WorldWideScience

Sample records for wireless communication link

  1. High-Capacity Hybrid Optical Fiber-Wireless Communications Links in Access Networks

    DEFF Research Database (Denmark)

    Pang, Xiaodan

    of broadband services access. To realize the seamless convergence between the two network segments, the lower capacity of wireless systems need to be increased to match the continuously increasing bandwidth of fiber-optic systems. The research works included in this thesis are devoted to experimental...... investigations of photonic-wireless links with record high capacities to fulfill the requirements of next generation hybrid optical fiber-wireless access networks. The main contributions of this thesis have expanded the state-of-the-art in two main areas: high speed millimeter-wave (mm-wave) communication links......Integration between fiber-optic and wireless communications systems in the "last mile" access networks is currently considered as a promising solution for both service providers and users, in terms of minimizing deployment cost, shortening upgrading period and increasing mobility and flexibility...

  2. Microwave Photonics Techniques Supporting Flexible Wireless Communications Links

    DEFF Research Database (Denmark)

    Rommel, Simon; Cavalcante, Lucas Costa Pereira; Vegas Olmos, Juan José

    Wireless data communication links supporting the next generation 5G and beyond mobile networking face a set of engineering challenges related to the mandatory operation at mmw and higher frequency bands, provide capacities above 10 Gb/s, satisfy latency, robustness, flexibility and low complexity...

  3. Impact of Various Parameters on the Performance of Inter-aircraft Optical Wireless Communication Link

    Science.gov (United States)

    Singh, Mehtab

    2017-12-01

    Optical wireless communication (OWC) systems also known as Free space optics (FSO) are capable of providing high channel bandwidth, high data transmission rates, low power consumption, and high security. OWC links are being considered in different applications such as inter-satellite links, terrestrial links, and inter-aircraft communication links. This paper investigates the impact of different system parameters such as transmission power level, operating wavelength, transmitter pointing error angle, bit transmission rate, atmospheric attenuation, antenna aperture diameter, geometric losses, the responsivity of the photodetector, and link range on the performance of inter-aircraft optical wireless communication link.

  4. IO-Link Wireless enhanced factory automation communication for Industry 4.0 applications

    Directory of Open Access Journals (Sweden)

    R. Heynicke

    2018-03-01

    Full Text Available In the context of the Industry 4.0 initiative, Cyber-Physical Production Systems (CPPS or Cyber Manufacturing Systems (CMS can be characterized as advanced networked mechatronic production systems gaining their added value by interaction with the ambient Industrial Internet of Things (IIoT. In this context appropriate communication technologies and standards play a vital role to realize the manifold potential improvements in the production process. One of these standards is IO-Link. In 2016 more than 5 million IO-Link nodes have been produced and delivered, still gaining increasing acceptance for the communication between sensors, actuators and the control level. The steadily increasing demand for more flexibility in automation solutions can be fulfilled using wireless technologies. With the wireless extension for the IO-Link standard, which will be presented in this article, maximum cycle times of 5 ms can be achieved with a probability that this limit will be exceeded to be at maximum one part per billion. Also roaming capabilities, wireless coexistence mechanisms and the possibility to include battery-powered or energy-harvesting sensors with very limited energy resources in the realtime network were defined. For system planning, setup, operation and maintenance, the standard engineering tools of IO-Link can be employed so that the backward compatibility with wired IO-Link solutions can be guaranteed. Interoperability between manufacturers is a key requirement for any communication standard, thus a procedure for IO-Link Wireless testing is also suggested.

  5. Modeling and Performance Analysis of 10 Gbps Inter-satellite Optical Wireless Communication Link

    Science.gov (United States)

    Singh, Mehtab

    2017-12-01

    Free-space optical (FSO) communication has the advantages of two of the most predominant data transmission technologies - optical fiber communication and wireless communication. Most of the technical aspects of FSO are similar to that of optical fiber communication, with major difference in the information signal propagation medium which is free space in case of FSO rather than silica glass in optical fiber communication. One of the most important applications of FSO is inter-satellite optical wireless communication (IsOWC) links which will be deployed in the future in space. The IsOWC links have many advantages over the previously existing microwave satellite communication technologies such as higher bandwidth, lower power consumption, low cost of implementation, light size, and weight. In this paper, modeling and performance analysis of a 10-Gbps inter-satellite communication link with two satellites separated at a distance of 1,200 km has been done using OPTISYSTEM simulation software. Performance has been analyzed on the basis of quality factor, signal to noise ratio (SNR), and total power of the received signal.

  6. Compact wideband CMOS receiver frontends for wireless communication

    NARCIS (Netherlands)

    Blaakmeer, S.C.

    2010-01-01

    Abstract Wireless communication is an integral part of our daily life, the mobile phone is an example of a very popular wireless communication device. A communication link consists of a transmitter, a receiver and the transmission medium, which air or vacuum for a wireless link. Part of the receiver

  7. Bandwidth enhancement of wireless optical communication link using a near-infrared laser over turbid underwater channel

    KAUST Repository

    Lee, It Ee; Guo, Yujian; Ng, Tien Khee; Park, Kihong; Alouini, Mohamed-Slim; Ooi, Boon S.

    2017-01-01

    Underwater wireless optical communication (UWOC) has been widely studied as a promising alternative to establish reliable short-range marine communication links. Microscopic particulates suspended in various ocean, harbor and natural waters

  8. Challenging Aspects of Terahertz Terabit Wireless Communications

    DEFF Research Database (Denmark)

    Yu, Xianbin; Galili, Michael; Jepsen, Peter Uhd

    The increasing demand on fast wireless communications, e.g. huge data file transferring and mobile broadband access, has driven wireless communication systems into a path towards Terabit era. Terahertz (THz) technology is promising due to its unique features, such as unlimited bandwidth available......, in terms of THz generation and link power budget. The THz atmospheric absorption is another critical issue to limit wireless communication range....

  9. Communications device identification methods, communications methods, wireless communications readers, wireless communications systems, and articles of manufacture

    Science.gov (United States)

    Steele, Kerry D [Kennewick, WA; Anderson, Gordon A [Benton City, WA; Gilbert, Ronald W [Morgan Hill, CA

    2011-02-01

    Communications device identification methods, communications methods, wireless communications readers, wireless communications systems, and articles of manufacture are described. In one aspect, a communications device identification method includes providing identification information regarding a group of wireless identification devices within a wireless communications range of a reader, using the provided identification information, selecting one of a plurality of different search procedures for identifying unidentified ones of the wireless identification devices within the wireless communications range, and identifying at least some of the unidentified ones of the wireless identification devices using the selected one of the search procedures.

  10. Propagation Engineering in Wireless Communications

    CERN Document Server

    Ghasemi, Abdollah; Ghasemi, Farshid

    2012-01-01

    Wireless communications has seen explosive growth in recent decades, in a realm that is both broad and rapidly expanding to include satellite services, navigational aids, remote sensing, telemetering, audio and video broadcasting, high-speed data communications, mobile radio systems and much more. Propagation Engineering in Wireless Communications deals with the basic principles of radiowaves propagation for frequency bands used in radio-communications, offering descriptions of new achievements and newly developed propagation models. The book bridges the gap between theoretical calculations and approaches, and applied procedures needed for advanced radio links design. The primary objective of this two-volume set is to demonstrate the fundamentals, and to introduce propagation phenomena and mechanisms that engineers are likely to encounter in the design and evaluation of radio links of a given type and operating frequency. Volume one covers basic principles, along with tropospheric and ionospheric propagation,...

  11. 80 Gbit/s 16-QAM Multicarrier THz Wireless Communication Link in the 400 GHz Band

    DEFF Research Database (Denmark)

    Jia, Shi; Yu, Xianbin; Hu, Hao

    2016-01-01

    We experimentally demonstrate a high-speed multicarrier THz wireless communication system operating in the 400 GHz band. The use of spectrally efficient 16-QAM modulation and broadband THz transceivers enable link data rates up to 80 Gbit/s....

  12. Implanted Antennas in Medical Wireless Communications

    CERN Document Server

    Rahmat-Samii, Yahya; Balanis, Constantine

    2006-01-01

    Implanted Antennas in Medical Wireless Communications summarizes the results of recent research activities on the subject of implanted antennas for medical wireless communication systems. It is anticipated that in the near future sophisticated medical devices will be implanted inside the human body for medical telemetry and telemedicine. To establish effective and efficient wireless links with these devices, it is pivotal to give special attention to antenna designs that are low profile, small, safe, and cost effective. In this book, authors Yahya Rahmat-Samii and Jaehoon Kim demonstrate how a

  13. Supporting Adaptation of Wireless Communication Protocols

    International Nuclear Information System (INIS)

    Dhomeja, L.D.; Soomro, I.A.; Malkani, Y.A.

    2016-01-01

    Pervasive devices such as mobile phones and PDAs (Personal Digital Assistants) come with different wireless communication capabilities, for example, WiFi (Wireless Fidelity), Bluetooth, IrDA (Infrared), etc. In order for pervasive devices to interact with each other, they need to have matching (alike) communication capabilities, otherwise such heterogeneous devices would not be able to interact with each other. In this paper we address this issue and propose a system that makes devices with heterogeneous wireless communication capabilities communicate with each other. The proposed system supports adaptation of wireless communication protocols through a proxy, which sits between a client and a server, and supports adaptation of wireless communication protocols. Its functionality involves intercepting a request made by a client with a different wireless communication capability (e.g. Bluetooth) from what the server has (e.g. WiFi), connecting to the server and then sending results back to the client. We have tested the system by implementing a messaging service application and running it on the system. The proxy supports all Bluetooth protocols, i.e. OBEX (Object Exchange), L2CAP (Logical Link Control and Adaptation Protocol), RFCOM (Radio Frequency Communication) and WiFi protocol and can run on (J2MW (Java 2 Micro Edition) enabled mobile phones which support both Bluetooth and WiFi capabilities. (author)

  14. Wireless communication for hearing aid system

    DEFF Research Database (Denmark)

    Nour, Baqer

    This thesis focuses on the wireless coupling between hearing aids close to a human head. Hearing aids constitute devices withadvanced technology and the wireless communication enables the introduction of a range of completely new functionalities. Such devices are small and the available power...... the ear-to-ear wireless communication channel by understanding the mechanisms that control the propagations of the signals and the losses. The second objective isto investigate the properties of magneto-dielectric materials and their potential in antenna miniaturization. There are three approaches...... to study the ear-to-ear wireless communication link; a theoretical approach models the human head asa sphere that has the electrical properties of the head, a numerical approach implements a more realistic geometry of the head, and an experimental approach measures directly the coupling between...

  15. 20-meter underwater wireless optical communication link with 15 Gbps data rate

    KAUST Repository

    Shen, Chao

    2016-10-24

    The video streaming, data transmission, and remote control in underwater call for high speed (Gbps) communication link with a long channel length (∼10 meters). We present a compact and low power consumption underwater wireless optical communication (UWOC) system utilizing a 450-nm laser diode (LD) and a Si avalanche photodetector. With the LD operating at a driving current of 80 mA with an optical power of 51.3 mW, we demonstrated a high-speed UWOC link offering a data rate up to 2 Gbps over a 12-meter-long, and 1.5 Gbps over a record 20-meter-long underwater channel. The measured bit-error rate (BER) are 2.8 × 10-5, and 3.0 × 10-3, respectively, which pass well the forward error correction (FEC) criterion. © 2016 Optical Society of America.

  16. 20-meter underwater wireless optical communication link with 15 Gbps data rate

    KAUST Repository

    Shen, Chao; Guo, Yong; Oubei, Hassan M.; Ng, Tien Khee; Liu, Guangyu; Park, Kihong; Ho, Kang-Ting; Alouini, Mohamed-Slim; Ooi, Boon S.

    2016-01-01

    The video streaming, data transmission, and remote control in underwater call for high speed (Gbps) communication link with a long channel length (∼10 meters). We present a compact and low power consumption underwater wireless optical communication (UWOC) system utilizing a 450-nm laser diode (LD) and a Si avalanche photodetector. With the LD operating at a driving current of 80 mA with an optical power of 51.3 mW, we demonstrated a high-speed UWOC link offering a data rate up to 2 Gbps over a 12-meter-long, and 1.5 Gbps over a record 20-meter-long underwater channel. The measured bit-error rate (BER) are 2.8 × 10-5, and 3.0 × 10-3, respectively, which pass well the forward error correction (FEC) criterion. © 2016 Optical Society of America.

  17. 20-meter underwater wireless optical communication link with 1.5 Gbps data rate.

    Science.gov (United States)

    Shen, Chao; Guo, Yujian; Oubei, Hassan M; Ng, Tien Khee; Liu, Guangyu; Park, Ki-Hong; Ho, Kang-Ting; Alouini, Mohamed-Slim; Ooi, Boon S

    2016-10-31

    The video streaming, data transmission, and remote control in underwater call for high speed (Gbps) communication link with a long channel length (~10 meters). We present a compact and low power consumption underwater wireless optical communication (UWOC) system utilizing a 450-nm laser diode (LD) and a Si avalanche photodetector. With the LD operating at a driving current of 80 mA with an optical power of 51.3 mW, we demonstrated a high-speed UWOC link offering a data rate up to 2 Gbps over a 12-meter-long, and 1.5 Gbps over a record 20-meter-long underwater channel. The measured bit-error rate (BER) are 2.8 × 10-5, and 3.0 × 10-3, respectively, which pass well the forward error correction (FEC) criterion.

  18. Introductory survey for wireless infrared communications

    Directory of Open Access Journals (Sweden)

    Munsif Ali Jatoi

    2014-08-01

    Full Text Available Wireless infrared communications can be defined as the propagation of light waves in free space using infrared radiation whose range is 400–700 nm. This range corresponds to frequencies of hundreds of terahertz, which is high for higher data rate applications. Wireless infrared is applied for higher data rates applications such as wireless computing, wireless video and wireless multimedia communication applications. Introduced by Gfeller, this field has grown with different link configurations, improved transmitter efficiency, increased receiver responsivity and various multiple access techniques for improved quality. Errors are caused because of background light, which causes degradation overall system performance. Error correction techniques are used to remove the errors caused during transmission. This study provides a brief account on field theory used for error correction in wireless infrared systems. The results are produced in terms of bit error rate and signal-to-noise ratio for various bit lengths to show the ability of encoding and decoding algorithms.

  19. Underwater Optical Wireless Communications, Networking, and Localization: A Survey

    KAUST Repository

    Saeed, Nasir; Celik, Abdulkadir; Al-Naffouri, Tareq Y.; Alouini, Mohamed-Slim

    2018-01-01

    Underwater wireless communications can be carried out through acoustic, radio frequency (RF), and optical waves. Compared to its bandwidth limited acoustic and RF counterparts, underwater optical wireless communications (UOWCs) can support higher data rates at low latency levels. However, severe aquatic channel conditions (e.g., absorption, scattering, turbulence, etc.) pose great challenges for UOWCs and significantly reduce the attainable communication ranges, which necessitates efficient networking and localization solutions. Therefore, we provide a comprehensive survey on the challenges, advances, and prospects of underwater optical wireless networks (UOWNs) from a layer by layer perspective which includes: 1) Potential network architectures; 2) Physical layer issues including propagation characteristics, channel modeling, and modulation techniques 3) Data link layer problems covering link configurations, link budgets, performance metrics, and multiple access schemes; 4) Network layer topics containing relaying techniques and potential routing algorithms; 5) Transport layer subjects such as connectivity, reliability, flow and congestion control; 6) Application layer goals and state-of-the-art UOWN applications, and 7) Localization and its impacts on UOWN layers. Finally, we outline the open research challenges and point out the future directions for underwater optical wireless communications, networking, and localization research.

  20. Underwater Optical Wireless Communications, Networking, and Localization: A Survey

    KAUST Repository

    Saeed, Nasir

    2018-02-28

    Underwater wireless communications can be carried out through acoustic, radio frequency (RF), and optical waves. Compared to its bandwidth limited acoustic and RF counterparts, underwater optical wireless communications (UOWCs) can support higher data rates at low latency levels. However, severe aquatic channel conditions (e.g., absorption, scattering, turbulence, etc.) pose great challenges for UOWCs and significantly reduce the attainable communication ranges, which necessitates efficient networking and localization solutions. Therefore, we provide a comprehensive survey on the challenges, advances, and prospects of underwater optical wireless networks (UOWNs) from a layer by layer perspective which includes: 1) Potential network architectures; 2) Physical layer issues including propagation characteristics, channel modeling, and modulation techniques 3) Data link layer problems covering link configurations, link budgets, performance metrics, and multiple access schemes; 4) Network layer topics containing relaying techniques and potential routing algorithms; 5) Transport layer subjects such as connectivity, reliability, flow and congestion control; 6) Application layer goals and state-of-the-art UOWN applications, and 7) Localization and its impacts on UOWN layers. Finally, we outline the open research challenges and point out the future directions for underwater optical wireless communications, networking, and localization research.

  1. The Prospects of Ultra-Broadband THz Wireless Communications

    DEFF Research Database (Denmark)

    Yu, Xianbin; Chen, Ying; Galili, Michael

    2014-01-01

    Wireless communications have entered into a path towards Terabit era, to accommodate the increasing demands on fast wireless access, e.g. huge data file transferring and fast mobile data access. Terahertz (THz) technology is considered feasible to carry ultrafast data signals, as it offers up...... to a few THz bandwidths. This paper overviews the prospects of Tbit/s wireless data rate and their potential applications. Technically, this talk reviews the key technologies and challenges to achieve an ultrafast wireless system operating in the THz frequency band, from viewpoint of communication......, in terms of ultrafast THz generation/THz detection and link power budget....

  2. Optical wireless communications for micromachines

    Science.gov (United States)

    O'Brien, Dominic C.; Yuan, Wei Wen; Liu, Jing Jing; Faulkner, Grahame E.; Elston, Steve J.; Collins, Steve; Parry-Jones, Lesley A.

    2006-08-01

    A key challenge for wireless sensor networks is minimizing the energy required for network nodes to communicate with each other, and this becomes acute for self-powered devices such as 'smart dust'. Optical communications is a potentially attractive solution for such devices. The University of Oxford is currently involved in a project to build optical wireless links to smart dust. Retro-reflectors combined with liquid crystal modulators can be integrated with the micro-machine to create a low power transceiver. When illuminated from a base station a modulated beam is returned, transmitting data. Data from the base station can be transmitted using modulation of the illuminating beam and a receiver at the micro-machine. In this paper we outline the energy consumption and link budget considerations in the design of such micro-machines, and report preliminary experimental results.

  3. Fundamental Analysis of Extremely Fast Photonic THz Wireless Communication Systems

    DEFF Research Database (Denmark)

    Yu, Xianbin; Zhang, Xianmin

    This talk will review the recent progress on developing THz communication systems for high speed wireless access, and fundamentally analyze the realistic throughput and accessible wireless range of a THz impulse radio communication link by employing a uni-travelling photodiode (UTC-PD) as emitter...

  4. Optical wireless communication in data centers

    Science.gov (United States)

    Arnon, Shlomi

    2018-01-01

    In the last decade data centers have become a crucial element in modern human society. However, to keep pace with internet data rate growth, new technologies supporting data center should develop. Integration of optical wireless communication (OWC) in data centers is one of the proposed technologies as augmented technology to the fiber network. One implementation of the OWC technology is deployment of optical wireless transceiver on top of the existing cable/fiber network as extension to the top of rack (TOR) switch; in this way, a dynamic and flexible network is created. Optical wireless communication could reduce energy consumption, increase the data rate, reduce the communication latency, increase flexibility and scalability, and reduce maintenance time and cost, in comparison to extra fiber network deployment. In this paper we review up to date literature in the field, propose an implementation scheme of OWC network, discuss ways to reduce energy consumption by parallel link communication and report preliminary measurement result of university data center environment.

  5. Data transmission techniques for short-range optical fiber and wireless communication links

    DEFF Research Database (Denmark)

    Pham, Tien Thang

    The research work described in this thesis is devoted to experimental investigation of techniques for cost-effective high-speed optical communications supporting both wired and wireless services. The main contributions of this thesis have expanded the state-of-the-art in two main areas: high......-speed optical/wireless integration and advanced modulation formats for intensity modulation with direct detection (IM/DD) optical systems. Regarding optical/wireless integration, this thesis focuses on integration of broadband ultra-wide band (UWB) and 60-GHz band wireless systems into optical fiber access...... networks to distribute wireless services in personal area networks (PANs). Photonic technologies to generate and distribute gigabit UWB and 60-GHz-band signals are proposed and demonstrated. Two novel methods are proposed and demonstrated to optically generate Federal Communications Commission (FCC...

  6. Robust optical wireless links over turbulent media using diversity solutions

    Science.gov (United States)

    Moradi, Hassan

    Free-space optic (FSO) technology, i.e., optical wireless communication (OWC), is widely recognized as superior to radio frequency (RF) in many aspects. Visible and invisible optical wireless links solve first/last mile connectivity problems and provide secure, jam-free communication. FSO is license-free and delivers high-speed data rates in the order of Gigabits. Its advantages have fostered significant research efforts aimed at utilizing optical wireless communication, e.g. visible light communication (VLC), for high-speed, secure, indoor communication under the IEEE 802.15.7 standard. However, conventional optical wireless links demand precise optical alignment and suffer from atmospheric turbulence. When compared with RF, they suffer a low degree of reliability and lack robustness. Pointing errors cause optical transceiver misalignment, adversely affecting system reliability. Furthermore, atmospheric turbulence causes irradiance fluctuations and beam broadening of transmitted light. Innovative solutions to overcome limitations on the exploitation of high-speed optical wireless links are greatly needed. Spatial diversity is known to improve RF wireless communication systems. Similar diversity approaches can be adapted for FSO systems to improve its reliability and robustness; however, careful diversity design is needed since FSO apertures typically remain unbalanced as a result of FSO system sensitivity to misalignment. Conventional diversity combining schemes require persistent aperture monitoring and repetitive switching, thus increasing FSO implementation complexities. Furthermore, current RF diversity combining schemes may not be optimized to address the issue of unbalanced FSO receiving apertures. This dissertation investigates two efficient diversity combining schemes for multi-receiving FSO systems: switched diversity combining and generalized selection combining. Both can be exploited to reduce complexity and improve combining efficiency. Unlike maximum

  7. Wireless communication technology NFC

    OpenAIRE

    MÁROVÁ, Kateřina

    2014-01-01

    Aim of this bachelor thesis is to handle the issue of new wireless communication technology NFC (Near Field Communication) including a comparison of advantages and disadvantages of NFC with other wireless technologies (Bluetooth, Wi-Fi, etc.). NFC is a technology for wireless communications between different electronic devices, one of which is typically a mobile phone. Near Field Communication allows wireless communication at very short distance by approaching or enclosing two devices and can...

  8. Wireless Device-to-Device (D2D) Links for Machine-to-Machine (M2M) Communication

    DEFF Research Database (Denmark)

    Pratas, Nuno; Popovski, Petar

    2017-01-01

    Device-to-Device (D2D) communications will play an important role in the fifth generation (5G) cellular networks, by increasing the spatial reuse of spectrum resources and enabling communication links with low latency. D2D is composed of two fundamental building blocks: proximity discovery...... and direct communication between nearby users. Another emerging trend in wireless cellular systems is Machine-to-Machine (M2M) communications, often characterized by fixed, low transmission rates. In this chapter we motivate the synergy between D2D and M2M, and present technologies that enable M2M-via-D2D...

  9. Radial transfer of tracking data with wireless links

    CERN Document Server

    Pelikan, Daniel; Brenner, Richard; Dancila, Dragos; Gustafsson, Leif

    2014-01-01

    Wireless data transfer has revolutionized the consumer mar ket for the last decade giving products equipped with transmitters and receiver for wireless data t ransfer. Wireless technology has fea- tures attractive for data transfer in future tracking detec tors. The removal of wires and connectors for data links is certainly beneficial both for the material b udget and the reliability of the system. One other advantage is the freedom of routing signals which t oday is particularly complicated when bringing the data the first 50 cm outside the tracker. Wit h wireless links intelligence can be built into a tracker by introducing communication betwee n tracking layers within a Region Of Interest which would allow the construction of track primit ives in real time. The wireless signal is transmitted by a passive antenna structure which is a radiat ion hard and much less complex object than an optical link. Due to the requirement of high data rate s in detectors a high bandwidth is required. The frequency band aro...

  10. Wireless Communications in Smart Rail Transportation Systems

    Directory of Open Access Journals (Sweden)

    César Briso-Rodríguez

    2017-01-01

    Full Text Available Railway, subway, airplane, and other transportation systems have drawn an increasing interest on the use of wireless communications for critical and noncritical services to improve performance, reliability, and passengers experience. Smart transportation systems require the use of critical communications for operation and control, and wideband services can be provided using noncritical communications. High speed train (HST is one of the best test cases for the analysis of communication links and specification of the general requirements for train control and supervision, passenger communications, and onboard and infrastructure wireless sensors. In this paper, we analyze in detail critical and noncritical networks mainly using the HST as a test case. First, the different types of links for smart rail transportation are described, specifying the main requirements of the transportation systems, communications, and their applications for different services. Then, we propose a network architecture and requirements of the communication technologies for critical and noncritical data. Finally, an analysis is made for the future technologies, including the fifth-generation (5G communications, millimeter wave (mmWave, terahertz (THz, and satellites for critical and high-capacity communications in transportation.

  11. Airborne wireless communication systems, airborne communication methods, and communication methods

    Science.gov (United States)

    Deaton, Juan D [Menan, ID; Schmitt, Michael J [Idaho Falls, ID; Jones, Warren F [Idaho Falls, ID

    2011-12-13

    An airborne wireless communication system includes circuitry configured to access information describing a configuration of a terrestrial wireless communication base station that has become disabled. The terrestrial base station is configured to implement wireless communication between wireless devices located within a geographical area and a network when the terrestrial base station is not disabled. The circuitry is further configured, based on the information, to configure the airborne station to have the configuration of the terrestrial base station. An airborne communication method includes answering a 911 call from a terrestrial cellular wireless phone using an airborne wireless communication system.

  12. Transmission Delay Based Control over Networks with Wireless Links

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    To achieve the mobility of computers during communication, the TCP connections between fixed host and mobile host may often traverse wired and wireless networks, and the recovery of losses due to wireless transmission error is much different from congestion control. The paper analyzes the side effect of RTT estimation while making the TCP source to handle congestion and wireless error losses properly. Then present a strategy using information feedback by the last hop acknowledgement and monitoring the queuing level of the wired bottleneck link by calculating the changes in transmission delay along the path. With the identification of the early stage of congestion, it can respond to wired congestion quickly while keeping wireless link more reliable, and make TCP react to the different packets losses more appropriately.

  13. Design and Implementation of Secure and Reliable Communication using Optical Wireless Communication

    Science.gov (United States)

    Saadi, Muhammad; Bajpai, Ambar; Zhao, Yan; Sangwongngam, Paramin; Wuttisittikulkij, Lunchakorn

    2014-11-01

    Wireless networking intensify the tractability in the home and office environment to connect the internet without wires but at the cost of risks associated with stealing the data or threat of loading malicious code with the intention of harming the network. In this paper, we proposed a novel method of establishing a secure and reliable communication link using optical wireless communication (OWC). For security, spatial diversity based transmission using two optical transmitters is used and the reliability in the link is achieved by a newly proposed method for the construction of structured parity check matrix for binary Low Density Parity Check (LDPC) codes. Experimental results show that a successful secure and reliable link between the transmitter and the receiver can be achieved by using the proposed novel technique.

  14. An Inductive Link-Based Wireless Power Transfer System for Biomedical Applications

    Directory of Open Access Journals (Sweden)

    M. A. Adeeb

    2012-01-01

    Full Text Available A wireless power transfer system using an inductive link has been demonstrated for implantable sensor applications. The system is composed of two primary blocks: an inductive power transfer unit and a backward data communication unit. The inductive link performs two functions: coupling the required power from a wireless power supply system enabling battery-less, long-term implant operation and providing a backward data transmission path. The backward data communication unit transmits the data to an outside reader using FSK modulation scheme via the inductive link. To demonstrate the operation of the inductive link, a board-level design has been implemented with high link efficiency. Test results from a fabricated sensor system, composed of a hybrid implementation of custom-integrated circuits and board-level discrete components, are presented demonstrating power transmission of 125 mW with a 12.5% power link transmission efficiency. Simultaneous backward data communication involving a digital pulse rate of up to 10 kbps was also observed.

  15. Wireless Communications in the Era of Big Data

    OpenAIRE

    Bi, Suzhi; Zhang, Rui; Ding, Zhi; Cui, Shuguang

    2015-01-01

    © 1979-2012 IEEE. The rapidly growing wave of wireless data service is pushing against the boundary of our communication network's processing power. The pervasive and exponentially increasing data traffic present imminent challenges to all aspects of wireless system design, such as spectrum efficiency, computing capabilities, and fronthaul/backhaul link capacity. In this article, we discuss the challenges and opportunities in the design of scalable wireless systems to embrace the big data era...

  16. Impact of wireless communication on multimedia application performance

    Science.gov (United States)

    Brown, Kevin A.

    1999-01-01

    Multimedia applications and specifically voice and video conferencing tools are widely used in business communications, and are quickly being discovered by the consumer market as well. At the same time, wireless communication services such as PCS voice and cellular data are becoming very popular, leading to the desire to deploy multimedia applications in the wireless environment. Wireless links, however, exhibit several characteristics which are different from traditional wired networks. These include: dynamically changing bandwidth due to mobile host movement in and out of cell where bandwidth is shared, high rates of packet corruption and subsequent loss, and frequent are lengthy disconnections due to obstacles, fading, and movement between cells. In addition, these effects are short-lived and difficult to reproduce, leading to a lack of adequate testing and analysis for applications used in wireless environments.

  17. Optical wireless communications an emerging technology

    CERN Document Server

    Capsoni, Carlo; Ghassemlooy, Zabih; Boucouvalas, Anthony; Udvary, Eszter

    2016-01-01

    This book focuses on optical wireless communications (OWC), an emerging technology with huge potential for the provision of pervasive and reliable next-generation communications networks. It shows how the development of novel and efficient wireless technologies can contribute to a range of transmission links essential for the heterogeneous networks of the future to support various communications services and traffic patterns with ever-increasing demands for higher data-transfer rates. The book starts with a chapter reviewing the OWC field, which explains different sub-technologies (visible-light, ultraviolet (UV) and infrared (IR) communications) and introduces the spectrum of application areas (indoor, vehicular, terrestrial, underwater, intersatellite, deep space, etc.). This provides readers with the necessary background information to understand the specialist material in the main body of the book, which is in four parts. The first of these deals with propagation modelling and channel characterization of ...

  18. Link and route availability for Inter-working multi-hop wireless networks

    CSIR Research Space (South Africa)

    Salami, O

    2009-09-01

    Full Text Available pairs in inter-working multi-hop wireless networks can be evaluated based on the availability and reliability of radio links that form the communication path linking the nodes. This paper presents an analytical study of the link and route availability...

  19. Wireless Communication Technologies

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. Wireless Communication Technologies. Since 1999, the wireless LAN has experienced a tremendous growth. Reasons: Adoption of industry standards. Interoperability testing. The progress of wireless equipments to higher data rates. Rapid decrease in product ...

  20. 28 GHz Wireless Backhaul Transceiver Characterization and Radio Link Budget

    Directory of Open Access Journals (Sweden)

    Marko E. Leinonen

    2018-02-01

    Full Text Available Millimeter wave communication is one of the main disruptive technologies in upcoming 5G mobile networks. One of the first candidate applications, which will be commercially ready by 2020, is wireless backhaul links or wireless last mile communication. This paper provides an analysis of this use‐case from radio engineering and implementation perspectives. Furthermore, preliminary experimental results are shown for a proof‐of‐concept wireless backhaul solution developed within the EU‐KR 5GCHAMPION project, which will be showcased during the 2018 Winter Olympic Games in Korea. In this paper, we verify system level calculations and a theoretical link budget analysis with conductive and radiated over‐the‐air measurements. The results indicate that the implemented radio solution is able to achieve the target key performance indicator, namely, a 2.5 Gbps data rate on average, over a range of up to 200 m.

  1. Simulation of Wireless Digital Communication Systems

    Directory of Open Access Journals (Sweden)

    A. Mohammed

    2004-12-01

    Full Text Available Due to the explosive demands for high speed wireless services, suchas wireless Internet, email and cellular video conferencing, digitalwireless communications has become one of the most exciting researchtopics in electrical and electronic engineering field. The never-endingdemand for such personal and multimedia services, however, demandstechnologies operating at higher data rates and broader bandwidths. Inaddition, the complexity of wireless communication and signalprocessing systems has grown considerably during the past decade.Therefore, powerful computer­aided techniques are required for theprocess of modeling, designing, analyzing and evaluating theperformance of digital wireless communication systems. In this paper wediscuss the basic propagation mechanisms affecting the performance ofwireless communication systems, and present a simple, powerful andefficient way to simulate digital wireless communication systems usingMatlab. The simulated results are compared with the theoreticalanalysis to validate the simulator. The simulator is useful inevaluating the performance of wireless multimedia services and theassociated signal processing structures and algorithms for current andnext generation wireless mobile communication systems.

  2. Novel Reduced-Feedback Wireless Communication Systems

    KAUST Repository

    Shaqfeh, Mohammad Obaidah

    2011-11-20

    Modern communication systems apply channel-aware adaptive transmission techniques and dynamic resource allocation in order to exploit the peak conditions of the fading wireless links and to enable significant performance gains. However, conveying the channel state information among the users’ mobile terminals into the access points of the network consumes a significant portion of the scarce air-link resources and depletes the battery resources of the mobile terminals rapidly. Despite its evident drawbacks, the channel information feedback cannot be eliminated in modern wireless networks because blind communication technologies cannot support the ever-increasing transmission rates and high quality of experience demands of current ubiquitous services. Developing new transmission technologies with reduced-feedback requirements is sought. Network operators will benefit from releasing the bandwidth resources reserved for the feedback communications and the clients will enjoy the extended battery life of their mobile devices. The main technical challenge is to preserve the prospected transmission rates over the network despite decreasing the channel information feedback significantly. This is a noteworthy research theme especially that there is no mature theory for feedback communication in the existing literature despite the growing number of publications about the topic in the last few years. More research efforts are needed to characterize the trade-off between the achievable rate and the required channel information and to design new reduced-feedback schemes that can be flexibly controlled based on the operator preferences. Such schemes can be then introduced into the standardization bodies for consideration in next generation broadband systems. We have recently contributed to this field and published several journal and conference papers. We are the pioneers to propose a novel reduced-feedback opportunistic scheduling scheme that combines many desired features

  3. OPTICAL WIRELESS COMMUNICATION SYSTEM

    Directory of Open Access Journals (Sweden)

    JOSHUA L.Y. CHIENG

    2016-02-01

    Full Text Available The growing demand of bandwidth in this modern internet age has been testing the existing telecommunication infrastructures around the world. With broadband speeds moving towards the region of Gbps and Tbps, many researches have begun on the development of using optical wireless technology as feasible and future methods to the current wireless technology. Unlike the existing radio frequency wireless applications, optical wireless uses electromagnetic spectrums that are unlicensed and free. With that, this project aim to understand and gain better understanding of optical wireless communication system by building an experimental and simulated model. The quality of service and system performance will be investigated and reviewed. This project employs laser diode as the propagation medium and successfully transferred audio signals as far as 15 meters. On its quality of service, results of the project model reveal that the bit error rate increases, signal-to-noise ratio and quality factor decreases as the link distance between the transmitter and receiver increases. OptiSystem was used to build the simulated model and MATLAB was used to assist signal-to-noise ratio calculations. By comparing the simulated and experimental receiver’s power output, the experimental model’s efficiency is at 66.3%. Other than the system’s performance, challenges and factors affecting the system have been investigated and discussed. Such challenges include beam divergence, misalignment and particle absorption.

  4. Introduction to Ultra Wideband for Wireless Communications

    DEFF Research Database (Denmark)

    Nikookar, Homayoun; Prasad, Ramjee

    wireless channels, interference, signal processing as well as applications and standardization activities are addressed. Introduction to Ultra Wideband for Wireless Communications provides easy-to-understand material to (graduate) students and researchers working in the field of commercial UWB wireless......Ultra Wideband (UWB) Technology is the cutting edge technology for wireless communications with a wide range of applications. In Introduction to Ultra Wideband for Wireless Communications UWB principles and technologies for wireless communications are explained clearly. Key issues such as UWB...... communications. Due to tutorial nature of the book it can also be adopted as a textbook on the subject in the Telecommunications Engineering curriculum. Problems at the end of each chapter extend the reader's understanding of the subject. Introduction to Ultra Wideband for Wireless Communications will aslo...

  5. Terahertz communication: The opportunities of wireless technology beyond 5G

    KAUST Repository

    Elayan, Hadeel; Amin, Osama; Shubair, Raed M.; Alouini, Mohamed-Slim

    2018-01-01

    Over the past years, carrier frequencies used for wireless communications have been increasing to meet bandwidth requirements. The engineering community witnessed the development of wide radio bands such as the millimeter-wave (mmW) frequencies to fulfill the explosive growth of mobile data demand and pave the way towards 5G networks. Other research interests have been steered towards optical wireless communication to allow higher data rates, improve physical security and avoid electromagnetic interference. Nevertheless, a paradigm change in the electromagnetic wireless world has been witnessed with the exploitation of the Terahertz (THz) frequency band (0.1–10 THz). With the dawn of THz technology, which fills the gap between radio and optical frequency ranges, ultimate promise is expected for the next generation of wireless networks. In this paper, the light is shed on a number of opportunities associated with the deployment of the THz wireless links. These opportunities offer a plethora of applications to meet the future communication requirements and satisfy the ever increasing user demand of higher data rates.

  6. Terahertz communication: The opportunities of wireless technology beyond 5G

    KAUST Repository

    Elayan, Hadeel

    2018-05-17

    Over the past years, carrier frequencies used for wireless communications have been increasing to meet bandwidth requirements. The engineering community witnessed the development of wide radio bands such as the millimeter-wave (mmW) frequencies to fulfill the explosive growth of mobile data demand and pave the way towards 5G networks. Other research interests have been steered towards optical wireless communication to allow higher data rates, improve physical security and avoid electromagnetic interference. Nevertheless, a paradigm change in the electromagnetic wireless world has been witnessed with the exploitation of the Terahertz (THz) frequency band (0.1–10 THz). With the dawn of THz technology, which fills the gap between radio and optical frequency ranges, ultimate promise is expected for the next generation of wireless networks. In this paper, the light is shed on a number of opportunities associated with the deployment of the THz wireless links. These opportunities offer a plethora of applications to meet the future communication requirements and satisfy the ever increasing user demand of higher data rates.

  7. Invited Article: Channel performance for indoor and outdoor terahertz wireless links

    Science.gov (United States)

    Ma, Jianjun; Shrestha, Rabi; Moeller, Lothar; Mittleman, Daniel M.

    2018-05-01

    One of the most exciting future applications of terahertz technology is in the area of wireless communications. As 5G systems incorporating a standard for millimeter-wave wireless links approach commercial roll-out, it is becoming clear that even this new infrastructure will not be sufficient to keep pace with the rapidly increasing global demand for bandwidth. One favorable solution that is attracting increasing attention for subsequent generations of wireless technology is to use higher frequencies, above 100 GHz. The implementation of such links will require significant advances in hardware, algorithms, and architecture. Although numerous research groups are exploring aspects of this challenging problem, many basic questions remain unaddressed. Here, we present an experimental effort to characterize THz wireless links in both indoor and outdoor environments. We report measurements at 100, 200, 300, and 400 GHz, using a link with a data rate of 1 Gbit/s. We demonstrate both line-of-sight and non-line-of-sight (specular reflection) links off of interior building walls. This work represents a first step to establish the feasibility of using THz carrier waves for data transmission in diverse situations and environments.

  8. Evaluation of coherence interference in optical wireless communication through multiscattering channels.

    Science.gov (United States)

    Kedar, Debbie; Arnon, Shlomi

    2006-05-10

    Optical wireless communication has been the subject of much research in recent years because of the increasing interest in laser satellite-ground links and urban optical wireless communication. The major sources of performance degradation have been identified as the spatial, angular, and temporal spread of the propagating beam when the propagation channel is multiscattering, resulting in reduced power reception and intersignal interference, as well as turbulence-induced scintillations and noise due to receiver circuitry and background illumination. However, coherence effects due to multipath interference caused by a scattering propagation channel do not appear to have been treated in detail in the scientific literature. We attempt a theoretical analysis of coherence interference in optical wireless communication through scattering channels and try to quantify the resultant performance degradation for different media. We conclude that coherence interference is discernible in optical wireless communication through scattering channels and is highly dependent on the microscopic nature of the propagation medium.

  9. Simulative Analysis of Inter-Satellite Optical Wireless Communication (IsOWC) Link with EDFA

    Science.gov (United States)

    Singh, Mehtab; Singh, Navpreet

    2018-04-01

    In this paper, simulative analysis and performance comparison of different EDFA (Erbium-doped fiber amplifier) configurations in a 10 Gbps inter-satellite optical wireless communication (IsOWC) link have been reported for a 5,000 km long link and 1,550 nm operating wavelength. The results show that system in which both pre-amplifier and booster amplifier stages are implemented simultaneously outperforms systems with only pre-amplifier and booster amplifier stage. From the results, it can be seen that by deploying a transmission power level of 15 dBm, a link distance of 9,600 km can be achieved with a quality factor of 6.01 dB and BER (Bit error rate) of 1.07×10-9. Also, in this paper, the performance of an 8×7 Gbps WDM-IsOWC link has been reported. The results show that by using both EDFA pre-amplifier and booster amplifier stages, a link distance of 8,000 km for each channel is achievable with desired performance levels (Q≥6 and BER≤10-9). Also, the effect of channel spacing on the performance of WDM-IsOWC link is investigated. The results show that the received signal has acceptable performance levels when the channel spacing is 100 GHz but when the channel spacing is reduced to 80 GHz, the quality of the received signal degrades and link distance decreases.

  10. Wireless Communications Device Wakeup Method and System

    NARCIS (Netherlands)

    Drago, S.; Sebastiano, F.; Leenaerts, D.M.W.; Breems, L.J.

    2008-01-01

    Abstract of WO 2009044368 Disclosed are wakeable wireless communications devices, and methods for waking wireless communications devices, for use in a wireless network of such devices. The devices communicate during respectively-designated timeslots according to a communications protocol. The

  11. Bandwidth enhancement of wireless optical communication link using a near-infrared laser over turbid underwater channel

    KAUST Repository

    Lee, It Ee

    2017-11-30

    Underwater wireless optical communication (UWOC) has been widely studied as a promising alternative to establish reliable short-range marine communication links. Microscopic particulates suspended in various ocean, harbor and natural waters will alter the propagation characteristics of the optical signals underwater. In this paper, we demonstrate a gigabit near-infrared (NIR)-based UWOC link using an 808-nm laser diode, to examine the feasibility of the proposed system in mitigating the particle scattering effect over turbid waters. We show that the NIR wavelengths presents greater resilience to the aqueous suspension of these micro-sized particles with a smaller scattering effect due to its longer wavelength, as evident by the smaller variations in the optical beam transmittance. It is also observed that the error performance is improved at higher concentrations albeit the significant reduction in received signal power. We further demonstrate that the overall frequency response of the system exhibits a bandwidth enhancement up to a few tens of MHz with increasing concentrations.

  12. Secure and Reliable Wireless Communications for Geological Repositories and Nuclear Facilities

    International Nuclear Information System (INIS)

    Twogood, R.

    2015-01-01

    There is an important need to develop new generation robust RF communication systems to support wireless communications and instrumentation control in geological repositories and nuclear facilities, such as nuclear power plants. Often these facilities have large metallic structures with electromagnetic (EM) transients from plant equipment. The ambient EMI/RFI harsh environment is responsible for degrading radio link bandwidth. Current communication systems often employ physical cables that are not only expensive to install, but deteriorate over time and are vulnerable to failures. Furthermore, conventional high-power narrowband walkie-talkies sometimes upset other electronics. On the other hand, high-quality reliable wireless communications between operators and automated control systems are critical in these facilities, as wireless sensors become more and more prevalent in these operations. In an effort to develop novel wireless communications systems, Dirac Solutions Inc. (DSI) in collaboration with Lawrence Livermore National Laboratory (LLNL), has developed high-quality ultra-wideband (UWB) hand-held communications systems that have proven to have excellent performance in ships and tunnels. The short pulse UWB RF technology, with bandwidths of many hundreds of MHz's, are non-interfering due to low average power. Furthermore, the UWB link has been shown to be highly reliable in the presence of other interfering signals. The DSI UWB communications systems can be adapted for applications in tunnels and nuclear power facilities for voice, data, and instrumentation control. In this paper we show examples of voice communication in ships with UWB walkie-talkies. We have developed novel modulation and demodulation techniques for short pulse UWB communications. The design is a low-power one and in a compact form. The communication units can be produced inexpensively in large quantities. A major application of these units might be their use by IAEA inspectors and

  13. Wireless Communications in Smart Grid

    Science.gov (United States)

    Bojkovic, Zoran; Bakmaz, Bojan

    Communication networks play a crucial role in smart grid, as the intelligence of this complex system is built based on information exchange across the power grid. Wireless communications and networking are among the most economical ways to build the essential part of the scalable communication infrastructure for smart grid. In particular, wireless networks will be deployed widely in the smart grid for automatic meter reading, remote system and customer site monitoring, as well as equipment fault diagnosing. With an increasing interest from both the academic and industrial communities, this chapter systematically investigates recent advances in wireless communication technology for the smart grid.

  14. Optical wireless communications: Theory and applications

    Science.gov (United States)

    Aminikashani, Mohammadreza

    This dissertation focuses on optical communications having recently attracted sig- nificant attentions as a promising complementary technique for radio frequency (RF) in both short- and long-range communications. These systems offer signifi- cant technical and operational advantages such as higher capacity, virtually unlim- ited reuse, unregulated spectrum and robustness to electromagnetic interference. Optical wireless communication (OWC) can be used both indoors and outdoors. Part of the dissertation contains novel results on terrestrial free-space optical (FSO) communications. FSO communication is a line-of sight technique that uses lasers for high rate wireless communication over distances up to several kilometers. In comparison to RF counterparts, a FSO link has a very high optical bandwidth available, allowing aggregate data rates on the order of Tera bits per second (1 Tera bits per second is 1000 Giga bites per second). However, FSO suffers limitations. The major limitation of the terrestrial FSO communication systems is the atmo- spheric turbulence, which produces fluctuations in the irradiance of the transmitted optical beam, as a result of random variations in the refractive index through the link. The existence of atmospheric-induced turbulence degrades the performance of FSO links particularly with a transmission distance longer than 1 kilometer. The identification of a tractable probability density function (pdf) to describe at- mospheric turbulence under all irradiance fluctuation regimes is crucial in order to study the reliability of a terrestrial FSO system. This dissertation addresses this daunting problem and proposes a novel statistical model that accurately de- scribes turbulence-induced fading under all irradiance conditions and unifies most of the proposed statistical models derived until now in the literature. The proposed model is important for the research community working on FSO communications because it allows them to fully capitalize

  15. Optical wireless links with enhanced linearity and selectivity [Invited

    Science.gov (United States)

    Green, Roger J.; Sweet, C.; Idrus, S.

    2005-10-01

    Optical wireless is an attractive medium as an alternative to optical fiber communications, and also to RF, because of its high bandwidth and relative ease of use, especially when it comes to deployment in new physical situations. We describe an optical wireless link approach that offers a performance that gives analog transmission with significantly reduced distortion levels and enhanced reception sensitivity by combining a novel hybrid detector-amplifier technique. Reduction of distortion by 40 dB and improvement in sensitivity of 20-30 dB is possible, using the techniques described.

  16. Radio over fiber for wireless communications from fundamentals to advanced topics

    CERN Document Server

    Fernando, Xavier N

    2014-01-01

    A comprehensive evaluation of Fi-Wi,  enabling readers to design links using channel estimation and equalization algorithms  This book provides a detailed study of radio over fiber (ROF) based wireless communication systems, otherwise called fiber wireless (Fi-Wi) systems. This is an emerging hot topic where the abundant bandwidth of optical fiber is directly combined with the flexibility and mobility of wireless networks to provide broadband connectivity.  Its application is increasing because of the growing demand for broadband wireless services. In such a system the transmission of the ra

  17. Novel method for water vapour monitoring using wireless communication networks measurements

    Science.gov (United States)

    David, N.; Alpert, P.; Messer, H.

    2010-09-01

    We propose a new technique for monitoring near-surface water vapour, by estimating humidity from data collected through existing wireless communication networks. Weather conditions and atmospheric phenomena affect the electromagnetic channel, causing attenuations to the radio signals. Thus, wireless communication networks are in effect built-in environmental monitoring facilities. The wireless microwave links, used in these networks, are widely deployed by cellular providers for backhaul communication between base stations, a few tens of meters above ground level. As a result, if all available measurements are used, the proposed method can provide moisture observations with high spatial resolution and potentially high temporal resolution. Further, the implementation cost is minimal, since the data used are already collected and saved by the cellular operators. In addition - many of these links are installed in areas where access is difficult such as orographic terrain and complex topography. As such, our method enables measurements in places that have been hard to measure in the past, or have never been measured before. The technique is restricted to weather conditions which exclude rain, fog or clouds along the propagation path. Strong winds that may cause movement of the link transmitter or receiver (or both) may also interfere with the ability to conduct accurate measurements. We present results from real-data measurements taken from microwave links used in a backhaul cellular network that show very good correlation with surface station humidity measurements (comparisons were performed for several links, found at different locations, during different time periods, showing correlations in the range of 0.5-0.9).

  18. Design of an Omnidirectional Multibeam Transmitter for High-Speed Indoor Wireless Communications

    Directory of Open Access Journals (Sweden)

    Tang Jaw-Luen

    2010-01-01

    Full Text Available For future high speed indoor wireless communication, diffuse wireless optical communications offer more robust optical links against shadowing than line-of-sight links. However, their performance may be degraded by multipath dispersion arising from surface reflections. We have developed a multipath diffusive propagation model capable of providing channel impulse responses data. It is aimed to design and simulate any multibeam transmitter under a variety of indoor environments. In this paper, a multi-beam transmitter system associated with hemisphere structure is proposed to fight against the diverse effects of multipath distortion albeit, at the cost of increased laser power and cost. Simulation results of multiple impulse responses showed that this type of multi-beam transmitter can significantly improve the performance of BER suitable for high bit rate application. We present the performance and simulation results for both line-of-sight and diffuse link configurations. We propose a design of power radiation pattern for a transmitter in achieving uniform and full coverage of power distributions for diffuse indoor optical wireless systems.

  19. Performance Evaluation of Underwater Wireless Optical Communications Links in the Presence of Different Air Bubble Populations

    KAUST Repository

    Oubei, Hassan M.; Elafandy, Rami T.; Park, Kihong; Ng, Tien Khee; Alouini, Mohamed-Slim; Ooi, Boon S.

    2017-01-01

    We experimentally evaluate the performance of underwater wireless optical communication (UWOC) links in the presence of different air bubbles. Air bubbles of different sizes and densities are generated by using an air pipe in conjunction with a submersible water pump of variable flow rate that help break up large bubbles into smaller bubbles. Received signal intensity measurements show that bubbles significantly degrade the performance of UWOC links. Large bubbles completely obstruct the optical beam and cause a deep fade. However, as the bubble size decreases, the level of deep fade also decreases because the optical beam is less susceptible to complete obstruction and more light reaches the detector. We also show that beam expansion could help mitigate the performance degradation due to the deep fade caused by air bubbles scatters in the channel.

  20. Performance Evaluation of Underwater Wireless Optical Communications Links in the Presence of Different Air Bubble Populations

    KAUST Repository

    Oubei, Hassan M.

    2017-03-16

    We experimentally evaluate the performance of underwater wireless optical communication (UWOC) links in the presence of different air bubbles. Air bubbles of different sizes and densities are generated by using an air pipe in conjunction with a submersible water pump of variable flow rate that help break up large bubbles into smaller bubbles. Received signal intensity measurements show that bubbles significantly degrade the performance of UWOC links. Large bubbles completely obstruct the optical beam and cause a deep fade. However, as the bubble size decreases, the level of deep fade also decreases because the optical beam is less susceptible to complete obstruction and more light reaches the detector. We also show that beam expansion could help mitigate the performance degradation due to the deep fade caused by air bubbles scatters in the channel.

