WorldWideScience

Sample records for wired state washingtonians

  1. Localized end states in density modulated quantum wires and rings.

    Science.gov (United States)

    Gangadharaiah, Suhas; Trifunovic, Luka; Loss, Daniel

    2012-03-30

    We study finite quantum wires and rings in the presence of a charge-density wave gap induced by a periodic modulation of the chemical potential. We show that the Tamm-Shockley bound states emerging at the ends of the wire are stable against weak disorder and interactions, for discrete open chains and for continuum systems. The low-energy physics can be mapped onto the Jackiw-Rebbi equations describing massive Dirac fermions and bound end states. We treat interactions via the continuum model and show that they increase the charge gap and further localize the end states. The electrons placed in the two localized states on the opposite ends of the wire can interact via exchange interactions and this setup can be used as a double quantum dot hosting spin qubits. The existence of these states could be experimentally detected through the presence of an unusual 4π Aharonov-Bohm periodicity in the spectrum and persistent current as a function of the external flux.

  2. Majorana edge States in atomic wires coupled by pair hopping.

    Science.gov (United States)

    Kraus, Christina V; Dalmonte, Marcello; Baranov, Mikhail A; Läuchli, Andreas M; Zoller, P

    2013-10-25

    We present evidence for Majorana edge states in a number conserving theory describing a system of spinless fermions on two wires that are coupled by pair hopping. Our analysis is based on a combination of a qualitative low energy approach and numerical techniques using the density matrix renormalization group. In addition, we discuss an experimental realization of pair-hopping interactions in cold atom gases confined in optical lattices.

  3. Parafermionic wires at the interface of chiral topological states

    Science.gov (United States)

    Santos, Luiz; Hughes, Taylor

    We discuss a scenario where local interactions form one-dimensional gapped interfaces between a pair of distinct chiral two-dimensional topological states such that each gapped region terminates at a domain wall separating the chiral gapless edge states of these phases. We show that this type of T-junction supports point-like fractionalized excitations obeying parafermion statistics, thus implying that the one-dimensional gapped interface forms an effective topological parafermionic wire possessing a non-trivial ground state degeneracy. The physical properties of the anyon condensate that gives rise to the gapped interface are investigated. Remarkably, this condensate causes the gapped interface to behave as a type of anyon ``Andreev reflector'' in the bulk, whereby anyons from one phase, upon hitting the interface, can be transformed into a combination of reflected anyons and outgoing anyons from the other phase. Thus, we conclude that while different topological orders can be connected via gapped interfaces, the interfaces are themselves topological.

  4. Six-state, three-level, six-fold ferromagnetic wire system

    International Nuclear Information System (INIS)

    Blachowicz, T.; Ehrmann, A.

    2013-01-01

    Six stable states at remanence were identified in iron wire samples of 6-fold spatial symmetry using micromagnetic simulations and the finite element method. Onion and domain-wall magnetic states were tailored by sample shape and guided by an applied magnetic field with a fixed in-plane direction. Different directions of externally applied magnetic fields revealed a tendency for stability or nonstability of the considered states. -- Highlights: ► In a ferromagnetic wire sample six stable states at remanence were discovered. ► Presented wires provide new effects not met in classical thin-layered solutions. ► The mechanism of working results from competing demagnetizing and exchange fields. ► For different physical conditions onion and domain-wall states were observed. ► Wire samples of 6-fold symmetry can lead to many-level information storage devices

  5. Six-state, three-level, six-fold ferromagnetic wire system

    Energy Technology Data Exchange (ETDEWEB)

    Blachowicz, T., E-mail: tomasz.blachowicz@polsl.pl [Institute of Physics, Silesian University of Technology, 44-100 Gliwice (Poland); Ehrmann, A. [Faculty of Textile and Clothing Technology, Niederrhein University of Applied Sciences, 41065 Mönchengladbach (Germany)

    2013-04-15

    Six stable states at remanence were identified in iron wire samples of 6-fold spatial symmetry using micromagnetic simulations and the finite element method. Onion and domain-wall magnetic states were tailored by sample shape and guided by an applied magnetic field with a fixed in-plane direction. Different directions of externally applied magnetic fields revealed a tendency for stability or nonstability of the considered states. -- Highlights: ► In a ferromagnetic wire sample six stable states at remanence were discovered. ► Presented wires provide new effects not met in classical thin-layered solutions. ► The mechanism of working results from competing demagnetizing and exchange fields. ► For different physical conditions onion and domain-wall states were observed. ► Wire samples of 6-fold symmetry can lead to many-level information storage devices.

  6. Steady-state numerical modeling of size effects in micron scale wire drawing

    DEFF Research Database (Denmark)

    Juul, Kristian Jørgensen; Nielsen, Kim Lau; Niordson, Christian Frithiof

    2017-01-01

    Wire drawing processes at the micron scale have received increased interest as micro wires are increasingly required in electrical components. It is well-established that size effects due to large strain gradient effects play an important role at this scale and the present study aims to quantify...... these effects for the wire drawing process. Focus will be on investigating the impact of size effects on the most favourable tool geometry (in terms of minimizing the drawing force) for various conditions between the wire/tool interface. The numerical analysis is based on a steady-state framework that enables...... convergence without dealing with the transient regime, but still fully accounts for the history dependence as-well as the elastic unloading. Thus, it forms the basis for a comprehensive parameter study. During the deformation process in wire drawing, large plastic strain gradients evolve in the contact region...

  7. Simultaneous On-State Voltage and Bond-Wire Resistance Monitoring of Silicon Carbide MOSFETs

    DEFF Research Database (Denmark)

    Baker, Nick; Luo, Haoze; Iannuzzo, Francesco

    2017-01-01

    the voltage between the kelvin-source and power-source can be used to specifically monitor bond-wire degradation. Meanwhile, the drain to kelvin-source voltage can be monitored to track defects in the semiconductor die or gate driver. Through an accelerated aging test on 20 A Silicon Carbide Metal......-Oxide-Semiconductor-Field-Effect Transistors (MOSFETs), it is shown that there are opposing trends in the evolution of the on-state resistances of both the bond-wires and the MOSFET die. In summary, after 50,000 temperature cycles, the resistance of the bond-wires increased by up to 2 mΩ, while the on-state resistance of the MOSFET dies...... decreased by approximately 1 mΩ. The conventional failure precursor (monitoring a single forward voltage) cannot distinguish between semiconductor die or bond-wire degradation. Therefore, the ability to monitor both these parameters due to the presence of an auxiliary-source terminal can provide more...

  8. GED Test Changes and Attainment: Overview of 2014 GED Test Changes and Attainment in Washington State

    Science.gov (United States)

    Larson, Kara; Gaeta, Cristina; Sager, Lou

    2016-01-01

    In January 2014, the GED Testing Service significantly redesigned the GED test to incorporate the Common Core State Standards and the College and Career Readiness Standards for Adult Education. The purpose of this study was to examine the significant changes made to the test in 2014, examine the impact of the changes on Washingtonians, and make…

  9. Simultaneous On-State Voltage and Bond-Wire Resistance Monitoring of Silicon Carbide MOSFETs

    Directory of Open Access Journals (Sweden)

    Nick Baker

    2017-03-01

    Full Text Available In fast switching power semiconductors, the use of a fourth terminal to provide the reference potential for the gate signal—known as a kelvin-source terminal—is becoming common. The introduction of this terminal presents opportunities for condition monitoring systems. This article demonstrates how the voltage between the kelvin-source and power-source can be used to specifically monitor bond-wire degradation. Meanwhile, the drain to kelvin-source voltage can be monitored to track defects in the semiconductor die or gate driver. Through an accelerated aging test on 20 A Silicon Carbide Metal-Oxide-Semiconductor-Field-Effect Transistors (MOSFETs, it is shown that there are opposing trends in the evolution of the on-state resistances of both the bond-wires and the MOSFET die. In summary, after 50,000 temperature cycles, the resistance of the bond-wires increased by up to 2 mΩ, while the on-state resistance of the MOSFET dies decreased by approximately 1 mΩ. The conventional failure precursor (monitoring a single forward voltage cannot distinguish between semiconductor die or bond-wire degradation. Therefore, the ability to monitor both these parameters due to the presence of an auxiliary-source terminal can provide more detailed information regarding the aging process of a device.

  10. Fine pitch thermosonic wire bonding: analysis of state-of-the-art manufacturing capability

    Science.gov (United States)

    Cavasin, Daniel

    1995-09-01

    A comprehensive process characterization was performed at the Motorola plastic package assembly site in Selangor, Malaysia, to document the current fine pitch wire bond process capability, using state-of-the-art equipment, in an actual manufacturing environment. Two machines, representing the latest technology from two separate manufacturers, were operated one shift per day for five days, bonding a 132 lead Plastic Quad Flat Pack. Using a test device specifically designed for fine pitch wire bonding, the bonding programs were alternated between 107 micrometers and 92 micrometers pad pitch, running each pitch for a total of 1600 units per machine. Wire, capillary type, and related materials were standardized and commercially available. A video metrology measurement system, with a demonstrated six sigma repeatability band width of 0.51 micrometers , was utilized to measure the bonded units for bond dimensions and placement. Standard Quality Assurance (QA) metrics were also performed. Results indicate that state-of-the-art thermosonic wire bonding can achieve acceptable assembly yields at these fine pad pitches.

  11. Bound Electron States in Skew-symmetric Quantum Wire Intersections

    Science.gov (United States)

    2014-01-01

    STATEMENT OF THE PROBLEM 29 proper normalization, the H = 32 ma2 γ 2 + 2γ + 3 6 + 11γ (2.29) Consequently, we are looking to the variational parameter γ...E0 = H = 32 ma2 3(γ + 1) 11 = 6 11 2 mγ2 (γ + 1) = 1.058 2 ma2 (2.33) This result is obviously an approximation. The true value of the ground...state energy is less than E0. However, the obtained energy values is below the threshold energy obtained in the previous section: Ecr = π 2 8 2 ma2

  12. Noise-based logic hyperspace with the superposition of 2N states in a single wire

    International Nuclear Information System (INIS)

    Kish, Laszlo B.; Khatri, Sunil; Sethuraman, Swaminathan

    2009-01-01

    In the introductory paper [L.B. Kish, Phys. Lett. A 373 (2009) 911], about noise-based logic, we showed how simple superpositions of single logic basis vectors can be achieved in a single wire. The superposition components were the N orthogonal logic basis vectors. Supposing that the different logic values have 'on/off' states only, the resultant discrete superposition state represents a single number with N bit accuracy in a single wire, where N is the number of orthogonal logic vectors in the base. In the present Letter, we show that the logic hyperspace (product) vectors defined in the introductory paper can be generalized to provide the discrete superposition of 2 N orthogonal system states. This is equivalent to a multi-valued logic system with 2 2 N logic values per wire. This is a similar situation to quantum informatics with N qubits, and hence we introduce the notion of noise-bit. This system has major differences compared to quantum informatics. The noise-based logic system is deterministic and each superposition element is instantly accessible with the high digital accuracy, via a real hardware parallelism, without decoherence and error correction, and without the requirement of repeating the logic operation many times to extract the probabilistic information. Moreover, the states in noise-based logic do not have to be normalized, and non-unitary operations can also be used. As an example, we introduce a string search algorithm which is O(√(M)) times faster than Grover's quantum algorithm (where M is the number of string entries), while it has the same hardware complexity class as the quantum algorithm.

