiro; Akiyama, Masatoshi; Saiki, Yoshikatsu; Yambe, Tomoyuki

    2013-10-01

    In general, a blood pump must be small, have a simple configuration, and have sufficient hydrodynamic performance. Herein, we introduce new mechanisms for a wireless blood pump that is small and simple and provides wireless and battery-free operation. To achieve wireless and battery-free operation, we implement magnetic torque and force control methods that use two external drivers: an external coil and a permanent magnet with a DC-motor, respectively. Power harvesting can be used to drive an electronic circuit for wireless monitoring (the observation of the pump conditions and temperature) without the use of an internal battery. The power harvesting will be used as a power source to drive other electronic devices, such as various biosensors with their driving circuits. To have both a compact size and sufficient pumping capability, the fully magnetic impeller has five stages and each stage includes four backward-curved blades. The pump has total and inner volumes of 20 and 9.8 cc, respectively, and weighs 52 g. The pump produces a flow rate of approximately 8 L/min at 80 mm Hg and the power generator produces 0.3 W of electrical power at 120 Ω. The pump also produces a minimum flow rate of 1.5 L/min and a pressure of 30 mm Hg for circulation at a maximum distance of 7.5 cm. © 2013 Wiley Periodicals, Inc. and International Center for Artificial Organs and Transplantation.

  16. Energy-efficient digital and wireless IC design for wireless smart sensing

    Science.gov (United States)

    Zhou, Jun; Huang, Xiongchuan; Wang, Chao; Tae-Hyoung Kim, Tony; Lian, Yong

    2017-10-01

    Wireless smart sensing is now widely used in various applications such as health monitoring and structural monitoring. In conventional wireless sensor nodes, significant power is consumed in wirelessly transmitting the raw data. Smart sensing adds local intelligence to the sensor node and reduces the amount of wireless data transmission via on-node digital signal processing. While the total power consumption is reduced compared to conventional wireless sensing, the power consumption of the digital processing becomes as dominant as wireless data transmission. This paper reviews the state-of-the-art energy-efficient digital and wireless IC design techniques for reducing the power consumption of the wireless smart sensor node to prolong battery life and enable self-powered applications.

  17. Adaptive Naive Bayes classification for wireless sensor networks

    NARCIS (Netherlands)

    Zwartjes, G.J.

    2017-01-01

    Wireless Sensor Networks are tiny devices equipped with sensors and wireless communication. These devices observe environments and communicatie about these observations. Machine Learning techniques are of interest for Wireless Sensor Network applications since they can reduce the amount of needed

  18. Sustainable Materials Management (SMM) Electronics Challenge

    Science.gov (United States)

    Learn how the SMM Electronics Challenge encourage electronic manufacturers to strive to send 100 percent of the used electronics they collect from the public and retailers to certified electronics refurbishers and recyclers.

  19. A Fully Implantable Pacemaker for the Mouse: From Battery to Wireless Power

    Science.gov (United States)

    Zellmer, Erik R.; Weinheimer, Carla J.; MacEwan, Matthew R.; Cui, Sophia X.; Nerbonne, Jeanne M.; Efimov, Igor R.

    2013-01-01

    Animal models have become a popular platform for the investigation of the molecular and systemic mechanisms of pathological cardiovascular physiology. Chronic pacing studies with implantable pacemakers in large animals have led to useful models of heart failure and atrial fibrillation. Unfortunately, molecular and genetic studies in these large animal models are often prohibitively expensive or not available. Conversely, the mouse is an excellent species for studying molecular mechanisms of cardiovascular disease through genetic engineering. However, the large size of available pacemakers does not lend itself to chronic pacing in mice. Here, we present the design for a novel, fully implantable wireless-powered pacemaker for mice capable of long-term (>30 days) pacing. This design is compared to a traditional battery-powered pacemaker to demonstrate critical advantages achieved through wireless inductive power transfer and control. Battery-powered and wireless-powered pacemakers were fabricated from standard electronic components in our laboratory. Mice (n = 24) were implanted with endocardial, battery-powered devices (n = 14) and epicardial, wireless-powered devices (n = 10). Wireless-powered devices were associated with reduced implant mortality and more reliable device function compared to battery-powered devices. Eight of 14 (57.1%) mice implanted with battery-powered pacemakers died following device implantation compared to 1 of 10 (10%) mice implanted with wireless-powered pacemakers. Moreover, device function was achieved for 30 days with the wireless-powered device compared to 6 days with the battery-powered device. The wireless-powered pacemaker system presented herein will allow electrophysiology studies in numerous genetically engineered mouse models as well as rapid pacing-induced heart failure and atrial arrhythmia in mice. PMID:24194832

  20. A fully implantable pacemaker for the mouse: from battery to wireless power.

    Science.gov (United States)

    Laughner, Jacob I; Marrus, Scott B; Zellmer, Erik R; Weinheimer, Carla J; MacEwan, Matthew R; Cui, Sophia X; Nerbonne, Jeanne M; Efimov, Igor R

    2013-01-01

    Animal models have become a popular platform for the investigation of the molecular and systemic mechanisms of pathological cardiovascular physiology. Chronic pacing studies with implantable pacemakers in large animals have led to useful models of heart failure and atrial fibrillation. Unfortunately, molecular and genetic studies in these large animal models are often prohibitively expensive or not available. Conversely, the mouse is an excellent species for studying molecular mechanisms of cardiovascular disease through genetic engineering. However, the large size of available pacemakers does not lend itself to chronic pacing in mice. Here, we present the design for a novel, fully implantable wireless-powered pacemaker for mice capable of long-term (>30 days) pacing. This design is compared to a traditional battery-powered pacemaker to demonstrate critical advantages achieved through wireless inductive power transfer and control. Battery-powered and wireless-powered pacemakers were fabricated from standard electronic components in our laboratory. Mice (n = 24) were implanted with endocardial, battery-powered devices (n = 14) and epicardial, wireless-powered devices (n = 10). Wireless-powered devices were associated with reduced implant mortality and more reliable device function compared to battery-powered devices. Eight of 14 (57.1%) mice implanted with battery-powered pacemakers died following device implantation compared to 1 of 10 (10%) mice implanted with wireless-powered pacemakers. Moreover, device function was achieved for 30 days with the wireless-powered device compared to 6 days with the battery-powered device. The wireless-powered pacemaker system presented herein will allow electrophysiology studies in numerous genetically engineered mouse models as well as rapid pacing-induced heart failure and atrial arrhythmia in mice.