  1. Simultaneous Wireless Power Transfer and Data Communication Using Synchronous Pulse-Controlled Load Modulation.

    Science.gov (United States)

    Mao, Shitong; Wang, Hao; Zhu, Chunbo; Mao, Zhi-Hong; Sun, Mingui

    2017-10-01

    Wireless Power Transfer (WPT) and wireless data communication are both important problems of research with various applications, especially in medicine. However, these two problems are usually studied separately. In this work, we present a joint study of both problems. Most medical electronic devices, such as smart implants, must have both a power supply to allow continuous operation and a communication link to pass information. Traditionally, separate wireless channels for power transfer and communication are utilized, which complicate the system structure, increase power consumption and make device miniaturization difficult. A more effective approach is to use a single wireless link with both functions of delivering power and passing information. We present a design of such a wireless link in which power and data travel in opposite directions. In order to aggressively miniaturize the implant and reduce power consumption, we eliminate the traditional multi-bit Analog-to-Digital Converter (ADC), digital memory and data transmission circuits all together. Instead, we use a pulse stream, which is obtained from the original biological signal, by a sigma-delta converter and an edge detector, to alter the load properties of the WPT channel. The resulting WPT signal is synchronized with the load changes therefore requiring no memory elements to record inter-pulse intervals. We take advantage of the high sensitivity of the resonant WPT to the load change, and the system dynamic response is used to transfer each pulse. The transient time of the WPT system is analyzed using the coupling mode theory (CMT). Our experimental results show that the memoryless approach works well for both power delivery and data transmission, providing a new wireless platform for the design of future miniaturized medical implants.

  2. Wireless data link for FBTR

    International Nuclear Information System (INIS)

    Sundararajan, M.K.; Prabhakara Rao, G.; Ilango Sambasivan, S.; Swaminathan, P.; Ramakrishna, P.V.

    2004-01-01

    This paper deals with the design and development of a wireless data link for transmission of block pile signals at the Fast Breeder Test Reactor (FBTR) of Indira Gandhi Center for Atomic Research (IGCAR). This link is to establish wireless connectivity, typically at RS232C rates, over distances of the order of 50 m, and is expected to operate under electrically hostile conditions. (author)

  3. Structural processing for wireless communications

    CERN Document Server

    Lu, Jianhua; Ge, Ning

    2015-01-01

    This brief presents an alternative viewpoint on processing technology for wireless communications based on recent research advances. As a lever in emerging processing technology, the structure perspective addresses the complexity and uncertainty issues found in current wireless applications. Likewise, this brief aims at providing a new prospective to the development of communication technology and information science, while stimulating new theories and technologies for wireless systems with ever-increasing complexity. Readers of this brief may range from graduate students to researchers in related fields.

  4. Wireless Augmented Reality Communication System

    Science.gov (United States)

    Devereaux, Ann (Inventor); Jedrey, Thomas (Inventor); Agan, Martin (Inventor)

    2017-01-01

    A portable unit is for video communication to select a user name in a user name network. A transceiver wirelessly accesses a communication network through a wireless connection to a general purpose node coupled to the communication network. A user interface can receive user input to log on to a user name network through the communication network. The user name network has a plurality of user names, at least one of the plurality of user names is associated with a remote portable unit, logged on to the user name network and available for video communication.

  5. 75 FR 8400 - In the Matter of Certain Wireless Communications System Server Software, Wireless Handheld...

    Science.gov (United States)

    2010-02-24

    ... Communications System Server Software, Wireless Handheld Devices and Battery Packs; Notice of Investigation... within the United States after importation of certain wireless communications system server software... certain wireless communications system server software, wireless handheld devices or battery packs that...

  6. Computer-Based Wireless Advertising Communication System

    Directory of Open Access Journals (Sweden)

    Anwar Al-Mofleh

    2009-10-01

    Full Text Available In this paper we developed a computer based wireless advertising communication system (CBWACS that enables the user to advertise whatever he wants from his own office to the screen in front of the customer via wireless communication system. This system consists of two PIC microcontrollers, transmitter, receiver, LCD, serial cable and antenna. The main advantages of the system are: the wireless structure and the system is less susceptible to noise and other interferences because it uses digital communication techniques.

  7. Enabling Wireless Avionics Intra-Communications

    Science.gov (United States)

    Torres, Omar; Nguyen, Truong; Mackenzie, Anne

    2016-01-01

    The Electromagnetics and Sensors Branch of NASA Langley Research Center (LaRC) is investigating the potential of an all-wireless aircraft as part of the ECON (Efficient Reconfigurable Cockpit Design and Fleet Operations using Software Intensive, Networked and Wireless Enabled Architecture) seedling proposal, which is funded by the Convergent Aeronautics Solutions (CAS) project, Transformative Aeronautics Concepts (TAC) program, and NASA Aeronautics Research Institute (NARI). The project consists of a brief effort carried out by a small team in the Electromagnetic Environment Effects (E3) laboratory with the intention of exposing some of the challenges faced by a wireless communication system inside the reflective cavity of an aircraft and to explore potential solutions that take advantage of that environment for constructive gain. The research effort was named EWAIC for "Enabling Wireless Aircraft Intra-communications." The E3 laboratory is a research facility that includes three electromagnetic reverberation chambers and equipment that allow testing and generation of test data for the investigation of wireless systems in reflective environments. Using these chambers, the EWAIC team developed a set of tests and setups that allow the intentional variation of intensity of a multipath field to reproduce the environment of the various bays and cabins of large transport aircraft. This setup, in essence, simulates an aircraft environment that allows the investigation and testing of wireless communication protocols that can effectively be used as a tool to mitigate some of the risks inherent to an aircraft wireless system for critical functions. In addition, the EWAIC team initiated the development of a computational modeling tool to illustrate the propagation of EM waves inside the reflective cabins and bays of aircraft and to obtain quantifiable information regarding the degradation of signals in aircraft subassemblies. The nose landing gear of a UAV CAD model was used

  8. Terabit Wireless Communication Challenges

    Science.gov (United States)

    Hwu, Shian U.

    2012-01-01

    This presentation briefly discusses a research effort on Terabit Wireless communication systems for possible space applications. Recently, terahertz (THz) technology (300-3000 GHz frequency) has attracted a great deal of interest from academia and industry. This is due to a number of interesting features of THz waves, including the nearly unlimited bandwidths available, and the non-ionizing radiation nature which does not damage human tissues and DNA with minimum health threat. Also, as millimeter-wave communication systems mature, the focus of research is, naturally, moving to the THz range. Many scientists regard THz as the last great frontier of the electromagnetic spectrum, but finding new applications outside the traditional niches of radio astronomy, Earth and planetary remote sensing, and molecular spectroscopy particularly in biomedical imaging and wireless communications has been relatively slow. Radiologists find this area of study so attractive because t-rays are non-ionizing, which suggests no harm is done to tissue or DNA. They also offer the possibility of performing spectroscopic measurements over a very wide frequency range, and can even capture signatures from liquids and solids. According to Shannon theory, the broad bandwidth of the THz frequency bands can be used for terabit-per-second (Tb/s) wireless communication systems. This enables several new applications, such as cell phones with 360 degrees autostereoscopic displays, optic-fiber replacement, and wireless Tb/s file transferring. Although THz technology could satisfy the demand for an extremely high data rate, a number of technical challenges need to be overcome before its development. This presentation provides an overview the state-of-the- art in THz wireless communication and the technical challenges for an emerging application in Terabit wireless systems. The main issue for THz wave propagation is the high atmospheric attenuation, which is dominated by water vapor absorption in the THz

  9. Propagation engineering in wireless communications

    CERN Document Server

    Ghasemi, Abdollah; Ghasemi, Farshid

    2016-01-01

    This book covers the basic principles for understanding radio wave propagation for common frequency bands used in radio-communications. This includes achievements and developments in propagation models for wireless communication. This book is intended to bridge the gap between the theoretical calculations and approaches to the applied procedures needed for radio links design in a proper manner. The authors emphasize propagation engineering by giving fundamental information and explain the use of basic principles together with technical achievements. This new edition includes additional information on radio wave propagation in guided media and technical issues for fiber optics cable networks with several examples and problems. This book also includes a solution manual - with 90 solved examples distributed throughout the chapters - and 158 problems including practical values and assumptions.

  10. NASA Bluetooth Wireless Communications

    Science.gov (United States)

    Miller, Robert D.

    2007-01-01

    NASA has been interested in wireless communications for many years, especially when the crew size of the International Space Station (ISS) was reduced to two members. NASA began a study to find ways to improve crew efficiency to make sure the ISS could be maintained with limited crew capacity and still be a valuable research testbed in Low-Earth Orbit (LEO). Currently the ISS audio system requires astronauts to be tethered to the audio system, specifically a device called the Audio Terminal Unit (ATU). Wireless communications would remove the tether and allow astronauts to freely float from experiment to experiment without having to worry about moving and reconnecting the associated cabling or finding the space equivalent of an extension cord. A wireless communication system would also improve safety and reduce system susceptibility to Electromagnetic Interference (EMI). Safety would be improved because a crewmember could quickly escape a fire while maintaining communications with the ground and other crewmembers at any location. In addition, it would allow the crew to overcome the volume limitations of the ISS ATU. This is especially important to the Portable Breathing Apparatus (PBA). The next generation of space vehicles and habitats also demand wireless attention. Orion will carry up to six crewmembers in a relatively small cabin. Yet, wireless could become a driving factor to reduce launch weight and increase habitable volume. Six crewmembers, each tethered to a panel, could result in a wiring mess even in nominal operations. In addition to Orion, research is being conducted to determine if Bluetooth is appropriate for Lunar Habitat applications.

  11. Topology control algorithm for wireless sensor networks based on Link forwarding

    Science.gov (United States)

    Pucuo, Cairen; Qi, Ai-qin

    2018-03-01

    The research of topology control could effectively save energy and increase the service life of network based on wireless sensor. In this paper, a arithmetic called LTHC (link transmit hybrid clustering) based on link transmit is proposed. It decreases expenditure of energy by changing the way of cluster-node’s communication. The idea is to establish a link between cluster and SINK node when the cluster is formed, and link-node must be non-cluster. Through the link, cluster sends information to SINK nodes. For the sake of achieving the uniform distribution of energy on the network, prolongate the network survival time, and improve the purpose of communication, the communication will cut down much more expenditure of energy for cluster which away from SINK node. In the two aspects of improving the traffic and network survival time, we find that the LTCH is far superior to the traditional LEACH by experiments.

  12. Terahertz wireless communication based on InP-related devices (Conference Presentation)

    Science.gov (United States)

    Lee, Eui Su; Kim, Hyun-Soo; Park, Jeong-Woo; Park, Dong Woo; Park, Kyung Hyun

    2017-02-01

    Recently, a wide interest has been gathered in using terahertz (THz) waves as the carrier waves for the next generation of broadband wireless communications. Upon this objective, the photonics technologies are very attractive for their usefulness in signal generations, modulations and detections with enhanced bandwidth and data rates, and the readiness in combining to the existing fiber-optic or wireless networks. In this paper, as a preliminary step toward the THz wireless communications, a THz wireless interconnection system with a broadband antenna-integrated uni-traveling-carrier photodiode (UTC-PD) and a Shottky-barrier diode (SBD) module will be presented. In our system, optical beating signals are generated and digitally modulated by the optical intensity modulator driven by a pulse pattern generator (PPG). As the receiver a SBD and an IF filter followed by a low-noise preamplifier and a limiting amplifier was used. With a 6-mA photocurrent of the UTC-PD which corresponds to the transmitter output power of about 30 μW at 280 GHz, an error-free (BERdefinition serial digital interface format was successfully transmitted over a wireless link.

  13. Future of wireless communication

    Energy Technology Data Exchange (ETDEWEB)

    Barker, M

    1996-12-31

    This document reproduces slides from a conference presentation giving an overview of current and upcoming wireless communication methods of interest to Canadian electric utilities. Both voice and data communication methods are considered, including cellular telephone, satellite communications, personal communication services, regulated licensed arrowband data systems, and integrated services.

  14. European Research towards Future Wireless Communications

    DEFF Research Database (Denmark)

    Frederiksen, Flemming Bjerge; Prasad, Ramjee; Pedersen, Gert Frølund

    2005-01-01

    This paper presents an overview of four on-going European research projects in the field of mobile and wireless communications leading to the next generations of wireless communications. The projects started in 2004. They investigate requirements and definition of access technology, network...

  15. mm-Wave Hybrid Photonic Wireless Links for Ultra-High Speed Wireless Transmissions

    DEFF Research Database (Denmark)

    Rommel, Simon; Vegas Olmos, Juan José; Tafur Monroy, Idelfonso

    Hybrid photonic-wireless transmission schemes in the mm-wave frequency range are promising candidates to enable the multi-gigabit per second data communications required from wireless and mobile networks of the 5th and future generations. Large FCC spectrum allocations for wireless transmission...

  16. Space Link Extension (SLE) Emulation for High-Throughput Network Communication

    Science.gov (United States)

    Murawski, Robert W.; Tchorowski, Nicole; Golden, Bert

    2014-01-01

    As the data rate requirements for space communications increases, significant stress is placed not only on the wireless satellite communication links, but also on the ground networks which forward data from end-users to remote ground stations. These wide area network (WAN) connections add delay and jitter to the end-to-end satellite communication link, effects which can have significant impacts on the wireless communication link. It is imperative that any ground communication protocol can react to these effects such that the ground network does not become a bottleneck in the communication path to the satellite. In this paper, we present our SCENIC Emulation Lab testbed which was developed to test the CCSDS SLE protocol implementations proposed for use on future NASA communication networks. Our results show that in the presence of realistic levels of network delay, high-throughput SLE communication links can experience significant data rate throttling. Based on our observations, we present some insight into why this data throttling happens, and trace the probable issue back to non-optimal blocking communication which is sup-ported by the CCSDS SLE API recommended practices. These issues were presented as well to the SLE implementation developers which, based on our reports, developed a new release for SLE which we show fixes the SLE blocking issue and greatly improves the protocol throughput. In this paper, we also discuss future developments for our end-to-end emulation lab and how these improvements can be used to develop and test future space communication technologies.

  17. 75 FR 43206 - In the Matter of Certain Wireless Communications System Server Software, Wireless Handheld...

    Science.gov (United States)

    2010-07-23

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-706] In the Matter of Certain Wireless Communications System Server Software, Wireless Handheld Devices and Battery Packs: Notice of Commission... United States after importation of certain wireless communications system server software, wireless...

  18. Accuracy Enhancements for Positioning of Mobile Devices in Wireless Communication Networks

    DEFF Research Database (Denmark)

    Figueiras, Joao

    of the physical length of the communication links. Since these solutions do not require integration of additional hardware into the mobile nodes, they are cheap and simple to implement. As a price to pay, accuracy is typically lower in comparison to dedicated positioning systems. Thus, an important challenge...... communication among users, cooperative positioning strategies aim at localizing devices as a group and not as individuals. In order to reach this goal it is necessary to combine measurements from two domains: device-to-device links and cellular links. Since this combination of information......Positioning of mobile devices in wireless communication networks is nowadays being intensively investigated due to the combined benefit of location information and communication. Typical solutions for such scenario rely on robust algorithms that estimate position from indirect measurements...

  19. 2.3 Gbit/s underwater wireless optical communications using directly modulated 520 nm laser diode

    KAUST Repository

    Oubei, Hassan M.; Li, Changping; Park, Kihong; Ng, Tien Khee; Alouini, Mohamed-Slim; Ooi, Boon S.

    2015-01-01

    We experimentally demonstrate a record high-speed underwater wireless optical communication (UWOC) over 7 m distance using on-off keying non-return-to-zero (OOK-NRZ) modulation scheme. The communication link uses a commercial TO-9 packaged pigtailed

  20. Wireless Energy and Information Transmission in FSO and RF-FSO Links

    KAUST Repository

    Makki, Behrooz

    2017-09-22

    We propose and analyze a wireless energy and information transmission scheme in free-space optical (FSO) links. The results are presented for both quasi-static and fast-fading conditions. We derive closed-form expressions for throughput, outage probability and optimal power allocation optimizing the system throughput/outage probability. Finally, we complement the FSO link with an additional radio frequency (RF) link to create a hybrid RF-FSO system and reduce the system outage probability. The results show that joint implementation of the RF and FSO links leads to considerable performance improvement, compared to the cases with only FSO-based communication.

  1. Getting ahead of the curve in wireless communications | CRDI ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    The demand for wireless communications is expected to increase significantly over ... would become more accessible to those without mobile phones, or Internet access. ... that will have a lasting impact on the field of wireless communications. ... problems: cooperative communication, coexistence of wireless systems, and ...

  2. Digital signal processing for wireless communication using Matlab

    CERN Document Server

    Gopi, E S

    2016-01-01

    This book examines signal processing techniques used in wireless communication illustrated by using the Matlab program. The author discusses these techniques as they relate to Doppler spread; delay spread; Rayleigh and Rician channel modeling; rake receiver; diversity techniques; MIMO and OFDM -based transmission techniques; and array signal processing. Related topics such as detection theory, link budget, multiple access techniques, and spread spectrum are also covered.   ·         Illustrates signal processing techniques involved in wireless communication using Matlab ·         Discusses multiple access techniques such as Frequency division multiple access, Time division multiple access, and Code division multiple access ·         Covers band pass modulation techniques such as Binary phase shift keying, Differential phase shift keying, Quadrature phase shift keying, Binary frequency shift keying, Minimum shift keying, and Gaussian minimum shift keying.

  3. Advanced Signal Processing for Wireless Multimedia Communications

    Directory of Open Access Journals (Sweden)

    Xiaodong Wang

    2000-01-01

    Full Text Available There is at present a worldwide effort to develop next-generation wireless communication systems. It is envisioned that many of the future wireless systems will incorporate considerable signal-processing intelligence in order to provide advanced services such as multimedia transmission. In general, wireless channels can be very hostile media through which to communicate, due to substantial physical impediments, primarily radio-frequency interference and time-arying nature of the channel. The need of providing universal wireless access at high data-rate (which is the aim of many merging wireless applications presents a major technical challenge, and meeting this challenge necessitates the development of advanced signal processing techniques for multiple-access communications in non-stationary interference-rich environments. In this paper, we present some key advanced signal processing methodologies that have been developed in recent years for interference suppression in wireless networks. We will focus primarily on the problem of jointly suppressing multiple-access interference (MAI and intersymbol interference (ISI, which are the limiting sources of interference for the high data-rate wireless systems being proposed for many emerging application areas, such as wireless multimedia. We first present a signal subspace approach to blind joint suppression of MAI and ISI. We then discuss a powerful iterative technique for joint interference suppression and decoding, so-called Turbo multiuser detection, that is especially useful for wireless multimedia packet communications. We also discuss space-time processing methods that employ multiple antennas for interference rejection and signal enhancement. Finally, we touch briefly on the problems of suppressing narrowband interference and impulsive ambient noise, two other sources of radio-frequency interference present in wireless multimedia networks.

  4. Distributed wireless quantum communication networks

    International Nuclear Information System (INIS)

    Yu Xu-Tao; Xu Jin; Zhang Zai-Chen

    2013-01-01

    The distributed wireless quantum communication network (DWQCN) has a distributed network topology and transmits information by quantum states. In this paper, we present the concept of the DWQCN and propose a system scheme to transfer quantum states in the DWQCN. The system scheme for transmitting information between any two nodes in the DWQCN includes a routing protocol and a scheme for transferring quantum states. The routing protocol is on-demand and the routing metric is selected based on the number of entangled particle pairs. After setting up a route, quantum teleportation and entanglement swapping are used for transferring quantum states. Entanglement swapping is achieved along with the process of routing set up and the acknowledgment packet transmission. The measurement results of each entanglement swapping are piggybacked with route reply packets or acknowledgment packets. After entanglement swapping, a direct quantum link between source and destination is set up and quantum states are transferred by quantum teleportation. Adopting this scheme, the measurement results of entanglement swapping do not need to be transmitted specially, which decreases the wireless transmission cost and transmission delay. (general)

  5. Attacks to Cryptography Protocols of Wireless Industrial Communication Systems

    Directory of Open Access Journals (Sweden)

    Tomas Ondrasina

    2010-01-01

    Full Text Available The paper deals with problems of safety and security principles within wireless industrial communication systems. First safety requirements to wireless industrial communication system, summarisation of attack methods and the available measures for risks elimination are described with orientation to safety critical applications. The mainly part is oriented to identification of risks and summarisation of defensive methods of wireless communication based on cryptographic techniques. Practical part the cryptoanalytic’s attacks to COTS (Commercial Off-The-Shelf wireless communications are mentioned based on the IEEE 802.11 standards.

  6. Get certified a guide to wireless communication engineering technologies

    CERN Document Server

    Ahson, Syed A

    2009-01-01

    The Institute of Electrical and Electronics Engineers (IEEE) Communications Society designed the IEEE wireless communication engineering technologies (WCET) certification program to address the wireless industry's growing need for communications professionals with practical problem-solving skills in real-world situations. Individuals who achieve this prestigious certification are recognized as possessing the required knowledge, skill, and abilities to meet wireless challenges in various industry, business, corporate, and organizational settings. Presenting contributions from 50 wireless commun

  7. Near-Infrared Wireless Optical Communication with Particulates In-Suspension over the Underwater Channel

    KAUST Repository

    Lee, It Ee; Guo, Yong; Ng, Tien Khee; Park, Kihong; Alouini, Mohamed-Slim; Ooi, Boon S.

    2017-01-01

    We demonstrate a gigabit near-infrared-based underwater wireless optical communication link using an 808-nm laser diode to mitigate the particle scattering effect in turbid medium. An improvement in the error performance is observed with increasing

  8. Novel Reduced-Feedback Wireless Communication Systems

    KAUST Repository

    Shaqfeh, Mohammad Obaidah; Alnuweiri, Hussein; Alouini, Mohamed-Slim

    2011-01-01

    We have recently contributed to this field and published several journal and conference papers. We are the pioneers to propose a novel reduced-feedback opportunistic scheduling scheme that combines many desired features including fairness in resources distribution across the active terminals and distributed processing at the MAC layer level. In addition our scheme operates close to the upper capacity limits of achievable transmission rates over wireless links. We have also proposed another hybrid scheme that enables adjusting the feedback load flexibly based on rates requirements. We are currently investigating other novel ideas to design reduced-feedback communication systems.

  9. Design and Evaluation of 10-Gbps Inter-satellite Optical Wireless Communication Link for Improved Performance

    Science.gov (United States)

    Gupta, Amit; Nagpal, Shaina

    2017-05-01

    Inter-satellite optical wireless communication (IsOWC) systems can be chosen over existing microwave satellite systems for deploying in space in the future due to their high bandwidth, small size, light weight, low power and low cost. However, the IsOWC system suffers from various attenuations due to weather conditions, turbulence or scintillations which limit its performance and decreases its availability. So, in order to improve the performance, IsOWC system using directly modulated laser source is proposed in this work. The system is designed and evaluated to be suitable for high data rate transmissions up to 10 Gbps. The performance of the system is investigated in order to reduce the cost and complexity of link and improving the quality of information signal. Further the proposed IsOWC system is analysed using BER analyser, power meter and oscilloscope Visualizer.

  10. Tradeoff Analysis for Combat Service Support Wireless Communications Alternatives

    Energy Technology Data Exchange (ETDEWEB)

    Burnette, John R.; Thibodeau, Christopher C.; Greitzer, Frank L.

    2002-02-28

    As the Army moves toward more mobile and agile forces and continued sustainment of numerous high-cost legacy logistics management systems, the requirement for wireless connectivity and a wireless network to supporting organizations has become ever more critical. There are currently several Army communications initiatives underway to resolve this wireless connectivity issue. However, to fully appreciate and understand the value of these initiatives, a Tradeoff Analysis is needed. The present study seeks to identify and assess solutions. The analysis identified issues that impede Interim Brigade Combat Team (IBCT) communication system integration and outlined core requirements for sharing of logistics data between the field and Army battle command systems. Then, the analysis examined wireless communication alternatives as possible solutions for IBCT logistics communications problems. The current baseline system was compared with possible alternatives involving tactical radio systems, wireless/near term digital radio, cellular satellite, and third-generation (3G) wireless technologies. Cellular satellite and 3G wireless technologies offer clear advantages and should be considered for later IBCTs.

  11. Wireless multimedia communication systems design, analysis, and implementation

    CERN Document Server

    Rao, KR; Bakmaz, Bojan M

    2014-01-01

    Rapid progress in software, hardware, mobile networks, and the potential of interactive media poses many questions for researchers, manufacturers, and operators of wireless multimedia communication systems. Wireless Multimedia Communication Systems: Design, Analysis, and Implementation strives to answer those questions by not only covering the underlying concepts involved in the design, analysis, and implementation of wireless multimedia communication systems, but also by tackling advanced topics such as mobility management, security components, and smart grids.Offering an accessible treatment

  12. Near-Infrared Wireless Optical Communication with Particulates In-Suspension over the Underwater Channel

    KAUST Repository

    Lee, It Ee

    2017-05-08

    We demonstrate a gigabit near-infrared-based underwater wireless optical communication link using an 808-nm laser diode to mitigate the particle scattering effect in turbid medium. An improvement in the error performance is observed with increasing concentrations.

  13. Securing the communication of medical information using local biometric authentication and commercial wireless links.

    Science.gov (United States)

    Ivanov, Vladimir I; Yu, Paul L; Baras, John S

    2010-09-01

    Medical information is extremely sensitive in nature - a compromise, such as eavesdropping or tampering by a malicious third party, may result in identity theft, incorrect diagnosis and treatment, and even death. Therefore, it is important to secure the transfer of medical information from the patient to the recording system. We consider a portable, wireless device transferring medical information to a remote server. We decompose this problem into two sub-problems and propose security solutions to each of them: (1) to secure the link between the patient and the portable device, and (2) to secure the link between the portable device and the network. Thus we push the limits of the network security to the edge by authenticating the user using their biometric information; authenticating the device to the network at the physical layer; and strengthening the security of the wireless link with a key exchange mechanism. The proposed authentication methods can be used for recording the readings of medical data in a central database and for accessing medical records in various settings.

  14. OFDM systems for wireless communications

    CERN Document Server

    Narasimhamurthy, Adarsh

    2010-01-01

    Orthogonal Frequency Division Multiplexing (OFDM) systems are widely used in the standards for digital audio/video broadcasting, WiFi and WiMax. Being a frequency-domain approach to communications, OFDM has important advantages in dealing with the frequency-selective nature of high data rate wireless communication channels. As the needs for operating with higher data rates become more pressing, OFDM systems have emerged as an effective physical-layer solution.This short monograph is intended as a tutorial which highlights the deleterious aspects of the wireless channel and presents why OFDM is

  15. Towards Perpetual Energy Operation in Wireless Communication Systems

    KAUST Repository

    Benkhelifa, Fatma

    2017-01-01

    energy operation of wireless communication systems, energy harvesting (EH) from the radio frequency (RF) signals is one promising solution to make the wireless communication systems self-sustaining. Since RF signals are known to transmit information

  16. Indoor optical wireless communication system using beam-steering by cascaded diffractive optical elements

    NARCIS (Netherlands)

    Oh, C.W.; Tangdiongga, E.; Koonen, A.M.J.; García-Blanco, S.M.; Boller, Kl.J.; Sefunc, M.A.; Geuzebroek, D.

    2014-01-01

    While the radio spectrum continues to struggle with a soaring bandwidth demand, the optical spectrum promises virtually unlimited license-free bandwidth. We report the feasibility of high-capacity point-to-point links for indoor optical wireless communication with cascaded diffractive optical

  17. Fading and interference mitigation in wireless communications

    CERN Document Server

    Panic, Stefan; Anastasov, Jelena; Spalevic, Petar

    2013-01-01

    The rapid advancement of various wireless communication system services has created the need to analyze the possibility of their performance improvement. Introducing the basic principles of digital communications performance analysis and its mathematical formalization, Fading and Interference Mitigation in Wireless Communications will help you stay up to date with recent developments in the performance analysis of space diversity reception over fading channels in the presence of cochannel interference.The book presents a unified method for computing the performance of digital communication sys

  18. Broadband nanophotonic wireless links and networks using on-chip integrated plasmonic antennas.

    Science.gov (United States)

    Yang, Yuanqing; Li, Qiang; Qiu, Min

    2016-01-19

    Owing to their high capacity and flexibility, broadband wireless communications have been widely employed in radio and microwave regimes, playing indispensable roles in our daily life. Their optical analogs, however, have not been demonstrated at the nanoscale. In this paper, by exploiting plasmonic nanoantennas, we demonstrate the complete design of broadband wireless links and networks in the realm of nanophotonics. With a 100-fold enhancement in power transfer superior to previous designs as well as an ultrawide bandwidth that covers the entire telecommunication wavelength range, such broadband nanolinks and networks are expected to pave the way for future optical integrated nanocircuits.

  19. 2014 International Conference on Wireless Communications, Networking and Applications

    CERN Document Server

    2016-01-01

    This book is based on a series of conferences on Wireless Communications, Networking and Applications that have been held on December 27-28, 2014 in Shenzhen, China. The meetings themselves were a response to technological developments in the areas of wireless communications, networking and applications and facilitate researchers, engineers and students to share the latest research results and the advanced research methods of the field. The broad variety of disciplines involved in this research and the differences in approaching the basic problems are probably typical of a developing field of interdisciplinary research. However, some main areas of research and development in the emerging areas of wireless communication technology can now be identified. The contributions to this book are mainly selected from the papers of the conference on wireless communications, networking and applications and reflect the main areas of interest: Section 1 - Emerging Topics in Wireless and Mobile Computing and Communications...

  20. Emulation Platform for Cyber Analysis of Wireless Communication Network Protocols

    Energy Technology Data Exchange (ETDEWEB)

    Van Leeuwen, Brian P. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Eldridge, John M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-11-01

    Wireless networking and mobile communications is increasing around the world and in all sectors of our lives. With increasing use, the density and complexity of the systems increase with more base stations and advanced protocols to enable higher data throughputs. The security of data transported over wireless networks must also evolve with the advances in technologies enabling more capable wireless networks. However, means for analysis of the effectiveness of security approaches and implementations used on wireless networks are lacking. More specifically a capability to analyze the lower-layer protocols (i.e., Link and Physical layers) is a major challenge. An analysis approach that incorporates protocol implementations without the need for RF emissions is necessary. In this research paper several emulation tools and custom extensions that enable an analysis platform to perform cyber security analysis of lower layer wireless networks is presented. A use case of a published exploit in the 802.11 (i.e., WiFi) protocol family is provided to demonstrate the effectiveness of the described emulation platform.

  1. Frequency-division multiplexer and demultiplexer for terahertz wireless links.

    Science.gov (United States)

    Ma, Jianjun; Karl, Nicholas J; Bretin, Sara; Ducournau, Guillaume; Mittleman, Daniel M

    2017-09-28

    The development of components for terahertz wireless communications networks has become an active and growing research field. However, in most cases these components have been studied using a continuous or broadband-pulsed terahertz source, not using a modulated data stream. This limitation may mask important aspects of the performance of the device in a realistic system configuration. We report the characterization of one such device, a frequency multiplexer, using modulated data at rates up to 10 gigabits per second. We also demonstrate simultaneous error-free transmission of two signals at different carrier frequencies, with an aggregate data rate of 50 gigabits per second. We observe that the far-field spatial variation of the bit error rate is different from that of the emitted power, due to a small nonuniformity in the angular detection sensitivity. This is likely to be a common feature of any terahertz communication system in which signals propagate as diffracting beams not omnidirectional broadcasts.There is growing interest in the development of components to facilitate wireless communications in the terahertz but the characterization of these systems involve an unmodulated input. Here the authors demonstrate multiplexing and demultiplexing of data streams in the terahertz range using a real data link.

  2. 0.4 THz Photonic-Wireless Link With 106 Gb/s Single Channel Bitrate

    DEFF Research Database (Denmark)

    Jia, Shi; Pang, Xiaodan; Ozolins, Oskars

    2018-01-01

    To accommodate the demand of exponentially increased global wireless data traffic, the prospective data rates for wireless communication in the market place will soon reach 100 Gb/s and beyond. In the lab environment, wireless transmission throughput has been elevated to the level of over 100 Gb....../s attributed to the development of photonic-assisted millimeter wave and terahertz (THz) technologies. However, most of recent demonstrations with over 100 Gb/s data rates are based on spatial or frequency division multiplexing techniques, resulting in increased system's complexity and energy consumption. Here......, we experimentally demonstrate a single channel 0.4 THz photonic-wireless link achieving a net data rate of beyond 100 Gb/s by using a single pair of THz emitter and receiver, without employing any spatial/frequency division multiplexing techniques. The high throughput up to 106 Gb/s within a single...

  3. Wireless communications resource management

    CERN Document Server

    Lee, B; Seo, H

    2009-01-01

    Wireless technologies continue to evolve to address the insatiable demand for faster response times, larger bandwidth, and reliable transmission. Yet as the industry moves toward the development of post 3G systems, engineers have consumed all the affordable physical layer technologies discovered to date. This has necessitated more intelligent and optimized utilization of available wireless resources. Wireless Communications Resource Managem ent, Lee, Park, and Seo cover all aspects of this critical topic, from the preliminary concepts and mathematical tools to detailed descriptions of all the resource management techniques. Readers will be able to more effectively leverage limited spectrum and maximize device battery power, as well as address channel loss, shadowing, and multipath fading phenomena.

  4. Biomonitoring with Wireless Communications

    Energy Technology Data Exchange (ETDEWEB)

    Budinger, Thomas F.

    2003-03-01

    This review is divided into three sections: technologies for monitoring physiological parameters; biosensors for chemical assays and wireless communications technologies including image transmissions. Applications range from monitoring high risk patients for heart, respiratory activity and falls to sensing levels of physical activity in military, rescue, and sports personnel. The range of measurements include, heart rate, pulse wave form, respiratory rate, blood oxygen, tissue pCO2, exhaled carbon dioxide and physical activity. Other feasible measurements will employ miniature chemical laboratories on silicon or plastic chips. The measurements can be extended to clinical chemical assays ranging from common blood assays to protein or specialized protein measurements (e.g., troponin, creatine, and cytokines such as TNF and IL6). Though the feasibility of using wireless technology to communicate vital signs has been demonstrated 32 years ago (1) it has been only recently that practical and portable devices and communications net works have become generally available for inexpensive deployment of comfortable and affordable devices and systems.

  5. Experimental validation of wireless communication with chaos

    International Nuclear Information System (INIS)

    Ren, Hai-Peng; Bai, Chao; Liu, Jian; Baptista, Murilo S.; Grebogi, Celso

    2016-01-01

    The constraints of a wireless physical media, such as multi-path propagation and complex ambient noises, prevent information from being communicated at low bit error rate. Surprisingly, it has only recently been shown that, from a theoretical perspective, chaotic signals are optimal for communication. It maximises the receiver signal-to-noise performance, consequently minimizing the bit error rate. This work demonstrates numerically and experimentally that chaotic systems can in fact be used to create a reliable and efficient wireless communication system. Toward this goal, we propose an impulsive control method to generate chaotic wave signals that encode arbitrary binary information signals and an integration logic together with the match filter capable of decreasing the noise effect over a wireless channel. The experimental validation is conducted by inputting the signals generated by an electronic transmitting circuit to an electronic circuit that emulates a wireless channel, where the signals travel along three different paths. The output signal is decoded by an electronic receiver, after passing through a match filter.

  6. Experimental validation of wireless communication with chaos

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Hai-Peng; Bai, Chao; Liu, Jian [Shaanxi Key Laboratory of Complex System Control and Intelligent Information Processing, Xian University of Technology, Xian 710048 (China); Baptista, Murilo S.; Grebogi, Celso [Institute for Complex System and Mathematical Biology, SUPA, University of Aberdeen, Aberdeen AB24 3UE (United Kingdom)

    2016-08-15

    The constraints of a wireless physical media, such as multi-path propagation and complex ambient noises, prevent information from being communicated at low bit error rate. Surprisingly, it has only recently been shown that, from a theoretical perspective, chaotic signals are optimal for communication. It maximises the receiver signal-to-noise performance, consequently minimizing the bit error rate. This work demonstrates numerically and experimentally that chaotic systems can in fact be used to create a reliable and efficient wireless communication system. Toward this goal, we propose an impulsive control method to generate chaotic wave signals that encode arbitrary binary information signals and an integration logic together with the match filter capable of decreasing the noise effect over a wireless channel. The experimental validation is conducted by inputting the signals generated by an electronic transmitting circuit to an electronic circuit that emulates a wireless channel, where the signals travel along three different paths. The output signal is decoded by an electronic receiver, after passing through a match filter.

  7. Experimental validation of wireless communication with chaos.

    Science.gov (United States)

    Ren, Hai-Peng; Bai, Chao; Liu, Jian; Baptista, Murilo S; Grebogi, Celso

    2016-08-01

    The constraints of a wireless physical media, such as multi-path propagation and complex ambient noises, prevent information from being communicated at low bit error rate. Surprisingly, it has only recently been shown that, from a theoretical perspective, chaotic signals are optimal for communication. It maximises the receiver signal-to-noise performance, consequently minimizing the bit error rate. This work demonstrates numerically and experimentally that chaotic systems can in fact be used to create a reliable and efficient wireless communication system. Toward this goal, we propose an impulsive control method to generate chaotic wave signals that encode arbitrary binary information signals and an integration logic together with the match filter capable of decreasing the noise effect over a wireless channel. The experimental validation is conducted by inputting the signals generated by an electronic transmitting circuit to an electronic circuit that emulates a wireless channel, where the signals travel along three different paths. The output signal is decoded by an electronic receiver, after passing through a match filter.

  8. Collaborative Algortihms for Communication in Wireless Sensor Networks

    NARCIS (Netherlands)

    Nieberg, T.; Dulman, S.O.; Havinga, Paul J.M.; van Hoesel, L.F.W.; Wu Jian, W.J.

    In this paper, we present the design of the communication in a wireless sensor network. The resource limitations of a wireless sensor network, especially in terms of energy, require an integrated, and collaborative approach for the different layers of communication. In particular, energy-efficient

  9. Collaborative Algorithms for Communication in Wireless Sensor Networks

    NARCIS (Netherlands)

    Nieberg, T.; Dulman, S.O.; Havinga, Paul J.M.; van Hoesel, L.F.W.; Wu Jian, W.J.; Basten, Twan; Geilen, Marc; de Groot, Harmke

    2003-01-01

    In this paper, we present the design of the communication in a wireless sensor network. The resource limitations of a wireless sensor network, especially in terms of energy, require an integrated, and collaborative approach for the different layers of communication. In particular, energy-efficient

  10. Wireless communications networks for the smart grid

    CERN Document Server

    Ho, Quang-Dung; Rajalingham, Gowdemy; Le-Ngoc, Tho

    2014-01-01

    This brief presents a comprehensive review of the network architecture and communication technologies of the smart grid communication network (SGCN). It then studies the strengths, weaknesses and applications of two promising wireless mesh routing protocols that could be used to implement the SGCN. Packet transmission reliability, latency and robustness of these two protocols are evaluated and compared by simulations in various practical SGCN scenarios. Finally, technical challenges and open research opportunities of the SGCN are addressed. Wireless Communications Networks for Smart Grid provi

  11. How does wireless phones effect communication and treatment in hospitals?

    DEFF Research Database (Denmark)

    Paasch, Bettina Sletten

    The use of wireless phones in hospital units are increasing, inducing practitioners to carry a working phone each. A study performed in a medical hospital unit demonstrates that wireless phones can impair communication between health care practitioners and patients (Paasch, in press). Also wireless...... phones can compromise patient safety, both by disturbing the practitioners’ concentration, causing mistakes, and by transporting bacteria between patients. This qualitative Ph.D.-study wishes to further investigate the effect of wireless phones on communication and treatment in hospital units, using...... participant observations, ethnographic interviews and video observations. The study will explore how wireless phones mediate and is mediated by practitioners communication with each other and patients. As hospitals are constructed and reconstructed by all communication within, this insight will enable...

  12. Link Investigation of IEEE 802.15.4 Wireless Sensor Networks in Forests.

    Science.gov (United States)

    Ding, Xingjian; Sun, Guodong; Yang, Gaoxiang; Shang, Xinna

    2016-06-27

    Wireless sensor networks are expected to automatically monitor the ecological evolution and wildlife habits in forests. Low-power links (transceivers) are often adopted in wireless sensor network applications, in order to save the precious sensor energy and then achieve long-term, unattended monitoring. Recent research has presented some performance characteristics of such low-power wireless links under laboratory or outdoor scenarios with less obstacles, and they have found that low-power wireless links are unreliable and prone to be affected by the target environment. However, there is still less understanding about how well the low-power wireless link performs in real-world forests and to what extent the complex in-forest surrounding environments affect the link performances. In this paper, we empirically evaluate the low-power links of wireless sensors in three typical different forest environments. Our experiment investigates the performance of the link layer compatible with the IEEE 802.15.4 standard and analyzes the variation patterns of the packet reception ratio (PRR), the received signal strength indicator (RSSI) and the link quality indicator (LQI) under diverse experimental settings. Some observations of this study are inconsistent with or even contradict prior results that are achieved in open fields or relatively clean environments and thus, provide new insights both into effectively evaluating the low-power wireless links and into efficiently deploying wireless sensor network systems in forest environments.

  13. Converged wireline and wireless signal transport over optical fibre access links

    DEFF Research Database (Denmark)

    Tafur Monroy, Idelfonso; Prince, Kamau; Osadchiy, Alexey Vladimirovich

    2009-01-01

    This article reviews emerging trends in converged optical-wireless communication systems and outline the role that photonic technologies are playing in making the vision of a wireline-wireless converged signal transport network a reality.......This article reviews emerging trends in converged optical-wireless communication systems and outline the role that photonic technologies are playing in making the vision of a wireline-wireless converged signal transport network a reality....

  14. TULIP: A Link-Level Protocol for Improving TCP over Wireless Links

    National Research Council Canada - National Science Library

    Parsa, Christina; Garcia-Luna-Aceves, J. J

    1999-01-01

    We present the transport unaware link improvement protocol (TULIP), which dramatically improves the performance of TCP over lossy wireless links, without competing with or modifying the transport- or network-layer protocols...

  15. SystemC modelling of wireless communication channel

    Science.gov (United States)

    Conti, Massimo; Orcioni, Simone

    2011-05-01

    This paper presents the definition in SystemC of wireless channels at different levels of abstraction. The different levels of description of the wireless channel can be easily interchanged allowing the reuse of the application and baseband layers in a high level analysis of the network or in a deep analysis of the communication between the wireless devices.

  16. Wireless mesh networks.

    Science.gov (United States)

    Wang, Xinheng

    2008-01-01

    Wireless telemedicine using GSM and GPRS technologies can only provide low bandwidth connections, which makes it difficult to transmit images and video. Satellite or 3G wireless transmission provides greater bandwidth, but the running costs are high. Wireless networks (WLANs) appear promising, since they can supply high bandwidth at low cost. However, the WLAN technology has limitations, such as coverage. A new wireless networking technology named the wireless mesh network (WMN) overcomes some of the limitations of the WLAN. A WMN combines the characteristics of both a WLAN and ad hoc networks, thus forming an intelligent, large scale and broadband wireless network. These features are attractive for telemedicine and telecare because of the ability to provide data, voice and video communications over a large area. One successful wireless telemedicine project which uses wireless mesh technology is the Emergency Room Link (ER-LINK) in Tucson, Arizona, USA. There are three key characteristics of a WMN: self-organization, including self-management and self-healing; dynamic changes in network topology; and scalability. What we may now see is a shift from mobile communication and satellite systems for wireless telemedicine to the use of wireless networks based on mesh technology, since the latter are very attractive in terms of cost, reliability and speed.

  17. Analyzing Options for Airborne Emergency Wireless Communications

    Energy Technology Data Exchange (ETDEWEB)

    Michael Schmitt; Juan Deaton; Curt Papke; Shane Cherry

    2008-03-01

    In the event of large-scale natural or manmade catastrophic events, access to reliable and enduring commercial communication systems is critical. Hurricane Katrina provided a recent example of the need to ensure communications during a national emergency. To ensure that communication demands are met during these critical times, Idaho National Laboratory (INL) under the guidance of United States Strategic Command has studied infrastructure issues, concerns, and vulnerabilities associated with an airborne wireless communications capability. Such a capability could provide emergency wireless communications until public/commercial nodes can be systematically restored. This report focuses on the airborne cellular restoration concept; analyzing basic infrastructure requirements; identifying related infrastructure issues, concerns, and vulnerabilities and offers recommended solutions.

  18. The Wireless ATM Architecture

    Directory of Open Access Journals (Sweden)

    R. Palitefka

    1998-06-01

    Full Text Available An overview of the proposed wireless ATM structure is provided. Wireless communication have been developed to a level where offered services can now be extended beyond voice and data. There are already wireless LANs, cordless systems offering data services and mobile data. Wireless LAN systems are basically planned for local, on-promises and in-house networking providing short distance radio or infrared links between computer system. The main challenge of wireless ATM is to harmonise the development of broadband wireless system with service B -ISDN/ATM and ATM LANs, and offer multimedia multiservice features for the support of time-sensitive voice communication, video, desktop multimedia applications, and LAN data traffic for the wireless user.

  19. Technical Note: Novel method for water vapour monitoring using wireless communication networks measurements

    Directory of Open Access Journals (Sweden)

    N. David

    2009-04-01

    Full Text Available We propose a new technique that overcomes the obstacles of the existing methods for monitoring near-surface water vapour, by estimating humidity from data collected through existing wireless communication networks.

    Weather conditions and atmospheric phenomena affect the electromagnetic channel, causing attenuations to the radio signals. Thus, wireless communication networks are in effect built-in environmental monitoring facilities. The wireless microwave links, used in these networks, are widely deployed by cellular providers for backhaul communication between base stations, a few tens of meters above ground level. As a result, if all available measurements are used, the proposed method can provide moisture observations with high spatial resolution and potentially high temporal resolution. Further, the implementation cost is minimal, since the data used are already collected and saved by the cellular operators. In addition – many of these links are installed in areas where access is difficult such as orographic terrain and complex topography. As such, our method enables measurements in places that have been hard to measure in the past, or have never been measured before. The technique is restricted to weather conditions which exclude rain, fog or clouds along the propagation path. Strong winds that may cause movement of the link transmitter or receiver (or both may also interfere with the ability to conduct accurate measurements.

    We present results from real-data measurements taken from two microwave links used in a backhaul cellular network that show convincing correlation to surface station humidity measurements. The measurements were taken daily in two sites, one in northern Israel (28 measurements, the other in central Israel (29 measurements. The correlation between the microwave link measurements and the humidity gauges were 0.9 and 0.82 for the north and central sites, respectively. The Root Mean Square Differences

  20. Technical Note: Novel method for water vapour monitoring using wireless communication networks measurements

    Science.gov (United States)

    David, N.; Alpert, P.; Messer, H.

    2009-04-01

    We propose a new technique that overcomes the obstacles of the existing methods for monitoring near-surface water vapour, by estimating humidity from data collected through existing wireless communication networks. Weather conditions and atmospheric phenomena affect the electromagnetic channel, causing attenuations to the radio signals. Thus, wireless communication networks are in effect built-in environmental monitoring facilities. The wireless microwave links, used in these networks, are widely deployed by cellular providers for backhaul communication between base stations, a few tens of meters above ground level. As a result, if all available measurements are used, the proposed method can provide moisture observations with high spatial resolution and potentially high temporal resolution. Further, the implementation cost is minimal, since the data used are already collected and saved by the cellular operators. In addition - many of these links are installed in areas where access is difficult such as orographic terrain and complex topography. As such, our method enables measurements in places that have been hard to measure in the past, or have never been measured before. The technique is restricted to weather conditions which exclude rain, fog or clouds along the propagation path. Strong winds that may cause movement of the link transmitter or receiver (or both) may also interfere with the ability to conduct accurate measurements. We present results from real-data measurements taken from two microwave links used in a backhaul cellular network that show convincing correlation to surface station humidity measurements. The measurements were taken daily in two sites, one in northern Israel (28 measurements), the other in central Israel (29 measurements). The correlation between the microwave link measurements and the humidity gauges were 0.9 and 0.82 for the north and central sites, respectively. The Root Mean Square Differences (RMSD) were 1.8 g/m3 and 3.4 g/m3 for

  1. Energy Efficient Link Aware Routing with Power Control in Wireless Ad Hoc Networks.

    Science.gov (United States)

    Katiravan, Jeevaa; Sylvia, D; Rao, D Srinivasa

    2015-01-01

    In wireless ad hoc networks, the traditional routing protocols make the route selection based on minimum distance between the nodes and the minimum number of hop counts. Most of the routing decisions do not consider the condition of the network such as link quality and residual energy of the nodes. Also, when a link failure occurs, a route discovery mechanism is initiated which incurs high routing overhead. If the broadcast nature and the spatial diversity of the wireless communication are utilized efficiently it becomes possible to achieve improvement in the performance of the wireless networks. In contrast to the traditional routing scheme which makes use of a predetermined route for packet transmission, such an opportunistic routing scheme defines a predefined forwarding candidate list formed by using single network metrics. In this paper, a protocol is proposed which uses multiple metrics such as residual energy and link quality for route selection and also includes a monitoring mechanism which initiates a route discovery for a poor link, thereby reducing the overhead involved and improving the throughput of the network while maintaining network connectivity. Power control is also implemented not only to save energy but also to improve the network performance. Using simulations, we show the performance improvement attained in the network in terms of packet delivery ratio, routing overhead, and residual energy of the network.

  2. Energy Efficient Link Aware Routing with Power Control in Wireless Ad Hoc Networks

    Directory of Open Access Journals (Sweden)

    Jeevaa Katiravan

    2015-01-01

    Full Text Available In wireless ad hoc networks, the traditional routing protocols make the route selection based on minimum distance between the nodes and the minimum number of hop counts. Most of the routing decisions do not consider the condition of the network such as link quality and residual energy of the nodes. Also, when a link failure occurs, a route discovery mechanism is initiated which incurs high routing overhead. If the broadcast nature and the spatial diversity of the wireless communication are utilized efficiently it becomes possible to achieve improvement in the performance of the wireless networks. In contrast to the traditional routing scheme which makes use of a predetermined route for packet transmission, such an opportunistic routing scheme defines a predefined forwarding candidate list formed by using single network metrics. In this paper, a protocol is proposed which uses multiple metrics such as residual energy and link quality for route selection and also includes a monitoring mechanism which initiates a route discovery for a poor link, thereby reducing the overhead involved and improving the throughput of the network while maintaining network connectivity. Power control is also implemented not only to save energy but also to improve the network performance. Using simulations, we show the performance improvement attained in the network in terms of packet delivery ratio, routing overhead, and residual energy of the network.

  3. Comparison of Broadband Wireless Access Technology for HAPS Communication

    Directory of Open Access Journals (Sweden)

    Mingxiang GUAN

    2014-03-01

    Full Text Available An information system formed by HAP (High Altitude Platform will be a new generation-system for the wireless communications and HAPS (HAP Station communication system combines the advantages of both terrestrial and satellite communication systems and avoids, to different extents, their disadvantages. Third generation (3G mobile technology which is specified by the third generation partnership project (3 GPP is definitely one of the candidates. With the success of wireless network, the IEEE 802.16 standard, with its wireless metropolitan area network (MAN air interface appears to be a strong competitor. We provide initial practical comparison of these two technologies for HAPS Communication.

  4. Ultra-Reliable Communication in 5G Wireless Systems

    DEFF Research Database (Denmark)

    Popovski, Petar

    2014-01-01

    Wireless 5G systems will not only be “4G, but faster”. One of the novel features discussed in relation to 5G is Ultra-Reliable Communication (URC), an operation mode not present in today’s wireless systems. URC refers to provision of certain level of communication service almost 100 % of the time....... Example URC applications include reliable cloud connectivity, critical connections for industrial automation and reliable wireless coordination among vehicles. This paper puts forward a systematic view on URC in 5G wireless systems. It starts by analyzing the fundamental mechanisms that constitute......-term URC (URC-S). The second dimension is represented by the type of reliability impairment that can affect the communication reliability in a given scenario. The main objective of this paper is to create the context for defining and solving the new engineering problems posed by URC in 5G....

  5. Application opportunities in wireless communications. Final report

    International Nuclear Information System (INIS)

    Abbott, R.E.; Blevins, R.P.; Olmstead, C.

