WorldWideScience

Sample records for wireless access nodes

  1. Energy-Efficient Boarder Node Medium Access Control Protocol for Wireless Sensor Networks

    OpenAIRE

    Razaque, Abdul; Elleithy, Khaled M.

    2014-01-01

    This paper introduces the design, implementation, and performance analysis of the scalable and mobility-aware hybrid protocol named boarder node medium access control (BN-MAC) for wireless sensor networks (WSNs), which leverages the characteristics of scheduled and contention-based MAC protocols. Like contention-based MAC protocols, BN-MAC achieves high channel utilization, network adaptability under heavy traffic and mobility, and low latency and overhead. Like schedule-based MAC protocols,...

  2. Wireless Access

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. Wireless Access. Wireless connect to the Base station. Easy and Convenient access. Costlier as compared to the wired technology. Reliability challenges. We see it as a complementary technology to the DSL.

  3. Energy-Efficient Boarder Node Medium Access Control Protocol for Wireless Sensor Networks

    Science.gov (United States)

    Razaque, Abdul; Elleithy, Khaled M.

    2014-01-01

    This paper introduces the design, implementation, and performance analysis of the scalable and mobility-aware hybrid protocol named boarder node medium access control (BN-MAC) for wireless sensor networks (WSNs), which leverages the characteristics of scheduled and contention-based MAC protocols. Like contention-based MAC protocols, BN-MAC achieves high channel utilization, network adaptability under heavy traffic and mobility, and low latency and overhead. Like schedule-based MAC protocols, BN-MAC reduces idle listening time, emissions, and collision handling at low cost at one-hop neighbor nodes and achieves high channel utilization under heavy network loads. BN-MAC is particularly designed for region-wise WSNs. Each region is controlled by a boarder node (BN), which is of paramount importance. The BN coordinates with the remaining nodes within and beyond the region. Unlike other hybrid MAC protocols, BN-MAC incorporates three promising models that further reduce the energy consumption, idle listening time, overhearing, and congestion to improve the throughput and reduce the latency. One of the models used with BN-MAC is automatic active and sleep (AAS), which reduces the ideal listening time. When nodes finish their monitoring process, AAS lets them automatically go into the sleep state to avoid the idle listening state. Another model used in BN-MAC is the intelligent decision-making (IDM) model, which helps the nodes sense the nature of the environment. Based on the nature of the environment, the nodes decide whether to use the active or passive mode. This decision power of the nodes further reduces energy consumption because the nodes turn off the radio of the transceiver in the passive mode. The third model is the least-distance smart neighboring search (LDSNS), which determines the shortest efficient path to the one-hop neighbor and also provides cross-layering support to handle the mobility of the nodes. The BN-MAC also incorporates a semi

  4. Energy-efficient boarder node medium access control protocol for wireless sensor networks.

    Science.gov (United States)

    Razaque, Abdul; Elleithy, Khaled M

    2014-03-12

    This paper introduces the design, implementation, and performance analysis of the scalable and mobility-aware hybrid protocol named boarder node medium access control (BN-MAC) for wireless sensor networks (WSNs), which leverages the characteristics of scheduled and contention-based MAC protocols. Like contention-based MAC protocols, BN-MAC achieves high channel utilization, network adaptability under heavy traffic and mobility, and low latency and overhead. Like schedule-based MAC protocols, BN-MAC reduces idle listening time, emissions, and collision handling at low cost at one-hop neighbor nodes and achieves high channel utilization under heavy network loads. BN-MAC is particularly designed for region-wise WSNs. Each region is controlled by a boarder node (BN), which is of paramount importance. The BN coordinates with the remaining nodes within and beyond the region. Unlike other hybrid MAC protocols, BN-MAC incorporates three promising models that further reduce the energy consumption, idle listening time, overhearing, and congestion to improve the throughput and reduce the latency. One of the models used with BN-MAC is automatic active and sleep (AAS), which reduces the ideal listening time. When nodes finish their monitoring process, AAS lets them automatically go into the sleep state to avoid the idle listening state. Another model used in BN-MAC is the intelligent decision-making (IDM) model, which helps the nodes sense the nature of the environment. Based on the nature of the environment, the nodes decide whether to use the active or passive mode. This decision power of the nodes further reduces energy consumption because the nodes turn off the radio of the transceiver in the passive mode. The third model is the least-distance smart neighboring search (LDSNS), which determines the shortest efficient path to the one-hop neighbor and also provides cross-layering support to handle the mobility of the nodes. The BN-MAC also incorporates a semi

  5. Energy-Efficient Boarder Node Medium Access Control Protocol for Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Abdul Razaque

    2014-03-01

    Full Text Available This paper introduces the design, implementation, and performance analysis of the scalable and mobility-aware hybrid protocol named boarder node medium access control (BN-MAC for wireless sensor networks (WSNs, which leverages the characteristics of scheduled and contention-based MAC protocols. Like contention-based MAC protocols, BN-MAC achieves high channel utilization, network adaptability under heavy traffic and mobility, and low latency and overhead. Like schedule-based MAC protocols, BN-MAC reduces idle listening time, emissions, and collision handling at low cost at one-hop neighbor nodes and achieves high channel utilization under heavy network loads. BN-MAC is particularly designed for region-wise WSNs. Each region is controlled by a boarder node (BN, which is of paramount importance. The BN coordinates with the remaining nodes within and beyond the region. Unlike other hybrid MAC protocols, BN-MAC incorporates three promising models that further reduce the energy consumption, idle listening time, overhearing, and congestion to improve the throughput and reduce the latency. One of the models used with BN-MAC is automatic active and sleep (AAS, which reduces the ideal listening time. When nodes finish their monitoring process, AAS lets them automatically go into the sleep state to avoid the idle listening state. Another model used in BN-MAC is the intelligent decision-making (IDM model, which helps the nodes sense the nature of the environment. Based on the nature of the environment, the nodes decide whether to use the active or passive mode. This decision power of the nodes further reduces energy consumption because the nodes turn off the radio of the transceiver in the passive mode. The third model is the least-distance smart neighboring search (LDSNS, which determines the shortest efficient path to the one-hop neighbor and also provides cross-layering support to handle the mobility of the nodes. The BN-MAC also incorporates a semi

  6. Smart Home Wireless Sensor Nodes

    DEFF Research Database (Denmark)

    Lynggaard, Per

    . This paper introduces an approach that considerably lowers the wireless sensor node power consumption and the amount of transmitted sensor events. It uses smart objects that include artificial intelligence to efficiently process the sensor event on location and thereby saves the costly wireless...

  7. Multi-Channel Multi-Radio Using 802.11 Based Media Access for Sink Nodes in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Kok-Keong Loo

    2011-05-01

    Full Text Available The next generation surveillance and multimedia systems will become increasingly deployed as wireless sensor networks in order to monitor parks, public places and for business usage. The convergence of data and telecommunication over IP-based networks has paved the way for wireless networks. Functions are becoming more intertwined by the compelling force of innovation and technology. For example, many closed-circuit TV premises surveillance systems now rely on transmitting their images and data over IP networks instead of standalone video circuits. These systems will increase their reliability in the future on wireless networks and on IEEE 802.11 networks. However, due to limited non-overlapping channels, delay, and congestion there will be problems at sink nodes. In this paper we provide necessary conditions to verify the feasibility of round robin technique in these networks at the sink nodes by using a technique to regulate multi-radio multichannel assignment. We demonstrate through simulations that dynamic channel assignment scheme using multi-radio, and multichannel configuration at a single sink node can perform close to optimal on the average while multiple sink node assignment also performs well. The methods proposed in this paper can be a valuable tool for network designers in planning network deployment and for optimizing different performance objectives.

  8. Multi-channel multi-radio using 802.11 based media access for sink nodes in wireless sensor networks.

    Science.gov (United States)

    Campbell, Carlene E-A; Khan, Shafiullah; Singh, Dhananjay; Loo, Kok-Keong

    2011-01-01

    The next generation surveillance and multimedia systems will become increasingly deployed as wireless sensor networks in order to monitor parks, public places and for business usage. The convergence of data and telecommunication over IP-based networks has paved the way for wireless networks. Functions are becoming more intertwined by the compelling force of innovation and technology. For example, many closed-circuit TV premises surveillance systems now rely on transmitting their images and data over IP networks instead of standalone video circuits. These systems will increase their reliability in the future on wireless networks and on IEEE 802.11 networks. However, due to limited non-overlapping channels, delay, and congestion there will be problems at sink nodes. In this paper we provide necessary conditions to verify the feasibility of round robin technique in these networks at the sink nodes by using a technique to regulate multi-radio multichannel assignment. We demonstrate through simulations that dynamic channel assignment scheme using multi-radio, and multichannel configuration at a single sink node can perform close to optimal on the average while multiple sink node assignment also performs well. The methods proposed in this paper can be a valuable tool for network designers in planning network deployment and for optimizing different performance objectives.

  9. A wireless laser displacement sensor node for structural health monitoring.

    Science.gov (United States)

    Park, Hyo Seon; Kim, Jong Moon; Choi, Se Woon; Kim, Yousok

    2013-09-30

    This study describes a wireless laser displacement sensor node that measures displacement as a representative damage index for structural health monitoring (SHM). The proposed measurement system consists of a laser displacement sensor (LDS) and a customized wireless sensor node. Wireless communication is enabled by a sensor node that consists of a sensor module, a code division multiple access (CDMA) communication module, a processor, and a power module. An LDS with a long measurement distance is chosen to increase field applicability. For a wireless sensor node driven by a battery, we use a power control module with a low-power processor, which facilitates switching between the sleep and active modes, thus maximizing the power consumption efficiency during non-measurement and non-transfer periods. The CDMA mode is also used to overcome the limitation of communication distance, which is a challenge for wireless sensor networks and wireless communication. To evaluate the reliability and field applicability of the proposed wireless displacement measurement system, the system is tested onsite to obtain the required vertical displacement measurements during the construction of mega-trusses and an edge truss, which are the primary structural members in a large-scale irregular building currently under construction. The measurement values confirm the validity of the proposed wireless displacement measurement system and its potential for use in safety evaluations of structural elements.

  10. A Wireless Laser Displacement Sensor Node for Structural Health Monitoring

    Directory of Open Access Journals (Sweden)

    Se Woon Choi

    2013-09-01

    Full Text Available This study describes a wireless laser displacement sensor node that measures displacement as a representative damage index for structural health monitoring (SHM. The proposed measurement system consists of a laser displacement sensor (LDS and a customized wireless sensor node. Wireless communication is enabled by a sensor node that consists of a sensor module, a code division multiple access (CDMA communication module, a processor, and a power module. An LDS with a long measurement distance is chosen to increase field applicability. For a wireless sensor node driven by a battery, we use a power control module with a low-power processor, which facilitates switching between the sleep and active modes, thus maximizing the power consumption efficiency during non-measurement and non-transfer periods. The CDMA mode is also used to overcome the limitation of communication distance, which is a challenge for wireless sensor networks and wireless communication. To evaluate the reliability and field applicability of the proposed wireless displacement measurement system, the system is tested onsite to obtain the required vertical displacement measurements during the construction of mega-trusses and an edge truss, which are the primary structural members in a large-scale irregular building currently under construction. The measurement values confirm the validity of the proposed wireless displacement measurement system and its potential for use in safety evaluations of structural elements.

  11. Multi-Channel Multi-Radio Using 802.11 Based Media Access for Sink Nodes in Wireless Sensor Networks

    OpenAIRE

    Campbell, Carlene E.-A.; Khan, Shafiullah; Singh, Dhananjay; Loo, Kok-Keong

    2011-01-01

    The next generation surveillance and multimedia systems will become increasingly deployed as wireless sensor networks in order to monitor parks, public places and for business usage. The convergence of data and telecommunication over IP-based networks has paved the way for wireless networks. Functions are becoming more intertwined by the compelling force of innovation and technology. For example, many closed-circuit TV premises surveillance systems now rely on transmitting their images and da...

  12. Advanced Wireless Sensor Nodes - MSFC

    Science.gov (United States)

    Varnavas, Kosta; Richeson, Jeff

    2017-01-01

    NASA field center Marshall Space Flight Center (Huntsville, AL), has invested in advanced wireless sensor technology development. Developments for a wireless microcontroller back-end were primarily focused on the commercial Synapse Wireless family of devices. These devices have many useful features for NASA applications, good characteristics and the ability to be programmed Over-The-Air (OTA). The effort has focused on two widely used sensor types, mechanical strain gauges and thermal sensors. Mechanical strain gauges are used extensively in NASA structural testing and even on vehicle instrumentation systems. Additionally, thermal monitoring with many types of sensors is extensively used. These thermal sensors include thermocouples of all types, resistive temperature devices (RTDs), diodes and other thermal sensor types. The wireless thermal board will accommodate all of these types of sensor inputs to an analog front end. The analog front end on each of the sensors interfaces to the Synapse wireless microcontroller, based on the Atmel Atmega128 device. Once the analog sensor output data is digitized by the onboard analog to digital converter (A/D), the data is available for analysis, computation or transmission. Various hardware features allow custom embedded software to manage battery power to enhance battery life. This technology development fits nicely into using numerous additional sensor front ends, including some of the low-cost printed circuit board capacitive moisture content sensors currently being developed at Auburn University.

  13. Autonomous solutions for powering wireless sensor nodes in rivers

    Science.gov (United States)

    Kamenar, E.; Maćešić, S.; Gregov, G.; Blažević, D.; Zelenika, S.; Marković, K.; Glažar, V.

    2015-05-01

    There is an evident need for monitoring pollutants and/or other conditions in river flows via wireless sensor networks. In a typical wireless sensor network topography, a series of sensor nodes is to be deployed in the environment, all wirelessly connected to each other and/or their gateways. Each sensor node is composed of active electronic devices that have to be constantly powered. In general, batteries can be used for this purpose, but problems may occur when they have to be replaced. In the case of large networks, when sensor nodes can be placed in hardly accessible locations, energy harvesting can thus be a viable powering solution. The possibility to use three different small-scale river flow energy harvesting principles is hence thoroughly studied in this work: a miniaturized underwater turbine, a so-called `piezoelectric eel' and a hybrid turbine solution coupled with a rigid piezoelectric beam. The first two concepts are then validated experimentally in laboratory as well as in real river conditions. The concept of the miniaturised hydro-generator is finally embedded into the actual wireless sensor node system and its functionality is confirmed.

  14. Functional Testing of Wireless Sensor Node Designs

    DEFF Research Database (Denmark)

    Virk, Kashif M.; Madsen, Jan

    2007-01-01

    Wireless sensor networks are networked embedded computer systems with stringent power, performance, cost and form-factor requirements along with numerous other constraints related to their pervasiveness and ubiquitousness. Therefore, only a systematic design methdology coupled with an efficient...... test approach can enable their conformance to design and deployment specifications. We discuss off-line, hierarchical, functional testing of complete wireless sensor nodes containing configurable logic through a combination of FPGA-based board test and Software-Based Self-Test (SBST) techniques...

  15. Offloading of a Wireless Node Authentication with Core Network

    DEFF Research Database (Denmark)

    2017-01-01

    An example technique may include controlling receiving, by a second node from a first node in a wireless network, a request to offload authentication of the first node with the core network to the second node, controlling receiving, by the second node from the first node, data to be forwarded...... to the core network, performing, by the second node based on the request, an authentication with the core network on behalf of the first node while the first node is not connected with the second node, and controlling forwarding the received data from the second node to the core network while the first node...

  16. Wireless motion sensor network for monitoring motion in a process, wireless sensor node, reasoning node, and feedback and/or actuation node for such wireless motion sensor network

    NARCIS (Netherlands)

    Havinga, Paul J.M.; Marin Perianu, Raluca; Marin Perianu, Mihai

    2010-01-01

    Wireless motion sensor network for monitoring motion in a process comprising at least one wireless sensor node for measuring at least one physical quantity related to motion or orientation, feature extraction means for deriving a feature for the measured quantities, a wireless transmitter connected

  17. 3D inkjet printed disposable environmental monitoring wireless sensor node

    KAUST Repository

    Farooqui, Muhammad Fahad; Shamim, Atif

    2017-01-01

    We propose a disposable, miniaturized, moveable, fully integrated 3D inkjet-printed wireless sensor node for large area environmental monitoring applications. As a proof of concept, we show the wireless sensing of temperature, humidity and H2S

  18. Node clustering for wireless sensor networks

    International Nuclear Information System (INIS)

    Bhatti, S.; Qureshi, I.A.; Memon, S.

    2012-01-01

    Recent years have witnessed considerable growth in the development and deployment of clustering methods which are not only used to maintain network resources but also increases the reliability of the WSNs (Wireless Sensor Network) and the facts manifest by the wide range of clustering solutions. Node clustering by selecting key parameters to tackle the dynamic behaviour of resource constraint WSN is a challenging issue. This paper highlights the recent progress which has been carried out pertaining to the development of clustering solutions for the WSNs. The paper presents classification of node clustering methods and their comparison based on the objectives, clustering criteria and methodology. In addition, the potential open issues which need to be considered for future work are high lighted. Keywords: Clustering, Sensor Network, Static, Dynamic

  19. Multi-Source Energy Harvesting for Wireless Sensor Nodes.

    OpenAIRE

    Kang, Kai

    2012-01-01

    The past few years have seen an increasing interest in the development of wireless sensor networks. But the unsatisfactory or limited available energy source is one of the major bottlenecks which are limiting the wireless sensor technology from mass deployment. Ambient energy harvesting is the most promising solution towards autonomous sensor nodes by providing low cost, permanent, and maintenance-free energy source to wireless sensor nodes. In this paper, we first invested available energy s...

  20. Node counting in wireless ad-hoc networks

    NARCIS (Netherlands)

    Evers, J.H.M.; Kiss, D.; Kowalczyk, W.; Navilarekallu, T.; Renger, D.R.M.; Sella, L.; Timperio, V.; Viorel, A.; Wijk, van A.C.C.; Yzelman, A.J.; Planqué, B.; Bhulai, S.; Hulshof, J.; Kager, W.; Rot, T.

    2012-01-01

    We study wireless ad-hoc networks consisting of small microprocessors with limited memory, where the wireless communication between the processors can be highly unreliable. For this setting, we propose a number of algorithms to estimate the number of nodes in the network, and the number of direct

  1. Photonic-assisted ultrafast THz wireless access

    DEFF Research Database (Denmark)

    Yu, Xianbin; Chen, Ying; Galili, Michael

    THz technology has been considered feasible for ultrafast wireless data communi- cation, to meet the increasing demand on next-generation fast wireless access, e.g., huge data file transferring and fast mobile data stream access. This talk reviews recent progress in high-speed THz wireless...

  2. Principles of wireless access and localization

    CERN Document Server

    Pahlavan, Kaveh

    2013-01-01

    A comprehensive, encompassing and accessible text examining a wide range of key Wireless Networking and Localization technologies This book provides a unified treatment of issues related to all wireless access and wireless localization techniques.  The book reflects principles of design and deployment of infrastructure for wireless access and localization for wide, local, and personal networking.   Description of wireless access methods includes design and deployment of traditional TDMA and CDMA technologies and emerging Long Term Evolution (LTE) techniques for wide area cellular networks, the

  3. Wireless Multi Hop Access Networks and Protocols

    OpenAIRE

    Nilsson Plymoth, Anders

    2007-01-01

    As more and more applications and services in our society now depend on the Internet, it is important that dynamically deployed wireless multi hop networks are able to gain access to the Internet and other infrastructure networks and services. This thesis proposes and evaluates solutions for providing multi hop Internet Access. It investigates how ad hoc networks can be combined with wireless and mesh networks in order to create wireless multi hop access networks. When several access points t...

  4. Adaptive Media Access Control for Energy Harvesting - Wireless Sensor Networks

    DEFF Research Database (Denmark)

    Fafoutis, Xenofon; Dragoni, Nicola

    2012-01-01

    ODMAC (On-Demand Media Access Control) is a recently proposed MAC protocol designed to support individual duty cycles for Energy Harvesting — Wireless Sensor Networks (EH-WSNs). Individual duty cycles are vital for EH-WSNs, because they allow nodes to adapt their energy consumption to the ever-ch...

  5. Synchronous wearable wireless body sensor network composed of autonomous textile nodes.

    Science.gov (United States)

    Vanveerdeghem, Peter; Van Torre, Patrick; Stevens, Christiaan; Knockaert, Jos; Rogier, Hendrik

    2014-10-09

    A novel, fully-autonomous, wearable, wireless sensor network is presented, where each flexible textile node performs cooperative synchronous acquisition and distributed event detection. Computationally efficient situational-awareness algorithms are implemented on the low-power microcontroller present on each flexible node. The detected events are wirelessly transmitted to a base station, directly, as well as forwarded by other on-body nodes. For each node, a dual-polarized textile patch antenna serves as a platform for the flexible electronic circuitry. Therefore, the system is particularly suitable for comfortable and unobtrusive integration into garments. In the meantime, polarization diversity can be exploited to improve the reliability and energy-efficiency of the wireless transmission. Extensive experiments in realistic conditions have demonstrated that this new autonomous, body-centric, textile-antenna, wireless sensor network is able to correctly detect different operating conditions of a firefighter during an intervention. By relying on four network nodes integrated into the protective garment, this functionality is implemented locally, on the body, and in real time. In addition, the received sensor data are reliably transferred to a central access point at the command post, for more detailed and more comprehensive real-time visualization. This information provides coordinators and commanders with situational awareness of the entire rescue operation. A statistical analysis of measured on-body node-to-node, as well as off-body person-to-person channels is included, confirming the reliability of the communication system.

  6. A solar charge and discharge controller for wireless sensor nodes

    Science.gov (United States)

    Dang, Yibo; Shen, Shu

    2018-02-01

    Aiming at the energy supply problem that restricts the life of wireless sensor nodes, a solar energy charge and discharge controller suitable for wireless sensor nodes is designed in this paper. A Microcontroller is used as the core of the solar charge and discharge controller. The software of the solar charge and discharge controller adopts the C language to realize the program of the main control module. Firstly, the function of monitoring solar panel voltage and lithium battery voltage are simulated by Protel software, and the charge time is tested in cloudy and overcast outdoor environment. The results of the experiment show that our controller meets the power supply demand of wireless sensor nodes.

  7. Wireless Sensor Node for Surface Seawater Density Measurements

    Directory of Open Access Journals (Sweden)

    Roberto Saletti

    2012-03-01

    Full Text Available An electronic meter to measure surface seawater density is presented. It is based on the measurement of the difference in displacements of a surface level probe and a weighted float, which according to Archimedes’ law depends on the density of the water. The displacements are simultaneously measured using a high-accuracy magnetostrictive sensor, to which a custom electronic board provides a wireless connection and power supply so that it can become part of a wireless sensor network. The electronics are designed so that different kinds of wireless networks can be used, by simply changing the wireless module and the relevant firmware of the microcontroller. Lastly, laboratory and at-sea tests are presented and discussed in order to highlight the functionality and the performance of a prototype of the wireless density meter node in a Bluetooth radio network. The experimental results show a good agreement of the values of the calculated density compared to reference hydrometer readings.

  8. Wireless sensor node for surface seawater density measurements.

    Science.gov (United States)

    Baronti, Federico; Fantechi, Gabriele; Roncella, Roberto; Saletti, Roberto

    2012-01-01

    An electronic meter to measure surface seawater density is presented. It is based on the measurement of the difference in displacements of a surface level probe and a weighted float, which according to Archimedes' law depends on the density of the water. The displacements are simultaneously measured using a high-accuracy magnetostrictive sensor, to which a custom electronic board provides a wireless connection and power supply so that it can become part of a wireless sensor network. The electronics are designed so that different kinds of wireless networks can be used, by simply changing the wireless module and the relevant firmware of the microcontroller. Lastly, laboratory and at-sea tests are presented and discussed in order to highlight the functionality and the performance of a prototype of the wireless density meter node in a Bluetooth radio network. The experimental results show a good agreement of the values of the calculated density compared to reference hydrometer readings.

  9. A Nodes Deployment Algorithm in Wireless Sensor Network Based on Distribution

    Directory of Open Access Journals (Sweden)

    Song Yuli

    2014-07-01

    Full Text Available Wireless sensor network coverage is a basic problem of wireless sensor network. In this paper, we propose a wireless sensor network node deployment algorithm base on distribution in order to form an efficient wireless sensor network. The iteratively greedy algorithm is used in this paper to choose priority nodes into active until the entire network is covered by wireless sensor nodes, the whole network to multiply connected. The simulation results show that the distributed wireless sensor network node deployment algorithm can form a multiply connected wireless sensor network.

  10. Wireless Broadband Access and Accounting Schemes

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    In this paper, we propose two wireless broadband access and accounting schemes. In both schemes, the accounting system adopts RADIUS protocol, but the access system adopts SSH and SSL protocols respectively.

  11. On Throughput Improvement of Wireless Ad Hoc Networks with Hidden Nodes

    Science.gov (United States)

    Choi, Hong-Seok; Lim, Jong-Tae

    In this letter, we present the throughput analysis of the wireless ad hoc networks based on the IEEE 802.11 MAC (Medium Access Control). Especially, our analysis includes the case with the hidden node problem so that it can be applied to the multi-hop networks. In addition, we suggest a new channel access control algorithm to maximize the network throughput and show the usefulness of the proposed algorithm through simulations.

  12. Wireless Sensor Networks - Node Localization for Various Industry Problems

    International Nuclear Information System (INIS)

    Derr, Kurt; Manic, Milos

    2015-01-01

    Fast, effective monitoring following airborne releases of toxic substances is critical to mitigate risks to threatened population areas. Wireless sensor nodes at fixed predetermined locations may monitor such airborne releases and provide early warnings to the public. A challenging algorithmic problem is determining the locations to place these sensor nodes while meeting several criteria: 1) provide complete coverage of the domain, and 2) create a topology with problem dependent node densities, while 3) minimizing the number of sensor nodes. This manuscript presents a novel approach to determining optimal sensor placement, Advancing Front mEsh generation with Constrained dElaunay Triangulation and Smoothing (AFECETS) that addresses these criteria. A unique aspect of AFECETS is the ability to determine wireless sensor node locations for areas of high interest (hospitals, schools, high population density areas) that require higher density of nodes for monitoring environmental conditions, a feature that is difficult to find in other research work. The AFECETS algorithm was tested on several arbitrary shaped domains. AFECETS simulation results show that the algorithm 1) provides significant reduction in the number of nodes, in some cases over 40%, compared to an advancing front mesh generation algorithm, 2) maintains and improves optimal spacing between nodes, and 3) produces simulation run times suitable for real-time applications

  13. 3D inkjet printed disposable environmental monitoring wireless sensor node

    KAUST Repository

    Farooqui, Muhammad Fahad

    2017-10-24

    We propose a disposable, miniaturized, moveable, fully integrated 3D inkjet-printed wireless sensor node for large area environmental monitoring applications. As a proof of concept, we show the wireless sensing of temperature, humidity and H2S levels which are important for early warnings of two critical environmental conditions namely forest fires and industrial gas leaks. The temperature sensor has TCR of -0.018/°, the highest of any inkjet-printed sensor and the H2S sensor can detect as low as 3 ppm of gas. These sensors and an antenna have been realized on the walls of a 3D-printed cubic package which encloses the microelectronics developed on a 3D-printed circuit board. Hence, 3D printing and inkjet printing have been combined in order to realize a unique low-cost, fully integrated wireless sensor node. Field tests show that these sensor nodes can wirelessly communicate up to a distance of over 100m. Our proposed sensor node can be a part of internet of things with the aim of providing a better and safe living.

  14. Node Heterogeneity for Energy Efficient Synchronization for Wireless Sensor Network

    DEFF Research Database (Denmark)

    Dnyaneshwar, Mantri; Prasad, Neeli R.; Prasad, Ramjee

    2016-01-01

    The energy of the node in the Wireless Sensor Networks (WSNs) is scare and causes the variation in the lifetime of the network. Also, the throughput and delay of the network depend on how long the network sustains i.e. energy consumption. One way to increase the sustainability of network...

  15. In-node cognitive power control in Wireless Sensor Networks

    NARCIS (Netherlands)

    Chincoli, Michele; Liotta, Antonio

    2017-01-01

    Reliability, interoperability and efficiency are fundamental in Wireless Sensor Network deployment. Herein we look at how transmission power control may be used to reduce interference, which is particularly problematic in high-density conditions. We adopt a distributed approach where every node has

  16. A Wind Energy Powered Wireless Temperature Sensor Node

    Directory of Open Access Journals (Sweden)

    Chuang Zhang

    2015-02-01

    Full Text Available A wireless temperature sensor node composed of a piezoelectric wind energy harvester, a temperature sensor, a microcontroller, a power management circuit and a wireless transmitting module was developed. The wind-induced vibration energy harvester with a cuboid chamber of 62 mm × 19.6 mm × 10 mm converts ambient wind energy into electrical energy to power the sensor node. A TMP102 temperature sensor and the MSP430 microcontroller are used to measure the temperature. The power management module consists of LTC3588-1 and LT3009 units. The measured temperature is transmitted by the nRF24l01 transceiver. Experimental results show that the critical wind speed of the harvester was about 5.4 m/s and the output power of the harvester was about 1.59 mW for the electrical load of 20 kΩ at wind speed of 11.2 m/s, which was sufficient to power the wireless sensor node to measure and transmit the temperature every 13 s. When the wind speed increased from 6 m/s to 11.5 m/s, the self-powered wireless sensor node worked normally.

  17. Implementation of Multiple Host Nodes in Wireless Sensing Node Network System for Landslide Monitoring

    International Nuclear Information System (INIS)

    Bin Abas, Faizulsalihin; Takayama, Shigeru

    2015-01-01

    This paper proposes multiple host nodes in Wireless Sensing Node Network System (WSNNS) for landslide monitoring. As landslide disasters damage monitoring system easily, one major demand in landslide monitoring is the flexibility and robustness of the system to evaluate the current situation in the monitored area. For various reasons WSNNS can provide an important contribution to reach that aim. In this system, acceleration sensors and GPS are deployed in sensing nodes. Location information by GPS, enable the system to estimate network topology and enable the system to perceive the location in emergency by monitoring the node mode. Acceleration sensors deployment, capacitate this system to detect slow mass movement that can lead to landslide occurrence. Once deployed, sensing nodes self-organize into an autonomous wireless ad hoc network. The measurement parameter data from sensing nodes is transmitted to Host System via host node and ''Cloud'' System. The implementation of multiple host nodes in Local Sensing Node Network System (LSNNS), improve risk- management of the WSNNS for real-time monitoring of landslide disaster

  18. Implementation of Multiple Host Nodes in Wireless Sensing Node Network System for Landslide Monitoring

    Science.gov (United States)

    Abas, Faizulsalihin bin; Takayama, Shigeru

    2015-02-01

    This paper proposes multiple host nodes in Wireless Sensing Node Network System (WSNNS) for landslide monitoring. As landslide disasters damage monitoring system easily, one major demand in landslide monitoring is the flexibility and robustness of the system to evaluate the current situation in the monitored area. For various reasons WSNNS can provide an important contribution to reach that aim. In this system, acceleration sensors and GPS are deployed in sensing nodes. Location information by GPS, enable the system to estimate network topology and enable the system to perceive the location in emergency by monitoring the node mode. Acceleration sensors deployment, capacitate this system to detect slow mass movement that can lead to landslide occurrence. Once deployed, sensing nodes self-organize into an autonomous wireless ad hoc network. The measurement parameter data from sensing nodes is transmitted to Host System via host node and "Cloud" System. The implementation of multiple host nodes in Local Sensing Node Network System (LSNNS), improve risk- management of the WSNNS for real-time monitoring of landslide disaster.

  19. Maximizing Lifetime of Wireless Sensor Networks with Mobile Sink Nodes

    Directory of Open Access Journals (Sweden)

    Yourong Chen

    2014-01-01

    Full Text Available In order to maximize network lifetime and balance energy consumption when sink nodes can move, maximizing lifetime of wireless sensor networks with mobile sink nodes (MLMS is researched. The movement path selection method of sink nodes is proposed. Modified subtractive clustering method, k-means method, and nearest neighbor interpolation method are used to obtain the movement paths. The lifetime optimization model is established under flow constraint, energy consumption constraint, link transmission constraint, and other constraints. The model is solved from the perspective of static and mobile data gathering of sink nodes. Subgradient method is used to solve the lifetime optimization model when one sink node stays at one anchor location. Geometric method is used to evaluate the amount of gathering data when sink nodes are moving. Finally, all sensor nodes transmit data according to the optimal data transmission scheme. Sink nodes gather the data along the shortest movement paths. Simulation results show that MLMS can prolong network lifetime, balance node energy consumption, and reduce data gathering latency under appropriate parameters. Under certain conditions, it outperforms Ratio_w, TPGF, RCC, and GRND.

  20. Distributed medium access control in wireless networks

    CERN Document Server

    Wang, Ping

    2013-01-01

    This brief investigates distributed medium access control (MAC) with QoS provisioning for both single- and multi-hop wireless networks including wireless local area networks (WLANs), wireless ad hoc networks, and wireless mesh networks. For WLANs, an efficient MAC scheme and a call admission control algorithm are presented to provide guaranteed QoS for voice traffic and, at the same time, increase the voice capacity significantly compared with the current WLAN standard. In addition, a novel token-based scheduling scheme is proposed to provide great flexibility and facility to the network servi

  1. Resource aware sensor nodes in wireless sensor networks

    International Nuclear Information System (INIS)

    Merrett, G V; Al-Hashimi, B M; White, N M; Harris, N R

    2005-01-01

    Wireless sensor networks are continuing to receive considerable research interest due, in part, to the range of possible applications. One of the greatest challenges facing researchers is in overcoming the limited network lifetime inherent in the small locally powered sensor nodes. In this paper, we propose IDEALS, a system to manage a wireless sensor network using a combination of information management, energy harvesting and energy monitoring, which we label resource awareness. Through this, IDEALS is able to extend the network lifetime for important messages, by controlling the degradation of the network to maximise information throughput

  2. Power Aware Simulation Framework for Wireless Sensor Networks and Nodes

    Directory of Open Access Journals (Sweden)

    Daniel Weber

    2008-07-01

    Full Text Available The constrained resources of sensor nodes limit analytical techniques and cost-time factors limit test beds to study wireless sensor networks (WSNs. Consequently, simulation becomes an essential tool to evaluate such systems.We present the power aware wireless sensors (PAWiS simulation framework that supports design and simulation of wireless sensor networks and nodes. The framework emphasizes power consumption capturing and hence the identification of inefficiencies in various hardware and software modules of the systems. These modules include all layers of the communication system, the targeted class of application itself, the power supply and energy management, the central processing unit (CPU, and the sensor-actuator interface. The modular design makes it possible to simulate heterogeneous systems. PAWiS is an OMNeT++ based discrete event simulator written in C++. It captures the node internals (modules as well as the node surroundings (network, environment and provides specific features critical to WSNs like capturing power consumption at various levels of granularity, support for mobility, and environmental dynamics as well as the simulation of timing effects. A module library with standardized interfaces and a power analysis tool have been developed to support the design and analysis of simulation models. The performance of the PAWiS simulator is comparable with other simulation environments.

  3. On Node Replication Attack in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Mumtaz Qabulio

    2016-04-01

    Full Text Available WSNs (Wireless Sensor Networks comprise a large number of small, inexpensive, low power and memory constrained sensing devices (called sensor nodes that are densely deployed to measure a given physical phenomenon. Since WSNs are commonly deployed in a hostile and unattended environment, it is easy for an adversary to physically capture one or more legitimate sensor nodes, re-program and redeploy them in the network. As a result, the adversary becomes able to deploy several identical copies of physically captured nodes in the network in order to perform illegitimate activities. This type of attack is referred to as Node Replication Attack or Clone Node Attack. By launching node replication attack, an adversary can easily get control on the network which consequently is the biggest threat to confidentiality, integrity and availability of data and services. Thus, detection and prevention of node replication attack in WSNs has become an active area of research and to date more than two dozen schemes have been proposed, which address this issue. In this paper, we present a comprehensive review, classification and comparative analysis of twenty five of these schemes which help to detect and/or prevent node replication attack in WSNs

  4. On node replication attack in wireless sensor networks

    International Nuclear Information System (INIS)

    Qabulio, M.; Malkani, Y.A.

    2015-01-01

    WSNs (Wireless Sensor Networks) comprise a large number of small, inexpensive, low power and memory constrained sensing devices (called sensor nodes) that are densely deployed to measure a given physical phenomenon. Since WSNs are commonly deployed in a hostile and unattended environment, it is easy for an adversary to physically capture one or more legitimate sensor nodes, re-program and redeploy them in the network. As a result, the adversary becomes able to deploy several identical copies of physically captured nodes in the network in order to perform illegitimate activities. This type of attack is referred to as Node Replication Attack or Clone Node Attack. By launching node replication attack, an adversary can easily get control on the network which consequently is the biggest threat to confidentiality, integrity and availability of data and services. Thus, detection and prevention of node replication attack in WSNs has become an active area of research and to date more than two dozen schemes have been proposed, which address this issue. In this paper, we present a comprehensive review, classification and comparative analysis of twenty five of these schemes which help to detect and/or prevent node replication attack in WSNs. (author)

  5. OPNET Modeler simulations of performance for multi nodes wireless systems

    Directory of Open Access Journals (Sweden)

    Krupanek Beata

    2016-01-01

    Full Text Available Paper presents a study under the Quality of Service in modern wireless sensor networks. Such a networks are characterized by small amount of data transmitted in fixed periods. Very often this data must by transmitted in real time so data transmission delays should be well known. This article shows multimode network simulated in packet OPNET Modeler. Also nowadays the quality of services is very important especially in multi-nodes systems such a home automation or measurement systems.

  6. Optimal Node Placement in Underwater Wireless Sensor Networks

    KAUST Repository

    Felamban, M.

    2013-03-25

    Wireless Sensor Networks (WSN) are expected to play a vital role in the exploration and monitoring of underwater areas which are not easily reachable by humans. However, underwater communication via acoustic waves is subject to several performance limitations that are very different from those used for terresstrial networks. In this paper, we investigate node placement for building an initial underwater WSN infrastructure. We formulate this problem as a nonlinear mathematical program with the objective of minimizing the total transmission loss under a given number of sensor nodes and targeted coverage volume. The obtained solution is the location of each node represented via a truncated octahedron to fill out the 3D space. Experiments are conducted to verify the proposed formulation, which is solved using Matlab optimization tool. Simulation is also conducted using an ns-3 simulator, and the simulation results are consistent with the obtained results from mathematical model with less than 10% error.

  7. A Balancing Algorithm in Wireless Sensor Network Based on the Assistance of Approaching Nodes

    Directory of Open Access Journals (Sweden)

    Chengpei Tang

    2013-03-01

    Full Text Available Sensor node in wireless sensor network is a micro-embedded system with limited memory, energy and communication capabilities. Some nodes will run out of energy and exit the network earlier than other nodes because of the uneven energy consumption. This will lead to partial or complete paralysis of the whole wireless sensor network. A balancing algorithm based on the assistance of approaching nodes is proposed. Via the set theory, notes are divided into neighbor nodes set and approaching nodes set. Approaching nodes will help weaker nodes forward part of massages to balance energy consumption. Simulation result has verified the rationality and feasibility of the balancing algorithm.

  8. Detecting Boundary Nodes and Coverage Holes in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Li-Hui Zhao

    2016-01-01

    Full Text Available The emergence of coverage holes in wireless sensor networks (WSNs means that some special events have broken out and the function of WSNs will be seriously influenced. Therefore, the issues of coverage holes have attracted considerable attention. In this paper, we focus on the identification of boundary nodes and coverage holes, which is crucially important to preventing the enlargement of coverage holes and ensuring the transmission of data. We define the problem of coverage holes and propose two novel algorithms to identify the coverage holes in WSNs. The first algorithm, Distributed Sector Cover Scanning (DSCS, can be used to identify the nodes on hole borders and the outer boundary of WSNs. The second scheme, Directional Walk (DW, can locate the coverage holes based on the boundary nodes identified with DSCS. We implement the algorithms in various scenarios and fully evaluate their performance. The simulation results show that the boundary nodes can be accurately detected by DSCS and the holes enclosed by the detected boundary nodes can be identified by DW. The comparisons confirm that the proposed algorithms outperform the existing ones.

  9. The Radio Frequency Health Node Wireless Sensor System

    Science.gov (United States)

    Valencia, J. Emilio; Stanley, Priscilla C.; Mackey, Paul J.

    2009-01-01

    The Radio Frequency Health Node (RFHN) wireless sensor system differs from other wireless sensor systems in ways originally intended to enhance utility as an instrumentation system for a spacecraft. The RFHN can also be adapted to use in terrestrial applications in which there are requirements for operational flexibility and integrability into higher-level instrumentation and data acquisition systems. As shown in the figure, the heart of the system is the RFHN, which is a unit that passes commands and data between (1) one or more commercially available wireless sensor units (optionally, also including wired sensor units) and (2) command and data interfaces with a local control computer that may be part of the spacecraft or other engineering system in which the wireless sensor system is installed. In turn, the local control computer can be in radio or wire communication with a remote control computer that may be part of a higher-level system. The remote control computer, acting via the local control computer and the RFHN, cannot only monitor readout data from the sensor units but can also remotely configure (program or reprogram) the RFHN and the sensor units during operation. In a spacecraft application, the RFHN and the sensor units can also be configured more nearly directly, prior to launch, via a serial interface that includes an umbilical cable between the spacecraft and ground support equipment. In either case, the RFHN wireless sensor system has the flexibility to be configured, as required, with different numbers and types of sensors for different applications. The RFHN can be used to effect realtime transfer of data from, and commands to, the wireless sensor units. It can also store data for later retrieval by an external computer. The RFHN communicates with the wireless sensor units via a radio transceiver module. The modular design of the RFHN makes it possible to add radio transceiver modules as needed to accommodate additional sets of wireless sensor

  10. Approach to sensor node calibration for efficient localisation in wireless sensor networks in realistic scenarios

    CSIR Research Space (South Africa)

    Mwila, MK

    2014-06-01

    Full Text Available Localisation or position determination is one of the most important applications for the wireless sensor networks. Numerous current techniques for localisation of sensor nodes use the Received Signal Strength Indicator (RSSI) from sensor nodes...

  11. Virus spreading in wireless sensor networks with a medium access control mechanism

    International Nuclear Information System (INIS)

    Wang Ya-Qi; Yang Xiao-Yuan

    2013-01-01

    In this paper, an extended version of standard susceptible-infected (SI) model is proposed to consider the influence of a medium access control mechanism on virus spreading in wireless sensor networks. Theoretical analysis shows that the medium access control mechanism obviously reduces the density of infected nodes in the networks, which has been ignored in previous studies. It is also found that by increasing the network node density or node communication radius greatly increases the number of infected nodes. The theoretical results are confirmed by numerical simulations. (general)

  12. Adaptive management of energy consumption, reliability and delay of wireless sensor node: Application to IEEE 802.15.4 wireless sensor node.

    Science.gov (United States)

    Kone, Cheick Tidjane; Mathias, Jean-Denis; De Sousa, Gil

    2017-01-01

    Designing a Wireless Sensor Network (WSN) to achieve a high Quality of Service (QoS) (network performance and durability) is a challenging problem. We address it by focusing on the performance of the 802.15.4 communication protocol because the IEEE 802.15.4 Standard is actually considered as one of the reference technologies in WSNs. In this paper, we propose to control the sustainable use of resources (i.e., energy consumption, reliability and timely packet transmission) of a wireless sensor node equipped with photovoltaic cells by an adaptive tuning not only of the MAC (Medium Access Control) parameters but also of the sampling frequency of the node. To do this, we use one of the existing control approaches, namely the viability theory, which aims to preserve the functions and the controls of a dynamic system in a set of desirable states. So, an analytical model, describing the evolution over time of nodal resources, is derived and used by a viability algorithm for the adaptive tuning of the IEEE 802.15.4 MAC protocol. The simulation analysis shows that our solution allows ensuring indefinitely, in the absence of hardware failure, the operations (lifetime duration, reliability and timely packet transmission) of an 802.15.4 WSN and one can temporarily increase the sampling frequency of the node beyond the regular sampling one. This latter brings advantages for agricultural and environmental applications such as precision agriculture, flood or fire prevention. Main results show that our current approach enable to send more information when critical events occur without the node runs out of energy. Finally, we argue that our approach is generic and can be applied to other types of WSN.

  13. Efficient MAC Protocol for Hybrid Wireless Network with Heterogeneous Sensor Nodes

    Directory of Open Access Journals (Sweden)

    Md. Nasre Alam

    2016-01-01

    Full Text Available Although several Directional Medium Access Control (DMAC protocols have been designed for use with homogeneous networks, it can take a substantial amount of time to change sensor nodes that are equipped with an omnidirectional antenna for sensor nodes with a directional antenna. Thus, we require a novel MAC protocol for use with an intermediate wireless network that consists of heterogeneous sensor nodes equipped with either an omnidirectional antenna or a directional antenna. The MAC protocols that have been designed for use in homogeneous networks are not suitable for use in a hybrid network due to deaf, hidden, and exposed nodes. Therefore, we propose a MAC protocol that exploits the characteristics of a directional antenna and can also work efficiently with omnidirectional nodes in a hybrid network. In order to address the deaf, hidden, and exposed node problems, we define RTS/CTS for the neighbor (RTSN/CTSN and Neighbor Information (NIP packets. The performance of the proposed MAC protocol is evaluated through a numerical analysis using a Markov model. In addition, the analytical results of the MAC protocol are verified through an OPNET simulation.

  14. Optimal Pricing of Spectrum Resources in Wireless Opportunistic Access

    Directory of Open Access Journals (Sweden)

    Hanna Bogucka

    2012-01-01

    Full Text Available We consider opportunistic access to spectrum resources in cognitive wireless networks. The users equipment, or the network nodes in general are able to sense the spectrum and adopt a subset of available resources (the spectrum and the power individually and independently in a distributed manner, that is, based on their local channel quality information and not knowing the Channel State Information (CSI of the other nodes' links in the considered network area. In such a network scenery, the competition of nodes for available resources is observed, which can be modeled as a game. To obtain spectrally efficient and fair spectrum allocation in this competitive environment with the nodes having no information on the other players, taxation of resources is applied to coerce desired behavior of the competitors. In the paper, we present mathematical formulation of the problem of finding the optimal taxation rate (common for all nodes and propose a reduced-complexity algorithm for this optimization. Simulation results for these derived optimal values in various scenarios are also provided.

  15. Development of Implantable Wireless Sensor Nodes for Animal Husbandry and MedTech Innovation

    Directory of Open Access Journals (Sweden)

    Jian Lu

    2018-03-01

    Full Text Available In this paper, we report the development, evaluation, and application of ultra-small low-power wireless sensor nodes for advancing animal husbandry, as well as for innovation of medical technologies. A radio frequency identification (RFID chip with hybrid interface and neglectable power consumption was introduced to enable switching of ON/OFF and measurement mode after implantation. A wireless power transmission system with a maximum efficiency of 70% and an access distance of up to 5 cm was developed to allow the sensor node to survive for a duration of several weeks from a few minutes’ remote charge. The results of field tests using laboratory mice and a cow indicated the high accuracy of the collected biological data and bio-compatibility of the package. As a result of extensive application of the above technologies, a fully solid wireless pH sensor and a surgical navigation system using artificial magnetic field and a 3D MEMS magnetic sensor are introduced in this paper, and the preliminary experimental results are presented and discussed.

  16. Development of Implantable Wireless Sensor Nodes for Animal Husbandry and MedTech Innovation.

    Science.gov (United States)

    Lu, Jian; Zhang, Lan; Zhang, Dapeng; Matsumoto, Sohei; Hiroshima, Hiroshi; Maeda, Ryutaro; Sato, Mizuho; Toyoda, Atsushi; Gotoh, Takafumi; Ohkohchi, Nobuhiro

    2018-03-26

    In this paper, we report the development, evaluation, and application of ultra-small low-power wireless sensor nodes for advancing animal husbandry, as well as for innovation of medical technologies. A radio frequency identification (RFID) chip with hybrid interface and neglectable power consumption was introduced to enable switching of ON/OFF and measurement mode after implantation. A wireless power transmission system with a maximum efficiency of 70% and an access distance of up to 5 cm was developed to allow the sensor node to survive for a duration of several weeks from a few minutes' remote charge. The results of field tests using laboratory mice and a cow indicated the high accuracy of the collected biological data and bio-compatibility of the package. As a result of extensive application of the above technologies, a fully solid wireless pH sensor and a surgical navigation system using artificial magnetic field and a 3D MEMS magnetic sensor are introduced in this paper, and the preliminary experimental results are presented and discussed.

  17. Active node determination for correlated data gathering in wireless sensor networks

    OpenAIRE

    Karasabun, Efe

    2009-01-01

    Ankara : The Department of Computer Engineering and the Institute of Engineering and Science of Bilkent University, 2009. Thesis (Master's) -- Bilkent University, 2009. Includes bibliographical references leaves 53-55. In wireless sensor network applications where data gathered by different sensor nodes is correlated, not all sensor nodes need to be active for the wireless sensor network to be functional. However, the sensor nodes that are selected as active should form a co...

  18. Combined centralised and distributed mechanism for utilisation of node association in broadband wireless network

    Science.gov (United States)

    Ulvan, A.; Ulvan, M.; Pranoto, H.

    2018-02-01

    Mobile broadband wireless access system has the stations that might be fixed, nomadic or mobile. Regarding the mobility, the node association procedure is critical for network entry as well as network re-entry during handover. The flexibility and utilisation of MAC protocols scheduling have an important role. The standard provides the Partition Scheme as the scheduling mechanism which separates the allocation of minislots for scheduling. However, minislots cannot be flexibly reserved for centralised and distributed scheduling. In this paper we analysed the scheduling mechanism to improve the utilisation of minislots allocation during the exchange of MAC massages. The centralised and distributed scheduling is implemented in some topology scenarios. The result shows the proposed mechanism has better performance for node association than partition scheme.

  19. A wireless vibrating wire sensor node for continuous structural health monitoring

    International Nuclear Information System (INIS)

    Lee, H M; Park, H S; Kim, J M; Sho, K

    2010-01-01

    Vibrating wire sensors (VWS) are generally used for strain measurements of structures in buildings and civil infrastructures. In this paper, a wireless vibrating wire sensor node is developed which can measure resonance frequencies from vibrating wire sensors and can remotely communicate the frequencies by wireless. The wireless sensor node consists of a sensor module, which excites the vibrating wire and reads the resonance frequencies, a wireless communication module, which transmits the wire's resonance frequencies to the user or administrator, and a processor that controls the two modules. The wireless sensor node has the following characteristics: it has multiple channels to enable measurement of multiple vibrating wire sensors (up to four) using a single sensor node; it has a power-saving feature that enables operation for up to one year; and lastly, the wireless unit uses the 424 MHz UHF (ultra-high frequency) band with good diffraction that has an effect on minimizing the influence of impediments such as structural or nonstructural elements. The wireless sensor node is tested in terms of its measurement precision and its wireless communication performance. As a result, it is confirmed that the node enables the long-term structural health monitoring of buildings and infrastructures

  20. Coverage Improvement for Wireless Sensor Networks using Grid Quorum based Node Mobility

    DEFF Research Database (Denmark)

    Mathur, Prateek; Nielsen, Rasmus Hjorth; Prasad, Neeli R.

    2012-01-01

    Coverage of wireless sensor networks (WSNs) is an important quality of service (QoS) metric and often the desired coverage is not attainable at the initial deployment, but node mobility can be used to improve the coverage by relocating sensor nodes. Unconstrained node mobility is considered infea...

  1. Node localization algorithm of wireless sensor networks for large electrical equipment monitoring application

    DEFF Research Database (Denmark)

    Chen, Qinyin; Hu, Y.; Chen, Zhe

    2016-01-01

    Node localization technology is an important technology for the Wireless Sensor Networks (WSNs) applications. An improved 3D node localization algorithm is proposed in this paper, which is based on a Multi-dimensional Scaling (MDS) node localization algorithm for large electrical equipment monito...

  2. Operating Wireless Sensor Nodes without Energy Storage: Experimental Results with Transient Computing

    Directory of Open Access Journals (Sweden)

    Faisal Ahmed

    2016-12-01

    Full Text Available Energy harvesting is increasingly used for powering wireless sensor network nodes. Recently, it has been suggested to combine it with the concept of transient computing whereby the wireless sensor nodes operate without energy storage capabilities. This new combined approach brings benefits, for instance ultra-low power nodes and reduced maintenance, but also raises new challenges, foremost dealing with nodes that may be left without power for various time periods. Although transient computing has been demonstrated on microcontrollers, reports on experiments with wireless sensor nodes are still scarce in the literature. In this paper, we describe our experiments with solar, thermal, and RF energy harvesting sources that are used to power sensor nodes (including wireless ones without energy storage, but with transient computing capabilities. The results show that the selected solar and thermal energy sources can operate both the wired and wireless nodes without energy storage, whereas in our specific implementation, the developed RF energy source can only be used for the selected nodes without wireless connectivity.

  3. Receiver-initiated medium access control protocols for wireless sensor networks

    DEFF Research Database (Denmark)

    Fafoutis, Xenofon; Di Mauro, Alessio; Vithanage, Madava D.

    2015-01-01

    One of the fundamental building blocks of a Wireless Sensor Network (WSN) is the Medium Access Control (MAC) protocol, that part of the system governing when and how two independent neighboring nodes activate their respective transceivers to directly interact. Historically, data exchange has always...

  4. Early classification of pathological heartbeats on wireless body sensor nodes.

    Science.gov (United States)

    Braojos, Rubén; Beretta, Ivan; Ansaloni, Giovanni; Atienza, David

    2014-11-27

    Smart Wireless Body Sensor Nodes (WBSNs) are a novel class of unobtrusive, battery-powered devices allowing the continuous monitoring and real-time interpretation of a subject's bio-signals, such as the electrocardiogram (ECG). These low-power platforms, while able to perform advanced signal processing to extract information on heart conditions, are usually constrained in terms of computational power and transmission bandwidth. It is therefore essential to identify in the early stages which parts of an ECG are critical for the diagnosis and, only in these cases, activate on demand more detailed and computationally intensive analysis algorithms. In this work, we present a comprehensive framework for real-time automatic classification of normal and abnormal heartbeats, targeting embedded and resource-constrained WBSNs. In particular, we provide a comparative analysis of different strategies to reduce the heartbeat representation dimensionality, and therefore the required computational effort. We then combine these techniques with a neuro-fuzzy classification strategy, which effectively discerns normal and pathological heartbeats with a minimal run time and memory overhead. We prove that, by performing a detailed analysis only on the heartbeats that our classifier identifies as abnormal, a WBSN system can drastically reduce its overall energy consumption. Finally, we assess the choice of neuro-fuzzy classification by comparing its performance and workload with respect to other state-of-the-art strategies. Experimental results using the MIT-BIH Arrhythmia database show energy savings of as much as 60% in the signal processing stage, and 63% in the subsequent wireless transmission, when a neuro-fuzzy classification structure is employed, coupled with a dimensionality reduction technique based on random projections.

  5. An Efficient Approach for Node Localisation and Tracking in Wireless Sensor Networks

    CSIR Research Space (South Africa)

    Mwila, Martin

    2014-08-01

    Full Text Available -1 An Efficient Approach for Node Localisation and Tracking in Wireless Sensor Networks Martin K. Mwila Submitted in partial fulfilment of the requirements for the degree Magister Technologiae: Electrical Engineering in the Department of Electrical Engineering...

  6. Service and device discovery of nodes in a wireless sensor network

    NARCIS (Netherlands)

    Östmark, Å.; Lindgren, P.; van Halteren, Aart; Meppelink, L.

    2006-01-01

    Emerging wireless communication standards and more capable sensors and actuators have pushed further development of wireless sensor networks. Deploying a large number of sensor nodes requires a high-level framework enabling the devices to present themselves and the resources they hold. The device

  7. Access control mechanism of wireless gateway based on open flow

    Science.gov (United States)

    Peng, Rong; Ding, Lei

    2017-08-01

    In order to realize the access control of wireless gateway and improve the access control of wireless gateway devices, an access control mechanism of SDN architecture which is based on Open vSwitch is proposed. The mechanism utilizes the features of the controller--centralized control and programmable. Controller send access control flow table based on the business logic. Open vSwitch helps achieve a specific access control strategy based on the flow table.

  8. Cost Benefit Analysis of Utilising Mobile Nodes in Wireless Sensor Networks

    DEFF Research Database (Denmark)

    Mathur, Prateek; Nielsen, Rasmus Hjorth; Prasad, Neeli R.

    2015-01-01

    Mobile nodes have been found useful for improving performance of network parameters such as coverage, data latency and load balancing in wireless sensor networks (WSNs). In spite of the benets which mobile nodes could oer when used in WSNs, they have been often stated as infeasible for use...

  9. An efficient schedule based data aggregation using node mobility for wireless sensor network

    DEFF Research Database (Denmark)

    Dnyaneshwar, Mantri; Pawar, Pranav M.; Prasad, Neeli R.

    2014-01-01

    In the Wireless Sensor Networks, (WSNs) a key challenge is to schedule the activities of the mobile node for improvement in throughput, energy consumption and delay. This paper proposes efficient schedule based data aggregation algorithm using node mobility (SDNM). It considers the cluster...

  10. A Wireless Camera Node with Passive Self-righting Mechanism for Capturing Surrounding View

    OpenAIRE

    Kawabata, Kuniaki; Sato, Hideo; Suzuki, Tsuyoshi; Tobe, Yoshito

    2010-01-01

    In this report, we have proposed a sensor node and related wireless network for information gathering in disaster areas. We have described a “camera node” prototype developed on this basis, containing a camera with a fisheye lens, a passive self-righting mechanism to maintain the camera orientation, and the systems capability for construction of an ad hoc wireless network, together with a GPS adaptor and an embedded computer timer to identify its position and imaging time. The camera node...

