WorldWideScience

Sample records for wireless device pairing

  1. Wireless device monitoring methods, wireless device monitoring systems, and articles of manufacture

    Science.gov (United States)

    McCown, Steven H [Rigby, ID; Derr, Kurt W [Idaho Falls, ID; Rohde, Kenneth W [Idaho Falls, ID

    2012-05-08

    Wireless device monitoring methods, wireless device monitoring systems, and articles of manufacture are described. According to one embodiment, a wireless device monitoring method includes accessing device configuration information of a wireless device present at a secure area, wherein the device configuration information comprises information regarding a configuration of the wireless device, accessing stored information corresponding to the wireless device, wherein the stored information comprises information regarding the configuration of the wireless device, comparing the device configuration information with the stored information, and indicating the wireless device as one of authorized and unauthorized for presence at the secure area using the comparing.

  2. Wireless devices in nursing education

    Directory of Open Access Journals (Sweden)

    Ana Belén Sánchez-García

    2013-03-01

    Full Text Available Objective. This article sought to explore the adoption of wireless devices in university nursing teaching and address their repercussion on future professionals. Methodology. This is a bibliographical study conducted in 2011, which analyzed international publications on the use, review, application, opinion, and experimentation of wireless devices in university nursing teaching of wireless technology in nursing teaching. The following databases were used: Medline and Science@Direct. Results. A total of 503 articles were extracted and 77 were selected, of which 40 investigated the Personal Digital Assistant (PDA, 13 the clicker (Student Response Wireless System, and six the smart phone. The use of mobile devices has experienced strong growth during the last five years, especially PDAs. Conclusion. Use of mobile devices in university nursing teaching has grown in recent years, especially PDAs

  3. Wireless Power for Mobile Devices

    NARCIS (Netherlands)

    Waffenschmidt, E.

    2011-01-01

    Wireless power transfer allows a convenient, easy to use battery charging of mobile phones and other mobile devices. No hassle with cables and plugs, just place the device on a pad and that’s it. Such asystem even has the potential to become a standard charging solution. Where are the limits for

  4. Wireless autonomous device data transmission

    Science.gov (United States)

    Sammel, Jr., David W. (Inventor); Cain, James T. (Inventor); Mickle, Marlin H. (Inventor); Mi, Minhong (Inventor)

    2013-01-01

    A method of communicating information from a wireless autonomous device (WAD) to a base station. The WAD has a data element having a predetermined profile having a total number of sequenced possible data element combinations. The method includes receiving at the WAD an RF profile transmitted by the base station that includes a triggering portion having a number of pulses, wherein the number is at least equal to the total number of possible data element combinations. The method further includes keeping a count of received pulses and wirelessly transmitting a piece of data, preferably one bit, to the base station when the count reaches a value equal to the stored data element's particular number in the sequence. Finally, the method includes receiving the piece of data at the base station and using the receipt thereof to determine which of the possible data element combinations the stored data element is.

  5. 78 FR 1247 - Certain Electronic Devices, Including Wireless Communication Devices, Tablet Computers, Media...

    Science.gov (United States)

    2013-01-08

    ... COMMISSION Certain Electronic Devices, Including Wireless Communication Devices, Tablet Computers, Media... importation of certain electronic devices, including wireless communication devices, tablet computers, media... United States after importation of certain electronic devices, including wireless communication devices...

  6. 77 FR 58576 - Certain Wireless Communication Devices, Portable Music and Data Processing Devices, Computers...

    Science.gov (United States)

    2012-09-21

    ... COMMISSION Certain Wireless Communication Devices, Portable Music and Data Processing Devices, Computers, and... importation of certain wireless communication devices, portable music and data processing devices, computers... after importation of certain wireless communication devices, portable music and data processing devices...

  7. 78 FR 34669 - Certain Electronic Devices, Including Wireless Communication Devices, Portable Music and Data...

    Science.gov (United States)

    2013-06-10

    ... COMMISSION Certain Electronic Devices, Including Wireless Communication Devices, Portable Music and Data..., California (``Apple''), from importing wireless communication devices, portable music and data processing... importation of certain electronic devices, including wireless communication devices, portable music and data...

  8. Wireless communication devices and movement monitoring methods

    Science.gov (United States)

    Skorpik, James R.

    2006-10-31

    Wireless communication devices and movement monitoring methods are described. In one aspect, a wireless communication device includes a housing, wireless communication circuitry coupled with the housing and configured to communicate wireless signals, movement circuitry coupled with the housing and configured to provide movement data regarding movement sensed by the movement circuitry, and event processing circuitry coupled with the housing and the movement circuitry, wherein the event processing circuitry is configured to process the movement data, and wherein at least a portion of the event processing circuitry is configured to operate in a first operational state having a different power consumption rate compared with a second operational state.

  9. Communications device identification methods, communications methods, wireless communications readers, wireless communications systems, and articles of manufacture

    Science.gov (United States)

    Steele, Kerry D [Kennewick, WA; Anderson, Gordon A [Benton City, WA; Gilbert, Ronald W [Morgan Hill, CA

    2011-02-01

    Communications device identification methods, communications methods, wireless communications readers, wireless communications systems, and articles of manufacture are described. In one aspect, a communications device identification method includes providing identification information regarding a group of wireless identification devices within a wireless communications range of a reader, using the provided identification information, selecting one of a plurality of different search procedures for identifying unidentified ones of the wireless identification devices within the wireless communications range, and identifying at least some of the unidentified ones of the wireless identification devices using the selected one of the search procedures.

  10. 77 FR 70464 - Certain Electronic Devices, Including Wireless Communication Devices, Portable Music and Data...

    Science.gov (United States)

    2012-11-26

    ... From the Federal Register Online via the Government Publishing Office INTERNATIONAL TRADE COMMISSION Certain Electronic Devices, Including Wireless Communication Devices, Portable Music and Data... importation of certain electronic devices, including wireless communication devices, portable music and data...

  11. 78 FR 16865 - Certain Electronic Devices, Including Wireless Communication Devices, Portable Music and Data...

    Science.gov (United States)

    2013-03-19

    ... From the Federal Register Online via the Government Publishing Office INTERNATIONAL TRADE COMMISSION Certain Electronic Devices, Including Wireless Communication Devices, Portable Music and Data... importation of certain electronic devices, including wireless communication devices, portable music and data...

  12. 77 FR 60720 - Certain Electronic Devices, Including Wireless Commmunication Devices, Portable Music and Data...

    Science.gov (United States)

    2012-10-04

    ... From the Federal Register Online via the Government Publishing Office INTERNATIONAL TRADE COMMISSION Certain Electronic Devices, Including Wireless Commmunication Devices, Portable Music and Data... infringing electronic devices, including wireless communication devices, portable music and data processing...

  13. 75 FR 10502 - In the Matter of Certain Electronic Devices, Including Handheld Wireless Communications Devices...

    Science.gov (United States)

    2010-03-08

    ... COMMISSION In the Matter of Certain Electronic Devices, Including Handheld Wireless Communications Devices...-TA-667 and 337-TA-673, Certain Electronic Devices Including Handheld Wireless Communications Devices... electronic devices, including handheld wireless communications devices by reason of infringement of certain...

  14. Security for wireless implantable medical devices

    CERN Document Server

    Hei, Xiali

    2013-01-01

    In the treatment of chronic diseases, wireless Implantable Medical Devices (IMDs) are commonly used to communicate with an outside programmer (reader). Such communication raises serious security concerns, such as the ability for hackers to gain access to a patient's medical records. This brief provides an overview of such attacks and the new security challenges, defenses, design issues, modeling and performance evaluation in wireless IMDs.  While studying the vulnerabilities of IMDs and corresponding security defenses, the reader will also learn the methodologies and tools for designing securi

  15. Wireless device connection problems and design solutions

    Science.gov (United States)

    Song, Ji-Won; Norman, Donald; Nam, Tek-Jin; Qin, Shengfeng

    2016-09-01

    Users, especially the non-expert users, commonly experience problems when connecting multiple devices with interoperability. While studies on multiple device connections are mostly concentrated on spontaneous device association techniques with a focus on security aspects, the research on user interaction for device connection is still limited. More research into understanding people is needed for designers to devise usable techniques. This research applies the Research-through-Design method and studies the non-expert users' interactions in establishing wireless connections between devices. The "Learning from Examples" concept is adopted to develop a study focus line by learning from the expert users' interaction with devices. This focus line is then used for guiding researchers to explore the non-expert users' difficulties at each stage of the focus line. Finally, the Research-through-Design approach is used to understand the users' difficulties, gain insights to design problems and suggest usable solutions. When connecting a device, the user is required to manage not only the device's functionality but also the interaction between devices. Based on learning from failures, an important insight is found that the existing design approach to improve single-device interaction issues, such as improvements to graphical user interfaces or computer guidance, cannot help users to handle problems between multiple devices. This study finally proposes a desirable user-device interaction in which images of two devices function together with a system image to provide the user with feedback on the status of the connection, which allows them to infer any required actions.

  16. 75 FR 68619 - In the Matter of Certain Wireless Communication Devices, Portable Music and Data Processing...

    Science.gov (United States)

    2010-11-08

    ... COMMISSION In the Matter of Certain Wireless Communication Devices, Portable Music and Data Processing... certain wireless communication devices, portable music and data processing devices, computers and... certain wireless communication devices, portable music and data processing devices, computers and...

  17. Investigation of Unequal Planar Wireless Electricity Device for Efficient Wireless Power Transfer

    Directory of Open Access Journals (Sweden)

    M. H. Mohd Salleh

    2017-04-01

    Full Text Available This article focuses on the design and investigation of a pair of unequally sized wireless electricity (Witricity devices that are equipped with integrated planar coil strips. The proposed pair of devices consists of two different square-shaped resonator sizes of 120 mm × 120 mm and 80 mm × 80 mm, acting as a transmitter and receiver, respectively. The devices are designed, simulated and optimized using the CST Microwave Studio software prior to being fabricated and verified using a vector network analyzer (VNA. The surface current results of the coupled devices indicate a good current density at 10 mm to 30 mm distance range. This good current density demonstrates that the coupled devices’ surface has more electric current per unit area, which leads to a good performance up to 30 mm range. Hence, the results also reveal good coupling efficiency between the coupled devices, which is approximately 54.5% at up to a 30 mm distance, with both devices axially aligned. In addition, a coupling efficiency of 50% is achieved when a maximum lateral misalignment (LM of 10 mm, and a varied angular misalignment (AM from 0° to 40° are implemented to the proposed device.

  18. 77 FR 51571 - Certain Wireless Communication Devices, Portable Music and Data Processing Devices, Computers...

    Science.gov (United States)

    2012-08-24

    ... COMMISSION Certain Wireless Communication Devices, Portable Music and Data Processing Devices, Computers, and... communication devices, portable music and data processing devices, computers, and components thereof. The... and Data Processing Devices, Computers, and Components Thereof, DN 2910; the Commission is soliciting...

  19. Wireless Charger Networking for Mobile Devices: Fundamentals, Standards, and Applications

    OpenAIRE

    Lu, Xiao; Niyato, Dusit; Wang, Ping; Kim, Dong In; Han, Zhu

    2014-01-01

    Wireless charging is a technique of transmitting power through an air gap to an electrical device for the purpose of energy replenishment. Recently, the wireless charging technology has been significantly advanced in terms of efficiency and functionality. This article first presents an overview and fundamentals of wireless charging. We then provide the review of standards, i.e., Qi and Alliance for Wireless Power (A4WP), and highlight on their communication protocols. Next, we propose a novel...

  20. A UWB wireless capsule endoscopy device.

    Science.gov (United States)

    Thotahewa, Kasun M S; Redoute, Jean-Michel; Yuce, Mehmet Rasit

    2014-01-01

    Wireless capsule endoscopy (WCE) presents many advantages over traditional wired endoscopic methods. The performance of WCE devices can be improved using high-frequency communication systems such as Impulse Radio-Ultra-Wideband (IR-UWB) to enable a high data rate transmission with low-power consumption. This paper presents the hardware implementation and experimental evaluation of a WCE device that uses IR-UWB signals in the frequency range of 3.5 GHz to 4.5 GHz to transmit image data from inside the body to a receiver placed outside the body. Key components of the IR-UWB transmitter, such as the narrow pulse generator and up-conversion based RF section are described in detail. This design employs a narrowband receiver in the WCE device to receive a control signal externally in order to control and improve the data transmission from the device in the body. The design and performance of a wideband implantable antenna that operates in the aforementioned frequency range is also described. The operation of the WCE device is demonstrated through a proof-of-concept experiment using meat.

  1. Intelligent Devices in Rural Wireless Networks

    Directory of Open Access Journals (Sweden)

    Daniel FUENTES

    2014-03-01

    Full Text Available The rural wireless networks are increasingly in demand by associations and autarchies to expand Internet access in this type of areas. The problem of such solutions centers not only in network deployment and its maintenance, but also in the equipment installation on clients, which always has big costs. This installation and configuration must be performed by a technician on site, so that the equipment can be integrated in the infrastructure. To try to mitigate this problem, it is presented a solution that allows the clients to install, with transparency, the device at home, reducing not only the cost for the management entity but also for the clients. This way, for info-excluded people or with new technology low experience level, it is the user that integrates himself in the network, making him part of the process, fostering the network usage.In this article are specified not only the system architecture but also the way that it works and how it obtains the desirable result. The tests made to the solution show the quickness, reliability and autonomy in the execution of the tasks, making it a benefit for rural wireless networks.This solution, by its robustness and simplicity, allowed an uptake to the IT by people who never thought to do it, namely an advanced age group (elderly who want to join the world of the new technologies

  2. 77 FR 38826 - Certain Wireless Communication Devices, Portable Music and Data Processing Devices, Computers and...

    Science.gov (United States)

    2012-06-29

    ... COMMISSION Certain Wireless Communication Devices, Portable Music and Data Processing Devices, Computers and... importation, and the sale within the United States after importation of certain wireless communication devices, portable music and data processing devices, computers and components thereof by reason of infringement of...

  3. 77 FR 52759 - Certain Wireless Communication Devices, Portable Music and Data Processing Devices, Computers and...

    Science.gov (United States)

    2012-08-30

    ... COMMISSION Certain Wireless Communication Devices, Portable Music and Data Processing Devices, Computers and... importation of certain wireless communication devices, portable music and data processing devices, computers... to a data communications system.'' The Commission has determined to affirm the ID's finding that...

  4. 78 FR 24775 - Certain Wireless Communication Devices, Portable Music and Data Processing Devices, Computers and...

    Science.gov (United States)

    2013-04-26

    ... COMMISSION Certain Wireless Communication Devices, Portable Music and Data Processing Devices, Computers and... United States after importation of certain wireless communication devices, portable music and data processing devices, computers and components thereof by reason of ] infringement of certain claims of U.S...

  5. Wireless Power Hotspot that Charges All of Your Devices

    OpenAIRE

    Shi, Lixin; Katabi, Dina; Kabelac, Zachary E.; Perreault, David J.

    2015-01-01

    Each year, consumers carry an increasing number of gadgets on their person: mobile phones, tablets, smartwatches, etc. As a result, users must remember to recharge each device, every day. Wireless charging promises to free users from this burden, allowing devices to remain permanently unplugged. Today's wireless charging, however, is either limited to a single device, or is highly cumbersome, requiring the user to remove all of her wearable and handheld gadgets and place them on a charging pa...

  6. 77 FR 24738 - Certain Wireless Communication Devices and Systems, Components Thereof, and Products Containing...

    Science.gov (United States)

    2012-04-25

    ... COMMISSION Certain Wireless Communication Devices and Systems, Components Thereof, and Products Containing... States after importation of certain wireless communication devices and systems, components thereof, and... Sunnyvale, California; Meru Networks of Sunnyvale, California; and Ruckus Wireless of Sunnyvale, California...

  7. 75 FR 8112 - In the Matter of Certain Mobile Telephones and Wireless Communication Devices Featuring Digital...

    Science.gov (United States)

    2010-02-23

    ... COMMISSION In the Matter of Certain Mobile Telephones and Wireless Communication Devices Featuring Digital... mobile telephones or wireless communication devices featuring digital cameras, or ] components thereof... the sale within the United States after importation of certain mobile telephones and wireless...

  8. Wireless power pad with local power activation for portable devices

    NARCIS (Netherlands)

    Waffenschmidt, E.; Zheglov, V.

    2007-01-01

    Wireless power transfer by magnetic induction offers a simple to use way to recharge mobile devices like e.g. mobile phone, music players or medical sensors. As shown by a previous report and an existing Power Pad demonstrator, wireless inductive power transfer is possible with a good power

  9. Network Coding Opportunities for Wireless Grids Formed by Mobile Devices

    DEFF Research Database (Denmark)

    Nielsen, Karsten Fyhn; Madsen, Tatiana Kozlova; Fitzek, Frank

    2008-01-01

    Wireless grids have potential in sharing communication, computational and storage resources making these networks more powerful, more robust, and less cost intensive. However, to enjoy the benefits of cooperative resource sharing, a number of issues should be addressed and the cost of the wireless...... link should be taken into account. We focus on the question how nodes can efficiently communicate and distribute data in a wireless grid. We show the potential of a network coding approach when nodes have the possibility to combine packets thus increasing the amount of information per transmission. Our...... implementation demonstrates the feasibility of network coding for wireless grids formed by mobile devices....

  10. Broadband Wireless Data Acquisition and Control Device Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Mobitrum is proposing to develop a broadband wireless device for real-time data acquisition and monitoring applicable to the field instrumentation and control...

  11. Industrial wireless networking with resource constraint devices

    NARCIS (Netherlands)

    Das, Kallol

    2015-01-01

    During the last decade, wireless technologies have revolutionized the industrial automation sector by enabling wireless sensing and actuation for industrial applications. Most of these recently developed industrial standards are built on top of IEEE802.15.4 interface, which uses 2.4GHz frequency

  12. 76 FR 45860 - In the Matter of Certain Electronic Devices, Including Wireless Communication Devices, Portable...

    Science.gov (United States)

    2011-08-01

    ... communication devices, portable music and data processing devices, and tablet computers by reason of... communication devices, portable music and data processing devices, and tablet computers that infringe one or... COMMISSION In the Matter of Certain Electronic Devices, Including Wireless Communication Devices, Portable...

  13. 77 FR 65580 - Certain Wireless Communication Devices, Portable Music and Data Processing Devices, Computers...

    Science.gov (United States)

    2012-10-29

    ... From the Federal Register Online via the Government Publishing Office ] INTERNATIONAL TRADE COMMISSION Certain Wireless Communication Devices, Portable Music and Data Processing Devices, Computers, and Components Thereof AGENCY: U.S. International Trade Commission. ACTION: Notice. SUMMARY: Notice is hereby...

  14. 78 FR 12785 - Certain Wireless Communication Devices, Portable Music and Data Processing Devices, Computers and...

    Science.gov (United States)

    2013-02-25

    ... COMMISSION Certain Wireless Communication Devices, Portable Music and Data Processing Devices, Computers and... communication devices, portable music and data processing devices, computers and components thereof by reason of... evidence demonstrates that the existence of portable communication devices using ``touch sensitive input...

  15. The Feasibility, Semantics, and Scope of Mobile Wireless Device-to-Device Networking

    OpenAIRE

    Wirtz, Hanno

    2015-01-01

    Wireless networking technology, as prevalently realized according to the IEEE 802.11 standard, successfully complements wired access to local networks and the Internet. Current mobile devices, such as smartphones, manifest wireless networking within everyday mobile scenarios and diverse and dynamic device-to-device (D2D) communication contexts that are independent from any network infrastructure, motivating the research directions of Mobile Ad-Hoc, Delay Tolerant, and Opportunistic Networking...

  16. Embedded RFID Recorder in short-range wireless devices

    DEFF Research Database (Denmark)

    2010-01-01

    range communication devices. The problem is solved in that the portable communications device comprises a wireless communications interface for communicating with another device, a memory and an RFID-recorder for receiving an RFID-signal transmitted from an RFID-interrogator, wherein the device...... is adapted for storing individual received RFID-signals in the memory. An advantage of the invention is that it provides a relatively simple scheme for extracting information from a current environment of a portable communications device. The invention may e.g. be used for adapting listening devices, e...

  17. Virtual MIMO Beamforming and Device Pairing Enabled by Device-to-Device Communications for Multidevice Networks

    Directory of Open Access Journals (Sweden)

    Yeonjin Jeong

    2017-01-01

    Full Text Available We consider a multidevice network with asymmetric antenna configurations which supports not only communications between an access point and devices but also device-to-device (D2D communications for the Internet of things. For the network, we propose the transmit and receive beamforming with the channel state information (CSI for virtual multiple-input multiple-output (MIMO enabled by D2D receive cooperation. We analyze the sum rate achieved by a device pair in the proposed method and identify the strategies to improve the sum rate of the device pair. We next present a distributed algorithm and its equivalent algorithm for device pairing to maximize the throughput of the multidevice network. Simulation results confirm the advantages of the transmit CSI and D2D cooperation as well as the validity of the distributive algorithm.

  18. The impact of wireless device access on content delivery networks

    OpenAIRE

    Denney, Justin; Race, Nicholas

    2003-01-01

    Content delivery network architectures are initiatives designed to support the effective delivery of continuous and discrete media to end-users. Mobile devices are now capable of exploiting services such as content delivery, but with the protocols governing the content delivery networks designed for wired networked topologies; an assessment of the impact of mobile devices on the network has never been undertaken. Wireless devices access causes significant issues in the ability of the media tr...

  19. 77 FR 43858 - Certain Mobile Telephones and Wireless Communication Devices Featuring Digital Cameras, and...

    Science.gov (United States)

    2012-07-26

    ... From the Federal Register Online via the Government Publishing Office INTERNATIONAL TRADE COMMISSION Certain Mobile Telephones and Wireless Communication Devices Featuring Digital Cameras, and... States after importation of certain mobile telephones and wireless communication devices featuring...

  20. 75 FR 44282 - In the Matter of Certain Mobile Telephones and Wireless Communication Devices Featuring Digital...

    Science.gov (United States)

    2010-07-28

    ... From the Federal Register Online via the Government Publishing Office INTERNATIONAL TRADE COMMISSION In the Matter of Certain Mobile Telephones and Wireless Communication Devices Featuring Digital... importation of certain mobile telephones and wireless communication devices featuring digital cameras, and...

  1. 75 FR 65654 - In the Matter of: Certain Mobile Telephones and Wireless Communication Devices Featuring Digital...

    Science.gov (United States)

    2010-10-26

    ... From the Federal Register Online via the Government Publishing Office ] INTERNATIONAL TRADE COMMISSION In the Matter of: Certain Mobile Telephones and Wireless Communication Devices Featuring Digital... and wireless communication devices featuring digital cameras, and components thereof, that infringe...

  2. Enhanced Security and Pairing-free Handover Authentication Scheme for Mobile Wireless Networks

    Science.gov (United States)

    Chen, Rui; Shu, Guangqiang; Chen, Peng; Zhang, Lijun

    2017-10-01

    With the widely deployment of mobile wireless networks, we aim to propose a secure and seamless handover authentication scheme that allows users to roam freely in wireless networks without worrying about security and privacy issues. Given the open characteristic of wireless networks, safety and efficiency should be considered seriously. Several previous protocols are designed based on a bilinear pairing mapping, which is time-consuming and inefficient work, as well as unsuitable for practical situations. To address these issues, we designed a new pairing-free handover authentication scheme for mobile wireless networks. This scheme is an effective improvement of the protocol by Xu et al., which is suffer from the mobile node impersonation attack. Security analysis and simulation experiment indicate that the proposed protocol has many excellent security properties when compared with other recent similar handover schemes, such as mutual authentication and resistance to known network threats, as well as requiring lower computation and communication cost.

  3. 76 FR 33363 - In the Matter of Certain Wireless Communication Devices and Systems, Components Thereof, and...

    Science.gov (United States)

    2011-06-08

    ... COMMISSION In the Matter of Certain Wireless Communication Devices and Systems, Components Thereof, and... importation, and the sale within the United States after importation of certain wireless communication devices... importation of certain wireless communication devices and systems, components thereof, and products containing...

  4. AVAILABILITY RESEARCH OF REMOTE DEVICES FOR WIRELESS NETWORKS

    Directory of Open Access Journals (Sweden)

    N. A. Bazhayev

    2016-05-01

    Full Text Available We consider the wireless network under attack, aimed at "broadcast storm" initiation, in order to determine the availability of stand-alone units and the ability to carry out their functional tasks under information exposure. We determine a set of conditions for such type of attacks on the part of potential information interloper. The functional analysis of the systems based on wireless technology is made. We examine the remote device of a self-organizing wireless network as a queuing system M/M/1/n. Model dependencies are shown for normal system performance and at information exposure on the part of potential information interloper. Analytical simulation of wireless network functioning is carried out in the normal mode and under the attack aimed at "broadcast storm" initiation. An experiment is described which provides statistical information on operation of network remote devices. We present experiment results on carrying out attack at typical system transferring data by broabcast net scanning package at different noise intensities on the part of information interloper. The proposed model can be used to determine the technical characteristics of wireless ad-hoc network, develop recommendations for node configuration, aimed at countering "broadcast storm".

  5. [Telemedicine and wireless devices in heart failure].

    Science.gov (United States)

    Billeci, Lucia; Guerriero, Lorenzo; L'Abbate, Antonio; Pioggia, Giovanni; Tartarisco, Gennaro; Trivella, Maria Giovanna

    2014-05-01

    Telemedicine has the potential to constitute the central element of the future primary care and become an effective means of prevention and early warning of acute exacerbation of chronic diseases. Up to now, the application of telemedicine has found a variety of difficulties, regarding the types and methods of acquisition and transmission of biological signals, the acceptance and cooperation of the patient, etc. The latest technological developments involve the combined use of wireless technologies and smartphones, for the collection and the transmission of data, and specific softwares for their automatic analysis. This paper examines some of the critical aspects in the application of new technologies for heart failure remote management.

  6. [Wireless device for monitoring the patients with chronic disease].

    Science.gov (United States)

    Ciorap, R; Zaharia, D; Corciovă, C; Ungureanu, Monica; Lupu, R; Stan, A

    2008-01-01

    Remote monitoring of chronic diseases can improve health outcomes and potentially lower health care costs. The high number of the patients, suffering of chronically diseases, who wish to stay at home rather then in a hospital increasing the need of homecare monitoring and have lead to a high demand of wearable medical devices. Also, extended patient monitoring during normal activity has become a very important target. In this paper are presented the design of the wireless monitoring devices based on ultra low power circuits, high storage memory flash, bluetooth communication and the firmware for the management of the monitoring device. The monitoring device is built using an ultra low power microcontroller (MSP430 from Texas Instruments) that offers the advantage of high integration of some circuits. The custom made electronic boards used for biosignal acquisition are also included modules for storage device (SD/MMC card) with FAT32 file system and Bluetooth device for short-range communication used for data transmission between monitoring device and PC or PDA. The work was focused on design and implementation of an ultra low power wearable device able to acquire patient vital parameters, causing minimal discomfort and allowing high mobility. The proposed wireless device could be used as a warning system for monitoring during normal activity.

  7. 77 FR 28621 - Certain Wireless Communication Devices, Portable Music and Data Processing Devices, Computers and...

    Science.gov (United States)

    2012-05-15

    ... From the Federal Register Online via the Government Publishing Office INTERNATIONAL TRADE COMMISSION Certain Wireless Communication Devices, Portable Music and Data Processing Devices, Computers and Components Thereof; Notice of Request for Statements on the Public Interest AGENCY: U.S. International Trade...

  8. 75 FR 6704 - In the Matter of Certain Mobile Telephones and Wireless Communication Devices Featuring Digital...

    Science.gov (United States)

    2010-02-10

    ... From the Federal Register Online via the Government Publishing Office INTERNATIONAL TRADE COMMISSION In the Matter of Certain Mobile Telephones and Wireless Communication Devices Featuring Digital... within the United States after importation of certain mobile telephones and wireless communication...

  9. Wireless Passive Strain Sensor Based on Surface Acoustic Wave Devices

    OpenAIRE

    Nomura, T.; Kawasaki, K.; Saitoh, A

    2008-01-01

    Surface acoustic wave (SAW) devices offer many attractive features for applications as chemical and physical sensors. In this paper, a novel SAW strain sensor that employs SAW delay lines has been designed. Two crossed delay lines were used to measure the two-dimensional strain. A wireless sensing system is also proposed for effective operation of the strain sensor. In addition, an electronic system for accurately measuring the phase characteristics of the signal wave from the passive strain ...

  10. Communication method for high density wireless networks, terminal, cluster master device, central node, and system therefor

    NARCIS (Netherlands)

    Havinga, Paul J.M.; van Hoesel, L.F.W.; Bijwaard, D.

    2009-01-01

    Large-scale wireless sensor and actuator networks(LWSANs) are networks that consist of many sensor and/or actuator devices (i.e. >1,000 devices). These sensor and/or actuator devices (also called nodes) communicate wirelessly to deliver their sensor readings to one or more gateway devices in the

  11. Wireless Low Power Light Emitting Device with RGB LED

    Directory of Open Access Journals (Sweden)

    Mi-So Lee

    2017-06-01

    Full Text Available Color therapy is a type of alternative medicine. It utilizes the emission of a specific wavelength of light to treat diseased areas. This study presents a wireless, low-power light-emitting device with RGB LED to conduct color therapy. The device is small-sized, adhesive to the skin, and without a tether line for power or communication. Aided by the property of skin adhesiveness, the device provides a therapeutic effect comparable to that of available devices, over a short radiation distance and consumes low power. The therapeutic dosage parameters including color wavelength combination, LED brightness, and illumination time can be regulated through the smartphone application. The wavelength consistency over intensities and the intensity accuracy were validated. With effective calibration, the emission of light by the LED can be effectively regulated to ensure therapeutic effects.

  12. Monitoring and Transmission via Wireless Network for an Assistive Device.

    Science.gov (United States)

    Chang, Yi-Chu; Chen, Chiun-Fan; Lin, Hua-Sheng; Chong, Fok-Ching; Luh, Jer-Junn; Lai, Jin-Shin

    2005-01-01

    Owing to the increasing number of disabled individuals, technical aids are acting more aggressively in the era of modern medicine. The M3S (Multiple Master Multiple Slave) system developed for the physically challenged, utilizes intelligent transmission and integration mechanisms to arrange all hooked-up devices with proper control. To overcome certain limitations of the system (e.g. distance), an RF (Radio Frequency) wireless module would be in charge of the wireless communication between a remote bus and a local bus. It is demonstrated here as assistance for parking assistive vehicles (e.g. powered wheelchair) located in a remote region, which also includes monitoring and usage of accessorial data transmissions shown in our man-machine interface.

  13. Wireless microsensor network solutions for neurological implantable devices

    Science.gov (United States)

    Abraham, Jose K.; Whitchurch, Ashwin; Varadan, Vijay K.

    2005-05-01

    The design and development of wireless mocrosensor network systems for the treatment of many degenerative as well as traumatic neurological disorders is presented in this paper. Due to the advances in micro and nano sensors and wireless systems, the biomedical sensors have the potential to revolutionize many areas in healthcare systems. The integration of nanodevices with neurons that are in communication with smart microsensor systems has great potential in the treatment of many neurodegenerative brain disorders. It is well established that patients suffering from either Parkinson"s disease (PD) or Epilepsy have benefited from the advantages of implantable devices in the neural pathways of the brain to alter the undesired signals thus restoring proper function. In addition, implantable devices have successfully blocked pain signals and controlled various pelvic muscles in patients with urinary and fecal incontinence. Even though the existing technology has made a tremendous impact on controlling the deleterious effects of disease, it is still in its infancy. This paper presents solutions of many problems of today's implantable and neural-electronic interface devices by combining nanowires and microelectronics with BioMEMS and applying them at cellular level for the development of a total wireless feedback control system. The only device that will actually be implanted in this research is the electrodes. All necessary controllers will be housed in accessories that are outside the body that communicate with the implanted electrodes through tiny inductively-coupled antennas. A Parkinson disease patient can just wear a hat-system close to the implantable neural probe so that the patient is free to move around, while the sensors continually monitor, record, transmit all vital information to health care specialist. In the event of a problem, the system provides an early warning to the patient while they are still mobile thus providing them the opportunity to react and

  14. Fairness and resource allocation in device-to-device wireless regional area network

    NARCIS (Netherlands)

    Shi, H.

    2014-01-01

    With the rapid development in wireless devices, applications and networks, radio frequencies have become scarce resources. Therefore, it is critical to make efficient use of the radio frequencies. A promising way to solve this problem is the use of cognitive radio (CR). In CR, radio frequencies are

  15. Interference Measurements and Throughput Analysis for 2.4 GHz Wireless Devices in Hospital Environments

    OpenAIRE

    Krishnamoorthy, Seshagiri

    2003-01-01

    In recent years, advancements in the field of wireless communication have led to more innovative consumer products at reduced cost. Over the next 2 to 5 years, short-range wireless devices such as Bluetooth and Wireless Local Area Networks (WLANs) are expected to become widespread throughout hospital environments for various applications. Consequently the medical community views wireless applications as ineludible and necessary. However, currently there exist regulations on the use of wireles...

  16. Wireless Passive Strain Sensor Based on Surface Acoustic Wave Devices

    Directory of Open Access Journals (Sweden)

    T. Nomura

    2008-04-01

    Full Text Available Surface acoustic wave (SAW devices offer many attractive features for applications as chemical and physical sensors. In this paper, a novel SAW strain sensor that employs SAW delay lines has been designed. Two crossed delay lines were used to measure the two-dimensional strain. A wireless sensing system is also proposed for effective operation of the strain sensor. In addition, an electronic system for accurately measuring the phase characteristics of the signal wave from the passive strain sensor is proposed.

  17. 47 CFR 74.870 - Wireless video assist devices.

    Science.gov (United States)

    2010-10-01

    ...°03′15.0″ 118°14′31.3″ 470-476 14 476-482 15 482-488 16 488-494 17 500-506 19 506-512 20 512-518 21... picture and television producers, as defined in § 74.801 may operate wireless video assist devices on a...″ 75°09′19.6″ 494-500 18 500-506 19 506-512 20 512-518 21 Pittsburgh, PA 40°26′19.2″ 79°59′59.2″ 470...

  18. 4G antennas for wireless eyewear devices and related SAR

    Science.gov (United States)

    Cihangir, Aykut; Whittow, Will; Panagamuwa, Chinthana; Jacquemod, Gilles; Gianesello, Frédéric; Luxey, Cyril

    2015-11-01

    In this paper, we first present a feasibility study to design 4G antennas (700-960 MHz and 1.7-2.7 GHz) for eyewear devices. Those eyewear devices should be connected to the last generation cellular networks, Wireless Local Area Networks or wireless hotspots. Three coupling element type antennas with their matching networks are evaluated in terms of reflection coefficient and total radiation efficiency when the eyewear is placed on the user's head. We also present Specific Absorption Rate (SAR) simulations when the eyewear is positioned over a homogeneous SAM phantom and over a heterogeneous VH (Visible Human) phantom: the SAR levels are compared to international limit values. In a second step, we present experimental results obtained with 3D printed eyewear and coupling elements etched on a classical PCB substrate where the matching circuits are optimized close to the feeding point of the coupling element. Simulated and measured values are in very good agreement: 7 to 16% and 9 to 35% total efficiency are respectively obtained for the low- and high-frequency bands. However, simulated SAR values are somewhat higher than authorized levels with preoccupant high electromagnetic field distribution close to the eye of the user.

  19. Practical RSA-PAKE for Low-Power Device in Imbalanced Wireless Networks

    OpenAIRE

    Taek-Young Youn; Sewon Lee; Seok Hie Hong; Young-Ho Park

    2014-01-01

    For enhancing the security of ubiquitous communication, we have to consider three keywords: mobility, wireless, and low computing capability. In this paper, we study one of suitable security protocols for the ubiquitous communication environment. We discuss RSA-based password-authenticated key exchange (RSA-PAKE) protocols for imbalanced wireless networks where a party uses a low-power device to communicate with another party equipped with a powerful computing device. For imbalanced wireless ...

  20. Wireless Medical Devices for MRI-Guided Interventions

    Science.gov (United States)

    Venkateswaran, Madhav

    Wireless techniques can play an important role in next-generation, image-guided surgical techniques with integration strategies being the key. We present our investigations on three wireless applications. First, we validate a position and orientation independent method to noninvasively monitor wireless power delivery using current perturbation measurements of switched load modulation of the RF carrier. This is important for safe and efficient powering without using bulky batteries or invasive cables. Use of MRI transmit RF pulses for simultaneous powering is investigated in the second part. We develop system models for the MRI transmit chain, wireless powering circuits and a typical load. Detailed analysis and validation of nonlinear and cascaded modeling strategies are performed, useful for decoupled optimization of the harvester coil and RF-DC converter. MRI pulse sequences are investigated for suitability for simultaneous powering. Simulations indicate that a 1.8V, 2 mA load can be powered with a 100% duty cycle using a 30° fGRE sequence, despite the RF duty cycle being 44 mW for a 30° flip angle, consistent with model predictions. Investigations on imaging artifacts indicates that distortion is mostly restricted to within the physical span of the harvester coil in the imaging volume, with the homogeneous B1+ transmit field providing positioning flexibility to minimize this for simultaneous powering. The models are potentially valuable in designing wireless powering solutions for implantable devices with simultaneous real-time imaging in MRI-guided surgical suites. Finally in the last section, we model endovascular MRI coil coupling during RF transmit. FEM models for a series-resonant multimode coil and quadrature birdcage coil fields are developed and computationally efficient, circuit and full-wave simulations are used to model inductive coupling. The Bloch Siegert B1 mapping sequence is used for validating at 24, 28 and 34 microT background excitation

  1. Service and device discovery of nodes in a wireless sensor network

    NARCIS (Netherlands)

    Östmark, Å.; Lindgren, P.; van Halteren, Aart; Meppelink, L.

    2006-01-01

    Emerging wireless communication standards and more capable sensors and actuators have pushed further development of wireless sensor networks. Deploying a large number of sensor nodes requires a high-level framework enabling the devices to present themselves and the resources they hold. The device

  2. A Bilinear Pairing-Based Dynamic Key Management and Authentication for Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Chin-Ling Chen

    2015-01-01

    Full Text Available In recent years, wireless sensor networks have been used in a variety of environments; a wireless network infrastructure, established to communicate and exchange information in a monitoring area, has also been applied in different environments. However, for sensitive applications, security is the paramount issue. In this paper, we propose using bilinear pairing to design dynamic key management and authentication scheme of the hierarchical sensor network. We use the dynamic key management and the pairing-based cryptography (PBC to establish the session key and the hash message authentication code (HMAC to support the mutual authentication between the sensors and the base station. In addition, we also embed the capability of the Global Positioning System (GPS to cluster nodes to find the best path of the sensor network. The proposed scheme can also provide the requisite security of the dynamic key management, mutual authentication, and session key protection. Our scheme can defend against impersonation attack, replay attack, wormhole attack, and message manipulation attack.

  3. Wireless Communication of Intraoral Devices and Its Optimal Frequency Selection.

    Science.gov (United States)

    Park, Hangue; Ghovanloo, Maysam

    2014-12-01

    This paper explores communication methods and frequencies for wireless intraoral electronic devices, by using an intraoral tongue drive system (iTDS) as a practical example. Because intraoral devices do not meet the operating conditions of the body channel communication, we chose radio frequency communication. We evaluated and compared three frequencies in industrial, scientific, and medical bands (27 MHz, 433.9 MHz, and 2.48 GHz) in terms of their data link performance based on path loss and radiation patterns over horizontal and vertical planes. To do so, we dynamically minimize the impedance mismatch caused by the varying oral environment by applying the adaptive impedance matching technique to 433.9 MHz and 2.48 GHz bands. Experimental results showed that 27 MHz has the smallest path loss in the near-field up to 39 cm separation between transmitter and receiver antennas. However, 433.9 MHz shows the best performance beyond 39 cm and offers a maximum operating distance of 123 cm with 0 dBm transmitter output power. These distances were obtained by a bit error rate test and verified by a link budget analysis and full functionality test of the iTDS with computer access.

  4. Verification of electromagnetic effects from wireless devices in operating nuclear power plants

    Directory of Open Access Journals (Sweden)

    Song-Hae Ye

    2015-10-01

    Full Text Available Wireless communication technologies, especially smartphones, have become increasingly common. Wireless technology is widely used in general industry and this trend is also expected to grow with the development of wireless technology. However, wireless technology is not currently applied in any domestic operating nuclear power plants (NPPs because of the highest priority of the safety policy. Wireless technology is required in operating NPPs, however, in order to improve the emergency responses and work efficiency of the operators and maintenance personnel during its operation. The wired telephone network in domestic NPPs can be simply connected to a wireless local area network to use wireless devices. This design change can improve the ability of the operators and personnel to respond to an emergency situation by using important equipment for a safe shutdown. IEEE 802.11 smartphones (Wi-Fi standard, Internet Protocol (IP phones, personal digital assistant (PDA for field work, notebooks used with web cameras, and remote site monitoring tablet PCs for on-site testing may be considered as wireless devices that can be used in domestic operating NPPs. Despite its advantages, wireless technology has only been used during the overhaul period in Korean NPPs due to the electromagnetic influence of sensitive equipment and cyber security problems. This paper presents the electromagnetic verification results from major sensitive equipment after using wireless devices in domestic operating NPPs. It also provides a solution for electromagnetic interference/radio frequency interference (EMI/RFI from portable and fixed wireless devices with a Wi-Fi communication environment within domestic NPPs.

  5. Verification of electromagnetic effects from wireless devices in operating nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Song Hae; Kim, Young Sik; Lyou, Ho Sun; Kim, Min Suk [Korea Hydro and Nuclear Power Co. (KHNP), Central Research Institute, Daejeon (Korea, Republic of); Lyou, Joon [Dept. of Electronics Engineering, Chungnam National University, Daejeon (Korea, Republic of)

    2015-10-15

    Wireless communication technologies, especially smart phones, have become increasingly common. Wireless technology is widely used in general industry and this trend is also expected to grow with the development of wireless technology. However, wireless technology is not currently applied in any domestic operating nuclear power plants (NPPs) because of the highest priority of the safety policy. Wireless technology is required in operating NPPs, however, in order to improve the emergency responses and work efficiency of the operators and maintenance personnel during its operation. The wired telephone network in domestic NPPs can be simply connected to a wireless local area network to use wireless devices. This design change can improve the ability of the operators and personnel to respond to an emergency situation by using important equipment for a safe shutdown. IEEE 802.11 smart phones (Wi-Fi standard), Internet Protocol (IP) phones, personal digital assistant (PDA) for field work, notebooks used with web cameras, and remote site monitoring tablet PCs for on-site testing may be considered as wireless devices that can be used in domestic operating NPPs. Despite its advantages, wireless technology has only been used during the overhaul period in Korean NPPs due to the electromagnetic influence of sensitive equipment and cyber security problems. This paper presents the electromagnetic verification results from major sensitive equipment after using wireless devices in domestic operating NPPs. It also provides a solution for electromagnetic interference/radio frequency interference (EMI/RFI) from portable and fixed wireless devices with a Wi-Fi communication environment within domestic NPPs.

  6. 78 FR 12354 - Certain Wireless Consumer Electronics Devices and Components Thereof; Commission Determination...

    Science.gov (United States)

    2013-02-22

    ... From the Federal Register Online via the Government Publishing Office INTERNATIONAL TRADE COMMISSION Certain Wireless Consumer Electronics Devices and Components Thereof; Commission Determination Concerning an Initial Determination Granting a Motion To Amend Complaint and Notice of Investigation AGENCY...

  7. Hypergol Sensor Using Passive Wireless SAW Devices Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal describes the preliminary development of surface acoustic wave (SAW) based hypergolic fuel sensors for NASA application to distributed wireless leak...

  8. Use of consumer wireless devices by South Africans with severe communication disability

    Directory of Open Access Journals (Sweden)

    Juan Bornman

    2016-02-01

    Full Text Available Background: Advancements in wireless technology (e.g. cell phones and tablets have opened new communication opportunities and environments for individuals with severe communication disabilities. The advancement of these technologies poses challenges to ensuring that these individuals enjoy equal access to this increasingly essential technology. However, a paucity of research exists. Objectives: To describe the nature and frequency with which South African adults with severe communication disabilities have access to and use wireless devices, as well as the types of activities for which wireless devices are used. Method: Survey research was conducted with 30 individuals who use augmentative and alternative communication (AAC technology using the Survey of User Needs Questionnaire developed in the United States, and localized to the South African context. Results: All participants, despite their limited education, unemployment and low economic status, owned and/or used mainstream wireless devices. Slightly more than half of the participants (53.3% needed adaptations to their wireless devices. Advantages of using wireless devices were highlighted, including connecting with others (through using text messaging, social networking, making plans with others, sharing photos and videos with friends, for leisure activities (e.g. listening to music, watching videos, playing games, and for safety purposes (e.g. to navigate when lost, using the device when in trouble and needing immediate assistance. Conclusion: These wireless devices offer substantial benefits and opportunities to individuals with disabilities who rely on AAC in terms of independence, social participation, education and safety/security. However, they still do not enjoy equal opportunity to access and use wireless devices relative to the non-disabled population.

  9. Use of consumer wireless devices by South Africans with severe communication disability.

    Science.gov (United States)

    Bornman, Juan; Bryen, Diane Nelson; Moolman, Enid; Morris, John

    2016-01-01

    Advancements in wireless technology (e.g. cell phones and tablets) have opened new communication opportunities and environments for individuals with severe communication disabilities. The advancement of these technologies poses challenges to ensuring that these individuals enjoy equal access to this increasingly essential technology. However, a paucity of research exists. To describe the nature and frequency with which South African adults with severe communication disabilities have access to and use wireless devices, as well as the types of activities for which wireless devices are used. Survey research was conducted with 30 individuals who use augmentative and alternative communication (AAC) technology using the Survey of User Needs Questionnaire developed in the United States, and localized to the South African context. All participants, despite their limited education, unemployment and low economic status, owned and/or used mainstream wireless devices. Slightly more than half of the participants (53.3%) needed adaptations to their wireless devices. Advantages of using wireless devices were highlighted, including connecting with others (through using text messaging, social networking, making plans with others, sharing photos and videos with friends), for leisure activities (e.g. listening to music, watching videos, playing games), and for safety purposes (e.g. to navigate when lost, using the device when in trouble and needing immediate assistance). These wireless devices offer substantial benefits and opportunities to individuals with disabilities who rely on AAC in terms of independence, social participation, education and safety/security. However, they still do not enjoy equal opportunity to access and use wireless devices relative to the non-disabled population.

  10. A bilinear pairing based anonymous authentication scheme in wireless body area networks for mHealth.

    Science.gov (United States)

    Jiang, Qi; Lian, Xinxin; Yang, Chao; Ma, Jianfeng; Tian, Youliang; Yang, Yuanyuan

    2016-11-01

    Wireless body area networks (WBANs) have become one of the key components of mobile health (mHealth) which provides 24/7 health monitoring service and greatly improves the quality and efficiency of healthcare. However, users' concern about the security and privacy of their health information has become one of the major obstacles that impede the wide adoption of WBANs. Anonymous and unlinkable authentication is critical to protect the security and privacy of sensitive physiological information in transit from the client to the application provider. We first show that the anonymous authentication scheme of Wang and Zhang based on bilinear pairing is prone to client impersonation attack. Then, we propose an enhanced anonymous authentication scheme to remedy the flaw in Wang and Zhang's scheme. We give the security analysis to demonstrate that the enhanced scheme achieves the desired security features and withstands various known attacks.

  11. Intelligent wireless forensic model (IWFM) for moving devices between wireless networks

    CSIR Research Space (South Africa)

    Ngobeni, SJ

    2008-09-01

    Full Text Available There are currently many different types of wireless crime investigation tools designed for different purposes in order to track down intruders of wireless crime, like Intrusion Detection Systems (IDSs), Wlan-Jack, HotSpotter, Monkey Jack, TULP 2G...

  12. MIMO Device Performance Testing with the Wireless Cable Method

    DEFF Research Database (Denmark)

    Fan, Wei; Kyösti, Pekka; Hentilä, Lassi

    2018-01-01

    Conducted cable testing has been dominantly utilized in the industry to evaluate multiple-input multiple-output (MIMO) capable mobile terminals. Desired testing signals can be guided directly to the antenna ports on the mobile terminal by radio frequency (RF) coaxial cables in the conducted cable...... of the wireless cable method is done both in simulation and active throughput measurements. Future directions and applicability of the wireless cable method are also discussed....

  13. Simulation of devices mobility to estimate wireless channel quality metrics in 5G networks

    Science.gov (United States)

    Orlov, Yu.; Fedorov, S.; Samuylov, A.; Gaidamaka, Yu.; Molchanov, D.

    2017-07-01

    The problem of channel quality estimation for devices in a wireless 5G network is formulated. As a performance metrics of interest we choose the signal-to-interference-plus-noise ratio, which depends essentially on the distance between the communicating devices. A model with a plurality of moving devices in a bounded three-dimensional space and a simulation algorithm to determine the distances between the devices for a given motion model are devised.

  14. Using a Wireless Electroencephalography Device to Evaluate E-Health and E-Learning Interventions.

    Science.gov (United States)

    Mailhot, Tanya; Lavoie, Patrick; Maheu-Cadotte, Marc-André; Fontaine, Guillaume; Cournoyer, Alexis; Côté, José; Dupuis, France; Karsenti, Thierry; Cossette, Sylvie

    Measuring engagement and other reactions of patients and health professionals to e-health and e-learning interventions remains a challenge for researchers. The aim of this pilot study was to assess the feasibility and acceptability of using a wireless electroencephalography (EEG) device to measure affective (anxiety, enjoyment, relaxation) and cognitive (attention, engagement, interest) reactions of patients and healthcare professionals during e-health or e-learning interventions. Using a wireless EEG device, we measured patient (n = 6) and health professional (n = 7) reactions during a 10-minute session of an e-health or e-learning intervention. The following feasibility and acceptability indicators were assessed and compared for patients and healthcare professionals: number of eligible participants who consented to participate, reasons for refusal, time to install and calibrate the wireless EEG device, number of participants who completed the full 10-minute sessions, participant comfort when wearing the device, signal quality, and number of observations obtained for each reaction. The wireless EEG readings were compared to participant self-rating of their reactions. We obtained at least 75% of possible observations for attention, engagement, enjoyment, and interest. EEG scores were similar to self-reported scores, but they varied throughout the sessions, which gave information on participants' real-time reactions to the e-health/e-learning interventions. Results on the other indicators support the feasibility and acceptability of the wireless EEG device for both patients and professionals. Using the wireless EEG device was feasible and acceptable. Future studies must examine its use in other contexts of care and explore which components of the interventions affected participant reactions by combining wireless EEG and eye tracking.

  15. Printed wireless devices for low-cost, connected sensors for point-of-care applications

    CSIR Research Space (South Africa)

    Smith, Suzanne

    2017-11-01

    Full Text Available . 4. DISCUSSION The results illustrate the feasibility of implementing low-cost, flexible and wireless devices using printing techniques. Both NFC and UHF RFID technologies have been showcased, enabling different read-out platforms to be utilized, i... increasingly important to enable patient and result tracking and record-keeping [3,4]. Radio frequency identification (RFID) techniques provide a potential solution for POC data connectivity, by providing a wireless - and thus contamination...

  16. Wireless gyroscope platform enabled by a portable media device for quantifying wobble board therapy.

    Science.gov (United States)

    LeMoyne, Robert; Mastroianni, Timothy

    2017-07-01

    The wobble board enables a therapy strategy for rehabilitation of the ankle foot complex. Quantification of therapy, such as through the use of a wobble board, can facilitate a therapist's acuity for advancing and optimizing the overall therapy strategy. The portable media device, such as an iPod, can be equipped with a software application to function as a wireless gyroscope platform. Integration of the wobble board with the portable media device functioning as a wireless gyroscope enables the potential for patient to therapist interaction through connectivity to the Internet. A patient can conduct wobble board therapy for the ankle foot complex from the convenient vantage point of a homebound setting with therapy data transmitted wirelessly as email attachments. The gyroscope signal of the wobble board therapy can be consolidated into a feature set for machine learning classification. Using a multilayer perceptron neural network considerable classification accuracy has been achieved for differentiating between a hemiplegic affected ankle and unaffected ankle while using a wobble board. The combination of machine learning, wireless systems, such as a portable media device functioning as a wireless gyroscope, and a conventional therapy device, such as a wobble board, are envisioned to advance the capability to optimally impact the rehabilitation experience.