    1998-07-01

    This report presents the results of examinations of wireless technologies and applications that may offer potential to utilities. Five different wireless technology areas are reviewed. Three areas--Communication Networks, Monitored Security Services, and Home Automation--potentially represent new business ventures for utilities. Two areas--Automatic Vehicle Location and Automated Field-Force Management--represent wireless applications with potential for reduced operating costs and improved customer relations

  6. Spread Spectrum Techniques and their Applications to Wireless Communications

    DEFF Research Database (Denmark)

    Prasad, Ramjee; Cianca, E.

    2005-01-01

    Spread Spectrum (SS) radio communications is on the verge of potentially explosive commercial development An SS-based multiple access, such as CDMA, has been chosen for 3G wireless communications. Other current applications of SS techniues are in Wireless LANs and Satellite Navigation Systems...

  7. The Invention of the Wireless Communication Engine

    NARCIS (Netherlands)

    van der Kooij, B.J.G.

    2017-01-01

    Wireless technology, taken for granted today, was once an innovative wonder that would forever change how the world communicates. Developed by Guglielmo Marconi in the latter half of the nineteenth century, wireless telegraphy combined advancements made by Samuel Morse, William Cooke, Charles

  8. Characterization of In-Body to On-Body Wireless Radio Frequency Link for Upper Limb Prostheses.

    Directory of Open Access Journals (Sweden)

    Antonietta Stango

    Full Text Available Wireless implanted devices can be used to interface patients with disabilities with the aim of restoring impaired motor functions. Implanted devices that record and transmit electromyographic (EMG signals have been applied for the control of active prostheses. This simulation study investigates the propagation losses and the absorption rate of a wireless radio frequency link for in-to-on body communication in the medical implant communication service (MICS frequency band to control myoelectric upper limb prostheses. The implanted antenna is selected and a suitable external antenna is designed. The characterization of both antennas is done by numerical simulations. A heterogeneous 3D body model and a 3D electromagnetic solver have been used to model the path loss and to characterize the specific absorption rate (SAR. The path loss parameters were extracted and the SAR was characterized, verifying the compliance with the guideline limits. The path loss model has been also used for a preliminary link budget analysis to determine the feasibility of such system compliant with the IEEE 802.15.6 standard. The resulting link margin of 11 dB confirms the feasibility of the system proposed.

  9. A Cooperative Communication Model Tailored for Energy Balance in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Camila F. Rêgo

    2017-08-01

    Full Text Available Wireless Sensor Networks (WSN are characterized by their capacity of monitoring the environment, gathering and sharing information. Nodes in a WSN usually cooperate in the task of forwarding the sensed data to a sink node for later retrieval and analysis. The success of this task depends on the availability of efficient routes that meet the application requirements. As topology may change overtime, alternatives to improve and maintain network connectivity are highly desired. In this context, Cooperative Communication (CC emerged as an alternative to improve network connectivity. Despite its benefits, CC-links are known to have higher energy demands as compared to traditional, direct, links. In particular, CC-links require the source node to expend more power than others nodes, shortening their life span. The main contribution of this paper is to propose a new Cooperative Communication model, capable of increasing the energy balance of the CC-links while improving network connectivity. Simulation results show that, compared to other CC schemes, the source node of a Cooperative Communication reduces the amount of expended energy by 68% in the evaluated settings.

  10. E- and W-band high-capacity hybrid fiber-wireless link

    DEFF Research Database (Denmark)

    Vegas Olmos, Juan José; Pang, Xiaodan; Tafur Monroy, Idelfonso

    2014-01-01

    In this paper we summarize the work conducted in our group in the area of E- and W-band optical high-capacity fiber-wireless links. We present performance evaluations of E- and W-band mm-wave signal generation using photonic frequency upconversion employing both VCSELs and ECLs, along with transm...... in mobile backhaul/fronthaul applications, dense distributed antenna systems and fiber-over-radio scenarios.......In this paper we summarize the work conducted in our group in the area of E- and W-band optical high-capacity fiber-wireless links. We present performance evaluations of E- and W-band mm-wave signal generation using photonic frequency upconversion employing both VCSELs and ECLs, along...... with transmission over different type of optical fibers and for a number of values for the wireless link distance. Hybrid wireless-optical links can be composed of mature and resilient technology available off-the-shelf, and provide functionalities that can add value to optical access networks, specifically...

  11. 78 FR 1247 - Certain Electronic Devices, Including Wireless Communication Devices, Tablet Computers, Media...

    Science.gov (United States)

    2013-01-08

    ... Wireless Communication Devices, Tablet Computers, Media Players, and Televisions, and Components Thereof... devices, including wireless communication devices, tablet computers, media players, and televisions, and... wireless communication devices, tablet computers, media players, and televisions, and components thereof...

  12. Wireless sensor communications and internet connectivity for sensor networks

    Energy Technology Data Exchange (ETDEWEB)

    Dunbar, M. [Crossbow Technology, Inc., San Jose, CA (United States)

    2001-07-01

    A wireless sensor network architecture is an integrated hardware/software solution that has the potential to change the way sensors are used in a virtually unlimited range of industries and applications. By leveraging Bluetooth wireless technology for low-cost, short-range radio links, wireless sensor networks such as CrossNet{sup TM} enable users to create wireless sensor networks. These wireless networks can link dozens or hundreds of sensors of disparate types and brands with data acquisition/analysis systems, such as handheld devices, internet-enabled laptop or desktop PCs. The overwhelming majority of sensor applications are hard-wired at present, and since wiring is often the most time-consuming, tedious, trouble-prone and expensive aspect of sensor applications, users in many fields will find compelling reasons to adopt the wireless sensor network solution. (orig.)

  13. A Brief Survey of Media Access Control, Data Link Layer, and Protocol Technologies for Lunar Surface Communications

    Science.gov (United States)

    Wallett, Thomas M.

    2009-01-01

    This paper surveys and describes some of the existing media access control and data link layer technologies for possible application in lunar surface communications and the advanced wideband Direct Sequence Code Division Multiple Access (DSCDMA) conceptual systems utilizing phased-array technology that will evolve in the next decade. Time Domain Multiple Access (TDMA) and Code Division Multiple Access (CDMA) are standard Media Access Control (MAC) techniques that can be incorporated into lunar surface communications architectures. Another novel hybrid technique that is recently being developed for use with smart antenna technology combines the advantages of CDMA with those of TDMA. The relatively new and sundry wireless LAN data link layer protocols that are continually under development offer distinct advantages for lunar surface applications over the legacy protocols which are not wireless. Also several communication transport and routing protocols can be chosen with characteristics commensurate with smart antenna systems to provide spacecraft communications for links exhibiting high capacity on the surface of the Moon. The proper choices depend on the specific communication requirements.

  14. Hybrid Polling Method for Direct Link Communication for IEEE 802.11 Wireless LANs

    Directory of Open Access Journals (Sweden)

    Woo-Yong Choi

    2008-10-01

    Full Text Available The direct link communication between STAtions (STAs is one of the techniques to improve the MAC performance of IEEE 802.11 infrastructure networks. For the efficient direct link communication, in the literature, the simultaneous polling method was proposed to allow the multiple direct data communication to be performed simultaneously. However, the efficiency of the simultaneous polling method is affected by the interference condition. To alleviate the problem of the lower polling efficiency with the larger interference range, the hybrid polling method is proposed for the direct link communication between STAs in IEEE 802.11 infrastructure networks. By the proposed polling method, we can integrate the sequential and simultaneous polling methods properly according to the interference condition. Numerical examples are also presented to show the medium access control (MAC performance improvement by the proposed polling method.

  15. A cross-layer communication framework for wireless networked control systems

    NARCIS (Netherlands)

    Israr, N.; Scanlon, W.G.; Irwin, G.W.

    2009-01-01

    This paper presents a robust, dynamic cross-layer wireless communication architecture for wireless networked control systems. Each layer in the proposed protocol architecture contributes to the overall goal of reliable, energy efficient communication. The protocol stack also features a

  16. 78 FR 13895 - Certain Wireless Communications Base Stations and Components Thereof; Institution of...

    Science.gov (United States)

    2013-03-01

    ... the sale within the United States after importation of certain wireless communications base stations... United States after importation of certain wireless communications base stations and components thereof... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-871] Certain Wireless Communications Base...

  17. Chaos-based wireless communication resisting multipath effects

    Science.gov (United States)

    Yao, Jun-Liang; Li, Chen; Ren, Hai-Peng; Grebogi, Celso

    2017-09-01

    In additive white Gaussian noise channel, chaos has been shown to be the optimal coherent communication waveform in the sense of using a very simple matched filter to maximize the signal-to-noise ratio. Recently, Lyapunov exponent spectrum of the chaotic signals after being transmitted through a wireless channel has been shown to be unaltered, paving the way for wireless communication using chaos. In wireless communication systems, inter-symbol interference caused by multipath propagation is one of the main obstacles to achieve high bit transmission rate and low bit-error rate (BER). How to resist the multipath effect is a fundamental problem in a chaos-based wireless communication system (CWCS). In this paper, a CWCS is built to transmit chaotic signals generated by a hybrid dynamical system and then to filter the received signals by using the corresponding matched filter to decrease the noise effect and to detect the binary information. We find that the multipath effect can be effectively resisted by regrouping the return map of the received signal and by setting the corresponding threshold based on the available information. We show that the optimal threshold is a function of the channel parameters and of the information symbols. Practically, the channel parameters are time-variant, and the future information symbols are unavailable. In this case, a suboptimal threshold is proposed, and the BER using the suboptimal threshold is derived analytically. Simulation results show that the CWCS achieves a remarkable competitive performance even under inaccurate channel parameters.

  18. Hadoop-Based Healthcare Information System Design and Wireless Security Communication Implementation

    Directory of Open Access Journals (Sweden)

    Hongsong Chen

    2015-01-01

    Full Text Available Human health information from healthcare system can provide important diagnosis data and reference to doctors. However, continuous monitoring and security storage of human health data are challenging personal privacy and big data storage. To build secure and efficient healthcare application, Hadoop-based healthcare security communication system is proposed. In wireless biosensor network, authentication and key transfer should be lightweight. An ECC (Elliptic Curve Cryptography based lightweight digital signature and key transmission method are proposed to provide wireless secure communication in healthcare information system. Sunspot wireless sensor nodes are used to build healthcare secure communication network; wireless nodes and base station are assigned different tasks to achieve secure communication goal in healthcare information system. Mysql database is used to store Sunspot security entity table and measure entity table. Hadoop is used to backup and audit the Sunspot security entity table. Sqoop tool is used to import/export data between Mysql database and HDFS (Hadoop distributed file system. Ganglia is used to monitor and measure the performance of Hadoop cluster. Simulation results show that the Hadoop-based healthcare architecture and wireless security communication method are highly effective to build a wireless healthcare information system.

  19. Advanced communication methods developed for nuclear data communication applications

    International Nuclear Information System (INIS)

    Tiwari, Akash; Tiwari, Railesha; Tiwari, S.S.; Panday, Lokesh; Suri, Nitin; Takle, Tarun Rao; Jain, Sanjeev; Gupta, Rishi; Sharma, Dipeeka; Takle, Rahul Rao; Gautam, Rajeev; Bhargava, Vishal; Arora, Himanshu; Agarwal, Ankur; Rupesh; Chawla, Mohit; Sethi, Amardeep Singh; Gupta, Mukesh; Gupta, Ankit; Verma, Neha; Sood, Nitin; Singh, Sunil; Agarwal, Chandresh

    2004-01-01

    We conducted various experiments and tested data communications methods that may be useful for various applications in nuclear industries. We explored the following areas. I. Scientific data communication among scientists within the laboratory and inter-laboratory data exchange. 2.Data from sensors from remote and wired sensors. 3.Data from multiple sensors with small zone. 4.Data from single or multiple sensors from distances above 100 m and less than 10 km. No any single data communication method was found to be the best solution for nuclear applications and multiple modes of communication were found to be advantageous than any single mode of data communication. Network of computers in the control room and in between laboratories connected with optical fiber or an isolated Ethernet coaxial LAN was found to be optimum. Information from multiple analog process sensors in smaller zones like reactor building and laboratories on 12C LAN and short-range wireless LAN were found to be advantageous. Within the laboratory sensor data network of 12C was found to be cost effective and wireless LAN was comparatively expansive. Within a room infrared optical LAN and FSK wireless LAN were found to be highly useful in making the sensors free from wires. Direct sensor interface on FSK wireless link were found to be fast accurate, cost effective over large distance data communication. Such links are the only way to communicate from sea boy and balloons hardware. 1-wire communication network of Dallas Semiconductor USA for weather station data communication Computer to computer communication using optical LAN links has been tried, temperature pressure, humidity, ionizing radiation, generator RPM and voltage and various other analog signals were also transported o FSK optical and wireless links. Multiple sensors needed a dedicated data acquisition system and wireless LAN for data telemetry. (author)

  20. Opportunities and challenges for optical wireless: the competitive advantage of free space telecommunications links in today's crowded marketplace

    Science.gov (United States)

    Carbonneau, Theresa H.; Wisely, David R.

    1998-01-01

    Never before has the opportunity for terrestrial optical wireless communications links been so great. The high data rates attainable, up to OC-24, make it a very attractive and cost effective alternative to traditional fiber optic and microwave links. With today's demand for interactive multimedia-based applications, such as video conferencing and telemedicine, optical wireless products are the only ones that can provide the needed bandwidth in situations when it is too costly or impossible to install fiber optic cable. Recent developments in laser and optics technologies, in addition to auto beam tracking, permit transmission units to achieve excellent performance rates in all weather conditions.

  1. Artificial intelligence in wireless communications

    CERN Document Server

    Rondeau, Thomas W

    2009-01-01

    This cutting-edge resource offers practical overview of cognitive radio, a paradigm for wireless communications in which a network or a wireless node changes its transmission or reception parameters. The alteration of parameters is based on the active monitoring of several factors in the external and internal radio environment. This book offers a detailed description of cognitive radio and its individual parts. Practitioners learn how the basic processing elements and their capabilities are implemented as modular components. Moreover, the book explains how each component can be developed and t

  2. Receiver front-end circuits for future generations of wireless communications

    NARCIS (Netherlands)

    Sanduleanu, M.A.T.; Vidojkovic - Andjelovic, M.; Vidojkovic, V.; Roermund, van A.H.M.; Tasic, A.

    2008-01-01

    In this paper, new receiver concepts and CMOS circuits for future wireless communications applications are introduced. The concepts derived are applied to a few classes of wireless communications standards that are broad-band at radio frequencies and/or require a broad-band baseband circuitry.

  3. Feasibility analysis of AP1000 wireless communication system and selection of technical solutions

    International Nuclear Information System (INIS)

    Zhao Xin

    2012-01-01

    This article expatiates the rationality and feasibility of AP1000 nuclear power plant adopts wireless communication system as the first choice in routine and emergency operations, compares and analysed. 5 major wireless communication technology solutions, and introduces the Wi-Fi based wireless communication system architecture. (author)

  4. The Emerging Trends in Satellite and Wireless Communications ...

    Indian Academy of Sciences (India)

    Table of contents. The Emerging Trends in Satellite and Wireless Communications Technologies · Satellite Communications · Communications Satellites for Global Coverage · Satellite Transponders · The Four Generations Of Commercial Communication Geo-Sat · PowerPoint Presentation · An Indian Scenario INSAT ...

  5. Towards Perpetual Energy Operation in Wireless Communication Systems

    KAUST Repository

    Benkhelifa, Fatma

    2017-11-01

    Wireless is everywhere. Smartphones, tablets, laptops, implantable medical devices, and many other wireless devices are massively taking part of our everyday activities. On average, an actively digital consumer has three devices. However, most of these wireless devices are small equipped with batteries that are often limited and need to be replaced or recharged. This fact limits the operating lifetime of wireless devices and presents a major challenge in wireless communication. To improve the perpetual energy operation of wireless communication systems, energy harvesting (EH) from the radio frequency (RF) signals is one promising solution to make the wireless communication systems self-sustaining. Since RF signals are known to transmit information, it is interesting to study when RF signals are simultaneously used to transmit information and scavenge energy, namely simultaneous wireless information and power transfer (SWIPT). In this thesis, we specifically aim to study the SWIPT in multiple-input multiple-output (MIMO) relay communication systems and in cognitive radio (CR) networks. First, we study the SWIPT in MIMO relay systems where the relay harvests the energy from the source and uses partially/fully the harvested energy to forward the signal to the destination. For both the amplify-and-forward (AF) and decode-and-forward (DF) relaying protocols, we consider the ideal scheme where both the energy and information transfer to the relay happen simultaneously, and the practical power splitting and time switching schemes. For each scheme, we aim to maximize the achievable end-to-end rate with a certain energy constraint at the relay. Furthermore, we consider the sum rate maximization problem for the multiuser MIMO DF relay broadcasting channels with multiple EH-enabled relays, and an enhanced low complex solution is proposed based on the block diagonalization method. Finally, we study the energy and data performance of the SWIPT in CR network where either the

  6. Indoor Airborne Ultrasonic Wireless Communication Using OFDM Methods.

    Science.gov (United States)

    Jiang, Wentao; Wright, William M D

    2017-09-01

    Concerns still exist over the safety of prolonged exposure to radio frequency (RF) wireless transmissions and there are also potential data security issues due to remote signal interception techniques such as Bluesniping. Airborne ultrasound may be used as an alternative to RF for indoor wireless communication systems for securely transmitting data over short ranges, as signals are difficult to intercept from outside the room. Two types of air-coupled capacitive ultrasonic transducer were used in the implementation of an indoor airborne wireless communication system. One was a commercially available SensComp series 600 ultrasonic transducer with a nominal frequency of 50 kHz, and the other was a prototype transducer with a high- k dielectric layer operating at higher frequencies from 200 to 400 kHz. Binary phase-shift keying (BPSK), quadrature phase-shift keying (QPSK), and quadrature amplitude modulation (QAM)-based orthogonal frequency division multiplexing modulation methods were successfully implemented using multiple orthogonal subchannels. The modulated ultrasonic signal packets were synchronized using a wireless link, and a least-squares channel estimation algorithm was used to compensate the phase and amplitude distortion introduced by the air channel. By sending and receiving the ultrasonic signals using the SensComp transducers, the achieved maximum system data rate was up to 180 kb/s using 16-QAM with ultrasonic channels from 55 to 99 kHz, over a line-of-sight transmission distance of 6 m with no detectable errors. The transmission range could be extended to 9 and 11 m using QPSK and BPSK modulation schemes, respectively. The achieved data rates for the QPSK and BPSK schemes were 90 and 45 kb/s using the same bandwidth. For the high- k ultrasonic transducers, a maximum data rate up to 800 kb/s with no measurable errors was achieved up to a range of 0.7 m. The attainable transmission ranges were increased to 1.1 and 1.2 m with data rates of 400 and 200 kb

  7. Overlapping coalition formation games in wireless communication networks

    CERN Document Server

    Wang, Tianyu; Saad, Walid; Han, Zhu

    2017-01-01

    This brief introduces overlapping coalition formation games (OCF games), a novel mathematical framework from cooperative game theory that can be used to model, design and analyze cooperative scenarios in future wireless communication networks. The concepts of OCF games are explained, and several algorithmic aspects are studied. In addition, several major application scenarios are discussed. These applications are drawn from a variety of fields that include radio resource allocation in dense wireless networks, cooperative spectrum sensing for cognitive radio networks, and resource management for crowd sourcing. For each application, the use of OCF games is discussed in detail in order to show how this framework can be used to solve relevant wireless networking problems. Overlapping Coalition Formation Games in Wireless Communication Networks provides researchers, students and practitioners with a concise overview of existing works in this emerging area, exploring the relevant fundamental theories, key techniqu...

  8. Wireless Cellular Mobile Communications

    Directory of Open Access Journals (Sweden)

    V. Zalud

    2002-12-01

    Full Text Available In this article is briefly reviewed the history of wireless cellularmobile communications, examined the progress in current secondgeneration (2G cellular standards and discussed their migration to thethird generation (3G. The European 2G cellular standard GSM and itsevolution phases GPRS and EDGE are described somewhat in detail. Thethird generation standard UMTS taking up on GSM/GPRS core network andequipped with a new advanced access network on the basis of codedivision multiple access (CDMA is investigated too. A sketch of theperspective of mobile communication beyond 3G concludes this article.

  9. Advances in analog and RF IC design for wireless communication systems

    CERN Document Server

    Manganaro, Gabriele

    2013-01-01

    Advances in Analog and RF IC Design for Wireless Communication Systems gives technical introductions to the latest and most significant topics in the area of circuit design of analog/RF ICs for wireless communication systems, emphasizing wireless infrastructure rather than handsets. The book ranges from very high performance circuits for complex wireless infrastructure systems to selected highly integrated systems for handsets and mobile devices. Coverage includes power amplifiers, low-noise amplifiers, modulators, analog-to-digital converters (ADCs) and digital-to-analog converters

  10. Pervasive Mobile and Ambient Wireless Communications COST Action 2100

    CERN Document Server

    Zanella, Alberto

    2012-01-01

    Pervasive Mobile and Ambient Wireless Communications reports the findings of COST 2100, a project of the European intergovernmental COST framework addressing various topics currently emerging in mobile and wireless communications. Drawing on experience developed in this and earlier COST projects, the text represents the final outcome of collaborative work involving more than 500 researchers in 140 institutions and 30 countries (including outside Europe). The book’s subject matter includes: • transmission techniques; • signal processing; • radio channel modelling and measurement; • radio network issues; and • recent paradigms including ultra-wideband, cooperative, vehicle-to-vehicle and body communications. The research reported comes from a variety of backgrounds: academic, equipment-manufacturing and operational. The information contained in this book will bring the study reported to a wider audience from all those spheres of work. Pervasive Mobile and Ambient Wireless Communications will be of i...

  11. 78 FR 34669 - Certain Electronic Devices, Including Wireless Communication Devices, Portable Music and Data...

    Science.gov (United States)

    2013-06-10

    ..., Including Wireless Communication Devices, Portable Music and Data Processing Devices, and Tablet Computers... importing wireless communication devices, portable music and data processing devices, and tablet computers... certain electronic devices, including wireless communication devices, portable music and data processing...

  12. Study on characteristics of the aperture-averaging factor of atmospheric scintillation in terrestrial optical wireless communication

    Science.gov (United States)

    Shen, Hong; Liu, Wen-xing; Zhou, Xue-yun; Zhou, Li-ling; Yu, Long-Kun

    2018-02-01

    In order to thoroughly understand the characteristics of the aperture-averaging effect of atmospheric scintillation in terrestrial optical wireless communication and provide references for engineering design and performance evaluation of the optics system employed in the atmosphere, we have theoretically deduced the generally analytic expression of the aperture-averaging factor of atmospheric scintillation, and numerically investigated characteristics of the apertureaveraging factor under different propagation conditions. The limitations of the current commonly used approximate calculation formula of aperture-averaging factor have been discussed, and the results showed that the current calculation formula is not applicable for the small receiving aperture under non-uniform turbulence link. Numerical calculation has showed that aperture-averaging factor of atmospheric scintillation presented an exponential decline model for the small receiving aperture under non-uniform turbulent link, and the general expression of the model was given. This model has certain guiding significance for evaluating the aperture-averaging effect in the terrestrial optical wireless communication.

  13. Flash floods warning technique based on wireless communication networks data

    Science.gov (United States)

    David, Noam; Alpert, Pinhas; Messer, Hagit

    2010-05-01

    Flash floods can occur throughout or subsequent to rainfall events, particularly in cases where the precipitation is of high-intensity. Unfortunately, each year these floods cause severe property damage and heavy casualties. At present, there are no sufficient real time flash flood warning facilities found to cope with this phenomenon. Here we show the tremendous potential of flash floods advanced warning based on precipitation measurements of commercial microwave links. As was recently shown, wireless communication networks supply high resolution precipitation measurements at ground level while often being situated in flood prone areas, covering large parts of these hazardous regions. We present the flash flood warning potential of the wireless communication system for two different cases when floods occurred at the Judean desert and at the northern Negev in Israel. In both cases, an advanced warning regarding the hazard could have been announced based on this system. • This research was supported by THE ISRAEL SCIENCE FOUNDATION (grant No. 173/08). This work was also supported by a grant from the Yeshaya Horowitz Association, Jerusalem. Additional support was given by the PROCEMA-BMBF project and by the GLOWA-JR BMBF project.

  14. Collaborative communication protocols for wireless sensor networks

    NARCIS (Netherlands)

    Dulman, S.O.; van Hoesel, L.F.W.; Nieberg, T.; Havinga, Paul J.M.

    In this document, the design of communication within a wireless sensor network is discussed. The resource limitations of such a network, especially in terms of energy, require an integrated approach for all (traditional) layers of communication. We present such an integrated, collaborative approach

  15. Phase patterns of coupled oscillators with application to wireless communication

    Energy Technology Data Exchange (ETDEWEB)

    Arenas, A.

    2008-01-02

    Here we study the plausibility of a phase oscillators dynamical model for TDMA in wireless communication networks. We show that emerging patterns of phase locking states between oscillators can eventually oscillate in a round-robin schedule, in a similar way to models of pulse coupled oscillators designed to this end. The results open the door for new communication protocols in a continuous interacting networks of wireless communication devices.

  16. Channel coding techniques for wireless communications

    CERN Document Server

    Deergha Rao, K

    2015-01-01

    The book discusses modern channel coding techniques for wireless communications such as turbo codes, low-density parity check (LDPC) codes, space–time (ST) coding, RS (or Reed–Solomon) codes and convolutional codes. Many illustrative examples are included in each chapter for easy understanding of the coding techniques. The text is integrated with MATLAB-based programs to enhance the understanding of the subject’s underlying theories. It includes current topics of increasing importance such as turbo codes, LDPC codes, Luby transform (LT) codes, Raptor codes, and ST coding in detail, in addition to the traditional codes such as cyclic codes, BCH (or Bose–Chaudhuri–Hocquenghem) and RS codes and convolutional codes. Multiple-input and multiple-output (MIMO) communications is a multiple antenna technology, which is an effective method for high-speed or high-reliability wireless communications. PC-based MATLAB m-files for the illustrative examples are provided on the book page on Springer.com for free dow...

  17. Acemind new indoor full duplex optical wireless communication prototype

    Science.gov (United States)

    Bouchet, Olivier; Perrufel, Micheline; Topsu, Suat; Guan, Hongyu

    2016-09-01

    For over a century and Mr. Guglielmo Marconi invention, systems using radio waves have controlled over wireless telecommunication solutions; from Amplitude Modulation (AM) radio products to satellite communications for instance. But beyond an increasingly negative opinion face to radio waves and radio spectrum availability more and more reduced; there is an unprecedented opportunity with LED installation in displays and lighting to provide optical wireless communication solutions. As a result, technologically mature solutions are already commercially available for services such as Location Based Services (LBS), broadcast diffusion or Intelligent Transport Services (ITS). Pending finalization of the standard review process IEEE 802.15.7 r1, our paper presents the results of the European collaborative project named "ACEMIND". It offers an indoor bilateral optical wireless communication prototype having the following characteristics: use of the existing electrical infrastructure, through judicious combination with Light Fidelity (LiFi), Power Line Communication (PLC) and Ethernet to reduce the implementation cost. We propose a bilateral optical wireless communication even when the light is switched off by using Visible Light Communication (VLC) and Infra-Red Communication (IRC) combined to a remote optical switch. Dimensionally optimized LiFi module is presented in order to offer the possibility for integration inside a laptop. Finally, there is operational mechanism implementation such as OFDM/DMT to increase throughput. After the introduction, we will present the results of a market study from Orange Labs customers about their opinion on LiFi components. Then we will detail the LiFi prototype, from the physical layer aspect to MAC layer before concluding on commercial development prospects.

  18. Physical layer approaches for securing wireless communication systems

    CERN Document Server

    Wen, Hong

    2013-01-01

    This book surveys the outstanding work of physical-layer (PHY) security, including  the recent achievements of confidentiality and authentication for wireless communication systems by channel identification. A practical approach to building unconditional confidentiality for Wireless Communication security by feedback and error correcting code is introduced and a framework of PHY security based on space time block code (STBC) MIMO system is demonstrated.  Also discussed is a scheme which combines cryptographic techniques implemented in the higher layer with the physical layer security approach

  19. Distributed wireless quantum communication networks with partially entangled pairs

    International Nuclear Information System (INIS)

    Yu Xu-Tao; Zhang Zai-Chen; Xu Jin

    2014-01-01

    Wireless quantum communication networks transfer quantum state by teleportation. Existing research focuses on maximal entangled pairs. In this paper, we analyse the distributed wireless quantum communication networks with partially entangled pairs. A quantum routing scheme with multi-hop teleportation is proposed. With the proposed scheme, is not necessary for the quantum path to be consistent with the classical path. The quantum path and its associated classical path are established in a distributed way. Direct multi-hop teleportation is conducted on the selected path to transfer a quantum state from the source to the destination. Based on the feature of multi-hop teleportation using partially entangled pairs, if the node number of the quantum path is even, the destination node will add another teleportation at itself. We simulated the performance of distributed wireless quantum communication networks with a partially entangled state. The probability of transferring the quantum state successfully is statistically analyzed. Our work shows that multi-hop teleportation on distributed wireless quantum networks with partially entangled pairs is feasible. (general)

  20. Low-power wireless infrared communications

    NARCIS (Netherlands)

    Otte, R.; Jong, de L.P.; Roermund, van A.H.M.

    1999-01-01

    Today, wireless infrared transmission has entered our homes, offices, industry and health care, with applications in the field of remote control, telemetry, and local communication. This book is about the underlying technology. As it is an outgrowth of my Ph.D. thesis, the emphasis is on fundamental

  1. Wireless Crew Communication Feasibility Assessment

    Science.gov (United States)

    Archer, Ronald D.; Romero, Andy; Juge, David

    2016-01-01

    Ongoing discussions with crew currently onboard the ISS as well as the crew debriefs from completed ISS missions indicate that issues associated with the lack of wireless crew communication results in increased crew task completion times and lower productivity, creates cable management issues, and increases crew frustration.

  2. Efficient Smart Antenna Systems (4G) For CDMA Wireless Communication

    OpenAIRE

    Singla, Brahm Mohinder; Kumar, Ashish

    2012-01-01

    Today, mobile communications play a central role in the voice/data network arena. With the deployment of mass scale 3G just around the corner, new directions are already being researched. In this paper we address about the 4TH G mobile communications.The Fourth Generation (4G) Mobile Communications should not focus only on the data-rate increase and new air interface.4G Mobile should instead con-verge the advanced wireless mobile communications and high-speed wireless access systems into an O...

  3. Reduced-Complexity Wireless Transceiver Architectures and Techniques for Space-Time Communications

    DEFF Research Database (Denmark)

    Tsakalaki, Elpiniki

    2012-01-01

    The dissertation sheds light on the performance gains of multi-antenna systems when the antenna aspects and the associated signal processing and coding aspects are integrated together in a multidisciplinary approach, addressing a variety of challenging tasks pertaining to the joint design of smart...... wireless transceivers and communication techniques. These tasks are at the intersection of different scientific disciplines including signal processing, communications, antennas and propagation. Specifically, the thesis deals with reduced-complexity space-time wireless transceiver architectures...... and associated communication techniques for multi-input multi-output (MIMO) and cognitive radio (CR) systems as well as wireless sensor networks (WSNs). The low-complexity architectures are obtained by equipping the wireless transceiver with passive control ports which require the minimum amount of RF hardware...

  4. The field portable gamma-ray spectrometer based on wireless communication

    International Nuclear Information System (INIS)

    Wang Guangxi; Lai Wanchang; Ge Liangquan; Li Dan; Yu Xinhua; Gu Shuiliang

    2009-01-01

    It introduces a potable multi-channel γ spectrometry based on wireless communication. The author discussed the existed inconvenience in field measurement, designed the separate structure of host and detector, developed the digital γ spectrometry detector and the application software based on PDA, and completed the short-haul wireless communication between detector and host based on bluetooth technology. The entire current of the detector is less than 180 mA through test, the distance of wireless transmission can be up to 10 meters, and the speed and functions of processing spectrum are further enhanced. (authors)

  5. Connectivity model for Inter-working multi-hop wireless networks

    CSIR Research Space (South Africa)

    Salami, O

    2009-08-01

    Full Text Available pairs in inter-working multi-hop wireless networks can be evaluated based on the availability of radio links and communication routes. This paper presents an analytical study of the link and route availability in inter-working multi-hop wireless networks....

  6. High Data Rate Optical Wireless Communications Based on Ultraviolet Band

    KAUST Repository

    Sun, Xiaobin

    2017-10-01

    Optical wireless communication systems based on ultraviolet (UV)-band has a lot inherent advantages, such as low background solar radiation, low device dark noise. Besides, it also has small restrictive requirements for PAT (pointing, acquisition, and tracking) because of its high atmospheric scattering with molecules and aerosols. And these advantages are driving people to explore and utilize UV band for constructing and implementing a high-data-rate, less PAT communication links, such as diffuse-line-of-sight links (diffuse-LOS) and non-line-of-sight (NLOS). The responsivity of the photodetector at UV range is far lower than that of visible range, high power UV transmitters which can be easily modulated are under investigation. These factors make it is hard to realize a high-data-rate diffuse-LOS or NLOS UV communication links. To achieve a UV link mentioned above with current devices and modulation schemes, this thesis presents some efficient modulation schemes and available devices for the time being. Besides, a demonstration of ultraviolet-B (UVB) communication link is implemented utilizing quadrature amplitude modulation (QAM) orthogonal frequency-division multiplexing (OFDM). The demonstration is based on a 294-nm UVB-light-emitting-diode (UVB-LED) with a full-width at half-maximum (FWHM) of 9 nm, and according to the measured L-I-V curve, we set the bias voltage as 7V for maximum the ac amplitude and thus get a high signal-noise-ratio (SNR) channel, and the light output power is 190 μW with such bias voltage. Besides, there is a unique silica gel lens on top of the LED to concentrate the beam. A -3-dB bandwidth of 29 MHz was measured and a high-speed near-solar-blind communication link with a data rate of 71 Mbit/s was achieved using 8-QAM-OFDM at perfect alignment, and 23.6 Mbit/s using 2-QAM-OFDM when the angle subtended by the pointing direction of the UVB-LED and photodetector (PD) is 12 degrees, thus establishing a diffuse-line-of-sight (LOS) link

  7. On the average capacity and bit error probability of wireless communication systems

    KAUST Repository

    Yilmaz, Ferkan

    2011-12-01

    Analysis of the average binary error probabilities and average capacity of wireless communications systems over generalized fading channels have been considered separately in the past. This paper introduces a novel moment generating function-based unified expression for both average binary error probabilities and average capacity of single and multiple link communication with maximal ratio combining. It is a matter to note that the generic unified expression offered in this paper can be easily calculated and that is applicable to a wide variety of fading scenarios, and the mathematical formalism is illustrated with the generalized Gamma fading distribution in order to validate the correctness of our newly derived results. © 2011 IEEE.

  8. Electromagnetic Interference Analysis of Cabinet for Wireless HART Communication

    International Nuclear Information System (INIS)

    Choo, Jaeyul; Jeong, Sang Yong; Kim, Hyung Tae; Yu, Yeong Jin; Park, Hyun Shin; Jeong, Choong Heui

    2015-01-01

    Among the protocols of the wireless communication, the wireless HART communication using the carrier frequency of 2.4 GHz has attracted a lot of interest due to the convenient monitoring and measurement of the variables of nuclear power plants. However the application of the wireless communication to nuclear power plants poses an ongoing challenge due to the unwanted electromagnetic interference (EMI) caused by wireless devices, which would cause the detrimental malfunctioning to adjacent equipment. Especially the EMI problem in the cabinet containing digital instrument and control (I and C) devices is crucial to safety functions and should thus be treated electromagnetically before the use of the wireless communication in nuclear power plants is approved. The mode-matching method has been widely used in electromagnetic analysis due to the reduced computing time by the fast convergence in series solutions. Inspired by this, we perform the electromagnetic scattering analyses of an open cabinet using the modematching method. The resulting information of the electric (E) and magnetic (H) fields enables us to estimate how much the digital I and C in the cabinet is influenced by the external electromagnetic source. The mode-matching method was applied to the scattering analysis of the open cabinet for the digital I and C in nuclear power plants. The mathematical expressions with the unknown modal coefficients for electromagnetic field distributions were formulated based on Helmholtz's equation in conjunction with both the separation of variables and the Fourier transforms. We then determined the modal coefficients from the boundary conditions for electric and magnetic field continuities

  9. Electromagnetic Interference Analysis of Cabinet for Wireless HART Communication

    Energy Technology Data Exchange (ETDEWEB)

    Choo, Jaeyul; Jeong, Sang Yong; Kim, Hyung Tae; Yu, Yeong Jin; Park, Hyun Shin; Jeong, Choong Heui [Korea Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2015-10-15

    Among the protocols of the wireless communication, the wireless HART communication using the carrier frequency of 2.4 GHz has attracted a lot of interest due to the convenient monitoring and measurement of the variables of nuclear power plants. However the application of the wireless communication to nuclear power plants poses an ongoing challenge due to the unwanted electromagnetic interference (EMI) caused by wireless devices, which would cause the detrimental malfunctioning to adjacent equipment. Especially the EMI problem in the cabinet containing digital instrument and control (I and C) devices is crucial to safety functions and should thus be treated electromagnetically before the use of the wireless communication in nuclear power plants is approved. The mode-matching method has been widely used in electromagnetic analysis due to the reduced computing time by the fast convergence in series solutions. Inspired by this, we perform the electromagnetic scattering analyses of an open cabinet using the modematching method. The resulting information of the electric (E) and magnetic (H) fields enables us to estimate how much the digital I and C in the cabinet is influenced by the external electromagnetic source. The mode-matching method was applied to the scattering analysis of the open cabinet for the digital I and C in nuclear power plants. The mathematical expressions with the unknown modal coefficients for electromagnetic field distributions were formulated based on Helmholtz's equation in conjunction with both the separation of variables and the Fourier transforms. We then determined the modal coefficients from the boundary conditions for electric and magnetic field continuities.

  10. A Butterfly-Shaped Wideband Microstrip Patch Antenna for Wireless Communication

    Directory of Open Access Journals (Sweden)

    Liling Sun

    2015-01-01

    Full Text Available A novel butterfly-shaped patch antenna for wireless communication is introduced in this paper. The antenna is designed for wideband wireless communications and radio-frequency identification (RFID systems. Two symmetrical quasi-circular arms and two symmetrical round holes are incorporated into the patch of a microstrip antenna to expand its bandwidth. The diameter and position of the circular slots are optimized to achieve a wide bandwidth. The validity of the design concept is demonstrated by means of a prototype having a bandwidth of about 40.1%. The return loss of the butterfly-shaped antenna is greater than 10 dB between 4.15 and 6.36 GHz. The antenna can serve simultaneously most of the modern wireless communication standards.

  11. Energy efficiency of error correcting mechanisms for wireless communications

    NARCIS (Netherlands)

    Havinga, Paul J.M.

    We consider the energy efficiency of error control mechanisms for wireless communication. Since high error rates are inevitable to the wireless environment, energy efficient error control is an important issue for mobile computing systems. Although good designed retransmission schemes can be optimal

  12. Study and design on USB wireless laser communication system

    Science.gov (United States)

    Wang, Aihua; Zheng, Jiansheng; Ai, Yong

    2004-04-01

    We give the definition of USB wireless laser communication system (WLCS) and the brief introduction to the protocol of USB, the standard of hardware is also given. The paper analyses the hardware and software of USB WLCS. Wireless laser communication part and USB interface circuit part are discussed in detail. We also give the periphery design of the chip AN2131Q, the control circuit to realize the transformation from parallel port to serial bus, and the circuit of laser sending and receiving of laser communication part, which are simply, cheap and workable. And then the four part of software are analyzed as followed. We have consummated the ISR in the firmware frame to develop the periphery device of USB. We have debugged and consummated the 'ezload,' and the GPD of the drivers. Windows application performs functions and schedules the corresponding API functions to let the interface practical and beautiful. The system can realize USB wireless laser communication between computers, which distance is farther than 50 meters, and top speed can be bigger than 8 Mbps. The system is of great practical sense to resolve the issues of high-speed communication among increasing districts without fiber trunk network.

  13. Photonic techniques for sub-Terahertz wireless data transmission

    DEFF Research Database (Denmark)

    Tafur Monroy, Idelfonso

    2015-01-01

    Wireless data communication links with capacities beyond 100 Gbit/s will require operating at sub-Terahertz frequencies using a large bandpass bandwidth facing new engineering challenges. We review several implementation aspects by using photonic technologies. © 2015 OSA.......Wireless data communication links with capacities beyond 100 Gbit/s will require operating at sub-Terahertz frequencies using a large bandpass bandwidth facing new engineering challenges. We review several implementation aspects by using photonic technologies. © 2015 OSA....

  14. Proposal of Wireless Traffic Control Schemes for Wireless LANs

    Science.gov (United States)

    Hiraguri, Takefumi; Ichikawa, Takeo; Iizuka, Masataka; Kubota, Shuji

    This paper proposes two traffic control schemes to support the communication quality of multimedia streaming services such as VoIP and audio/video over IEEE 802.11 wireless LAN systems. The main features of the proposed scheme are bandwidth control for each flow of the multimedia streaming service and load balancing between access points (APs) of the wireless LAN by using information of data link, network and transport layers. The proposed schemes are implemented on a Linux machine which is called the wireless traffic controller (WTC). The WTC connects a high capacity backbone network and an access network to which the APs are attached. We evaluated the performance of the proposed WTC and confirmed that the communication quality of the multimedia streaming would be greatly improved by using this technique.

  15. User Needs and Advances in Space Wireless Sensing and Communications

    Science.gov (United States)

    Kegege, Obadiah

    2017-01-01

    Decades of space exploration and technology trends for future missions show the need for new approaches in space/planetary sensor networks, observatories, internetworking, and communications/data delivery to Earth. The User Needs to be discussed in this talk includes interviews with several scientists and reviews of mission concepts for the next generation of sensors, observatories, and planetary surface missions. These observatories, sensors are envisioned to operate in extreme environments, with advanced autonomy, whereby sometimes communication to Earth is intermittent and delayed. These sensor nodes require software defined networking capabilities in order to learn and adapt to the environment, collect science data, internetwork, and communicate. Also, some user cases require the level of intelligence to manage network functions (either as a host), mobility, security, and interface data to the physical radio/optical layer. For instance, on a planetary surface, autonomous sensor nodes would create their own ad-hoc network, with some nodes handling communication capabilities between the wireless sensor networks and orbiting relay satellites. A section of this talk will cover the advances in space communication and internetworking to support future space missions. NASA's Space Communications and Navigation (SCaN) program continues to evolve with the development of optical communication, a new vision of the integrated network architecture with more capabilities, and the adoption of CCSDS space internetworking protocols. Advances in wireless communications hardware and electronics have enabled software defined networking (DVB-S2, VCM, ACM, DTN, Ad hoc, etc.) protocols for improved wireless communication and network management. Developing technologies to fulfil these user needs for wireless communications and adoption of standardized communication/internetworking protocols will be a huge benefit to future planetary missions, space observatories, and manned missions

  16. Wireless communication technologies in distribution automation

    Energy Technology Data Exchange (ETDEWEB)

    Takala, J. [VTT Energy, Espoo (Finland)

    1996-12-31

    The project examines four different wireless communication technologies: GSM short message service, NMT data calls, packet radio network, Autonet (Actionet) status message service. The targets for communication include: energy measurement, especially in the de-regulated electricity market, secondary sub-station control, fault indicators. The research concentrates on the usability of different communication technologies for different purposes. Data about response times, error rates, retry times, communication delays, costs etc. will be collected for each communication technology and comparative results will be obtained. Some field experiments and demonstrations will be made in energy measurement and distribution network remote control. The project is divided in four tasks. Each task is described briefly

  17. Wireless communication technologies in distribution automation

    Energy Technology Data Exchange (ETDEWEB)

    Takala, J [VTT Energy, Espoo (Finland)

    1997-12-31

    The project examines four different wireless communication technologies: GSM short message service, NMT data calls, packet radio network, Autonet (Actionet) status message service. The targets for communication include: energy measurement, especially in the de-regulated electricity market, secondary sub-station control, fault indicators. The research concentrates on the usability of different communication technologies for different purposes. Data about response times, error rates, retry times, communication delays, costs etc. will be collected for each communication technology and comparative results will be obtained. Some field experiments and demonstrations will be made in energy measurement and distribution network remote control. The project is divided in four tasks. Each task is described briefly

  18. Effects of wireless packet loss in industrial process control systems.

    Science.gov (United States)

    Liu, Yongkang; Candell, Richard; Moayeri, Nader

    2017-05-01

    Timely and reliable sensing and actuation control are essential in networked control. This depends on not only the precision/quality of the sensors and actuators used but also on how well the communications links between the field instruments and the controller have been designed. Wireless networking offers simple deployment, reconfigurability, scalability, and reduced operational expenditure, and is easier to upgrade than wired solutions. However, the adoption of wireless networking has been slow in industrial process control due to the stochastic and less than 100% reliable nature of wireless communications and lack of a model to evaluate the effects of such communications imperfections on the overall control performance. In this paper, we study how control performance is affected by wireless link quality, which in turn is adversely affected by severe propagation loss in harsh industrial environments, co-channel interference, and unintended interference from other devices. We select the Tennessee Eastman Challenge Model (TE) for our study. A decentralized process control system, first proposed by N. Ricker, is adopted that employs 41 sensors and 12 actuators to manage the production process in the TE plant. We consider the scenario where wireless links are used to periodically transmit essential sensor measurement data, such as pressure, temperature and chemical composition to the controller as well as control commands to manipulate the actuators according to predetermined setpoints. We consider two models for packet loss in the wireless links, namely, an independent and identically distributed (IID) packet loss model and the two-state Gilbert-Elliot (GE) channel model. While the former is a random loss model, the latter can model bursty losses. With each channel model, the performance of the simulated decentralized controller using wireless links is compared with the one using wired links providing instant and 100% reliable communications. The sensitivity of the

  19. The Sandblaster Software-Defined Radio Platform for Mobile 4G Wireless Communications

    Directory of Open Access Journals (Sweden)

    V. Surducan

    2009-01-01

    Full Text Available We present a tier 2 Software Defined-Radio platform (SDR, built around the latest Sandbridge Technologies' multithreaded Digital Signal Processor (DSP SB3500, along with the description of major design steps taken to ensure the best radio link and computational performance. This SDR platform is capable of executing 4G wireless communication standards such as WiMAX Wave 2, WLAN 802.11 g, and LTE. Performance results for WiMAX are presented in the conclusion section.

  20. Introduction to wireless sensor networks

    CERN Document Server

    Forster, Anna

    2016-01-01

    Explores real-world wireless sensor network development, deployment, and applications. The book begins with an introduction to wireless sensor networks and their fundamental concepts. Hardware components, operating systems, protocols, and algorithms that make up the anatomy of a sensor node are described in chapter two. Properties of wireless communications, medium access protocols, wireless links, and link estimation protocols are described in chapter three and chapter four. Routing basics and metrics, clustering techniques, time synchronization and localization protocols, as well as sensing techniques are introduced in chapter five to nine. The concluding chapter summarizes the learnt methods and shows how to use them to deploy real-world sensor networks in a structured way.

  1. UWB Sampler for Wireless Communications and Radar

    National Research Council Canada - National Science Library

    Han, Jeongwoo; Nguyen, Cam

    2005-01-01

    An ultra wideband (UWB) sampler, realized using step recovery and Schottky diodes on coplanar waveguide, coplanar strips and slotlines, has been developed for UWB wireless communications and radar systems...

  2. Performance Evaluation of High Speed Multicarrier System for Optical Wireless Communication

    Science.gov (United States)

    Mathur, Harshita; Deepa, T.; Bartalwar, Sophiya

    2018-04-01

    Optical wireless communication (OWC) in the infrared and visible range is quite impressive solution, especially where radio communication face challenges. Visible light communication (VLC) uses visible light over a range of 400 and 800 THz and is a subdivision of OWC technologies. With an increasing demand for use of wireless communications, wireless access via Wi-Fi is facing many challenges especially in terms of capacity, availability, security and efficiency. VLC uses intensity modulation and direct detection (IM/DD) techniques and hence they require the signals to certainly be real valued positive sequences. These constraints pose limitation on digital modulation techniques. These limitations result in spectrum-efficiency or power-efficiency losses. In this paper, we investigate an amplitude shift keying (ASK) based orthogonal frequency division multiplexing (OFDM) signal transmission scheme using LabVIEW for VLC technology.

  3. VCSEL-based gigabit IR-UWB link for converged communication and sensing applications in optical metro-access networks

    DEFF Research Database (Denmark)

    Pham, Tien Thang; Gibbon, Timothy Braidwood; Tafur Monroy, Idelfonso

    2012-01-01

    We report on experimental demonstration of an impulse radio ultrawideband (IR-UWB) based converged communication and sensing system. A 1550-nm VCSEL-generated IR-UWB signal is used for 2-Gbps wireless data distribution over 800-m and 50-km single mode fiber links which present short-range in-buil...... application, paving the way forward for the development and deployment of converged UWB VCSEL-based technologies in access and in-building networks of the future.......We report on experimental demonstration of an impulse radio ultrawideband (IR-UWB) based converged communication and sensing system. A 1550-nm VCSEL-generated IR-UWB signal is used for 2-Gbps wireless data distribution over 800-m and 50-km single mode fiber links which present short-range in......-building and long-reach access network applications. The IR-UWB signal is also used to simultaneously measure the rotational speed of a blade spinning between 18 and 30 Hz. To the best of our knowledge, this is the very first demonstration of a simultaneous gigabit UWB telecommunication and wireless UWB sensing...

  4. What is a missing link among wireless persistent surveillance?

    Science.gov (United States)

    Hsu, Charles; Szu, Harold

    2011-06-01

    The next generation surveillance system will equip with versatile sensor devices and information focus capable of conducting regular and irregular surveillance and security environments worldwide. The community of the persistent surveillance must invest the limited energy and money effectively into researching enabling technologies such as nanotechnology, wireless networks, and micro-electromechanical systems (MEMS) to develop persistent surveillance applications for the future. Wireless sensor networks can be used by the military for a number of purposes such as monitoring militant activity in remote areas and force protection. Being equipped with appropriate sensors these networks can enable detection of enemy movement, identification of enemy force and analysis of their movement and progress. Among these sensor network technologies, covert communication is one of the challenging tasks in the persistent surveillance because it is highly demanded to provide secured sensor nodes and linkage for fear of deliberate sabotage. Due to the matured VLSI/DSP technologies, affordable COTS of UWB technology with noise-like direct sequence (DS) time-domain pulses is a potential solution to support low probability of intercept and low probability of detection (LPI/LPD) data communication and transmission. This paper will describe a number of technical challenges in wireless persistent surveillance development include covert communication, network control and routing, collaborating signal and information processing, and etc. The paper concludes by presenting Hermitian Wavelets to enhance SNR in support of secured communication.

  5. Approximate Inference for Wireless Communications

    DEFF Research Database (Denmark)

    Hansen, Morten

    This thesis investigates signal processing techniques for wireless communication receivers. The aim is to improve the performance or reduce the computationally complexity of these, where the primary focus area is cellular systems such as Global System for Mobile communications (GSM) (and extensions...... to the optimal one, which usually requires an unacceptable high complexity. Some of the treated approximate methods are based on QL-factorization of the channel matrix. In the work presented in this thesis it is proven how the QL-factorization of frequency-selective channels asymptotically provides the minimum...

  6. Capacity on wireless quantum cellular communication system

    Science.gov (United States)

    Zhou, Xiang-Zhen; Yu, Xu-Tao; Zhang, Zai-Chen

    2018-03-01

    Quantum technology is making excellent prospects in future communication networks. Entanglement generation and purification are two major components in quantum networks. Combining these two techniques with classical cellular mobile communication, we proposed a novel wireless quantum cellular(WQC) communication system which is possible to realize commercial mobile quantum communication. In this paper, the architecture and network topology of WQC communication system are discussed, the mathematical model of WQC system is extracted and the serving capacity, indicating the ability to serve customers, is defined and calculated under certain circumstances.