  11. Bayes Node Energy Polynomial Distribution to Improve Routing in Wireless Sensor Network.

    Science.gov (United States)

    Palanisamy, Thirumoorthy; Krishnasamy, Karthikeyan N

    2015-01-01

    Wireless Sensor Network monitor and control the physical world via large number of small, low-priced sensor nodes. Existing method on Wireless Sensor Network (WSN) presented sensed data communication through continuous data collection resulting in higher delay and energy consumption. To conquer the routing issue and reduce energy drain rate, Bayes Node Energy and Polynomial Distribution (BNEPD) technique is introduced with energy aware routing in the wireless sensor network. The Bayes Node Energy Distribution initially distributes the sensor nodes that detect an object of similar event (i.e., temperature, pressure, flow) into specific regions with the application of Bayes rule. The object detection of similar events is accomplished based on the bayes probabilities and is sent to the sink node resulting in minimizing the energy consumption. Next, the Polynomial Regression Function is applied to the target object of similar events considered for different sensors are combined. They are based on the minimum and maximum value of object events and are transferred to the sink node. Finally, the Poly Distribute algorithm effectively distributes the sensor nodes. The energy efficient routing path for each sensor nodes are created by data aggregation at the sink based on polynomial regression function which reduces the energy drain rate with minimum communication overhead. Experimental performance is evaluated using Dodgers Loop Sensor Data Set from UCI repository. Simulation results show that the proposed distribution algorithm significantly reduce the node energy drain rate and ensure fairness among different users reducing the communication overhead.

  12. Bayes Node Energy Polynomial Distribution to Improve Routing in Wireless Sensor Network

    Science.gov (United States)

    Palanisamy, Thirumoorthy; Krishnasamy, Karthikeyan N.

    2015-01-01

    Wireless Sensor Network monitor and control the physical world via large number of small, low-priced sensor nodes. Existing method on Wireless Sensor Network (WSN) presented sensed data communication through continuous data collection resulting in higher delay and energy consumption. To conquer the routing issue and reduce energy drain rate, Bayes Node Energy and Polynomial Distribution (BNEPD) technique is introduced with energy aware routing in the wireless sensor network. The Bayes Node Energy Distribution initially distributes the sensor nodes that detect an object of similar event (i.e., temperature, pressure, flow) into specific regions with the application of Bayes rule. The object detection of similar events is accomplished based on the bayes probabilities and is sent to the sink node resulting in minimizing the energy consumption. Next, the Polynomial Regression Function is applied to the target object of similar events considered for different sensors are combined. They are based on the minimum and maximum value of object events and are transferred to the sink node. Finally, the Poly Distribute algorithm effectively distributes the sensor nodes. The energy efficient routing path for each sensor nodes are created by data aggregation at the sink based on polynomial regression function which reduces the energy drain rate with minimum communication overhead. Experimental performance is evaluated using Dodgers Loop Sensor Data Set from UCI repository. Simulation results show that the proposed distribution algorithm significantly reduce the node energy drain rate and ensure fairness among different users reducing the communication overhead. PMID:26426701

  13. Bayes Node Energy Polynomial Distribution to Improve Routing in Wireless Sensor Network.

    Directory of Open Access Journals (Sweden)

    Thirumoorthy Palanisamy

    Full Text Available Wireless Sensor Network monitor and control the physical world via large number of small, low-priced sensor nodes. Existing method on Wireless Sensor Network (WSN presented sensed data communication through continuous data collection resulting in higher delay and energy consumption. To conquer the routing issue and reduce energy drain rate, Bayes Node Energy and Polynomial Distribution (BNEPD technique is introduced with energy aware routing in the wireless sensor network. The Bayes Node Energy Distribution initially distributes the sensor nodes that detect an object of similar event (i.e., temperature, pressure, flow into specific regions with the application of Bayes rule. The object detection of similar events is accomplished based on the bayes probabilities and is sent to the sink node resulting in minimizing the energy consumption. Next, the Polynomial Regression Function is applied to the target object of similar events considered for different sensors are combined. They are based on the minimum and maximum value of object events and are transferred to the sink node. Finally, the Poly Distribute algorithm effectively distributes the sensor nodes. The energy efficient routing path for each sensor nodes are created by data aggregation at the sink based on polynomial regression function which reduces the energy drain rate with minimum communication overhead. Experimental performance is evaluated using Dodgers Loop Sensor Data Set from UCI repository. Simulation results show that the proposed distribution algorithm significantly reduce the node energy drain rate and ensure fairness among different users reducing the communication overhead.

  14. PROTOCOLS FOR INCREASING THE LIFETIME OF NODES OF AD HOC WIRELESS NETWORKS

    Directory of Open Access Journals (Sweden)

    B.Malarkodi

    2010-03-01

    Full Text Available Power consumption of nodes in ad hoc networks is a critical issue as they predominantly operate on batteries. In order to improve the lifetime of an ad hoc network, all the nodes must be utilized evenly and the power required for connections must be minimized. Energy management deals with the process of managing energy resources by means of controlling the battery discharge, adjusting the transmission power and scheduling of power sources so as to increase the lifetime of the nodes of an ad hoc wireless network. In this paper, two protocols are proposed to improve the lifetime of the nodes. The first protocol assumes smart battery packages with L cells and uses dynamic programming (DP to optimally select the set of cells used to satisfy a request for power. The second one proposes a MAC layer protocol denoted as Power Aware medium Access Control (PAMAC protocol which enables the network layer to select a route with minimum total power requirement among the possible routes between a source and a destination provided all nodes in the routes have battery capacity above a threshold. The life time of the nodes using the DP based scheduling policy is found through simulation and compared with that obtained using the techniques reported in the literature. It is found that DP based policy increases the lifetime of the mobile nodes by a factor of 1.15 to 1.8. The life expectancy, the average power consumption and throughput of the network using PAMAC protocol are computed through simulation and compared with that of the other MAC layer protocols 802.11, MACA, and CSMA. Besides this, the life expectancy and average power consumption of the network for different values of threshold are also compared. From the simulation results, it is observed that PAMAC consumes the least power and provides the longest lifetime among the various MAC Layer protocols. Moreover, using PAMAC as the MAC layer protocol, the performance obtained using different routing layer

  15. Optimal Node Placement in Underwater Wireless Sensor Networks

    KAUST Repository

    Felamban, M.; Shihada, Basem; Jamshaid, K.

    2013-01-01

    Wireless Sensor Networks (WSN) are expected to play a vital role in the exploration and monitoring of underwater areas which are not easily reachable by humans. However, underwater communication via acoustic waves is subject to several performance

  16. A New Approach to Design Autonomous Wireless Sensor Node Based on RF Energy Harvesting System.

    Science.gov (United States)

    Mouapi, Alex; Hakem, Nadir

    2018-01-05

    Energy Harvesting techniques are increasingly seen as the solution for freeing the wireless sensor nodes from their battery dependency. However, it remains evident that network performance features, such as network size, packet length, and duty cycle, are influenced by the sum of recovered energy. This paper proposes a new approach to defining the specifications of a stand-alone wireless node based on a Radio-frequency Energy Harvesting System (REHS). To achieve adequate performance regarding the range of the Wireless Sensor Network (WSN), techniques for minimizing the energy consumed by the sensor node are combined with methods for optimizing the performance of the REHS. For more rigor in the design of the autonomous node, a comprehensive energy model of the node in a wireless network is established. For an equitable distribution of network charges between the different nodes that compose it, the Low-Energy Adaptive Clustering Hierarchy (LEACH) protocol is used for this purpose. The model considers five energy-consumption sources, most of which are ignored in recently used models. By using the hardware parameters of commercial off-the-shelf components (Mica2 Motes and CC2520 of Texas Instruments), the energy requirement of a sensor node is quantified. A miniature REHS based on a judicious choice of rectifying diodes is then designed and developed to achieve optimal performance in the Industrial Scientific and Medical (ISM) band centralized at 2.45 GHz . Due to the mismatch between the REHS and the antenna, a band pass filter is designed to reduce reflection losses. A gradient method search is used to optimize the output characteristics of the adapted REHS. At 1 mW of input RF power, the REHS provides an output DC power of 0.57 mW and a comparison with the energy requirement of the node allows the Base Station (BS) to be located at 310 m from the wireless nodes when the Wireless Sensor Network (WSN) has 100 nodes evenly spread over an area of 300 × 300 m 2 and

  17. A New Approach to Design Autonomous Wireless Sensor Node Based on RF Energy Harvesting System

    Directory of Open Access Journals (Sweden)

    Alex Mouapi

    2018-01-01

    Full Text Available Energy Harvesting techniques are increasingly seen as the solution for freeing the wireless sensor nodes from their battery dependency. However, it remains evident that network performance features, such as network size, packet length, and duty cycle, are influenced by the sum of recovered energy. This paper proposes a new approach to defining the specifications of a stand-alone wireless node based on a Radio-frequency Energy Harvesting System (REHS. To achieve adequate performance regarding the range of the Wireless Sensor Network (WSN, techniques for minimizing the energy consumed by the sensor node are combined with methods for optimizing the performance of the REHS. For more rigor in the design of the autonomous node, a comprehensive energy model of the node in a wireless network is established. For an equitable distribution of network charges between the different nodes that compose it, the Low-Energy Adaptive Clustering Hierarchy (LEACH protocol is used for this purpose. The model considers five energy-consumption sources, most of which are ignored in recently used models. By using the hardware parameters of commercial off-the-shelf components (Mica2 Motes and CC2520 of Texas Instruments, the energy requirement of a sensor node is quantified. A miniature REHS based on a judicious choice of rectifying diodes is then designed and developed to achieve optimal performance in the Industrial Scientific and Medical (ISM band centralized at 2.45 GHz . Due to the mismatch between the REHS and the antenna, a band pass filter is designed to reduce reflection losses. A gradient method search is used to optimize the output characteristics of the adapted REHS. At 1 mW of input RF power, the REHS provides an output DC power of 0.57 mW and a comparison with the energy requirement of the node allows the Base Station (BS to be located at 310 m from the wireless nodes when the Wireless Sensor Network (WSN has 100 nodes evenly spread over an area of 300

  18. Raspberry Pi Based Intelligent Wireless Sensor Node for Localized Torrential Rain Monitoring

    Directory of Open Access Journals (Sweden)

    Zhaozhuo Xu

    2016-01-01

    Full Text Available Wireless sensor networks are proved to be effective in long-time localized torrential rain monitoring. However, the existing widely used architecture of wireless sensor networks for rain monitoring relies on network transportation and back-end calculation, which causes delay in response to heavy rain in localized areas. Our work improves the architecture by applying logistic regression and support vector machine classification to an intelligent wireless sensor node which is created by Raspberry Pi. The sensor nodes in front-end not only obtain data from sensors, but also can analyze the probabilities of upcoming heavy rain independently and give early warnings to local clients in time. When the sensor nodes send the probability to back-end server, the burdens of network transport are released. We demonstrate by simulation results that our sensor system architecture has potentiality to increase the local response to heavy rain. The monitoring capacity is also raised.

  19. Faulty node detection in wireless sensor networks using a recurrent neural network

    Science.gov (United States)

    Atiga, Jamila; Mbarki, Nour Elhouda; Ejbali, Ridha; Zaied, Mourad

    2018-04-01

    The wireless sensor networks (WSN) consist of a set of sensors that are more and more used in surveillance applications on a large scale in different areas: military, Environment, Health ... etc. Despite the minimization and the reduction of the manufacturing costs of the sensors, they can operate in places difficult to access without the possibility of reloading of battery, they generally have limited resources in terms of power of emission, of processing capacity, data storage and energy. These sensors can be used in a hostile environment, such as, for example, on a field of battle, in the presence of fires, floods, earthquakes. In these environments the sensors can fail, even in a normal operation. It is therefore necessary to develop algorithms tolerant and detection of defects of the nodes for the network of sensor without wires, therefore, the faults of the sensor can reduce the quality of the surveillance if they are not detected. The values that are measured by the sensors are used to estimate the state of the monitored area. We used the Non-linear Auto- Regressive with eXogeneous (NARX), the recursive architecture of the neural network, to predict the state of a node of a sensor from the previous values described by the functions of time series. The experimental results have verified that the prediction of the State is enhanced by our proposed model.

  20. Performance Evaluation of Page Migration Scheme for NVRAM-Based Wireless Sensor Nodes

    OpenAIRE

    Ryu, Yeonseung

    2013-01-01

    A wireless sensor network consists of low-powered and multifunctional sensor nodes. Since each sensor node is operated by a battery, the energy management has become one of the critical design challenges in wireless sensor networks. Some recent studies have shown that DRAM-based main memory spends a significant portion of the total system power. In this paper, we studied a buffer management scheme for hybrid main memory that combines low-power nonvolatile RAM (NVRAM) and DRAM in order to redu...

  1. Design of A Development Platform for HW/SW Codesign of Wireless IOntegrated Sensor Nodes

    DEFF Research Database (Denmark)

    Virk, Kashif M.; Leopold, Martin; Madsen, Jan

    2005-01-01

    Wireless integrated sensor networks are a new class of embedded computer systems which have been made possible mainly by the recent advances in the micro and the nano technology. In order to efficiently utilize the limited resources available on a sensor node, we need to optimize its key design...... parameters which is only possible by making system-level design decisions about its hardware and software (operating system and applications) architecture. In this paper, we present the design of a sensor node development platform in relation to an application of wireless integrated sensor networks for sow...

  2. DRDT: distributed and reliable data transmission with cooperative nodes for lossy wireless sensor networks.

    Science.gov (United States)

    Seo, Jaewan; Kim, Moonseong; Hur, In; Choi, Wook; Choo, Hyunseung

    2010-01-01

    Recent studies have shown that in realistic wireless sensor network environments links are extremely unreliable. To recover from corrupted packets, most routing schemes with an assumption of ideal radio environments use a retransmission mechanism, which may cause unnecessary retransmissions. Therefore, guaranteeing energy-efficient reliable data transmission is a fundamental routing issue in wireless sensor networks. However, it is not encouraged to propose a new reliable routing scheme in the sense that every existing routing scheme cannot be replaced with the new one. This paper proposes a Distributed and Reliable Data Transmission (DRDT) scheme with a goal to efficiently guarantee reliable data transmission. In particular, this is based on a pluggable modular approach so that it can be extended to existing routing schemes. DRDT offers reliable data transmission using neighbor nodes, i.e., helper nodes. A helper node is selected among the neighbor nodes of the receiver node which overhear the data packet in a distributed manner. DRDT effectively reduces the number of retransmissions by delegating the retransmission task from the sender node to the helper node that has higher link quality to the receiver node when the data packet reception fails due to the low link quality between the sender and the receiver nodes. Comprehensive simulation results show that DRDT improves end-to-end transmission cost by up to about 45% and reduces its delay by about 40% compared to existing schemes.

  3. DRDT: Distributed and Reliable Data Transmission with Cooperative Nodes for LossyWireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Jaewan Seo

    2010-03-01

    Full Text Available Recent studies have shown that in realistic wireless sensor network environments links are extremely unreliable. To recover from corrupted packets, most routing schemes with an assumption of ideal radio environments use a retransmission mechanism, which may cause unnecessary retransmissions. Therefore, guaranteeing energy-efficient reliable data transmission is a fundamental routing issue in wireless sensor networks. However, it is not encouraged to propose a new reliable routing scheme in the sense that every existing routing scheme cannot be replaced with the new one. This paper proposes a Distributed and Reliable Data Transmission (DRDT scheme with a goal to efficiently guarantee reliable data transmission. In particular, this is based on a pluggable modular approach so that it can be extended to existing routing schemes. DRDT offers reliable data transmission using neighbor nodes, i.e., helper nodes. A helper node is selected among the neighbor nodes of the receiver node which overhear the data packet in a distributed manner. DRDT effectively reduces the number of retransmissions by delegating the retransmission task from the sender node to the helper node that has higher link quality to the receiver node when the data packet reception fails due to the low link quality between the sender and the receiver nodes. Comprehensive simulation results show that DRDT improves end-to-end transmission cost by up to about 45% and reduces its delay by about 40% compared to existing schemes.

  4. Remote Access Unit for Optic-to-Wireless Conversion

    DEFF Research Database (Denmark)

    Chorchos, Łukasz; Rommel, Simon; Turkiewicz, J. P.

    . Growing demand for high speed wireless data transmission and new wireless standards like 5G force network operators to find new solutions for backhaul networks. Presently, to meet this need, attention of many researchers and top network vendors has been directed towards millimeter wave radio links....... Operation in the millimeter wave range brings new possibilities for a channel allocation as well as allows wider radio channels to be used. Moreover this frequency range is lighter licensed than regular GSM. This clearly shows a huge potential of millimeter waves for a high speed wireless data transmission...... was proposed and research projects like IPHOBAC-NG were founded. The aim of the mentioned project is to employ novel RAUs featuring opticto-wireless and wireless-to-optic conversion with a speeds of 1-10Gbit/s for broadband wireless access and up to 3Gbit/s for mobile backhaul. The RAU proposed in this paper...

  5. Efficient Deployment of Key Nodes for Optimal Coverage of Industrial Mobile Wireless Networks

    Science.gov (United States)

    Li, Xiaomin; Li, Di; Dong, Zhijie; Hu, Yage; Liu, Chengliang

    2018-01-01

    In recent years, industrial wireless networks (IWNs) have been transformed by the introduction of mobile nodes, and they now offer increased extensibility, mobility, and flexibility. Nevertheless, mobile nodes pose efficiency and reliability challenges. Efficient node deployment and management of channel interference directly affect network system performance, particularly for key node placement in clustered wireless networks. This study analyzes this system model, considering both industrial properties of wireless networks and their mobility. Then, static and mobile node coverage problems are unified and simplified to target coverage problems. We propose a novel strategy for the deployment of clustered heads in grouped industrial mobile wireless networks (IMWNs) based on the improved maximal clique model and the iterative computation of new candidate cluster head positions. The maximal cliques are obtained via a double-layer Tabu search. Each cluster head updates its new position via an improved virtual force while moving with full coverage to find the minimal inter-cluster interference. Finally, we develop a simulation environment. The simulation results, based on a performance comparison, show the efficacy of the proposed strategies and their superiority over current approaches. PMID:29439439

  6. Efficient Deployment of Key Nodes for Optimal Coverage of Industrial Mobile Wireless Networks.

    Science.gov (United States)

    Li, Xiaomin; Li, Di; Dong, Zhijie; Hu, Yage; Liu, Chengliang

    2018-02-10

    In recent years, industrial wireless networks (IWNs) have been transformed by the introduction of mobile nodes, and they now offer increased extensibility, mobility, and flexibility. Nevertheless, mobile nodes pose efficiency and reliability challenges. Efficient node deployment and management of channel interference directly affect network system performance, particularly for key node placement in clustered wireless networks. This study analyzes this system model, considering both industrial properties of wireless networks and their mobility. Then, static and mobile node coverage problems are unified and simplified to target coverage problems. We propose a novel strategy for the deployment of clustered heads in grouped industrial mobile wireless networks (IMWNs) based on the improved maximal clique model and the iterative computation of new candidate cluster head positions. The maximal cliques are obtained via a double-layer Tabu search. Each cluster head updates its new position via an improved virtual force while moving with full coverage to find the minimal inter-cluster interference. Finally, we develop a simulation environment. The simulation results, based on a performance comparison, show the efficacy of the proposed strategies and their superiority over current approaches.

  7. Efficient scheduling request algorithm for opportunistic wireless access

    KAUST Repository

    Nam, Haewoon; Alouini, Mohamed-Slim

    2011-01-01

    An efficient scheduling request algorithm for opportunistic wireless access based on user grouping is proposed in this paper. Similar to the well-known opportunistic splitting algorithm, the proposed algorithm initially adjusts (or lowers

  8. Node Load Balance Multi-flow Opportunistic Routing in Wireless Mesh Networks

    Directory of Open Access Journals (Sweden)

    Wang Tao

    2014-04-01

    Full Text Available Opportunistic routing (OR has been proposed to improve the performance of wireless networks by exploiting the multi-user diversity and broadcast nature of the wireless medium. It involves multiple candidate forwarders to relay packets every hop. The existing OR doesn’t take account of the traffic load and load balance, therefore some nodes may be overloaded while the others may not, leading to network performance decline. In this paper, we focus on opportunities routing selection with node load balance which is described as a convex optimization problem. To solve the problem, by combining primal-dual and sub-gradient methods, a fully distributed Node load balance Multi-flow Opportunistic Routing algorithm (NMOR is proposed. With node load balance constraint, NMOR allocates the flow rate iteratively and the rate allocation decides the candidate forwarder selection of opportunities routing. The simulation results show that NMOR algorithm improves 100 %, 62 % of the aggregative throughput than ETX and EAX, respectively.

  9. Adaptive Information Access on Multiple Applications Support Wireless Sensor Networks

    DEFF Research Database (Denmark)

    Tobgay, Sonam; Olsen, Rasmus Løvenstein; Prasad, Ramjee

    2014-01-01

    information is challenged by dynamic nature of information elements. These challenges are more prominent in case of wireless sensor network (WSN) applications, as the information that the sensor node collects are mostly dynamic in nature (say, temperature). Therefore, it is likely that there can be a mismatch...

  10. Achieving sink node anonymity in tactical wireless sensor networks using a reactive routing protocol

    Science.gov (United States)

    2017-06-01

    node anonymity, base station anonymity, Wireless Sensor Networks (WSN), Mobile Ad hoc Network (MANET), Lightweight Ad hoc On-Demand – Next Generation ... Generation (LOADng) reactive-routing protocol to achieve anonymity. This modified protocol prevents an attacker from identifying the sink node without...within the constraints of WSN communication protocols, specifically IEEE 802.15.4. We use and modify the Lightweight Ad hoc On-Demand – Next Generation

  11. Proficient Node Scheduling Protocol for Homogeneous and Heterogeneous Wireless Sensor Networks

    OpenAIRE

    R. Saravanakumar; N. Mohankumar; J. Raja

    2013-01-01

    Recent communications in wireless sensor networks (WSNs) have much new energy-efficient protocols specifically designed, where energy awareness is an essential consideration. In WSNs, large numbers of tiny sensor nodes are used as an effective way of data gathering in various environments. Since the sensor nodes operate on battery of limited power, it is a great challenging aim to design an energy-efficient routing protocol, which can minimize the delay while offering high-energy efficiency a...

  12. Thermoelectric energy harvesting system for demonstrating autonomous operation of a wireless sensor node enabled by a multipurpose interface

    International Nuclear Information System (INIS)

    Leicht, Joachim; Heilmann, Peter; Maurath, Dominic; Moranz, Christian; Manoli, Yiannos; Hehn, Thorsten; Li, Xiaoming; Thewes, Marcell; Scholl, Gerd

    2013-01-01

    This paper demonstrates the autonomous operation of a wireless sensor node exclusively powered by thermoelectric energy harvesting. Active operation of a wireless sensor system is demonstrated successfully by means of an on-line programmable emulation kit that enables various thermoelectric energy harvesting scenarios. Moreover, this emulation kit accomplishes autonomous wireless sensor node operation by interfacing a small-scaled thermogenerator via a CMOS integrated autonomous multipurpose energy harvesting interface circuit performing maximum power point tracking

  13. DHT-Based Detection of Node Clone in Wireless Sensor Networks

    Science.gov (United States)

    Li, Zhijun; Gong, Guang

    Wireless sensor networks are vulnerable to the node clone attack because of low-cost, resource-constrained sensor nodes, and uncontrolled environments where they are left unattended. Several distributed protocols have been proposed for detecting clone. However, some protocols rely on an implicit assumption that every node is aware of all other nodes' existence; other protocols using an geographic hash table require that nodes know the general network deployment graph. Those assumptions hardly hold for many sensor networks. In this paper, we present a novel node clone detection protocol based on Distributed Hash Table (DHT). DHT provides good distributed properties and our protocol is practical for every kind of sensor networks. We analyze the protocol performance theoretically. Moreover, we implement our protocol in the OMNeT++ simulation framework. The extensive simulation results show that our protocol can detect clone efficiently and holds strong resistance against adversaries.

  14. Efficient and Adaptive Node Selection for Target Tracking in Wireless Sensor Network

    Directory of Open Access Journals (Sweden)

    Juan Feng

    2016-01-01

    Full Text Available In target tracking wireless sensor network, choosing the proper working nodes can not only minimize the number of active nodes, but also satisfy the tracking reliability requirement. However, most existing works focus on selecting sensor nodes which are the nearest to the target for tracking missions and they did not consider the correlation of the location of the sensor nodes so that these approaches can not meet all the goals of the network. This work proposes an efficient and adaptive node selection approach for tracking a target in a distributed wireless sensor network. The proposed approach combines the distance-based node selection strategy and particle filter prediction considering the spatial correlation of the different sensing nodes. Moreover, a joint distance weighted measurement is proposed to estimate the information utility of sensing nodes. Experimental results show that EANS outperformed the state-of-the-art approaches by reducing the energy cost and computational complexity as well as guaranteeing the tracking accuracy.

  15. Wireless Power Transfer to Millimeter-Sized Nodes Using Airborne Ultrasound.

    Science.gov (United States)

    Rekhi, Angad S; Khuri-Yakub, Butrus T; Arbabian, Amin

    2017-10-01

    We propose the use of airborne ultrasound for wireless power transfer to mm-sized nodes, with intended application in the next generation of the Internet of Things (IoT). We show through simulation that ultrasonic power transfer can deliver 50 [Formula: see text] to a mm-sized node 0.88 m away from a ~ 50-kHz, 25-cm 2 transmitter array, with the peak pressure remaining below recommended limits in air, and with load power increasing with transmitter area. We report wireless power recovery measurements with a precharged capacitive micromachined ultrasonic transducer, demonstrating a load power of 5 [Formula: see text] at a simulated distance of 1.05 m. We present aperture efficiency, dynamic range, and bias-free operation as key metrics for the comparison of transducers meant for wireless power recovery. We also argue that long-range wireless charging at the watt level is extremely challenging with existing technology and regulations. Finally, we compare our acoustic powering system with cutting edge electromagnetically powered nodes and show that ultrasound has many advantages over RF as a vehicle for power delivery. Our work sets the foundation for further research into ultrasonic wireless power transfer for the IoT.

  16. Performance evaluation of modulation and multiple access schemes in ultraviolet optical wireless connections for two atmosphere thickness cases.

    Science.gov (United States)

    Raptis, Nikos; Pikasis, Evangelos; Syvridis, Dimitris

    2016-08-01

    The exploitation of optical wireless communication channels in a non-line-of-sight regime is studied for point-to-point and networking configurations considering the use of light-emitting diodes. Two environments with different scattering center densities are considered, assuming operation at 265 nm. The bit error rate performance of both pulsed and multicarrier modulation schemes is examined, using numerical approaches. In the networking scenario, a central node only receives data, one node transmits useful data, and the rest of them act as interferers. The performance of the desirable node's transmissions is evaluated. The access to the medium is controlled by a code division multiple access scheme.

  17. A Lightweight Medium Access Protocol (LMAC) for Wireless Sensor Networks: Reducing Preamble Transmissions and Transceiver State Switches

    NARCIS (Netherlands)

    van Hoesel, L.F.W.; Havinga, Paul J.M.

    2004-01-01

    In this paper, we present an energy-efficient medium access protocol designed for wireless sensor networks. Although the protocol uses TDMA to give nodes in the WSN the opportunity to communicate collision-free, the network is self-organizing in terms of time slot assignment and synchronization. The

  18. Radio frequency energy harvesting and low power data transmission for autonomous wireless sensor nodes

    NARCIS (Netherlands)

    Rodrigues Mansano, A.L.

    2016-01-01

    Since the Internet of Things (IoT) is expected to be the new technology to drive the semiconductor industry, significant research efforts have been made to develop new circuit and system techniques for autonomous/very low-power operation of wireless sensor nodes. Very low-power consumption of

  19. Impact of a half-space interface on the wireless link between tiny sensor nodes

    NARCIS (Netherlands)

    Penkin, D.; Janssen, G.; Yarovoy, A.

    2014-01-01

    The power budget of a wireless link between two electrically small sensor nodes located close to an interface between two media is studied. The model includes both the propagation channel losses and input impedance of the radio frequency antennas. It is shown that a highly inductive half-space

  20. Circuit Design for Highly Sensitive RF-Powered Wireless Sensor Nodes

    NARCIS (Netherlands)

    Stoopman, M.

    2016-01-01

    Emerging applications such as Internet of Things (IoT), smart buildings and warehouse inventory management are important driving forces behind the development of Wireless Sensor Nodes (WSNs). With future advancements made in the semiconductor industry, these WSNs are expected to become smaller,

  1. Power requirements and battery life measurement for wireless transmission between two nodes in different mediums

    Directory of Open Access Journals (Sweden)

    Radouane Karli

    2017-06-01

    Full Text Available One of the most important roles of the wireless sensor networks (WSN is to avoid wiring costs, be self-sustainable and be able to function for several years. However, due to the slow progress in battery technology, power continues to be a limited resource in wireless sensor communication and electric energy storage remains to be an important issue. On the other hand, if batteries must be replaced often, many remote sensing applications may become impractical. Therefore, batteries with long life on the order of several years are needed. This paper is an extension of work originally presented in The 5th International Conference on Electronic Devices, Systems and Applications to investigate further the power requirements for wireless data transfer between two nodes using batteries with different capacities (55 mAh, 550 mAh and 5500 mAh. In particular, the effect of a propagation medium such as air, distilled water and engine oil on the wireless communication inside a one meter long metallic pipe was investigated. Our first result shows a successful transmission of wireless signal through air, distilled water and oil medium with very low transmission losses. The second result shows that an increase in the battery capacity will increase the two-node wireless sensor operation time even in different propagation medium. This result can be used to determine the required battery capacity for extending the WSN operation time.

  2. Backoff-stage synchronization in three-hop string-topology wireless networks with hidden nodes

    Science.gov (United States)

    Sanada, Kosuke; Sekiya, Hiroo; Komuro, Nobuyoshi; Sakata, Shiro

    In IEEE 802.11 wireless multi-hop networks, each node works individually and their individual operations generate entire network dynamics. It is important to clarify the network dynamics in wireless multi-hop networks for designing and constructing multi-hop communication networks. This paper presents the network-dynamics investigations for three-hop string-topology wireless network in detail. From the investigations, a “backoff-stage synchronization” phenomenon, which is mutuality between hidden nodes, is found. The mechanism of the backoff-stage synchronization is expressed and the sufficient conditions for the synchronization occurrence are given. This phenomenon gives some impacts on the IEEE 802.11 multi-hop-network communications.

  3. Tunable locally-optimal geographical forwarding in wireless sensor networks with sleep-wake cycling nodes

    OpenAIRE

    Naveen, K. P.; Kumar, A.

    2009-01-01

    We consider a wireless sensor network whose main function is to detect certain infrequent alarm events, and to forward alarm packets to a base station, using geographical forwarding. The nodes know their locations, and they sleep-wake cycle, waking up periodically but not synchronously. In this situation, when a node has a packet to forward to the sink, there is a trade-off between how long this node waits for a suitable neighbor to wake up and the progress the packet makes towards the sink o...

  4. Wireless sensor node for detection of freight train derailment

    Science.gov (United States)

    Costa, Andrea; Milani, Damiano; Resta, Ferruccio; Tomasini, Gisella

    2016-04-01

    The target of the research activity presented in this paper is to design, to realize and to test an autonomous sensor node able to measure the accelerations in correspondence of the axle box of a freight train. The final goal of the sensor is to identify the derailment conditions by observing the variations in the spectra of the box accelerations, around the frequencies associated to the wheel revolution and its multiples. The sensor node embeds an accelerometer, a microprocessor, a transmission system, a piezoelectric bimorph energy harvester and an integrated circuit for managing the power distribution to each component of the node. In particular, a mechanical filter to be applied to the node was specifically designed to increment the energy recovered by the harvester and to filter out the high frequency components of the axle-box acceleration, allowing the use of a more sensitive accelerometer. The harvesting system was setup by means of laboratory tests carried out with an electromechanical shaker and the sensor node was finally tested through field tests on freight trains.

  5. Sandwich node architecture for agile wireless sensor networks for real-time structural health monitoring applications

    Science.gov (United States)

    Wang, Zi; Pakzad, Shamim; Cheng, Liang

    2012-04-01

    In recent years, wireless sensor network (WSN), as a powerful tool, has been widely applied to structural health monitoring (SHM) due to its low cost of deployment. Several commercial hardware platforms of wireless sensor networks (WSN) have been developed and used for structural monitoring applications [1,2]. A typical design of a node includes a sensor board and a mote connected to it. Sensing units, analog filters and analog-to-digital converters (ADCs) are integrated on the sensor board and the mote consists of a microcontroller and a wireless transceiver. Generally, there are a set of sensor boards compatible with the same model of mote and the selection of the sensor board depends on the specific applications. A WSN system based on this node lacks the capability of interrupting its scheduled task to start a higher priority task. This shortcoming is rooted in the hardware architecture of the node. The proposed sandwich-node architecture is designed to remedy the shortcomings of the existing one for task preemption. A sandwich node is composed of a sensor board and two motes. The first mote is dedicated to managing the sensor board and processing acquired data. The second mote controls the first mote via commands. A prototype has been implemented using Imote2 and verified by an emulation in which one mote is triggered by a remote base station and then preempts the running task at the other mote for handling an emergency event.

  6. The Efficacy of Epidemic Algorithms on Detecting Node Replicas in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Narasimha Shashidhar

    2015-12-01

    Full Text Available A node replication attack against a wireless sensor network involves surreptitious efforts by an adversary to insert duplicate sensor nodes into the network while avoiding detection. Due to the lack of tamper-resistant hardware and the low cost of sensor nodes, launching replication attacks takes little effort to carry out. Naturally, detecting these replica nodes is a very important task and has been studied extensively. In this paper, we propose a novel distributed, randomized sensor duplicate detection algorithm called Discard to detect node replicas in group-deployed wireless sensor networks. Our protocol is an epidemic, self-organizing duplicate detection scheme, which exhibits emergent properties. Epidemic schemes have found diverse applications in distributed computing: load balancing, topology management, audio and video streaming, computing aggregate functions, failure detection, network and resource monitoring, to name a few. To the best of our knowledge, our algorithm is the first attempt at exploring the potential of this paradigm to detect replicas in a wireless sensor network. Through analysis and simulation, we show that our scheme achieves robust replica detection with substantially lower communication, computational and storage requirements than prior schemes in the literature.

  7. Energy-autonomous wireless sensor nodes for automotive applications, powered by thermoelectric energy harvesting

    International Nuclear Information System (INIS)

    Mehne, P.; Lickert, F.; Bäumker, E.; Kroener, M.; Woias, P.

    2016-01-01

    In this paper we will first present the measurement of temperatures on different positions at a diesel-powered car. As a result, several locations are identified as suitable to implement a wireless sensor node powered by thermal energy harvesting. Based on the data gained a thermoelectric generator (TEG) has been selected, and measurements of energy generation have been performed. Further, a complete energy-autonomous wireless sensor node was designed, including the TEG with its mounting bracket, an electronic power management, and a Bluetooth Low Energy (BLE) sensor node. Based on temperature differences from -10 K up to 75.3 K occurring in test drives, a low power set up was chosen to achieve a system startup time below 10 minutes and to ensure service even under difficult ambient conditions, like high ambient temperatures or a slow movement of the car in stocking traffic. 2 minutes after starting the engine a power about of 10 mW is available from the chosen TEG, and in peak the power exceeds 1 W. In a 50 minute test drive it was possible to generate 650 J of energy. This information was used to develop the complete system, demonstrating the opportunity to deploy energy-autonomous wireless sensor nodes in a car, e.g. for exhaust gas monitoring. The system is used to gather sensor data, like temperature and humidity, and transmits data successfully via BLE to a prepared main node based on a Raspberry Pi. (paper)

  8. Energy-autonomous wireless sensor nodes for automotive applications, powered by thermoelectric energy harvesting

    Science.gov (United States)

    Mehne, P.; Lickert, F.; Bäumker, E.; Kroener, M.; Woias, P.

    2016-11-01

    In this paper we will first present the measurement of temperatures on different positions at a diesel-powered car. As a result, several locations are identified as suitable to implement a wireless sensor node powered by thermal energy harvesting. Based on the data gained a thermoelectric generator (TEG) has been selected, and measurements of energy generation have been performed. Further, a complete energy-autonomous wireless sensor node was designed, including the TEG with its mounting bracket, an electronic power management, and a Bluetooth Low Energy (BLE) sensor node. Based on temperature differences from -10 K up to 75.3 K occurring in test drives, a low power set up was chosen to achieve a system startup time below 10 minutes and to ensure service even under difficult ambient conditions, like high ambient temperatures or a slow movement of the car in stocking traffic. 2 minutes after starting the engine a power about of 10 mW is available from the chosen TEG, and in peak the power exceeds 1 W. In a 50 minute test drive it was possible to generate 650 J of energy. This information was used to develop the complete system, demonstrating the opportunity to deploy energy-autonomous wireless sensor nodes in a car, e.g. for exhaust gas monitoring. The system is used to gather sensor data, like temperature and humidity, and transmits data successfully via BLE to a prepared main node based on a Raspberry Pi.

  9. Vibration based monitoring of stay cable force using wireless piezoelectric based strain sensor nodes

    International Nuclear Information System (INIS)

    Nguyen, Khac Duy; Kim, Jeong Tae

    2012-01-01

    This study presents a method to monitor cable force using wireless sensor nodes and piezoelectric sensors. The following approaches are carried out to achieve the objective. Firstly, the principle of piezoelectric materials (e.g., PZT) as strain sensors is reviewed. A cable force estimation method using dynamic features of cables measured by piezoelectric materials is presented. Secondly, the design of an automated cable force monitoring system using the data acquisition sensor node Imote2/SHM DAQ is described. The sensor node is originally developed by University of Illinois at Urbana champaign and is adopted in this study to monitor strain induced voltage from PZT sensors. The advantages of the system are cheap, and eligible for wireless communication and automated operation. Finally, the feasibility of the proposed monitoring system is evaluated on a lab scaled cable

  10. FR4-based electromagnetic energy harvester for wireless sensor nodes

    Science.gov (United States)

    Hatipoglu, G.; Ürey, H.

    2010-01-01

    Electromagnetic (EM) energy harvesting seems to be one of the most promising ways to power wireless sensors in a wireless sensor network. In this paper, FR4, the most commonly used PCB material, is utilized as a mechanical vibrating structure for EM energy harvesting for body-worn sensors and intelligent tire sensors, which involve impact loadings. FR4 can be a better material for such applications compared to silicon MEMS devices due to lower stiffness and broadband response. In order to demonstrate FR4 performance and broadband response, three moving magnet type EM generator designs are developed and investigated throughout the paper. A velocity-damped harvester simulation model is first developed, including a detailed magnetic model and the magnetic damping effects. The numerical results agree well with the experimental results. Human running acceleration at the hip area that is obtained experimentally is simulated in order to demonstrate system performance, which results in a scavenged power of about 40 µW with 15 m s-2 acceleration input. The designed FR4 energy scavengers with mechanical stoppers implemented are particularly well suited for nearly periodic and non-sinusoidal high- g excitations with rich harmonic content. For the intelligent tire applications, a special compact FR4 scavenger is designed that is able to withstand large shocks and vibrations due to mechanical shock stoppers built into the structure. Using our design, 0.4 mW power across a load resistance at off-resonance operation is obtained in shaker experiments. In the actual operation, the tangential accelerations as a result of the tire-road contact are estimated to supply power around 1 mW with our design, which is sufficient for powering wireless tire sensors. The normalized power density (NPD) of the designed actuators compares favorably with most actuators reported in the literature.

  11. FR4-based electromagnetic energy harvester for wireless sensor nodes

    International Nuclear Information System (INIS)

    Hatipoglu, G; Ürey, H

    2010-01-01

    Electromagnetic (EM) energy harvesting seems to be one of the most promising ways to power wireless sensors in a wireless sensor network. In this paper, FR4, the most commonly used PCB material, is utilized as a mechanical vibrating structure for EM energy harvesting for body-worn sensors and intelligent tire sensors, which involve impact loadings. FR4 can be a better material for such applications compared to silicon MEMS devices due to lower stiffness and broadband response. In order to demonstrate FR4 performance and broadband response, three moving magnet type EM generator designs are developed and investigated throughout the paper. A velocity-damped harvester simulation model is first developed, including a detailed magnetic model and the magnetic damping effects. The numerical results agree well with the experimental results. Human running acceleration at the hip area that is obtained experimentally is simulated in order to demonstrate system performance, which results in a scavenged power of about 40 µW with 15 m s −2 acceleration input. The designed FR4 energy scavengers with mechanical stoppers implemented are particularly well suited for nearly periodic and non-sinusoidal high- g excitations with rich harmonic content. For the intelligent tire applications, a special compact FR4 scavenger is designed that is able to withstand large shocks and vibrations due to mechanical shock stoppers built into the structure. Using our design, 0.4 mW power across a load resistance at off-resonance operation is obtained in shaker experiments. In the actual operation, the tangential accelerations as a result of the tire–road contact are estimated to supply power around 1 mW with our design, which is sufficient for powering wireless tire sensors. The normalized power density (NPD) of the designed actuators compares favorably with most actuators reported in the literature

  12. Data Access Based on a Guide Map of the Underwater Wireless Sensor Network.

    Science.gov (United States)

    Wei, Zhengxian; Song, Min; Yin, Guisheng; Song, Houbing; Wang, Hongbin; Ma, Xuefei; Cheng, Albert M K

    2017-10-17

    Underwater wireless sensor networks (UWSNs) represent an area of increasing research interest, as data storage, discovery, and query of UWSNs are always challenging issues. In this paper, a data access based on a guide map (DAGM) method is proposed for UWSNs. In DAGM, the metadata describes the abstracts of data content and the storage location. The center ring is composed of nodes according to the shortest average data query path in the network in order to store the metadata, and the data guide map organizes, diffuses and synchronizes the metadata in the center ring, providing the most time-saving and energy-efficient data query service for the user. For this method, firstly the data is stored in the UWSN. The storage node is determined, the data is transmitted from the sensor node (data generation source) to the storage node, and the metadata is generated for it. Then, the metadata is sent to the center ring node that is the nearest to the storage node and the data guide map organizes the metadata, diffusing and synchronizing it to the other center ring nodes. Finally, when there is query data in any user node, the data guide map will select a center ring node nearest to the user to process the query sentence, and based on the shortest transmission delay and lowest energy consumption, data transmission routing is generated according to the storage location abstract in the metadata. Hence, specific application data transmission from the storage node to the user is completed. The simulation results demonstrate that DAGM has advantages with respect to data access time and network energy consumption.

  13. A high-efficiency self-powered wireless sensor node for monitoring concerning vibratory events

    Science.gov (United States)

    Xu, Dacheng; Li, Suiqiong; Li, Mengyang; Xie, Danpeng; Dong, Chuan; Li, Xinxin

    2017-09-01

    This paper presents a self-powered wireless alarming sensor node (SWASN), which was designed to monitor the occurrence of concerning vibratory events. The major components of the sensor node include a vibration-threshold-triggered energy harvester (VTTEH) that powers the sensor node, a dual threshold voltage control circuit (DTVCC) for power management and a radio frequency (RF) signal transmitting module. The VTTEH generates significant electric energy only when the input vibration reaches certain amplitude. Thus, the VTTEH serves as both the power source and the vibration-event-sensing element for the sensor node. The DTVCC was specifically designed to utilize the limited power supply from the VTTEH to operate the sensor node. Constructed with only voltage detectors and MOSFETs, the DTVCC achieved low power consumption, which was 65% lower compared with the power management circuit designed in our previous work. Meanwhile, a RF transmit circuit was constructed based on the commercially available CC1110-F32 wireless transceiver chip and a compact planar antenna was designed to improve the signal transmission distance. The sensor node was fabricated and was characterized both in the laboratory and in the field. Experimental results showed that the SWASN could automatically send out alarming signals when the simulated concerning event occurred. The waiting time between two consecutive transmission periods is less than 125 s and the transmission distance can reach 1.31 km. The SWASN will have broad applications in field surveillances.

  14. Wireless Sensing Node Network Management for Monitoring Landslide Disaster

    International Nuclear Information System (INIS)

    Takayama, S; Akiyama, J; Fujiki, T; Mokhtar, N A B

    2013-01-01

    This paper shows the network management and operation to monitor landslide disaster at slop of mountain and hill. Natural disasters damage a measuring system easily. It is necessary for the measuring system to be flexible and robust. The measuring network proposed in this paper is the telemetry system consisted of host system (HS) and local sensing nodes network system (LSNNS). LSNNS operates autonomously and sometimes is controlled by commands from HS. HS collects data/information of landslide disaster from LSNNS, and controls LSNNS remotely. HS and LSNNS are communicated by using 'cloud' system. The dual communication is very effective and convenient to manage a network system operation

  15. An Integrated Hybrid Energy Harvester for Autonomous Wireless Sensor Network Nodes

    Directory of Open Access Journals (Sweden)

    Mukter Zaman

    2014-01-01

    Full Text Available Profiling environmental parameter using a large number of spatially distributed wireless sensor network (WSN NODEs is an extensive illustration of advanced modern technologies, but high power requirement for WSN NODEs limits the widespread deployment of these technologies. Currently, WSN NODEs are extensively powered up using batteries, but the battery has limitation of lifetime, power density, and environmental concerns. To overcome this issue, energy harvester (EH is developed and presented in this paper. Solar-based EH has been identified as the most viable source of energy to be harvested for autonomous WSN NODEs. Besides, a novel chemical-based EH is reported as the potential secondary source for harvesting energy because of its uninterrupted availability. By integrating both solar-based EH and chemical-based EH, a hybrid energy harvester (HEH is developed to power up WSN NODEs. Experimental results from the real-time deployment shows that, besides supporting the daily operation of WSN NODE and Router, the developed HEH is capable of producing a surplus of 971 mA·hr equivalent energy to be stored inside the storage for NODE and 528.24 mA·hr equivalent energy for Router, which is significantly enough for perpetual operation of autonomous WSN NODEs used in environmental parameter profiling.

  16. Cluster Head Selection in a Homogeneous Wireless Sensor Network Ensuring Full Connectivity with Minimum Isolated Nodes

    Directory of Open Access Journals (Sweden)

    Tapan Kumar Jain

    2014-01-01

    Full Text Available The research work proposes a cluster head selection algorithm for a wireless sensor network. A node can be a cluster head if it is connected to at least one unique neighbor node where the unique neighbor is the one that is not connected to any other node. If there is no connected unique node then the CH is selected on the basis of residual energy and the number of neighbor nodes. With the increase in number of clusters, the processing energy of the network increases; hence, this algorithm proposes minimum number of clusters which further leads to increased network lifetime. The major novel contribution of the proposed work is an algorithm that ensures a completely connected network with minimum number of isolated nodes. An isolated node will remain only if it is not within the transmission range of any other node. With the maximum connectivity, the coverage of the network is automatically maximized. The superiority of the proposed design is verified by simulation results done in MATLAB, where it clearly depicts that the total numbers of rounds before the network dies out are maximum compared to other existing protocols.

  17. A Secure Localization Approach Using Mutual Authentication and Insider Node Validation in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Gulshan Kumar

    2017-01-01

    Full Text Available Localization is a concerning issue in the applications of wireless sensor networks. Along with the accuracy of the location estimation of the sensor nodes, the security of the estimation is another priority. Wireless sensor networks often face various attacks where the attackers try to manipulate the estimated location or try to provide false beacons. In this paper, we have proposed a methodology that will address this problem of security aspects in localization of the sensor nodes. Moreover, we have considered the network environment with random node deployment and mobility as these two conditions are less addressed in previous research works. Further, our proposed algorithm provides low overhead due to the usage of less control messages in a limited transmission range. In addition, we have also proposed an algorithm to detect the malicious anchor nodes inside the network. The simulated results show that our proposed algorithm is efficient in terms of time consumption, localization accuracy, and localization ratio in the presence of malicious nodes.

  18. A Novel Topology Control Approach to Maintain the Node Degree in Dynamic Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Yuanjiang Huang

    2014-03-01

    Full Text Available Topology control is an important technique to improve the connectivity and the reliability of Wireless Sensor Networks (WSNs by means of adjusting the communication range of wireless sensor nodes. In this paper, a novel Fuzzy-logic Topology Control (FTC is proposed to achieve any desired average node degree by adaptively changing communication range, thus improving the network connectivity, which is the main target of FTC. FTC is a fully localized control algorithm, and does not rely on location information of neighbors. Instead of designing membership functions and if-then rules for fuzzy-logic controller, FTC is constructed from the training data set to facilitate the design process. FTC is proved to be accurate, stable and has short settling time. In order to compare it with other representative localized algorithms (NONE, FLSS, k-Neighbor and LTRT, FTC is evaluated through extensive simulations. The simulation results show that: firstly, similar to k-Neighbor algorithm, FTC is the best to achieve the desired average node degree as node density varies; secondly, FTC is comparable to FLSS and k-Neighbor in terms of energy-efficiency, but is better than LTRT and NONE; thirdly, FTC has the lowest average maximum communication range than other algorithms, which indicates that the most energy-consuming node in the network consumes the lowest power.

  19. A novel topology control approach to maintain the node degree in dynamic wireless sensor networks.

    Science.gov (United States)

    Huang, Yuanjiang; Martínez, José-Fernán; Díaz, Vicente Hernández; Sendra, Juana

    2014-03-07

    Topology control is an important technique to improve the connectivity and the reliability of Wireless Sensor Networks (WSNs) by means of adjusting the communication range of wireless sensor nodes. In this paper, a novel Fuzzy-logic Topology Control (FTC) is proposed to achieve any desired average node degree by adaptively changing communication range, thus improving the network connectivity, which is the main target of FTC. FTC is a fully localized control algorithm, and does not rely on location information of neighbors. Instead of designing membership functions and if-then rules for fuzzy-logic controller, FTC is constructed from the training data set to facilitate the design process. FTC is proved to be accurate, stable and has short settling time. In order to compare it with other representative localized algorithms (NONE, FLSS, k-Neighbor and LTRT), FTC is evaluated through extensive simulations. The simulation results show that: firstly, similar to k-Neighbor algorithm, FTC is the best to achieve the desired average node degree as node density varies; secondly, FTC is comparable to FLSS and k-Neighbor in terms of energy-efficiency, but is better than LTRT and NONE; thirdly, FTC has the lowest average maximum communication range than other algorithms, which indicates that the most energy-consuming node in the network consumes the lowest power.

  20. Effects of fading and spatial correlation on node selection for estimation in Wireless Sensor Networks

    KAUST Repository

    Al-Murad, Tamim M.

    2010-06-01

    In densely deployed sensor networks, correlation among measurements may be high. Spatial sampling through node selection is usually used to minimize this correlation and to save energy consumption. However because of the fading nature of the wireless channels, extra care should be taken when performing this sampling. In this paper, we develop expressions for the distortion which include the channel effects. The asymptotic behavior of the distortion as the number of sensors or total transmit power increase without bound is also investigated. Further, based on the channel and position information we propose and test several node selection schemes.

  1. On the Modeling of Solar-Powered Wireless Sensor Nodes

    Directory of Open Access Journals (Sweden)

    Sebastian Bader

    2014-08-01

    Full Text Available Solar energy harvesting allows for wireless sensor networks to be operated over extended periods of time. In order to select an appropriate harvesting architecture and dimension for its components, an effective method for the comparison of system implementations is required. System simulations have the capability to accomplish this in an accurate and efficient manner. In this paper, we evaluate the existing work on solar energy harvesting architectures and common methods for their modeling. An analysis of the existing approaches demonstrates a mismatch between the requirement of the task to be both accurate and efficient and the proposed modeling methods, which are either accurate or efficient. As a result, we propose a data-driven modeling method based on artificial neural networks for further evaluation by the research community. Preliminary results of an initial investigation demonstrate the capability of this method to accurately capture the behavior of a solar energy harvesting architecture, while providing a time-efficient model generation procedure based on system-level data.

  2. Flow-driven triboelectric generator for directly powering a wireless sensor node.

    Science.gov (United States)

    Wang, Shuhua; Mu, Xiaojing; Yang, Ya; Sun, Chengliang; Gu, Alex Yuandong; Wang, Zhong Lin

    2015-01-14

    A triboelectric generator (TEG) for scavenging flow-driven mechanical -energy to directly power a wireless sensor node is demonstrated for the first time. The output performances of TEGs with different dimensions are systematically investigated, indicating that a largest output power of about 3.7 mW for one TEG can be achieved under an external load of 3 MΩ. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Development of a wireless nonlinear wave modulation spectroscopy (NWMS) sensor node for fatigue crack detection

    Science.gov (United States)

    Liu, Peipei; Yang, Suyoung; Lim, Hyung Jin; Park, Hyung Chul; Ko, In Chang; Sohn, Hoon

    2014-03-01

    Fatigue crack is one of the main culprits for the failure of metallic structures. Recently, it has been shown that nonlinear wave modulation spectroscopy (NWMS) is effective in detecting nonlinear mechanisms produced by fatigue crack. In this study, an active wireless sensor node for fatigue crack detection is developed based on NWMS. Using PZT transducers attached to a target structure, ultrasonic waves at two distinctive frequencies are generated, and their modulation due to fatigue crack formation is detected using another PZT transducer. Furthermore, a reference-free NWMS algorithm is developed so that fatigue crack can be detected without relying on history data of the structure with minimal parameter adjustment by the end users. The algorithm is embedded into FPGA, and the diagnosis is transmitted to a base station using a commercial wireless communication system. The whole design of the sensor node is fulfilled in a low power working strategy. Finally, an experimental verification has been performed using aluminum plate specimens to show the feasibility of the developed active wireless NWMS sensor node.

  4. Characterization of Industrial Coolant Fluids and Continuous Ageing Monitoring by Wireless Node-Enabled Fiber Optic Sensors

    DEFF Research Database (Denmark)

    Sachat, Alexandros El; Meristoudi, Anastasia; Markos, Christos

    2017-01-01

    Environmentally robust chemical sensors for monitoring industrial processes or infrastructures are lately becoming important devices in industry. Low complexity and wireless enabled characteristics can offer the required flexibility for sensor deployment in adaptable sensing networks for continuous...... of sensors allowed their integration in an autonomous wireless sensing node, thus enabling the future use of the demonstrated platform in wireless sensor networks for a variety of industrial and environmental monitoring applications....

  5. Evaluation of 90nm 6T-SRAM as physical unclonable function for secure key generation in wireless sensor nodes

    NARCIS (Netherlands)

    Selimis, G.; Konijnenburg, M.; Ashouei, M.; Huisken, J.; de Groot, H.; van der Leest, V.; Schrijen, G.-J.; van Hulst, M.; Tuyls, P.

    2011-01-01

    Due to the unattended nature of WSN (Wireless Sensor Network) deployment, each sensor can be subject to physical capture, cloning and unauthorized device alteration. In this paper, we use the embedded SRAM, often available on a wireless sensor node, for secure data (cryptographic keys, IDs)

  6. On Prolonging Network Lifetime through Load-Similar Node Deployment in Wireless Sensor Networks

    Science.gov (United States)

    Li, Qiao-Qin; Gong, Haigang; Liu, Ming; Yang, Mei; Zheng, Jun

    2011-01-01

    This paper is focused on the study of the energy hole problem in the Progressive Multi-hop Rotational Clustered (PMRC)-structure, a highly scalable wireless sensor network (WSN) architecture. Based on an analysis on the traffic load distribution in PMRC-based WSNs, we propose a novel load-similar node distribution strategy combined with the Minimum Overlapping Layers (MOL) scheme to address the energy hole problem in PMRC-based WSNs. In this strategy, sensor nodes are deployed in the network area according to the load distribution. That is, more nodes shall be deployed in the range where the average load is higher, and then the loads among different areas in the sensor network tend to be balanced. Simulation results demonstrate that the load-similar node distribution strategy prolongs network lifetime and reduces the average packet latency in comparison with existing nonuniform node distribution and uniform node distribution strategies. Note that, besides the PMRC structure, the analysis model and the proposed load-similar node distribution strategy are also applicable to other multi-hop WSN structures. PMID:22163809

  7. Medium Access Control in Energy Harvesting - Wireless Sensor Networks

    DEFF Research Database (Denmark)

    Fafoutis, Xenofon

    Focusing on Wireless Sensor Networks (WSN) that are powered by energy harvesting, this dissertation focuses on energy-efficient communication links between senders and receivers that are alternating between active and sleeping states of operation. In particular, the focus lies on Medium Access...

  8. Wireless-accessible sensor populations for monitoring biological variables

    NARCIS (Netherlands)

    Mazzu, Marco; Scalvini, Simonetta; Giordano, A.; Frumento, E.; Wells, Hannah; Lokhorst, C.; Glisenti, Fulvio

    2008-01-01

    The current health-care infrastructure is generally considered to be inadequate to meet the needs of an increasingly older population. We have investigated the feasibility of a passive in-home monitoring system based on wireless accessible sensor populations (WASP). In an EU-funded project we have

  9. Node-to-node field calibration of wireless distributed air pollution sensor network.

    Science.gov (United States)

    Kizel, Fadi; Etzion, Yael; Shafran-Nathan, Rakefet; Levy, Ilan; Fishbain, Barak; Bartonova, Alena; Broday, David M

    2018-02-01

    Low-cost air quality sensors offer high-resolution spatiotemporal measurements that can be used for air resources management and exposure estimation. Yet, such sensors require frequent calibration to provide reliable data, since even after a laboratory calibration they might not report correct values when they are deployed in the field, due to interference with other pollutants, as a result of sensitivity to environmental conditions and due to sensor aging and drift. Field calibration has been suggested as a means for overcoming these limitations, with the common strategy involving periodical collocations of the sensors at an air quality monitoring station. However, the cost and complexity involved in relocating numerous sensor nodes back and forth, and the loss of data during the repeated calibration periods make this strategy inefficient. This work examines an alternative approach, a node-to-node (N2N) calibration, where only one sensor in each chain is directly calibrated against the reference measurements and the rest of the sensors are calibrated sequentially one against the other while they are deployed and collocated in pairs. The calibration can be performed multiple times as a routine procedure. This procedure minimizes the total number of sensor relocations, and enables calibration while simultaneously collecting data at the deployment sites. We studied N2N chain calibration and the propagation of the calibration error analytically, computationally and experimentally. The in-situ N2N calibration is shown to be generic and applicable for different pollutants, sensing technologies, sensor platforms, chain lengths, and sensor order within the chain. In particular, we show that chain calibration of three nodes, each calibrated for a week, propagate calibration errors that are similar to those found in direct field calibration. Hence, N2N calibration is shown to be suitable for calibration of distributed sensor networks. Copyright © 2017 Elsevier Ltd. All

  10. An efficient routing algorithm for event based monitoring in a plant using virtual sink nodes in a wireless sensor network

    International Nuclear Information System (INIS)

    Jain, Sanjay Kumar; Vietla, Srinivas; Roy, D.A.; Biswas, B.B.; Pithawa, C.K.