  13. Noise-based logic hyperspace with the superposition of 2 states in a single wire

    Science.gov (United States)

    Kish, Laszlo B.; Khatri, Sunil; Sethuraman, Swaminathan

    2009-05-01

    In the introductory paper [L.B. Kish, Phys. Lett. A 373 (2009) 911], about noise-based logic, we showed how simple superpositions of single logic basis vectors can be achieved in a single wire. The superposition components were the N orthogonal logic basis vectors. Supposing that the different logic values have “on/off” states only, the resultant discrete superposition state represents a single number with N bit accuracy in a single wire, where N is the number of orthogonal logic vectors in the base. In the present Letter, we show that the logic hyperspace (product) vectors defined in the introductory paper can be generalized to provide the discrete superposition of 2 orthogonal system states. This is equivalent to a multi-valued logic system with 2 logic values per wire. This is a similar situation to quantum informatics with N qubits, and hence we introduce the notion of noise-bit. This system has major differences compared to quantum informatics. The noise-based logic system is deterministic and each superposition element is instantly accessible with the high digital accuracy, via a real hardware parallelism, without decoherence and error correction, and without the requirement of repeating the logic operation many times to extract the probabilistic information. Moreover, the states in noise-based logic do not have to be normalized, and non-unitary operations can also be used. As an example, we introduce a string search algorithm which is O(√{M}) times faster than Grover's quantum algorithm (where M is the number of string entries), while it has the same hardware complexity class as the quantum algorithm.

  14. Stochastic quantum confinement in nanocrystalline silicon layers: The role of quantum dots, quantum wires and localized states

    International Nuclear Information System (INIS)

    Ramírez-Porras, A.; García, O.; Vargas, C.; Corrales, A.; Solís, J.D.

    2015-01-01

    Highlights: • PL spectra of porous silicon samples have been studied using a stochastic model. • This model can deconvolute PL spectra into three components. • Quantum dots, quantum wires and localized states have been identified. • Nanostructure diameters are in the range from 2.2 nm to 4.0 nm. • Contributions from quantum wires are small compared to the others. - Abstract: Nanocrystallites of Silicon have been produced by electrochemical etching of crystal wafers. The obtained samples show photoluminescence in the red band of the visible spectrum when illuminated by ultraviolet light. The photoluminescence spectra can be deconvolved into three components according to a stochastic quantum confinement model: one band coming from Nanocrystalline dots, or quantum dots, one from Nanocrystalline wires, or quantum wires, and one from the presence of localized surface states related to silicon oxide. The results fit well within other published models

  15. Stochastic quantum confinement in nanocrystalline silicon layers: The role of quantum dots, quantum wires and localized states

    Energy Technology Data Exchange (ETDEWEB)

    Ramírez-Porras, A., E-mail: aramirez@fisica.ucr.ac.cr [Centro de Investigación en Ciencia e Ingeniería de Materiales (CICIMA), Universidad de Costa Rica, San Pedro de Montes de Oca 11501 (Costa Rica); Escuela de Física, Universidad de Costa Rica, San Pedro de Montes de Oca 11501 (Costa Rica); García, O. [Escuela de Física, Universidad de Costa Rica, San Pedro de Montes de Oca 11501 (Costa Rica); Escuela de Química, Universidad de Costa Rica, San Pedro de Montes de Oca 11501 (Costa Rica); Vargas, C. [Escuela de Física, Universidad de Costa Rica, San Pedro de Montes de Oca 11501 (Costa Rica); Corrales, A. [Escuela de Física, Universidad de Costa Rica, San Pedro de Montes de Oca 11501 (Costa Rica); Escuela de Química, Universidad de Costa Rica, San Pedro de Montes de Oca 11501 (Costa Rica); Solís, J.D. [Escuela de Física, Universidad de Costa Rica, San Pedro de Montes de Oca 11501 (Costa Rica)

    2015-08-30

    Highlights: • PL spectra of porous silicon samples have been studied using a stochastic model. • This model can deconvolute PL spectra into three components. • Quantum dots, quantum wires and localized states have been identified. • Nanostructure diameters are in the range from 2.2 nm to 4.0 nm. • Contributions from quantum wires are small compared to the others. - Abstract: Nanocrystallites of Silicon have been produced by electrochemical etching of crystal wafers. The obtained samples show photoluminescence in the red band of the visible spectrum when illuminated by ultraviolet light. The photoluminescence spectra can be deconvolved into three components according to a stochastic quantum confinement model: one band coming from Nanocrystalline dots, or quantum dots, one from Nanocrystalline wires, or quantum wires, and one from the presence of localized surface states related to silicon oxide. The results fit well within other published models.

  16. Surface state of the wire electrode and its influence on the application characteristics in MAG welding

    International Nuclear Information System (INIS)

    Piffer, W.; Marques, P.V.; Modenesi, P.J.

    1997-01-01

    This work presents an evaluation of the effect of the surface condition of the wire on GMA welding performance. Three wires samples were produced from the same steel heat with different surface conditions. Short circuit transfer welding trials were performed for two wire feed rates and different voltage levels. These tests indicated that stability tended to be worse and spatter level higher for the lowest and the highest welding voltage operation and the wire with no copper coating. No major difference was observed for intermediate voltage operation. Scanning electron microscopy of contact tips suggested that cooper coated wires produced less erosion on the tips. Electrical resistance of wires and friction forces between wires and contact tip were also evaluated and used to analyze differences in influence of wire surface condition on welding results. (Author) 14 refs

  17. Electron states and electron Raman scattering in semiconductor double cylindrical quantum well wire

    International Nuclear Information System (INIS)

    Munguía-Rodríguez, M; Riera, R; Betancourt-Riera, Ri; Betancourt-Riera, Re; Nieto Jalil, J M

    2016-01-01

    The differential cross section for an electron Raman scattering process in a semiconductor GaAs/AlGaAs double quantum well wire is calculated, and expressions for the electronic states are presented. The system is modeled by considering T = 0 K and also with a single parabolic conduction band, which is split into a subband system due to the confinement. The gain and differential cross-section for an electron Raman scattering process are obtained. In addition, the emission spectra for several scattering configurations are discussed, and interpretations of the singularities found in the spectra are given. The electron Raman scattering studied here can be used to provide direct information about the efficiency of the lasers. (paper)

  18. Density of Electronic States in Impurity-Doped Quantum Well Wires

    Science.gov (United States)

    Sierra-Ortega, J.; Mikhailov, I. D.

    2003-03-01

    We analyze the electronic states in a cylindrical quantum well-wire (QWW) with randomly distributed neutral, D^0 and negatively charged D^- donors. In order to calculate the ground state energies of the off-center donors D^0 and D^- as a function of the distance from the axis of the QWW, we use the recently developed fractal dimension method [1]. There the problems are reduced to those similar for a hydrogen-like atom and a negative-hydrogen-like ion respectively, in an isotropic effective space with variable fractional dimension. The numerical trigonometric sweep method [2] and the three-parameter Hylleraas-type trial function are used to solve these problems. Novel curves for the density of impurity states in cylindrical QWWs with square-well, parabolic and soft-edge barrier potentials are present. Additionally we analyze the effect of the repulsive core on the density of the impurity states. [1] I.D. Mikhailov, F. J. Betancur, R. Escorcia and J. Sierra-Ortega, Phys. Stat. Sol., 234(b), 590 (2002) [2] F. J. Betancur, I. D. Mikhailov and L. E. Oliveira, J. Appl. Phys. D, 31, 3391(1998)

  19. Fiber vs Rolling Texture: Stress State Dependence for Cold-Drawn Wire

    Science.gov (United States)

    Zorina, M. A.; Karabanalov, M. S.; Stepanov, S. I.; Demakov, S. L.; Loginov, Yu. N.; Lobanov, M. L.

    2018-02-01

    The texture of the cold-drawn copper wire was investigated along the radius using electron backscatter diffraction. The complex fiber texture of the central region of the wire was considered as the rolling texture consisting of a set of preferred orientations. The texture of the periphery region was revealed to be similar to the shear texture. The orientation-dependent properties of the wire were proven to be determined by the texture of the near-surface layers.

  20. Steady-State Numerical Modeling of Size Effects in Wire Drawing

    DEFF Research Database (Denmark)

    Juul, Kristian Jørgensen; Nielsen, Kim Lau; Niordson, Christian Frithiof

    2016-01-01

    Wire drawing processes at micron scale receive increased interest as micro wires are increasingly required in micro electrical components. At the micron scale, size effects become important and have to be taken into consideration. The goal is to optimize the semi-cone angle of the tool in terms...

  1. Critical state instability in Nb-clad MgB2 superconducting wires

    International Nuclear Information System (INIS)

    Beilin, V.; Felner, I.; Tsindlekht, M.I.; Dul'kin, E.; Mojaev, E.; Roth, M.

    2008-01-01

    Magnetization hysteresis loops of Cu/MgB 2 , Nb/MgB 2 , Cu/Nb/MgB 2 and Fe/Cu/MgB 2 wires in parallel magnetic fields of up to 5 T were studied in the temperature range from 5 to 35 K. All Nb-clad samples exhibited a thermomagnetic instability (TMI) in the form of magnetization jumps. In a thick wire (about 2 mm in core diameter), the TMI persisted up to the unexpectedly high temperature of 32 K. Thin wires showed low TMI which vanished at T > 10 K. Cu/MgB 2 wires which did not contain a Nb barrier, showed no signs of TMI. The TMI in thin wires exhibited good reproducibility and stability in the jump pattern (JP) (jump amplitudes and positions), while thick wires showed the worst time stability. We found that moderate flat rolling of the round unstable Cu/Nb/MgB 2 wire resulted in negligible TMI at 5 K in the processed flat tape. The TMI amplitudes of studied samples correlated with the adiabatic stability parameter, β -1

  2. Steady State Modelling of Three-core Wire Armoured Submarine Cables

    DEFF Research Database (Denmark)

    Baù, Matteo; Viafora, Nicola; Hansen, Chris Skovgaard

    2016-01-01

    This paper introduces Finite Element Method mod-elling techniques applied to wire armoured submarine three-core cables, whose nominal voltages range from 36 to 245 kV. The analysis is focused on the implementation of the net voltage cancellation principle in a 2D environment. The model is utilised...... confirm that the wire armour stranding is not accounted for, but also suggest that the ampacity underrating might be due to other inaccuracies in the IEC modelling indications. Overall, the difference in terms of current rating between the FEM and the IEC approach is found to be voltage dependent and more...

  3. Noise-based logic hyperspace with the superposition of 2{sup N} states in a single wire

    Energy Technology Data Exchange (ETDEWEB)

    Kish, Laszlo B. [Texas A and M University, Department of Electrical and Computer Engineering, College Station, TX 77843-3128 (United States)], E-mail: laszlo.kish@ece.tamu.edu; Khatri, Sunil; Sethuraman, Swaminathan [Texas A and M University, Department of Electrical and Computer Engineering, College Station, TX 77843-3128 (United States)

    2009-05-11

    In the introductory paper [L.B. Kish, Phys. Lett. A 373 (2009) 911], about noise-based logic, we showed how simple superpositions of single logic basis vectors can be achieved in a single wire. The superposition components were the N orthogonal logic basis vectors. Supposing that the different logic values have 'on/off' states only, the resultant discrete superposition state represents a single number with N bit accuracy in a single wire, where N is the number of orthogonal logic vectors in the base. In the present Letter, we show that the logic hyperspace (product) vectors defined in the introductory paper can be generalized to provide the discrete superposition of 2{sup N} orthogonal system states. This is equivalent to a multi-valued logic system with 2{sup 2{sup N}} logic values per wire. This is a similar situation to quantum informatics with N qubits, and hence we introduce the notion of noise-bit. This system has major differences compared to quantum informatics. The noise-based logic system is deterministic and each superposition element is instantly accessible with the high digital accuracy, via a real hardware parallelism, without decoherence and error correction, and without the requirement of repeating the logic operation many times to extract the probabilistic information. Moreover, the states in noise-based logic do not have to be normalized, and non-unitary operations can also be used. As an example, we introduce a string search algorithm which is O({radical}(M)) times faster than Grover's quantum algorithm (where M is the number of string entries), while it has the same hardware complexity class as the quantum algorithm.