  7. Underwater fiber-wireless communication with a passive front end

    Science.gov (United States)

    Xu, Jing; Sun, Bin; Lyu, Weichao; Kong, Meiwei; Sarwar, Rohail; Han, Jun; Zhang, Wei; Deng, Ning

    2017-11-01

    We propose and experimentally demonstrate a novel concept on underwater fiber-wireless (Fi-Wi) communication system with a fully passive wireless front end. A low-cost step-index (SI) plastic optical fiber (POF) together with a passive collimating lens at the front end composes the underwater Fi-Wi architecture. We have achieved a 1.71-Gb/s transmission at a mean BER of 4.97 × 10-3 (1.30 × 10-3 when using power loading) over a 50-m SI-POF and 2-m underwater wireless channel using orthogonal frequency division multiplexing (OFDM). Although the wireless part is very short, it actually plays a crucial role in practical underwater implementation, especially in deep sea. Compared with the wired solution (e.g. using a 52-m POF cable without the UWOC part), the proposed underwater Fi-Wi scheme can save optical wet-mate connectors that are sophisticated, very expensive and difficult to install in deep ocean. By combining high-capacity robust POF with the mobility and ubiquity of underwater wireless optical communication (UWOC), the proposed underwater Fi-Wi technology will find wide application in ocean exploration.

  8. Use of consumer wireless devices by South Africans with severe communication disability.

    Science.gov (United States)

    Bornman, Juan; Bryen, Diane Nelson; Moolman, Enid; Morris, John

    2016-01-01

    Advancements in wireless technology (e.g. cell phones and tablets) have opened new communication opportunities and environments for individuals with severe communication disabilities. The advancement of these technologies poses challenges to ensuring that these individuals enjoy equal access to this increasingly essential technology. However, a paucity of research exists. To describe the nature and frequency with which South African adults with severe communication disabilities have access to and use wireless devices, as well as the types of activities for which wireless devices are used. Survey research was conducted with 30 individuals who use augmentative and alternative communication (AAC) technology using the Survey of User Needs Questionnaire developed in the United States, and localized to the South African context. All participants, despite their limited education, unemployment and low economic status, owned and/or used mainstream wireless devices. Slightly more than half of the participants (53.3%) needed adaptations to their wireless devices. Advantages of using wireless devices were highlighted, including connecting with others (through using text messaging, social networking, making plans with others, sharing photos and videos with friends), for leisure activities (e.g. listening to music, watching videos, playing games), and for safety purposes (e.g. to navigate when lost, using the device when in trouble and needing immediate assistance). These wireless devices offer substantial benefits and opportunities to individuals with disabilities who rely on AAC in terms of independence, social participation, education and safety/security. However, they still do not enjoy equal opportunity to access and use wireless devices relative to the non-disabled population.

  9. A study of the impact of frequency selectivity on link adaptive wireless LAN systems

    OpenAIRE

    Armour, SMD; Doufexi, A; Nix, AR; Bull, DR

    2002-01-01

    Wireless local area networks (WLANs) supporting broadband multimedia communication are being developed and standardized around the world. The HIPERLAN/2, 802.11a and HiSWANa standards provide channel adaptive data rates between 6 and 54 Mbps in the 5GHz radio band. The link adaptation mechanism is not specified in the standards. In this paper the performance of the HIPERLAN/2 system is evaluated in terms of throughput in a range of test channels with different degrees of frequency selectivity...

  10. Performance prediction of a synchronization link for distributed aerospace wireless systems.

    Science.gov (United States)

    Wang, Wen-Qin; Shao, Huaizong

    2013-01-01

    For reasons of stealth and other operational advantages, distributed aerospace wireless systems have received much attention in recent years. In a distributed aerospace wireless system, since the transmitter and receiver placed on separated platforms which use independent master oscillators, there is no cancellation of low-frequency phase noise as in the monostatic cases. Thus, high accurate time and frequency synchronization techniques are required for distributed wireless systems. The use of a dedicated synchronization link to quantify and compensate oscillator frequency instability is investigated in this paper. With the mathematical statistical models of phase noise, closed-form analytic expressions for the synchronization link performance are derived. The possible error contributions including oscillator, phase-locked loop, and receiver noise are quantified. The link synchronization performance is predicted by utilizing the knowledge of the statistical models, system error contributions, and sampling considerations. Simulation results show that effective synchronization error compensation can be achieved by using this dedicated synchronization link.

  11. Using of wireless communication in nuclear power plants

    International Nuclear Information System (INIS)

    Ku, C. S.; Kim, B. Y.; Jeong, C. H.; Lee, K. B.; Song, T. S.

    2001-01-01

    The using of wireless communication in nuclear power plants have been limited due to the mis-operation of the safety related instrumentation and control system. If some obstacles such as electromagnetic interference are solved, the using of wireless communication in nuclear power plants recommended because of lots of benefit. In this paper, we measured the electric field intensity for the operation of a potable transceiver in the area of the PPS, PCS, CPC and main control room and provided the electric field intensity limits that a portable transceiver can be used safely near by the safety related systems without electromagnetic interference to the safety related equipment

  12. Wireless Communication over Time-Varying Channels With Limited Feedback

    NARCIS (Netherlands)

    Simon, C.

    2011-01-01

    The number of deployed wireless communication systems has grown rapidly in the last years. Their popularity is mainly due to the effortlessness with which the systems can be deployed. Further, the new generation of wireless systems, e.g., 802.11n, starts to close the performance gap to their wired

  13. Consistent sensor, relay, and link selection in wireless sensor networks

    NARCIS (Netherlands)

    Arroyo Valles, M.D.R.; Simonetto, A.; Leus, G.J.T.

    2017-01-01

    In wireless sensor networks, where energy is scarce, it is inefficient to have all nodes active because they consume a non-negligible amount of battery. In this paper we consider the problem of jointly selecting sensors, relays and links in a wireless sensor network where the active sensors need

  14. A Novel Dual Separate Paths (DSP) Algorithm Providing Fault-Tolerant Communication for Wireless Sensor Networks.

    Science.gov (United States)

    Tien, Nguyen Xuan; Kim, Semog; Rhee, Jong Myung; Park, Sang Yoon

    2017-07-25

    Fault tolerance has long been a major concern for sensor communications in fault-tolerant cyber physical systems (CPSs). Network failure problems often occur in wireless sensor networks (WSNs) due to various factors such as the insufficient power of sensor nodes, the dislocation of sensor nodes, the unstable state of wireless links, and unpredictable environmental interference. Fault tolerance is thus one of the key requirements for data communications in WSN applications. This paper proposes a novel path redundancy-based algorithm, called dual separate paths (DSP), that provides fault-tolerant communication with the improvement of the network traffic performance for WSN applications, such as fault-tolerant CPSs. The proposed DSP algorithm establishes two separate paths between a source and a destination in a network based on the network topology information. These paths are node-disjoint paths and have optimal path distances. Unicast frames are delivered from the source to the destination in the network through the dual paths, providing fault-tolerant communication and reducing redundant unicast traffic for the network. The DSP algorithm can be applied to wired and wireless networks, such as WSNs, to provide seamless fault-tolerant communication for mission-critical and life-critical applications such as fault-tolerant CPSs. The analyzed and simulated results show that the DSP-based approach not only provides fault-tolerant communication, but also improves network traffic performance. For the case study in this paper, when the DSP algorithm was applied to high-availability seamless redundancy (HSR) networks, the proposed DSP-based approach reduced the network traffic by 80% to 88% compared with the standard HSR protocol, thus improving network traffic performance.

  15. The Impact of Hands-On Simulation Laboratories on Teaching of Wireless Communications

    Science.gov (United States)

    Chou, Te-Shun; Vanderbye, Aaron

    2017-01-01

    Aim/Purpose: To prepare students with both theoretical knowledge and practical skills in the field of wireless communications. Background: Teaching wireless communications and networking is not an easy task because it involves broad subjects and abstract content. Methodology: A pedagogical method that combined lectures, labs, assignments, exams,…

  16. Wireless Channel Modeling Perspectives for Ultra-Reliable Communications

    DEFF Research Database (Denmark)

    Eggers, Patrick Claus F.; Popovski, Petar

    2018-01-01

    Ultra-Reliable Communication (URC) is one of the distinctive features of the upcoming 5G wireless communication. The level of reliability, going down to packet error rates (PER) of $10^{-9}$, should be sufficiently convincing in order to remove cables in an industrial setting or provide remote co...

  17. Energy scavenging system by acoustic wave and integrated wireless communication

    Science.gov (United States)

    Kim, Albert

    The purpose of the project was developing an energy-scavenging device for other bio implantable devices. Researchers and scientist have studied energy scavenging method because of the limitation of traditional power source, especially for bio-implantable devices. In this research, piezoelectric power generator that activates by acoustic wave, or music was developed. Follow by power generator, a wireless communication also integrated with the device for monitoring the power generation. The Lead Zirconate Titanate (PZT) bimorph cantilever with a proof mass at the free end tip was studied to convert acoustic wave to power. The music or acoustic wave played through a speaker to vibrate piezoelectric power generator. The LC circuit integrated with the piezoelectric material for purpose of wireless monitoring power generation. However, wireless monitoring can be used as wireless power transmission, which means the signal received via wireless communication also can be used for power for other devices. Size of 74 by 7 by 7cm device could generate and transmit 100mVp from 70 mm distance away with electrical resonant frequency at 420.2 kHz..

  18. Use of consumer wireless devices by South Africans with severe communication disability

    Directory of Open Access Journals (Sweden)

    Juan Bornman

    2016-02-01

    Full Text Available Background: Advancements in wireless technology (e.g. cell phones and tablets have opened new communication opportunities and environments for individuals with severe communication disabilities. The advancement of these technologies poses challenges to ensuring that these individuals enjoy equal access to this increasingly essential technology. However, a paucity of research exists. Objectives: To describe the nature and frequency with which South African adults with severe communication disabilities have access to and use wireless devices, as well as the types of activities for which wireless devices are used. Method: Survey research was conducted with 30 individuals who use augmentative and alternative communication (AAC technology using the Survey of User Needs Questionnaire developed in the United States, and localized to the South African context. Results: All participants, despite their limited education, unemployment and low economic status, owned and/or used mainstream wireless devices. Slightly more than half of the participants (53.3% needed adaptations to their wireless devices. Advantages of using wireless devices were highlighted, including connecting with others (through using text messaging, social networking, making plans with others, sharing photos and videos with friends, for leisure activities (e.g. listening to music, watching videos, playing games, and for safety purposes (e.g. to navigate when lost, using the device when in trouble and needing immediate assistance. Conclusion: These wireless devices offer substantial benefits and opportunities to individuals with disabilities who rely on AAC in terms of independence, social participation, education and safety/security. However, they still do not enjoy equal opportunity to access and use wireless devices relative to the non-disabled population.

  19. Convergence of Photonics and Electronics for Terahertz Wireless Communications

    DEFF Research Database (Denmark)

    Salazar, Adrian Ruiz; Rommel, Simon; Anufriyev, E.

    2016-01-01

    Terahertz wireless communications are expected to offer the required high capacity and low latency performance necessary for short-range wireless access and control applications. We present an overview of some the activities in this area in the newly started H2020 ITN project CELTA: Convergence o...... of Electronics and Photonics Technologies Enabling Terahertz Applications....

  20. 1st International Conference on Recent Cognizance in Wireless Communication & Image Processing

    CERN Document Server

    Srivastava, Vishnu; Singh, Ghanshyam; Bhatnagar, Deepak

    2016-01-01

    This volume comprises the proceedings of the International Conference on Recent Cognizance in Wireless Communication & Image Processing. It brings together content from academicians, researchers, and industry experts in areas of Wireless Communication and Image Processing. The volume provides a snapshot of current progress in computational creativity and a glimpse of future possibilities. The proceedings include two kinds of paper submissions: (i) regular papers addressing foundation issues, describing original research on creative systems development and modeling; and (ii) position papers describing work-in-progress or research directions for computational creativity. This work will be useful to professionals and researchers working in the core areas of wireless communications and image processing.

  1. How Much Longer before It All Works: What Online Searchers Should Know about Wireless Data Communications.

    Science.gov (United States)

    Bell, Steven J.

    1994-01-01

    Profiles the major wireless data communications (WDC) systems, provides an overview of how they work, and compares their communication features. Topics addressed include the market for wireless data; applications for WDC; wireless online searching; cellular data communication; packet radio; digital cellular; criteria for evaluating WDC systems;…

  2. Automated alignment system for optical wireless communication systems using image recognition.

    Science.gov (United States)

    Brandl, Paul; Weiss, Alexander; Zimmermann, Horst

    2014-07-01

    In this Letter, we describe the realization of a tracked line-of-sight optical wireless communication system for indoor data distribution. We built a laser-based transmitter with adaptive focus and ray steering by a microelectromechanical systems mirror. To execute the alignment procedure, we used a CMOS image sensor at the transmitter side and developed an algorithm for image recognition to localize the receiver's position. The receiver is based on a self-developed optoelectronic integrated chip with low requirements on the receiver optics to make the system economically attractive. With this system, we were able to set up the communication link automatically without any back channel and to perform error-free (bit error rate <10⁻⁹) data transmission over a distance of 3.5 m with a data rate of 3 Gbit/s.

  3. Wireless communication technologies in distribution automation

    Energy Technology Data Exchange (ETDEWEB)

    Takala, J [VTT Energy, Espoo (Finland)

    1998-08-01

    The project started in mid 1995 and will be finished in 1997. The project examines four different wireless communication technologies: GSM short message service, NMT data calls, packet radio network and Autonet (Actionet) status message service. The targets for communication include: Energy measurement, especially in the de-regulated electricity market, secondary sub-station control and fault indicators. The research has been focused on the usability of different communication technologies for different purposes. Data about response times, reliability, error rates, retry times, communication delays, costs etc. has been collected about each communication technology and comparative results were analysed. Some field experiments and demonstrations will be made in energy measurement and distribution network remote control. The project is divided into four tasks. Each task is described briefly

  4. Cognitive Security of Wireless Communication Systems in the Physical Layer

    Directory of Open Access Journals (Sweden)

    Mustafa Harun Yılmaz

    2017-01-01

    Full Text Available While the wireless communication systems provide the means of connectivity nearly everywhere and all the time, communication security requires more attention. Even though current efforts provide solutions to specific problems under given circumstances, these methods are neither adaptive nor flexible enough to provide security under the dynamic conditions which make the security breaches an important concern. In this paper, a cognitive security (CS concept for wireless communication systems in the physical layer is proposed with the aim of providing a comprehensive solution to wireless security problems. The proposed method will enable the comprehensive security to ensure a robust and reliable communication in the existence of adversaries by providing adaptive security solutions in the communication systems by exploiting the physical layer security from different perspective. The adaptiveness relies on the fact that radio adapts its propagation characteristics to satisfy secure communication based on specific conditions which are given as user density, application specific adaptation, and location within CS concept. Thus, instead of providing any type of new security mechanism, it is proposed that radio can take the necessary precautions based on these conditions before the attacks occur. Various access scenarios are investigated to enable the CS while considering these conditions.

  5. Asymptotic Performance Analysis of the k-th Best Link Selection over Wireless Fading Channels: An Extreme Value Theory Approach

    KAUST Repository

    Al-Badarneh, Yazan Hussein

    2018-01-25

    We consider a general selection-diversity (SD) scheme in which the k-th best link is selected from a number of links. We use extreme value theory (EVT) to derive simple closed-form asymptotic expressions for the average throughput, effective throughput and average bit error probability (BEP) for the k-th best link over various channel models that are widely used to characterize fading in wireless communication systems. As an application example, we consider the Weibull fading channel model and verify the accuracy of the derived asymptotic expressions through Monte Carlo simulations.

  6. Asymptotic Performance Analysis of the k-th Best Link Selection over Wireless Fading Channels: An Extreme Value Theory Approach

    KAUST Repository

    Al-Badarneh, Yazan Hussein; Georghiades, Costas; Alouini, Mohamed-Slim

    2018-01-01

    We consider a general selection-diversity (SD) scheme in which the k-th best link is selected from a number of links. We use extreme value theory (EVT) to derive simple closed-form asymptotic expressions for the average throughput, effective throughput and average bit error probability (BEP) for the k-th best link over various channel models that are widely used to characterize fading in wireless communication systems. As an application example, we consider the Weibull fading channel model and verify the accuracy of the derived asymptotic expressions through Monte Carlo simulations.

  7. Invisible Bridges: Wireless Technology Links Minds over Space and Time

    Science.gov (United States)

    Lambert, Lori

    2004-01-01

    Eight years after Chief Sitting Bull, prophetic chief of the Great Sioux Nation, was assassinated in 1890, Guglielmo Marconi transmitted the first wireless telegraph signals across the Atlantic to England. Although these two events seem unrelated, the names of these two men of vision are linked together today by Marconi's wireless invention. Data,…

  8. Wireless Cellular Mobile Communications

    OpenAIRE

    Zalud, V.

    2002-01-01

    In this article is briefly reviewed the history of wireless cellular mobile communications, examined the progress in current second generation (2G) cellular standards and discussed their migration to the third generation (3G). The European 2G cellular standard GSM and its evolution phases GPRS and EDGE are described somewhat in detail. The third generation standard UMTS taking up on GSM/GPRS core network and equipped with a new advanced access network on the basis of code division multiple ac...

  9. mm-Wave Wireless Communications based on Silicon Photonics Integrated Circuits

    DEFF Research Database (Denmark)

    Rommel, Simon; Heck, Martijn; Vegas Olmos, Juan José

    Hybrid photonic-wireless transmission schemes in the mm-wave frequency range are promising candidates to enable the multi-gigabit per second data communications required from wireless and mobile networks of the 5th and future generations. Photonic integration may pave the way to practical applica...

  10. Radio propagation and adaptive antennas for wireless communication networks

    CERN Document Server

    Blaunstein, Nathan

    2014-01-01

    Explores novel wireless networks beyond 3G, and advanced 4G technologies, such as MIMO, via propagation phenomena and the fundamentals of adapted antenna usage.Explains how adaptive antennas can improve GoS and QoS for any wireless channel, with specific examples and applications in land, aircraft and satellite communications.Introduces new stochastic approach based on several multi-parametric models describing various terrestrial scenarios, which have been experimentally verified in different environmental conditionsNew chapters on fundamentals of wireless networks, cellular and non-cellular,

  11. 11th International Conference On Broad-Band Wireless Computing, Communication and Applications

    CERN Document Server

    Xhafa, Fatos; Yim, Kangbin

    2017-01-01

    The success of all-IP networking and wireless technology has changed the ways of living the people around the world. The progress of electronic integration and wireless communications is going to pave the way to offer people the access to the wireless networks on the fly, based on which all electronic devices will be able to exchange the information with each other in ubiquitous way whenever necessary. The aim of the volume is to provide latest research findings, innovative research results, methods and development techniques from both theoretical and practical perspectives related to the emerging areas of broadband and wireless computing. This proceedings volume presents the results of the 11th International Conference on Broad-Band Wireless Computing, Communication And Applications (BWCCA-2016), held November 5-7, 2016, at Soonchunhyang University, Asan, Korea. .

  12. Communication protocol in chassis detecting wireless transmission system based on WiFi

    Science.gov (United States)

    In chassis detecting wireless transmission system, the wireless network communication protocol plays a key role in the information exchange and synchronization between the host and chassis PDA. This paper presents a wireless network transmission protocol based on TCP/IP which makes the rules of info...

  13. 78 FR 6344 - Certain Wireless Communications Base Stations and Components Thereof Notice of Receipt of...

    Science.gov (United States)

    2013-01-30

    ... INTERNATIONAL TRADE COMMISSION Certain Wireless Communications Base Stations and Components.... International Trade Commission has received a complaint entitled Certain Wireless Communications Base Stations... communications base stations and components thereof. The complaint names as respondents Telefonaktiebolaget LM...

  14. Short-range wireless communication fundamentals of RF system design and application

    CERN Document Server

    Bensky, Alan

    2004-01-01

    The Complete "Tool Kit” for the Hottest Area in RF/Wireless Design!Short-range wireless-communications over distances of less than 100 meters-is the most rapidly growing segment of RF/wireless engineering. Alan Bensky is an internationally recognized expert in short-range wireless, and this new edition of his bestselling book is completely revised to cover the latest developments in this fast moving field.You'll find coverage of such cutting-edge topics as: architectural trends in RF/wireless integrated circuits compatibility and conflict issues between differen

  15. Multi-carrier transmission for hybrid radio frequency with optical wireless communications

    Science.gov (United States)

    Wang, Gang; Chen, Genshe; Shen, Dan; Pham, Khanh; Blasch, Erik; Nguyen, Tien M.

    2015-05-01

    Radio frequency (RF) wireless communication is reaching its capacity to support large data rate transmissions due to hardware constraints (e.g., silicon processes), software strategies (e.g., information theory), and consumer desire for timely large file exchanges (e.g., big data and mobile cloud computing). A high transmission rate performance must keep pace with the generated huge volumes of data for real-time processing. Integrated RF and optical wireless communications (RF/OWC) could be the next generation transmission technology to satisfy both the increased data rate exchange and the communications constraints. However, with the promising benefits of RF/OWC, challenges remain to fully develop hybrid RF with wireless optical communications such as uniform waveform design for information transmission and detection. In this paper, an orthogonal frequency division multiplexing (OFDM) transmission scheme, which widely employed in RF communications, is developed for optical communications. The traditional high peak-to-average power ratio (PAPR) in OFDM is reduced to improve system performance. The proposed multi-carrier waveform is evaluated with a frequency-selective fading channel. The results demonstrate that bit error rate (BER) performance of our proposed optical OFDM transmission technique outperforms the traditional OWC on-off keying (OOK) transmission scheme.

  16. Adaptive Protocols for Mobile Wireless Networks

    National Research Council Canada - National Science Library

    Pursley, Michael B

    2005-01-01

    .... Research results are presented on adaptive, energy-efficient, distributed protocols for mobile wireless networks that must operate effectively over unreliable communication links in highly dynamic...

  17. Ninth International Conference on Wireless Communication and Sensor Networks

    CERN Document Server

    Tiwari, Murlidhar; Arora, Anish

    2014-01-01

    Wireless communication and sensor networks would form the backbone to create pervasive and ubiquitous environments that would have profound influence on the society and thus are important to the society. The wireless communication technologies and wireless sensor networks would encompass a wide range of domains such as HW devices such as motes, sensors and associated instrumentation, actuators, transmitters, receivers, antennas, etc., sensor network aspects such as topologies, routing algorithms, integration of heterogeneous network elements and topologies, designing RF devices and systems for energy efficiency and reliability etc. These sensor networks would provide opportunity to continuously and in a distributed manner monitor the environment and generate the necessary warnings and actions. However most of the developments have been demonstrated only in controlled and laboratory environments. So we are yet to see those powerful, ubiquitous applications for the benefit of the society. The conference and con...

  18. Deflating link buffers in a wireless mesh network

    KAUST Repository

    Jamshaid, Kamran; Shihada, Basem; Showail, Ahmad; Levis, Philip

    2014-01-01

    We analyze the problem of buffer sizing for backlogged TCP flows in 802.11-based wireless mesh networks. Our objective is to maintain high network utilization while providing low queueing delays. Unlike wired networks where a single link buffer feeds a bottleneck link, the radio spectral resource in a mesh network is shared among a set of contending mesh routers. We account for this by formulating the buffer size problem as sizing a collective buffer distributed over a set of interfering nodes. In this paper we propose mechanisms for sizing and distributing this collective buffer among the mesh nodes constituting the network bottleneck. Our mechanism factors in the network topology and wireless link rates, improving on pre-set buffer allocations that cannot optimally work across the range of configurations achievable with 802.11 radios. We evaluate our mechanisms using simulations as well as experiments on a testbed. Our results show that we can reduce the RTT of a flow by 6× or more, at the cost of less than 10% drop in end-to-end flow throughput.

  19. Deflating link buffers in a wireless mesh network

    KAUST Repository

    Jamshaid, Kamran

    2014-05-01

    We analyze the problem of buffer sizing for backlogged TCP flows in 802.11-based wireless mesh networks. Our objective is to maintain high network utilization while providing low queueing delays. Unlike wired networks where a single link buffer feeds a bottleneck link, the radio spectral resource in a mesh network is shared among a set of contending mesh routers. We account for this by formulating the buffer size problem as sizing a collective buffer distributed over a set of interfering nodes. In this paper we propose mechanisms for sizing and distributing this collective buffer among the mesh nodes constituting the network bottleneck. Our mechanism factors in the network topology and wireless link rates, improving on pre-set buffer allocations that cannot optimally work across the range of configurations achievable with 802.11 radios. We evaluate our mechanisms using simulations as well as experiments on a testbed. Our results show that we can reduce the RTT of a flow by 6× or more, at the cost of less than 10% drop in end-to-end flow throughput.

  20. Microwave photonics technologies supporting high capacity and flexible wireless communications systems

    DEFF Research Database (Denmark)

    Lu, Xiaofeng; Tatarczak, Anna; Rommel, Simon

    2015-01-01

    Emerging 5G wireless systems require technologies for increased capacity, guarantee robustness, low latency and flexibility. We review a number of approaches to provide the above based on microwave photonics and hybrid optical fiber-wireless communication techniques....

  1. Application of wireless monitoring and communication systems in the power engineering

    Directory of Open Access Journals (Sweden)

    Grechikhin V. A.

    2012-06-01

    Full Text Available The article describes some achievements of modern radio electronics, which prove a huge potential of modern wireless engineering for using in the fuel-energy complex. Wireless corporation communication systems, application of short-range radar measuring systems on the power engineering objects, prospects of laser measuring systems, methods of radio thermography and radio spectroscopy, wireless acoustic-electronic sensors are discussed.

  2. 78 FR 16865 - Certain Electronic Devices, Including Wireless Communication Devices, Portable Music and Data...

    Science.gov (United States)

    2013-03-19

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-794] Certain Electronic Devices, Including Wireless Communication Devices, Portable Music and Data Processing Devices, and Tablet Computers... certain electronic devices, including wireless communication devices, portable music and data processing...

  3. Real-Time Communication in Wireless Home Networks

    NARCIS (Netherlands)

    Scholten, Johan; Jansen, P.G.

    This paper describes a medium access protocol for real-time communication in wireless networks. Medium access is controlled by a scheduler, which utilizes a pre-emptive earliest deadline first (PEDF) scheduling algorithm. The scheduler prevents collisions in the network, where normally only

  4. Open-source telemedicine platform for wireless medical video communication.

    Science.gov (United States)

    Panayides, A; Eleftheriou, I; Pantziaris, M

    2013-01-01

    An m-health system for real-time wireless communication of medical video based on open-source software is presented. The objective is to deliver a low-cost telemedicine platform which will allow for reliable remote diagnosis m-health applications such as emergency incidents, mass population screening, and medical education purposes. The performance of the proposed system is demonstrated using five atherosclerotic plaque ultrasound videos. The videos are encoded at the clinically acquired resolution, in addition to lower, QCIF, and CIF resolutions, at different bitrates, and four different encoding structures. Commercially available wireless local area network (WLAN) and 3.5G high-speed packet access (HSPA) wireless channels are used to validate the developed platform. Objective video quality assessment is based on PSNR ratings, following calibration using the variable frame delay (VFD) algorithm that removes temporal mismatch between original and received videos. Clinical evaluation is based on atherosclerotic plaque ultrasound video assessment protocol. Experimental results show that adequate diagnostic quality wireless medical video communications are realized using the designed telemedicine platform. HSPA cellular networks provide for ultrasound video transmission at the acquired resolution, while VFD algorithm utilization bridges objective and subjective ratings.

  5. Open-Source Telemedicine Platform for Wireless Medical Video Communication

    Science.gov (United States)

    Panayides, A.; Eleftheriou, I.; Pantziaris, M.

    2013-01-01

    An m-health system for real-time wireless communication of medical video based on open-source software is presented. The objective is to deliver a low-cost telemedicine platform which will allow for reliable remote diagnosis m-health applications such as emergency incidents, mass population screening, and medical education purposes. The performance of the proposed system is demonstrated using five atherosclerotic plaque ultrasound videos. The videos are encoded at the clinically acquired resolution, in addition to lower, QCIF, and CIF resolutions, at different bitrates, and four different encoding structures. Commercially available wireless local area network (WLAN) and 3.5G high-speed packet access (HSPA) wireless channels are used to validate the developed platform. Objective video quality assessment is based on PSNR ratings, following calibration using the variable frame delay (VFD) algorithm that removes temporal mismatch between original and received videos. Clinical evaluation is based on atherosclerotic plaque ultrasound video assessment protocol. Experimental results show that adequate diagnostic quality wireless medical video communications are realized using the designed telemedicine platform. HSPA cellular networks provide for ultrasound video transmission at the acquired resolution, while VFD algorithm utilization bridges objective and subjective ratings. PMID:23573082

  6. Open-Source Telemedicine Platform for Wireless Medical Video Communication

    Directory of Open Access Journals (Sweden)

    A. Panayides

    2013-01-01

    Full Text Available An m-health system for real-time wireless communication of medical video based on open-source software is presented. The objective is to deliver a low-cost telemedicine platform which will allow for reliable remote diagnosis m-health applications such as emergency incidents, mass population screening, and medical education purposes. The performance of the proposed system is demonstrated using five atherosclerotic plaque ultrasound videos. The videos are encoded at the clinically acquired resolution, in addition to lower, QCIF, and CIF resolutions, at different bitrates, and four different encoding structures. Commercially available wireless local area network (WLAN and 3.5G high-speed packet access (HSPA wireless channels are used to validate the developed platform. Objective video quality assessment is based on PSNR ratings, following calibration using the variable frame delay (VFD algorithm that removes temporal mismatch between original and received videos. Clinical evaluation is based on atherosclerotic plaque ultrasound video assessment protocol. Experimental results show that adequate diagnostic quality wireless medical video communications are realized using the designed telemedicine platform. HSPA cellular networks provide for ultrasound video transmission at the acquired resolution, while VFD algorithm utilization bridges objective and subjective ratings.

  7. Access Point Security Service for wireless ad-hoc communication

    NARCIS (Netherlands)

    Scholten, Johan; Nijdam, M.

    2006-01-01

    This paper describes the design and implementation of a security solution for ad-hoc peer-to-peer communication. The security solution is based on a scenario where two wireless devices require secure communication, but share no security relationship a priori. The necessary requirements for the

  8. Cooperative Communications for Wireless Information Assurance: Secure Cooperative Communications and Testbed Development

    National Research Council Canada - National Science Library

    Li, Xiaohua

    2007-01-01

    ..., and have invented a new cooperative OFDM transmission scheme to combat transmission asynchronism. They are helpful to the development of future physical-layer wireless information assurance techniques as well as the cooperative communication techniques...

  9. 77 FR 70464 - Certain Electronic Devices, Including Wireless Communication Devices, Portable Music and Data...

    Science.gov (United States)

    2012-11-26

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-794] Certain Electronic Devices, Including Wireless Communication Devices, Portable Music and Data Processing Devices, and Tablet Computers... wireless communication devices, portable music and data processing devices, and tablet computers, by reason...

  10. Broadband and High power Reactive Jamming Resilient Wireless Communication

    Science.gov (United States)

    2017-10-21

    Broadband and High -power Reactive Jamming Resilient Wireless Communication The views, opinions and/or findings contained in this report are those of... available in extremely hostile environments, where FHSS and DSSS are completely defeated by a broadband and high -power reactive jammer. b. Wireless...SECURITY CLASSIFICATION OF: 1. REPORT DATE (DD-MM-YYYY) 4. TITLE AND SUBTITLE 13. SUPPLEMENTARY NOTES 12. DISTRIBUTION AVAILIBILITY STATEMENT 6. AUTHORS

  11. Impact of RF Imperfections on 60 GHz Wireless Communication Systems

    NARCIS (Netherlands)

    Rizvi, U.H.

    2011-01-01

    Over the last couple of decades, wireless communication has proved to be a phenomenal success and has generated a booming industry with over 5 billion mobile handsets in use worldwide. This has on one end eased the life of its users while on the other end has introduced new challenges for wireless

  12. Secure Intra-Body Wireless Communications (SIWiC) System Project

    Science.gov (United States)

    Ahmad, Aftab; Doggett, Terrence P.

    2011-01-01

    SIWiC System is a project to investigate, design and implement future wireless networks of implantable sensors in the body. This futuristic project is designed to make use of the emerging and yet-to-emerge technologies, including ultra-wide band (UWB) for wireless communications, smart implantable sensors, ultra low power networking protocols, security and privacy for bandwidth and power deficient devices and quantum computing. Progress in each of these fronts is hindered by the needs of breakthrough. But, as we will see in this paper, these major challenges are being met or will be met in near future. SIWiC system is a network of in-situ wireless devices that are implanted to coordinate sensed data inside the body, such as symptoms monitoring collected internally, or biometric data collected of an outside object from within the intra-body network. One node has the capability of communicating outside the body to send data or alarm to a relevant authority, e.g., a remote physician.

  13. Seamless and secure communications over heterogeneous wireless networks

    CERN Document Server

    Cao, Jiannong

    2014-01-01

    This brief provides an overview of the requirements, challenges, design issues and major techniques for seamless and secure communications over heterogeneous wireless networks. It summarizes and provides detailed insights into the latest research on handoff management, mobility management, fast authentication and security management to support seamless and secure roaming for mobile clients. The reader will also learn about the challenges in developing relevant technologies and providing ubiquitous Internet access over heterogeneous wireless networks. The authors have extensive experience in im

  14. Channel characterization for high-speed W-band wireless communication links

    DEFF Research Database (Denmark)

    Rommel, Simon; Cavalcante, Lucas Costa Pereira; Vegas Olmos, Juan José

    2015-01-01

    We present and discuss results from an experimental characterization of the W-band indoor wireless channel, including both large and small scale fading phenomena as well as corresponding channel parameters and their impact on system performance....

  15. Efficient Weibull channel model for salinity induced turbulent underwater wireless optical communications

    KAUST Repository

    Oubei, Hassan M.; Zedini, Emna; Elafandy, Rami T.; Kammoun, Abla; Ng, Tien Khee; Alouini, Mohamed-Slim; Ooi, Boon S.

    2017-01-01

    Recent advances in underwater wireless optical communications necessitate a better understanding of the underwater channel. We propose the Weibull model to characterize the fading of salinity induced turbulent underwater wireless optical channels

  16. Wireless communication, tracking in mines topic of symposium

    OpenAIRE

    Trulove, Susan

    2006-01-01

    In response to the call for increased mine safety and improved underground communications in the wake of recent mining fatalities, the Virginia Center for Coal and Energy Research at Virginia Tech is cooperating with the Virginia Department of Mines Minerals and Energy to offer a Symposium on the Capabilities and Availability of Wireless Communication and Tracking Systems for Underground Coal Mines.

  17. Streetlight Control System Based on Wireless Communication over DALI Protocol

    Science.gov (United States)

    Bellido-Outeiriño, Francisco José; Quiles-Latorre, Francisco Javier; Moreno-Moreno, Carlos Diego; Flores-Arias, José María; Moreno-García, Isabel; Ortiz-López, Manuel

    2016-01-01

    Public lighting represents a large part of the energy consumption of towns and cities. Efficient management of public lighting can entail significant energy savings. This work presents a smart system for managing public lighting networks based on wireless communication and the DALI protocol. Wireless communication entails significant economic savings, as there is no need to install new wiring and visual impacts and damage to the facades of historical buildings in city centers are avoided. The DALI protocol uses bidirectional communication with the ballast, which allows its status to be controlled and monitored at all times. The novelty of this work is that it tackles all aspects related to the management of public lighting: a standard protocol, DALI, was selected to control the ballast, a wireless node based on the IEEE 802.15.4 standard with a DALI interface was designed, a network layer that considers the topology of the lighting network has been developed, and lastly, some user-friendly applications for the control and maintenance of the system by the technical crews of the different towns and cities have been developed. PMID:27128923

  18. Streetlight Control System Based on Wireless Communication over DALI Protocol.

    Science.gov (United States)

    Bellido-Outeiriño, Francisco José; Quiles-Latorre, Francisco Javier; Moreno-Moreno, Carlos Diego; Flores-Arias, José María; Moreno-García, Isabel; Ortiz-López, Manuel

    2016-04-27

    Public lighting represents a large part of the energy consumption of towns and cities. Efficient management of public lighting can entail significant energy savings. This work presents a smart system for managing public lighting networks based on wireless communication and the DALI protocol. Wireless communication entails significant economic savings, as there is no need to install new wiring and visual impacts and damage to the facades of historical buildings in city centers are avoided. The DALI protocol uses bidirectional communication with the ballast, which allows its status to be controlled and monitored at all times. The novelty of this work is that it tackles all aspects related to the management of public lighting: a standard protocol, DALI, was selected to control the ballast, a wireless node based on the IEEE 802.15.4 standard with a DALI interface was designed, a network layer that considers the topology of the lighting network has been developed, and lastly, some user-friendly applications for the control and maintenance of the system by the technical crews of the different towns and cities have been developed.

  19. Experimental Evaluation of Wireless Communication Channels under Radiation Environment

    International Nuclear Information System (INIS)

    Wang, Quan; Bari, Ataul; Deng, Changjian; Li, Liquan

    2014-01-01

    Deployment of wireless systems in nuclear power plants has attracted a lot of attention recently. However, before wireless systems can be installed in a nuclear power plant, it is necessary to evaluate the effect of radiation environment on electromagnetic wave which is the communication media for all radio wave based wireless systems. This is particular important if the wireless systems are expected to work in a harsh and radioactive environment following a severe accident. This paper presents some results of an experiment for evaluating the effect of radiation on electromagnetic wave. The experiments involve placing transmitter antenna and receiver antenna in a hot cell with variable strength of radiation to study the attenuation effects of the radioactive media. The results indicate that radiation does not effect on the electromagnetic wave propagation. This fact should be considered during the design and deployment wireless systems in a potentially radioactive environment

  20. Mass Customization in Wireless Communication Services: Individual Service Bundles and Tariffs

    NARCIS (Netherlands)

    H. Chen (Hong); L-F. Pau (Louis-François)

    2007-01-01

    textabstractThis paper presents results on mass customization of wireless communications services and tariffs. It advocates for a user-centric view of wireless service configuration and pricing as opposed to present-day service catalog options. The focus is on design methodology and tools for such

  1. Millimeter Wave Hybrid Photonic Wireless Links for High-Speed Wireless Access and Mobile Fronthaul

    DEFF Research Database (Denmark)

    Rommel, Simon

    As the introduction of the fifth generation of mobile services (5G) is set to revolutionize the way people, devices and machines connect, the changes to the underlying networks and technologies are no less drastic. The massive increase in user and data capacity, as well as the decrease in latency...... networks. In summary, the work presented in this thesis has regarded a multitude of aspects of millimeter wave hybrid photonic wireless links, expanding upon the state of the art and showing their feasibility for use in fifth generation mobile and high speed wireless access networks – hopefully bringing...

  2. Graceful degradation of CACC performance subject to unreliable wireless communication

    NARCIS (Netherlands)

    Ploeg, J.; Semsar-Kazerooni, E.; Lijster, G.; Wouw, N. van de; Nijmeijer, H.

    2013-01-01

    Cooperative Adaptive Cruise Control (CACC) employs wireless intervehicle communication, in addition to onboard sensors, to obtain string-stable vehicle-following behavior at small intervehicle distances. As a consequence, however, CACC is vulnerable to communication impairments such as packet loss,

  3. Intrusion detection for IP-based multimedia communications over wireless networks

    CERN Document Server

    Tang, Jin

    2013-01-01

    IP-based multimedia communications have become increasingly popular in recent years. With the increasing coverage of the IEEE 802:11™ based wireless networks, IP-based multimedia communications over wireless networks are also drawing extensive attention in both academia and industry. Due to the openness and distributed nature of the protocols involved, such as the session initiation protocol (SIP) and the IEEE 802:11™ standard, it becomes easy for malicious users in the network to achieve their own gain or disrupt the service by deviating from the normal protocol behaviors. This SpringerBrief

  4. Wireless Communications for Monitoring Nuclear Material Processes part 1.: Context and Technologies

    International Nuclear Information System (INIS)

    Braina, F.; Goncalves, J.C.M.; Versino, C.; Heppleston, M.; Schoeneman, B.; Tolk, K.

    2007-01-01

    Recent advances in radio frequency communication technologies offer the motivation to consider the use of wireless communication in nuclear safeguards applications. From the Nuclear Safeguards Inspectorate' (NSI) point of view, wireless data transmission, which would be supplemental to wired communication is attractive for the ease of installation and the ability to respond to the changing requirements as the inspection approach evolves, resulting in a reduction of costs. However, for wireless technologies to be considered as a viable complement to cables, a number of concerns have to be addressed. First, nuclear operators need to be guaranteed that RF transmission will not interfere with the facilities safety and physical security systems. On their side, the NSI must be satisfied that Containment and Surveillance equipment and data transmission processes will not be affected by the other existing RF equipment. Second, it is desirable, both for the NSI and the operators, that the data being transmitted is not available for analysis by a third party. In addition, the NSI require data to be authenticated as close to the point of acquisition as possible. This paper was prepared as an account of work performed and approved by the ESARDA Working Group on Containment and Surveillance. It is the first of a suite dedicated to bridging RF technologies with safeguards monitoring applications. The paper focuses on technological issues: it introduces basic concepts underlying wireless communication, including methods for transmission, issues on power consumption, frequency, range, and considerations on interference and noise resilience. It overviews state-of-the-art wireless technologies and presents a projection on wireless capabilities that are likely to be reached in the near future

  5. Energy Efficient Four Level Cooperative Opportunistic Communication for Wireless Personal Area Networks (WPAN)

    DEFF Research Database (Denmark)

    Rohokale, Vandana M.; Inamdar, Sandeep; Prasad, Neeli R.

    2013-01-01

    For wireless sensor networks (WSN),energy is a scarce resource. Due to limited battery resources, the energy consumption is the critical issue for the transmission as well as reception of the signals in the wireless communication. WSNs are infrastructure-less shared network demanding more energy...... consumption due to collaborative transmissions. This paper proposes a new cooperative opportunistic four level model for IEEE 802.15.4 Wireless Personal Area Network (WPAN).The average per node energy consumption is observed merely about 0.17mJ for the cooperative wireless communication which proves...... the proposed mechanism to be energy efficient. This paper further proposes four levels of cooperative data transmission from source to destination to improve network coverage with energy efficiency....

  6. Adaptive Wavelet Coding Applied in a Wireless Control System.

    Science.gov (United States)

    Gama, Felipe O S; Silveira, Luiz F Q; Salazar, Andrés O

    2017-12-13

    Wireless control systems can sense, control and act on the information exchanged between the wireless sensor nodes in a control loop. However, the exchanged information becomes susceptible to the degenerative effects produced by the multipath propagation. In order to minimize the destructive effects characteristic of wireless channels, several techniques have been investigated recently. Among them, wavelet coding is a good alternative for wireless communications for its robustness to the effects of multipath and its low computational complexity. This work proposes an adaptive wavelet coding whose parameters of code rate and signal constellation can vary according to the fading level and evaluates the use of this transmission system in a control loop implemented by wireless sensor nodes. The performance of the adaptive system was evaluated in terms of bit error rate (BER) versus E b / N 0 and spectral efficiency, considering a time-varying channel with flat Rayleigh fading, and in terms of processing overhead on a control system with wireless communication. The results obtained through computational simulations and experimental tests show performance gains obtained by insertion of the adaptive wavelet coding in a control loop with nodes interconnected by wireless link. These results enable the use of this technique in a wireless link control loop.

  7. Adaptive Wavelet Coding Applied in a Wireless Control System

    Directory of Open Access Journals (Sweden)

    Felipe O. S. Gama

    2017-12-01

    Full Text Available Wireless control systems can sense, control and act on the information exchanged between the wireless sensor nodes in a control loop. However, the exchanged information becomes susceptible to the degenerative effects produced by the multipath propagation. In order to minimize the destructive effects characteristic of wireless channels, several techniques have been investigated recently. Among them, wavelet coding is a good alternative for wireless communications for its robustness to the effects of multipath and its low computational complexity. This work proposes an adaptive wavelet coding whose parameters of code rate and signal constellation can vary according to the fading level and evaluates the use of this transmission system in a control loop implemented by wireless sensor nodes. The performance of the adaptive system was evaluated in terms of bit error rate (BER versus E b / N 0 and spectral efficiency, considering a time-varying channel with flat Rayleigh fading, and in terms of processing overhead on a control system with wireless communication. The results obtained through computational simulations and experimental tests show performance gains obtained by insertion of the adaptive wavelet coding in a control loop with nodes interconnected by wireless link. These results enable the use of this technique in a wireless link control loop.

  8. Automobile inspection system based on wireless communication

    Science.gov (United States)

    Miao, Changyun; Ye, Chunqing

    2010-07-01

    This paper aims to research the Automobile Inspection System based on Wireless Communication, and suggests an overall design scheme which uses GPS for speed detection and Bluetooth and GPRS for communication. The communication between PDA and PC was realized by means of GPRS and TCP/IP; and the hardware circuit and software for detection terminal were devised by means of JINOU-3264 Bluetooth Module after analyzing the Bluetooth and its communication protocol. According to the results of debugging test, this system accomplished GPRS based data communication and management as well as the real-time detection on auto safety performance parameters in crash test via PC, whereby the need for mobility and reliability was met and the efficiency and level of detection was improved.

  9. Radiation area monitoring by wireless-communicating area monitor with surveillance camera

    International Nuclear Information System (INIS)

    Shimura, Mitsuo; Kobayashi, Hiromitsu; Kitahara, Hideki; Kobayashi, Hironobu; Okamoto, Shinji

    2004-01-01

    Aiming at a dose reduction and a work efficiency improvement for nuclear power plants that have high dose regions, we have developed our system of wireless-communicating Area Monitor with Surveillance Camera, and have performed an on-site test. Now we are implementing this Area Monitor with Surveillance Camera for a use as a TV camera in the controlled-area, which enables a personal computer to simultaneously display two or more dose values and site live images on the screen. For the radiation detector of this Area Monitor System, our wireless-communicating dosimeter is utilized. Image data are transmitted via a wireless Local Area Network (LAN). As a test result, image transmission of a maximum of 20 frames per second has been realized, which shows that this concept is a practical application. Remote-site monitoring also has been realized from an office desk located within the non-controlled area, adopting a Japan's wireless phone system, PHS (Personal Handy Phone) for the transmission interface. (author)

  10. Wireless Headset Communication System

    Science.gov (United States)

    Lau, Wilfred K.; Swanson, Richard; Christensen, Kurt K.

    1995-01-01

    System combines features of pagers, walkie-talkies, and cordless telephones. Wireless headset communication system uses digital modulation on spread spectrum to avoid interference among units. Consists of base station, 4 radio/antenna modules, and as many as 16 remote units with headsets. Base station serves as network controller, audio-mixing network, and interface to such outside services as computers, telephone networks, and other base stations. Developed for use at Kennedy Space Center, system also useful in industrial maintenance, emergency operations, construction, and airport operations. Also, digital capabilities exploited; by adding bar-code readers for use in taking inventories.

  11. Infrared wireless data transfer for real-time motion control

    NARCIS (Netherlands)

    Gajdusek, M.; Overboom, T.T.; Damen, A.A.H.; Bosch, van den P.P.J.

    2009-01-01

    In this paper several wireless solution are compared for their suitability for real-time control of a fast motion system. From the comparison, Very Fast Infrared (VFIR) communication link has been found to be an attractive solution for presented wirelessly controlled manipulator. Because standard

  12. Preface for the book: Antennas And Propagation for Body-Centric Wireless Communications

    DEFF Research Database (Denmark)

    Frederiksen, Flemming Bjerge; Prasad, Ramjee

    2006-01-01

    The book address the following subjects: Body Centric Wireless Communications possibilities, Electromagnetic properties of the body, On-body Communication Channels at high and low frequency bands, Body Centric UWB Communications, Wearable Antennas for cellular and WLAN communications, Body...

  13. Securing wireless communications at the physical layer

    CERN Document Server

    Liu, Ruoheng

    2009-01-01

    Throughout this book there is an underlying theme that the rich multipath environment that is typical of wireless scenarios supports the establishment of new security services at the physical layer, including new mechanisms that establish cryptographic keys, that support communication with assured confidentiality, and that can authenticate transmitters in mobile environments. The book takes a holistic approach to covering topics related to physical layer security solutions, with contributions ranging from the theoretical underpinnings behind secure communications to practical systems validatio

  14. Underwater wireless optical communications: From system-level demonstrations to channel modelling

    KAUST Repository

    Oubei, Hassan M.

    2018-01-09

    In this paper, we discuss about recent experimental advances in underwater wireless optical communications (UWOC) over various underwater channel water types using different modulation schemes as well as modelling and describing the statistical properties of turbulence-induced fading in underwater wireless optical channels using laser beam intensity fluctuations measurements.

  15. Photonic integrated circuits for millimeter-wave wireless communications

    NARCIS (Netherlands)

    Carpintero, G.; Balakier, K.; Yang, Z.; Guzmán, R.C.; Corradi, A.; Jimenez, A.; Kervalla, G.; Fice, M.; Lamponi, M.; Chtioui, M.; Van Dijk, Frédéric; Renaud, C.C.; Wonfor, A.; Bente, E.A.J.M.; Penty, R.V.; White, I.H.; Seeds, A.J.

    2014-01-01

    This paper describes the advantages that the introduction of photonic integration technologies can bring to the development of photonic-enabled wireless communications systems operating in the millimeter wave frequency range. We present two approaches for the development of dual wavelength sources

  16. Cross Layer Interference Management in Wireless Biomedical Networks

    Directory of Open Access Journals (Sweden)

    Emmanouil G. Spanakis

    2014-04-01

    Full Text Available Interference, in wireless networks, is a central phenomenon when multiple uncoordinated links share a common communication medium. The study of the interference channel was initiated by Shannon in 1961 and since then this problem has been thoroughly elaborated at the Information theoretic level but its characterization still remains an open issue. When multiple uncoordinated links share a common medium the effect of interference is a crucial limiting factor for network performance. In this work, using cross layer cooperative communication techniques, we study how to compensate interference in the context of wireless biomedical networks, where many links transferring biomedical or other health related data may be formed and suffer from all other interfering transmissions, to allow successful receptions and improve the overall network performance. We define the interference limited communication range to be the critical communication region around a receiver, with a number of surrounding interfering nodes, within which a successful communication link can be formed. Our results indicate that we can achieve more successful transmissions by adapting the transmission rate and power, to the path loss exponent, and the selected mode of the underline communication technique allowing interference mitigation and when possible lower power consumption and increase achievable transmission rates.

  17. Streetlight Control System Based on Wireless Communication over DALI Protocol

    Directory of Open Access Journals (Sweden)

    Francisco José Bellido-Outeiriño

    2016-04-01

    Full Text Available Public lighting represents a large part of the energy consumption of towns and cities. Efficient management of public lighting can entail significant energy savings. This work presents a smart system for managing public lighting networks based on wireless communication and the DALI protocol. Wireless communication entails significant economic savings, as there is no need to install new wiring and visual impacts and damage to the facades of historical buildings in city centers are avoided. The DALI protocol uses bidirectional communication with the ballast, which allows its status to be controlled and monitored at all times. The novelty of this work is that it tackles all aspects related to the management of public lighting: a standard protocol, DALI, was selected to control the ballast, a wireless node based on the IEEE 802.15.4 standard with a DALI interface was designed, a network layer that considers the topology of the lighting network has been developed, and lastly, some user-friendly applications for the control and maintenance of the system by the technical crews of the different towns and cities have been developed.

  18. Optimization of Wireless Optical Communication System Based on Augmented Lagrange Algorithm

    International Nuclear Information System (INIS)

    He Suxiang; Meng Hongchao; Wang Hui; Zhao Yanli

    2011-01-01

    The optimal model for wireless optical communication system with Gaussian pointing loss factor is studied, in which the value of bit error probability (BEP) is prespecified and the optimal system parameters is to be found. For the superiority of augmented Lagrange method, the model considered is solved by using a classical quadratic augmented Lagrange algorithm. The detailed numerical results are reported. Accordingly, the optimal system parameters such as transmitter power, transmitter wavelength, transmitter telescope gain and receiver telescope gain can be established, which provide a scheme for efficient operation of the wireless optical communication system.

  19. Network Coding Opportunities for Wireless Grids Formed by Mobile Devices

    DEFF Research Database (Denmark)

    Nielsen, Karsten Fyhn; Madsen, Tatiana Kozlova; Fitzek, Frank

    2008-01-01

    Wireless grids have potential in sharing communication, computational and storage resources making these networks more powerful, more robust, and less cost intensive. However, to enjoy the benefits of cooperative resource sharing, a number of issues should be addressed and the cost of the wireless...... link should be taken into account. We focus on the question how nodes can efficiently communicate and distribute data in a wireless grid. We show the potential of a network coding approach when nodes have the possibility to combine packets thus increasing the amount of information per transmission. Our...... implementation demonstrates the feasibility of network coding for wireless grids formed by mobile devices....