    2010-01-01

    A Wireless Sensor Network is a collection of wireless sensor nodes arranged in a self-forming network without aid of any infrastructure or administration. The individual nodes have limited resources and hence efficient communication mechanisms between the nodes have to be devised for continued operation of the network in a plant environment. In wireless sensor networks a sink node or base station at one end acts as the recipient of information gathered by all other sensor nodes in the network and the information arrives at the sink through multiple hops across the nodes of the network. A routing algorithm has been developed in which a virtual sink node is generated whenever hop count of an ordinary node crosses a certain specified value. The virtual sink node acts as a recipient node for data of all neighboring nodes. This virtual sink helps in reducing routing overhead, especially when the sensor network is scaled to a larger network. The advantages with this scheme are less energy consumption, reduced congestion in the network and longevity of the network. The above algorithm is suitable for event based or interval based monitoring systems in nuclear plants. This paper describes the working of the proposed algorithm and provides its implementation details. (author)

  11. New strategies for SHM based on a multichannel wireless AE node

    Science.gov (United States)

    Godinez-Azcuaga, Valery; Ley, Obdulia

    2014-03-01

    This paper discusses the development of an Acoustic Emission (AE) wireless node and its application for SHM (Structural Health Monitoring). The instrument development was planned for applications monitoring steel and concrete bridges components. The final product, now commercially available, is a sensor node which includes multiple sensing elements, on board signal processing and analysis capabilities, signal conditioning electronics, power management circuits, wireless data transmission element and energy harvesting unit. The sensing elements are capable of functioning in both passive and active modes, while the multiple parametric inputs are available for connecting various sensor types to measure external characteristics affecting the performance of the structure under monitoring. The output of all these sensors are combined and analyzed at the node in order to minimize the data transmission rate, which consumes significant amount of power. Power management circuits are used to reduce the data collection intervals through selective data acquisition strategies and minimize the sensor node power consumption. This instrument, known as the 1284, is an excellent platform to deploy SHM in the original bridge applications, but initial prototypes has shown significant potential in monitoring composite wind turbine blades and composites mockups of Unmanned Autonomous Vehicles (UAV) components; currently we are working to extend the use of this system to fields such as coal flow, power transformer, and off-shore platform monitoring.

  12. An Access Control Protocol for Wireless Sensor Network Using Double Trapdoor Chameleon Hash Function

    Directory of Open Access Journals (Sweden)

    Tejeshwari Thakur

    2016-01-01

    Full Text Available Wireless sensor network (WSN, a type of communication system, is normally deployed into the unattended environment where the intended user can get access to the network. The sensor nodes collect data from this environment. If the data are valuable and confidential, then security measures are needed to protect them from the unauthorized access. This situation requires an access control protocol (ACP in the design of sensor network because of sensor nodes which are vulnerable to various malicious attacks during the authentication and key establishment and the new node addition phase. In this paper, we propose a secured ACP for such WSN. This protocol is based on Elliptic Curve Discrete Log Problem (ECDLP and double trapdoor chameleon hash function which secures the WSN from malicious attacks such as node masquerading attack, replay attack, man-in-the-middle attack, and forgery attacks. Proposed ACP has a special feature known as session key security. Also, the proposed ACP is more efficient as it requires only one modular multiplication during the initialization phase.

  13. Wireless Smart Sensor Network System Using SmartBridge Sensor Nodes for Structural Health Monitoring of Existing Concrete Bridges

    Science.gov (United States)

    Gaviña, J. R.; Uy, F. A.; Carreon, J. D.

    2017-06-01

    There are over 8000 bridges in the Philippines today according to the Department of Public Works and Highways (DPWH). Currently, visual inspection is the most common practice in monitoring the structural integrity of bridges. However, visual inspections have proven to be insufficient in determining the actual health or condition of a bridge. Structural Health Monitoring (SHM) aims to give, in real-time, a diagnosis of the actual condition of the bridge. In this study, SmartBridge Sensor Nodes were installed on an existing concrete bridge with American Association of State Highway and Transportation Officials (AASHTO) Type IV Girders to gather vibration of the elements of the bridge. Also, standards on the effective installation of SmartBridge Sensor Nodes, such as location and orientation was determined. Acceleration readings from the sensor were then uploaded to a server, wherein they are monitored against certain thresholds, from which, the health of the bridge will be derived. Final output will be a portal or webpage wherein the information, health, and acceleration readings of the bridge will be available for viewing. With levels of access set for different types of users, the main users will have access to download data and reports. Data transmission and webpage access are available online, making the SHM system wireless.

  14. Dealing with Wormhole Attacks in Wireless Sensor Networks Through Discovering Separate Routes Between Nodes

    Directory of Open Access Journals (Sweden)

    F. Rezaei

    2017-08-01

    Full Text Available One of the most common attacks against Wireless Sensor Networks is the wormhole attack. In this attack, the enemy deploys two malicious nodes in two different areas of the network and establishes a high-speed dedicated channel between these two. This will cause the normal nodes in two different areas wrongly think that they are two-hop neighbors. Therefore, this attack will greatly affect the routing algorithms. In this paper, a new distributed algorithm is provided to deal with the wormhole attack. The main idea of the proposed algorithm is to discover separate routes between pairs of two-hop neighboring nodes. The proposed algorithm was implemented and evaluated in terms of true and false detection rate by performing a series of experiments and the results were compared with the base algorithm. The test results showed that the proposed algorithm has desirable efficacy.

  15. System for Malicious Node Detection in IPv6-Based Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Kresimir Grgic

    2016-01-01

    Full Text Available The trend of implementing the IPv6 into wireless sensor networks (WSNs has recently occurred as a consequence of a tendency of their integration with other types of IP-based networks. The paper deals with the security aspects of these IPv6-based WSNs. A brief analysis of security threats and attacks which are present in the IPv6-based WSN is given. The solution to an adaptive distributed system for malicious node detection in the IPv6-based WSN is proposed. The proposed intrusion detection system is based on distributed algorithms and a collective decision-making process. It introduces an innovative concept of probability estimation for malicious behaviour of sensor nodes. The proposed system is implemented and tested through several different scenarios in three different network topologies. Finally, the performed analysis showed that the proposed system is energy efficient and has a good capability to detect malicious nodes.

  16. Radiation Resistance Test of Wireless Sensor Node and the Radiation Shielding Calculation

    Energy Technology Data Exchange (ETDEWEB)

    Li, Liqan; Sur, Bhaskar [Atomic Energy of Canada Limited, Ontario (Canada); Wang, Quan [University of Western Ontario, Ontario (Canada); Deng, Changjian [The University of Electronic Science and Technology, Chengdu (China); Chen, Dongyi; Jiang, Jin [Applied Physics Branch, Ontario (Korea, Republic of)

    2014-08-15

    A wireless sensor network (WSN) is being developed for nuclear power plants. Amongst others, ionizing radiation resistance is one essential requirement for WSN to be successful. This paper documents the work done in Chalk River Laboratories of Atomic Energy of Canada Limited (AECL) to test the resistance to neutron and gamma radiation of some WSN nodes. The recorded dose limit that the nodes can withstand before being damaged by the radiation is compared with the radiation environment inside a typical CANDU (CANada Deuterium Uranium) power plant reactor building. Shielding effects of polyethylene, cadmium and lead to neutron and gamma radiations are also analyzed using MCNP simulation. The shielding calculation can be a reference for the node case design when high dose rate or accidental condition (like Fukushima) is to be considered.

  17. An Adaptive Connectivity-based Centroid Algorithm for Node Positioning in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Aries Pratiarso

    2015-06-01

    Full Text Available In wireless sensor network applications, the position of nodes is randomly distributed following the contour of the observation area. A simple solution without any measurement tools is provided by range-free method. However, this method yields the coarse estimating position of the nodes. In this paper, we propose Adaptive Connectivity-based (ACC algorithm. This algorithm is a combination of Centroid as range-free based algorithm, and hop-based connectivity algorithm. Nodes have a possibility to estimate their own position based on the connectivity level between them and their reference nodes. Each node divides its communication range into several regions where each of them has a certain weight depends on the received signal strength. The weighted value is used to obtain the estimated position of nodes. Simulation result shows that the proposed algorithm has up to 3 meter error of estimated position on 100x100 square meter observation area, and up to 3 hop counts for 80 meters' communication range. The proposed algorithm performs an average error positioning up to 10 meters better than Weighted Centroid algorithm. Keywords: adaptive, connectivity, centroid, range-free.

  18. GWO-LPWSN: Grey Wolf Optimization Algorithm for Node Localization Problem in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    R. Rajakumar

    2017-01-01

    Full Text Available Seyedali Mirjalili et al. (2014 introduced a completely unique metaheuristic technique particularly grey wolf optimization (GWO. This algorithm mimics the social behavior of grey wolves whereas it follows the leadership hierarchy and attacking strategy. The rising issue in wireless sensor network (WSN is localization problem. The objective of this problem is to search out the geographical position of unknown nodes with the help of anchor nodes in WSN. In this work, GWO algorithm is incorporated to spot the correct position of unknown nodes, so as to handle the node localization problem. The proposed work is implemented using MATLAB 8.2 whereas nodes are deployed in a random location within the desired network area. The parameters like computation time, percentage of localized node, and minimum localization error measures are utilized to analyse the potency of GWO rule with other variants of metaheuristics algorithms such as particle swarm optimization (PSO and modified bat algorithm (MBA. The observed results convey that the GWO provides promising results compared to the PSO and MBA in terms of the quick convergence rate and success rate.

  19. A Centralized Detection of Sinkhole Attacks Based on Energy Level of the Nodes on Cluster-Based Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Merve Nilay Aydın

    2017-10-01

    Full Text Available Wireless Sensor Networks is consist of thousands of small and low-cost devices, which communicate over wireless medium. Due to locating in harsh environment and having limited resources, WSN is prone to various attacks. One of the most dangerous attacks threatening WSN is the sinkhole attack. In this paper, sinkhole attack is modelled on a cluster-based WSN, and a centralized detection algorithm based on the remaining energies of the nodes is proposed. The simulations were run for different values of energy thresholds and various numbers of nodes. The performance of the system was investigated over total energy consumption in the system, the number of packets arrived at base station and true detection rate of the sinkhole node(s. The results showed that the proposed method is energy-efficient and detects the malicious nodes with a 100% accuracy for all number of nodes.

  20. M2M massive wireless access

    DEFF Research Database (Denmark)

    Zanella, Andrea; Zorzi, Michele; Santos, André F.

    2013-01-01

    In order to make the Internet of Things a reality, ubiquitous coverage and low-complexity connectivity are required. Cellular networks are hence the most straightforward and realistic solution to enable a massive deployment of always connected Machines around the globe. Nevertheless, a paradigm...... shift in the conception and design of future cellular networks is called for. Massive access attempts, low-complexity and cheap machines, sporadic transmission and correlated signals are among the main properties of this new reality, whose main consequence is the disruption of the development...... Access Reservation, Coded Random Access and the exploitation of multiuser detection in random access. Additionally, we will show how the properties of machine originated signals, such as sparsity and spatial/time correlation can be exploited. The end goal of this paper is to provide motivation...

  1. Millimeter Wave Hybrid Photonic Wireless Links for High-Speed Wireless Access and Mobile Fronthaul

    DEFF Research Database (Denmark)

    Rommel, Simon

    As the introduction of the fifth generation of mobile services (5G) is set to revolutionize the way people, devices and machines connect, the changes to the underlying networks and technologies are no less drastic. The massive increase in user and data capacity, as well as the decrease in latency...... networks. In summary, the work presented in this thesis has regarded a multitude of aspects of millimeter wave hybrid photonic wireless links, expanding upon the state of the art and showing their feasibility for use in fifth generation mobile and high speed wireless access networks – hopefully bringing...

  2. Low-Cost Inkjet-Printed Wireless Sensor Nodes for Environmental and Health Monitoring Applications

    KAUST Repository

    Farooqui, Muhammad Fahad

    2016-11-01

    Increase in population and limited resources have created a growing demand for a futuristic living environment where technology enables the efficient utilization and management of resources in order to increase quality of life. One characteristic of such a society, which is often referred to as a ‘Smart City’, is that the people are well informed about their physiological being as well as the environment around them, which makes them better equipped to handle crisis situations. There is a need, therefore, to develop wireless sensors which can provide early warnings and feedback during calamities such as floods, fires, and industrial leaks, and provide remote health care facilities. For these situations, low-cost sensor nodes with small form factors are required. For this purpose, the use of a low-cost, mass manufacturing technique such as inkjet printing can be beneficial due to its digitally controlled additive nature of depositing material on a variety of substrates. Inkjet printing can permit economical use of material on cheap flexible substrates that allows for the development of miniaturized freeform electronics. This thesis describes how low-cost, inkjet-printed, wireless sensors have been developed for real-time monitoring applications. A 3D buoyant mobile wireless sensor node has been demonstrated that can provide early warnings as well as real-time data for flood monitoring. This disposable paper-based module can communicate while floating in water up to a distance of 50 m, regardless of its orientation in the water. Moreover, fully inkjet-printed sensors have been developed to monitor temperature, humidity and gas levels for wireless environmental monitoring. The sensors are integrated and packaged using 3D inkjet printing technology. Finally, in order to demonstrate the benefits of such wireless sensor systems for health care applications, a low-cost, wearable, wireless sensing system has been developed for chronic wound monitoring. The system

  3. Centroid Localization of Uncooperative Nodes in Wireless Networks Using a Relative Span Weighting Method

    Directory of Open Access Journals (Sweden)

    Christine Laurendeau

    2010-01-01

    Full Text Available Increasingly ubiquitous wireless technologies require novel localization techniques to pinpoint the position of an uncooperative node, whether the target is a malicious device engaging in a security exploit or a low-battery handset in the middle of a critical emergency. Such scenarios necessitate that a radio signal source be localized by other network nodes efficiently, using minimal information. We propose two new algorithms for estimating the position of an uncooperative transmitter, based on the received signal strength (RSS of a single target message at a set of receivers whose coordinates are known. As an extension to the concept of centroid localization, our mechanisms weigh each receiver's coordinates based on the message's relative RSS at that receiver, with respect to the span of RSS values over all receivers. The weights may decrease from the highest RSS receiver either linearly or exponentially. Our simulation results demonstrate that for all but the most sparsely populated wireless networks, our exponentially weighted mechanism localizes a target node within the regulations stipulated for emergency services location accuracy.

  4. Design and implementation of smart sensor nodes for wireless disaster monitoring systems

    Science.gov (United States)

    Chen, Yih-Fan; Wu, Wen-Jong; Chen, Chun-Kuang; Wen, Chih-Min; Jin, Ming-Hui; Gau, Chung-Yun; Chang, Chih-Chie; Lee, Chih-Kung

    2004-07-01

    A newly developed smart sensor node that can monitor the safety of temporary structures such as scaffolds at construction sites is detailed in this paper. The design methodology and its trade-offs, as well as its influence on the optimization of sensor networks, is examined. The potential impact on civil engineering construction sites, environmental and natural disaster pre-warning issues, etc., all of which are foundations of smart sensor nodes and corresponding smart sensor networks, is also presented. To minimize the power requirements in order to achieve a true wireless system both in terms of signal and power, a sensor node was designed by adopting an 8051-based micro-controller, an ISM band RF transceiver, and an auto-balanced strain gage signal conditioner. With the built-in RF transceiver, all measurement data can be transmitted to a local control center for data integrity, security, central monitoring, and full-scale analysis. As a battery is the only well-established power source and there is a strong desire to eliminate the need to install bulky power lines, this system designed includes a battery-powered core with optimal power efficiency. To further extend the service life of the built-in power source, a power control algorithm has been embedded in the microcontroller of each sensor node. The entire system has been verified by experimental tests on full-scale scaffold monitoring. The results show that this system provides a practical method to monitor the structure safety in real time and possesses the potential of reducing maintenance costs significantly. The design of the sensor node, central control station, and the integration of several kinds of wireless communication protocol, all of which are successfully integrated to demonstrate the capabilities of this newly developed system, are detailed. Potential impact to the network topology is briefly examined as well.

  5. Adaptive LINE-P: An Adaptive Linear Energy Prediction Model for Wireless Sensor Network Nodes.

    Science.gov (United States)

    Ahmed, Faisal; Tamberg, Gert; Le Moullec, Yannick; Annus, Paul

    2018-04-05

    In the context of wireless sensor networks, energy prediction models are increasingly useful tools that can facilitate the power management of the wireless sensor network (WSN) nodes. However, most of the existing models suffer from the so-called fixed weighting parameter, which limits their applicability when it comes to, e.g., solar energy harvesters with varying characteristics. Thus, in this article we propose the Adaptive LINE-P (all cases) model that calculates adaptive weighting parameters based on the stored energy profiles. Furthermore, we also present a profile compression method to reduce the memory requirements. To determine the performance of our proposed model, we have used real data for the solar and wind energy profiles. The simulation results show that our model achieves 90-94% accuracy and that the compressed method reduces memory overheads by 50% as compared to state-of-the-art models.

  6. Software test and validation of wireless sensor nodes used in nuclear power plant

    International Nuclear Information System (INIS)

    Deng Changjian; Chen Dongyi; Zhang Heng

    2015-01-01

    The software test and validation of wireless sensor nodes is one of the key approaches to improve or guarantee the reliability of wireless network application in nuclear power plants (NPPs). At first, to validate the software test, some concepts are defined quantitatively, for example the robustness of software, the reliability of software, and the security of software. Then the development tools and simulators of discrete event drive operating system are compared, in order to present robustness, reliability and security of software test approach based on input-output function. Some simple preliminary test results are given to show that different development software can obtain almost same measurement and communication results although the software of special application may be different than normal application. (author)

  7. Privacy-preserving data aggregation in two-tiered wireless sensor networks with mobile nodes.

    Science.gov (United States)

    Yao, Yonglei; Liu, Jingfa; Xiong, Neal N

    2014-11-10

    Privacy-preserving data aggregation in wireless sensor networks (WSNs) with mobile nodes is a challenging problem, as an accurate aggregation result should be derived in a privacy-preserving manner, under the condition that nodes are mobile and have no pre-specified keys for cryptographic operations. In this paper, we focus on the SUM aggregation function and propose two privacy-preserving data aggregation protocols for two-tiered sensor networks with mobile nodes: Privacy-preserving Data Aggregation against non-colluded Aggregator and Sink (PDAAS) and Privacy-preserving Data Aggregation against Colluded Aggregator and Sink (PDACAS). Both protocols guarantee that the sink can derive the SUM of all raw sensor data but each sensor's raw data is kept confidential. In PDAAS, two keyed values are used, one shared with the sink and the other shared with the aggregator. PDAAS can protect the privacy of sensed data against external eavesdroppers, compromised sensor nodes, the aggregator or the sink, but fails if the aggregator and the sink collude. In PDACAS, multiple keyed values are used in data perturbation, which are not shared with the aggregator or the sink. PDACAS can protect the privacy of sensor nodes even the aggregator and the sink collude, at the cost of a little more overhead than PDAAS. Thorough analysis and experiments are conducted, which confirm the efficacy and efficiency of both schemes.

  8. Vibration energy harvesting in railway tunnels with a wireless sensor node application

    Energy Technology Data Exchange (ETDEWEB)

    Wischke, Martin

    2012-07-01

    Vibration harvesting is a promising concept to prolong the lifetime of batterypowered stand-alone systems, or even to enable their energy-autonomy. This thesis focuses on ambient vibrations converted by electromechanical transducers into electricity. The final goal is energy scavenging from train-induced vibrations in railway tunnels. This is achieved via the development of a suitable harvester for this environment and the practical demonstration of a vibrationpowered wireless sensor node (WSN). At the beginning of this thesis, extensive vibration measurements were performed in several traffic tunnels. The obtained unique data set formed the basis for the design and test of several harvesters. The railway sleeper was chosen as usable harvester location. A shock-resistant double-side suspended piezoelectric cantilever was developed. Several cantilevers with different eigenfrequencies are combined in an array, creating a robust harvester with a broad bandwidth. A field test of 7 days in the Loetschbergbasis-tunnel verified that, on average the sufficient energy for powering a virtual wireless sensor node was scavenged. For application in a real WSN, the harvester array was scaled up to 10 cantilevers. The power management for the sensor node was developed concurrently. The central component is a power switch that monitors the energy level in the system's storage capacitor and only triggers the wireless interface when sufficient energy is available. Combined with a train detection circuit, the presented energy-autonomous WSN reliably reports every passing vehicle. In addition to the development of an energy-autonomous fully integrated WSN, this work investigates nonlinear properties of PZT ceramics. Consideration of the elastostriction and the electrostriction enables a more precises prediction of the tip displacement of a piezoelectric cantilever actuator. Further, the elastostriction is exploited to modify the resonance frequency of a bimorph cantilever. Basing

  9. Evaluasi Pemanfaatan Wireless Internet Protocol Access System di Kota Malang

    Directory of Open Access Journals (Sweden)

    Ahmad Budi Setiawan

    2012-03-01

    Full Text Available WIPAS (Wireless Internet Protocol Accsess System adalah salah satu teknologi pita lebar (broadband yang terbaru. Teknologi tersebut dikembangkan berdasarkan model point-to-multipoint access system pada jaringan nirkabel tetap atau Fixed Wireless Access (FWA dengan memanfaatkan pita frekuensi 26-GHz. Dengan besarnya pita frekuensi yang digunakan, teknologi WIPAS dapat menampung kapasitas akses untuk lalu lintas jaringan yang sangat besar. Dalam penelitian ini akan dikaji dan dievaluasi efektifitas penggunaan teknologi WIPAS melalui kasus pemanfaatan teknologi WIPAS untuk pemberdayaan komunitas di kota Malang. Dalam penelitian ini juga akan dideskripsikan pemanfaatan teknologi WIPAS untuk melihat manfaat penggunaan teknologi tersebut. Penelitian ini dilakukan dengan metode kualitatif dengan melakukan evaluasi terhadap infrastruktur yang telah dibangun untuk melihat efektifitas pemanfaatan WIPAS. Hasil penelitian ini adalah sebuah kajian evaluatif tentang pemanfaatan WIPAS di kota Malang dan rekomendasi untuk implementasi lebih lanjut.

  10. A Solar Energy Powered Autonomous Wireless Actuator Node for Irrigation Systems

    OpenAIRE

    Lajara, Rafael; Alberola, Jorge; Pelegr?-Sebasti?, Jos?

    2010-01-01

    The design of a fully autonomous and wireless actuator node ("wEcoValve mote") based on the IEEE 802.15.4 standard is presented. The system allows remote control (open/close) of a 3-lead magnetic latch solenoid, commonly used in drip irrigation systems in applications such as agricultural areas, greenhouses, gardens, etc. The very low power consumption of the system in conjunction with the low power consumption of the valve, only when switching positions, allows the system to be solar powered...

  11. Data Collection Method for Mobile Control Sink Node in Wireless Sensor Network Based on Compressive Sensing

    Directory of Open Access Journals (Sweden)

    Ling Yongfa

    2016-01-01

    Full Text Available The paper proposes a mobile control sink node data collection method in the wireless sensor network based on compressive sensing. This method, with regular track, selects the optimal data collection points in the monitoring area via the disc method, calcu-lates the shortest path by using the quantum genetic algorithm, and hence determines the data collection route. Simulation results show that this method has higher network throughput and better energy efficiency, capable of collecting a huge amount of data with balanced energy consumption in the network.

  12. A long-term stable power supply μDMFC stack for wireless sensor node applications

    International Nuclear Information System (INIS)

    Wu, Z L; Wang, X H; Teng, F; Li, X Z; Wu, X M; Liu, L T

    2013-01-01

    A passive, air-breathing 4-cell micro direct methanol fuel cell (μDMFC) stack is presented featured by a fuel delivery structure for a long-term and stable power supply. The fuel is reserved in a T shape tank and diffuses through the porous diffusion layer to the catalyst at anode. The stack has a maximum power output of 110mW with 3M methanol at room temperature and output a stable power even thought 5% fuel is the remained in reservoir. Its performance decreases less than 3% for 100 hours continuous work. As such, it is believed to be more applicable for powering the wireless sensor nodes

  13. GTRF: a game theory approach for regulating node behavior in real-time wireless sensor networks.

    Science.gov (United States)

    Lin, Chi; Wu, Guowei; Pirozmand, Poria

    2015-06-04

    The selfish behaviors of nodes (or selfish nodes) cause packet loss, network congestion or even void regions in real-time wireless sensor networks, which greatly decrease the network performance. Previous methods have focused on detecting selfish nodes or avoiding selfish behavior, but little attention has been paid to regulating selfish behavior. In this paper, a Game Theory-based Real-time & Fault-tolerant (GTRF) routing protocol is proposed. GTRF is composed of two stages. In the first stage, a game theory model named VA is developed to regulate nodes' behaviors and meanwhile balance energy cost. In the second stage, a jumping transmission method is adopted, which ensures that real-time packets can be successfully delivered to the sink before a specific deadline. We prove that GTRF theoretically meets real-time requirements with low energy cost. Finally, extensive simulations are conducted to demonstrate the performance of our scheme. Simulation results show that GTRF not only balances the energy cost of the network, but also prolongs network lifetime.

  14. Detecting unknown attacks in wireless sensor networks that contain mobile nodes.

    Science.gov (United States)

    Banković, Zorana; Fraga, David; Moya, José M; Vallejo, Juan Carlos

    2012-01-01

    As wireless sensor networks are usually deployed in unattended areas, security policies cannot be updated in a timely fashion upon identification of new attacks. This gives enough time for attackers to cause significant damage. Thus, it is of great importance to provide protection from unknown attacks. However, existing solutions are mostly concentrated on known attacks. On the other hand, mobility can make the sensor network more resilient to failures, reactive to events, and able to support disparate missions with a common set of sensors, yet the problem of security becomes more complicated. In order to address the issue of security in networks with mobile nodes, we propose a machine learning solution for anomaly detection along with the feature extraction process that tries to detect temporal and spatial inconsistencies in the sequences of sensed values and the routing paths used to forward these values to the base station. We also propose a special way to treat mobile nodes, which is the main novelty of this work. The data produced in the presence of an attacker are treated as outliers, and detected using clustering techniques. These techniques are further coupled with a reputation system, in this way isolating compromised nodes in timely fashion. The proposal exhibits good performances at detecting and confining previously unseen attacks, including the cases when mobile nodes are compromised.

  15. Inferring Human Activity Recognition with Ambient Sound on Wireless Sensor Nodes.

    Science.gov (United States)

    Salomons, Etto L; Havinga, Paul J M; van Leeuwen, Henk

    2016-09-27

    A wireless sensor network that consists of nodes with a sound sensor can be used to obtain context awareness in home environments. However, the limited processing power of wireless nodes offers a challenge when extracting features from the signal, and subsequently, classifying the source. Although multiple papers can be found on different methods of sound classification, none of these are aimed at limited hardware or take the efficiency of the algorithms into account. In this paper, we compare and evaluate several classification methods on a real sensor platform using different feature types and classifiers, in order to find an approach that results in a good classifier that can run on limited hardware. To be as realistic as possible, we trained our classifiers using sound waves from many different sources. We conclude that despite the fact that the classifiers are often of low quality due to the highly restricted hardware resources, sufficient performance can be achieved when (1) the window length for our classifiers is increased, and (2) if we apply a two-step approach that uses a refined classification after a global classification has been performed.

  16. Inferring Human Activity Recognition with Ambient Sound on Wireless Sensor Nodes

    Directory of Open Access Journals (Sweden)

    Etto L. Salomons

    2016-09-01

    Full Text Available A wireless sensor network that consists of nodes with a sound sensor can be used to obtain context awareness in home environments. However, the limited processing power of wireless nodes offers a challenge when extracting features from the signal, and subsequently, classifying the source. Although multiple papers can be found on different methods of sound classification, none of these are aimed at limited hardware or take the efficiency of the algorithms into account. In this paper, we compare and evaluate several classification methods on a real sensor platform using different feature types and classifiers, in order to find an approach that results in a good classifier that can run on limited hardware. To be as realistic as possible, we trained our classifiers using sound waves from many different sources. We conclude that despite the fact that the classifiers are often of low quality due to the highly restricted hardware resources, sufficient performance can be achieved when (1 the window length for our classifiers is increased, and (2 if we apply a two-step approach that uses a refined classification after a global classification has been performed.

  17. Adaptive multi-node multiple input and multiple output (MIMO) transmission for mobile wireless multimedia sensor networks.

    Science.gov (United States)

    Cho, Sunghyun; Choi, Ji-Woong; You, Cheolwoo

    2013-10-02

    Mobile wireless multimedia sensor networks (WMSNs), which consist of mobile sink or sensor nodes and use rich sensing information, require much faster and more reliable wireless links than static wireless sensor networks (WSNs). This paper proposes an adaptive multi-node (MN) multiple input and multiple output (MIMO) transmission to improve the transmission reliability and capacity of mobile sink nodes when they experience spatial correlation. Unlike conventional single-node (SN) MIMO transmission, the proposed scheme considers the use of transmission antennas from more than two sensor nodes. To find an optimal antenna set and a MIMO transmission scheme, a MN MIMO channel model is introduced first, followed by derivation of closed-form ergodic capacity expressions with different MIMO transmission schemes, such as space-time transmit diversity coding and spatial multiplexing. The capacity varies according to the antenna correlation and the path gain from multiple sensor nodes. Based on these statistical results, we propose an adaptive MIMO mode and antenna set switching algorithm that maximizes the ergodic capacity of mobile sink nodes. The ergodic capacity of the proposed scheme is compared with conventional SN MIMO schemes, where the gain increases as the antenna correlation and path gain ratio increase.

  18. Convergence of broadband optical and wireless access networks

    Science.gov (United States)

    Chang, Gee-Kung; Jia, Zhensheng; Chien, Hung-Chang; Chowdhury, Arshad; Hsueh, Yu-Ting; Yu, Jianjun

    2009-01-01

    This paper describes convergence of optical and wireless access networks for delivering high-bandwidth integrated services over optical fiber and air links. Several key system technologies are proposed and experimentally demonstrated. We report here, for the first ever, a campus-wide field trial demonstration of radio-over-fiber (RoF) system transmitting uncompressed standard-definition (SD) high-definition (HD) real-time video contents, carried by 2.4-GHz radio and 60- GHz millimeter-wave signals, respectively, over 2.5-km standard single mode fiber (SMF-28) through the campus fiber network at Georgia Institute of Technology (GT). In addition, subsystem technologies of Base Station and wireless tranceivers operated at 60 GHz for real-time video distribution have been developed and tested.

  19. Replica Node Detection Using Enhanced Single Hop Detection with Clonal Selection Algorithm in Mobile Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    L. S. Sindhuja

    2016-01-01

    Full Text Available Security of Mobile Wireless Sensor Networks is a vital challenge as the sensor nodes are deployed in unattended environment and they are prone to various attacks. One among them is the node replication attack. In this, the physically insecure nodes are acquired by the adversary to clone them by having the same identity of the captured node, and the adversary deploys an unpredictable number of replicas throughout the network. Hence replica node detection is an important challenge in Mobile Wireless Sensor Networks. Various replica node detection techniques have been proposed to detect these replica nodes. These methods incur control overheads and the detection accuracy is low when the replica is selected as a witness node. This paper proposes to solve these issues by enhancing the Single Hop Detection (SHD method using the Clonal Selection algorithm to detect the clones by selecting the appropriate witness nodes. The advantages of the proposed method include (i increase in the detection ratio, (ii decrease in the control overhead, and (iii increase in throughput. The performance of the proposed work is measured using detection ratio, false detection ratio, packet delivery ratio, average delay, control overheads, and throughput. The implementation is done using ns-2 to exhibit the actuality of the proposed work.

  20. A transmission power optimization with a minimum node degree for energy-efficient wireless sensor networks with full-reachability.

    Science.gov (United States)

    Chen, Yi-Ting; Horng, Mong-Fong; Lo, Chih-Cheng; Chu, Shu-Chuan; Pan, Jeng-Shyang; Liao, Bin-Yih

    2013-03-20

    Transmission power optimization is the most significant factor in prolonging the lifetime and maintaining the connection quality of wireless sensor networks. Un-optimized transmission power of nodes either interferes with or fails to link neighboring nodes. The optimization of transmission power depends on the expected node degree and node distribution. In this study, an optimization approach to an energy-efficient and full reachability wireless sensor network is proposed. In the proposed approach, an adjustment model of the transmission range with a minimum node degree is proposed that focuses on topology control and optimization of the transmission range according to node degree and node density. The model adjusts the tradeoff between energy efficiency and full reachability to obtain an ideal transmission range. In addition, connectivity and reachability are used as performance indices to evaluate the connection quality of a network. The two indices are compared to demonstrate the practicability of framework through simulation results. Furthermore, the relationship between the indices under the conditions of various node degrees is analyzed to generalize the characteristics of node densities. The research results on the reliability and feasibility of the proposed approach will benefit the future real deployments.

  1. A Transmission Power Optimization with a Minimum Node Degree for Energy-Efficient Wireless Sensor Networks with Full-Reachability

    Science.gov (United States)

    Chen, Yi-Ting; Horng, Mong-Fong; Lo, Chih-Cheng; Chu, Shu-Chuan; Pan, Jeng-Shyang; Liao, Bin-Yih

    2013-01-01

    Transmission power optimization is the most significant factor in prolonging the lifetime and maintaining the connection quality of wireless sensor networks. Un-optimized transmission power of nodes either interferes with or fails to link neighboring nodes. The optimization of transmission power depends on the expected node degree and node distribution. In this study, an optimization approach to an energy-efficient and full reachability wireless sensor network is proposed. In the proposed approach, an adjustment model of the transmission range with a minimum node degree is proposed that focuses on topology control and optimization of the transmission range according to node degree and node density. The model adjusts the tradeoff between energy efficiency and full reachability to obtain an ideal transmission range. In addition, connectivity and reachability are used as performance indices to evaluate the connection quality of a network. The two indices are compared to demonstrate the practicability of framework through simulation results. Furthermore, the relationship between the indices under the conditions of various node degrees is analyzed to generalize the characteristics of node densities. The research results on the reliability and feasibility of the proposed approach will benefit the future real deployments. PMID:23519351

  2. Revisiting of Channel Access Mechanisms in Mobile Wireless Networks through Exploiting Physical Layer Technologies

    Directory of Open Access Journals (Sweden)

    Junmei Yao

    2018-01-01

    Full Text Available The wireless local area networks (WLANs have been widely deployed with the rapid development of mobile devices and have further been brought into new applications with infrastructure mobility due to the growth of unmanned aerial vehicles (UAVs. However, the WLANs still face persistent challenge on increasing the network throughput to meet the customer’s requirement and fight against the node mobility. Interference is a well-known issue that would degrade the network performance due to the broadcast characteristics of the wireless signals. Moreover, with infrastructure mobility, the interference becomes the key obstacle in pursuing the channel capacity. Legacy interference management mechanism through the channel access control in the MAC layer design of the 802.11 standard has some well-known drawbacks, such as exposed and hidden terminal problems, inefficient rate adaptation, and retransmission schemes, making the efficient interference management an everlasting research topic over the years. Recently, interference management through exploiting physical layer mechanisms has attracted much research interest and has been proven to be a promising way to improve the network throughput, especially under the infrastructure mobility scenarios which provides more indicators for node dynamics. In this paper, we introduce a series of representative physical layer techniques and analyze how they are exploited for interference management to improve the network performance. We also provide some discussions about the research challenges and give potential future research topics in this area.

  3. An Adaptive Channel Access Method for Dynamic Super Dense Wireless Sensor Networks.

    Science.gov (United States)

    Lei, Chunyang; Bie, Hongxia; Fang, Gengfa; Zhang, Xuekun

    2015-12-03

    Super dense and distributed wireless sensor networks have become very popular with the development of small cell technology, Internet of Things (IoT), Machine-to-Machine (M2M) communications, Vehicular-to-Vehicular (V2V) communications and public safety networks. While densely deployed wireless networks provide one of the most important and sustainable solutions to improve the accuracy of sensing and spectral efficiency, a new channel access scheme needs to be designed to solve the channel congestion problem introduced by the high dynamics of competing nodes accessing the channel simultaneously. In this paper, we firstly analyzed the channel contention problem using a novel normalized channel contention analysis model which provides information on how to tune the contention window according to the state of channel contention. We then proposed an adaptive channel contention window tuning algorithm in which the contention window tuning rate is set dynamically based on the estimated channel contention level. Simulation results show that our proposed adaptive channel access algorithm based on fast contention window tuning can achieve more than 95 % of the theoretical optimal throughput and 0 . 97 of fairness index especially in dynamic and dense networks.

  4. An Adaptive Channel Access Method for Dynamic Super Dense Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Chunyang Lei

    2015-12-01

    Full Text Available Super dense and distributed wireless sensor networks have become very popular with the development of small cell technology, Internet of Things (IoT, Machine-to-Machine (M2M communications, Vehicular-to-Vehicular (V2V communications and public safety networks. While densely deployed wireless networks provide one of the most important and sustainable solutions to improve the accuracy of sensing and spectral efficiency, a new channel access scheme needs to be designed to solve the channel congestion problem introduced by the high dynamics of competing nodes accessing the channel simultaneously. In this paper, we firstly analyzed the channel contention problem using a novel normalized channel contention analysis model which provides information on how to tune the contention window according to the state of channel contention. We then proposed an adaptive channel contention window tuning algorithm in which the contention window tuning rate is set dynamically based on the estimated channel contention level. Simulation results show that our proposed adaptive channel access algorithm based on fast contention window tuning can achieve more than 95 % of the theoretical optimal throughput and 0 . 97 of fairness index especially in dynamic and dense networks.

  5. QoS Modeling for End-to-End Performance Evaluation over Networks with Wireless Access

    Directory of Open Access Journals (Sweden)

    Gómez Gerardo

    2010-01-01

    Full Text Available This paper presents an end-to-end Quality of Service (QoS model for assessing the performance of data services over networks with wireless access. The proposed model deals with performance degradation across protocol layers using a bottom-up strategy, starting with the physical layer and moving on up to the application layer. This approach makes it possible to analytically assess performance at different layers, thereby facilitating a possible end-to-end optimization process. As a representative case, a scenario where a set of mobile terminals connected to a streaming server through an IP access node has been studied. UDP, TCP, and the new TCP-Friendly Rate Control (TFRC protocols were analyzed at the transport layer. The radio interface consisted of a variable-rate multiuser and multichannel subsystem, including retransmissions and adaptive modulation and coding. The proposed analytical QoS model was validated on a real-time emulator of an end-to-end network with wireless access and proved to be very useful for the purposes of service performance estimation and optimization.

  6. A Fuzzy Preprocessing Module for Optimizing the Access Network Selection in Wireless Networks

    Directory of Open Access Journals (Sweden)

    Faisal Kaleem

    2013-01-01

    Full Text Available A heterogeneous wireless network is characterized by the presence of different wireless access technologies that coexist in an overlay fashion. These wireless access technologies usually differ in terms of their operating parameters. On the other hand, Mobile Stations (MSs in a heterogeneous wireless network are equipped with multiple interfaces to access different types of services from these wireless access technologies. The ultimate goal of these heterogeneous wireless networks is to provide global connectivity with efficient ubiquitous computing to these MSs based on the Always Best Connected (ABC principle. This is where the need for intelligent and efficient Vertical Handoffs (VHOs between wireless technologies in a heterogeneous environment becomes apparent. This paper presents the design and implementation of a fuzzy multicriteria based Vertical Handoff Necessity Estimation (VHONE scheme that determines the proper time for VHO, while considering the continuity and quality of the currently utilized service, and the end-users' satisfaction.

  7. A Fine-Grained Data Access Control System in Wireless Sensor Network

    Directory of Open Access Journals (Sweden)

    Boniface K. Alese

    2015-12-01

    Full Text Available The evolving realities of Wireless Sensor Network (WSN deployed to various terrain of life require serving multiple applications. As large amount of sensed data are distributed and stored in individual sensors nodes, the illegal access to these sensitive data can be devastating. Consequently, data insecurity becomes a big concern. This study, therefore, proposes a fine-grained access control system which only requires the right set of users to access a particular data, based on their access privileges in the sensor networks. It is designed using Priccess Protocol with Access policy formulation adopting the principle of Bell Lapadula model as well as Attribute-Based Encryption (ABE to control access to sensor data. The functionality of the proposed system is simulated using Netbeans. The performance analysis of the proposed system using execution time and size of the key show that the higher the key size, the harder it becomes for the attacker to hack the system. Additionally, the time taken for the proposed work is lesser which makes the work faster than the existing work. Consequently, a well secure interactive web-based application that could facilitates the field officers access to stored data in safe and secure manner is developed.

  8. An Effective Cuckoo Search Algorithm for Node Localization in Wireless Sensor Network.

    Science.gov (United States)

    Cheng, Jing; Xia, Linyuan

    2016-08-31

    Localization is an essential requirement in the increasing prevalence of wireless sensor network (WSN) applications. Reducing the computational complexity, communication overhead in WSN localization is of paramount importance in order to prolong the lifetime of the energy-limited sensor nodes and improve localization performance. This paper proposes an effective Cuckoo Search (CS) algorithm for node localization. Based on the modification of step size, this approach enables the population to approach global optimal solution rapidly, and the fitness of each solution is employed to build mutation probability for avoiding local convergence. Further, the approach restricts the population in the certain range so that it can prevent the energy consumption caused by insignificant search. Extensive experiments were conducted to study the effects of parameters like anchor density, node density and communication range on the proposed algorithm with respect to average localization error and localization success ratio. In addition, a comparative study was conducted to realize the same localization task using the same network deployment. Experimental results prove that the proposed CS algorithm can not only increase convergence rate but also reduce average localization error compared with standard CS algorithm and Particle Swarm Optimization (PSO) algorithm.

  9. Air launch wireless sensor nodes (ALSN) for battle damage assessment (BDA)

    Science.gov (United States)

    Back, Jason M.; Beck, Steven D.; Frank, Mark A.; Hoenes, Eric

    2006-05-01

    This paper summarizes the Defense Threat Reduction Agency (DTRA) sponsored development and demonstration of an Air Launched Sensor Node (ALSN) system designed to fill DTRA's immediate need to support the Global Strike requirement of weapon-borne deliverable sensors for Battle Damage Assessment (BDA). Unattended ground sensors were integrated into a CBU-103 Tactical Munitions Dispenser (TMD), and flight test demonstrated with the 46 th Test Wing at Eglin AFB, FL. The objectives of the ALSN program were to repackage an existing multi-sensor node system to conform to the payload envelope and deployment configuration design; to integrate this payload into the CBU-103 TMD; and to conduct a combined payload flight test demonstration. The final sensor node included multiple sensors a microphone, a geophone, and multiple directional Passive Infrared (PIR) detectors with processing electronics, a low power wireless communications 802.15.4 mesh network, GPS (Global Positioning System), and power integrated into a form-fit BLU-97 munitions deployable package. This paper will present and discuss the flight test, results, and ALSN performance.

  10. An Autonomous Wireless Sensor Node With Asynchronous ECG Monitoring in 0.18 μ m CMOS.

    Science.gov (United States)

    Mansano, Andre L; Li, Yongjia; Bagga, Sumit; Serdijn, Wouter A

    2016-06-01

    The design of a 13.56 MHz/402 MHz autonomous wireless sensor node with asynchronous ECG monitoring for near field communication is presented. The sensor node consists of an RF energy harvester (RFEH), a power management unit, an ECG readout, a data encoder and an RF backscattering transmitter. The energy harvester supplies the system with 1.25 V and offers a power conversion efficiency of 19% from a -13 dBm RF source at 13.56 MHz. The power management unit regulates the output voltage of the RFEH to supply the ECG readout with VECG = 0.95 V and the data encoder with VDE = 0.65 V . The ECG readout comprises an analog front-end (low noise amplifier and programmable voltage to current converter) and an asynchronous level crossing ADC with 8 bits resolution. The ADC output is encoded by a pulse generator that drives a backscattering transmitter at 402 MHz. The total power consumption of the sensor node circuitry is 9.7 μ W for a data rate of 90 kb/s and a heart rate of 70 bpm. The chip has been designed in a 0.18 μm CMOS process and shows superior RF input power sensitivity and lower power consumption when compared to previous works.

  11. Centralized optical-frequency-comb-based RF carrier generator for DWDM fiber-wireless access systems

    DEFF Research Database (Denmark)

    Pang, Xiaodan; Beltran, Marta; Sanchez, Jose

    2014-01-01

    In this paper, we report on a gigabit capacity fiber-wireless system that enables smooth integration between high-speed wireless networks and dense wavelength-division-multiplexing (DWDM) access networks. By employing a centralized optical frequency comb, both the wireline and the wireless services...

  12. A Trust Evaluation Algorithm for Wireless Sensor Networks Based on Node Behaviors and D-S Evidence Theory

    Directory of Open Access Journals (Sweden)

    Jiangwen Wan

    2011-01-01

    Full Text Available For wireless sensor networks (WSNs, many factors, such as mutual interference of wireless links, battlefield applications and nodes exposed to the environment without good physical protection, result in the sensor nodes being more vulnerable to be attacked and compromised. In order to address this network security problem, a novel trust evaluation algorithm defined as NBBTE (Node Behavioral Strategies Banding Belief Theory of the Trust Evaluation Algorithm is proposed, which integrates the approach of nodes behavioral strategies and modified evidence theory. According to the behaviors of sensor nodes, a variety of trust factors and coefficients related to the network application are established to obtain direct and indirect trust values through calculating weighted average of trust factors. Meanwhile, the fuzzy set method is applied to form the basic input vector of evidence. On this basis, the evidence difference is calculated between the indirect and direct trust values, which link the revised D-S evidence combination rule to finally synthesize integrated trust value of nodes. The simulation results show that NBBTE can effectively identify malicious nodes and reflects the characteristic of trust value that ‘hard to acquire and easy to lose’. Furthermore, it is obvious that the proposed scheme has an outstanding advantage in terms of illustrating the real contribution of different nodes to trust evaluation.

  13. A trust evaluation algorithm for wireless sensor networks based on node behaviors and D-S evidence theory.

    Science.gov (United States)

    Feng, Renjian; Xu, Xiaofeng; Zhou, Xiang; Wan, Jiangwen

    2011-01-01

    For wireless sensor networks (WSNs), many factors, such as mutual interference of wireless links, battlefield applications and nodes exposed to the environment without good physical protection, result in the sensor nodes being more vulnerable to be attacked and compromised. In order to address this network security problem, a novel trust evaluation algorithm defined as NBBTE (Node Behavioral Strategies Banding Belief Theory of the Trust Evaluation Algorithm) is proposed, which integrates the approach of nodes behavioral strategies and modified evidence theory. According to the behaviors of sensor nodes, a variety of trust factors and coefficients related to the network application are established to obtain direct and indirect trust values through calculating weighted average of trust factors. Meanwhile, the fuzzy set method is applied to form the basic input vector of evidence. On this basis, the evidence difference is calculated between the indirect and direct trust values, which link the revised D-S evidence combination rule to finally synthesize integrated trust value of nodes. The simulation results show that NBBTE can effectively identify malicious nodes and reflects the characteristic of trust value that 'hard to acquire and easy to lose'. Furthermore, it is obvious that the proposed scheme has an outstanding advantage in terms of illustrating the real contribution of different nodes to trust evaluation.

  14. Self-Powered Wireless Smart Sensor Node Enabled by an Ultrastable, Highly Efficient, and Superhydrophobic-Surface-Based Triboelectric Nanogenerator.

    Science.gov (United States)

    Zhao, Kun; Wang, Zhong Lin; Yang, Ya

    2016-09-27

    Wireless sensor networks will be responsible for a majority of the fast growth in intelligent systems in the next decade. However, most of the wireless smart sensor nodes require an external power source such as a Li-ion battery, where the labor cost and environmental waste issues of replacing batteries have largely limited the practical applications. Instead of using a Li-ion battery, we report an ultrastable, highly efficient, and superhydrophobic-surface-based triboelectric nanogenerator (TENG) to scavenge wind energy for sustainably powering a wireless smart temperature sensor node. There is no decrease in the output voltage and current of the TENG after continuous working for about 14 h at a wind speed of 12 m/s. Through a power management circuit, the TENG can deliver a constant output voltage of 3.3 V and a pulsed output current of about 100 mA to achieve highly efficient energy storage in a capacitor. A wireless smart temperature sensor node can be sustainably powered by the TENG for sending the real-time temperature data to an iPhone under a working distance of 26 m, demonstrating the feasibility of the self-powered wireless smart sensor networks.

  15. Optimal Energy Efficiency Fairness of Nodes in Wireless Powered Communication Networks.

    Science.gov (United States)

    Zhang, Jing; Zhou, Qingjie; Ng, Derrick Wing Kwan; Jo, Minho

    2017-09-15

    In wireless powered communication networks (WPCNs), it is essential to research energy efficiency fairness in order to evaluate the balance of nodes for receiving information and harvesting energy. In this paper, we propose an efficient iterative algorithm for optimal energy efficiency proportional fairness in WPCN. The main idea is to use stochastic geometry to derive the mean proportionally fairness utility function with respect to user association probability and receive threshold. Subsequently, we prove that the relaxed proportionally fairness utility function is a concave function for user association probability and receive threshold, respectively. At the same time, a sub-optimal algorithm by exploiting alternating optimization approach is proposed. Through numerical simulations, we demonstrate that our sub-optimal algorithm can obtain a result close to optimal energy efficiency proportional fairness with significant reduction of computational complexity.

  16. Power Minimization of a Wireless Sensor Node under Different Rate Constraints

    KAUST Repository

    Solares, Jose

    2016-03-31

    Future wireless networks are expected to handle a huge number of devices, including sensors, within a low energy consumption. In this scope, we present, in this paper, performance of wireless sensor networks (WSN). Specifically, we aim at finding the optimal transmit power of a node communicating with multiple receivers in a cognitive radio (CR) spectrum sharing framework, i.e., existence of an active primary user. We first present the optimal power with single secondary receiver, under instantaneous or average transmission rate constraints. Then, we propose a suboptimal solution for an easier, yet efficient, implementation and perform insightful asymptotical analysis for both schemes with Rayleigh fading. Afterwards, we extend our results to a multiple secondary receives CR scenario and present the corresponding optimal and suboptimal transmit power while satisfying independent peak/average and sum of peak/average transmission rate constraints. The corresponding numerical results are provided for Rayleigh and Nakagami-m fading channels. We characterize some transmission outage events depending on system parameters.

  17. Robust Floor Determination Algorithm for Indoor Wireless Localization Systems under Reference Node Failure

    Directory of Open Access Journals (Sweden)

    Kriangkrai Maneerat

    2016-01-01

    Full Text Available One of the challenging problems for indoor wireless multifloor positioning systems is the presence of reference node (RN failures, which cause the values of received signal strength (RSS to be missed during the online positioning phase of the location fingerprinting technique. This leads to performance degradation in terms of floor accuracy, which in turn affects other localization procedures. This paper presents a robust floor determination algorithm called Robust Mean of Sum-RSS (RMoS, which can accurately determine the floor on which mobile objects are located and can work under either the fault-free scenario or the RN-failure scenarios. The proposed fault tolerance floor algorithm is based on the mean of the summation of the strongest RSSs obtained from the IEEE 802.15.4 Wireless Sensor Networks (WSNs during the online phase. The performance of the proposed algorithm is compared with those of different floor determination algorithms in literature. The experimental results show that the proposed robust floor determination algorithm outperformed the other floor algorithms and can achieve the highest percentage of floor determination accuracy in all scenarios tested. Specifically, the proposed algorithm can achieve greater than 95% correct floor determination under the scenario in which 40% of RNs failed.

  18. Contributed Review: Recent developments in acoustic energy harvesting for autonomous wireless sensor nodes applications

    Science.gov (United States)

    Khan, Farid Ullah; Khattak, Muhammad Umair

    2016-02-01

    Rapid developments in micro electronics, micro fabrication, ultra-large scale of integration, ultra-low power sensors, and wireless technology have greatly reduced the power consumption requirements of wireless sensor nodes (WSNs) and make it possible to operate these devices with energy harvesters. Likewise, other energy harvesters, acoustic energy harvesters (AEHs), have been developed and are gaining swift interest in last few years. This paper presents a review of AEHs reported in the literature for the applications of WSNs. Based on transduction mechanism, there are two types of AEHs: piezoelectric acoustic energy harvesters (PEAEHs) and electromagnetic acoustic energy harvesters (EMAEHs). The reported AEHs are mostly characterized under the sound pressure level (SPL) that ranges from 45 to 161 dB. The range for resonant frequency of the produced AEHs is from 146 Hz to 24 kHz and these produced 0.68 × 10-6 μW to 30 mW power. The maximum power (30 mW) is produced by a PEAEH, when the harvester is subjected to a SPL of 161 dB and 2.64 kHz frequency. However, for EMAEHs, the maximum power reported is about 1.96 mW (at 125 dB and 143 Hz). Under the comparable SPLs, the power production by the reported EMAEHs is relatively better than that of PEAEHs, moreover, due to lower resonant frequency, the EMAEHs are more feasible for the low frequency band acoustical environment.

  19. Power Minimization of a Wireless Sensor Node under Different Rate Constraints

    KAUST Repository

    Solares, Jose; Sboui, Lokman; Rezki, Zouheir; Alouini, Mohamed-Slim

    2016-01-01

    Future wireless networks are expected to handle a huge number of devices, including sensors, within a low energy consumption. In this scope, we present, in this paper, performance of wireless sensor networks (WSN). Specifically, we aim at finding the optimal transmit power of a node communicating with multiple receivers in a cognitive radio (CR) spectrum sharing framework, i.e., existence of an active primary user. We first present the optimal power with single secondary receiver, under instantaneous or average transmission rate constraints. Then, we propose a suboptimal solution for an easier, yet efficient, implementation and perform insightful asymptotical analysis for both schemes with Rayleigh fading. Afterwards, we extend our results to a multiple secondary receives CR scenario and present the corresponding optimal and suboptimal transmit power while satisfying independent peak/average and sum of peak/average transmission rate constraints. The corresponding numerical results are provided for Rayleigh and Nakagami-m fading channels. We characterize some transmission outage events depending on system parameters.

  20. Development and Successful Application of a Tree Movement Energy Harvesting Device, to Power a Wireless Sensor Node

    Directory of Open Access Journals (Sweden)

    Chris Knight

    2012-09-01

    Full Text Available Wireless sensor networks are becoming increasingly more common as a means to sense, measure, record and transmit data for scientific and engineering evaluation, remotely and autonomously. Usually, remotely located sensor nodes are powered by batteries which are recharged by solar or wind energy harvesters. Sometimes nodes are located in areas where these forms of energy harvesting are not possible due to local conditions, such as under the canopy of a forest. This article outlines the design and testing of a device capable of harvesting energy from tree movement, and shows the device powering a wireless sensor node continuously. The device uses the force and displacement of the movement of a tree trunk (of a 6 m tall tree to drive an electromagnetic generator that recharges a nickel metal hydride battery. The battery stores the energy from which a ~0.5 mW wireless sensor node is powered continuously. This demonstrated method of energy harvesting may allow the placement and powering of nodes in locations previously not possible.