  4. Reliability Criteria for Thick Bonding Wire.

    Science.gov (United States)

    Dagdelen, Turker; Abdel-Rahman, Eihab; Yavuz, Mustafa

    2018-04-17

    Bonding wire is one of the main interconnection techniques. Thick bonding wire is widely used in power modules and other high power applications. This study examined the case for extending the use of traditional thin wire reliability criteria, namely wire flexure and aspect ratio, to thick wires. Eleven aluminum (Al) and aluminum coated copper (CucorAl) wire samples with diameter 300 μm were tested experimentally. The wire response was measured using a novel non-contact method. High fidelity FEM models of the wire were developed and validated. We found that wire flexure is not correlated to its stress state or fatigue life. On the other hand, aspect ratio is a consistent criterion of thick wire fatigue life. Increasing the wire aspect ratio lowers its critical stress and increases its fatigue life. Moreover, we found that CucorAl wire has superior performance and longer fatigue life than Al wire.

  5. Reliability Criteria for Thick Bonding Wire

    Directory of Open Access Journals (Sweden)

    Turker Dagdelen

    2018-04-01

    Full Text Available Bonding wire is one of the main interconnection techniques. Thick bonding wire is widely used in power modules and other high power applications. This study examined the case for extending the use of traditional thin wire reliability criteria, namely wire flexure and aspect ratio, to thick wires. Eleven aluminum (Al and aluminum coated copper (CucorAl wire samples with diameter 300 μm were tested experimentally. The wire response was measured using a novel non-contact method. High fidelity FEM models of the wire were developed and validated. We found that wire flexure is not correlated to its stress state or fatigue life. On the other hand, aspect ratio is a consistent criterion of thick wire fatigue life. Increasing the wire aspect ratio lowers its critical stress and increases its fatigue life. Moreover, we found that CucorAl wire has superior performance and longer fatigue life than Al wire.

  6. Reliability Criteria for Thick Bonding Wire

    Science.gov (United States)

    Yavuz, Mustafa

    2018-01-01

    Bonding wire is one of the main interconnection techniques. Thick bonding wire is widely used in power modules and other high power applications. This study examined the case for extending the use of traditional thin wire reliability criteria, namely wire flexure and aspect ratio, to thick wires. Eleven aluminum (Al) and aluminum coated copper (CucorAl) wire samples with diameter 300 μm were tested experimentally. The wire response was measured using a novel non-contact method. High fidelity FEM models of the wire were developed and validated. We found that wire flexure is not correlated to its stress state or fatigue life. On the other hand, aspect ratio is a consistent criterion of thick wire fatigue life. Increasing the wire aspect ratio lowers its critical stress and increases its fatigue life. Moreover, we found that CucorAl wire has superior performance and longer fatigue life than Al wire. PMID:29673194

  7. Wire Chamber

    CERN Multimedia

    Magnetoscriptive readout wire chamber. Multi-wire detectors contain layers of positively and negatively charged wires enclosed in a chamber full of gas. A charged particle passing through the chamber knocks negatively charged electrons out of atoms in the gas, leaving behind positive ions. The electrons are pulled towards the positively charged wires. They collide with other atoms on the way, producing an avalanche of electrons and ions. The movement of these electrons and ions induces an electric pulse in the wires which is collected by fast electronics. The size of the pulse is proportional to the energy loss of the original particle.

  8. Wire chamber

    CERN Multimedia

    1967-01-01

    Magnetoscriptive readout wire chamber.Multi-wire detectors contain layers of positively and negatively charged wires enclosed in a chamber full of gas. A charged particle passing through the chamber knocks negatively charged electrons out of atoms in the gas, leaving behind positive ions. The electrons are pulled towards the positively charged wires. They collide with other atoms on the way, producing an avalanche of electrons and ions. The movement of these electrons and ions induces an electric pulse in the wires which is collected by fast electronics. The size of the pulse is proportional to the energy loss of the original particle.

  9. wire chamber

    CERN Multimedia

    Proportional multi-wire chamber. Multi-wire detectors contain layers of positively and negatively charged wires enclosed in a chamber full of gas. A charged particle passing through the chamber knocks negatively charged electrons out of atoms in the gas, leaving behind positive ions. The electrons are pulled towards the positively charged wires. They collide with other atoms on the way, producing an avalanche of electrons and ions. The movement of these electrons and ions induces an electric pulse in the wires which is collected by fast electronics. The size of the pulse is proportional to the energy loss of the original particle. Proportional wire chambers allow a much quicker reading than the optical or magnetoscriptive readout wire chambers.

  10. Testing the equation of state and electrical conductivity of copper by the electrical wire explosion in air: Experiment and magnetohydrodynamic simulation

    International Nuclear Information System (INIS)

    Barysevich, A. E.; Cherkas, S. L.

    2011-01-01

    We perform experiments on testing the equations of state and electrical conductivity of copper in three different regimes of copper wire electrical explosion, when the inserted energy (i) is slightly exceeded, (ii) is approximately equal, and (iii) is substantially exceeded the energy needed for the wire complete evaporation. Magnetohydrodynamic simulation is performed. The results predicted by the two different equations of state are compared with the experiment. Empirical expression for the copper electrical conductivity is presented. Parameters in this expression is fit on every of two equations of state. Map of copper conductivity is plotted.

  11. wire chamber

    CERN Multimedia

    1985-01-01

    Multi-wire detectors contain layers of positively and negatively charged wires enclosed in a chamber full of gas. A charged particle passing through the chamber knocks negatively charged electrons out of atoms in the gas, leaving behind positive ions. The electrons are pulled towards the positively charged wires. They collide with other atoms on the way, producing an avalanche of electrons and ions. The movement of these electrons and ions induces an electric pulse in the wires which is collected by fast electronics. The size of the pulse is proportional to the energy loss of the original particle.

  12. Wire chamber

    CERN Multimedia

    Multi-wire detectors contain layers of positively and negatively charged wires enclosed in a chamber full of gas. A charged particle passing through the chamber knocks negatively charged electrons out of atoms in the gas, leaving behind positive ions. The electrons are pulled towards the positively charged wires. They collide with other atoms on the way, producing an avalanche of electrons and ions. The movement of these electrons and ions induces an electric pulse in the wires which is collected by fast electronics. The size of the pulse is proportional to the energy loss of the original particle.

  13. wire chamber

    CERN Multimedia

    Multi-wire detectors contain layers of positively and negatively charged wires enclosed in a chamber full of gas. A charged particle passing through the chamber knocks negatively charged electrons out of atoms in the gas, leaving behind positive ions. The electrons are pulled towards the positively charged wires. They collide with other atoms on the way, producing an avalanche of electrons and ions. The movement of these electrons and ions induces an electric pulse in the wires which is collected by fast electronics. The size of the pulse is proportional to the energy loss of the original particle.

  14. wire chamber

    CERN Multimedia

    Was used in ISR (Intersecting Storage Ring) split field magnet experiment. Multi-wire detectors contain layers of positively and negatively charged wires enclosed in a chamber full of gas. A charged particle passing through the chamber knocks negatively charged electrons out of atoms in the gas, leaving behind positive ions. The electrons are pulled towards the positively charged wires. They collide with other atoms on the way, producing an avalanche of electrons and ions. The movement of these electrons and ions induces an electric pulse in the wires which is collected by fast electronics. The size of the pulse is proportional to the energy loss of the original particle.

  15. Phenomenological investigation of many-body induced modifications to the one-dimensional density of states of long quantum wires

    International Nuclear Information System (INIS)

    Morimoto, T; Yumoto, N; Ujiie, Y; Aoki, N; Ochiai, Y; Bird, J P

    2008-01-01

    We investigate the behavior of interacting one-dimensional systems using linear (close to equilibrium) and non-linear transport measurements of split-gate quantum wires of varying channel length. Our measurements reveal a remarkable resonance effect in the differential conductance, which exhibits a pronounced peak, for a narrow range of source-drain voltage, at the transition from tunneling to open transport. This peak becomes more pronounced with increase of channel length, but is rapidly suppressed by increase of temperature or (in-plane) magnetic field. We believe that these unique features may arise from the dependence of transport on the electron density of states, and suggest a phenomenological model to account for this transport behavior

  16. Effect of annealing on the superconducting and normal state properties of the doped multifilamentary Cu-Nb composite wires prepared by in situ technique

    International Nuclear Information System (INIS)

    Dubey, S.S.; Dheer, P.N.

    1999-01-01

    The effect of annealing on the superconducting and normal state properties of the Ga-, In-, Ti- and Zr-doped (1 wt%) Cu-Nb composite wires prepared by in situ technique have been investigated in this paper. The wires annealed at 700 C for 10 h and then quenched at room temperature, show a decrease in the superconducting transition temperature, T c , and increase in the transition width, ΔT. Doping of the Cu-Nb wires causes an increase in the normal state resistivity and hence the upper critical field, H C2 . This results in a significant increase of J c . Annealing of these doped samples decreases H C2 and J c . In the case of In- and Ga-doped samples J c shows a marginal improvement at lower field but decreases at higher field. Zr and Ti doping appears to be beneficial for the improved J c in these in situ materials. (orig.)

  17. NiCo2S4 nanosheet-decorated 3D, porous Ni film@Ni wire electrode materials for all solid-state asymmetric supercapacitor applications.

    Science.gov (United States)

    Saravanakumar, Balasubramaniam; Jayaseelan, Santhana Sivabalan; Seo, Min-Kang; Kim, Hak-Yong; Kim, Byoung-Suhk

    2017-12-07

    Wire type supercapacitors with high energy and power densities have generated considerable interest in wearable applications. Herein, we report a novel NiCo 2 S 4 -decorated 3D, porous Ni film@Ni wire electrode for high performance supercapacitor application. In this work, a facile method is introduced to fabricate a 3D, porous Ni film deposited on a Ni wire as a flexible electrode, followed by decoration with NiCo 2 S 4 as an electroactive material. The fabricated NiCo 2 S 4 -decorated 3D, porous Ni film@Ni wire electrode displays a superior performance with an areal and volumetric capacitance of 1.228 F cm -2 and 199.74 F cm -3 , respectively, at a current density of 0.2 mA cm -1 with a maximum volumetric energy and power density (E V : 6.935 mW h cm -3 ; P V : 1.019 W cm -3 ). Finally, the solid state asymmetric wire type supercapacitor is fabricated using the fabricated NiCo 2 S 4 -decorated 3D, porous Ni film@Ni wire as a positive electrode and N-doped reduced graphene oxide (N-rGO) as a negative electrode and this exhibits good areal and volumetric capacitances of C A : 0.12 F cm -2 and C V : 19.57 F cm -2 with a higher rate capability (92%). This asymmetric wire type supercapacitor demonstrates a low leakage current and self-discharge with a maximum volumetric energy (E V : 5.33 mW h cm -3 ) and power (P V : 855.69 mW cm -3 ) density.

  18. Optimization of the confinement energy of quantum-wire states in T-shaped GaAs/AlxGa1-xAs structures

    DEFF Research Database (Denmark)

    Langbein, Wolfgang Werner; Gislason, Hannes; Hvam, Jørn Märcher

    1996-01-01

    We report on an optimization of the wire confinement energies of the confined electronic states at the T-shaped intersection of GaAs and AlxGa1-xAs quantum wells. These structures can be produced by the cleaved edge overgrowth technique. We present an analytical model for the confinement to give ...

  19. Structural-Phase States of Fe-Cu and Fe-Ag Bimetallic Particles Produced by Electric Explosion of Two Wires

    Science.gov (United States)

    Lerner, M. I.; Bakina, O. V.; Pervikov, A. V.; Glazkova, E. A.; Lozhkomoev, A. S.; Vorozhtsov, A. B.

    2018-05-01

    X-ray phase analysis, transmission electron microscopy, and X-ray microanalysis were used to examine the structural-phase states of Fe-Cu and Fe-Ag bimetallic nanoparticles. The nanoparticles were obtained by the electric explosion of two twisted metal wires in argon atmosphere. It was demonstrated that the nanoparticles have the structure of Janus particles. Presence of the Janus particle structure in the samples indicates formation of binary melt under conditions of combined electric explosion of two wires. Phases based on supersaturated solid solutions were not found in the examined samples. The data obtained allow arguing that it is possible to achieve uniform mixing of the two-wire explosion products under the described experiment conditions.