  20. Scintillation index and performance analysis of wireless optical links over non-Kolmogorov weak turbulence based on generalized atmospheric spectral model.

    Science.gov (United States)

    Cang, Ji; Liu, Xu

    2011-09-26

    Based on the generalized spectral model for non-Kolmogorov atmospheric turbulence, analytic expressions of the scintillation index (SI) are derived for plane, spherical optical waves and a partially coherent Gaussian beam propagating through non-Kolmogorov turbulence horizontally in the weak fluctuation regime. The new expressions relate the SI to the finite turbulence inner and outer scales, spatial coherence of the source and spectral power-law and then used to analyze the effects of atmospheric condition and link length on the performance of wireless optical communication links. © 2011 Optical Society of America

  1. Nonlinear distortion in wireless systems modeling and simulation with Matlab

    CERN Document Server

    Gharaibeh, Khaled M

    2011-01-01

    This book covers the principles of modeling and simulation of nonlinear distortion in wireless communication systems with MATLAB simulations and techniques In this book, the author describes the principles of modeling and simulation of nonlinear distortion in single and multichannel wireless communication systems using both deterministic and stochastic signals. Models and simulation methods of nonlinear amplifiers explain in detail how to analyze and evaluate the performance of data communication links under nonlinear amplification. The book addresses the analysis of nonlinear systems

  2. 76 FR 45860 - In the Matter of Certain Electronic Devices, Including Wireless Communication Devices, Portable...

    Science.gov (United States)

    2011-08-01

    ..., Including Wireless Communication Devices, Portable Music and Data Processing Devices, and Tablet Computers... electronic devices, including wireless communication devices, portable music and data processing devices, and...''). The complaint further alleges that an industry in the United States exists or is in the process of...

  3. Communication Challenges in on-Body and Body-to-Body Wearable Wireless Networks—A Connectivity Perspective

    Directory of Open Access Journals (Sweden)

    Dhafer Ben Arbia

    2017-07-01

    Full Text Available Wearable wireless networks (WWNs offer innovative ways to connect humans and/or objects anywhere, anytime, within an infinite variety of applications. WWNs include three levels of communications: on-body, body-to-body and off-body communication. Successful communication in on-body and body-to-body networks is often challenging due to ultra-low power consumption, processing and storage capabilities, which have a significant impact on the achievable throughput and packet reception ratio as well as latency. Consequently, all these factors make it difficult to opt for an appropriate technology to optimize communication performance, which predominantly depends on the given application. In particular, this work emphasizes the impact of coarse-grain factors (such as dynamic and diverse mobility, radio-link and signal propagation, interference management, data dissemination schemes, and routing approaches directly affecting the communication performance in WWNs. Experiments have been performed on a real testbed to investigate the connectivity behavior on two wireless communication levels: on-body and body-to-body. It is concluded that by considering the impact of above-mentioned factors, the general perception of using specific technologies may not be correct. Indeed, for on-body communication, by using the IEEE 802.15.6 standard (which is specifically designed for on-body communication, it is observed that while operating at low transmission power under realistic conditions, the connectivity can be significantly low, thus, the transmission power has to be tuned carefully. Similarly, for body-to-body communication in an indoor environment, WiFi IEEE 802.11n also has a high threshold of end-to-end disconnections beyond two hops (approximatively 25 m. Therefore, these facts promote the use of novel technologies such as 802.11ac, NarrowBand-IoT (NB-IoT etc. as possible candidates for body-to-body communications as a part of the Internet of humans concept.

  4. Silicon Photonics Integrated Circuits for 5th Generation mm-Wave Wireless Communications

    DEFF Research Database (Denmark)

    Rommel, Simon; Vegas Olmos, Juan José; Tafur Monroy, Idelfonso

    Hybrid photonic-wireless transmission schemes in the mm-wave frequency are promising candidates to enable the multi-gigabit per second data communications required from wireless and mobile networks of the 5th and future generations. Photonic integration may pave the way to practical applicability...

  5. Seamless integrated network system for wireless communication systems

    NARCIS (Netherlands)

    Wu, Gang; Mizuno, Mitsuhiko; Hase, Yoshihiro; Havinga, Paul J.M.

    2006-01-01

    To create a network that connects a plurality of wireless communication systems to create optimal systems for various environments, and that seamlessly integrates the resulting systems together in order to provide more efficient and advanced service in general. A network system that can seamlessly

  6. Seamless integrated network system for wireless communication systems

    NARCIS (Netherlands)

    Wu, Gang; Mizuno, Mitsuhiko; Hase, Yoshihiro; Havinga, Paul J.M.

    2002-01-01

    To create a network that connects a plurality of wireless communication systems to create optimal systems for various environments, and that seamlessly integrates the resulting systems together in order to provide more efficient and advanced service in general. A network system that can seamlessly

  7. Link-quality measurement and reporting in wireless sensor networks.

    Science.gov (United States)

    Chehri, Abdellah; Jeon, Gwanggil; Choi, Byoungjo

    2013-03-04

    Wireless Sensor networks (WSNs) are created by small hardware devices that possess the necessary functionalities to measure and exchange a variety of environmental data in their deployment setting. In this paper, we discuss the experiments in deploying a testbed as a first step towards creating a fully functional heterogeneous wireless network-based underground monitoring system. The system is mainly composed of mobile and static ZigBee nodes, which are deployed on the underground mine galleries for measuring ambient temperature. In addition, we describe the measured results of link characteristics such as received signal strength, latency and throughput for different scenarios.

  8. Link-Quality Measurement and Reporting in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Byoungjo Choi

    2013-03-01

    Full Text Available Wireless Sensor networks (WSNs are created by small hardware devices that possess the necessary functionalities to measure and exchange a variety of environmental data in their deployment setting. In this paper, we discuss the experiments in deploying a testbed as a first step towards creating a fully functional heterogeneous wireless network-based underground monitoring system. The system is mainly composed of mobile and static ZigBee nodes, which are deployed on the underground mine galleries for measuring ambient temperature. In addition, we describe the measured results of link characteristics such as received signal strength, latency and throughput for different scenarios.

  9. Experimental assessment of a wireless communications platform for the built and natural heritage

    OpenAIRE

    Martínez-Garrido, M. I.; Fort González, Rafael

    2016-01-01

    Wireless sensor networks have become extremely popular in a number of fields in recent years, the cultural heritage among them. To date, however, communications quality has not been technically validated in any of the various built (churches, museums, archaeological sites) or natural (caves, lava tubes) heritage scenarios. The present study establishes methodology for assessing the quality of wireless communications and validating the network used, both of which are essential to guaranteeing ...

  10. Experimental Demonstration of Coexistence of Microwave Wireless Communication and Power Transfer Technologies for Battery-Free Sensor Network Systems

    Directory of Open Access Journals (Sweden)

    Satoshi Yoshida

    2013-01-01

    Full Text Available This paper describes experimental demonstrations of a wireless power transfer system equipped with a microwave band communication function. Battery charging using the system is described to evaluate the possibility of the coexistence of both wireless power transfer and communication functions in the C-band. A battery-free wireless sensor network system is demonstrated, and a high-power rectifier for the system is also designed and evaluated in the S-band. We have confirmed that microwave wireless power transfer can coexist with communication function.

  11. Efficient Weibull channel model for salinity induced turbulent underwater wireless optical communications

    KAUST Repository

    Oubei, Hassan M.

    2017-12-13

    Recent advances in underwater wireless optical communications necessitate a better understanding of the underwater channel. We propose the Weibull model to characterize the fading of salinity induced turbulent underwater wireless optical channels. The model shows an excellent agreement with the measured data under all channel conditions.

  12. A Survey of Wireless Communications for the Electric Power System

    Energy Technology Data Exchange (ETDEWEB)

    Akyol, Bora A.; Kirkham, Harold; Clements, Samuel L.; Hadley, Mark D.

    2010-01-27

    A key mission of the U.S. Department of Energy (DOE) Office of Electricity Delivery and Energy Reliability (OE) is to enhance the security and reliability of the nation’s energy infrastructure. Improving the security of control systems, which enable the automated control of our energy production and distribution, is critical for protecting the energy infrastructure and the integral function that it serves in our lives. The DOE-OE Control Systems Security Program provides research and development to help the energy industry actively pursue advanced security solutions for control systems. The focus of this report is analyzing how, where, and what type of wireless communications are suitable for deployment in the electric power system and to inform implementers of their options in wireless technologies. The discussions in this report are applicable to enhancing both the communications infrastructure of the current electric power system and new smart system deployments. The work described in this report includes a survey of the following wireless technologies: • IEEE 802.16 d and e (WiMAX) • IEEE 802.11 (Wi-Fi) family of a, b, g, n, and s • Wireless sensor protocols that use parts of the IEEE 802.15.4 specification: WirelessHART, International Society of Automation (ISA) 100.11a, and Zigbee • The 2, 3, and 4 generation (G )cellular technologies of GPRS/EDGE/1xRTT, HSPA/EVDO, and Long-Term Evolution (LTE)/HSPA+UMTS.

  13. Full-duplex wireless communications systems self-interference cancellation

    CERN Document Server

    Le-Ngoc, Tho

    2017-01-01

    This book introduces the development of self-interference (SI)-cancellation techniques for full-duplex wireless communication systems. The authors rely on estimation theory and signal processing to develop SI-cancellation algorithms by generating an estimate of the received SI and subtracting it from the received signal. The authors also cover two new SI-cancellation methods using the new concept of active signal injection (ASI) for full-duplex MIMO-OFDM systems. The ASI approach adds an appropriate cancelling signal to each transmitted signal such that the combined signals from transmit antennas attenuate the SI at the receive antennas. The authors illustrate that the SI-pre-cancelling signal does not affect the data-bearing signal. This book is for researchers and professionals working in wireless communications and engineers willing to understand the challenges of deploying full-duplex and practical solutions to implement a full-duplex system. Advanced-level students in electrical engineering and computer ...

  14. 75 FR 6704 - In the Matter of Certain Mobile Telephones and Wireless Communication Devices Featuring Digital...

    Science.gov (United States)

    2010-02-10

    ... States after importation of certain mobile telephones and wireless communication devices featuring... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-663] In the Matter of Certain Mobile Telephones and Wireless Communication Devices Featuring Digital Cameras, and Components Thereof; Notice of...

  15. 75 FR 65654 - In the Matter of: Certain Mobile Telephones and Wireless Communication Devices Featuring Digital...

    Science.gov (United States)

    2010-10-26

    ... States after importation of certain mobile telephones and wireless communication devices featuring... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-703] In the Matter of: Certain Mobile Telephones and Wireless Communication Devices Featuring Digital Cameras, and Components Thereof;Notice of...

  16. Wireless RF communication in biomedical applications

    International Nuclear Information System (INIS)

    Jones, Inke; Ricciardi, Lucas; Hall, Leonard; Enderling, Stefan; Saint, David; Al-Sarawi, Said; Abbott, Derek; Hansen, Hedley; Varadan, Vijay; Bertram, Chris; Maddocks, Simon

    2008-01-01

    This paper focuses on wireless transcutaneous RF communication in biomedical applications. It discusses current technology, restrictions and applications and also illustrates possible future developments. It focuses on the application in biotelemetry where the system consists of a transmitter and a receiver with a transmission link in between. The transmitted information can either be a biopotential or a nonelectric value like arterial pressure, respiration, body temperature or pH value. In this paper the use of radio-frequency (RF) communication and identification for those applications is described. Basically, radio-frequency identification or RFID is a technology that is analogous to the working principle of magnetic barcode systems. Unlike magnetic barcodes, passive RFID can be used in extreme climatic conditions—also the tags do not need to be within close proximity of the reader. Our proposed solution is to exploit an exciting new development in making circuits on polymers without the need for battery power. This solution exploits the principle of a surface acoustic wave (SAW) device on a polymer substrate. The SAW device is a set of interdigitated conducting fingers on the polymer substrate. If an appropriate RF signal is sent to the device, the fingers act as microantennas that pick up the signal, and this energy is then converted into acoustic waves that travel across the surface of the polymer substrate. Being a flexible polymer, the acoustic waves cause stresses that can either contract or stretch the material. In our case we mainly focus on an RF controllable microvalve that could ultimately be used for fertility control

  17. Wireless RF communication in biomedical applications

    Science.gov (United States)

    Jones, Inke; Ricciardi, Lucas; Hall, Leonard; Hansen, Hedley; Varadan, Vijay; Bertram, Chris; Maddocks, Simon; Enderling, Stefan; Saint, David; Al-Sarawi, Said; Abbott, Derek

    2008-02-01

    This paper focuses on wireless transcutaneous RF communication in biomedical applications. It discusses current technology, restrictions and applications and also illustrates possible future developments. It focuses on the application in biotelemetry where the system consists of a transmitter and a receiver with a transmission link in between. The transmitted information can either be a biopotential or a nonelectric value like arterial pressure, respiration, body temperature or pH value. In this paper the use of radio-frequency (RF) communication and identification for those applications is described. Basically, radio-frequency identification or RFID is a technology that is analogous to the working principle of magnetic barcode systems. Unlike magnetic barcodes, passive RFID can be used in extreme climatic conditions—also the tags do not need to be within close proximity of the reader. Our proposed solution is to exploit an exciting new development in making circuits on polymers without the need for battery power. This solution exploits the principle of a surface acoustic wave (SAW) device on a polymer substrate. The SAW device is a set of interdigitated conducting fingers on the polymer substrate. If an appropriate RF signal is sent to the device, the fingers act as microantennas that pick up the signal, and this energy is then converted into acoustic waves that travel across the surface of the polymer substrate. Being a flexible polymer, the acoustic waves cause stresses that can either contract or stretch the material. In our case we mainly focus on an RF controllable microvalve that could ultimately be used for fertility control.

  18. 75 FR 8112 - In the Matter of Certain Mobile Telephones and Wireless Communication Devices Featuring Digital...

    Science.gov (United States)

    2010-02-23

    ... importation of certain mobile telephones and wireless communication devices featuring digital cameras, and... importation of certain mobile telephones or wireless communication devices featuring digital cameras, or... INTERNATIONAL TRADE COMMISSION [Inv. No. 337-TA-703] In the Matter of Certain Mobile Telephones...

  19. Low complexity source and channel coding for mm-wave hybrid fiber-wireless links

    DEFF Research Database (Denmark)

    Lebedev, Alexander; Vegas Olmos, Juan José; Pang, Xiaodan

    2014-01-01

    We report on the performance of channel and source coding applied for an experimentally realized hybrid fiber-wireless W-band link. Error control coding performance is presented for a wireless propagation distance of 3 m and 20 km fiber transmission. We report on peak signal-to-noise ratio perfor...

  20. Advanced relay technologies in next generation wireless communications

    CERN Document Server

    Krikidis, Ioannis

    2016-01-01

    This book details the use of the cooperative networks/relaying approach in new and emerging telecommunications technologies such as full-duplex radio, massive multiple-input multiple-output (MIMO), network coding and spatial modulation, and new application areas including visible light communications (VLC), wireless power transfer, and 5G.

  1. Minimizing SIP Session Re-Setup Delay over Wireless Link in 3G Handover Scenarios

    Directory of Open Access Journals (Sweden)

    Moon Bongkyo

    2010-01-01

    Full Text Available The delay in transmitting SIP messages over the wireless link for session resetup at handover is still major bottleneck for interactive multimedia service. In this paper, a proxy agent-based scheme is proposed to minimize the SIP session setup delay over a wireless link in 3G inter-subnet handover scenarios. This scheme is based on the two characteristics. One is that the major factor of SIP session re-setup delay is generally caused by the retransmissions in the unreliable wireless links, and the other is that most of the fields in request messages as well as response messages are duplicated when a set of SIP messages are exchanged during session re-setup procedure. In this scheme, no change is required in the SIP message processing except for the proxy agents in both BS and MH.

  2. Review of Key Technologies of 5G Wireless Communication System

    Directory of Open Access Journals (Sweden)

    Shi Sha

    2015-01-01

    Full Text Available The 5th generation mobile communication system (5G is oriented towards a new generation of mobile communication system to the year of 2020 and beyond, and its development is still at the exploratory stage. Combining the latest trends in mobile communication development at home and abroad, in this article, we describe the key technologies of driving the 5G research direction. Furthermore, the technical innovation of 5G comes from both wireless and network technologies. In the field of wireless technologies, massive multiple-input multiple-output (MIMO, ultra-wideband spectral, ultra-dense heterogeneous networks, have already become the focus of global industry. In the field of network technologies, a new network architecture based on software-defined networking (SDN becomes the prevailing view worldwide. Additionally, there are some other potential technologies for 5G, such as NOMA, FBMC, mm Waves, and Multi-carrier technology aggregation.

  3. Realization of Timed Reliable Communication over Off-The-Shelf Wireless Technologies

    DEFF Research Database (Denmark)

    Malinowsky, B.; Groenbaek, Jesper; Schwefel, Hans-Peter

    2013-01-01

    Industrial and safety-critical applications pose strict requirements for timeliness and reliability for the communication solution. Thereby the use of off-the-shelf (OTS) wireless communication technologies can be attractive to achieve low cost and easy deployment. This paper presents and analyse...

  4. Cooperative Wireless Communications and Physical Layer Security : State of the Art

    DEFF Research Database (Denmark)

    Rohokale, Vandana M.; Prasad, Neeli R.; Prasad, Ramjee

    2012-01-01

    in the mobile equipment is not feasible due to resource constraints. Cooperative wireless communication (CWC) is the upcoming virtual MIMO technique to combat fading and achieve diversity through user cooperation. Physical layer security (PLS) is the imminent security guarantee for the cooperative communication....

  5. Reliability Improved Cooperative Communication over Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Zhuangbin Chen

    2017-10-01

    Full Text Available With the development of smart devices and connection technologies, Wireless Sensor Networks (WSNs are becoming increasingly intelligent. New or special functions can be obtained by receiving new versions of program codes to upgrade their software systems, forming the so-called smart Internet of Things (IoT. Due to the lossy property of wireless channels, data collection in WSNs still suffers from a long delay, high energy consumption, and many retransmissions. Thanks to wireless software-defined networks (WSDNs, software in sensors can now be updated to help them transmit data cooperatively, thereby achieving more reliable communication. In this paper, a Reliability Improved Cooperative Communication (RICC data collection scheme is proposed to improve the reliability of random-network-coding-based cooperative communications in multi-hop relay WSNs without reducing the network lifetime. In WSNs, sensors in different positions can have different numbers of packets to handle, resulting in the unbalanced energy consumption of the network. In particular, nodes in non-hotspot areas have up to 90% of their original energy remaining when the network dies. To efficiently use the residual energy, in RICC, high data transmission power is adopted in non-hotspot areas to achieve a higher reliability at the cost of large energy consumption, and relatively low transmission power is adopted in hotspot areas to maintain the long network lifetime. Therefore, high reliability and a long network lifetime can be obtained simultaneously. The simulation results show that compared with other scheme, RICC can reduce the end-to-end Message Fail delivering Ratio (MFR by 59.4%–62.8% under the same lifetime with a more balanced energy utilization.

  6. Getting ahead of the curve in wireless communications | IDRC ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    IDRC Research Chair in Wireless Communications Indian Institute of Technology ... of Engineering and Technology, UK, and the Institution of Electronics and ... He has also received a number of best paper awards and is the Area Editor for ...

  7. Power Control and Coding Formulation for State Estimation with Wireless Sensors

    DEFF Research Database (Denmark)

    Quevedo, Daniel; Østergaard, Jan; Ahlen, Anders

    2014-01-01

    efficient communication. In this paper, we examine the role of power control and coding for Kalman filtering over wireless correlated channels. Two estimation architectures are considered; initially, the sensors send their measurements directly to a single gateway (GW). Next, wireless relay nodes provide...... additional links. The GW decides on the coding scheme and the transmitter power levels of the wireless nodes. The decision process is carried out online and adapts to varying channel conditions to improve the tradeoff between state estimation accuracy and energy expenditure. In combination with predictive......Technological advances made wireless sensors cheap and reliable enough to be brought into industrial use. A major challenge arises from the fact that wireless channels introduce random packet dropouts. Power control and coding are key enabling technologies in wireless communications to ensure...

  8. ICSW2AN : An Inter-vehicle Communication System Using Mobile Access Point over Wireless Wide Area Networks

    Science.gov (United States)

    Byun, Tae-Young

    This paper presents a prototype of inter-vehicle communication system using mobile access point that internetworks wired or wireless LAN and wireless WAN anywhere. Implemented mobile access point can be equipped with various wireless WAN interfaces such as WCDMA and HSDPA. Mobile access point in the IP mechanism has to process connection setup procedure to one wireless WAN. To show the applicability of the mobile access point to inter-vehicle communication, a simplified V2I2V-based car communication system called ICSW2AN is implemented to evaluate major performance metrics by road test. In addition, results of road test for traffic information service are investigated in view of RTT, latency and server processing time. The experimental result indicates that V2I2V-based car communication system sufficiently can provide time-tolerant traffic information to moving vehicles while more than two mobile devices in restricted spaces such as car, train and ship access wireless Internet simultaneously.

  9. K-best decoders for 5G+ wireless communication

    CERN Document Server

    Rahman, Mehnaz

    2017-01-01

    This book discusses new, efficient and hardware realizable algorithms that can attain the performance of beyond 5G wireless communication. The authors explain topics gradually, stepping from basic MIMO detection to optimized schemes for both hard and soft domain MIMO detection and also to the feasible VLSI implementation, scalable to any MIMO configuration (including massive MIMO, used in satellite/space communication). The techniques described in this book enable readers to implement real designs, with reduced computational complexity and improved performance.

  10. Wireless communication with implanted medical devices using the conductive properties of the body.

    Science.gov (United States)

    Ferguson, John E; Redish, A David

    2011-07-01

    Many medical devices that are implanted in the body use wires or wireless radiofrequency telemetry to communicate with circuitry outside the body. However, the wires are a common source of surgical complications, including breakage, infection and electrical noise. In addition, radiofrequency telemetry requires large amounts of power and results in low-efficiency transmission through biological tissue. As an alternative, the conductive properties of the body can be used to enable wireless communication with implanted devices. In this article, several methods of intrabody communication are described and compared. In addition to reducing the complications that occur with current implantable medical devices, intrabody communication can enable novel types of miniature devices for research and clinical applications.

  11. Closed-loop multiple antenna aided wireless communications using limited feedback

    OpenAIRE

    Yang, Du

    2010-01-01

    The aim of this thesis is to study the design of closed-loop multiple antenna aided wireless communications relying on limited feedback. Multiple antennas may be employed either/both at the transmitter or/and at the receiver, here the latter periodically feeds back some information about the time-varying wireless channel using a limited number of bits. Furthermore, the transmitter then pre-processes the signals to be transmitted according to the received feedback information. This closed-loop...

  12. Promoting Wired Links in Wireless Mesh Networks: An Efficient Engineering Solution

    Science.gov (United States)

    Barekatain, Behrang; Raahemifar, Kaamran; Ariza Quintana, Alfonso; Triviño Cabrera, Alicia

    2015-01-01

    Wireless Mesh Networks (WMNs) cannot completely guarantee good performance of traffic sources such as video streaming. To improve the network performance, this study proposes an efficient engineering solution named Wireless-to-Ethernet-Mesh-Portal-Passageway (WEMPP) that allows effective use of wired communication in WMNs. WEMPP permits transmitting data through wired and stable paths even when the destination is in the same network as the source (Intra-traffic). Tested with four popular routing protocols (Optimized Link State Routing or OLSR as a proactive protocol, Dynamic MANET On-demand or DYMO as a reactive protocol, DYMO with spanning tree ability and HWMP), WEMPP considerably decreases the end-to-end delay, jitter, contentions and interferences on nodes, even when the network size or density varies. WEMPP is also cost-effective and increases the network throughput. Moreover, in contrast to solutions proposed by previous studies, WEMPP is easily implemented by modifying the firmware of the actual Ethernet hardware without altering the routing protocols and/or the functionality of the IP/MAC/Upper layers. In fact, there is no need for modifying the functionalities of other mesh components in order to work with WEMPPs. The results of this study show that WEMPP significantly increases the performance of all routing protocols, thus leading to better video quality on nodes. PMID:25793516

  13. Interconnecting wearable devices with nano-biosensing implants through optical wireless communications

    Science.gov (United States)

    Johari, Pedram; Pandey, Honey; Jornet, Josep M.

    2018-02-01

    Major advancements in the fields of electronics, photonics and wireless communication have enabled the development of compact wearable devices, with applications in diverse domains such as fitness, wellness and medicine. In parallel, nanotechnology is enabling the development of miniature sensors that can detect events at the nanoscale with unprecedented accuracy. On this matter, in vivo implantable Surface Plasmon Resonance (SPR) nanosensors have been proposed to analyze circulating biomarkers in body fluids for the early diagnosis of a myriad of diseases, ranging from cardiovascular disorders to different types of cancer. In light of these results, in this paper, an architecture is proposed to bridge the gap between these two apparently disjoint paradigms, namely, the commercial wearable devices and the advanced nano-biosensing technologies. More specifically, this paper thoroughly assesses the feasibility of the wireless optical intercommunications of an SPR-based nanoplasmonic biochip -implanted subcutaneously in the wrist-, with a nanophotonic wearable smart band which is integrated by an array of nano-lasers and photon-detectors for distributed excitation and measurement of the nanoplasmonic biochip. This is done through a link budget analysis which captures the peculiarities of the intra-body optical channel at (sub) cellular level, the strength of the SPR nanosensor reflection, as well as the capabilities of the nanolasers (emission power, spectrum) and the nano photon-detectors (sensitivity and noise equivalent power). The proposed analysis guides the development of practical communication designs between the wearable devices and nano-biosensing implants, which paves the way through early-stage diagnosis of severe diseases.

  14. Energy efficiency in wireless communication systems

    Science.gov (United States)

    Caffrey, Michael Paul; Palmer, Joseph McRae

    2012-12-11

    Wireless communication systems and methods utilize one or more remote terminals, one or more base terminals, and a communication channel between the remote terminal(s) and base terminal(s). The remote terminal applies a direct sequence spreading code to a data signal at a spreading factor to provide a direct sequence spread spectrum (DSSS) signal. The DSSS signal is transmitted over the communication channel to the base terminal which can be configured to despread the received DSSS signal by a spreading factor matching the spreading factor utilized to spread the data signal. The remote terminal and base terminal can dynamically vary the matching spreading factors to adjust the data rate based on an estimation of operating quality over time between the remote terminal and base terminal such that the amount of data being transmitted is substantially maximized while providing a specified quality of service.

  15. WMSA for wireless communication applications

    Energy Technology Data Exchange (ETDEWEB)

    Vats, Monika; Agarwal, Alok, E-mail: alokagarwal26@yahoo.com; Kumar, Ravindra [Dept. of Electronics & Electrical Engineering, Lingaya’s University Faridabad (India)

    2016-03-09

    Modified rectangular compact microstrip patch antenna having finite ground plane is proposed in this paper. Wideband Microstrip Antenna (WMSA) is achieved by corner cut and inserting air gaps inside the edges of the radiating patch having finite ground plane. The obtained impedance bandwidth for 10 dB return loss for the operating frequency f{sub 0} = 2.09 GHz is 28.7 % (600 MHz), which is very high as compared to the bandwidth obtained for the conventional microstrip antenna. Compactness with wide bandwidth of this antenna is practically useful for the wireless communication systems.

  16. The investigation of using 5G millimeter-wave communications links for environmental monitoring

    Science.gov (United States)

    Han, Congzheng

    2017-04-01

    There has been significantly increasing recognition that millimeter waves from 30 GHz to 300 GHz as carriers for future 5G cellular networks. This is good for high speed, line-of-sight communication, potentially using very densely deployed infrastructure involving many small cells. High resolution, continuous and accurate monitoring of environmental conditions, such as rainfall and water vapor are of great important to meteorology, hydrology (e.g. flood warning), agriculture, environmental policy (e.g. pollution regulation) and weather forecasting. We have built a 28GHz measurement link at our research institute in central Beijing, China. This work will study the potential of using millimeter wave based wireless links to monitor environmental conditions including rainfall and water vapor.

  17. Localization and Communication for UWB-based Wireless Sensor Networks

    NARCIS (Netherlands)

    Wang, Y.

    2011-01-01

    The great demand for location-aware wireless sensor networks (WSNs) motivates the research in this thesis. The unique characteristics of WSNs impose numerous challenges on localization and communication. In this thesis, we handle some key challenges and provide affordable solutions. Impulse radio

  18. CMOS front ends for millimeter wave wireless communication systems

    CERN Document Server

    Deferm, Noël

    2015-01-01

    This book focuses on the development of circuit and system design techniques for millimeter wave wireless communication systems above 90GHz and fabricated in nanometer scale CMOS technologies. The authors demonstrate a hands-on methodology that was applied to design six different chips, in order to overcome a variety of design challenges. Behavior of both actives and passives, and how to design them to achieve high performance is discussed in detail. This book serves as a valuable reference for millimeter wave designers, working at both the transistor level and system level.   Discusses advantages and disadvantages of designing wireless mm-wave communication circuits and systems in CMOS; Analyzes the limitations and pitfalls of building mm-wave circuits in CMOS; Includes mm-wave building block and system design techniques and applies these to 6 different CMOS chips; Provides guidelines for building measurement setups to evaluate high-frequency chips.  

  19. Optical wireless link between a nanoscale antenna and a transducing rectenna.

    Science.gov (United States)

    Dasgupta, Arindam; Mennemanteuil, Marie-Maxime; Buret, Mickaël; Cazier, Nicolas; Colas-des-Francs, Gérard; Bouhelier, Alexandre

    2018-05-18

    Initiated as a cable-replacement solution, short-range wireless power transfer has rapidly become ubiquitous in the development of modern high-data throughput networking in centimeter to meter accessibility range. Wireless technology is now penetrating a higher level of system integration for chip-to-chip and on-chip radiofrequency interconnects. However, standard CMOS integrated millimeter-wave antennas have typical size commensurable with the operating wavelength, and are thus an unrealistic solution for downsizing transmitters and receivers to the micrometer and nanometer scale. Herein, we demonstrate a light-in and electrical signal-out, on-chip wireless near-infrared link between a 220 nm optical antenna and a sub-nanometer rectifying antenna converting the transmitted optical energy into direct electrical current. The co-integration of subwavelength optical functional devices with electronic transduction offers a disruptive solution to interface photons and electrons at the nanoscale for on-chip wireless optical interconnects.

  20. Review of optical wireless communications for data centers

    Science.gov (United States)

    Arnon, Shlomi

    2017-10-01

    A data center (DC) is a facility either physical or virtual, for running applications, searching, storage, management and dissemination of information known as cloud computing, which consume a huge amount of energy. A DC includes thousands of servers, communication and storage equipment and a support system including an air conditioning system, security, monitoring equipment and electricity regulator units. Data center operators face the challenges of meeting exponentially increasing demands for network bandwidth without unreasonable increases in operation and infrastructure cost. In order to meet the requirements of moderate increase in operation and infrastructure cost technology, a revolution is required. One way to overcome the shortcomings of traditional static (wired) data center architectures is use of a hybrid network based on fiber and optical wireless communication (OWC) or free space optics (FSO). The OWC link could be deployed on top of the existing cable/fiber network layer, so that live migration could be done easily and dynamically. In that case the network topology is flexible and adapts quickly to changes in traffic, heat distribution, power consumption and characteristics of the applications. In addition, OWC could provide an easy way to maintain and scale up data centers. As a result total cost of ownership could be reduced and the return on investment could be increased. In this talk we will review the main OWC technologies applicable for data centers, indicate how energy could be saved using OWC multichannel communication and discuss the issue of OWC pointing accuracy for data center scenario.

  1. Data communications and computer communications network

    International Nuclear Information System (INIS)

    Kim, Jang Gwon; Gu, Chang Hoe

    2005-03-01

    This textbook is composed of twelve chapters, which are communication network introduction, foundation of data communication, data link control, circuit switching system, packet switching system, multiple access communication system, protocol and architecture, LAN, MAN communication network, integrated service digital network, internet and Asymmetric digital subscriber Line and Wireless Local Loop. Each chapter has the introduction of the technique, structure, function and practice problems. It also has the appendix on electricity and communication standards organization, characteristic table and glossary.

  2. PDA-phone-based instant transmission of radiological images over a CDMA network by combining the PACS screen with a Bluetooth-interfaced local wireless link.

    Science.gov (United States)

    Kim, Dong Keun; Yoo, Sun K; Park, Jeong Jin; Kim, Sun Ho

    2007-06-01

    Remote teleconsultation by specialists is important for timely, correct, and specialized emergency surgical and medical decision making. In this paper, we designed a new personal digital assistant (PDA)-phone-based emergency teleradiology system by combining cellular communication with Bluetooth-interfaced local wireless links. The mobility and portability resulting from the use of PDAs and wireless communication can provide a more effective means of emergency teleconsultation without requiring the user to be limited to a fixed location. Moreover, it enables synchronized radiological image sharing between the attending physician in the emergency room and the remote specialist on picture archiving and communication system terminals without distorted image acquisition. To enable rapid and fine-quality radiological image transmission over a cellular network in a secure manner, progressive compression and security mechanisms have been incorporated. The proposed system is tested over a code division Multiple Access 1x-Evolution Data-Only network to evaluate the performance and to demonstrate the feasibility of this system in a real-world setting.

  3. Improved Image Encryption for Real-Time Application over Wireless Communication Networks using Hybrid Cryptography Technique

    Directory of Open Access Journals (Sweden)

    Kazeem B. Adedeji

    2016-12-01

    Full Text Available Advances in communication networks have enabled organization to send confidential data such as digital images over wireless networks. However, the broadcast nature of wireless communication channel has made it vulnerable to attack from eavesdroppers. We have developed a hybrid cryptography technique, and we present its application to digital images as a means of improving the security of digital image for transmission over wireless communication networks. The hybrid technique uses a combination of a symmetric (Data Encryption Standard and asymmetric (Rivest Shamir Adleman cryptographic algorithms to secure data to be transmitted between different nodes of a wireless network. Three different image samples of type jpeg, png and jpg were tested using this technique. The results obtained showed that the hybrid system encrypt the images with minimal simulation time, and high throughput. More importantly, there is no relation or information between the original images and their encrypted form, according to Shannon’s definition of perfect security, thereby making the system much more secure.

  4. Radio-over-fibre technology for broadband wireless communication systems

    NARCIS (Netherlands)

    Ng'Oma, A.

    2005-01-01

    Wireless coverage of the end-user domain, be it outdoors or indoors (in-building), is poised to become an essential part of broadband communication networks. In order to offer integrated broadband services (combining voice, data, video, multimedia services, and new value added services), these

  5. Low power radio communication platform for wireless sensor network

    NARCIS (Netherlands)

    Dutta, R.; Bentum, Marinus Jan; van der Zee, Ronan A.R.; Kokkeler, Andre B.J.

    2009-01-01

    Wireless sensor networks are predicted to be the most versatile, popular and useful technology in the near future. A large number of applications are targeted which will hugely benefit from a network of tiny computers with few sensors, radio communication platform, intelligent networking and

  6. Performance Analysis of Rayleigh Fading and Cochannel Interference in Wireless Communication

    National Research Council Canada - National Science Library

    Gao, Chunjun

    2000-01-01

    ...) performance of adaptive arrays for wireless communications over fading channels in the presence of cochannel interference, particularly the case when the number of interference sources exceeds...

  7. Bidirectional 3.125 Gbps downstream / 2 Gbps upstream impulse radio ultrawide-band (UWB) over combined fiber and wireless link

    DEFF Research Database (Denmark)

    Jensen, Jesper Bevensee; Gibbon, Timothy Braidwood; Yu, Xianbin

    2010-01-01

    We demonstrate bidirectional fiber and wireless transmission of impulse radio ultra-wideband at 3.125 Gbps downstream and 2 Gbps upstream. After transmission over 50 km fiber and 1.85 m wireless link both signals are recovered without errors.......We demonstrate bidirectional fiber and wireless transmission of impulse radio ultra-wideband at 3.125 Gbps downstream and 2 Gbps upstream. After transmission over 50 km fiber and 1.85 m wireless link both signals are recovered without errors....

  8. Simulation Of Wireless Networked Control System Using TRUETIME And MATLAB

    Directory of Open Access Journals (Sweden)

    Nyan Phyo Aung

    2015-08-01

    Full Text Available Wireless networked control systems WNCS are attracting an increasing research interests in the past decade. Wireless networked control system WNCS is composed of a group of distributed sensors and actuators that communicate through wireless link which achieves distributed sensing and executing tasks. This is particularly relevant for the areas of communication control and computing where successful design of WNCS brings about new challenges to the researchers. The primary motivation of this survey paper is to examine the design issues and to provide directions for successful simulation and implementation of WNCS. The paper also as well reviews some simulation tools for such systems.

  9. NASA Lunar Base Wireless System Propagation Analysis

    Science.gov (United States)

    Hwu, Shian U.; Upanavage, Matthew; Sham, Catherine C.

    2007-01-01

    results from this paper are important for the lunar wireless system link margin analysis in order to determine the limits on the reliable communication range, achievable data rate and RF coverage performance at planned lunar base work sites.

  10. High Data Rate Optical Wireless Communications Based on Ultraviolet Band

    KAUST Repository

    Sun, Xiaobin

    2017-01-01

    Optical wireless communication systems based on ultraviolet (UV)-band has a lot inherent advantages, such as low background solar radiation, low device dark noise. Besides, it also has small restrictive requirements for PAT (pointing, acquisition

  11. Adaptive Space-Time, Processing for High Performance, Robust Military Wireless Communications

    National Research Council Canada - National Science Library

    Haimovich, Alexander

    2000-01-01

    ...: (I) performance of adaptive arrays for wireless communications over fading channels in the presence of cochannel interference particularly the case when the number of interference sources exceeds...

  12. High Temperature Wireless Communication And Electronics For Harsh Environment Applications

    Science.gov (United States)

    Hunter, G. W.; Neudeck, P. G.; Beheim, G. M.; Ponchak, G. E.; Chen, L.-Y

    2007-01-01

    In order for future aerospace propulsion systems to meet the increasing requirements for decreased maintenance, improved capability, and increased safety, the inclusion of intelligence into the propulsion system design and operation becomes necessary. These propulsion systems will have to incorporate technology that will monitor propulsion component conditions, analyze the incoming data, and modify operating parameters to optimize propulsion system operations. This implies the development of sensors, actuators, and electronics, with associated packaging, that will be able to operate under the harsh environments present in an engine. However, given the harsh environments inherent in propulsion systems, the development of engine-compatible electronics and sensors is not straightforward. The ability of a sensor system to operate in a given environment often depends as much on the technologies supporting the sensor element as the element itself. If the supporting technology cannot handle the application, then no matter how good the sensor is itself, the sensor system will fail. An example is high temperature environments where supporting technologies are often not capable of operation in engine conditions. Further, for every sensor going into an engine environment, i.e., for every new piece of hardware that improves the in-situ intelligence of the components, communication wires almost always must follow. The communication wires may be within or between parts, or from the engine to the controller. As more hardware is added, more wires, weight, complexity, and potential for unreliability is also introduced. Thus, wireless communication combined with in-situ processing of data would significantly improve the ability to include sensors into high temperature systems and thus lead toward more intelligent engine systems. NASA Glenn Research Center (GRC) is presently leading the development of electronics, communication systems, and sensors capable of prolonged stable

  13. Subcarrier MPSK/MDPSK modulated optical wireless communications in lognormal turbulence

    KAUST Repository

    Song, Xuegui; Yang, Fan; Cheng, Julian; Alouini, Mohamed-Slim

    2015-01-01

    Bit-error rate (BER) performance of subcarrier Mary phase-shift keying (MPSK) and M-ary differential phase-shift keying (MDPSK) is analyzed for optical wireless communications over the lognormal turbulence channels. Both exact BER and approximate

  14. Up to 35 Gbps Ultra-Wideband Wireless Data Transmission Links

    DEFF Research Database (Denmark)

    Puerta Ramírez, Rafael; Rommel, Simon; Vegas Olmos, Juan José

    2016-01-01

    For the first time Ultra-Wideband record data transmission rates up to 35.1 Gbps and 21.6 Gbps are achieved, compliant with the restrictions on the effective radiated power established by both the United States Federal Communications Commission and the European Electronic Communications Committee......, respectively. To achieve these record bit rates, the multi-band approach of Carrierless Amplitude Phase modulation scheme was employed. Wireless transmissions were achieved with a BER below the 7% FEC threshold of 3.8·10-3 ....

  15. Accurate measurement of RF exposure from emerging wireless communication systems

    International Nuclear Information System (INIS)

    Letertre, Thierry; Toffano, Zeno; Monebhurrun, Vikass

    2013-01-01

    Isotropic broadband probes or spectrum analyzers (SAs) may be used for the measurement of rapidly varying electromagnetic fields generated by emerging wireless communication systems. In this paper this problematic is investigated by comparing the responses measured by two different isotropic broadband probes typically used to perform electric field (E-field) evaluations. The broadband probes are submitted to signals with variable duty cycles (DC) and crest factors (CF) either with or without Orthogonal Frequency Division Multiplexing (OFDM) modulation but with the same root-mean-square (RMS) power. The two probes do not provide accurate enough results for deterministic signals such as Worldwide Interoperability for Microwave Access (WIMAX) or Long Term Evolution (LTE) as well as for non-deterministic signals such as Wireless Fidelity (WiFi). The legacy measurement protocols should be adapted to cope for the emerging wireless communication technologies based on the OFDM modulation scheme. This is not easily achieved except when the statistics of the RF emission are well known. In this case the measurement errors are shown to be systematic and a correction factor or calibration can be applied to obtain a good approximation of the total RMS power.

  16. 77 FR 43858 - Certain Mobile Telephones and Wireless Communication Devices Featuring Digital Cameras, and...

    Science.gov (United States)

    2012-07-26

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-703] Certain Mobile Telephones and Wireless Communication Devices Featuring Digital Cameras, and Components Thereof; Determination To Review... importation, and the sale within the United States after importation of certain mobile telephones and wireless...

  17. 78 FR 69018 - Improving the Resiliency of Mobile Wireless Communications Networks; Reliability and Continuity...

    Science.gov (United States)

    2013-11-18

    ... consumers value overall network reliability and quality in selecting mobile wireless service providers, they...-125] Improving the Resiliency of Mobile Wireless Communications Networks; Reliability and Continuity... (Reliability NOI) in 2011 to ``initiate a comprehensive examination of issues regarding the reliability...

  18. In-Pipe Wireless Communication for Underground Sampling and Testing

    NARCIS (Netherlands)

    Nguyen, Nhan D.T.; Le, Duc V.; Meratnia, Nirvana; Havinga, Paul J.M.

    2017-01-01

    In this paper, we present an effective and low- cost wireless communication system for extremely long and narrow pipes that can replay the extant wire system in underground sensor network applications such as soil sampling and testing with the Cone Penetration Test (CPT), the most widely used

  19. Digital Video Imagery and Wireless Communications for Land-Based Reconnaissance Missions

    National Research Council Canada - National Science Library

    Munroe, James

    1999-01-01

    .... This thesis explores, analyzes, and performs a proof-of-concept implementation for a real-time digital video reconnaissance system from forward locations to the rear using wireless communication...

  20. Study on the Effect of Frequency on Conductivity of Underground Strata in Coal Mine Through-the-earth Wireless Communication

    OpenAIRE

    Jinyi TAO; Yuchen ZHANG

    2014-01-01

    The relationship of conductivity and the frequency, which is of decisive significance in through-the-earth wireless communication in coal mine, is closely related to the options of frequency range in coal mine wireless communication. When through-the-earth wireless communication is applied, the electromagnetic waves need to spread in the semi-conductive medium rocks. The main factors affecting the electromagnetic wave propagation in rocks is the rock strata electromagnetic parameters. These p...

  1. Wireless link using on-chip photonic integrated millimeter-wave sources

    NARCIS (Netherlands)

    Guzmán, R. C.; Gordón, C.; Carpintero, G.; Leijtens, X.; Lawniczak, Katarzyna

    2015-01-01

    Over the last few years wireless link data traffic has drastically increased due to a change in the way today's society creates, shares, and consumes information. Millimeter-waves (30-300 GHz) have a great advantage due to the wide bandwidths available for carrying information, enabling broadband

  2. Wireless Communication Into MBB Heliostat Fields

    International Nuclear Information System (INIS)

    Garcia Navajas, G.

    2002-01-01

    Autonomous heliostats fields are a priority objective long time pursued by PSA. Removal of all the electric cables, trenches and related components will really mean an important cosi reduction in civil works and investment for future Solar Thermal Power Plants. Several previous developments have been required before making autonomous-heliostat fields an eventual reality. First, a new local control has been designed to adapt all heliostat components to work on 24Vdc supplied by a photovoltaic panel. Second, a specific radio modem has been designed for wireless Communications. In April 1999, the first autonomous heliostat was started up and main results were reported at the 10 SolarPACES International Symposium. The objective, fixed within the project SIREC fimded with theFEDER European Regional Development Program, has been to scale these concepts to a mini-field to demonstrate the feasibility of the wireless communication and operation with 20 MBB heliostats located at the North side of CRS facilities of PSA. A specific radio modem has been designed for this application thanks to the scientific cooperation agreement between the University of Almeria and CIEMAT. 50% of the heliostat field has been implemented with a commercial radio-modem and the other 50% with specific radio-modems to compare the performance and capabilities. The capacities of both systems will be analysed and the main data obtained from the test campaign carried out, will be showed. (Author) 12 refs

  3. Final report : mobile surveillance and wireless communication systems field operational test. Volume 1, Executive summary

    Science.gov (United States)

    1999-03-01

    This study focused on assessing the application of traffic monitoring and management systems which use transportable surveillance and ramp meter trailers, video image processors, and wireless communications. The mobile surveillance and wireless commu...

  4. Performance Comparison Of Triangle Antenna of 60 GHz for 5G Wireless Communication Network

    Directory of Open Access Journals (Sweden)

    Aishah A.S.

    2017-01-01

    Full Text Available In this paper microstrip triangle with slot antenna for 5G wireless communication network are proposed. The microstip triangle antenna is design and operating 60 GHz milimeter-wave frequency band and it's suitable for 5G wireless communication. The substrates are chosen in the design, which are RogerRT5880 with copper thickness 0.035 mm to analyze their effect toward milimeter-wave performance on the designed. The designed and analysis is performed by using CST Microwave Studio. The lowest return loss of the antenna is -24.75dB which is triangle with slot and the maximum gain obtained is 6.82 db at the 59.68GHz for this antenna. The antenna is considering the gain, return loss and size, the microstrip antenna can be a suitable candidate for the 5G wireless application for short range high speed communication.

  5. Wireless Energy and Information Transmission in FSO and RF-FSO Links

    KAUST Repository

    Makki, Behrooz; Svensson, Tommy; Buisman, Koen; Perez, Joaquin; Alouini, Mohamed-Slim

    2017-01-01

    We propose and analyze a wireless energy and information transmission scheme in free-space optical (FSO) links. The results are presented for both quasi-static and fast-fading conditions. We derive closed-form expressions for throughput, outage

  6. Buckshot Routing with Distance Vectors in Three Application Scenarios for Wireless Sensor Networks with Unstable Network Topologies and Unidirectional Links

    Directory of Open Access Journals (Sweden)

    Reinhardt Karnapke

    2015-02-01

    Full Text Available Experiments have shown that the number of asymmetric and unidirectional links often exceeds the number of bidirectional ones, especially in the transitional area of the communication range of wireless sensor nodes. Still, most of today’s routing protocols ignore their existence or try to remove their implications. Also, links are not stable over time, and routes become unusable often, resulting in a need for new routing protocols that can handle highly dynamic links and use unidirectional links to their advantage. At SENSORCOMM' 2014, we presented BuckshotDV, a routing protocol which is resilient against link fluctuations and uses the longer reach of unidirectional links to increase its performance. Furthermore, its distance vector nature makes it scalable for large sensor networks. This paper is an extended version which adds some implementation details and the evaluation of BuckshotDV in two more application scenarios.

  7. Propagation channel characterization, parameter estimation, and modeling for wireless communications

    CERN Document Server

    Yin, Xuefeng

    2016-01-01

    Thoroughly covering channel characteristics and parameters, this book provides the knowledge needed to design various wireless systems, such as cellular communication systems, RFID and ad hoc wireless communication systems. It gives a detailed introduction to aspects of channels before presenting the novel estimation and modelling techniques which can be used to achieve accurate models. To systematically guide readers through the topic, the book is organised in three distinct parts. The first part covers the fundamentals of the characterization of propagation channels, including the conventional single-input single-output (SISO) propagation channel characterization as well as its extension to multiple-input multiple-output (MIMO) cases. Part two focuses on channel measurements and channel data post-processing. Wideband channel measurements are introduced, including the equipment, technology and advantages and disadvantages of different data acquisition schemes. The channel parameter estimation methods are ...

  8. Wireless Phone Threat Assessment for Aircraft Communication and Navigation Radios

    Science.gov (United States)

    Nguyens, T. X.; Koppen, S. V.; Smith, L. J.; Williams, R. A.; Salud, M. T.

    2005-01-01

    Emissions in aircraft communication and navigation bands are measured for the latest generation of wireless phones. The two wireless technologies considered, GSM/GPRS and CDMA2000, are the latest available to general consumers in the U.S. A base-station simulator is used to control the phones. The measurements are conducted using reverberation chambers, and the results are compared against FCC and aircraft installed equipment emission limits. The results are also compared against baseline emissions from laptop computers and personal digital assistant devices that are currently allowed to operate on aircraft.

  9. Energy neutral and low power wireless communications

    Science.gov (United States)

    Orhan, Oner

    Wireless sensor nodes are typically designed to have low cost and small size. These design objectives impose restrictions on the capacity and efficiency of the transceiver components and energy storage units that can be used. As a result, energy becomes a bottleneck and continuous operation of the sensor network requires frequent battery replacements, increasing the maintenance cost. Energy harvesting and energy efficient transceiver architectures are able to overcome these challenges by collecting energy from the environment and utilizing the energy in an intelligent manner. However, due to the nature of the ambient energy sources, the amount of useful energy that can be harvested is limited and unreliable. Consequently, optimal management of the harvested energy and design of low power transceivers pose new challenges for wireless network design and operation. The first part of this dissertation is on energy neutral wireless networking, where optimal transmission schemes under different system setups and objectives are investigated. First, throughput maximization for energy harvesting two-hop networks with decode-and-forward half-duplex relays is studied. For a system with two parallel relays, various combinations of the following four transmission modes are considered: Broadcast from the source, multi-access from the relays, and successive relaying phases I and II. Next, the energy cost of the processing circuitry as well as the transmission energy are taken into account for communication over a broadband fading channel powered by an energy harvesting transmitter. Under this setup, throughput maximization, energy maximization, and transmission completion time minimization problems are studied. Finally, source and channel coding for an energy-limited wireless sensor node is investigated under various energy constraints including energy harvesting, processing and sampling costs. For each objective, optimal transmission policies are formulated as the solutions of a

  10. Achieving single channel, full duplex wireless communication

    KAUST Repository

    Choi, Jung Il; Jain, Mayank; Srinivasan, Kannan; Levis, Phil; Katti, Sachin

    2010-01-01

    This paper discusses the design of a single channel full-duplex wireless transceiver. The design uses a combination of RF and baseband techniques to achieve full-duplexing with minimal effect on link reliability. Experiments on real nodes show the full-duplex prototype achieves median performance that is within 8% of an ideal full-duplexing system. This paper presents Antenna Cancellation, a novel technique for self-interference cancellation. In conjunction with existing RF interference cancellation and digital baseband interference cancellation, antenna cancellation achieves the amount of self-interference cancellation required for full-duplex operation. The paper also discusses potential MAC and network gains with full-duplexing. It suggests ways in which a full-duplex system can solve some important problems with existing wireless systems including hidden terminals, loss of throughput due to congestion, and large end-to-end delays. Copyright 2010 ACM.

  11. Cyber Security Evaluation of the Wireless Communication for the Mobile Safeguard Systems in Nuclear Power Plants

    International Nuclear Information System (INIS)

    Lee, S.; Kim, Y.S.; Ye, S.H.