  1. SELF-POWERED WIRELESS SENSOR NODE POWER MODELING BASED ON IEEE 802.11 COMMUNICATION PROTOCOL

    Energy Technology Data Exchange (ETDEWEB)

    Vivek Agarwal; Raymond A. DeCarlo; Lefteri H. Tsoukalas

    2016-04-01

    Design and technical advancements in sensing, processing, and wireless communication capabilities of small, portable devices known as wireless sensor nodes (WSNs) have drawn extensive research attention and are vastly applied in science and engineering applications. The WSNs are typically powered by a chemical battery source that has a load dependent finite lifetime. Most applications, including the nuclear industry applications, require WSNs to operate for an extended period of time beginning with their deployment. To ensure longevity, it is important to develop self-powered WSNs. The benefit of self-powered WSNs goes far beyond the cost savings of removing the need for cable installation and maintenance. Self-powered WSNs will potentially offer significant expansion in remote monitoring of nuclear facilities, and provide important data on plant equipment and component status during normal operation, as well as in case of abnormal operation, station blackouts or post-accident evaluation. Advancements in power harvesting technologies enable electric energy generation from many sources, including kinetic, thermal, and radiated energy. For the ongoing research at Idaho National Laboratory, a solid-state thermoelectric-based technology, the thermoelectric generator (TEG), is used to convert thermal energy to power a WSN. The design and development of TEGs to power WSNs that would remain active for a long period of time requires comprehensive understanding of WSN operational. This motivates the research in modeling the lifetime, i.e., power consumption, of a WSN by taking into consideration various node and network level activities. A WSN must perform three essential tasks: sense events, perform quick local information processing of sensed events, and wirelessly exchange locally processed data with the base station or with other WSNs in the network. Each task has a power cost per unit tine and an additional cost when switching between tasks. There are number of other

  2. A fractional-N frequency synthesizer for wireless sensor network nodes

    International Nuclear Information System (INIS)

    Ma Xiao; Du Zhankun; Liu Chang; Liu Ke; Yan Yuepeng; Ye Tianchun

    2014-01-01

    This paper presents a fractional-N frequency synthesizer for wireless sensor network (WSN) nodes. The proposed frequency synthesizer adopts a phase locked loop (PLL) based structure, which employs an LC voltage-controlled oscillator (VCO) with small VCO gain (K VCO ) and frequency step (f step ) variations, a charge pump (CP) with current changing in proportion with the division ratio and a 20-bit ΔΣ modulator, etc. To realize constant K VCO and f step , a novel capacitor sub-bands grouping method is proposed. The VCO sub-groups' sizes are arranged according to the maximal allowed K VCO variation of the system. Besides, a current mode logic divide-by-2 circuit with inside-loop buffers ensures the synthesizer generates I/Q quadrature signals robustly. This synthesizer is implemented in a 0.13 μm CMOS process. Measurement results show that the frequency synthesizer has a frequency span from 2.07 to 3.11 GHz and the typical phase noise is −86.34 dBc/Hz at 100 kHz offset and −114.17 dBc/Hz at 1 MHz offset with a loop bandwidth of about 200 kHz, which meet the WSN nodes' requirements. (semiconductor integrated circuits)

  3. Optimal Power Allocation of a Wireless Sensor Node under Different Rate Constraints

    KAUST Repository

    Solares, Jose

    2011-07-01

    Wireless sensor networks consist of the placement of sensors over a broad area in order to acquire data. Depending on the application, different design criteria should be considered in the construction of the sensors but among all of them, the battery life-cycle is of crucial interest. Power minimization is a problem that has been addressed from different approaches which include an analysis from an architectural perspective and with bit error rate and/or discrete instantaneous transmission rate constraints, among others. In this work, the optimal transmit power of a sensor node while satisfying different rate constraints is derived. First, an optimization problem with an instantaneous transmission rate constraint is addressed. Next, the optimal power is analyzed, but now with an average transmission rate constraint. The optimal solution for a class of fading channels, in terms of system parameters, is presented and a suboptimal solution is also proposed for an easier, yet efficient, implementation. Insightful asymptotical analysis for both schemes, considering a Rayleigh fading channel, are shown. Furthermore, the optimal power allocation for a sensor node in a cognitive radio environment is analyzed where an optimum solution for a class of fading channels is again derived. In all cases, numerical results are provided for either Rayleigh or Nakagami-m fading channels. The results obtained are extended to scenarios where we have either one transmitter-multiple receivers or multiple transmitters-one receiver.

  4. Collaborative Area Monitoring Using Wireless Sensor Networks with Stationary and Mobile Nodes

    Directory of Open Access Journals (Sweden)

    Theofanis P. Lambrou

    2009-01-01

    Full Text Available Monitoring a large area with stationary sensor networks requires a very large number of nodes which with current technology implies a prohibitive cost. The motivation of this work is to develop an architecture where a set of mobile sensors will collaborate with the stationary sensors in order to reliably detect and locate an event. The main idea of this collaborative architecture is that the mobile sensors should sample the areas that are least covered (monitored by the stationary sensors. Furthermore, when stationary sensors have a “suspicion” that an event may have occurred, they report it to a mobile sensor that can move closer to the suspected area and can confirm whether the event has occurred or not. An important component of the proposed architecture is that the mobile nodes autonomously decide their path based on local information (their own beliefs and measurements as well as information collected from the stationary sensors in a neighborhood around them. We believe that this approach is appropriate in the context of wireless sensor networks since it is not feasible to have an accurate global view of the state of the environment.

  5. A solar energy powered autonomous wireless actuator node for irrigation systems.

    Science.gov (United States)

    Lajara, Rafael; Alberola, Jorge; Pelegrí-Sebastiá, José

    2011-01-01

    The design of a fully autonomous and wireless actuator node ("wEcoValve mote") based on the IEEE 802.15.4 standard is presented. The system allows remote control (open/close) of a 3-lead magnetic latch solenoid, commonly used in drip irrigation systems in applications such as agricultural areas, greenhouses, gardens, etc. The very low power consumption of the system in conjunction with the low power consumption of the valve, only when switching positions, allows the system to be solar powered, thus eliminating the need of wires and facilitating its deployment. By using supercapacitors recharged from a specifically designed solar power module, the need to replace batteries is also eliminated and the system is completely autonomous and maintenance free. The "wEcoValve mote" firmware is based on a synchronous protocol that allows a bidirectional communication with a latency optimized for real-time work, with a synchronization time between nodes of 4 s, thus achieving a power consumption average of 2.9 mW.

  6. Powering-up Wireless Sensor Nodes Utilizing Rechargeable Batteries and an Electromagnetic Vibration Energy Harvesting System

    Directory of Open Access Journals (Sweden)

    Salar Chamanian

    2014-10-01

    Full Text Available This paper presents a wireless sensor node (WSN system where an electromagnetic (EM energy harvester is utilized for charging its rechargeable batteries while the system is operational. The capability and the performance of an in-house low-frequency EM energy harvester for charging rechargeable NiMH batteries were experimentally verified in comparison to a regular battery charger. Furthermore, the power consumption of MicaZ motes, used as the WSN, was evaluated in detail for different operation conditions. The battery voltage and current were experimentally monitored during the operation of the MicaZ sensor node equipped with the EM vibration energy harvester. A compact (24.5 cm3 in-house EM energy harvester provides approximately 65 µA charging current to the batteries when excited by 0.4 g acceleration at 7.4 Hz. It has been shown that the current demand of the MicaZ mote can be compensated for by the energy harvester for a specific low-power operation scenario, with more than a 10-fold increase in the battery lifetime. The presented results demonstrate the autonomous operation of the WSN, with the utilization of a vibration-based energy harvester.

  7. A Solar Energy Powered Autonomous Wireless Actuator Node for Irrigation Systems

    Directory of Open Access Journals (Sweden)

    Rafael Lajara

    2010-12-01

    Full Text Available The design of a fully autonomous and wireless actuator node (“wEcoValve mote” based on the IEEE 802.15.4 standard is presented. The system allows remote control (open/close of a 3-lead magnetic latch solenoid, commonly used in drip irrigation systems in applications such as agricultural areas, greenhouses, gardens, etc. The very low power consumption of the system in conjunction with the low power consumption of the valve, only when switching positions, allows the system to be solar powered, thus eliminating the need of wires and facilitating its deployment. By using supercapacitors recharged from a specifically designed solar power module, the need to replace batteries is also eliminated and the system is completely autonomous and maintenance free. The “wEcoValve mote” firmware is based on a synchronous protocol that allows a bidirectional communication with a latency optimized for real-time work, with a synchronization time between nodes of 4 s, thus achieving a power consumption average of 2.9 mW.

  8. A long-term stable power supply µDMFC stack for wireless sensor node applications

    International Nuclear Information System (INIS)

    Wu, Zonglin; Wang, Xiaohong; Li, Xiaozhao; Xu, Manqi; Liu, Litian

    2014-01-01

    In this paper, a passive, air-breathing four-cell micro direct methanol fuel cell (µDMFC) stack featuring a fuel delivery structure for long-term and stable power supply is designed, fabricated and tested. The fuel is reserved in a T-shaped tank and diffuses through the porous diffusion layer to the catalyst at the anode. A peak power density of 25.7 mW cm −2 and a maximum power output of 113 mW are achieved with 3 M methanol at room temperature, and the stack can produce 60 mW of power, even though only 5% fuel remains in the reservoir. Combined with a low-input dc–dc convertor, the stack can realize a stable and optional constant voltage output from 1 V–6 V. The stack successfully powered a heavy metal sensor node for water environment monitoring 12 d continuously, with consumption of 10 mL 5 M methanol solution. As such, it is believed to be applicable for powering wireless sensor nodes. (paper)

  9. The Effect of Information Access Strategy on Power Consumption and Reliability in Wireless Sensor Network

    DEFF Research Database (Denmark)

    Tobgay, Sonam; Olsen, Rasmus Løvenstein; Prasad, Ramjee

    2013-01-01

    This paper examines the effect of different information access strategies on power consumption and information reliability, considering the wireless sensor network as the source of information. Basically, the paper explores three different access strategies, namely; reactive, periodic and hybrid...

  10. Remote Memory Access Protocol Target Node Intellectual Property

    Science.gov (United States)

    Haddad, Omar

    2013-01-01

    The MagnetoSpheric Multiscale (MMS) mission had a requirement to use the Remote Memory Access Protocol (RMAP) over its SpaceWire network. At the time, no known intellectual property (IP) cores were available for purchase. Additionally, MMS preferred to implement the RMAP functionality with control over the low-level details of the design. For example, not all the RMAP standard functionality was needed, and it was desired to implement only the portions of the RMAP protocol that were needed. RMAP functionality had been previously implemented in commercial off-the-shelf (COTS) products, but the IP core was not available for purchase. The RMAP Target IP core is a VHDL (VHSIC Hardware Description Language description of a digital logic design suitable for implementation in an FPGA (field-programmable gate array) or ASIC (application-specific integrated circuit) that parses SpaceWire packets that conform to the RMAP standard. The RMAP packet protocol allows a network host to access and control a target device using address mapping. This capability allows SpaceWire devices to be managed in a standardized way that simplifies the hardware design of the device, as well as the development of the software that controls the device. The RMAP Target IP core has some features that are unique and not specified in the RMAP standard. One such feature is the ability to automatically abort transactions if the back-end logic does not respond to read/write requests within a predefined time. When a request times out, the RMAP Target IP core automatically retracts the request and returns a command response with an appropriate status in the response packet s header. Another such feature is the ability to control the SpaceWire node or router using RMAP transactions in the extended address range. This allows the SpaceWire network host to manage the SpaceWire network elements using RMAP packets, which reduces the number of protocols that the network host needs to support.

  11. Real-time monitoring of ubiquitous wireless ECG sensor node for medical care using ZigBee

    Science.gov (United States)

    Vijayalakshmi, S. R.; Muruganand, S.

    2012-01-01

    Sensor networks have the potential to impact many aspects of medical care greatly. By outfitting patients with wireless, wearable vital sign sensors, collecting detailed real-time data on physiological status can be greatly simplified. In this article, we propose the system architecture for smart sensor platform based on advanced wireless sensor networks. An emerging application for wireless sensor networks involves their use in medical care. In hospitals or clinics, outfitting every patient with tiny, wearable wireless vital sign sensors would allow doctors, nurses and other caregivers to continuously monitor the status of their patients. In an emergency or disaster scenario, the same technology would enable medics to more effectively care for a large number of casualties. First responders could receive immediate notifications on any changes in patient status, such as respiratory failure or cardiac arrest. Wireless sensor network is a set of small, autonomous devices, working together to solve different problems. It is a relatively new technology, experiencing true expansion in the past decade. People have realised that integration of small and cheap microcontrollers with sensors can result in the production of extremely useful devices, which can be used as an integral part of the sensor nets. These devices are called sensor nodes. Today, sensor nets are used in agriculture, ecology and tourism, but medicine is the area where they certainly meet the greatest potential. This article presents a medical smart sensor node platform. This article proposes a wireless two-lead EKG. These devices collect heart rate and EKG data and relay it over a short-range (300 m) wireless network to any number of receiving devices, including PDAs, laptops or ambulance-based terminals.

  12. Efficient scheduling request algorithm for opportunistic wireless access

    KAUST Repository

    Nam, Haewoon

    2011-08-01

    An efficient scheduling request algorithm for opportunistic wireless access based on user grouping is proposed in this paper. Similar to the well-known opportunistic splitting algorithm, the proposed algorithm initially adjusts (or lowers) the threshold during a guard period if no user sends a scheduling request. However, if multiple users make requests simultaneously and therefore a collision occurs, the proposed algorithm no longer updates the threshold but narrows down the user search space by splitting the users into multiple groups iteratively, whereas the opportunistic splitting algorithm keeps adjusting the threshold until a single user is found. Since the threshold is only updated when no user sends a request, it is shown that the proposed algorithm significantly alleviates the burden of the signaling for the threshold distribution to the users by the scheduler. More importantly, the proposed algorithm requires a less number of mini-slots to make a user selection given a certain scheduling outage probability. © 2011 IEEE.

  13. Accessing Wireless Sensor Networks Via Dynamically Reconfigurable Interaction Models

    Directory of Open Access Journals (Sweden)

    Maria Cecília Gomes

    2012-12-01

    Full Text Available The Wireless Sensor Networks (WSNs technology is already perceived as fundamental for science across many domains, since it provides a low cost solution for environment monitoring. WSNs representation via the service concept and its inclusion in Web environments, e.g. through Web services, supports particularly their open/standard access and integration. Although such Web enabled WSNs simplify data access, network parameterization and aggregation, the existing interaction models and run-time adaptation mechanisms available to clients are still scarce. Nevertheless, applications increasingly demand richer and more flexible accesses besides the traditional client/server. For instance, applications may require a streaming model in order to avoid sequential data requests, or the asynchronous notification of subscribed data through the publish/subscriber. Moreover, the possibility to automatically switch between such models at runtime allows applications to define flexible context-based data acquisition. To this extent, this paper discusses the relevance of the session and pattern abstractions on the design of a middleware prototype providing richer and dynamically reconfigurable interaction models to Web enabled WSNs.

  14. Medium access control and hardware prototype designs for low-energy wireless sensor networks

    Energy Technology Data Exchange (ETDEWEB)

    Kohvakka, M.

    2009-07-01

    A Wireless Sensor Network (WSN) is an emerging technology consisting of small, cheap, and ultra-low energy sensor nodes, which cooperatively monitor physical quantities, actuate, and perform data processing tasks. A deployment may comprise thousands of randomly distributed autonomous nodes, which must self-configure and create a multi-hop network topology.This thesis focuses on low-energy WSNs targeting to long network lifetime. The main research problem is the combination of adaptive and scalable multi-hop networking with constrained energy budget, processing power, and communication bandwidth. The research problem is approached by energy-efficient protocols and low-power sensor node platforms. The main contribution of this thesis is an energy-efficient Medium Access Control (MAC) design for TUTWSN (Tampere University of Technology Wireless Sensor Network). The design comprises channel access and networking mechanisms, which specify data exchange, link synchronization, network self-configuration, and neighbor discovery operations. The second outcome are several low-power sensor node platforms, which have been designed and implemented to evaluate the performance of the MAC design and hardware components in real deployments. The third outcome are the performance models and analysis of several MAC designs including TUTWSN, IEEE 802.15.4, and the most essential research proposals.The results and conclusion of this Thesis indicate that it is possible to implement multi-hop WSNs in harsh and dynamic operation conditions with years of lifetime using current low-cost components and batteries. Energy analysis results indicate that the lowest energy consumption is achieved by using simple and high data-rate transceivers. It is also critical to minimize sleep mode power consumption of all components and to use accurate wake-up timers. However, the selection of components constitutes only a minor part of the solution, and an energy-efficient MAC layer design being able to

  15. An energy harvesting system using the wind-induced vibration of a stay cable for powering a wireless sensor node

    International Nuclear Information System (INIS)

    Jung, Hyung-Jo; Kim, In-Ho; Jang, Seon-Jun

    2011-01-01

    This paper proposes an electromagnetic energy harvesting system, which utilizes the wind-induced vibration of a stay cable, and investigates its feasibility for powering a wireless sensor node on the cable through numerical simulations as well as experimental tests. To this end, the ambient acceleration responses of a stay cable installed in an in-service cable-stayed bridge are measured, and then they are used as input excitations in cases of both numerical simulations and experimental tests to evaluate the performance of the proposed energy harvesting system. The results of the feasibility test demonstrate that the proposed system generates sufficient electricity for operation of a wireless sensor node attached on the cable under the moderate wind conditions

  16. Wireless access to a pharmaceutical database: A demonstrator for data driven Wireless Application Prorocol (WAP) applications in medical information processing

    DEFF Research Database (Denmark)

    Hansen, Michael Schacht; Dørup, Jens

    2001-01-01

    script for easy update of the database. Data were distributed in 35 interrelated tables. Each pharmaceutical brand name was given its own card with links to general information about the drug, active substances, contraindications etc. Access was available through 1) browsing therapeutic groups and 2......) searching for a brand name. The database interface was programmed in the server-side scripting language PHP3. RESULTS: A free, open source Wireless Application Protocol gateway to a pharmaceutical catalogue was established to allow dial-in access independent of commercial Wireless Application Protocol...... service providers. The application was tested on the Nokia 7110 and Ericsson R320s cellular phones. CONCLUSIONS: We have demonstrated that Wireless Application Protocol-based access to a dynamic clinical database can be established using open source freeware. The project opens perspectives for a further...

  17. Parity-Check Network Coding for Multiple Access Relay Channel in Wireless Sensor Cooperative Communications

    Directory of Open Access Journals (Sweden)

    Du Bing

    2010-01-01

    Full Text Available A recently developed theory suggests that network coding is a generalization of source coding and channel coding and thus yields a significant performance improvement in terms of throughput and spatial diversity. This paper proposes a cooperative design of a parity-check network coding scheme in the context of a two-source multiple access relay channel (MARC model, a common compact model in hierarchical wireless sensor networks (WSNs. The scheme uses Low-Density Parity-Check (LDPC as the surrogate to build up a layered structure which encapsulates the multiple constituent LDPC codes in the source and relay nodes. Specifically, the relay node decodes the messages from two sources, which are used to generate extra parity-check bits by a random network coding procedure to fill up the rate gap between Source-Relay and Source-Destination transmissions. Then, we derived the key algebraic relationships among multidimensional LDPC constituent codes as one of the constraints for code profile optimization. These extra check bits are sent to the destination to realize a cooperative diversity as well as to approach MARC decode-and-forward (DF capacity.

  18. Design and Experimental Evaluation on an Advanced Multisource Energy Harvesting System for Wireless Sensor Nodes

    Directory of Open Access Journals (Sweden)

    Hao Li

    2014-01-01

    Full Text Available An effective multisource energy harvesting system is presented as power supply for wireless sensor nodes (WSNs. The advanced system contains not only an expandable power management module including control of the charging and discharging process of the lithium polymer battery but also an energy harvesting system using the maximum power point tracking (MPPT circuit with analog driving scheme for the collection of both solar and vibration energy sources. Since the MPPT and the power management module are utilized, the system is able to effectively achieve a low power consumption. Furthermore, a super capacitor is integrated in the system so that current fluctuations of the lithium polymer battery during the charging and discharging processes can be properly reduced. In addition, through a simple analog switch circuit with low power consumption, the proposed system can successfully switch the power supply path according to the ambient energy sources and load power automatically. A practical WSNs platform shows that efficiency of the energy harvesting system can reach about 75–85% through the 24-hour environmental test, which confirms that the proposed system can be used as a long-term continuous power supply for WSNs.

  19. Power Impact of Loop Buffer Schemes for Biomedical Wireless Sensor Nodes

    Directory of Open Access Journals (Sweden)

    Francky Catthoor

    2012-11-01

    Full Text Available Instruction memory organisations are pointed out as one of the major sources of energy consumption in embedded systems. As these systems are characterised by restrictive resources and a low-energy budget, any enhancement in this component allows not only to decrease the energy consumption but also to have a better distribution of the energy budget throughout the system. Loop buffering is an effective scheme to reduce energy consumption in instruction memory organisations. In this paper, the loop buffer concept is applied in real-life embedded applications that are widely used in biomedical Wireless Sensor Nodes, to show which scheme of loop buffer is more suitable for applications with certain behaviour. Post-layout simulations demonstrate that a trade-off exists between the complexity of the loop buffer architecture and the energy savings of utilising it. Therefore, the use of loop buffer architectures in order to optimise the instructionmemory organisation from the energy efficiency point of view should be evaluated carefully, taking into account two factors: (1 the percentage of the execution time of the application that is related to the execution of the loops, and (2 the distribution of the execution time percentage over each one of the loops that form the application.

  20. Non-Orthogonal Multiple Access for Ubiquitous Wireless Sensor Networks.

    Science.gov (United States)

    Anwar, Asim; Seet, Boon-Chong; Ding, Zhiguo

    2018-02-08

    Ubiquitous wireless sensor networks (UWSNs) have become a critical technology for enabling smart cities and other ubiquitous monitoring applications. Their deployment, however, can be seriously hampered by the spectrum available to the sheer number of sensors for communication. To support the communication needs of UWSNs without requiring more spectrum resources, the power-domain non-orthogonal multiple access (NOMA) technique originally proposed for 5th Generation (5G) cellular networks is investigated for UWSNs for the first time in this paper. However, unlike 5G networks that operate in the licensed spectrum, UWSNs mostly operate in unlicensed spectrum where sensors also experience cross-technology interferences from other devices sharing the same spectrum. In this paper, we model the interferences from various sources at the sensors using stochastic geometry framework. To evaluate the performance, we derive a theorem and present new closed form expression for the outage probability of the sensors in a downlink scenario under interference limited environment. In addition, diversity analysis for the ordered NOMA users is performed. Based on the derived outage probability, we evaluate the average link throughput and energy consumption efficiency of NOMA against conventional orthogonal multiple access (OMA) technique in UWSNs. Further, the required computational complexity for the NOMA users is presented.

  1. A novel PON based UMTS broadband wireless access network architecture with an algorithm to guarantee end to end QoS

    Science.gov (United States)

    Sana, Ajaz; Hussain, Shahab; Ali, Mohammed A.; Ahmed, Samir

    2007-09-01

    In this paper we proposes a novel Passive Optical Network (PON) based broadband wireless access network architecture to provide multimedia services (video telephony, video streaming, mobile TV, mobile emails etc) to mobile users. In the conventional wireless access networks, the base stations (Node B) and Radio Network Controllers (RNC) are connected by point to point T1/E1 lines (Iub interface). The T1/E1 lines are expensive and add up to operating costs. Also the resources (transceivers and T1/E1) are designed for peak hours traffic, so most of the time the dedicated resources are idle and wasted. Further more the T1/E1 lines are not capable of supporting bandwidth (BW) required by next generation wireless multimedia services proposed by High Speed Packet Access (HSPA, Rel.5) for Universal Mobile Telecommunications System (UMTS) and Evolution Data only (EV-DO) for Code Division Multiple Access 2000 (CDMA2000). The proposed PON based back haul can provide Giga bit data rates and Iub interface can be dynamically shared by Node Bs. The BW is dynamically allocated and the unused BW from lightly loaded Node Bs is assigned to heavily loaded Node Bs. We also propose a novel algorithm to provide end to end Quality of Service (QoS) (between RNC and user equipment).The algorithm provides QoS bounds in the wired domain as well as in wireless domain with compensation for wireless link errors. Because of the air interface there can be certain times when the user equipment (UE) is unable to communicate with Node B (usually referred to as link error). Since the link errors are bursty and location dependent. For a proposed approach, the scheduler at the Node B maps priorities and weights for QoS into wireless MAC. The compensations for errored links is provided by the swapping of services between the active users and the user data is divided into flows, with flows allowed to lag or lead. The algorithm guarantees (1)delay and throughput for error-free flows,(2)short term fairness

  2. Rogue AP Detection in the Wireless LAN for Large Scale Deployment

    OpenAIRE

    Sang-Eon Kim; Byung-Soo Chang; Sang Hong Lee; Dae Young Kim

    2006-01-01

    The wireless LAN standard, also known as WiFi, has begun to use commercial purposes. This paper describes access network architecture of wireless LAN for large scale deployment to provide public service. A metro Ethernet and digital subscriber line access network can be used for wireless LAN with access point. In this network architecture, access point plays interface between wireless node and network infrastructure. It is important to maintain access point without any failure and problems to...

  3. Integrated Coherent Radio-over-Fiber Units for Millimeter-Wave Wireless Access

    DEFF Research Database (Denmark)

    Stöhr, A.; Babiel, S.; Chuenchom, M.

    2015-01-01

    For providing wireless access as a complementary access technology to direct optical access, supporting 1–10 Gb/s per client, we propose a novel scheme based upon the transparent integration of coherent Radio-over-Fiber (CRoF) units with next generation optical access (NGOA) networks using dense ...

  4. Knowledge-Based Multiple Access Protocol in Broadband Wireless ATM Networks

    DEFF Research Database (Denmark)

    Liu, Hong; Gliese, Ulrik Bo; Dittmann, Lars

    1999-01-01

    In this paper, we propose a knowledge-based multiple access protocol for the extension of wireline ATM to wireless networks. The objective is to enable effecient transmission of all kinds of ATM traffic in the wireless channel with guaranteed QoS.The proposed protocol utilixes knowledge of the main...... guaranteed QoS requirements to a variety of ATM applications....

  5. Analysis of the Decoupled Access for Downlink and Uplink in Wireless Heterogeneous Networks

    DEFF Research Database (Denmark)

    Smiljkovikj, K.; Popovski, Petar; Gavrilovska, L.

    2015-01-01

    Wireless cellular networks evolve towards a heterogeneous infrastructure, featuring multiple types of Base Stations (BSs), such as Femto BSs (FBSs) and Macro BSs (MBSs). A wireless device observes multiple points (BSs) through which it can access the infrastructure and it may choose to receive th...

  6. Energy efficient medium access protocol for wireless medical body area sensor networks.

    Science.gov (United States)

    Omeni, O; Wong, A; Burdett, A J; Toumazou, C

    2008-12-01

    This paper presents a novel energy-efficient MAC Protocol designed specifically for wireless body area sensor networks (WBASN) focused towards pervasive healthcare applications. Wireless body area networks consist of wireless sensor nodes attached to the human body to monitor vital signs such as body temperature, activity or heart-rate. The network adopts a master-slave architecture, where the body-worn slave node periodically sends sensor readings to a central master node. Unlike traditional peer-to-peer wireless sensor networks, the nodes in this biomedical WBASN are not deployed in an ad hoc fashion. Joining a network is centrally managed and all communications are single-hop. To reduce energy consumption, all the sensor nodes are in standby or sleep mode until the centrally assigned time slot. Once a node has joined a network, there is no possibility of collision within a cluster as all communication is initiated by the central node and is addressed uniquely to a slave node. To avoid collisions with nearby transmitters, a clear channel assessment algorithm based on standard listen-before-transmit (LBT) is used. To handle time slot overlaps, the novel concept of a wakeup fallback time is introduced. Using single-hop communication and centrally controlled sleep/wakeup times leads to significant energy reductions for this application compared to more ldquoflexiblerdquo network MAC protocols such as 802.11 or Zigbee. As duty cycle is reduced, the overall power consumption approaches the standby power. The protocol is implemented in hardware as part of the Sensiumtrade system-on-chip WBASN ASIC, in a 0.13- mum CMOS process.

  7. Apparatus and method supporting wireless access to multiple security layers in an industrial control and automation system or other system

    Science.gov (United States)

    Chen, Yu-Gene T.

    2013-04-16

    A method includes receiving a message at a first wireless node. The first wireless node is associated with a first wired network, and the first wired network is associated with a first security layer. The method also includes transmitting the message over the first wired network when at least one destination of the message is located in the first security layer. The method further includes wirelessly transmitting the message for delivery to a second wireless node when at least one destination of the message is located in a second security layer. The second wireless node is associated with a second wired network, and the second wired network is associated with the second security layer. The first and second security layers may be associated with different security paradigms and/or different security domains. Also, the message could be associated with destinations in the first and second security layers.

  8. Opportunistic Nonorthogonal Packet Scheduling in Fixed Broadband Wireless Access Networks

    Directory of Open Access Journals (Sweden)

    Ahmed Mohamed H

    2006-01-01

    Full Text Available In order to mitigate high cochannel interference resulting from dense channel reuse, the interference management issues are often considered as essential part of scheduling schemes in fixed broadband wireless access (FBWA networks. To that end, a series of literature has been published recently, in which a group of base stations forms an interferer group (downlink transmissions from each base station become dominant interference for the users in other in-group base stations, and the scheduling scheme deployed in the group allows only one base station to transmit at a time. As a result of time orthogonality in transmissions, the dominant cochannel interferers are prevented, and hence the packet error rate can be improved. However, prohibiting concurrent transmissions in these orthogonal schemes introduces throughput penalty as well as higher end-to-end packet delay which might not be desirable for real-time services. In this paper, we utilize opportunistic nonorthogonality among the in-group transmissions whenever possible and propose a novel transmission scheduling scheme for FBWA networks. The proposed scheme, in contrast to the proactive interference avoidance techniques, strives for the improvements in delay and throughput efficiency. To facilitate opportunistic nonorthogonal transmissions in the interferer group, estimation of signal-to-interference-plus-noise ratio (SINR is required at the scheduler. We have observed from simulations that the proposed scheme outperforms the reference orthogonal scheme in terms of spectral efficiency, mean packet delay, and packet dropping rate.

  9. EAP-Kerberos: A Low Latency EAP Authentication Method for Faster Handoffs in Wireless Access Networks

    Science.gov (United States)

    Zrelli, Saber; Okabe, Nobuo; Shinoda, Yoichi

    The wireless medium is a key technology for enabling ubiquitous and continuous network connectivity. It is becoming more and more important in our daily life especially with the increasing adoption of networking technologies in many fields such as medical care and transportation systems. Although most wireless technologies nowadays provide satisfying bandwidth and higher speeds, several of these technologies still lack improvements with regard to handoff performance. In this paper, we focus on wireless network technologies that rely on the Extensible Authentication Protocol for mutual authentication between the station and the access network. Such technologies include local area wireless networks (IEEE 802.11) as well as broadband wireless networks (IEEE 802.16). We present a new EAP authentication method based on a three party authentication scheme, namely Kerberos, that considerably shortens handoff delays. Compared to other methods, the proposed method has the advantage of not requiring any changes on the access points, making it readily deployable at reasonable costs.

  10. Secure and Efficient Access Control Scheme for Wireless Sensor Networks in the Cross-Domain Context of the IoT

    Directory of Open Access Journals (Sweden)

    Ming Luo

    2018-01-01

    Full Text Available Nowadays wireless sensor network (WSN is increasingly being used in the Internet of Things (IoT for data collection, and design of an access control scheme that allows an Internet user as part of IoT to access the WSN becomes a hot topic. A lot of access control schemes have been proposed for the WSNs in the context of the IoT. Nevertheless, almost all of these schemes assume that communication nodes in different network domains share common system parameters, which is not suitable for cross-domain IoT environment in practical situations. To solve this shortcoming, we propose a more secure and efficient access control scheme for wireless sensor networks in the cross-domain context of the Internet of Things, which allows an Internet user in a certificateless cryptography (CLC environment to communicate with a sensor node in an identity-based cryptography (IBC environment with different system parameters. Moreover, our proposed scheme achieves known session-specific temporary information security (KSSTIS that most of access control schemes cannot satisfy. Performance analysis is given to show that our scheme is well suited for wireless sensor networks in the cross-domain context of the IoT.

  11. Effects of network node consolidation in optical access and aggregation networks on costs and power consumption

    Science.gov (United States)

    Lange, Christoph; Hülsermann, Ralf; Kosiankowski, Dirk; Geilhardt, Frank; Gladisch, Andreas

    2010-01-01

    The increasing demand for higher bit rates in access networks requires fiber deployment closer to the subscriber resulting in fiber-to-the-home (FTTH) access networks. Besides higher access bit rates optical access network infrastructure and related technologies enable the network operator to establish larger service areas resulting in a simplified network structure with a lower number of network nodes. By changing the network structure network operators want to benefit from a changed network cost structure by decreasing in short and mid term the upfront investments for network equipment due to concentration effects as well as by reducing the energy costs due to a higher energy efficiency of large network sites housing a high amount of network equipment. In long term also savings in operational expenditures (OpEx) due to the closing of central office (CO) sites are expected. In this paper different architectures for optical access networks basing on state-of-the-art technology are analyzed with respect to network installation costs and power consumption in the context of access node consolidation. Network planning and dimensioning results are calculated for a realistic network scenario of Germany. All node consolidation scenarios are compared against a gigabit capable passive optical network (GPON) based FTTH access network operated from the conventional CO sites. The results show that a moderate reduction of the number of access nodes may be beneficial since in that case the capital expenditures (CapEx) do not rise extraordinarily and savings in OpEx related to the access nodes are expected. The total power consumption does not change significantly with decreasing number of access nodes but clustering effects enable a more energyefficient network operation and optimized power purchase order quantities leading to benefits in energy costs.

  12. Optimized and Executive Survey of Physical Node Capture Attack in Wireless Sensor Network

    OpenAIRE

    Bhavana Butani; Piyush Kumar Shukla; Sanjay Silakari

    2014-01-01

    Wireless sensor networks (WSNs) are novel large-scale wireless networks that consist of distributed, self organizing, low-power, low-cost, tiny sensor devices to cooperatively collect information through infrastructure less wireless networks. These networks are envisioned to play a crucial role in variety of applications like critical military surveillance applications, forest fire monitoring, commercial applications such as building security monitoring, traffic surveillance, habitat monitori...

  13. Wireless and wireline service convergence in next generation optical access networks - the FP7 WISCON project

    DEFF Research Database (Denmark)

    Vegas Olmos, Juan José; Pang, Xiaodan; Lebedev, Alexander

    2014-01-01

    The next generation of information technology demands both high capacity and mobility for applications such as high speed wireless access capable of supporting broadband services. The transport of wireless and wireline signals is converging into a common telecommunication infrastructure....... In this paper, we will present the Marie Curie Framework Program 7 project “Wireless and wireline service convergence in next generation optical access networks” (WISCON), which focuses on the conception and study of novel architectures for wavelength-division-multiplexing (WDM) optical multi-modulation format...

  14. Comparison of Broadband Wireless Access Technology for HAPS Communication

    Directory of Open Access Journals (Sweden)

    Mingxiang GUAN

    2014-03-01

    Full Text Available An information system formed by HAP (High Altitude Platform will be a new generation-system for the wireless communications and HAPS (HAP Station communication system combines the advantages of both terrestrial and satellite communication systems and avoids, to different extents, their disadvantages. Third generation (3G mobile technology which is specified by the third generation partnership project (3 GPP is definitely one of the candidates. With the success of wireless network, the IEEE 802.16 standard, with its wireless metropolitan area network (MAN air interface appears to be a strong competitor. We provide initial practical comparison of these two technologies for HAPS Communication.

  15. High-Capacity Hybrid Optical Fiber-Wireless Communications Links in Access Networks

    DEFF Research Database (Denmark)

    Pang, Xiaodan

    of broadband services access. To realize the seamless convergence between the two network segments, the lower capacity of wireless systems need to be increased to match the continuously increasing bandwidth of fiber-optic systems. The research works included in this thesis are devoted to experimental...... investigations of photonic-wireless links with record high capacities to fulfill the requirements of next generation hybrid optical fiber-wireless access networks. The main contributions of this thesis have expanded the state-of-the-art in two main areas: high speed millimeter-wave (mm-wave) communication links......Integration between fiber-optic and wireless communications systems in the "last mile" access networks is currently considered as a promising solution for both service providers and users, in terms of minimizing deployment cost, shortening upgrading period and increasing mobility and flexibility...

  16. Localization-Free Detection of Replica Node Attacks in Wireless Sensor Networks Using Similarity Estimation with Group Deployment Knowledge

    Directory of Open Access Journals (Sweden)

    Chao Ding

    2017-01-01

    Full Text Available Due to the unattended nature and poor security guarantee of the wireless sensor networks (WSNs, adversaries can easily make replicas of compromised nodes, and place them throughout the network to launch various types of attacks. Such an attack is dangerous because it enables the adversaries to control large numbers of nodes and extend the damage of attacks to most of the network with quite limited cost. To stop the node replica attack, we propose a location similarity-based detection scheme using deployment knowledge. Compared with prior solutions, our scheme provides extra functionalities that prevent replicas from generating false location claims without deploying resource-consuming localization techniques on the resource-constraint sensor nodes. We evaluate the security performance of our proposal under different attack strategies through heuristic analysis, and show that our scheme achieves secure and robust replica detection by increasing the cost of node replication. Additionally, we evaluate the impact of network environment on the proposed scheme through theoretic analysis and simulation experiments, and indicate that our scheme achieves effectiveness and efficiency with substantially lower communication, computational, and storage overhead than prior works under different situations and attack strategies.

  17. Multigigabit W-Band (75–110 GHz) Bidirectional Hybrid Fiber-Wireless Systems in Access Networks

    DEFF Research Database (Denmark)

    Pang, Xiaodan; Lebedev, Alexander; Vegas Olmos, Juan José

    2014-01-01

    compare the transmission performances in terms of achievable wireless distances with and without using a high-frequency electrical power amplifier at the wireless transmitter. A downlink 16-Gbit/s QPSK signal and an uplink 1.25-Gbit/s ASK signal transmission over the two implementations are experimentally......We experimentally demonstrate multigigabit capacity bidirectional hybrid fiber-wireless systems with RF carrier frequencies at the W-band (75-110 GHz) that enables the seamless convergence between wireless and fiber-optic data transmission systems in access networks. In this study, we evaluate...... the transmission performances in two scenarios: a fiber-wireless access link that directly provide high-speed connections to wireless end users, and a fiber-wireless-fiber signal relay where a high capacity wireless link can be used to bridge two access fiber spans over physical obstacles. In both scenarios, we...

  18. Design and experimental investigation of a low-voltage thermoelectric energy harvesting system for wireless sensor nodes

    International Nuclear Information System (INIS)

    Guan, Mingjie; Wang, Kunpeng; Xu, Dazheng; Liao, Wei-Hsin

    2017-01-01

    Highlights: • A thermoelectric energy harvesting system for wireless sensor nodes is designed. • An ultra-low voltage self-startup is implemented. • Maximum power point tracking and low power designs are applied for high efficiency. • Efficiency of 44.2–75.4% is obtained with open-circuit voltage of 84–400 mV. • System efficiency is higher than the commercial BQ25504 converter. - Abstract: A thermoelectric energy harvesting system designed to harvest tens of microwatts to several milliwatts from low-voltage thermoelectric generators is presented in this paper. The proposed system is based-on a two-stage boost scheme with self-startup ability. A maximum power point tracking technique based on the open-circuit voltage is adopted in the boost converter for high efficiency. Experimental results indicate that the proposed system can harvest thermoelectric energy and run a microcontroller unit and a wireless sensor node under low input voltage and power with high efficiency. The harvest system and wireless sensor node can be self-powered with minimum thermoelectric open-circuit voltage as 62 mV and input power of 84 μW. With a self-startup scheme, the proposed system can self-start with a 20 mV input voltage. Low power designs are applied in the system to reduce the quiescent dissipation power. It results in better performance considering the conversion efficiency and self-startup ability compared to commercial boost systems used for thermal energy harvesting.

  19. Inkjet-printed "Zero-Power" Wireless Sensor and Power Management Nodes for IoT and "Smart Skin" Applications

    OpenAIRE

    Traille, A.; Georgiadis, Apostolos; Collado, Ana; Kawahara, Y.; Aubert, H.; Tentzeris, M.M.

    2014-01-01

    Nanotechnology and inkjet-printed flexible electronics, sensor and power management (PMU) nodes fabricated on paper, plastic and other polymer substrates are introduced as a sustainable ultra-low-cost solution for the first paradigms of Internet of Things (IoT), “Smart Skins” and “Zero-Power” applications. The paper will cover examples from the state-of-the-art of fully integrated wireless sensor modules on paper or flexible polymers. We will demonstrate numerous 3D multilayer paper-based and...

  20. Coverage improvement in clustered wireless sensor networks by relocating mobile nodes based on waypoints

    DEFF Research Database (Denmark)

    Mathur, Prateek; Nielsen, Rasmus Hjorth; Prasad, Neeli R.

    2013-01-01

    by clusters with relocation of mobile nodes between the clusters. Mobile nodes are guided by waypoints between source and destination clusters without use of localization services. The simulation results have been presented which state the effectiveness of the proposed approach. Mobile node relocation has...

  1. Heterogeneous wireless/wireline optical access networks with the R-EAT as backend component

    Science.gov (United States)

    Hagedorn, Klaus; Gindera, Ralf; Stohr, Andreas; Jager, Dieter

    2004-09-01

    A heterogeneous wireless/wireline optical transmission link using a reflection type electroabsorption transceiver (R-EAT) is presented. Simultaneous transmission of full-duplex broadband wireless LAN (WLAN) channels and 1Gb/s base band data is experimentally demonstrated. The system link employs sub-carrier multiplexing (SCM) and two optical channels for full duplex transmission of various analog WLAN channels and downlink digital base band data. The developed link architecture is suitable for simultaneous transmission of broadband wireline and wireless signals, it enables the coexistence and interoperability between wireline and wireless access technologies. The developed R-EAT component employed in this wireline/wireless access system, features "single-chip-component" base stations in access networks with star type topology where only a single optical fiber is used for bidirectional optical transmission. The R-EAT can be used within the optical C-band (1530- 1560nm) and is suitable for (D)WDM networks. Bit error rate measurements demonstrate the capabilities of the R-EAT for 1Gb/s base band transmission. The analog performance for WLAN transmission is characterised by a spurious free dynamic range (SFDR) of more than 75dB and 90dB for uplink and downlink transmission, respectively. The link gain for uplink and downlink transmission is -42dB and -37dB, respectively. The demonstrates the analog performances of the R-EAT for being used in wireless access networks such as W-LAN.

  2. Accessibility to Nodes of Interest: Demographic Weighting the Logistic Model

    Directory of Open Access Journals (Sweden)

    Gioacchino DE CANDIA

    2015-11-01

    Full Text Available This research fits into the genre of spatial analysis, aimed at better understanding of population dynamics in relation to the presence and distribution of infrastructure and related services. Specifically, the analysis uses a model of the gravitational type, based on the assumption of the impedance (attractiveness territorial, based on a curve of type logistics to determine the accessibility of the same, to which to add a system of weights. In this sense, the model was weighted according to the population, to determine the level of “population served” in terms of infrastructure and related services included in the model.

  3. Wireless Sensor Node for Autonomous Monitoring and Alerts in Remote Environments

    Science.gov (United States)

    Monacos, Steve P. (Inventor); Panangadan, Anand V. (Inventor)

    2015-01-01

    A method, apparatus, system, and computer program products provides personal alert and tracking capabilities using one or more nodes. Each node includes radio transceiver chips operating at different frequency ranges, a power amplifier, sensors, a display, and embedded software. The chips enable the node to operate as either a mobile sensor node or a relay base station node while providing a long distance relay link between nodes. The power amplifier enables a line-of-sight communication between the one or more nodes. The sensors provide a GPS signal, temperature, and accelerometer information (used to trigger an alert condition). The embedded software captures and processes the sensor information, provides a multi-hop packet routing protocol to relay the sensor information to and receive alert information from a command center, and to display the alert information on the display.

  4. Multiple access protocol for supporting multimedia services in wireless ATM networks

    DEFF Research Database (Denmark)

    Liu, Hong; Dittmann, Lars; Gliese, Ulrik Bo

    1999-01-01

    The furture broadband wireless asynchronous transfer mode (ATM) networks must provide seamless extension of multimedia services from the wireline ATM networks. This requires an effecient wireless access protocol to fulfill varying Quality-og-Service (QoS) requirements for multimedia applications....... In this paper, we propose a multiple access protocol using centralized and distributed channel access control techniques to provide QoS guarantees for multimedia services by taking advantage of the characteristics of different kinds of ATM traffics. Multimedia traffic, including constant bit rate (CBR...

  5. Energy and Delay Optimization of Heterogeneous Multicore Wireless Multimedia Sensor Nodes by Adaptive Genetic-Simulated Annealing Algorithm

    Directory of Open Access Journals (Sweden)

    Xing Liu

    2018-01-01

    Full Text Available Energy efficiency and delay optimization are significant for the proliferation of wireless multimedia sensor network (WMSN. In this article, an energy-efficient, delay-efficient, hardware and software cooptimization platform is researched to minimize the energy cost while guaranteeing the deadline of the real-time WMSN tasks. First, a multicore reconfigurable WMSN hardware platform is designed and implemented. This platform uses both the heterogeneous multicore architecture and the dynamic voltage and frequency scaling (DVFS technique. By this means, the nodes can adjust the hardware characteristics dynamically in terms of the software run-time contexts. Consequently, the software can be executed more efficiently with less energy cost and shorter execution time. Then, based on this hardware platform, an energy and delay multiobjective optimization algorithm and a DVFS adaption algorithm are investigated. These algorithms aim to search out the global energy optimization solution within the acceptable calculation time and strip the time redundancy in the task executing process. Thus, the energy efficiency of the WMSN node can be improved significantly even under strict constraint of the execution time. Simulation and real-world experiments proved that the proposed approaches can decrease the energy cost by more than 29% compared to the traditional single-core WMSN node. Moreover, the node can react quickly to the time-sensitive events.

  6. Data Fusion Based on Node Trust Evaluation in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Zhou Jianming

    2014-01-01

    Full Text Available Abnormal behavior detection and trust evaluation mode of traditional sensor node have a single function without considering all the factors, and the trust value algorithm is relatively complicated. To avoid these above disadvantages, a trust evaluation model based on the autonomous behavior of sensor node is proposed in this paper. Each sensor node has the monitoring privilege and obligation. Neighboring sensor nodes can monitor each other. Their direct and indirect trust values can be achieved by using a relatively simple calculation method, the synthesis trust value of which could be got according to the composition rule of D-S evidence theory. Firstly, the cluster head assigns different weighted value for the data from each sensor node, then the weight vector is set according to the synthesis trust value, the data fusion processing is executed, and finally the cluster head sensor node transmits the fused result to the base station. Simulation experiment results demonstrate that the trust evaluation model can rapidly, exactly, and effectively recognize malicious sensor node and avoid malicious sensor node becoming cluster head sensor node. The proposed algorithm can greatly increase the safety and accuracy of data fusion, improve communication efficiency, save energy of sensor node, suit different application fields, and deploy environments.

  7. Upper bound for energy efficiency in multi-cell fibre-wireless access systems

    NARCIS (Netherlands)

    Koonen, A.M.J.; Popov, M.; Wessing, H.

    2013-01-01

    Bringing radio access points closer to the end-users improves radio energy efficiency. However, taking into account both the radio and the optical parts of a fibre-wireless access system, the overall system energy efficiency has an upper bound determined by the relation between the energy

  8. Upper bound for energy efficiency in multi-cell fibre-wireless access systems

    DEFF Research Database (Denmark)

    Koonen, A.M.J.; Popov, M.; Wessing, Henrik

    2013-01-01

    Bringing radio access points closer to the end-users improves radio energy efficiency. However, taking into account both the radio and the optical parts of a fibre-wireless access system, the overall system energy efficiency has an upper bound determined by the relation between the energy...

  9. An electronic-nose sensor node based on a polymer-coated surface acoustic wave array for wireless sensor network applications.

    Science.gov (United States)

    Tang, Kea-Tiong; Li, Cheng-Han; Chiu, Shih-Wen

    2011-01-01

    This study developed an electronic-nose sensor node based on a polymer-coated surface acoustic wave (SAW) sensor array. The sensor node comprised an SAW sensor array, a frequency readout circuit, and an Octopus II wireless module. The sensor array was fabricated on a large K(2) 128° YX LiNbO3 sensing substrate. On the surface of this substrate, an interdigital transducer (IDT) was produced with a Cr/Au film as its metallic structure. A mixed-mode frequency readout application specific integrated circuit (ASIC) was fabricated using a TSMC 0.18 μm process. The ASIC output was connected to a wireless module to transmit sensor data to a base station for data storage and analysis. This sensor node is applicable for wireless sensor network (WSN) applications.

  10. An Electronic-Nose Sensor Node Based on a Polymer-Coated Surface Acoustic Wave Array for Wireless Sensor Network Applications

    Science.gov (United States)

    Tang, Kea-Tiong; Li, Cheng-Han; Chiu, Shih-Wen

    2011-01-01

    This study developed an electronic-nose sensor node based on a polymer-coated surface acoustic wave (SAW) sensor array. The sensor node comprised an SAW sensor array, a frequency readout circuit, and an Octopus II wireless module. The sensor array was fabricated on a large K2 128° YX LiNbO3 sensing substrate. On the surface of this substrate, an interdigital transducer (IDT) was produced with a Cr/Au film as its metallic structure. A mixed-mode frequency readout application specific integrated circuit (ASIC) was fabricated using a TSMC 0.18 μm process. The ASIC output was connected to a wireless module to transmit sensor data to a base station for data storage and analysis. This sensor node is applicable for wireless sensor network (WSN) applications. PMID:22163865

  11. An Electronic-Nose Sensor Node Based on a Polymer-Coated Surface Acoustic Wave Array for Wireless Sensor Network Applications

    Directory of Open Access Journals (Sweden)

    Kea-Tiong Tang

    2011-04-01

    Full Text Available This study developed an electronic-nose sensor node based on a polymer-coated surface acoustic wave (SAW sensor array. The sensor node comprised an SAW sensor array, a frequency readout circuit, and an Octopus II wireless module. The sensor array was fabricated on a large K2 128° YX LiNbO3 sensing substrate. On the surface of this substrate, an interdigital transducer (IDT was produced with a Cr/Au film as its metallic structure. A mixed-mode frequency readout application specific integrated circuit (ASIC was fabricated using a TSMC 0.18 μm process. The ASIC output was connected to a wireless module to transmit sensor data to a base station for data storage and analysis. This sensor node is applicable for wireless sensor network (WSN applications.

  12. The Making of a Sustainable Wireless City? Mapping Public Wi-Fi Access in Shanghai

    Directory of Open Access Journals (Sweden)

    Mingfeng Wang

    2016-01-01

    Full Text Available In the context of the global information economy, ready access to the Internet is critical to a city’s competitiveness, which has prompted a number of cities to launch plans to establish wireless networks. Most literature on the development of wireless cities focuses on cities in Western countries, and few have discussed how Chinese cities have adopted wireless technologies in their urban infrastructure development efforts. This paper examines recent development and spatial distribution of public Wi-Fi access in Shanghai, a leading business hub in China. We mapped Wi-Fi hotspots through the government sponsored “i-Shanghai” project and China Mobile Communications Corporation (CMCC. We find that while telecommunication providers have been proactively deploying WLAN (wireless local area network,a proxy of public Wi-Fi or wireless access hotspots in Shanghai, neither government sponsored WLAN hotspots nor facilities established by CMCC could cover the old traditional neighborhoods in the central city and sub-districts in remote rural areas. We also address the development of a more sustainable wireless city in Shanghai with a particular focus on digital divide and social equity issues.

  13. Characterization of Industrial Coolant Fluids and Continuous Ageing Monitoring by Wireless Node-Enabled Fiber Optic Sensors.

    Science.gov (United States)

    Sachat, Alexandros El; Meristoudi, Anastasia; Markos, Christos; Sakellariou, Andreas; Papadopoulos, Aggelos; Katsikas, Serafim; Riziotis, Christos

    2017-03-11

    Environmentally robust chemical sensors for monitoring industrial processes or infrastructures are lately becoming important devices in industry. Low complexity and wireless enabled characteristics can offer the required flexibility for sensor deployment in adaptable sensing networks for continuous monitoring and management of industrial assets. Here are presented the design, development and operation of a class of low cost photonic sensors for monitoring the ageing process and the operational characteristics of coolant fluids used in an industrial heavy machinery infrastructure. The chemical, physical and spectroscopic characteristics of specific industrial-grade coolant fluids were analyzed along their entire life cycle range, and proper parameters for their efficient monitoring were identified. Based on multimode polymer or silica optical fibers, wide range (3-11) pH sensors were developed by employing sol-gel derived pH sensitive coatings. The performances of the developed sensors were characterized and compared, towards their coolants' ageing monitoring capability, proving their efficiency in such a demanding application scenario and harsh industrial environment. The operating characteristics of this type of sensors allowed their integration in an autonomous wireless sensing node, thus enabling the future use of the demonstrated platform in wireless sensor networks for a variety of industrial and environmental monitoring applications.

  14. Adaptive Information Access in Multiple Applications Support Wireless Sensor Network

    DEFF Research Database (Denmark)

    Tobgay, Sonam; Olsen, Rasmus Løvenstein; Prasad, Ramjee

    2012-01-01

    Nowadays, due to wide applicability of Wireless Sensor Network (WSN) added by the low cost sensor devices, its popularity among the researchers and industrialists are very much visible. A substantial amount of works can be seen in the literature on WSN which are mainly focused on application...

  15. Enabling multimode wireless access networks using remote radio heads

    DEFF Research Database (Denmark)

    Kardaras, Georgios; Soler, José; Dittmann, Lars

    2012-01-01

    and management plane. Switching between wireless standards becomes easily feasible through firmware upgrading. Finally, real-time configuration of radio functionalities, such as transmit power, receiver gain, carrier frequency, channel bandwidth and others result in a modular software defined radio platform...

  16. Access Point Security Service for wireless ad-hoc communication

    NARCIS (Netherlands)

    Scholten, Johan; Nijdam, M.

    2006-01-01

    This paper describes the design and implementation of a security solution for ad-hoc peer-to-peer communication. The security solution is based on a scenario where two wireless devices require secure communication, but share no security relationship a priori. The necessary requirements for the

  17. Energy Efficient Routing and Node Activity Scheduling in the OCARI Wireless Sensor Network

    Directory of Open Access Journals (Sweden)

    Saoucene Mahfoudh

    2010-08-01

    Full Text Available Sensor nodes are characterized by a small size, a low cost, an advanced communication technology, but also a limited amount of energy. Energy efficient strategies are required in such networks to maximize network lifetime. In this paper, we focus on a solution integrating energy efficient routing and node activity scheduling. The energy efficient routing we propose, called EOLSR, selects the route and minimizes the energy consumed by an end-to-end transmission, while avoiding nodes with low residual energy. Simulation results show that EOLSR outperforms the solution selecting the route of minimum energy as well as the solution based on node residual energy. Cross-layering allows EOLSR to use information from the application layer or the MAC layer to reduce its overhead and increase network lifetime. Node activity scheduling is based on the following observation: the sleep state is the least power consuming state. So, to schedule node active and sleeping periods, we propose SERENA that colors all network nodes using a small number of colors, such that two nodes with the same color can transmit without interfering. The node color is mapped into a time slot during which the node can transmit. Consequently, each node is awake during its slot and the slots of its one-hop neighbors, and sleeps in the remaining time. We evaluate SERENA benefits obtained in terms of bandwidth, delay and energy. We also show how cross-layering with the application layer can improve the end-to-end delays for data gathering applications.

  18. DESIGN OF CAUCUS MEDIUM ACCESS CONTROL (C-MAC PROTOCOL FOR WIRELESS SENSOR NETWORKS IN SMART GRIDS

    Directory of Open Access Journals (Sweden)

    JEETU SHARMA

    2017-10-01

    Full Text Available A Caucus-based medium access control protocol (C-MAC is proposed to reduce the end to end delay and battery consumption of the sensor nodes deployed in the monitoring of various smart grid regions, such as substation, pole and wires, perimeter security, real time and non-real-time monitoring using wireless sensor networks. The objective is to prolong the network lifetime and to reduce the end to end delay by mitigating the energy-hole problem and by eliminating bottlenecks significantly by using caucus based efficient synchronization techniques in multi-hop square grid topology of the wireless sensor networks (WSNs. The protocol self-reliantly and adaptively schedules node’s wake-up times, decreases idle listening and collisions, increases network throughput, and extends network lifetime. It induces a low duty cycle for adjusting wake-up times of sensor nodes. The appropriate selection of active and sleep time slots and next hop relay nodes are proposed to minimize the data transmission latency and to reduce battery consumption to increase the network lifetime. The uniform and synchronized transmission of the data packets is of prime importance to improve the network performance. Simulation results justify that the proposed C-MAC protocol increases the network lifetime, successful data transmission ratio along-with the reduction in end to end delay. The objective of this paper is to envisage benefits and utilization of C-MAC protocol for WSNs deployed in smart grids and to draw the attention of researchers in this area.

  19. Energy-Aware Topology Evolution Model with Link and Node Deletion in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Xiaojuan Luo

    2012-01-01

    Full Text Available Based on the complex network theory, a new topological evolving model is proposed. In the evolution of the topology of sensor networks, the energy-aware mechanism is taken into account, and the phenomenon of change of the link and node in the network is discussed. Theoretical analysis and numerical simulation are conducted to explore the topology characteristics and network performance with different node energy distribution. We find that node energy distribution has the weak effect on the degree distribution P(k that evolves into the scale-free state, nodes with more energy carry more connections, and degree correlation is nontrivial disassortative. Moreover, the results show that, when nodes energy is more heterogeneous, the network is better clustered and enjoys higher performance in terms of the network efficiency and the average path length for transmitting data.

  20. Powering a wireless sensor node with a vibration-driven piezoelectric energy harvester

    International Nuclear Information System (INIS)

    Reilly, Elizabeth K; Wright, Paul; Burghardt, Fred; Fain, Romy

    2011-01-01

    This paper discusses the direct application of scavenged energy to power a wireless sensor platform. A trapezoidal piezoelectric harvester was designed for a specific machine tool application and tested for robustness and longevity as well as performance. The design focused on resonant performance and distributed strain concentrations at a given resonant frequency and acceleration. Critical issues of power coupling and conditioning between harvester and wireless platform were addressed. The wireless platform consisted of a sensor, controller, power conditioning circuitry, and a custom low power radio. The system transmitted a sensor sample once every 10 s in a scavenging environment of 0.25 g and 100 Hz for a system duty cycle of approximately 0.2%

  1. Converged wireline and wireless signal distribution in optical fiber access networks

    DEFF Research Database (Denmark)

    Prince, Kamau

    This thesis presents results obtained during the course of my doctoral studies into the transport of fixed and wireless signaling over a converged otpical access infrastructure. In the formulation, development and assessment of a converged paradigma for multiple-services delivery via optical access...... networking infrastructure, I have demonstrated increased functionalities with existing optical technologies and commercially available optoelectronic devices. I have developed novel systems for extending the range of optical access systems, and have demonstrated the repurposing of standard digital devices...