  20. Zero-bias peaks in the tunneling conductance of spin-orbit-coupled superconducting wires with and without Majorana end-states.

    Science.gov (United States)

    Liu, Jie; Potter, Andrew C; Law, K T; Lee, Patrick A

    2012-12-28

    One of the simplest proposed experimental probes of a Majorana bound state is a quantized (2e(2)/h) value of zero-bias tunneling conductance. When temperature is somewhat larger than the intrinsic width of the Majorana peak, conductance is no longer quantized, but a zero-bias peak can remain. Such a nonquantized zero-bias peak has been recently reported for semiconducting nanowires with proximity induced superconductivity. In this Letter we analyze the relation of the zero-bias peak to the presence of Majorana end states, by simulating the tunneling conductance for multiband wires with realistic amounts of disorder. We show that this system generically exhibits a (nonquantized) zero-bias peak even when the wire is topologically trivial and does not possess Majorana end states. We make comparisons to recent experiments, and discuss the necessary requirements for confirming the existence of a Majorana state.

  1. Mechanically delaminated few layered MoS2 nanosheets based high performance wire type solid-state symmetric supercapacitors

    Science.gov (United States)

    Krishnamoorthy, Karthikeyan; Pazhamalai, Parthiban; Veerasubramani, Ganesh Kumar; Kim, Sang Jae

    2016-07-01

    Two dimensional nanostructures are increasingly used as electrode materials in flexible supercapacitors for portable electronic applications. Herein, we demonstrated a ball milling approach for achieving few layered molybdenum disulfide (MoS2) via exfoliation from their bulk. Physico-chemical characterizations such as X-ray diffraction, field emission scanning electron microscope, and laser Raman analyses confirmed the occurrence of exfoliated MoS2 sheets with few layers from their bulk via ball milling process. MoS2 based wire type solid state supercapacitors (WSCs) are fabricated and examined using cyclic voltammetry (CV), electrochemical impedance spectroscopy, and galvanostatic charge discharge (CD) measurements. The presence of rectangular shaped CV curves and symmetric triangular shaped CD profiles suggested the mechanism of charge storage in MoS2 WSC is due to the formation of electrochemical double layer capacitance. The MoS2 WSC device delivered a specific capacitance of 119 μF cm-1, and energy density of 8.1 nW h cm-1 with better capacitance retention of about 89.36% over 2500 cycles, which ensures the use of the ball milled MoS2 for electrochemical energy storage devices.

  2. Pacemaker wires

    International Nuclear Information System (INIS)

    Fransson, S.G.

    1993-01-01

    Evaluation of pacemaker wires were performed by comparing Advanced Multiple Beam Equalization Radiography (AMBER) with conventional chest radiography. The scanning equalization technique of the AMBER unit makes it superior to conventional technique in the depiction of different structures in the mediastinum or in the pleural sinuses. So far motion artifacts have not been considered clinically important. The longer exposure time, however, may impair the assessment of pacemaker wires. The motion artifact described may not only make adequate evaluation impossible but may even give a false impression of a lead fracture. The difference between the two systems was significant. (orig.)

  3. Getting "Wired" for McLuhan's Cyberculture.

    Science.gov (United States)

    McMurdo, George

    1995-01-01

    Examines the introduction of the computing magazine, "Wired", into the United Kingdom's (UK) market. Presents conversations with the founder and editorial staff of the UK edition, and discusses the accessibility of "Wired" via the World Wide Web. Describes 10 articles from United States "Wired" back-issues and…

  4. Measurement of kinetic inductance of superconducting wires and application for measuring flux state of Josephson-junction loops

    Energy Technology Data Exchange (ETDEWEB)

    Shimazu, Y.; Yokoyama, T

    2004-10-01

    In order to realize strong coupling in a system of multiple flux qubits with a DC-SQUID, the use of kinetic inductance is advantageous because it can be much larger than geometrical inductance for narrow superconducting wires. We measured the inductance associated with narrow Al wires, and estimated the contributions of kinetic and geometrical inductances. The London penetration depth which determines the kinetic inductance is evaluated. We fabricated samples of two Josephson-junction loops and a DC-SQUID which are all coupled with kinetic inductances. The observed magnetic flux due to the loops is in good agreement with the result of numerical simulation based on the estimated inductances.

  5. 75 FR 60480 - In the Matter of Certain Bulk Welding Wire Containers and Components Thereof and Welding Wire...

    Science.gov (United States)

    2010-09-30

    ... Welding Wire Containers and Components Thereof and Welding Wire; Notice of Commission Determination To... within the United States after importation of certain bulk welding wire containers, components thereof, and welding wire by reason of infringement of certain claims of United States Patent Nos. 6,260,781; 6...

  6. The calculation of electron chemical potential and ion charge state and their influence on plasma conductivity in electrical explosion of metal wire

    International Nuclear Information System (INIS)

    Shi, Zongqian; Wang, Kun; Li, Yao; Shi, Yuanjie; Wu, Jian; Jia, Shenli

    2014-01-01

    The electron chemical potential and ion charge state (average ion charge and ion distribution) are important parameters in calculating plasma conductivity in electrical explosion of metal wire. In this paper, the calculating method of electron chemical potential and ion charge state is discussed at first. For the calculation of electron chemical potential, the ideal free electron gas model and Thomas-Fermi model are compared and analyzed in terms of the coupling constant of plasma. The Thomas-Fermi ionization model, which is used to calculate ion charge state, is compared with the method based on Saha equation. Furthermore, the influence of electron degenerated energy levels and ion excited states in Saha equation on the ion charge state is also analyzed. Then the influence of different calculating methods of electron chemical potential and ion charge state on plasma conductivity is discussed by applying them in the Lee-More conductivity model

  7. Vienna Wire Chamber Conference

    International Nuclear Information System (INIS)

    Anon.

    1983-01-01

    After those of 1978 and 1980, a third Wire Chamber Conference was held from 15-18 February in the Technical University of Vienna. Eight invited speakers covered the field from sophisticated applications in biology and medicine, via software, to the state of the art of gaseous detectors. In some forty other talks the speakers tackled in more detail the topics of gaseous detectors, calorimetry and associated electronics and software

  8. Application of irradiated wire

    International Nuclear Information System (INIS)

    Uda, I.; Kozima, K.; Suzuki, S.; Tada, S.; Torisu, S.; Veno, K.

    1984-01-01

    Rubber insulated wires are still useful for internal wiring in motor vehicles and electrical equipment because of flexibility and toughness. Irradiated cross-linked rubber materials have been successfully introduced for use with fusible link wire and helically coiled cord

  9. Noncontextual Wirings

    Science.gov (United States)

    Amaral, Barbara; Cabello, Adán; Cunha, Marcelo Terra; Aolita, Leandro

    2018-03-01

    Contextuality is a fundamental feature of quantum theory necessary for certain models of quantum computation and communication. Serious steps have therefore been taken towards a formal framework for contextuality as an operational resource. However, the main ingredient of a resource theory—a concrete, explicit form of free operations of contextuality—was still missing. Here we provide such a component by introducing noncontextual wirings: a class of contextuality-free operations with a clear operational interpretation and a friendly parametrization. We characterize them completely for general black-box measurement devices with arbitrarily many inputs and outputs. As applications, we show that the relative entropy of contextuality is a contextuality monotone and that maximally contextual boxes that serve as contextuality bits exist for a broad class of scenarios. Our results complete a unified resource-theoretic framework for contextuality and Bell nonlocality.

  10. Steady-state pool boiling heat transfer on nicr wire surface submerged in Al2O3 nano-fluids

    International Nuclear Information System (INIS)

    Dereje Shiferaw; Hyun Sun Park; Bal Raj Sehgal

    2005-01-01

    Full text of publication follows: nano-fluids, or conventional liquids, e.g., water, with small concentration of nano-particles uniformly suspended, have attracted attention as a new heat transport medium with enhanced thermo-physical properties. Up to the present, only exploratory experiments on nano-fluids have been reported. Das et al (Int. J. Heat Mass Transfer 43, pp 3701-3707, 2003) conducted boiling experiments with water containing 38 nm Al 2 O 3 nano-particles. They observed deterioration in the nucleate boiling heat transfer due to the deposition of nano-particles. Boiling experiments conducted by Vassallo et al (Int. J. Heat Mass Transfer 47, pp 407-411, 2004) using silica nano-fluid using 0.4 mm diameter NiCr wire showed three times higher critical heat flux (CHF) and the wire traversed the film boiling region before it failed. Another independent experiment performed on 1 cm 2 square plate with a very low concentration of nano-particles ranging from 0.01 to 0.05 g/liter and at under pressure (2.89 psia), nano-fluids resulted in drastic 2∼3 times enhancement of the CHF (You and Kim, Appl. Phys. Lett. 83. No 16, 2003). However in all the aforementioned studies no appropriate explanation of the CHF enhancement has been advanced. The measured 2-3 times higher critical heat flux for very dilute nano-fluids may have high significance if such nano-fluids could be employed in heat transport systems. Recently, we investigated the effect of nano-particles on film boiling, which governs heat transfer during accident conditions in a reactor plant, e.g., in coolability of a degraded core, or a particulate debris bed or a core melt, and in steam explosions. Our previous experiments performed on film boiling in nano-fluids having larger concentrations of 5, 10, and 20 g/liter than those in You's experiments showed that the nano-fluids lower the film boiling temperature, decrease the film boiling heat transfer and provide a much thicker and more stable film than

  11. Derivation of the probability distribution function for the local density of states of a disordered quantum wire via the replica trick and supersymmetry

    International Nuclear Information System (INIS)

    Bunder, J.E.J.E.; McKenzie, R.H.Ross H.

    2001-01-01

    We consider the statistical properties of the local density of states of a one-dimensional Dirac equation in the presence of various types of disorder with Gaussian white-noise distribution. It is shown how either the replica trick or supersymmetry can be used to calculate exactly all the moments of the local density of states. Careful attention is paid to how the results change if the local density of states is averaged over atomic length scales. For both the replica trick and supersymmetry the problem is reduced to finding the ground state of a zero-dimensional Hamiltonian which is written solely in terms of a pair of coupled 'spins' which are elements of u(1,1). This ground state is explicitly found for the particular case of the Dirac equation corresponding to an infinite metallic quantum wire with a single conduction channel. The calculated moments of the local density of states agree with those found previously by Al'tshuler and Prigodin [Sov. Phys. JETP 68 (1989) 198] using a technique based on recursion relations for Feynman diagrams

  12. Transparency in nanophotonic quantum wires

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Mahi R [Department of Physics and Astronomy, University of Western Ontario, London N6A 3K7 (Canada)

    2009-03-28

    We have studied the quantum optics of a photonic quantum nanowire doped with an ensemble of three-level nanoparticles. The wire is made from two photonic crystals A and B. Crystal A is embedded within crystal B and acts as a photonic nanowire. It is considered that the conduction band of crystal A lies below that of crystal B. As a result, photons are confined in crystal A and are reflected from crystal B. The bound states of the confined photons are calculated using the transfer matrix method. It is found that the number of bound states in the wire depends on the size of the wire and the energy difference between the conduction band extrema of crystals A and B. The absorption coefficient of the system has also been calculated using the Schroedinger equation method. It is considered that the nanoparticles interact with the photonic bound states. Numerical simulations show that when one of the resonance energies lies near the bound state, the system becomes transparent. However, when the resonance energy lies away from the bound state the crystal reverts to an absorbing state. Similarly, when the radius of the dielectric spheres is changed the location of the transparency peak is shifted. This means that the present system can be switched between two states by changing the size of the wire and the transition energy. These findings can be used to make new types of optical devices.