    2015-01-01

    This paper introduces cyber security evaluation results and a design of the wireless communication technology to apply to safeguard systems in nuclear power plants. While wireless communication technologies can generally make mobility and efficiency on plant operation, those have seldom been installed on the nuclear I&C systems due to the negative concern of unexpected outcomes that stem from electromagnetic interference and cyber attack. New design of advanced digital safeguard and I&C systems uses computer-based systems for the safeguard and safety functions. On the other hand, those are being exposed to various types of new and existing cyber threats, vulnerabilities and risks which significantly increase the likelihood that those could be compromised. In order to employ the wireless communication technology in safeguard function, licencees assess and manage the potential for adverse effects on safeguard and safety functions so as to provide high assurance that critical functions are properly protected cyber attack. It is expected that the safeguard function, specifically on the area of real-time monitoring, logging, can be enhanced by employing the mobile safeguard devices (: smart phone, laptop, smart pad, etc). In this paper, we deal with the cyber security evaluation, which consists of threat analysis, vulnerability test, establishment of security plan, and design solutions for the wireless communication on the basis of IEEE 802.11(Wi-Fi) protocol. Proposed evaluation and design solution could be a basis for the design of wireless communication and mobile safeguard systems in nuclear power plants. (author)

  12. The development of display device for radioactive information using wireless communication

    International Nuclear Information System (INIS)

    Kim, Jung Taek; Park, Won Man; Lee, Bong Jae; Lim, Yoo Chung

    1998-06-01

    The improvement in the nuclear industry makes that it is important to protect personnel and equipment form radiation, because they have many chance to treat radioactive material. The head office on a prevention and an emergency measure for a radioactive release is necessary. In this study, display device for radioactive information using wireless communication has been developed to display a radioactivity using radio frequency modem. Therefore, the unlocated head office can be operated in a portable environment using a notebook PC or a compact display device. Korea Atomic Energy Research Institute, which runs a research reactor, HANARO, needs the head office on a prevention and an emergency measure for a radioactive release. The display device for radioactive information using wireless communication to be developed in this study, can be used to the head office as a display device not to pay additional cost. This study has developed the display device for radioactive information using wireless communication, Remote Radiation Display System(RRDS), which transmits every 10 second a radioactive information to be displayed to RMT(Radiation Monitoring Terminal) of Radiation Monitoring System in HANARO. In this study, first, a configuration of hardware and software in HANARO RMS has been reviewed. Second, a RS-2322C serial communication program to transmit a radioactive information in HARARO RMS to RRDS using radio frequency modem has been developed. Finally, a RS-2322C serial communication program to receive a radioactive information in HANARO RMS from RRDS using radio frequency modem and GUI program to display the received information to RRDS has been developed. (author). 19 refs., 3 tabs., 25 figs

  13. Low Power Consumption Wireless Sensor Communication System Integrated with an Energy Harvesting Power Source

    OpenAIRE

    Vlad MARSIC; Alessandro GIULIANO; Meiling ZHU

    2013-01-01

    This paper presents the testing results of a wireless sensor communication system with low power consumption integrated with an energy harvesting power source. The experiments focus on the system’s capability to perform continuous monitoring and to wirelessly transmit the data acquired from the sensors to a user base station, for realization of completely battery-free wireless sensor system. Energy harvesting technologies together with system design optimization for power consumption minimiza...

  14. Optical wireless connected objects for healthcare.

    Science.gov (United States)

    Toumieux, Pascal; Chevalier, Ludovic; Sahuguède, Stéphanie; Julien-Vergonjanne, Anne

    2015-10-01

    In this Letter the authors explore the communication capabilities of optical wireless technology for a wearable device dedicated to healthcare application. In an indoor environment sensible to electromagnetic perturbations such as a hospital, the use of optical wireless links can permit reducing the amount of radio frequencies in the patient environment. Moreover, this technology presents the advantage to be secure, low-cost and easy to deploy. On the basis of commercially available components, a custom-made wearable device is presented, which allows optical wireless transmission of accelerometer data in the context of physical activity supervision of post-stroke patients in hospital. Considering patient mobility, the experimental performance is established in terms of packet loss as a function of the number of receivers fixed to the ceiling. The results permit to conclude that optical wireless links can be used to perform such mobile remote monitoring applications. Moreover, based on the measurements obtained with one receiver, it is possible to theoretically determine the performance according to the number of receivers to be deployed.

  15. Progress on the Development of Future Airport Surface Wireless Communications Network

    Science.gov (United States)

    Kerczewski, Robert J.; Budinger, James M.; Brooks, David E.; Franklin, Morgan; DeHart, Steve; Dimond, Robert P.; Borden, Michael

    2009-01-01

    Continuing advances in airport surface management and improvements in airport surface safety are required to enable future growth in air traffic throughout the airspace, as airport arrival and departure delays create a major system bottleneck. These airport management and safety advances will be built upon improved communications, navigation, surveillance, and weather sensing, creating an information environment supporting system automation. The efficient movement of the digital data generated from these systems requires an underlying communications network infrastructure to connect data sources with the intended users with the required quality of service. Current airport surface communications consists primarily of buried copper or fiber cable. Safety related communications with mobile airport surface assets occurs over 25 kHz VHF voice and data channels. The available VHF spectrum, already congested in many areas, will be insufficient to support future data traffic requirements. Therefore, a broadband wireless airport surface communications network is considered a requirement for the future airport component of the air transportation system. Progress has been made on defining the technology and frequency spectrum for the airport surface wireless communications network. The development of a test and demonstration facility and the definition of required testing and standards development are now underway. This paper will review the progress and planned future work.

  16. Full-duplex bidirectional transmission of 10-Gb/s millimeter-wave QPSK signal in E-band optical wireless link.

    Science.gov (United States)

    Fang, Yuan; Yu, Jianjun; Chi, Nan; Xiao, Jiangnan

    2014-01-27

    We experimentally demonstrated full-duplex bidirectional transmission of 10-Gb/s millimeter-wave (mm-wave) quadrature phase shift keying (QPSK) signal in E-band (71-76 GHz and 81-86 GHz) optical wireless link. Single-mode fibers (SMF) are connected at both sides of the antenna for uplink and downlink which realize 40-km SMF and 2-m wireless link for bidirectional transmission simultaneously. We utilized multi-level modulation format and coherent detection in such E-band optical wireless link for the first time. Mm-wave QPSK signal is generated by photonic technique to increase spectrum efficiency and received signal is coherently detected to improve receiver sensitivity. After the coherent detection, digital signal processing is utilized to compensate impairments of devices and transmission link.

  17. Study on Communication Mode of Wireless Sensor Networks Based on Effective Result

    International Nuclear Information System (INIS)

    Shi, J F; Zhong, X X; Chen, S

    2006-01-01

    The key challenge in wireless sensor networks is maximizing network lifetime. It will significantly reduce energy consumption of communication and prolong networks lifetime to choose appropriate communication mode. In this paper, energy model and communication topology are proposed, and then from the viewpoint of effective result, expression for communication energy cost of single sensor node and overall system in different communication mode is derived, impact that sensor nodes amount, communication radius and propagation loss exponent pose on communication mode based on simulations is analyzed, and the justification for choosing communication mode is summarized

  18. Experimental Characterization of LTE Wireless Links in High-Speed Trains

    Directory of Open Access Journals (Sweden)

    Tomás Domínguez-Bolaño

    2017-01-01

    Full Text Available Multimedia and data-based services experienced a nonstopping growth over the last few years. People are continuously on the move using devices to access multimedia contents or other data-based services. Due to this, railway companies are showing a great interest in deploying broadband mobile wireless networks in high-speed-trains with the aim of supporting both passenger services provisioning as well as automatic train control and signaling. Nowadays, the most widely used technology for communications between trains and the railway infrastructure is GSM for Railways (GSM-R; however, it has limited capabilities to support such advanced services. Due to its success in the mass market, Long Term Evolution (LTE seems to be the best candidate to substitute GSM-R. In this paper, we experimentally characterize the downlink between an LTE Evolved NodeB (eNodeB and a high-speed train in a commercial high-speed line. We consider two links: the one between the eNodeB and the antennas placed outdoors on the train roof, and the direct link between the eNodeB and a receiver inside the train. Such a characterization consists in assessing the path loss, the Signal to Noise Ratio, the K-Factor, the Power Delay Profile, the delay spread, and the Doppler Power Spectral Density.

  19. A Trace-Driven Analysis of Wireless Group Communication Mechanisms

    Directory of Open Access Journals (Sweden)

    Surendar Chandra

    2012-08-01

    Full Text Available Wireless access is increasingly ubiquitous while mobile devices that use them are resource rich. These trends allow wireless users to collaborate with each other. We investigate various group communication paradigms that underly collaboration applications. We synthesize durations when members collaborate using wireless device availability traces. Wireless users operate from a variety of locations. Hence, we analyzed the behavior of wireless users in universities, corporations, conference venues, and city-wide hotspots. We show that the availability durations are longer in corporations followed by university and then in hotspots. The number of simultaneously available wireless users is small in all the scenarios. The session lengths are becoming smaller while the durations between sessions are becoming larger. We observed user churn in all the scenarios. We show that synchronous mechanisms require less effort to maintain update synchronicity among the group members. However, distributed mechanisms require a large number of replicas in order to propagate updates among the users. For asynchronous mechanisms, we show that pull-based mechanisms naturally randomize the times when updates are propagated and thus achieve better performance than push based mechanisms.We develop an adaptive approach that customizes the update frequency using the last session duration and show that this mechanism exhibits good performance when the required update frequency intervals are large. We also show that for a given number of gossips, it is preferable to propagate updates to all available nodes rather than increasing the frequency while correspondingly reducing the number of nodes to propagate updates.We develop a middleware to illustrate the practicality of our approach.

  20. Receiver Front-End Circuits for Future Generations of Wireless Communications

    NARCIS (Netherlands)

    Sanduleanu, M.A.T.; Vidojkovic - Andjelovic, M.; Vidojkovic, V.; Roermund, van A.H.M.; Tasic, A.

    2007-01-01

    In this paper, new receiver concepts and CMOS circuits for future wireless communications standards are introduced. Tradeoffs between technology, performance and circuit choices of the RF front-end circuits are discussed. In particular, power consumption, noise figure and linearity trade-offs in

  1. PPM-based relay communication schemes for wireless body area networks

    NARCIS (Netherlands)

    Zhang, P.; Willems, F.M.J.; Huang, Li

    2012-01-01

    This paper investigates cooperative communication schemes based on a single relay with pulse-position modulation (PPM) signaling, for enhancing energy efficiency of wireless body area networks (WBANs) in noncoherent channel settings. We explore cooperation between the source and the relay such that

  2. Communication techniques and challenges for wireless food quality monitoring.

    Science.gov (United States)

    Jedermann, Reiner; Pötsch, Thomas; Lloyd, Chanaka

    2014-06-13

    Remote measurement of product core temperature is an important prerequisite to improve the cool chain of food products and reduce losses. This paper examines and shows possible solutions to technical challenges that still hinder practical applications of wireless sensor networks in the field of food transport supervision. The high signal attenuation by water-containing products limits the communication range to less than 0.5 m for the commonly used 2.4 GHz radio chips. By theoretical analysis of the dependency of signal attenuation on the operating frequency, we show that the signal attenuation can be largely reduced by the use of 433 MHz or 866 MHz devices, but forwarding of messages over multiple hops inside a sensor network is mostly unavoidable to guarantee full coverage of a packed container. Communication protocols have to provide compatibility with widely accepted standards for integration into the global Internet, which has been achieved by programming an implementation of the constrained application protocol for wireless sensor nodes and integrating into IPv6-based networks. The sensor's battery lifetime can be extended by optimizing communication protocols and by in-network pre-processing of the sensor data. The feasibility of remote freight supervision was demonstrated by our full-scale 'Intelligent Container' prototype.

  3. DOWNHOLE POWER GENERATION AND WIRELESS COMMUNICATIONS FOR INTELLIGENT COMPLETIONS APPLICATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Paul Tubel

    2003-10-14

    The fourth quarter of the project was dedicated to the manufacturing of the mechanical system for wireless communications and the power generation module and inspection pre assembly of the mechanical components. Another emphasis for the quarter was the development of filter control and signal detection software. The tasks accomplished during this report period were: (1) Dimensional issues were resolved and revised drawings for manufacturing of the wireless communications gauge and power generator were completed and sent to a machine shop for manufacturing. (2) Finalized the requirements and fittings and connections for testing the tool in the Halliburton flow loop. (3) The new acoustic generator was manufactured successfully and it was delivered during this quarter. The assembly will be outsourced for plastic coating in preparation for hostile environment use. (4) The acoustic two-way communications development continued to progress. The real time firmware for the surface system was developed and the processor was able to detect and process the data frame transmitted from downhole. The analog section of the tool was also developed and it is being tested for filtering capabilities and signal detection and amplification. (5) The new transformer to drive the acoustic generator assembly was manufactured and was successfully tested. Spring mandrel design showed increased acoustic output on the pipe and was implemented. (6) PCBA board carrier with board set was tested for function and fit and is 100% complete. (7) Filter control software is complete and software to allow modification of communication parameters dynamically is 50% complete. (8) All mechanical parts to assemble the wireless gauge and power generator have been received and verified to be within specification. (9) Acoustic generator has been assembled in the tool mandrel and tested successfully. (10) The circuit required to harvest the power generated downhole has been designed and the power generator

  4. An Accurate Link Correlation Estimator for Improving Wireless Protocol Performance

    Science.gov (United States)

    Zhao, Zhiwei; Xu, Xianghua; Dong, Wei; Bu, Jiajun

    2015-01-01

    Wireless link correlation has shown significant impact on the performance of various sensor network protocols. Many works have been devoted to exploiting link correlation for protocol improvements. However, the effectiveness of these designs heavily relies on the accuracy of link correlation measurement. In this paper, we investigate state-of-the-art link correlation measurement and analyze the limitations of existing works. We then propose a novel lightweight and accurate link correlation estimation (LACE) approach based on the reasoning of link correlation formation. LACE combines both long-term and short-term link behaviors for link correlation estimation. We implement LACE as a stand-alone interface in TinyOS and incorporate it into both routing and flooding protocols. Simulation and testbed results show that LACE: (1) achieves more accurate and lightweight link correlation measurements than the state-of-the-art work; and (2) greatly improves the performance of protocols exploiting link correlation. PMID:25686314

  5. Impact of Radio Link Unreliability on the Connectivity of Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Gorce Jean-Marie

    2007-01-01

    Full Text Available Many works have been devoted to connectivity of ad hoc networks. This is an important feature for wireless sensor networks (WSNs to provide the nodes with the capability of communicating with one or several sinks. In most of these works, radio links are assumed ideal, that is, with no transmission errors. To fulfil this assumption, the reception threshold should be high enough to guarantee that radio links have a low transmission error probability. As a consequence, all unreliable links are dismissed. This approach is suboptimal concerning energy consumption because unreliable links should permit to reduce either the transmission power or the number of active nodes. The aim of this paper is to quantify the contribution of unreliable long hops to an increase of the connectivity of WSNs. In our model, each node is assumed to be connected to each other node in a probabilistic manner. Such a network is modeled as a complete random graph, that is, all edges exist. The instantaneous node degree is then defined as the number of simultaneous valid single-hop receptions of the same message, and finally the mean node degree is computed analytically in both AWGN and block-fading channels. We show the impact on connectivity of two MACs and routing parameters. The first one is the energy detection level such as the one used in carrier sense mechanisms. The second one is the reliability threshold used by the routing layer to select stable links only. Both analytic and simulation results show that using opportunistic protocols is challenging.

  6. Impact of Radio Link Unreliability on the Connectivity of Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Jean-Marie Gorce

    2007-06-01

    Full Text Available Many works have been devoted to connectivity of ad hoc networks. This is an important feature for wireless sensor networks (WSNs to provide the nodes with the capability of communicating with one or several sinks. In most of these works, radio links are assumed ideal, that is, with no transmission errors. To fulfil this assumption, the reception threshold should be high enough to guarantee that radio links have a low transmission error probability. As a consequence, all unreliable links are dismissed. This approach is suboptimal concerning energy consumption because unreliable links should permit to reduce either the transmission power or the number of active nodes. The aim of this paper is to quantify the contribution of unreliable long hops to an increase of the connectivity of WSNs. In our model, each node is assumed to be connected to each other node in a probabilistic manner. Such a network is modeled as a complete random graph, that is, all edges exist. The instantaneous node degree is then defined as the number of simultaneous valid single-hop receptions of the same message, and finally the mean node degree is computed analytically in both AWGN and block-fading channels. We show the impact on connectivity of two MACs and routing parameters. The first one is the energy detection level such as the one used in carrier sense mechanisms. The second one is the reliability threshold used by the routing layer to select stable links only. Both analytic and simulation results show that using opportunistic protocols is challenging.

  7. Integration and analysis of neighbor discovery and link quality estimation in wireless sensor networks.

    Science.gov (United States)

    Radi, Marjan; Dezfouli, Behnam; Abu Bakar, Kamalrulnizam; Abd Razak, Shukor

    2014-01-01

    Network connectivity and link quality information are the fundamental requirements of wireless sensor network protocols to perform their desired functionality. Most of the existing discovery protocols have only focused on the neighbor discovery problem, while a few number of them provide an integrated neighbor search and link estimation. As these protocols require a careful parameter adjustment before network deployment, they cannot provide scalable and accurate network initialization in large-scale dense wireless sensor networks with random topology. Furthermore, performance of these protocols has not entirely been evaluated yet. In this paper, we perform a comprehensive simulation study on the efficiency of employing adaptive protocols compared to the existing nonadaptive protocols for initializing sensor networks with random topology. In this regard, we propose adaptive network initialization protocols which integrate the initial neighbor discovery with link quality estimation process to initialize large-scale dense wireless sensor networks without requiring any parameter adjustment before network deployment. To the best of our knowledge, this work is the first attempt to provide a detailed simulation study on the performance of integrated neighbor discovery and link quality estimation protocols for initializing sensor networks. This study can help system designers to determine the most appropriate approach for different applications.

  8. Integration and Analysis of Neighbor Discovery and Link Quality Estimation in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Marjan Radi

    2014-01-01

    Full Text Available Network connectivity and link quality information are the fundamental requirements of wireless sensor network protocols to perform their desired functionality. Most of the existing discovery protocols have only focused on the neighbor discovery problem, while a few number of them provide an integrated neighbor search and link estimation. As these protocols require a careful parameter adjustment before network deployment, they cannot provide scalable and accurate network initialization in large-scale dense wireless sensor networks with random topology. Furthermore, performance of these protocols has not entirely been evaluated yet. In this paper, we perform a comprehensive simulation study on the efficiency of employing adaptive protocols compared to the existing nonadaptive protocols for initializing sensor networks with random topology. In this regard, we propose adaptive network initialization protocols which integrate the initial neighbor discovery with link quality estimation process to initialize large-scale dense wireless sensor networks without requiring any parameter adjustment before network deployment. To the best of our knowledge, this work is the first attempt to provide a detailed simulation study on the performance of integrated neighbor discovery and link quality estimation protocols for initializing sensor networks. This study can help system designers to determine the most appropriate approach for different applications.

  9. Design Criteria for Wireless Mesh Communications in Underground Coal Mines

    OpenAIRE

    Griffin, Kenneth Reed

    2009-01-01

    The Mine Improvement and New Emergency Response (MINER) Act of 2006 was enacted in response to several coal mining accidents that occurred in the beginning of 2006. The MINER Act does not just require underground mines to integrate wireless communication and tracking systems, but aims to overall enhance health and safety in mining at both surface and underground operations. In 2006, the underground communication technologies available to the mining industry had inherent problems that limited ...

  10. Reactor building indoor wireless network channel quality estimation using RSSI measurement of wireless sensor network

    International Nuclear Information System (INIS)

    Merat, S.

    2008-01-01

    Expanding wireless communication network reception inside reactor buildings (RB) and service wings (SW) has always been a technical challenge for operations service team. This is driven by the volume of metal equipment inside the Reactor Buildings (RB) that blocks and somehow shields the signal throughout the link. In this study, to improve wireless reception inside the Reactor Building (RB), an experimental model using indoor localization mesh based on IEEE 802.15 is developed to implement a wireless sensor network. This experimental model estimates the distance between different nodes by measuring the RSSI (Received Signal Strength Indicator). Then by using triangulation and RSSI measurement, the validity of the estimation techniques is verified to simulate the physical environmental obstacles, which block the signal transmission. (author)

  11. Reactor building indoor wireless network channel quality estimation using RSSI measurement of wireless sensor network

    Energy Technology Data Exchange (ETDEWEB)

    Merat, S. [Wardrop Engineering Inc., Toronto, Ontario (Canada)

    2008-07-01

    Expanding wireless communication network reception inside reactor buildings (RB) and service wings (SW) has always been a technical challenge for operations service team. This is driven by the volume of metal equipment inside the Reactor Buildings (RB) that blocks and somehow shields the signal throughout the link. In this study, to improve wireless reception inside the Reactor Building (RB), an experimental model using indoor localization mesh based on IEEE 802.15 is developed to implement a wireless sensor network. This experimental model estimates the distance between different nodes by measuring the RSSI (Received Signal Strength Indicator). Then by using triangulation and RSSI measurement, the validity of the estimation techniques is verified to simulate the physical environmental obstacles, which block the signal transmission. (author)

  12. The SafeCOP ECSEL Project: Safe Cooperating Cyber-Physical Systems Using Wireless Communication

    DEFF Research Database (Denmark)

    Pop, Paul; Scholle, Detlef; Hansson, Hans

    2016-01-01

    This paper presents an overview of the ECSEL project entitled "Safe Cooperating Cyber-Physical Systems using Wireless Communication" (SafeCOP), which runs during the period 2016 -- 2019. SafeCOP targets safety-related Cooperating Cyber-Physical Systems (CO-CPS) characterised by use of wireless...... detection of abnormal behaviour, triggering if needed a safe degraded mode. SafeCOP will also develop methods and tools, which will be used to produce safety assurance evidence needed to certify cooperative functions. SafeCOP will extend current wireless technologies to ensure safe and secure cooperation...

  13. Implementation of Wireless Communications Systems on FPGA-Based Platforms

    Directory of Open Access Journals (Sweden)

    Voros NS

    2007-01-01

    Full Text Available Wireless communications are a very popular application domain. The efficient implementation of their components (access points and mobile terminals/network interface cards in terms of hardware cost and design time is of great importance. This paper describes the design and implementation of the HIPERLAN/2 WLAN system on a platform including general purpose microprocessors and FPGAs. Detailed implementation results (performance, code size, and FPGA resources utilization are presented. The main goal of the design case presented is to provide insight into the design aspects of a complex system based on FPGAs. The results prove that an implementation based on microprocessors and FPGAs is adequate for the access point part of the system where the expected volumes are rather small. At the same time, such an implementation serves as a prototyping of an integrated implementation (System-on-Chip, which is necessary for the mobile terminals of a HIPERLAN/2 system. Finally, firmware upgrades were developed allowing the implementation of an outdoor wireless communication system on the same platform.

  14. IP communication optimization for 6LoWPAN-Based Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Li MA

    2014-07-01

    Full Text Available The emergence of 6LoWPAN makes it possible that Wireless Sensor Networks access to the Internet. However, the cost of IP communication between 6LoWPAN wireless sensor node and external internet node is still relatively high. This paper proposed a new addressing configuration and compression scheme in 6LoWPAN network called IPHC-NAT, which largely reduced the proportion of the IP header in 6LoWPAN packet, designed and constructed a bidirectional data transmission gateway to connect 6LoWPAN wireless sensor node with IPv6 client. The experimental results show the feasibility of the design of IPHC-NAT and the data transmission efficiency has significantly been improved compared to the original 6LoWPAN network.

  15. Multiple Timescale Energy Scheduling for Wireless Communication with Energy Harvesting Devices

    Directory of Open Access Journals (Sweden)

    H. Xiao

    2012-09-01

    Full Text Available The primary challenge in wireless communication with energy harvesting devices is to efficiently utilize the harvesting energy such that the data packet transmission could be supported. This challenge stems from not only QoS requirement imposed by the wireless communication application, but also the energy harvesting dynamics and the limited battery capacity. Traditional solar predictable energy harvesting models are perturbed by prediction errors, which could deteriorate the energy management algorithms based on this models. To cope with these issues, we first propose in this paper a non-homogenous Markov chain model based on experimental data, which can accurately describe the solar energy harvesting process in contrast to traditional predictable energy models. Due to different timescale between the energy harvesting process and the wireless data transmission process, we propose a general framework of multiple timescale Markov decision process (MMDP model to formulate the joint energy scheduling and transmission control problem under different timescales. We then derive the optimal control policies via a joint dynamic programming and value iteration approach. Extensive simulations are carried out to study the performances of the proposed schemes.

  16. Spread Spectrum Based Energy Efficient Collaborative Communication in Wireless Sensor Networks.

    Science.gov (United States)

    Ghani, Anwar; Naqvi, Husnain; Sher, Muhammad; Khan, Muazzam Ali; Khan, Imran; Irshad, Azeem

    2016-01-01

    Wireless sensor networks consist of resource limited devices. Most crucial of these resources is battery life, as in most applications like battle field or volcanic area monitoring, it is often impossible to replace or recharge the power source. This article presents an energy efficient collaborative communication system based on spread spectrum to achieve energy efficiency as well as immunity against jamming, natural interference, noise suppression and universal frequency reuse. Performance of the proposed system is evaluated using the received signal power, bit error rate (BER) and energy consumption. The results show a direct proportionality between the power gain and the number of collaborative nodes as well as BER and signal-to-noise ratio (Eb/N0). The analytical and simulation results of the proposed system are compared with SISO system. The comparison reveals that SISO perform better than collaborative communication in case of small distances whereas collaborative communication performs better than SISO in case of long distances. On the basis of these results it is safe to conclude that collaborative communication in wireless sensor networks using wideband systems improves the life time of nodes in the networks thereby prolonging the network's life time.

  17. Robust Networking Architecture and Secure Communication Scheme for Heterogeneous Wireless Sensor Networks

    Science.gov (United States)

    McNeal, McKenzie, III.

    2012-01-01

    Current networking architectures and communication protocols used for Wireless Sensor Networks (WSNs) have been designed to be energy efficient, low latency, and long network lifetime. One major issue that must be addressed is the security in data communication. Due to the limited capabilities of low cost and small sized sensor nodes, designing…

  18. Installation of secure, always available wireless LAN systems as a component of the hospital communication infrastructure.

    Science.gov (United States)

    Hanada, Eisuke; Kudou, Takato; Tsumoto, Shusaku

    2013-06-01

    Wireless technologies as part of the data communication infrastructure of modern hospitals are being rapidly introduced. Even though there are concerns about problems associated with wireless communication security, the demand is remarkably large. In addition, insuring that the network is always available is important. Herein, we discuss security countermeasures and points to insure availability that must be taken to insure safe hospital/business use of wireless LAN systems, referring to the procedures introduced at Shimane University Hospital. Security countermeasures differ according to their purpose, such as for preventing illegal use or insuring availability, both of which are discussed. It is our hope that this information will assist others in their efforts to insure safe implementation of wireless LAN systems, especially in hospitals where they have the potential to greatly improve information sharing and patient safety.

  19. Wireless Sensor Network Based Smart Grid Communications: Cyber Attacks, Intrusion Detection System and Topology Control

    Directory of Open Access Journals (Sweden)

    Lipi Chhaya

    2017-01-01

    Full Text Available The existing power grid is going through a massive transformation. Smart grid technology is a radical approach for improvisation in prevailing power grid. Integration of electrical and communication infrastructure is inevitable for the deployment of Smart grid network. Smart grid technology is characterized by full duplex communication, automatic metering infrastructure, renewable energy integration, distribution automation and complete monitoring and control of entire power grid. Wireless sensor networks (WSNs are small micro electrical mechanical systems that are deployed to collect and communicate the data from surroundings. WSNs can be used for monitoring and control of smart grid assets. Security of wireless sensor based communication network is a major concern for researchers and developers. The limited processing capabilities of wireless sensor networks make them more vulnerable to cyber-attacks. The countermeasures against cyber-attacks must be less complex with an ability to offer confidentiality, data readiness and integrity. The address oriented design and development approach for usual communication network requires a paradigm shift to design data oriented WSN architecture. WSN security is an inevitable part of smart grid cyber security. This paper is expected to serve as a comprehensive assessment and analysis of communication standards, cyber security issues and solutions for WSN based smart grid infrastructure.

  20. Power Analysis of an Enterprise Wireless Communication Architecture

    Science.gov (United States)

    2017-09-01

    command and control, C2, Internet of Things , IoT, model based systems engineering, MBSE, marine air-ground task force, MAGTF, command control and...Electronics Engineers InTop Integrated Topside IPS Instructions per Second IoT Internet of Things JTNC Joint Tactical Networking Center L-RTac...wireless communications in the military increases the amount of energy needed for missions. The Internet of Things (IoT) movement (Thomas, McPherson, and

  1. Wireless communication capability of a reconfigurable plasma antenna

    International Nuclear Information System (INIS)

    Kumar, Rajneesh; Bora, Dhiraj

    2011-01-01

    A 30 cm long plasma column is excited by a surface wave, which acts as a plasma antenna. Using plasma properties (pattern formation/striations in plasmas) single plasma antenna can be transformed into array, helical, and spiral plasma antenna. Experiments are carried out to study the power patterns, directivity, and half power beam width of such different plasma antennas. Moreover, field properties of plasma and copper antenna are studied. Further, wireless communication and jamming capability of plasma antenna are tested. Findings of this study suggest that directivity and communication range can be increased by converting single plasma antenna in to array/helical/spiral plasma antenna. Field frequencies of plasma antenna determine the communication and jamming of radio frequency waves. Therefore, this study invokes applications of pattern formation or striations of plasmas in plasma antenna technology.

  2. An improved broadband E patch microstrip antenna for wireless communications

    Science.gov (United States)

    Bzeih, Amer; Chahine, Soubhi Abou; Kabalan, Karim Y.; El-Hajj, Ali; Chehab, Ali

    2007-12-01

    A broadband probe-fed microstrip antenna with E-shaped patch on a single-layer air substrate is investigated. Bandwidth enhancement of the antenna is achieved by inserting two parallel slots into its radiating patch. The effects of the antenna parameters are analyzed, and their optimal values for broadband operation are obtained. The design parameters are formulated as a function of the center frequency, and the empirical equations are validated by simulation. A 51.5% enhanced E patch antenna for modern wireless communications (Personal Communications Service, Digital Cellular System, Universal Mobile Telecommunications System, Wireless Local Area Network 802.11 b/g, and Bluetooth) is designed, simulated, fabricated, and measured. A comparison between simulated and measured results is presented, and it showed satisfactory agreement. Moreover, the effect of incorporating more parallel slots into the radiating patch is investigated. The antenna is designed and simulated for different scenarios (four slots, six slots, and eight slots), where a bandwidth of 57% is achieved in the eight-slot design.

  3. Bluetooth low energy: wireless connectivity for medical monitoring.

    Science.gov (United States)

    Omre, Alf Helge

    2010-03-01

    Electronic wireless sensors could cut medical costs by enabling physicians to remotely monitor vital signs such as blood pressure, blood glucose, and blood oxygenation while patients remain at home. According to the IDC report "Worldwide Bluetooth Semiconductor 2008-2012 Forecast," published November 2008, a forthcoming radio frequency communication ("wireless connectivity") standard, Bluetooth low energy, will link wireless sensors via radio signals to the 70% of cell phones and computers likely to be fitted with the next generation of Bluetooth wireless technology, leveraging a ready-built infrastructure for data transmission. Analysis of trends indicated by this data can help physicians better manage diseases such as diabetes. The technology also addresses the concerns of cost, compatibility, and interoperability that have previously stalled widespread adoption of wireless technology in medical applications. (c) 2010 Diabetes Technology Society.

  4. An Ultraviolet Optical Wireless Sensor Network in Multi-scattering Channels

    Science.gov (United States)

    Kedar, Debbie; Arnon, Shlomi

    2006-10-01

    Networks of wirelessly communicating sensors are a promising technology for future data-gathering systems in both civilian and military applications including medical and environmental monitoring and surveillance, home security and industry. Optical wireless communication is a potential solution for the links, particularly thanks to the small and lightweight hardware and low power consumption. A noteworthy feature of optical wireless communication at ultraviolet wavelengths is that scattering of radiation by atmospheric particles is significant, so that the backscattering of light by these particles can function as a vehicle of communication as if numerous tiny reflecting mirrors were placed in the atmosphere. Also, almost no solar radiation penetrates the atmosphere in this spectral band, which is hence called the solar blind ultraviolet spectrum, so that very large field-of-view receivers can be used. In this paper we present a model of a non-line-of-sight (NLOS) optical wireless sensor network operating in the solar blind ultraviolet spectrum. The system feasibility is evaluated and found to facilitate miniature operational sensor networks. The problem of multi-access interference is addressed and the possibility of overcoming it using WDM diversity methods is investigated.

  5. Study on the Effect of Frequency on Conductivity of Underground Strata in Coal Mine Through-the-earth Wireless Communication

    Directory of Open Access Journals (Sweden)

    Jinyi TAO

    2014-09-01

    Full Text Available The relationship of conductivity and the frequency, which is of decisive significance in through-the-earth wireless communication in coal mine, is closely related to the options of frequency range in coal mine wireless communication. When through-the-earth wireless communication is applied, the electromagnetic waves need to spread in the semi-conductive medium rocks. The main factors affecting the electromagnetic wave propagation in rocks is the rock strata electromagnetic parameters. These parameters are magnetic permeability m (H/m, dielectric constant e (F/m and electrical conductivity s (S/m. In these parameters, electrical conductivity is not constant. Under the influence of various factors, it will be great changes. This paper, for the specific circumstances of coal mine rock, discuses and conduct dada mining the effect frequency on the electrical conductivity of underground rock in coal mine with through-the-earth wireless communication.

  6. Convergence of photonics and electronics for Terahertz wireless communications – the ITN CELTA project

    DEFF Research Database (Denmark)

    Tafur Monroy, Idelfonso

    2016-01-01

    Terahertz wireless communications is expected to offer the required high capacity and low latency performance required from short-range wireless access and control applications. We present an overview of some the activities in this area in the newly started H2020 ITN project CELTA: convergence of...... of electronics and photonics technologies enabling Terahertz applications...

  7. Congestion control in wireless links based on selective delivery of erroneous packets

    DEFF Research Database (Denmark)

    Korhonen, Jari; Perkis, Andrew; Reiter, Ulrich

    2011-01-01

    Traditionally, congestion control in packet networks is performed by reducing the transmission rate when congestion is detected, in order to cut down the traffic that overwhelms the capacity of the network. However, if the bottleneck is a wireless link, congestion is often cumulated because...... the performance of the proposed mechanism against traditional congestion control with a simulation study. The results show that the proposed approach can improve the overall performance both by increasing the throughput over the wireless and improving the video quality in terms of peak signal-to-noise ratio (PSNR...

  8. Infrared and Visible links for medical Body Sensor Networks

    OpenAIRE

    Lebas , C; Sahuguede , S; Julien-Vergonjanne , A; Combeau , P; Aveneau , L

    2018-01-01

    International audience; — Our previous studies focused on channel simulation and performance evaluation of optical wireless links for medical body sensor networks. This allowed us to increase our expertise in this field and to propose here a full optical wireless bidirectional system named as LiFi communication system for medical monitoring applications. The full duplex bidirectional communication is based on an infrared uplink and visible downlink. The studied scenario considers a patient we...

  9. Using the combination refraction-reflection solid to design omni-directional light source used in underwater wireless optical communication

    Science.gov (United States)

    Rao, Jionghui; Yao, Wenming; Wen, Linqiang

    2015-10-01

    Underwater wireless optical communication is a communication technology which uses laser as an information carrier and transmits data through water. Underwater wireless optical communication has some good features such as broader bandwidth, high transmission rate, better security, anti—interference performance. Therefore, it is promising to be widely used in the civil and military communication domains. It is also suitable for high-speed, short-range communication between underwater mobile vehicles. This paper presents a design approach of omni-directional light source used in underwater wireless optical communication, using TRACEPRO simulation tool to help design a combination solid composed of the lens, conical reflector and parabolic reflector, and using the modulated DPSS green laser in the transmitter module to output the laser beam in small divergence angles, after expanded by the combination refraction-reflection solid, the angle turns into a space divergence angle of 2π, achieving the omni-directional light source of hemisphere space, and test in the air and underwater, the result shows that the effect is fine. This paper analyzes the experimental test in the air and water, in order to make further improvement of the uniformity of light distribution, we optimize the reflector surface parameters of combination refraction-reflection solid and test in the air and water. The result shows that omni-directional light source used in underwater wireless optical communication optimized could achieve the uniformity of light distribution of underwater space divergence angle of 2π. Omni-directional light source used in underwater wireless optical communication designed in this paper has the characteristics of small size and uniformity of light distribution, it is suitable for application between UUVs, AUVs, Swimmer Delivery Vehicles (SDVs) and other underwater vehicle fleet, it realizes point-to-multipoint communications.

  10. Convergencia de sistemas de comunicación ópticos e inalámbricos (Converged wireless and optical communication systems)

    DEFF Research Database (Denmark)

    Tafur Monroy, Idelfonso; Guerrero Gonzalez, Neil; Caballero Jambrina, Antonio

    2009-01-01

    Users of tele-information services are demanding instant access, everywhere and anytime. Wireless communication systems offers mobility and flexibility while optical fiber based systems offer large bandwidth, secure and lower power consumption for transport of tele-communication signals. None...... of the two technologies separately can satisfy the demands of user for ubiquitous and affordable access to information services. Converged optical and wireless systems offer a solution that combines the best of both technologies. This article review the trends in converged optical-wireless communication...... systems and outline the role that photonic technologies is playing in making the vision of a converged network a reality....

  11. Wireless and photonic high-speed communication technologies, circuits and design tools

    DEFF Research Database (Denmark)

    Krozer, Viktor; Johansen, Tom Keinicke; Jiang, Chenhui

    2009-01-01

    were reported. These communication systems present new challenges for circuit designers. The presentation will be devoted to technologies and various aspects of circuit design for 100 G applications. We will present overview on wired and wireless systems demonstrating the challenges of this research...... including design challenges, relevant trade-offs and the present bottlenecks. Different system architectures will be presented with their impact on component requirements. Similarities and differences of wired and wireless applications will be pointed out. Design methodologies, necessary tools and circuit...... are fundamental to emerging consumer and professional applications. These systems start to emerge as near future applications and are subject of ongoing research activities in Europe, for example within the EU FP6 GIBON project. Wireless systems with over 100 GHz carriers as well as first over 100-G fibre systems...

  12. Cooperative MIMO Communication at Wireless Sensor Network: An Error Correcting Code Approach

    Science.gov (United States)

    Islam, Mohammad Rakibul; Han, Young Shin

    2011-01-01

    Cooperative communication in wireless sensor network (WSN) explores the energy efficient wireless communication schemes between multiple sensors and data gathering node (DGN) by exploiting multiple input multiple output (MIMO) and multiple input single output (MISO) configurations. In this paper, an energy efficient cooperative MIMO (C-MIMO) technique is proposed where low density parity check (LDPC) code is used as an error correcting code. The rate of LDPC code is varied by varying the length of message and parity bits. Simulation results show that the cooperative communication scheme outperforms SISO scheme in the presence of LDPC code. LDPC codes with different code rates are compared using bit error rate (BER) analysis. BER is also analyzed under different Nakagami fading scenario. Energy efficiencies are compared for different targeted probability of bit error pb. It is observed that C-MIMO performs more efficiently when the targeted pb is smaller. Also the lower encoding rate for LDPC code offers better error characteristics. PMID:22163732

  13. Cooperative MIMO communication at wireless sensor network: an error correcting code approach.

    Science.gov (United States)

    Islam, Mohammad Rakibul; Han, Young Shin

    2011-01-01

    Cooperative communication in wireless sensor network (WSN) explores the energy efficient wireless communication schemes between multiple sensors and data gathering node (DGN) by exploiting multiple input multiple output (MIMO) and multiple input single output (MISO) configurations. In this paper, an energy efficient cooperative MIMO (C-MIMO) technique is proposed where low density parity check (LDPC) code is used as an error correcting code. The rate of LDPC code is varied by varying the length of message and parity bits. Simulation results show that the cooperative communication scheme outperforms SISO scheme in the presence of LDPC code. LDPC codes with different code rates are compared using bit error rate (BER) analysis. BER is also analyzed under different Nakagami fading scenario. Energy efficiencies are compared for different targeted probability of bit error p(b). It is observed that C-MIMO performs more efficiently when the targeted p(b) is smaller. Also the lower encoding rate for LDPC code offers better error characteristics.

  14. High-rate wireless data communications: An underwater acoustic communications framework at the physical layer

    Directory of Open Access Journals (Sweden)

    Bessios Anthony G.

    1996-01-01

    Full Text Available A variety of signal processing functions are performed by Underwater Acoustic Systems. These include: 1 detection to determine presence or absence of information signals in the presence of noise, or an attempt to describe which of a predetermined finite set of possible messages { m i , i , ... , M } the signal represents; 2 estimation of some parameter θ ˆ associated with the received signal (i.e. range, depth, bearing angle, etc.; 3 classification and source identification; 4 dynamics tracking; 5 navigation (collision avoidance and terminal guidance; 6 countermeasures; and 7 communications. The focus of this paper is acoustic communications. There is a global current need to develop reliable wireless digital communications for the underwater environment, with sufficient performance and efficiency to substitute for costly wired systems. One possible goal is a wireless system implementation that insures underwater terminal mobility. There is also a vital need to improve the performance of the existing systems in terms of data-rate, noise immunity, operational range, and power consumption, since, in practice, portable high-speed, long range, compact, low-power systems are desired. We concede the difficulties associated with acoustic systems and concentrate on the development of robust data transmission methods anticipating the eventual need for real time or near real time video transmission. An overview of the various detection techniques and the general statistical digital communication problem is given based on a statistical decision theory framework. The theoretical formulation of the underwater acoustic data communications problem includes modeling of the stochastic channel to incorporate a variety of impairments and environmental uncertainties, and proposal of new compensation strategies for an efficient and robust receiver design.

  15. Broadcast of four HD videos with LED ceiling lighting: optical-wireless MAC

    Science.gov (United States)

    Bouchet, Olivier; Porcon, Pascal; Gueutier, Eric

    2011-09-01

    The European project "hOME Gigabit Access Network" (OMEGA) targeted various wireless and wired solutions for 1 Gbit/s connectivity in Home Area Networks (HANs). One objective was to evaluate the suitability of optical wireless technologies in two spectral regions: visible light (visible-light communications - VLC) and near infrared (infrared communications - IRC). Several demonstrators have been built, all of them largely relying on overthe- shelf components. The demonstrators included a "wide-area" VLC broadcast link based on LED ceiling lighting and a laser-based high-data-rate "wide-area" IRC prototype. In this paper we discuss an adapted optical-wireless media-access-control (OWMAC) sublayer, which was developed and implemented during the project. It is suitable for both IRC and VLC. The VLC prototype is based on DMT signal processing and provides broadcasting at { 100 Mbit/s over an area of approximately 5 m2. The IRC prototype provides {300 Mbit/s half-duplex communication over an area of approximately 30 m2. The IRC mesh network, composed of one base station and two terminals, is based on OOK modulation, multi-sector transceivers, and an ultra-fast sector switch. After a brief discussion about the design of the optical-wireless data link layer and the optical-wireless switch (OWS) card, we address the card development and implementation. We also present applications for the VLC and IRC prototypes and measurement results regarding the MAC layer.

  16. Information Theoretical Limits of Free-Space Optical Links

    KAUST Repository

    Ansari, Imran Shafique

    2016-08-25

    Generalized fading has been an imminent part and parcel of wireless communications. It not only characterizes the wireless channel appropriately but also allows its utilization for further performance analysis of various types of wireless communication systems. Under the umbrella of generalized fading channels, a unified ergodic capacity analysis of a free-space optical (FSO) link under both types of detection techniques (i.e., intensity modulation/direct detection (IM/DD) as well as heterodyne detection) over generalized atmospheric turbulence channels that account for generalized pointing errors is presented. Specifically, unified exact closed-form expressions for the moments of the end-to-end signal-to-noise ratio (SNR) of a single link FSO transmission system are presented. Subsequently, capitalizing on these unified statistics, unified exact closed-form expressions for ergodic capacity performance metric of FSO link transmission systems is offered. Additionally, for scenarios wherein the exact closed-form solution is not possible to obtain, some asymptotic results are derived in the high SNR regime. All the presented results are verified via computer-based Monte-Carlo simulations.

  17. On the average capacity and bit error probability of wireless communication systems

    KAUST Repository

    Yilmaz, Ferkan; Alouini, Mohamed-Slim

    2011-01-01

    Analysis of the average binary error probabilities and average capacity of wireless communications systems over generalized fading channels have been considered separately in the past. This paper introduces a novel moment generating function

  18. Energy Aware Computing in Cooperative Wireless Networks

    DEFF Research Database (Denmark)

    Olsen, Anders Brødløs; Fitzek, Frank H. P.; Koch, Peter

    2005-01-01

    In this work the idea of cooperation is applied to wireless communication systems. It is generally accepted that energy consumption is a significant design constraint for mobile handheld systems. We propose a novel method of cooperative task computing by distributing tasks among terminals over...... the unreliable wireless link. Principles of multi–processor energy aware task scheduling are used exploiting performance scalable technologies such as Dynamic Voltage Scaling (DVS). We introduce a novel mechanism referred to as D2VS and here it is shown by means of simulation that savings of 40% can be achieved....

  19. Compact antennas for wireless communications and terminals theory and design

    CERN Document Server

    Laheurte, Jean-Marc

    2012-01-01

    Compact Antennas for Wireless Communications and Terminals deals with compact microwave antennas and, more specifically, with the planar version of these antennas. Planar antennas are the most appropriate type of antenna in modern communication systems and more generally in all applications requiring miniaturization, integration and conformation such as in mobile phone handsets.The book is suitable for students, engineers and scientists eager to understand the principles of planar and small antennas, their design and fabrication issues, and modern aspects such as UWB antennas, recon

  20. A Regulation-Based Security Evaluation Method for Data Link in Wireless Sensor Network

    Directory of Open Access Journals (Sweden)

    Claudio S. Malavenda

    2014-01-01

    Full Text Available This article presents a novel approach to the analysis of wireless sensor networks (WSN security, based on the regulations intended for wireless communication devices. Starting from the analysis and classification of attacks, countermeasures, and available protocols, we present the current state on secure communication stacks for embedded systems. The regulation analysis is based on civil EN 50150 and MIL STD-188-220, both applicable to WSN communications. Afterwards, starting from a list of known WSN attacks, we use a correspondence table to match WSN attacks with countermeasures required by regulations. This approach allows us to produce a precise security evaluation and classification methodology for WSN protocols. The results show that current protocols do not present a complete coverage of security issues. While this conclusion is already known for many WSN protocols, to the best of our knowledge this is the first time a complete methodology is proposed to base this assertion. Moreover, by using the proposed methodology, we are able to precisely identify the exposed threats for each WSN protocol under analysis.

  1. Selection of bi-level image compression method for reduction of communication energy in wireless visual sensor networks

    Science.gov (United States)

    Khursheed, Khursheed; Imran, Muhammad; Ahmad, Naeem; O'Nils, Mattias

    2012-06-01

    Wireless Visual Sensor Network (WVSN) is an emerging field which combines image sensor, on board computation unit, communication component and energy source. Compared to the traditional wireless sensor network, which operates on one dimensional data, such as temperature, pressure values etc., WVSN operates on two dimensional data (images) which requires higher processing power and communication bandwidth. Normally, WVSNs are deployed in areas where installation of wired solutions is not feasible. The energy budget in these networks is limited to the batteries, because of the wireless nature of the application. Due to the limited availability of energy, the processing at Visual Sensor Nodes (VSN) and communication from VSN to server should consume as low energy as possible. Transmission of raw images wirelessly consumes a lot of energy and requires higher communication bandwidth. Data compression methods reduce data efficiently and hence will be effective in reducing communication cost in WVSN. In this paper, we have compared the compression efficiency and complexity of six well known bi-level image compression methods. The focus is to determine the compression algorithms which can efficiently compress bi-level images and their computational complexity is suitable for computational platform used in WVSNs. These results can be used as a road map for selection of compression methods for different sets of constraints in WVSN.

  2. Confidence Intervals Verification for Simulated Error Rate Performance of Wireless Communication System

    KAUST Repository

    Smadi, Mahmoud A.; Ghaeb, Jasim A.; Jazzar, Saleh; Saraereh, Omar A.

    2012-01-01

    In this paper, we derived an efficient simulation method to evaluate the error rate of wireless communication system. Coherent binary phase-shift keying system is considered with imperfect channel phase recovery. The results presented demonstrate

  3. Medium Access Control in Energy Harvesting - Wireless Sensor Networks

    DEFF Research Database (Denmark)

    Fafoutis, Xenofon

    Focusing on Wireless Sensor Networks (WSN) that are powered by energy harvesting, this dissertation focuses on energy-efficient communication links between senders and receivers that are alternating between active and sleeping states of operation. In particular, the focus lies on Medium Access...

  4. THz photonic wireless links with 16-QAM modulation in the 375-450 GHz band

    DEFF Research Database (Denmark)

    Jia, Shi; Yu, Xianbin; Hu, Hao

    2016-01-01

    forward error correction (HD-FEC) threshold of 3.8e-3 with 7% overhead. In addition, we also successfully demonstrate hybrid photonic wireless transmission of 40 Gbit/s 16-QAM signal at carrier frequencies of 400 GHz and 425 GHz over 30 km standard single mode fiber (SSMF) between the optical baseband...... signal transmitter and the THz wireless transmitter with negligible induced power penalty.......We propose and experimentally demonstrate THz photonic wireless communication systems with 16-QAM modulation in the 375-450 GHz band. The overall throughput reaches as high as 80 Gbit/s by exploiting four THz channels with 5 Gbaud 16-QAM baseband modulation per channel. We create a coherent optical...

  5. End-to-end Configuration of Wireless Realtime Communication over Heterogeneous Protocols

    DEFF Research Database (Denmark)

    Malinowsky, B.; Grønbæk, Jesper; Schwefel, Hans-Peter

    2015-01-01

    This paper describes a wireless real-time communication system design using two Time Division Multiple Access (TDMA) protocols. Messages are subject to prioritization and queuing. For this interoperation scenario, we show a method for end-to-end configuration of protocols and queue sizes. Such co...

  6. Energy Link Optimization in a Wireless Power Transfer Grid under Energy Autonomy Based on the Improved Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Zhihao Zhao

    2016-08-01

    Full Text Available In this paper, an optimization method is proposed for the energy link in a wireless power transfer grid, which is a regional smart microgrid comprised of distributed devices equipped with wireless power transfer technology in a certain area. The relevant optimization model of the energy link is established by considering the wireless power transfer characteristics and the grid characteristics brought in by the device repeaters. Then, a concentration adaptive genetic algorithm (CAGA is proposed to optimize the energy link. The algorithm avoided the unification trend by introducing the concentration mechanism and a new crossover method named forward order crossover, as well as the adaptive parameter mechanism, which are utilized together to keep the diversity of the optimization solution groups. The results show that CAGA is feasible and competitive for the energy link optimization in different situations. This proposed algorithm performs better than its counterparts in the global convergence ability and the algorithm robustness.

  7. Underwater Wireless Optical Communications Systems: from System-Level Demonstrations to Channel Modeling

    KAUST Repository

    Oubei, Hassan M.

    2018-01-01

    Approximately, two-thirds of earth's surface is covered by water. There is a growing interest from the military and commercial communities in having, an efficient, secure and high bandwidth underwater wireless communication (UWC) system for tactical

  8. [Wireless Passive Body Sensor for Temperature Monitoring Using Near Field Communication Technology].