  2. QoS Provisioning Techniques for Future Fiber-Wireless (FiWi Access Networks

    Directory of Open Access Journals (Sweden)

    Martin Maier

    2010-04-01

    Full Text Available A plethora of enabling optical and wireless access-metro network technologies have been emerging that can be used to build future-proof bimodal fiber-wireless (FiWi networks. Hybrid FiWi networks aim at providing wired and wireless quad-play services over the same infrastructure simultaneously and hold great promise to mitigate the digital divide and change the way we live and work by replacing commuting with teleworking. After overviewing enabling optical and wireless network technologies and their QoS provisioning techniques, we elaborate on enabling radio-over-fiber (RoF and radio-and-fiber (R&F technologies. We describe and investigate new QoS provisioning techniques for future FiWi networks, ranging from traffic class mapping, scheduling, and resource management to advanced aggregation techniques, congestion control, and layer-2 path selection algorithms.

  3. A Topology Evolution Model Based on Revised PageRank Algorithm and Node Importance for Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Xiaogang Qi

    2015-01-01

    Full Text Available Wireless sensor network (WSN is a classical self-organizing communication network, and its topology evolution currently becomes one of the attractive issues in this research field. Accordingly, the problem is divided into two subproblems: one is to design a new preferential attachment method and the other is to analyze the dynamics of the network topology evolution. To solve the first subproblem, a revised PageRank algorithm, called Con-rank, is proposed to evaluate the node importance upon the existing node contraction, and then a novel preferential attachment is designed based on the node importance calculated by the proposed Con-rank algorithm. To solve the second one, we firstly analyze the network topology evolution dynamics in a theoretical way and then simulate the evolution process. Theoretical analysis proves that the network topology evolution of our model agrees with power-law distribution, and simulation results are well consistent with our conclusions obtained from the theoretical analysis and simultaneously show that our topology evolution model is superior to the classic BA model in the average path length and the clustering coefficient, and the network topology is more robust and can tolerate the random attacks.

  4. An activity recognition model using inertial sensor nodes in a wireless sensor network for frozen shoulder rehabilitation exercises.

    Science.gov (United States)

    Lin, Hsueh-Chun; Chiang, Shu-Yin; Lee, Kai; Kan, Yao-Chiang

    2015-01-19

    This paper proposes a model for recognizing motions performed during rehabilitation exercises for frozen shoulder conditions. The model consists of wearable wireless sensor network (WSN) inertial sensor nodes, which were developed for this study, and enables the ubiquitous measurement of bodily motions. The model employs the back propagation neural network (BPNN) algorithm to compute motion data that are formed in the WSN packets; herein, six types of rehabilitation exercises were recognized. The packets sent by each node are converted into six components of acceleration and angular velocity according to three axes. Motor features such as basic acceleration, angular velocity, and derivative tilt angle were input into the training procedure of the BPNN algorithm. In measurements of thirteen volunteers, the accelerations and included angles of nodes were adopted from possible features to demonstrate the procedure. Five exercises involving simple swinging and stretching movements were recognized with an accuracy of 85%-95%; however, the accuracy with which exercises entailing spiral rotations were recognized approximately 60%. Thus, a characteristic space and enveloped spectrum improving derivative features were suggested to enable identifying customized parameters. Finally, a real-time monitoring interface was developed for practical implementation. The proposed model can be applied in ubiquitous healthcare self-management to recognize rehabilitation exercises.

  5. An Activity Recognition Model Using Inertial Sensor Nodes in a Wireless Sensor Network for Frozen Shoulder Rehabilitation Exercises

    Directory of Open Access Journals (Sweden)

    Hsueh-Chun Lin

    2015-01-01

    Full Text Available This paper proposes a model for recognizing motions performed during rehabilitation exercises for frozen shoulder conditions. The model consists of wearable wireless sensor network (WSN inertial sensor nodes, which were developed for this study, and enables the ubiquitous measurement of bodily motions. The model employs the back propagation neural network (BPNN algorithm to compute motion data that are formed in the WSN packets; herein, six types of rehabilitation exercises were recognized. The packets sent by each node are converted into six components of acceleration and angular velocity according to three axes. Motor features such as basic acceleration, angular velocity, and derivative tilt angle were input into the training procedure of the BPNN algorithm. In measurements of thirteen volunteers, the accelerations and included angles of nodes were adopted from possible features to demonstrate the procedure. Five exercises involving simple swinging and stretching movements were recognized with an accuracy of 85%–95%; however, the accuracy with which exercises entailing spiral rotations were recognized approximately 60%. Thus, a characteristic space and enveloped spectrum improving derivative features were suggested to enable identifying customized parameters. Finally, a real-time monitoring interface was developed for practical implementation. The proposed model can be applied in ubiquitous healthcare self-management to recognize rehabilitation exercises.

  6. Modeling and Simulation of a Novel Relay Node Based Secure Routing Protocol Using Multiple Mobile Sink for Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Madhumathy Perumal

    2015-01-01

    Full Text Available Data gathering and optimal path selection for wireless sensor networks (WSN using existing protocols result in collision. Increase in collision further increases the possibility of packet drop. Thus there is a necessity to eliminate collision during data aggregation. Increasing the efficiency is the need of the hour with maximum security. This paper is an effort to come up with a reliable and energy efficient WSN routing and secure protocol with minimum delay. This technique is named as relay node based secure routing protocol for multiple mobile sink (RSRPMS. This protocol finds the rendezvous point for optimal transmission of data using a “splitting tree” technique in tree-shaped network topology and then to determine all the subsequent positions of a sink the “Biased Random Walk” model is used. In case of an event, the sink gathers the data from all sources, when they are in the sensing range of rendezvous point. Otherwise relay node is selected from its neighbor to transfer packets from rendezvous point to sink. A symmetric key cryptography is used for secure transmission. The proposed relay node based secure routing protocol for multiple mobile sink (RSRPMS is experimented and simulation results are compared with Intelligent Agent-Based Routing (IAR protocol to prove that there is increase in the network lifetime compared with other routing protocols.

  7. Effects of fading and spatial correlation on node selection for estimation in Wireless Sensor Networks

    KAUST Repository

    Al-Murad, Tamim M.; Ghogho, Mounir; Swami, Ananthram

    2010-01-01

    of the wireless channels, extra care should be taken when performing this sampling. In this paper, we develop expressions for the distortion which include the channel effects. The asymptotic behavior of the distortion as the number of sensors or total transmit

  8. Distributed push-pull estimation for node localization in wireless sensor networks

    NARCIS (Netherlands)

    Dang, Viet-Hung; Le Viet Duc, L Duc; Lee, Young-Koo; Lee, Sungyoung

    A great deal of research achievements on localization in wireless sensor networks (WSNs) has been obtained in recent years. Nevertheless, its interesting challenges in terms of cost-reduction, accuracy improvement, scalability, and distributed ability design have led to the development of a new

  9. Partial Interference and Its Performance Impact on Wireless Multiple Access Networks

    Directory of Open Access Journals (Sweden)

    Lau WingCheong

    2010-01-01

    Full Text Available To determine the capacity of wireless multiple access networks, the interference among the wireless links must be accurately modeled. In this paper, we formalize the notion of the partial interference phenomenon observed in many recent wireless measurement studies and establish analytical models with tractable solutions for various types of wireless multiple access networks. In particular, we characterize the stability region of IEEE 802.11 networks under partial interference with two potentially unsaturated links numerically. We also provide a closed-form solution for the stability region of slotted ALOHA networks under partial interference with two potentially unsaturated links and obtain a partial characterization of the boundary of the stability region for the general M-link case. Finally, we derive a closed-form approximated solution for the stability region for general M-link slotted ALOHA system under partial interference effects. Based on our results, we demonstrate that it is important to model the partial interference effects while analyzing wireless multiple access networks. This is because such considerations can result in not only significant quantitative differences in the predicted system capacity but also fundamental qualitative changes in the shape of the stability region of the systems.

  10. A Low-Power Wireless Image Sensor Node with Noise-Robust Moving Object Detection and a Region-of-Interest Based Rate Controller

    Science.gov (United States)

    2017-03-01

    from both environment and hardware further reduces the transmission energy with negligible computation and memory overhead. The rate controller...detection, Region-of-interest, Rate control Introduction In wireless image sensor nodes for moving object surveillance, energy efficiency can be...noise, reliable moving object detection is required to avoid unnecessary transmission of background scenes [1]. Transmission energy can be further

  11. A 0.7V 7-to-10bit 0-to-2MS/s Flexible SAR ADC for Ultra Low-Power Wireless Sensor Nodes

    NARCIS (Netherlands)

    Harpe, P.J.A.; Dolmans, G.; Philips, K.J.P.; Groot, de H.W.H.

    2012-01-01

    This paper presents a flexible SAR ADC in 90nm CMOS for wireless sensor nodes. By supporting resolutions from 7 to 10bit and sample rates from DC to 2MS/s, this design can be used for a variety of applications such as sensor interfacing and receiver frontends. Flexibility is achieved by a

  12. Optimal power and performance trade-offs for dynamic voltage scaling in power management based wireless sensor node

    Directory of Open Access Journals (Sweden)

    Anuradha Pughat

    2016-09-01

    Full Text Available Dynamic voltage scaling contributes to a significant amount of power saving, especially in the energy constrained wireless sensor networks (WSNs. Existing dynamic voltage scaling techniques make the system slower and ignore the event miss rate. This results in degradation of the system performance when there is non-stationary workload at input. The overhead due to transition between voltage level and discrete voltage levels are also the limitations of available dynamic voltage scaling (DVS techniques at sensor node (SN. This paper proposes a workload dependent DVS based MSP430 controller model used for SN. An online gradient estimation technique has been used to optimize power and performance trade-offs. The analytical results are validated with the simulation results obtained using simulation tool “SimEvents” and compared with the available AT9OS8535 controller. Based on the stochastic workload, the controller's input voltage, operational frequency, utilization, and average wait time of events are obtained.

  13. Impact of Sink Node Placement onto Wireless Sensor Networks Performance Regarding Clustering Routing and Compressive Sensing Theory

    Directory of Open Access Journals (Sweden)

    Shima Pakdaman Tirani

    2016-01-01

    Full Text Available Wireless Sensor Networks (WSNs consist of several sensor nodes with sensing, computation, and wireless communication capabilities. The energy constraint is one of the most important issues in these networks. Thus, the data-gathering process should be carefully designed to conserve the energy. In this situation, a load balancing strategy can enhance the resources utilization, and consequently, increase the network lifetime. Furthermore, recently, the sparse nature of data in WSNs has been motivated the use of the compressive sensing as an efficient data gathering technique. Using the compressive sensing theory significantly leads to decreasing the volume of the transmitted data. Taking the above challenges into account, the main goal of this paper is to jointly consider the compressive sensing method and the load-balancing in WSNs. In this regards, using the conventional network model, we analyze the network performance in several different states. These states challenge the sink location in term of the number of transmissions. Numerical results demonstrate the efficiency of the load-balancing in the network performance.

  14. Multiple wireless protocol advertising system, enabling automatic access selection and local services

    NARCIS (Netherlands)

    Houben, S.A.; Baken, N.; Herve, P.; Smets, R.

    2006-01-01

    We examined efficiency within wireless access options for mobile devices and discovered that a classic pitfall is revisited. As with the proliferation of services in incumbents’ portfolios, leading to a number of coexisting so-called ‘stove-pipes’, we see an isomorphic phenomenon evolving in

  15. A hybrid medium access control for convergence of broadband wireless and wireline ATM networks

    DEFF Research Database (Denmark)

    Liu, Hong; Gliese, Ulrik Bo; Dittmann, Lars

    2000-01-01

    In this paper, we propose a hybrid medium access control protocol for supporting broadband integrated services in the wireless ATM networks. The integrated services include CBR, VBR and ABR traffic varying from low bit-rate to very high bit-rate. The proposed protocol is an excellent compromise...

  16. Reconfigurable Radio Access Unit for DWDM to W-Band Wireless Conversion

    DEFF Research Database (Denmark)

    Chorchos, Łukasz; Rommel, Simon; Turkiewicz, Jarosław P.

    2017-01-01

    In this letter a reconfigurable Remote Access Unit (RAU) is proposed and demonstrated, interfacing dense wavelength division multiplexed (DWDM) optical and W-band wireless links. The RAU is composed of a tunable local oscillator, a narrow optical filter and a control unit, making it reconfigurable...

  17. Design Aspects of An Energy-Efficient, Lightweight Medium Access Control Protocol for Wireless Sensor Networks

    NARCIS (Netherlands)

    van Hoesel, L.F.W.; Havinga, Paul J.M.

    2006-01-01

    This document gives an overview of the most relevant design aspects of the lightweight medium access control (LMAC) protocol [16] for wireless sensor networks (WSNs). These aspects include selfconfiguring and localized operation of the protocol, time synchronization in multi-hop networks, network

  18. One4All Cooperative Media Access Strategy in Infrastructure Based Distributed Wireless Networks

    DEFF Research Database (Denmark)

    Zhang, Qi; Fitzek, Frank H.P.; Iversen, Villy Bæk

    2008-01-01

    a cooperative cluster using their short-range air interface and one device contends the channel for all the devices within the cluster. This strategy reduces the number of mobile devices involved in the collision process for the wireless medium resulting in larger throughput, smaller access delay, and less...

  19. Combined single-mode/multimode fiber link supporting simplified in-building 60-GHz gigabit wireless access

    DEFF Research Database (Denmark)

    Pham, Tien Thang; Lebedev, Alexander; Beltrán, Marta

    2012-01-01

    In this paper, we propose and experimentally demonstrate a simple, cost-effective hybrid gigabit fiber-wireless system for in-building wireless access. Simplicity and cost-effectiveness are achieved in all parts of the system by utilizing direct laser modulation, optical frequency up-conversion, ......In this paper, we propose and experimentally demonstrate a simple, cost-effective hybrid gigabit fiber-wireless system for in-building wireless access. Simplicity and cost-effectiveness are achieved in all parts of the system by utilizing direct laser modulation, optical frequency up...

  20. Improved Relay Node Placement Algorithm for Wireless Sensor Networks Application in Wind Farm

    DEFF Research Database (Denmark)

    Chen, Qinyin; Hu, Y.; Chen, Zhe

    2013-01-01

    -tolerance. Each wind turbine has a potentially large number of data points needing to be monitored and collected, as farms continue to increase in scale; distances between turbines can reach several hundred meters. Optimal placement of relays in a large farm requires an efficient algorithmic solution. A relay...... node placement algorithm is proposed in this paper to approximate the optimal position for relays connecting each turbine. However, constraints are then required to prevent relay nodes being overloaded in 3-dimensions. The algorithm is extended to 3-dimensional Euclidean space for this optimal relay...

  1. Dynamic power control for wireless backbone mesh networks: a survey

    CSIR Research Space (South Africa)

    Olwal, TO

    2010-01-01

    Full Text Available points of failures, and robust against RF interference, obstacles or power outage. This is because WMRs forming wireless backbone mesh networks (WBMNs) are built on advanced physical technologies. Such nodes perform both accessing and forwarding...

  2. Reliable low-power wireless networks over unstable transmission power

    NARCIS (Netherlands)

    Kotian, Roshan; Exarchakos, Georgios; Liotta, Antonio

    2017-01-01

    Internet of Things promises large scale interconnected sensing and actuation capabilities in domains, areas, applications and activities never accessed before by Internet. Besides other technical barriers, wireless network node lifetime impedes its applicability. To reduce the energy cost incurred

  3. Adaptive Code Division Multiple Access Protocol for Wireless Network-on-Chip Architectures

    Science.gov (United States)

    Vijayakumaran, Vineeth

    Massive levels of integration following Moore's Law ushered in a paradigm shift in the way on-chip interconnections were designed. With higher and higher number of cores on the same die traditional bus based interconnections are no longer a scalable communication infrastructure. On-chip networks were proposed enabled a scalable plug-and-play mechanism for interconnecting hundreds of cores on the same chip. Wired interconnects between the cores in a traditional Network-on-Chip (NoC) system, becomes a bottleneck with increase in the number of cores thereby increasing the latency and energy to transmit signals over them. Hence, there has been many alternative emerging interconnect technologies proposed, namely, 3D, photonic and multi-band RF interconnects. Although they provide better connectivity, higher speed and higher bandwidth compared to wired interconnects; they also face challenges with heat dissipation and manufacturing difficulties. On-chip wireless interconnects is one other alternative proposed which doesn't need physical interconnection layout as data travels over the wireless medium. They are integrated into a hybrid NOC architecture consisting of both wired and wireless links, which provides higher bandwidth, lower latency, lesser area overhead and reduced energy dissipation in communication. However, as the bandwidth of the wireless channels is limited, an efficient media access control (MAC) scheme is required to enhance the utilization of the available bandwidth. This thesis proposes using a multiple access mechanism such as Code Division Multiple Access (CDMA) to enable multiple transmitter-receiver pairs to send data over the wireless channel simultaneously. It will be shown that such a hybrid wireless NoC with an efficient CDMA based MAC protocol can significantly increase the performance of the system while lowering the energy dissipation in data transfer. In this work it is shown that the wireless NoC with the proposed CDMA based MAC protocol

  4. An Experimental Performance Measurement of Implemented Wireless Access Point for Interworking Wi-Fi and HSDPA Networks

    Science.gov (United States)

    Byun, Tae-Young

    This paper presents a prototype of WAP(Wireless Access Point) that provides the wireless Internet access anywhere. Implemented WAP can be equipped with various wireless WAN interfaces such as WCDMA and HSDPA. WAP in the IP mechanism has to process connection setup procedure to one wireless WAN. Also, WAP can provide connection management procedures to reconnect interrupted connection automatically. By using WAP, several mobile devices such as netbook, UMPC and smart-phone in a moving vehicle can access to HSDPA network simultaneously. So, it has more convenient for using the WAP when there are needs to access wireless Internet more than two mobile devices in restricted spaces such as car, train and ship.

  5. Advertisement-Based Energy Efficient Medium Access Protocols for Wireless Sensor Networks

    Science.gov (United States)

    Ray, Surjya Sarathi

    One of the main challenges that prevents the large-scale deployment of Wireless Sensor Networks (WSNs) is providing the applications with the required quality of service (QoS) given the sensor nodes' limited energy supplies. WSNs are an important tool in supporting applications ranging from environmental and industrial monitoring, to battlefield surveillance and traffic control, among others. Most of these applications require sensors to function for long periods of time without human intervention and without battery replacement. Therefore, energy conservation is one of the main goals for protocols for WSNs. Energy conservation can be performed in different layers of the protocol stack. In particular, as the medium access control (MAC) layer can access and control the radio directly, large energy savings is possible through intelligent MAC protocol design. To maximize the network lifetime, MAC protocols for WSNs aim to minimize idle listening of the sensor nodes, packet collisions, and overhearing. Several approaches such as duty cycling and low power listening have been proposed at the MAC layer to achieve energy efficiency. In this thesis, I explore the possibility of further energy savings through the advertisement of data packets in the MAC layer. In the first part of my research, I propose Advertisement-MAC or ADV-MAC, a new MAC protocol for WSNs that utilizes the concept of advertising for data contention. This technique lets nodes listen dynamically to any desired transmission and sleep during transmissions not of interest. This minimizes the energy lost in idle listening and overhearing while maintaining an adaptive duty cycle to handle variable loads. Additionally, ADV-MAC enables energy efficient MAC-level multicasting. An analytical model for the packet delivery ratio and the energy consumption of the protocol is also proposed. The analytical model is verified with simulations and is used to choose an optimal value of the advertisement period

  6. MIROS: a hybrid real-time energy-efficient operating system for the resource-constrained wireless sensor nodes.

    Science.gov (United States)

    Liu, Xing; Hou, Kun Mean; de Vaulx, Christophe; Shi, Hongling; El Gholami, Khalid

    2014-09-22

    Operating system (OS) technology is significant for the proliferation of the wireless sensor network (WSN). With an outstanding OS; the constrained WSN resources (processor; memory and energy) can be utilized efficiently. Moreover; the user application development can be served soundly. In this article; a new hybrid; real-time; memory-efficient; energy-efficient; user-friendly and fault-tolerant WSN OS MIROS is designed and implemented. MIROS implements the hybrid scheduler and the dynamic memory allocator. Real-time scheduling can thus be achieved with low memory consumption. In addition; it implements a mid-layer software EMIDE (Efficient Mid-layer Software for User-Friendly Application Development Environment) to decouple the WSN application from the low-level system. The application programming process can consequently be simplified and the application reprogramming performance improved. Moreover; it combines both the software and the multi-core hardware techniques to conserve the energy resources; improve the node reliability; as well as achieve a new debugging method. To evaluate the performance of MIROS; it is compared with the other WSN OSes (TinyOS; Contiki; SOS; openWSN and mantisOS) from different OS concerns. The final evaluation results prove that MIROS is suitable to be used even on the tight resource-constrained WSN nodes. It can support the real-time WSN applications. Furthermore; it is energy efficient; user friendly and fault tolerant.

  7. MIROS: A Hybrid Real-Time Energy-Efficient Operating System for the Resource-Constrained Wireless Sensor Nodes

    Science.gov (United States)

    Liu, Xing; Hou, Kun Mean; de Vaulx, Christophe; Shi, Hongling; Gholami, Khalid El

    2014-01-01

    Operating system (OS) technology is significant for the proliferation of the wireless sensor network (WSN). With an outstanding OS; the constrained WSN resources (processor; memory and energy) can be utilized efficiently. Moreover; the user application development can be served soundly. In this article; a new hybrid; real-time; memory-efficient; energy-efficient; user-friendly and fault-tolerant WSN OS MIROS is designed and implemented. MIROS implements the hybrid scheduler and the dynamic memory allocator. Real-time scheduling can thus be achieved with low memory consumption. In addition; it implements a mid-layer software EMIDE (Efficient Mid-layer Software for User-Friendly Application Development Environment) to decouple the WSN application from the low-level system. The application programming process can consequently be simplified and the application reprogramming performance improved. Moreover; it combines both the software and the multi-core hardware techniques to conserve the energy resources; improve the node reliability; as well as achieve a new debugging method. To evaluate the performance of MIROS; it is compared with the other WSN OSes (TinyOS; Contiki; SOS; openWSN and mantisOS) from different OS concerns. The final evaluation results prove that MIROS is suitable to be used even on the tight resource-constrained WSN nodes. It can support the real-time WSN applications. Furthermore; it is energy efficient; user friendly and fault tolerant. PMID:25248069

  8. Hop-distance relationship analysis with quasi-UDG model for node localization in wireless sensor networks

    Directory of Open Access Journals (Sweden)

    Chen Ping

    2011-01-01

    Full Text Available Abstract In wireless sensor networks (WSNs, location information plays an important role in many fundamental services which includes geographic routing, target tracking, location-based coverage, topology control, and others. One promising approach in sensor network localization is the determination of location based on hop counts. A critical priori of this approach that directly influences the accuracy of location estimation is the hop-distance relationship. However, most of the related works on the hop-distance relationship assume the unit-disk graph (UDG model that is unrealistic in a practical scenario. In this paper, we formulate the hop-distance relationship for quasi-UDG model in WSNs where sensor nodes are randomly and independently deployed in a circular region based on a Poisson point process. Different from the UDG model, quasi-UDG model has the non-uniformity property for connectivity. We derive an approximated recursive expression for the probability of the hop count with a given geographic distance. The border effect and dependence problem are also taken into consideration. Furthermore, we give the expressions describing the distribution of distance with known hop counts for inner nodes and those suffered from the border effect where we discover the insignificance of the border effect. The analytical results are validated by simulations showing the accuracy of the employed approximation. Besides, we demonstrate the localization application of the formulated relationship and show the accuracy improvement in the WSN localization.

  9. A 15-meter Multi-Gigabit W-band Bidirectional Wireless Bridge in Fiber-Optic Access Networks

    DEFF Research Database (Denmark)

    Pang, Xiaodan; Vegas Olmos, Juan José; Lebedev, Alexander

    2013-01-01

    . The down-converted signal is re-modulated on to the lightwave and transmit further through the fiber-optic system. In the uplink, both up-and down-conversion are performed by electrical means. Furthermore, we investigate both passive and active wireless transmitters in this work for both downlink......We present a bidirectional wireless bridge in the W-band enabling the seamless convergence between the wireless and fiber-optic access networks. In the downlink, a 16 Gbit/s QPSK signal is photonically up-converted at the wireless transmitter and electrically down-converted at the wireless receiver...... and uplink transmissions. With an active wireless transmitter, up to 15 meters wireless transmission is successfully achieved with a BER below the 7% FEC limit in the downlink....

  10. An efficient approach to node localisation and tracking in wireless sensor networks

    CSIR Research Space (South Africa)

    Mwila, MK

    2014-12-01

    Full Text Available and efficient localisation method that makes use of an improved RSSI distance estimation model by including the antenna radiation pattern as well as nodes orientations is presented. Mathematical models for distance estimation, cost function and gradient of cost...

  11. Optimization of Wireless Node Discovery in an IoT Network

    DEFF Research Database (Denmark)

    Vasilev, Vladislav; Iliev, Georgi; Poulkov, Vladimir

    2015-01-01

    in the decrease in discovery costs. The proposed model covers well the dynamics of the complex sensor network, such as the one that maybe employed in an Internet of Things (IoT) scenario, where nodes need to act autonomously during the communication process. We apply the Lotka-Voltera model to increase...

  12. Fuzzy Based Advanced Hybrid Intrusion Detection System to Detect Malicious Nodes in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Rupinder Singh

    2017-01-01

    Full Text Available In this paper, an Advanced Hybrid Intrusion Detection System (AHIDS that automatically detects the WSNs attacks is proposed. AHIDS makes use of cluster-based architecture with enhanced LEACH protocol that intends to reduce the level of energy consumption by the sensor nodes. AHIDS uses anomaly detection and misuse detection based on fuzzy rule sets along with the Multilayer Perceptron Neural Network. The Feed Forward Neural Network along with the Backpropagation Neural Network are utilized to integrate the detection results and indicate the different types of attackers (i.e., Sybil attack, wormhole attack, and hello flood attack. For detection of Sybil attack, Advanced Sybil Attack Detection Algorithm is developed while the detection of wormhole attack is done by Wormhole Resistant Hybrid Technique. The detection of hello flood attack is done by using signal strength and distance. An experimental analysis is carried out in a set of nodes; 13.33% of the nodes are determined as misbehaving nodes, which classified attackers along with a detection rate of the true positive rate and false positive rate. Sybil attack is detected at a rate of 99,40%; hello flood attack has a detection rate of 98, 20%; and wormhole attack has a detection rate of 99, 20%.

  13. A self-supporting wireless IoT node that uses kinetic energy harvesting

    DEFF Research Database (Denmark)

    Lynggaard, Per

    2017-01-01

    The Internet-of-Things (IoT) is expected to be the next revolution of the internet where trillions of IoT nodes will be deployed on a global scale. It is foreseen that a considerable part of these will be deployed in smart buildings and smart homes where they will provide innovative solutions...

  14. Towards convergence of wireless and wireline signal transport in broadband access networks

    DEFF Research Database (Denmark)

    Yu, Xianbin; Prince, Kamau; Tafur Monroy, Idelfonso

    2010-01-01

    Hybrid optical wireless access networks are to play an important role in the realization of the vision of delivery of broadband services to the end-user any time, anywhere and at affordable costs. We present results of experiments conducted over a field deployed optical fibre links we successfull...... demonstrated converged wireless and wireline signal transport over a common fibre infrastructure. The type of signal used in this field deployed experiments cover WiMax, Impulse-radio ultra-wideband (UWB) and coherent transmission of baseband QPSK and radio-over-fibre signals....

  15. Information Estimation with Node Placement Strategy in 3D Wireless Sensor Networks

    OpenAIRE

    Karjee, Jyotirmoy; Jamadagni, H. S

    2017-01-01

    The cluster formation in Three Dimensional Wireless Sensor Networks (3D-WSN) give rise to overlapping of signals due to spherical sensing range which leads to information redundancy in the network. To address this problem, we develop a sensing algorithm for 3D-WSN based on dodecahedron topology which we call Three Dimensional Distributed Clustering (3D-DC) algorithm. Using 3D-DC algorithm in 3D-WSN, accurate information extraction appears to be a major challenge due to the environmental noise...

  16. Memory and Energy Optimization Strategies for Multithreaded Operating System on the Resource-Constrained Wireless Sensor Node

    Directory of Open Access Journals (Sweden)

    Xing Liu

    2014-12-01

    Full Text Available Memory and energy optimization strategies are essential for the resource-constrained wireless sensor network (WSN nodes. In this article, a new memory-optimized and energy-optimized multithreaded WSN operating system (OS LiveOS is designed and implemented. Memory cost of LiveOS is optimized by using the stack-shifting hybrid scheduling approach. Different from the traditional multithreaded OS in which thread stacks are allocated statically by the pre-reservation, thread stacks in LiveOS are allocated dynamically by using the stack-shifting technique. As a result, memory waste problems caused by the static pre-reservation can be avoided. In addition to the stack-shifting dynamic allocation approach, the hybrid scheduling mechanism which can decrease both the thread scheduling overhead and the thread stack number is also implemented in LiveOS. With these mechanisms, the stack memory cost of LiveOS can be reduced more than 50% if compared to that of a traditional multithreaded OS. Not is memory cost optimized, but also the energy cost is optimized in LiveOS, and this is achieved by using the multi-core “context aware” and multi-core “power-off/wakeup” energy conservation approaches. By using these approaches, energy cost of LiveOS can be reduced more than 30% when compared to the single-core WSN system. Memory and energy optimization strategies in LiveOS not only prolong the lifetime of WSN nodes, but also make the multithreaded OS feasible to run on the memory-constrained WSN nodes.

  17. Energy Efficient Medium Access Control Protocol for Clustered Wireless Sensor Networks with Adaptive Cross-Layer Scheduling.

    Science.gov (United States)

    Sefuba, Maria; Walingo, Tom; Takawira, Fambirai

    2015-09-18

    This paper presents an Energy Efficient Medium Access Control (MAC) protocol for clustered wireless sensor networks that aims to improve energy efficiency and delay performance. The proposed protocol employs an adaptive cross-layer intra-cluster scheduling and an inter-cluster relay selection diversity. The scheduling is based on available data packets and remaining energy level of the source node (SN). This helps to minimize idle listening on nodes without data to transmit as well as reducing control packet overhead. The relay selection diversity is carried out between clusters, by the cluster head (CH), and the base station (BS). The diversity helps to improve network reliability and prolong the network lifetime. Relay selection is determined based on the communication distance, the remaining energy and the channel quality indicator (CQI) for the relay cluster head (RCH). An analytical framework for energy consumption and transmission delay for the proposed MAC protocol is presented in this work. The performance of the proposed MAC protocol is evaluated based on transmission delay, energy consumption, and network lifetime. The results obtained indicate that the proposed MAC protocol provides improved performance than traditional cluster based MAC protocols.

  18. Building secure wireless access point based on certificate authentication and firewall captive portal

    Directory of Open Access Journals (Sweden)

    Soewito B.

    2014-03-01

    Full Text Available Wireless local area network or WLAN more vulnerability than wired network even though WLAN has many advantages over wired. Wireless networks use radio transmissions to carry data between end users and access point. Therefore, it is possible for someone to sit in your office building's lobby or parking lot or parking lot to eavesdrop on the wireless network communication. This paper discussed securing wires local area network used WPA2 Enterprise based PEAP MS-CHAP and Captive portal firewall. We also divided the network for employer and visitor to increase the level of security. Our experiment showed that the WLAN could be broken using the attacker tool such as airodump, aireply, and aircrack.

  19. Online Learning Algorithm for Time Series Forecasting Suitable for Low Cost Wireless Sensor Networks Nodes

    Directory of Open Access Journals (Sweden)

    Juan Pardo

    2015-04-01

    Full Text Available Time series forecasting is an important predictive methodology which can be applied to a wide range of problems. Particularly, forecasting the indoor temperature permits an improved utilization of the HVAC (Heating, Ventilating and Air Conditioning systems in a home and thus a better energy efficiency. With such purpose the paper describes how to implement an Artificial Neural Network (ANN algorithm in a low cost system-on-chip to develop an autonomous intelligent wireless sensor network. The present paper uses a Wireless Sensor Networks (WSN to monitor and forecast the indoor temperature in a smart home, based on low resources and cost microcontroller technology as the 8051MCU. An on-line learning approach, based on Back-Propagation (BP algorithm for ANNs, has been developed for real-time time series learning. It performs the model training with every new data that arrive to the system, without saving enormous quantities of data to create a historical database as usual, i.e., without previous knowledge. Consequently to validate the approach a simulation study through a Bayesian baseline model have been tested in order to compare with a database of a real application aiming to see the performance and accuracy. The core of the paper is a new algorithm, based on the BP one, which has been described in detail, and the challenge was how to implement a computational demanding algorithm in a simple architecture with very few hardware resources.

  20. Online Learning Algorithm for Time Series Forecasting Suitable for Low Cost Wireless Sensor Networks Nodes

    Science.gov (United States)

    Pardo, Juan; Zamora-Martínez, Francisco; Botella-Rocamora, Paloma

    2015-01-01

    Time series forecasting is an important predictive methodology which can be applied to a wide range of problems. Particularly, forecasting the indoor temperature permits an improved utilization of the HVAC (Heating, Ventilating and Air Conditioning) systems in a home and thus a better energy efficiency. With such purpose the paper describes how to implement an Artificial Neural Network (ANN) algorithm in a low cost system-on-chip to develop an autonomous intelligent wireless sensor network. The present paper uses a Wireless Sensor Networks (WSN) to monitor and forecast the indoor temperature in a smart home, based on low resources and cost microcontroller technology as the 8051MCU. An on-line learning approach, based on Back-Propagation (BP) algorithm for ANNs, has been developed for real-time time series learning. It performs the model training with every new data that arrive to the system, without saving enormous quantities of data to create a historical database as usual, i.e., without previous knowledge. Consequently to validate the approach a simulation study through a Bayesian baseline model have been tested in order to compare with a database of a real application aiming to see the performance and accuracy. The core of the paper is a new algorithm, based on the BP one, which has been described in detail, and the challenge was how to implement a computational demanding algorithm in a simple architecture with very few hardware resources. PMID:25905698

  1. Online learning algorithm for time series forecasting suitable for low cost wireless sensor networks nodes.

    Science.gov (United States)

    Pardo, Juan; Zamora-Martínez, Francisco; Botella-Rocamora, Paloma

    2015-04-21

    Time series forecasting is an important predictive methodology which can be applied to a wide range of problems. Particularly, forecasting the indoor temperature permits an improved utilization of the HVAC (Heating, Ventilating and Air Conditioning) systems in a home and thus a better energy efficiency. With such purpose the paper describes how to implement an Artificial Neural Network (ANN) algorithm in a low cost system-on-chip to develop an autonomous intelligent wireless sensor network. The present paper uses a Wireless Sensor Networks (WSN) to monitor and forecast the indoor temperature in a smart home, based on low resources and cost microcontroller technology as the 8051MCU. An on-line learning approach, based on Back-Propagation (BP) algorithm for ANNs, has been developed for real-time time series learning. It performs the model training with every new data that arrive to the system, without saving enormous quantities of data to create a historical database as usual, i.e., without previous knowledge. Consequently to validate the approach a simulation study through a Bayesian baseline model have been tested in order to compare with a database of a real application aiming to see the performance and accuracy. The core of the paper is a new algorithm, based on the BP one, which has been described in detail, and the challenge was how to implement a computational demanding algorithm in a simple architecture with very few hardware resources.

  2. Joint estimation and contention-resolution protocol for wireless random access

    DEFF Research Database (Denmark)

    Stefanovic, Cedomir; Trillingsgaard, Kasper Fløe; Kiilerich Pratas, Nuno

    2013-01-01

    We propose a contention-based random-access protocol, designed for wireless networks where the number of users is not a priori known. The protocol operates in rounds divided into equal-duration slots, performing at the same time estimation of the number of users and resolution of their transmissi......We propose a contention-based random-access protocol, designed for wireless networks where the number of users is not a priori known. The protocol operates in rounds divided into equal-duration slots, performing at the same time estimation of the number of users and resolution...... successive interference cancellation which, coupled with the use of the optimized access probabilities, enables throughputs that are substantially higher than the traditional slotted ALOHA-like protocols. The key feature of the proposed protocol is that the round durations are not a priori set...

  3. Cognitive radio networks medium access control for coexistence of wireless systems

    CERN Document Server

    Bian, Kaigui; Gao, Bo

    2014-01-01

    This book gives a comprehensive overview of the medium access control (MAC) principles in cognitive radio networks, with a specific focus on how such MAC principles enable different wireless systems to coexist in the same spectrum band and carry out spectrum sharing.  From algorithm design to the latest developments in the standards and spectrum policy, readers will benefit from leading-edge knowledge of how cognitive radio systems coexist and share spectrum resources.  Coverage includes cognitive radio rendezvous, spectrum sharing, channel allocation, coexistence in TV white space, and coexistence of heterogeneous wireless systems.   • Provides a comprehensive reference on medium access control (MAC)-related problems in the design of cognitive radio systems and networks; • Includes detailed analysis of various coexistence problems related to medium access control in cognitive radio networks; • Reveals novel techniques for addressing the challenges of coexistence protocol design at a higher level ...

  4. Wireless ad hoc networks access for aeronautical communications

    OpenAIRE

    Besse , Frédéric; Garcia , Fabien; Pirovano , Alain; Radzik , José

    2010-01-01

    International audience; There is an increasing interest in the current aeronautical context to offer new services for civil aircraft passengers. For example, airlines want to offer their customers the opportunity to access the Internet, to manage their mails, to watch video on demand, to access corporate VPNs.... All these services represent a new type of air-ground communications called APC (Aeronautical Passenger Communications) in the ATN (Aeronautical Telecommunication Network) context. I...

  5. Wireless Sensor Node Power Profiling Based on IEEE 802.11 and IEEE 802.15.4 Communication Protocols. Modeling and Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Agarwal, Vivek [Idaho National Lab. (INL), Idaho Falls, ID (United States); Richardson, Joseph [Idaho National Lab. (INL), Idaho Falls, ID (United States); Zhang, Yanliang [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-10-01

    Most wireless sensor network (comprising of thousands of WSNs) applications require operation over extended periods of time beginning with their deployment. Network lifetime is extremely critical for most applications and is one of the limiting factors for energy-constrained networks. Based on applications, there are wide ranges of different energy sources suitable for powering WSNs. A battery is traditionally used to power WSNs. The deployed WSN is required to last for long time. Due to finite amount of energy present in batteries, it is not feasible to replace batteries. Recently there has been a new surge in the area of energy harvesting were ambient energy in the environment can be utilized to prolong the lifetime of WSNs. Some of the sources of ambient energies are solar power, thermal gradient, human motion and body heat, vibrations, and ambient RF energy. The design and development of TEGs to power WSNs that would remain active for a long period of time requires comprehensive understanding of WSN operational. This motivates the research in modeling the lifetime, i.e., power consumption, of a WSN by taking into consideration various node and network level activities. A WSN must perform three essential tasks: sense events, perform quick local information processing of sensed events, and wirelessly exchange locally processed data with the base station or with other WSNs in the network. Each task has a power cost per unit tine and an additional cost when switching between tasks. There are number of other considerations that must also be taken into account when computing the power consumption associated with each task. The considerations includes: number of events occurring in a fixed active time period and the duration of each event, event-information processing time, total communication time, number of retransmission, etc. Additionally, at the network level the communication of information data packets between WSNs involves collisions, latency, and

  6. Propagation Characteristics in an Underground Shopping Area for 5GHz-band Wireless Access Systems

    Science.gov (United States)

    Itokawa, Kiyohiko; Kita, Naoki; Sato, Akio; Matsue, Hideaki; Mori, Daisuke; Watanabe, Hironobu

    5-GHz band wireless access systems, such as the RLAN (Radio Local Area Network) system of IEEE802.11a, HiperLAN/2, HiSWANa and AWA, are developed and provide transmission rates over 20 Mbps for indoor use. Those 5-GHz access systems are expected to extend service areas from the office to the so-called “hot-spot" in public areas. Underground shopping malls are one of the anticipated service areas for such a nomadic wireless access service. Broadband propagation characteristics are required for radio zone design in an underground mall environment despite previous results obtained by narrow band measurements. This paper presents results of an experimental study on the propagation characteristics for broadband wireless access systems in an underground mall environment. First, broadband propagation path loss is measured and formulated considering human body shadowing. A ray trace simulation is used to clarify the basic propagation mechanism in such a closed environment. Next, a distance dependency of the delay spread during a crowded time period, rush hour, is found to be at most 65 nsec, which is under the permitted maximum value of the present 5-GHz systems. Finally, above propagation characteristics support the result of transmission test carried out by using AWA equipment.

  7. OFDM Towards Fixed and Mobile Broadband Wireless Access

    DEFF Research Database (Denmark)

    Shanker Jha, Uma; Prasad, Ramjee

    ) and orthogonal frequency division multiple access (OFDMA) schemes. Essential features of IEEE 802.16d (fixed) and 802.16e (mobile) and the role of the WiMAX Forum in defining interoperability and certification criteria. Important requirements, trade-offs, and other critical design considerations. Key issues...

  8. Service Class Resource Management For Green Wireless-Optical Broadband Access NetworksWOBAN

    Directory of Open Access Journals (Sweden)

    SRUTHY.S

    2015-08-01

    Full Text Available Abstract-Broadband access networks have become an essential part of worldwide communication systems because of the exponential growth of broadband services such as video on demand high definition TV internet protocol TV and video conferencing. Exponential growth in the volume of wireless data boosted by the growing popularity of mobile devices such as smartphone and tablets has forced the telecommunication industries to rethink the way networks are currently designed and to focus on the development of high-capacity mobile broadband networks. In response to this challenge researchers have been working toward the development of an integrated wireless optical broadband access network. Two major candidate technologies which are currently known for their high capacity as well as quality of service QoS for multimedia traffic are passive optical networks PON and fourth generation 4G wireless networks. PON is a wired access technology well known for its cost efficiency and high capacity whereas 4G is a wireless broadband access technology which has achieved broad market acceptance because of its ease of deployment ability to offer mobility and its cost efficiency. Integration of PON and 4G technologies in the form of wireless-optical broadband access networks offers advantages such as extension of networks in rural areas support for mobile broadband services and quick deployment of broadband networks. These two technologies however have different design architectures for handling broadband services that require quality of service. For example 4G networks use traffic classification for supporting different QoS demands whereas the PON architecture has no such mechanism to differentiate between types of traffic. These two technologies also differ in their power saving mechanisms. Propose a service class mapping for the integrated PON-4G network which is based on the MG1 queuing model and class-based power saving mechanism which significantly improves the

  9. Capacity Analysis of Wireless Mesh Networks

    Directory of Open Access Journals (Sweden)

    M. I. Gumel

    2012-06-01

    Full Text Available The next generation wireless networks experienced a great development with emergence of wireless mesh networks (WMNs, which can be regarded as a realistic solution that provides wireless broadband access. The limited available bandwidth makes capacity analysis of the network very essential. While the network offers broadband wireless access to community and enterprise users, the problems that limit the network capacity must be addressed to exploit the optimum network performance. The wireless mesh network capacity analysis shows that the throughput of each mesh node degrades in order of l/n with increasing number of nodes (n in a linear topology. The degradation is found to be higher in a fully mesh network as a result of increase in interference and MAC layer contention in the network.

  10. Convergent optical wired and wireless long-reach access network using high spectral-efficient modulation.

    Science.gov (United States)

    Chow, C W; Lin, Y H

    2012-04-09

    To provide broadband services in a single and low cost perform, the convergent optical wired and wireless access network is promising. Here, we propose and demonstrate a convergent optical wired and wireless long-reach access networks based on orthogonal wavelength division multiplexing (WDM). Both the baseband signal and the radio-over-fiber (ROF) signal are multiplexed and de-multiplexed in optical domain, hence it is simple and the operation speed is not limited by the electronic bottleneck caused by the digital signal processing (DSP). Error-free de-multiplexing and down-conversion can be achieved for all the signals after 60 km (long-reach) fiber transmission. The scalability of the system for higher bit-rate (60 GHz) is also simulated and discussed.

  11. A Unified Access Model for Interconnecting Heterogeneous Wireless Networks

    Science.gov (United States)

    2015-05-01

    validation of the proposed network design for unified network access, and it lays the foundation for implementing a Software - Defined Networking ( SDN ...York (NY): Springer; 2014. Chapter 2, Software - defined networking ; p. 19–32. 5. Sharma S, Staessens D, Colle D, Pickavet M, Demeester P. A...demonstration of fast failure recovery in software defined networking . In: Korakis T, Zink M, Ott, M, editors. Testbeds and research infrastructure

  12. On Designing Thermal-Aware Localized QoS Routing Protocol for in-vivo Sensor Nodes in Wireless Body Area Networks

    OpenAIRE

    Monowar, Muhammad Mostafa; Bajaber, Fuad

    2015-01-01

    In this paper, we address the thermal rise and Quality-of-Service (QoS) provisioning issue for an intra-body Wireless Body Area Network (WBAN) having in-vivo sensor nodes. We propose a thermal-aware QoS routing protocol, called TLQoS, that facilitates the system in achieving desired QoS in terms of delay and reliability for diverse traffic types, as well as avoids the formation of highly heated nodes known as hotspot(s), and keeps the temperature rise along the network to an acceptable level....

  13. Strategy for incumbent wireline operator: customers' provision of broadband wireless access

    Science.gov (United States)

    Khan, Naveed Ahmed; Kan, Kaili; Tareen, Abdul Wahid

    2011-10-01

    The phenomenal growth in mobile market during last decade has left incumbent wireline operators with very low fixed line customer base. The incumbent wireline operators are losing their market dominant position and wireline resources are lying underutilized. This paper proposed a cost effective strategy for incumbent wireline operators for customers' provision of broadband wireless access. The strategy will make wireline networks more value added and customer base will increase. The revenue will enhance and wireline resources will be utilized more efficiently.

  14. Optimal dynamic voltage scaling for wireless sensor nodes with real-time constraints

    Science.gov (United States)

    Cassandras, Christos G.; Zhuang, Shixin

    2005-11-01

    Sensors are increasingly embedded in manufacturing systems and wirelessly networked to monitor and manage operations ranging from process and inventory control to tracking equipment and even post-manufacturing product monitoring. In building such sensor networks, a critical issue is the limited and hard to replenish energy in the devices involved. Dynamic voltage scaling is a technique that controls the operating voltage of a processor to provide desired performance while conserving energy and prolonging the overall network's lifetime. We consider such power-limited devices processing time-critical tasks which are non-preemptive, aperiodic and have uncertain arrival times. We treat voltage scaling as a dynamic optimization problem whose objective is to minimize energy consumption subject to hard or soft real-time execution constraints. In the case of hard constraints, we build on prior work (which engages a voltage scaling controller at task completion times) by developing an intra-task controller that acts at all arrival times of incoming tasks. We show that this optimization problem can be decomposed into two simpler ones whose solution leads to an algorithm that does not actually require solving any nonlinear programming problems. In the case of soft constraints, this decomposition must be partly relaxed, but it still leads to a scalable (linear in the number of tasks) algorithm. Simulation results are provided to illustrate performance improvements in systems with intra-task controllers compared to uncontrolled systems or those using inter-task control.

  15. Self-powered autonomous wireless sensor node using vibration energy harvesting

    International Nuclear Information System (INIS)

    Torah, R; Glynne-Jones, P; Tudor, M; Beeby, S; O'Donnell, T; Roy, S

    2008-01-01

    This paper reports the development and implementation of an energy aware autonomous wireless condition monitoring sensor system (ACMS) powered by ambient vibrations. An electromagnetic (EM) generator has been designed to harvest sufficient energy to power a radio-frequency (RF) linked accelerometer-based sensor system. The ACMS is energy aware and will adjust the measurement/transmit duty cycle according to the available energy; this is typically every 3 s at 0.6 m s −2 rms acceleration and can be as low as 0.2 m s −2 rms with a duty cycle around 12 min. The EM generator has a volume of only 150 mm 3 producing an average power of 58 µW at 0.6 m s −2 rms acceleration at a frequency of 52 Hz. In addition, a voltage multiplier circuit is shown to increase the electrical damping compared to a purely resistive load; this allows for an average power of 120 µW to be generated at 1.7 m s −2 rms acceleration. The ACMS has been successfully demonstrated on an industrial air compressor and an office air conditioning unit, continuously monitoring vibration levels and thereby simulating a typical condition monitoring application

  16. Self-Similarity Superresolution for Resource-Constrained Image Sensor Node in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Yuehai Wang

    2014-01-01

    Full Text Available Wireless sensor networks, in combination with image sensors, open up a grand sensing application field. It is a challenging problem to recover a high resolution (HR image from its low resolution (LR counterpart, especially for low-cost resource-constrained image sensors with limited resolution. Sparse representation-based techniques have been developed recently and increasingly to solve this ill-posed inverse problem. Most of these solutions are based on an external dictionary learned from huge image gallery, consequently needing tremendous iteration and long time to match. In this paper, we explore the self-similarity inside the image itself, and propose a new combined self-similarity superresolution (SR solution, with low computation cost and high recover performance. In the self-similarity image super resolution model (SSIR, a small size sparse dictionary is learned from the image itself by the methods such as KSVD. The most similar patch is searched and specially combined during the sparse regulation iteration. Detailed information, such as edge sharpness, is preserved more faithfully and clearly. Experiment results confirm the effectiveness and efficiency of this double self-learning method in the image super resolution.

  17. Digital predistortion of 75–110 GHz W-band frequency multiplier for fiber wireless short range access systems

    DEFF Research Database (Denmark)

    Zhao, Ying; Deng, Lei; Pang, Xiaodan

    2011-01-01

    be effectively pre-compensated. Without using costly W-band components, a transmission system with 26km fiber and 4m wireless transmission operating at 99.6GHz is experimentally validated. Adjacent-channel power ratio (ACPR) improvements for IQ-modulated vector signals are guaranteed and transmission......We present a W-band fiber-wireless transmission system based on a nonlinear frequency multiplier for high-speed wireless short range access applications. By implementing a baseband digital signal predistortion scheme, intensive nonlinear distortions induced in a sextuple frequency multiplier can...... performances for fiber and wireless channels are studied. This W-band predistortion technique is a promising candidate for applications in high capacity wireless-fiber access systems....

  18. SIVEH: Numerical Computing Simulation of Wireless Energy-Harvesting Sensor Nodes

    Directory of Open Access Journals (Sweden)

    Pedro Yuste

    2013-09-01

    Full Text Available The paper presents a numerical energy harvesting model for sensor nodes, SIVEH (Simulator I–V for EH, based on I–V hardware tracking. I–V tracking is demonstrated to be more accurate than traditional energy modeling techniques when some of the components present different power dissipation at either different operating voltages or drawn currents. SIVEH numerical computing allows fast simulation of long periods of time—days, weeks, months or years—using real solar radiation curves. Moreover, SIVEH modeling has been enhanced with sleep time rate dynamic adjustment, while seeking energy-neutral operation. This paper presents the model description, a functional verification and a critical comparison with the classic energy approach.

  19. Delay-aware adaptive sleep mechanism for green wireless-optical broadband access networks

    Science.gov (United States)

    Wang, Ruyan; Liang, Alei; Wu, Dapeng; Wu, Dalei

    2017-07-01

    Wireless-Optical Broadband Access Network (WOBAN) is capacity-high, reliable, flexible, and ubiquitous, as it takes full advantage of the merits from both optical communication and wireless communication technologies. Similar to other access networks, the high energy consumption poses a great challenge for building up WOBANs. To shot this problem, we can make some load-light Optical Network Units (ONUs) sleep to reduce the energy consumption. Such operation, however, causes the increased packet delay. Jointly considering the energy consumption and transmission delay, we propose a delay-aware adaptive sleep mechanism. Specifically, we develop a new analytical method to evaluate the transmission delay and queuing delay over the optical part, instead of adopting M/M/1 queuing model. Meanwhile, we also analyze the access delay and queuing delay of the wireless part. Based on such developed delay models, we mathematically derive ONU's optimal sleep time. In addition, we provide numerous simulation results to show the effectiveness of the proposed mechanism.

  20. Self-Powered Wireless Sensor Node Enabled by a Duck-Shaped Triboelectric Nanogenerator for Harvesting Water Wave Energy

    KAUST Repository

    Ahmed, Abdelsalam

    2016-12-08

    This paper presents a fully enclosed duck-shaped triboelectric nanogenerator (TENG) for effectively scavenging energy from random and low-frequency water waves. The design of the TENG incorporates the freestanding rolling mode and the pitch motion of a duck-shaped structure generated by incident waves. By investigating the material and structural features, a unit of the TENG device is successfully designed. Furthermore, a hybrid system is constructed using three units of the TENG device. The hybrid system achieves an instantaneous peak current of 65.5 µA with an instantaneous output power density of up to 1.366 W m−2. Following the design, a fluid–solid interaction analysis is carried out on one duck-shaped TENG to understand the dynamic behavior, mechanical efficiency, and stability of the device under various water wave conditions. In addition, the hybrid system is experimentally tested to enable a commercial wireless temperature sensor node. In summary, the unique duck-shaped TENG shows a simple, cost-effective, environmentally friendly, light-weight, and highly stable system. The newly designed TENG is promising for building a network of generators to harvest existing blue energy in oceans, lakes, and rivers.

  1. Self-Powered Wireless Sensor Node Enabled by a Duck-Shaped Triboelectric Nanogenerator for Harvesting Water Wave Energy

    KAUST Repository

    Ahmed, Abdelsalam; Saadatnia, Zia; Hassan, Islam; Zi, Yunlong; Xi, Yi; He, Xu; Zu, Jean; Wang, Zhong Lin

    2016-01-01

    This paper presents a fully enclosed duck-shaped triboelectric nanogenerator (TENG) for effectively scavenging energy from random and low-frequency water waves. The design of the TENG incorporates the freestanding rolling mode and the pitch motion of a duck-shaped structure generated by incident waves. By investigating the material and structural features, a unit of the TENG device is successfully designed. Furthermore, a hybrid system is constructed using three units of the TENG device. The hybrid system achieves an instantaneous peak current of 65.5 µA with an instantaneous output power density of up to 1.366 W m−2. Following the design, a fluid–solid interaction analysis is carried out on one duck-shaped TENG to understand the dynamic behavior, mechanical efficiency, and stability of the device under various water wave conditions. In addition, the hybrid system is experimentally tested to enable a commercial wireless temperature sensor node. In summary, the unique duck-shaped TENG shows a simple, cost-effective, environmentally friendly, light-weight, and highly stable system. The newly designed TENG is promising for building a network of generators to harvest existing blue energy in oceans, lakes, and rivers.

  2. Rogue AP Detection in the Wireless LAN for Large Scale Deployment

    Directory of Open Access Journals (Sweden)

    Sang-Eon Kim

    2006-10-01

    Full Text Available The wireless LAN standard, also known as WiFi, has begun to use commercial purposes. This paper describes access network architecture of wireless LAN for large scale deployment to provide public service. A metro Ethernet and digital subscriber line access network can be used for wireless LAN with access point. In this network architecture, access point plays interface between wireless node and network infrastructure. It is important to maintain access point without any failure and problems to public users. This paper proposes definition of rogue access point and classifies based on functional problem to access the Internet. After that, rogue access point detection scheme is described based on classification over the wireless LAN. The rogue access point detector can greatly improve the network availability to network service provider of wireless LAN.

  3. A Compact Energy Harvesting System for Outdoor Wireless Sensor Nodes Based on a Low-Cost In Situ Photovoltaic Panel Characterization-Modelling Unit.

    Science.gov (United States)

    Antolín, Diego; Medrano, Nicolás; Calvo, Belén; Martínez, Pedro A

    2017-08-04

    This paper presents a low-cost high-efficiency solar energy harvesting system to power outdoor wireless sensor nodes. It is based on a Voltage Open Circuit (VOC) algorithm that estimates the open-circuit voltage by means of a multilayer perceptron neural network model trained using local experimental characterization data, which are acquired through a novel low cost characterization system incorporated into the deployed node. Both units-characterization and modelling-are controlled by the same low-cost microcontroller, providing a complete solution which can be understood as a virtual pilot cell, with identical characteristics to those of the specific small solar cell installed on the sensor node, that besides allows an easy adaptation to changes in the actual environmental conditions, panel aging, etc. Experimental comparison to a classical pilot panel based VOC algorithm show better efficiency under the same tested conditions.

  4. Improving Spectral Capacity and Wireless Network Coverage by Cognitive Radio Technology and Relay Nodes in Cellular Systems

    DEFF Research Database (Denmark)

    Frederiksen, Flemming Bjerge

    2008-01-01

    Methods to enhance the use of the frequency spectrum by automatical spectrum sensing plus spectrum sharing in a cognitive radio technology context have been presented and discussed in this paper. Ideas to improve the wireless transmission by orthogonal OFDM-based communication and to increase the...... the coverage of cellular systems by future wireless networks, relay channels, relay stations and collaborate radio have been presented as well. A revised hierarchical deployment of the future wireless and wired networks are shortly discussed....

  5. Threats and risks to information security: a practical analysis of free access wireless networks

    Science.gov (United States)

    Quirumbay, Daniel I.; Coronel, Iván. A.; Bayas, Marcia M.; Rovira, Ronald H.; Gromaszek, Konrad; Tleshova, Akmaral; Kozbekova, Ainur

    2017-08-01

    Nowadays, there is an ever-growing need to investigate, consult and communicate through the internet. This need leads to the intensification of free access to the web in strategic and functional points for the benefit of the community. However, this open access is also related to the increase of information insecurity. The existing works on computer security primarily focus on the development of techniques to reduce cyber-attacks. However, these approaches do not address the sector of inexperienced users who have difficulty understanding browser settings. Two methods can solve this problem: first the development of friendly browsers with intuitive setups for new users and on the other hand, by implementing awareness programs on essential security without deepening on technical information. This article addresses an analysis of the vulnerabilities of wireless equipment that provides internet service in the open access zones and the potential risks that could be found when using these means.