  13. Transparency in nanophotonic quantum wires

    International Nuclear Information System (INIS)

    Singh, Mahi R

    2009-01-01

    We have studied the quantum optics of a photonic quantum nanowire doped with an ensemble of three-level nanoparticles. The wire is made from two photonic crystals A and B. Crystal A is embedded within crystal B and acts as a photonic nanowire. It is considered that the conduction band of crystal A lies below that of crystal B. As a result, photons are confined in crystal A and are reflected from crystal B. The bound states of the confined photons are calculated using the transfer matrix method. It is found that the number of bound states in the wire depends on the size of the wire and the energy difference between the conduction band extrema of crystals A and B. The absorption coefficient of the system has also been calculated using the Schroedinger equation method. It is considered that the nanoparticles interact with the photonic bound states. Numerical simulations show that when one of the resonance energies lies near the bound state, the system becomes transparent. However, when the resonance energy lies away from the bound state the crystal reverts to an absorbing state. Similarly, when the radius of the dielectric spheres is changed the location of the transparency peak is shifted. This means that the present system can be switched between two states by changing the size of the wire and the transition energy. These findings can be used to make new types of optical devices.

  14. STRUCTURE AND CHARACTERISTICS OF PATENTED HIGH-CARBON WIRE

    Directory of Open Access Journals (Sweden)

    A. Ju. Borisenko

    2011-01-01

    Full Text Available The influence of bainite structure on mechanical characteristics of wire of steel 80 after patenting is studied. The quantity and structure state of bainite, providing high complex of mechanical characteristics of high-carbon wire, is determined.

  15. Magnetic field effect on the laser-driven density of states for electrons in a cylindrical quantum wire: transition from one-dimensional to zero-dimensional behavior

    International Nuclear Information System (INIS)

    Lima, C P; Lima, F M S; Fonseca, A L A; Nunes, O A C

    2011-01-01

    The influence of a uniform magnetic field on the density of states (DoS) for carriers confined in a cylindrical semiconductor quantum wire irradiated by a monochromatic, linearly polarized, intense laser field is computed here non-perturbatively, following the Green's function scheme introduced by some of the authors in a recent work (Lima et al 2009 Solid State Commun. 149 678). Besides the known changes in the DoS provoked by an intense terahertz laser field-namely, a significant reduction and the appearance of Franz-Keldysh-like oscillations-our model reveals that the inclusion of a longitudinal magnetic field induces additional blueshifts on the energy levels of the allowed states. Our results show that the increase of the blueshifts with the magnitude of the magnetic field depends only on the azimuthal quantum number m (m=0, 1, 2, ...), being more pronounced for states with higher values of m, which leads to some energy crossovers. For all states, we have obtained, even in the absence of a magnetic field, a localization effect that leads to a transition in the DoS from the usual profile of quasi-1D systems to a peaked profile typical of quasi-0D systems, as e.g. those found for electrons confined in a quantum dot.

  16. Donor impurity states and related terahertz range nonlinear optical response in GaN cylindrical quantum wires: Effects of external electric and magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Correa, J. D. [Departamento de Ciencias Básicas, Universidad de Medellín, Medellín (Colombia); Mora-Ramos, M. E., E-mail: memora@uaem.mx [Facultad de Ciencias, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, CP 62209 Cuernavaca, Morelos (Mexico); Duque, C. A. [Grupo de Materia Condensada-UdeA, Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín (Colombia)

    2014-06-07

    We report a study on the optical absorption coefficient associated to hydrogenic impurity interstate transitions in zinc-blende GaN quantum wires of cylindrical shape taking into account the effects of externally applied static electric and magnetic fields. The electron states emerge within the effective mass approximation, via the exact diagonalization of the donor-impurity Hamiltonian with parabolic confinement and external field effects. The nonlinear optical absorption is calculated using a recently derived expression for the dielectric susceptibility, obtained via a nonperturbative solution of the density-matrix Bloch equation. Our results show that this treatment eliminates not only the intensity-dependent bleaching effect but also the change in sign of the nonlinear contribution due to the combined effect of asymmetric impurity location and the applied electric field.

  17. Wire breakage in SLC wire profile monitors

    International Nuclear Information System (INIS)

    Field, C.; McCormick, D.; Raimondi, P.; Ross, M.

    1998-05-01

    Wire scanning beam profile monitors are used at the Stanford Linear Collider (SLC) for emittance preservation control and beam optics optimization. Twenty such scanners have proven most useful for this purpose and have performed a total of 1.5 million scans in the 4 to 6 years since their installation. Most of the essential scanners are equipped with 20 to 40 microm tungsten wires. SLC bunch intensities and sizes often exceed 2 x 10 7 particles/microm 2 (3C/m 2 ). The authors believe that this has caused a number of tungsten wire failures that appear at the ends of the wire, near the wire support points, after a few hundred scans are accumulated. Carbon fibers, also widely used at SLAC, have been substituted in several scanners and have performed well. In this paper, the authors present theories for the wire failure mechanism and techniques learned in reducing the failures

  18. 75 FR 4584 - Wire Decking From China

    Science.gov (United States)

    2010-01-28

    ... Decking From China AGENCY: United States International Trade Commission. ACTION: Scheduling of the final... subsidized and less-than-fair-value imports from China of wire decking, provided for in subheadings 9403.90... China of wire decking, and that such [[Page 4585

  19. Base Information Transport Infrastructure Wired (BITI Wired)

    Science.gov (United States)

    2016-03-01

    2016 Major Automated Information System Annual Report Base Information Transport Infrastructure Wired (BITI Wired) Defense Acquisition Management...Combat Information Transport System program was restructured into two pre-Major Automated Information System (pre-MAIS) components: Information...Major Automated Information System MAIS OE - MAIS Original Estimate MAR – MAIS Annual Report MDA - Milestone Decision Authority MDD - Materiel

  20. Wire bonding in microelectronics

    CERN Document Server

    Harman, George G

    2010-01-01

    Wire Bonding in Microelectronics, Third Edition, has been thoroughly revised to help you meet the challenges of today's small-scale and fine-pitch microelectronics. This authoritative guide covers every aspect of designing, manufacturing, and evaluating wire bonds engineered with cutting-edge techniques. In addition to gaining a full grasp of bonding technology, you'll learn how to create reliable bonds at exceedingly high yields, test wire bonds, solve common bonding problems, implement molecular cleaning methods, and much more. Coverage includes: Ultrasonic bonding systems and technologies, including high-frequency systems Bonding wire metallurgy and characteristics, including copper wire Wire bond testing Gold-aluminum intermetallic compounds and other interface reactions Gold and nickel-based bond pad plating materials and problems Cleaning to improve bondability and reliability Mechanical problems in wire bonding High-yield, fine-pitch, specialized-looping, soft-substrate, and extreme-temperature wire bo...

  1. Water Desalination with Wires

    NARCIS (Netherlands)

    Porada, S.; Sales, B.B.; Hamelers, H.V.M.; Biesheuvel, P.M.

    2012-01-01

    We show the significant potential of water desalination using a novel capacitive wire-based technology in which anode/cathode wire pairs are constructed from coating a thin porous carbon electrode layer on top of electrically conducting rods (or wires). By alternately dipping an array of electrode

  2. PS wire chamber

    CERN Multimedia

    1970-01-01

    A wire chamber used at CERN's Proton Synchrotron accelerator in the 1970s. Multi-wire detectors contain layers of positively and negatively charged wires enclosed in a chamber full of gas. A charged particle passing through the chamber knocks negatively charged electrons out of atoms in the gas, leaving behind positive ions. The electrons are pulled towards the positively charged wires. They collide with other atoms on the way, producing an avalanche of electrons and ions. The movement of these electrons and ions induces an electric pulse in the wires which is collected by fast electronics. The size of the pulse is proportional to the energy loss of the original particle.

  3. Critical state and magnetization loss in multifilamentary superconducting wire solved through the commercial finite element code ANSYS

    Science.gov (United States)

    Farinon, S.; Fabbricatore, P.; Gömöry, F.

    2010-11-01

    The commercially available finite element code ANSYS has been adapted to solve the critical state of single strips and multifilamentary tapes. We studied a special algorithm which approaches the critical state by an iterative adjustment of the material resistivity. Then, we proved its validity by comparing the results obtained for a thin strip to the Brand theory for the transport current and magnetization cases. Also, the challenging calculation of the magnetization loss of a real multifilamentary BSCCO tape showed the usefulness of our method. Finally, we developed several methods to enhance the speed of convergence, making the proposed process quite competitive in the existing survey of ac losses simulations.

  4. Effect of wire shape on wire array discharge

    Energy Technology Data Exchange (ETDEWEB)

    Shimomura, N.; Tanaka, Y.; Yushita, Y.; Nagata, M. [University of Tokushima, Department of Electrical and Electronic Engineering, Tokushima (Japan); Teramoto, Y.; Katsuki, S.; Akiyama, H. [Kumamoto University, Department of Electrical and Computer Engineering, Kumamoto (Japan)

    2001-09-01

    Although considerable investigations have been reported on z-pinches to achieve nuclear fusion, little attention has been given from the point of view of how a wire array consisting of many parallel wires explodes. Instability existing in the wire array discharge has been shown. In this paper, the effect of wire shape in the wire array on unstable behavior of the wire array discharge is represented by numerical analysis. The claws on the wire formed in installation of wire may cause uniform current distribution on wire array. The effect of error of wire diameter in production is computed by Monte Carlo Method. (author)

  5. Effect of wire shape on wire array discharge

    International Nuclear Information System (INIS)

    Shimomura, N.; Tanaka, Y.; Yushita, Y.; Nagata, M.; Teramoto, Y.; Katsuki, S.; Akiyama, H.

    2001-01-01

    Although considerable investigations have been reported on z-pinches to achieve nuclear fusion, little attention has been given from the point of view of how a wire array consisting of many parallel wires explodes. Instability existing in the wire array discharge has been shown. In this paper, the effect of wire shape in the wire array on unstable behavior of the wire array discharge is represented by numerical analysis. The claws on the wire formed in installation of wire may cause uniform current distribution on wire array. The effect of error of wire diameter in production is computed by Monte Carlo Method. (author)

  6. Welding wires for high-tensile steels

    International Nuclear Information System (INIS)

    Laz'ko, V.E.; Starova, L.L.; Koval'chuk, V.G.; Maksimovich, T.L.; Labzina, I.E.; Yadrov, V.M.

    1993-01-01

    Strength of welded joints in arc welding of high-tensile steels of mean and high thickness by welding wires is equal to approximately 1300 MPa in thermohardened state and approximately 600 MPa without heat treatment. Sv-15Kh2NMTsRA-VI (EhK44-VI) -Sv-30Kh2NMTsRA-VI (EkK47-VI) welding wires are suggested for welding of medium-carbon alloyed steels. These wires provide monotonous growth of ultimate strength of weld metal in 1250-1900 MPa range with increase of C content in heat-treated state

  7. COMPARATIVE ANALYSIS OF ELECTRICAL AND THERMAL CONTROL OF THE LINING STATE OF INDUCTION APPARATUS OF COPPER WIRE MANUFACTURE

    Directory of Open Access Journals (Sweden)

    V. M. Zolotaryov

    2018-02-01

    Full Text Available Aim. This article is intended to develop a technique for monitoring the lining state of induction channel furnaces for melting oxygen-free copper by monitoring changes in the distribution of thermal fields in their lining and carrying out a comparative analysis of the developed technique with the existing one that controls the electrical resistance of the melting channel of the furnaces. Technique. For carrying out the research, the theories of electromagnetic field, thermodynamics, mathematical physics, mathematical modeling based on the finite element method were used. Results. A technique for diagnosing the lining state of the induction channel furnaces for melting oxygen-free copper has been developed, which makes it possible to determine the dislocation and the size of the liquid metal leaks by analyzing the temperature distribution over the body surface both the inductor and the furnace. Scientific novelty. The connection between the temperature field distribution on the surface of the furnace body and the dislocation and dimensions of the liquid metal leaks in its lining is determined for the first time. Practical significance. Using the proposed technique will allow to conduct more accurate diagnostics of the lining conditions of the induction channel furnaces, as well as to determine the location and size of the liquid metal leaks, creating the basis for predicting the working life of the furnace.