  17. Wireless power transfer for electric vehicles and mobile devices

    CERN Document Server

    Rim, Chun T

    2017-01-01

    From mobile, cable-free re-charging of electric vehicles, smart phones and laptops to collecting solar electricity from orbiting solar farms, wireless power transfer (WPT) technologies offer consumers and society enormous benefits. Written by innovators in the field, this comprehensive resource explains the fundamental principles and latest advances in WPT and illustrates key applications of this emergent technology.

  18. Cybersecurity Regulation of Wireless Devices for Performance and Assurance in the Age of “Medjacking”

    OpenAIRE

    Armstrong, David G.; Kleidermacher, David N.; Klonoff, David C.; Slepian, Marvin J.

    2015-01-01

    We are rapidly reaching a point where, as connected devices for monitoring and treating diabetes and other diseases become more pervasive and powerful, the likelihood of malicious medical device hacking (known as “medjacking”) is growing. While government could increase regulation, we have all been witness in recent times to the limitations and issues surrounding exclusive reliance on government. Herein we outline a preliminary framework for establishing security for wireless health devices b...

  19. The optimization based dynamic and cyclic working strategies for rechargeable wireless sensor networks with multiple base stations and wireless energy transfer devices.

    Science.gov (United States)

    Ding, Xu; Han, Jianghong; Shi, Lei

    2015-03-16

    In this paper, the optimal working schemes for wireless sensor networks with multiple base stations and wireless energy transfer devices are proposed. The wireless energy transfer devices also work as data gatherers while charging sensor nodes. The wireless sensor network is firstly divided into sub networks according to the concept of Voronoi diagram. Then, the entire energy replenishing procedure is split into the pre-normal and normal energy replenishing stages. With the objective of maximizing the sojourn time ratio of the wireless energy transfer device, a continuous time optimization problem for the normal energy replenishing cycle is formed according to constraints with which sensor nodes and wireless energy transfer devices should comply. Later on, the continuous time optimization problem is reshaped into a discrete multi-phased optimization problem, which yields the identical optimality. After linearizing it, we obtain a linear programming problem that can be solved efficiently. The working strategies of both sensor nodes and wireless energy transfer devices in the pre-normal replenishing stage are also discussed in this paper. The intensive simulations exhibit the dynamic and cyclic working schemes for the entire energy replenishing procedure. Additionally, a way of eliminating "bottleneck" sensor nodes is also developed in this paper.

  20. The Optimization Based Dynamic and Cyclic Working Strategies for Rechargeable Wireless Sensor Networks with Multiple Base Stations and Wireless Energy Transfer Devices

    Science.gov (United States)

    Ding, Xu; Han, Jianghong; Shi, Lei

    2015-01-01

    In this paper, the optimal working schemes for wireless sensor networks with multiple base stations and wireless energy transfer devices are proposed. The wireless energy transfer devices also work as data gatherers while charging sensor nodes. The wireless sensor network is firstly divided into sub networks according to the concept of Voronoi diagram. Then, the entire energy replenishing procedure is split into the pre-normal and normal energy replenishing stages. With the objective of maximizing the sojourn time ratio of the wireless energy transfer device, a continuous time optimization problem for the normal energy replenishing cycle is formed according to constraints with which sensor nodes and wireless energy transfer devices should comply. Later on, the continuous time optimization problem is reshaped into a discrete multi-phased optimization problem, which yields the identical optimality. After linearizing it, we obtain a linear programming problem that can be solved efficiently. The working strategies of both sensor nodes and wireless energy transfer devices in the pre-normal replenishing stage are also discussed in this paper. The intensive simulations exhibit the dynamic and cyclic working schemes for the entire energy replenishing procedure. Additionally, a way of eliminating “bottleneck” sensor nodes is also developed in this paper. PMID:25785305

  1. Wireless Network of Collaborative Physiological Signal Devices in a U-Healthcare System

    Science.gov (United States)

    Jung, Joonyoung; Kim, Daeyoung

    We designed and implemented collaborative physiological signal devices in a u-healthcare(ubiquitous healthcare) system. In this system, wireless body area network (WBAN) such as ZigBee is used to communicate between physiological signal devices and the mobile system. WBAN device needs a specific function for ubiquitous healthcare application. We show several collaborative physiological devices and propose WBAN mechanism such as a fast scanning algorithm, a dynamic discovery and installation mechanism, a reliable data transmission, a device access control for security, and a healthcare profile for u-healthcare system.

  2. Wireless, Web-Based Interactive Control of Optical Coherence Tomography with Mobile Devices.

    Science.gov (United States)

    Mehta, Rajvi; Nankivil, Derek; Zielinski, David J; Waterman, Gar; Keller, Brenton; Limkakeng, Alexander T; Kopper, Regis; Izatt, Joseph A; Kuo, Anthony N

    2017-01-01

    Optical coherence tomography (OCT) is widely used in ophthalmology clinics and has potential for more general medical settings and remote diagnostics. In anticipation of remote applications, we developed wireless interactive control of an OCT system using mobile devices. A web-based user interface (WebUI) was developed to interact with a handheld OCT system. The WebUI consisted of key OCT displays and controls ported to a webpage using HTML and JavaScript. Client-server relationships were created between the WebUI and the OCT system computer. The WebUI was accessed on a cellular phone mounted to the handheld OCT probe to wirelessly control the OCT system. Twenty subjects were imaged using the WebUI to assess the system. System latency was measured using different connection types (wireless 802.11n only, wireless to remote virtual private network [VPN], and cellular). Using a cellular phone, the WebUI was successfully used to capture posterior eye OCT images in all subjects. Simultaneous interactivity by a remote user on a laptop was also demonstrated. On average, use of the WebUI added only 58, 95, and 170 ms to the system latency using wireless only, wireless to VPN, and cellular connections, respectively. Qualitatively, operator usage was not affected. Using a WebUI, we demonstrated wireless and remote control of an OCT system with mobile devices. The web and open source software tools used in this project make it possible for any mobile device to potentially control an OCT system through a WebUI. This platform can be a basis for remote, teleophthalmology applications using OCT.

  3. Inkjet-Printed Wideband Antenna on Resin-Coated Paper Substrate for Curved Wireless Devices

    KAUST Repository

    Abutarboush, Hattan

    2015-04-28

    A low-cost, inkjet-printed multiband monopole antenna for conformal wireless applications is presented for the first time. The antenna is implemented on a low cost resin coated paper substrate which can be used for conformal devices. The antenna developed here is composed of four branch lines on the radiator and three L-shaped slots on the ground plane that help to generate multiple bands without increasing the size of the antenna. The antenna has a compact size, making it suitable for handheld and wearable wireless devices. Details of the inkjet printing fabrication processes and related issues are presented. The antennas were characterized under flat and bent conditions and the results indicate that the antennas can cover most bands for mobile and wireless applications such as PCS, UMTS, GSM1900 and WLAN

  4. 76 FR 17965 - In the Matter of Certain Mobile Telephones and Wireless Communication Devices Featuring Digital...

    Science.gov (United States)

    2011-03-31

    ... COMMISSION In the Matter of Certain Mobile Telephones and Wireless Communication Devices Featuring Digital... digital cameras, and components thereof, that infringe certain claims of U.S. Patent No. 6,292,218 (``the... health and welfare, (2) competitive conditions in the U.S. economy, (3) U.S. production of articles that...

  5. Wireless Coexistence and EMC of Bluetooth and 802.11b Devices in Controlled Laboratory Settings.

    Science.gov (United States)

    Seidman, Seth; Kainz, Wolfgang; Ruggera, Paul; Mendoza, Gonzalo

    2011-01-01

    This paper presents experimental testing that has been performed on wireless communication devices as victims of electromagnetic interference (EMI). Wireless victims included universal serial bus (USB) network adapters and personal digital assistants (PDAs) equipped with IEEE 802.11b and Bluetooth technologies. The experimental data in this paper was gathered in an anechoic chamber and a gigahertz transverse electromagnetic (GTEM) cell to ensure reliable and repeatable results. This testing includes: Electromagnetic compatibility (EMC) testing performed in accordance with IEC 60601-1-2, an in-band sweep of EMC testing, and coexistence testing. The tests in this study show that a Bluetooth communication was able to coexist with other Bluetooth devices with no decrease in throughput and no communication breakdowns. However, testing revealed a significant decrease in throughput and increase in communication breakdowns when an 802.11b source is near an 802.11b victim. In a hospital setting decreased throughput and communication breakdowns can cause wireless medical devices to fail. It is therefore vital to have an understanding of the effect EMI can have on wireless communication devices.

  6. Diagnostic Accuracy of microEEG: A Miniature, Wireless EEG Device

    OpenAIRE

    Grant, Arthur C.; Abdel-Baki, Samah G.; Omurtag, Ahmet; Sinert, Richard; Chari, Geetha; Malhotra, Schweta; Weedon, Jeremy; Fenton, Andre A.; Zehtabchi, Shahriar

    2014-01-01

    Measuring the diagnostic accuracy (DA) of an EEG device is unconventional and complicated by imperfect interrater reliability. We sought to compare the DA of a miniature, wireless, battery-powered EEG device (“microEEG”) to a reference EEG machine in emergency department (ED) patients with altered mental status (AMS). 225 ED patients with AMS underwent 3 EEGs. EEG1 (Nicolet Monitor, “reference”) and EEG2 (microEEG) were recorded simultaneously with EEG cup electrodes using a signal splitter. ...

  7. Cybersecurity Regulation of Wireless Devices for Performance and Assurance in the Age of “Medjacking”

    Science.gov (United States)

    Armstrong, David G.; Kleidermacher, David N.; Klonoff, David C.; Slepian, Marvin J.

    2015-01-01

    We are rapidly reaching a point where, as connected devices for monitoring and treating diabetes and other diseases become more pervasive and powerful, the likelihood of malicious medical device hacking (known as “medjacking”) is growing. While government could increase regulation, we have all been witness in recent times to the limitations and issues surrounding exclusive reliance on government. Herein we outline a preliminary framework for establishing security for wireless health devices based on international common criteria. Creation of an independent medical device cybersecurity body is suggested. The goal is to allow for continued growth and innovation while simultaneously fostering security, public trust, and confidence. PMID:26319227

  8. Cybersecurity Regulation of Wireless Devices for Performance and Assurance in the Age of "Medjacking".

    Science.gov (United States)

    Armstrong, David G; Kleidermacher, David N; Klonoff, David C; Slepian, Marvin J

    2015-08-27

    We are rapidly reaching a point where, as connected devices for monitoring and treating diabetes and other diseases become more pervasive and powerful, the likelihood of malicious medical device hacking (known as "medjacking") is growing. While government could increase regulation, we have all been witness in recent times to the limitations and issues surrounding exclusive reliance on government. Herein we outline a preliminary framework for establishing security for wireless health devices based on international common criteria. Creation of an independent medical device cybersecurity body is suggested. The goal is to allow for continued growth and innovation while simultaneously fostering security, public trust, and confidence. © 2015 Diabetes Technology Society.

  9. Scalable Video Streaming Relay for Smart Mobile Devices in Wireless Networks.

    Science.gov (United States)

    Kwon, Dongwoo; Je, Huigwang; Kim, Hyeonwoo; Ju, Hongtaek; An, Donghyeok

    2016-01-01

    Recently, smart mobile devices and wireless communication technologies such as WiFi, third generation (3G), and long-term evolution (LTE) have been rapidly deployed. Many smart mobile device users can access the Internet wirelessly, which has increased mobile traffic. In 2014, more than half of the mobile traffic around the world was devoted to satisfying the increased demand for the video streaming. In this paper, we propose a scalable video streaming relay scheme. Because many collisions degrade the scalability of video streaming, we first separate networks to prevent excessive contention between devices. In addition, the member device controls the video download rate in order to adapt to video playback. If the data are sufficiently buffered, the member device stops the download. If not, it requests additional video data. We implemented apps to evaluate the proposed scheme and conducted experiments with smart mobile devices. The results showed that our scheme improves the scalability of video streaming in a wireless local area network (WLAN).

  10. Documentation goes wireless: a look at mobile healthcare computing devices.

    Science.gov (United States)

    Waegemann, C Peter; Tessier, Claudia

    2002-09-01

    Patient care information often suffers as it travels from handwritten notes, dictation, or the memory of the clinician to the medical record. Hand-held devices equipped with mobile healthcare aplications can bring documentatin to the point of care. In this article, learn how mobile healthcare computing devices can decrease medical errors, increase efficiency, and improve the delivery of care.

  11. Wireless photoplethysmographic device for heart rate variability signal acquisition and analysis.

    Science.gov (United States)

    Reyes, Ivan; Nazeran, Homer; Franco, Mario; Haltiwanger, Emily

    2012-01-01

    The photoplethysmographic (PPG) signal has the potential to aid in the acquisition and analysis of heart rate variability (HRV) signal: a non-invasive quantitative marker of the autonomic nervous system that could be used to assess cardiac health and other physiologic conditions. A low-power wireless PPG device was custom-developed to monitor, acquire and analyze the arterial pulse in the finger. The system consisted of an optical sensor to detect arterial pulse as variations in reflected light intensity, signal conditioning circuitry to process the reflected light signal, a microcontroller to control PPG signal acquisition, digitization and wireless transmission, a receiver to collect the transmitted digital data and convert them back to their analog representations. A personal computer was used to further process the captured PPG signals and display them. A MATLAB program was then developed to capture the PPG data, detect the RR peaks, perform spectral analysis of the PPG data, and extract the HRV signal. A user-friendly graphical user interface (GUI) was developed in LabView to display the PPG data and their spectra. The performance of each module (sensing unit, signal conditioning, wireless transmission/reception units, and graphical user interface) was assessed individually and the device was then tested as a whole. Consequently, PPG data were obtained from five healthy individuals to test the utility of the wireless system. The device was able to reliably acquire the PPG signals from the volunteers. To validate the accuracy of the MATLAB codes, RR peak information from each subject was fed into Kubios software as a text file. Kubios was able to generate a report sheet with the time domain and frequency domain parameters of the acquired data. These features were then compared against those calculated by MATLAB. The preliminary results demonstrate that the prototype wireless device could be used to perform HRV signal acquisition and analysis.

  12. In-vitro platform to study ultrasound as source for wireless energy transfer and communication for implanted medical devices.

    Science.gov (United States)

    Mazzilli, Francesco; Peisino, Michela; Mitouassiwou, Rostand; Cotte, Benjamin; Thoppay, Prakash; Lafon, Cyril; Favre, Patrick; Meurville, Eric; Dehollain, Catherine

    2010-01-01

    A platform to study ultrasound as a source for wireless energy transfer and communication for implanted medical devices is described. A tank is used as a container for a pair of electroacoustic transducers, where a control unit is fixed to one wall of the tank and a transponder can be manually moved in three axes and rotate using a mechanical system. The tank is filled with water to allow acoustic energy and data transfer, and the system is optimized to avoid parasitic effects due to cables, reflection paths and cross talk problems. A printed circuit board is developed to test energy scavenging such that enough acoustic intensity is generated by the control unit to recharge a battery loaded to the transponder. In the same manner, a second printed circuit board is fabricated to study transmission of information through acoustic waves.

  13. Wireless miniature implantable devices and ASICs for monitoring, treatment, and study of glaucoma and cardiac disease

    Science.gov (United States)

    Chow, Eric Y.

    Glaucoma affects about 65 million people and is the second leading cause of blindness in the world. Although the condition is irreversible and incurable, early detection is vital to slowing and even stopping the progression of the disease. Our work focuses on the design, fabrication, and assembly of a continuous active glaucoma intraocular pressure (IOP) monitor that provides clinicians with the necessary data to more accurately diagnose and treat patients. Major benefits of an active monitoring device include the potential to develop a closed-loop treatment system and to operate independently for extended periods of time. The fully wireless operation uses gigahertzfrequency electromagnetic wave propagation, which allows for an orientation independent transfer of power and data over reasonable distances. Our system is comprised of a MEMS capacitive sensor, capacitive power storage array, ASIC, and monopole antenna assembled into a biocompatible liquid crystal polymer (LCP) package. We have performed in vivo trials on rabbits, both chronic and acute, to validate system functionality, fully wireless feasibility, and biocompatibility. Heart failure (HF) affects approximately 2% of the adult population in developed countries and 6-10% of people over the age of 65. Continuous monitoring of blood pressure, flow, and chemistry from a minimally invasive device can serve as a diagnostic and early-warning system for cardiac health. We developed a miniaturized system attached to the outer surface of an FDA approved stent, used as both the antenna for wireless telemetry/powering and structural support. The system comprises of a MEMS pressure sensor, ASIC for the sensor interface and wireless capabilities, LCP substrate, and FDA approved stent. In vivo studies on pigs validated functionality and fully wireless operation and demonstrate the feasibility of a stent-based wireless implant for continuous monitoring of blood pressure as well as other parameters including oxygen, flow

  14. MedMon: securing medical devices through wireless monitoring and anomaly detection.

    Science.gov (United States)

    Zhang, Meng; Raghunathan, Anand; Jha, Niraj K

    2013-12-01

    Rapid advances in personal healthcare systems based on implantable and wearable medical devices promise to greatly improve the quality of diagnosis and treatment for a range of medical conditions. However, the increasing programmability and wireless connectivity of medical devices also open up opportunities for malicious attackers. Unfortunately, implantable/wearable medical devices come with extreme size and power constraints, and unique usage models, making it infeasible to simply borrow conventional security solutions such as cryptography. We propose a general framework for securing medical devices based on wireless channel monitoring and anomaly detection. Our proposal is based on a medical security monitor (MedMon) that snoops on all the radio-frequency wireless communications to/from medical devices and uses multi-layered anomaly detection to identify potentially malicious transactions. Upon detection of a malicious transaction, MedMon takes appropriate response actions, which could range from passive (notifying the user) to active (jamming the packets so that they do not reach the medical device). A key benefit of MedMon is that it is applicable to existing medical devices that are in use by patients, with no hardware or software modifications to them. Consequently, it also leads to zero power overheads on these devices. We demonstrate the feasibility of our proposal by developing a prototype implementation for an insulin delivery system using off-the-shelf components (USRP software-defined radio). We evaluate its effectiveness under several attack scenarios. Our results show that MedMon can detect virtually all naive attacks and a large fraction of more sophisticated attacks, suggesting that it is an effective approach to enhancing the security of medical devices.

  15. Electronic Devices, Methods, and Computer Program Products for Selecting an Antenna Element Based on a Wireless Communication Performance Criterion

    DEFF Research Database (Denmark)

    2014-01-01

    A method of operating an electronic device includes providing a plurality of antenna elements, evaluating a wireless communication performance criterion to obtain a performance evaluation, and assigning a first one of the plurality of antenna elements to a main wireless signal reception and trans...

  16. The Feasibility of Assessing Alcohol Use among College Students Using Wireless Mobile Devices: Implications for Health Education and Behavioural Research

    Science.gov (United States)

    Mays, Darren; Cremeens, Jennifer; Usdan, Stuart; Martin, Ryan J.; Arriola, Kimberly J.; Bernhardt, Jay M.

    2010-01-01

    Objective: This study examined the feasibility of using wireless mobile devices (MDs) to collect daily alcohol information among college students, in particular examining feasibility in the context of costs associated with the use of wireless MDs. This study reports on practical aspects of using MDs to collect alcohol data, including compliance,…

  17. A Novel Wireless Wearable Volatile Organic Compound (VOC Monitoring Device with Disposable Sensors

    Directory of Open Access Journals (Sweden)

    Yue Deng

    2016-12-01

    Full Text Available A novel portable wireless volatile organic compound (VOC monitoring device with disposable sensors is presented. The device is miniaturized, light, easy-to-use, and cost-effective. Different field tests have been carried out to identify the operational, analytical, and functional performance of the device and its sensors. The device was compared to a commercial photo-ionization detector, gas chromatography-mass spectrometry, and carbon monoxide detector. In addition, environmental operational conditions, such as barometric change, temperature change and wind conditions were also tested to evaluate the device performance. The multiple comparisons and tests indicate that the proposed VOC device is adequate to characterize personal exposure in many real-world scenarios and is applicable for personal daily use.

  18. A Novel Wireless Wearable Volatile Organic Compound (VOC) Monitoring Device with Disposable Sensors.

    Science.gov (United States)

    Deng, Yue; Chen, Cheng; Xian, Xiaojun; Tsow, Francis; Verma, Gaurav; McConnell, Rob; Fruin, Scott; Tao, Nongjian; Forzani, Erica S

    2016-12-03

    A novel portable wireless volatile organic compound (VOC) monitoring device with disposable sensors is presented. The device is miniaturized, light, easy-to-use, and cost-effective. Different field tests have been carried out to identify the operational, analytical, and functional performance of the device and its sensors. The device was compared to a commercial photo-ionization detector, gas chromatography-mass spectrometry, and carbon monoxide detector. In addition, environmental operational conditions, such as barometric change, temperature change and wind conditions were also tested to evaluate the device performance. The multiple comparisons and tests indicate that the proposed VOC device is adequate to characterize personal exposure in many real-world scenarios and is applicable for personal daily use.

  19. Accuracy Enhancements for Positioning of Mobile Devices in Wireless Communication Networks

    DEFF Research Database (Denmark)

    Figueiras, Joao

    , tracking wireless devices is a challenging problem. In order to get better results, we propose a solution which restricts the movement models of the mobile devices. This restriction, by relying on the assumption that users typically move in segment-wise linear trajectories, outperforms the standard...... communication among users, cooperative positioning strategies aim at localizing devices as a group and not as individuals. In order to reach this goal it is necessary to combine measurements from two domains: device-to-device links and cellular links. Since this combination of information...... is not a straightforward task, this dissertation proposes two different solutions for solving the problem. The main approach is to use a Bayesian filtering framework design in such a way that both types of measurements can contribute in a balanced manner to a single estimation of positions for each cooperative device...

  20. A novel energy harvesting device for self-monitoring wireless sensor node in fluid dampers

    Science.gov (United States)

    Wang, Si Qi; Yu, Miao; Fu, Jie; Choi, S. B.; Li, Ping

    2012-08-01

    This paper mainly investigates energy supply capacity of a novel energy harvesting device which is directly connected to the piston head of a fluid damper. The harvested energy obtained in this way can be used for the operation of a wireless sensor node required for the self-powered real-time monitoring sensor system of fluid dampers primarily applied to structural damage protection. A theoretical equation is derived to predict the harvested electrical power of a fluid damper with an energy harvesting device. Three experiments are carried out, and the results show that theoretical and experimental power values are basically consistent. In addition, it is shown that the harvested electrical power enables the wireless sensor node to work normally.

  1. Authenticated Encryption for Low-Power Reconfigurable Wireless Devices

    DEFF Research Database (Denmark)

    Khajuria, Samant; Andersen, Birger

    2013-01-01

    this enabling technology, these radios have to propose cryptographic services such as con- fidentiality, integrity and authentication. Therefore, integration of security services to these low-power devices is very challenging and crucial as they have limited resources and computational capabilities...

  2. Fully implantable, battery-free wireless optoelectronic devices for spinal optogenetics.

    Science.gov (United States)

    Samineni, Vijay K; Yoon, Jangyeol; Crawford, Kaitlyn E; Jeong, Yu Ra; McKenzie, Kajanna C; Shin, Gunchul; Xie, Zhaoqian; Sundaram, Saranya S; Li, Yuhang; Yang, Min Young; Kim, Jeonghyun; Wu, Di; Xue, Yeguang; Feng, Xue; Huang, Yonggang; Mickle, Aaron D; Banks, Anthony; Ha, Jeong Sook; Golden, Judith P; Rogers, John A; Gereau, Robert W

    2017-11-01

    The advent of optogenetic tools has allowed unprecedented insights into the organization of neuronal networks. Although recently developed technologies have enabled implementation of optogenetics for studies of brain function in freely moving, untethered animals, wireless powering and device durability pose challenges in studies of spinal cord circuits where dynamic, multidimensional motions against hard and soft surrounding tissues can lead to device degradation. We demonstrate here a fully implantable optoelectronic device powered by near-field wireless communication technology, with a thin and flexible open architecture that provides excellent mechanical durability, robust sealing against biofluid penetration and fidelity in wireless activation, thereby allowing for long-term optical stimulation of the spinal cord without constraint on the natural behaviors of the animals. The system consists of a double-layer, rectangular-shaped magnetic coil antenna connected to a microscale inorganic light-emitting diode (μ-ILED) on a thin, flexible probe that can be implanted just above the dura of the mouse spinal cord for effective stimulation of light-sensitive proteins expressed in neurons in the dorsal horn. Wireless optogenetic activation of TRPV1-ChR2 afferents with spinal μ-ILEDs causes nocifensive behaviors and robust real-time place aversion with sustained operation in animals over periods of several weeks to months. The relatively low-cost electronics required for control of the systems, together with the biocompatibility and robust operation of these devices will allow broad application of optogenetics in future studies of spinal circuits, as well as various peripheral targets, in awake, freely moving and untethered animals, where existing approaches have limited utility.

  3. Adaption of Cognitive Radio technology to low-cost and low-power wireless Personal Area Network devices

    DEFF Research Database (Denmark)

    Rohde, John; Toftegaard, Thomas Skjødeberg

    2011-01-01

    The application of wireless personal area network (WPAN) and simple point-to-point wireless communication devices has increased drastically both in private household and in our workspaces in general over the last decade. Combined with the fact that the total number of wireless devices...... and associated standards present in the wireless environment is experiencing an extreme growth, the frequency spectrum scarcity is exposed as a severe challenge. Setting up efficient and reliable wireless WPAN links can be challenging even today. This is especially true because of the intensive use...... discusses the challenges associated with the implementation of highly reliable low-power WPAN networks for the future and the adaption of Cognitive Radio technology as a potential solution. A brief status on the maturity of CR technology will be presented as an integral part of this discussion....

  4. Developing a reproducible non-line-of-sight experimental setup for testing wireless medical device coexistence utilizing ZigBee.

    Science.gov (United States)

    LaSorte, Nickolas J; Rajab, Samer A; Refai, Hazem H

    2012-11-01

    The integration of heterogeneous wireless technologies is believed to aid revolutionary healthcare delivery in hospitals and residential care. Wireless medical device coexistence is a growing concern given the ubiquity of wireless technology. In spite of this, a consensus standard that addresses risks associated with wireless heterogeneous networks has not been adopted. This paper serves as a starting point by recommending a practice for assessing the coexistence of a wireless medical device in a non-line-of-sight environment utilizing 802.15.4 in a practical, versatile, and reproducible test setup. This paper provides an extensive survey of other coexistence studies concerning 802.15.4 and 802.11 and reports on the authors' coexistence testing inside and outside an anechoic chamber. Results are compared against a non-line-of-sight test setup. Findings relative to co-channel and adjacent channel interference were consistent with results reported in the literature.

  5. Laser Direct Writing and Selective Metallization of Metallic Circuits for Integrated Wireless Devices.

    Science.gov (United States)

    Cai, Jinguang; Lv, Chao; Watanabe, Akira

    2018-01-10

    Portable and wearable devices have attracted wide research attention due to their intimate relations with human daily life. As basic structures in the devices, the preparation of high-conductive metallic circuits or micro-circuits on flexible substrates should be facile, cost-effective, and easily integrated with other electronic units. In this work, high-conductive carbon/Ni composite structures were prepared by using a facile laser direct writing method, followed by an electroless Ni plating process, which exhibit a 3-order lower sheet resistance of less than 0.1 ohm/sq compared to original structures before plating, showing the potential for practical use. The carbon/Ni composite structures exhibited a certain flexibility and excellent anti-scratch property due to the tight deposition of Ni layers on carbon surfaces. On the basis of this approach, a wireless charging and storage device on a polyimide film was demonstrated by integrating an outer rectangle carbon/Ni composite coil for harvesting electromagnetic waves and an inner carbon micro-supercapacitor for energy storage, which can be fast charged wirelessly by a commercial wireless charger. Furthermore, a near-field communication (NFC) tag was prepared by combining a carbon/Ni composite coil for harvesting signals and a commercial IC chip for data storage, which can be used as an NFC tag for practical application.

  6. A passive wireless multi-sensor SAW technology device and system perspectives.

    Science.gov (United States)

    Malocha, Donald C; Gallagher, Mark; Fisher, Brian; Humphries, James; Gallagher, Daniel; Kozlovski, Nikolai

    2013-05-10

    This paper will discuss a SAW passive, wireless multi-sensor system under development by our group for the past several years. The device focus is on orthogonal frequency coded (OFC) SAW sensors, which use both frequency diversity and pulse position reflectors to encode the device ID and will be briefly contrasted to other embodiments. A synchronous correlator transceiver is used for the hardware and post processing and correlation techniques of the received signal to extract the sensor information will be presented. Critical device and system parameters addressed include encoding, operational range, SAW device parameters, post-processing, and antenna-SAW device integration. A fully developed 915 MHz OFC SAW multi-sensor system is used to show experimental results. The system is based on a software radio approach that provides great flexibility for future enhancements and diverse sensor applications. Several different sensor types using the OFC SAW platform are shown.

  7. A Passive Wireless Multi-Sensor SAW Technology Device and System Perspectives

    Directory of Open Access Journals (Sweden)

    Nikolai Kozlovski

    2013-05-01

    Full Text Available This paper will discuss a SAW passive, wireless multi-sensor system under development by our group for the past several years. The device focus is on orthogonal frequency coded (OFC SAW sensors, which use both frequency diversity and pulse position reflectors to encode the device ID and will be briefly contrasted to other embodiments. A synchronous correlator transceiver is used for the hardware and post processing and correlation techniques of the received signal to extract the sensor information will be presented. Critical device and system parameters addressed include encoding, operational range, SAW device parameters, post-processing, and antenna-SAW device integration. A fully developed 915 MHz OFC SAW multi-sensor system is used to show experimental results. The system is based on a software radio approach that provides great flexibility for future enhancements and diverse sensor applications. Several different sensor types using the OFC SAW platform are shown.

  8. a Gan on sic Hfet Device Technology for Wireless Infrastructure Applications

    Science.gov (United States)

    Green, B.; Henry, H.; Moore, K.; Abdou, J.; Lawrence, R.; Clayton, F.; Miller, M.; Crowder, J.; Mares, E.; Hartin, O.; Liu, C.; Weitzel, C.

    2007-06-01

    This paper presents Freescale's baseline GaN device technology for wireless infrastructure applications. At 48 V drain bias and 2.1 GHz operating frequency 10-11 W/mm, 62-67% power-added efficiency (PAE) is realized on 0.3 mm devices and 74 W (5.9 W/mm), 55% PAE is demonstrated for 12.6 mm devices. A simple thermal model shows that a more than twofold increase in channel temperature is responsible for limiting the CW power density on the 12.6 mm compared to 0.3 mm devices. The addition of through wafer source vias to improve gain and tuning the device in a fixture optimized for efficiency yield an output power of 57W (4.7 W/mm), PAE of 66%, and a calculated channel temperature of approximately 137°C at a 28 V bias.

  9. Semiconductor devices for entangled photon pair generation: a review

    Science.gov (United States)

    Orieux, Adeline; Versteegh, Marijn A. M.; Jöns, Klaus D.; Ducci, Sara

    2017-07-01

    Entanglement is one of the most fascinating properties of quantum mechanical systems; when two particles are entangled the measurement of the properties of one of the two allows the properties of the other to be instantaneously known, whatever the distance separating them. In parallel with fundamental research on the foundations of quantum mechanics performed on complex experimental set-ups, we assist today with bourgeoning of quantum information technologies bound to exploit entanglement for a large variety of applications such as secure communications, metrology and computation. Among the different physical systems under investigation, those involving photonic components are likely to play a central role and in this context semiconductor materials exhibit a huge potential in terms of integration of several quantum components in miniature chips. In this article we review the recent progress in the development of semiconductor devices emitting entangled photons. We will present the physical processes allowing the generation of entanglement and the tools to characterize it; we will give an overview of major recent results of the last few years and highlight perspectives for future developments.

  10. A Review of Assistive Listening Device and Digital Wireless Technology for Hearing Instruments

    Science.gov (United States)

    Kim, Chun Hyeok

    2014-01-01

    Assistive listening devices (ALDs) refer to various types of amplification equipment designed to improve the communication of individuals with hard of hearing to enhance the accessibility to speech signal when individual hearing instruments are not sufficient. There are many types of ALDs to overcome a triangle of speech to noise ratio (SNR) problems, noise, distance, and reverberation. ALDs vary in their internal electronic mechanisms ranging from simple hard-wire microphone-amplifier units to more sophisticated broadcasting systems. They usually use microphones to capture an audio source and broadcast it wirelessly over a frequency modulation (FM), infra-red, induction loop, or other transmission techniques. The seven types of ALDs are introduced including hardwire devices, FM sound system, infra-red sound system, induction loop system, telephone listening devices, television, and alert/alarm system. Further development of digital wireless technology in hearing instruments will make possible direct communication with ALDs without any accessories in the near future. There are two technology solutions for digital wireless hearing instruments improving SNR and convenience. One is near-field magnetic induction combined with Bluetooth radio frequency (RF) transmission or proprietary RF transmission and the other is proprietary RF transmission alone. Recently launched digital wireless hearing aid applying this new technology can communicate from the hearing instrument to personal computer, phones, Wi-Fi, alert systems, and ALDs via iPhone, iPad, and iPod. However, it comes with its own iOS application offering a range of features but there is no option for Android users as of this moment. PMID:25566400

  11. A review of assistive listening device and digital wireless technology for hearing instruments.

    Science.gov (United States)

    Kim, Jin Sook; Kim, Chun Hyeok

    2014-12-01

    Assistive listening devices (ALDs) refer to various types of amplification equipment designed to improve the communication of individuals with hard of hearing to enhance the accessibility to speech signal when individual hearing instruments are not sufficient. There are many types of ALDs to overcome a triangle of speech to noise ratio (SNR) problems, noise, distance, and reverberation. ALDs vary in their internal electronic mechanisms ranging from simple hard-wire microphone-amplifier units to more sophisticated broadcasting systems. They usually use microphones to capture an audio source and broadcast it wirelessly over a frequency modulation (FM), infra-red, induction loop, or other transmission techniques. The seven types of ALDs are introduced including hardwire devices, FM sound system, infra-red sound system, induction loop system, telephone listening devices, television, and alert/alarm system. Further development of digital wireless technology in hearing instruments will make possible direct communication with ALDs without any accessories in the near future. There are two technology solutions for digital wireless hearing instruments improving SNR and convenience. One is near-field magnetic induction combined with Bluetooth radio frequency (RF) transmission or proprietary RF transmission and the other is proprietary RF transmission alone. Recently launched digital wireless hearing aid applying this new technology can communicate from the hearing instrument to personal computer, phones, Wi-Fi, alert systems, and ALDs via iPhone, iPad, and iPod. However, it comes with its own iOS application offering a range of features but there is no option for Android users as of this moment.

  12. Wireless recording systems: from noninvasive EEG-NIRS to invasive EEG devices.

    Science.gov (United States)

    Sawan, Mohamad; Salam, Muhammad T; Le Lan, Jérôme; Kassab, Amal; Gelinas, Sébastien; Vannasing, Phetsamone; Lesage, Frédéric; Lassonde, Maryse; Nguyen, Dang K

    2013-04-01

    In this paper, we present the design and implementation of a wireless wearable electronic system dedicated to remote data recording for brain monitoring. The reported wireless recording system is used for a) simultaneous near-infrared spectrometry (NIRS) and scalp electro-encephalography (EEG) for noninvasive monitoring and b) intracerebral EEG (icEEG) for invasive monitoring. Bluetooth and dual radio links were introduced for these recordings. The Bluetooth-based device was embedded in a noninvasive multichannel EEG-NIRS system for easy portability and long-term monitoring. On the other hand, the 32-channel implantable recording device offers 24-bit resolution, tunable features, and a sampling frequency up to 2 kHz per channel. The analog front-end preamplifier presents low input-referred noise of 5 μ VRMS and a signal-to-noise ratio of 112 dB. The communication link is implemented using a dual-band radio frequency transceiver offering a half-duplex 800 kb/s data rate, 16.5 mW power consumption and less than 10(-10) post-correction Bit-Error Rate (BER). The designed system can be accessed and controlled by a computer with a user-friendly graphical interface. The proposed wireless implantable recording device was tested in vitro using real icEEG signals from two patients with refractory epilepsy. The wirelessly recorded signals were compared to the original signals recorded using wired-connection, and measured normalized root-mean square deviation was under 2%.

  13. Improved Selectivity From a Wavelength Addressable Device for Wireless Stimulation of Neural Tissue

    Directory of Open Access Journals (Sweden)

    Elif Ç. Seymour

    2014-02-01

    Full Text Available Electrical neural stimulation with micro electrodes is a promising technique for restoring lost functions in the central nervous system as a result of injury or disease. One of the problems related to current neural stimulators is the tissue response due to the connecting wires and the presence of a rigid electrode inside soft neural tissue. We have developed a novel, optically activated, microscale photovoltaic neurostimulator based on a custom layered compound semiconductor heterostructure that is both wireless and has a comparatively small volume. Optical activation provides a wireless means of energy transfer to the neurostimulator, eliminating wires and the associated complications. This neurostimulator was shown to evoke action potentials and a functional motor response in the rat spinal cord. In this work, we extend our design to include wavelength selectivity and thus allowing independent activation of devices. As a proof of concept, we fabricated two different microscale devices with different spectral responsivities in the near-infrared region. We assessed the improved addressability of individual devices via wavelength selectivity as compared to spatial selectivity alone through on-bench optical measurements of the devices in combination with an in vivo light intensity profile in the rat cortex obtained in a previous study. We show that wavelength selectivity improves the individual addressability of the floating stimulators, thus increasing the number of devices that can be implanted in close proximity to each other.

  14. Comparisons of Self-reported Glaucoma Medication Adherence With a New Wireless Device: A Pilot Study.

    Science.gov (United States)

    Gatwood, Justin D; Johnson, Jordan; Jerkins, Brian

    2017-11-01

    To compare use of topical medications between a wireless monitoring device and validated self-reported measures of glaucoma medication adherence. This study involved adults from a group ophthalmology practice diagnosed with and being medicinally treated for glaucoma who were not scheduled for a surgery during the study period. Subjects were required to use a new wireless device to dispense their glaucoma medication for 2 months, and were surveyed at baseline and immediately following the study to assess mobile phone use, glaucoma-related self-efficacy, and medication adherence. Complete data (survey and accurate device recordings) were available for 23 subjects at both baseline and endpoint. Median adherence, as measured by the device, was 82% and dropped slightly between 30-day periods, from 83% to 77%. Similarly, the percent adherent (dosing at least 75% of the time) dropped significantly between months according to both the device (78.3% and 52.2%) and a self-reported measure (63% and 56%). Kappa statistics indicated low agreement between the device and self-report when classifying adherent status. A majority of subjects interviewed found the device easy to use, indicated that it did not interfere with medication-taking or normal activities, and were not bothered by their physician knowing when medication was dispensed. In this pilot, nearly all Kali Drop devices performed as expected, providing real-time data on medication use over a 60-day period. Data suggested that self-reported and electronic estimates of glaucoma medication use differ, but additional testing of this new device is needed to corroborate the data observed.

  15. Wearable photoplethysmography device prototype for wireless cardiovascular monitoring

    Science.gov (United States)

    Kviesis-Kipge, E.; Grabovskis, A.; Marcinkevics, Z.; Mecnika, V.; Rubenis, O.

    2014-05-01

    The aim of the study was to develop a prototype system of the smart garment for real time telemetric monitoring of human cardiovascular activity. Two types of photoplethysmography (PPG) sensors for low noise and artefact free signal recording from various sites of the human body that were suitable for integration into smart textile were investigated. The reflectance sensors with single and multiple photodiodes based on "pulse-duration-based signal conversion" signal acquisition principle were designed and evaluated. The technical parameters of the system were measured both on bench and in vivo. Overall, both types of PPG sensors showed acceptable signal quality SNR 86.56±3.00 dB, dynamic range 89.84 dB. However, in-vivo condition tests revealed lower noise and higher accuracy achieved by applying the multiple photodiodes sensor. We concluded that the proposed PPG device prototype is simple and reliable, and therefore, can be utilized in low-cost smart garments.

  16. Jammer Localization Using Wireless Devices with Mitigation by Self-Configuration.

    Directory of Open Access Journals (Sweden)

    Qazi Mamoon Ashraf

    Full Text Available Communication abilities of a wireless network decrease significantly in the presence of a jammer. This paper presents a reactive technique, to detect and locate the position of a jammer using a distributed collection of wireless sensor devices. We employ the theory of autonomic computing as a framework to design the same. Upon detection of a jammer, the affected nodes self-configure their power consumption which stops unnecessary waste of battery resources. The scheme then proceeds to determine the approximate location of the jammer by analysing the location of active nodes as well as the affected nodes. This is done by employing a circular curve fitting algorithm. Results indicate a high degree of accuracy in localizing a jammer has been achieved.

  17. Wireless Device-to-Device (D2D) Links for Machine-to-Machine (M2M) Communication

    DEFF Research Database (Denmark)

    Pratas, Nuno; Popovski, Petar

    2017-01-01

    Device-to-Device (D2D) communications will play an important role in the fifth generation (5G) cellular networks, by increasing the spatial reuse of spectrum resources and enabling communication links with low latency. D2D is composed of two fundamental building blocks: proximity discovery...... and direct communication between nearby users. Another emerging trend in wireless cellular systems is Machine-to-Machine (M2M) communications, often characterized by fixed, low transmission rates. In this chapter we motivate the synergy between D2D and M2M, and present technologies that enable M2M-via-D2D...... communication to operate as an underlay to the ordinary cellular transmissions....

  18. On the Usability of Secure Association of Wireless Devices Based on Distance Bounding

    Science.gov (United States)

    Cagalj, Mario; Saxena, Nitesh; Uzun, Ersin

    When users wish to establish wireless communication between their devices, the channel needs to be bootstrapped first. Usually, the channel is desired to be authenticated and confidential, in order to mitigate any malicious control of or eavesdropping over the communication. When there is no prior security context, such as, shared secrets, common key servers or public key certificates, device association necessitates some level of user involvement into the process. A wide variety of user-aided security association techniques have been proposed in the past. A promising set of techniques require out-of-band communication between the devices (e.g., auditory, visual, or tactile). The usability evaluation of such techniques has been an active area of research.

  19. Wireless sEMG-Based Body-Machine Interface for Assistive Technology Devices.

    Science.gov (United States)

    Fall, Cheikh Latyr; Gagnon-Turcotte, Gabriel; Dube, Jean-Francois; Gagne, Jean Simon; Delisle, Yanick; Campeau-Lecours, Alexandre; Gosselin, Clement; Gosselin, Benoit

    2017-07-01

    Assistive technology (AT) tools and appliances are being more and more widely used and developed worldwide to improve the autonomy of people living with disabilities and ease the interaction with their environment. This paper describes an intuitive and wireless surface electromyography (sEMG) based body-machine interface for AT tools. Spinal cord injuries at C5-C8 levels affect patients' arms, forearms, hands, and fingers control. Thus, using classical AT control interfaces (keypads, joysticks, etc.) is often difficult or impossible. The proposed system reads the AT users' residual functional capacities through their sEMG activity, and converts them into appropriate commands using a threshold-based control algorithm. It has proven to be suitable as a control alternative for assistive devices and has been tested with the JACO arm, an articulated assistive device of which the vocation is to help people living with upper-body disabilities in their daily life activities. The wireless prototype, the architecture of which is based on a 3-channel sEMG measurement system and a 915-MHz wireless transceiver built around a low-power microcontroller, uses low-cost off-the-shelf commercial components. The embedded controller is compared with JACO's regular joystick-based interface, using combinations of forearm, pectoral, masseter, and trapeze muscles. The measured index of performance values is 0.88, 0.51, and 0.41 bits/s, respectively, for correlation coefficients with the Fitt's model of 0.75, 0.85, and 0.67. These results demonstrate that the proposed controller offers an attractive alternative to conventional interfaces, such as joystick devices, for upper-body disabled people using ATs such as JACO.

  20. A wireless power transmission system for implantable devices in freely moving rodents.

    Science.gov (United States)

    Eom, Kyungsik; Jeong, Joonsoo; Lee, Tae Hyung; Kim, Jinhyung; Kim, Junghoon; Lee, Sung Eun; Kim, Sung June

    2014-08-01

    Reliable wireless power delivery for implantable devices in animals is highly desired for safe and effective experimental use. Batteries require frequent replacement; wired connections are inconvenient and unsafe, and short-distance inductive coupling requires the attachment of an exterior transmitter to the animal's body. In this article, we propose a solution by which animals with implantable devices can move freely without attachments. Power is transmitted using coils attached to the animal's cage and is received by a receiver coil implanted in the animal. For a three-dimensionally uniform delivery of power, we designed a columnar dual-transmitter coil configuration. A resonator-based inductive link was adopted for efficient long-range power delivery, and we used a novel biocompatible liquid crystal polymer substrate as the implantable receiver device. Using this wireless power delivery system, we obtain an average power transfer efficiency of 15.2% (minimum efficiency of 10% and a standard deviation of 2.6) within a cage of 15×20×15 cm3.

  1. Experimental Results on a Wireless Wattmeter Device for the Integration in Home Energy Management Systems

    Directory of Open Access Journals (Sweden)

    Eduardo M. G. Rodrigues

    2017-03-01

    Full Text Available This paper presents a home area network (HAN-based domestic load energy consumption monitoring prototype device as part of an advanced metering system (AMS. This device can be placed on individual loads or configured to measure several loads as a whole. The wireless communication infrastructure is supported on IEEE 805.12.04 radios that run a ZigBee stack. Data acquisition concerning load energy transit is processed in real time and the main electrical parameters are then transmitted through a RF link to a wireless terminal unit, which works as a data logger and as a human-machine interface. Voltage and current sensing are implemented using Hall effect principle-based transducers, while C code is developed on two 16/32-bit microcontroller units (MCUs. The main features and design options are then thoroughly discussed. The main contribution of this paper is that the proposed metering system measures the reactive energy component through the Hilbert transform for low cost measuring device systems.

  2. An optimized electronic device for solar power harvesting dedicated to wireless sensor networks

    Energy Technology Data Exchange (ETDEWEB)

    Le Cam, Vincent; Le Maulf, Regis; Lemarchand, Laurent; Martin, William; Le Pen, Mathieu [LUNAM Univ., Bouguenais (France). IFSTTAR, MACS Dept.

    2012-07-01

    For economics as for practical reasons, this last decade, the use and dissemination of wireless sensor networks (WSN) became obvious; particularly in structural heath monitoring (SHM) use-cases where distances between sensors could be long and access to the structure quite difficult. Even if efforts are leaded to design small components and RF modules that ask for low-power, the need of an external source is often necessary. After have acquired knowledge in solar cells as in batteries technologies and methods to control charge/discharge phases as in optimizing algorithms, IFSTTAR laboratory has designed an electronic device that integrates those progress. This electronic device has a quite generic mission: for a panel of batteries chemistry (Lithium, NiMh) and a panel of solar cells sources (frome mW to some W), the system acts as an improved battery charger whatever the load ask for power. The system applies control algorithms based on battery capacity and chemistry profile. It also applies the MPPT (Maximum Power Point Tracking) algorithm. At any time, battery State Of Charge (SOC) can be requested via I2C bus as well as a warning signal is output when SOC becomes critical. Through standard pin connectors and a simple I2C interface, the system can be used by many wireless devices (sensors) that have to run autonomously. After the presentation of this system, a focus on its application on a real use-case will be given. (orig.)

  3. Wireless Electrical Device Using Open-Circuit Elements Having No Electrical Connections

    Science.gov (United States)

    Woodard, Stanley E. (Inventor); Taylor, Bryant Douglas (Inventor)

    2012-01-01

    A wireless electrical device includes an electrically unconnected electrical conductor and at least one electrically unconnected electrode spaced apart from the electrical conductor. The electrical conductor is shaped for storage of an electric field and a magnetic field. In the presence of a time-varying magnetic field, the electrical conductor so-shaped resonates to generate harmonic electric and magnetic field responses. Each electrode is at a location lying within the magnetic field response so-generated and is constructed such that a linear movement of electric charges is generated in each electrode due to the magnetic field response so-generated.

  4. An Integrated Quantum Dot Barcode Smartphone Optical Device for Wireless Multiplexed Diagnosis of Infected Patients

    Science.gov (United States)

    Ming, Kevin

    Integrating mobile-cellular devices with multiplex molecular diagnostics can potentially provide the most powerful platform for tracking, managing and preventing the transmission of infectious diseases. With over 6.9 billion subscriptions globally, handheld mobile-cellular devices can be programmed to spatially map, temporally track, and transmit information on infections over wide geographical space and boundaries. Current cell phone diagnostic technologies have poor limit of detection, dynamic range, and cannot detect multiple pathogen targets simultaneously, limiting their utility to single infections with high load. Here we combined recent advances in quantum dot barcode technology for molecular detection with smartphones to engineer a simple and low-cost chip-based wireless multiplex diagnostic device. We validated our device using a variety of synthetic genomic targets for the respiratory virus and blood-borne pathogens, and demonstrated that it could detect clinical samples after simple amplification. More importantly, we confirmed that the device is capable of detecting patients infected with a single or multiple infectious pathogens (e.g., HIV and hepatitis B) in a single test. This device advances the capacity for global surveillance of infectious diseases and has the potential to accelerate knowledge exchange-transfer of emerging or exigent disease threats with healthcare and military organizations in real-time.

  5. New Authentication Scheme for Wireless Body Area Networks Using the Bilinear Pairing.

    Science.gov (United States)

    Wang, Chunzhi; Zhang, Yanmei

    2015-11-01

    Due to the development of information technologies and network technologies, healthcare systems have been employed in many countries. As an important part of healthcare systems, the wireless body area network (WBAN) could bring convenience to both patients and physicians because it could help physicians to monitor patients' physiological values remotely. It is essential to ensure secure communication in WBANs because patients' physiological values are very sensitive. Recently, Liu et al. proposed an efficient authentication scheme for WBANs. Unfortunately, Zhao pointed out that their scheme suffered from the stolen verifier-table attack. To improve security and efficiency, Zhao proposed an anonymous authentication scheme for WBANs. However, Zhao's scheme cannot provide real anonymity because the users' pseudo identities are constant value and the attack could tract the users. In this paper, we propose a new anonymous authentication scheme for WBANs. Security analysis shows that the proposed scheme could overcome weaknesses in previous scheme. We also use the BAN logic to demonstrate the security of the proposed scheme.

  6. A prototype wireless inertial-sensing device for measuring toe clearance.

    Science.gov (United States)

    Lai, Daniel T H; Charry, E; Begg, R; Palaniswami, M

    2008-01-01

    Tripping and slipping are serious health concerns for the elderly because they result in life threatening injuries i.e., fractures and high medical costs. Our recent work in detection of tripping gait patterns has demonstrated that minimum toe clearance (MTC) is a sensitive falls risk predictor. MTC measurement has previously been done in gait laboratories and on treadmills which potentially imposes controlled walking conditions. In this paper, we describe a prototype design of a wireless device for monitoring vertical toe clearance. The sensors consists of a tri-axis accelerometer and dual-axis gyroscope connected to Crossbow sensor motes for wireless data transmission. Sensor data are transmitted to a laptop and displayed on a Matlab graphic user interface (GUI). We have performed zero base and treadmill experiments to investigate sensor performance to environmental variations and compared the calculated toe clearance against measurements made by an Optotrak motion system. It was found that device outputs were approximately independent of small ambient temperature variations, had a reliable range of 20m indoors and 50m outdoors and a maximum transmission rate of 20 packets/s. Toe clearance measurements were found to follow the Optotrak measurement trend but could be improved further by dealing with double integration errors and improving data transmission rates.

  7. Robots and therapeutic play: evaluation of a wireless interface device for interaction with a robot playmate.

    Science.gov (United States)

    Roberts, Luke; Park, Hae Won; Howard, Ayanna M

    2012-01-01

    Rehabilitation robots in home environments has the potential to dramatically improve quality of life for individuals who experience disabling circumstances due to injury or chronic health conditions. Unfortunately, although classes of robotic systems for rehabilitation exist, these devices are typically not designed for children. And since over 150 million children in the world live with a disability, this causes a unique challenge for deploying such robotics for this target demographic. To overcome this barrier, we discuss a system that uses a wireless arm glove input device to enable interaction with a robotic playmate during various play scenarios. Results from testing the system with 20 human subjects shows that the system has potential, but certain aspects need to be improved before deployment with children.