  6. A scalable and continuous-upgradable optical wireless and wired convergent access network.

    Science.gov (United States)

    Sung, J Y; Cheng, K T; Chow, C W; Yeh, C H; Pan, C-L

    2014-06-02

    In this work, a scalable and continuous upgradable convergent optical access network is proposed. By using a multi-wavelength coherent comb source and a programmable waveshaper at the central office (CO), optical millimeter-wave (mm-wave) signals of different frequencies (from baseband to > 100 GHz) can be generated. Hence, it provides a scalable and continuous upgradable solution for end-user who needs 60 GHz wireless services now and > 100 GHz wireless services in the future. During the upgrade, user only needs to upgrade their optical networking unit (ONU). A programmable waveshaper is used to select the suitable optical tones with wavelength separation equals to the desired mm-wave frequency; while the CO remains intact. The centralized characteristics of the proposed system can easily add any new service and end-user. The centralized control of the wavelength makes the system more stable. Wired data rate of 17.45 Gb/s and w-band wireless data rate up to 3.36 Gb/s were demonstrated after transmission over 40 km of single-mode fiber (SMF).

  7. Polarization division multiple access with polarization modulation for LOS wireless communications

    Directory of Open Access Journals (Sweden)

    Cao Bin

    2011-01-01

    Full Text Available Abstract In this paper, we discuss a potential multiple access and modulation scheme based on polarized states (PS of electromagnetic (EM waves for line-of-sight (LOS communications. The proposed scheme is theoretic different from the existing polar modulation for EDGE and WCDMA systems. We propose the detailed bit representation (modulation and multiple access scheme using PS. Because of the inflexibility of polarization information in the time and frequency domains, as well as independence of frequency and space, the polarization information can be used independently for wireless communications, i.e., another independent resource domain that can be utilized. Due to the independence between the PS and the specific features of signals (such as waveform, bandwidth and data rate, the discussed polarization division multiple access (PDMA and polarization modulation (PM are expected to improve the spectrum utilization effectively. It is proved that the polarization filtering technique can be adopted in the PDMA-PM wireless communications to separate the multiuser signals and demodulate the bit information representing by PS for desired user. Some theoretical analysis is done to demonstrate the feasibility of the proposed scheme, and the simulation results are made to evaluate the performance of the suggested system.

  8. The challenges of M2M massive access in wireless cellular networks

    Directory of Open Access Journals (Sweden)

    Andrea Biral

    2015-02-01

    Full Text Available The next generation of communication systems, which is commonly referred to as 5G, is expected to support, besides the traditional voice and data services, new communication paradigms, such as Internet of Things (IoT and Machine-to-Machine (M2M services, which involve communication between Machine-Type Devices (MTDs in a fully automated fashion, thus, without or with minimal human intervention. Although the general requirements of 5G systems are progressively taking shape, the technological issues raised by such a vision are still partially unclear. Nonetheless, general consensus has been reached upon some specific challenges, such as the need for 5G wireless access networks to support massive access by MTDs, as a consequence of the proliferation of M2M services. In this paper, we describe the main challenges raised by the M2M vision, focusing in particular on the problems related to the support of massive MTD access in current cellular communication systems. Then we analyze the most common approaches proposed in the literature to enable the coexistence of conventional and M2M services in the current and next generation of cellular wireless systems. We finally conclude by pointing out the research challenges that require further investigation in order to provide full support to the M2M paradigm.

  9. Data aggregation in wireless sensor networks using the SOAP protocol

    International Nuclear Information System (INIS)

    Al-Yasiri, A; Sunley, A

    2007-01-01

    Wireless sensor networks (WSN) offer an increasingly attractive method of data gathering in distributed system architectures and dynamic access via wireless connectivity. Wireless sensor networks have physical and resource limitations, this leads to increased complexity for application developers and often results in applications that are closely coupled with network protocols. In this paper, a data aggregation framework using SOAP (Simple Object Access Protocol) on wireless sensor networks is presented. The framework works as a middleware for aggregating data measured by a number of nodes within a network. The aim of the study is to assess the suitability of the protocol in such environments where resources are limited compared to traditional networks

  10. Data aggregation in wireless sensor networks using the SOAP protocol

    Energy Technology Data Exchange (ETDEWEB)

    Al-Yasiri, A; Sunley, A [School of Computing, Science and Engineering, University of Salford, Greater Manchester, M5 4WT (United Kingdom)

    2007-07-15

    Wireless sensor networks (WSN) offer an increasingly attractive method of data gathering in distributed system architectures and dynamic access via wireless connectivity. Wireless sensor networks have physical and resource limitations, this leads to increased complexity for application developers and often results in applications that are closely coupled with network protocols. In this paper, a data aggregation framework using SOAP (Simple Object Access Protocol) on wireless sensor networks is presented. The framework works as a middleware for aggregating data measured by a number of nodes within a network. The aim of the study is to assess the suitability of the protocol in such environments where resources are limited compared to traditional networks.

  11. Broadband wireless communications for railway applications for onboard internet access and other applications

    CERN Document Server

    Masson, Émilie

    2017-01-01

    This book focuses on the needs of railway operators in terms of wireless communications, divided in two main categories: the commercial services and the operational needs. Then, all available technologies that can be used to provide Internet access on board trains and all the other operational applications requiring high capacity are detailed. Finally, challenges and trends in railway telecommunications are highlighted, through the presentation of the future and emerging technologies, the current discussions and works in the different authorities, and the key challenges and scientific barriers.

  12. A novel and efficient user access control scheme for wireless body area sensor networks

    Directory of Open Access Journals (Sweden)

    Santanu Chatterjee

    2014-07-01

    Full Text Available Wireless body area networks (WBANs can be applied to provide healthcare and patient monitoring. However, patient privacy can be vulnerable in a WBAN unless security is considered. Access to authorized users for the correct information and resources for different services can be provided with the help of efficient user access control mechanisms. This paper proposes a new user access control scheme for a WBAN. The proposed scheme makes use of a group-based user access ID, an access privilege mask, and a password. An elliptic curve cryptography-based public key cryptosystem is used to ensure that a particular legitimate user can only access the information for which he/she is authorized. We show that our scheme performs better than previously existing user access control schemes. Through a security analysis, we show that our scheme is secure against possible known attacks. Furthermore, through a formal security verification using the AVISPA (Automated Validation of Internet Security Protocols and Applications tool, we show that our scheme is also secure against passive and active attacks.

  13. ICSW2AN : An Inter-vehicle Communication System Using Mobile Access Point over Wireless Wide Area Networks

    Science.gov (United States)

    Byun, Tae-Young

    This paper presents a prototype of inter-vehicle communication system using mobile access point that internetworks wired or wireless LAN and wireless WAN anywhere. Implemented mobile access point can be equipped with various wireless WAN interfaces such as WCDMA and HSDPA. Mobile access point in the IP mechanism has to process connection setup procedure to one wireless WAN. To show the applicability of the mobile access point to inter-vehicle communication, a simplified V2I2V-based car communication system called ICSW2AN is implemented to evaluate major performance metrics by road test. In addition, results of road test for traffic information service are investigated in view of RTT, latency and server processing time. The experimental result indicates that V2I2V-based car communication system sufficiently can provide time-tolerant traffic information to moving vehicles while more than two mobile devices in restricted spaces such as car, train and ship access wireless Internet simultaneously.

  14. Grid Data Access on Widely Distributed Worker Nodes Using Scalla and SRM

    International Nuclear Information System (INIS)

    Jakl, Pavel; Lauret, Jerome; Hanushevsky, Andrew; Shoshani, Arie; Sim, Alex; Gu, Junmin

    2011-01-01

    Facing the reality of storage economics, NP experiments such as RHIC/STAR have been engaged in a shift of the analysis model, and now heavily rely on using cheap disks attached to processing nodes, as such a model is extremely beneficial over expensive centralized storage. Additionally, exploiting storage aggregates with enhanced distributed computing capabilities such as dynamic space allocation (lifetime of spaces), file management on shared storages (lifetime of files, pinning file), storage policies or a uniform access to heterogeneous storage solutions is not an easy task. The Xrootd/Scalla system allows for storage aggregation. We will present an overview of the largest deployment of Scalla (Structured Cluster Architecture for Low Latency Access) in the world spanning over 1000 CPUs co-sharing the 350 TB Storage Elements and the experience on how to make such a model work in the RHIC/STAR standard analysis framework. We will explain the key features and approach on how to make access to mass storage (HPSS) possible in such a large deployment context. Furthermore, we will give an overview of a fully 'gridified' solution using the plug-and-play features of Scalla architecture, replacing standard storage access with grid middleware SRM (Storage Resource Manager) components designed for space management and will compare the solution with the standard Scalla approach in use in STAR for the past 2 years. Integration details, future plans and status of development will be explained in the area of best transfer strategy between multiple-choice data pools and best placement with respect of load balancing and interoperability with other SRM aware tools or implementations.

  15. Grid data access on widely distributed worker nodes using scalla and SRM

    International Nuclear Information System (INIS)

    Jakl, P; Lauret, J; Hanushevsky, A; Shoshani, A; Sim, A; Gu, J

    2008-01-01

    Facing the reality of storage economics, NP experiments such as RHIC/STAR have been engaged in a shift of the analysis model, and now heavily rely on using cheap disks attached to processing nodes, as such a model is extremely beneficial over expensive centralized storage. Additionally, exploiting storage aggregates with enhanced distributed computing capabilities such as dynamic space allocation (lifetime of spaces), file management on shared storages (lifetime of files, pinning file), storage policies or a uniform access to heterogeneous storage solutions is not an easy task. The Xrootd/Scalla system allows for storage aggregation. We will present an overview of the largest deployment of Scalla (Structured Cluster Architecture for Low Latency Access) in the world spanning over 1000 CPUs co-sharing the 350 TB Storage Elements and the experience on how to make such a model work in the RHIC/STAR standard analysis framework. We will explain the key features and approach on how to make access to mass storage (HPSS) possible in such a large deployment context. Furthermore, we will give an overview of a fully 'gridified' solution using the plug-and-play features of Scalla architecture, replacing standard storage access with grid middleware SRM (Storage Resource Manager) components designed for space management and will compare the solution with the standard Scalla approach in use in STAR for the past 2 years. Integration details, future plans and status of development will be explained in the area of best transfer strategy between multiple-choice data pools and best placement with respect of load balancing and interoperability with other SRM aware tools or implementations

  16. Grid Data Access on Widely Distributed Worker Nodes Using Scalla and SRM

    Energy Technology Data Exchange (ETDEWEB)

    Jakl, Pavel; /Prague, Inst. Phys.; Lauret, Jerome; /Brookhaven; Hanushevsky, Andrew; /SLAC; Shoshani, Arie; /LBL, Berkeley; Sim, Alex; /LBL, Berkeley; Gu, Junmin; /LBL, Berkeley

    2011-11-10

    Facing the reality of storage economics, NP experiments such as RHIC/STAR have been engaged in a shift of the analysis model, and now heavily rely on using cheap disks attached to processing nodes, as such a model is extremely beneficial over expensive centralized storage. Additionally, exploiting storage aggregates with enhanced distributed computing capabilities such as dynamic space allocation (lifetime of spaces), file management on shared storages (lifetime of files, pinning file), storage policies or a uniform access to heterogeneous storage solutions is not an easy task. The Xrootd/Scalla system allows for storage aggregation. We will present an overview of the largest deployment of Scalla (Structured Cluster Architecture for Low Latency Access) in the world spanning over 1000 CPUs co-sharing the 350 TB Storage Elements and the experience on how to make such a model work in the RHIC/STAR standard analysis framework. We will explain the key features and approach on how to make access to mass storage (HPSS) possible in such a large deployment context. Furthermore, we will give an overview of a fully 'gridified' solution using the plug-and-play features of Scalla architecture, replacing standard storage access with grid middleware SRM (Storage Resource Manager) components designed for space management and will compare the solution with the standard Scalla approach in use in STAR for the past 2 years. Integration details, future plans and status of development will be explained in the area of best transfer strategy between multiple-choice data pools and best placement with respect of load balancing and interoperability with other SRM aware tools or implementations.

  17. Development of a wireless protection against imitation system for identification and control of vehicle access

    Directory of Open Access Journals (Sweden)

    Aleksei A. Gavrishev

    2018-03-01

    Full Text Available This article deals with wireless systems for identification and control of vehicle access to protected objects. Known systems are considered. As a result, it has been established that one of the most promising approaches to identifying and controlling vehicle access to protected objects is the use of systems based on the "friend or foe" principle. Among these systems, there are "one-directional" and "bedirectional" identification and access control systems. "Bidirectional" systems are more preferable for questions of identification and access control. However, at present, these systems should have a reduced probability of recognizing the structure of the request and response signals because the potential attacker can easily perform unauthorized access to the radio channel of the system. On this basis, developed a wireless system identification and control vehicle access to protected objects based on the principle of "friend or foe", featuring increased protection from unauthorized access and jamming through the use of rewritable drives chaotic sequences. In addition, it’s proposed to use to identify the vehicle's RFID tag containing additional information about it. Are some specifications of the developed system (the possible frequency range of the request-response signals, the communication range, data rate, the size of the transmitted data, guidelines for choosing RFID. Also, with the help of fuzzy logic, was made the security assessment from unauthorized access request-response signals based on the system of "friend or foe", which are transferred via radio channel, developed systems and analogues. The security assessment of the developed system shows an adequate degree of protection against complex threats (view, spoofing, interception and jamming of traffic in comparison with known systems of this class. Among the main advantages of the developed system it’s necessary to mention increased security from unauthorized access and jamming

  18. Power Stabilization Strategy of Random Access Loads in Electric Vehicles Wireless Charging System at Traffic Lights

    Directory of Open Access Journals (Sweden)

    Linlin Tan

    2016-10-01

    Full Text Available An opportunity wireless charging system for electric vehicles when they stop and wait at traffic lights is proposed in this paper. In order to solve the serious power fluctuation caused by random access loads, this study presents a power stabilization strategy based on counting the number of electric vehicles in a designated area, including counting method, power source voltage adjustment strategy and choice of counting points. Firstly, the circuit model of a wireless power system with multi-loads is built and the equation of each load is obtained. Secondly, after the counting method of electric vehicles is stated, the voltage adjustment strategy, based on the number of electric vehicles when the system is at a steady state, is set out. Then, the counting points are chosen according to power curves when the voltage adjustment strategy is adopted. Finally, an experimental prototype is implemented to verify the power stabilization strategy. The experimental results show that, with the application of this strategy, the charging power is stabilized with the fluctuation of no more than 5% when loads access randomly.

  19. Performance Evaluation of TDMA Medium Access Control Protocol in Cognitive Wireless Networks

    Directory of Open Access Journals (Sweden)

    Muhammed Enes Bayrakdar

    2017-02-01

    Full Text Available Cognitive radio paradigm has been revealed as a new communication technology that shares channels in wireless networks. Channel assignment is a crucial issue in the field of cognitive wireless networks because of the spectrum scarcity. In this work, we have evaluated the performance of TDMA medium access control protocol. In our simulation scenarios, primary users and secondary users utilize TDMA as a medium access control protocol. We have designed a network environment in Riverbed simulation software that consists of primary users, secondary users, and base stations. In our system model, secondary users sense the spectrum and inform the base station about empty channels. Then, the base station decides accordingly which secondary user may utilize the empty channel. Energy detection technique is employed as a spectrum sensing technique because it is the best when information about signal of primary user is acquired. Besides, different number of users is selected in simulation scenarios in order to obtain accurate delay and throughput results. Comparing analytical model with simulation results, we have shown that performance analysis of our system model is consistent and accurate.

  20. A 10.6mm3 Fully-Integrated, Wireless Sensor Node with 8GHz UWB Transmitter.

    Science.gov (United States)

    Kim, Hyeongseok; Kim, Gyouho; Lee, Yoonmyung; Foo, Zhiyoong; Sylvester, Dennis; Blaauw, David; Wentzloff, David

    2015-06-01

    This paper presents a complete, autonomous, wireless temperature sensor, fully encapsulated in a 10.6mm 3 volume. The sensor includes solar energy harvesting with an integrated 2 μAh battery, optical receiver for programming, microcontroller and memory, 8GHz UWB transmitter, and miniaturized custom antennas with a wireless range of 7 meters. Full, stand-alone operation was demonstrated for the first time for a system of this size and functionality.

  1. On Designing Thermal-Aware Localized QoS Routing Protocol for in-vivo Sensor Nodes in Wireless Body Area Networks

    Directory of Open Access Journals (Sweden)

    Muhammad Mostafa Monowar

    2015-06-01

    Full Text Available In this paper, we address the thermal rise and Quality-of-Service (QoS provisioning issue for an intra-body Wireless Body Area Network (WBAN having in-vivo sensor nodes. We propose a thermal-aware QoS routing protocol, called TLQoS, that facilitates the system in achieving desired QoS in terms of delay and reliability for diverse traffic types, as well as avoids the formation of highly heated nodes known as hotspot(s, and keeps the temperature rise along the network to an acceptable level. TLQoS exploits modular architecture wherein different modules perform integrated operations in providing multiple QoS service with lower temperature rise. To address the challenges of highly dynamic wireless environment inside the human body. TLQoS implements potential-based localized routing that requires only local neighborhood information. TLQoS avoids routing loop formation as well as reduces the number of hop traversal exploiting hybrid potential, and tuning a configurable parameter. We perform extensive simulations of TLQoS, and the results show that TLQoS has significant performance improvements over state-of-the-art approaches.

  2. On Designing Thermal-Aware Localized QoS Routing Protocol for in-vivo Sensor Nodes in Wireless Body Area Networks.

    Science.gov (United States)

    Monowar, Muhammad Mostafa; Bajaber, Fuad

    2015-06-15

    In this paper, we address the thermal rise and Quality-of-Service (QoS) provisioning issue for an intra-body Wireless Body Area Network (WBAN) having in-vivo sensor nodes. We propose a thermal-aware QoS routing protocol, called TLQoS, that facilitates the system in achieving desired QoS in terms of delay and reliability for diverse traffic types, as well as avoids the formation of highly heated nodes known as hotspot(s), and keeps the temperature rise along the network to an acceptable level. TLQoS exploits modular architecture wherein different modules perform integrated operations in providing multiple QoS service with lower temperature rise. To address the challenges of highly dynamic wireless environment inside the human body. TLQoS implements potential-based localized routing that requires only local neighborhood information. TLQoS avoids routing loop formation as well as reduces the number of hop traversal exploiting hybrid potential, and tuning a configurable parameter. We perform extensive simulations of TLQoS, and the results show that TLQoS has significant performance improvements over state-of-the-art approaches.

  3. QoS Differentiated and Fair Packet Scheduling in Broadband Wireless Access Networks

    Directory of Open Access Journals (Sweden)

    Zhang Yan

    2009-01-01

    Full Text Available This paper studies the packet scheduling problem in Broadband Wireless Access (BWA networks. The key difficulties of the BWA scheduling problem lie in the high variability of wireless channel capacity and the unknown model of packet arrival process. It is difficult for traditional heuristic scheduling algorithms to handle the situation and guarantee satisfying performance in BWA networks. In this paper, we introduce learning-based approach for a better solution. Specifically, we formulate the packet scheduling problem as an average cost Semi-Markov Decision Process (SMDP. Then, we solve the SMDP by using reinforcement learning. A feature-based linear approximation and the Temporal-Difference learning technique are employed to produce a near optimal solution of the corresponding SMDP problem. The proposed algorithm, called Reinforcement Learning Scheduling (RLS, has in-built capability of self-training. It is able to adaptively and timely regulate its scheduling policy according to the instantaneous network conditions. Simulation results indicate that RLS outperforms two classical scheduling algorithms and simultaneously considers: (i effective QoS differentiation, (ii high bandwidth utilization, and (iii both short-term and long-term fairness.

  4. Strategies for P2P connectivity in reconfigurable converged wired/wireless access networks.

    Science.gov (United States)

    Puerto, Gustavo; Mora, José; Ortega, Beatriz; Capmany, José

    2010-12-06

    This paper presents different strategies to define the architecture of a Radio-Over-Fiber (RoF) Access networks enabling Peer-to-Peer (P2P) functionalities. The architectures fully exploit the flexibility of a wavelength router based on the feedback configuration of an Arrayed Waveguide Grating (AWG) and an optical switch to broadcast P2P services among diverse infrastructures featuring dynamic channel allocation and enabling an optical platform for 3G and beyond wireless backhaul requirements. The first architecture incorporates a tunable laser to generate a dedicated wavelength for P2P purposes and the second architecture takes advantage of reused wavelengths to enable the P2P connectivity among Optical Network Units (ONUs) or Base Stations (BS). While these two approaches allow the P2P connectivity in a one at a time basis (1:1), the third architecture enables the broadcasting of P2P sessions among different ONUs or BSs at the same time (1:M). Experimental assessment of the proposed architecture shows approximately 0.6% Error Vector Magnitude (EVM) degradation for wireless services and 1 dB penalty in average for 1 x 10(-12) Bit Error Rate (BER) for wired baseband services.

  5. Sustainable and Practical Firmware Upgrade for Wireless Access Point Using Password-Based Authentication

    Directory of Open Access Journals (Sweden)

    Jaejin Jang

    2016-08-01

    Full Text Available Wireless access points (WAPs are devices that provide Internet connectivity to devices such as desktops, laptops, smartphones, and tablets. Hence, it is important to provide sufficient availability to devices and security for the traffic that is routed by a WAP. However, attackers can decrease the network bandwidth or obtain the traffic including private data such as search histories, login information, and device usage patterns by exploiting the vulnerabilities in firmware upgrades to install malicious firmware. To address this problem, we propose a sustainable and practical firmware upgrade for a WAP using password-based authentication. The proposed upgrade protocol ensures security by adding freshness to the firmware whenever a firmware upgrade occurs. This freshness is different for each event and each firmware; therefore, even if the freshness of one firmware is exposed, the others are secure. In addition, confidentiality, integrity, and authentication are ensured. Furthermore, the proposed protocol can be easily implemented and adapted to WAPs. Experiments are performed to evaluate the upgrade time, resource usage, and code size in wired and wireless connected environments by implementing a prototype and analyzing the security of the protocol. The results show that the proposed upgrade is secure and practical.

  6. An ultra low-power and traffic-adaptive medium access control protocol for wireless body area network.

    Science.gov (United States)

    Ullah, Sana; Kwak, Kyung Sup

    2012-06-01

    Wireless Body Area Network (WBAN) consists of low-power, miniaturized, and autonomous wireless sensor nodes that enable physicians to remotely monitor vital signs of patients and provide real-time feedback with medical diagnosis and consultations. It is the most reliable and cheaper way to take care of patients suffering from chronic diseases such as asthma, diabetes and cardiovascular diseases. Some of the most important attributes of WBAN is low-power consumption and delay. This can be achieved by introducing flexible duty cycling techniques on the energy constraint sensor nodes. Stated otherwise, low duty cycle nodes should not receive frequent synchronization and control packets if they have no data to send/receive. In this paper, we introduce a Traffic-adaptive MAC protocol (TaMAC) by taking into account the traffic information of the sensor nodes. The protocol dynamically adjusts the duty cycle of the sensor nodes according to their traffic-patterns, thus solving the idle listening and overhearing problems. The traffic-patterns of all sensor nodes are organized and maintained by the coordinator. The TaMAC protocol is supported by a wakeup radio that is used to accommodate emergency and on-demand events in a reliable manner. The wakeup radio uses a separate control channel along with the data channel and therefore it has considerably low power consumption requirements. Analytical expressions are derived to analyze and compare the performance of the TaMAC protocol with the well-known beacon-enabled IEEE 802.15.4 MAC, WiseMAC, and SMAC protocols. The analytical derivations are further validated by simulation results. It is shown that the TaMAC protocol outperforms all other protocols in terms of power consumption and delay.

  7. Investigation of Inter-Node B Macro Diversity for Single-Carrier Based Radio Access in Evolved UTRA Uplink

    Science.gov (United States)

    Kawai, Hiroyuki; Morimoto, Akihito; Higuchi, Kenichi; Sawahashi, Mamoru

    This paper investigates the gain of inter-Node B macro diversity for a scheduled-based shared channel using single-carrier FDMA radio access in the Evolved UTRA (UMTS Terrestrial Radio Access) uplink based on system-level simulations. More specifically, we clarify the gain of inter-Node B soft handover (SHO) with selection combining at the radio frame length level (=10msec) compared to that for hard handover (HHO) for a scheduled-based shared data channel, considering the gains of key packet-specific techniques including channel-dependent scheduling, adaptive modulation and coding (AMC), hybrid automatic repeat request (ARQ) with packet combining, and slow transmission power control (TPC). Simulation results show that the inter-Node B SHO increases the user throughput at the cell edge by approximately 10% for a short cell radius such as 100-300m due to the diversity gain from a sudden change in other-cell interference, which is a feature specific to full scheduled-based packet access. However, it is also shown that the gain of inter-Node B SHO compared to that for HHO is small in a macrocell environment when the cell radius is longer than approximately 500m due to the gains from hybrid ARQ with packet combining, slow TPC, and proportional fairness based channel-dependent scheduling.

  8. Architectural Considerations of Fiber-Radio Millimeter-Wave Wireless Access Systems

    Science.gov (United States)

    Kitayama, Ken-Ichi

    The architecture of fiber-radio mm-wave wireless access systems critically depends upon the optical mm-wave generation and transport techniques. Four optical mm-wave generation and transport techniques: 1) optical self-heterodyning, 2) external modulation, 3) up- and downconversion, and 4) optical transceiver, will be assessed. From the technical viewpoints, their advantages and disadvantages are discussed. The economical assessment, focusing on the cost of a base station BS ( ), will suggest that the optical transceiver looks the most promising in the long run, but in the near future, however, the external modulation will be cost-effective. The experimental results of 60 GHz testbeds using the external modulation will support the conclusion.

  9. Introduction to wireless sensor networks

    CERN Document Server

    Forster, Anna

    2016-01-01

    Explores real-world wireless sensor network development, deployment, and applications. The book begins with an introduction to wireless sensor networks and their fundamental concepts. Hardware components, operating systems, protocols, and algorithms that make up the anatomy of a sensor node are described in chapter two. Properties of wireless communications, medium access protocols, wireless links, and link estimation protocols are described in chapter three and chapter four. Routing basics and metrics, clustering techniques, time synchronization and localization protocols, as well as sensing techniques are introduced in chapter five to nine. The concluding chapter summarizes the learnt methods and shows how to use them to deploy real-world sensor networks in a structured way.

  10. Distributed Database Semantic Integration of Wireless Sensor Network to Access the Environmental Monitoring System

    Directory of Open Access Journals (Sweden)

    Ubaidillah Umar

    2018-06-01

    Full Text Available A wireless sensor network (WSN works continuously to gather information from sensors that generate large volumes of data to be handled and processed by applications. Current efforts in sensor networks focus more on networking and development services for a variety of applications and less on processing and integrating data from heterogeneous sensors. There is an increased need for information to become shareable across different sensors, database platforms, and applications that are not easily implemented in traditional database systems. To solve the issue of these large amounts of data from different servers and database platforms (including sensor data, a semantic sensor web service platform is needed to enable a machine to extract meaningful information from the sensor’s raw data. This additionally helps to minimize and simplify data processing and to deduce new information from existing data. This paper implements a semantic web data platform (SWDP to manage the distribution of data sensors based on the semantic database system. SWDP uses sensors for temperature, humidity, carbon monoxide, carbon dioxide, luminosity, and noise. The system uses the Sesame semantic web database for data processing and a WSN to distribute, minimize, and simplify information processing. The sensor nodes are distributed in different places to collect sensor data. The SWDP generates context information in the form of a resource description framework. The experiment results demonstrate that the SWDP is more efficient than the traditional database system in terms of memory usage and processing time.

  11. Application of Emerging Open-source Embedded Systems for Enabling Low-cost Wireless Mini-observatory Nodes in the Coastal Zone

    Science.gov (United States)

    Glazer, B. T.

    2016-02-01

    Here, we describe the development of novel, low-cost, open-source instrumentation to enable wireless data transfer of biogeochemical sensors in the coastal zone. The platform is centered upon the Beaglebone Black single board computer. Process-inquiry in environmental sciences suffers from undersampling; enabling sustained and unattended data collection typically involves expensive instrumentation and infrastructure deployed as cabled observatories with little flexibility in deployment location following initial installation. High cost of commercially-available or custom electronic packages have not only limited the number of sensor node sites that can be targeted by reasonably well-funded academic researchers, but have also entirely prohibited widespread engagement with K-12, public non-profit, and `citizen scientist' STEM audiences. The new platform under development represents a balanced blend of research-grade sensors and low-cost open-source electronics that are easily assembled. Custom, robust, open-source code that remains customizable for specific node configurations can match a specific deployment's measurement needs, depending on the scientific research priorities. We have demonstrated prototype capabilities and versatility through lab testing and field deployments of multiple sensor nodes with multiple sensor inputs, all of which are streaming near-real-time data over wireless RF links to a shore-based base station. On shore, first-pass data processing QA/QC takes place and near-real-time plots are made available on the World Wide Web. Specifically, we have worked closely with an environmental and cultural management and restoration non-profit organization, and middle and high school science classes, engaging their interest in STEM application to local watershed processes. Ultimately, continued successful development of this pilot project can lead to a coastal oceanographic analogue of the popular Weather Underground personal weather station model.

  12. DWDM Fiber-Wireless Access System with Centralized Optical Frequency Comb-based RF Carrier Generation

    DEFF Research Database (Denmark)

    Pang, Xiaodan; Beltrán, Marta; Sánchez, José

    2013-01-01

    We propose and experimentally demonstrate an optical wireless DWDM system at 60 GHz with optical incoherent heterodyne up-conversion using an optical frequency comb. Multiple users with wireline and wireless services are simultaneously supported....

  13. Converged wireline and wireless signal transport over optical fibre access links

    DEFF Research Database (Denmark)

    Tafur Monroy, Idelfonso; Prince, Kamau; Osadchiy, Alexey Vladimirovich

    2009-01-01

    This article reviews emerging trends in converged optical-wireless communication systems and outline the role that photonic technologies are playing in making the vision of a wireline-wireless converged signal transport network a reality.......This article reviews emerging trends in converged optical-wireless communication systems and outline the role that photonic technologies are playing in making the vision of a wireline-wireless converged signal transport network a reality....

  14. Quality of Recovery Evaluation of the Protection Schemes for Fiber-Wireless Access Networks

    Science.gov (United States)

    Fu, Minglei; Chai, Zhicheng; Le, Zichun

    2016-03-01

    With the rapid development of fiber-wireless (FiWi) access network, the protection schemes have got more and more attention due to the risk of huge data loss when failures occur. However, there are few studies on the performance evaluation of the FiWi protection schemes by the unified evaluation criterion. In this paper, quality of recovery (QoR) method was adopted to evaluate the performance of three typical protection schemes (MPMC scheme, OBOF scheme and RPMF scheme) against the segment-level failure in FiWi access network. The QoR models of the three schemes were derived in terms of availability, quality of backup path, recovery time and redundancy. To compare the performance of the three protection schemes comprehensively, five different classes of network services such as emergency service, prioritized elastic service, conversational service, etc. were utilized by means of assigning different QoR weights. Simulation results showed that, for the most service cases, RPMF scheme was proved to be the best solution to enhance the survivability when planning the FiWi access network.

  15. Revenue-Maximizing Radio Access Technology Selection with Net Neutrality Compliance in Heterogeneous Wireless Networks

    Directory of Open Access Journals (Sweden)

    Elissar Khloussy

    2018-01-01

    Full Text Available The net neutrality principle states that users should have equal access to all Internet content and that Internet Service Providers (ISPs should not practice differentiated treatment on any of the Internet traffic. While net neutrality aims to restrain any kind of discrimination, it also grants exemption to a certain category of traffic known as specialized services (SS, by allowing the ISP to dedicate part of the resources for the latter. In this work, we consider a heterogeneous LTE/WiFi wireless network and we investigate revenue-maximizing Radio Access Technology (RAT selection strategies that are net neutrality-compliant, with exemption granted to SS traffic. Our objective is to find out how the bandwidth reservation for SS traffic would be made in a way that allows maximizing the revenue while being in compliance with net neutrality and how the choice of the ratio of reserved bandwidth would affect the revenue. The results show that reserving bandwidth for SS traffic in one RAT (LTE can achieve higher revenue. On the other hand, when the capacity is reserved across both LTE and WiFi, higher social benefit in terms of number of admitted users can be realized, as well as lower blocking probability for the Internet access traffic.

  16. Wake-up radio systems : design, development, performance evaluation and comparison to conventional medium access control protocols for wireless sensor networks

    OpenAIRE

    Oller i Bosch, Joaquim

    2015-01-01

    During the recent years, the research related to Wake-up Radio (WuR) systems has gained noticeable interest. In WuR systems, a node initiating a communication first sends a Wake-up Call (WuC) by means of its Wake-up Transmitter (WuTx), to the Wake-up Receiver (WuRx) of a remote node to activate it in an on-demand manner. Until the reception of the WuC, the node's MCU and main data transceiver are in sleep mode. Hence, WuR drastically reduce the power required by wireless nodes. This thesis...

  17. Channel capacity of TDD-OFDM-MIMO for multiple access points in a wireless single-frequency-network

    DEFF Research Database (Denmark)

    Takatori, Y.; Fitzek, Frank; Tsunekawa, K.

    2005-01-01

    MIMO data transmission scheme, which combines Single-Frequency-Network (SFN) with TDD-OFDM-MIMO applied for wireless LAN networks. In our proposal, we advocate to use SFN for multiple access points (MAP) MIMO data transmission. The goal of this approach is to achieve very high channel capacity in both......The multiple-input-multiple-output (MIMO) technique is the most attractive candidate to improve the spectrum efficiency in the next generation wireless communication systems. However, the efficiency of MIMO techniques reduces in the line of sight (LOS) environments. In this paper, we propose a new...

  18. Wireless Augmented Reality Communication System

    Science.gov (United States)

    Devereaux, Ann (Inventor); Jedrey, Thomas (Inventor); Agan, Martin (Inventor)

    2017-01-01

    A portable unit is for video communication to select a user name in a user name network. A transceiver wirelessly accesses a communication network through a wireless connection to a general purpose node coupled to the communication network. A user interface can receive user input to log on to a user name network through the communication network. The user name network has a plurality of user names, at least one of the plurality of user names is associated with a remote portable unit, logged on to the user name network and available for video communication.

  19. Provably Secure Heterogeneous Access Control Scheme for Wireless Body Area Network.

    Science.gov (United States)

    Omala, Anyembe Andrew; Mbandu, Angolo Shem; Mutiria, Kamenyi Domenic; Jin, Chunhua; Li, Fagen

    2018-04-28

    Wireless body area network (WBAN) provides a medium through which physiological information could be harvested and transmitted to application provider (AP) in real time. Integrating WBAN in a heterogeneous Internet of Things (IoT) ecosystem would enable an AP to monitor patients from anywhere and at anytime. However, the IoT roadmap of interconnected 'Things' is still faced with many challenges. One of the challenges in healthcare is security and privacy of streamed medical data from heterogeneously networked devices. In this paper, we first propose a heterogeneous signcryption scheme where a sender is in a certificateless cryptographic (CLC) environment while a receiver is in identity-based cryptographic (IBC) environment. We then use this scheme to design a heterogeneous access control protocol. Formal security proof for indistinguishability against adaptive chosen ciphertext attack and unforgeability against adaptive chosen message attack in random oracle model is presented. In comparison with some of the existing access control schemes, our scheme has lower computation and communication cost.

  20. Enhancing Cellular Coverage Quality by Virtual Access Point and Wireless Power Transfer

    Directory of Open Access Journals (Sweden)

    Jinsong Gui

    2018-01-01

    Full Text Available The ultradensification deploying for cellular networks is a direct and effective method for the improvement of network capacity. However, the benefit is achieved at the cost of network infrastructure investment and operating overheads, especially when there is big gap between peak-hour Internet traffic and average one. Therefore, we put forward the concept of virtual cellular coverage area, where wireless terminals with high-end configuration are motivated to enhance cellular coverage quality by both providing RF energy compensation and rewarding free traffic access to Internet. This problem is formulated as the Stackelberg game based on three-party circular decision, where a Macro BS (MBS acts as the leader to offer a charging power to Energy Transferring Relays (ETRs, and the ETRs and their associating Virtual Access Points (VAPs act as the followers to make their decisions, respectively. According to the feedback from the followers, the leader may readjust its strategy. The circular decision is repeated until the powers converge. Also, the better response algorithm for each game player is proposed to iteratively achieve the Stackelberg-Nash Equilibrium (SNE. Theoretical analysis proves the convergence of the proposed game scheme, and simulation results demonstrate its effectiveness.

  1. Directional Medium Access Control (MAC Protocols in Wireless Ad Hoc and Sensor Networks: A Survey

    Directory of Open Access Journals (Sweden)

    David Tung Chong Wong

    2015-06-01

    Full Text Available This survey paper presents the state-of-the-art directional medium access control (MAC protocols in wireless ad hoc and sensor networks (WAHSNs. The key benefits of directional antennas over omni-directional antennas are longer communication range, less multipath interference, more spatial reuse, more secure communications, higher throughput and reduced latency. However, directional antennas lead to single-/multi-channel directional hidden/exposed terminals, deafness and neighborhood, head-of-line blocking, and MAC-layer capture which need to be overcome. Addressing these problems and benefits for directional antennas to MAC protocols leads to many classes of directional MAC protocols in WAHSNs. These classes of directional MAC protocols presented in this survey paper include single-channel, multi-channel, cooperative and cognitive directional MACs. Single-channel directional MAC protocols can be classified as contention-based or non-contention-based or hybrid-based, while multi-channel directional MAC protocols commonly use a common control channel for control packets/tones and one or more data channels for directional data transmissions. Cooperative directional MAC protocols improve throughput in WAHSNs via directional multi-rate/single-relay/multiple-relay/two frequency channels/polarization, while cognitive directional MAC protocols leverage on conventional directional MAC protocols with new twists to address dynamic spectrum access. All of these directional MAC protocols are the pillars for the design of future directional MAC protocols in WAHSNs.

  2. A Fair Contention Access Scheme for Low-Priority Traffic in Wireless Body Area Networks

    Directory of Open Access Journals (Sweden)

    Shagufta Henna

    2017-08-01

    Full Text Available Recently, wireless body area networks (WBANs have attracted significant consideration in ubiquitous healthcare. A number of medium access control (MAC protocols, primarily derived from the superframe structure of the IEEE 802.15.4, have been proposed in literature. These MAC protocols aim to provide quality of service (QoS by prioritizing different traffic types in WBANs. A contention access period (CAPwith high contention in priority-based MAC protocols can result in higher number of collisions and retransmissions. During CAP, traffic classes with higher priority are dominant over low-priority traffic; this has led to starvation of low-priority traffic, thus adversely affecting WBAN throughput, delay, and energy consumption. Hence, this paper proposes a traffic-adaptive priority-based superframe structure that is able to reduce contention in the CAP period, and provides a fair chance for low-priority traffic. Simulation results in ns-3 demonstrate that the proposed MAC protocol, called traffic- adaptive priority-based MAC (TAP-MAC, achieves low energy consumption, high throughput, and low latency compared to the IEEE 802.15.4 standard, and the most recent priority-based MAC protocol, called priority-based MAC protocol (PA-MAC.

  3. Accounting for Energy Cost When Designing Energy-Efficient Wireless Access Networks

    Directory of Open Access Journals (Sweden)

    Greta Vallero

    2018-03-01

    Full Text Available Because of the increase of the data traffic demand, wireless access networks, through which users access telecommunication services, have expanded, in terms of size and of capability and, consequently, in terms of power consumption. Therefore, costs to buy the necessary power for the supply of base stations of those networks is becoming very high, impacting the communication cost. In this study, strategies to reduce the amount of money spent for the purchase of the energy consumed by the base stations are proposed for a network powered by solar panels, energy batteries and the power grid. First, the variability of the energy prices is exploited. It provides a cost reduction of up to 30%, when energy is bought in advance. If a part of the base stations is deactivated when the energy price is higher than a given threshold, a compromise between the energy cost and the user coverage drop is needed. In the simulated scenario, the necessary energy cost can be reduced by more than 40%, preserving the user coverage by greater than 94%. Second, the network is introduced to the energy market: it buys and sells energy from/to the traditional power grid. Finally, costs are reduced by the reduction of power consumption of the network, achieved by using microcell base stations. In the considered scenario, up to a 31% cost reduction is obtained, without the deterioration of the quality of service, but a huge Capex expenditure is required.

  4. Planning of Efficient Wireless Access with IEEE 802.16 for Connecting Home Network to the Internet

    Directory of Open Access Journals (Sweden)

    Pichet Ritthisoonthorn

    2010-01-01

    Full Text Available The emergence of IEEE802.16 wireless standard technology (WiMAX has significantly increased the choice to operators for the provisioning of wireless broadband access network. WiMAX is being deployed to compliment with xDSL in underserved or lack of the broadband network area, in both developed and developing countries. Many incumbent operators in developing countries are considering the deployment of WiMAX as part of their broadband access strategy. This paper presents an efficient and simple method for planning of broadband fixed wireless access (BFWA with IEEE802.16 standard to support home connection to Internet. The study formulates the framework for planning both coverage and capacity designs. The relationship between coverage area and access rate from subscriber in each environment area is presented. The study also presents the throughput and channel capacity of IEEE802.16 in different access rates. An extensive analysis is performed and the results are applied to the real case study to demonstrate the practicality of using IEEE 802.16 for connecting home to Internet. Using empirical data and original subscriber traffic from measurement, it is shown that the BFWA with IEEE802.16 standard is a capacity limited system. The capacity of IEEE802.16 is related to different factors including frequency bandwidth, spectrum allocation, estimation of traffic per subscriber, and choice of adaptive modulation from subscriber terminal. The wireless access methods and procedures evolved in this research work and set out in this paper are shown to be well suited for planning BFWA system based on IEEE802.16 which supports broadband home to Internet connections.

  5. Using the PALS Architecture to Verify a Distributed Topology Control Protocol for Wireless Multi-Hop Networks in the Presence of Node Failures

    Directory of Open Access Journals (Sweden)

    José Meseguer

    2010-09-01

    Full Text Available The PALS architecture reduces distributed, real-time asynchronous system design to the design of a synchronous system under reasonable requirements. Assuming logical synchrony leads to fewer system behaviors and provides a conceptually simpler paradigm for engineering purposes. One of the current limitations of the framework is that from a set of independent "synchronous machines", one must compose the entire synchronous system by hand, which is tedious and error-prone. We use Maude's meta-level to automatically generate a synchronous composition from user-provided component machines and a description of how the machines communicate with each other. We then use the new capabilities to verify the correctness of a distributed topology control protocol for wireless networks in the presence of nodes that may fail.

  6. Modular sensor network node

    Science.gov (United States)

    Davis, Jesse Harper Zehring [Berkeley, CA; Stark, Jr., Douglas Paul; Kershaw, Christopher Patrick [Hayward, CA; Kyker, Ronald Dean [Livermore, CA

    2008-06-10

    A distributed wireless sensor network node is disclosed. The wireless sensor network node includes a plurality of sensor modules coupled to a system bus and configured to sense a parameter. The parameter may be an object, an event or any other parameter. The node collects data representative of the parameter. The node also includes a communication module coupled to the system bus and configured to allow the node to communicate with other nodes. The node also includes a processing module coupled to the system bus and adapted to receive the data from the sensor module and operable to analyze the data. The node also includes a power module connected to the system bus and operable to generate a regulated voltage.

  7. Comparison of Three Non-Imaging Angle-Diversity Receivers as Input Sensors of Nodes for Indoor Infrared Wireless Sensor Networks: Theory and Simulation

    Directory of Open Access Journals (Sweden)

    Beatriz R. Mendoza

    2016-07-01

    Full Text Available In general, the use of angle-diversity receivers makes it possible to reduce the impact of ambient light noise, path loss and multipath distortion, in part by exploiting the fact that they often receive the desired signal from different directions. Angle-diversity detection can be performed using a composite receiver with multiple detector elements looking in different directions. These are called non-imaging angle-diversity receivers. In this paper, a comparison of three non-imaging angle-diversity receivers as input sensors of nodes for an indoor infrared (IR wireless sensor network is presented. The receivers considered are the conventional angle-diversity receiver (CDR, the sectored angle-diversity receiver (SDR, and the self-orienting receiver (SOR, which have been proposed or studied by research groups in Spain. To this end, the effective signal-collection area of the three receivers is modelled and a Monte-Carlo-based ray-tracing algorithm is implemented which allows us to investigate the effect on the signal to noise ratio and main IR channel parameters, such as path loss and rms delay spread, of using the three receivers in conjunction with different combination techniques in IR links operating at low bit rates. Based on the results of the simulations, we show that the use of a conventional angle-diversity receiver in conjunction with the equal-gain combining technique provides the solution with the best signal to noise ratio, the lowest computational capacity and the lowest transmitted power requirements, which comprise the main limitations for sensor nodes in an indoor infrared wireless sensor network.

  8. Access Selection Algorithm of Heterogeneous Wireless Networks for Smart Distribution Grid Based on Entropy-Weight and Rough Set

    Science.gov (United States)

    Xiang, Min; Qu, Qinqin; Chen, Cheng; Tian, Li; Zeng, Lingkang

    2017-11-01

    To improve the reliability of communication service in smart distribution grid (SDG), an access selection algorithm based on dynamic network status and different service types for heterogeneous wireless networks was proposed. The network performance index values were obtained in real time by multimode terminal and the variation trend of index values was analyzed by the growth matrix. The index weights were calculated by entropy-weight and then modified by rough set to get the final weights. Combining the grey relational analysis to sort the candidate networks, and the optimum communication network is selected. Simulation results show that the proposed algorithm can implement dynamically access selection in heterogeneous wireless networks of SDG effectively and reduce the network blocking probability.

  9. A low power 8-bit successive approximation register A/D for a wireless body sensor node

    Energy Technology Data Exchange (ETDEWEB)

    Liu Liyuan; Zhang Chun; Wei Shaojun; Wang Zhihua [Institute of Microelectronics, Tsinghua University, Beijing 100084 (China); Li Dongmei; Chen Liangdong, E-mail: lidmei@tsinghua.edu.c [Department of Electronic Engineering, Tsinghua University, Beijing 100084 (China)

    2010-06-15

    A power efficient 8-bit successive approximation register (SAR) A/D for the vital sign monitoring of a wireless body sensor network (WBSN) is presented. A charge redistribution architecture is employed. The prototype A/D is fabricated in 0.18 {mu}m CMOS. The A/D achieves 7.5 ENOB with sampling rate varying from 64 kHz to 1.5 MHz. The power consumption varies from 10.8 to 225.7 {mu}W. (semiconductor integrated circuits)

  10. Medium access control and network layer design for 60 GHz wireless personal area networks

    NARCIS (Netherlands)

    An, X.

    2010-01-01

    The unlicensed frequency band around 60 GHz is a very promising spectrum due to its potential to provide multiple gigabits per second based data rates for short range wireless communication. Hence, 60 GHz radio is an attractive candidate to enable ultra high rate Wireless Personal Area Networks

  11. An Efficient Radio Access Control Mechanism for Wireless Network-On-Chip Architectures

    Directory of Open Access Journals (Sweden)

    Maurizio Palesi

    2015-03-01

    Full Text Available Modern systems-on-chip (SoCs today contain hundreds of cores, and this number is predicted to reach the thousands by the year 2020. As the number of communicating elements increases, there is a need for an efficient, scalable and reliable communication infrastructure. As technology geometries shrink to the deep submicron regime, however, the communication delay and power consumption of global interconnections become the major bottleneck. The network-on-chip (NoC design paradigm, based on a modular packet-switched mechanism, can address many of the on-chip communication issues, such as the performance limitations of long interconnects and integration of large number of cores on a chip. Recently, new communication technologies based on the NoC concept have emerged with the aim of improving the scalability limitations of conventional NoC-based architectures. Among them, wireless NoCs (WiNoCs use the radio medium for reducing the performance and energy penalties of long-range and multi-hop communications. As the radio medium can be accessed by a single transmitter at a time, a radio access control mechanism (RACM is needed. In this paper, we present a novel RACM, which allows one to improve both the performance and energy figures of the WiNoC. Experiments, carried out on both synthetic and real traffic scenarios, have shown the effectiveness of the proposed RACM. On average, a 30% reduction in communication delay and a 25% energy savings have been observed when the proposed RACM is applied to a known WiNoC architecture.

  12. An Adaptive Time-Spread Multiple-Access Policy for Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Konstantinos Oikonomou

    2007-05-01

    Full Text Available Sensor networks require a simple and efficient medium access control policy achieving high system throughput with no or limited control overhead in order to increase the network lifetime by minimizing the energy consumed during transmission attempts. Time-spread multiple-access (TSMA policies that have been proposed for ad hoc network environments, can also be employed in sensor networks, since no control overhead is introduced. However, they do not take advantage of any cross-layer information in order to exploit the idiosyncrasies of the particular sensor network environment such as the presence of typically static nodes and a common destination for the forwarded data. An adaptive probabilistic TSMA-based policy, that is proposed and analyzed in this paper, exploits these idiosyncrasies and achieves higher system throughput than the existing TSMA-based policies without any need for extra control overhead. As it is analytically shown in this paper, the proposed policy always outperforms the existing TSMA-based policies, if certain parameter values are properly set; the analysis also provides for these proper values. It is also shown that the proposed policy is characterized by a certain convergence period and that high system throughput is achieved for long convergence periods. The claims and expectations of the provided analysis are supported by simulation results presented in this paper.

  13. Data security issues arising from integration of wireless access into healthcare networks.

    Science.gov (United States)

    Frenzel, John C

    2003-04-01

    The versatility of having Ethernet speed connectivity without wires is rapidly driving adoption of wireless data networking by end users across all types of industry. Designed to be easy to configure and work among diverse platforms, wireless brings online data to mobile users. This functionality is particularly useful in modern clinical medicine. Wireless presents operators of networks containing or transmitting sensitive and confidential data with several new types of security vulnerabilities, and potentially opens previously protected core network resources to outside attack. Herein, we review the types of vulnerabilities, the tools necessary to exploit them, and strategies to thwart a successful attack.

  14. Wireless virtualization

    CERN Document Server

    Wen, Heming; Le-Ngoc, Tho

    2013-01-01

    This SpringerBriefs is an overview of the emerging field of wireless access and mobile network virtualization. It provides a clear and relevant picture of the current virtualization trends in wireless technologies by summarizing and comparing different architectures, techniques and technologies applicable to a future virtualized wireless network infrastructure. The readers are exposed to a short walkthrough of the future Internet initiative and network virtualization technologies in order to understand the potential role of wireless virtualization in the broader context of next-generation ubiq

  15. [Exploration of the design of media access control layer of wireless body area network for medical healthcare].

    Science.gov (United States)

    Liu, Xuemei; Ge, Baofeng

    2012-04-01

    This paper proposes a media access control (MAC) layer design for wireless body area network (WBAN) systems. WBAN is a technology that targets for wireless networking of wearable and implantable body sensors which monitor vital body signs, such as heart-rate, body temperature, blood pressure, etc. It has been receiving attentions from international organizations, e. g. the Institute of Electrical and Electronics Engineers (IEEE), due to its capability of providing efficient healthcare services and clinical management. This paper reviews the standardization procedure of WBAN and summarizes the challenge of the MAC layer design. It also discusses the methods of improving power consumption performance, which is one of the major issues of WBAN systems.

  16. A new energy-efficient MAC protocol with noise-based transmitted-reference modulation for wireless sensor network

    NARCIS (Netherlands)

    Morshed, S.; Heijenk, Geert; Meijerink, Arjan; Ye, D.; van der Zee, Ronan A.R.; Bentum, Marinus Jan

    2013-01-01

    Energy-constrained behavior of sensor nodes is one of the most important criteria for successful deployment of wireless sensor networks. The medium access control (MAC) protocol determines to a large extent the time a sensor node transceiver spends listening or transmitting, and hence the energy

  17. TR-MAC: an energy-efficient MAC protocol for wireless sensor networks exploiting noise-based transmitted reference modulation

    NARCIS (Netherlands)

    Morshed, S.; Dimitrova, D.C.; Brogle, M.; Braun, T.; Heijenk, Gerhard J.

    Energy-constrained behavior of sensor nodes is one of the most important criteria for successful deployment of wireless sensor net- works. The medium access control (MAC) protocol determines the time a sensor node transceiver spends listening or transmitting, and hence the energy consumption of the

  18. A Low-Power All-Digital on-Chip CMOS Oscillator for a Wireless Sensor Node.

    Science.gov (United States)

    Sheng, Duo; Hong, Min-Rong

    2016-10-14

    This paper presents an all-digital low-power oscillator for reference clocks in wireless body area network (WBAN) applications. The proposed on-chip complementary metal-oxide-semiconductor (CMOS) oscillator provides low-frequency clock signals with low power consumption, high delay resolution, and low circuit complexity. The cascade-stage structure of the proposed design simultaneously achieves high resolution and a wide frequency range. The proposed hysteresis delay cell further reduces the power consumption and hardware costs by 92.4% and 70.4%, respectively, relative to conventional designs. The proposed design is implemented in a standard performance 0.18 μm CMOS process. The measured operational frequency ranged from 7 to 155 MHz, and the power consumption was improved to 79.6 μW (@7 MHz) with a 4.6 ps resolution. The proposed design can be implemented in an all-digital manner, which is highly desirable for system-level integration.

  19. Use of Local Intelligence to Reduce Energy Consumption of Wireless Sensor Nodes in Elderly Health Monitoring Systems

    Directory of Open Access Journals (Sweden)

    Thomas J. Lampoltshammer

    2014-03-01

    Full Text Available The percentage of elderly people in European countries is increasing. Such conjuncture affects socio-economic structures and creates demands for resourceful solutions, such as Ambient Assisted Living (AAL, which is a possible methodology to foster health care for elderly people. In this context, sensor-based devices play a leading role in surveying, e.g., health conditions of elderly people, to alert care personnel in case of an incident. However, the adoption of such devices strongly depends on the comfort of wearing the devices. In most cases, the bottleneck is the battery lifetime, which impacts the effectiveness of the system. In this paper we propose an approach to reduce the energy consumption of sensors’ by use of local sensors’ intelligence. By increasing the intelligence of the sensor node, a substantial decrease in the necessary communication payload can be achieved. The results show a significant potential to preserve energy and decrease the actual size of the sensor device units.

  20. Use of Local Intelligence to Reduce Energy Consumption of Wireless Sensor Nodes in Elderly Health Monitoring Systems

    Science.gov (United States)

    Lampoltshammer, Thomas J.; de Freitas, Edison Pignaton; Nowotny, Thomas; Plank, Stefan; da Costa, João Paulo Carvalho Lustosa; Larsson, Tony; Heistracher, Thomas

    2014-01-01

    The percentage of elderly people in European countries is increasing. Such conjuncture affects socio-economic structures and creates demands for resourceful solutions, such as Ambient Assisted Living (AAL), which is a possible methodology to foster health care for elderly people. In this context, sensor-based devices play a leading role in surveying, e.g., health conditions of elderly people, to alert care personnel in case of an incident. However, the adoption of such devices strongly depends on the comfort of wearing the devices. In most cases, the bottleneck is the battery lifetime, which impacts the effectiveness of the system. In this paper we propose an approach to reduce the energy consumption of sensors' by use of local sensors' intelligence. By increasing the intelligence of the sensor node, a substantial decrease in the necessary communication payload can be achieved. The results show a significant potential to preserve energy and decrease the actual size of the sensor device units. PMID:24618777

  1. Capacity analysis of wireless mesh networks | Gumel | Nigerian ...

    African Journals Online (AJOL)

    ... number of nodes (n) in a linear topology. The degradation is found to be higher in a fully mesh network as a result of increase in interference and MAC layer contention in the network. Key words: Wireless mesh network (WMN), Adhoc network, Network capacity analysis, Bottleneck collision domain, Medium access control ...

  2. Smart Multiple Access Topologi Employing Intelligent Physical Layer for addressing the Mobile Node

    DEFF Research Database (Denmark)

    Sanyal, Rajarshi

    2014-01-01

    of the mobile users, the cell size of the mobile network will shrink. Eventually, there will be an upsurge of signaling messages interchanged between the device and the network due to an increase in handover related operations. Attempt should be made to reduce the interaction with the network and simplify...... the mobility and location management related processes. In this thesis we set out a technical architecture of a mobile network to abridge the intricate mobility and location management processes as well as the addressing principle to render more operational efficiency and cater to the needs of the data hungry......, for example, addressing of a node. If we have a method to actuate user identification for the purpose of mobility management by implementing lower layer processes, we can simplify or eliminate the layer 7 processes and hence reduce the intricacy and costs of mobile network elements and user equipment...