  8. Towards plant wires

    OpenAIRE

    Adamatzky, Andrew

    2014-01-01

    In experimental laboratory studies we evaluate a possibility of making electrical wires from living plants. In scoping experiments we use lettuce seedlings as a prototype model of a plant wire. We approximate an electrical potential transfer function by applying direct current voltage to the lettuce seedlings and recording output voltage. We analyse oscillation frequencies of the output potential and assess noise immunity of the plant wires. Our findings will be used in future designs of self...

  9. Photovoltaic Wire, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This Small Business Innovation Research Phase I project will investigate a new architecture for photovoltaic devices based on nanotechnology: photovoltaic wire. The...

  10. Charpak hemispherical wire chamber

    CERN Multimedia

    1970-01-01

    pieces. Mesures are of the largest one. Multi-wire detectors contain layers of positively and negatively charged wires enclosed in a chamber full of gas. A charged particle passing through the chamber knocks negatively charged electrons out of atoms in the gas, leaving behind positive ions. The electrons are pulled towards the positively charged wires. They collide with other atoms on the way, producing an avalanche of electrons and ions. The movement of these electrons and ions induces an electric pulse in the wires which is collected by fast electronics. The size of the pulse is proportional to the energy loss of the original particle.

  11. 1998 wire development workshop proceedings

    International Nuclear Information System (INIS)

    1998-04-01

    This report consists of vugraphs of the presentations at the conference. The conference was divided into the following sessions: (1) First Generation Wire Development: Status and Issues; (2) First Generation Wire in Pre-Commercial Prototypes; (3) Second Generation Wire Development: Private Sector Progress and Issues; (4) Second Generation Wire Development: Federal Laboratories; and (5) Fundamental Research Issues for HTS Wire Development

  12. 1998 wire development workshop proceedings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-04-01

    This report consists of vugraphs of the presentations at the conference. The conference was divided into the following sessions: (1) First Generation Wire Development: Status and Issues; (2) First Generation Wire in Pre-Commercial Prototypes; (3) Second Generation Wire Development: Private Sector Progress and Issues; (4) Second Generation Wire Development: Federal Laboratories; and (5) Fundamental Research Issues for HTS Wire Development.

  13. Thermal Aware Floorplanning Incorporating Temperature Dependent Wire Delay Estimation

    DEFF Research Database (Denmark)

    Winther, AndreasThor; Liu, Wei; Nannarelli, Alberto

    2015-01-01

    Temperature has a negative impact on metal resistance and thus wire delay. In state-of-the-art VLSI circuits, large thermal gradients usually exist due to the uneven distribution of heat sources. The difference in wire temperature can lead to performance mismatch because wires of the same length...... can have different delay. Traditional floorplanning algorithms use wirelength to estimate wire performance. In this work, we show that this does not always produce a design with the shortest delay and we propose a floorplanning algorithm taking into account temperature dependent wire delay as one...

  14. Wire Array Photovoltaics

    Science.gov (United States)

    Turner-Evans, Dan

    Over the past five years, the cost of solar panels has dropped drastically and, in concert, the number of installed modules has risen exponentially. However, solar electricity is still more than twice as expensive as electricity from a natural gas plant. Fortunately, wire array solar cells have emerged as a promising technology for further lowering the cost of solar. Si wire array solar cells are formed with a unique, low cost growth method and use 100 times less material than conventional Si cells. The wires can be embedded in a transparent, flexible polymer to create a free-standing array that can be rolled up for easy installation in a variety of form factors. Furthermore, by incorporating multijunctions into the wire morphology, higher efficiencies can be achieved while taking advantage of the unique defect relaxation pathways afforded by the 3D wire geometry. The work in this thesis shepherded Si wires from undoped arrays to flexible, functional large area devices and laid the groundwork for multijunction wire array cells. Fabrication techniques were developed to turn intrinsic Si wires into full p-n junctions and the wires were passivated with a-Si:H and a-SiNx:H. Single wire devices yielded open circuit voltages of 600 mV and efficiencies of 9%. The arrays were then embedded in a polymer and contacted with a transparent, flexible, Ni nanoparticle and Ag nanowire top contact. The contact connected >99% of the wires in parallel and yielded flexible, substrate free solar cells featuring hundreds of thousands of wires. Building on the success of the Si wire arrays, GaP was epitaxially grown on the material to create heterostructures for photoelectrochemistry. These cells were limited by low absorption in the GaP due to its indirect bandgap, and poor current collection due to a diffusion length of only 80 nm. However, GaAsP on SiGe offers a superior combination of materials, and wire architectures based on these semiconductors were investigated for multijunction

  15. Josephson junction arrays and superconducting wire networks

    International Nuclear Information System (INIS)

    Lobb, C.J.

    1992-01-01

    Techniques used to fabricate integrated circuits make it possible to construct superconducting networks containing as many as 10 6 wires or Josephson junctions. Such networks undergo phase transitions from resistive high-temperature states to ordered low-resistance low-temperature states. The nature of the phase transition depends strongly on controllable parameters such as the strength of the superconductivity in each wire or junction and the external magnetic field. This paper will review the physics of these phase transitions, starting with the simplest zero-magnetic field case. This leads to a Kosterlitz-Thouless transition when the junctions or wires are weak, and a simple mean-field fransition when the junctions or wires are strong. Rich behavior, resulting from frustration, occurs in the presence of a magnetic field. (orig.)

  16. Charge Transport Along Phenylenevinylene Molecular Wires

    OpenAIRE

    2006-01-01

    Abstract A model to calculate the mobility of charges along molecular wires is presented. The model is based on the tight-binding approximation and combines a quantum mechanical description of the charge with a classical description of the structural degrees of freedom. It is demonstrated that the average mobility of charge carriers along molecular wires can be obtained by time-propagation of states which are initially localised. The model is used to calculate the mobility of charg...

  17. Commercial and Industrial Wiring.

    Science.gov (United States)

    Kaltwasser, Stan; Flowers, Gary

    This module is the third in a series of three wiring publications, includes additional technical knowledge and applications required for job entry in the commercial and industrial wiring trade. The module contains 15 instructional units that cover the following topics: blueprint reading and load calculations; tools and equipment; service;…

  18. t matrix of metallic wire structures

    International Nuclear Information System (INIS)

    Zhan, T. R.; Chui, S. T.

    2014-01-01

    To study the electromagnetic resonance and scattering properties of complex structures of which metallic wire structures are constituents within multiple scattering theory, the t matrix of individual structures is needed. We have recently developed a rigorous and numerically efficient equivalent circuit theory in which retardation effects are taken into account for metallic wire structures. Here, we show how the t matrix can be calculated analytically within this theory. We illustrate our method with the example of split ring resonators. The density of states and cross sections for scattering and absorption are calculated, which are shown to be remarkably enhanced at resonant frequencies. The t matrix serves as the basic building block to evaluate the interaction of wire structures within the framework of multiple scattering theory. This will open the door to efficient design and optimization of assembly of wire structures

  19. Towards plant wires.

    Science.gov (United States)

    Adamatzky, Andrew

    2014-08-01

    In experimental laboratory studies we evaluate a possibility of making electrical wires from living plants. In scoping experiments we use lettuce seedlings as a prototype model of a plant wire. We approximate an electrical potential transfer function by applying direct current voltage to the lettuce seedlings and recording output voltage. We analyse oscillation frequencies of the output potential and assess noise immunity of the plant wires. Our findings will be used in future designs of self-growing wetware circuits and devices, and integration of plant-based electronic components into future and emergent bio-hybrid systems. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  20. Thermosonic wire bonding of IC devices using palladium wire

    International Nuclear Information System (INIS)

    Shze, J.H.; Poh, M.T.; Tan, R.M.

    1996-01-01

    The feasibility of replacing gold wire by palladium wire in thermosonic wire bonding of CMOS and bipolar devices are studied in terms of the manufacturability, physical, electrical and assembly performance. The results that palladium wire is a viable option for bonding the bipolar devices but not the CMOS devices

  1. Wire chambers: Trends and alternatives

    Energy Technology Data Exchange (ETDEWEB)

    Regler, Meinhard

    1992-05-15

    The subtitle of this year's Vienna Wire Chamber Conference - 'Recent Trends and Alternative Techniques' - signalled that it covered a wide range of science and technology. While an opening Vienna talk by wire chamber pioneer Georges Charpak many years ago began 'Les funerailles des chambres a fils (the burial of wire chambers)', the contrary feeling this year was that wire chambers are very much alive!.

  2. Heat Transfer Analysis in Wire Bundles for Aerospace Vehicles

    Science.gov (United States)

    Rickman, S. L.; Iamello, C. J.

    2016-01-01

    Design of wiring for aerospace vehicles relies on an understanding of "ampacity" which refers to the current carrying capacity of wires, either, individually or in wire bundles. Designers rely on standards to derate allowable current flow to prevent exceedance of wire temperature limits due to resistive heat dissipation within the wires or wire bundles. These standards often add considerable margin and are based on empirical data. Commercial providers are taking an aggressive approach to wire sizing which challenges the conventional wisdom of the established standards. Thermal modelling of wire bundles may offer significant mass reduction in a system if the technique can be generalized to produce reliable temperature predictions for arbitrary bundle configurations. Thermal analysis has been applied to the problem of wire bundles wherein any or all of the wires within the bundle may carry current. Wire bundles present analytical challenges because the heat transfer path from conductors internal to the bundle is tortuous, relying on internal radiation and thermal interface conductance to move the heat from within the bundle to the external jacket where it can be carried away by convective and radiative heat transfer. The problem is further complicated by the dependence of wire electrical resistivity on temperature. Reduced heat transfer out of the bundle leads to higher conductor temperatures and, hence, increased resistive heat dissipation. Development of a generalized wire bundle thermal model is presented and compared with test data. The steady state heat balance for a single wire is derived and extended to the bundle configuration. The generalized model includes the effects of temperature varying resistance, internal radiation and thermal interface conductance, external radiation and temperature varying convective relief from the free surface. The sensitivity of the response to uncertainties in key model parameters is explored using Monte Carlo analysis.

  3. Spin polarization of electrons in quantum wires

    OpenAIRE

    Vasilchenko, A. A.

    2013-01-01

    The total energy of a quasi-one-dimensional electron system is calculated using density functional theory. It is shown that spontaneous ferromagnetic state in quantum wire occurs at low one-dimensional electron density. The critical electron density below which electrons are in spin-polarized state is estimated analytically.

  4. Copper wire bonding

    CERN Document Server

    Chauhan, Preeti S; Zhong, ZhaoWei; Pecht, Michael G

    2014-01-01

    This critical volume provides an in-depth presentation of copper wire bonding technologies, processes and equipment, along with the economic benefits and risks.  Due to the increasing cost of materials used to make electronic components, the electronics industry has been rapidly moving from high cost gold to significantly lower cost copper as a wire bonding material.  However, copper wire bonding has several process and reliability concerns due to its material properties.  Copper Wire Bonding book lays out the challenges involved in replacing gold with copper as a wire bond material, and includes the bonding process changes—bond force, electric flame off, current and ultrasonic energy optimization, and bonding tools and equipment changes for first and second bond formation.  In addition, the bond–pad metallurgies and the use of bare and palladium-coated copper wires on aluminum are presented, and gold, nickel and palladium surface finishes are discussed.  The book also discusses best practices and re...

  5. Si Wire-Array Solar Cells

    Science.gov (United States)

    Boettcher, Shannon

    2010-03-01

    Micron-scale Si wire arrays are three-dimensional photovoltaic absorbers that enable orthogonalization of light absorption and carrier collection and hence allow for the utilization of relatively impure Si in efficient solar cell designs. The wire arrays are grown by a vapor-liquid-solid-catalyzed process on a crystalline (111) Si wafer lithographically patterned with an array of metal catalyst particles. Following growth, such arrays can be embedded in polymethyldisiloxane (PDMS) and then peeled from the template growth substrate. The result is an unusual photovoltaic material: a flexible, bendable, wafer-thickness crystalline Si absorber. In this paper I will describe: 1. the growth of high-quality Si wires with controllable doping and the evaluation of their photovoltaic energy-conversion performance using a test electrolyte that forms a rectifying conformal semiconductor-liquid contact 2. the observation of enhanced absorption in wire arrays exceeding the conventional light trapping limits for planar Si cells of equivalent material thickness and 3. single-wire and large-area solid-state Si wire-array solar cell results obtained to date with directions for future cell designs based on optical and device physics. In collaboration with Michael Kelzenberg, Morgan Putnam, Joshua Spurgeon, Daniel Turner-Evans, Emily Warren, Nathan Lewis, and Harry Atwater, California Institute of Technology.