  8. Using Wireless Power Meters to Measure Energy Use of Miscellaneous and Electronic Devices in Buildings

    Energy Technology Data Exchange (ETDEWEB)

    UC Berkeley, Berkeley, CA USA; Brown, Richard; Lanzisera, Steven; Cheung, Hoi Ying (Iris); Lai, Judy; Jiang, Xiaofan; Dawson-Haggerty, Stephen; Taneja, Jay; Ortiz, Jorge; Culler, David

    2011-05-24

    Miscellaneous and electronic devices consume about one-third of the primary energy used in U.S. buildings, and their energy use is increasing faster than other end-uses. Despite the success of policies, such as Energy Star, that promote more efficient miscellaneous and electronic products, much remains to be done to address the energy use of these devices if we are to achieve our energy and carbon reduction goals. Developing efficiency strategies for these products depends on better data about their actual usage, but very few studies have collected field data on the long-term energy used by a large sample of devices due to the difficulty and expense of collecting device-level energy data. This paper describes the development of an improved method for collecting device-level energy and power data using small, relatively inexpensive wireless power meters. These meters form a mesh network based on Internet standard protocols and can form networks of hundreds of metering points in a single building. Because the meters are relatively inexpensive and do not require manual data downloading, they can be left in the field for months or years to collect long time-series energy use data. In addition to the metering technology, we also describe a field protocol used to collect comprehensive, robust data on the miscellaneous and electronic devices in a building. The paper presents sample results from several case study buildings, in which all the plug-in devices for several homes were metered, and a representative sample of several hundred plug-in devices in a commercial office building were metered for several months.

  9. Facilitating Social Play for Children with PDDs: Effects of Paired Robotic Devices

    Directory of Open Access Journals (Sweden)

    Soichiro Matsuda

    2017-06-01

    Full Text Available Interacting with toys and other people is fundamental for developing social communication skills. However, children with autism spectrum disorder (ASD are characterized by having a significant impairment in social interaction, which often leads to deficits in play skills. For this reason, methods of teaching play skills to young children with ASD have been well documented. Although previous studies have examined a variety of instructional strategies for teaching skills, few studies have evaluated the potential of using robotic devices. The purpose of the present study is to examine whether automatic feedback provided by colored lights and vibration via paired robotic devices, COLOLO, facilitates social play behaviors in children with ASD. We also explore how social play relates to social interaction. COLOLO is a system of paired spherical devices covered with soft fabric. All participants in this study were recruited as volunteers through the Department of Psychology at Keio University. The pilot study included three participants diagnosed with Pervasive Developmental Disorders (PDDs; 5- to 6-year-old boys, and compared experimental conditions with and without automatic feedback from the devices (colored lights and vibration. The results indicated that the participants in the condition that included feedback from the devices exhibited increased rates of ball contact and looking at the therapist’s ball, but did not exhibit increased rates of eye contact or positive affect. In the experimental study, a systematic replication of the pilot study was performed with three other participants diagnosed with PDDs (3- to 6-year-old boys, using an A-B-A-B design. Again, the results demonstrated that, in the condition with colored lights and vibration, the children increased ball contact as well as looking at the therapist’s ball. However, the results did not show the effect of automatic feedback consistently for three children. These findings are

  10. Symptoms and the use of wireless communication devices: A prospective cohort study in Swiss adolescents.

    Science.gov (United States)

    Schoeni, Anna; Roser, Katharina; Röösli, Martin

    2017-04-01

    We investigated whether radiofrequency electromagnetic fields (RF-EMF) from mobile phones and other wireless devices or by the wireless device use itself due to non-radiation related factors in that context are associated with an increase in health symptom reports of adolescents in Central Switzerland. In a prospective cohort study, 439 study participants (participation rate: 36.8%) aged 12-17 years, completed questionnaires about their mobile and cordless phone use, their self-reported symptoms and possible confounding factors at baseline (2012/2013) and one year later (2013/2014). Operator recorded mobile phone data was obtained for a subgroup of 234 adolescents. RF-EMF dose measures considering various factors affecting RF-EMF exposure were computed for the brain and the whole body. Data were analysed using a mixed-logistic cross-sectional model and a cohort approach, where we investigated whether cumulative dose over one year was related to a new onset of a symptom between baseline and follow-up. All analyses were adjusted for relevant confounders. Participation rate in the follow-up was 97% (425 participants). In both analyses, cross-sectional and cohort, various symptoms tended to be mostly associated with usage measures that are only marginally related to RF-EMF exposure such as the number of text messages sent per day (e.g. tiredness: OR:1.81; 95%CI:1.20-2.74 for cross-sectional analyses and OR:1.87; 95%CI:1.04-3.38 for cohort analyses). Outcomes were generally less strongly or not associated with mobile phone call duration and RF-EMF dose measures. Stronger associations between symptoms of ill health and wireless communication device use than for RF-EMF dose measures were observed. Such a result pattern does not support a causal association between RF-EMF exposure and health symptoms of adolescents but rather suggests that other aspects of extensive media use are related to symptoms. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Piezoelectric Energy Harvesting Devices: An Alternative Energy Source for Wireless Sensors

    Directory of Open Access Journals (Sweden)

    Action Nechibvute

    2012-01-01

    Full Text Available The recent advances in ultralow power device integration, communication electronics, and microelectromechanical systems (MEMS technology have fuelled the emerging technology of wireless sensor networks (WSNs. The spatial distributed nature of WSNs often requires that batteries power the individual sensor nodes. One of the major limitations on performance and lifetime of WSNs is the limited capacity of these finite power sources, which must be manually replaced when they are depleted. Moreover, the embedded nature of some of the sensors and hazardous sensing environment make battery replacement very difficult and costly. The process of harnessing and converting ambient energy sources into usable electrical energy is called energy harvesting. Energy harvesting raises the possibility of self-powered systems which are ubiquitous and truly autonomous, and without human intervention for energy replenishment. Among the ambient energy sources such as solar energy, heat, and wind, mechanical vibrations are an attractive ambient source mainly because they are widely available and are ideal for the use of piezoelectric materials, which have the ability to convert mechanical strain energy into electrical energy. This paper presents a concise review of piezoelectric microgenerators and nanogenerators as a renewable energy resource to power wireless sensors.

  12. Pervasive access to images and data--the use of computing grids and mobile/wireless devices across healthcare enterprises.

    NARCIS (Netherlands)

    Pohjonen, H.; Ross, P.; Blickman, J.G.; Kamman, R.L

    2007-01-01

    Emerging technologies are transforming the workflows in healthcare enterprises. Computing grids and handheld mobile/wireless devices are providing clinicians with enterprise-wide access to all patient data and analysis tools on a pervasive basis. In this paper, emerging technologies are presented

  13. Implementation issues for mobile-wireless infrastructure and mobile health care computing devices for a hospital ward setting.

    Science.gov (United States)

    Heslop, Liza; Weeding, Stephen; Dawson, Linda; Fisher, Julie; Howard, Andrew

    2010-08-01

    mWard is a project whose purpose is to enhance existing clinical and administrative decision support and to consider mobile computers, connected via wireless network, for bringing clinical information to the point of care. The mWard project allowed a limited number of users to test and evaluate a selected range of mobile-wireless infrastructure and mobile health care computing devices at the neuroscience ward at Southern Health's Monash Medical Centre, Victoria, Australia. Before the project commenced, the ward had two PC's which were used as terminals by all ward-based staff and numerous multi-disciplinary staff who visited the ward each day. The first stage of the research, outlined in this paper, evaluates a selected range of mobile-wireless infrastructure.

  14. Active implantable medical device EMI assessment for wireless power transfer operating in LF and HF bands.

    Science.gov (United States)

    Hikage, Takashi; Nojima, Toshio; Fujimoto, Hiroshi

    2016-06-21

    The electromagnetic interference (EMI) imposed on active implantable medical devices by wireless power transfer systems (WPTSs) is discussed based upon results of in vitro experiments. The purpose of this study is to present comprehensive EMI test results gathered from implantable-cardiac pacemakers and implantable cardioverter defibrillators exposed to the electromagnetic field generated by several WPTSs operating in low-frequency (70 kHz-460 kHz) and high-frequency (6.78 MHz) bands. The constructed in vitro experimental test system based upon an Irnich's flat torso phantom was applied. EMI test experiments are conducted on 14 types of WPTSs including Qi-compliant system and EV-charging WPT system mounted on current production EVs. In addition, a numerical simulation model for active implantable medical device (AIMD) EMI estimation based on the experimental test system is newly proposed. The experimental results demonstrate the risk of WPTSs emitting intermittent signal to affect the correct behavior of AIMDs when operating at very short distances. The proposed numerical simulation model is applicable to obtain basically the EMI characteristics of various types of WPTSs.

  15. A new wireless detection device for the in-situ identification of Salmonella Typhimurium

    Science.gov (United States)

    Chai, Yating; Wikle, Howard C.; Park, Mi-kyung; Horikawa, Shin; Hong, Xie; Chin, Bryan A.

    2013-05-01

    This paper presents a new device and method for the in-situ detection of Salmonella Typhimurium on tomato surfaces. This real-time in-situ detection was accomplished with phage-based magnetoelastic (ME) biosensors on fresh food surfaces. The E2 phage from a landscape phage library serves as the bio-recognition element that has the capability of binding specifically with S. Typhimurium. This mass-sensitive ME biosensor is wirelessly actuated into mechanical resonance by an externally applied time-varying magnetic field. When the biosensor binds with S. Typhimurium, the mass of the sensor increases, resulting in a decrease in the sensor's resonant frequency. Until now, ME sensors had to be collected from the tomato surface where they are exposed to S. Typhimurium and inserted into a measurement coil for the detection of the bacterium. In contrast, the newly designed test device allows the whole detection process to take place directly on the tomato. Changes in resonant frequency over time due to the accumulation of S. Typhimurium on the sensor were measured and are presented. Real-time in-situ detection of 20 minutes was achieved. In addition, this new methodology effectively decreases the measurement error and enables the simultaneous detection of multiple pathogens.

  16. Wireless Ultrasound-Guided Axillary Vein Cannulation for the Implantation of Cardiovascular Implantable Electric Devices.

    Science.gov (United States)

    Franco, Eduardo; Rodriguez Muñoz, Daniel; Matía, Roberto; Hernandez-Madrid, Antonio; Carbonell San Román, Alejandra; Sánchez, Inmaculada; Zamorano, Jose; Moreno, Javier

    2016-04-01

    Ultrasound guidance for vascular cannulation seems safer and more effective than an anatomical landmark approach, though it has not gained widespread support partly due to workflow interference of wired probes. A wireless ultrasound transducer (WUST) may overcome this issue. We report the effectiveness, time consumption, and safety of the first-in-human experience in axillary vein cannulation guided with a novel WUST for the implantation of cardiovascular implantable electric devices (CIEDs). After a one-month training period, we routinely performed WUST-guided puncture to all first implants, prospectively registering data from the first 50 patients. We analyzed the time needed for preparing the WUST and for achieving each vein cannulation, and the rate of unsuccessful or accidental arterial punctures and complications. WUST-guided axillary vein access was successful in 49 out of 50 patients, totaling 86 cannulated veins. Median WUST preparation time was 55 [44-62] seconds and median time needed for each venous cannulation was 56 [36-71] seconds. A total of 84.9% of the veins were cannulated at the first attempt. There were 7 unsuccessful puncture attempts and 1 accidental arterial puncture. No pneumothorax, hemothorax, or nervous injury occurred in the 49 successfully cannulated patients. The unsuccessful one (distal subclavian occlusion) developed a minor local subcutaneous emphysema with no confirmed radiologic pneumothorax, not requiring intervention. During a follow-up of 2.5 ± 1.1 months, a patient developed a pocket infection, with no other significant complications. Ultrasound-guided axillary vein cannulation using a wireless transducer for the implantation of CIEDs is a feasible, fast, and safe method. © 2016 Wiley Periodicals, Inc.

  17. Wireless Networks

    OpenAIRE

    Samaka, Mohammed; Khan, Khaled M.D.

    2007-01-01

    Wireless communication is the fastest-growing field in the telecommunication industry. Wireless networks have grown significantly as an important segment of the communications industry. They have become popular networks with the potential to provide high-speed, high-quality information exchange between two or more portable devices without any wire or conductors. Wireless networks can simply be characterized as the technology that provides seamless access to information, anywhere, anyplace, an...

  18. PIYAS-Proceeding to Intelligent Service Oriented Memory Allocation for Flash Based Data Centric Sensor Devices in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Sanam Shahla Rizvi

    2009-12-01

    Full Text Available Flash memory has become a more widespread storage medium for modern wireless devices because of its effective characteristics like non-volatility, small size, light weight, fast access speed, shock resistance, high reliability and low power consumption. Sensor nodes are highly resource constrained in terms of limited processing speed, runtime memory, persistent storage, communication bandwidth and finite energy. Therefore, for wireless sensor networks supporting sense, store, merge and send schemes, an efficient and reliable file system is highly required with consideration of sensor node constraints. In this paper, we propose a novel log structured external NAND flash memory based file system, called Proceeding to Intelligent service oriented memorY Allocation for flash based data centric Sensor devices in wireless sensor networks (PIYAS. This is the extended version of our previously proposed PIYA [1]. The main goals of the PIYAS scheme are to achieve instant mounting and reduced SRAM space by keeping memory mapping information to a very low size of and to provide high query response throughput by allocation of memory to the sensor data by network business rules. The scheme intelligently samples and stores the raw data and provides high in-network data availability by keeping the aggregate data for a longer period of time than any other scheme has done before. We propose effective garbage collection and wear-leveling schemes as well. The experimental results show that PIYAS is an optimized memory management scheme allowing high performance for wireless sensor networks.

  19. Luminescent ion pairs with tunable emission colors for light-emitting devices and electrochromic switches.

    Science.gov (United States)

    Guo, Song; Huang, Tianci; Liu, Shujuan; Zhang, Kenneth Yin; Yang, Huiran; Han, Jianmei; Zhao, Qiang; Huang, Wei

    2017-01-01

    Most recently, stimuli-responsive luminescent materials have attracted increasing interest because they can exhibit tunable emissive properties which are sensitive to external physical stimuli, such as light, temperature, force, and electric field. Among these stimuli, electric field is an important external stimulus. However, examples of electrochromic luminescent materials that exhibit emission color change induced by an electric field are limited. Herein, we have proposed a new strategy to develop electrochromic luminescent materials based on luminescent ion pairs. Six tunable emissive ion pairs ( IP1-IP6 ) based on iridium(iii) complexes have been designed and synthesized. The emission spectra of ion pairs (IPs) show concentration dependence and the energy transfer process is very efficient between positive and negative ions. Interestingly, IP6 displayed white emission at a certain concentration in solution or solid state. Thus, in this contribution, UV-chip (365 nm) excited light-emitting diodes showing orange, light yellow and white emission colors were successfully fabricated. Furthermore, IPs displayed tunable and reversible electrochromic luminescence. For example, upon applying a voltage of 3 V onto the electrodes, the emission color of the solution of IP1 near the anode or cathode changed from yellow to red or green, respectively. Color tunable electrochromic luminescence has also been realized by using other IPs. Finally, a solid-film electrochromic switch device with a sandwiched structure using IP1 has been fabricated successfully, which exhibited fast and reversible emission color change.

  20. Passive Wireless Hydrogen Sensors Using Orthogonal Frequency Coded Acoustic Wave Devices Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal describes the development of passive surface acoustic wave (SAW) based hydrogen sensors for NASA application to distributed wireless hydrogen leak...

  1. Interoperation of an UHF RFID Reader and a TCP/IP Device via Wired and Wireless Links

    Directory of Open Access Journals (Sweden)

    Ik Soo Jin

    2011-11-01

    Full Text Available A main application in radio frequency identification (RFID sensor networks is the function that processes real-time tag information after gathering the required data from multiple RFID tags. The component technologies that contain an RFID reader, called the interrogator, which has a tag chip, processors, coupling antenna, and a power management system have advanced significantly over the last decade. This paper presents a system implementation for interoperation between an UHF RFID reader and a TCP/IP device that is used as a gateway. The proposed system consists of an UHF RFID tag, an UHF RFID reader, an RF end-device, an RF coordinator, and a TCP/IP I/F. The UHF RFID reader, operating at 915 MHz, is compatible with EPC Class-0/Gen1, Class-1/Gen1 and 2, and ISO18000-6B. In particular, the UHF RFID reader can be combined with the RF end-device/coordinator for a ZigBee (IEEE 802.15.4 interface, which is a low-power wireless standard. The TCP/IP device communicates with the RFID reader via wired links. On the other hand, it is connected to the ZigBee end-device via wireless links. The web based test results show that the developed system can remotely recognize information of multiple tags through the interoperation between the RFID reader and the TCP/IP device.

  2. Interoperation of an UHF RFID reader and a TCP/IP device via wired and wireless links.

    Science.gov (United States)

    Lee, Sang Hoon; Jin, Ik Soo

    2011-01-01

    A main application in radio frequency identification (RFID) sensor networks is the function that processes real-time tag information after gathering the required data from multiple RFID tags. The component technologies that contain an RFID reader, called the interrogator, which has a tag chip, processors, coupling antenna, and a power management system have advanced significantly over the last decade. This paper presents a system implementation for interoperation between an UHF RFID reader and a TCP/IP device that is used as a gateway. The proposed system consists of an UHF RFID tag, an UHF RFID reader, an RF end-device, an RF coordinator, and a TCP/IP I/F. The UHF RFID reader, operating at 915 MHz, is compatible with EPC Class-0/Gen1, Class-1/Gen1 and 2, and ISO18000-6B. In particular, the UHF RFID reader can be combined with the RF end-device/coordinator for a ZigBee (IEEE 802.15.4) interface, which is a low-power wireless standard. The TCP/IP device communicates with the RFID reader via wired links. On the other hand, it is connected to the ZigBee end-device via wireless links. The web based test results show that the developed system can remotely recognize information of multiple tags through the interoperation between the RFID reader and the TCP/IP device.

  3. Development and Successful Application of a Tree Movement Energy Harvesting Device, to Power a Wireless Sensor Node

    Directory of Open Access Journals (Sweden)

    Chris Knight

    2012-09-01

    Full Text Available Wireless sensor networks are becoming increasingly more common as a means to sense, measure, record and transmit data for scientific and engineering evaluation, remotely and autonomously. Usually, remotely located sensor nodes are powered by batteries which are recharged by solar or wind energy harvesters. Sometimes nodes are located in areas where these forms of energy harvesting are not possible due to local conditions, such as under the canopy of a forest. This article outlines the design and testing of a device capable of harvesting energy from tree movement, and shows the device powering a wireless sensor node continuously. The device uses the force and displacement of the movement of a tree trunk (of a 6 m tall tree to drive an electromagnetic generator that recharges a nickel metal hydride battery. The battery stores the energy from which a ~0.5 mW wireless sensor node is powered continuously. This demonstrated method of energy harvesting may allow the placement and powering of nodes in locations previously not possible.

  4. The design of a wireless portable device for personalized ultraviolet monitoring

    Science.gov (United States)

    Amini, Navid; Matthews, Jerrid E.; Vahdatpour, Alireza; Sarrafzadeh, Majid

    2009-08-01

    The skin care product market is growing due to the threat of ultraviolet (UV) radiation caused by the destruction of the ozone layer, increasing demand for tanning, and the tendency to wear less clothing. Accordingly, there is a potential demand for a personalized UV monitoring system, which can play a fundamental role in skin cancer prevention by providing measurements of UV radiation intensities and corresponding recommendations. Furthermore, the need for such device becomes more vital since it has turned out that in some places (e.g., on snowy mountains) the UV exposure gets doubled, while individuals are unaware of this fact. This paper highlights the development and initial validation of a wireless and portable embedded system for personalized UV monitoring which is based on a novel software architecture, a high-end UV sensor, and conventional PDA (or a cell phone). In terms of short-term applications, by calculating the UV index, it informs the users about their maximum recommended sun exposure time by taking their skin type and sun protection factor (SPF) of the applied sunscreen into consideration. As for long-term applications, given that the damage caused by UV light is accumulated over days, it is able to keep a record of the amount of UV received over a certain course of time, from a single day to a month. Low energy consumption and high accuracy in estimating the UV index are salient features of this system.

  5. Wireless Technology Recognition Based on RSSI Distribution at Sub-Nyquist Sampling Rate for Constrained Devices.

    Science.gov (United States)

    Liu, Wei; Kulin, Merima; Kazaz, Tarik; Shahid, Adnan; Moerman, Ingrid; De Poorter, Eli

    2017-09-12

    Driven by the fast growth of wireless communication, the trend of sharing spectrum among heterogeneous technologies becomes increasingly dominant. Identifying concurrent technologies is an important step towards efficient spectrum sharing. However, due to the complexity of recognition algorithms and the strict condition of sampling speed, communication systems capable of recognizing signals other than their own type are extremely rare. This work proves that multi-model distribution of the received signal strength indicator (RSSI) is related to the signals' modulation schemes and medium access mechanisms, and RSSI from different technologies may exhibit highly distinctive features. A distinction is made between technologies with a streaming or a non-streaming property, and appropriate feature spaces can be established either by deriving parameters such as packet duration from RSSI or directly using RSSI's probability distribution. An experimental study shows that even RSSI acquired at a sub-Nyquist sampling rate is able to provide sufficient features to differentiate technologies such as Wi-Fi, Long Term Evolution (LTE), Digital Video Broadcasting-Terrestrial (DVB-T) and Bluetooth. The usage of the RSSI distribution-based feature space is illustrated via a sample algorithm. Experimental evaluation indicates that more than 92% accuracy is achieved with the appropriate configuration. As the analysis of RSSI distribution is straightforward and less demanding in terms of system requirements, we believe it is highly valuable for recognition of wideband technologies on constrained devices in the context of dynamic spectrum access.

  6. Propeller-based wireless device for active capsular endoscopy in the gastric district.

    Science.gov (United States)

    Tortora, Giuseppe; Valdastri, Pietro; Susilo, Ekawahyu; Menciassi, Arianna; Dario, Paolo; Rieber, Fabian; Schurr, Marc Oliver

    2009-01-01

    An innovative approach to active locomotion for capsular endoscopy in the gastric district is reported in this paper. Taking advantage of the ingestion of 500 ml of transparent liquid by the patient, an effective distension of the stomach is safely achieved for a timeframe of approximately 30 minutes. Given such a scenario, an active swallowable capsule able to navigate inside the stomach thanks to a four propeller system has been developed. The capsule is 15 mm in diameter and 30 mm in length, and it is composed of a supporting shell containing a wireless microcontroller, a battery and four motors. The motors enable the rotation of propellers located in the rear side of the device, thus obtaining a reliable locomotion and steering of the capsule in all directions in a liquid. The power consumption has been properly optimized in order to achieve an operative lifetime consistent with the time of the diagnostic inspection of the gastric district, assumed to be no more than 30 minutes. The capsule can be easily remotely controlled by the endoscopist using a joystick together with a purposely developed graphical user interface. The capsule design, prototyping, in vitro, ex vivo and preliminary in vivo tests are described in this work.

  7. RF communication with implantable wireless device: effects of beating heart on performance of miniature antenna.

    Science.gov (United States)

    Murphy, Olive H; Borghi, Alessandro; Bahmanyar, Mohammad Reza; McLeod, Christopher N; Navaratnarajah, Manoraj; Yacoub, Magdi; Toumazou, Christofer

    2014-06-01

    The frequency response of an implantable antenna is key to the performance of a wireless implantable sensor. If the antenna detunes significantly, there are substantial power losses resulting in loss of accuracy. One reason for detuning is because of a change in the surrounding environment of an antenna. The pulsating anatomy of the human heart constitutes such a changing environment, so detuning is expected but this has not been quantified dynamically before. Four miniature implantable antennas are presented (two different geometries) along with which are placed within the heart of living swine the dynamic reflection coefficients. These antennas are designed to operate in the short range devices frequency band (863-870 MHz) and are compatible with a deeply implanted cardiovascular pressure sensor. The measurements recorded over 27 seconds capture the effects of the beating heart on the frequency tuning of the implantable antennas. When looked at in the time domain, these effects are clearly physiological and a combination of numerical study and posthumous autopsy proves this to be the case, while retrospective simulation confirms this hypothesis. The impact of pulsating anatomy on antenna design and the need for wideband implantable antennas is highlighted.

  8. Highly Sensitive Textile Strain Sensors and Wireless User-Interface Devices Using All-Polymeric Conducting Fibers.

    Science.gov (United States)

    Eom, Jimi; Jaisutti, Rawat; Lee, Hyungseok; Lee, Woobin; Heo, Jae-Sang; Lee, Jun-Young; Park, Sung Kyu; Kim, Yong-Hoon

    2017-03-22

    Emulation of diverse electronic devices on textile platform is considered as a promising approach for implementing wearable smart electronics. Of particular, the development of multifunctional polymeric fibers and their integration in common fabrics have been extensively researched for human friendly wearable platforms. Here we report a successful emulation of multifunctional body-motion sensors and user-interface (UI) devices in textile platform by using in situ polymerized poly(3,4-ethylenedioxythiophene) (PEDOT)-coated fibers. With the integration of PEDOT fibers in a fabric, via an optimization of the fiber pattern design, multifunctional textile sensors such as highly sensitive and reliable strain sensors (with maximum gauge factor of ∼1), body-motion monitoring sensors, touch sensors, and multilevel strain recognition UI devices were successfully emulated. We demonstrate the facile utilization of the textile-based multifunctional sensors and UI devices by implementing in a wireless system that is capable of expressing American Sign Language through predefined hand gestures.

  9. Optimization Design of an Inductive Energy Harvesting Device for Wireless Power Supply System Overhead High-Voltage Power Lines

    Directory of Open Access Journals (Sweden)

    Wei Wang

    2016-03-01

    Full Text Available Overhead high voltage power line (HVPL online monitoring equipment is playing an increasingly important role in smart grids, but the power supply is an obstacle to such systems’ stable and safe operation, so in this work a hybrid wireless power supply system, integrated with inductive energy harvesting and wireless power transmitting, is proposed. The energy harvesting device extracts energy from the HVPL and transfers that from the power line to monitoring equipment on transmission towers by transmitting and receiving coils, which are in a magnetically coupled resonant configuration. In this paper, the optimization design of online energy harvesting devices is analyzed emphatically by taking both HVPL insulation distance and wireless power supply efficiency into account. It is found that essential parameters contributing to more extracted energy include large core inner radius, core radial thickness, core height and small core gap within the threshold constraints. In addition, there is an optimal secondary coil turn that can maximize extracted energy when other parameters remain fixed. A simple and flexible control strategy is then introduced to limit power fluctuations caused by current variations. The optimization methods are finally verified experimentally.

  10. End-User Attitudes towards Location-Based Services and Future Mobile Wireless Devices: The Students’ Perspective

    Directory of Open Access Journals (Sweden)

    Bogdan Cramariuc

    2011-07-01

    Full Text Available Nowadays, location-enabled mobile phones are becoming more and more widespread. Various players in the mobile business forecast that, in the future, a significant part of total wireless revenue will come from Location-Based Services (LBS. An LBS system extracts information about the user’s geographical location and provides services based on the positioning information. A successful LBS service should create value for the end-user, by satisfying some of the users’ needs or wants, and at the same time preserving the key factors of the mobile wireless device, such as low costs, low battery consumption, and small size. From many users’ perspectives, location services and mobile location capabilities are still rather poorly known and poorly understood. The aim of this research is to investigate users’ views on the LBS, their requirements in terms of mobile device characteristics, their concerns in terms of privacy and usability, and their opinion on LBS applications that might increase the social wellbeing in the future wireless world. Our research is based on two surveys performed among 105 students (average student age: 24 years from two European technical universities. The survey questions were intended to solicit the youngsters’ views on present and future technological trends and on their perceived needs and wishes regarding Location-Based Services, with the aim of obtaining a better understanding of designer constraints when building a location receiver and generating new ideas related to potential future killer LBS applications.

  11. Active Learning and Engagement with the Wireless Indoor Location Device (WILD) Learning System

    Science.gov (United States)

    Moldwin, M.; Samson, P. J.; Ojeda, L.; Miller, T.; Yu, J.

    2016-12-01

    The Wireless Indoor Location Device (WILD) Learning System being developed at the University of Michigan and the Education Technology company A2 Motus LLC provides a unique platform for social learning by allowing students to become active participants in live simulations of complex systems, like hurricane formation. The WILD Learning System enables teachers to engage students in kinesthetic activities that explore complex models from a wide variety of STEAM (Science, Technology, Engineering, Art and Math) disciplines. The system provides students' location, orientation and motion within the classroom and assigns each student different parameters depending on the activity. For example, students learning about hurricanes could be assigned atmospheric pressure levels and asked to arrange themselves around the room to simulate a hurricane. The Wild Learning System software then takes the students' pressure readings and locations and projects their locations overlaid onto a real-time generated simulated pressure weather map enabling the observation of how their arrangement influences the pressure structure. The teacher then could have the students orient themselves in the direction they think the resulting wind field will be based on the pressure contours as the system can show an arrow originating from each of the students position in the direction that they are facing. The system also could incorporate a student response-type system for the instructor to then directly question students about other concepts and record their response to both the kinesthetic activity and other formative assessment questions. The WILD Learning System consists of a sensor package for each student in the class, beacons to enable precise localization of the students, software to calculate student location information, and educational software for a variety of activities. In addition, a software development kit (SDK) is under development that would allow others to create additional learning

  12. Passive Wireless Cryogenic Liquid Level Sensors Using Orthogonal Frequency Coded Acoustic Wave Devices Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal describes the continued development of passive wireless surface acoustic wave (SAW) based liquid level sensors for NASA application to cryogenic liquid...

  13. PASSIVE WIRELESS MULTI-SENSOR TEMPERATURE AND PRESSURE SENSING SYSTEM USING ACOUSTIC WAVE DEVICES Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal describes the development of passive surface acoustic wave (SAW) sensors and multi-sensor systems for NASA application to remote wireless sensing of...

  14. Passive Wireless Cryogenic Liquid Level Sensors Using Orthogonal Frequency Coded Acoustic Wave Devices Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal describes the development of passive wireless surface acoustic wave (SAW) based liquid level sensors for NASA application to cryogenic liquid level...

  15. 78 FR 40171 - Certain Wireless Devices, Including Mobile Phones and Tablets; Notice Of Receipt of Complaint...

    Science.gov (United States)

    2013-07-03

    ... respondents Pantech Co., Ltd. of South Korea and Pantech Wireless, Inc. of GA. The complainant requests that... to exceed five (5) pages in length, inclusive of attachments, on any public interest issues raised by...

  16. Design and Development of a Miniaturized Percutaneously Deployable Wireless Left Ventricular Assist Device: Early Prototypes and Feasibility Testing.

    Science.gov (United States)

    Letzen, Brian; Park, Jiheum; Tuzun, Zeynep; Bonde, Pramod

    2017-09-21

    The current left ventricular assist devices (LVADs) are limited by a highly invasive implantation procedure in a severely unstable group of advanced heart failure patients. Additionally, the current transcutaneous power drive line acts as a nidus for infection resulting in significant morbidity and mortality. In an effort to decrease this invasiveness and eliminate drive line complications, we have conceived a wireless miniaturized percutaneous LVAD, capable of being delivered endovascularly with a tether-free operation. The system obviates the need for a transcutaneous fluid purge line required in existing temporary devices by utilizing an incorporated magnetically coupled impeller for a complete seal. The objective of this article was to demonstrate early development and proof-of-concept feasibility testing to serve as the groundwork for future formalized device development. Five early prototypes were designed and constructed to iteratively minimize the pump size and improve fluid dynamic performance. Various magnetic coupling configurations were tested. Using SolidWorks and ANSYS software for modeling and simulation, several geometric parameters were varied. HQ curves were constructed from preliminary in vitro testing to characterize the pump performance. Bench top tests showed no-slip magnetic coupling of the impeller to the driveshaft up to the current limit of the motor. The pump power requirements were tested in vitro and were within the appropriate range for powering via a wireless energy transfer system. Our results demonstrate the proof-of-concept feasibility of a novel endovascular cardiac assist device with the potential to eventually offer patients an untethered, minimally invasive support.

  17. Design and prototyping of a wristband-type wireless photoplethysmographic device for heart rate variability signal analysis.

    Science.gov (United States)

    Ghamari, M; Soltanpur, C; Cabrera, S; Romero, R; Martinek, R; Nazeran, H

    2016-08-01

    Heart Rate Variability (HRV) signal analysis provides a quantitative marker of the Autonomic Nervous System (ANS) function. A wristband-type wireless photoplethysmographic (PPG) device was custom-designed to collect and analyze the arterial pulse in the wrist. The proposed device is comprised of an optical sensor to monitor arterial pulse, a signal conditioning unit to filter and amplify the analog PPG signal, a microcontroller to digitize the analog PPG signal, and a Bluetooth module to transfer the data to a smart device. This paper proposes a novel model to represent the PPG signal as the summation of two Gaussian functions. The paper concludes with a verification procedure for HRV signal analysis during sedentary activities.

  18. Terahertz wireless communication based on InP-related devices (Conference Presentation)

    Science.gov (United States)

    Lee, Eui Su; Kim, Hyun-Soo; Park, Jeong-Woo; Park, Dong Woo; Park, Kyung Hyun

    2017-02-01

    Recently, a wide interest has been gathered in using terahertz (THz) waves as the carrier waves for the next generation of broadband wireless communications. Upon this objective, the photonics technologies are very attractive for their usefulness in signal generations, modulations and detections with enhanced bandwidth and data rates, and the readiness in combining to the existing fiber-optic or wireless networks. In this paper, as a preliminary step toward the THz wireless communications, a THz wireless interconnection system with a broadband antenna-integrated uni-traveling-carrier photodiode (UTC-PD) and a Shottky-barrier diode (SBD) module will be presented. In our system, optical beating signals are generated and digitally modulated by the optical intensity modulator driven by a pulse pattern generator (PPG). As the receiver a SBD and an IF filter followed by a low-noise preamplifier and a limiting amplifier was used. With a 6-mA photocurrent of the UTC-PD which corresponds to the transmitter output power of about 30 μW at 280 GHz, an error-free (BERdefinition serial digital interface format was successfully transmitted over a wireless link.

  19. Minimizing the negative effects of device mobility in cell-based ad-hoc wireless computational grids

    CSIR Research Space (South Africa)

    Mudali, P

    2006-09-01

    Full Text Available agents, the Keep Alive Server [5], [7], and the Brokering Service [2], [5], [7]. This architecture has several limitations, one of which being the inadequate consideration for the mobility of the mobile agents. Tasks are indiscriminately aborted... result in a higher task abortion rate. Minimizing the Negative Effects of Device Mobility in Cell-based Ad-hoc Wireless Computational Grids P. Mudali1, M.O. Adigun2, and J.O. Emuoyibofarhe3 Department of Computer Science, University of Zululand...

  20. Pervasive access to images and data--the use of computing grids and mobile/wireless devices across healthcare enterprises.

    Science.gov (United States)

    Pohjonen, Hanna; Ross, Peeter; Blickman, Johan G; Kamman, Richard

    2007-01-01

    Emerging technologies are transforming the workflows in healthcare enterprises. Computing grids and handheld mobile/wireless devices are providing clinicians with enterprise-wide access to all patient data and analysis tools on a pervasive basis. In this paper, emerging technologies are presented that provide computing grids and streaming-based access to image and data management functions, and system architectures that enable pervasive computing on a cost-effective basis. Finally, the implications of such technologies are investigated regarding the positive impacts on clinical workflows.

  1. 76 FR 34845 - Medical Devices; Ear, Nose, and Throat Devices; Classification of the Wireless Air-Conduction...

    Science.gov (United States)

    2011-06-15

    ... Drug Administration 21 CFR Part 874 Medical Devices; Ear, Nose, and Throat Devices; Classification of...) in order to provide a reasonable assurance of safety and effectiveness of the device. DATES: This..., 1976 (the date of enactment of the Medical Device Amendments of 1976), generally referred to as...

  2. Energy-efficient adaptive modulation in wireless communication for implanted medical devices.

    Science.gov (United States)

    Qiu, Yinyue; Haley, David; Chen, Ying

    2014-01-01

    In contrast to conventional wireless communication which takes place over the air, Radio Frequency (RF) communication through the human body poses unique challenges. Studies on RF propagation through human body indicate that the heterogeneous body tissues with different dielectric properties constitute a complicated and lossy environment for signal propagation. This environment also varies with different implant positions, individuals, body shapes and postures. As a result, there is a large variation in the path loss value of the in-body communication channel. In this paper, we first examine the energy efficiency of different digital modulation schemes in a basic wireless implant system. We point out that using a fixed type of modulation does not help to achieve the best energy efficiency in the implant system that has varying channel conditions. We then propose an adaptive communication system model which is suitable for wireless medical implant. Simulations results show that adopting adaptive modulation can provide a considerable amount of energy saving.

  3. High-throughput deterministic single-cell encapsulation and droplet pairing, fusion, and shrinkage in a single microfluidic device

    NARCIS (Netherlands)

    Schoeman, R.M.; Kemna, Evelien; Wolbers, F.; van den Berg, Albert

    In this article, we present a microfluidic device capable of successive high-yield single-cell encapsulation in droplets, with additional droplet pairing, fusion, and shrinkage. Deterministic single-cell encapsulation is realized using Dean-coupled inertial ordering of cells in a Yin-Yang-shaped

  4. Wireless real-time haze monitoring device | Ya'acob | Journal of ...

    African Journals Online (AJOL)

    controller to control the transmission process of measured data taken via wireless data network to the MySQL database. The reading, which is real-time reading and more accurate compared to pollutant PM10, can provide haze awareness and guidance to people to plan their activities. Keywords: PSI; PM10; PM2.5; ...

  5. Functionality and acceptability of a wireless fetal heart rate monitoring device in term pregnant women in rural Southwestern Uganda.

    Science.gov (United States)

    Mugyenyi, Godfrey R; Atukunda, Esther C; Ngonzi, Joseph; Boatin, Adeline; Wylie, Blair J; Haberer, Jessica E

    2017-06-08

    Over 3 million stillbirths occur annually in sub Saharan Africa; most occur intrapartum and are largely preventable. The standard of care for fetal heart rate (FHR) assessment in most sub-Saharan African settings is a Pinard Stethoscope, limiting observation to one person, at one point in time. We aimed to test the functionality and acceptability of a wireless FHR monitor that could allow for expanded monitoring capacity in rural Southwestern Uganda. In a mixed method prospective study, we enrolled 1) non-laboring healthy term pregnant women to wear the device for 30 min and 2) non-study clinicians to observe its use. The battery-powered prototype uses Doppler technology to measure fetal cardiotocographs (CTG), which are displayed via an android device and wirelessly transmit to cloud storage where they are accessible via a password protected website. Prototype functionality was assessed by the ability to obtain and transmit a 30-min CTG. Three obstetricians independently rated CTGs for readability and agreement between raters was calculated. All participants completed interviews on acceptability. Fifty pregnant women and 7 clinicians were enrolled. 46 (92.0%) CTGs were successfully recorded and stored. Mean scores for readability were 4.71, 4.71 and 4.83 (out of 5) with high agreement (intra class correlation 0.84; 95% CI 0.74 to 0.91). All pregnant women reported liking or really liking the device, as well as high levels of comfort, flexibility and usefulness of the prototype; all would recommend it to others. Clinicians described the prototype as portable, flexible, easy-to-use and a time saver. Adequate education for clinicians and women also seemed to improve correct usage and minimise concerns on safety of the device. This prototype wireless FHR monitor functioned well in a low-resource setting and was found to be acceptable and useful to both pregnant women and clinicians. The device also seemed to have potential to improve the experience of the users

  6. Design and simulation of printed spiral coil used in wireless power transmission systems for implant medical devices.

    Science.gov (United States)

    Wu, Wei; Fang, Qiang

    2011-01-01

    Printed Spiral Coil (PSC) is a coil antenna for near-field wireless power transmission to the next generation implant medical devices. PSC for implant medical device should be power efficient and low electromagnetic radiation to human tissues. We utilized a physical model of printed spiral coil and applied our algorithm to design PSC operating at 13.56 MHz. Numerical and electromagnetic simulation of power transfer efficiency of PSC in air medium is 77.5% and 71.1%, respectively. The simulation results show that the printed spiral coil which is optimized for air will keep 15.2% power transfer efficiency in human subcutaneous tissues. In addition, the Specific Absorption Ratio (SAR) for this coil antenna in subcutaneous at 13.56 MHz is below 1.6 W/Kg, which suggests this coil is implantable safe based on IEEE C95.1 safety guideline.

  7. An externally head-mounted wireless neural recording device for laboratory animal research and possible human clinical use.

    Science.gov (United States)

    Yin, Ming; Li, Hao; Bull, Christopher; Borton, David A; Aceros, Juan; Larson, Lawrence; Nurmikko, Arto V

    2013-01-01

    In this paper we present a new type of head-mounted wireless neural recording device in a highly compact package, dedicated for untethered laboratory animal research and designed for future mobile human clinical use. The device, which takes its input from an array of intracortical microelectrode arrays (MEA) has ninety-seven broadband parallel neural recording channels and was integrated on to two custom designed printed circuit boards. These house several low power, custom integrated circuits, including a preamplifier ASIC, a controller ASIC, plus two SAR ADCs, a 3-axis accelerometer, a 48MHz clock source, and a Manchester encoder. Another ultralow power RF chip supports an OOK transmitter with the center frequency tunable from 3GHz to 4GHz, mounted on a separate low loss dielectric board together with a 3V LDO, with output fed to a UWB chip antenna. The IC boards were interconnected and packaged in a polyether ether ketone (PEEK) enclosure which is compatible with both animal and human use (e.g. sterilizable). The entire system consumes 17mA from a 1.2Ahr 3.6V Li-SOCl2 1/2AA battery, which operates the device for more than 2 days. The overall system includes a custom RF receiver electronics which are designed to directly interface with any number of commercial (or custom) neural signal processors for multi-channel broadband neural recording. Bench-top measurements and in vivo testing of the device in rhesus macaques are presented to demonstrate the performance of the wireless neural interface.

  8. Design and implementation of a wireless (Bluetooth) four channel bio-instrumentation amplifier and digital data acquisition device with user-selectable gain, frequency, and driven reference.

    Science.gov (United States)

    Cosmanescu, Alin; Miller, Benjamin; Magno, Terence; Ahmed, Assad; Kremenic, Ian

    2006-01-01

    A portable, multi-purpose Bio-instrumentation Amplifier and Data AcQuisition device (BADAQ) capable of measuring and transmitting EMG and EKG signals wirelessly via Bluetooth is designed and implemented. Common topologies for instrumentation amplifiers and filters are used and realized with commercially available, low-voltage, high precision operational amplifiers. An 8-bit PIC microcontroller performs 10-bit analog-to-digital conversion of the amplified and filtered signals and controls a Bluetooth transceiver capable of wirelessly transmitting the data to any Bluetooth enabled device. Electrical isolation between patient/subject, circuitry, and ancillary equipment is achieved by optocoupling components. The design focuses on simplicity, portability, and affordability.

  9. Development of an implantable wireless ECoG 128ch recording device for clinical brain machine interface.

    Science.gov (United States)

    Matsushita, Kojiro; Hirata, Masayuki; Suzuki, Takafumi; Ando, Hiroshi; Ota, Yuki; Sato, Fumihiro; Morris, Shyne; Yoshida, Takeshi; Matsuki, Hidetoshi; Yoshimine, Toshiki

    2013-01-01

    Brain Machine Interface (BMI) is a system that assumes user's intention by analyzing user's brain activities and control devices with the assumed intention. It is considered as one of prospective tools to enhance paralyzed patients' quality of life. In our group, we especially focus on ECoG (electro-corti-gram)-BMI, which requires surgery to place electrodes on the cortex. We try to implant all the devices within the patient's head and abdomen and to transmit the data and power wirelessly. Our device consists of 5 parts: (1) High-density multi-electrodes with a 3D shaped sheet fitting to the individual brain surface to effectively record the ECoG signals; (2) A small circuit board with two integrated circuit chips functioning 128 [ch] analogue amplifiers and A/D converters for ECoG signals; (3) A Wifi data communication & control circuit with the target PC; (4) A non-contact power supply transmitting electrical power minimum 400[mW] to the device 20[mm] away. We developed those devices, integrated them, and, investigated the performance.

  10. Wireless power delivery for retinal prostheses.

    Science.gov (United States)

    Ng, David C; Williams, Chris E; Allen, Penny J; Bai, Shun; Boyd, Clive S; Meffin, Hamish; Halpern, Mark E; Skafidas, Efstratios

    2011-01-01

    Delivering power to an implanted device located deep inside the body is not trivial. This problem is made more challenging if the implanted device is in constant motion. This paper describes two methods of transferring power wirelessly by means of magnetic induction coupling. In the first method, a pair of transmit and receive coils is used for power transfer over a large distance (compared to their diameter). In the second method, an intermediate pair of coils is inserted in between transmit and receive coils. Comparison between the power transfer efficiency with and without the intermediate coils shows power transfer efficiency to be 11.5 % and 8.8 %, respectively. The latter method is especially suitable for powering implanted devices in the eye due to immunity to movements of the eye and ease of surgery. Using this method, we have demonstrated wireless power delivery into an animal eye.

  11. Respiratory rates measured by a standardised clinical approach, ward staff, and a wireless device

    DEFF Research Database (Denmark)

    Granholm, A; Pedersen, N E; Lippert, A.

    2016-01-01

    BACKGROUND: Respiratory rate is among the first vital signs to change in deteriorating patients. The aim was to investigate the agreement between respiratory rate measurements by three different methods. METHODS: This prospective observational study included acutely admitted adult patients...... in a medical ward. Respiratory rate was measured by three methods: a standardised approach over 60 s while patients lay still and refrained from talking, by ward staff and by a wireless electronic patch (SensiumVitals). The Bland-Altman method was used to compare measurements and three breaths per minute (BPM...... of agreement were -13.3 (95% CI: -17.2 to -9.5) BPM and 16.8 (95% CI: 13.0 to 20.6) BPM. CONCLUSION: A concerning lack of agreement was found between a wireless monitoring system and a standardised clinical approach. Ward staff's measurements also seemed to be inaccurate....

  12. A System-Level Analysis of a Wireless Low-Power Biosignal Recording Device

    OpenAIRE

    Chandler, Rodney James

    2012-01-01

    Development of brain-machine interfaces and treatment of neurological diseases can benefit from analysis of recorded data from implanted electrodes. Existing wireless neural recording systems are often bulky, dissipate too much heat to be implanted, or only have a small number of channels. Furthermore, advances in micro-machined electrodes provide the possibility of high-density recordings, but the companion electronics do not provide enough simultaneous channels with low enough power, wirele...

  13. Wireless vital signs from a life-supporting medical device exposed to electromagnetic disturbance.

    Science.gov (United States)

    Øyri, Karl; Chávez-Santiago, Raúl; Støa, Stig; Martinsen, Ørjan Grøttem; Balasingham, Ilangko; Fosse, Erik

    2014-12-01

    To evaluate the level of agreement of simulated wired and Wi-Fi vital signs output from an intra-aortic balloon pump during exposure to electromagnetic interference from frequency overlapping ZigBee sensors. A series of experiments with interference from single and multiple ZigBee sensors were benchmarked with wired and Wi-Fi output. Tests included single ZigBee sensor adjacent and co-channel interference, and multiple ZigBee interferences towards the Wi-Fi receiver and transmitter. Interference-free differences between wired and wireless aortic blood pressure and electrocardiogram were very small, verified by time domain and Bland - Altman plots. Bland - Altman plots comparing level of agreement in wired and wireless aortic blood pressure and ECG output during interference experiments showed a difference from 0.2 to 0.3 mmHg for blood pressure, and from 0.001 to 0.004 mV for electrocardiogram. Level of agreement in wired and wireless (Wi-Fi) arterial blood pressure and electrocardiogram during single or multiple sensor interference was high. No clinically relevant degradation of Wi-Fi transmission of aortic blood pressure or ECG signals was observed.

  14. Introduction of a new pair of thermoplastic materials for precision manufacturing of moulded interconnect devices

    DEFF Research Database (Denmark)

    Islam, Mohammad Aminul; Hansen, Hans Nørgaard; Tang, Peter Torben

    2008-01-01

    One of the main process chains for manufacturing of MIDs is two component injection moulding, in which the two different thermoplastic materials involved should meet the requirements for selective metallization along with the requirements imposed from process and service conditions. It is a real...... challenge to find a suitable pair of polymers that meet so many diversified requirements at a time. This paper presents a new pair of commercial polymer materials (ULTEM PEI1000-Noryl GTX810) that fulfils the criteria for selective metallization and interface quality. The polymer pair is suitable for micro...

  15. Efficacy of biofeedback therapy via a mini wireless device on sleep bruxism contrasted with occlusal splint: a pilot study

    Science.gov (United States)

    Gu, WeiPing; Yang, Jie; Zhang, FeiMin; Yin, XinMin; Wei, XiaoLong; Wang, Chen

    2015-01-01

    Abstract The putative causes of bruxism are multifactorial and there are no definite measures for bruxism management. The aim of this study was to evaluate the efficacy of biofeedback therapy on sleep bruxism, compared with occlusal splint. Twenty-four volunteers with sleep bruxism were divided into two groups: the GTB group that were treated with biofeedback therapy (n  = 12) and the GTO group that were treated with occlusal splint (n  = 12). A mini pressure sensor integrated with a monitoring circuit by use of a maxillary biofeedback splint was fabricated. To foster the relaxation of the masticatory muscles and the nervous system, the wireless device received signals from bruxism events and vibrations alerted the bruxer when the threshold was exceeded. Total episodes and average duration of bruxism events during 8 hours of sleep were analyzed with the monitoring program (TRMY1.0). After 6 and 12 weeks, the episodes (P  =  0.001) and duration (P 0.05). Furthermore, the episodes had significant differences between the GTB group and the GTO group after the same period of treatment (P  =  0.000). The results suggest that biofeedback therapy may be an effective and convenient measure for mild bruxers, when compared with occlusal splint therapy. The mini wireless biofeedback method may be of value for the diagnosis and management of bruxism in the future. PMID:25859272

  16. 75 FR 8400 - In the Matter of Certain Wireless Communications System Server Software, Wireless Handheld...

    Science.gov (United States)

    2010-02-24

    ... COMMISSION In the Matter of Certain Wireless Communications System Server Software, Wireless Handheld Devices... importation, and the sale within the United States after importation of certain wireless communications system... importation of certain wireless communications system server software, wireless handheld devices or battery...

  17. Ensuring Patient Safety by using Colored Petri Net Simulation in the Design of Heterogeneous, Multi-Vendor, Integrated, Life-Critical Wireless (802.x) Patient Care Device Networks.

    Science.gov (United States)

    Sloane, Elliot; Gehlot, Vijay

    2005-01-01

    Hospitals and manufacturers are designing and deploying the IEEE 802.x wireless technologies in medical devices to promote patient mobility and flexible facility use. There is little information, however, on the reliability or ultimate safety of connecting multiple wireless life-critical medical devices from multiple vendors using commercial 802.11a, 802.11b, 802.11g or pre-802.11n devices. It is believed that 802.11-type devices can introduce unintended life-threatening risks unless delivery of critical patient alarms to central monitoring systems and/or clinical personnel is assured by proper use of 802.11e Quality of Service (QoS) methods. Petri net tools can be used to simulate all possible states and transitions between devices and/or systems in a wireless device network, and can identify failure modes in advance. Colored Petri Net (CPN) tools are ideal, in fact, as they allow tracking and controlling each message in a network based on pre-selected criteria. This paper describes a research project using CPN to simulate and validate alarm integrity in a small multi-modality wireless patient monitoring system. A 20-monitor wireless patient monitoring network is created in two versions: one with non-prioritized 802.x CSM protocols and the second with simulated Quality of Service (QoS) capabilities similar to 802.11e (i.e., the second network allows message priority management.) In the standard 802.x network, dangerous heart arrhythmia and pulse oximetry alarms could not be reliably and rapidly communicated, but the second network's QoS priority management reduced that risk significantly.

  18. VibeComm: Radio-Free Wireless Communication for Smart Devices Using Vibration

    Directory of Open Access Journals (Sweden)

    Inhwan Hwang

    2014-11-01

    Full Text Available This paper proposes VibeComm, a novel communication method for smart devices using a built-in vibrator and accelerometer. The proposed approach is ideal for low-rate off-line communication, and its communication medium is an object on which smart devices are placed, such as tables and desks. When more than two smart devices are placed on an object and one device wants to transmit a message to the other devices, the transmitting device generates a sequence of vibrations. The vibrations are propagated through the object on which the devices are placed. The receiving devices analyze their accelerometer readings to decode incoming messages. The proposed method can be the alternative communication method when general types of radio communication methods are not available. VibeComm is implemented on Android smartphones, and a comprehensive set of experiments is conducted to show its feasibility.