  3. Development of an asynchronous communication channel between wireless sensor nodes, smartphone devices, and web applications using RESTful Web Services for intelligent farming

    Science.gov (United States)

    De Leon, Marlene M.; Estuar, Maria Regina E.; Lim, Hadrian Paulo; Victorino, John Noel C.; Co, Jerelyn; Saddi, Ivan Lester; Paelmo, Sharlene Mae; Dela Cruz, Bon Lemuel

    2017-09-01

    Environment and agriculture related applications have been gaining ground for the past several years and have been the context for researches in ubiquitous and pervasive computing. This study is a part of a bigger study that uses artificial intelligence in developing models to detect, monitor, and forecast the spread of Fusarium oxysporum cubense TR4 (FOC TR4) on Cavendish bananas cultivated in the Philippines. To implement an Intelligent Farming system, 1) wireless sensor nodes (WSNs) are deployed in Philippine banana plantations to collect soil parameter data that is considered to affect the health of Cavendish bananas, 2) a custom built smartphone application is used for collecting, storing, and transmitting soil data, plant images and plant status data to a cloud storage, and 3) a custom built web application is used to load and display results of physico-chemical analysis of soil, analysis of data models, and geographic locations of plants being monitored. This study discusses the issues, considerations, and solutions implemented in the development of an asynchronous communication channel to ensure that all data collected by WSNs and smartphone applications are transmitted with a high degree of accuracy and reliability. From a design standpoint: standard API documentation on usage of data type is required to avoid inconsistencies in parameter passing. From a technical standpoint, there is a need to include error-handling mechanisms especially for delays in transmission of data as well as generalize method of parsing thru multidimensional array of data. Strategies are presented in the paper.

  4. Bluetooth-based wireless sensor networks

    Science.gov (United States)

    You, Ke; Liu, Rui Qiang

    2007-11-01

    In this work a Bluetooth-based wireless sensor network is proposed. In this bluetooth-based wireless sensor networks, information-driven star topology and energy-saved mode are used, through which a blue master node can control more than seven slave node, the energy of each sensor node is reduced and secure management of each sensor node is improved.

  5. Accessing data transfer reliability for duty cycled mobile wireless sensor network

    International Nuclear Information System (INIS)

    Shaikh, F.K.

    2014-01-01

    Mobility in WSNs (Wireless Sensor Networks) introduces significant challenges which do not arise in static WSNs. Reliable data transport is an important aspect of attaining consistency and QoS (Quality of Service) in several applications of MWSNs (Mobile Wireless Sensor Networks). It is important to understand how each of the wireless sensor networking characteristics such as duty cycling, collisions, contention and mobility affects the reliability of data transfer. If reliability is not managed well, the MWSN can suffer from overheads which reduce its applicability in the real world. In this paper, reliability assessment is being studied by deploying MWSN in different indoor and outdoor scenarios with various duty cycles of the motes and speeds of the mobile mote. Results show that the reliability is greatly affected by the duty cycled motes and the mobility using inherent broadcast mechanisms. (author)

  6. Hands-On Open Access Broadband Wireless Technology Lab Mapping Course Outcomes to Lab Experiments

    Directory of Open Access Journals (Sweden)

    Yazan Alqudah

    2012-10-01

    Full Text Available The unprecedented growth in wireless communication is offering opportunities and challenges for educators. Thanks to technology advances and job opportunities, more and more students are interested in wireless communications courses. However, bridging the gap between classroom and real-world experience remains a challenge. Advanced undergraduate communications courses typically focus more on theory. Some courses are given online, and lack hands-on experiments. Driven by feedback from industry and students, we propose practical laboratory experiments that attempt to bridge the gap between classroom and real world. The laboratory exercises take advantage of the infrastructure of deployed wireless networks and allow students to measure, and analyze data, as well as to interact. The proposed labs can be used even in online courses. This paper describes the experiments proposed, the procedures and typical results. The experiments are tied to course objective.

  7. Accessibility to nodes of interest: Dislocation of the industrial districts of Tuscany

    Directory of Open Access Journals (Sweden)

    Gioacchino de Candia

    2016-11-01

    Full Text Available The present research starts by a series of experiences gained by the author on the theme of attractiveness/accessibility of territories, in light of the most recent dynamics for the analysis. The equation model used is of gravitational type. Specifically, the impedance function is used in the form of logistics, which has so far provided the best results in the analysis of territories. The research is conducted at the municipal level. The paper aims to analyze the connection between these works and the map of industrial districts, recently produced by ISTAT. The analyzed region, as in other publications, is Tuscany, which provides the details on the municipal map of accessibility in relation to the location of industrial clusters. The metropolitan city of Florence is treated separately. The aim is to provide policy makers with the best socio-economic information for the economic and financial administration of territories.

  8. System and method for time synchronization in a wireless network

    Science.gov (United States)

    Gonia, Patrick S.; Kolavennu, Soumitri N.; Mahasenan, Arun V.; Budampati, Ramakrishna S.

    2010-03-30

    A system includes multiple wireless nodes forming a cluster in a wireless network, where each wireless node is configured to communicate and exchange data wirelessly based on a clock. One of the wireless nodes is configured to operate as a cluster master. Each of the other wireless nodes is configured to (i) receive time synchronization information from a parent node, (ii) adjust its clock based on the received time synchronization information, and (iii) broadcast time synchronization information based on the time synchronization information received by that wireless node. The time synchronization information received by each of the other wireless nodes is based on time synchronization information provided by the cluster master so that the other wireless nodes substantially synchronize their clocks with the clock of the cluster master.

  9. Wireless Power Transfer and Data Collection in Wireless Sensor Networks

    OpenAIRE

    Li, Kai; Ni, Wei; Duan, Lingjie; Abolhasan, Mehran; Niu, Jianwei

    2017-01-01

    In a rechargeable wireless sensor network, the data packets are generated by sensor nodes at a specific data rate, and transmitted to a base station. Moreover, the base station transfers power to the nodes by using Wireless Power Transfer (WPT) to extend their battery life. However, inadequately scheduling WPT and data collection causes some of the nodes to drain their battery and have their data buffer overflow, while the other nodes waste their harvested energy, which is more than they need...

  10. Opportunistic-harvesting: RF wireless power transfer scheme for multiple access relays system

    NARCIS (Netherlands)

    Rajaram, A.; Jayakody, D.N.K.; Srinivasan, K.; Chen, B.; Sharma, V.

    2017-01-01

    Wireless communications have become one of the main stake holders on which our contemporary world relies for carrying out many daily activities. In this era, the number of connected devices is increasing rapidly, contemplating not only smart phone, but also growing connectivity of machines, sensors,

  11. Sensors on speaking terms: Schedule-based medium access control protocols for wireless sensor networks

    NARCIS (Netherlands)

    van Hoesel, L.F.W.

    2007-01-01

    Wireless sensor networks make the previously unobservable, observable. The basic idea behind these networks is straightforward: all wires are cut in traditional sensing systems and the sensors are equipped with batteries and radio's to virtually restore the cut wires. The resulting sensors can be

  12. Protocol design and analysis for cooperative wireless networks

    CERN Document Server

    Song, Wei; Jin, A-Long

    2017-01-01

    This book focuses on the design and analysis of protocols for cooperative wireless networks, especially at the medium access control (MAC) layer and for crosslayer design between the MAC layer and the physical layer. It highlights two main points that are often neglected in other books: energy-efficiency and spatial random distribution of wireless devices. Effective methods in stochastic geometry for the design and analysis of wireless networks are also explored. After providing a comprehensive review of existing studies in the literature, the authors point out the challenges that are worth further investigation. Then, they introduce several novel solutions for cooperative wireless network protocols that reduce energy consumption and address spatial random distribution of wireless nodes. For each solution, the book offers a clear system model and problem formulation, details of the proposed cooperative schemes, comprehensive performance analysis, and extensive numerical and simulation results that validate th...

  13. Accessibility to Nodes of Interest: A Practical Application of the Various Forms of the Impedance Curves

    Directory of Open Access Journals (Sweden)

    GIOACCHINO DE CANDIA

    2014-06-01

    Full Text Available Impedance is, in territorial statistics, the greater or lesser difficulty of a territory to be served/provided with adequate infrastructure and related services, useful for the improvement of the resident’s quality of life. In the opposite, a greater impedance implies a low attractiveness of the territory for the establishment of new productive activities. The purpose of this research is to provide a picture as comprehensive as possible of the existing methodology for the elaboration of impedance, providing practical applications in relation to the Tuscan territory. The methodology used in this paper is part of the category of models called “gravitational”, which are characterized by the denominator of the equation (index that expresses the impediment in relation to accessibility between points in geographic space. In this case, the calculations have been made considering the cost of travel, which depends on the distance or travel time between points located on the transportation network that represent the points of departure and arrival. The processing affect the function of impedance by elaborating linear, exponential and logistic forms for the infrastructures related to hospitals with emergency rooms, upper secondary schools, airports, and railway stations. Processing separately covered the metropolitan municipality of Florence. The research highlights the main existing methodologies in relation to determining accessibility (attractiveness of the territories, according to their infrastructural facilities and services. The analysis reveals the strengths and weaknesses, as well as the salient features of the equation used. In this sense, the research has produced a real benchmark between different approaches, using from time to time the variation of the impedance function.

  14. A wireless sensor enabled by wireless power.

    Science.gov (United States)

    Lee, Da-Sheng; Liu, Yu-Hong; Lin, Chii-Ruey

    2012-11-22

    Through harvesting energy by wireless charging and delivering data by wireless communication, this study proposes the concept of a wireless sensor enabled by wireless power (WPWS) and reports the fabrication of a prototype for functional tests. One WPWS node consists of wireless power module and sensor module with different chip-type sensors. Its main feature is the dual antenna structure. Following RFID system architecture, a power harvesting antenna was designed to gather power from a standard reader working in the 915 MHz band. Referring to the Modbus protocol, the other wireless communication antenna was integrated on a node to send sensor data in parallel. The dual antenna structure integrates both the advantages of an RFID system and a wireless sensor. Using a standard UHF RFID reader, WPWS can be enabled in a distributed area with a diameter up to 4 m. Working status is similar to that of a passive tag, except that a tag can only be queried statically, while the WPWS can send dynamic data from the sensors. The function is the same as a wireless sensor node. Different WPWSs equipped with temperature and humidity, optical and airflow velocity sensors are tested in this study. All sensors can send back detection data within 8 s. The accuracy is within 8% deviation compared with laboratory equipment. A wireless sensor network enabled by wireless power should be a totally wireless sensor network using WPWS. However, distributed WPWSs only can form a star topology, the simplest topology for constructing a sensor network. Because of shielding effects, it is difficult to apply other complex topologies. Despite this limitation, WPWS still can be used to extend sensor network applications in hazardous environments. Further research is needed to improve WPWS to realize a totally wireless sensor network.

  15. Cognitive Scout Node for Communication in Disaster Scenarios

    Directory of Open Access Journals (Sweden)

    Rajesh K. Sharma

    2012-01-01

    highly desired to manage unexpected situations that may happen in a disaster scenario. The scout node proposed in this paper is an extended concept based on a powerful CR node in a heterogeneous nodes environment which takes a leading role for highly flexible, fast, and robust establishment of cooperative wireless links in a disaster situation. This node should have two components: one is a passive sensor unit that collects and stores the technical knowledge about the electromagnetic environment in a data processing unit so-called “radio environment map” in the form of a dynamically updated database, and other is an active transceiver unit which can automatically be configured either as a secondary node for opportunistic communication or as a cooperative base station or access point for primary network in emergency communications. Scout solution can be viable by taking advantage of the technologies used by existing radio surveillance systems in the context of CR.

  16. Universal data access for run-time resource management in resource constrained wireless networks

    OpenAIRE

    Rerkrai, Krisakorn

    2012-01-01

    Resource-constrainedwireless networks, e.g.wireless sensor networks (WSNs), small embedded devices with limited computational power and energy, have been the subject of intense research in the past decade. Moreover, recent technological advances and growing demand for better efficiency have led to a great number of link and network protocols for WSNs. The protocols depend on specific interfaces to exchange necessary information. Unfortunately these interfaces are often proprietary and highly ...

  17. Temperature estimation of induction machines based on wireless sensor networks

    Directory of Open Access Journals (Sweden)

    Y. Huang

    2018-04-01

    Full Text Available In this paper, a fourth-order Kalman filter (KF algorithm is implemented in the wireless sensor node to estimate the temperatures of the stator winding, the rotor cage and the stator core in the induction machine. Three separate wireless sensor nodes are used as the data acquisition systems for different input signals. Six Hall sensors are used to acquire the three-phase stator currents and voltages of the induction machine. All of them are processed to root mean square (rms in ampere and volt. A rotary encoder is mounted for the rotor speed and Pt-1000 is used for the temperature of the coolant air. The processed signals in the physical unit are transmitted wirelessly to the host wireless sensor node, where the KF is implemented with fixed-point arithmetic in Contiki OS. Time-division multiple access (TDMA is used to make the wireless transmission more stable. Compared to the floating-point implementation, the fixed-point implementation has the same estimation accuracy at only about one-fifth of the computation time. The temperature estimation system can work under any work condition as long as there are currents through the machine. It can also be rebooted for estimation even when wireless transmission has collapsed or packages are missing.

  18. Handoff Between a Wireless Local Area Network (WLAN and a Wide Area Network (UMTS

    Directory of Open Access Journals (Sweden)

    J. Sánchez–García

    2009-04-01

    Full Text Available With the appearance of wireless data networks with variable coverage, band width and handoff strategies, in addition to the growing need of mobile nodes to freely roam among these networks, the support of an interoperable handoff strategy for hybrid wireless data networks is a requirement that needs to be addressed. The current trend in wireless data networks is to offer multimedia access to mobile users by employing the wireless local area network (WLAN standard IEEE802.11 while the user is located indoors; on the other hand, 3rd generation wireless networks (WAN are being deployed to provide coverage while the user is located outdoors. As a result, the mobile node will require a handoff mechanism to allow the user to roam between WLAN and WAN environments; up to this date several strategies have been proposed (Sattari et al., 2004 and HyoJin, 2007 in the literature, however, none of these have been standardized to date. To support this interoperability, the mobile node must be equipped with configurable wireless inetrfaces to support the handoff between the WLAN and the WAN networks. In this work a new algorithm is proposed to allow a mobile node to roam between a wireless local area network (IEEE802.11 and a WAN base station (UMTS, while employing IP mobility support. The algorithm is implemented in simulation, using the Network Simulator 2.

  19. Asymptotic performance modelling of DCF protocol with prioritized channel access

    Science.gov (United States)

    Choi, Woo-Yong

    2017-11-01

    Recently, the modification of the DCF (Distributed Coordination Function) protocol by the prioritized channel access was proposed to resolve the problem that the DCF performance worsens exponentially as more nodes exist in IEEE 802.11 wireless LANs. In this paper, an asymptotic analytical performance model is presented to analyze the MAC performance of the DCF protocol with the prioritized channel access.

  20. Energy harvesting for wireless sensors by using piezoelectric transducers

    Energy Technology Data Exchange (ETDEWEB)

    Duerager, Christian [Empa, Swiss Federal Laboratories for Materials Science and Technology, Duebendorf (Switzerland)

    2012-07-01

    Wireless sensor technology, which integrates transducers, measurement electronics and wireless communication, has become increasingly vital in structural health monitoring (SHM) applications. Compared to traditional wired systems, wireless solutions reduce the installation time and costs and are not subjected to breakage caused by harsh weather conditions or other extreme events. Because of the low installation costs, wireless sensor networks allow the deployment of a big number of wireless sensor nodes on the structures. Moreover, the nodes can be placed on particularly critical components of the structure difficult to reach by wires. In most of the cases the power supply are conventional batteries, which could be a problem because of their finite life span. Furthermore, in the case of wireless sensor nodes located on structures, it is often advantageous to embed them, which makes an access impossible. Therefore, if a method of obtaining the untapped energy surrounding these sensors was implemented, significant life could be added to the power supply. Various approaches to energy harvesting and energy storage are discussed and limitations associated with the current technology are addressed. In this paper we first discuss the research that has been performed in the area of energy harvesting for wireless sensor technologies by using the ambient vibration energy. In many cases the energy produced by the ambient vibrations is far too small to directly power a wireless sensor node. Therefore, in a second step we discuss the development process for an electronic energy harvesting circuit optimized for piezoelectric transducers. In the last part of this paper an experiment with different piezoelectric transducers and their applicability for energy harvesting applications on vibrating structures will be discussed. (orig.)

  1. Energy-Efficiency Analysis of a Distributed Queuing Medium Access Control Protocol for Biomedical Wireless Sensor Networks in Saturation Conditions

    Directory of Open Access Journals (Sweden)

    Christos Verikoukis

    2011-01-01

    Full Text Available The aging population and the high quality of life expectations in our society lead to the need of more efficient and affordable healthcare solutions. For this reason, this paper aims for the optimization of Medium Access Control (MAC protocols for biomedical wireless sensor networks or wireless Body Sensor Networks (BSNs. The hereby presented schemes always have in mind the efficient management of channel resources and the overall minimization of sensors’ energy consumption in order to prolong sensors’ battery life. The fact that the IEEE 802.15.4 MAC does not fully satisfy BSN requirements highlights the need for the design of new scalable MAC solutions, which guarantee low-power consumption to the maximum number of body sensors in high density areas (i.e., in saturation conditions. In order to emphasize IEEE 802.15.4 MAC limitations, this article presents a detailed overview of this de facto standard for Wireless Sensor Networks (WSNs, which serves as a link for the introduction and initial description of our here proposed Distributed Queuing (DQ MAC protocol for BSN scenarios. Within this framework, an extensive DQ MAC energy-consumption analysis in saturation conditions is presented to be able to evaluate its performance in relation to IEEE 802.5.4 MAC in highly dense BSNs. The obtained results show that the proposed scheme outperforms IEEE 802.15.4 MAC in average energy consumption per information bit, thus providing a better overall performance that scales appropriately to BSNs under high traffic conditions. These benefits are obtained by eliminating back-off periods and collisions in data packet transmissions, while minimizing the control overhead.

  2. A Green Media Access Method for IEEE 802.15.6 Wireless Body Area Network.

    Science.gov (United States)

    Jacob, Anil K; Jacob, Lillykutty

    2017-09-30

    It is of utmost importance to conserve battery energy to the maximum possible extent in WBAN nodes while collecting and transferring medical data. The IEEE 802.15.6 WBAN standard does not specify any method to conserve energy. This paper focuses on a method to conserve energy in IEEE 802.15.6 WBAN nodes when using CSMA/CA, while simultaneously restricting data delivery delay to the required value as specified in medical applications. The technique is to allow the nodes to sleep all the times except for receiving beacons and for transmitting data frames whenever a data frame enters an empty buffer. The energy consumed by the nodes and the average latency of data frame for periodical arrival of data are found out analytically. The analytical results are validated and also the proposed method is compared with other energy conserving schemes, using Castalia simulation studies. The proposed method shows superior performance in both device lifetime and latency of emergency medical data.

  3. Real-time Measurements of an Optical Reconfigurable Radio Access Unit for 5G Wireless Access Networks

    DEFF Research Database (Denmark)

    Rodríguez, Sebastián; Morales Vicente, Alvaro; Rommel, Simon

    2017-01-01

    A reconfigurable radio access unit able to switch wavelength, RF carrier frequency and optical path is experimentally demonstrated. The system is able to do the switching processes correctly, while achieving BER values below FEC limit.......A reconfigurable radio access unit able to switch wavelength, RF carrier frequency and optical path is experimentally demonstrated. The system is able to do the switching processes correctly, while achieving BER values below FEC limit....

  4. Non-volatile MOS RAM cell with capacitor-isolated nodes that are radiation accessible for rendering a non-permanent programmed information in the cell of a non-volatile one

    NARCIS (Netherlands)

    Widdershoven, Franciscus P.; Annema, Anne J.; Storms, Maurits M.N.; Pelgrom, Marcellinus J.M.; Pelgrom, Marcel J M

    2001-01-01

    A non-volatile, random access memory cell comprises first and second inverters each having an output node cross-coupled by cross-coupling means to an input node of the other inverter for forming a MOS RAM cell. The output node of each inverter is selectively connected via the conductor paths of

  5. Cross-layer design for radio resource allocation based on priority scheduling in OFDMA wireless access network

    Directory of Open Access Journals (Sweden)

    Chen Yen-Wen

    2011-01-01

    Full Text Available Abstract The orthogonal frequency-division multiple access (OFDMA system has the advantages of flexible subcarrier allocation and adaptive modulation with respect to channel conditions. However, transmission overhead is required in each frame to broadcast the arrangement of radio resources to all mobile stations within the coverage of the same base station. This overhead greatly affects the utilization of valuable radio resources. In this paper, a cross layer scheme is proposed to reduce the number of traffic bursts at the downlink of an OFDMA wireless access network so that the overhead of the media access protocol (MAP field can be minimized. The proposed scheme considers the priorities and the channel conditions of quality of service (QoS traffic streams to arrange for them to be sent with minimum bursts in a heuristic manner. In addition, the trade-off between the degradation of the modulation level and the reduction of traffic bursts is investigated. Simulation results show that the proposed scheme can effectively reduce the traffic bursts and, therefore, increase resource utilization.

  6. Multiple Access Techniques for Next Generation Wireless: Recent Advances and Future Perspectives

    Directory of Open Access Journals (Sweden)

    Shree Krishna Sharma

    2016-01-01

    Full Text Available The advances in multiple access techniques has been one of the key drivers in moving from one cellular generation to another. Starting from the first generation, several multiple access techniques have been explored in different generations and various emerging multiplexing/multiple access techniques are being investigated for the next generation of cellular networks. In this context, this paper first provides a detailed review on the existing Space Division Multiple Access (SDMA related works. Subsequently, it highlights the main features and the drawbacks of various existing and emerging multiplexing/multiple access techniques. Finally, we propose a novel concept of clustered orthogonal signature division multiple access for the next generation of cellular networks. The proposed concept envisions to employ joint antenna coding in order to enhance the orthogonality of SDMA beams with the objective of enhancing the spectral efficiency of future cellular networks.

  7. Neurofeedback Control in Parkinsonian Patients Using Electrocorticography Signals Accessed Wirelessly With a Chronic, Fully Implanted Device.

    Science.gov (United States)

    Khanna, Preeya; Swann, Nicole C; de Hemptinne, Coralie; Miocinovic, Svjetlana; Miller, Andrew; Starr, Philip A; Carmena, Jose M

    2017-10-01

    Parkinson's disease (PD) is characterized by motor symptoms such as rigidity and bradykinesia that prevent normal movement. Beta band oscillations (13-30 Hz) in neural local field potentials (LFPs) have been associated with these motor symptoms. Here, three PD patients implanted with a therapeutic deep brain neural stimulator that can also record and wirelessly stream neural data played a neurofeedback game where they modulated their beta band power from sensorimotor cortical areas. Patients' beta band power was streamed in real-time to update the position of a cursor that they tried to drive into a cued target. After playing the game for 1-2 hours each, all three patients exhibited above chance-level performance regardless of subcortical stimulation levels. This study, for the first time, demonstrates using an invasive neural recording system for at-home neurofeedback training. Future work will investigate chronic neurofeedback training as a potentially therapeutic tool for patients with neurological disorders.

  8. Traffic-Adaptive, Flow-Specific Medium Access for Wireless Networks

    Science.gov (United States)

    2009-09-01

    51 b. Carrier Sense Multiple Access (CSMA).................................52 c. MACA and MACAW...Figure 17. Comparison of collision avoidance techniques proposed in MACA , MACAW, and MACA -BI (From [132...low power listening lrd ......................long range dependent MAC .................medium access control MACA

  9. Information Security and Wireless: Alternate Approaches for Controlling Access to Critical Information

    National Research Council Canada - National Science Library

    Nandram, Winsome

    2004-01-01

    .... Typically, network managers implement countermeasures to augment security. The goal of this thesis is to research approaches that compliment existing security measures with fine grain access control measures. The Extensible Markup Language (XML) is adopted to accommodate such granular access control as it provides the mechanisms for scaling security down to the document content level.

  10. A Reinforcement Learning Approach to Access Management in Wireless Cellular Networks

    Directory of Open Access Journals (Sweden)

    Jihun Moon

    2017-01-01

    Full Text Available In smart city applications, huge numbers of devices need to be connected in an autonomous manner. 3rd Generation Partnership Project (3GPP specifies that Machine Type Communication (MTC should be used to handle data transmission among a large number of devices. However, the data transmission rates are highly variable, and this brings about a congestion problem. To tackle this problem, the use of Access Class Barring (ACB is recommended to restrict the number of access attempts allowed in data transmission by utilizing strategic parameters. In this paper, we model the problem of determining the strategic parameters with a reinforcement learning algorithm. In our model, the system evolves to minimize both the collision rate and the access delay. The experimental results show that our scheme improves system performance in terms of the access success rate, the failure rate, the collision rate, and the access delay.

  11. KeyWare: an open wireless distributed computing environment

    Science.gov (United States)

    Shpantzer, Isaac; Schoenfeld, Larry; Grindahl, Merv; Kelman, Vladimir

    1995-12-01

    Deployment of distributed applications in the wireless domain lack equivalent tools, methodologies, architectures, and network management that exist in LAN based applications. A wireless distributed computing environment (KeyWareTM) based on intelligent agents within a multiple client multiple server scheme was developed to resolve this problem. KeyWare renders concurrent application services to wireline and wireless client nodes encapsulated in multiple paradigms such as message delivery, database access, e-mail, and file transfer. These services and paradigms are optimized to cope with temporal and spatial radio coverage, high latency, limited throughput and transmission costs. A unified network management paradigm for both wireless and wireline facilitates seamless extensions of LAN- based management tools to include wireless nodes. A set of object oriented tools and methodologies enables direct asynchronous invocation of agent-based services supplemented by tool-sets matched to supported KeyWare paradigms. The open architecture embodiment of KeyWare enables a wide selection of client node computing platforms, operating systems, transport protocols, radio modems and infrastructures while maintaining application portability.

  12. Energy Harvesting - Wireless Sensor Networks for Indoors Applications Using IEEE 802.11

    DEFF Research Database (Denmark)

    Fafoutis, Xenofon; Sørensen, Thomas; Madsen, Jan

    2014-01-01

    The paper investigates the feasibility of using IEEE 802.11 in energy harvesting low-power sensing applications. The investigation is based on a prototype carbon dioxide sensor node that is powered by artificial indoors light. The wireless communication module of the sensor node is based on the RTX......4100 module. RTX4100 incorporates a wireless protocol that duty-cycles the radio while being compatible with IEEE 802.11 access points. The presented experiments demonstrate sustainable operation but indicate a trade-off between the benefits of using IEEE 802.11 in energy harvesting applications...

  13. On the Impact of Closed Access and Users Identities in Spectrum-Shared Overlaid Wireless Networks

    KAUST Repository

    Radaydeh, Redha M.; Gaaloul, Fakhreddine; Alouini, Mohamed-Slim

    2016-01-01

    © 2015 IEEE. This paper develops analytical models to investigate the impact of various operation terms and parameters on the downlink performance of spectrum-shared overlaid networks under closed-access small cells deployment. It is considered

  14. IP communication optimization for 6LoWPAN-Based Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Li MA

    2014-07-01

    Full Text Available The emergence of 6LoWPAN makes it possible that Wireless Sensor Networks access to the Internet. However, the cost of IP communication between 6LoWPAN wireless sensor node and external internet node is still relatively high. This paper proposed a new addressing configuration and compression scheme in 6LoWPAN network called IPHC-NAT, which largely reduced the proportion of the IP header in 6LoWPAN packet, designed and constructed a bidirectional data transmission gateway to connect 6LoWPAN wireless sensor node with IPv6 client. The experimental results show the feasibility of the design of IPHC-NAT and the data transmission efficiency has significantly been improved compared to the original 6LoWPAN network.

  15. Channel access delay and buffer distribution of two-user opportunistic scheduling schemes in wireless networks

    KAUST Repository

    Hossain, Md Jahangir

    2010-07-01

    In our earlier works, we proposed rate adaptive hierarchical modulation-assisted two-best user opportunistic scheduling (TBS) and hybrid two-user scheduling (HTS) schemes. The proposed schemes are innovative in the sense that they include a second user in the transmission opportunistically using hierarchical modulations. As such the frequency of information access of the users increases without any degradation of the system spectral efficiency (SSE) compared to the classical opportunistic scheduling scheme. In this paper, we analyze channel access delay of an incoming packet at the base station (BS) buffer when our proposed TBS and HTS schemes are employed at the BS. Specifically, using a queuing analytic model we derive channel access delay as well as buffer distribution of the packets that wait at BS buffer for down-link (DL) transmission. We compare performance of the TBS and HTS schemes with that of the classical single user opportunistic schemes namely, absolute carrier-to-noise ratio (CNR)-based single user scheduling (ASS) and normalized CNR-based single user scheduling (NSS). For an independent and identically distributed (i.i.d.) fading environment, our proposed scheme can improve packet\\'s access delay performance compared to the ASS. Selected numerical results in an independent but non-identically distributed (i.n.d.) fading environment show that our proposed HTS achieves overall good channel access delay performance. © 2010 IEEE.

  16. DoS detection in IEEE 802.11 with the presence of hidden nodes

    Directory of Open Access Journals (Sweden)

    Joseph Soryal

    2014-07-01

    Full Text Available The paper presents a novel technique to detect Denial of Service (DoS attacks applied by misbehaving nodes in wireless networks with the presence of hidden nodes employing the widely used IEEE 802.11 Distributed Coordination Function (DCF protocols described in the IEEE standard [1]. Attacker nodes alter the IEEE 802.11 DCF firmware to illicitly capture the channel via elevating the probability of the average number of packets transmitted successfully using up the bandwidth share of the innocent nodes that follow the protocol standards. We obtained the theoretical network throughput by solving two-dimensional Markov Chain model as described by Bianchi [2], and Liu and Saadawi [3] to determine the channel capacity. We validated the results obtained via the theoretical computations with the results obtained by OPNET simulator [4] to define the baseline for the average attainable throughput in the channel under standard conditions where all nodes follow the standards. The main goal of the DoS attacker is to prevent the innocent nodes from accessing the channel and by capturing the channel’s bandwidth. In addition, the attacker strives to appear as an innocent node that follows the standards. The protocol resides in every node to enable each node to police other nodes in its immediate wireless coverage area. All innocent nodes are able to detect and identify the DoS attacker in its wireless coverage area. We applied the protocol to two Physical Layer technologies: Direct Sequence Spread Spectrum (DSSS and Frequency Hopping Spread Spectrum (FHSS and the results are presented to validate the algorithm.

  17. DoS detection in IEEE 802.11 with the presence of hidden nodes.

    Science.gov (United States)

    Soryal, Joseph; Liu, Xijie; Saadawi, Tarek

    2014-07-01

    The paper presents a novel technique to detect Denial of Service (DoS) attacks applied by misbehaving nodes in wireless networks with the presence of hidden nodes employing the widely used IEEE 802.11 Distributed Coordination Function (DCF) protocols described in the IEEE standard [1]. Attacker nodes alter the IEEE 802.11 DCF firmware to illicitly capture the channel via elevating the probability of the average number of packets transmitted successfully using up the bandwidth share of the innocent nodes that follow the protocol standards. We obtained the theoretical network throughput by solving two-dimensional Markov Chain model as described by Bianchi [2], and Liu and Saadawi [3] to determine the channel capacity. We validated the results obtained via the theoretical computations with the results obtained by OPNET simulator [4] to define the baseline for the average attainable throughput in the channel under standard conditions where all nodes follow the standards. The main goal of the DoS attacker is to prevent the innocent nodes from accessing the channel and by capturing the channel's bandwidth. In addition, the attacker strives to appear as an innocent node that follows the standards. The protocol resides in every node to enable each node to police other nodes in its immediate wireless coverage area. All innocent nodes are able to detect and identify the DoS attacker in its wireless coverage area. We applied the protocol to two Physical Layer technologies: Direct Sequence Spread Spectrum (DSSS) and Frequency Hopping Spread Spectrum (FHSS) and the results are presented to validate the algorithm.

  18. Design of pulse waveform for waveform division multiple access UWB wireless communication system.

    Science.gov (United States)

    Yin, Zhendong; Wang, Zhirui; Liu, Xiaohui; Wu, Zhilu

    2014-01-01

    A new multiple access scheme, Waveform Division Multiple Access (WDMA) based on the orthogonal wavelet function, is presented. After studying the correlation properties of different categories of single wavelet functions, the one with the best correlation property will be chosen as the foundation for combined waveform. In the communication system, each user is assigned to different combined orthogonal waveform. Demonstrated by simulation, combined waveform is more suitable than single wavelet function to be a communication medium in WDMA system. Due to the excellent orthogonality, the bit error rate (BER) of multiuser with combined waveforms is so close to that of single user in a synchronous system. That is to say, the multiple access interference (MAI) is almost eliminated. Furthermore, even in an asynchronous system without multiuser detection after matched filters, the result is still pretty ideal and satisfactory by using the third combination mode that will be mentioned in the study.

  19. Security for multihop wireless networks

    CERN Document Server

    Khan, Shafiullah

    2014-01-01

    Security for Multihop Wireless Networks provides broad coverage of the security issues facing multihop wireless networks. Presenting the work of a different group of expert contributors in each chapter, it explores security in mobile ad hoc networks, wireless sensor networks, wireless mesh networks, and personal area networks.Detailing technologies and processes that can help you secure your wireless networks, the book covers cryptographic coprocessors, encryption, authentication, key management, attacks and countermeasures, secure routing, secure medium access control, intrusion detection, ep

  20. Dynamic optical fiber delivery of Ka-band packet transmissions for wireless access networks

    DEFF Research Database (Denmark)

    Rodríguez Páez, Juan Sebastián; Madsen, Peter; Tafur Monroy, Idelfonso

    2017-01-01

    A Reconfigurable Radio Access Unit is presented and experimentally demonstrated. In the unit, an optical switching system is set to dynamically deliver different packets to different points in the network. The packets are transmitted wirelesslty on the Ka-band (26–40 GHz), achieving BER values...

  1. On the Need of Novel Medium Access Control Schemes for Network Coding enabled Wireless Mesh Networks

    DEFF Research Database (Denmark)

    Paramanathan, Achuthan; Pahlevani, Peyman; Roetter, Daniel Enrique Lucani

    2013-01-01

    that network coding will improve the throughput in such systems, but our novel medium access scheme improves the performance in the cross topology by another 66 % for network coding and 150 % for classical forwarding in theory. These gains translate in a theoretical gain of 33 % of network coding over...

  2. Energy-efficient digital and wireless IC design for wireless smart sensing

    Science.gov (United States)

    Zhou, Jun; Huang, Xiongchuan; Wang, Chao; Tae-Hyoung Kim, Tony; Lian, Yong

    2017-10-01

    Wireless smart sensing is now widely used in various applications such as health monitoring and structural monitoring. In conventional wireless sensor nodes, significant power is consumed in wirelessly transmitting the raw data. Smart sensing adds local intelligence to the sensor node and reduces the amount of wireless data transmission via on-node digital signal processing. While the total power consumption is reduced compared to conventional wireless sensing, the power consumption of the digital processing becomes as dominant as wireless data transmission. This paper reviews the state-of-the-art energy-efficient digital and wireless IC design techniques for reducing the power consumption of the wireless smart sensor node to prolong battery life and enable self-powered applications.

  3. Electromagnetic interference-aware transmission scheduling and power control for dynamic wireless access in hospital environments.

    Science.gov (United States)

    Phunchongharn, Phond; Hossain, Ekram; Camorlinga, Sergio

    2011-11-01

    We study the multiple access problem for e-Health applications (referred to as secondary users) coexisting with medical devices (referred to as primary or protected users) in a hospital environment. In particular, we focus on transmission scheduling and power control of secondary users in multiple spatial reuse time-division multiple access (STDMA) networks. The objective is to maximize the spectrum utilization of secondary users and minimize their power consumption subject to the electromagnetic interference (EMI) constraints for active and passive medical devices and minimum throughput guarantee for secondary users. The multiple access problem is formulated as a dual objective optimization problem which is shown to be NP-complete. We propose a joint scheduling and power control algorithm based on a greedy approach to solve the problem with much lower computational complexity. To this end, an enhanced greedy algorithm is proposed to improve the performance of the greedy algorithm by finding the optimal sequence of secondary users for scheduling. Using extensive simulations, the tradeoff in performance in terms of spectrum utilization, energy consumption, and computational complexity is evaluated for both the algorithms.

  4. Evaluation of the Effects of Hidden Node Problems in IEEE 802.15.7 Uplink Performance.

    Science.gov (United States)

    Ley-Bosch, Carlos; Alonso-González, Itziar; Sánchez-Rodríguez, David; Ramírez-Casañas, Carlos

    2016-02-06

    In the last few years, the increasing use of LEDs in illumination systems has been conducted due to the emergence of Visible Light Communication (VLC) technologies, in which data communication is performed by transmitting through the visible band of the electromagnetic spectrum. In 2011, the Institute of Electrical and Electronics Engineers (IEEE) published the IEEE 802.15.7 standard for Wireless Personal Area Networks based on VLC. Due to limitations in the coverage of the transmitted signal, wireless networks can suffer from the hidden node problems, when there are nodes in the network whose transmissions are not detected by other nodes. This problem can cause an important degradation in communications when they are made by means of the Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA) access control method, which is used in IEEE 802.15.7 This research work evaluates the effects of the hidden node problem in the performance of the IEEE 802.15.7 standard We implement a simulator and analyze VLC performance in terms of parameters like end-to-end goodput and message loss rate. As part of this research work, a solution to the hidden node problem is proposed, based on the use of idle patterns defined in the standard. Idle patterns are sent by the network coordinator node to communicate to the other nodes that there is an ongoing transmission. The validity of the proposed solution is demonstrated with simulation results.

  5. Wireless Technology in K-12 Education

    Science.gov (United States)

    Walery, Darrell

    2004-01-01

    Many schools begin implementing wireless technology slowly by creating wireless "hotspots" on the fly. This is accomplished by putting a wireless access point on a cart along with a set of wireless laptop computers. A teacher can then wheel the cart anywhere in the school that has a network drop, plug the access point in and have an…

  6. Access Point Backhaul Resource Aggregation as a Many-to-One Matching Game in Wireless Local Area Networks

    Directory of Open Access Journals (Sweden)

    Kawther Hassine

    2017-01-01

    Full Text Available This paper studies backhaul bandwidth aggregation in the context of a wireless local area network composed of two different types of access points: those with spare backhaul capacity (which we term providers and those in shortage of it (beneficiaries; the aim is to transfer excess capacity from providers to beneficiaries. We model the system as a matching game with many-to-one setting wherein several providers can be matched to one beneficiary and adopt the so-called deferred acceptance algorithm to reach an optimal and stable solution. We consider two flavors, when the beneficiaries are limited in their resource demands and when they are not, and two scenarios, when resources are abundant and when they are scarce. Our results show that the many-to-one setting outperforms the one-to-one case in terms of overall throughput gain, resource usage, and individual beneficiaries satisfaction by up to 50%, whether resources are scarce or abundant. As of the limited versus nonlimited case, the former ensures more fair sharing of spectral resources and higher satisfaction percentage between beneficiaries.

  7. An agent-based signal processing in-node environment for real-time human activity monitoring based on wireless body sensor networks

    NARCIS (Netherlands)

    Aiello, F.; Bellifemine, F.L.; Fortino, G.; Galzarano, S.; Gravina, R.

    2011-01-01

    Nowadays wireless body sensor networks (WBSNs) have great potential to enable a broad variety of assisted living applications such as human biophysical/biochemical control and activity monitoring for health care, e-fitness, emergency detection, emotional recognition for social networking, security,

  8. Media Access Time-Rearrangement of Wireless LAN for a Multi-Radio Collocated Platform

    Science.gov (United States)

    Shin, Sang-Heon; Kim, Chul; Park, Sang Kyu

    With the advent of new Radio Access Technologies (RATs), it is inevitable that several RATs will co-exist, especially in the license-exempt band. In this letter, we present an in-depth adaptation of the proactive time-rearrangement (PATRA) scheme for IEEE 802.11 WLAN. The PATRA is a time division approach for reducing interference from a multi-radio device. Because IEEE 802.11 is based on carrier sensing and contention mechanism, it is the most suitable candidate to adapt the PATRA.

  9. Virtual Lab for Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    PICOVICI, D.

    2008-06-01

    Full Text Available This article details an experimental system developed to enhance the education and research in the area of wireless networks technologies. The system referred, as Virtual Lab (VL is primarily targeting first time users or users with limited experience in programming and using wireless sensor networks. The VL enables a set of predefined sensor networks to be remotely accessible and controlled for constructive and time-efficient experimentation. In order to facilitate the user's wireless sensor applications, the VL is using three main components: a a Virtual Lab Motes (VLM, representing the wireless sensor, b a Virtual Lab Client (VLC, representing the user's tool to interact with the VLM and c a Virtual Lab Server (VLS representing the software link between the VLM and VLC. The concept has been proven using the moteiv produced Tmote Sky modules. Initial experimental use clearly demonstrates that the VL approach reduces dramatically the learning curve involved in programming and using the associated wireless sensor nodes. In addition the VL allows the user's focus to be directed towards the experiment and not towards the software programming challenges.

  10. Broadband Access

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. Broadband Access. Worldwide market for broadband access $30 Billion! Over 200 million broadband subscribers worldwide! Various Competing Broadband access. Digital Subscriber line; Wireless; Optical Fiber.

  11. A Seamless Handoff Scheme with Access Point Load Balance for Real-Time Services Support in 802.11 Wireless LANs

    Science.gov (United States)

    Manodham, Thavisak; Loyola, Luis; Miki, Tetsuya

    IEEE 802.11 wirelesses LANs (WLANs) have been rapidly deployed in enterprises, public areas, and households. Voice-over-IP (VoIP) and similar applications are now commonly used in mobile devices over wireless networks. Recent works have improved the quality of service (QoS) offering higher data rates to support various kinds of real-time applications. However, besides the need for higher data rates, seamless handoff and load balancing among APs are key issues that must be addressed in order to continue supporting real-time services across wireless LANs and providing fair services to all users. In this paper, we introduce a novel access point (AP) with two transceivers that improves network efficiency by supporting seamless handoff and traffic load balancing in a wireless network. In our proposed scheme, the novel AP uses the second transceiver to scan and find neighboring STAs in the transmission range and then sends the results to neighboring APs, which compare and analyze whether or not the STA should perform a handoff. The initial results from our simulations show that the novel AP module is more effective than the conventional scheme and a related work in terms of providing a handoff process with low latency and sharing traffic load with neighbor APs.

  12. Mobile Device Based Dynamic Key Management Protocols for Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Chin-Ling Chen

    2015-01-01

    Full Text Available In recent years, wireless sensor network (WSN applications have tended to transmit data hop by hop, from sensor nodes through cluster nodes to the base station. As a result, users must collect data from the base station. This study considers two different applications: hop by hop transmission of data from cluster nodes to the base station and the direct access to cluster nodes data by mobile users via mobile devices. Due to the hardware limitations of WSNs, some low-cost operations such as symmetric cryptographic algorithms and hash functions are used to implement a dynamic key management. The session key can be updated to prevent threats of attack from each communication. With these methods, the data gathered in wireless sensor networks can be more securely communicated. Moreover, the proposed scheme is analyzed and compared with related schemes. In addition, an NS2 simulation is developed in which the experimental results show that the designed communication protocol is workable.

  13. Wired and wireless convergent extended-reach optical access network using direct-detection of all-optical OFDM super-channel signal.

    Science.gov (United States)

    Chow, C W; Yeh, C H; Sung, J Y; Hsu, C W

    2014-12-15

    We propose and demonstrate the feasibility of using all-optical orthogonal frequency division multiplexing (AO-OFDM) for the convergent optical wired and wireless access networks. AO-OFDM relies on all-optically generated orthogonal subcarriers; hence, high data rate (> 100 Gb/s) can be easily achieved without hitting the speed limit of electronic digital-to-analog and analog-to-digital converters (DAC/ADC). A proof-of-concept convergent access network using AO-OFDM super-channel (SC) is demonstrated supporting 40 - 100 Gb/s wired and gigabit/s 100 GHz millimeter-wave (MMW) ROF transmissions.

  14. Design of handoff procedures for broadband wireless access IEEE 802.16 based networks

    Directory of Open Access Journals (Sweden)

    V. Rangel–Licea

    2008-01-01

    Full Text Available IEEE 802.16 is a protocol for fixed broad band wire less access that is currently trying to add mobility among mobile users in the standard. However, mobility adds some technical barriers that should be solved first, this is the case of HO "handoff" (change of connection between two base stations "BS" by a mobile user. In this paper, the problem of HO in IEEE 802.16 is approached try ing to maintain the quality of service (QoS of mobile users. A mechanism for changing connection during HO is pre sented. A simulation model based on OPNET MODELER1 was developed to evaluate the performance of the proposed HO mechanism. Finally, this paper demonstrates that it is possible to implement a seam less HO mech a nism over IEEE 802.16 even for users with de manding applications such as voice over IP.

  15. Characterizing Computer Access Using a One-Channel EEG Wireless Sensor.

    Science.gov (United States)

    Molina-Cantero, Alberto J; Guerrero-Cubero, Jaime; Gómez-González, Isabel M; Merino-Monge, Manuel; Silva-Silva, Juan I

    2017-06-29

    This work studies the feasibility of using mental attention to access a computer. Brain activity was measured with an electrode placed at the Fp1 position and the reference on the left ear; seven normally developed people and three subjects with cerebral palsy (CP) took part in the experimentation. They were asked to keep their attention high and low for as long as possible during several trials. We recorded attention levels and power bands conveyed by the sensor, but only the first was used for feedback purposes. All of the information was statistically analyzed to find the most significant parameters and a classifier based on linear discriminant analysis (LDA) was also set up. In addition, 60% of the participants were potential users of this technology with an accuracy of over 70%. Including power bands in the classifier did not improve the accuracy in discriminating between the two attentional states. For most people, the best results were obtained by using only the attention indicator in classification. Tiredness was higher in the group with disabilities (2.7 in a scale of 3) than in the other (1.5 in the same scale); and modulating the attention to access a communication board requires that it does not contain many pictograms (between 4 and 7) on screen and has a scanning period of a relatively high t s c a n ≈ 10 s. The information transfer rate (ITR) is similar to the one obtained by other brain computer interfaces (BCI), like those based on sensorimotor rhythms (SMR) or slow cortical potentials (SCP), and makes it suitable as an eye-gaze independent BCI.

  16. Minimum Interference Channel Assignment Algorithm for Multicast in a Wireless Mesh Network

    Directory of Open Access Journals (Sweden)

    Sangil Choi

    2016-12-01

    Full Text Available Wireless mesh networks (WMNs have been considered as one of the key technologies for the configuration of wireless machines since they emerged. In a WMN, wireless routers provide multi-hop wireless connectivity between hosts in the network and also allow them to access the Internet via gateway devices. Wireless routers are typically equipped with multiple radios operating on different channels to increase network throughput. Multicast is a form of communication that delivers data from a source to a set of destinations simultaneously. It is used in a number of applications, such as distributed games, distance education, and video conferencing. In this study, we address a channel assignment problem for multicast in multi-radio multi-channel WMNs. In a multi-radio multi-channel WMN, two nearby nodes will interfere with each other and cause a throughput decrease when they transmit on the same channel. Thus, an important goal for multicast channel assignment is to reduce the interference among networked devices. We have developed a minimum interference channel assignment (MICA algorithm for multicast that accurately models the interference relationship between pairs of multicast tree nodes using the concept of the interference factor and assigns channels to tree nodes to minimize interference within the multicast tree. Simulation results show that MICA achieves higher throughput and lower end-to-end packet delay compared with an existing channel assignment algorithm named multi-channel multicast (MCM. In addition, MICA achieves much lower throughput variation among the destination nodes than MCM.

  17. An Outline of Data Aggregation Security in Heterogeneous Wireless Sensor Networks.

    Science.gov (United States)

    Boubiche, Sabrina; Boubiche, Djallel Eddine; Bilami, Azzedine; Toral-Cruz, Homero

    2016-04-12

    Data aggregation processes aim to reduce the amount of exchanged data in wireless sensor networks and consequently minimize the packet overhead and optimize energy efficiency. Securing the data aggregation process is a real challenge since the aggregation nodes must access the relayed data to apply the aggregation functions. The data aggregation security problem has been widely addressed in classical homogeneous wireless sensor networks, however, most of the proposed security protocols cannot guarantee a high level of security since the sensor node resources are limited. Heterogeneous wireless sensor networks have recently emerged as a new wireless sensor network category which expands the sensor nodes' resources and capabilities. These new kinds of WSNs have opened new research opportunities where security represents a most attractive area. Indeed, robust and high security level algorithms can be used to secure the data aggregation at the heterogeneous aggregation nodes which is impossible in classical homogeneous WSNs. Contrary to the homogeneous sensor networks, the data aggregation security problem is still not sufficiently covered and the proposed data aggregation security protocols are numberless. To address this recent research area, this paper describes the data aggregation security problem in heterogeneous wireless sensor networks and surveys a few proposed security protocols. A classification and evaluation of the existing protocols is also introduced based on the adopted data aggregation security approach.

  18. Wireless Testbed Bonsai

    Science.gov (United States)

    2006-02-01

    wireless sensor device network, and a about 200 Stargate nodes higher-tier multi-hop peer- to-peer 802.11b wireless network. Leading up to the full ExScal...deployment, we conducted spatial scaling tests on our higher-tier protocols on a 7 × 7 grid of Stargates nodes 45m and with 90m separations respectively...onW and its scaled version W̃ . III. EXPERIMENTAL SETUP Description of Kansei testbed. A stargate is a single board linux-based computer [7]. It uses a

  19. Wireless device monitoring methods, wireless device monitoring systems, and articles of manufacture

    Science.gov (United States)

    McCown, Steven H [Rigby, ID; Derr, Kurt W [Idaho Falls, ID; Rohde, Kenneth W [Idaho Falls, ID

    2012-05-08

    Wireless device monitoring methods, wireless device monitoring systems, and articles of manufacture are described. According to one embodiment, a wireless device monitoring method includes accessing device configuration information of a wireless device present at a secure area, wherein the device configuration information comprises information regarding a configuration of the wireless device, accessing stored information corresponding to the wireless device, wherein the stored information comprises information regarding the configuration of the wireless device, comparing the device configuration information with the stored information, and indicating the wireless device as one of authorized and unauthorized for presence at the secure area using the comparing.

  20. Analyzing Options for Airborne Emergency Wireless Communications

    Energy Technology Data Exchange (ETDEWEB)

    Michael Schmitt; Juan Deaton; Curt Papke; Shane Cherry

    2008-03-01

    In the event of large-scale natural or manmade catastrophic events, access to reliable and enduring commercial communication systems is critical. Hurricane Katrina provided a recent example of the need to ensure communications during a national emergency. To ensure that communication demands are met during these critical times, Idaho National Laboratory (INL) under the guidance of United States Strategic Command has studied infrastructure issues, concerns, and vulnerabilities associated with an airborne wireless communications capability. Such a capability could provide emergency wireless communications until public/commercial nodes can be systematically restored. This report focuses on the airborne cellular restoration concept; analyzing basic infrastructure requirements; identifying related infrastructure issues, concerns, and vulnerabilities and offers recommended solutions.

  1. X-raying neighbour discovery in a wireless sensor network ...

    African Journals Online (AJOL)

    In most wireless sensor networks, the nodes are often assumed to be stationary. However, network connectivity is subject to changes arising from interference in wireless communication, changes in transmission power or loss of synchronization among neighbouring network nodes. Hence, even after a sensor node is aware ...

  2. Secure Multicast Routing Algorithm for Wireless Mesh Networks

    Directory of Open Access Journals (Sweden)

    Rakesh Matam

    2016-01-01

    Full Text Available Multicast is an indispensable communication technique in wireless mesh network (WMN. Many applications in WMN including multicast TV, audio and video conferencing, and multiplayer social gaming use multicast transmission. On the other hand, security in multicast transmissions is crucial, without which the network services are significantly disrupted. Existing secure routing protocols that address different active attacks are still vulnerable due to subtle nature of flaws in protocol design. Moreover, existing secure routing protocols assume that adversarial nodes cannot share an out-of-band communication channel which rules out the possibility of wormhole attack. In this paper, we propose SEMRAW (SEcure Multicast Routing Algorithm for Wireless mesh network that is resistant against all known active threats including wormhole attack. SEMRAW employs digital signatures to prevent a malicious node from gaining illegitimate access to the message contents. Security of SEMRAW is evaluated using the simulation paradigm approach.

  3. A Calibrated Test-Set for Measurement of Access-Point Time Specifications in Hybrid Wired/Wireless Industrial Communication †

    Directory of Open Access Journals (Sweden)

    Federico Tramarin

    2018-05-01

    Full Text Available In factory automation and process control systems, hybrid wired/wireless networks are often deployed to connect devices of difficult reachability such as those mounted on mobile equipment. A widespread implementation of these networks makes use of Access Points (APs to implement wireless extensions of Real-Time Ethernet (RTE networks via the IEEE 802.11 Wireless LAN (WLAN. Unfortunately, APs may introduce random delays in frame forwarding, mainly related to their internal behavior (e.g., queue management, processing times, that clearly impact the overall worst case execution time of real-time tasks involved in industrial process control systems. As a consequence, the knowledge of such delays becomes a crucial design parameter, and their estimation is definitely of utter importance. In this scenario, the paper presents an original and effective method to measure the aforementioned delays introduced by APs, exploiting a hybrid loop-back link and a simple, yet accurate set-up with moderate instrumentation requirements. The proposed method, which requires an initial calibration phase by means of a reference AP, has been successfully tested on some commercial APs to prove its effectiveness. The proposed measurement procedure is proven to be general and, as such, can be profitably adopted in even different scenarios.

  4. Artificial intelligence based event detection in wireless sensor networks

    NARCIS (Netherlands)

    Bahrepour, M.

    2013-01-01

    Wireless sensor networks (WSNs) are composed of large number of small, inexpensive devices, called sensor nodes, which are equipped with sensing, processing, and communication capabilities. While traditional applications of wireless sensor networks focused on periodic monitoring, the focus of more

  5. Digital Predistortion of 75-110GHzW-Band Frequency Multiplier for Fiber Wireless Short Range Access Systems

    DEFF Research Database (Denmark)

    Zhao, Ying; Pang, Xiaodan; Deng, Lei

    2011-01-01

    We present a digital predistortion technique to effectively compensate high nonlinearity of a sextuple multiplier operating at 99.6GHz. An 18.9dB adjacent-channel power ratio (ACPR) improvement is guaranteed and a W-band fiber-wireless system is experimentally investigated.......We present a digital predistortion technique to effectively compensate high nonlinearity of a sextuple multiplier operating at 99.6GHz. An 18.9dB adjacent-channel power ratio (ACPR) improvement is guaranteed and a W-band fiber-wireless system is experimentally investigated....

  6. Wireless Sensor Network –A Survey

    OpenAIRE

    Nirvika Chouhan; P.D.Vyavahare; Rekha Jain

    2013-01-01

    Wireless sensor networks are the networks consisting of large number of small and tiny sensor nodes. The nodes are supplied with limited power, memory and other resources and perform in-network processing. In this paper, various issues are discussed that actually put the limitations in the well working and the life time of the network. In Wireless sensor network, nodes should consume less power, memoryand so data aggregation should be performed. Security is another aspect which should be pres...

  7. High optical label switching add-drop multiplexer nodes with nanoseconds latency for 5G metro/access networks

    NARCIS (Netherlands)

    Calabretta, N.; Miao, W.; De Waardt, H.

    2016-01-01

    We present a novel optical add-drop multiplexer for next-generation metro/access networks by exploiting optical label switching technology. Experimental results of a ring network show nanoseconds add/drop operation including multicasting and power equalization of 50Gb/s data.

  8. An Outline of Data Aggregation Security in Heterogeneous Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Sabrina Boubiche

    2016-04-01

    Full Text Available Data aggregation processes aim to reduce the amount of exchanged data in wireless sensor networks and consequently minimize the packet overhead and optimize energy efficiency. Securing the data aggregation process is a real challenge since the aggregation nodes must access the relayed data to apply the aggregation functions. The data aggregation security problem has been widely addressed in classical homogeneous wireless sensor networks, however, most of the proposed security protocols cannot guarantee a high level of security since the sensor node resources are limited. Heterogeneous wireless sensor networks have recently emerged as a new wireless sensor network category which expands the sensor nodes’ resources and capabilities. These new kinds of WSNs have opened new research opportunities where security represents a most attractive area. Indeed, robust and high security level algorithms can be used to secure the data aggregation at the heterogeneous aggregation nodes which is impossible in classical homogeneous WSNs. Contrary to the homogeneous sensor networks, the data aggregation security problem is still not sufficiently covered and the proposed data aggregation security protocols are numberless. To address this recent research area, this paper describes the data aggregation security problem in heterogeneous wireless sensor networks and surveys a few proposed security protocols. A classification and evaluation of the existing protocols is also introduced based on the adopted data aggregation security approach.

  9. An Outline of Data Aggregation Security in Heterogeneous Wireless Sensor Networks

    Science.gov (United States)

    Boubiche, Sabrina; Boubiche, Djallel Eddine; Bilami, Azzedine; Toral-Cruz, Homero

    2016-01-01

    Data aggregation processes aim to reduce the amount of exchanged data in wireless sensor networks and consequently minimize the packet overhead and optimize energy efficiency. Securing the data aggregation process is a real challenge since the aggregation nodes must access the relayed data to apply the aggregation functions. The data aggregation security problem has been widely addressed in classical homogeneous wireless sensor networks, however, most of the proposed security protocols cannot guarantee a high level of security since the sensor node resources are limited. Heterogeneous wireless sensor networks have recently emerged as a new wireless sensor network category which expands the sensor nodes’ resources and capabilities. These new kinds of WSNs have opened new research opportunities where security represents a most attractive area. Indeed, robust and high security level algorithms can be used to secure the data aggregation at the heterogeneous aggregation nodes which is impossible in classical homogeneous WSNs. Contrary to the homogeneous sensor networks, the data aggregation security problem is still not sufficiently covered and the proposed data aggregation security protocols are numberless. To address this recent research area, this paper describes the data aggregation security problem in heterogeneous wireless sensor networks and surveys a few proposed security protocols. A classification and evaluation of the existing protocols is also introduced based on the adopted data aggregation security approach. PMID:27077866

  10. 30-Gb/s bidirectional transparent optical transmission with an MMF access and an indoor optical wireless link

    NARCIS (Netherlands)

    Chen, H.; Boom, van den H.P.A.; Tangdiongga, E.; Koonen, A.M.J.