  6. Spin correlations in quantum wires

    Science.gov (United States)

    Sun, Chen; Pokrovsky, Valery L.

    2015-04-01

    We consider theoretically spin correlations in a one-dimensional quantum wire with Rashba-Dresselhaus spin-orbit interaction (RDI). The correlations of noninteracting electrons display electron spin resonance at a frequency proportional to the RDI coupling. Interacting electrons, upon varying the direction of the external magnetic field, transit from the state of Luttinger liquid (LL) to the spin-density wave (SDW) state. We show that the two-time total-spin correlations of these states are significantly different. In the LL, the projection of total spin to the direction of the RDI-induced field is conserved and the corresponding correlator is equal to zero. The correlators of two components perpendicular to the RDI field display a sharp electron-spin resonance driven by the RDI-induced intrinsic field. In contrast, in the SDW state, the longitudinal projection of spin dominates, whereas the transverse components are suppressed. This prediction indicates a simple way for an experimental diagnostic of the SDW in a quantum wire. We point out that the Luttinger model does not respect the spin conservation since it assumes the infinite Fermi sea. We propose a proper cutoff to correct this failure.

  7. 76 FR 19382 - Galvanized Steel Wire From China and Mexico

    Science.gov (United States)

    2011-04-07

    ... INTERNATIONAL TRADE COMMISSION [Investigation Nos. 701-TA-479 and 731-TA-1183-1184 (Preliminary)] Galvanized Steel Wire From China and Mexico AGENCY: United States International Trade Commission. ACTION... the United States is materially retarded, by reason of [[Page 19383

  8. 78 FR 7452 - Steel Wire Garment Hangers From Vietnam; Determinations

    Science.gov (United States)

    2013-02-01

    ...), that an industry in the United States is materially injured by reason of imports of steel wire garment... Garment Hangers From Vietnam; Determinations On the basis of the record \\1\\ developed in the subject... duty orders on steel wire garment hangers from Vietnam. Background The Commission instituted these...

  9. Wire core reactor for NTP

    International Nuclear Information System (INIS)

    Harty, R.B.

    1991-01-01

    The development of the wire core system for Nuclear Thermal Propulsion (NTP) that took place from 1963 to 1965 is discussed. A wire core consists of a fuel wire with spacer wires. It's an annular flow core having a central control rod. There are actually four of these, with beryllium solid reflectors on both ends and all the way around. Much of the information on the concept is given in viewgraph form. Viewgraphs are presented on design details of the wire core, the engine design, engine weight vs. thrust, a technique used to fabricate the wire fuel element, and axial temperature distribution

  10. Wired to freedom

    DEFF Research Database (Denmark)

    Jepsen, Kim Sune Karrasch; Bertilsson, Margareta

    2017-01-01

    dimension of life science through a notion of public politics adopted from the political theory of John Dewey. We show how cochlear implantation engages different social imaginaries on the collective and individual levels and we suggest that users share an imaginary of being “wired to freedom” that involves...... new access to social life, continuous communicative challenges, common practices, and experiences. In looking at their lives as “wired to freedom,” we hope to promote a wider spectrum of civic participation in the benefit of future life science developments within and beyond the field of Cochlear...

  11. Electric wiring domestic

    CERN Document Server

    Coker, A J

    1992-01-01

    Electric Wiring: Domestic, Tenth Edition, is a clear and reliable guide to the practical aspects of domestic electric wiring. Intended for electrical contractors, installation engineers, wiremen and students, its aim is to provide essential up to date information on modern methods and materials in a simple, clear, and concise manner. The main changes in this edition are those necessary to bring the work into line with the 16th Edition of the Regulations for Electrical Installations issued by the Institution of Electrical Engineers. The book begins by introducing the basic features of domestic

  12. Modern wiring practice

    CERN Document Server

    Steward, W E

    2012-01-01

    Continuously in print since 1952, Modern Wiring Practice has now been fully revised to provide an up-to-date source of reference to building services design and installation in the 21st century. This compact and practical guide addresses wiring systems design and electrical installation together in one volume, creating a comprehensive overview of the whole process for contractors and architects, as well as electricians and other installation engineers. Best practice is incorporated throughout, combining theory and practice with clear and accessible explanation, all

  13. Spontaneous spin polarization in quantum wires

    Energy Technology Data Exchange (ETDEWEB)

    Vasilchenko, A.A., E-mail: a_vas2002@mail.ru

    2015-12-04

    The total energy of a quasi-one-dimensional electron system was calculated using the density functional theory. In the absence of a magnetic field, we have found that ferromagnetic state occurs in the quantum wires. The phase diagram of the transition into the spin-polarized state is constructed. The critical electron density below which electrons are in spin-polarized state is estimated analytically. - Highlights: • Density functional theory used to study a spin-polarized state in quantum wires. • The Kohn–Sham equation for quasi-one-dimensional electrons solved numerically. • The phase diagram of the transition into the spin-polarized state is constructed. • The electron density below which electrons are in a spin-polarized state was found. • The critical density of electrons was estimated analytically.

  14. Spontaneous spin polarization in quantum wires

    International Nuclear Information System (INIS)

    Vasilchenko, A.A.

    2015-01-01

    The total energy of a quasi-one-dimensional electron system was calculated using the density functional theory. In the absence of a magnetic field, we have found that ferromagnetic state occurs in the quantum wires. The phase diagram of the transition into the spin-polarized state is constructed. The critical electron density below which electrons are in spin-polarized state is estimated analytically. - Highlights: • Density functional theory used to study a spin-polarized state in quantum wires. • The Kohn–Sham equation for quasi-one-dimensional electrons solved numerically. • The phase diagram of the transition into the spin-polarized state is constructed. • The electron density below which electrons are in a spin-polarized state was found. • The critical density of electrons was estimated analytically.

  15. Structural evolution and drawability in laser dieless drawing of fine nickel wires

    International Nuclear Information System (INIS)

    Li Yonggang; Quick, Nathaniel R.; Kar, Aravinda

    2003-01-01

    Drawability of Nickel 200 wires in laser dieless drawing was investigated. Influencing factors under consideration include the laser power, the heat-treatment state (as-drawn or annealed), and the initial wire diameter. Microstructural evolutions in laser dieless drawing were studied by scanning electron microscopy (SEM). The wires exhibit optimal drawability at an intermediate laser power range corresponding to the wire temperature in the range of 1000-1300 K. The as-drawn precursor wire has better drawability than that of the annealed wire. The drawability decreases as the precursor wire diameter deceases. Microcrystalline structures were found in nickel 200 wires after being laser-drawn from as-drawn precursor wires. These experimental observations are explained using the concepts of dynamic recovery and recrystallization

  16. Josephson junctions of multiple superconducting wires

    Science.gov (United States)

    Deb, Oindrila; Sengupta, K.; Sen, Diptiman

    2018-05-01

    We study the spectrum of Andreev bound states and Josephson currents across a junction of N superconducting wires which may have s - or p -wave pairing symmetries and develop a scattering matrix based formalism which allows us to address transport across such junctions. For N ≥3 , it is well known that Berry curvature terms contribute to the Josephson currents; we chart out situations where such terms can have relatively large effects. For a system of three s -wave or three p -wave superconductors, we provide analytic expressions for the Andreev bound-state energies and study the Josephson currents in response to a constant voltage applied across one of the wires; we find that the integrated transconductance at zero temperature is quantized to integer multiples of 4 e2/h , where e is the electron charge and h =2 π ℏ is Planck's constant. For a sinusoidal current with frequency ω applied across one of the wires in the junction, we find that Shapiro plateaus appear in the time-averaged voltage across that wire for any rational fractional multiple (in contrast to only integer multiples in junctions of two wires) of 2 e /(ℏ ω ) . We also use our formalism to study junctions of two p -wave and one s -wave wires. We find that the corresponding Andreev bound-state energies depend on the spin of the Bogoliubov quasiparticles; this produces a net magnetic moment in such junctions. The time variation of these magnetic moments may be controlled by an external voltage applied across the junction. We discuss experiments which may test our theory.

  17. Studying superconducting Nb3Sn wire

    CERN Multimedia

    AUTHOR|(CDS)2099575

    2015-01-01

    Studying superconducting Nb3Sn wire. From the current experience from LHC and HL-LHC we know that the performance requirements for Nb3Sn conductor for future circular collider are challenging and should exceed that of present state-of-the-art materials.

  18. Studying superconducting Nb$_{3}$Sn wire

    CERN Multimedia

    AUTHOR|(CDS)2099575

    2015-01-01

    Studying superconducting Nb$_{3}$Sn wire. From the current experience from LHC and HL-LHC we know that the performance requirements for Nb$_{3}$Sn conductor for future circular collider are challenging and should exceed that of present state-of-the-art materials.

  19. Wired vs. Wireless.

    Science.gov (United States)

    Fielding, Randall

    2000-01-01

    Presents a debate on which technology will be in tomorrow's classrooms and the pros and cons of wiring classrooms and using a wireless network. Concluding comments address the likelihood, and desirability, of placing computers throughout the entire educational process and what types of computers and capabilities are needed. (GR)

  20. A World without Wires

    Science.gov (United States)

    Panettieri, Joseph C.

    2006-01-01

    The wireless bandwagon is rolling across Mississippi, picking up a fresh load of converts and turning calamity into opportunity. Traditional wired school networks, many of which unraveled during Hurricane Katrina, are giving way to advanced wireless mesh networks that frequently include voice-over-IP (VoIP) capabilities. Vendor funding is helping…

  1. 3D Wire 2015

    DEFF Research Database (Denmark)

    Jordi, Moréton; F, Escribano; J. L., Farias

    This document is a general report on the implementation of gamification in 3D Wire 2015 event. As the second gamification experience in this event, we have delved deeply in the previous objectives (attracting public areas less frequented exhibition in previous years and enhance networking) and have...

  2. Wire chamber conference

    International Nuclear Information System (INIS)

    Bartl, W.; Neuhofer, G.; Regler, M.

    1986-02-01

    This booklet contains program and the abstracts of the papers presented at the conference, most of them dealing with performance testing of various types of wire chambers. The publication of proceedings is planned as a special issue of 'Nuclear instruments and methods' later on. All abstracts are in English. An author index for the book of abstracts is given. (A.N.)

  3. Wire EDM for Refractory Materials

    Science.gov (United States)

    Zellars, G. R.; Harris, F. E.; Lowell, C. E.; Pollman, W. M.; Rys, V. J.; Wills, R. J.

    1982-01-01

    In an attempt to reduce fabrication time and costs, Wire Electrical Discharge Machine (Wire EDM) method was investigated as tool for fabricating matched blade roots and disk slots. Eight high-strength nickel-base superalloys were used. Computer-controlled Wire EDM technique provided high quality surfaces with excellent dimensional tolerances. Wire EDM method offers potential for substantial reductions in fabrication costs for "hard to machine" alloys and electrically conductive materials in specific high-precision applications.

  4. Practical wiring in SI units

    CERN Document Server

    Miller, Henry A

    2013-01-01

    Practical Wiring, Volume 1 is a 13-chapter book that first describes some of the common hand tools used in connection with sheathed wiring. Subsequent chapters discuss the safety in wiring, cables, conductor terminations, insulating sheathed wiring, conductor sizes, and consumer's control equipments. Other chapters center on socket outlets, plugs, lighting subcircuits, lighting accessories, bells, and primary and secondary cells. This book will be very valuable to students involved in this field of interest.