  19. VibeComm: radio-free wireless communication for smart devices using vibration.

    Science.gov (United States)

    Hwang, Inhwan; Cho, Jungchan; Oh, Songhwai

    2014-11-10

    This paper proposes VibeComm, a novel communication method for smart devices using a built-in vibrator and accelerometer. The proposed approach is ideal for low-rate off-line communication, and its communication medium is an object on which smart devices are placed, such as tables and desks. When more than two smart devices are placed on an object and one device wants to transmit a message to the other devices, the transmitting device generates a sequence of vibrations. The vibrations are propagated through the object on which the devices are placed. The receiving devices analyze their accelerometer readings to decode incoming messages. The proposed method can be the alternative communication method when general types of radio communication methods are not available. VibeComm is implemented on Android smartphones, and a comprehensive set of experiments is conducted to show its feasibility.

  20. Energy-Efficient Source Authentication for Secure Group Communication with Low-Powered Smart Devices in Hybrid Wireless/Satellite Networks

    Directory of Open Access Journals (Sweden)

    Baras JohnS

    2011-01-01

    Full Text Available We describe a new class of lightweight, symmetric-key digital certificates called extended TESLA certificates and a source authentication protocol for wireless group communication that is based on the certificate. The certificate binds the identity of a wireless smart device to the anchor element of its key chain; keys from the chain are used for computing message authentication codes (MACs on messages sourced by the device. The authentication protocol requires a centralized infrastructure in the network: we describe the protocol in a hybrid wireless network with a satellite overlay interconnecting the wireless devices. The satellite is used as the Certificate Authority (CA and also acts as the proxy for the senders in disclosing the MAC keys to the receivers. We also design a probabilistic nonrepudiation mechanism that utilizes the satellite's role as the CA and sender proxy. Through analysis, we show that the authentication protocol is secure against malicious adversaries. We also present detailed simulation results that demonstrate that the proposed protocol is much cheaper than traditional public key-based authentication technologies for metrics like processing delay, storage requirements, and energy consumption of the smart devices.

  1. Using Innovation Diffusion Theory and the Technolgy Acceptance Model to Evaluate the Security of Wireless Mobile Devices at a Post Secondary Institution

    Science.gov (United States)

    Feliciano-Torres, Hector L.

    2017-01-01

    The purpose of this quantitative, descriptive non experimental study was to investigate the use of wireless mobile network devices at a post-secondary institution using the innovation diffusion theory (IDT) and technology acceptance model (TAM) as background theories. The researcher intended to explore how students and personnel of the institution…

  2. Quantitative Assessment of the Arm/Hand Movements in Parkinson’s Disease Using a Wireless Armband Device

    Directory of Open Access Journals (Sweden)

    Sofija Spasojević

    2017-08-01

    Full Text Available We present an approach for quantitative assessment of the arm/hand movements in patients with Parkinson’s disease (PD, from sensor data acquired with a wearable, wireless armband device (Myo sensor. We propose new Movement Performance Indicators that can be adopted by practitioners for the quantitative evaluation of motor performance and support their clinical evaluations. In addition, specific Movement Performance Indicators can indicate the presence of the bradykinesia symptom. The study includes seventeen PD patients and sixteen age-matched controls. A set of representative arm/hand movements is defined under the supervision of movement disorder specialist. In order to assist the evaluations, and for progress monitoring purposes, as well as for assessing the amount of bradykinesia in PD, a total set of 84 Movement Performance Indicators are computed from the sensor readings. Subsequently, we investigate whether wireless armband device, with the use of the proposed Movement Performance Indicators can be utilized: (1 for objective and precise quantitative evaluation of the arm/hand movements of Parkinson’s patients, (2 for assessment of the bradykinesia motor symptom, and (3 as an adequate low-cost alternative for the sensor glove. We conducted extensive analysis of proposed Movement Performance Indicators and results are indicating following clinically relevant characteristics: (i adequate reliability as measured by ICC; (ii high accuracy in discrimination between the patients and controls, and between the disease stages (support to disease diagnosis and progress monitoring, respectively; (iii substantial difference in comparison between the left-hand and the right-hand movements across controls and patients, as well as between disease stage groups; (iv statistically significant correlation with clinical scales (tapping test and UPDRS-III Motor Score; and (v quantitative evaluation of bradykinesia symptom. Results suggest that the proposed

  3. Wireless biomedical signal monitoring device on wheelchair using noncontact electro-mechanical film sensor.

    Science.gov (United States)

    Kim, Jong-Myoung; Hong, Joo-Hyun; Cho, Myeong-Chan; Cha, Eun-Jong; Lee, Tae-Soo

    2007-01-01

    The present study purposed to measure the BCG (Ballistocardiogram) of subjects on a wheelchair using a noncontact electro-mechanical film sensor (EMFi sensor) and detect the respiratory rate from BCG in real-time while the subjects are moving. In order to measure wirelessly the BCG of subjects moving on a wheelchair, we made a seat-type noncontact EMFi sensor and developed a transmitter and a receiver using Zigbee wireless RF communication technology. The sensor is embedded with a 3-axis accelerometer to remove the noise of wheelchair vibration from BCG signal. Signal obtained from each sensor goes through the A/D converter and is recorded in the SD (Secure Digital) card in PDA (Personal Digital Assistance) with a receiving part. We also developed a PC (Personal Computer) data analysis program, analyzed data recorded in the SD card using the program, and presented the results in graph. Lastly, this study demonstrated that a warning message can be sent from PDA to the remote server via a CDMA (Code Division Multiple Access) network in case the person on wheelchair falls in emergency. Our experiment was carried out with healthy male and female adults in their 20s who volunteered to help this research. The results of analyzing collected data will show that the respiratory rate can be measured in real-time on a moving wheelchair.

  4. 78 FR 49529 - Radio Frequency Wireless Technology in Medical Devices; Guidance for Industry and Food and Drug...

    Science.gov (United States)

    2013-08-14

    ... HUMAN SERVICES Food and Drug Administration (formerly Docket No. 2006D-0504) Radio Frequency Wireless...) is announcing the availability of the guidance entitled ``Radio Frequency Wireless Technology in... considerations related to the incorporation and integration of radio frequency (RF) wireless technology in...

  5. Exposure to radio frequency electromagnetic fields from wireless computer networks: duty factors of Wi-Fi devices operating in schools.

    Science.gov (United States)

    Khalid, M; Mee, T; Peyman, A; Addison, D; Calderon, C; Maslanyj, M; Mann, S

    2011-12-01

    The growing use of wireless local area networks (WLAN) in schools has prompted a study to investigate exposure to the radio frequency (RF) electromagnetic fields from Wi-Fi devices. International guidelines on limiting the adverse health effects of RF, such as those of ICNIRP, allow for time-averaging of exposure. Thus, as Wi-Fi signals consist of intermittent bursts of RF energy, it is important to consider the duty factors of devices in assessing the extent of exposure and compliance with guidelines. Using radio packet capture methods, the duty factor of Wi-Fi devices has been assessed in a sample of 6 primary and secondary schools during classroom lessons. For the 146 individual laptops investigated, the range of duty factors was from 0.02 to 0.91%, with a mean of 0.08% (SD 0.10%). The duty factors of access points from 7 networks ranged from 1.0% to 11.7% with a mean of 4.79% (SD 3.76%). Data gathered with transmit time measuring devices attached to laptops also showed similar results. Within the present limited sample, the range of duty factors from laptops and access points were found to be broadly similar for primary and secondary schools. Applying these duty factors to previously published results from this project, the maximum time-averaged power density from a laptop would be 220 μW m(-2), at a distance of 0.5 m and the peak localised SAR predicted in the torso region of a 10 year old child model, at 34 cm from the antenna, would be 80 μW kg(-1). Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.

  6. High-throughput deterministic single-cell encapsulation and droplet pairing, fusion, and shrinkage in a single microfluidic device.

    Science.gov (United States)

    Schoeman, Rogier M; Kemna, Evelien W M; Wolbers, Floor; van den Berg, Albert

    2014-02-01

    In this article, we present a microfluidic device capable of successive high-yield single-cell encapsulation in droplets, with additional droplet pairing, fusion, and shrinkage. Deterministic single-cell encapsulation is realized using Dean-coupled inertial ordering of cells in a Yin-Yang-shaped curved microchannel using a double T-junction, with a frequency over 2000 Hz, followed by controlled droplet pairing with a 100% success rate. Subsequently, droplet fusion is realized using electrical actuation resulting in electro-coalescence of two droplets, each containing a single HL60 cell, with 95% efficiency. Finally, volume reduction of the fused droplet up to 75% is achieved by a triple pitchfork structure. This droplet volume reduction is necessary to obtain close cell-cell membrane contact necessary for final cell electrofusion, leading to hybridoma formation, which is the ultimate aim of this research. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Power-Management Techniques for Wireless Sensor Networks and Similar Low-Power Communication Devices Based on Nonrechargeable Batteries

    Directory of Open Access Journals (Sweden)

    Agnelo Silva

    2012-01-01

    Full Text Available Despite the well-known advantages of communication solutions based on energy harvesting, there are scenarios where the absence of batteries (supercapacitor only or the use of rechargeable batteries is not a realistic option. Therefore, the alternative is to extend as much as possible the lifetime of primary cells (nonrechargeable batteries. By assuming low duty-cycle applications, three power-management techniques are combined in a novel way to provide an efficient energy solution for wireless sensor networks nodes or similar communication devices powered by primary cells. Accordingly, a customized node is designed and long-term experiments in laboratory and outdoors are realized. Simulated and empirical results show that the battery lifetime can be drastically enhanced. However, two trade-offs are identified: a significant increase of both data latency and hardware/software complexity. Unattended nodes deployed in outdoors under extreme temperatures, buried sensors (underground communication, and nodes embedded in the structure of buildings, bridges, and roads are some of the target scenarios for this work. Part of the provided guidelines can be used to extend the battery lifetime of communication devices in general.

  8. Adaptive Naive Bayes classification for wireless sensor networks

    NARCIS (Netherlands)

    Zwartjes, G.J.

    2017-01-01

    Wireless Sensor Networks are tiny devices equipped with sensors and wireless communication. These devices observe environments and communicatie about these observations. Machine Learning techniques are of interest for Wireless Sensor Network applications since they can reduce the amount of needed

  9. Built-In Device Orientation Sensors for Ad-Hoc Pairing and Spatial Awareness

    DEFF Research Database (Denmark)

    Grønbæk, Jens Emil; O'Hara, Kenton

    Mobile devices are equipped with multiple sensors. The ubiquity of these sensors is key in their ability to support in-the-wild application and use. Building on the ubiquity we look at how we can use this existing sensing infrastructure combined with user mediation to support ad-hoc sharing...

  10. A wireless lingual feedback device to reduce overpressures in seated posture: a feasibility study.

    Science.gov (United States)

    Chenu, Olivier; Vuillerme, Nicolas; Demongeot, Jacques; Payan, Yohan

    2009-10-30

    Pressure sores are localized injuries to the skin and underlying tissues and are mainly resulting from overpressure. Paraplegic peoples are particularly subjects to pressure sores because of long-time seated postures and sensory deprivation at the lower limbs. Here we report outcomes of a feasibility trial involving a biofeedback system aimed at reducing buttock overpressure whilst an individual is seated. The system consists of (1) pressure sensors, (2) a laptop coupling sensors and actuator (3) a wireless Tongue Display Unit (TDU) consisting of a circuit embedded in a dental retainer with electrodes put in contact with the tongue. The principle consists in (1) detecting overpressures in people who are seated over long periods of time, (2) estimating a postural change that could reduce these overpressures and (3) communicating this change through directional information transmitted by the TDU.Twenty-four healthy subjects voluntarily participated in this study. Twelve healthy subjects initially formed the experimental group (EG) and were seated on a chair with the wireless TDU inside their mouth. They were asked to follow TDU orders that were randomly spread throughout the session. They were evaluated during two experimental sessions during which 20 electro-stimulations were sent. Twelve other subjects, added retrospectively, formed the control group (CG). These subjects participated in one session of the same experiment without any biofeedback.Three dependent variables were computed: (1) the ability of subjects to reach target posture (EG versus CG), (2) high pressure reductions after a biofeedback (EG versus CG) and (3) the level of these reductions relative to their initial values (EG only). Results show (1) that EG reached target postures in 90.2% of the trials, against 5,3% in the CG, (2) a significant reduction in overpressures in the EG compared to the CG and (3), for the EG, that the higher the initial pressures were, the more they were decreased. The

  11. Flexible CMOS low-noise amplifiers for beyond-3G wireless hand-held devices

    Science.gov (United States)

    Becerra-Alvarez, Edwin C.; Sandoval-Ibarra, Federico; de la Rosa, José M.

    2009-05-01

    This paper explores the use of reconfigurable Low-Noise Amplifiers (LNAs) for the implementation of CMOS Radio Frequency (RF) front-ends in the next generation of multi-standard wireless transceivers. Main circuit strategies reported so far for multi-standard LNAs are reviewed and a novel flexible LNA intended for Beyond-3G RF hand-held terminals is presented. The proposed LNA circuit consists of a two-stage topology that combines inductive-source degeneration with PMOS-varactor based tuning network and a programmable load to adapt its performance to different standard specifications without penalizing the circuit noise and with a reduced number of inductors as compared to previous reported reconfigurable LNAs. The circuit has been designed in a 90-nm CMOS technology to cope with the requirements of the GSM, WCDMA, Bluetooth and WLAN (IEEE 802.11b-g) standards. Simulation results, including technology and packaging parasitics, demonstrate correct operation of the circuit for all the standards under study, featuring NF13.3dB and IIP3>10.9dBm, over a 1.85GHz-2.4GHz band, with an adaptive power consumption between 17mW and 22mW from a 1-V supply voltage. Preliminary experimental measurements are included, showing a correct reconfiguration operation within the operation band.

  12. Communication latencies of wireless devices suitable for time-critical messaging to anesthesia providers.

    Science.gov (United States)

    Epstein, Richard H; Dexter, Franklin; Rothman, Brian

    2013-04-01

    Rapid and reliable methods of text communication to mobile anesthesia care providers are important to patient care and to efficient operating room management. Anesthesia departments are implementing automated methods to send text messages to mobile devices for abnormal vital signs, clinical recommendations, quality of care, and compliance or billing issues. The most time-critical communications determine maximum acceptable latencies. We studied the reliability of several alphanumeric messaging systems to identify an appropriate technology for such use. Latencies between message initiation and delivery to 3 alphanumeric paging devices were measured over weeks. Two devices used Internet pathways outside the hospital's local network with an external paging vendor (SkyTel). The third device used only the internal hospital network (Zetron). Sequential cell phone text page latencies were examined for lag-1 autocorrelation using the runs test, with results binned by hour and by day. Message latencies subsequently were batched in successive 1-week bins for calculation of the mean and 99th percentiles of latencies. We defined acceptance criteria as a mean latency communication systems need to measure latencies of proposed communication pathways and devices used to deliver urgent messages to mobile users. Similar evaluation is relevant for text pagers used on an ad hoc basis for delivery of time-critical notifications. Testing over a period of hours to days is adequate only for disqualification of a candidate paging system, because acceptable results are not necessarily indicative of long-term performance. Rather, weeks of testing are required, with appropriate batching of pages for analysis.

  13. Exploring the capability of wireless near infrared spectroscopy as a portable seizure detection device for epilepsy patients.

    Science.gov (United States)

    Jeppesen, Jesper; Beniczky, Sándor; Johansen, Peter; Sidenius, Per; Fuglsang-Frederiksen, Anders

    2015-03-01

    Near infrared spectroscopy (NIRS) has proved useful in measuring significant hemodynamic changes in the brain during epileptic seizures. The advance of NIRS-technology into wireless and portable devices raises the possibility of using the NIRS-technology for portable seizure detection. This study used NIRS to measure changes in oxygenated (HbO), deoxygenated (HbR), and total hemoglobin (HbT) at left and right side of the frontal lobe in 33 patients with epilepsy undergoing long-term video-EEG monitoring. Fifteen patients had 34 focal seizures (20 temporal-, 11 frontal-, 2 parietal-lobe, one unspecific) recorded and analyzed with NIRS. Twelve parameters consisting of maximum increase and decrease changes of HbO, HbR and HbT during seizures (1 min before- to 3 min after seizure-onset) for left and right side, were compared with the patients' own non-seizure periods (a 2-h period and a 30-min exercise-period). In both non-seizure periods 4 min moving windows with maximum overlapping were applied to find non-seizure maxima of the 12 parameters. Detection was defined as positive when seizure maximum change exceeded non-seizure maximum change. When analyzing the 12 parameters separately the positive seizure detection was in the range of 6-24%. The increase in hemodynamics was in general better at detecting seizures (15-24%) than the decrease in hemodynamics (6-18%) (P=0.02). NIRS did not seem to be a suitable technology for generic seizure detection given the device, settings, and methods used in this study. There are still several challenges to overcome before the NIRS-technology can be used as a home-monitoring seizure detection device. Copyright © 2015 British Epilepsy Association. Published by Elsevier Ltd. All rights reserved.

  14. Performance Analysis of IEEE 802.15.4 Compliant Wireless Devices for Heterogeneous Indoor Home Automation Environments

    Directory of Open Access Journals (Sweden)

    Juan Antonio Nazabal

    2012-01-01

    Full Text Available The influence of topology as well as morphology of complex indoor scenarios in the deployment of wireless sensor networks and wireless systems applied to home and building automation systems is analyzed. The existence of loss mechanisms such as material absorption (walls, furniture, etc. and strong multipath components as well as the increase in the number of wireless sensors within indoor scenarios increases the relevance in the configuration of the heterogeneous wireless systems. Simulation results by means of empirical-based models are compared with an in-house 3D ray launching code as well as measurement results from wireless sensor networks illustrate the strong influence of the indoor scenario in the overall performance. The use of adequate radioplanning strategies lead to optimal wireless network deployments in terms of capacity, quality of service, and reduced power consumption.

  15. Reconfigurable re-entrant cavity for wireless coupling to an electro-optomechanical device

    Science.gov (United States)

    Menke, T.; Burns, P. S.; Higginbotham, A. P.; Kampel, N. S.; Peterson, R. W.; Cicak, K.; Simmonds, R. W.; Regal, C. A.; Lehnert, K. W.

    2017-09-01

    An electro-optomechanical device capable of microwave-to-optics conversion has recently been demonstrated, with the vision of enabling optical networks of superconducting qubits. Here we present an improved converter design that uses a three-dimensional microwave cavity for coupling between the microwave transmission line and an integrated LC resonator on the converter chip. The new design simplifies the optical assembly and decouples it from the microwave part of the setup. Experimental demonstrations show that the modular device assembly allows us to flexibly tune the microwave coupling to the converter chip while maintaining small loss. We also find that electromechanical experiments are not impacted by the additional microwave cavity. Our design is compatible with a high-finesse optical cavity and will improve optical performance.

  16. Locating Damage Using Integrated Global-Local Approach with Wireless Sensing System and Single-Chip Impedance Measurement Device

    Directory of Open Access Journals (Sweden)

    Tzu-Hsuan Lin

    2014-01-01

    Full Text Available This study developed an integrated global-local approach for locating damage on building structures. A damage detection approach with a novel embedded frequency response function damage index (NEFDI was proposed and embedded in the Imote2.NET-based wireless structural health monitoring (SHM system to locate global damage. Local damage is then identified using an electromechanical impedance- (EMI- based damage detection method. The electromechanical impedance was measured using a single-chip impedance measurement device which has the advantages of small size, low cost, and portability. The feasibility of the proposed damage detection scheme was studied with reference to a numerical example of a six-storey shear plane frame structure and a small-scale experimental steel frame. Numerical and experimental analysis using the integrated global-local SHM approach reveals that, after NEFDI indicates the approximate location of a damaged area, the EMI-based damage detection approach can then identify the detailed damage location in the structure of the building.

  17. Theoretical and experimental study of a wireless power supply system for moving low power devices in ferromagnetic and conductive medium

    Science.gov (United States)

    Safour, Salaheddine; Bernard, Yves

    2017-10-01

    This paper focuses on the design of a wireless power supply system for low power devices (e.g. sensors) located in harsh electromagnetic environment with ferromagnetic and conductive materials. Such particular environment could be found in linear and rotating actuators. The studied power transfer system is based on the resonant magnetic coupling between a fixed transmitter coil and a moving receiver coil. The technique was utilized successfully for rotary machines. The aim of this paper is to extend the technique to linear actuators. A modeling approach based on 2D Axisymmetric Finite Element model and an electrical lumped model based on the two-port network theory is introduced. The study shows the limitation of the technique to transfer the required power in the presence of ferromagnetic and conductive materials. Parametric and circuit analysis were conducted in order to design a resonant magnetic coupler that ensures good power transfer capability and efficiency. A design methodology is proposed based on this study. Measurements on the prototype show efficiency up to 75% at a linear distance of 20 mm.

  18. Optimization of complex reliability indicator of wireless devices by changing their topology

    Directory of Open Access Journals (Sweden)

    Uvarov B. M.

    2015-12-01

    Full Text Available The authors consider problems of determination of reliability parameters for designs of radio engineering devices (RED under the influence of mechanical and thermal (external and internal factors. Mechanical factors (linear acceleration, vibration, impact cause mechanical effect on the outputs of elements of electronic structure (EES and soldered connections, which can result in decrease of reliability. External thermal effects and internal heat release in the elements of the electronic structure of radioelectronic devices raises the temperature of these elements, thereby reducing the reliability not only of the elements, but of the device as a whole. The paper presents the methods for determination of versatility indicators of reliability depending on mechanical and thermal effects on REDs. Optimization of configuration of the cell (topology using computer programs allows reducing mechanical and thermal effect on the outputs of EESs and to obtain maximum parameters of reliability of a design. The optimum topology of a cell obtained by such program is illustrated. As a result of optimization, reliability of cells has increased.

  19. Impact of high power interference sources in planning and deployment of wireless sensor networks and devices in the 2.4 GHz frequency band in heterogeneous environments.

    Science.gov (United States)

    Iturri, Peio López; Nazábal, Juan Antonio; Azpilicueta, Leire; Rodriguez, Pablo; Beruete, Miguel; Fernández-Valdivielso, Carlos; Falcone, Francisco

    2012-11-12

    In this work, the impact of radiofrequency radiation leakage from microwave ovens and its effect on 802.15.4 ZigBee-compliant wireless sensor networks operating in the 2.4 GHz Industrial Scientific Medical (ISM) band is analyzed. By means of a novel radioplanning approach, based on electromagnetic field simulation of a microwave oven and determination of equivalent radiation sources applied to an in-house developed 3D ray launching algorithm, estimation of the microwave oven’s power leakage is obtained for the complete volume of an indoor scenario. The magnitude and the variable nature of the interference is analyzed and the impact in the radio link quality in operating wireless sensors is estimated and compared with radio channel measurements as well as packet measurements. The measurement results reveal the importance of selecting an adequate 802.15.4 channel, as well as the Wireless Sensor Network deployment strategy within this type of environment, in order to optimize energy consumption and increase the overall network performance. The proposed method enables one to estimate potential interference effects in devices operating within the 2.4 GHz band in the complete scenario, prior to wireless sensor network deployment, which can aid in achieving the most optimal network topology.

  20. Impact of High Power Interference Sources in Planning and Deployment of Wireless Sensor Networks and Devices in the 2.4 GHz Frequency Band in Heterogeneous Environments

    Directory of Open Access Journals (Sweden)

    Francisco Falcone

    2012-11-01

    Full Text Available In this work, the impact of radiofrequency radiation leakage from microwave ovens and its effect on 802.15.4 ZigBee-compliant wireless sensor networks operating in the 2.4 GHz Industrial Scientific Medical (ISM band is analyzed. By means of a novel radioplanning approach, based on electromagnetic field simulation of a microwave oven and determination of equivalent radiation sources applied to an in-house developed 3D ray launching algorithm, estimation of the microwave oven’s power leakage is obtained for the complete volume of an indoor scenario. The magnitude and the variable nature of the interference is analyzed and the impact in the radio link quality in operating wireless sensors is estimated and compared with radio channel measurements as well as packet measurements. The measurement results reveal the importance of selecting an adequate 802.15.4 channel, as well as the Wireless Sensor Network deployment strategy within this type of environment, in order to optimize energy consumption and increase the overall network performance. The proposed method enables one to estimate potential interference effects in devices operating within the 2.4 GHz band in the complete scenario, prior to wireless sensor network deployment, which can aid in achieving the most optimal network topology.

  1. Efficient Testing of Wireless Devices from 800 MHz to 18 GHz

    Directory of Open Access Journals (Sweden)

    A. Scannavini

    2009-12-01

    Full Text Available Small antennas and other modern communication applications are using increasingly higher frequencies while demanding shorter development time and very rapid testing cycles. A fast and accurate way to exhaustively determine antenna performance and/or investigate device malfunction is based on spherical near field measurement techniques combined with probe array technology. This paper describes the innovative design aspects of the StarLab portable antenna measurement system and present results from the validation campaigns including both passive and active measurements. The use of integrated diagnostic and analysis software modules for efficient antenna design and testing is also presented.

  2. 75 FR 43206 - In the Matter of Certain Wireless Communications System Server Software, Wireless Handheld...

    Science.gov (United States)

    2010-07-23

    ... COMMISSION In the Matter of Certain Wireless Communications System Server Software, Wireless Handheld Devices... for importation, and the sale within the United States after importation of certain wireless communications system server software, wireless handheld devices and battery packs by reason of infringement of...

  3. A Compact Kapton-based Inkjet Printed Multiband Antenna for Flexible Wireless Devices

    KAUST Repository

    Ahmed, Sana

    2015-04-20

    A low cost inkjet printed multiband antenna envisioned for integration into flexible and conformal mobile devices is presented. The antenna structure contains a novel triangular iterative design with coplanar waveguide (CPW) feed, printed on a Kapton polyimide-based flexible substrate with dimensions of 70 x 70 x 0.11 mm3. The antenna covers four wide frequency bands with measured impedance bandwidths of 54.4%, 14%, 23.5% and 17.2%, centered at 1.2, 2.0, 2.6 and 3.4 GHz, respectively, thus, enabling it to cover GSM 900, GPS, UMTS, WLAN, ISM, Bluetooth, LTE 2300/ 2500 and WiMAX standards. The antenna has omnidirectional radiation pattern with a maximum gain of 2.1 dBi. To characterize the flexibility of the antenna, the fabricated prototype is tested in convex and concave bent configurations for radii of 78mm and 59mm. The overall performance remains unaffected, except a minor shift of 20 MHz and 60 MHz in S11, for concave bending at both radii. The compact, lightweight and conformal design as well as multiband performance in bent configurations, proves the suitability of the antenna for future electronic devices.

  4. A new planar broadband antenna based on meandered line loops for portable wireless communication devices

    Science.gov (United States)

    Alibakhshi-Kenari, Mohammad; Naser-Moghadasi, Mohammad; Sadeghzadeh, R. A.; Virdee, Bal S.; Limiti, Ernesto

    2016-07-01

    This article presents the design of a novel planar antenna structure comprising two pairs of interconnected meandered line loops that are grounded to a truncated T-shaped ground plane through two via holes. The T-shaped ground plane is used as a reflector to enhance the performance of the antenna. The resulting antenna is compact occupying an area of 38.5 × 36.6 mm2 (0.070λo × 0.067λo), where free-space wavelength is 550 MHz. The antenna radiates omnidirectionally in the E plane across its operational bandwidth (550 MHz to 3.85 GHz) with peak gain and efficiency of 5.5 dBi and 90.1%, respectively, at 2.35 GHz and reflection coefficient better than -10 dB. These characteristics make the antenna suitable for numerous applications, in particular, JCDMA, UHF RFID, GSM 900, GPS, KPCS, DCS, IMT-2000, WiMAX, WiFi, and Bluetooth.

  5. Optimal position of the transmitter coil for wireless power transfer to the implantable device.

    Science.gov (United States)

    Jinghui Jian; Stanaćević, Milutin

    2014-01-01

    The maximum deliverable power through inductive link to the implantable device is limited by the tissue exposure to the electromagnetic field radiation. By moving away the transmitter coil from the body, the maximum deliverable power is increased as the magnitude of the electrical field at the interface with the body is kept constant. We demonstrate that the optimal distance between the transmitter coil and the body is on the order of 1 cm when the current of the transmitter coil is limited to 1 A. We also confirm that the conditions on the optimal frequency of the power transmission and the topology of the transmission coil remain the same as if the coil was directly adjacent to the body.

  6. Exquisite textiles sensors and wireless sensor network device for home health care.

    Science.gov (United States)

    Huang, Wen-Tzeng; Chen, Chin-Hsing; Chang, Yuan-Jen; Chen, You-Yin; Huang, Jung-Lin; Yang, Chang Ming; Yang, Tzu Lin

    2008-01-01

    In this study, we propose a wearing system with four sensors, ECG (electrocardiogram), three-axis accelerometer, temperature, and tight-switch, applied for remote monitoring system in home-care. The sensors ECG, measured with wearable electrodes made of the steel textile to generate the real-time heart-rate estimator, tight-switch, made of the steel textile to check whether wearing person dresses properly, accelerometer, and temperature parameters are received via the ZigBee receiver within an exquisite belt. Since the movable textile electrodes will cause of unfixed contacts when the wearing person is in motion, making the heart-rate estimation much a sophisticated work, the tight-switch sensor and FIR (Filter Impulse Response) filter technology are applied here to get the more satisfiable heart-rate. The other two bio-sensors can detect the whether fall-down or not and normal body-temperature of this wearing person. Moreover, the ZigBee device with small size, low-power consumption, and high-reliability characteristics is designed to transmit the detected bio-information from these four sensors. Therefore, the vital system embedded with the capability of real-time heart-rate estimation and transmission makes it highly suitable for applications of remote healthcare and wellness.

  7. Tissue Variability and Antennas for Power Transfer to Wireless Implantable Medical Devices.

    Science.gov (United States)

    Bocan, Kara N; Mickle, Marlin H; Sejdic, Ervin

    2017-01-01

    The design of effective transcutaneous systems demands the consideration of inevitable variations in tissue characteristics, which vary across body areas, among individuals, and over time. The purpose of this paper was to design and evaluate several printed antenna topologies for ultrahigh frequency (UHF) transcutaneous power transfer to implantable medical devices, and to investigate the effects of variations in tissue properties on dipole and loop topologies. Here, we show that a loop antenna topology provides the greatest achievable gain with the smallest implanted antenna, while a dipole system provides higher impedance for conjugate matching and the ability to increase gain with a larger external antenna. In comparison to the dipole system, the loop system exhibits greater sensitivity to changes in tissue structure and properties in terms of power gain, but provides higher gain when the separation is on the order of the smaller antenna dimension. The dipole system was shown to provide higher gain than the loop system at greater implant depths for the same implanted antenna area, and was less sensitive to variations in tissue properties and structure in terms of power gain at all investigated implant depths. The results show the potential of easily-fabricated, low-cost printed antenna topologies for UHF transcutaneous power, and the importance of environmental considerations in choosing the antenna topology.

  8. The effects of electromagnetic radiation (2450 MHz wireless devices) on the heart and blood tissue: role of melatonin.

    Science.gov (United States)

    Gumral, N; Saygin, M; Asci, H; Uguz, A C; Celik, O; Doguc, D K; Savas, H B; Comlekci, S

    2016-01-01

    This study was designed to investigate the effects of 2450 MHz EMR on the heart and blood in rat and possible ameliorating effects of melatonin. Thirty-two female Wistar Albino rats were randomly grouped (by eight in each group) as follows:  Group I: cage-control group (dimethysulfoxide (DMSO), 10mg/kg/day i.p. without stress and EMR. Group II: sham-control rats stayed in restrainer without EMR and DMSO (10mg/kg/day i.p.). Group III: rats exposed to 2450 MHz EMR. Group IV: treated group rats exposed to 2450 MHz EMR+melatonin (MLT) (10mg/kg/day i.p.). In the blood tissue, there was no significant difference between the groups in respect of erythrocytes GSH, GSH-Px activity, plasma LP level and vitamin A concentration (p > 0.05). However, in the Group IV, erythrocytes' LP levels (p < 0.05) were observed to be significantly decreased while plasma vitamin C, and vitamin E concentrations (p < 0.05) were found to be increased when compared to Group III. In the heart tissues, MDA and NO levels significantly increased in group III compared with groups I and II (p < 0.05). Contrary to these oxidant levels, CAT and SOD enzyme activities decreased significantly in group III compared with groups I and II (p 0.05). Besides, MLT treatment lowered the MDA and NO levels compared with group III. In conclusion, these results demonstrated that contrary to its effect on the heart, the wireless (2450 MHz) devices cause slight oxidative-antioxidative changes in the blood of rats, and a moderate melatonin supplementation may play an important role in the antioxidant system (plasma vitamin C and vitamin E). However, further investigations are required to clarify the mechanism of action of the applied 2450 MHz EMR exposure (Tab. 3, Fig. 1, Ref. 49).

  9. Data converters for wireless standards

    CERN Document Server

    Shi, Chunlei

    2002-01-01

    Wireless communication is witnessing tremendous growth with proliferation of different standards covering wide, local and personal area networks (WAN, LAN and PAN). The trends call for designs that allow 1) smooth migration to future generations of wireless standards with higher data rates for multimedia applications, 2) convergence of wireless services allowing access to different standards from the same wireless device, 3) inter-continental roaming. This requires designs that work across multiple wireless standards, can easily be reused, achieve maximum hardware share at a minimum power consumption levels particularly for mobile battery-operated devices.

  10. A data-management system using sensor technology and wireless devices for port security

    Science.gov (United States)

    Saldaña, Manuel; Rivera, Javier; Oyola, Jose; Manian, Vidya

    2014-05-01

    Sensor technologies such as infrared sensors and hyperspectral imaging, video camera surveillance are proven to be viable in port security. Drawing from sources such as infrared sensor data, digital camera images and processed hyperspectral images, this article explores the implementation of a real-time data delivery system. In an effort to improve the manner in which anomaly detection data is delivered to interested parties in port security, this system explores how a client-server architecture can provide protected access to data, reports, and device status. Sensor data and hyperspectral image data will be kept in a monitored directory, where the system will link it to existing users in the database. Since this system will render processed hyperspectral images that are dynamically added to the server - which often occupy a large amount of space - the resolution of these images is trimmed down to around 1024×768 pixels. Changes that occur in any image or data modification that originates from any sensor will trigger a message to all users that have a relation with the aforementioned. These messages will be sent to the corresponding users through automatic email generation and through a push notification using Google Cloud Messaging for Android. Moreover, this paper presents the complete architecture for data reception from the sensors, processing, storage and discusses how users of this system such as port security personnel can use benefit from the use of this service to receive secure real-time notifications if their designated sensors have detected anomalies and/or have remote access to results from processed hyperspectral imagery relevant to their assigned posts.

  11. Technical and clinical analysis of microEEG: a miniature wireless EEG device designed to record high-quality EEG in the emergency department

    OpenAIRE

    Omurtag, Ahmet; Baki, Samah G Abdel; Chari, Geetha; Cracco, Roger Q; Zehtabchi, Shahriar; Fenton, Andr? A; Grant, Arthur C.

    2012-01-01

    Background We describe and characterize the performance of microEEG compared to that of a commercially available and widely used clinical EEG machine. microEEG is a portable, battery-operated, wireless EEG device, developed by Bio-Signal Group to overcome the obstacles to routine use of EEG in emergency departments (EDs). Methods The microEEG was used to obtain EEGs from healthy volunteers in the EEG laboratory and ED. The standard system was used to obtain EEGs from healthy volunteers in the...

  12. Investigation of Tribological Properties of Friction Pairs Duralumin – Fluoropolymer Used for Design and Manufacturing of Biomechatronic Devices

    Directory of Open Access Journals (Sweden)

    P. Kovalenko

    2017-06-01

    Full Text Available This paper deals with the processes occurring on the surfaces of materials during the interaction between metal and non-metal parts of various biomechatronic devices, such as prostheses, orthoses and exoskeletons. These mechatronic systems require careful selection of materials for design and manufacturing of their parts taking into consideration not only mechanical properties of the materials, but also their tribological characteristics. Friction pairs duralumin – fluoropolymer and stainless steel 100CrMn6 – fluoropolymer were chosen for the research as the samples. Experimental research was carried out with the use of the universal friction machine MTU-1. For this research, the scheme “plate-on-plate” was used without lubricants. Friction torque, friction coefficient and the temperature in the contact area versus the runtime were obtained as a result of the experiments. Furthermore, estimation of wear of contacting samples was performed. Analysis of the results allowed us to choose suitable materials for design and manufacturing of orthoses, prostheses and exoskeletons.

  13. Real-time medical control using a wireless audio-video transmission device in a pre-hospital emergency service in Korea.

    Science.gov (United States)

    Kwak, Min Ji; Kim, Ji Man; Shin, Il Hyung; Shin, Sang Do; Song, Kyoung Jun; Suh, Gil Joon; Kim, Hee Chan

    2009-01-01

    We developed a hands-free portable device which can provide two-way, real-time audio and video communication between hospital doctors and emergency medical technicians (EMTs) providing pre-hospital care. The device was based on an ultra mobile PC with a camera, a microphone/earphone set and a WIBRO modem for wireless Internet connection at an average data transmission rate of 1 Mbit/s. Feasibility tests were conducted in 55 real emergency situations over a period of three months at five different Rescue Centres in Seoul. Successful communication between an EMT and a doctor was achieved in 46 cases (84%). The device showed acceptable performance in terms of audio/video transmission time delays and maximum transmitted video frame rates, both outdoors, inside a building and in a moving vehicle at 70 km/h. Eight control centre staff and 11 EMTs who used the device completed a questionnaire. Despite acceptable basic performance, the device was found to be limited in terms of the contribution it made to the medical control of EMTs. However, improvements in device performance should produce higher quality pre-hospital emergency medical care in the future.

  14. Wireless sensor networks architectures and protocols

    CERN Document Server

    Callaway, Jr, Edgar H

    2003-01-01

    Introduction to Wireless Sensor NetworksApplications and MotivationNetwork Performance ObjectivesContributions of this BookOrganization of this BookThe Development of Wireless Sensor NetworksEarly Wireless NetworksWireless Data NetworksWireless Sensor and Related NetworksConclusionThe Physical LayerSome Physical Layer ExamplesA Practical Physical Layer for Wireless Sensor NetworksSimulations and ResultsConclusionThe Data Link LayerMedium Access Control TechniquesThe Mediation DeviceSystem Analysis and SimulationConclusionThe Network LayerSome Network Design ExamplesA Wireless Sensor Network De

  15. Gaming control using a wearable and wireless EEG-based brain-computer interface device with novel dry foam-based sensors

    Science.gov (United States)

    2012-01-01

    A brain-computer interface (BCI) is a communication system that can help users interact with the outside environment by translating brain signals into machine commands. The use of electroencephalographic (EEG) signals has become the most common approach for a BCI because of their usability and strong reliability. Many EEG-based BCI devices have been developed with traditional wet- or micro-electro-mechanical-system (MEMS)-type EEG sensors. However, those traditional sensors have uncomfortable disadvantage and require conductive gel and skin preparation on the part of the user. Therefore, acquiring the EEG signals in a comfortable and convenient manner is an important factor that should be incorporated into a novel BCI device. In the present study, a wearable, wireless and portable EEG-based BCI device with dry foam-based EEG sensors was developed and was demonstrated using a gaming control application. The dry EEG sensors operated without conductive gel; however, they were able to provide good conductivity and were able to acquire EEG signals effectively by adapting to irregular skin surfaces and by maintaining proper skin-sensor impedance on the forehead site. We have also demonstrated a real-time cognitive stage detection application of gaming control using the proposed portable device. The results of the present study indicate that using this portable EEG-based BCI device to conveniently and effectively control the outside world provides an approach for researching rehabilitation engineering. PMID:22284235

  16. Gaming control using a wearable and wireless EEG-based brain-computer interface device with novel dry foam-based sensors.

    Science.gov (United States)

    Liao, Lun-De; Chen, Chi-Yu; Wang, I-Jan; Chen, Sheng-Fu; Li, Shih-Yu; Chen, Bo-Wei; Chang, Jyh-Yeong; Lin, Chin-Teng

    2012-01-28

    A brain-computer interface (BCI) is a communication system that can help users interact with the outside environment by translating brain signals into machine commands. The use of electroencephalographic (EEG) signals has become the most common approach for a BCI because of their usability and strong reliability. Many EEG-based BCI devices have been developed with traditional wet- or micro-electro-mechanical-system (MEMS)-type EEG sensors. However, those traditional sensors have uncomfortable disadvantage and require conductive gel and skin preparation on the part of the user. Therefore, acquiring the EEG signals in a comfortable and convenient manner is an important factor that should be incorporated into a novel BCI device. In the present study, a wearable, wireless and portable EEG-based BCI device with dry foam-based EEG sensors was developed and was demonstrated using a gaming control application. The dry EEG sensors operated without conductive gel; however, they were able to provide good conductivity and were able to acquire EEG signals effectively by adapting to irregular skin surfaces and by maintaining proper skin-sensor impedance on the forehead site. We have also demonstrated a real-time cognitive stage detection application of gaming control using the proposed portable device. The results of the present study indicate that using this portable EEG-based BCI device to conveniently and effectively control the outside world provides an approach for researching rehabilitation engineering.

  17. Gaming control using a wearable and wireless EEG-based brain-computer interface device with novel dry foam-based sensors

    Directory of Open Access Journals (Sweden)

    Liao Lun-De

    2012-01-01

    Full Text Available Abstract A brain-computer interface (BCI is a communication system that can help users interact with the outside environment by translating brain signals into machine commands. The use of electroencephalographic (EEG signals has become the most common approach for a BCI because of their usability and strong reliability. Many EEG-based BCI devices have been developed with traditional wet- or micro-electro-mechanical-system (MEMS-type EEG sensors. However, those traditional sensors have uncomfortable disadvantage and require conductive gel and skin preparation on the part of the user. Therefore, acquiring the EEG signals in a comfortable and convenient manner is an important factor that should be incorporated into a novel BCI device. In the present study, a wearable, wireless and portable EEG-based BCI device with dry foam-based EEG sensors was developed and was demonstrated using a gaming control application. The dry EEG sensors operated without conductive gel; however, they were able to provide good conductivity and were able to acquire EEG signals effectively by adapting to irregular skin surfaces and by maintaining proper skin-sensor impedance on the forehead site. We have also demonstrated a real-time cognitive stage detection application of gaming control using the proposed portable device. The results of the present study indicate that using this portable EEG-based BCI device to conveniently and effectively control the outside world provides an approach for researching rehabilitation engineering.

  18. Green heterogeneous wireless networks

    CERN Document Server

    Ismail, Muhammad; Nee, Hans-Peter; Qaraqe, Khalid A; Serpedin, Erchin

    2016-01-01

    This book focuses on the emerging research topic "green (energy efficient) wireless networks" which has drawn huge attention recently from both academia and industry. This topic is highly motivated due to important environmental, financial, and quality-of-experience (QoE) considerations. Specifically, the high energy consumption of the wireless networks manifests in approximately 2% of all CO2 emissions worldwide. This book presents the authors’ visions and solutions for deployment of energy efficient (green) heterogeneous wireless communication networks. The book consists of three major parts. The first part provides an introduction to the "green networks" concept, the second part targets the green multi-homing resource allocation problem, and the third chapter presents a novel deployment of device-to-device (D2D) communications and its successful integration in Heterogeneous Networks (HetNets). The book is novel in that it specifically targets green networking in a heterogeneous wireless medium, which re...

  19. A Wireless Swing Angle Measurement Scheme Using Attitude Heading Reference System Sensing Units Based on Microelectromechanical Devices

    Directory of Open Access Journals (Sweden)

    Bingtuan Gao

    2014-11-01

    Full Text Available Feasible real-time swing angle measurement is significant to improve the efficiency and safety of industrial crane systems. This paper presents a wireless microelectromechanical system (MEMS-based swing angle measurement system. The system consists of two attitude heading reference system (AHRS sensing units with a wireless communication function, which are mounted on the hook (or payload and the jib (or base of the crane, respectively. With a combination of a three-axis accelerometer, a three-axis gyroscope and a three-axis magnetometer, the standard extended Kalman filter (EKF is used to estimate the desired orientation of the payload and the base. Wireless ZigBee communication is employed to transmit the orientation of the payload to the sensing unit mounted on the base, which measures the orientation of the base. Because several physical parameters from the payload to the base can be acquired from the original crane control system, the swing angles of the payload can be calculated based on the two measured orientation parameters together with the known physical parameters. Experiments were performed to show the feasibility and effectiveness of the proposed swing angle measurement system.

  20. Optical and wireless technologies

    CERN Document Server

    Tiwari, Manish; Singh, Ghanshyam; Minzioni, Paolo

    2018-01-01

    This book presents selected papers from 1st International Conference on Optical and Wireless Technologies, providing insights into the analytical, experimental, and developmental aspects of systems, techniques, and devices in these spheres. It explores the combined use of various optical and wireless technologies in next-generation networking applications, and discusses the latest developments in applications such as photonics, high-speed communication systems and networks, visible light communication, nanophotonics, and wireless and multiple-input-multiple-output (MIMO) systems. The book will serve as a valuable reference resource for academics and researchers across the globe.

  1. Wireless Sensor Technologies and Applications

    Directory of Open Access Journals (Sweden)

    Feng Xia

    2009-11-01

    Full Text Available Recent years have witnessed tremendous advances in the design and applications of wirelessly networked and embedded sensors. Wireless sensor nodes are typically low-cost, low-power, small devices equipped with limited sensing, data processing and wireless communication capabilities, as well as power supplies. They leverage the concept of wireless sensor networks (WSNs, in which a large (possibly huge number of collaborative sensor nodes could be deployed. As an outcome of the convergence of micro-electro-mechanical systems (MEMS technology, wireless communications, and digital electronics, WSNs represent a significant improvement over traditional sensors. In fact, the rapid evolution of WSN technology has accelerated the development and deployment of various novel types of wireless sensors, e.g., multimedia sensors. Fulfilling Moore’s law, wireless sensors are becoming smaller and cheaper, and at the same time more powerful and ubiquitous. [...

  2. The Lure of Wireless Encryption

    CERN Multimedia

    Computer Security Team

    2013-01-01

    Following our article entitled “Jekyll or Hyde? Better browse securely” in the last issue of the Bulletin, some people wondered why the CERN wireless network is not encrypted…   There are many arguments why it is not. The simplest is usability: the communication and management of the corresponding access keys would be challenging given the sheer number of wireless devices the CERN network hosts. Keys would quickly become public, e.g. at conferences, and might be shared, written on whiteboards, etc. Then there are all the devices which cannot be easily configured to use encryption protocols - a fact which would create plenty of calls to the CERN Service Desk… But our main argument is that wireless encryption is DECEPTIVE. Wireless encryption is deceptive as it only protects the wireless network against unauthorised access (and the CERN network already has other means to protect against that). Wireless encryption however, does not really help you. You ...

  3. Assessment of Electromagnetic Interference with Active Cardiovascular Implantable Electronic Devices (CIEDs Caused by the Qi A13 Design Wireless Charging Board

    Directory of Open Access Journals (Sweden)

    Tobias Seckler

    2015-05-01

    Full Text Available Electromagnetic interference is a concern for people wearing cardiovascular implantable electronic devices (CIEDs. The aim of this study was to assess the electromagnetic compatibility between CIEDs and the magnetic field of a common wireless charging technology. To do so the voltage induced in CIEDs by Qi A13 design magnetic fields were measured and compared with the performance limits set by ISO 14117. In order to carry this out a measuring circuit was developed which can be connected with unipolar or bipolar pacemaker leads. The measuring system was positioned at the four most common implantation sites in a torso phantom filled with physiological saline solution. The phantom was exposed by using Helmholtz coils from 5 µT to 27 µT with 111 kHz sine‑bursts or by using a Qi A13 design wireless charging board (Qi‑A13‑Board in two operating modes “power transfer” and “pinging”. With the Helmholtz coils the lowest magnetic flux density at which the performance limit was exceeded is 11 µT. With the Qi‑A13‑Board in power transfer mode 10.8% and in pinging mode 45.7% (2.2% at 10 cm distance of the performance limit were reached at maximum. In neither of the scrutinized cases, did the voltage induced by the Qi‑A13‑Board exceed the performance limits.

  4. Unified Compact ECC-AES Co-Processor with Group-Key Support for IoT Devices in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Luis Parrilla

    2018-01-01

    Full Text Available Security is a critical challenge for the effective expansion of all new emerging applications in the Internet of Things paradigm. Therefore, it is necessary to define and implement different mechanisms for guaranteeing security and privacy of data interchanged within the multiple wireless sensor networks being part of the Internet of Things. However, in this context, low power and low area are required, limiting the resources available for security and thus hindering the implementation of adequate security protocols. Group keys can save resources and communications bandwidth, but should be combined with public key cryptography to be really secure. In this paper, a compact and unified co-processor for enabling Elliptic Curve Cryptography along to Advanced Encryption Standard with low area requirements and Group-Key support is presented. The designed co-processor allows securing wireless sensor networks with independence of the communications protocols used. With an area occupancy of only 2101 LUTs over Spartan 6 devices from Xilinx, it requires 15% less area while achieving near 490% better performance when compared to cryptoprocessors with similar features in the literature.

  5. Assessment of Electromagnetic Interference with Active Cardiovascular Implantable Electronic Devices (CIEDs) Caused by the Qi A13 Design Wireless Charging Board.

    Science.gov (United States)

    Seckler, Tobias; Jagielski, Kai; Stunder, Dominik

    2015-05-27

    Electromagnetic interference is a concern for people wearing cardiovascular implantable electronic devices (CIEDs). The aim of this study was to assess the electromagnetic compatibility between CIEDs and the magnetic field of a common wireless charging technology. To do so the voltage induced in CIEDs by Qi A13 design magnetic fields were measured and compared with the performance limits set by ISO 14117. In order to carry this out a measuring circuit was developed which can be connected with unipolar or bipolar pacemaker leads. The measuring system was positioned at the four most common implantation sites in a torso phantom filled with physiological saline solution. The phantom was exposed by using Helmholtz coils from 5 µT to 27 µT with 111 kHz sine‑bursts or by using a Qi A13 design wireless charging board (Qi‑A13‑Board) in two operating modes "power transfer" and "pinging". With the Helmholtz coils the lowest magnetic flux density at which the performance limit was exceeded is 11 µT. With the Qi‑A13‑Board in power transfer mode 10.8% and in pinging mode 45.7% (2.2% at 10 cm distance) of the performance limit were reached at maximum. In neither of the scrutinized cases, did the voltage induced by the Qi‑A13‑Board exceed the performance limits.

  6. Unified Compact ECC-AES Co-Processor with Group-Key Support for IoT Devices in Wireless Sensor Networks.

    Science.gov (United States)

    Parrilla, Luis; Castillo, Encarnación; López-Ramos, Juan A; Álvarez-Bermejo, José A; García, Antonio; Morales, Diego P

    2018-01-16

    Security is a critical challenge for the effective expansion of all new emerging applications in the Internet of Things paradigm. Therefore, it is necessary to define and implement different mechanisms for guaranteeing security and privacy of data interchanged within the multiple wireless sensor networks being part of the Internet of Things. However, in this context, low power and low area are required, limiting the resources available for security and thus hindering the implementation of adequate security protocols. Group keys can save resources and communications bandwidth, but should be combined with public key cryptography to be really secure. In this paper, a compact and unified co-processor for enabling Elliptic Curve Cryptography along to Advanced Encryption Standard with low area requirements and Group-Key support is presented. The designed co-processor allows securing wireless sensor networks with independence of the communications protocols used. With an area occupancy of only 2101 LUTs over Spartan 6 devices from Xilinx, it requires 15% less area while achieving near 490% better performance when compared to cryptoprocessors with similar features in the literature.

  7. A novel automatic regulatory device for continuous bladder irrigation based on wireless sensor in patients after transurethral resection of the prostate: A prospective investigation.

    Science.gov (United States)

    Ding, Aimin; Cao, Huling; Wang, Lihua; Chen, Jiangang; Wang, Jian; He, Bosheng

    2016-12-01

    Benign prostatic hyperplasia is a common progressive disease in aging men, which leads to a significant impact on daily lives of patients. Continuous bladder irrigation (CBI) is a supplementary option for preventing the adverse events following transurethral resection of the prostate (TURP). Regulation of the flow rate based on the color of drainage bag is significant to prevent the clot formation and retention, which is controlled manually at present. To achieve a better control of flow rate and reduce inappropriate flow rate-related adverse effects, we designed an automatic flow rate controller for CBI applied with wireless sensor and evaluated its clinical efficacy. The therapeutic efficacy was evaluated in patients receiving the novel automatic bladder irrigation post-TURP in the experimental group compared with controls receiving traditional bladder irrigation in the control group. A total of 146 patients were randomly divided into 2 groups-the experimental group (n = 76) and the control group (n = 70). The mean irrigation volume of the experimental group (24.2 ± 3.8 L) was significantly lower than that of the controls (54.6 ± 5.4 L) (P automatic irrigation device had significantly decreased incidence of clot retention (8/76) and cystospasm (12/76) compared to controls (21/70; 39/70, P irrigation time (28.6 ± 2.7 vs 29.5 ± 3.4 hours, P = 0.077). The study suggests that the automatic regulating device applied with wireless sensor for CBI is safe and effective for patients after TURP. However, studies with a large population of patients and a long-term follow-up should be conducted to validate our findings.