    Science.gov (United States)

    Shi, Bo; Zhang, Li; Zhang, Genxuan; Tsau, Young; Zhang, Sai; Li, Lei

    2017-01-01

    In this study, we designed a wireless body temperature sensor (WBTS) based on near field communication (NFC) technology. Just attaching the WBTS to a mobile phone with NFC function, the real-time body temperature of human subjects can be acquired by an application program without seperate power supply. The WBTS is mainly composed of a digital body temperature probe (d-BTP), a NFC unit and an antenna. The d-BTP acquires and processes body temperature data through a micro control er, and the NFC unit and antenna are used for wireless energy transmission and data communication between the mobile phone and WBTS. UART communication protocol is used in the communication between the d-BTP and NFC unit, and data compression technique is adopted for improving transmission efficiency and decreasing power loss. In tests, the error of WBTS is ±0.1 oC, in range of 32 oC to 42 oC. The WBTS has advantages of high accuracy, low power loss, strong anti-interference ability, dispensation with independent power supply etc., and it can be integrated into wearable apparatuses for temperature monitoring and health management.

  9. A Survey on M2M Systems for mHealth: A Wireless Communications Perspective

    Directory of Open Access Journals (Sweden)

    Elli Kartsakli

    2014-09-01

    Full Text Available In the new era of connectivity, marked by the explosive number of wireless electronic devices and the need for smart and pervasive applications, Machine-to-Machine (M2M communications are an emerging technology that enables the seamless device interconnection without the need of human interaction. The use of M2M technology can bring to life a wide range of mHealth applications, with considerable benefits for both patients and healthcare providers. Many technological challenges have to be met, however, to ensure the widespread adoption of mHealth solutions in the future. In this context, we aim to provide a comprehensive survey on M2M systems for mHealth applications from a wireless communication perspective. An end-to-end holistic approach is adopted, focusing on different communication aspects of the M2M architecture. Hence, we first provide a systematic review ofWireless Body Area Networks (WBANs, which constitute the enabling technology at the patient’s side, and then discuss end-to-end solutions that involve the design and implementation of practical mHealth applications. We close the survey by identifying challenges and open research issues, thus paving the way for future research opportunities.

  10. Towards Reliable and Energy-Efficient Incremental Cooperative Communication for Wireless Body Area Networks.

    Science.gov (United States)

    Yousaf, Sidrah; Javaid, Nadeem; Qasim, Umar; Alrajeh, Nabil; Khan, Zahoor Ali; Ahmed, Mansoor

    2016-02-24

    In this study, we analyse incremental cooperative communication for wireless body area networks (WBANs) with different numbers of relays. Energy efficiency (EE) and the packet error rate (PER) are investigated for different schemes. We propose a new cooperative communication scheme with three-stage relaying and compare it to existing schemes. Our proposed scheme provides reliable communication with less PER at the cost of surplus energy consumption. Analytical expressions for the EE of the proposed three-stage cooperative communication scheme are also derived, taking into account the effect of PER. Later on, the proposed three-stage incremental cooperation is implemented in a network layer protocol; enhanced incremental cooperative critical data transmission in emergencies for static WBANs (EInCo-CEStat). Extensive simulations are conducted to validate the proposed scheme. Results of incremental relay-based cooperative communication protocols are compared to two existing cooperative routing protocols: cooperative critical data transmission in emergencies for static WBANs (Co-CEStat) and InCo-CEStat. It is observed from the simulation results that incremental relay-based cooperation is more energy efficient than the existing conventional cooperation protocol, Co-CEStat. The results also reveal that EInCo-CEStat proves to be more reliable with less PER and higher throughput than both of the counterpart protocols. However, InCo-CEStat has less throughput with a greater stability period and network lifetime. Due to the availability of more redundant links, EInCo-CEStat achieves a reduced packet drop rate at the cost of increased energy consumption.

  11. Reliable and energy-efficient communications for wireless biomedical implant systems.

    Science.gov (United States)

    Ntouni, Georgia D; Lioumpas, Athanasios S; Nikita, Konstantina S

    2014-11-01

    Implant devices are used to measure biological parameters and transmit their results to remote off-body devices. As implants are characterized by strict requirements on size, reliability, and power consumption, applying the concept of cooperative communications to wireless body area networks offers several benefits. In this paper, we aim to minimize the power consumption of the implant device by utilizing on-body wearable devices, while providing the necessary reliability in terms of outage probability and bit error rate. Taking into account realistic power considerations and wireless propagation environments based on the IEEE P802.l5 channel model, an exact theoretical analysis is conducted for evaluating several communication scenarios with respect to the position of the wearable device and the motion of the human body. The derived closed-form expressions are employed toward minimizing the required transmission power, subject to a minimum quality-of-service requirement. In this way, the complexity and power consumption are transferred from the implant device to the on-body relay, which is an efficient approach since they can be easily replaced, in contrast to the in-body implants.

  12. Ultra-miniature wireless temperature sensor for thermal medicine applications.

    Science.gov (United States)

    Khairi, Ahmad; Hung, Shih-Chang; Paramesh, Jeyanandh; Fedder, Gary; Rabin, Yoed

    2011-01-01

    This study presents a prototype design of an ultra-miniature, wireless, battery-less, and implantable temperature-sensor, with applications to thermal medicine such as cryosurgery, hyperthermia, and thermal ablation. The design aims at a sensory device smaller than 1.5 mm in diameter and 3 mm in length, to enable minimally invasive deployment through a hypodermic needle. While the new device may be used for local temperature monitoring, simultaneous data collection from an array of such sensors can be used to reconstruct the 3D temperature field in the treated area, offering a unique capability in thermal medicine. The new sensory device consists of three major subsystems: a temperature-sensing core, a wireless data-communication unit, and a wireless power reception and management unit. Power is delivered wirelessly to the implant from an external source using an inductive link. To meet size requirements while enhancing reliability and minimizing cost, the implant is fully integrated in a regular foundry CMOS technology (0.15 μm in the current study), including the implant-side inductor of the power link. A temperature-sensing core that consists of a proportional-to-absolute-temperature (PTAT) circuit has been designed and characterized. It employs a microwatt chopper stabilized op-amp and dynamic element-matched current sources to achieve high absolute accuracy. A second order sigma-delta (Σ-Δ) analog-to-digital converter (ADC) is designed to convert the temperature reading to a digital code, which is transmitted by backscatter through the same antenna used for receiving power. A high-efficiency multi-stage differential CMOS rectifier has been designed to provide a DC supply to the sensing and communication subsystems. This paper focuses on the development of the all-CMOS temperature sensing core circuitry part of the device, and briefly reviews the wireless power delivery and communication subsystems.

  13. A Model for QoS - Aware Wireless Communication in Hospitals.

    Science.gov (United States)

    Alavikia, Zahra; Khadivi, Pejman; Hashemi, Masoud Reza

    2012-01-01

    In the recent decade, research regarding wireless applications in electronic health (e-Health) services has been increasing. The main benefits of using wireless technologies in e-Health applications are simple communications, fast delivery of medical information, reducing treatment cost and also reducing the medical workers' error rate. However, using wireless communications in sensitive healthcare environment raises electromagnetic interference (EMI). One of the most effective methods to avoid the EMI problem is power management. To this end, some of methods have been proposed in the literature to reduce EMI effects in health care environments. However, using these methods may result in nonaccurate interference avoidance and also may increase network complexity. To overcome these problems, we introduce two approaches based on per-user location and hospital sectoring for power management in sensitive healthcare environments. Although reducing transmission power could avoid EMI, it causes a number of successful message deliveries to the access point to decrease and, hence, the quality of service requirements cannot be meet. In this paper, we propose the use of relays for decreasing the probability of outage in the aforementioned scenario. Relay placement is the main factor to enjoy the usefulness of relay station benefits in the network and, therefore, we use the genetic algorithm to compute the optimum positions of a fixed number of relays. We have considered delay and maximum blind point coverage as two main criteria in relay station problem. The performance of the proposed method in outage reduction is investigated through simulations.

  14. 2.3 Gbit/s underwater wireless optical communications using directly modulated 520 nm laser diode

    KAUST Repository

    Oubei, Hassan M.

    2015-07-30

    We experimentally demonstrate a record high-speed underwater wireless optical communication (UWOC) over 7 m distance using on-off keying non-return-to-zero (OOK-NRZ) modulation scheme. The communication link uses a commercial TO-9 packaged pigtailed 520 nm laser diode (LD) with 1.2 GHz bandwidth as the optical transmitter and an avalanche photodiode (APD) module as the receiver. At 2.3 Gbit/s transmission, the measured bit error rate of the received data is 2.23×10−4, well below the forward error correction (FEC) threshold of 2×10−3 required for error-free operation. The high bandwidth of the LD coupled with high sensitivity APD and optimized operating conditions is the key enabling factor in obtaining high bit rate transmission in our proposed system. To the best of our knowledge, this result presents the highest data rate ever achieved in UWOC systems thus far.

  15. Final report : mobile surveillance and wireless communication systems field operational test. Volume 2, FOT objectives, organization, system design, results, conclusions, and recommendations

    Science.gov (United States)

    1999-03-01

    The Mobile Surveillance and Wireless Communication Systems Field Operational Test (FOT) evaluated the performance of wireless traffic detection and communications systems in areas where permanent detectors, electrical power, and landline communicatio...

  16. Mutual-Information-Based Incremental Relaying Communications for Wireless Biomedical Implant Systems

    Directory of Open Access Journals (Sweden)

    Yangzhe Liao

    2018-02-01

    Full Text Available Network lifetime maximization of wireless biomedical implant systems is one of the major research challenges of wireless body area networks (WBANs. In this paper, a mutual information (MI-based incremental relaying communication protocol is presented where several on-body relay nodes and one coordinator are attached to the clothes of a patient. Firstly, a comprehensive analysis of a system model is investigated in terms of channel path loss, energy consumption, and the outage probability from the network perspective. Secondly, only when the MI value becomes smaller than the predetermined threshold is data transmission allowed. The communication path selection can be either from the implanted sensor to the on-body relay then forwards to the coordinator or from the implanted sensor to the coordinator directly, depending on the communication distance. Moreover, mathematical models of quality of service (QoS metrics are derived along with the related subjective functions. The results show that the MI-based incremental relaying technique achieves better performance in comparison to our previous proposed protocol techniques regarding several selected performance metrics. The outcome of this paper can be applied to intra-body continuous physiological signal monitoring, artificial biofeedback-oriented WBANs, and telemedicine system design.

  17. Use of consumer wireless devices by South Africans with severe communication disability

    OpenAIRE

    Juan Bornman; Diane Nelson Bryen; Enid Moolman; John Morris

    2016-01-01

    Background: Advancements in wireless technology (e.g. cell phones and tablets) have opened new communication opportunities and environments for individuals with severe communication disabilities. The advancement of these technologies poses challenges to ensuring that these individuals enjoy equal access to this increasingly essential technology. However, a paucity of research exists. Objectives: To describe the nature and frequency with which South African adults with severe communicatio...

  18. Direct high-frequency modulation of VCSELs and applications in fibre optic RF and microwave links

    International Nuclear Information System (INIS)

    Larsson, Anders; Carlsson, Christina; Gustavsson, Johan; Haglund, Asa; Modh, Peter; Bengtsson, Joergen

    2004-01-01

    With the rapid development of wireless communication networks there is an increasing demand for efficient and cost-effective transmission and distribution of RF signals. Fibre optic RF links, employing directly modulated semiconductor lasers, provide many of the desired characteristics for such distribution systems and in the search for cost-effective solutions, the vertical cavity surface emitting laser (VCSEL) is of interest. It has therefore been the purpose of this work to investigate whether 850 nm VCSELs fulfil basic performance requirements for fibre optic RF links operating in the low-GHz range. The performance of single- and multimode oxide confined VCSELs has been compared, in order to pin-point limitations and to find the optimum design. Fibre optic RF links using VCSELs and multimode fibres have been assembled and evaluated with respect to performance characteristics of importance for wireless communication systems. We have found that optimized single-mode VCSELs provide the highest performance and that links using such VCSELs and high-bandwidth multimode fibres satisfy the requirements in a number of applications, including cellular systems for mobile communication and wireless local area networks

  19. Energy-Efficient Link-Layer Jamming Attacks against Wireless Sensor Network MAC Protocols

    NARCIS (Netherlands)

    Law, Y.W.; van Hoesel, L.F.W.; Doumen, J.M.; Hartel, Pieter H.; Havinga, Paul J.M.; Atluri, V.; Samarati, P.; Ning, P.; Du, W.

    2005-01-01

    A typical wireless sensor node has little protection against radio jamming. The situation becomes worse if energy efficient jamming can be achieved by exploiting knowledge of the data link layer. Encrypting the packets may help prevent the jammer from taking actions based on the content of the

  20. Advances in body-centric wireless communication applications and state-of-the-art

    CERN Document Server

    Abbasi, Qammer H; Qaraqe, Khalid; Alomainy, Akram

    2016-01-01

    This book brings together contributions from a multidisciplinary team of researchers in the field of wireless and mobile communications, signal processing and medical measurements, to present the underlying theory, implementation challenges and applications of this exciting new technology.

  1. Challenge Study: A Project-Based Learning on a Wireless Communication System at Technical High School

    Science.gov (United States)

    Terasawa, Ikuo

    2016-01-01

    The challenge study is a project based learning curriculum at Technical High School aimed at the construction of a wireless communication system. The first period was engineering issues in the construction of an artificial satellite and the second period was a positional locating system based on the general purpose wire-less device--ZigBee device.…

  2. A Hub Matrix Theory and Applications to Wireless Communications

    Directory of Open Access Journals (Sweden)

    Kung HT

    2007-01-01

    Full Text Available This paper considers communications and network systems whose properties are characterized by the gaps of the leading eigenvalues of for a matrix . It is shown that a sufficient and necessary condition for a large eigen-gap is that is a "hub" matrix in the sense that it has dominant columns. Some applications of this hub theory in multiple-input and multiple-output (MIMO wireless systems are presented.

  3. Probabilistic Location-based Routing Protocol for Mobile Wireless Sensor Networks with Intermittent Communication

    Directory of Open Access Journals (Sweden)

    Sho KUMAGAI

    2015-02-01

    Full Text Available In a sensor network, sensor data messages reach the nearest stationary sink node connected to the Internet by wireless multihop transmissions. Recently, various mobile sensors are available due to advances of robotics technologies and communication technologies. A location based message-by-message routing protocol, such as Geographic Distance Routing (GEDIR is suitable for such mobile wireless networks; however, it is required for each mobile wireless sensor node to know the current locations of all its neighbor nodes. On the other hand, various intermittent communication methods for a low power consumption requirement have been proposed for wireless sensor networks. Intermittent Receiver-driven Data Transmission (IRDT is one of the most efficient methods; however, it is difficult to combine the location based routing and the intermittent communication. In order to solve this problem, this paper proposes a probabilistic approach IRDT-GEDIR with the help of one of the solutions of the secretaries problem. Here, each time a neighbor sensor node wakes up from its sleep mode, an intermediate sensor node determines whether it forwards its buffered sensor data messages to it or not based on an estimation of achieved pseudo speed of the messages. Simulation experiments show that IRDT-GEDIR achieves higher pseudo speed of sensor data message transmissions and shorter transmission delay than achieves shorter transmission delay than the two naive combinations of IRDT and GEDIR in sensor networks with mobile sensor nodes and a stationary sink node. In addition, the guideline of the estimated numbers of the neighbor nodes of each intermediate sensor node is provided based on the results of the simulation experiments to apply the probabilistic approach IRDT-GEDIR.

  4. Communication on SWIPT and EH Using Electromagnetic Behaviour for Power Allocation in Wireless Networks

    Science.gov (United States)

    Khan, Sohel Rana; Ajij, Sayyad

    2017-12-01

    This review paper focuses on the basic relations between wireless power transfer, wireless information transfer and combined phenomenon of simultaneous wireless information and power transfer. The authors reviewed and discussed electromagnetic fields behaviour (EMB) for enhancing the power allocation strategies (PAS) in energy harvesting (EH) wireless communication systems. Further, this paper presents relations between Friis transmission equation and Maxwell's equations to be used in propagation models for reduction in specific absorption rate (SAR). This paper provides a review of various methods and concepts reported in earlier works. This paper also reviews Poynting vector and power densities along with boundary conditions for antennas and human body. Finally, this paper explores the usage of electromagnetic behaviour for the possible enhancement in power saving methods for electromagnetic behaviour centered-wireless energy harvesting (EMBC-WEH). At the same time, possibilities of PAS for reduction in SAR are discussed.

  5. A hybrid MAC protocol design for energy-efficient very-high-throughput millimeter wave, wireless sensor communication networks

    Science.gov (United States)

    Jian, Wei; Estevez, Claudio; Chowdhury, Arshad; Jia, Zhensheng; Wang, Jianxin; Yu, Jianguo; Chang, Gee-Kung

    2010-12-01

    This paper presents an energy-efficient Medium Access Control (MAC) protocol for very-high-throughput millimeter-wave (mm-wave) wireless sensor communication networks (VHT-MSCNs) based on hybrid multiple access techniques of frequency division multiplexing access (FDMA) and time division multiplexing access (TDMA). An energy-efficient Superframe for wireless sensor communication network employing directional mm-wave wireless access technologies is proposed for systems that require very high throughput, such as high definition video signals, for sensing, processing, transmitting, and actuating functions. Energy consumption modeling for each network element and comparisons among various multi-access technologies in term of power and MAC layer operations are investigated for evaluating the energy-efficient improvement of proposed MAC protocol.

  6. Efficient and scalable IPv6 communication functions for wireless outdour lighting networks

    NARCIS (Netherlands)

    Mamo, S.T.

    2014-01-01

    Outdoor lighting today is becoming increasingly network-connected. The rapid development in wireless communication technologies makes this progress faster and competitive. Philips Research and Philips Lighting are part of the leading forces in exploration and development of a wide spectrum of

  7. Bio-Inspired Energy-Aware Protocol Design for Cooperative Wireless Networks

    DEFF Research Database (Denmark)

    Perrucci, Gian Paolo; Anggraeni, Puri Novelti; Wardana, Satya Ardhy

    2011-01-01

    In this work, bio-inspired cooperation rules are applied to wireless communication networks. The main goal is to derive cooperative behaviour rules to improve the energy consumption of each mobile device. A medium access control (MAC) protocol particularly designed for peer-to-peer communication...... be achieved by this architecture using game theoretic approaches. As an extension, this work explores the impact of the MAC protocol on the power saving capabilities. This result shows that standard MAC mechanisms are not optimised for the considered cooperative setup. A new MAC protocol is proposed...... among cooperative wireless mobile devices is described. The work is based on a novel communication architecture, where a group of mobile devices are connected both to a cellular base station and among them using short-range communication links. A prior work has investigated the energy saving that can...

  8. Improving the physical layer security of wireless communication networks using spread spectrum coding and artificial noise approach

    CSIR Research Space (South Africa)

    Adedeji, K

    2016-09-01

    Full Text Available at the application layer to protect the messages against eavesdropping. However, the evolution of strong deciphering mechanisms has made conventional cryptography-based security techniques ineffective against attacks from an intruder. Figure 1: Layer protocol... communication networks with passive and active eavesdropper,” IEEE Globecom; Wireless Communication System, pp. 4868-4873, 2012. [9] Y. Zou, X. Wang and W. Shen, “Optimal relay selection for physical layer security in cooperative wireless networks,” IEEE...

  9. Optical wireless communications to OC-768 and beyond

    Science.gov (United States)

    Medved, David B.; Davidovich, Leonid

    2001-10-01

    Laser and LED-based wireless communication systems are currently providing license-free interconnection for broadband voice, data and video transport. These systems allow for the immediate, reliable and low-cost extension of copper and fiber-based networks to any end user, providing efficient First Mile bypass access to high data rate backbone networks at speeds ranging from T-1 voice to full throughput ATM at 155 Mbps and up to Gigabit Ethernet. These wireless optical beams constitute a Virtual Fiber in the air, providing the capabilities of fiber in situations where wired connectivity is unavailable, impractical, expensive or slow-to-implement, while achieving a combination of low cost, speed and reliability that cannot be matched by microwave, mm wave, spread spectrum or other competing (actually complementary) wireless technologies. The carrier frequency of the optical beam is about 10,000 times higher than the highest frequencies used by the millimeter wave technology. By means of Wavelength Division Multiplexing more than 1000 independent data channels can be projected into the air on a single beam thus providing a potential bandwidth ten million times that of any RF solution. The twin barriers of physics and regulatory bureaucracy to this essentially infinite wireless bandwidth are thus eliminated by this Virtual Fiber. As user density and individual bandwidth needs escalate, the optical wireless will be the preferred medium of choice in both network and cellular interconnection. A mesh topology which integrates our optical wireless systems with the latest Optical Access switches and routing equipment will be described using case study examples from Japan to South America. As the Bandwidth Blowout continues to push the limits of electronics and especially in the case of DWDM (Dense Wavelength Division Multiples), the conventional optical wireless solutions are no longer feasible. Instead of using f.o. transceivers to convert photons to electrons and thence

  10. Real-time 2.5  Gbit/s spatial circuit switching on W-band wireless links

    DEFF Research Database (Denmark)

    Rodríguez, Sebastián; Morales Vicente, Alvaro; Gallardo, Omar

    2017-01-01

    A spatial circuit switching system based on a beam steering application for W-band wireless links is proposed and experimentally demonstrated. The system enables two simultaneous transmissions of a 2.5 Gbit∕s data signal over a carrier of 81 GHz, while allowing the receiver to dynamically switch...... between them. The performance of the system is tested with the real-time measurements of the BER, achieving values below the FEC limit for 7% of overhead and serving to prove the viability of wireless spatial circuit switching in the next generation of wireless access networks....

  11. Real-time communication architecture for connected-vehicle eco-traffic signal system applications.

    Science.gov (United States)

    2014-02-01

    Transportation Systems, and thus Intelligent Transportation Systems (ITS), are considered one of the most critical : infrastructures. For wireless communication ITS use communication links based on Dedicated Short Range Communication : (DSRC) in Wire...

  12. 38-GHz millimeter wave beam steered fiber wireless systems for 5G indoor coverage: architectures, devices, and links

    NARCIS (Netherlands)

    Cao, Z.; Zhao, X.; Soares, F.M.; Tessema, N.M.; Koonen, A.M.J.

    2017-01-01

    Millimeter wave (mm-wave) beam steering is a key technique for the next generation (5G) wireless communication. The 28 and 38-GHz bands are widely considered as the candidates for 5G. In the context of indoor coverage, fiber-wireless systems with multiple simplified remote antenna sites are

  13. RF and microwave engineering fundamentals of wireless communications

    CERN Document Server

    Gustrau, Frank

    2012-01-01

    This book provides a fundamental and practical introduction to radio frequency and microwave engineering and physical aspects of wireless communication In this book, the author addresses a wide range of radio-frequency and microwave topics with emphasis on physical aspects including EM and voltage waves, transmission lines, passive circuits, antennas, radio wave propagation. Up-to-date RF design tools like RF circuit simulation, EM simulation and computerized smith charts, are used in various examples to demonstrate how these methods can be applied effectively in RF engineering

  14. Compact mobile-reader system for two-way wireless communication, tracking and status monitoring for transport safety and security

    Science.gov (United States)

    Tsai, Han-Chung; Liu, Yung Y.; Lee, Hok L.; Craig, Brian; Byrne, Kevin; Mittal, Ketan; Scherer, Justin C.

    2016-12-06

    A system for monitoring a plurality radio frequency identification tags is described. The system uses at least one set of radio frequency identification tags. Each tag is attached to a container and includes several sensors for detecting physical conditions of said container. The system includes at least one autonomous intermediate reader in wireless communication with the frequency identification tags. The intermediate reader includes external wireless communication system, intermediate reader logic controller, and a self-contained rechargeable power supply. The system uses a central status reporting system in communication the intermediate reader.

  15. An Overview of Physical Layer Security in Wireless Communication Systems With CSIT Uncertainty

    KAUST Repository

    Hyadi, Amal; Rezki, Zouheir; Alouini, Mohamed-Slim

    2016-01-01

    The concept of physical layer security builds on the pivotal idea of turning the channel's imperfections, such as noise and fading, into a source of security. This is established through appropriately designed coding techniques and signal processing strategies. In this vein, it has been shown that fading channels can enhance the transmission of confidential information and that a secure communication can be achieved even when the channel to the eavesdropper is better than the main channel. However, to fully benefit from what fading has to offer, the knowledge of the channel state information at the transmitter (CSIT) is of primordial importance. In practical wireless communication systems, CSIT is usually obtained, prior to data transmission, through CSI feedback sent by the receivers. The channel links over which this feedback information is sent can be either noisy, rate-limited, or delayed, leading to CSIT uncertainty. In this paper, we present a comprehensive review of recent and ongoing research works on physical layer security with CSIT uncertainty. We focus on both information theoretic and signal processing approaches to the topic when the uncertainty concerns the channel to the wiretapper or the channel to the legitimate receiver. Moreover, we present a classification of the research works based on the considered channel uncertainty. Mainly, we distinguish between the cases when the uncertainty comes from an estimation error of the CSIT, from a CSI feedback link with limited capacity, or from an outdated CSI.

  16. An Overview of Physical Layer Security in Wireless Communication Systems With CSIT Uncertainty

    KAUST Repository

    Hyadi, Amal

    2016-09-21

    The concept of physical layer security builds on the pivotal idea of turning the channel\\'s imperfections, such as noise and fading, into a source of security. This is established through appropriately designed coding techniques and signal processing strategies. In this vein, it has been shown that fading channels can enhance the transmission of confidential information and that a secure communication can be achieved even when the channel to the eavesdropper is better than the main channel. However, to fully benefit from what fading has to offer, the knowledge of the channel state information at the transmitter (CSIT) is of primordial importance. In practical wireless communication systems, CSIT is usually obtained, prior to data transmission, through CSI feedback sent by the receivers. The channel links over which this feedback information is sent can be either noisy, rate-limited, or delayed, leading to CSIT uncertainty. In this paper, we present a comprehensive review of recent and ongoing research works on physical layer security with CSIT uncertainty. We focus on both information theoretic and signal processing approaches to the topic when the uncertainty concerns the channel to the wiretapper or the channel to the legitimate receiver. Moreover, we present a classification of the research works based on the considered channel uncertainty. Mainly, we distinguish between the cases when the uncertainty comes from an estimation error of the CSIT, from a CSI feedback link with limited capacity, or from an outdated CSI.

  17. Voice over IP in Wireless Heterogeneous Networks

    DEFF Research Database (Denmark)

    Fathi, Hanane; Chakraborty, Shyam; Prasad, Ramjee

    with the deployment of wireless heterogeneous systems, both speech and data traffic are carrried over wireless links by the same IP-based packet-switched infrastructure. However, this combination faces some challenges due to the inherent properties of the wireless network. The requirements for good quality VoIP...... communications are difficult to achieve in a time-varying environment due to channel errors and traffic congestion and across different systems. The provision of VoIP in wireless heterogeneous networks requires a set of time-efficient control mechanisms to support a VoIP session with acceptable quality....... The focus of Voice over IP in Wierless Heterogeneous Networks is on mechanisms that affect the VoIP user satisfaction  while not explicitly involved in the media session. This relates to the extra delays introduced by the security and the signaling protocols used to set up an authorized VoIP session...

  18. Dynamic spectrum auction in wireless communication

    CERN Document Server

    Chen, Yanjiao

    2015-01-01

    This brief explores current research on dynamic spectrum auctions, focusing on fundamental auction theory, characteristics of the spectrum market, spectrum auction architecture and possible auction mechanisms. The brief explains how dynamic spectrum auctions, which enable new users to gain spectrum access and existing spectrum owners to obtain financial benefits, can greatly improve spectrum efficiency by resolving the artificial spectrum shortage. It examines why operators and users face significant challenges due to specialty of the spectrum market and the related requirements imposed on the auction mechanism design. Concise and up-to-date, Dynamic Spectrum Auction in Wireless Communication is designed for researchers and professionals in computer science or electrical engineering. Students studying networking will also find this brief a valuable resource.

  19. Low Power Consumption Wireless Sensor Communication System Integrated with an Energy Harvesting Power Source

    Directory of Open Access Journals (Sweden)

    Vlad MARSIC

    2013-01-01

    Full Text Available This paper presents the testing results of a wireless sensor communication system with low power consumption integrated with an energy harvesting power source. The experiments focus on the system’s capability to perform continuous monitoring and to wirelessly transmit the data acquired from the sensors to a user base station, for realization of completely battery-free wireless sensor system. Energy harvesting technologies together with system design optimization for power consumption minimization ensure the system’s energy autonomous capability demonstrated in this paper by presenting the promising testing results achieved following its integration with structural health monitoring and body area network applications.

  20. Assessment of proactive transmission power control for wireless sensor networks

    NARCIS (Netherlands)

    kotian, Roshan; Exarchakos, Georgios; Liotta, Antonio

    2014-01-01

    In order to prolong lifetime of Wireless Sensor Networks (WSN), Transmission Power Control (TPC) techniques are employed. The existing TPC schemes adjust the transmission power mostly reacting to changes at link quality between communicating nodes. Proactive TPC has been proposed in the recent past

  1. Secure and Authenticated Data Communication in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Omar Alfandi

    2015-08-01

    Full Text Available Securing communications in wireless sensor networks is increasingly important as the diversity of applications increases. However, even today, it is equally important for the measures employed to be energy efficient. For this reason, this publication analyzes the suitability of various cryptographic primitives for use in WSNs according to various criteria and, finally, describes a modular, PKI-based framework for confidential, authenticated, secure communications in which most suitable primitives can be employed. Due to the limited capabilities of common WSN motes, criteria for the selection of primitives are security, power efficiency and memory requirements. The implementation of the framework and the singular components have been tested and benchmarked in our testbed of IRISmotes.

  2. High capacity hybrid optical fiber-wireless links in 75–300GHz band

    DEFF Research Database (Denmark)

    Cavalcante, Lucas Costa Pereira; Vegas Olmos, Juan José; Tafur Monroy, Idelfonso

    2014-01-01

    Seamless convergence of fiber-optic and the wireless networks is of great interest for enabling transparent delivery of broadband services to users in different locations, including both metropolitan and rural areas. Current demand of bandwidth by end-users, especially using mobile devices......, is seeding the need to use bands located at the millimeter-wave region (30–300 GHz), mainly because of its inherent broadband nature. In our lab, we have conducted extensive research on high-speed photonic-wireless links in the W-band (75–110GHz). In this paper, we will present our latest findings...

  3. Polarization division multiple access with polarization modulation for LOS wireless communications

    Directory of Open Access Journals (Sweden)

    Cao Bin

    2011-01-01

    Full Text Available Abstract In this paper, we discuss a potential multiple access and modulation scheme based on polarized states (PS of electromagnetic (EM waves for line-of-sight (LOS communications. The proposed scheme is theoretic different from the existing polar modulation for EDGE and WCDMA systems. We propose the detailed bit representation (modulation and multiple access scheme using PS. Because of the inflexibility of polarization information in the time and frequency domains, as well as independence of frequency and space, the polarization information can be used independently for wireless communications, i.e., another independent resource domain that can be utilized. Due to the independence between the PS and the specific features of signals (such as waveform, bandwidth and data rate, the discussed polarization division multiple access (PDMA and polarization modulation (PM are expected to improve the spectrum utilization effectively. It is proved that the polarization filtering technique can be adopted in the PDMA-PM wireless communications to separate the multiuser signals and demodulate the bit information representing by PS for desired user. Some theoretical analysis is done to demonstrate the feasibility of the proposed scheme, and the simulation results are made to evaluate the performance of the suggested system.

  4. A novel unified expression for the capacity and bit error probability of wireless communication systems over generalized fading channels

    KAUST Repository

    Yilmaz, Ferkan

    2012-07-01

    Analysis of the average binary error probabilities (ABEP) and average capacity (AC) of wireless communications systems over generalized fading channels have been considered separately in past years. This paper introduces a novel moment generating function (MGF)-based unified expression for the ABEP and AC of single and multiple link communications with maximal ratio combining. In addition, this paper proposes the hyper-Fox\\'s H fading model as a unified fading distribution of a majority of the well-known generalized fading environments. As such, the authors offer a generic unified performance expression that can be easily calculated, and that is applicable to a wide variety of fading scenarios. The mathematical formulism is illustrated with some selected numerical examples that validate the correctness of the authors\\' newly derived results. © 1972-2012 IEEE.

  5. Low power design of wireless endoscopy compression/communication architecture

    Directory of Open Access Journals (Sweden)

    Zitouni Abdelkrim

    2018-05-01

    Full Text Available A wireless endoscopy capsule represents an efficient device interesting on the examination of digestive diseases. Many performance criteria’s (silicon area, dissipated power, image quality, computational time, etc. need to be deeply studied.In this paper, our interest is the optimization of the indicated criteria. The proposed methodology is based on exploring the advantages of the DCT/DWT transforms by combining them into single architecture. For arithmetic operations, the MCLA technique is used. This architecture integrates also a CABAC entropy coder that supports all binarization schemes. AMBA/I2C architecture is developed for assuring optimized communication.The comparisons of the proposed architecture with the most popular methods explained in related works show efficient results in terms dissipated power, hardware cost, and computation speed. Keywords: Wireless endoscopy capsule, DCT/DWT image compression, CABAC entropy coder, AMBA/I2C multi-bus architecture

  6. Ultra Secure High Reliability Wireless Radiation Monitor

    International Nuclear Information System (INIS)

    Cordaro, J.; Shull, D.; Farrar, M.; Reeves, G.

    2011-01-01

    Radiation monitoring in nuclear facilities is essential to safe operation of the equipment as well as protecting personnel. In specific, typical air monitoring of radioactive gases or particulate involves complex systems of valves, pumps, piping and electronics. The challenge is to measure a representative sample in areas that are radioactively contaminated. Running cables and piping to these locations is very expensive due to the containment requirements. Penetration into and out of an airborne or containment area is complex and costly. The process rooms are built with thick rebar-enforced concrete walls with glove box containment chambers inside. Figure 1 shows high temperature radiation resistance cabling entering the top of a typical glove box. In some case, the entire processing area must be contained in a 'hot cell' where the only access into the chamber is via manipulators. An example is shown in Figure 2. A short range wireless network provides an ideal communication link for transmitting the data from the radiation sensor to a 'clean area', or area absent of any radiation fields or radioactive contamination. Radiation monitoring systems that protect personnel and equipment must meet stringent codes and standards due to the consequences of failure. At first glance a wired system would seem more desirable. Concerns with wireless communication include latency, jamming, spoofing, man in the middle attacks, and hacking. The Department of Energy's Savannah River National Laboratory (SRNL) has developed a prototype wireless radiation air monitoring system that address many of the concerns with wireless and allows quick deployment in radiation and contamination areas. It is stand alone and only requires a standard 120 VAC, 60 Hz power source. It is designed to be mounted or portable. The wireless link uses a National Security Agency (NSA) Suite B compliant wireless network from Fortress Technologies that is considered robust enough to be used for classified data

  7. ULTRA SECURE HIGH RELIABILITY WIRELESS RADIATION MONITOR

    Energy Technology Data Exchange (ETDEWEB)

    Cordaro, J.; Shull, D.; Farrar, M.; Reeves, G.

    2011-08-03

    Radiation monitoring in nuclear facilities is essential to safe operation of the equipment as well as protecting personnel. In specific, typical air monitoring of radioactive gases or particulate involves complex systems of valves, pumps, piping and electronics. The challenge is to measure a representative sample in areas that are radioactively contaminated. Running cables and piping to these locations is very expensive due to the containment requirements. Penetration into and out of an airborne or containment area is complex and costly. The process rooms are built with thick rebar-enforced concrete walls with glove box containment chambers inside. Figure 1 shows high temperature radiation resistance cabling entering the top of a typical glove box. In some case, the entire processing area must be contained in a 'hot cell' where the only access into the chamber is via manipulators. An example is shown in Figure 2. A short range wireless network provides an ideal communication link for transmitting the data from the radiation sensor to a 'clean area', or area absent of any radiation fields or radioactive contamination. Radiation monitoring systems that protect personnel and equipment must meet stringent codes and standards due to the consequences of failure. At first glance a wired system would seem more desirable. Concerns with wireless communication include latency, jamming, spoofing, man in the middle attacks, and hacking. The Department of Energy's Savannah River National Laboratory (SRNL) has developed a prototype wireless radiation air monitoring system that address many of the concerns with wireless and allows quick deployment in radiation and contamination areas. It is stand alone and only requires a standard 120 VAC, 60 Hz power source. It is designed to be mounted or portable. The wireless link uses a National Security Agency (NSA) Suite B compliant wireless network from Fortress Technologies that is considered robust enough to be

  8. Low-Power Wireless Sensor Network Infrastructures

    DEFF Research Database (Denmark)

    Hansen, Morten Tranberg

    Advancements in wireless communication and electronics improving form factor and hardware capabilities has expanded the applicability of wireless sensor networks. Despite these advancements, devices are still limited in terms of energy which creates the need for duty-cycling and low-power protocols...... peripherals need to by duty-cycled and the low-power wireless radios are severely influenced by the environmental effects causing bursty and unreliable wireless channels. This dissertation presents a communication stack providing services for low-power communication, secure communication, data collection......, and network management which enables construction of low-power wireless sensor network applications. More specifically, these services are designed with the extreme low-power scenarios of the SensoByg project in mind and are implemented as follows. First, low-power communication is implemented with Auto...

  9. Diversity Order Results for MIMO Optical Wireless Communications

    KAUST Repository

    Sapenov, Yerzhan

    2017-09-21

    An optical wireless multiple-input multiple-output (MIMO) communication system employing intensity-modulation direct-detection (IM/DD) is considered. The maximal diversity order of the channel is characterized by studying the outage probability. Then, spatial repetition coding (RC) is shown to be diversity-optimal as it achieves the channel’s maximal diversity order. This diversity order is given by a simple expression which is suitable for any channel statistics of practical interest. The results are specialized to some practical channel statistics, and numerical results are provided to verify the results.

  10. Diversity Order Results for MIMO Optical Wireless Communications

    KAUST Repository

    Sapenov, Yerzhan; Chaaban, Anas; Rezki, Zouheir; Abdallah, Mohamed; Qaraqe, Khalid; Alouini, Mohamed-Slim

    2017-01-01

    An optical wireless multiple-input multiple-output (MIMO) communication system employing intensity-modulation direct-detection (IM/DD) is considered. The maximal diversity order of the channel is characterized by studying the outage probability. Then, spatial repetition coding (RC) is shown to be diversity-optimal as it achieves the channel’s maximal diversity order. This diversity order is given by a simple expression which is suitable for any channel statistics of practical interest. The results are specialized to some practical channel statistics, and numerical results are provided to verify the results.

  11. Optical-wireless-optical full link for polarization multiplexing quadrature amplitude/phase modulation signal transmission.

    Science.gov (United States)

    Li, Xinying; Yu, Jianjun; Chi, Nan; Zhang, Junwen

    2013-11-15

    We propose and experimentally demonstrate an optical wireless integration system at the Q-band, in which up to 40 Gb/s polarization multiplexing multilevel quadrature amplitude/phase modulation (PM-QAM) signal can be first transmitted over 20 km single-mode fiber-28 (SMF-28), then delivered over a 2 m 2 × 2 multiple-input multiple-output wireless link, and finally transmitted over another 20 km SMF-28. The PM-QAM modulated wireless millimeter-wave (mm-wave) signal at 40 GHz is generated based on the remote heterodyning technique, and demodulated by the radio-frequency transparent photonic technique based on homodyne coherent detection and baseband digital signal processing. The classic constant modulus algorithm equalization is used at the receiver to realize polarization demultiplexing of the PM-QAM signal. For the first time, to the best of our knowledge, we realize the conversion of the PM-QAM modulated wireless mm-wave signal to the optical signal as well as 20 km fiber transmission of the converted optical signal.

  12. A wireless sensor enabled by wireless power.

    Science.gov (United States)

    Lee, Da-Sheng; Liu, Yu-Hong; Lin, Chii-Ruey

    2012-11-22

    Through harvesting energy by wireless charging and delivering data by wireless communication, this study proposes the concept of a wireless sensor enabled by wireless power (WPWS) and reports the fabrication of a prototype for functional tests. One WPWS node consists of wireless power module and sensor module with different chip-type sensors. Its main feature is the dual antenna structure. Following RFID system architecture, a power harvesting antenna was designed to gather power from a standard reader working in the 915 MHz band. Referring to the Modbus protocol, the other wireless communication antenna was integrated on a node to send sensor data in parallel. The dual antenna structure integrates both the advantages of an RFID system and a wireless sensor. Using a standard UHF RFID reader, WPWS can be enabled in a distributed area with a diameter up to 4 m. Working status is similar to that of a passive tag, except that a tag can only be queried statically, while the WPWS can send dynamic data from the sensors. The function is the same as a wireless sensor node. Different WPWSs equipped with temperature and humidity, optical and airflow velocity sensors are tested in this study. All sensors can send back detection data within 8 s. The accuracy is within 8% deviation compared with laboratory equipment. A wireless sensor network enabled by wireless power should be a totally wireless sensor network using WPWS. However, distributed WPWSs only can form a star topology, the simplest topology for constructing a sensor network. Because of shielding effects, it is difficult to apply other complex topologies. Despite this limitation, WPWS still can be used to extend sensor network applications in hazardous environments. Further research is needed to improve WPWS to realize a totally wireless sensor network.

  13. 30 pJ/b, 67 Mbps, Centimeter-to-Meter Range Data Telemetry With an IR-UWB Wireless Link.

    Science.gov (United States)

    Ebrazeh, Ali; Mohseni, Pedram

    2015-06-01

    This paper reports an energy-efficient, impulse radio ultra wideband (IR-UWB) wireless link operating in 3-5 GHz for data telemetry over centimeter-to-meter range distances at rates extended to tens of Mbps. The link comprises an all-digital, integrated transmitter (TX) fabricated in 90 nm 1P/9M CMOS that incorporates a waveform-synthesis pulse generator and a timing generator for on-off-keying (OOK) pulse modulation and phase scrambling. The link also incorporates an energy-detection receiver (RX) realized with commercial off-the-shelf (COTS) components that performs radio-frequency (RF) filtering, amplification, logarithmic power detection for data demodulation and automatic level control for robust operation in the presence of distance variations. Employing a miniaturized, UWB, chip antenna for the TX and RX, wireless transmission of pseudo-random binary sequence (PRBS) data at rates up to 50 Mbps over 10 cm-1 m is shown. Further, employing a high-gain horn antenna for the RX, wireless transmission of PRBS data at rates up to 67 Mbps over 50 cm-4 m is shown with a TX energy consumption of 30 pJ/b (i.e., power consumption of 2 mW) from 1.2 V. The measured bit error rate (BER) in both cases is wireless recording of the background current of a carbon-fiber microelectrode (CFM) in one fast-scan cyclic voltammetry (FSCV) scan using the IR-UWB link are also included, exhibiting excellent match with those obtained from a conventional frequency-shift-keyed (FSK) link at ~433 MHz.

  14. The Most Possible Scheme of Joint Service Detection for the Next Wireless Communication Technologies

    Directory of Open Access Journals (Sweden)

    Firdaus Firdaus

    2013-03-01

    Full Text Available The era of beyond third generation wireless communication is highly heterogeneous in that it comprises several radio access technologies that need to be joined into a single multimode terminal. In this respect, this paper introduces a common service recognition system for the next wireless communication technologies i.e. Long Term Evolution (LTE, WiMAX or IEEE 802.16, and Wireless Local Area Network (WLAN or IEEE 802.11. It is done in physical layer as one of multimode terminal ability regardless network cooperation existence. We investigated on the preamble and synchronization signals as indicators of the available services instead of carrier frequency detection. To detect these signals, we proposed a time domain detection system consisting of auto-correlation, cross-correlation, and a peak period detection. Based on complexity analysis, this paper proposes the most possible scheme with lower complexity than cross-correlation implementation. Moreover, the fixed point simulation results show that the proposed system satisfies the minimum receiver sensitivity requirements that specified in the standards.

  15. Development of wireless communication system in real-time internal radiation dose measurement system using magnetic field

    International Nuclear Information System (INIS)

    Sato, Fumihiro; Shinohe, Kohta; Takura, Tetsuya; Matsuki, Hidetoshi; Yamada, Syogo; Sato, Tadakuni

    2009-01-01

    In radiation therapy, excessive radiation occurs because the actual delivered dose to the tumor is unknown. To overcome this problem, we need a system in which the delivered dose is measured inside the body, and the dose data are transmitted from the inside to the outside of the body. In this study, a wireless communication system, using magnetic fields was studied, and an internal circuit for obtaining radiation dose data from an x-ray detector was examined. As a result, a communication distance of 200 mm was obtained. An internal circuit was developed, and a signal transmission experiment was performed using the wireless communication system. As a result, the radiation dose data from an x-ray detector was transmitted over a communication distance of 200 mm, and the delivered dose was determined from the received signal

  16. Tantalisingly Close: An Archaeology of Communication Desires in Discourses of Mobile Wireless Media

    NARCIS (Netherlands)

    de Vries, I.O.

    2008-01-01

    While many studies on mobile wireless communication devices predominantly take a micro-scale approach and concentrate their often ethnographically informed focus on use values, social implications, conversation strategies, changing norms and ethics, culture-dependent domestication, and so forth,

  17. Optimum LED wavelength for underwater optical wireless communication at turbid water

    Science.gov (United States)

    Rosenkrantz, Etai; Arnon, Shlomi

    2014-10-01

    Underwater optical wireless communication is an emerging technology, which can provide high data rate. High data rate communication is required for applications such as underwater imaging, networks of sensors and swarms of underwater vehicles. These applications pursue an affordable light source, which can be obtained by light emitting diodes (LED). LEDs offer solutions characterized by low cost, high efficiency, reliability and compactness based on off-the-shelf components such as blue and green light emitting diodes. In this paper we present our recent theoretical and experimental results in this field.

  18. Algorithms for energy efficiency in wireless sensor networks

    Energy Technology Data Exchange (ETDEWEB)

    Busse, M

    2007-01-21

    The recent advances in microsensor and semiconductor technology have opened a new field within computer science: the networking of small-sized sensors which are capable of sensing, processing, and communicating. Such wireless sensor networks offer new applications in the areas of habitat and environment monitoring, disaster control and operation, military and intelligence control, object tracking, video surveillance, traffic control, as well as in health care and home automation. It is likely that the deployed sensors will be battery-powered, which will limit the energy capacity significantly. Thus, energy efficiency becomes one of the main challenges that need to be taken into account, and the design of energy-efficient algorithms is a major contribution of this thesis. As the wireless communication in the network is one of the main energy consumers, we first consider in detail the characteristics of wireless communication. By using the embedded sensor board (ESB) platform recently developed by the Free University of Berlin, we analyze the means of forward error correction and propose an appropriate resync mechanism, which improves the communication between two ESB nodes substantially. Afterwards, we focus on the forwarding of data packets through the network. We present the algorithms energy-efficient forwarding (EEF), lifetime-efficient forwarding (LEF), and energy-efficient aggregation forwarding (EEAF). While EEF is designed to maximize the number of data bytes delivered per energy unit, LEF additionally takes into account the residual energy of forwarding nodes. In so doing, LEF further prolongs the lifetime of the network. Energy savings due to data aggregation and in-network processing are exploited by EEAF. Besides single-link forwarding, in which data packets are sent to only one forwarding node, we also study the impact of multi-link forwarding, which exploits the broadcast characteristics of the wireless medium by sending packets to several (potential

  19. Algorithms for energy efficiency in wireless sensor networks

    Energy Technology Data Exchange (ETDEWEB)

    Busse, M.

    2007-01-21

    The recent advances in microsensor and semiconductor technology have opened a new field within computer science: the networking of small-sized sensors which are capable of sensing, processing, and communicating. Such wireless sensor networks offer new applications in the areas of habitat and environment monitoring, disaster control and operation, military and intelligence control, object tracking, video surveillance, traffic control, as well as in health care and home automation. It is likely that the deployed sensors will be battery-powered, which will limit the energy capacity significantly. Thus, energy efficiency becomes one of the main challenges that need to be taken into account, and the design of energy-efficient algorithms is a major contribution of this thesis. As the wireless communication in the network is one of the main energy consumers, we first consider in detail the characteristics of wireless communication. By using the embedded sensor board (ESB) platform recently developed by the Free University of Berlin, we analyze the means of forward error correction and propose an appropriate resync mechanism, which improves the communication between two ESB nodes substantially. Afterwards, we focus on the forwarding of data packets through the network. We present the algorithms energy-efficient forwarding (EEF), lifetime-efficient forwarding (LEF), and energy-efficient aggregation forwarding (EEAF). While EEF is designed to maximize the number of data bytes delivered per energy unit, LEF additionally takes into account the residual energy of forwarding nodes. In so doing, LEF further prolongs the lifetime of the network. Energy savings due to data aggregation and in-network processing are exploited by EEAF. Besides single-link forwarding, in which data packets are sent to only one forwarding node, we also study the impact of multi-link forwarding, which exploits the broadcast characteristics of the wireless medium by sending packets to several (potential

  20. A Rapid Prototyping Environment for Wireless Communication Embedded Systems

    Directory of Open Access Journals (Sweden)

    Bryan A. Jones

    2003-05-01

    Full Text Available This paper introduces a rapid prototyping methodology which overcomes important barriers in the design and implementation of digital signal processing (DSP algorithms and systems on embedded hardware platforms, such as cellular phones. This paper describes rapid prototyping in terms of a simulation/prototype bridge and in terms of appropriate language design. The simulation/prototype bridge combines the strengths of simulation and of prototyping, allowing the designer to develop and evaluate next-generation communications systems, partly in simulation on a host computer and partly as a prototype on embedded hardware. Appropriate language design allows designers to express a communications system as a block diagram, in which each block represents an algorithm specified by a set of equations. Software tools developed for this paper implement both concepts, and have been successfully used in the development of a next-generation code division multiple access (CDMA cellular wireless communications system.

  1. Bi-directional 35-Gbit/s 2D beam steered optical wireless downlink and 5-Gbit/s localized 60-GHz communication uplink for hybrid indoor wireless systems

    NARCIS (Netherlands)

    Khalid, A.M.; Baltus, P.G.M.; Dommele, A.R.; Mekonnen, K.A.; Cao, Z.; Oh, C.W.; Matters, M.K.; Koonen, A.M.J.

    2017-01-01

    We present a full-duplex dynamic indoor optical wireless system using 2D passive optical beam steering for downlink and 60-GHz communication for upstream transmission. We demonstrate 35-Gb/s NRZ-OOK downstream multicasting and 5-Gb/s NRZ-ASK upstream communication.

  2. Communication Optimizations for a Wireless Distributed Prognostic Framework

    Science.gov (United States)

    Saha, Sankalita; Saha, Bhaskar; Goebel, Kai

    2009-01-01

    Distributed architecture for prognostics is an essential step in prognostic research in order to enable feasible real-time system health management. Communication overhead is an important design problem for such systems. In this paper we focus on communication issues faced in the distributed implementation of an important class of algorithms for prognostics - particle filters. In spite of being computation and memory intensive, particle filters lend well to distributed implementation except for one significant step - resampling. We propose new resampling scheme called parameterized resampling that attempts to reduce communication between collaborating nodes in a distributed wireless sensor network. Analysis and comparison with relevant resampling schemes is also presented. A battery health management system is used as a target application. A new resampling scheme for distributed implementation of particle filters has been discussed in this paper. Analysis and comparison of this new scheme with existing resampling schemes in the context for minimizing communication overhead have also been discussed. Our proposed new resampling scheme performs significantly better compared to other schemes by attempting to reduce both the communication message length as well as number total communication messages exchanged while not compromising prediction accuracy and precision. Future work will explore the effects of the new resampling scheme in the overall computational performance of the whole system as well as full implementation of the new schemes on the Sun SPOT devices. Exploring different network architectures for efficient communication is an importance future research direction as well.

  3. Interactive computation of coverage regions for indoor wireless communication

    Science.gov (United States)

    Abbott, A. Lynn; Bhat, Nitin; Rappaport, Theodore S.

    1995-12-01

    This paper describes a system which assists in the strategic placement of rf base stations within buildings. Known as the site modeling tool (SMT), this system allows the user to display graphical floor plans and to select base station transceiver parameters, including location and orientation, interactively. The system then computes and highlights estimated coverage regions for each transceiver, enabling the user to assess the total coverage within the building. For single-floor operation, the user can choose between distance-dependent and partition- dependent path-loss models. Similar path-loss models are also available for the case of multiple floors. This paper describes the method used by the system to estimate coverage for both directional and omnidirectional antennas. The site modeling tool is intended to be simple to use by individuals who are not experts at wireless communication system design, and is expected to be very useful in the specification of indoor wireless systems.