    2012-01-01

    This letter describes a 30-Gb/s bidirectional transparent optical transmission, over a 4.4-km multimode fiber (MMF) in combination with an indoor optical wireless (OW) link, which could provide limited mobility. Due to MMF's advantages, such as lower installation costs and easy maintenance, it is

  11. 2x2 MIMO-OFDM Gigabit fiber-wireless access system based on polarization division multiplexed WDM-PON

    DEFF Research Database (Denmark)

    Deng, Lei; Pang, Xiaodan; Zhao, Ying

    2012-01-01

    We propose a spectral efficient radio over wavelength division multiplexed passive optical network (WDM-PON) system by combining optical polarization division multiplexing (PDM) and wireless multiple input multiple output (MIMO) spatial multiplexing techniques. In our experiment, a training-based...

  12. A Low Collision and High Throughput Data Collection Mechanism for Large-Scale Super Dense Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Chunyang Lei

    2016-07-01

    Full Text Available Super dense wireless sensor networks (WSNs have become popular with the development of Internet of Things (IoT, Machine-to-Machine (M2M communications and Vehicular-to-Vehicular (V2V networks. While highly-dense wireless networks provide efficient and sustainable solutions to collect precise environmental information, a new channel access scheme is needed to solve the channel collision problem caused by the large number of competing nodes accessing the channel simultaneously. In this paper, we propose a space-time random access method based on a directional data transmission strategy, by which collisions in the wireless channel are significantly decreased and channel utility efficiency is greatly enhanced. Simulation results show that our proposed method can decrease the packet loss rate to less than 2 % in large scale WSNs and in comparison with other channel access schemes for WSNs, the average network throughput can be doubled.

  13. A Low Collision and High Throughput Data Collection Mechanism for Large-Scale Super Dense Wireless Sensor Networks.

    Science.gov (United States)

    Lei, Chunyang; Bie, Hongxia; Fang, Gengfa; Gaura, Elena; Brusey, James; Zhang, Xuekun; Dutkiewicz, Eryk

    2016-07-18

    Super dense wireless sensor networks (WSNs) have become popular with the development of Internet of Things (IoT), Machine-to-Machine (M2M) communications and Vehicular-to-Vehicular (V2V) networks. While highly-dense wireless networks provide efficient and sustainable solutions to collect precise environmental information, a new channel access scheme is needed to solve the channel collision problem caused by the large number of competing nodes accessing the channel simultaneously. In this paper, we propose a space-time random access method based on a directional data transmission strategy, by which collisions in the wireless channel are significantly decreased and channel utility efficiency is greatly enhanced. Simulation results show that our proposed method can decrease the packet loss rate to less than 2 % in large scale WSNs and in comparison with other channel access schemes for WSNs, the average network throughput can be doubled.

  14. Performance of the hybrid wireless mesh protocol for wireless mesh networks

    DEFF Research Database (Denmark)

    Boye, Magnus; Staalhagen, Lars

    2010-01-01

    Wireless mesh networks offer a new way of providing end-user access and deploying network infrastructure. Though mesh networks offer a price competitive solution to wired networks, they also come with a set of new challenges such as optimal path selection, channel utilization, and load balancing....... and proactive. Two scenarios of different node density are considered for both path selection modes. The results presented in this paper are based on a simulation model of the HWMP specification in the IEEE 802.11s draft 4.0 implemented in OPNET Modeler....

  15. Leveraging Energy Harvesting and Wake-Up Receivers for Long-Term Wireless Sensor Networks.

    Science.gov (United States)

    Ait Aoudia, Fayçal; Gautier, Matthieu; Magno, Michele; Berder, Olivier; Benini, Luca

    2018-05-15

    Wireless sensor nodes are traditionally powered by individual batteries, and a significant effort has been devoted to maximizing the lifetime of these devices. However, as the batteries can only store a finite amount of energy, the network is still doomed to die, and changing the batteries is not always possible. A promising solution is to enable each node to harvest energy directly in its environment, using individual energy harvesters. Moreover, novel ultra-low power wake-up receivers, which allow continuous listening of the channel with negligible power consumption, are emerging. These devices enable asynchronous communication, further reducing the power consumption related to communication, which is typically one the most energy-consuming tasks in wireless sensor networks. Energy harvesting and wake-up receivers can be combined to significantly increase the energy efficiency of sensor networks. In this paper, we propose an energy manager for energy harvesting wireless sensor nodes and an asynchronous medium access control protocol, which exploits ultra-low power wake-up receivers. The two components are designed to work together and especially to fit the stringent constraints of wireless sensor nodes. The proposed approach has been implemented on a real hardware platform and tested in the field. Experimental results demonstrate the benefits of the proposed approach in terms of energy efficiency, power consumption and throughput, which can be up to more than two-times higher compared to traditional schemes.

  16. An energy-efficient and secure hybrid algorithm for wireless sensor networks using a mobile data collector

    Science.gov (United States)

    Dayananda, Karanam Ravichandran; Straub, Jeremy

    2017-05-01

    This paper proposes a new hybrid algorithm for security, which incorporates both distributed and hierarchal approaches. It uses a mobile data collector (MDC) to collect information in order to save energy of sensor nodes in a wireless sensor network (WSN) as, in most networks, these sensor nodes have limited energy. Wireless sensor networks are prone to security problems because, among other things, it is possible to use a rogue sensor node to eavesdrop on or alter the information being transmitted. To prevent this, this paper introduces a security algorithm for MDC-based WSNs. A key use of this algorithm is to protect the confidentiality of the information sent by the sensor nodes. The sensor nodes are deployed in a random fashion and form group structures called clusters. Each cluster has a cluster head. The cluster head collects data from the other nodes using the time-division multiple access protocol. The sensor nodes send their data to the cluster head for transmission to the base station node for further processing. The MDC acts as an intermediate node between the cluster head and base station. The MDC, using its dynamic acyclic graph path, collects the data from the cluster head and sends it to base station. This approach is useful for applications including warfighting, intelligent building and medicine. To assess the proposed system, the paper presents a comparison of its performance with other approaches and algorithms that can be used for similar purposes.

  17. Low leakage Ru-strontium titanate-Ru metal-insulator-metal capacitors for sub-20 nm technology node in dynamic random access memory

    Energy Technology Data Exchange (ETDEWEB)

    Popovici, M., E-mail: Mihaela.Ioana.Popovici@imec.be; Swerts, J.; Redolfi, A.; Kaczer, B.; Aoulaiche, M.; Radu, I.; Clima, S.; Everaert, J.-L.; Van Elshocht, S.; Jurczak, M. [Imec, Leuven 3001 (Belgium)

    2014-02-24

    Improved metal-insulator-metal capacitor (MIMCAP) stacks with strontium titanate (STO) as dielectric sandwiched between Ru as top and bottom electrode are shown. The Ru/STO/Ru stack demonstrates clearly its potential to reach sub-20 nm technology nodes for dynamic random access memory. Downscaling of the equivalent oxide thickness, leakage current density (J{sub g}) of the MIMCAPs, and physical thickness of the STO have been realized by control of the Sr/Ti ratio and grain size using a heterogeneous TiO{sub 2}/STO based nanolaminate stack deposition and a two-step crystallization anneal. Replacement of TiN with Ru as both top and bottom electrodes reduces the amount of electrically active defects and is essential to achieve a low leakage current in the MIM capacitor.

  18. a survey of security vulnerabilities in wireless sensor networks

    African Journals Online (AJOL)

    user

    which primarily are their stringent energy constraints to which sensing nodes typify and security vulnerabilities. Security concerns ... Keywords: Sensors, Wireless, Network, Vulnerabilities, Security. 1. .... If the node detects a transmission.

  19. Data converters for wireless standards

    CERN Document Server

    Shi, Chunlei

    2002-01-01

    Wireless communication is witnessing tremendous growth with proliferation of different standards covering wide, local and personal area networks (WAN, LAN and PAN). The trends call for designs that allow 1) smooth migration to future generations of wireless standards with higher data rates for multimedia applications, 2) convergence of wireless services allowing access to different standards from the same wireless device, 3) inter-continental roaming. This requires designs that work across multiple wireless standards, can easily be reused, achieve maximum hardware share at a minimum power consumption levels particularly for mobile battery-operated devices.

  20. Wireless sensor networks architectures and protocols

    CERN Document Server

    Callaway, Jr, Edgar H

    2003-01-01

    Introduction to Wireless Sensor NetworksApplications and MotivationNetwork Performance ObjectivesContributions of this BookOrganization of this BookThe Development of Wireless Sensor NetworksEarly Wireless NetworksWireless Data NetworksWireless Sensor and Related NetworksConclusionThe Physical LayerSome Physical Layer ExamplesA Practical Physical Layer for Wireless Sensor NetworksSimulations and ResultsConclusionThe Data Link LayerMedium Access Control TechniquesThe Mediation DeviceSystem Analysis and SimulationConclusionThe Network LayerSome Network Design ExamplesA Wireless Sensor Network De

  1. Securing While Sampling in Wireless Body Area Networks With Application to Electrocardiography.

    Science.gov (United States)

    Dautov, Ruslan; Tsouri, Gill R

    2016-01-01

    Stringent resource constraints and broadcast transmission in wireless body area network raise serious security concerns when employed in biomedical applications. Protecting data transmission where any minor alteration is potentially harmful is of significant importance in healthcare. Traditional security methods based on public or private key infrastructure require considerable memory and computational resources, and present an implementation obstacle in compact sensor nodes. This paper proposes a lightweight encryption framework augmenting compressed sensing with wireless physical layer security. Augmenting compressed sensing to secure information is based on the use of the measurement matrix as an encryption key, and allows for incorporating security in addition to compression at the time of sampling an analog signal. The proposed approach eliminates the need for a separate encryption algorithm, as well as the predeployment of a key thereby conserving sensor node's limited resources. The proposed framework is evaluated using analysis, simulation, and experimentation applied to a wireless electrocardiogram setup consisting of a sensor node, an access point, and an eavesdropper performing a proximity attack. Results show that legitimate communication is reliable and secure given that the eavesdropper is located at a reasonable distance from the sensor node and the access point.

  2. Node cookbook

    CERN Document Server

    Clements, David Mark

    2014-01-01

    In Node Cookbook Second Edition, each chapter focuses on a different aspect of working with Node. Following a Cookbook structure, the recipes are written in an easy-to-understand language. Readers will find it easier to grasp even the complex recipes which are backed by lots of illustrations, tips, and hints.If you have some knowledge of JavaScript and want to build fast, efficient, scalable client-server solutions, then Node Cookbook Second Edition is for you. Knowledge of Node will be an advantage but is not required. Experienced users of Node will be able to improve their skills.

  3. A Trace-Driven Analysis of Wireless Group Communication Mechanisms

    Directory of Open Access Journals (Sweden)

    Surendar Chandra

    2012-08-01

    Full Text Available Wireless access is increasingly ubiquitous while mobile devices that use them are resource rich. These trends allow wireless users to collaborate with each other. We investigate various group communication paradigms that underly collaboration applications. We synthesize durations when members collaborate using wireless device availability traces. Wireless users operate from a variety of locations. Hence, we analyzed the behavior of wireless users in universities, corporations, conference venues, and city-wide hotspots. We show that the availability durations are longer in corporations followed by university and then in hotspots. The number of simultaneously available wireless users is small in all the scenarios. The session lengths are becoming smaller while the durations between sessions are becoming larger. We observed user churn in all the scenarios. We show that synchronous mechanisms require less effort to maintain update synchronicity among the group members. However, distributed mechanisms require a large number of replicas in order to propagate updates among the users. For asynchronous mechanisms, we show that pull-based mechanisms naturally randomize the times when updates are propagated and thus achieve better performance than push based mechanisms.We develop an adaptive approach that customizes the update frequency using the last session duration and show that this mechanism exhibits good performance when the required update frequency intervals are large. We also show that for a given number of gossips, it is preferable to propagate updates to all available nodes rather than increasing the frequency while correspondingly reducing the number of nodes to propagate updates.We develop a middleware to illustrate the practicality of our approach.

  4. Performance analysis of differentiated resource-sharing in a wireless ad-hoc network

    NARCIS (Netherlands)

    Roijers, F.; van den Berg, H.; Mandjes, M.

    2010-01-01

    In this paper we model and analyze a relay node in a wireless ad-hoc network; the capacity available at this node is used to both transmit traffic from the source nodes (towards the relay node), and to serve traffic at the relay node (so that it can be forwarded to successor nodes). Clearly, a

  5. Enhancing MAC performance of DCF protocol for IEEE 802.11 wireless LANs

    Science.gov (United States)

    Choi, Woo-Yong

    2017-01-01

    The DCF (Distributed Coordination Function) is the basic MAC (Medium Access Control) protocol of IEEE 802.11 wireless LANs and compatible with various IEEE 802.11 PHY extensions. The performance of the DCF degrades exponentially as the number of nodes participating in the DCF transmission procedure increases. To deal with this problem, we propose a simple, however efficient modification of the DCF by which the performance of the DCF is greatly enhanced.

  6. Buffer Sizing in 802.11 Wireless Mesh Networks

    KAUST Repository

    Jamshaid, Kamran; Shihada, Basem; Xia, Li; Levis, Philip

    2011-01-01

    We analyze the problem of buffer sizing for TCP flows in 802.11-based Wireless Mesh Networks. Our objective is to maintain high network utilization while providing low queueing delays. The problem is complicated by the time-varying capacity of the wireless channel as well as the random access mechanism of 802.11 MAC protocol. While arbitrarily large buffers can maintain high network utilization, this results in large queueing delays. Such delays may affect TCP stability characteristics, and also increase queueing delays for other flows (including real-time flows) sharing the buffer. In this paper we propose sizing link buffers collectively for a set of nodes within mutual interference range called the 'collision domain'. We aim to provide a buffer just large enough to saturate the available capacity of the bottleneck collision domain that limits the carrying capacity of the network. This neighborhood buffer is distributed over multiple nodes that constitute the network bottleneck; a transmission by any of these nodes fully utilizes the available spectral resource for the duration of the transmission. We show that sizing routing buffers collectively for this bottleneck allows us to have small buffers (as low as 2 - 3 packets) at individual nodes without any significant loss in network utilization. We propose heuristics to determine these buffer sizes in WMNs. Our results show that we can reduce the end-to-end delays by 6× to 10× at the cost of losing roughly 5% of the network capacity achievable with large buffers.

  7. Buffer Sizing in 802.11 Wireless Mesh Networks

    KAUST Repository

    Jamshaid, Kamran

    2011-10-01

    We analyze the problem of buffer sizing for TCP flows in 802.11-based Wireless Mesh Networks. Our objective is to maintain high network utilization while providing low queueing delays. The problem is complicated by the time-varying capacity of the wireless channel as well as the random access mechanism of 802.11 MAC protocol. While arbitrarily large buffers can maintain high network utilization, this results in large queueing delays. Such delays may affect TCP stability characteristics, and also increase queueing delays for other flows (including real-time flows) sharing the buffer. In this paper we propose sizing link buffers collectively for a set of nodes within mutual interference range called the \\'collision domain\\'. We aim to provide a buffer just large enough to saturate the available capacity of the bottleneck collision domain that limits the carrying capacity of the network. This neighborhood buffer is distributed over multiple nodes that constitute the network bottleneck; a transmission by any of these nodes fully utilizes the available spectral resource for the duration of the transmission. We show that sizing routing buffers collectively for this bottleneck allows us to have small buffers (as low as 2 - 3 packets) at individual nodes without any significant loss in network utilization. We propose heuristics to determine these buffer sizes in WMNs. Our results show that we can reduce the end-to-end delays by 6× to 10× at the cost of losing roughly 5% of the network capacity achievable with large buffers.

  8. I-MAC: an incorporation MAC for wireless sensor networks

    Science.gov (United States)

    Zhao, Jumin; Li, Yikun; Li, Dengao; Lin, Xiaojie

    2017-11-01

    This paper proposes an innovative MAC protocol called I-MAC. Protocol for wireless sensor networks, which combines the advantages of collision tolerance and collision cancellation. The protocol increases the number of antenna in wireless sensor nodes. The purpose is to monitor the occurrence of packet collisions by increasing the number of antenna in real time. The built-in identity structure is used in the frame structure in order to help the sending node to identify the location of the receiving node after a data packet collision is detected. Packets can be recovered from where the conflict occurred. In this way, we can monitor the conflict for a fixed period of time. It can improve the channel utilisation through changing the transmission probability of collision nodes and solve the problem of hidden terminal through collision feedback mechanism. We have evaluated our protocol. Our results show that the throughput of I-MAC is 5 percentage points higher than that of carrier sense multiple access/collision notification. The network utilisation of I-MAC is more than 92%.

  9. An orthogonal wavelet division multiple-access processor architecture for LTE-advanced wireless/radio-over-fiber systems over heterogeneous networks

    Science.gov (United States)

    Mahapatra, Chinmaya; Leung, Victor CM; Stouraitis, Thanos

    2014-12-01

    The increase in internet traffic, number of users, and availability of mobile devices poses a challenge to wireless technologies. In long-term evolution (LTE) advanced system, heterogeneous networks (HetNet) using centralized coordinated multipoint (CoMP) transmitting radio over optical fibers (LTE A-ROF) have provided a feasible way of satisfying user demands. In this paper, an orthogonal wavelet division multiple-access (OWDMA) processor architecture is proposed, which is shown to be better suited to LTE advanced systems as compared to orthogonal frequency division multiple access (OFDMA) as in LTE systems 3GPP rel.8 (3GPP, http://www.3gpp.org/DynaReport/36300.htm). ROF systems are a viable alternative to satisfy large data demands; hence, the performance in ROF systems is also evaluated. To validate the architecture, the circuit is designed and synthesized on a Xilinx vertex-6 field-programmable gate array (FPGA). The synthesis results show that the circuit performs with a clock period as short as 7.036 ns (i.e., a maximum clock frequency of 142.13 MHz) for transform size of 512. A pipelined version of the architecture reduces the power consumption by approximately 89%. We compare our architecture with similar available architectures for resource utilization and timing and provide performance comparison with OFDMA systems for various quality metrics of communication systems. The OWDMA architecture is found to perform better than OFDMA for bit error rate (BER) performance versus signal-to-noise ratio (SNR) in wireless channel as well as ROF media. It also gives higher throughput and mitigates the bad effect of peak-to-average-power ratio (PAPR).

  10. Wireless Sensor Network Safety Study

    OpenAIRE

    M.Shankar; Dr.M.Sridar; Dr.M.Rajani

    2012-01-01

    Few security mechanisms in wireless sensor networks (WSNs) have been implemented, and even fewer have been applied in real deployments. The limited resources of each sensor node makes security in WSNs hard, as the tradeoff between security and practicality must be carefully considered. These complex systems include in their design different types of information and communication technology systems, such as wireless (mesh) sensor networks, to carry out control processes in real time. This fact...

  11. Adaptive Square-Shaped Trajectory-Based Service Location Protocol in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Hwa-Jung Lim

    2010-04-01

    Full Text Available In this paper we propose an adaptive square-shaped trajectory (ASST-based service location method to ensure load scalability in wireless sensor networks. This first establishes a square-shaped trajectory over the nodes that surround a target point computed by the hash function and any user can access it, using the hash. Both the width and the size of the trajectory are dynamically adjustable, depending on the number of queries made to the service information on the trajectory. The number of sensor nodes on the trajectory varies in proportion to the changing trajectory shape, allowing high loads to be distributed around the hot spot area.

  12. Configuration of Wireless Cooperative/Sensor Networks

    National Research Council Canada - National Science Library

    Shafiee, Hamid R; Maham, B; Vazifehdan, J

    2008-01-01

    .... When employing more than one antenna at each node of a wireless network is not applicable, cooperation diversity protocols exploit the inherent spatial diversity of relay channels by allowing mobile...

  13. Energy-efficient wireless mesh networks

    CSIR Research Space (South Africa)

    Ntlatlapa, N

    2007-06-01

    Full Text Available This paper outlines the objectives of a recently formed research group at Meraka Institute. The authors consider application of wireless mesh networks in rural infrastructure deficient parts of the African continent where nodes operate on batteries...

  14. Integration of RFID and Wireless Sensor Networks

    Institute of Scientific and Technical Information of China (English)

    Miodrag; Bolic; Amiya; Nayak; Ivan; Stojmenovi.

    2007-01-01

    Radio Frequency Identification (RFID) and Wireless Sensor Network (WSN) are two important wireless technologies that have wide variety of applications and provide limitless future potentials. However,RFID and sensor networks almost are under development in parallel way. Integration of RFID and wireless sensor networks attracts little attention from research community. This paper first presents a brief introduction on RFID,and then investigates recent research works,new products/patents and applications that integrate RFID with sensor networks. Four types of integration are discussed. They are integrating tags with sensors,integrating tags with wireless sensor nodes,integrating readers with wireless sensor nodes and wire-less devices,and mix of RFID and sensors. New challenges and future works are discussed in the end.

  15. The Lure of Wireless Encryption

    CERN Multimedia

    Computer Security Team

    2013-01-01

    Following our article entitled “Jekyll or Hyde? Better browse securely” in the last issue of the Bulletin, some people wondered why the CERN wireless network is not encrypted…   There are many arguments why it is not. The simplest is usability: the communication and management of the corresponding access keys would be challenging given the sheer number of wireless devices the CERN network hosts. Keys would quickly become public, e.g. at conferences, and might be shared, written on whiteboards, etc. Then there are all the devices which cannot be easily configured to use encryption protocols - a fact which would create plenty of calls to the CERN Service Desk… But our main argument is that wireless encryption is DECEPTIVE. Wireless encryption is deceptive as it only protects the wireless network against unauthorised access (and the CERN network already has other means to protect against that). Wireless encryption however, does not really help you. You ...

  16. A Wireless Sensor System for Real-Time Monitoring and Fault Detection of Motor Arrays.

    Science.gov (United States)

    Medina-García, Jonathan; Sánchez-Rodríguez, Trinidad; Galán, Juan Antonio Gómez; Delgado, Aránzazu; Gómez-Bravo, Fernando; Jiménez, Raúl

    2017-02-25

    This paper presents a wireless fault detection system for industrial motors that combines vibration, motor current and temperature analysis, thus improving the detection of mechanical faults. The design also considers the time of detection and further possible actions, which are also important for the early detection of possible malfunctions, and thus for avoiding irreversible damage to the motor. The remote motor condition monitoring is implemented through a wireless sensor network (WSN) based on the IEEE 802.15.4 standard. The deployed network uses the beacon-enabled mode to synchronize several sensor nodes with the coordinator node, and the guaranteed time slot mechanism provides data monitoring with a predetermined latency. A graphic user interface offers remote access to motor conditions and real-time monitoring of several parameters. The developed wireless sensor node exhibits very low power consumption since it has been optimized both in terms of hardware and software. The result is a low cost, highly reliable and compact design, achieving a high degree of autonomy of more than two years with just one 3.3 V/2600 mAh battery. Laboratory and field tests confirm the feasibility of the wireless system.

  17. Topological properties of random wireless networks

    Indian Academy of Sciences (India)

    Wireless networks in which the node locations are random are best modelled as random geometric graphs (RGGs). In addition to their extensive application in the modelling of wireless networks, RGGs find many new applications and are being studied in their own right. In this paper we first provide a brief introduction to the ...

  18. Wireless sensors remotely powered by RF energy

    NARCIS (Netherlands)

    Visser, Hubregt J.; Vullers, Ruud J.M.

    2012-01-01

    Wireless, radiated far-field energy is being employed for charging a battery. This battery, while being recharged, is used to power a commercially of the shelf, low power, wireless sensor node. Propagation conditions in common office and house configurations are investigated experimentally. These

  19. Distributed Synchronization Technique for OFDMA-Based Wireless Mesh Networks Using a Bio-Inspired Algorithm

    Directory of Open Access Journals (Sweden)

    Mi Jeong Kim

    2015-07-01

    Full Text Available In this paper, a distributed synchronization technique based on a bio-inspired algorithm is proposed for an orthogonal frequency division multiple access (OFDMA-based wireless mesh network (WMN with a time difference of arrival. The proposed time- and frequency-synchronization technique uses only the signals received from the neighbor nodes, by considering the effect of the propagation delay between the nodes. It achieves a fast synchronization with a relatively low computational complexity because it is operated in a distributed manner, not requiring any feedback channel for the compensation of the propagation delays. In addition, a self-organization scheme that can be effectively used to construct 1-hop neighbor nodes is proposed for an OFDMA-based WMN with a large number of nodes. The performance of the proposed technique is evaluated with regard to the convergence property and synchronization success probability using a computer simulation.

  20. Distributed Synchronization Technique for OFDMA-Based Wireless Mesh Networks Using a Bio-Inspired Algorithm.

    Science.gov (United States)

    Kim, Mi Jeong; Maeng, Sung Joon; Cho, Yong Soo

    2015-07-28

    In this paper, a distributed synchronization technique based on a bio-inspired algorithm is proposed for an orthogonal frequency division multiple access (OFDMA)-based wireless mesh network (WMN) with a time difference of arrival. The proposed time- and frequency-synchronization technique uses only the signals received from the neighbor nodes, by considering the effect of the propagation delay between the nodes. It achieves a fast synchronization with a relatively low computational complexity because it is operated in a distributed manner, not requiring any feedback channel for the compensation of the propagation delays. In addition, a self-organization scheme that can be effectively used to construct 1-hop neighbor nodes is proposed for an OFDMA-based WMN with a large number of nodes. The performance of the proposed technique is evaluated with regard to the convergence property and synchronization success probability using a computer simulation.

  1. Analytical and Algorithmic Approaches to Determine the Number of Sensor Nodes for Minimum Power Consumption in LWSNs

    Directory of Open Access Journals (Sweden)

    Ali Soner Kilinc

    2017-08-01

    Full Text Available A Linear Wireless Sensor Network (LWSN is a kind of wireless sensor network where the nodes are deployed in a line. Since the sensor nodes are energy restricted, energy efficiency becomes one of the most significant design issues for LWSNs as well as wireless sensor networks. With the proper deployment, the power consumption could be minimized by adjusting the distance between the sensor nodes which is known as hop length. In this paper, analytical and algorithmic approaches are presented to determine the number of hops and sensor nodes for minimum power consumption in a linear wireless sensor network including equidistantly placed sensor nodes.

  2. Over-the-horizon, connected home/office (OCHO): situation management of environmental, medical, and security conditions at remote premises via broadband wireless access

    Science.gov (United States)

    Hortos, William S.

    2010-04-01

    Broadband wireless access standards, together with advances in the development of commercial sensing and actuator devices, enable the feasibility of a consumer service for a multi-sensor system that monitors the conditions within a residence or office: the environment/infrastructure, patient-occupant health, and physical security. The proposed service is a broadband reimplementation and combination of existing services to allow on-demand reports on and management of the conditions by remote subscribers. The flow of on-demand reports to subscribers and to specialists contracted to mitigate out-of-tolerance conditions is the foreground process. Service subscribers for an over-the-horizon connected home/office (OCHO) monitoring system are the occupant of the premises and agencies, contracted by the service provider, to mitigate or resolve any observed out-of-tolerance condition(s) at the premises. Collectively, these parties are the foreground users of the OCHO system; the implemented wireless standards allow the foreground users to be mobile as they request situation reports on demand from the subsystems on remote conditions that comprise OCHO via wireless devices. An OCHO subscriber, i.e., a foreground user, may select the level of detail found in on-demand reports, i.e., the amount of information displayed in the report of monitored conditions at the premises. This is one context of system operations. While foreground reports are sent only periodically to subscribers, the information generated by the monitored conditions at the premises is continuous and is transferred to a background configuration of servers on which databases reside. These databases are each used, generally, in non-real time, for the assessment and management of situations defined by attributes like those being monitored in the foreground by OCHO. This is the second context of system operations. Context awareness and management of conditions at the premises by a second group of analysts and

  3. REAL TIME ANALYSIS OF WIRELESS CONTROLLER AREA NETWORK

    Directory of Open Access Journals (Sweden)

    Gerardine Immaculate Mary

    2014-09-01

    Full Text Available It is widely known that Control Area Networks (CAN are used in real-time, distributed and parallel processing which cover manufacture plants, humanoid robots, networking fields, etc., In applications where wireless conditions are encountered it is convenient to continue the exchange of CAN frames within the Wireless CAN (WCAN. The WCAN considered in this research is based on wireless token ring protocol (WTRP; a MAC protocol for wireless networks to reduce the number of retransmissions due to collision and the wired counterpart CAN attribute on message based communication. WCAN uses token frame method to provide channel access to the nodes in the system. This method allow all the nodes to share common broadcast channel by taken turns in transmitting upon receiving the token frame which is circulating within the network for specified amount of time. This method provides high throughput in bounded latency environment, consistent and predictable delays and good packet delivery ratio. The most important factor to consider when evaluating a control network is the end-to-end time delay between sensors, controllers, and actuators. The correct operation of a control system depends on the timeliness of the data coming over the network, and thus, a control network should be able to guarantee message delivery within a bounded transmission time. The proposed WCAN is modeled and simulated using QualNet, and its average end to end delay and packet delivery ratio (PDR are calculated. The parameters boundaries of WCAN are evaluated to guarantee a maximum throughput and a minimum latency time, in the case of wireless communications, precisely WCAN.

  4. New Methods and Models in Wireless Networks: Multigraphs--Games--Mechanism Design

    Science.gov (United States)

    Tran, Dung Trung

    2010-01-01

    The recent evolution of wireless technology makes wireless devices ever more powerful and intelligent. One trend is that wireless devices are becoming more inexpensive and more diverse. As a result, new technologies make it possible to equip wireless nodes with several radio transmitters/receivers. Each radio may support multiple channels which…

  5. An Analysis Of Wireless Security

    OpenAIRE

    Salendra Prasad

    2017-01-01

    The WLAN security includes Wired Equivalent Primary WEP and WI-FI protected Access WPA. Today WEP is regarded as very poor security standard. WEP was regarded as very old security standard and has many security issues which users need to be addressed. In this Paper we will discuss Wireless Security and ways to improve on wireless security.

  6. Monitoring Churn in Wireless Networks

    Science.gov (United States)

    Holzer, Stephan; Pignolet, Yvonne Anne; Smula, Jasmin; Wattenhofer, Roger

    Wireless networks often experience a significant amount of churn, the arrival and departure of nodes. In this paper we propose a distributed algorithm for single-hop networks that detects churn and is resilient to a worst-case adversary. The nodes of the network are notified about changes quickly, in asymptotically optimal time up to an additive logarithmic overhead. We establish a trade-off between saving energy and minimizing the delay until notification for single- and multi-channel networks.

  7. Wireless Sensor Network Localisation Strategies

    OpenAIRE

    Olafsen, Håkon Kløvstad

    2007-01-01

    The recent years WSNs have had a tremendous growth in interest. Many see the huge potential in this technology and the vast possibilities with small wireless autonomous nodes. WSN nodes have a few limitations like their small size and limited power consumption. A network might exist for years without any major maintenance, putting tight restrictions on available power. The price is also an important aspect, and cheap production technologies like CMOS is preferred. The applications vary fr...

  8. The Role of Delay and Connectivity in Throughput Reduction of Cooperative Decentralized Wireless Networks

    Directory of Open Access Journals (Sweden)

    Ahmed Alkhayyat

    2015-01-01

    Full Text Available We proposed a multiple relay selection protocol for decentralized wireless networks. The proposed relays selection protocol aims to address three issues: (1 selecting relays within the coverage area of the source and destination to ensure that the relays are positioned one hop away from the destination, (2 ensuring that the best node (best relays with less distance and attenuation from the destination access the channel first, and (3 ensuring that the proposed relays selection is collision-free. Our analysis also considers three important characteristics of decentralized wireless networks that are directly affected by cooperation: delay, connectivity, and throughput. The main goal of this paper is to demonstrate that improving connectivity and increasing number of relays reduce the throughput of cooperative decentralized wireless networks; consequently, a trade-off equation has been derived.

  9. AN AGENT BASED TRANSACTION PROCESSING SCHEME FOR DISCONNECTED MOBILE NODES

    Directory of Open Access Journals (Sweden)

    J.L. Walter Jeyakumar

    2010-12-01

    Full Text Available We present a mobile transaction framework in which mobile users can share data which is stored in the cache of a mobile agent. This mobile agent is a special mobile node which coordinates the sharing process. The proposed framework allows mobile affiliation work groups to be formed dynamically with a mobile agent and mobile hosts. Using short range wireless communication technology, mobile users can simultaneously access the data from the cache of the mobile agent. The data Access Manager module at the mobile agent enforces concurrency control using cache invalidation technique. This model supports disconnected mobile computing allowing mobile agent to move along with the Mobile Hosts. The proposed Transaction frame work has been simulated in Java 2 and performance of this scheme is compared with existing frame works.

  10. Wireless telecommunication systems

    CERN Document Server

    Terré, Michel; Vivier, Emmanuelle

    2013-01-01

    Wireless telecommunication systems generate a huge amount of interest. In the last two decades, these systems have experienced at least three major technological leaps, and it has become impossible to imagine how society was organized without them. In this book, we propose a macroscopic approach on wireless systems, and aim at answering key questions about power, data rates, multiple access, cellular engineering and access networks architectures.We present a series of solved problems, whose objective is to establish the main elements of a global link budget in several radiocommunicati

  11. Design and implementation of a topology control scheme for wireless mesh networks

    CSIR Research Space (South Africa)

    Mudali, P

    2009-09-01

    Full Text Available The Wireless Mesh Network (WMN) backbone is usually comprised of stationary nodes but the transient nature of wireless links results in changing network topologies. Topology Control (TC) aims to preserve network connectivity in ad hoc and mesh...

  12. A USER-DEPENDENT PERFECT-SCHEDULING MULTIPLE ACCESS PROTOCOL FOR VOICE-DATA INTEGRATION IN WIRELESS NETWORKDS

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    A novel Multiple Access Control(MAC) protocol-User-dependent Perfect-scheduling Multiple Access(UPMA) protocol,which supports joint transmission of voice and data packets,is proposed.By this protocol,the bandwidth can be allocated dynamically to the uplink and downlink traffic with on-demand assignment and the transmission of Mobile Terminals(MTs) can be perfectly scheduled by means of polling.Meanwhile.a unique frame stucture is designed to guarantee Quality of Service(QoS) in voice traffic supporting.An effective colision resolution algorthm is also proposed to guarantee rapid channel access for activated MTs.Finally,performance of UPMA protocol is evaluated by simulation and compared with MPRMA protocol.Simulation results show that UPMA protocol has better performance.

  13. A USER-DEPENDENT PERFECT-SCHEDULING MULTIPLE ACCESS PROTOCOL FOR VOICE-DATA INTEGRATION IN WIRELESS NETWORKS

    Institute of Scientific and Technical Information of China (English)

    Zhou Yajian; Li Jiandong; Liu Kai

    2002-01-01

    A novel Multiple Access Control (MAC) protocol - User-dependent Perfect-scheduling Multiple Access (UPMA) protocol, which supports joint transmission of voice and data packets,is proposed. By this protocol, the bandwidth can be allocated dynamically to the uplink and downlink traffic with on-demand assignment and the transmission of Mobile Terminals (MTs)can be perfectly scheduled by means of polling. Meanwhile, a unique frame structure is designed to guarantee Quality of Service (QoS) in voice traffic supporting. An effective collision resolution algorithm is also proposed to guarantee rapid channel access for activated MTs. Finally, performance of UPMA protocol is evaluated by simulation and compared with MPRMA protocol.Simulation results show that UPMA protocol has better performance.

  14. Enhancing the selection of backoff interval using fuzzy logic over wireless Ad Hoc networks.

    Science.gov (United States)

    Ranganathan, Radha; Kannan, Kathiravan

    2015-01-01

    IEEE 802.11 is the de facto standard for medium access over wireless ad hoc network. The collision avoidance mechanism (i.e., random binary exponential backoff-BEB) of IEEE 802.11 DCF (distributed coordination function) is inefficient and unfair especially under heavy load. In the literature, many algorithms have been proposed to tune the contention window (CW) size. However, these algorithms make every node select its backoff interval between [0, CW] in a random and uniform manner. This randomness is incorporated to avoid collisions among the nodes. But this random backoff interval can change the optimal order and frequency of channel access among competing nodes which results in unfairness and increased delay. In this paper, we propose an algorithm that schedules the medium access in a fair and effective manner. This algorithm enhances IEEE 802.11 DCF with additional level of contention resolution that prioritizes the contending nodes according to its queue length and waiting time. Each node computes its unique backoff interval using fuzzy logic based on the input parameters collected from contending nodes through overhearing. We evaluate our algorithm against IEEE 802.11, GDCF (gentle distributed coordination function) protocols using ns-2.35 simulator and show that our algorithm achieves good performance.

  15. Performance of Non-Orthogonal Multiple Access (NOMA) in mmWave wireless communications for 5G networks

    DEFF Research Database (Denmark)

    Marcano, Andrea; Christiansen, Henrik Lehrmann

    2017-01-01

    Among the key technologies that have been identified as capacity boosters for fifth generation - 5G - mobile networks, are millimeter wave (mmWave) transmissions and non-orthogonal multiple access (NOMA). The large amount of spectrum available at mmWave frequencies combined with a more effective...... use of available resources, helps improving the overall capacity. NOMA, unlike orthogonal multiple access (OMA) methods, allows sharing the same frequency resources at the same time, by implementing adaptive power allocation. In this paper we present a performance analysis of NOMA in mmWave cells...

  16. A Review of Various Security Protocols in Wireless Sensor Network

    OpenAIRE

    Anupma Sangwan; Deepti Sindhu; Kulbir Singh

    2011-01-01

    Sensor networks are highly distributed networks of small, lightweight wireless sensor nodes, deployed in large numbers to monitor the environment or system by the measurement of physical parameters such as temperature, pressure, or relative humidity, sound, vibration, motion or pollutants, at different locations. A WSN [1] is composed of a large number of low-cost sensor nodes (SNs) and one or several base stations (BS) or destination nodes. SNs are typically small wireless devices with limit...

  17. Multistandard wireless transmission over SSMF and large-core POF for access and in-home networks

    NARCIS (Netherlands)

    Shi, Y.; Morant, M.; Okonkwo, C.M.; Llorente, R.; Tangdiongga, E.; Koonen, A.M.J.

    2012-01-01

    An end-to-end transmission of coexisting multistandard radio (LTE, WiMAX, and UWB) signals is demonstrated for the first time with the transmission over a combined access and in-home networks consisting of 25-km SSMF, 25-m large-core diameter polymethylmethacrylate graded-index plastic optical fiber

  18. Transmission strategies for wireless energy harvesting nodes

    OpenAIRE

    Gregori Casas, Maria

    2014-01-01

    Premi extraordinari doctorat 2013-2014 Over the last few decades, transistor miniaturization has enabled a tremendous increase in the processing capability of commercial electronic devices, which, combined with the reduction of production costs, has tremendously fostered the usage of the Information and communications Technologies (ICTs) both in terms of number of users and required data rates. In turn, this has led to a tremendous increment in the energetic demand of the ICT sector, which...

  19. Audio coding in wireless acoustic sensor networks

    DEFF Research Database (Denmark)

    Zahedi, Adel; Østergaard, Jan; Jensen, Søren Holdt

    2015-01-01

    In this paper, we consider the problem of source coding for a wireless acoustic sensor network where each node in the network makes its own noisy measurement of the sound field, and communicates with other nodes in the network by sending and receiving encoded versions of the measurements. To make...

  20. Advanced mobility handover for mobile IPv6 based wireless networks.

    Science.gov (United States)

    Safa Sadiq, Ali; Fisal, Norsheila Binti; Ghafoor, Kayhan Zrar; Lloret, Jaime

    2014-01-01

    We propose an Advanced Mobility Handover scheme (AMH) in this paper for seamless mobility in MIPv6-based wireless networks. In the proposed scheme, the mobile node utilizes a unique home IPv6 address developed to maintain communication with other corresponding nodes without a care-of-address during the roaming process. The IPv6 address for each MN during the first round of AMH process is uniquely identified by HA using the developed MN-ID field as a global permanent, which is identifying uniquely the IPv6 address of MN. Moreover, a temporary MN-ID is generated by access point each time an MN is associated with a particular AP and temporarily saved in a developed table inside the AP. When employing the AMH scheme, the handover process in the network layer is performed prior to its default time. That is, the mobility handover process in the network layer is tackled by a trigger developed AMH message to the next access point. Thus, a mobile node keeps communicating with the current access point while the network layer handover is executed by the next access point. The mathematical analyses and simulation results show that the proposed scheme performs better as compared with the existing approaches.

  1. Advanced Mobility Handover for Mobile IPv6 Based Wireless Networks

    Science.gov (United States)

    Safa Sadiq, Ali; Fisal, Norsheila Binti; Ghafoor, Kayhan Zrar; Lloret, Jaime

    2014-01-01

    We propose an Advanced Mobility Handover scheme (AMH) in this paper for seamless mobility in MIPv6-based wireless networks. In the proposed scheme, the mobile node utilizes a unique home IPv6 address developed to maintain communication with other corresponding nodes without a care-of-address during the roaming process. The IPv6 address for each MN during the first round of AMH process is uniquely identified by HA using the developed MN-ID field as a global permanent, which is identifying uniquely the IPv6 address of MN. Moreover, a temporary MN-ID is generated by access point each time an MN is associated with a particular AP and temporarily saved in a developed table inside the AP. When employing the AMH scheme, the handover process in the network layer is performed prior to its default time. That is, the mobility handover process in the network layer is tackled by a trigger developed AMH message to the next access point. Thus, a mobile node keeps communicating with the current access point while the network layer handover is executed by the next access point. The mathematical analyses and simulation results show that the proposed scheme performs better as compared with the existing approaches. PMID:25614890

  2. Data centric wireless sensor networks

    NARCIS (Netherlands)

    Dulman, S.O.; Havinga, Paul J.M.

    2005-01-01

    The vision of wirteless sensing systems requires the development of devices and technologies that can be pervasive without being intrusive. The basic component of such a smart environment will be a small node with sensing and wireless communications capabilities, able to organize itself flexibly

  3. Implementasi dan Evaluasi Kinerja Multi Input SingleOutput Orthogonal Frequency Division Multiplexing (MISO OFDM Menggunakan Wireless Open Access Research Platform (WARP

    Directory of Open Access Journals (Sweden)

    Galih Permana Putra

    2017-01-01

    Full Text Available Teknologi komunikasi nirkabel terus berkembang untuk memenuhi kebutuhan manusia akan koneksi informasi yang cepat, pengiriman data yang berkapasitas besar dan dapat diandalkan. Di dalam proses tersebut banyak sekali gangguan yang dapat mempengaruhi penurunan kinerja komunikasi diantaranya adalah multipath fading [1]. Multi Input Single Output (MISO merupakan salah satu teknik space diversity yang menggunakan banyak antena dengan tujuan untuk mengatasi multipath fading. Adapun pada proses transmisi digunakan teknik Orthogonal Frequency-Division Multiplexing (OFDM yang bertujuan memberikan keuntungan dalam hal efisiensi pada saat transmisi data dan mampu menghindari Inter Simbol Interference (ISI. Pada penelitian ini akan dibandingkan kinerja sistem MISO OFDM dan SISO OFDM yang akan disimulasikan dan di implementasikan pada modul Wireless Open Access Penelitian Platform (WARP untuk mengevaluasi kinerja BER sebagai fungsi dari daya pancar dan jarak variasi. Parameter yang digunakan di dalam pengukuran berdasarkan IEEE 802.11 a/g karena menggunakan frekuensi 2,4 Ghz. Terdapat dua skema pengukuran yaitu SISO OFDM dan MISO OFDM dengan variasi jarak 4,6 dan 8 meter dengan variasi daya pancar -35 s/d -4 dBm dengan peningkatan gain 5 kali secara berkala. Dari dua skema yang dilaksanakan dapat disimpulkan bahwa semakin jauh jarak antara pemancar dan penerima maka dibutuhkan penambahan gain untuk menjaga kualitas data yang dikirimkan. Disamping itu, terdapat perbedaan nilai gain untuk mencapai nilai BER = dibutuhkan penambahan gain = - 33 sedangkan pada SISO OFM dibutuhkan penambahan gain = -18.

  4. THE INFLUENCE OF MAC BUFFER ON THE CONTENTION-BASED ACCESS SCHEME WITH BURSTING OPTION FOR IEEE 802.11E WIRELESS NETWORKS

    Directory of Open Access Journals (Sweden)

    S. SELVAKENNEDY

    2006-12-01

    Full Text Available Wireless LANs are increasingly being used for inelastic applications. Currently, there is little support for quality of service in the IEEE 802.11 MAC protocol, and IEEE task group E has defined the 802.11e MAC extension. Enhanced distributed channel access (EDCA is a contention-based scheme of the 802.11e standard. To allow a station to transmit more than one frame from a single contention, an optional feature known as controlled frame-bursting (CFB is introduced in the standard. In this paper, we initially performed an average analysis to determine a suitable burst duration limit. Then, a detailed evaluation and comparison of the EDCA protocol with the CFB option is carried out through simulation to quantify its performance gain. The impact of the MAC transmit buffer size is also incorporated. Accordingly, we have proposed a suitable approach to guide the configuration of the burst duration limit. It is demonstrated that an optimized CFB configuration allows the MAC protocol to achieve 30% more capacity than the basic EDCA scheme.

  5. Bandwidth Efficient Hybrid Synchronization for Wireless Sensor Network

    DEFF Research Database (Denmark)

    Dnyaneshwar, Mantri; Prasad, Neeli R.; Prasad, Ramjee

    2015-01-01

    Data collection and transmission are the fundamental operations of Wireless Sensor Networks (WSNs). A key challenge in effective data collection and transmission is to schedule and synchronize the activities of the nodes with the global clock. This paper proposes the Bandwidth Efficient Hybrid...... in the network and then perform the pair-wise synchronization. With the mobility of node, the structure frequently changes causing an increase in energy consumption. To mitigate the problem BESDA aggregate data with the notion of a global timescale throughout the network and schedule based time-division multiple...... accesses (TDMA) techniques as MAC layer protocol. It reduces the collision of packets. Simulation results show that BESDA is energy efficient, with increased throughput, and has less delay as compared with state-of-the-art....

  6. Throughput Analysis of Large Wireless Networks with Regular Topologies

    Directory of Open Access Journals (Sweden)

    Hong Kezhu

    2007-01-01

    Full Text Available The throughput of large wireless networks with regular topologies is analyzed under two medium-access control schemes: synchronous array method (SAM and slotted ALOHA. The regular topologies considered are square, hexagon, and triangle. Both nonfading channels and Rayleigh fading channels are examined. Furthermore, both omnidirectional antennas and directional antennas are considered. Our analysis shows that the SAM leads to a much higher network throughput than the slotted ALOHA. The network throughput in this paper is measured in either bits-hops per second per Hertz per node or bits-meters per second per Hertz per node. The exact connection between the two measures is shown for each topology. With these two fundamental units, the network throughput shown in this paper can serve as a reliable benchmark for future works on network throughput of large networks.

  7. Throughput Analysis of Large Wireless Networks with Regular Topologies

    Directory of Open Access Journals (Sweden)

    Kezhu Hong

    2007-04-01

    Full Text Available The throughput of large wireless networks with regular topologies is analyzed under two medium-access control schemes: synchronous array method (SAM and slotted ALOHA. The regular topologies considered are square, hexagon, and triangle. Both nonfading channels and Rayleigh fading channels are examined. Furthermore, both omnidirectional antennas and directional antennas are considered. Our analysis shows that the SAM leads to a much higher network throughput than the slotted ALOHA. The network throughput in this paper is measured in either bits-hops per second per Hertz per node or bits-meters per second per Hertz per node. The exact connection between the two measures is shown for each topology. With these two fundamental units, the network throughput shown in this paper can serve as a reliable benchmark for future works on network throughput of large networks.

  8. EEM{sup TM} wireless supervision

    Energy Technology Data Exchange (ETDEWEB)

    Bilic, H. [Ericsson-Nikola Tesla d.d. Zagreb (Croatia)

    2000-07-01

    By adding the GSM network to the communication level of Energy Management systems, energy operating centres (EOC) can offer wireless access to the supervised equipment. Furthermore EOC can profit from rapid service development in the GSM networks. With implementation of GPRS to the GSM network EOC can instantly offer wireless access to external IP based networks such as Internet and corporate Intranets. The author describes architecture and key characteristic of Ericsson EnergyMaster{sup TM} (EEM{sup TM}) system for Energy Management, how and where to implement wireless supervision, wireless access to IP addresses and also how to implement new services provided by the GSM network. (orig.)

  9. Optimal power allocation and joint source-channel coding for wireless DS-CDMA visual sensor networks

    Science.gov (United States)

    Pandremmenou, Katerina; Kondi, Lisimachos P.; Parsopoulos, Konstantinos E.

    2011-01-01

    In this paper, we propose a scheme for the optimal allocation of power, source coding rate, and channel coding rate for each of the nodes of a wireless Direct Sequence Code Division Multiple Access (DS-CDMA) visual sensor network. The optimization is quality-driven, i.e. the received quality of the video that is transmitted by the nodes is optimized. The scheme takes into account the fact that the sensor nodes may be imaging scenes with varying levels of motion. Nodes that image low-motion scenes will require a lower source coding rate, so they will be able to allocate a greater portion of the total available bit rate to channel coding. Stronger channel coding will mean that such nodes will be able to transmit at lower power. This will both increase battery life and reduce interference to other nodes. Two optimization criteria are considered. One that minimizes the average video distortion of the nodes and one that minimizes the maximum distortion among the nodes. The transmission powers are allowed to take continuous values, whereas the source and channel coding rates can assume only discrete values. Thus, the resulting optimization problem lies in the field of mixed-integer optimization tasks and is solved using Particle Swarm Optimization. Our experimental results show the importance of considering the characteristics of the video sequences when determining the transmission power, source coding rate and channel coding rate for the nodes of the visual sensor network.

  10. Networking wireless sensors

    National Research Council Canada - National Science Library

    Krishnamachari, Bhaskar

    2005-01-01

    ... by networking techniques across multiple layers. The topics covered include network deployment, localization, time synchronization, wireless radio characteristics, medium-access, topology control, routing, data-centric techniques, and transport protocols. Ideal for researchers and designers seeking to create new algorithms and protocols and enginee...

  11. Open-WiSe: a solar powered wireless sensor network platform.

    Science.gov (United States)

    González, Apolinar; Aquino, Raúl; Mata, Walter; Ochoa, Alberto; Saldaña, Pedro; Edwards, Arthur

    2012-01-01

    Because battery-powered nodes are required in wireless sensor networks and energy consumption represents an important design consideration, alternate energy sources are needed to provide more effective and optimal function. The main goal of this work is to present an energy harvesting wireless sensor network platform, the Open Wireless Sensor node (WiSe). The design and implementation of the solar powered wireless platform is described including the hardware architecture, firmware, and a POSIX Real-Time Kernel. A sleep and wake up strategy was implemented to prolong the lifetime of the wireless sensor network. This platform was developed as a tool for researchers investigating Wireless sensor network or system integrators.

  12. Wireless multi-hop networks with stealing : large buffer asymptotics

    NARCIS (Netherlands)

    Guillemin, F.; Knessl, C.; Leeuwaarden, van J.S.H.

    2010-01-01

    Wireless networks equipped with CSMA are scheduled in a fully distributed manner. A disadvantage of such distributed control in multi-hop networks is the hidden node problem that causes the effect of stealing, in which a downstream node steals the channel from an upstream node with probability p.

  13. Ultra wideband wireless body area networks

    CERN Document Server

    Thotahewa, Kasun Maduranga Silva; Yuce, Mehmet Rasit

    2014-01-01

    This book explores the design of ultra wideband (UWB) technology for wireless body-area networks (WBAN).  The authors describe a novel implementation of WBAN sensor nodes that use UWB for data transmission and narrow band for data reception, enabling low power sensor nodes, with high data rate capability.  The discussion also includes power efficient, medium access control (MAC) protocol design for UWB based WBAN applications and the authors present a MAC protocol in which a guaranteed delivery mechanism is utilized to transfer data with high priority.  Readers will also benefit from this book’s feasibility analysis of the UWB technology for human implant applications through the study of electromagnetic and thermal power absorption of human tissue that is exposed to UWB signals.   • Describes hardware platform development for IR-UWB based WBAN communication; • Discusses power efficient medium access control (MAC) protocol design for IR-UWB based WBAN applications; • Includes feasibility analy...

  14. Getting ahead of the curve in wireless communications | CRDI ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    The demand for wireless communications is expected to increase significantly over ... would become more accessible to those without mobile phones, or Internet access. ... that will have a lasting impact on the field of wireless communications. ... problems: cooperative communication, coexistence of wireless systems, and ...

  15. A lightweight security scheme for wireless body area networks: design, energy evaluation and proposed microprocessor design.

    Science.gov (United States)

    Selimis, Georgios; Huang, Li; Massé, Fabien; Tsekoura, Ioanna; Ashouei, Maryam; Catthoor, Francky; Huisken, Jos; Stuyt, Jan; Dolmans, Guido; Penders, Julien; De Groot, Harmke

    2011-10-01

    In order for wireless body area networks to meet widespread adoption, a number of security implications must be explored to promote and maintain fundamental medical ethical principles and social expectations. As a result, integration of security functionality to sensor nodes is required. Integrating security functionality to a wireless sensor node increases the size of the stored software program in program memory, the required time that the sensor's microprocessor needs to process the data and the wireless network traffic which is exchanged among sensors. This security overhead has dominant impact on the energy dissipation which is strongly related to the lifetime of the sensor, a critical aspect in wireless sensor network (WSN) technology. Strict definition of the security functionality, complete hardware model (microprocessor and radio), WBAN topology and the structure of the medium access control (MAC) frame are required for an accurate estimation of the energy that security introduces into the WBAN. In this work, we define a lightweight security scheme for WBAN, we estimate the additional energy consumption that the security scheme introduces to WBAN based on commercial available off-the-shelf hardware components (microprocessor and radio), the network topology and the MAC frame. Furthermore, we propose a new microcontroller design in order to reduce the energy consumption of the system. Experimental results and comparisons with other works are given.

  16. Network Coding Opportunities for Wireless Grids Formed by Mobile Devices

    DEFF Research Database (Denmark)

    Nielsen, Karsten Fyhn; Madsen, Tatiana Kozlova; Fitzek, Frank

    2008-01-01

    Wireless grids have potential in sharing communication, computational and storage resources making these networks more powerful, more robust, and less cost intensive. However, to enjoy the benefits of cooperative resource sharing, a number of issues should be addressed and the cost of the wireless...... link should be taken into account. We focus on the question how nodes can efficiently communicate and distribute data in a wireless grid. We show the potential of a network coding approach when nodes have the possibility to combine packets thus increasing the amount of information per transmission. Our...... implementation demonstrates the feasibility of network coding for wireless grids formed by mobile devices....

  17. Maximizing lifetime of wireless sensor networks using genetic approach

    DEFF Research Database (Denmark)

    Wagh, Sanjeev; Prasad, Ramjee

    2014-01-01

    The wireless sensor networks are designed to install the smart network applications or network for emergency solutions, where human interaction is not possible. The nodes in wireless sensor networks have to self organize as per the users requirements through monitoring environments. As the sensor......-objective parameters are considered to solve the problem using genetic algorithm of evolutionary approach.......The wireless sensor networks are designed to install the smart network applications or network for emergency solutions, where human interaction is not possible. The nodes in wireless sensor networks have to self organize as per the users requirements through monitoring environments. As the sensor...

  18. 3D-Printed Disposable Wireless Sensors with Integrated Microelectronics for Large Area Environmental Monitoring

    KAUST Repository

    Farooqui, Muhammad Fahad; Karimi, Muhammad Akram; Salama, Khaled N.; Shamim, Atif

    2017-01-01

    disposable, compact, dispersible 3D-printed wireless sensor nodes with integrated microelectronics which can be dispersed in the environment and work in conjunction with few fixed nodes for large area monitoring applications. As a proof of concept

  19. How to model wireless mesh networks topology

    International Nuclear Information System (INIS)

    Sanni, M L; Hashim, A A; Anwar, F; Ali, S; Ahmed, G S M

    2013-01-01

    The specification of network connectivity model or topology is the beginning of design and analysis in Computer Network researches. Wireless Mesh Networks is an autonomic network that is dynamically self-organised, self-configured while the mesh nodes establish automatic connectivity with the adjacent nodes in the relay network of wireless backbone routers. Researches in Wireless Mesh Networks range from node deployment to internetworking issues with sensor, Internet and cellular networks. These researches require modelling of relationships and interactions among nodes including technical characteristics of the links while satisfying the architectural requirements of the physical network. However, the existing topology generators model geographic topologies which constitute different architectures, thus may not be suitable in Wireless Mesh Networks scenarios. The existing methods of topology generation are explored, analysed and parameters for their characterisation are identified. Furthermore, an algorithm for the design of Wireless Mesh Networks topology based on square grid model is proposed in this paper. The performance of the topology generated is also evaluated. This research is particularly important in the generation of a close-to-real topology for ensuring relevance of design to the intended network and validity of results obtained in Wireless Mesh Networks researches

  20. Sustainable wireless networks

    CERN Document Server

    Zheng, Zhongming; Xuemin

    2013-01-01

    This brief focuses on network planning and resource allocation by jointly considering cost and energy sustainability in wireless networks with sustainable energy. The characteristics of green energy and investigating existing energy-efficient green approaches for wireless networks with sustainable energy is covered in the first part of this brief. The book then addresses the random availability and capacity of the energy supply. The authors explore how to maximize the energy sustainability of the network and minimize the failure probability that the mesh access points (APs) could deplete their