  8. A novel automatic regulatory device for continuous bladder irrigation based on wireless sensor in patients after transurethral resection of the prostate

    Science.gov (United States)

    Ding, Aimin; Cao, Huling; Wang, Lihua; Chen, Jiangang; Wang, Jian; He, Bosheng

    2016-01-01

    Abstract Background: Benign prostatic hyperplasia is a common progressive disease in aging men, which leads to a significant impact on daily lives of patients. Continuous bladder irrigation (CBI) is a supplementary option for preventing the adverse events following transurethral resection of the prostate (TURP). Regulation of the flow rate based on the color of drainage bag is significant to prevent the clot formation and retention, which is controlled manually at present. To achieve a better control of flow rate and reduce inappropriate flow rate–related adverse effects, we designed an automatic flow rate controller for CBI applied with wireless sensor and evaluated its clinical efficacy. Methods: The therapeutic efficacy was evaluated in patients receiving the novel automatic bladder irrigation post-TURP in the experimental group compared with controls receiving traditional bladder irrigation in the control group. Results: A total of 146 patients were randomly divided into 2 groups—the experimental group (n = 76) and the control group (n = 70). The mean irrigation volume of the experimental group (24.2 ± 3.8 L) was significantly lower than that of the controls (54.6 ± 5.4 L) (P automatic irrigation device had significantly decreased incidence of clot retention (8/76) and cystospasm (12/76) compared to controls (21/70; 39/70, P irrigation time (28.6 ± 2.7 vs 29.5 ± 3.4 hours, P = 0.077). Conclusion: The study suggests that the automatic regulating device applied with wireless sensor for CBI is safe and effective for patients after TURP. However, studies with a large population of patients and a long-term follow-up should be conducted to validate our findings. PMID:28033276

  9. Switching Device Dead Time Optimization of Resonant Double-Sided LCC Wireless Charging System for Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Xi Zhang

    2017-11-01

    Full Text Available Aiming at the reduction of the influence of the dead time setting on power level and efficiency of the inverter of double-sided LCC resonant wireless power transfer (WPT system, a dead time soft switching optimization method for metal–oxide–semiconductor field-effect transistor (MOSFET is proposed. At first, the mathematic description of double-sided LCC resonant wireless charging system is established, and the operating mode is analyzed as well, deducing the quantitative characteristic that the secondary side compensation capacitor C2 can be adjusted to ensure that the circuit is inductive. A dead time optimization design method is proposed, contributing to achieving zero-voltage switching (ZVS of the inverter, which is closely related to the performance of the WPT system. In the end, a prototype is built. The experimental results verify that dead time calculated by this optimized method can ensure the soft switching of the inverter MOSFET and promote the power and efficiency of the WPT.

  10. ENERGY-LOADING OF DISKS IN FRICTION PAIRS OF “DISC-PAD” OF BRAKING DEVICES IN VEHICLES (part two)

    OpenAIRE

    Krasin P. S.; Volchenko N. A.; Kashuba N. V.; Stadnyk O. B.

    2015-01-01

    In the materials of the article we mention the regularities of changes in the volume and surface solid temperature gradients and self-ventilated brake discs and illustrate their impact on the main operating parameters of the friction pairs of disk-to-pad brakes of the A 172 bus; the relationship between thermo-physical parameters of polished and matte surfaces with areas of brake discs of various types. The influence of the type of tests on the pairs of loaded with energy friction disk and pa...

  11. Green Wireless Power Transfer Networks

    NARCIS (Netherlands)

    Liu, Q.; Golinnski, M.; Pawelczak, P.; Warnier, M.

    2016-01-01

    wireless power transfer network (WPTN) aims to support devices with cable-less energy on-demand. Unfortunately, wireless power transfer itself-especially through radio frequency radiation rectification-is fairly inefficient due to decaying power with distance, antenna polarization, etc.

  12. The wireless internet explained

    CERN Document Server

    Rhoton, John

    2001-01-01

    The Wireless Internet Explained covers the full spectrum of wireless technologies from a wide range of vendors, including initiatives by Microsoft and Compaq. The Wireless Internet Explained takes a practical look at wireless technology. Rhoton explains the concepts behind the physics, and provides an overview that clarifies the convoluted set of standards heaped together under the umbrella of wireless. It then expands on these technical foundations to give a panorama of the increasingly crowded landscape of wireless product offerings. When it comes to actual implementation the book gives abundant down-to-earth advice on topics ranging from the selection and deployment of mobile devices to the extremely sensitive subject of security.Written by an expert on Internet messaging, the author of Digital Press''s successful Programmer''s Guide to Internet Mail and X.400 and SMTP: Battle of the E-mail Protocols, The Wireless Internet Explained describes and evaluates the current state of the fast-growing and crucial...

  13. Improved RF Devices for Future Adaptive Wireless Systems Using Two-Sided Contacting and A1N Cooling

    NARCIS (Netherlands)

    Nanver, L.K.; Schellevis, H.; Scholtes, T.L.M.; La Spina, L.; Lorito, G.; Sarubbi, F.; Gonda, V.; Popadic, M.; Buisman, K.; De Vreede, L.C.N.

    2009-01-01

    This paper reviews special RF/microwave silicon device implementations in a process that allows two-sided contacting of the devices: the back-wafer contacted silicon-on-glass (SOG) substrate-transfer technology (STT) developed at DIMES. In this technology, metal transmission lines can be placed on

  14. Subjective assessment of cochlear implant users' signal-to-noise ratio requirements for different levels of wireless device usability.

    Science.gov (United States)

    Julstrom, Stephen; Kozma-Spytek, Linda

    2014-01-01

    In order to better inform the development and revision of the American National Standards Institute C63.19 and American National Standards Institute/Telecommunications Industry Association-1083 hearing aid compatibility standards, a previous study examined the signal strength and signal (speech)-to-noise (interference) ratio needs of hearing aid users when using wireless and cordless phones in the telecoil coupling mode. This study expands that examination to cochlear implant (CI) users, in both telecoil and microphone modes of use. The purpose of this study was to evaluate the magnetic and acoustic signal levels needed by CI users for comfortable telephone communication and the users' tolerance relative to the speech levels of various interfering wireless communication-related noise types. Design was a descriptive and correlational study. Simulated telephone speech and eight interfering noise types presented as continuous signals were linearly combined and were presented together either acoustically or magnetically to the participants' CIs. The participants could adjust the loudness of the telephone speech and the interfering noises based on several assigned criteria. The 21 test participants ranged in age from 23-81 yr. All used wireless phones with their CIs, and 15 also used cordless phones at home. There were 12 participants who normally used the telecoil mode for telephone communication, whereas 9 used the implant's microphone; all were tested accordingly. A guided-intake questionnaire yielded general background information for each participant. A custom-built test control box fed by prepared speech-and-noise files enabled the tester or test participant, as appropriate, to switch between the various test signals and to precisely control the speech-and-noise levels independently. The tester, but not the test participant, could read and record the selected levels. Subsequent analysis revealed the preferred speech levels, speech (signal)-to-noise ratios, and the

  15. How Effective is Routing for Wireless Networking

    Science.gov (United States)

    2016-03-05

    world examples of multi-hop wireless networks. Today, almost all of our wireless devices communicate directly with a base station (such as WiFi or...a link towards the next waypoint. Since routing Distribution A: Public Release. This work is sponsored by the Defense Advanced Research Program...prevents these schemes from working well in a wireless environment. The idea of a link is borrowed from wired networks. In a wireless network, there is no

  16. Wireless Access

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. Wireless Access. Wireless connect to the Base station. Easy and Convenient access. Costlier as compared to the wired technology. Reliability challenges. We see it as a complementary technology to the DSL.

  17. 78 FR 8191 - Certain Wireless Devices With 3G and/or 4G Capabilities and Components Thereof; Institution of...

    Science.gov (United States)

    2013-02-05

    ... District, Shenzhen, Guangdong Province 518129, China ] Huawei Device USA, Inc., 5700 Tennyson Parkway, Suite 600, Plano, TX 75024 Future Wei Technologies, Inc., d/b/a Huawei Technologies (USA), 5700 Tennyson...

  18. A Categorized Resource Sharing Mechanism for Device-to-Device Communications in Cellular Networks

    OpenAIRE

    Jie Chen; Chang Liu; Husheng Li; Xulong Li; Shaoqian Li

    2016-01-01

    Device-to-Device (D2D) communications are considered one of the key technologies for 5G wireless communication systems. In this paper, a resource sharing mechanism, which applies different policies for different cases (thus being categorized), is proposed. In this scheme, all D2D pairs are divided into three groups by comparing the minimum transmit power with the maximum transmit power of each cellular UE. The proposed mechanism enables multiple D2D pairs in the second group to share the reso...

  19. Effects of radio- and microwaves emitted by wireless communication devices on the functions of the nervous system selected elements

    Directory of Open Access Journals (Sweden)

    Piotr Politański

    2016-06-01

    Full Text Available Nervous system is the most “electric” system in the human body. The research of the effects of electromagnetic fields (EMFs of different frequencies on its functioning have been carried out for years. This paper presents the results of the scientific literature review on the EMF influence on the functioning of the human nervous system with a particular emphasis on the recent studies of the modern wireless communication and data transmission systems. In the majority of the analyzed areas the published research results do not show EMF effects on the nervous system, except for the influence of GSM telephony signal on resting EEG and EEG during patients’ sleep and the influence of radiofrequency EMF on the cardiovascular regulation. In other analyzed areas (EMF impact on sleep, the evoked potentials and cognitive processes, there are no consistent results supporting any influence of electromagnetic fields. Neurophysiological studies of the effect of radio- and microwaves on the brain functions in humans are still considered inconclusive. This is among others due to, different exposure conditions, a large number of variables tested, deficiencies in repeatability of research and statistical uncertainties. However, methodological guidelines are already available giving a chance of unifying research that definitely needs to be continued in order to identify biophysical mechanisms of interaction between EMFs and the nervous system. One of the EMF research aspects, on which more and more attention is paid, are inter-individual differences. Med Pr 2016;67(3:411–421

  20. Development of a Compact Rectenna for Wireless Powering of a Head-Mountable Deep Brain Stimulation Device.

    Science.gov (United States)

    Hosain, M D Kamal; Kouzani, Abbas Z; Tye, Susannah J; Abulseoud, Osama A; Amiet, Andrew; Galehdar, Amir; Kaynak, Akif; Berk, Michael

    2014-01-01

    Design of a rectangular spiral planar inverted-F antenna (PIFA) at 915 MHz for wireless power transmission applications is proposed. The antenna and rectifying circuitry form a rectenna, which can produce dc power from a distant radio frequency energy transmitter. The generated dc power is used to operate a low-power deep brain stimulation pulse generator. The proposed antenna has the dimensions of 10 mm [Formula: see text]12.5 mm [Formula: see text]1.5 mm and resonance frequency of 915 MHz with a measured bandwidth of 15 MHz at return loss of [Formula: see text]. A dielectric substrate of FR-4 of [Formula: see text] and [Formula: see text] with thickness of 1.5 mm is used for both antenna and rectifier circuit simulation and fabrication because of its availability and low cost. An L-section impedance matching circuit is used between the PIFA and voltage doubler rectifier. The impedance matching circuit also works as a low-pass filter for elimination of higher order harmonics. Maximum dc voltage at the rectenna output is 7.5 V in free space and this rectenna can drive a deep brain stimulation pulse generator at a distance of 30 cm from a radio frequency energy transmitter, which transmits power of 26.77 dBm.

  1. Security Enhancement of Wireless Sensor Networks Using Signal Intervals.

    Science.gov (United States)

    Moon, Jaegeun; Jung, Im Y; Yoo, Jaesoo

    2017-04-02

    Various wireless technologies, such as RF, Bluetooth, and Zigbee, have been applied to sensor communications. However, the applications of Bluetooth-based wireless sensor networks (WSN) have a security issue. In one pairing process during Bluetooth communication, which is known as simple secure pairing (SSP), the devices are required to specify I/O capability or user interference to prevent man-in-the-middle (MITM) attacks. This study proposes an enhanced SSP in which a nonce to be transferred is converted to a corresponding signal interval. The quantization level, which is used to interpret physical signal intervals, is renewed at every connection by the transferred nonce and applied to the next nonce exchange so that the same signal intervals can represent different numbers. Even if attackers eavesdrop on the signals, they cannot understand what is being transferred because they cannot determine the quantization level. Furthermore, the proposed model does not require exchanging passkeys as data, and the devices are secure in the case of using a fixed PIN. Subsequently, the new quantization level is calculated automatically whenever the same devices attempt to connect with each other. Therefore, the pairing process can be protected from MITM attacks and be convenient for users.

  2. Security Enhancement of Wireless Sensor Networks Using Signal Intervals

    Directory of Open Access Journals (Sweden)

    Jaegeun Moon

    2017-04-01

    Full Text Available Various wireless technologies, such as RF, Bluetooth, and Zigbee, have been applied to sensor communications. However, the applications of Bluetooth-based wireless sensor networks (WSN have a security issue. In one pairing process during Bluetooth communication, which is known as simple secure pairing (SSP, the devices are required to specify I/O capability or user interference to prevent man-in-the-middle (MITM attacks. This study proposes an enhanced SSP in which a nonce to be transferred is converted to a corresponding signal interval. The quantization level, which is used to interpret physical signal intervals, is renewed at every connection by the transferred nonce and applied to the next nonce exchange so that the same signal intervals can represent different numbers. Even if attackers eavesdrop on the signals, they cannot understand what is being transferred because they cannot determine the quantization level. Furthermore, the proposed model does not require exchanging passkeys as data, and the devices are secure in the case of using a fixed PIN. Subsequently, the new quantization level is calculated automatically whenever the same devices attempt to connect with each other. Therefore, the pairing process can be protected from MITM attacks and be convenient for users.

  3. Security Enhancement of Wireless Sensor Networks Using Signal Intervals

    Science.gov (United States)

    Moon, Jaegeun; Jung, Im Y.; Yoo, Jaesoo

    2017-01-01

    Various wireless technologies, such as RF, Bluetooth, and Zigbee, have been applied to sensor communications. However, the applications of Bluetooth-based wireless sensor networks (WSN) have a security issue. In one pairing process during Bluetooth communication, which is known as simple secure pairing (SSP), the devices are required to specify I/O capability or user interference to prevent man-in-the-middle (MITM) attacks. This study proposes an enhanced SSP in which a nonce to be transferred is converted to a corresponding signal interval. The quantization level, which is used to interpret physical signal intervals, is renewed at every connection by the transferred nonce and applied to the next nonce exchange so that the same signal intervals can represent different numbers. Even if attackers eavesdrop on the signals, they cannot understand what is being transferred because they cannot determine the quantization level. Furthermore, the proposed model does not require exchanging passkeys as data, and the devices are secure in the case of using a fixed PIN. Subsequently, the new quantization level is calculated automatically whenever the same devices attempt to connect with each other. Therefore, the pairing process can be protected from MITM attacks and be convenient for users. PMID:28368341

  4. Investigating Wireless Power Transfer

    Science.gov (United States)

    St. John, Stuart A.

    Understanding Physics is a great end in itself, but is also crucial to keep pace with developments in modern technology. Wireless power transfer, known to many only as a means to charge electric toothbrushes, will soon be commonplace in charging phones, electric cars and implanted medical devices. This article outlines how to produce and use a…

  5. Investigating Wireless Power Transfer

    Science.gov (United States)

    St. John, Stuart A.

    2017-01-01

    Understanding Physics is a great end in itself, but is also crucial to keep pace with developments in modern technology. Wireless power transfer, known to many only as a means to charge electric toothbrushes, will soon be commonplace in charging phones, electric cars and implanted medical devices. This article outlines how to produce and use a…

  6. [Effects of radio- and microwaves emitted by wireless communication devices on the functions of the nervous system selected elements].

    Science.gov (United States)

    Politański, Piotr; Bortkiewicz, Alicja; Zmyślony, Marek

    Nervous system is the most "electric" system in the human body. The research of the effects of electromagnetic fields (EMFs) of different frequencies on its functioning have been carried out for years. This paper presents the results of the scientific literature review on the EMF influence on the functioning of the human nervous system with a particular emphasis on the recent studies of the modern wireless communication and data transmission systems. In the majority of the analyzed areas the published research results do not show EMF effects on the nervous system, except for the influence of GSM telephony signal on resting EEG and EEG during patients' sleep and the influence of radiofrequency EMF on the cardiovascular regulation. In other analyzed areas (EMF impact on sleep, the evoked potentials and cognitive processes), there are no consistent results supporting any influence of electromagnetic fields. Neurophysiological studies of the effect of radio- and microwaves on the brain functions in humans are still considered inconclusive. This is among others due to, different exposure conditions, a large number of variables tested, deficiencies in repeatability of research and statistical uncertainties. However, methodological guidelines are already available giving a chance of unifying research that definitely needs to be continued in order to identify biophysical mechanisms of interaction between EMFs and the nervous system. One of the EMF research aspects, on which more and more attention is paid, are inter-individual differences. Med Pr 2016;67(3):411-421. This work is available in Open Access model and licensed under a CC BY-NC 3.0 PL license.

  7. Kommunikation von Risiken und Unsicherheiten der Strahlung kabelloser Netzwerke : Ergebnisse eines Gruppendelphis zur Risikokommunikation im Rahmen des EU Projektes "Sound exposure and risk assessment of wireless network devices" (SEAWIND)

    OpenAIRE

    Hilpert, Jörg; Kuhn, Rainer; Schetula, Viola; RENN Ortwin

    2013-01-01

    In dem dreijährigen EU-Projekt "Sound Exposure and Risk Assessment of Wireless Network Devices" (SEAWIND) (FP71ENV1200911) wurden die möglichen gesundheitsschädigenden Auswirkungen durch die Nutzung drahtloser Kommunikationstechnologien (z.B. GSM, UMTS, LTE, WiFi, WiMAX, RFID) - interdisziplinär erforscht. Das Projekt gliederte sich in drei Themenschwerpunkte: Mit Hilfe modernster Technologien und Messverfahren sollte die Strahlenexposition ermittelt werden (Kurzzeit- sowie Langzeitexpositio...

  8. Real-world personal conversations using a hands-free embedded wireless device while driving: effect on airbag-deployment crash rates.

    Science.gov (United States)

    Young, Richard A; Schreiner, Christopher

    2009-02-01

    A wireless device embedded in the vehicle allowed the user to engage in a personal hands-free conversation (HFC), and automatically placed an emergency notification call to an OnStar call center if the vehicle was involved in a crash in which its airbag deployed. A database stored the exact counts, start timestamps, and billed durations of all HFC and airbag notification calls. In 30 months of naturalistic driving, there were 91 million HFC calls from an average of 323,994 drivers per month who made calls. There were 14 airbag deployments in 276 million driver-minutes of HFC conversation for an exposed incidence rate of 5.08 airbag crashes per 100 million driver-minutes. There were 2,023 airbag deployments in an estimated 24.7 billion driver-minutes of no HFC conversation for a not-exposed incidence rate of 8.18 airbag crashes per 100 million driver-minutes. The crash incidence rate ratio (IRR) is the ratio of these two rates or 0.62 (95% C.I. 0.37 to 1.05). Sensitivity analyses controlled for the impact on the crash IRR of estimated time spent driving per day and calls by passengers. Counting all crashes as much as 20 minutes later than a call as related to that call gave similar results. We conclude that for personal conversations using a hands-free embedded device the risk of an airbag crash is somewhere in a range from a moderately lower risk to a risk near that of driving without a recent personal conversation. These results are not consistent with the large increase in crash risk reported in epidemiological studies using the case-crossover method.

  9. Wireless Power Transfer Protocols in Sensor Networks: Experiments and Simulations

    National Research Council Canada - National Science Library

    Sotiris Nikoletseas; Theofanis P Raptis; Alexandros Souroulagkas; Dimitrios Tsolovos

    2017-01-01

    Rapid technological advances in the domain of Wireless Power Transfer pave the way for novel methods for power management in systems of wireless devices, and recent research works have already started...

  10. Artificial intelligence based event detection in wireless sensor networks

    NARCIS (Netherlands)

    Bahrepour, M.

    2013-01-01

    Wireless sensor networks (WSNs) are composed of large number of small, inexpensive devices, called sensor nodes, which are equipped with sensing, processing, and communication capabilities. While traditional applications of wireless sensor networks focused on periodic monitoring, the focus of more

  11. Localization in wireless sensor networks: Classification and evaluation of techniques

    National Research Council Canada - National Science Library

    Ewa Niewiadomska-Szynkiewicz

    2012-01-01

      Localization in wireless sensor networks: Classification and evaluation of techniques Recent advances in technology have enabled the development of low cost, low power and multi functional wireless sensing devices...

  12. New Methods and Models in Wireless Networks: Multigraphs--Games--Mechanism Design

    Science.gov (United States)

    Tran, Dung Trung

    2010-01-01

    The recent evolution of wireless technology makes wireless devices ever more powerful and intelligent. One trend is that wireless devices are becoming more inexpensive and more diverse. As a result, new technologies make it possible to equip wireless nodes with several radio transmitters/receivers. Each radio may support multiple channels which…

  13. Wireless virtualization

    CERN Document Server

    Wen, Heming; Le-Ngoc, Tho

    2013-01-01

    This SpringerBriefs is an overview of the emerging field of wireless access and mobile network virtualization. It provides a clear and relevant picture of the current virtualization trends in wireless technologies by summarizing and comparing different architectures, techniques and technologies applicable to a future virtualized wireless network infrastructure. The readers are exposed to a short walkthrough of the future Internet initiative and network virtualization technologies in order to understand the potential role of wireless virtualization in the broader context of next-generation ubiq

  14. Wireless communications resource management

    CERN Document Server

    Lee, B; Seo, H

    2009-01-01

    Wireless technologies continue to evolve to address the insatiable demand for faster response times, larger bandwidth, and reliable transmission. Yet as the industry moves toward the development of post 3G systems, engineers have consumed all the affordable physical layer technologies discovered to date. This has necessitated more intelligent and optimized utilization of available wireless resources. Wireless Communications Resource Managem ent, Lee, Park, and Seo cover all aspects of this critical topic, from the preliminary concepts and mathematical tools to detailed descriptions of all the resource management techniques. Readers will be able to more effectively leverage limited spectrum and maximize device battery power, as well as address channel loss, shadowing, and multipath fading phenomena.

  15. Minimum Interference Channel Assignment Algorithm for Multicast in a Wireless Mesh Network.

    Science.gov (United States)

    Choi, Sangil; Park, Jong Hyuk

    2016-12-02

    Wireless mesh networks (WMNs) have been considered as one of the key technologies for the configuration of wireless machines since they emerged. In a WMN, wireless routers provide multi-hop wireless connectivity between hosts in the network and also allow them to access the Internet via gateway devices. Wireless routers are typically equipped with multiple radios operating on different channels to increase network throughput. Multicast is a form of communication that delivers data from a source to a set of destinations simultaneously. It is used in a number of applications, such as distributed games, distance education, and video conferencing. In this study, we address a channel assignment problem for multicast in multi-radio multi-channel WMNs. In a multi-radio multi-channel WMN, two nearby nodes will interfere with each other and cause a throughput decrease when they transmit on the same channel. Thus, an important goal for multicast channel assignment is to reduce the interference among networked devices. We have developed a minimum interference channel assignment (MICA) algorithm for multicast that accurately models the interference relationship between pairs of multicast tree nodes using the concept of the interference factor and assigns channels to tree nodes to minimize interference within the multicast tree. Simulation results show that MICA achieves higher throughput and lower end-to-end packet delay compared with an existing channel assignment algorithm named multi-channel multicast (MCM). In addition, MICA achieves much lower throughput variation among the destination nodes than MCM.

  16. Wireless Internet

    NARCIS (Netherlands)

    el Zarki, M.; Heijenk, Geert; Lee, Kenneth S.; Bidgoli, H.

    This chapter addresses the topic of wireless Internet, the extension of the wireline Internet architecture to the wireless domain. As such the chapter introduces the reader to the dominant characteristics of the Internet, from its structure to the protocols that control the forwarding of data and

  17. Wireless gigabit data telemetry for large-scale neural recording.

    Science.gov (United States)

    Kuan, Yen-Cheng; Lo, Yi-Kai; Kim, Yanghyo; Chang, Mau-Chung Frank; Liu, Wentai

    2015-05-01

    Implantable wireless neural recording from a large ensemble of simultaneously acting neurons is a critical component to thoroughly investigate neural interactions and brain dynamics from freely moving animals. Recent researches have shown the feasibility of simultaneously recording from hundreds of neurons and suggested that the ability of recording a larger number of neurons results in better signal quality. This massive recording inevitably demands a large amount of data transfer. For example, recording 2000 neurons while keeping the signal fidelity ( > 12 bit, > 40 KS/s per neuron) needs approximately a 1-Gb/s data link. Designing a wireless data telemetry system to support such (or higher) data rate while aiming to lower the power consumption of an implantable device imposes a grand challenge on neuroscience community. In this paper, we present a wireless gigabit data telemetry for future large-scale neural recording interface. This telemetry comprises of a pair of low-power gigabit transmitter and receiver operating at 60 GHz, and establishes a short-distance wireless link to transfer the massive amount of neural signals outward from the implanted device. The transmission distance of the received neural signal can be further extended by an externally rendezvous wireless transceiver, which is less power/heat-constraint since it is not at the immediate proximity of the cortex and its radiated signal is not seriously attenuated by the lossy tissue. The gigabit data link has been demonstrated to achieve a high data rate of 6 Gb/s with a bit-error-rate of 10(-12) at a transmission distance of 6 mm, an applicable separation between transmitter and receiver. This high data rate is able to support thousands of recording channels while ensuring a low energy cost per bit of 2.08 pJ/b.

  18. Microwave materials for wireless applications

    CERN Document Server

    Cruickshank, David B

    2011-01-01

    This practical resource offers you an in-depth, up-to-date understanding of the use of microwave magnetic materials for cutting-edge wireless applications. The book discusses device applications used in wireless infrastructure base stations, point-to-point radio links, and a range of more specialized microwave systems. You find detailed discussions on the attributes of each family of magnetic materials with respect to specific wireless applications. Moreover, the book addresses two of the hottest topics in the field today - insertion loss and intermodulation. This comprehensive reference also

  19. Secure positioning in wireless networks

    DEFF Research Database (Denmark)

    Capkun, Srdjan; Hubaux, Jean-Pierre

    2006-01-01

    So far, the problem of positioning in wireless networks has been studied mainly in a non-adversarial settings. In this work, we analyze the resistance of positioning techniques to position and distance spoofing attacks. We propose a mechanism for secure positioning of wireless devices, that we call...... Verifiable Multilateration. We then show how this mechanism can be used to secure positioning in sensor networks. We analyze our system through simulations....

  20. Accuracy and User Performance Evaluation of a New, Wireless-enabled Blood Glucose Monitoring System That Links to a Smart Mobile Device.

    Science.gov (United States)

    Bailey, Timothy S; Wallace, Jane F; Pardo, Scott; Warchal-Windham, Mary Ellen; Harrison, Bern; Morin, Robert; Christiansen, Mark

    2017-07-01

    The new Contour®Plus ONE blood glucose monitoring system (BGMS) features an easy-to-use, wireless-enabled blood glucose meter that links to a smart mobile device via Bluetooth® connectivity and can sync with the Contour™ Diabetes app on a smartphone or tablet. The accuracy of the new BGMS was assessed in 2 studies according to ISO 15197:2013 criteria. In Study 1 (laboratory study), fingertip capillary blood samples from 100 subjects were tested in duplicate using 3 test strip lots. In Study 2 (clinical study), 134 subjects with type 1 or type 2 diabetes enrolled at 2 clinical sites. BGMS results and YSI analyzer (YSI) reference results were compared for fingertip blood obtained by untrained subjects' self-testing and for study staff-obtained fingertip, subject palm, and venous results. In Study 1, 99.0% (594/600) of combined results for all 3 test strip lots fulfilled ISO 15197:2013 Section 6.3 accuracy criteria. In Study 2, 99.2% (133/134) of subject-obtained capillary fingertip results, 99.2% (133/134) of study staff-obtained fingertip results, 99.2% (125/126) of subject-obtained palm results, and 100% (132/132) of study staff-obtained venous results met ISO 15197:2013 Section 8 accuracy criteria. Moreover, 95.5% (128/134) of subject-obtained fingertip self-test results were within ±10 mg/dl (±0.6 mmol/L) or ±10% of the YSI reference result. Questionnaire results showed that most subjects found the BGMS easy to use. The BGMS exceeded ISO 15197:2013 accuracy criteria both in the laboratory and in a clinical setting when used by untrained subjects with diabetes.

  1. Wireless Solar Water Splitting Device with Robust Cobalt-Catalyzed, Dual-Doped BiVO4 Photoanode and Perovskite Solar Cell in Tandem: A Dual Absorber Artificial Leaf.

    Science.gov (United States)

    Kim, Jin Hyun; Jo, Yimhyun; Kim, Ju Hun; Jang, Ji Wook; Kang, Hyun Jun; Lee, Young Hye; Kim, Dong Suk; Jun, Yongseok; Lee, Jae Sung

    2015-12-22

    A stand-alone, wireless solar water splitting device without external energy supply has been realized by combining in tandem a CH3NH3PbI3 perovskite single junction solar cell with a cobalt carbonate (Co-Ci)-catalyzed, extrinsic/intrinsic dual-doped BiVO4 (hydrogen-treated and 3 at% Mo-doped). The photoanode recorded one of the highest photoelectrochemical water oxidation activity (4.8 mA/cm(2) at 1.23 VRHE) under simulated 1 sun illumination. The oxygen evolution Co-Ci co-catalyst showed similar performance to best known cobalt phosphate (Co-Pi) (5.0 mA/cm(2) at 1.23 VRHE) on the same dual-doped BiVO4 photoanode, but with significantly better stability. A tandem artificial-leaf-type device produced stoichiometric hydrogen and oxygen with an average solar-to-hydrogen efficiency of 4.3% (wired), 3.0% (wireless) under simulated 1 sun illumination. Hence, our device based on a D4 tandem photoelectrochemical cell represents a meaningful advancement in performance and cost over the device based on a triple-junction solar cell-electrocatalyst combination.

  2. A SURVEY ON WIRELESS SENSOR NETWORKS

    OpenAIRE

    R. Sudha*1 & B. Shamile2

    2017-01-01

    A Wireless Sensor Network (WSN) can communicate the information through wireless devices. WSN consists of base stations and wireless sensor nodes. These networks are used to monitor various condition are sound, pressure, temperature and cooperatively pass data through the network to the main location. The functionality parameters of a sensor are energy consumption, computational speed rate, bandwidth, memory. In this paper, it embraces application of WSN, types of WSN, security issues and sec...

  3. [Development of Bluetooth wireless sensors].

    Science.gov (United States)

    Moor, C; Schwaibold, M; Roth, H; Schöchlin, J; Bolz, A

    2002-01-01

    Wireless communication could help to overcome current obstacles in medical devices and could enable medical services to offer completely new scenarios in health care. The Bluetooth technology which is the upcoming global market leader in wireless communication turned out to be perfectly suited not only for consumer market products but also in the medical environment [1]. It offers a low power, low cost connection in the medium range of 1-100 m with a bandwidth of currently 723.2 kbaud. This paper describes the development of a wireless ECG device and a Pulse Oximeter. Equipped with a Bluetooth port, the measurement devices are enabled to transmit data between the sensor and a Bluetooth-monitor. Therefore, CSR's Bluetooth protocol embedded two-processor and embedded single-processor architecture has been used.

  4. Advanced Wireless Sensor Nodes - MSFC

    Science.gov (United States)

    Varnavas, Kosta; Richeson, Jeff

    2017-01-01

    NASA field center Marshall Space Flight Center (Huntsville, AL), has invested in advanced wireless sensor technology development. Developments for a wireless microcontroller back-end were primarily focused on the commercial Synapse Wireless family of devices. These devices have many useful features for NASA applications, good characteristics and the ability to be programmed Over-The-Air (OTA). The effort has focused on two widely used sensor types, mechanical strain gauges and thermal sensors. Mechanical strain gauges are used extensively in NASA structural testing and even on vehicle instrumentation systems. Additionally, thermal monitoring with many types of sensors is extensively used. These thermal sensors include thermocouples of all types, resistive temperature devices (RTDs), diodes and other thermal sensor types. The wireless thermal board will accommodate all of these types of sensor inputs to an analog front end. The analog front end on each of the sensors interfaces to the Synapse wireless microcontroller, based on the Atmel Atmega128 device. Once the analog sensor output data is digitized by the onboard analog to digital converter (A/D), the data is available for analysis, computation or transmission. Various hardware features allow custom embedded software to manage battery power to enhance battery life. This technology development fits nicely into using numerous additional sensor front ends, including some of the low-cost printed circuit board capacitive moisture content sensors currently being developed at Auburn University.

  5. Compact wideband CMOS receiver frontends for wireless communication

    NARCIS (Netherlands)

    Blaakmeer, S.C.

    2010-01-01

    Abstract Wireless communication is an integral part of our daily life, the mobile phone is an example of a very popular wireless communication device. A communication link consists of a transmitter, a receiver and the transmission medium, which air or vacuum for a wireless link. Part of the receiver

  6. Airborne wireless communication systems, airborne communication methods, and communication methods

    Science.gov (United States)

    Deaton, Juan D [Menan, ID; Schmitt, Michael J [Idaho Falls, ID; Jones, Warren F [Idaho Falls, ID

    2011-12-13

    An airborne wireless communication system includes circuitry configured to access information describing a configuration of a terrestrial wireless communication base station that has become disabled. The terrestrial base station is configured to implement wireless communication between wireless devices located within a geographical area and a network when the terrestrial base station is not disabled. The circuitry is further configured, based on the information, to configure the airborne station to have the configuration of the terrestrial base station. An airborne communication method includes answering a 911 call from a terrestrial cellular wireless phone using an airborne wireless communication system.

  7. RF low power subsampling architecture for wireless communication applications

    National Research Council Canada - National Science Library

    Meng, Fanzhen; Liu, Hong; Wang, Mingliang; Zhang, Xiaolin; Tian, Tong

    2016-01-01

    ...) transmission devices, especially the RF receiver. In order to alleviate this problem, an RF low power subsampling architecture for wireless communication applications is proposed in this paper...

  8. A Categorized Resource Sharing Mechanism for Device-to-Device Communications in Cellular Networks

    Directory of Open Access Journals (Sweden)

    Jie Chen

    2016-01-01

    Full Text Available Device-to-Device (D2D communications are considered one of the key technologies for 5G wireless communication systems. In this paper, a resource sharing mechanism, which applies different policies for different cases (thus being categorized, is proposed. In this scheme, all D2D pairs are divided into three groups by comparing the minimum transmit power with the maximum transmit power of each cellular UE. The proposed mechanism enables multiple D2D pairs in the second group to share the resource with cellular user equipment (UE simultaneously, by adjusting the transmit powers of these D2D transmitters. At the same time, D2D pairs in the first group and the third group share resource with cellular UE based on the transmit power minimization principle. Simulation results show that the proposed scheme can achieve relatively higher network throughput and lower transmit power consumption of the D2D system.

  9. Secure Wireless Military Healthcare Telemedicine Enterprise System

    National Research Council Canada - National Science Library

    Lucas, Kenneth

    2003-01-01

    ...(exp TM) software and Division Tools with cross platform telemedicine systems, inclusive of computer based systems, handheld wireless PDA devices, and miniature computers, to existing DoD legacy...

  10. Secure Wireless Military Healthcare Telemedicine Enterprise System

    National Research Council Canada - National Science Library

    Lucas, Kenneth

    2002-01-01

    ...) software and Dvision Tools with cross platform telemedicine systems, inclusive of computer based systems, handheld wireless PDA devices, and miniature computers, to existing DoD legacy and developing...

  11. NASA Bluetooth Wireless Communications

    Science.gov (United States)

    Miller, Robert D.

    2007-01-01

    NASA has been interested in wireless communications for many years, especially when the crew size of the International Space Station (ISS) was reduced to two members. NASA began a study to find ways to improve crew efficiency to make sure the ISS could be maintained with limited crew capacity and still be a valuable research testbed in Low-Earth Orbit (LEO). Currently the ISS audio system requires astronauts to be tethered to the audio system, specifically a device called the Audio Terminal Unit (ATU). Wireless communications would remove the tether and allow astronauts to freely float from experiment to experiment without having to worry about moving and reconnecting the associated cabling or finding the space equivalent of an extension cord. A wireless communication system would also improve safety and reduce system susceptibility to Electromagnetic Interference (EMI). Safety would be improved because a crewmember could quickly escape a fire while maintaining communications with the ground and other crewmembers at any location. In addition, it would allow the crew to overcome the volume limitations of the ISS ATU. This is especially important to the Portable Breathing Apparatus (PBA). The next generation of space vehicles and habitats also demand wireless attention. Orion will carry up to six crewmembers in a relatively small cabin. Yet, wireless could become a driving factor to reduce launch weight and increase habitable volume. Six crewmembers, each tethered to a panel, could result in a wiring mess even in nominal operations. In addition to Orion, research is being conducted to determine if Bluetooth is appropriate for Lunar Habitat applications.

  12. Efficient Integrated Circuits for Wideband Wireless Transceivers

    OpenAIRE

    Duong, Quoc-Tai

    2016-01-01

    The proliferation of portable communication devices combined with the relentless demand for higher data rates has spurred the development of wireless communication standards which can support wide signal bandwidths. Benefits of the complementary metal oxide semiconductor (CMOS) process such as high device speeds and low manufacturing cost have rendered it the technology of choice for implementing wideband wireless transceiver integrated circuits (ICs). This dissertation addresses the key chal...

  13. Implanted Antennas in Medical Wireless Communications

    CERN Document Server

    Rahmat-Samii, Yahya; Balanis, Constantine

    2006-01-01

    Implanted Antennas in Medical Wireless Communications summarizes the results of recent research activities on the subject of implanted antennas for medical wireless communication systems. It is anticipated that in the near future sophisticated medical devices will be implanted inside the human body for medical telemetry and telemedicine. To establish effective and efficient wireless links with these devices, it is pivotal to give special attention to antenna designs that are low profile, small, safe, and cost effective. In this book, authors Yahya Rahmat-Samii and Jaehoon Kim demonstrate how a

  14. Wireless Communications

    Science.gov (United States)

    1991-01-01

    A technology utilization project led to the commercial adaptation of a Space Shuttle Orbiter wireless infrared voice communications system. The technology was adapted to a LAN system by Wilton Industries, one of the participants. Because the system is cable-free, installation charges are saved, and it can be used where cable is impractical. Resultant products include the IRplex 6000. Transceivers can be located anywhere and can include mobile receivers. The system provides wireless LAN coverage up to 44,000 square feet. applications include stock exchange communications, trade shows, emergency communications, etc.

  15. Integrated 3d printed wireless sensing system for environmental monitoring

    KAUST Repository

    Farooqui, Muhammad Fahad

    2017-12-21

    Disclosed are various embodiments of a wireless sensor device for monitoring environment conditions. A wireless sensor device may comprise, for example, a computing device, printable circuitry, sensors, and antennas combined with one or more transmitters on a panel. The wireless sensor device may be configured to take environment measurements, such as temperature, gas, humidity, and wirelessly communicate the environment measurements to a remote computing device, in addition, the present disclosure relates to a method of assembling the wireless sensor device. The method may comprise printing sensors, circuitry, and antennas to a panel; folding the panel to form an enclosure comprising a plurality of side panels; and attaching the plurality of side panels to a circuit board panel.

  16. Sub-Frame Crossing for Streaming Video over Wireless Networks

    OpenAIRE

    Aziz, Hussein Muzahim; Grahn, Håkan; Lundberg, Lars

    2010-01-01

    Transmitting a real time video streaming over a wireless network cannot guarantee that all the frames could be received by the mobile devices. The characteristics of a wireless network in terms of the available bandwidth, frame delay, and frame losses cannot be known in advanced. In this work, we propose a new mechanism for streaming video over a wireless channel. The proposed mechanism prevents freezing frames in the mobile devices. This is done by splitting the video frame in two sub-frames...

  17. Data centric wireless sensor networks

    NARCIS (Netherlands)

    Dulman, S.O.; Havinga, Paul J.M.

    2005-01-01

    The vision of wirteless sensing systems requires the development of devices and technologies that can be pervasive without being intrusive. The basic component of such a smart environment will be a small node with sensing and wireless communications capabilities, able to organize itself flexibly

  18. The Study of Collective Actions in a University Anchored Community Wireless Network

    Science.gov (United States)

    Kuchibhotla, Hari N.

    2012-01-01

    The emergence of wireless devices and the ease in setting up wireless devices has created opportunities for various entities, and in particular to universities, by partnering with their local communities in the form of a university anchored community wireless network. This provides opportunities for students to be part of the community-based…

  19. Wireless Technician

    Science.gov (United States)

    Tech Directions, 2011

    2011-01-01

    One of the hottest areas in technology is invisible. Wireless communications allow people to transmit voice messages, data, and other signals through the air without physically connecting senders to receivers with cables or wires. And the technology is spreading at lightning speed. Cellular phones, personal digital assistants, and wireless…

  20. Wound dressing with reusable electronics for wireless monitoring

    KAUST Repository

    Shamim, Atif

    2016-10-20

    A wound dressing device with reusable electronics for wireless monitoring and a method of making the same are provided. The device can be a smart device. In an embodiment, the device has a disposable portion including one or more sensors and a reusable portion including wireless electronics. The one or more sensors can be secured to a flexible substrate and can be printed by non-contact printing on the substrate. The disposable portion can be removably coupled to the one or more sensors. The device can include one or more sensors for wireless monitoring of a wound, a wound dressing, a body fluid exuded by the wound and/or wearer health.

  1. Energy efficiency in future wireless networks: cognitive radio standardization requirements

    CSIR Research Space (South Africa)

    Masonta, M

    2012-09-01

    Full Text Available Energy consumption of mobile and wireless networks and devices is significant, indirectly increasing greenhouse gas emissions and energy costs for operators. Cognitive radio (CR) solutions can save energy for such networks and devices; moreover...

  2. Embracing interference in wireless systems

    CERN Document Server

    Gollakota, Shyamnath

    2014-01-01

    The wireless medium is a shared resource. If nearby devices transmit at thesame time, their signals interfere, resulting in a collision. In traditionalnetworks, collisions cause the loss of the transmitted information. For thisreason, wireless networks have been designed with the assumption thatinterference is intrinsically harmful and must be avoided.This book, a revised version of the author's award-winning Ph.D.dissertation, takes an alternate approach: Instead of viewing interferenceas an inherently counterproductive phenomenon that should to be avoided, wedesign practical systems that tra

  3. Enabling mobile/wireless broadband technologies and services for the next billion users

    CSIR Research Space (South Africa)

    Mekuria, F

    2011-09-01

    Full Text Available As wireless devices and the useful services they can deliver become more pervasive and affordable; the need for wireless broadband technologies meeting the demands of emerging market countries is growing. In this paper the technology choice...

  4. Dynamic wireless sensor networks

    CERN Document Server

    Oteafy, Sharief M A

    2014-01-01

    In this title, the authors leap into a novel paradigm of scalability and cost-effectiveness, on the basis of resource reuse. In a world with much abundance of wirelessly accessible devices, WSN deployments should capitalize on the resources already available in the region of deployment, and only augment it with the components required to meet new application requirements. However, if the required resources already exist in that region, WSN deployment converges to an assignment and scheduling scheme to accommodate for the new application given the existing resources. Such resources are polled

  5. Investigating wireless power transfer

    Science.gov (United States)

    St John, Stuart A.

    2017-09-01

    Understanding Physics is a great end in itself, but is also crucial to keep pace with developments in modern technology. Wireless power transfer, known to many only as a means to charge electric toothbrushes, will soon be commonplace in charging phones, electric cars and implanted medical devices. This article outlines how to produce and use a simple set of equipment to both demonstrate and investigate this phenomenon. It presents some initial findings and aims to encourage Physics educators and their students to conduct further research, pushing the bounds of their understanding.

  6. Analysis of "Accuracy and User Performance Evaluation of a New, Wireless-Enabled Blood Glucose Monitoring System That Links to a Smart Mobile Device".

    Science.gov (United States)

    Rutschmann, Malte

    2017-07-01

    In the study published in Journal of Diabetes, Science and Technology, Timothy S. Bailey and coauthors evaluated system accuracy and user performance of a new, wireless-enabled blood glucose monitoring system, the Contour Plus ONE blood glucose monitoring system. The authors declare that the study protocol was performed according to ISO 15197:2013 guidelines, in particular to clauses 6.3 and 8. Results show a high level of accuracy of the product in a laboratory setting as well as in the hands of lay users. However, differences between both study parts emerge that stimulate discussion about the used comparison method.

  7. Low-Power Wireless Sensor Network Infrastructures

    DEFF Research Database (Denmark)

    Hansen, Morten Tranberg

    Advancements in wireless communication and electronics improving form factor and hardware capabilities has expanded the applicability of wireless sensor networks. Despite these advancements, devices are still limited in terms of energy which creates the need for duty-cycling and low-power protocols...... environments and communication primitives in wireless sensor network and traditional network development are closing. However, fundamental differences in wireless technology and energy constraints are still to be considered at the lower levels of the software stack. To fulfill energy requirements hardware......, and network management which enables construction of low-power wireless sensor network applications. More specifically, these services are designed with the extreme low-power scenarios of the SensoByg project in mind and are implemented as follows. First, low-power communication is implemented with Auto...

  8. Next Generation Intelligent Wireless Infrastructure

    DEFF Research Database (Denmark)

    Toftegaard, Thomas Skjødeberg

    2010-01-01

    could think the wireless revolution is over. However, future connectivity will be wireless and ubiquitous. Therefore the future of wireless infrastructures seems to be in front of a remarkable evolution as this paper will describe. With a vision of creating continuous seamless user connectivity as well...... as having physical devices/things connected through the wide spread usage of sensor and RFID near field communication technologies the network will increase in size with a order of magnitude compared to today. Additionally having the widespread Internet protocol technologies as a fundamental building block...... efficient ways of optimizing the spectrum usage are necessary. The extent of IP-based sensor networks with explode due to the rapid evolution in the relationship between processing power, cost, power consumption and physical size....

  9. Wireless communication for hearing aid system

    DEFF Research Database (Denmark)

    Nour, Baqer

    This thesis focuses on the wireless coupling between hearing aids close to a human head. Hearing aids constitute devices withadvanced technology and the wireless communication enables the introduction of a range of completely new functionalities. Such devices are small and the available power...... the ear-to-ear wireless communication channel by understanding the mechanisms that control the propagations of the signals and the losses. The second objective isto investigate the properties of magneto-dielectric materials and their potential in antenna miniaturization. There are three approaches...... to study the ear-to-ear wireless communication link; a theoretical approach models the human head asa sphere that has the electrical properties of the head, a numerical approach implements a more realistic geometry of the head, and an experimental approach measures directly the coupling between...

  10. Biomonitoring with Wireless Communications

    Energy Technology Data Exchange (ETDEWEB)

    Budinger, Thomas F.

    2003-03-01

    This review is divided into three sections: technologies for monitoring physiological parameters; biosensors for chemical assays and wireless communications technologies including image transmissions. Applications range from monitoring high risk patients for heart, respiratory activity and falls to sensing levels of physical activity in military, rescue, and sports personnel. The range of measurements include, heart rate, pulse wave form, respiratory rate, blood oxygen, tissue pCO2, exhaled carbon dioxide and physical activity. Other feasible measurements will employ miniature chemical laboratories on silicon or plastic chips. The measurements can be extended to clinical chemical assays ranging from common blood assays to protein or specialized protein measurements (e.g., troponin, creatine, and cytokines such as TNF and IL6). Though the feasibility of using wireless technology to communicate vital signs has been demonstrated 32 years ago (1) it has been only recently that practical and portable devices and communications net works have become generally available for inexpensive deployment of comfortable and affordable devices and systems.

  11. A Novel Complex-Coefficient In-Band Interference Suppression Algorithm for Cognitive Ultra-Wide Band Wireless Sensors Networks

    Directory of Open Access Journals (Sweden)

    Hailiang Xiong

    2017-05-01

    Full Text Available With the rapid development of wireless communication systems and electronic techniques, the limited frequency spectrum resources are shared with various wireless devices, leading to a crowded and challenging coexistence circumstance. Cognitive radio (CR and ultra-wide band (UWB, as sophisticated wireless techniques, have been considered as significant solutions to solve the harmonious coexistence issues. UWB wireless sensors can share the spectrum with primary user (PU systems without harmful interference. The in-band interference of UWB systems should be considered because such interference can severely affect the transmissions of UWB wireless systems. In order to solve the in-band interference issues for UWB wireless sensor networks (WSN, a novel in-band narrow band interferences (NBIs elimination scheme is proposed in this paper. The proposed narrow band interferences suppression scheme is based on a novel complex-coefficient adaptive notch filter unit with a single constrained zero-pole pair. Moreover, in order to reduce the computation complexity of the proposed scheme, an adaptive complex-coefficient iterative method based on two-order Taylor series is designed. To cope with multiple narrow band interferences, a linear cascaded high order adaptive filter and a cyclic cascaded high order matrix adaptive filter (CCHOMAF interference suppression algorithm based on the basic adaptive notch filter unit are also presented. The theoretical analysis and numerical simulation results indicate that the proposed CCHOMAF algorithm can achieve better performance in terms of average bit error rate for UWB WSNs. The proposed in-band NBIs elimination scheme can significantly improve the reception performance of low-cost and low-power UWB wireless systems.

  12. A Novel Complex-Coefficient In-Band Interference Suppression Algorithm for Cognitive Ultra-Wide Band Wireless Sensors Networks.

    Science.gov (United States)

    Xiong, Hailiang; Zhang, Wensheng; Xu, Hongji; Du, Zhengfeng; Tang, Huaibin; Li, Jing

    2017-05-25

    With the rapid development of wireless communication systems and electronic techniques, the limited frequency spectrum resources are shared with various wireless devices, leading to a crowded and challenging coexistence circumstance. Cognitive radio (CR) and ultra-wide band (UWB), as sophisticated wireless techniques, have been considered as significant solutions to solve the harmonious coexistence issues. UWB wireless sensors can share the spectrum with primary user (PU) systems without harmful interference. The in-band interference of UWB systems should be considered because such interference can severely affect the transmissions of UWB wireless systems. In order to solve the in-band interference issues for UWB wireless sensor networks (WSN), a novel in-band narrow band interferences (NBIs) elimination scheme is proposed in this paper. The proposed narrow band interferences suppression scheme is based on a novel complex-coefficient adaptive notch filter unit with a single constrained zero-pole pair. Moreover, in order to reduce the computation complexity of the proposed scheme, an adaptive complex-coefficient iterative method based on two-order Taylor series is designed. To cope with multiple narrow band interferences, a linear cascaded high order adaptive filter and a cyclic cascaded high order matrix adaptive filter (CCHOMAF) interference suppression algorithm based on the basic adaptive notch filter unit are also presented. The theoretical analysis and numerical simulation results indicate that the proposed CCHOMAF algorithm can achieve better performance in terms of average bit error rate for UWB WSNs. The proposed in-band NBIs elimination scheme can significantly improve the reception performance of low-cost and low-power UWB wireless systems.

  13. Wireless Biological Electronic Sensors.

    Science.gov (United States)

    Cui, Yue

    2017-10-09

    The development of wireless biological electronic sensors could open up significant advances for both fundamental studies and practical applications in a variety of areas, including medical diagnosis, environmental monitoring, and defense applications. One of the major challenges in the development of wireless bioelectronic sensors is the successful integration of biosensing units and wireless signal transducers. In recent years, there are a few types of wireless communication systems that have been integrated with biosensing systems to construct wireless bioelectronic sensors. To successfully construct wireless biological electronic sensors, there are several interesting questions: What types of biosensing transducers can be used in wireless bioelectronic sensors? What types of wireless systems can be integrated with biosensing transducers to construct wireless bioelectronic sensors? How are the electrical sensing signals generated and transmitted? This review will highlight the early attempts to address these questions in the development of wireless biological electronic sensors.