  4. Power allocation strategies to minimize energy consumption in wireless body area networks.

    Science.gov (United States)

    Kailas, Aravind

    2011-01-01

    The wide scale deployment of wireless body area networks (WBANs) hinges on designing energy efficient communication protocols to support the reliable communication as well as to prolong the network lifetime. Cooperative communications, a relatively new idea in wireless communications, offers the benefits of multi-antenna systems, thereby improving the link reliability and boosting energy efficiency. In this short paper, the advantages of resorting to cooperative communications for WBANs in terms of minimized energy consumption are investigated. Adopting an energy model that encompasses energy consumptions in the transmitter and receiver circuits, and transmitting energy per bit, it is seen that cooperative transmission can improve energy efficiency of the wireless network. In particular, the problem of optimal power allocation is studied with the constraint of targeted outage probability. Two strategies of power allocation are considered: power allocation with and without posture state information. Using analysis and simulation-based results, two key points are demonstrated: (i) allocating power to the on-body sensors making use of the posture information can reduce the total energy consumption of the WBAN; and (ii) when the channel condition is good, it is better to recruit less relays for cooperation to enhance energy efficiency.

  5. Transceiver and system design for digital communications

    CERN Document Server

    Bullock, Scott R

    2017-01-01

    This applied engineering reference covers a wide range of wireless communication design techniques; including link budgets, error detection and correction, adaptive and cognitive techniques, and system analysis of receivers and transmitters.

  6. Modified Hermite Pulse-Based Wideband Communication for High-Speed Data Transfer in Wireless Sensor Applications

    Directory of Open Access Journals (Sweden)

    Kushal P. Pradhan

    2017-12-01

    Full Text Available With technological advances in the field of communication, the need for reliable high-speed data transfer is increasing. The deployment of large number of wireless sensors for remote monitoring and control and streaming of high definition video, voice and image data, etc. are imposing a challenge to the existing network bandwidth allocation for reliable communication. Two novel schemes for ultra-wide band (UWB communication technology have been proposed in this paper with the key objective of intensifying the data rate by taking advantage of the orthogonal properties of the modified Hermite pulse (MHP. In the first scheme, a composite pulse is transmitted and in the second scheme, a sequence of multi-order orthogonal pulses is transmitted in the place of a single UWB pulse. The MHP pulses exhibit a mutually orthogonal property between different ordered pulses and due to this property, simultaneous transmission is achieved without collision in the UWB system, resulting in an increase in transmission capacity or improved bit error rate. The proposed schemes for enhanced data rate will offer high volume data monitoring, assessment, and control of wireless devices without overburdening the network bandwidth and pave the way for new platforms for future high-speed wireless sensor applications.

  7. Experimental Performance Analysis of Wireless Links for Healthcare ...

    African Journals Online (AJOL)

    Wireless networking is currently being deployed for various applications. However, the application of wireless networking in healthcare remains a challenge mainly because of security and reliability concerns. This paper presents experimental results of performance analysis of a wireless network for healthcare application ...

  8. Joint sensor placement and power rating selection in energy harvesting wireless sensor networks

    KAUST Repository

    Bushnaq, Osama M.; Al-Naffouri, Tareq Y.; Chepuri, Sundeep Prabhakar; Leus, Geert

    2017-01-01

    In this paper, the focus is on optimal sensor placement and power rating selection for parameter estimation in wireless sensor networks (WSNs). We take into account the amount of energy harvested by the sensing nodes, communication link quality

  9. Network Coded Cooperative Communication in a Real-Time Wireless Hospital Sensor Network.

    Science.gov (United States)

    Prakash, R; Balaji Ganesh, A; Sivabalan, Somu

    2017-05-01

    The paper presents a network coded cooperative communication (NC-CC) enabled wireless hospital sensor network architecture for monitoring health as well as postural activities of a patient. A wearable device, referred as a smartband is interfaced with pulse rate, body temperature sensors and an accelerometer along with wireless protocol services, such as Bluetooth and Radio-Frequency transceiver and Wi-Fi. The energy efficiency of wearable device is improved by embedding a linear acceleration based transmission duty cycling algorithm (NC-DRDC). The real-time demonstration is carried-out in a hospital environment to evaluate the performance characteristics, such as power spectral density, energy consumption, signal to noise ratio, packet delivery ratio and transmission offset. The resource sharing and energy efficiency features of network coding technique are improved by proposing an algorithm referred as network coding based dynamic retransmit/rebroadcast decision control (LA-TDC). From the experimental results, it is observed that the proposed LA-TDC algorithm reduces network traffic and end-to-end delay by an average of 27.8% and 21.6%, respectively than traditional network coded wireless transmission. The wireless architecture is deployed in a hospital environment and results are then successfully validated.

  10. An InP HBT sub-harmonic mixer for E-band wireless communication

    DEFF Research Database (Denmark)

    Johansen, Tom Keinicke; Krozer, Viktor

    2010-01-01

    This paper reports on a novel balanced HBT subharmonic mixer (SHM) for E-band wireless communication. An LO spiral type Marchand balun is integrated with the SHM. The SHM has been fabricated in a InP double heterojunction bipolar transistor (DHBT) circuit-oriented technology with fT /fmax = 180GHz...

  11. Multiband carrierless amplitude/phase modulation for ultra-wideband high data rate wireless communications

    DEFF Research Database (Denmark)

    Puerta Ramírez, Rafael; Rommel, Simon; Altabas, Jose A.

    2016-01-01

    We report on the first experimental demonstration of carrierless amplitude/phase modulation in a flexible multiband approach for ultrawideband high-data-rate wireless communications. An effective bitrate of 2 GB/s is achieved while complying with the restrictions on the effective radiated power...

  12. On the Effect of Security and Communication Factors in the Reliability of Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Damian Rusinek

    2014-03-01

    Full Text Available The ensuring reliability of wireless sensor networks (WSN is one of most important problems to be solved. In this article, the influence of the security and communication factors in the reliability of Wireless Sensor Networks was analyzed. Balancing security against performance in WSN is another issue to be solved. These factors should be considered during security analysis of quality of protection of realized protocol. In the article, we analyze wireless sensor network where hierarchical topologies is implemented with high performance routing sensors that forward big amount of data. We present the experiment results which were performed by high-performance Imote2 sensor platform and TinyOS operating system.

  13. Cooperative wireless network control based health and activity monitoring system.

    Science.gov (United States)

    Prakash, R; Ganesh, A Balaji; Girish, Siva V

    2016-10-01

    A real-time cooperative communication based wireless network is presented for monitoring health and activity of an end-user in their environment. The cooperative communication offers better energy consumption and also an opportunity to aware the current location of a user non-intrusively. The link between mobile sensor node and relay node is dynamically established by using Received Signal Strength Indicator (RSSI) and Link Quality Indicator (LQI) based on adaptive relay selection scheme. The study proposes a Linear Acceleration based Transmission Power Decision Control (LA-TPDC) algorithm to further enhance the energy efficiency of cooperative communication. Further, the occurrences of false alarms are carefully prevented by introducing three stages of sequential warning system. The real-time experiments are carried-out by using the nodes, namely mobile sensor node, relay nodes and a destination node which are indigenously developed by using a CC430 microcontroller integrated with an in-built transceiver at 868 MHz. The wireless node performance characteristics, such as energy consumption, Signal-Noise ratio (SNR), Bit Error Rate (BER), Packet Delivery Ratio (PDR) and transmission offset are evaluated for all the participated nodes. The experimental results observed that the proposed linear acceleration based transmission power decision control algorithm almost doubles the battery life time than energy efficient conventional cooperative communication.

  14. 75 FR 68619 - In the Matter of Certain Wireless Communication Devices, Portable Music and Data Processing...

    Science.gov (United States)

    2010-11-08

    ... Communication Devices, Portable Music and Data Processing Devices, Computers and Components Thereof; Notice of... within the United States after importation of certain wireless communication devices, portable music and...''). The complaint further alleges that an industry in the United States exists as required by subsection...

  15. Reconfigurable Magneto-Electric Dipole Antennas for Base Stations in Modern Wireless Communication Systems

    Directory of Open Access Journals (Sweden)

    Lei Ge

    2018-01-01

    Full Text Available Magneto-electric (ME dipole antennas, with the function of changing the antenna characteristics, such as frequency, polarization, or radiation patterns, are reviewed in this paper. The reconfigurability is achieved by electrically altering the states of diodes or varactors to change the surface currents distributions or reflector size of the antenna. The purpose of the designs is to obtain agile antenna characteristics together with good directive radiation performances, such as low cross-polarization level, high front-to-back ratio, and stable gain. By reconfiguring the antenna capability to support more than one wireless frequency standard, switchable polarizations, or cover tunable areas, the reconfigurable ME dipole antennas are able to switch functionality as the mission changes. Therefore, it can help increase the communication efficiency and reduce the construction cost. This shows very attractive features in base station antennas of modern wireless communication applications.

  16. Distributed and Cooperative Link Scheduling for Large-Scale Multihop Wireless Networks

    Directory of Open Access Journals (Sweden)

    Swami Ananthram

    2007-01-01

    Full Text Available A distributed and cooperative link-scheduling (DCLS algorithm is introduced for large-scale multihop wireless networks. With this algorithm, each and every active link in the network cooperatively calibrates its environment and converges to a desired link schedule for data transmissions within a time frame of multiple slots. This schedule is such that the entire network is partitioned into a set of interleaved subnetworks, where each subnetwork consists of concurrent cochannel links that are properly separated from each other. The desired spacing in each subnetwork can be controlled by a tuning parameter and the number of time slots specified for each frame. Following the DCLS algorithm, a distributed and cooperative power control (DCPC algorithm can be applied to each subnetwork to ensure a desired data rate for each link with minimum network transmission power. As shown consistently by simulations, the DCLS algorithm along with a DCPC algorithm yields significant power savings. The power savings also imply an increased feasible region of averaged link data rates for the entire network.

  17. Distributed and Cooperative Link Scheduling for Large-Scale Multihop Wireless Networks

    Directory of Open Access Journals (Sweden)

    Ananthram Swami

    2007-12-01

    Full Text Available A distributed and cooperative link-scheduling (DCLS algorithm is introduced for large-scale multihop wireless networks. With this algorithm, each and every active link in the network cooperatively calibrates its environment and converges to a desired link schedule for data transmissions within a time frame of multiple slots. This schedule is such that the entire network is partitioned into a set of interleaved subnetworks, where each subnetwork consists of concurrent cochannel links that are properly separated from each other. The desired spacing in each subnetwork can be controlled by a tuning parameter and the number of time slots specified for each frame. Following the DCLS algorithm, a distributed and cooperative power control (DCPC algorithm can be applied to each subnetwork to ensure a desired data rate for each link with minimum network transmission power. As shown consistently by simulations, the DCLS algorithm along with a DCPC algorithm yields significant power savings. The power savings also imply an increased feasible region of averaged link data rates for the entire network.

  18. A Model for QoS – Aware Wireless Communication in Hospitals

    Science.gov (United States)

    Alavikia, Zahra; Khadivi, Pejman; Hashemi, Masoud Reza

    2012-01-01

    In the recent decade, research regarding wireless applications in electronic health (e-Health) services has been increasing. The main benefits of using wireless technologies in e-Health applications are simple communications, fast delivery of medical information, reducing treatment cost and also reducing the medical workers’ error rate. However, using wireless communications in sensitive healthcare environment raises electromagnetic interference (EMI). One of the most effective methods to avoid the EMI problem is power management. To this end, some of methods have been proposed in the literature to reduce EMI effects in health care environments. However, using these methods may result in nonaccurate interference avoidance and also may increase network complexity. To overcome these problems, we introduce two approaches based on per-user location and hospital sectoring for power management in sensitive healthcare environments. Although reducing transmission power could avoid EMI, it causes a number of successful message deliveries to the access point to decrease and, hence, the quality of service requirements cannot be meet. In this paper, we propose the use of relays for decreasing the probability of outage in the aforementioned scenario. Relay placement is the main factor to enjoy the usefulness of relay station benefits in the network and, therefore, we use the genetic algorithm to compute the optimum positions of a fixed number of relays. We have considered delay and maximum blind point coverage as two main criteria in relay station problem. The performance of the proposed method in outage reduction is investigated through simulations. PMID:23493832

  19. Electronic Devices, Methods, and Computer Program Products for Selecting an Antenna Element Based on a Wireless Communication Performance Criterion

    DEFF Research Database (Denmark)

    2014-01-01

    A method of operating an electronic device includes providing a plurality of antenna elements, evaluating a wireless communication performance criterion to obtain a performance evaluation, and assigning a first one of the plurality of antenna elements to a main wireless signal reception...... and transmission path and a second one of the plurality of antenna elements to a diversity wireless signal reception path based on the performance evaluation....

  20. Decentralized Control of Unmanned Aerial Robots for Wireless Airborne Communication Networks

    Directory of Open Access Journals (Sweden)

    Deok-Jin Lee

    2010-09-01

    Full Text Available This paper presents a cooperative control strategy for a team of aerial robotic vehicles to establish wireless airborne communication networks between distributed heterogeneous vehicles. Each aerial robot serves as a flying mobile sensor performing a reconfigurable communication relay node which enabls communication networks with static or slow-moving nodes on gorund or ocean. For distributed optimal deployment of the aerial vehicles for communication networks, an adaptive hill-climbing type decentralized control algorithm is developed to seek out local extremum for optimal localization of the vehicles. The sensor networks estabilished by the decentralized cooperative control approach can adopt its configuraiton in response to signal strength as the function of the relative distance between the autonomous aerial robots and distributed sensor nodes in the sensed environment. Simulation studies are conducted to evaluate the effectiveness of the proposed decentralized cooperative control technique for robust communication networks.

  1. A Formal Approach to the Selection by Minimum Error and Pattern Method for Sensor Data Loss Reduction in Unstable Wireless Sensor Network Communications

    OpenAIRE

    Kim, Changhwa; Shin, DongHyun

    2017-01-01

    There are wireless networks in which typically communications are unsafe. Most terrestrial wireless sensor networks belong to this category of networks. Another example of an unsafe communication network is an underwater acoustic sensor network (UWASN). In UWASNs in particular, communication failures occur frequently and the failure durations can range from seconds up to a few hours, days, or even weeks. These communication failures can cause data losses significant enough to seriously damage...

  2. Shed a light of wireless technology on portable mobile design of NIRS

    Science.gov (United States)

    Sun, Yunlong; Li, Ting

    2016-03-01

    Mobile internet is growing rapidly driven by high-tech companies including the popular Apple and Google. The wireless mini-NIRS is believed to deserve a great spread future, while there is sparse report on wireless NIRS device and even for the reported wireless NIRS, its wireless design is scarcely presented. Here we focused on the wireless design of NIRS devices. The widely-used wireless communication standards and wireless communication typical solutions were employed into our NIRS design and then compared on communication efficiency, distance, error rate, low-cost, power consumption, and stabilities, based on the requirements of NIRS applications. The properly-performed wireless communication methods matched with the characteristics of NIRS are picked out. Finally, we realized one recommended wireless communication in our NIRS, developed a test platform on wireless NIRS and tested the full properties on wireless communication. This study elaborated the wireless communication methods specified for NIRS and suggested one implementation with one example fully illustrated, which support the future mobile design on NIRS devices.

  3. SHER: A Colored Petri Net Based Random Mobility Model for Wireless Communications

    Science.gov (United States)

    Khan, Naeem Akhtar; Ahmad, Farooq; Khan, Sher Afzal

    2015-01-01

    In wireless network research, simulation is the most imperative technique to investigate the network’s behavior and validation. Wireless networks typically consist of mobile hosts; therefore, the degree of validation is influenced by the underlying mobility model, and synthetic models are implemented in simulators because real life traces are not widely available. In wireless communications, mobility is an integral part while the key role of a mobility model is to mimic the real life traveling patterns to study. The performance of routing protocols and mobility management strategies e.g. paging, registration and handoff is highly dependent to the selected mobility model. In this paper, we devise and evaluate the Show Home and Exclusive Regions (SHER), a novel two-dimensional (2-D) Colored Petri net (CPN) based formal random mobility model, which exhibits sociological behavior of a user. The model captures hotspots where a user frequently visits and spends time. Our solution eliminates six key issues of the random mobility models, i.e., sudden stops, memoryless movements, border effect, temporal dependency of velocity, pause time dependency, and speed decay in a single model. The proposed model is able to predict the future location of a mobile user and ultimately improves the performance of wireless communication networks. The model follows a uniform nodal distribution and is a mini simulator, which exhibits interesting mobility patterns. The model is also helpful to those who are not familiar with the formal modeling, and users can extract meaningful information with a single mouse-click. It is noteworthy that capturing dynamic mobility patterns through CPN is the most challenging and virulent activity of the presented research. Statistical and reachability analysis techniques are presented to elucidate and validate the performance of our proposed mobility model. The state space methods allow us to algorithmically derive the system behavior and rectify the

  4. Estimating Rain Attenuation In Satellite Communication Links

    Science.gov (United States)

    Manning, R. M.

    1991-01-01

    Attenuation computed with help of statistical model and meteorological data. NASA Lewis Research Center Satellite Link Attenuation Model (SLAM) program QuickBASIC computer program evaluating static and dynamic statistical assessment of impact of rain attenuation on communication link established between Earth terminal and geosynchronous satellite. Application in specification, design, and assessment of satellite communication links for any terminal location in continental United States. Written in Microsoft QuickBASIC.

  5. Distortion-Based Link Adaptation for Wireless Video Transmission

    Directory of Open Access Journals (Sweden)

    Andrew Nix

    2008-06-01

    Full Text Available Wireless local area networks (WLANs such as IEEE 802.11a/g utilise numerous transmission modes, each providing different throughputs and reliability levels. Most link adaptation algorithms proposed in the literature (i maximise the error-free data throughput, (ii do not take into account the content of the data stream, and (iii rely strongly on the use of ARQ. Low-latency applications, such as real-time video transmission, do not permit large numbers of retransmission. In this paper, a novel link adaptation scheme is presented that improves the quality of service (QoS for video transmission. Rather than maximising the error-free throughput, our scheme minimises the video distortion of the received sequence. With the use of simple and local rate distortion measures and end-to-end distortion models at the video encoder, the proposed scheme estimates the received video distortion at the current transmission rate, as well as on the adjacent lower and higher rates. This allows the system to select the link-speed which offers the lowest distortion and to adapt to the channel conditions. Simulation results are presented using the MPEG-4/AVC H.264 video compression standard over IEEE 802.11g. The results show that the proposed system closely follows the optimum theoretic solution.

  6. An Interference-Aware Traffic-Priority-Based Link Scheduling Algorithm for Interference Mitigation in Multiple Wireless Body Area Networks

    Directory of Open Access Journals (Sweden)

    Thien T. T. Le

    2016-12-01

    Full Text Available Currently, wireless body area networks (WBANs are effectively used for health monitoring services. However, in cases where WBANs are densely deployed, interference among WBANs can cause serious degradation of network performance and reliability. Inter-WBAN interference can be reduced by scheduling the communication links of interfering WBANs. In this paper, we propose an interference-aware traffic-priority-based link scheduling (ITLS algorithm to overcome inter-WBAN interference in densely deployed WBANs. First, we model a network with multiple WBANs as an interference graph where node-level interference and traffic priority are taken into account. Second, we formulate link scheduling for multiple WBANs as an optimization model where the objective is to maximize the throughput of the entire network while ensuring the traffic priority of sensor nodes. Finally, we propose the ITLS algorithm for multiple WBANs on the basis of the optimization model. High spatial reuse is also achieved in the proposed ITLS algorithm. The proposed ITLS achieves high spatial reuse while considering traffic priority, packet length, and the number of interfered sensor nodes. Our simulation results show that the proposed ITLS significantly increases spatial reuse and network throughput with lower delay by mitigating inter-WBAN interference.

  7. Integration of a prototype wireless communication system with micro-electromechanical temperature and humidity sensor for concrete pavement health monitoring

    Directory of Open Access Journals (Sweden)

    Shuo Yang

    2015-12-01

    Full Text Available In recent years, structural health monitoring and management (SHMM has become a popular approach and is considered essential for achieving well-performing, long-lasting, sustainable transportation infrastructure systems. Key requirements in ideal SHMM of road infrastructure include long-term, continuous, and real-time monitoring of pavement response and performance under various pavement geometry-materials-loading configurations and environmental conditions. With advancements in wireless technologies, integration of wireless communications into sensing device is considered an alternate and superior solution to existing time- and labor-intensive wired sensing systems in meeting the requirements of an ideal SHMM. This study explored the development and integration of a wireless communications sub-system into a commercial off-the-shelf micro-electromechanical sensor-based concrete pavement monitoring system. A success-rate test was performed after the wireless transmission system was buried in the concrete slab, and the test results indicated that the system was able to provide reliable communications at a distance of more than 46 m (150 feet. This will be a useful feature for highway engineers performing routine pavement scans from the pavement shoulder without the need for traffic control or road closure.

  8. Communication and Powering Scheme for Wireless and Battery-Less Measurement

    Directory of Open Access Journals (Sweden)

    A. Boura

    2012-04-01

    Full Text Available The paper presents solution for wireless and battery-less measurement in the enclosed areas. The principle is based on passive RFID, nevertheless this paper is focused on high power-demanding applications such as MEMS accelerometers, gas sensors, piezoresistive strain gauges, etc. Standard FRID communication scheme (sensing the input current change on the primary side cannot be used in this case, because the communication channel is overloaded by the high power load. Paper presents possible solution which is based on the dual frequency scheme – one frequency for powering and other for the communication. This is ensuring capability for measurement up to several centimeters on the frequency bands 125 kHz and 375 kHz. It can be suitable for continual measurement in isolated systems such as the rotating objects, concrete walls, enclosed plastic barrels, high temperature chambers etc.

  9. Wireless Powered Cooperative Communications: Power-Splitting Relaying With Energy Accumulation (Author’s Manuscript)

    Science.gov (United States)

    2016-03-21

    decreasing power usage, while improving the transmission performance. A key concern of the energy harvesting enabled coop- erative relay communication is the...improving transmission performance via an efficient utiliza- tion of harvested power has been widely studied for conven- tional energy harvesting techniques...can be used as energy sources for cooperative nodes. Moreover, it has been illustrated in [6] that wireless -powered cooperative relay communications

  10. Hybrid CATV/MMW/BB lightwave transmission system based on fiber-wired/fiber-wireless/fiber-VLLC integrations.

    Science.gov (United States)

    Li, Chung-Yi; Lu, Hai-Han; Lu, Ting-Chieh; Chu, Chien-An; Chen, Bo-Rui; Lin, Chun-Yu; Peng, Peng-Chun

    2015-12-14

    A hybrid lightwave transmission system for cable television (CATV)/millimeter-wave (MMW)/baseband (BB) signal transmission based on fiber-wired/fiber-wireless/fiber-visible laser light communication (VLLC) integrations is proposed and demonstrated. For down-link transmission, the light is intensity-modulated with 50-550 MHz CATV signal and optically promoted from 25 GHz radio frequency (RF) signal to 10 Gbps/50 GHz and 20 Gbps/100 GHz MMW data signals based on fiber-wired and fiber-wireless integrations. Good performances of carrier-to-noise ratio (CNR), composite second-order (CSO), composite triple-beat (CTB), and bit error rate (BER) are obtained over a 40-km single-mode fiber (SMF) and a 10-m RF wireless transport. For up-link transmission, the light is successfully intensity-remodulated with 5-Gbps BB data stream based on fiber-VLLC integration. Good BER performance is achieved over a 40-km SMF and a 10-m free-space VLLC transport. Such a hybrid CATV/MMW/BB lightwave transmission system is an attractive alternative, it gives the benefits of a communication link for broader bandwidth and higher transmission rate.

  11. Autonomous system for wireless network communication powered by photovoltaic solar energy; Sistema autonomo de comunicacao sem fio em malha alimentado por energia solar fotovoltaica

    Energy Technology Data Exchange (ETDEWEB)

    Alonso, Rafael Herrero

    2009-07-01

    The wireless mesh network communication technology, based on the IEEE802.11 standard, has been a relevant technology solution for wireless networking in the recent years. However, even with the elimination of cables for data communication, the wireless mesh networks have to be connected to a voltage source using an electrical cable that may not be available at the local installation. In this scenario, being Brazil a country located in a tropical zone that receives large annual solar irradiation, the conversion of photons to electricity can be an alternative to eliminate the needs of wiring to the mesh access points. This work contributes to the development of autonomous wireless mesh communication systems powered by solar energy, with easy installation in urban or rural areas. This work also describes its evaluations in aspects such as autonomy, wireless coverage, number of users supported, installation height and throughput. (author)

  12. Wireless Connectivity to ATM Communication Grid

    National Research Council Canada - National Science Library

    Rajaravivarma, Veeramuthu

    1998-01-01

    The AFOSR funds were used to purchase a 12 port Fore ATM switch, ATM network interface cards, a SUN UltraSPARC workstation, Lucent WavePoint wireless bridge, and Lucent WaveLAN wireless network interface cards...

  13. Wireless technologies for closed-loop retinal prostheses

    Science.gov (United States)

    Ng, David C.; Bai, Shun; Yang, Jiawei; Tran, Nhan; Skafidas, Efstratios

    2009-12-01

    In this paper, we discuss various technologies needed to develop retinal prostheses with wireless power and data telemetry operation. In addition to the need to communicate with the implanted device, supply of power to the retinal prosthesis is especially difficult. This is because, in the implanted state, the device is not fixed in position due to constant motion of the eye. Furthermore, a retinal prosthesis incorporating a high density electrode array of more than 1000 electrodes is expected to consume approximately 45 mW of power and require 300 kbps of image and stimulation data. The front end of the wireless power and data transmission, the antenna, needs to be small compared to the size of the eye. Also, the wireless module is expected to operate in the reactive near-field region due to small separation between the transmit and receive antennas compared to their size and corresponding operating wavelength. An inductive link is studied as a means to transfer power and for data telemetry between the implant and external unit. In this work, the use of integrated circuit and microfabrication technologies for implementing inductive links is discussed. A closed-loop approach is taken to improve performance and reach optimum operation condition. Design and simulation data are presented as the basis for development of viable wireless module prototypes.

  14. Wireless data transfer with mm-waves for future tracking detectors

    International Nuclear Information System (INIS)

    Pelikan, D.; Bingefors, N.; Brenner, R.; Gustafsson, L.; Dancila, D.

    2014-01-01

    Wireless data transfer has revolutionized the consumer market for the last decade generating many products equipped with transmitters and receivers for wireless data transfer. Wireless technology opens attractive possibilities for data transfer in future tracking detectors. The reduction of wires and connectors for data links is certainly beneficial both for the material budget and the reliability of the system. An advantage of wireless data transfer is the freedom of routing signals which today is particularly complicated when bringing the data the first 50 cm out of the tracker. With wireless links intelligence can be built into a tracker by introducing communication between tracking layers within a region of interest which would allow the construction of track primitives in real time. The wireless technology used in consumer products is however not suitable for tracker readouts. The low data transfer capacity of current 5 GHz transceivers and the relatively large feature sizes of the components is a disadvantage.Due to the requirement of high data rates in tracking detectors high bandwidth is required. The frequency band around 60 GHz turns out to be a very promising candidate for data transfer in a detector system. The high baseband frequency allows for data transfer in the order of several Gbit/s. Due to the small wavelength in the mm range only small structures are needed for the transmitting and receiving electronics. The 60 GHz frequency band is a strong candidate for future WLAN applications hence components are already starting to be available on the market.Patch antennas produced on flexible Printed Circuit Board substrate that can be used for wireless communication in future trackers are presented in this article. The antennas can be connected to transceivers for data transmission/reception or be connected by wave-guides to structures capable of bringing the 60 GHz signal behind boundaries. Results on simulation and fabrication of these antennas are

  15. Wireless data transfer with mm-waves for future tracking detectors

    Science.gov (United States)

    Pelikan, D.; Bingefors, N.; Brenner, R.; Dancila, D.; Gustafsson, L.

    2014-11-01

    Wireless data transfer has revolutionized the consumer market for the last decade generating many products equipped with transmitters and receivers for wireless data transfer. Wireless technology opens attractive possibilities for data transfer in future tracking detectors. The reduction of wires and connectors for data links is certainly beneficial both for the material budget and the reliability of the system. An advantage of wireless data transfer is the freedom of routing signals which today is particularly complicated when bringing the data the first 50 cm out of the tracker. With wireless links intelligence can be built into a tracker by introducing communication between tracking layers within a region of interest which would allow the construction of track primitives in real time. The wireless technology used in consumer products is however not suitable for tracker readouts. The low data transfer capacity of current 5 GHz transceivers and the relatively large feature sizes of the components is a disadvantage.Due to the requirement of high data rates in tracking detectors high bandwidth is required. The frequency band around 60 GHz turns out to be a very promising candidate for data transfer in a detector system. The high baseband frequency allows for data transfer in the order of several Gbit/s. Due to the small wavelength in the mm range only small structures are needed for the transmitting and receiving electronics. The 60 GHz frequency band is a strong candidate for future WLAN applications hence components are already starting to be available on the market.Patch antennas produced on flexible Printed Circuit Board substrate that can be used for wireless communication in future trackers are presented in this article. The antennas can be connected to transceivers for data transmission/reception or be connected by wave-guides to structures capable of bringing the 60 GHz signal behind boundaries. Results on simulation and fabrication of these antennas are

  16. Talk is cheap: Wireless communications changing the oilpatch

    Energy Technology Data Exchange (ETDEWEB)

    Stastny, P.

    2004-03-01

    The role of cellular phones and satellite phones in the oil and natural gas industry in Canada is discussed. Cellular phones are particularly well adapted to the remote environment in which much of the industry is situated. Satellite phones are less common but they are used to fill in the gaps where cellular networks are not available. In such situations the field worker is equipped with two phones, a cellular phone and a satellite phone, each with its own number, or he carries a Globalstar phone, which combines both under operating modes using the same telephone number. The most cost-effective communication in remote areas relies on a three-watt analog booster that connects to a cell phone; a digital three-watt booster is not far down the road as the ultimate means of communication in remote environments, particularly for handling data. The digital cellular network can reach a maximum threshold of 80,000 baud (versus only 9,600 baud for analog). The demand for wireless services for wireless e-mail and Web-assisted GPS position location applications, and the sheer number of people with cellular phones are the most significant drivers of the push towards digital networks. Digital picture cell phones are also likely to find applications in troubleshooting and other areas of the oilpatch. In some areas however, satellite phones may be the only option. The low earth orbit (LEO) Globalstar is a particularly good example of satellite phone systems; it offers significant advantages in terms of voice quality, with practically limitless geographic coverage. By contrast, GEO (Geostationary Earth Orbit) systems are better suited to handling high-speed data, television transmission and other wideband applications.

  17. Different I/O Standard and Technology Based Thermal Aware Energy Efficient Vedic Multiplier Design for Green Wireless Communication on FPGA

    DEFF Research Database (Denmark)

    Goswami, Kavita; Pandey, Bishwajeet; Kumar, Tanesh

    2017-01-01

    and that eventually decrease power dissipation of wireless communications systems. In order to study the effect of different process technology (40, 65, 90 nm) on our design, a novel design is implemented on 40, 65 and 90 nm based FPGA. In this work, we are integrating thermal aware design approach for energy......This paper deals with low power multiplier design that plays a significant role in green wireless communications systems. Over the period of time, researchers have proposed various multiplier designs in order to get high speed. Vedic multiplier is considered as one of the low power multiplier along...... with high speed as compared with traditional array and booth multipliers. Vedic Multiplier contains a total of sixteen algorithms/sutras for predominantly logical operations. This research focuses on thermal aspects and energy efficiency of wireless communications systems with the thermal aware low power...

  18. Fiber-wireless transmission system of 108  Gb/sdata over 80 km fiber and 2×2multiple-input multiple-output wireless links at 100 GHz W-band frequency.

    Science.gov (United States)

    Li, Xinying; Dong, Ze; Yu, Jianjun; Chi, Nan; Shao, Yufeng; Chang, G K

    2012-12-15

    We experimentally demonstrate a seamlessly integrated fiber-wireless system that delivers a 108  Gb/s signal through 80 km fiber and 1 m wireless transport over free space at 100 GHz adopting polarization-division-multiplexing quadrature-phase-shift-keying (PDM-QPSK) modulation and heterodyning coherent detection. The X- and Y-polarization components of the optical PDM-QPSK baseband signal are simultaneously upconverted to 100 GHz wireless carrier by optical polarization-diversity heterodyne beating, and then independently transmitted and received by two pairs of transmitter and receiver antennas, which form a 2×2 multiple-input multiple-output wireless link. At the wireless receiver, two-stage downconversion is performed firstly in the analog domain based on balanced mixer and sinusoidal radio frequency signal, and then in the digital domain based on digital signal processing (DSP). Polarization demultiplexing is realized by the constant modulus algorithm in the DSP part at the receiver. The bit-error ratio for the 108  Gb/s PDM-QPSK signal is less than the pre-forward-error-correction threshold of 3.8×10(-3) after both 1 m wireless delivery at 100 GHz and 80 km single-mode fiber-28 transmission. To our knowledge, this is the first demonstration to realize 100  Gb/s signal delivery through both fiber and wireless links at 100 GHz.

  19. CAMAC based computer--computer communications via microprocessor data links

    International Nuclear Information System (INIS)

    Potter, J.M.; Machen, D.R.; Naivar, F.J.; Elkins, E.P.; Simmonds, D.D.

    1976-01-01

    Communications between the central control computer and remote, satellite data acquisition/control stations at The Clinton P. Anderson Meson Physics Facility (LAMPF) is presently accomplished through the use of CAMAC based Data Link Modules. With the advent of the microprocessor, a new philosophy for digital data communications has evolved. Data Link modules containing microprocessor controllers provide link management and communication network protocol through algorithms executed in the Data Link microprocessor

  20. Analysis and Testing of Mobile Wireless Networks

    Science.gov (United States)

    Alena, Richard; Evenson, Darin; Rundquist, Victor; Clancy, Daniel (Technical Monitor)

    2002-01-01

    Wireless networks are being used to connect mobile computing elements in more applications as the technology matures. There are now many products (such as 802.11 and 802.11b) which ran in the ISM frequency band and comply with wireless network standards. They are being used increasingly to link mobile Intranet into Wired networks. Standard methods of analyzing and testing their performance and compatibility are needed to determine the limits of the technology. This paper presents analytical and experimental methods of determining network throughput, range and coverage, and interference sources. Both radio frequency (BE) domain and network domain analysis have been applied to determine wireless network throughput and range in the outdoor environment- Comparison of field test data taken under optimal conditions, with performance predicted from RF analysis, yielded quantitative results applicable to future designs. Layering multiple wireless network- sooners can increase performance. Wireless network components can be set to different radio frequency-hopping sequences or spreading functions, allowing more than one sooner to coexist. Therefore, we ran multiple 802.11-compliant systems concurrently in the same geographical area to determine interference effects and scalability, The results can be used to design of more robust networks which have multiple layers of wireless data communication paths and provide increased throughput overall.

  1. Adapting cognitive radio technology for low-power wireless personal area network devices

    DEFF Research Database (Denmark)

    Toftegaard, Thomas Skjødeberg; Rohde, John

    2011-01-01

    The application of wireless personal area network (WPAN) and simple point-to-point wireless communication devices has increased drastically both in private household and in our workspaces in general over the last decade. Combined with the fact that the total number of wireless devices...... and associated standards present in the wireless environment is experiencing an extreme growth, the frequency spectrum scarcity is exposed as a severe challenge. Setting up efficient and reliable wireless WPAN links can be challenging even today. This is especially true because of the intensive use...... discusses the challenges associated with the implementation of highly reliable low-power WPAN networks for the future and the adaption of Cognitive Radio technology as a potential solution. A brief status on the maturity of CR technology will be presented as an integral part of this discussion....

  2. 16 Gb/s QPSK Wireless-over-Fibre Link in 75-110GHz Band Employing Optical Heterodyne Generation and Coherent Detection

    DEFF Research Database (Denmark)

    Zibar, Darko; Sambaraju, Rakesh; Caballero Jambrina, Antonio

    2010-01-01

    We report on the first demonstration of QPSK based Wireless-over-Fibre link in 75-110GHz band with a record capacity of up to 16Gb/s. Photonic wireless signal generation by heterodyne beating of free-running lasers and baud-rate digital coherent detection are employed....

  3. 77 FR 51571 - Certain Wireless Communication Devices, Portable Music and Data Processing Devices, Computers...

    Science.gov (United States)

    2012-08-24

    ... Music and Data Processing Devices, Computers, and Components Thereof; Notice of Receipt of Complaint... complaint entitled Wireless Communication Devices, Portable Music and Data Processing Devices, Computers..., portable music and data processing devices, computers, and components thereof. The complaint names as...

  4. 77 FR 65580 - Certain Wireless Communication Devices, Portable Music and Data Processing Devices, Computers...

    Science.gov (United States)

    2012-10-29

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-856] Certain Wireless Communication Devices, Portable Music and Data Processing Devices, Computers, and Components Thereof AGENCY: U.S. International Trade Commission. ACTION: Notice. SUMMARY: Notice is hereby given that the U.S. International...

  5. UHD Video Transmission over Bi-Directional Underwater Wireless Optical Communication

    KAUST Repository

    Al-Halafi, Abdullah

    2018-04-02

    In this paper, we experimentally demonstrate for the first time a bi-directional underwater wireless optical communication system that is capable of transmitting an ultra high definition real-time video using a downlink channel while simultaneously receiving the feedback messages on the uplink channel. The links extend up to 4.5 m using QPSK, 16-QAM and 64-QAM modulations. The system is built using software defined platforms connected to TO-9 packaged pigtailed 520 nm directly modulated green laser diode (LD) with 1.2 GHz bandwidth as the optical transmitter for video streaming on the downlink, and an avalanche photodiode (APD) module as the downlink receiver. The uplink channel is connected to another pigtailed 450 nm directly modulated blue LD with 1.2 GHz bandwidth as the optical uplink transmitter for the feedback channel, and to a second APD as the uplink receiver. We perform laboratory experiments on different water types. The measured throughput is 15 Mbps for QPSK, and 30 Mbps for both 16-QAM and 64-QAM. We evaluate the quality of the received live video streams using Peak Signal-to-Noise Ratio and achieve values up to 16 dB for 64-QAM when streaming UHD video in harbor II water and 22 dB in clear ocean.

  6. UHD Video Transmission over Bi-Directional Underwater Wireless Optical Communication

    KAUST Repository

    Al-Halafi, Abdullah; Shihada, Basem

    2018-01-01

    In this paper, we experimentally demonstrate for the first time a bi-directional underwater wireless optical communication system that is capable of transmitting an ultra high definition real-time video using a downlink channel while simultaneously receiving the feedback messages on the uplink channel. The links extend up to 4.5 m using QPSK, 16-QAM and 64-QAM modulations. The system is built using software defined platforms connected to TO-9 packaged pigtailed 520 nm directly modulated green laser diode (LD) with 1.2 GHz bandwidth as the optical transmitter for video streaming on the downlink, and an avalanche photodiode (APD) module as the downlink receiver. The uplink channel is connected to another pigtailed 450 nm directly modulated blue LD with 1.2 GHz bandwidth as the optical uplink transmitter for the feedback channel, and to a second APD as the uplink receiver. We perform laboratory experiments on different water types. The measured throughput is 15 Mbps for QPSK, and 30 Mbps for both 16-QAM and 64-QAM. We evaluate the quality of the received live video streams using Peak Signal-to-Noise Ratio and achieve values up to 16 dB for 64-QAM when streaming UHD video in harbor II water and 22 dB in clear ocean.

  7. Impact of a half-space interface on the wireless link between tiny sensor nodes

    NARCIS (Netherlands)

    Penkin, D.; Janssen, G.; Yarovoy, A.

    2014-01-01

    The power budget of a wireless link between two electrically small sensor nodes located close to an interface between two media is studied. The model includes both the propagation channel losses and input impedance of the radio frequency antennas. It is shown that a highly inductive half-space

  8. Wireless optical network for a home network

    Science.gov (United States)

    Bouchet, Olivier; Porcon, Pascal; Walewski, Joachim W.; Nerreter, Stefan; Langer, Klaus-Dieter; Fernández, Luz; Vucic, Jelena; Kamalakis, Thomas; Ntogari, Georgia; Neokosmidis, Ioannis; Gueutier, Eric

    2010-08-01

    During the European collaborative project OMEGA, two optical-wireless prototypes have been developed. The first prototype operates in the near-infrared spectral region and features Giga Ethernet connectivity, a simple transceiver architecture due to the use of on-off keying, a multi-sector transceiver, and an ultra-fast switch for sector-to-sector hand over. This full-duplex system, composed by one base station and one module, transmits data on three meters. The second prototype is a visible-light-communications system based on DMT signal processing and an adapted MAC sublayer. Data rates around to 100 Mb/s at the physical layer are achieved. This broadcast system, composed also by one base station and one module, transmits data up to two meters. In this paper we present the adapted optical wireless media-access-control sublayer protocol for visible-light communications. This protocol accommodates link adaptation from 128 Mb/s to 1024 Mb/s with multi-sector coverage, and half-duplex or full-duplex transmission.

  9. Optimization of Planar Monopole Wideband Antenna for Wireless Communication System.

    Science.gov (United States)

    Shakib, Mohammed Nazmus; Moghavvemi, Mahmoud; Mahadi, Wan Nor Liza

    2016-01-01

    In this paper, a new compact wideband monopole antenna is presented for wireless communication applications. This antenna comprises of a new radiating patch, a new arc-shaped strip, microstrip feed line, and a notched ground plane. The proposed radiating patch is combined with a rectangular and semi-circular patch and is integrated with a partial ground plane to provide a wide impedance bandwidth. The new arc-shaped strip between the radiating patch and microstrip feed line creates an extra surface on the patch, which helps further widen the bandwidth. Inserting one step notch on the ground plane further enhances the bandwidth. The antenna has a compact size of 16×20×1.6mm3. The measured result indicated that the antenna achieves a 127% bandwidth at VSWR≤2, ranging from 4.9GHz to 22.1GHz. Stable radiation patterns with acceptable gain are achieved. Also, a measured bandwidth of 107.7% at VSWR≤1.5 (5.1-17GHz) is obtained, which is suitable for UWB outdoor propagation. This antenna is compatible with a good number of wireless standards, including UWB band, Wimax 5.4 GHz band, MVDDS (12.2-12.7GHz), and close range radar and satellite communication in the X-band (8-12GHz), and Ku band (12-18GHz).

  10. Real-Time Wireless Data Acquisition System

    Science.gov (United States)

    Valencia, Emilio J.; Perotti, Jose; Lucena, Angel; Mata, Carlos

    2007-01-01

    Current and future aerospace requirements demand the creation of a new breed of sensing devices, with emphasis on reduced weight, power consumption, and physical size. This new generation of sensors must possess a high degree of intelligence to provide critical data efficiently and in real-time. Intelligence will include self-calibration, self-health assessment, and pre-processing of raw data at the sensor level. Most of these features are already incorporated in the Wireless Sensors Network (SensorNet(TradeMark)), developed by the Instrumentation Group at Kennedy Space Center (KSC). A system based on the SensorNet(TradeMark) architecture consists of data collection point(s) called Central Stations (CS) and intelligent sensors called Remote Stations (RS) where one or more CSs can be accommodated depending on the specific application. The CS's major function is to establish communications with the Remote Stations and to poll each RS for data and health information. The CS also collects, stores and distributes these data to the appropriate systems requiring the information. The system has the ability to perform point-to-point, multi-point and relay mode communications with an autonomous self-diagnosis of each communications link. Upon detection of a communication failure, the system automatically reconfigures to establish new communication paths. These communication paths are automatically and autonomously selected as the best paths by the system based on the existing operating environment. The data acquisition system currently under development at KSC consists of the SensorNet(TradeMark) wireless sensors as the remote stations and the central station called the Radio Frequency Health Node (RFHN). The RFF1N is the central station which remotely communicates with the SensorNet(TradeMark) sensors to control them and to receive data. The system's salient feature is the ability to provide deterministic sensor data with accurate time stamps for both time critical and non

  11. Artificial Neural Network for Location Estimation in Wireless Communication Systems

    Directory of Open Access Journals (Sweden)

    Chien-Sheng Chen

    2012-03-01

    Full Text Available In a wireless communication system, wireless location is the technique used to estimate the location of a mobile station (MS. To enhance the accuracy of MS location prediction, we propose a novel algorithm that utilizes time of arrival (TOA measurements and the angle of arrival (AOA information to locate MS when three base stations (BSs are available. Artificial neural networks (ANN are widely used techniques in various areas to overcome the problem of exclusive and nonlinear relationships. When the MS is heard by only three BSs, the proposed algorithm utilizes the intersections of three TOA circles (and the AOA line, based on various neural networks, to estimate the MS location in non-line-of-sight (NLOS environments. Simulations were conducted to evaluate the performance of the algorithm for different NLOS error distributions. The numerical analysis and simulation results show that the proposed algorithms can obtain more precise location estimation under different NLOS environments.

  12. Artificial neural network for location estimation in wireless communication systems.

    Science.gov (United States)

    Chen, Chien-Sheng

    2012-01-01

    In a wireless communication system, wireless location is the technique used to estimate the location of a mobile station (MS). To enhance the accuracy of MS location prediction, we propose a novel algorithm that utilizes time of arrival (TOA) measurements and the angle of arrival (AOA) information to locate MS when three base stations (BSs) are available. Artificial neural networks (ANN) are widely used techniques in various areas to overcome the problem of exclusive and nonlinear relationships. When the MS is heard by only three BSs, the proposed algorithm utilizes the intersections of three TOA circles (and the AOA line), based on various neural networks, to estimate the MS location in non-line-of-sight (NLOS) environments. Simulations were conducted to evaluate the performance of the algorithm for different NLOS error distributions. The numerical analysis and simulation results show that the proposed algorithms can obtain more precise location estimation under different NLOS environments.

  13. Wireless Communication Enhancement Methods for Mobile Robots in Radiation Environments

    CERN Document Server

    Nattanmai Parasuraman, Ramviyas; Ferre, Manuel

    In hostile environments such as in scientific facilities where ionising radiation is a dominant hazard, reducing human interventions by increasing robotic operations are desirable. CERN, the European Organization for Nuclear Research, has around 50 km of underground scientific facilities, where wireless mobile robots could help in the operation of the accelerator complex, e.g. in conducting remote inspections and radiation surveys in different areas. The main challenges to be considered here are not only that the robots should be able to go over long distances and operate for relatively long periods, but also the underground tunnel environment, the possible presence of electromagnetic fields, radiation effects, and the fact that the robots shall in no way interrupt the operation of the accelerators. Having a reliable and robust wireless communication system is essential for successful execution of such robotic missions and to avoid situations of manual recovery of the robots in the event that the robot runs ...

  14. A Family of Key Agreement Mechanisms for Mission Critical Communications for Secure Mobile Ad Hoc and Wireless Mesh Internetworking

    Directory of Open Access Journals (Sweden)

    Tryfonas Theo

    2011-01-01

    Full Text Available Future wireless networks like mobile ad hoc networks and wireless mesh networks are expected to play important role in demanding communications such as mission critical communications. MANETs are ideal for emergency cases where the communication infrastructure has been completely destroyed and there is a need for quick set up of communications among the rescue/emergency workers. In such emergency scenarios wireless mesh networks may be employed in a later phase for providing advanced communications and services acting as a backbone network in the affected area. Internetworking of both types of future networks will provide a broad range of mission critical applications. While offering many advantages, such as flexibility, easy of deployment and low cost, MANETs and mesh networks face important security and resilience threats, especially for such demanding applications. We introduce a family of key agreement methods based on weak to strong authentication associated with several multiparty contributory key establishment methods. We examine the attributes of each key establishment method and how each method can be better applied in different scenarios. The proposed protocols support seamlessly both types of networks and consider system and application requirements such as efficient and secure internetworking, dynamicity of network topologies and support of thin clients.

  15. Wireless optical telecommunications

    CERN Document Server

    Bouchet, Olivier

    2013-01-01

    Wireless optical communication refers to communication based on the unguided propagation of optical waves. The past 30 years have seen significant improvements in this technique - a wireless communication solution for the current millennium - that offers an alternative to radio systems; a technique that could gain attractiveness due to recent concerns regarding the potential effects of radiofrequency waves on human health.The aim of this book is to look at the free space optics that are already used for the exchange of current information; its many benefits, such as incorporating chan

  16. Digital Photonic Receivers for Wireless and Wireline Optical Fiber Transmission Links

    DEFF Research Database (Denmark)

    Guerrero Gonzalez, Neil

    services. The experimental demonstration supported the following transmissions systems: a baseband, 5 Gbps, intensity modulation system employing a directly modulated vertical cavity surface emitting laser (VCSEL), a baseband 20 Gbps non-return-to-zero quadrature phase-shift keying (NRZ-QPSK) system...... receivers in hybrid wireless and wireline optical fiber transmission links. Furthermore, the digital signal processing framework presented in this thesis can be extended to design probabilistic-based digital photonic receivers that can find applications in cognitive heterogeneous reconfigurable optical...

  17. Smart Home Communication Technologies and Applications: Wireless Protocol Assessment for Home Area Network Resources

    Directory of Open Access Journals (Sweden)

    Tiago D. P. Mendes

    2015-07-01

    Full Text Available The paper discusses Home Area Networks (HAN communication technologies for smart home and domestic application integration. The work is initiated by identifying the application areas that can benefit from this integration. A broad and inclusive home communication interface is analysed utilizing as a key piece a Gateway based on machine-to-machine (M2M communications that interacts with the surrounding environment. Then, the main wireless networks are thoroughly assessed, and later, their suitability to the requirements of HAN considering the application area is analysed. Finally, a qualitative analysis is portrayed.

  18. SIMO optical wireless links with nonzero boresight pointing errors over M modeled turbulence channels

    Science.gov (United States)

    Varotsos, G. K.; Nistazakis, H. E.; Petkovic, M. I.; Djordjevic, G. T.; Tombras, G. S.

    2017-11-01

    Over the last years terrestrial free-space optical (FSO) communication systems have demonstrated an increasing scientific and commercial interest in response to the growing demands for ultra high bandwidth, cost-effective and secure wireless data transmissions. However, due the signal propagation through the atmosphere, the performance of such links depends strongly on the atmospheric conditions such as weather phenomena and turbulence effect. Additionally, their operation is affected significantly by the pointing errors effect which is caused by the misalignment of the optical beam between the transmitter and the receiver. In order to address this significant performance degradation, several statistical models have been proposed, while particular attention has been also given to diversity methods. Here, the turbulence-induced fading of the received optical signal irradiance is studied through the M (alaga) distribution, which is an accurate model suitable for weak to strong turbulence conditions and unifies most of the well-known, previously emerged models. Thus, taking into account the atmospheric turbulence conditions along with the pointing errors effect with nonzero boresight and the modulation technique that is used, we derive mathematical expressions for the estimation of the average bit error rate performance for SIMO FSO links. Finally, proper numerical results are given to verify our derived expressions and Monte Carlo simulations are also provided to further validate the accuracy of the analysis proposed and the obtained mathematical expressions.

  19. Link-state-estimation-based transmission power control in wireless body area networks.

    Science.gov (United States)

    Kim, Seungku; Eom, Doo-Seop

    2014-07-01

    This paper presents a novel transmission power control protocol to extend the lifetime of sensor nodes and to increase the link reliability in wireless body area networks (WBANs). We first experimentally investigate the properties of the link states using the received signal strength indicator (RSSI). We then propose a practical transmission power control protocol based on both short- and long-term link-state estimations. Both the short- and long-term link-state estimations enable the transceiver to adapt the transmission power level and target the RSSI threshold range, respectively, to simultaneously satisfy the requirements of energy efficiency and link reliability. Finally, the performance of the proposed protocol is experimentally evaluated in two experimental scenarios-body posture change and dynamic body motion-and compared with the typical WBAN transmission power control protocols, a real-time reactive scheme, and a dynamic postural position inference mechanism. From the experimental results, it is found that the proposed protocol increases the lifetime of the sensor nodes by a maximum of 9.86% and enhances the link reliability by reducing the packet loss by a maximum of 3.02%.

  20. Next Generation Intelligent Wireless Infrastructure

    DEFF Research Database (Denmark)

    Toftegaard, Thomas Skjødeberg

    2010-01-01

    Given the commercial success of wireless technologies that has already taken place over the last couple of decades, with a global mobile communication penetration beyond 3 billion subscribers as well as the enormous success of wireless data communication through IEEE 802.11x and Bluetooth, people...