  14. Artificial intelligence based event detection in wireless sensor networks

    OpenAIRE

    Bahrepour, M.

    2013-01-01

    Wireless sensor networks (WSNs) are composed of large number of small, inexpensive devices, called sensor nodes, which are equipped with sensing, processing, and communication capabilities. While traditional applications of wireless sensor networks focused on periodic monitoring, the focus of more recent applications is on fast and reliable identification of out-of-ordinary situations and events. This new functionality of wireless sensor networks is known as event detection. Due to the fact t...

  15. Challenge: How Effective is Routing for Wireless Networking

    Science.gov (United States)

    2017-03-03

    Approved for Public Release, Distribution Unlimited Challenge: How Effective is Routing for Wireless Networking ? Greg Kuperman, Scott Moore, Bow-Nan...paper, we examine the question of how effective rout- ing is for reliably and efficiently delivering data in a wireless network . With the emergence of the...Internet of Things, there is a renewed focus on multi-hop wireless networking to con- nect these systems of smart-devices. Many of the proposals to

  16. Wireless Augmented Reality Communication System

    Science.gov (United States)

    Devereaux, Ann (Inventor); Jedrey, Thomas (Inventor); Agan, Martin (Inventor)

    2016-01-01

    The system of the present invention is a highly integrated radio communication system with a multimedia co-processor which allows true two-way multimedia (video, audio, data) access as well as real-time biomedical monitoring in a pager-sized portable access unit. The system is integrated in a network structure including one or more general purpose nodes for providing a wireless-to-wired interface. The network architecture allows video, audio and data (including biomedical data) streams to be connected directly to external users and devices. The portable access units may also be mated to various non-personal devices such as cameras or environmental sensors for providing a method for setting up wireless sensor nets from which reported data may be accessed through the portable access unit. The reported data may alternatively be automatically logged at a remote computer for access and viewing through a portable access unit, including the user's own.

  17. An Efficient Remote Authentication Scheme for Wireless Body Area Network.

    Science.gov (United States)

    Omala, Anyembe Andrew; Kibiwott, Kittur P; Li, Fagen

    2017-02-01

    Wireless body area network (WBAN) provide a mechanism of transmitting a persons physiological data to application providers e.g. hospital. Given the limited range of connectivity associated with WBAN, an intermediate portable device e.g. smartphone, placed within WBAN's connectivity, forwards the data to a remote server. This data, if not protected from an unauthorized access and modification may be lead to poor diagnosis. In order to ensure security and privacy between WBAN and a server at the application provider, several authentication schemes have been proposed. Recently, Wang and Zhang proposed an authentication scheme for WBAN using bilinear pairing. However, in their scheme, an application provider could easily impersonate a client. In order to overcome this weakness, we propose an efficient remote authentication scheme for WBAN. In terms of performance, our scheme can not only provide a malicious insider security, but also reduce running time of WBAN (client) by 51 % as compared to Wang and Zhang scheme.

  18. Wireless microsystems for biomedical applications

    OpenAIRE

    Carmo, João Paulo; Correia, José Higino

    2013-01-01

    This paper presents a review with the state-of-the-art of wireless microsystems for biomedical applications. Aspects including the radio-frequency systems, data acquisition, application specificities (especially those in the context of implantable devices), power consumption and issues associated to their integration are presented. A review of COTS (Commercial Off-The-Shelf) systems and new concepts and technologies are also presented.

  19. Novel Concepts of Cooperative Wireless Networking

    DEFF Research Database (Denmark)

    Zhang, Qi

    2008-01-01

    following a common strategy. Wireless devices share their resources (i.e. radio link, antenna, battery, processing unit, etc.) during cooperation using the short-range technology as the underlying communication platform. The amount of data exchanged over the short-range link diers from application...... to application. In some situations the short-range communication is not used at all in case all mobile devices have a predefined mutual understanding of their cooperativeness. The main reason of cooperation is threefold: first, the limit capability of wireless devices can be virtually enhanced by cooperation...... networks. An energy saving cooperative strategy for DVB-H in ii Abstract networks is designed as a primary attempt to illustrate the potential of cooperation application for multicast services. Furthermore, a cooperative retrans-mission scheme is proposed for reliable multicast service in wireless network...

  20. Wireless multichannel electroencephalography in the newborn.

    Science.gov (United States)

    Ibrahim, Z H; Chari, G; Abdel Baki, S; Bronshtein, V; Kim, M R; Weedon, J; Cracco, J; Aranda, J V

    2016-01-01

    First, to determine the feasibility of an ultra-compact wireless device (microEEG) to obtain multichannel electroencephalographic (EEG) recording in the Neonatal Intensive Care Unit (NICU). Second, to identify problem areas in order to improve wireless EEG performance. 28 subjects (gestational age 24-30 weeks, postnatal age EEG. Infants underwent 8-9 hour EEG recordings every 2-4 weeks using an electrode cap (ANT-Neuro) connected to the wireless EEG device (Bio-Signal Group). A 23 electrode configuration was used incorporating the International 10-20 System. The device transmitted recordings wirelessly to a laptop computer for bedside assessment. The recordings were assessed by a pediatric neurophysiologist for interpretability. A total of 84 EEGs were recorded from 28 neonates. 61 EEG studies were obtained in infants prior to 35 weeks corrected gestational age (CGA). NICU staff placed all electrode caps and initiated all recordings. Of these recordings 6 (10%) were uninterpretable due to artifacts and one study could not be accessed. The remaining 54 (89%) EEG recordings were acceptable for clinical review and interpretation by a pediatric neurophysiologist. Of the recordings obtained at 35 weeks corrected gestational age or later only 11 out of 23 (48%) were interpretable. Wireless EEG devices can provide practical, continuous, multichannel EEG monitoring in preterm neonates. Their small size and ease of use could overcome obstacles associated with EEG recording and interpretation in the NICU.

  1. 78 FR 69018 - Improving the Resiliency of Mobile Wireless Communications Networks; Reliability and Continuity...

    Science.gov (United States)

    2013-11-18

    ... devices, such as tablets and e- readers. As mobile wireless technologies have continued to proliferate and... growing reliance on wireless communications has brought these technologies to the forefront of emergency... consumers' loss of electric power, is this proposed application to mobile wireless service providers...

  2. Development of an asynchronous communication channel between wireless sensor nodes, smartphone devices, and web applications using RESTful Web Services for intelligent farming

    Science.gov (United States)

    De Leon, Marlene M.; Estuar, Maria Regina E.; Lim, Hadrian Paulo; Victorino, John Noel C.; Co, Jerelyn; Saddi, Ivan Lester; Paelmo, Sharlene Mae; Dela Cruz, Bon Lemuel

    2017-09-01

    Environment and agriculture related applications have been gaining ground for the past several years and have been the context for researches in ubiquitous and pervasive computing. This study is a part of a bigger study that uses artificial intelligence in developing models to detect, monitor, and forecast the spread of Fusarium oxysporum cubense TR4 (FOC TR4) on Cavendish bananas cultivated in the Philippines. To implement an Intelligent Farming system, 1) wireless sensor nodes (WSNs) are deployed in Philippine banana plantations to collect soil parameter data that is considered to affect the health of Cavendish bananas, 2) a custom built smartphone application is used for collecting, storing, and transmitting soil data, plant images and plant status data to a cloud storage, and 3) a custom built web application is used to load and display results of physico-chemical analysis of soil, analysis of data models, and geographic locations of plants being monitored. This study discusses the issues, considerations, and solutions implemented in the development of an asynchronous communication channel to ensure that all data collected by WSNs and smartphone applications are transmitted with a high degree of accuracy and reliability. From a design standpoint: standard API documentation on usage of data type is required to avoid inconsistencies in parameter passing. From a technical standpoint, there is a need to include error-handling mechanisms especially for delays in transmission of data as well as generalize method of parsing thru multidimensional array of data. Strategies are presented in the paper.

  3. Development & Implementation of Electric Tram System with Wireless Charging Technology

    OpenAIRE

    DongHo Cho; GuHo Jung; Uooyeol Yoon; Byungsong Lee

    2015-01-01

    In this paper, an electric tram system with a wireless power transfer system based on SMFIR technology is presented. The detailed technology of power-line infra, regulator, and pick-up device is described for train application, respectively. Furthermore, implementation and experimental results for wireless power transfer electric tram are presented

  4. 75 FR 38385 - Unleashing the Wireless Broadband Revolution

    Science.gov (United States)

    2010-07-01

    ... beginning the next transformation in information technology: the wireless broadband revolution. Few... applications that will transform Americans' lives. Spectrum and the new technologies it enables also are... myriad of wireless devices, networks, and applications that can drive the new economy. To do so, we can...

  5. The Systems Librarian: Implementing Wireless Networks without Compromising Security

    Science.gov (United States)

    Breeding, Marshall

    2005-01-01

    Many libraries are or soon will be offering Wi-Fi, also known as wireless networks. The largest perceived barriers to providing this service are concerns about security. The prime rule when deploying Wi-Fi is segregation, having a clear separation between a public wireless network and the rest of the library?s network. A number of devices can be…

  6. Opportunistic Beacon Networks: Information Dissemination via Wireless Network Identifiers

    NARCIS (Netherlands)

    Türkes, Okan; Scholten, Johan; Havinga, Paul J.M.

    2016-01-01

    This paper presents OBN, a universal opportunistic ad hoc networking model particularly intended for smart mobile devices. It enables fast and lightweight data dissemination in wireless community networks through the utilization of universally-available wireless network identifiers. As a ubiquitous

  7. Development & Implementation of Electric Tram System with Wireless Charging Technology

    Directory of Open Access Journals (Sweden)

    DongHo Cho

    2015-06-01

    Full Text Available In this paper, an electric tram system with a wireless power transfer system based on SMFIR technology is presented. The detailed technology of power-line infra, regulator, and pick-up device is described for train application, respectively. Furthermore, implementation and experimental results for wireless power transfer electric tram are presented

  8. Integrated Frequency Synthesis for Convergent Wireless Solutions

    CERN Document Server

    Atallah, Jad G

    2012-01-01

    This book describes the design and implementation of an electronic subsystem called the frequency synthesizer, which is a very important building block for any wireless transceiver. The discussion includes several new techniques for the design of such a subsystem which include the usage modes of the wireless device, including its support for several leading-edge wireless standards. This new perspective for designing such a demanding subsystem is based on the fact that optimizing the performance of a complete system is not always achieved by optimizing the performance of its building blocks separately.  This book provides “hands-on” examples of this sort of co-design of optimized subsystems, which can make the vision of an always-best-connected scenario a reality. Provides up-to-date design information regarding one of the most complex subsystems used in state-of-the-art wireless devices; Describes a wireless front-end solution designed to provide an always-best-connected solution, based on a wireless det...

  9. Socially Aware Heterogeneous Wireless Networks.

    Science.gov (United States)

    Kosmides, Pavlos; Adamopoulou, Evgenia; Demestichas, Konstantinos; Theologou, Michael; Anagnostou, Miltiades; Rouskas, Angelos

    2015-06-11

    The development of smart cities has been the epicentre of many researchers' efforts during the past decade. One of the key requirements for smart city networks is mobility and this is the reason stable, reliable and high-quality wireless communications are needed in order to connect people and devices. Most research efforts so far, have used different kinds of wireless and sensor networks, making interoperability rather difficult to accomplish in smart cities. One common solution proposed in the recent literature is the use of software defined networks (SDNs), in order to enhance interoperability among the various heterogeneous wireless networks. In addition, SDNs can take advantage of the data retrieved from available sensors and use them as part of the intelligent decision making process contacted during the resource allocation procedure. In this paper, we propose an architecture combining heterogeneous wireless networks with social networks using SDNs. Specifically, we exploit the information retrieved from location based social networks regarding users' locations and we attempt to predict areas that will be crowded by using specially-designed machine learning techniques. By recognizing possible crowded areas, we can provide mobile operators with recommendations about areas requiring datacell activation or deactivation.

  10. Implementing 802.11 with microcontrollers wireless networking for embedded systems designers

    CERN Document Server

    Eady, Fred

    2005-01-01

    Wireless networking is poised to have a massive impact on communications, and the 802.11 standard is to wireless networking what Ethernet is to wired networking. There are already over 50 million devices using the dominant IEEE 802.11 (essentially wireless Ethernet) standard, with astronomical growth predicted over the next 10 years. New applications are emerging every day, with wireless capability being embedded in everything from electric meters to hospital patient tracking systems to security devices. This practical reference guides readers through the wireless technology forest, gi

  11. A Wireless Sensor Enabled by Wireless Power

    Science.gov (United States)

    Lee, Da-Sheng; Liu, Yu-Hong; Lin, Chii-Ruey

    2012-01-01

    Through harvesting energy by wireless charging and delivering data by wireless communication, this study proposes the concept of a wireless sensor enabled by wireless power (WPWS) and reports the fabrication of a prototype for functional tests. One WPWS node consists of wireless power module and sensor module with different chip-type sensors. Its main feature is the dual antenna structure. Following RFID system architecture, a power harvesting antenna was designed to gather power from a standard reader working in the 915 MHz band. Referring to the Modbus protocol, the other wireless communication antenna was integrated on a node to send sensor data in parallel. The dual antenna structure integrates both the advantages of an RFID system and a wireless sensor. Using a standard UHF RFID reader, WPWS can be enabled in a distributed area with a diameter up to 4 m. Working status is similar to that of a passive tag, except that a tag can only be queried statically, while the WPWS can send dynamic data from the sensors. The function is the same as a wireless sensor node. Different WPWSs equipped with temperature and humidity, optical and airflow velocity sensors are tested in this study. All sensors can send back detection data within 8 s. The accuracy is within 8% deviation compared with laboratory equipment. A wireless sensor network enabled by wireless power should be a totally wireless sensor network using WPWS. However, distributed WPWSs only can form a star topology, the simplest topology for constructing a sensor network. Because of shielding effects, it is difficult to apply other complex topologies. Despite this limitation, WPWS still can be used to extend sensor network applications in hazardous environments. Further research is needed to improve WPWS to realize a totally wireless sensor network. PMID:23443370

  12. Wireless technology in disease management and medicine.

    Science.gov (United States)

    Clifford, Gari D; Clifton, David

    2012-01-01

    Healthcare information, and to some extent patient management, is progressing toward a wireless digital future. This change is driven partly by a desire to improve the current state of medicine using new technologies, partly by supply-and-demand economics, and partly by the utility of wireless devices. Wired technology can be cumbersome for patient monitoring and can restrict the behavior of the monitored patients, introducing bias or artifacts. However, wireless technologies, while mitigating some of these issues, have introduced new problems such as data dropout and "information overload" for the clinical team. This review provides an overview of current wireless technology used for patient monitoring and disease management. We identify some of the major related issues and describe some existing and possible solutions. In particular, we discuss the rapidly evolving fields of telemedicine and mHealth in the context of increasingly resource-constrained healthcare systems.

  13. Adaptive Wireless Transceiver Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Many wireless technologies are already available for sensor applications. It is inevitable that many non-interoperable wireless technologies between 400 MHz and 5.8...

  14. The CTTC 5G End-to-End Experimental Platform : Integrating Heterogeneous Wireless/Optical Networks, Distributed Cloud, and IoT Devices

    OpenAIRE

    Muñóz, Raul; Mangues-Bafalluy, Josep; Vilalta, Ricard; Verikoukis, Christos; Alonso-Zarate, Jesús; Bartzoudis, Nikolaos; Georgiadis, Apostolos; Payaró, Miquel; Pérez-Neira, Ana; Casellas, Ramon; Martínez, Ricardo; Núñez-Martínez, Jose; Manuel Requena Esteso, Manuel; Pubill, David; Font-Batch, Oriol

    2016-01-01

    The Internet of Things (IoT) will facilitate a wide variety of applications in different domains, such as smart cities, smart grids, industrial automation (Industry 4.0), smart driving, assistance of the elderly, and home automation. Billions of heterogeneous smart devices with different application requirements will be connected to the networks and will generate huge aggregated volumes of data that will be processed in distributed cloud infrastructures. On the other hand, there is also a gen...

  15. The dielectric properties of human pineal gland tissue and RF absorption due to wireless communication devices in the frequency range 400-1850 MHz

    Energy Technology Data Exchange (ETDEWEB)

    Schmid, Gernot [Austrian Research Centers GmbH-ARC, ITM, A-2444 Seibersdorf (Austria); Ueberbacher, Richard [Austrian Research Centers GmbH-ARC, ITM, A-2444 Seibersdorf (Austria); Samaras, Theodoros [Department of Physics, Aristotle University of Thessaloniki, GR-54124 Thessaloniki (Greece); Tschabitscher, Manfred [Center of Anatomy and Cell Biology, Medical University of Vienna, A-1090 Vienna (Austria); Mazal, Peter R [Department of Clinical Pathology, Medical University Vienna, A-1090 Vienna (Austria)

    2007-09-07

    In order to enable a detailed analysis of radio frequency (RF) absorption in the human pineal gland, the dielectric properties of a sample of 20 freshly removed pineal glands were measured less than 20 h after death. Furthermore, a corresponding high resolution numerical model of the brain region surrounding the pineal gland was developed, based on a real human tissue sample. After inserting this model into a commercially available numerical head model, FDTD-based computations for exposure scenarios with generic models of handheld devices operated close to the head in the frequency range 400-1850 MHz were carried out. For typical output power values of real handheld mobile communication devices, the obtained results showed only very small amounts of absorbed RF power in the pineal gland when compared to SAR limits according to international safety standards. The highest absorption was found for the 400 MHz irradiation. In this case the RF power absorbed inside the pineal gland (organ mass 96 mg) was as low as 11 {mu}W, when considering a device of 500 mW output power operated close to the ear. For typical mobile phone frequencies (900 MHz and 1850 MHz) and output power values (250 mW and 125 mW) the corresponding values of absorbed RF power in the pineal gland were found to be lower by a factor of 4.2 and 36, respectively. These results indicate that temperature-related biologically relevant effects on the pineal gland induced by the RF emissions of typical handheld mobile communication devices are unlikely.

  16. Software Defined RF Transceiver for Wireless Sensor Network Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The concept of a smart device capable of communicating and making its own local decisions for wireless sensing, monitoring control, data acquisition, tracking, and...

  17. MAC Protocols for Energy Harvesting Wireless Sensor Networks: Survey

    National Research Council Canada - National Science Library

    Kosunalp, Selahattin

    2015-01-01

    Energy harvesting (EH) technology in the field of wireless sensor networks (WSNs) is gaining increasing popularity through removing the burden of having to replace/recharge depleted energy sources by energy harvester devices...

  18. Non-Ionizing Radiation From Wireless Technology| RadTown ...

    Science.gov (United States)

    2017-10-31

    Cell phones emit radio frequency (RF) energy. The Federal Communications Commission (FCC) sets safety guidelines to limit RF exposure from wireless devices. Scientists continue to study the effects of long-term exposure to low levels of RF.

  19. Combining Natural Human-Computer Interaction and Wireless Communication

    Directory of Open Access Journals (Sweden)

    Ştefan Gheorghe PENTIUC

    2011-01-01

    Full Text Available In this paper we present how human-computer interaction can be improved by using wireless communication between devices. Devices that offer a natural user interaction, like the Microsoft Surface Table and tablet PCs, can work together to enhance the experience of an application. Users can use physical objects for a more natural way of handling the virtual world on one hand, and interact with other users wirelessly connected on the other. Physical objects, that interact with the surface table, have a tag attached to them, allowing us to identify them, and take the required action. The TCP/IP protocol was used to handle the wireless communication over the wireless network. A server and a client application were developed for the used devices. To get a wide range of targeted mobile devices, different frameworks for developing cross platform applications were analyzed.

  20. Wireless ATM : handover issues

    OpenAIRE

    Jiang, Fan; Käkölä, Timo

    1998-01-01

    Basic aspects of cellular systems and the ATM transmission technology are introduced. Wireless ATM is presented as a combination of radio ATM and mobile ATM. Radio ATM is a wireless extension of an ATM connection while mobile ATM contains the necessary extensions to ATM to support mobility. Because the current ATM technology does not support mobility, handover becomes one of the most important research issues for wireless ATM. Wireless ATM handover requirements are thus analysed. A handover s...

  1. Community Wireless Networks

    Science.gov (United States)

    Feld, Harold

    2005-01-01

    With increasing frequency, communities are seeing the arrival of a new class of noncommercial broadband providers: community wireless networks (CWNs). Utilizing the same wireless technologies that many colleges and universities have used to create wireless networks on campus, CWNs are creating broadband access for free or at costs well below…

  2. Active health monitoring of an aircraft wing with an embedded piezoelectric sensor/actuator network: II. Wireless approaches

    Science.gov (United States)

    Zhao, Xiaoliang; Qian, Tao; Mei, Gang; Kwan, Chiman; Zane, Regan; Walsh, Christi; Paing, Thurein; Popovic, Zoya

    2007-08-01

    The objective of this study is to develop a wireless ultrasonic structural health monitoring (SHM) system for aircraft wing inspection. In part I of the study (Zhao et al 2007 Smart Mater. Struct. 16 1208-17), small, low cost and light weight piezoelectric (PZT) disc transducers were bonded to various parts of an aircraft wing for detection, localization and growth monitoring of defects. In this part, two approaches for wirelessly interrogating the sensor/actuator network were developed and tested. The first one utilizes a pair of reactive coupling monopoles to deliver 350 kHz RF tone-burst interrogation pulses directly to the PZT transducers for generating ultrasonic guided waves and to receive the response signals from the PZTs. It couples enough energy to and from the PZT transducers for the wing panel inspection, but the signal is quite noisy and the monopoles need to be in close proximity to each other for efficient coupling. In the second approach, a small local diagnostic device was developed that can be embedded into the wing and transmit the digital signals FM-modulated on a 915 MHz carrier. The device has an ultrasonic pulser that can generate 350 kHz, 70 V tone-burst signals, a multiplexed A/D board with a programmable gain amplifier for multi-channel data acquisition, a microprocessor for circuit control and data processing, and a wireless module for data transmission. Power to the electronics is delivered wirelessly at X-band with an antenna-rectifier (rectenna) array conformed to the aircraft body, eliminating the need for batteries and their replacement. It can effectively deliver at least 100 mW of DC power continuously from a transmitter at a range of 1 m. The wireless system was tested with the PZT sensor array on the wing panel and compared well with the wire connection case.

  3. Energy-aware Wireless Multi-hop Networks

    OpenAIRE

    Vazifehdan, J.

    2011-01-01

    Wireless networks have provided us a variety of services which facilitate communication between people beyond the physical boundaries. Mobile telephony, mobile Internet and high-deffnition video calls are examples of services supported by modern networks nowadays. Beyond this, enhancements in processing capabilities of electronic devices coupled with advances in wireless communication have resulted in the emergence of devices which have high processing and communication capabilities. Small de...

  4. Biomedical Wireless Ambulatory Crew Monitor

    Science.gov (United States)

    Chmiel, Alan; Humphreys, Brad

    2009-01-01

    A compact, ambulatory biometric data acquisition system has been developed for space and commercial terrestrial use. BioWATCH (Bio medical Wireless and Ambulatory Telemetry for Crew Health) acquires signals from biomedical sensors using acquisition modules attached to a common data and power bus. Several slots allow the user to configure the unit by inserting sensor-specific modules. The data are then sent real-time from the unit over any commercially implemented wireless network including 802.11b/g, WCDMA, 3G. This system has a distributed computing hierarchy and has a common data controller on each sensor module. This allows for the modularity of the device along with the tailored ability to control the cards using a relatively small master processor. The distributed nature of this system affords the modularity, size, and power consumption that betters the current state of the art in medical ambulatory data acquisition. A new company was created to market this technology.

  5. Implemented a wireless communication system for VGA capsule endoscope.

    Science.gov (United States)

    Moon, Yeon-Kwan; Lee, Jyung Hyun; Park, Hee-Joon; Cho, Jin-Ho; Choi, Hyun-Chul

    2014-01-01

    Recently, several medical devices that use wireless communication are under development. In this paper, the small size frequency shift keying (FSK) transmitter and a monofilar antenna for the capsule endoscope, enabling the medical device to transmit VGA-size images of the intestine. To verify the functionality of the proposed wireless communication system, computer simulations and animal experiments were performed with the implemented capsule endoscope that includes the proposed wireless communication system. Several fundamental experiments are carried out using the implemented transmitter and antenna, and animal in-vivo experiments were performed to verify VGA image transmission.

  6. CCNA Wireless Study Guide

    CERN Document Server

    Lammle, Todd

    2010-01-01

    A complete guide to the CCNA Wireless exam by leading networking authority Todd Lammle. The CCNA Wireless certification is the most respected entry-level certification in this rapidly growing field. Todd Lammle is the undisputed authority on networking, and this book focuses exclusively on the skills covered in this Cisco certification exam. The CCNA Wireless Study Guide joins the popular Sybex study guide family and helps network administrators advance their careers with a highly desirable certification.: The CCNA Wireless certification is the most respected entry-level wireless certification

  7. The Wireless ATM Architecture

    Directory of Open Access Journals (Sweden)

    R. Palitefka

    1998-06-01

    Full Text Available An overview of the proposed wireless ATM structure is provided. Wireless communication have been developed to a level where offered services can now be extended beyond voice and data. There are already wireless LANs, cordless systems offering data services and mobile data. Wireless LAN systems are basically planned for local, on-promises and in-house networking providing short distance radio or infrared links between computer system. The main challenge of wireless ATM is to harmonise the development of broadband wireless system with service B -ISDN/ATM and ATM LANs, and offer multimedia multiservice features for the support of time-sensitive voice communication, video, desktop multimedia applications, and LAN data traffic for the wireless user.

  8. WIRELESS SENSOR NETWORK BASED CONVEYOR SURVEILLANCE SYSTEM

    OpenAIRE

    Attila Trohák; Máté Kolozsi-Tóth; Péter Rádi

    2011-01-01

    In the paper we will introduce an intelligent conveyor surveillance system. We started a research project to design and develop a conveyor surveillance system based on wireless sensor network and GPRS communication. Our system is able to measure temperature on fixed and moving, rotating surfaces and able to detect smoke. We would like to introduce the developed devices and give an application example.

  9. The properties of human body phantoms used in calculations of electromagnetic fields exposure by wireless communication handsets or hand-operated industrial devices.

    Science.gov (United States)

    Zradziński, Patryk

    2013-06-01

    According to international guidelines, the assessment of biophysical effects of exposure to electromagnetic fields (EMF) generated by hand-operated sources needs the evaluation of induced electric field (E(in)) or specific energy absorption rate (SAR) caused by EMF inside a worker's body and is usually done by the numerical simulations with different protocols applied to these two exposure cases. The crucial element of these simulations is the numerical phantom of the human body. Procedures of E(in) and SAR evaluation due to compliance analysis with exposure limits have been defined in Institute of Electrical and Electronics Engineers standards and International Commission on Non-Ionizing Radiation Protection guidelines, but a detailed specification of human body phantoms has not been described. An analysis of the properties of over 30 human body numerical phantoms was performed which has been used in recently published investigations related to the assessment of EMF exposure by various sources. The differences in applicability of these phantoms in the evaluation of E(in) and SAR while operating industrial devices and SAR while using mobile communication handsets are discussed. The whole human body numerical phantom dimensions, posture, spatial resolution and electric contact with the ground constitute the key parameters in modeling the exposure related to industrial devices, while modeling the exposure from mobile communication handsets, which needs only to represent the exposed part of the human body nearest to the handset, mainly depends on spatial resolution of the phantom. The specification and standardization of these parameters of numerical human body phantoms are key requirements to achieve comparable and reliable results from numerical simulations carried out for compliance analysis against exposure limits or within the exposure assessment in EMF-related epidemiological studies.

  10. Energy storage management system with distributed wireless sensors

    Science.gov (United States)

    Farmer, Joseph C.; Bandhauer, Todd M.

    2015-12-08

    An energy storage system having a multiple different types of energy storage and conversion devices. Each device is equipped with one or more sensors and RFID tags to communicate sensor information wirelessly to a central electronic management system, which is used to control the operation of each device. Each device can have multiple RFID tags and sensor types. Several energy storage and conversion devices can be combined.

  11. Cost Effective RADIUS Authentication for Wireless Clients

    Directory of Open Access Journals (Sweden)

    Alexandru ENACEANU

    2010-12-01

    Full Text Available Network administrators need to keep administrative user information for each network device, but network devices usually support only limited functions for user management. WLAN security is a modern problem that needs to be solved and it requires a lot of overhead especially when applied to corporate wireless networks. Administrators can set up a RADIUS server that uses an external database server to handle authentication, authorization, and accounting for network security issues.

  12. Ion funnel device

    Energy Technology Data Exchange (ETDEWEB)

    Ibrahim, Yehia M.; Chen, Tsung-Chi; Harrer, Marques B.; Tang, Keqi; Smith, Richard D.

    2017-11-21

    An ion funnel device is disclosed. A first pair of electrodes is positioned in a first direction. A second pair of electrodes is positioned in a second direction. The device includes an RF voltage source and a DC voltage source. A RF voltage with a superimposed DC voltage gradient is applied to the first pair of electrodes, and a DC voltage gradient is applied to the second pair of electrodes.

  13. Challenge Study: A Project-Based Learning on a Wireless Communication System at Technical High School

    Science.gov (United States)

    Terasawa, Ikuo

    2016-01-01

    The challenge study is a project based learning curriculum at Technical High School aimed at the construction of a wireless communication system. The first period was engineering issues in the construction of an artificial satellite and the second period was a positional locating system based on the general purpose wire-less device--ZigBee device.…

  14. Traffic data collection and anonymous vehicle detection using wireless sensor networks.

    Science.gov (United States)

    2012-05-01

    New traffic sensing devices based on wireless sensing technologies were designed and tested. Such devices encompass a cost-effective, battery-free, and energy self-sustained architecture for real-time traffic measurement over distributed points in a ...

  15. RF microwave circuit design for wireless applications

    CERN Document Server

    Rohde, Ulrich L

    2012-01-01

    Provides researchers and engineers with a complete set of modeling, design, and implementation tools for tackling the newest IC technologies Revised and completely updated, RF/Microwave Circuit Design for Wireless Applications, Second Edition is a unique, state-of-the-art guide to wireless integrated circuit design that provides researchers and engineers with a complete set of modeling, design, and implementation tools for tackling even the newest IC technologies. It emphasizes practical design solutions for high-performance devices and circuitry, incorporating ample exa

  16. Research Challenges for Wireless Multimedia Sensor Networks

    Science.gov (United States)

    Melodia, Tommaso; Akyildiz, Ian F.

    This chapter discusses the state of the art and the major research challenges in architectures, algorithms, and protocols, for wireless multimedia sensor networks (WMSNs). These are networks of wirelessly interconnected smart devices designed and deployed to retrieve video and audio streams, still images, and scalar sensor data. First, applications and key factors influencing the design of WMSNs are discussed. Then, the existing solutions at the application, transport, network, link, and physical layers of the communication protocol stack are investigated. Finally, fundamental open research issues are discussed and future research trends in this area are outlined.

  17. RF & wireless technologies know it all

    CERN Document Server

    Fette, Bruce A; Chandra, Praphul; Dobkin, Daniel M; Bensky, Dan; Miron, Douglas B; Lide, David; Dowla, Farid; Olexa, Ron

    2007-01-01

    The Newnes Know It All Series takes the best of what our authors have written to create hard-working desk references that will be an engineer's first port of call for key information, design techniques and rules of thumb. Guaranteed not to gather dust on a shelf!RF (radio frequency) and wireless technologies drive communication today. This technology and its applications enable wireless phones, portable device roaming, and short-range industrial and commercial application communication such as the supply chain management wonder, RFID. Up-to-date information regarding software defined R

  18. Prospective motion correction using inductively coupled wireless RF coils.

    Science.gov (United States)

    Ooi, Melvyn B; Aksoy, Murat; Maclaren, Julian; Watkins, Ronald D; Bammer, Roland

    2013-09-01

    A novel prospective motion correction technique for brain MRI is presented that uses miniature wireless radio-frequency coils, or "wireless markers," for position tracking. Each marker is free of traditional cable connections to the scanner. Instead, its signal is wirelessly linked to the MR receiver via inductive coupling with the head coil. Real-time tracking of rigid head motion is performed using a pair of glasses integrated with three wireless markers. A tracking pulse-sequence, combined with knowledge of the markers' unique geometrical arrangement, is used to measure their positions. Tracking data from the glasses is then used to prospectively update the orientation and position of the image-volume so that it follows the motion of the head. Wireless-marker position measurements were comparable to measurements using traditional wired radio-frequency tracking coils, with the standard deviation of the difference Wireless-marker safety was verified with B1 maps and temperature measurements. Prospective motion correction was demonstrated in a 2D spin-echo scan while the subject performed a series of deliberate head rotations. Prospective motion correction using wireless markers enables high quality images to be acquired even during bulk motions. Wireless markers are small, avoid radio-frequency safety risks from electrical cables, are not hampered by mechanical connections to the scanner, and require minimal setup times. These advantages may help to facilitate adoption in the clinic. Copyright © 2013 Wiley Periodicals, Inc.

  19. Wireless Intrusion Prevention Systems

    Directory of Open Access Journals (Sweden)

    Jack TIMOFTE

    2008-01-01

    Full Text Available The wireless networks have changed the way organizations work and offered a new range of possibilities, but at the same time they introduced new security threats. While an attacker needs physical access to a wired network in order to launch an attack, a wireless network allows anyone within its range to passively monitor the traffic or even start an attack. One of the countermeasures can be the use of Wireless Intrusion Prevention Systems.

  20. Caching Eliminates the Wireless Bottleneck in Video Aware Wireless Networks

    Directory of Open Access Journals (Sweden)

    Andreas F. Molisch

    2014-01-01

    Full Text Available Wireless video is the main driver for rapid growth in cellular data traffic. Traditional methods for network capacity increase are very costly and do not exploit the unique features of video, especially asynchronous content reuse. In this paper we give an overview of our work that proposed and detailed a new transmission paradigm exploiting content reuse and the widespread availability of low-cost storage. Our network structure uses caching in helper stations (femtocaching and/or devices, combined with highly spectrally efficient short-range communications to deliver video files. For femtocaching, we develop optimum storage schemes and dynamic streaming policies that optimize video quality. For caching on devices, combined with device-to-device (D2D communications, we show that communications within clusters of mobile stations should be used; the cluster size can be adjusted to optimize the tradeoff between frequency reuse and the probability that a device finds a desired file cached by another device in the same cluster. In many situations the network throughput increases linearly with the number of users, and the tradeoff between throughput and outage is better than in traditional base-station centric systems. Simulation results with realistic numbers of users and channel conditions show that network throughput can be increased by two orders of magnitude compared to conventional schemes.

  1. Wireless security in mobile health.

    Science.gov (United States)

    Osunmuyiwa, Olufolabi; Ulusoy, Ali Hakan

    2012-12-01

    Mobile health (m-health) is an extremely broad term that embraces mobile communication in the health sector and data packaging. The four broad categories of wireless networks are wireless personal area network, wireless metropolitan area network, wireless wide area network, and wireless local area network. Wireless local area network is the most notable of the wireless networking tools obtainable in the health sector. Transfer of delicate and critical information on radio frequencies should be secure, and the right to use must be meticulous. This article covers the business opportunities in m-health, threats faced by wireless networks in hospitals, and methods of mitigating these threats.

  2. Adaptive Wireless Transceiver Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Wireless technologies are an increasingly attractive means for spatial data, input, manipulation, and distribution. Mobitrum is proposing an innovative Adaptive...

  3. Wireless Emulation Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Wireless Emulation Laboratory (WEL) is a researchtest bed used to investigate fundamental issues in networkscience. It is a research infrastructure that emulates...

  4. Protocol design and analysis for cooperative wireless networks

    CERN Document Server

    Song, Wei; Jin, A-Long

    2017-01-01

    This book focuses on the design and analysis of protocols for cooperative wireless networks, especially at the medium access control (MAC) layer and for crosslayer design between the MAC layer and the physical layer. It highlights two main points that are often neglected in other books: energy-efficiency and spatial random distribution of wireless devices. Effective methods in stochastic geometry for the design and analysis of wireless networks are also explored. After providing a comprehensive review of existing studies in the literature, the authors point out the challenges that are worth further investigation. Then, they introduce several novel solutions for cooperative wireless network protocols that reduce energy consumption and address spatial random distribution of wireless nodes. For each solution, the book offers a clear system model and problem formulation, details of the proposed cooperative schemes, comprehensive performance analysis, and extensive numerical and simulation results that validate th...

  5. Link and route availability for Inter-working multi-hop wireless networks

    CSIR Research Space (South Africa)

    Salami, O

    2009-09-01

    Full Text Available In inter-working multi-hop wireless networks, establishing resilient connectivity between source-destination node pairs is a major issue. The issue of connectivity in multi-hop wireless networks have been studied. However, these analyses focused...

  6. Connectivity model for Inter-working multi-hop wireless networks

    CSIR Research Space (South Africa)

    Salami, O

    2009-08-01

    Full Text Available In Inter-working multi-hop wireless networks, establishing resilient connectivity between source-destination node pairs is a major issue. The issues of connectivity in Multi-hop wireless networks have been studied. However, these analyses focused...

  7. Transparent graphene microstrip filters for wireless communications

    Science.gov (United States)

    Wang, Jinchen; Guan, Yifei; Yu, Hua; Li, Na; Wang, Shuopei; Shen, Cheng; Dai, Zhijiang; Gan, Decheng; Yang, Rong; He, Songbai; Zhang, Guangyu

    2017-08-01

    A microstrip is an indispensable component for wireless communication circuits. With the development of 5G technology, optically transparent microstrip filters urgently need to be developed. In this work, we have theoretically and experimentally demonstrated the immense potential of graphene microstrips for transparent wireless communication circuits in the 5G era. Both wideband and dual-band transparent graphene microstrip filters have shown more than 80% optical transmissivity in the region from 250 nm to 2000 nm with good frequency responses. S and C band microwave signals can transmit along the graphene microstrip lines effectively while coupling excitations produce relatively large insertion losses. Our results show that transparent microstrips designed with high-quality graphene will largely scale down the size of the wireless devices and thus play an irreplaceable role in the 5G era.

  8. Towards Controlling Latency in Wireless Networks

    KAUST Repository

    Bouacida, Nader

    2017-04-24

    Wireless networks are undergoing an unprecedented revolution in the last decade. With the explosion of delay-sensitive applications in the Internet (i.e., online gaming and VoIP), latency becomes a major issue for the development of wireless technology. Taking advantage of the significant decline in memory prices, industrialists equip the network devices with larger buffering capacities to improve the network throughput by limiting packets drops. Over-buffering results in increasing the time that packets spend in the queues and, thus, introducing more latency in networks. This phenomenon is known as “bufferbloat”. While throughput is the dominant performance metric, latency also has a huge impact on user experience not only for real-time applications but also for common applications like web browsing, which is sensitive to latencies in order of hundreds of milliseconds. Concerns have arisen about designing sophisticated queue management schemes to mitigate the effects of such phenomenon. My thesis research aims to solve bufferbloat problem in both traditional half-duplex and cutting-edge full-duplex wireless systems by reducing delay while maximizing wireless links utilization and fairness. Our work shed lights on buffer management algorithms behavior in wireless networks and their ability to reduce latency resulting from excessive queuing delays inside oversized static network buffers without a significant loss in other network metrics. First of all, we address the problem of buffer management in wireless full-duplex networks by using Wireless Queue Management (WQM), which is an active queue management technique for wireless networks. Our solution is based on Relay Full-Duplex MAC (RFD-MAC), an asynchronous media access control protocol designed for relay full-duplexing. Compared to the default case, our solution reduces the end-to-end delay by two orders of magnitude while achieving similar throughput in most of the cases. In the second part of this thesis

  9. Energy scavenging system by acoustic wave and integrated wireless communication

    Science.gov (United States)

    Kim, Albert

    The purpose of the project was developing an energy-scavenging device for other bio implantable devices. Researchers and scientist have studied energy scavenging method because of the limitation of traditional power source, especially for bio-implantable devices. In this research, piezoelectric power generator that activates by acoustic wave, or music was developed. Follow by power generator, a wireless communication also integrated with the device for monitoring the power generation. The Lead Zirconate Titanate (PZT) bimorph cantilever with a proof mass at the free end tip was studied to convert acoustic wave to power. The music or acoustic wave played through a speaker to vibrate piezoelectric power generator. The LC circuit integrated with the piezoelectric material for purpose of wireless monitoring power generation. However, wireless monitoring can be used as wireless power transmission, which means the signal received via wireless communication also can be used for power for other devices. Size of 74 by 7 by 7cm device could generate and transmit 100mVp from 70 mm distance away with electrical resonant frequency at 420.2 kHz..

  10. UWB Antennas Integration Effects for Wireless Communication Applications

    Science.gov (United States)

    Mellah, M.-A.; Roblin, C.; Sibille, A.

    In this chapter, a return loss measurement campaign was achieved to study the effect of the close environment on antenna's behavior in wireless application scenarios. Five different planar ultra-wideband antennas were measured on different devices (keyboard, screen, Internet box, and two laptops). General similarities in the bandwidth and matching efficiency behaviors were noticed for the antennas when mounted on the same devices in the same positions. In a purpose of modeling, the results can be used to classify the antennas and describe general behaviors on common used devices in wireless applications.

  11. Passive wireless sensing tags NASA inflatable structures.

    Energy Technology Data Exchange (ETDEWEB)

    Brocato, Robert Wesley

    2006-03-01

    This report gives a description of several types of wireless, unpowered remote sensors. Surface acoustic wave (SAW) devices were coupled with conventional sensors to create entirely new types of sensors. These sensors report physically measurable data in the same manner as the conventional sensors, but they do it remotely and without any local power source. The sensors are measured remotely using a radar-like interrogation device, and the sensors and their related communication electronics draw all of the power needed for communicating from the radar pulse. The report covers only a description of prototype sensors and not of the manufacturing requirements of these devices.

  12. Wireless mobile Internet security

    CERN Document Server

    Rhee, Man Young

    2013-01-01

      The mobile industry for wireless cellular services has grown at a rapid pace over the past decade. Similarly, Internet service technology has also made dramatic growth through the World Wide Web with a wire line infrastructure. Realization for complete wired/wireless mobile Internet technologies will become the future objectives for convergence of these technologies thr

  13. Debate: Wired versus Wireless.

    Science.gov (United States)

    Meeks, Glenn; Nair, Prakash

    2000-01-01

    Debates the issue of investing in wiring schools for desktop computer networks versus using laptops and wireless networks. Included are cost considerations and the value of technology for learning. Suggestions include using wireless networks for existing schools, hardwiring computers for new construction, and not using computers for elementary…

  14. ASE-BAN, a Wireless Body Area Network Testbed

    DEFF Research Database (Denmark)

    Madsen, Jens Kargaard; Karstoft, Henrik; Toftegaard, Thomas Skjødeberg

    2010-01-01

    /actuators attached to the body and a host server application. The gateway uses the BlackFin BF533 processor from Analog Devices, and uses Bluetooth for wireless communication. Two types of sensors are attached to the network: an electro-cardio-gram sensor and an oximeter sensor. The testbed has been successfully......Miniature Body Area Networks used in health care support greater mobility to patients and reduces actual hospitalization. This paper presents the preliminary implementation of a wireless body area network gateway. It is designed to implement the gateway functionality between sensors...... tested for electrocardio- gram data collection, and using wireless communication in a battery powered configuration....

  15. WiMax taking wireless to the max

    CERN Document Server

    Pareek, Deepak

    2006-01-01

    With market value expected to reach 5 billion by 2007 and the endorsement of some of the biggest names in telecommunications, World Interoperability for Microwave Access (WiMAX) is poised to change the broadband wireless landscape. But how much of WiMAX's touted potential is merely hype? Now that several pre-WiMAX networks have been deployed, what are the operators saying about QoS and ROI? How and when will device manufacturers integrate WiMAX into their products? What is the business case for using WiMAX rather than any number of other established wireless alternatives?WiMAX: Taking Wireless

  16. Optical wireless communications system and channel modelling with Matlab

    CERN Document Server

    Ghassemlooy, Z

    2012-01-01

    Detailing a systems approach, Optical Wireless Communications: System and Channel Modelling with MATLAB(R), is a self-contained volume that concisely and comprehensively covers the theory and technology of optical wireless communications systems (OWC) in a way that is suitable for undergraduate and graduate-level students, as well as researchers and professional engineers. Incorporating MATLAB(R) throughout, the authors highlight past and current research activities to illustrate optical sources, transmitters, detectors, receivers, and other devices used in optical wireless communications. The

  17. Implantable radio frequency identification sensors: wireless power and communication.

    Science.gov (United States)

    Hutchens, Chriswell; Rennaker, Robert L; Venkataraman, Srinivasan; Ahmed, Rehan; Liao, Ran; Ibrahim, Tamer

    2011-01-01

    There are significant technical challenges in the development of a fully implantable wirelessly powered neural interface. Challenges include wireless transmission of sufficient power to the implanted device to ensure reliable operation for decades without replacement, minimizing tissue heating, and adequate reliable communications bandwidth. Overcoming these challenges is essential for the development of implantable closed loop system for the treatment of disorders ranging from epilepsy, incontinence, stroke and spinal cord injury. We discuss the development of the wireless power, communication and control for a Radio-Frequency Identification Sensor (RFIDS) system with targeted power range for a 700 mV, 30 to 40 uA load attained at -2 dBm.

  18. Bluetooth Communication for Battery Powered Medical Devices

    Science.gov (United States)

    Babušiak, Branko; Borik, Štefan

    2016-01-01

    wireless communication eliminates obtrusive cables associated with wearable sensors and considerably increases patient comfort during measurement and collection of medical data. Wireless communication is very popular in recent years and plays a significant role in telemedicine and homecare applications. Bluetooth technology is one of the most commonly used wireless communication types in medicine. This paper describes the design of a universal wireless communication device with excellent price/performance ratio. The said device is based on the low-cost RN4020 Bluetooth module with Microchip Low-energy Data Profile (MLDP) and due to low-power consumption is especially suitable for the transmission of biological signals (ECG, EMG, PPG, etc.) from wearable medical/personal health devices. A unique USB dongle adaptor was developed for wireless communication via UART interface and power consumption was evaluated under various conditions.

  19. Wireless communication with chaos.

    Science.gov (United States)

    Ren, Hai-Peng; Baptista, Murilo S; Grebogi, Celso

    2013-05-03

    The modern world fully relies on wireless communication. Because of intrinsic physical constraints of the wireless physical media (multipath, damping, and filtering), signals carrying information are strongly modified, preventing information from being transmitted with a high bit rate. We show that, though a chaotic signal is strongly modified by the wireless physical media, its Lyapunov exponents remain unaltered, suggesting that the information transmitted is not modified by the channel. For some particular chaotic signals, we have indeed proved that the dynamic description of both the transmitted and the received signals is identical and shown that the capacity of the chaos-based wireless channel is unaffected by the multipath propagation of the physical media. These physical properties of chaotic signals warrant an effective chaos-based wireless communication system.

  20. Access control mechanism of wireless gateway based on open flow

    Science.gov (United States)

    Peng, Rong; Ding, Lei

    2017-08-01

    In order to realize the access control of wireless gateway and improve the access control of wireless gateway devices, an access control mechanism of SDN architecture which is based on Open vSwitch is proposed. The mechanism utilizes the features of the controller--centralized control and programmable. Controller send access control flow table based on the business logic. Open vSwitch helps achieve a specific access control strategy based on the flow table.

  1. Cooperative Positioning in Wireless Sensor Networks Using Semidefinite Programming

    OpenAIRE

    Monir Vaghefi, Sayed Reza

    2015-01-01

    With the rapid development of wireless technologies, the demand for positioning services has grown dramatically over the past three decades. The Global Positioning System (GPS) is widely used in wireless devices for positioning purposes. However, in addition to having bulky and expensive equipment, GPS receivers do not operate properly in dense and indoor environments. Difficulties in using GPS lead us to use sensor localization in which the position information is obtained from the measureme...

  2. Phase patterns of coupled oscillators with application to wireless communication

    Energy Technology Data Exchange (ETDEWEB)

    Arenas, A.

    2008-01-02

    Here we study the plausibility of a phase oscillators dynamical model for TDMA in wireless communication networks. We show that emerging patterns of phase locking states between oscillators can eventually oscillate in a round-robin schedule, in a similar way to models of pulse coupled oscillators designed to this end. The results open the door for new communication protocols in a continuous interacting networks of wireless communication devices.

  3. Field test of wireless sensor network in the nuclear environment

    Energy Technology Data Exchange (ETDEWEB)

    Li, L., E-mail: lil@aecl.ca [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada); Wang, Q.; Bari, A. [Univ. of Western Ontario, London, Ontario (Canada); Deng, C.; Chen, D. [Univ. of Electronic Science and Technology of China, Chengdu, Sichuan (China); Jiang, J. [Univ. of Western Ontario, London, Ontario (Canada); Alexander, Q.; Sur, B. [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada)

    2014-06-15

    Wireless sensor networks (WSNs) are appealing options for the health monitoring of nuclear power plants due to their low cost and flexibility. Before they can be used in highly regulated nuclear environments, their reliability in the nuclear environment and compatibility with existing devices have to be assessed. In situ electromagnetic interference tests, wireless signal propagation tests, and nuclear radiation hardness tests conducted on candidate WSN systems at AECL Chalk River Labs are presented. The results are favourable to WSN in nuclear applications. (author)

  4. Design and control approaches for energy harvesting wireless sensor networks

    OpenAIRE

    Frezzetti, Antonio

    2016-01-01

    Wireless Networks are monitoring infrastructures composed of sensing (measuring), computing, and communication devices used to observe, supervise and monitor environmental phenomena. Energy Harvesting Wireless Sensor Networks (EH-WSN) have the additional feature to save energy from the environment in order to ensure long life autonomy of the entire network, without ideally the human intervention over long periods of time. The present work is aimed to address some of the most significant limit...

  5. Optical wireless connected objects for healthcare.

    Science.gov (United States)

    Toumieux, Pascal; Chevalier, Ludovic; Sahuguède, Stéphanie; Julien-Vergonjanne, Anne

    2015-10-01

    In this Letter the authors explore the communication capabilities of optical wireless technology for a wearable device dedicated to healthcare application. In an indoor environment sensible to electromagnetic perturbations such as a hospital, the use of optical wireless links can permit reducing the amount of radio frequencies in the patient environment. Moreover, this technology presents the advantage to be secure, low-cost and easy to deploy. On the basis of commercially available components, a custom-made wearable device is presented, which allows optical wireless transmission of accelerometer data in the context of physical activity supervision of post-stroke patients in hospital. Considering patient mobility, the experimental performance is established in terms of packet loss as a function of the number of receivers fixed to the ceiling. The results permit to conclude that optical wireless links can be used to perform such mobile remote monitoring applications. Moreover, based on the measurements obtained with one receiver, it is possible to theoretically determine the performance according to the number of receivers to be deployed.

  6. EMG amplifier with wireless data transmission

    Science.gov (United States)

    Kowalski, Grzegorz; Wildner, Krzysztof

    2017-08-01

    Wireless medical diagnostics is a trend in modern technology used in medicine. This paper presents a concept of realization, architecture of hardware and software implementation of an elecromyography signal (EMG) amplifier with wireless data transmission. This amplifier consists of three components: analogue processing of bioelectric signal module, micro-controller circuit and an application enabling data acquisition via a personal computer. The analogue bioelectric signal processing circuit receives electromyography signals from the skin surface, followed by initial analogue processing and preparation of the signals for further digital processing. The second module is a micro-controller circuit designed to wirelessly transmit the electromyography signals from the analogue signal converter to a personal computer. Its purpose is to eliminate the need for wired connections between the patient and the data logging device. The third block is a computer application designed to display the transmitted electromyography signals, as well as data capture and analysis. Its purpose is to provide a graphical representation of the collected data. The entire device has been thoroughly tested to ensure proper functioning. In use, the device displayed the captured electromyography signal from the arm of the patient. Amplitude- frequency characteristics were set in order to investigate the bandwidth and the overall gain of the device.

  7. Communications for Wearable Devices

    OpenAIRE

    Tabibu, Shivram

    2017-01-01

    Wearable devices are transforming computing and the human-computer interaction and they are a primary means for motion recognition of reflexive systems. We review basic wearable deployments and their open wireless communications. An algorithm that uses accelerometer data to provide a control and communication signal is described. Challenges in the further deployment of wearable device in the field of body area network and biometric verification are discussed.

  8. Wireless Sensor Network for Indoor Air Quality Monitoring

    Directory of Open Access Journals (Sweden)

    Jun Li

    2014-06-01

    Full Text Available Indoor air quality monitoring system consists of wireless sensor device, nRF24L01 wireless transceiver modules, C8051MCU, STM32103 remote monitoring platform, alarm device and data server. Distributed in the interior space of wireless sensors measure parameters of the local air quality, wireless transceiver module of the MCU to transmit data to the remote monitoring platform for analysis which displayed and stored field environment data or charts. The data collecting from wireless sensors to be send by wireless Access Point to the remote data server based on B/S architecture, intelligent terminals such as mobile phone, laptop, tablet PC on the Internet monitor indoor air quality in real-time. When site environment air quality index data exceeds the threshold in the monitoring device, the remote monitoring platform sends out the alarm SMS signal to inform user by GSM module. Indoor air quality monitoring system uses modular design method, has the portability and scalability has the low manufacture cost, real-time monitoring data and man-machine interaction.

  9. Microfluidic Control of Cell Pairing and Fusion

    Science.gov (United States)

    Skelley, Alison M.; Kirak, Oktay; Suh, Heikyung; Jaenisch, Rudolf; Voldman, Joel

    2011-01-01

    Cell fusion has been used for many different purposes, including generation of hybridomas and reprogramming of somatic cells. The fusion step represents the key event in initiation of these procedures. Standard fusion techniques, however, provide poor and random cell contact, leading to low yields. We present here a microfluidic device to trap and properly pair thousands of cells. Using this device we were able to pair different cell types, including fibroblasts, mouse embryonic stem cells (mESCs), and myeloma cells, achieving pairing efficiencies up to 70%. The device is compatible with both chemical and electrical fusion protocols. We observed that electrical fusion was more efficient than chemical fusion, with membrane reorganization efficiencies of up to 89%. We achieved greater than 50% properly paired and fused cells over the entire device, 5× greater than a commercial electrofusion chamber, and were able to observe reprogramming in hybrids between mESCs and mouse embryonic fibroblasts. PMID:19122668

  10. Prospective Motion Correction using Inductively-Coupled Wireless RF Coils

    Science.gov (United States)

    Ooi, Melvyn B.; Aksoy, Murat; Maclaren, Julian; Watkins, Ronald D.; Bammer, Roland

    2013-01-01

    Purpose A novel prospective motion correction technique for brain MRI is presented that uses miniature wireless radio-frequency (RF) coils, or “wireless markers”, for position tracking. Methods Each marker is free of traditional cable connections to the scanner. Instead, its signal is wirelessly linked to the MR receiver via inductive coupling with the head coil. Real-time tracking of rigid head motion is performed using a pair of glasses integrated with three wireless markers. A tracking pulse-sequence, combined with knowledge of the markers’ unique geometrical arrangement, is used to measure their positions. Tracking data from the glasses is then used to prospectively update the orientation and position of the image-volume so that it follows the motion of the head. Results Wireless-marker position measurements were comparable to measurements using traditional wired RF tracking coils, with the standard deviation of the difference wireless markers enables high quality images to be acquired even during bulk motions. Wireless markers are small, avoid RF safety risks from electrical cables, are not hampered by mechanical connections to the scanner, and require minimal setup times. These advantages may help to facilitate adoption in the clinic. PMID:23813444

  11. Security for multihop wireless networks

    CERN Document Server

    Khan, Shafiullah

    2014-01-01

    Security for Multihop Wireless Networks provides broad coverage of the security issues facing multihop wireless networks. Presenting the work of a different group of expert contributors in each chapter, it explores security in mobile ad hoc networks, wireless sensor networks, wireless mesh networks, and personal area networks.Detailing technologies and processes that can help you secure your wireless networks, the book covers cryptographic coprocessors, encryption, authentication, key management, attacks and countermeasures, secure routing, secure medium access control, intrusion detection, ep

  12. Ubiquitous Wireless Sensor Networks and future “Internet of Things""

    OpenAIRE

    Vermesan, Ovidiu

    2009-01-01

    Overview of heterogeneous networks of embedded devices that can range from RFID, to smart identifiable systems with sensing and actuating capabilitie. Presentation of wireless sensor networks protocols and Internet of Things future technology. Bridging the real, virtual and digital worlds by using wireless connectivity. Application examples in automotive, aeronautics, healthcare, building, oil and gas industries. Ubiquitous Wireless Sensor Networks and future “Internet ...

  13. Flexible Wireless Receivers: On-Chip Testing Techniques and Design for Testability

    OpenAIRE

    Ramzan, Rashad

    2009-01-01

    In recent years the interest in the design of low cost multistandard mobile devices has gone from technical aspiration to the commercial reality. Usually, the emerging wireless applications prompt the conception of new wireless standards. The end user wants to access voice, data, and streaming media using a single wireless terminal. In RF perspective, these standards differ in frequency band, sensitivity, data rate, bandwidth, and modulation type. Therefore, a flexible multistandard radio rec...

  14. Efficient Security Mechanisms for mHealth Applications Using Wireless Body Sensor Networks

    OpenAIRE

    Prasan Kumar Sahoo

    2012-01-01

    Recent technological advances in wireless communications and physiological sensing allow miniature, lightweight, ultra-low power, intelligent monitoring devices, which can be integrated into a Wireless Body Sensor Network (WBSN) for health monitoring. Physiological signals of humans such as heartbeats, temperature and pulse can be monitored from a distant location using tiny biomedical wireless sensors. Hence, it is highly essential to combine the ubiquitous computing with mobile health techn...

  15. QoE-based transmission strategies for multi-user wireless information and power transfer

    Directory of Open Access Journals (Sweden)

    Taehun Jung

    2015-12-01

    Full Text Available One solution to the problem of supplying energy to wireless networks is wireless power transfer. One such technology–electromagnetic radiation enabled wireless power transfer–will change traditional wireless networks. In this paper, we investigate a transmission strategy for multi-user wireless information and power transfer. We consider a multi-user multiple-input multiple-output (MIMO channel that includes one base station (BS and two user terminals (UT consisting of one energy harvesting (EH receiver and one information decoding (ID receiver. Our system provides transmission strategies that can be executed and implemented in practical scenarios. The paper then analyzes the rate–energy (R–E pair of our strategies and compares them to those of the theoretical optimal strategy. We furthermore propose a QoE-based mode selection algorithm by mapping the R–E pair to the utility functions.

  16. Wireless rechargeable sensor networks

    CERN Document Server

    Yang, Yuanyuan

    2015-01-01

    This SpringerBrief provides a concise guide to applying wireless energy transfer techniques in traditional battery-powered sensor networks. It examines the benefits and challenges of wireless power including efficiency and reliability. The authors build a wireless rechargeable sensor networks from scratch and aim to provide perpetual network operation. Chapters cover a wide range of topics from the collection of energy information and recharge scheduling to joint design with typical sensing applications such as data gathering. Problems are approached using a natural combination of probability

  17. Wireless network pricing

    CERN Document Server

    Huang, Jianwei

    2013-01-01

    Today's wireless communications and networking practices are tightly coupled with economic considerations, to the extent that it is almost impossible to make a sound technology choice without understanding the corresponding economic implications. This book aims at providing a foundational introduction on how microeconomics, and pricing theory in particular, can help us to understand and build better wireless networks. The book can be used as lecture notes for a course in the field of network economics, or a reference book for wireless engineers and applied economists to understand how pricing

  18. Wireless mesh networks

    CERN Document Server

    Held, Gilbert

    2005-01-01

    Wireless mesh networking is a new technology that has the potential to revolutionize how we access the Internet and communicate with co-workers and friends. Wireless Mesh Networks examines the concept and explores its advantages over existing technologies. This book explores existing and future applications, and examines how some of the networking protocols operate.The text offers a detailed analysis of the significant problems affecting wireless mesh networking, including network scale issues, security, and radio frequency interference, and suggests actual and potential solutions for each pro

  19. High Fidelity Simulations of Large-Scale Wireless Networks

    Energy Technology Data Exchange (ETDEWEB)

    Onunkwo, Uzoma [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Benz, Zachary [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-11-01

    The worldwide proliferation of wireless connected devices continues to accelerate. There are 10s of billions of wireless links across the planet with an additional explosion of new wireless usage anticipated as the Internet of Things develops. Wireless technologies do not only provide convenience for mobile applications, but are also extremely cost-effective to deploy. Thus, this trend towards wireless connectivity will only continue and Sandia must develop the necessary simulation technology to proactively analyze the associated emerging vulnerabilities. Wireless networks are marked by mobility and proximity-based connectivity. The de facto standard for exploratory studies of wireless networks is discrete event simulations (DES). However, the simulation of large-scale wireless networks is extremely difficult due to prohibitively large turnaround time. A path forward is to expedite simulations with parallel discrete event simulation (PDES) techniques. The mobility and distance-based connectivity associated with wireless simulations, however, typically doom PDES and fail to scale (e.g., OPNET and ns-3 simulators). We propose a PDES-based tool aimed at reducing the communication overhead between processors. The proposed solution will use light-weight processes to dynamically distribute computation workload while mitigating communication overhead associated with synchronizations. This work is vital to the analytics and validation capabilities of simulation and emulation at Sandia. We have years of experience in Sandia’s simulation and emulation projects (e.g., MINIMEGA and FIREWHEEL). Sandia’s current highly-regarded capabilities in large-scale emulations have focused on wired networks, where two assumptions prevent scalable wireless studies: (a) the connections between objects are mostly static and (b) the nodes have fixed locations.

  20. ULTRA SECURE HIGH RELIABILITY WIRELESS RADIATION MONITOR

    Energy Technology Data Exchange (ETDEWEB)

    Cordaro, J.; Shull, D.; Farrar, M.; Reeves, G.

    2011-08-03

    Radiation monitoring in nuclear facilities is essential to safe operation of the equipment as well as protecting personnel. In specific, typical air monitoring of radioactive gases or particulate involves complex systems of valves, pumps, piping and electronics. The challenge is to measure a representative sample in areas that are radioactively contaminated. Running cables and piping to these locations is very expensive due to the containment requirements. Penetration into and out of an airborne or containment area is complex and costly. The process rooms are built with thick rebar-enforced concrete walls with glove box containment chambers inside. Figure 1 shows high temperature radiation resistance cabling entering the top of a typical glove box. In some case, the entire processing area must be contained in a 'hot cell' where the only access into the chamber is via manipulators. An example is shown in Figure 2. A short range wireless network provides an ideal communication link for transmitting the data from the radiation sensor to a 'clean area', or area absent of any radiation fields or radioactive contamination. Radiation monitoring systems that protect personnel and equipment must meet stringent codes and standards due to the consequences of failure. At first glance a wired system would seem more desirable. Concerns with wireless communication include latency, jamming, spoofing, man in the middle attacks, and hacking. The Department of Energy's Savannah River National Laboratory (SRNL) has developed a prototype wireless radiation air monitoring system that address many of the concerns with wireless and allows quick deployment in radiation and contamination areas. It is stand alone and only requires a standard 120 VAC, 60 Hz power source. It is designed to be mounted or portable. The wireless link uses a National Security Agency (NSA) Suite B compliant wireless network from Fortress Technologies that is considered robust enough to be

  1. CAPAClTYANALYSIS OF WIRELESS MESH NET\\VORKS

    African Journals Online (AJOL)

    movement in the network which is always from the client to the gateway node and vice versa, while. the packet movement in ad hoc networks is between arbitrary pair ofnetwork nodes (Hossain, 2008). In wireless mesh networks the host nodes (typically stationary) can also serve as routers to forward the clients' traffic in a ...

  2. Towards Mitigating Heterogeneous Wireless Interference in Spectrum Bands with Unlicensed Access

    Science.gov (United States)

    Nychis, George P.

    2013-01-01

    In the past two decades, we have seen an unprecedented rise in unlicensed wireless devices and applications of wireless technology. To meet various application constraints, we continually customize the radios and their protocols to the application domain which has led to significant diversity in spectrum use. Unfortunately, this diversity (coupled…

  3. [Design of the chest belt wireless health monitoring terminal for the old based on MSP430].

    Science.gov (United States)

    Qin, Xiuzhen; Wang, Feng; Zhou, Ping; Xu, Haijing

    2012-05-01

    A real time monitoring terminal for the empty nest elderly based on extracting fabric type sensor and acceleration sensor combined with Bluetooth wireless communication technology is proposed. When the system detects arrhythmia and falls of the elderly, and then start the wireless bluetooth communication, complete the information interaction with mobile phone gateway device, so as to implement the rescue.

  4. Mobile Applications and 4G Wireless Networks: A Framework for Analysis

    Science.gov (United States)

    Yang, Samuel C.

    2012-01-01

    Purpose: The use of mobile wireless data services continues to increase worldwide. New fourth-generation (4G) wireless networks can deliver data rates exceeding 2 Mbps. The purpose of this paper is to develop a framework of 4G mobile applications that utilize such high data rates and run on small form-factor devices. Design/methodology/approach:…

  5. A centralized feedback control model for resource management in wireless networks

    NARCIS (Netherlands)

    Yang, Y.; Haverkort, Boudewijn R.H.M.; Heijenk, Geert; Cloth, L.; Hiltunen, M.; van Moorsel, A.

    2007-01-01

    In a wireless environment, guaranteeing QoS constraints is challenging because applications at multiple devices share the same limited radio bandwidth in the network. In this paper we introduce and study a resource management model for centralized wireless networks, using feedback control theory.

  6. A centralized feedback control model for resource management in wireless networks

    NARCIS (Netherlands)

    Yang, Y.; Haverkort, Boudewijn R.H.M.; Heijenk, Geert

    In a wireless environment, guaranteeing QoS is challenging because applications at multiple devices share the same limited radio bandwidth. In this paper we introduce and study a resource management model for centralized wireless networks, using feedback control theory. Before applying in practice,

  7. Ubiquitous Wireless Sensor Networks and future “Internet of Things""

    OpenAIRE

    Vermesan, Ovidiu

    2009-01-01

    Overview of heterogeneous networks of embedded devices that can range from RFID, to smart identifiable systems with sensing and actuating capabilitie. Presentation of wireless sensor networks protocols and Internet of Things future technology. Bridging the real, virtual and digital worlds by using wireless connectivity. Application examples in automotive, aeronautics, healthcare, building, oil and gas industries.

  8. Analysis of the Decoupled Access for Downlink and Uplink in Wireless Heterogeneous Networks

    DEFF Research Database (Denmark)

    Smiljkovikj, K.; Popovski, Petar; Gavrilovska, L.

    2015-01-01

    Wireless cellular networks evolve towards a heterogeneous infrastructure, featuring multiple types of Base Stations (BSs), such as Femto BSs (FBSs) and Macro BSs (MBSs). A wireless device observes multiple points (BSs) through which it can access the infrastructure and it may choose to receive th...

  9. Wireless information system for frost detection in orchards

    OpenAIRE

    Marković, Dušan B.; Glišić, Ivan P.; Pešović, Uroš M.; Ranđić, Siniša S.

    2013-01-01

    Electronic devices are widely used in many fields and agriculture is also one of the areas with great intensity of applications in the last years. Electronic sensor devices are particularly interesting because they are enable measure of parameters which have a major impact on agriculture production. The use of electronic devices additionally came to the fore with the development of wireless communication that allows gathering timely information about the status of important parameters for veg...

  10. IMAPS Device Packaging Conference 2017 - Engineered Micro Systems & Devices Track

    Science.gov (United States)

    Varnavas, Kosta

    2017-01-01

    NASA field center Marshall Space Flight Center (Huntsville, AL), has invested in advanced wireless sensor technology development. Developments for a wireless microcontroller back-end were primarily focused on the commercial Synapse Wireless family of devices. These devices have many useful features for NASA applications, good characteristics and the ability to be programmed Over-The-Air (OTA). The effort has focused on two widely used sensor types, mechanical strain gauges and thermal sensors. Mechanical strain gauges are used extensively in NASA structural testing and even on vehicle instrumentation systems. Additionally, thermal monitoring with many types of sensors is extensively used. These thermal sensors include thermocouples of all types, resistive temperature devices (RTDs), diodes and other thermal sensor types. The wireless thermal board will accommodate all of these types of sensor inputs to an analog front end. The analog front end on each of the sensors interfaces to the Synapse wireless microcontroller, based on the Atmel Atmega128 device. Once the analog sensor output data is digitized by the onboard analog to digital converter (A/D), the data is available for analysis, computation or transmission. Various hardware features allow custom embedded software to manage battery power to enhance battery life. This technology development fits nicely into using numerous additional sensor front ends, including some of the low-cost printed circuit board capacitive moisture content sensors currently being developed at Auburn University.

  11. Wireless radio a history

    CERN Document Server

    Coe, Lewis

    2006-01-01

    ""Informative...recommended""--Choice; ""interesting...a good read...well worth reading""--Contact Magazine. This history first looks at Marconi's wireless communications system and then explores its many applications, including marine radio, cellular telephones, police and military uses, television and radar. Radio collecting is also discussed, and brief biographies are provided for the major figures in the development and use of the wireless.

  12. Study for wireless power transmission of nuclear robot system

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jongseog [Central Research Institute of Korea Hydro and Nuclear Power Co., Daejeon (Korea, Republic of)

    2013-05-15

    Gasoline engine or electric motor is generally used for driving power of working. Gasoline tank is uncomfortable to carry. Battery capacity does not sustain long time working. Frequent moving back of robot to power charger or refueling tank is inconvenient. Long power cable connection occur winding problem if there are complex structures in walking way. We need some solution for continuous supply of robot energy at the free moving condition of robot. 'Wireless power transmission' is one of the solutions. Some experiment result to transmit wireless power to moving robot is described herein. To find possible wireless power transmission method for nuclear robot, wireless power transmission tests were performed. As result of these tests, it was confirmed that wireless power transmission by using dipole and mat type magnetic induction were possible. As result of flying robot experiment, it was realized that development of light weight core for receiver and wave reflection device for high directional transmitter are necessary for practical use of the dipole type wireless power transmission. Small size core and high directional transmitter will be next target. Mat type wireless power transmission is regarded as useful for robot power charging station in the inside containment.

  13. Novel Battery Management System with Distributed Wireless and Fiber Optic Sensors for Early Detection and Suppression of Thermal Runaway in Large Battery Packs, FY13 Q4 Report, ARPA-E Program: Advanced Management Protection of Energy Storage Devices (AMPE

    Energy Technology Data Exchange (ETDEWEB)

    Farmer, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Chang, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Zumstein, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Kovotsky, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Puglia, F. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Dobley, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Moore, G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Osswald, S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Wolf, K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Kaschmitter, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Eaves, S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2013-10-08

    Technology has been developed that enables monitoring of individual cells in highcapacity lithium-ion battery packs, with a distributed array of wireless Bluetooth 4.0 tags and sensors, and without proliferation of extensive wiring harnesses. Given the safety challenges facing lithium-ion batteries in electric vehicle, civilian aviation and defense applications, these wireless sensors may be particularly important to these emerging markets. These wireless sensors will enhance the performance, reliability and safety of such energy storage systems. Specific accomplishments to date include, but are not limited to: (1) the development of wireless tags using Bluetooth 4.0 standard to monitor a large array of sensors in battery pack; (2) sensor suites enabling the simultaneous monitoring of cell voltage, cell current, cell temperature, and package strain, indicative of swelling and increased internal pressure, (3) small receivers compatible with USB ports on portable computers; (4) software drivers and logging software; (5) a 7S2P battery simulator, enabling the safe development of wireless BMS hardware in the laboratory; (6) demonstrated data transmission out of metal enclosures, including battery box, with small variable aperture opening; (7) test data demonstrating the accurate and reliable operation of sensors, with transmission of terminal voltage, cell temperature and package strain at distances up to 110 feet; (8) quantification of the data transmission error as a function of distance, in both indoor and outdoor operation; (9) electromagnetic interference testing during operation with live, high-capacity battery management system at Yardney Technical Products; (10) demonstrated operation with live high-capacity lithium-ion battery pack during charge-discharge cycling; (11) development of special polymer-gel lithium-ion batteries with embedded temperature sensors, capable of measuring the core temperature of individual of the cells during charge-discharge cycling

  14. Wireless Power Transfer Protocols in Sensor Networks: Experiments and Simulations

    Directory of Open Access Journals (Sweden)

    Sotiris Nikoletseas

    2017-04-01

    Full Text Available Rapid technological advances in the domain of Wireless Power Transfer pave the way for novel methods for power management in systems of wireless devices, and recent research works have already started considering algorithmic solutions for tackling emerging problems. In this paper, we investigate the problem of efficient and balanced Wireless Power Transfer in Wireless Sensor Networks. We employ wireless chargers that replenish the energy of network nodes. We propose two protocols that configure the activity of the chargers. One protocol performs wireless charging focused on the charging efficiency, while the other aims at proper balance of the chargers’ residual energy. We conduct detailed experiments using real devices and we validate the experimental results via larger scale simulations. We observe that, in both the experimental evaluation and the evaluation through detailed simulations, both protocols achieve their main goals. The Charging Oriented protocol achieves good charging efficiency throughout the experiment, while the Energy Balancing protocol achieves a uniform distribution of energy within the chargers.

  15. Competition in the domain of wireless networks security

    Science.gov (United States)

    Bednarczyk, Mariusz

    2017-04-01

    Wireless networks are very popular and have found wide spread usage amongst various segments, also in military environment. The deployment of wireless infrastructures allow to reduce the time it takes to install and dismantle communications networks. With wireless, users are more mobile and can easily get access to the network resources all the time. However, wireless technologies like WiFi or Bluetooth have security issues that hackers have extensively exploited over the years. In the paper several serious security flaws in wireless technologies are presented. Most of them enable to get access to the internal networks and easily carry out man-in-the-middle attacks. Very often, they are used to launch massive denial of service attacks that target the physical infrastructure as well as the RF spectrum. For instance, there are well known instances of Bluetooth connection spoofing in order to steal WiFi password stored in the mobile device. To raise the security awareness and protect wireless networks against an adversary attack, an analysis of attack methods and tools over time is presented in the article. The particular attention is paid to the severity, possible targets as well as the ability to persist in the context of protective measures. Results show that an adversary can take complete control of the victims' mobile device features if the users forget to use simple safety principles.

  16. Wireless Networks: New Meaning to Ubiquitous Computing.

    Science.gov (United States)

    Drew, Wilfred, Jr.

    2003-01-01

    Discusses the use of wireless technology in academic libraries. Topics include wireless networks; standards (IEEE 802.11); wired versus wireless; why libraries implement wireless technology; wireless local area networks (WLANs); WLAN security; examples of wireless use at Indiana State University and Morrisville College (New York); and useful…

  17. Wireless Battery Management System of Electric Transport

    Science.gov (United States)

    Rahman, Ataur; Rahman, Mizanur; Rashid, Mahbubur

    2017-11-01

    Electric vehicles (EVs) are being developed and considered as the future transportation to reduce emission of toxic gas, cost and weight. The battery pack is one of the main crucial parts of the electric vehicle. The power optimization of the battery pack has been maintained by developing a two phase evaporative thermal management system which operation has been controlled by using a wireless battery management system. A large number of individual cells in a battery pack have many wire terminations that are liable for safety failure. To reduce the wiring problem, a wireless battery management system based on ZigBee communication protocol and point-to-point wireless topology has been presented. Microcontrollers and wireless modules are employed to process the information from several sensors (voltage, temperature and SOC) and transmit to the display devices respectively. The WBMS multistage charge balancing system offering more effective and efficient responses for several numbers of series connected battery cells. The concept of double tier switched capacitor converter and resonant switched capacitor converter is used for reducing the charge balancing time of the cells. The balancing result for 2 cells and 16 cells are improved by 15.12% and 25.3% respectively. The balancing results are poised to become better when the battery cells are increased.

  18. An LDPC decoder architecture for wireless sensor network applications.

    Science.gov (United States)

    Biroli, Andrea Dario Giancarlo; Martina, Maurizio; Masera, Guido

    2012-01-01

    The pervasive use of wireless sensors in a growing spectrum of human activities reinforces the need for devices with low energy dissipation. In this work, coded communication between a couple of wireless sensor devices is considered as a method to reduce the dissipated energy per transmitted bit with respect to uncoded communication. Different Low Density Parity Check (LDPC) codes are considered to this purpose and post layout results are shown for a low-area low-energy decoder, which offers percentage energy savings with respect to the uncoded solution in the range of 40%-80%, depending on considered environment, distance and bit error rate.

  19. Wireless ultrasound-powered biotelemetry for implants.

    Science.gov (United States)

    Towe, Bruce C; Larson, Patrick J; Gulick, Daniel W

    2009-01-01

    A miniature piezoelectric receiver coupled to a diode is evaluated as a simple device for wireless transmission of bioelectric events to the body surface. The device converts the energy of a surface-applied ultrasound beam to a high frequency carrier current in solution. Bioelectrical currents near the implant modulate the carrier amplitude, and this signal is remotely detected and demodulated to recover the biopotential waveform. This technique achieves millivolt sensitivity in saline tank tests, and further attention to system design is expected to improve sensitivity.

  20. Software-defined Radio Based Wireless Tomography: Experimental Demonstration and Verification

    Energy Technology Data Exchange (ETDEWEB)

    Bonior, Jason D [ORNL; Hu, Zhen [Tennessee Technological University; Guo, Terry N. [Tennessee Technological University; Qiu, Robert C. [Tennessee Technological University; Browning, James P. [United States Air Force Research Laboratory, Wright-Patterson Air Force Base; Wicks, Michael C. [University of Dayton Research Institute

    2015-01-01

    This letter presents an experimental demonstration of software-defined-radio-based wireless tomography using computer-hosted radio devices called Universal Software Radio Peripheral (USRP). This experimental brief follows our vision and previous theoretical study of wireless tomography that combines wireless communication and RF tomography to provide a novel approach to remote sensing. Automatic data acquisition is performed inside an RF anechoic chamber. Semidefinite relaxation is used for phase retrieval, and the Born iterative method is utilized for imaging the target. Experimental results are presented, validating our vision of wireless tomography.

  1. Advances in analog and RF IC design for wireless communication systems

    CERN Document Server

    Manganaro, Gabriele

    2013-01-01

    Advances in Analog and RF IC Design for Wireless Communication Systems gives technical introductions to the latest and most significant topics in the area of circuit design of analog/RF ICs for wireless communication systems, emphasizing wireless infrastructure rather than handsets. The book ranges from very high performance circuits for complex wireless infrastructure systems to selected highly integrated systems for handsets and mobile devices. Coverage includes power amplifiers, low-noise amplifiers, modulators, analog-to-digital converters (ADCs) and digital-to-analog converters

  2. Assessing the Security of Connected Diabetes Devices.

    Science.gov (United States)

    Out, Dirk-Jan; Tettero, Olaf

    2017-03-01

    This article discusses the assessment of the (cyber)security of wirelessly connected diabetes devices under the DTSEC standard. We discuss the relation between diabetes devices and hackers, provide an overview of the DTSEC standard, and describe the process of security assessment of diabetes devices.

  3. Connectivity Analysis of Millimeter-Wave Device-to-Device Networks with Blockage

    Directory of Open Access Journals (Sweden)

    Haejoon Jung

    2016-01-01

    Full Text Available We consider device-to-device (D2D communications in millimeter-wave (mm Wave for the future fifth generation (5G cellular networks. While the mm Wave systems can support multiple D2D pairs simultaneously through beamforming with highly directional antenna arrays, the mm Wave channel is significantly more susceptible to blockage compared to microwave; mm Wave channel studies indicate that if line-of-sight (LoS paths are blocked, reliable mm Wave communications may not be achieved for high data-rate applications. Therefore, assuming that an outage occurs in the absence of the LoS path between two wireless devices by obstructions, we focus on connectivity of the mm Wave D2D networks. We consider two types of D2D communications: direct and indirect schemes. The connectivity performances of the two schemes are investigated in terms of (i the probability to achieve a fully connected network PFC and (ii the average number of reliably connected devices γ. Through analysis and simulation, we show that, as the network size increases, PFC and γ decrease. Also, PFC and γ decrease, when the blockage parameter increases. Moreover, simulation results indicate that the hybrid direct and indirect scheme can improve both PFC and γ up to about 35% compared to the nonhybrid scheme.

  4. Digital communication device

    DEFF Research Database (Denmark)

    2005-01-01

    The invention concerns a digital communication device like a hearing aid or a headset. The hearing aid or headset has a power supply, a signal processing device, means for receiving a wireless signal and a receiver or loudspeaker, which produces an audio signal based on a modulated pulsed signal...... with high frequency shifting rate produced by the signal processing device. Further the receiver has a first and a second connection point for receiving the pulsed modulated signal wherein the sound producing parts of the receiver are at least partially enclosed by a metal box, whereby a third connection...

  5. WESBES: A Wireless Embedded Sensor for Improving Human Comfort Metrics using Temporospatially Correlated Data

    Energy Technology Data Exchange (ETDEWEB)

    Joel Hewlett; Milos Manic; Craig Rieger

    2012-08-01

    When utilized properly, energy management systems (EMS) can offer significant energy savings by optimizing the efficiency of heating, ventilation, and air-conditioning (HVAC) systems. However, difficulty often arises due to the constraints imposed by the need to maintain an acceptable level of comfort for a building’s occupants. This challenge is compounded by the fact that human comfort is difficult to define in a measurable way. One way to address this problem is to provide a building manager with direct feedback from the building’s users. Still, this data is relative in nature, making it difficult to determine the actions that need to be taken, and while some useful comfort correlations have been devised, such as ASHRAE’s Predicted Mean Vote index, they are rules of thumb that do not connect individual feedback with direct, diverse feedback sensing. As they are a correlation, quantifying effects of climate, age of buildings and associated defects such as draftiness, are outside the realm of this correlation. Therefore, the contribution of this paper is the Wireless Embedded Smart Block for Environment Sensing (WESBES); an affordable wireless sensor platform that allows subjective human comfort data to be directly paired with temporospatially correlated objective sensor measurements for use in EMS. The described device offers a flexible research platform for analyzing the relationship between objective and subjective occupant feedback in order to formulate more meaningful measures of human comfort. It could also offer an affordable and expandable option for real world deployment in existing EMS.

  6. A fully implantable pacemaker for the mouse: from battery to wireless power.

    Science.gov (United States)

    Laughner, Jacob I; Marrus, Scott B; Zellmer, Erik R; Weinheimer, Carla J; MacEwan, Matthew R; Cui, Sophia X; Nerbonne, Jeanne M; Efimov, Igor R

    2013-01-01

    Animal models have become a popular platform for the investigation of the molecular and systemic mechanisms of pathological cardiovascular physiology. Chronic pacing studies with implantable pacemakers in large animals have led to useful models of heart failure and atrial fibrillation. Unfortunately, molecular and genetic studies in these large animal models are often prohibitively expensive or not available. Conversely, the mouse is an excellent species for studying molecular mechanisms of cardiovascular disease through genetic engineering. However, the large size of available pacemakers does not lend itself to chronic pacing in mice. Here, we present the design for a novel, fully implantable wireless-powered pacemaker for mice capable of long-term (>30 days) pacing. This design is compared to a traditional battery-powered pacemaker to demonstrate critical advantages achieved through wireless inductive power transfer and control. Battery-powered and wireless-powered pacemakers were fabricated from standard electronic components in our laboratory. Mice (n = 24) were implanted with endocardial, battery-powered devices (n = 14) and epicardial, wireless-powered devices (n = 10). Wireless-powered devices were associated with reduced implant mortality and more reliable device function compared to battery-powered devices. Eight of 14 (57.1%) mice implanted with battery-powered pacemakers died following device implantation compared to 1 of 10 (10%) mice implanted with wireless-powered pacemakers. Moreover, device function was achieved for 30 days with the wireless-powered device compared to 6 days with the battery-powered device. The wireless-powered pacemaker system presented herein will allow electrophysiology studies in numerous genetically engineered mouse models as well as rapid pacing-induced heart failure and atrial arrhythmia in mice.

  7. Wireless Module for Sensing Superficial Vibrations of Soils

    Directory of Open Access Journals (Sweden)

    Marlon R. Fulla

    2013-11-01

    Full Text Available In the present work, the feasibility of implementing the XBee technology in wireless accelerometric sensors (WAS development for sensing of elastic waves on soils surface is analyzed. The incidence of distance and obstacles between a coordinator and end-device pair in their radio link by examining the number of packets received successfully was verified. Additionally, it was investigated the influence of the transmission rate over the sampling frequency of signals associated to mechanical vibrations from a testing ground by measuring the effective sampling periods of the "A / D Conversion - Transmission" process. The data reception errors introduced by the channel attenuation and the presence of obstacles, impose severe restrictions on the maximum allowable distance between the communication modules. The transmission rate features provided by XBee technology in association with the A / D time sampling of the microcontroller, allow to carry out recordings to a maximum sampling frequency of 1 kHz , useful for real-time applications where seismic signals are into the spectral range 0 to 500 Hz. In order to increase the sampling frequency of the sensor for prospection applications with signals with bandwidths greater than 500 Hz , it was successfully tested a prototype that uses a fast external memory for storing data, which significantly improves the sampling signal allowing to retake XBee technology due to its excellent low consumption features.

  8. Impact of in-band interference on a wake-up radio system in wireless sensor networks

    Science.gov (United States)

    Lebreton, J. M.; Murad, N. M.; Lorion, R.

    2017-05-01

    The energy efficiency of Wireless Sensor Networks (WSNs) is considerably improved with Wake-up Radio (WuR) systems. However, their resilience to interference is often neglected in the literature. This might be an issue due to the proliferation of wireless devices and the growing field of internet of things. In this paper, we evaluate the impact of in-band interference from wireless devices on a WuR system. The approach proves that WuR systems are still performing well when coexisting with external wireless networks, even if the energy-efficiency is slightly reduced.

  9. Wireless Sensor Portal Technology Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Mobitrum Corporation has demonstrated the feasibility in the Phase I of " A Wireless Sensor Portal Technology" and proposes a Phase II effort to develop a wireless...

  10. Evolution of Heterogeneous Wireless Networks

    DEFF Research Database (Denmark)

    Zhang, Q.; Fitzek, Frank; Katz, Marcos

    2006-01-01

    Mobile and wireless content, services and networks - Short-term and long-term development trends......Mobile and wireless content, services and networks - Short-term and long-term development trends...

  11. Versatile Wireless Data Net Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed R&D is to develop a wireless data networking capability. A prototype capability will result from the Phase 1 and 2 contracts. The Versatile Wireless...

  12. Wireless Integrated Biosensors for Point-of-Care Diagnostic Applications

    Directory of Open Access Journals (Sweden)

    Ebrahim Ghafar-Zadeh

    2015-02-01

    Full Text Available Recent advances in integrated biosensors, wireless communication and power harvesting techniques are enticing researchers into spawning a new breed of point-of-care (POC diagnostic devices that have attracted significant interest from industry. Among these, it is the ones equipped with wireless capabilities that drew our attention in this review paper. Indeed, wireless POC devices offer a great advantage, that of the possibility of exerting continuous monitoring of biologically relevant parameters, metabolites and other bio-molecules, relevant to the management of various morbid diseases such as diabetes, brain cancer, ischemia, and Alzheimer’s. In this review paper, we examine three major categories of miniaturized integrated devices, namely; the implantable Wireless Bio-Sensors (WBSs, the wearable WBSs and the handheld WBSs. In practice, despite the aforesaid progress made in developing wireless platforms, early detection of health imbalances remains a grand challenge from both the technological and the medical points of view. This paper addresses such challenges and reports the state-of-the-art in this interdisciplinary field.

  13. Using Wireless Sensor Networks to Achieve Intelligent Monitoring for High-Temperature Gas-Cooled Reactor

    Directory of Open Access Journals (Sweden)

    Jianghai Li

    2017-01-01

    Full Text Available High-temperature gas-cooled reactors (HTGR can incorporate wireless sensor network (WSN technology to improve safety and economic competitiveness. WSN has great potential in monitoring the equipment and processes within nuclear power plants (NPPs. This technology not only reduces the cost of regular monitoring but also enables intelligent monitoring. In intelligent monitoring, large sets of heterogeneous data collected by the WSN can be used to optimize the operation and maintenance of the HTGR. In this paper, WSN-based intelligent monitoring schemes that are specific for applications of HTGR are proposed. Three major concerns regarding wireless technology in HTGR are addressed: wireless devices interference, cybersecurity of wireless networks, and wireless standards selected for wireless platform. To process nonlinear and non-Gaussian data obtained by WSN for fault diagnosis, novel algorithms combining Kernel Entropy Component Analysis (KECA and support vector machine (SVM are developed.

  14. The Coverage Problem in Video-Based Wireless Sensor Networks: A Survey

    Directory of Open Access Journals (Sweden)

    Luiz Affonso Guedes

    2010-09-01

    Full Text Available Wireless sensor networks typically consist of a great number of tiny low-cost electronic devices with limited sensing and computing capabilities which cooperatively communicate to collect some kind of information from an area of interest. When wireless nodes of such networks are equipped with a low-power camera, visual data can be retrieved, facilitating a new set of novel applications. The nature of video-based wireless sensor networks demands new algorithms and solutions, since traditional wireless sensor networks approaches are not feasible or even efficient for that specialized communication scenario. The coverage problem is a crucial issue of wireless sensor networks, requiring specific solutions when video-based sensors are employed. In this paper, it is surveyed the state of the art of this particular issue, regarding strategies, algorithms and general computational solutions. Open research areas are also discussed, envisaging promising investigation considering coverage in video-based wireless sensor networks.

  15. The coverage problem in video-based wireless sensor networks: a survey.

    Science.gov (United States)

    Costa, Daniel G; Guedes, Luiz Affonso

    2010-01-01

    Wireless sensor networks typically consist of a great number of tiny low-cost electronic devices with limited sensing and computing capabilities which cooperatively communicate to collect some kind of information from an area of interest. When wireless nodes of such networks are equipped with a low-power camera, visual data can be retrieved, facilitating a new set of novel applications. The nature of video-based wireless sensor networks demands new algorithms and solutions, since traditional wireless sensor networks approaches are not feasible or even efficient for that specialized communication scenario. The coverage problem is a crucial issue of wireless sensor networks, requiring specific solutions when video-based sensors are employed. In this paper, it is surveyed the state of the art of this particular issue, regarding strategies, algorithms and general computational solutions. Open research areas are also discussed, envisaging promising investigation considering coverage in video-based wireless sensor networks.

  16. Overview and evaluation of bluetooth low energy: an emerging low-power wireless technology

    National Research Council Canada - National Science Library

    Gomez, Carles; Oller, Joaquim; Paradells, Josep

    2012-01-01

    Bluetooth Low Energy (BLE) is an emerging low-power wireless technology developed for short-range control and monitoring applications that is expected to be incorporated into billions of devices in the next few years...

  17. Deep Space Habitat Wireless Smart Plug

    Science.gov (United States)

    Morgan, Joseph A.; Porter, Jay; Rojdev, Kristina; Carrejo, Daniel B.; Colozza, Anthony J.

    2014-01-01

    NASA has been interested in technology development for deep space exploration, and one avenue of developing these technologies is via the eXploration Habitat (X-Hab) Academic Innovation Challenge. In 2013, NASA's Deep Space Habitat (DSH) project was in need of sensors that could monitor the power consumption of various devices in the habitat with added capability to control the power to these devices for load shedding in emergency situations. Texas A&M University's Electronic Systems Engineering Technology Program (ESET) in conjunction with their Mobile Integrated Solutions Laboratory (MISL) accepted this challenge, and over the course of 2013, several undergraduate students in a Capstone design course developed five wireless DC Smart Plugs for NASA. The wireless DC Smart Plugs developed by Texas A&M in conjunction with NASA's Deep Space Habitat team is a first step in developing wireless instrumentation for future flight hardware. This paper will further discuss the X-Hab challenge and requirements set out by NASA, the detailed design and testing performed by Texas A&M, challenges faced by the team and lessons learned, and potential future work on this design.

  18. Feasibility of retroreflective transdermal optical wireless communication.

    Science.gov (United States)

    Gil, Yotam; Rotter, Nadav; Arnon, Shlomi

    2012-06-20

    There is an increasing demand for transdermal high-data-rate communication for use with in-body devices, such as pacemakers, smart prostheses, neural signals processors at the brain interface, and cameras acting as artificial eyes as well as for collecting signals generated within the human body. Prominent requirements of these communication systems include (1) wireless modality, (2) noise immunity and (3) ultra-low-power consumption for the in-body device. Today, the common wireless methods for transdermal communication are based on communication at radio frequencies, electrical induction, or acoustic waves. In this paper, we will explore another alternative to these methods--optical wireless communication (OWC)--for which modulated light carries the information. The main advantages of OWC in transdermal communication, by comparison to the other methods, are the high data rates and immunity to external interference availed, which combine to make it a promising technology for next-generation systems. In this paper, we present a mathematical model and experimental results of measurements from direct link and retroreflection link configurations with Gallus gallus domesticus derma as the transdermal channel. The main conclusion from this work is that an OWC link is an attractive communication solution in medical applications. For a modulating retroreflective link to become a competitive solution in comparison with a direct link, low-energy-consumption modulating retroreflectors should be developed.

  19. A Secure and Efficient Handover Authentication Protocol for Wireless Networks

    Directory of Open Access Journals (Sweden)

    Weijia Wang

    2014-06-01

    Full Text Available Handover authentication protocol is a promising access control technology in the fields of WLANs and mobile wireless sensor networks. In this paper, we firstly review an effcient handover authentication protocol, named PairHand, and its existing security attacks and improvements. Then, we present an improved key recovery attack by using the linearly combining method and reanalyze its feasibility on the improved PairHand protocol. Finally, we present a new handover authentication protocol, which not only achieves the same desirable effciency features of PairHand, but enjoys the provable security in the random oracle model.

  20. OPTICAL WIRELESS COMMUNICATION SYSTEM

    Directory of Open Access Journals (Sweden)

    JOSHUA L.Y. CHIENG

    2016-02-01

    Full Text Available The growing demand of bandwidth in this modern internet age has been testing the existing telecommunication infrastructures around the world. With broadband speeds moving towards the region of Gbps and Tbps, many researches have begun on the development of using optical wireless technology as feasible and future methods to the current wireless technology. Unlike the existing radio frequency wireless applications, optical wireless uses electromagnetic spectrums that are unlicensed and free. With that, this project aim to understand and gain better understanding of optical wireless communication system by building an experimental and simulated model. The quality of service and system performance will be investigated and reviewed. This project employs laser diode as the propagation medium and successfully transferred audio signals as far as 15 meters. On its quality of service, results of the project model reveal that the bit error rate increases, signal-to-noise ratio and quality factor decreases as the link distance between the transmitter and receiver increases. OptiSystem was used to build the simulated model and MATLAB was used to assist signal-to-noise ratio calculations. By comparing the simulated and experimental receiver’s power output, the experimental model’s efficiency is at 66.3%. Other than the system’s performance, challenges and factors affecting the system have been investigated and discussed. Such challenges include beam divergence, misalignment and particle absorption.

  1. Synchronized Data Aggregation for Wireless Sensor Network

    DEFF Research Database (Denmark)

    Dnyaneshwar, Mantri; Prasad, Neeli R.; Prasad, Ramjee

    2014-01-01

    Wireless Sensor Networks (WSNs) are used for monitoring and data collection purposes. A key challenge in effective data collection is to schedule and synchronize the activities of the nodes with global clock. This paper proposes the Synchronized Data Aggregation Algorithm (SDA) using spanning tree...... mechanism. It provides network-wide time synchronization for sensor network. In the initial stage algorithm established the hierarchical structure in the network and then perform the pair - wise synchronization. SDA aggregate data with a global time scale throughout the network. The aggregated packets...

  2. Epidermal photonic devices for quantitative imaging of temperature and thermal transport characteristics of the skin

    National Research Council Canada - National Science Library

    Gao, Li; Zhang, Yihui; Malyarchuk, Viktor; Jia, Lin; Jang, Kyung-In; Webb, R Chad; Fu, Haoran; Shi, Yan; Zhou, Guoyan; Shi, Luke; Shah, Deesha; Huang, Xian; Xu, Baoxing; Yu, Cunjiang; Huang, Yonggang; Rogers, John A

    2014-01-01

    .... Here we introduce an ultrathin, compliant skin-like, or 'epidermal', photonic device that combines colorimetric temperature indicators with wireless stretchable electronics for thermal measurements...

  3. An Embedded Multi-Agent Systems Based Industrial Wireless Sensor Network.

    Science.gov (United States)

    Taboun, Mohammed S; Brennan, Robert W

    2017-09-14

    With the emergence of cyber-physical systems, there has been a growing interest in network-connected devices. One of the key requirements of a cyber-physical device is the ability to sense its environment. Wireless sensor networks are a widely-accepted solution for this requirement. In this study, an embedded multi-agent systems-managed wireless sensor network is presented. A novel architecture is proposed, along with a novel wireless sensor network architecture. Active and passive wireless sensor node types are defined, along with their communication protocols, and two application-specific examples are presented. A series of three experiments is conducted to evaluate the performance of the agent-embedded wireless sensor network.

  4. A Wireless Physiological Signal Monitoring System with Integrated Bluetooth and WiFi Technologies.

    Science.gov (United States)

    Yu, Sung-Nien; Cheng, Jen-Chieh

    2005-01-01

    This paper proposes a wireless patient monitoring system which integrates Bluetooth and WiFi wireless technologies. A wireless portable multi-parameter device was designated to acquire physiological signals and transmit them to a local server via Bluetooth wireless technology. Four kinds of monitor units were designed to communicate via the WiFi wireless technology, including a local monitor unit, a control center, mobile devices (personal digital assistant; PDA), and a web page. The use of various monitor units is intending to meet different medical requirements for different medical personnel. This system was demonstrated to promote the mobility and flexibility for both the patients and the medical personnel, which further improves the quality of health care.

  5. An Embedded Multi-Agent Systems Based Industrial Wireless Sensor Network

    Directory of Open Access Journals (Sweden)

    Mohammed S. Taboun

    2017-09-01

    Full Text Available With the emergence of cyber-physical systems, there has been a growing interest in network-connected devices. One of the key requirements of a cyber-physical device is the ability to sense its environment. Wireless sensor networks are a widely-accepted solution for this requirement. In this study, an embedded multi-agent systems-managed wireless sensor network is presented. A novel architecture is proposed, along with a novel wireless sensor network architecture. Active and passive wireless sensor node types are defined, along with their communication protocols, and two application-specific examples are presented. A series of three experiments is conducted to evaluate the performance of the agent-embedded wireless sensor network.

  6. Ninth International Conference on Wireless Communication and Sensor Networks

    CERN Document Server

    Tiwari, Murlidhar; Arora, Anish

    2014-01-01

    Wireless communication and sensor networks would form the backbone to create pervasive and ubiquitous environments that would have profound influence on the society and thus are important to the society. The wireless communication technologies and wireless sensor networks would encompass a wide range of domains such as HW devices such as motes, sensors and associated instrumentation, actuators, transmitters, receivers, antennas, etc., sensor network aspects such as topologies, routing algorithms, integration of heterogeneous network elements and topologies, designing RF devices and systems for energy efficiency and reliability etc. These sensor networks would provide opportunity to continuously and in a distributed manner monitor the environment and generate the necessary warnings and actions. However most of the developments have been demonstrated only in controlled and laboratory environments. So we are yet to see those powerful, ubiquitous applications for the benefit of the society. The conference and con...

  7. Localization in Wireless Networks Foundations and Applications

    CERN Document Server

    Sanford, Jessica Feng; Slijepcevic, Sasha

    2012-01-01

    In a computational tour-de-force, this volume wipes away a host of problems related to location discovery in wireless ad-hoc sensor networks. WASNs have recognized potential in many applications that are location-dependent, yet are heavily constrained by factors such as cost and energy consumption. Their “ad-hoc” nature, with direct rather than mediated connections between a network of wireless devices, adds another layer of difficulty.   Basing this work entirely on data-driven, coordinated algorithms, the authors' aim is to present location discovery techniques that are highly accurate—and which fit user criteria. The research deploys nonparametric statistical methods and relies on the concept of joint probability to construct error (including location error) models and environmental field models. It also addresses system issues such as the broadcast and scheduling of the beacon. Reporting an impressive accuracy gain of almost 17 percent, and organized in a clear, sequential manner, this book represe...

  8. Modular, bluetooth enabled, wireless electroencephalograph (EEG) platform.

    Science.gov (United States)

    Lovelace, Joseph A; Witt, Tyler S; Beyette, Fred R

    2013-01-01

    A design for a modular, compact, and accurate wireless electroencephalograph (EEG) system is proposed. EEG is the only non-invasive measure for neuronal function of the brain. Using a number of digital signal processing (DSP) techniques, this neuronal function can be acquired and processed into meaningful representations of brain activity. The system described here utilizes Bluetooth to wirelessly transmit the digitized brain signal for an end application use. In this way, the system is portable, and modular in terms of the device to which it can interface. Brain Computer Interface (BCI) has become a popular extension of EEG systems in modern research. This design serves as a platform for applications using BCI capability.

  9. Wireless physical layer security

    Science.gov (United States)

    Poor, H. Vincent; Schaefer, Rafael F.

    2017-01-01

    Security in wireless networks has traditionally been considered to be an issue to be addressed separately from the physical radio transmission aspects of wireless systems. However, with the emergence of new networking architectures that are not amenable to traditional methods of secure communication such as data encryption, there has been an increase in interest in the potential of the physical properties of the radio channel itself to provide communications security. Information theory provides a natural framework for the study of this issue, and there has been considerable recent research devoted to using this framework to develop a greater understanding of the fundamental ability of the so-called physical layer to provide security in wireless networks. Moreover, this approach is also suggestive in many cases of coding techniques that can approach fundamental limits in practice and of techniques for other security tasks such as authentication. This paper provides an overview of these developments.

  10. Wireless physical layer security.

    Science.gov (United States)

    Poor, H Vincent; Schaefer, Rafael F

    2017-01-03

    Security in wireless networks has traditionally been considered to be an issue to be addressed separately from the physical radio transmission aspects of wireless systems. However, with the emergence of new networking architectures that are not amenable to traditional methods of secure communication such as data encryption, there has been an increase in interest in the potential of the physical properties of the radio channel itself to provide communications security. Information theory provides a natural framework for the study of this issue, and there has been considerable recent research devoted to using this framework to develop a greater understanding of the fundamental ability of the so-called physical layer to provide security in wireless networks. Moreover, this approach is also suggestive in many cases of coding techniques that can approach fundamental limits in practice and of techniques for other security tasks such as authentication. This paper provides an overview of these developments.

  11. Attacks on IEEE 802.11 wireless networks

    Directory of Open Access Journals (Sweden)

    Dejan Milan Tepšić

    2013-06-01

    Full Text Available Security of wireless computer networks was initially secured with the WEP security protocol, which relies on the RC4 encryption algorithm and the CRC algorithm to check the integrity. The basic problems of the WEP are a short initialization vector, unsafe data integrity checking, using a common key, the lack of mechanisms for management and exchange of keys, the lack of protection from the endless insertion of the same package into the network, the lack of authentication of access points and the like. The consequences of these failures are easy attacks against the WEP network, namely their complete insecurity. Therefore, the work began on the IEEE 802.11i protocol, which should radically improve the security of wireless networks. Since the development of a protocol lasted, the WPA standard was released to offset the security gap caused by the WEP. The WPA also relies on RC4 and CRC algorithms, but brings temporary keys and the MIC algorithm for data integrity. The 802.1X authentication was introduced and common keys are no longer needed, since it is possible to use an authentication server. The length of the initialization vector was increased and the vector is obtained based on the packet serial number, in order to prevent the insertion of the same packet into the network. The weakness of the WPA security mechanism is the use of a common key. WPA2 (802.11i later appeared. Unlike the WPA mechanism that worked on old devices with the replacement of software, WPA2 requires new network devices that can perform AES encryption. AES replaces the RC4 algorithm and delivers much greater security. Data integrity is protected by encryption. Despite progress, there are still weaknesses in wireless networks. Attacks for denial of service are possible as well as spoofing package headers attacks. For now, it is not advisable to use wireless networks in environments where unreliability and unavailability are not tolerated. Introduction In the entire history of

  12. Wireless Technology Development: History, Now, and Then

    OpenAIRE

    Lusiana Citra Dewi

    2011-01-01

    Wireless technology is one of many technologies that can enable people to communicate with each other by air medium, or rather you can say by radio frequency. This paper discusses about history of wireless technology, different kinds of wireless connection, wireless technology standards, and a few comparisons of different kinds of world’s wireless technology standards. Besides discussing about history about wireless technology and wireless technology that we can use nowadays, this paper also ...

  13. Terabit Wireless Communication Challenges

    Science.gov (United States)

    Hwu, Shian U.

    2012-01-01

    This presentation briefly discusses a research effort on Terabit Wireless communication systems for possible space applications. Recently, terahertz (THz) technology (300-3000 GHz frequency) has attracted a great deal of interest from academia and industry. This is due to a number of interesting features of THz waves, including the nearly unlimited bandwidths available, and the non-ionizing radiation nature which does not damage human tissues and DNA with minimum health threat. Also, as millimeter-wave communication systems mature, the focus of research is, naturally, moving to the THz range. Many scientists regard THz as the last great frontier of the electromagnetic spectrum, but finding new applications outside the traditional niches of radio astronomy, Earth and planetary remote sensing, and molecular spectroscopy particularly in biomedical imaging and wireless communications has been relatively slow. Radiologists find this area of study so attractive because t-rays are non-ionizing, which suggests no harm is done to tissue or DNA. They also offer the possibility of performing spectroscopic measurements over a very wide frequency range, and can even capture signatures from liquids and solids. According to Shannon theory, the broad bandwidth of the THz frequency bands can be used for terabit-per-second (Tb/s) wireless communication systems. This enables several new applications, such as cell phones with 360 degrees autostereoscopic displays, optic-fiber replacement, and wireless Tb/s file transferring. Although THz technology could satisfy the demand for an extremely high data rate, a number of technical challenges need to be overcome before its development. This presentation provides an overview the state-of-the- art in THz wireless communication and the technical challenges for an emerging application in Terabit wireless systems. The main issue for THz wave propagation is the high atmospheric attenuation, which is dominated by water vapor absorption in the THz

  14. Implantable multichannel wireless electromyography for prosthesis control.

    Science.gov (United States)

    McDonnall, Daniel; Hiatt, Scott; Smith, Christopher; Guillory, K Shane

    2012-01-01

    We have developed a prototype implantable device for recording multiple independent channels of EMG and sending those signals wirelessly to an external receiver. This design records multichannel EMG signals for providing simultaneous multi-axis control of prosthetic limbs. This proof-of-concept study demonstrates benchtop performance of the bioamplifier in dry and soaked in saline configurations, as well as system performance in a short-term in vivo study in six dogs. The amplifier was shown to have an input-referred noise of 2.2 µV(RMS), a common mode rejection ratio greater than 55 dB, and neighboring channel isolation averaging 66 dB. The prototype devices were constructed of an amplifier ASIC along with discrete components for wireless function. These devices were coated in silicone and implanted for at least one week in each dog. EMG recorded from each animal as it walked down a hallway had very low noise and swing/stance phases of gait were clearly shown. This study demonstrates this device design can be used to amplify and transmit muscle signals.

  15. Bluetooth: The invisible connector. Short-range wireless technology for the contemporary orthodontic practice.

    Science.gov (United States)

    Mupparapu, Muralidhar

    2007-06-01

    Although it sounds like a nonvital tooth, Bluetooth is actually one of technology's hottest trends. It is an industrial specification for wireless personal area networks, but for a busy orthodontic practice, it translates to freedom from cables and cords. Despite its enigmatic name, Bluetooth-based devices and the wireless technology that these gadgets work with are here to stay. They promise to make life easier for the electronic-device users of all stripes, and orthodontists are no exception. The purpose of this article is to orient orthodontists, office staff, and auxiliary personnel to this universal wireless technology that is slowly becoming an integral part of every office.

  16. Wireless communications algorithmic techniques

    CERN Document Server

    Vitetta, Giorgio; Colavolpe, Giulio; Pancaldi, Fabrizio; Martin, Philippa A

    2013-01-01

    This book introduces the theoretical elements at the basis of various classes of algorithms commonly employed in the physical layer (and, in part, in MAC layer) of wireless communications systems. It focuses on single user systems, so ignoring multiple access techniques. Moreover, emphasis is put on single-input single-output (SISO) systems, although some relevant topics about multiple-input multiple-output (MIMO) systems are also illustrated.Comprehensive wireless specific guide to algorithmic techniquesProvides a detailed analysis of channel equalization and channel coding for wi

  17. Wireless sensor platform

    Energy Technology Data Exchange (ETDEWEB)

    Joshi, Pooran C.; Killough, Stephen M.; Kuruganti, Phani Teja

    2017-08-08

    A wireless sensor platform and methods of manufacture are provided. The platform involves providing a plurality of wireless sensors, where each of the sensors is fabricated on flexible substrates using printing techniques and low temperature curing. Each of the sensors can include planar sensor elements and planar antennas defined using the printing and curing. Further, each of the sensors can include a communications system configured to encode the data from the sensors into a spread spectrum code sequence that is transmitted to a central computer(s) for use in monitoring an area associated with the sensors.

  18. Pervasive wireless environments

    CERN Document Server

    Yang, Jie; Trappe, Wade; Cheng, Jerry

    2014-01-01

    This Springer Brief provides a new approach to prevent user spoofing by using the physical properties associated with wireless transmissions to detect the presence of user spoofing. The most common method, applying cryptographic authentication, requires additional management and computational power that cannot be deployed consistently. The authors present the new approach by offering a summary of the recent research and exploring the benefits and potential challenges of this method. This brief discusses the feasibility of launching user spoofing attacks and their impact on the wireless and sen

  19. Wireless telecommunication systems

    CERN Document Server

    Terré, Michel; Vivier, Emmanuelle

    2013-01-01

    Wireless telecommunication systems generate a huge amount of interest. In the last two decades, these systems have experienced at least three major technological leaps, and it has become impossible to imagine how society was organized without them. In this book, we propose a macroscopic approach on wireless systems, and aim at answering key questions about power, data rates, multiple access, cellular engineering and access networks architectures.We present a series of solved problems, whose objective is to establish the main elements of a global link budget in several radiocommunicati

  20. Sustainable wireless networks

    CERN Document Server

    Zheng, Zhongming; Xuemin

    2013-01-01

    This brief focuses on network planning and resource allocation by jointly considering cost and energy sustainability in wireless networks with sustainable energy. The characteristics of green energy and investigating existing energy-efficient green approaches for wireless networks with sustainable energy is covered in the first part of this brief. The book then addresses the random availability and capacity of the energy supply. The authors explore how to maximize the energy sustainability of the network and minimize the failure probability that the mesh access points (APs) could deplete their

  1. Wireless optical telecommunications

    CERN Document Server

    Bouchet, Olivier

    2013-01-01

    Wireless optical communication refers to communication based on the unguided propagation of optical waves. The past 30 years have seen significant improvements in this technique - a wireless communication solution for the current millennium - that offers an alternative to radio systems; a technique that could gain attractiveness due to recent concerns regarding the potential effects of radiofrequency waves on human health.The aim of this book is to look at the free space optics that are already used for the exchange of current information; its many benefits, such as incorporating chan

  2. Energy efficiency in wireless networks

    CERN Document Server

    Jumira, Oswald

    2013-01-01

    The last decade has witnessed an unprecedented development and growth in global wireless communications systems, technologies and network "traffic" generated over network infrastructures.This book presents state-of-the-art energy-efficient techniques, designs and implementations that pertain to wireless communication networks such as cellular networks, wireless local area networks (WLANs) and wireless ad hoc networks (WAHNs) including mobile ad hoc networks (MANETs), and wireless sensor networks (WSNs) as they are deployed across the world to facilitate "always on" reliable high-speed

  3. Resource management in wireless networking

    CERN Document Server

    Cardei, Mihaela; Du, Ding-Zhu

    2005-01-01

    This is the first book that provides readers with a deep technical overview of recent advances in resource management for wireless networks at different layers of the protocol stack. The subject is explored in various wireless networks, such as ad hoc wireless networks, 3G/4G cellular, IEEE 802.11, and Bluetooth personal area networks.Survey chapters give an excellent introduction to key topics in resource management for wireless networks, while experts will be satisfied by the technical depth of the knowledge imparted in chapters exploring hot research topics.The subject area discussed in this book is very relevant today, considering the recent remarkable growth of wireless networking and the convergence of wireless personal communications, internet technologies and real-time multimedia.This volume is a very good companion for practitioners working on implementing solutions for multimedia and Quality of Service - sensitive applications over wireless networks.Written for:Researchers, faculty members, students...

  4. TCP with header checksum option for wireless links: An analytical ...

    Indian Academy of Sciences (India)

    TCP was designed for wired networks, where packet losses are mainly due to congestion. In today's world, more and more people use their mobile devices to access the Internet either for work or entertainment, where TCP runs over wireless links and is subjected to more corruption losses as compared to congestion losses.

  5. Wireless energy transfer through non-resonant magnetic coupling

    DEFF Research Database (Denmark)

    Peng, Liang; Breinbjerg, Olav; Mortensen, Asger

    2010-01-01

    We demonstrate by theoretical analysis and experimental verification that mid-range wireless energy transfer systems may take advantage of de-tuned coupling devices, without jeopardizing the energy transfer efficiency. Allowing for a modest de-tuning of the source coil, energy transfer systems co...

  6. Fundamental Properties of Wireless Mobile Ad-hoc Networks

    NARCIS (Netherlands)

    Hekmat, R.

    2005-01-01

    Wireless mobile ad-hoc networks are formed by mobile devices that set up a possibly short-lived network for communication needs of the moment. Ad-hoc networks are decentralized, self-organizing networks capable of forming a communication network without relying on any fixed infrastructure. Each node

  7. Access Point Security Service for wireless ad-hoc communication

    NARCIS (Netherlands)

    Scholten, Johan; Nijdam, M.

    2006-01-01

    This paper describes the design and implementation of a security solution for ad-hoc peer-to-peer communication. The security solution is based on a scenario where two wireless devices require secure communication, but share no security relationship a priori. The necessary requirements for the

  8. ~ Effects of Data Frame Size Disbibution on Wireless LANS

    African Journals Online (AJOL)

    User

    A Wireless LAN or WLAN is the linking of two or more computers without using wires. WLAN utilizes spread-spectrum technology based on radio waves to enable communication between devices in a limited area, also known as the basic service set [1]. This gives users the mobility to move around within a broad coverage ...

  9. Effects of Data Frame Size Distribution on Wireless Lans | Aneke ...

    African Journals Online (AJOL)

    The continuous need to replace cables and deploy mobile devices in the communications industry has led to very active research on the utilization of wireless networks. IEEE 802.11 WLAN is known to achieve relatively small throughput performance compared to the underlying physical layer's transmission rate and this is ...

  10. Towards Perpetual Energy Operation in Wireless Communication Systems

    KAUST Repository

    Benkhelifa, Fatma

    2017-11-01

    Wireless is everywhere. Smartphones, tablets, laptops, implantable medical devices, and many other wireless devices are massively taking part of our everyday activities. On average, an actively digital consumer has three devices. However, most of these wireless devices are small equipped with batteries that are often limited and need to be replaced or recharged. This fact limits the operating lifetime of wireless devices and presents a major challenge in wireless communication. To improve the perpetual energy operation of wireless communication systems, energy harvesting (EH) from the radio frequency (RF) signals is one promising solution to make the wireless communication systems self-sustaining. Since RF signals are known to transmit information, it is interesting to study when RF signals are simultaneously used to transmit information and scavenge energy, namely simultaneous wireless information and power transfer (SWIPT). In this thesis, we specifically aim to study the SWIPT in multiple-input multiple-output (MIMO) relay communication systems and in cognitive radio (CR) networks. First, we study the SWIPT in MIMO relay systems where the relay harvests the energy from the source and uses partially/fully the harvested energy to forward the signal to the destination. For both the amplify-and-forward (AF) and decode-and-forward (DF) relaying protocols, we consider the ideal scheme where both the energy and information transfer to the relay happen simultaneously, and the practical power splitting and time switching schemes. For each scheme, we aim to maximize the achievable end-to-end rate with a certain energy constraint at the relay. Furthermore, we consider the sum rate maximization problem for the multiuser MIMO DF relay broadcasting channels with multiple EH-enabled relays, and an enhanced low complex solution is proposed based on the block diagonalization method. Finally, we study the energy and data performance of the SWIPT in CR network where either the

  11. Development of wireless sensor network for landslide monitoring system

    Science.gov (United States)

    Suryadi; Puranto, Prabowo; Adinanta, Hendra; Tohari, Adrin; Priambodo, Purnomo S.

    2017-05-01

    A wireless sensor network has been developed to monitor soil movement of some observed areas periodically. The system consists of four nodes and one gateway which installed on a scope area of 0.2 Km2. Each of nodehastwo types of sensor,an inclinometer and an extensometer. An inclinometer sensor is used to measure the tilt of a structure while anextensometer sensor is used to measure the displacement of soil movement. Each of nodeisalso supported by awireless communication device, a solar power supply unit, and a microcontroller unit called sensor module. In this system, there is also gateway module as a main communication system consistinga wireless communication device, power supply unit, and rain gauge to measure the rainfall intensity of the observed area. Each sensor of inclinometer and extensometer isconnected to the sensor module in wiring system but sensor module iscommunicating with gateway in a wireless system. Those four nodes are alsoconnectedeach other in a wireless system collecting the data from inclinometer and extensometer sensors. Module Gateway istransmitting the instruction code to each sensor module one by one and collecting the data from them. Gateway module is an important part to communicate with not only sensor modules but also to the server. This wireless system wasdesigned toreducethe electric consumption powered by 80 WP solar panel and 55Ah battery. This system has been implemented in Pangalengan, Bandung, which has high intensity of rainfall and it can be seen on the website.

  12. Adapting Wireless Technology to Lighting Control and Environmental Sensing

    Energy Technology Data Exchange (ETDEWEB)

    Dana Teasdale; Francis Rubinstein; Dave Watson; Steve Purdy

    2005-10-01

    The high cost of retrofitting buildings with advanced lighting control systems is a barrier to adoption of this energy-saving technology. Wireless technology, however, offers a solution to mounting installation costs since it requires no additional wiring to implement. To demonstrate the feasibility of such a system, a prototype wirelessly-controlled advanced lighting system was designed and built. The system includes the following components: a wirelessly-controllable analog circuit module (ACM), a wirelessly-controllable electronic dimmable ballast, a T8 3-lamp fixture, an environmental multi-sensor, a current transducer, and control software. The ACM, dimmable ballast, multi-sensor, and current transducer were all integrated with SmartMesh{trademark} wireless mesh networking nodes, called motes, enabling wireless communication, sensor monitoring, and actuator control. Each mote-enabled device has a reliable communication path to the SmartMesh Manager, a single board computer that controls network functions and connects the wireless network to a PC running lighting control software. The ACM is capable of locally driving one or more standard 0-10 Volt electronic dimmable ballasts through relay control and a 0-10 Volt controllable output. The mote-integrated electronic dimmable ballast is designed to drive a standard 3-lamp T8 light fixture. The environmental multi-sensor measures occupancy, light level and temperature. The current transducer is used to measure the power consumed by the fixture. Control software was developed to implement advanced lighting algorithms, including daylight ramping, occupancy control, and demand response. Engineering prototypes of each component were fabricated and tested in a bench-scale system. Based on standard industry practices, a cost analysis was conducted. It is estimated that the installation cost of a wireless advanced lighting control system for a retrofit application is at least 30% lower than a comparable wired system for

  13. Wireless Telegraphic Communication

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 7; Issue 1. Wireless Telegraphic Communication. Guglielmo Marconi. Classics Volume 7 Issue 1 January 2002 pp 95-101. Fulltext. Click here to view fulltext PDF. Permanent link: http://www.ias.ac.in/article/fulltext/reso/007/01/0095-0101 ...

  14. Wireless, Not Penniless.

    Science.gov (United States)

    Schaeffer, Brett

    2003-01-01

    Describes some advantages of the early adoption of wireless, laptop, and personal digital assistant (PDA) technology. Provides examples of early adoption experiences in several school districts. Advantages include increased computer access, timesavings, and expanded curricular offerings. Also highlights potential cost savings involving, for…

  15. Wired vs. Wireless.

    Science.gov (United States)

    Fielding, Randall

    2000-01-01

    Presents a debate on which technology will be in tomorrow's classrooms and the pros and cons of wiring classrooms and using a wireless network. Concluding comments address the likelihood, and desirability, of placing computers throughout the entire educational process and what types of computers and capabilities are needed. (GR)

  16. Wireless networked music performance

    CERN Document Server

    Gabrielli, Leonardo

    2016-01-01

    This book presents a comprehensive overview of the state of the art in Networked Music Performance (NMP) and a historical survey of computer music networking. It introduces current technical trends in NMP and technical issues yet to be addressed. It also lists wireless communication protocols and compares these to the requirements of NMP. Practical use cases and advancements are also discussed.

  17. Wireless Sensors Network (Sensornet)

    Science.gov (United States)

    Perotti, J.

    2003-01-01

    The Wireless Sensor Network System presented in this paper provides a flexible reconfigurable architecture that could be used in a broad range of applications. It also provides a sensor network with increased reliability; decreased maintainability costs, and assured data availability by autonomously and automatically reconfiguring to overcome communication interferences.

  18. Insecurity of Wireless Networks

    Energy Technology Data Exchange (ETDEWEB)

    Sheldon, Frederick T [ORNL; Weber, John Mark [Dynetics, Inc.; Yoo, Seong-Moo [University of Alabama, Huntsville; Pan, W. David [University of Alabama, Huntsville

    2012-01-01

    Wireless is a powerful core technology enabling our global digital infrastructure. Wi-Fi networks are susceptible to attacks on Wired Equivalency Privacy, Wi-Fi Protected Access (WPA), and WPA2. These attack signatures can be profiled into a system that defends against such attacks on the basis of their inherent characteristics. Wi-Fi is the standard protocol for wireless networks used extensively in US critical infrastructures. Since the Wired Equivalency Privacy (WEP) security protocol was broken, the Wi-Fi Protected Access (WPA) protocol has been considered the secure alternative compatible with hardware developed for WEP. However, in November 2008, researchers developed an attack on WPA, allowing forgery of Address Resolution Protocol (ARP) packets. Subsequent enhancements have enabled ARP poisoning, cryptosystem denial of service, and man-in-the-middle attacks. Open source systems and methods (OSSM) have long been used to secure networks against such attacks. This article reviews OSSMs and the results of experimental attacks on WPA. These experiments re-created current attacks in a laboratory setting, recording both wired and wireless traffic. The article discusses methods of intrusion detection and prevention in the context of cyber physical protection of critical Internet infrastructure. The basis for this research is a specialized (and undoubtedly incomplete) taxonomy of Wi-Fi attacks and their adaptations to existing countermeasures and protocol revisions. Ultimately, this article aims to provide a clearer picture of how and why wireless protection protocols and encryption must achieve a more scientific basis for detecting and preventing such attacks.

  19. Networking wireless sensors

    National Research Council Canada - National Science Library

    Krishnamachari, Bhaskar

    2005-01-01

    ... by networking techniques across multiple layers. The topics covered include network deployment, localization, time synchronization, wireless radio characteristics, medium-access, topology control, routing, data-centric techniques, and transport protocols. Ideal for researchers and designers seeking to create new algorithms and protocols and enginee...

  20. 75 FR 45696 - Pipeline Safety: Personal Electronic Device Related Distractions

    Science.gov (United States)

    2010-08-03

    ... Pipeline and Hazardous Materials Safety Administration Pipeline Safety: Personal Electronic Device Related... personal electronic devices (PEDs) by individuals performing operations and maintenance activities on a... Electronic Devices, 75 FR 9754, May 18, 2010; Limiting the Use of Wireless Communication Devices, 75 FR 16391...

  1. Design of wireless communication system for environmental monitoring

    Science.gov (United States)

    Jiang, Li; Zhang, Xiaoyang; Sun, Zhixiang; Tian, Youcheng; Wang, Juan; Guo, Jianghua

    2017-05-01

    This paper introduces the basic principle and advantages of GPRS data transmission, and discusses in detail about the hardware structure of the GPRS module, the connection mode and the research process of GPRS application in the device. The feasibility and superiority of GPRS data transmission in wireless water quality monitoring device have been tested and proved, which provides great convenience for water quality monitoring, and has good application prospect.

  2. Matched-pair classification

    Energy Technology Data Exchange (ETDEWEB)

    Theiler, James P [Los Alamos National Laboratory

    2009-01-01

    Following an analogous distinction in statistical hypothesis testing, we investigate variants of machine learning where the training set comes in matched pairs. We demonstrate that even conventional classifiers can exhibit improved performance when the input data has a matched-pair structure. Online algorithms, in particular, converge quicker when the data is presented in pairs. In some scenarios (such as the weak signal detection problem), matched pairs can be generated from independent samples, with the effect not only doubling the nominal size of the training set, but of providing the structure that leads to better learning. A family of 'dipole' algorithms is introduced that explicitly takes advantage of matched-pair structure in the input data and leads to further performance gains. Finally, we illustrate the application of matched-pair learning to chemical plume detection in hyperspectral imagery.

  3. Pair distribution function computed tomography.

    Science.gov (United States)

    Jacques, Simon D M; Di Michiel, Marco; Kimber, Simon A J; Yang, Xiaohao; Cernik, Robert J; Beale, Andrew M; Billinge, Simon J L

    2013-01-01

    An emerging theme of modern composites and devices is the coupling of nanostructural properties of materials with their targeted arrangement at the microscale. Of the imaging techniques developed that provide insight into such designer materials and devices, those based on diffraction are particularly useful. However, to date, these have been heavily restrictive, providing information only on materials that exhibit high crystallographic ordering. Here we describe a method that uses a combination of X-ray atomic pair distribution function analysis and computed tomography to overcome this limitation. It allows the structure of nanocrystalline and amorphous materials to be identified, quantified and mapped. We demonstrate the method with a phantom object and subsequently apply it to resolving, in situ, the physicochemical states of a heterogeneous catalyst system. The method may have potential impact across a range of disciplines from materials science, biomaterials, geology, environmental science, palaeontology and cultural heritage to health.

  4. Amplification of Cooper pair splitting current in a graphene-based Cooper pair beam splitter geometry

    Science.gov (United States)

    Islam, SK Firoz; Saha, Arijit

    2017-09-01

    Motivated by the recent experiments [Scientific Reports 6, 23051 (2016), 10.1038/srep23051; Phys. Rev. Lett. 114, 096602 (2015), 10.1103/PhysRevLett.114.096602], we theoretically investigate Cooper pair splitting current in a graphene-based Cooper pair beam splitter geometry. By considering the graphene-based superconductor as an entangler device, instead of normal [two-dimensional (2D)] BCS superconductor, we show that the Cooper pair splitting current mediated by the crossed Andreev process is amplified compared to its normal superconductor counterpart. This amplification is attributed to the strong suppression of the local normal Andreev reflection process (arising from the Cooper pair splitting) from the graphene-based superconductor to lead via the same quantum dot, in comparison to the usual 2D superconductor. Due to the vanishing density of states at the Dirac point of undoped graphene, a doped graphene-based superconductor is considered here and it is observed that Cooper pair splitting current is very insensitive to the doping level in comparison to the usual 2D superconductor. The transport process of nonlocal spin-entangled electrons also depends on the type of pairing, i.e., whether the electron-hole pairing is onsite, intersublattice or the combination of both. The intersublattice pairing of graphene causes the maximum nonlocal Cooper pair splitting current, whereas the presence of both pairings reduces the Cooper pair splitting current.

  5. Wireless ZigBee home automation system

    Science.gov (United States)

    Craciunescu, Razvan; Halunga, Simona; Fratu, Octavian

    2015-02-01

    The home automation system concept existed for many years but in the last decade, due to the rapid development of sensors and wireless technologies, a large number of various such "intelligent homes" have been developed. The purpose of the present paper is to demonstrate the flexibility, reliability and affordability of home automation projects, based on a simple and affordable implementation. A wireless sensing and control system have been developed and tested, having a number of basic functionalities such as switching on/off the light according to ambient lighting and turning on/off the central heating. The system has been built around low power microcontrollers and ZigBee modems for wireless communication, using a set of Vishay 640 thermistor sensors for temperature measurements and Vishay LDR07 photo-resistor for humidity measurements. A trigger is activated when the temperature or light measurements are above/below a given threshold and a command is transmitted to the central unit through the ZigBee radio module. All the data processing is performed by a low power microcontroller both at the sensing device and at the control unit.

  6. Linking clinic and home: a randomized, controlled clinical effectiveness trial of real-time, wireless blood pressure monitoring for older patients with kidney disease and hypertension.

    Science.gov (United States)

    Rifkin, Dena E; Abdelmalek, Joseph A; Miracle, Cynthia M; Low, Chai; Barsotti, Ryan; Rios, Phil; Stepnowsky, Carl; Agha, Zia

    2013-02-01

    Older adults with chronic kidney disease have a high rate of uncontrolled hypertension. Home monitoring of blood pressure (BP) is an integral part of management, but requires that patients bring records to clinic visits. Telemonitoring interventions, however, have not targeted older, less technologically-skilled populations. Veterans with stage 3 or greater chronic kidney disease and uncontrolled hypertension were randomized to a novel telemonitoring device pairing a Bluetooth-enabled BP cuff with an Internet-enabled hub, which wirelessly transmitted readings (n=28), or usual care (n=15). Home recordings were reviewed weekly and telemonitoring participants were contacted if BP was above goal. The prespecified primary endpoints were improved data exchange and device acceptability. Secondary endpoint was BP change. Forty-three participants (average age 68 years, 75% white) completed the 6-month study. Average start-of-study BP was 147/78 mmHg. Those in the intervention arm had a median of 29 (IQR 22, 53) transmitted BP readings per month, with 78% continuing to use the device regularly, whereas only 20% of those in the usual care group brought readings to in-person visits. The median number of telephone contacts triggered by the wireless monitoring was 2 (IQR 1, 4) per patient. Both groups had a significant improvement in systolic BP (P<0.05, for both changes); systolic BP fell a median of 13 mmHg in monitored participants compared with 8.5 mmHg in usual care participants (P for comparison 0.31). This low-cost wireless monitoring strategy led to greater sharing of data between patients and clinic and produced a trend toward improvements in BP control over usual care at 6 months.

  7. Link-quality measurement and reporting in wireless sensor networks.

    Science.gov (United States)

    Chehri, Abdellah; Jeon, Gwanggil; Choi, Byoungjo

    2013-03-04

    Wireless Sensor networks (WSNs) are created by small hardware devices that possess the necessary functionalities to measure and exchange a variety of environmental data in their deployment setting. In this paper, we discuss the experiments in deploying a testbed as a first step towards creating a fully functional heterogeneous wireless network-based underground monitoring system. The system is mainly composed of mobile and static ZigBee nodes, which are deployed on the underground mine galleries for measuring ambient temperature. In addition, we describe the measured results of link characteristics such as received signal strength, latency and throughput for different scenarios.

  8. Link-Quality Measurement and Reporting in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Byoungjo Choi

    2013-03-01

    Full Text Available Wireless Sensor networks (WSNs are created by small hardware devices that possess the necessary functionalities to measure and exchange a variety of environmental data in their deployment setting. In this paper, we discuss the experiments in deploying a testbed as a first step towards creating a fully functional heterogeneous wireless network-based underground monitoring system. The system is mainly composed of mobile and static ZigBee nodes, which are deployed on the underground mine galleries for measuring ambient temperature. In addition, we describe the measured results of link characteristics such as received signal strength, latency and throughput for different scenarios.

  9. Energy-efficient scheduling under delay constraints for wireless networks

    CERN Document Server

    Berry, Randal; Zafer, Murtaza

    2012-01-01

    Packet delay and energy consumption are important considerations in wireless and sensor networks as these metrics directly affect the quality of service of the application and the resource consumption of the network; especially, for a rapidly growing class of real-time applications that impose strict restrictions on packet delays. Dynamic rate control is a novel technique for adapting the transmission rate of wireless devices, almost in real-time, to opportunistically exploit time-varying channel conditions as well as changing traffic patterns. Since power consumption is not a linear function

  10. 75 FR 67321 - Wireless E911 Location Accuracy Requirements; E911 Requirements for IP-Enabled Service Providers

    Science.gov (United States)

    2010-11-02

    ...; or via the Internet to [email protected] . SUPPLEMENTARY INFORMATION: I. Introduction 1. As... with the surge in wireless usage, encompassing additional voice over Internet Protocol (VoIP) and... evolution in the use of wireless devices and the development of location technologies. As recommended in the...

  11. Frequency-agile antennas for wireless communications

    CERN Document Server

    Petosa, Aldo

    2013-01-01

    Mobile data subscriptions are expected to more than double and mobile wireless traffic to increase by more than tenfold over the next few years. Proliferation of smart phones, tablets, and other portable devices are placing greater demands for services such as web browsing, global positioning, video streaming, and video telephony. Many of the proposed solutions to deal with these demands will have a significant impact on antenna designs. Antennas with frequency agility are considered a promising technology to help implement these new solutions.This book provides readers with a sense of the cap

  12. Mobile middleware for wireless body area network.

    Science.gov (United States)

    Chen, Xiang; Waluyo, Agustinus Borgy; Pek, Isaac; Yeoh, Wee-Soon

    2010-01-01

    This paper presents a flexible, efficient and lightweight Wireless Body Area Network (WBAN) Middleware. The Middleware is developed to bridge the communication between mobile device as a gateway and the sensor nodes, and therefore it shields the underlying sensor and OS/protocol stack away from the WBAN application layer. The middleware is coded in the form of lightweight dynamic link library, which allows the application developer to simply incorporate the middleware resource dynamic link library into their application and call the required functions (i.e. data acquisition, resource management and configurations). A showcase of the middleware deployment is exhibited at the end of the paper.

  13. Wireless Technology Development: History, Now, and Then

    Directory of Open Access Journals (Sweden)

    Lusiana Citra Dewi

    2011-12-01

    Full Text Available Wireless technology is one of many technologies that can enable people to communicate with each other by air medium, or rather you can say by radio frequency. This paper discusses about history of wireless technology, different kinds of wireless connection, wireless technology standards, and a few comparisons of different kinds of world’s wireless technology standards. Besides discussing about history about wireless technology and wireless technology that we can use nowadays, this paper also reviews about prediction of wireless technology development in the future for better human life. The purpose of this study is to give a glimpse of view on how the wireless technology develops, the world standard for wireless technologies and work system, the security and characteristic for each wireless technology including advantages and drawbacks, and future wireless technology development. 

  14. Communication devices for network-hopping communications and methods of network-hopping communications

    Science.gov (United States)

    Buttles, John W

    2013-04-23

    Wireless communication devices include a software-defined radio coupled to processing circuitry. The system controller is configured to execute computer programming code. Storage media is coupled to the system controller and includes computer programming code configured to cause the system controller to configure and reconfigure the software-defined radio to operate on each of a plurality of communication networks according to a selected sequence. Methods for communicating with a wireless device and methods of wireless network-hopping are also disclosed.

  15. 5G Wireless Communication Systems

    OpenAIRE

    Saddam Hossain

    2013-01-01

    As a subscriber becomes more aware of the mobile phone technology, he/she will seek for anappropriate package all together, including all the advanced features of a cellular phone can have. Hence, the search for new technology is always the main intention of the prime cell phone giants to out innovate their competitors. In addition, the main purpose of the fifth generation wireless networks (5G Wireless networks) is planned to design the best wireless world that is free from limitations...

  16. Matching theory for wireless networks

    CERN Document Server

    Han, Zhu; Saad, Walid

    2017-01-01

    This book provides the fundamental knowledge of the classical matching theory problems. It builds up the bridge between the matching theory and the 5G wireless communication resource allocation problems. The potentials and challenges of implementing the semi-distributive matching theory framework into the wireless resource allocations are analyzed both theoretically and through implementation examples. Academics, researchers, engineers, and so on, who are interested in efficient distributive wireless resource allocation solutions, will find this book to be an exceptional resource. .

  17. SONAbeam optical wireless products

    Science.gov (United States)

    Carbonneau, Theresa H.; Mecherle, G. Stephen

    2000-05-01

    fSONA has developed an optical wireless line of products that will enable high bandwidth wireless connectivity, much like fiber optic technology has done for wired connectivity. All of the fSONA products use wavelengths around 1.5 micrometers both for eye safety and for maximum commonality with fiber optic technology. Initial products provide either OC-3 (155 Mbps) or Fast Ethernet (125 Mbps). The 2 km unit is fixed mounted and provides a relatively large beamwidth to compensate for building motion. The 4 km unit utilizes a narrow transmit beamwidth with active pointing for motion compensation. Trials of the units with key customers begin in second quarter 2000, with volume production of the 2 km- unit beginning in third quarter and the 4 km unit in the fourth quarter. Product designs for 622 Mbps and 1.25 Gbps should be completed prior to the end of the 2000.

  18. Wireless Seismometer for Venus

    Science.gov (United States)

    Ponchak, George E.; Scardelletti, Maximilian C.; Taylor, Brandt; Beard, Steve; Clougherty, Brian; Meredith, Roger D.; Beheim, Glenn M.; Kiefer, Walter S.; Hunter, Gary W.

    2014-01-01

    Measuring the seismic activity of Venus is critical to understanding its composition and interior dynamics. Because Venus has an average surface temperature of 462 C and the challenge of providing cooling to multiple seismometers, a high temperature, wireless sensor using a wide bandgap semiconductor is an attractive option. This paper presents progress towards a seismometer sensor with wireless capabilities for Venus applications. A variation in inductance of a coil caused by a 1 cm movement of a ferrite probe held in the coil and attached to a balanced leaf-spring seismometer causes a variation of 80 MHz in the transmitted signal from the oscillator sensor system at 420 C, which correlates to a 10 kHz mm sensitivity when the ferrite probe is located at the optimum location in the coil.

  19. Wireless Sensor Portal Technology Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Recognizing the needs and challenges facing NASA Earth Science for data input, manipulation and distribution, Mobitrum is proposing a ? Wireless Sensor Portal...

  20. Smart Home Wireless Sensor Nodes

    DEFF Research Database (Denmark)

    Lynggaard, Per

    Smart homes are further development of intelligent buildings and home automation, where context awareness and autonomous behaviour are added. They are based on a combination of the Internet and emerging technologies like wireless sensor nodes. These wireless sensor nodes are challenging because....... This paper introduces an approach that considerably lowers the wireless sensor node power consumption and the amount of transmitted sensor events. It uses smart objects that include artificial intelligence to efficiently process the sensor event on location and thereby saves the costly wireless...

  1. Ultra-miniature wireless temperature sensor for thermal medicine applications.

    Science.gov (United States)

    Khairi, Ahmad; Hung, Shih-Chang; Paramesh, Jeyanandh; Fedder, Gary; Rabin, Yoed

    2011-01-01

    This study presents a prototype design of an ultra-miniature, wireless, battery-less, and implantable temperature-sensor, with applications to thermal medicine such as cryosurgery, hyperthermia, and thermal ablation. The design aims at a sensory device smaller than 1.5 mm in diameter and 3 mm in length, to enable minimally invasive deployment through a hypodermic needle. While the new device may be used for local temperature monitoring, simultaneous data collection from an array of such sensors can be used to reconstruct the 3D temperature field in the treated area, offering a unique capability in thermal medicine. The new sensory device consists of three major subsystems: a temperature-sensing core, a wireless data-communication unit, and a wireless power reception and management unit. Power is delivered wirelessly to the implant from an external source using an inductive link. To meet size requirements while enhancing reliability and minimizing cost, the implant is fully integrated in a regular foundry CMOS technology (0.15 μm in the current study), including the implant-side inductor of the power link. A temperature-sensing core that consists of a proportional-to-absolute-temperature (PTAT) circuit has been designed and characterized. It employs a microwatt chopper stabilized op-amp and dynamic element-matched current sources to achieve high absolute accuracy. A second order sigma-delta (Σ-Δ) analog-to-digital converter (ADC) is designed to convert the temperature reading to a digital code, which is transmitted by backscatter through the same antenna used for receiving power. A high-efficiency multi-stage differential CMOS rectifier has been designed to provide a DC supply to the sensing and communication subsystems. This paper focuses on the development of the all-CMOS temperature sensing core circuitry part of the device, and briefly reviews the wireless power delivery and communication subsystems.

  2. A wireless potentiostat for mobile chemical sensing and biosensing.

    Science.gov (United States)

    Steinberg, Matthew D; Kassal, Petar; Kereković, Irena; Steinberg, Ivana Murković

    2015-10-01

    Wireless chemical sensors are used as analytical devices in homeland defence, home-based healthcare, food logistics and more generally for the Sensor Internet of Things (SIoT). Presented here is a battery-powered and highly portable credit-card size potentiostat that is suitable for performing mobile and wearable amperometric electrochemical measurements with seamless wireless data transfer to mobile computing devices. The mobile electrochemical analytical system has been evaluated in the laboratory with a model redox system - the reduction of hexacyanoferrate(III) - and also with commercially available enzymatic blood-glucose test-strips. The potentiostat communicates wirelessly with mobile devices such as tablets or Smartphones by near-field communication (NFC) or with personal computers by radio-frequency identification (RFID), and thus provides a solution to the 'missing link' in connectivity that often exists between low-cost mobile and wearable chemical sensors and ubiquitous mobile computing products. The mobile potentiostat has been evaluated in the laboratory with a set of proof-of-concept experiments, and its analytical performance compared with a commercial laboratory potentiostat (R(2)=0.9999). These first experimental results demonstrate the functionality of the wireless potentiostat and suggest that the device could be suitable for wearable and point-of-sample analytical measurements. We conclude that the wireless potentiostat could contribute significantly to the advancement of mobile chemical sensor research and adoption, in particular for wearable sensors in healthcare and sport physiology, for wound monitoring and in mobile point-of-sample diagnostics as well as more generally as a part of the Sensor Internet of Things. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Cognitive wireless networks

    CERN Document Server

    Feng, Zhiyong; Zhang, Ping

    2015-01-01

    This brief examines the current research in cognitive wireless networks (CWNs). Along with a review of challenges in CWNs, this brief presents novel theoretical studies and architecture models for CWNs, advances in the cognitive information awareness and delivery, and intelligent resource management technologies. The brief presents the motivations and concepts of CWNs, including theoretical studies of temporal and geographic distribution entropy as well as cognitive information metrics. A new architecture model of CWNs is proposed with theoretical, functional and deployment architectures suppo

  4. Wireless Cellular Mobile Communications

    OpenAIRE

    V. Zalud

    2002-01-01

    In this article is briefly reviewed the history of wireless cellular mobile communications, examined the progress in current second generation (2G) cellular standards and discussed their migration to the third generation (3G). The European 2G cellular standard GSM and its evolution phases GPRS and EDGE are described somewhat in detail. The third generation standard UMTS taking up on GSM/GPRS core network and equipped with a new advanced access network on the basis of code division multiple ac...

  5. 11th International Conference On Broad-Band Wireless Computing, Communication and Applications

    CERN Document Server

    Xhafa, Fatos; Yim, Kangbin

    2017-01-01

    The success of all-IP networking and wireless technology has changed the ways of living the people around the world. The progress of electronic integration and wireless communications is going to pave the way to offer people the access to the wireless networks on the fly, based on which all electronic devices will be able to exchange the information with each other in ubiquitous way whenever necessary. The aim of the volume is to provide latest research findings, innovative research results, methods and development techniques from both theoretical and practical perspectives related to the emerging areas of broadband and wireless computing. This proceedings volume presents the results of the 11th International Conference on Broad-Band Wireless Computing, Communication And Applications (BWCCA-2016), held November 5-7, 2016, at Soonchunhyang University, Asan, Korea. .

  6. Power consumption analysis of operating systems for wireless sensor networks.

    Science.gov (United States)

    Lajara, Rafael; Pelegrí-Sebastiá, José; Perez Solano, Juan J

    2010-01-01

    In this paper four wireless sensor network operating systems are compared in terms of power consumption. The analysis takes into account the most common operating systems--TinyOS v1.0, TinyOS v2.0, Mantis and Contiki--running on Tmote Sky and MICAz devices. With the objective of ensuring a fair evaluation, a benchmark composed of four applications has been developed, covering the most typical tasks that a Wireless Sensor Network performs. The results show the instant and average current consumption of the devices during the execution of these applications. The experimental measurements provide a good insight into the power mode in which the device components are running at every moment, and they can be used to compare the performance of different operating systems executing the same tasks.

  7. Secure Wireless Embedded Systems Via Component-based Design

    DEFF Research Database (Denmark)

    Hjorth, Theis S.; Torbensen, R.

    2010-01-01

    This paper introduces the method secure-by-design as a way of constructing wireless embedded systems using component-based modeling frameworks. This facilitates design of secure applications through verified, reusable software. Following this method we propose a security framework with a secure...... communication component for distributed wireless embedded devices. The components communicate using the Secure Embedded Exchange Protocol (SEEP), which has been designed for flexible trust establishment so that small, resource-constrained, wireless embedded systems are able to communicate short command messages......, with full support for confidentiality, authentication, and integrity using keypairs. The approach has been demonstrated in a multi-platform home automation prototype that can remotely unlock a door using a PDA over the Internet....

  8. Secure wireless embedded systems via component-based design

    DEFF Research Database (Denmark)

    Hjorth, T.; Torbensen, R.

    2010-01-01

    This paper introduces the method secure-by-design as a way of constructing wireless embedded systems using component-based modeling frameworks. This facilitates design of secure applications through verified, reusable software. Following this method we propose a security framework with a secure...... communication component for distributed wireless embedded devices. The components communicate using the Secure Embedded Exchange Protocol (SEEP), which has been designed for flexible trust establishment so that small, resource-constrained, wireless embedded systems are able to communicate short command messages......, with full support for confidentiality, authentication, and integrity using keypairs. The approach has been demonstrated in a multi-platform home automation prototype that can remotely unlock a door using a PDA over the Internet....

  9. A Survey on Simultaneous Wireless Information and Power Transfer

    Science.gov (United States)

    Perera, T. D. P.; Jayakody, D. N. K.; De, S.; Ivanov, M. A.

    2017-01-01

    This paper presents a comprehensive study related to simultaneous wireless information and power transfer (SWIPT) in different types of wireless communication setups. Harvesting energy using SWIPT is an appealing solution in the context of extending battery life of wireless devices for a fully sustainable communication system. Strong signal power increases power transfer, but also causes more interference in information transfer, causing realization of the SWIPT challenging problem. This article provides an overview of technical evolution of SWIPT. A survey and qualitative comparison of the existing SWIPT schemes is provided to demonstrate their limitations in the current and 5G networks. Open challenges are emphasized and guidelines are provided to adapt the existing schemes in order to overcome these limitations and make them fit for integrating with the modern and emerging next generation communication networks, such as 5G systems.

  10. HARDWARE IMPLEMENTATION OF SECURE AODV FOR WIRELESS SENSOR NETWORKS

    Directory of Open Access Journals (Sweden)

    S. Sharmila

    2010-12-01

    Full Text Available Wireless Sensor Networks are extremely vulnerable to any kind of routing attacks due to several factors such as wireless transmission and resource-constrained nodes. In this respect, securing the packets is of great importance when designing the infrastructure and protocols of sensor networks. This paper describes the hardware architecture of secure routing for wireless sensor networks. The routing path is selected using Ad-hoc on demand distance vector routing protocol (AODV. The data packets are converted into digest using hash functions. The functionality of the proposed method is modeled using Verilog HDL in MODELSIM simulator and the performance is compared with various target devices. The results show that the data packets are secured and defend against the routing attacks with minimum energy consumption.

  11. Low Power Shoe Integrated Intelligent Wireless Gait Measurement System

    Science.gov (United States)

    Wahab, Y.; Mazalan, M.; Bakar, N. A.; Anuar, A. F.; Zainol, M. Z.; Hamzah, F.

    2014-04-01

    Gait analysis measurement is a method to assess and identify gait events and the measurements of dynamic, motion and pressure parameters involving the lowest part of the body. This significant analysis is widely used in sports, rehabilitation as well as other health diagnostic towards improving the quality of life. This paper presents a new system empowered by Inertia Measurement Unit (IMU), ultrasonic sensors, piezoceramic sensors array, XBee wireless modules and Arduino processing unit. This research focuses on the design and development of a low power ultra-portable shoe integrated wireless intelligent gait measurement using MEMS and recent microelectronic devices for foot clearance, orientation, error correction, gait events and pressure measurement system. It is developed to be cheap, low power, wireless, real time and suitable for real life in-door and out-door environment.

  12. Secure Geographic Routing in Ad Hoc and Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Zahariadis Theodore

    2010-01-01

    Full Text Available Security in sensor networks is one of the most relevant research topics in resource constrained wireless devices and networks. Several attacks can be suffered in ad hoc and wireless sensor networks (WSN, which are highly susceptible to attacks, due to the limited resources of the nodes. In this paper, we propose innovative and lightweight localization techniques that allow for intrusion identification and isolation schemes and provide accurate location information. This information is used by our routing protocol which additionally incorporates a distributed trust model to prevent several routing attacks to the network. We finally evaluate our algorithms for accurate localization and for secure routing which have been implemented and tested in real ad hoc and wireless sensor networks.

  13. The development of wireless radiation dose monitoring using smart phone

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jin Woo; Jeong, Gyo Seong; Lee, Yun Jong [Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup (Korea, Republic of); Kim, Chong Yeal [Chonbuk National University, Jeonju (Korea, Republic of); Lim, Chai Wan [REMTECH, Seoul (Korea, Republic of)

    2016-11-15

    Radiation workers at a nuclear facility or radiation working area should hold personal dosimeters. some types of dosimeters have functions to generate audible or visible alarms to radiation workers. However, such devices used in radiation fields these days have no functions to communicate with other equipment or the responsible personnel. our project aims at the development of a remote wireless radiation dose monitoring system that can be utilized to monitor the radiation dose for radiation workers and to notify the radiation protection manager of the dose information in real time. We use a commercial survey meter for personal radiation measurement and a smart phone for a mobile wireless communication tool and a Beacon for position detection of radiation workers using Blue tooth communication. In this report, the developed wireless dose monitoring of cellular phone is introduced.

  14. Effects of wireless packet loss in industrial process control systems.

    Science.gov (United States)

    Liu, Yongkang; Candell, Richard; Moayeri, Nader

    2017-05-01

    Timely and reliable sensing and actuation control are essential in networked control. This depends on not only the precision/quality of the sensors and actuators used but also on how well the communications links between the field instruments and the controller have been designed. Wireless networking offers simple deployment, reconfigurability, scalability, and reduced operational expenditure, and is easier to upgrade than wired solutions. However, the adoption of wireless networking has been slow in industrial process control due to the stochastic and less than 100% reliable nature of wireless communications and lack of a model to evaluate the effects of such communications imperfections on the overall control performance. In this paper, we study how control performance is affected by wireless link quality, which in turn is adversely affected by severe propagation loss in harsh industrial environments, co-channel interference, and unintended interference from other devices. We select the Tennessee Eastman Challenge Model (TE) for our study. A decentralized process control system, first proposed by N. Ricker, is adopted that employs 41 sensors and 12 actuators to manage the production process in the TE plant. We consider the scenario where wireless links are used to periodically transmit essential sensor measurement data, such as pressure, temperature and chemical composition to the controller as well as control commands to manipulate the actuators according to predetermined setpoints. We consider two models for packet loss in the wireless links, namely, an independent and identically distributed (IID) packet loss model and the two-state Gilbert-Elliot (GE) channel model. While the former is a random loss model, the latter can model bursty losses. With each channel model, the performance of the simulated decentralized controller using wireless links is compared with the one using wired links providing instant and 100% reliable communications. The sensitivity of the

  15. Software structure for broadband wireless sensor network system

    Science.gov (United States)

    Kwon, Hyeokjun; Oh, Sechang; Yoon, Hargsoon; Varadan, Vijay K.

    2010-04-01

    Zigbee Sensor Network system has been investigating for monitoring and analyzing the data measured from a lot of sensors because the Zigbee Sensor Network has several advantages of low power consumption, compact size, and multi-node connection. However, it has a disadvantage not to be able to monitor the data measured from sensors at the remote area such as other room that is located at other city. This paper describes the software structure to compensate the defect with combining the Zigbee Sensor Network and wireless LAN technology for remote monitoring of measured sensor data. The software structure has both benefits of Zigbee Sensor Network and the advantage of wireless LAN. The software structure has three main software structures. The first software structure consists of the function in order to acquire the data from sensors and the second software structure is to gather the sensor data through wireless Zigbee and to send the data to Monitoring system by using wireless LAN. The second part consists of Linux packages software based on 2440 CPU (Samsung corp.), which has ARM9 core. The Linux packages include bootloader, device drivers, kernel, and applications, and the applications are TCP/IP server program, the program interfacing with Zigbee RF module, and wireless LAN program. The last part of software structure is to receive the sensor data through TCP/IP client program from Wireless Gate Unit and to display graphically measured data by using MATLAB program; the sensor data is measured on 100Hz sampling rate and the measured data has 10bit data resolution. The wireless data transmission rate per each channel is 1.6kbps.

  16. Wireless Body Area Network in a Ubiquitous Healthcare System for Physiological Signal Monitoring and Health Consulting

    OpenAIRE

    Joonyoung Jung; Kiryong Ha; Jeonwoo Lee; Youngsung Kim; Daeyoung Kim

    2008-01-01

    We developed a ubiquitous healthcare system consisted of aphysiological signal devices, a mobile system, a device provider system, a healthcare service provider system, a physician system, and a healthcare personal system. In this system, wireless body area network (WBAN) such as ZigBee is used to communicate between physiological signal devices and the mobile system. WBAN device needs a specific function for ubiquitous healthcare application. We propose a scanning algorithm, dynamic discover...

  17. Performance Analysis of Wireless Networks for Industrial Automation-Process Automation (WIA-PA)

    Science.gov (United States)

    2017-09-01

    distributed allocation is completed by the network manager . The network manager allocates 2 resources to the cluster heads, and then the cluster heads...allocate resources to the devices within their clusters. This is in contrast to WirelessHart where the network manager allocates resources to all devices...connectivity and routing. The field devices are sensors and the handheld devices are remote network management or user access points. 3.2.2 Topology The

  18. Smart Wireless Sensors Integrated in Clothing: an Electrocardiography System in a Shirt Powered Using Human Body Heat

    National Research Council Canada - National Science Library

    Vladimir Leonov; Tom Torfs; Chris Van Hoof; Ruud J M Vullers

    2009-01-01

      A wireless electrocardiography system is integrated in an office-style shirt. The device is powered by a thermoelectric generator that converts natural heat flow from the body into electrical power...

  19. Ultra low power signal oriented approach for wireless health monitoring.

    Science.gov (United States)

    Marinkovic, Stevan; Popovici, Emanuel

    2012-01-01

    In recent years there is growing pressure on the medical sector to reduce costs while maintaining or even improving the quality of care. A potential solution to this problem is real time and/or remote patient monitoring by using mobile devices. To achieve this, medical sensors with wireless communication, computational and energy harvesting capabilities are networked on, or in, the human body forming what is commonly called a Wireless Body Area Network (WBAN). We present the implementation of a novel Wake Up Receiver (WUR) in the context of standardised wireless protocols, in a signal-oriented WBAN environment and present a novel protocol intended for wireless health monitoring (WhMAC). WhMAC is a TDMA-based protocol with very low power consumption. It utilises WBAN-specific features and a novel ultra low power wake up receiver technology, to achieve flexible and at the same time very low power wireless data transfer of physiological signals. As the main application is in the medical domain, or personal health monitoring, the protocol caters for different types of medical sensors. We define four sensor modes, in which the sensors can transmit data, depending on the sensor type and emergency level. A full power dissipation model is provided for the protocol, with individual hardware and application parameters. Finally, an example application shows the reduction in the power consumption for different data monitoring scenarios.

  20. ``Low Power Wireless Technologies: An Approach to Medical Applications''

    Science.gov (United States)

    Bellido O., Francisco J.; González R., Miguel; Moreno M., Antonio; de La Cruz F, José Luis

    Wireless communication supposed a great both -quantitative and qualitative, jump in the management of the information, allowing the access and interchange of it without the need of a physical cable connection. The wireless transmission of voice and information has remained in constant evolution, arising new standards like BluetoothTM, WibreeTM or ZigbeeTM developed under the IEEE 802.15 norm. These newest wireless technologies are oriented to systems of communication of short-medium distance and optimized for a low cost and minor consume, becoming recognized as a flexible and reliable medium for data communications across a broad range of applications due to the potential that the wireless networks presents to operate in demanding environments providing clear advantages in cost, size, power, flexibility, and distributed intelligence. About the medical applications, the remote health or telecare (also called eHealth) is getting a bigger place into the manufacturers and medical companies, in order to incorporate products for assisted living and remote monitoring of health parameteres. At this point, the IEEE 1073, Personal Health Devices Working Group, stablish the framework for these kind of applications. Particularly, the 1073.3.X describes the physical and transport layers, where the new ultra low power short range wireless technologies can play a big role, providing solutions that allow the design of products which are particularly appropriate for monitor people’s health with interoperability requirements.