  5. Wire chambers: Trends and alternatives

    International Nuclear Information System (INIS)

    Regler, Meinhard

    1992-01-01

    The subtitle of this year's Vienna Wire Chamber Conference - 'Recent Trends and Alternative Techniques' - signalled that it covered a wide range of science and technology. While an opening Vienna talk by wire chamber pioneer Georges Charpak many years ago began 'Les funerailles des chambres a fils (the burial of wire chambers)', the contrary feeling this year was that wire chambers are very much alive!

  6. Longitudinal magnetic bistability of electroplated wires

    International Nuclear Information System (INIS)

    Kurlyandskaya, G.V.; Garcia-Miquel, H.; Vazquez, M.; Svalov, A.V.; Vas'kovskiy, V.O.

    2002-01-01

    Fe 20 Ni 74 Co 6 and Fe 20 Ni 64 Co 16 1 μm thick magnetic tubes electroplated onto Cu 98 Be 2 conductive wire have been investigated in as-deposited state, after heat treatment under longitudinal magnetic field for 1 h at 330 deg. C, and after rf-sputtering deposition of the additional 2 μm Fe 19 Ni 81 layer. Heat treatments and an additional layer deposition modify the shape of hysteresis loops. Magnetically bistable behaviour, observed after the field annealing at a temperature of 330 deg. C, is studied as a function of the length of the samples. This is the first report by our knowledge on the bistable behaviour of the electroplated wires. The bistability of these wires is promising for applications such as tagging or pulse generator applications

  7. Magnetic domain propagation in Pt/Co/Pt micro wires with engineered coercivity gradients along and across the wire

    Energy Technology Data Exchange (ETDEWEB)

    Jarosz, A., E-mail: arctgh@ifmpan.poznan.pl [Institute of Molecular Physics, Polish Academy of Sciences, ul. M. Smoluchowskiego 17, 60-179 Poznań (Poland); Gaul, A. [Department of Physics and Center for Interdisciplinary Nanostructure Science and Technology (CINSaT), University of Kassel, Heinrich-Plett-Str. 40, D-34132 Kassel (Germany); Urbaniak, M. [Institute of Molecular Physics, Polish Academy of Sciences, ul. M. Smoluchowskiego 17, 60-179 Poznań (Poland); Ehresmann, A. [Department of Physics and Center for Interdisciplinary Nanostructure Science and Technology (CINSaT), University of Kassel, Heinrich-Plett-Str. 40, D-34132 Kassel (Germany); Stobiecki, F. [Institute of Molecular Physics, Polish Academy of Sciences, ul. M. Smoluchowskiego 17, 60-179 Poznań (Poland)

    2017-08-01

    Highlights: • Electron lithography and ion bombardment were used to modify the Co/Pt micro-wires. • Two-dimensional perpendicular magnetic anisotropy gradient was engineered. • Engineered anisotropy gradient allowed to control domain wall positions in the wires. • Simulations confirm the influence of defects on a remanent state of the wires. - Abstract: Pt(15 nm)/[Co(0.6 nm)/Pt(1.5 nm)]{sub 4} multilayers with perpendicular magnetic anisotropy were patterned into several-micrometer wide wires by electron-beam lithography. Bombarding the wires with He{sup +} ions with a fluence gradient along the wire results in a spatial gradient of switching fields that allows a controllable positioning of domain walls. The influence of the reduced anisotropy near the wire edges causes a remanent state in which the reversal close to the long edges precedes that in the middle of the wires. Experiments using Kerr microscopy prove this effect and micromagnetic simulations corroborate that a decrease of the anisotropy at the edges is responsible for the effect.

  8. The Micro Wire Detector

    International Nuclear Information System (INIS)

    Adeva, B.; Gomez, F.; Pazos, A.; Pfau, R.; Plo, M.; Rodriguez, J.M.; Vazquez, P.; Labbe, J.C.

    1999-01-01

    We present the performance of a new proportional gas detector. Its geometry consists of a cathode plane with 70x70 μm 2 apertures, crossed by 25 μm anode strips to which it is attached by 50 μm kapton spacers. In the region where the avalanche takes place, the anode strips are suspended in the gas mixture as in a standard wire chamber. This detector exhibits high rate capability and large gains, introducing very little material. (author)

  9. Superconducting magnet wire

    Science.gov (United States)

    Schuller, Ivan K.; Ketterson, John B.; Banerjee, Indrajit

    1986-01-01

    A superconducting tape or wire with an improved critical field is formed of alternating layers of a niobium-containing superconductor such as Nb, NbTi, Nb.sub.3 Sn or Nb.sub.3 Ge with a thickness in the range of about 0.5-1.5 times its coherence length, supported and separated by layers of copper with each copper layer having a thickness in the range of about 170-600 .ANG..

  10. Twisting wire scanner

    Energy Technology Data Exchange (ETDEWEB)

    Gharibyan, V.; Delfs, A.; Koruptchenkov, I.; Noelle, D.; Tiessen, H.; Werner, M.; Wittenburg, K.

    2012-11-15

    A new type of 'two-in-one' wire scanner is proposed. Recent advances in linear motors' technology make it possible to combine translational and rotational movements. This will allow to scan the beam in two perpendicular directions using a single driving motor and a special fork attached to it. Vertical or horizontal mounting will help to escape problems associated with the 45 deg scanners. Test results of the translational part with linear motors is presented.

  11. Twisting wire scanner

    International Nuclear Information System (INIS)

    Gharibyan, V.; Delfs, A.; Koruptchenkov, I.; Noelle, D.; Tiessen, H.; Werner, M.; Wittenburg, K.

    2012-11-01

    A new type of 'two-in-one' wire scanner is proposed. Recent advances in linear motors' technology make it possible to combine translational and rotational movements. This will allow to scan the beam in two perpendicular directions using a single driving motor and a special fork attached to it. Vertical or horizontal mounting will help to escape problems associated with the 45 deg scanners. Test results of the translational part with linear motors is presented.

  12. Wire chamber gases

    International Nuclear Information System (INIS)

    Va'vra, J.

    1992-04-01

    In this paper, we describe new developments in gas mixtures which have occurred during the last 3--4 years. In particular, we discuss new results on the measurement and modeling of electron drift parameters, the modeling of drift chamber resolution, measurements of primary ionization and the choice of gas for applications such as tracking, single electron detection, X-ray detection and visual imaging. In addition, new results are presented on photon feedback, breakdown and wire aging

  13. Dual wire welding torch and method

    Science.gov (United States)

    Diez, Fernando Martinez; Stump, Kevin S.; Ludewig, Howard W.; Kilty, Alan L.; Robinson, Matthew M.; Egland, Keith M.

    2009-04-28

    A welding torch includes a nozzle with a first welding wire guide configured to orient a first welding wire in a first welding wire orientation, and a second welding wire guide configured to orient a second welding wire in a second welding wire orientation that is non-coplanar and divergent with respect to the first welding wire orientation. A method of welding includes moving a welding torch with respect to a workpiece joint to be welded. During moving the welding torch, a first welding wire is fed through a first welding wire guide defining a first welding wire orientation and a second welding wire is fed through a second welding wire guide defining a second welding wire orientation that is divergent and non-coplanar with respect to the first welding wire orientation.

  14. Control of flow past a circular cylinder via a spanwise surface wire: effect of the wire scale

    Energy Technology Data Exchange (ETDEWEB)

    Ekmekci, Alis [University of Toronto Institute for Aerospace Studies, Toronto, ON (Canada); Rockwell, Donald [Lehigh University, Department of Mechanical Engineering, Bethlehem, PA (United States)

    2011-09-15

    Flow phenomena induced by a single spanwise wire on the surface of a circular cylinder are investigated via a cinema technique of particle image velocimetry (PIV). The primary aim of this investigation is to assess the effect of the wire scale. To this end, consideration is given to wires with different diameters that are 0.5, 1.2, and 2.9% of the cylinder diameter. The Reynolds number has a subcritical value of 10,000. Compared to the thickness of the unperturbed boundary layer developing around the cylinder between 5 and 75 from the forward stagnation point, the former two wires have smaller scales and the latter has a larger scale. Two angular locations of the wire, defined with respect to the forward stagnation point of the cylinder, are found to be critical. When the wire is located at these critical angles, either the most significant extension or the contraction of the time-mean separation bubble occurs in the near wake. These critical angles depend on the wire scale: the smaller the wire, the larger the critical angle. The small-scale and large-scale wires that have diameters of 1.2 and 2.9% of the cylinder diameter induce bistable shear-layer oscillations between different separation modes when placed at their respective critical angles corresponding to maximum extension of the near-wake bubble. These oscillations have irregular time intervals that are much longer than the time scale associated with the classical Karman instability. Moreover, the large-scale wire can either significantly attenuate or intensify the Karman mode of vortex shedding at the critical states; in contrast, the small-scale wires do not notably alter the strength of the Karman instability. (orig.)

  15. SpaceWire: IP, Components, Development Support and Test Equipment

    Science.gov (United States)

    Parkes, S.; McClements, C.; Mills, S.; Martin, I.

    SpaceWire is a communications network for use onboard spacecraft. It is designed to connect high data-rate sensors, large solid-state memories, processing units and the downlink telemetry subsystem providing an integrated data-handling network. SpaceWire links are serial, high-speed (2 Mbits/sec to 400 Mbits/sec), bi-directional, full-duplex, pointto- point data links which connect together SpaceWire equipment. Application information is sent along a SpaceWire link in discrete packets. Control and time information can also be sent along SpaceWire links. SpaceWire is defined in the ECSS-E50-12A standard [1]. With the adoption of SpaceWire on many space missions the ready availability of intellectual property (IP) cores, components, software drivers, development support, and test equipment becomes a major issue for those developing satellites and their electronic subsystems. This paper describes the work being done at the University of Dundee and STAR-Dundee Ltd with ESA, BNSC and internal funding to make these essential items available. STAR-Dundee is a spin-out company of the University of Dundee set up specifically to support users of SpaceWire.

  16. Right wire in orthodontics: a review

    OpenAIRE

    Ali, Hashim

    2015-01-01

    Quality of orthodontic wire such as stiffness, hardness, resiliency, elasticity and working range are important determinants of the effectivenes of tooth movement. Commonly used types of orthodontic arch wire:1) stainless steel(ss) wire, 2) conventional nickel- titanium (NiTi)alloy wire,3) improved super elastic NiTi- alloy wire( also called low hysteresis(LH)wire), and titanium molybdenum alloy(TMA) wire.

  17. Review of wire chamber aging

    International Nuclear Information System (INIS)

    Va'Vra, J.

    1986-02-01

    This paper makes an overview of the wire chamber aging problems as a function of various chamber design parameters. It emphasizes the chemistry point of view and many examples are drawn from the plasma chemistry field as a guidance for a possible effort in the wire chamber field. The paper emphasizes the necessity of variable tuning, the importance of purity of the wire chamber environment, as well as it provides a practical list of presently known recommendations. In addition, several models of the wire chamber aging are qualitatively discussed. The paper is based on a summary talk given at the Wire Chamber Aging Workshop held at LBL, Berkeley on January 16-17, 1986. Presented also at Wire Chamber Conference, Vienna, February 25-28, 1986. 74 refs., 18 figs., 11 tabs

  18. Wire communication engineering

    International Nuclear Information System (INIS)

    Son, Byeong Tae

    1997-02-01

    This book describes wire telecommunication engineering/ It is divided into eleven chapter, which deal with Introduction with development of telecommunication, voice and sound wave and communication network, Telegraphy with summary of telegraphy, code of telegraphy, communication speed, morse and telex, Telephone on structure, circuit and image telephone, Traffic on telecommunication traffic, transmission of line about theory, cable line and loaded cable, carrier communication with carrier telegraphy and carrier telephone, optical communication with types, structure, specialty, laser and equipment, DATA, Mobile telecommunication on summary, mobile telephone, radio paging and digital mobile telecommunication, ISDN with channel of ISDN, and service of ISDN, and design of telecommunication.

  19. The Micro Wire Detector

    Energy Technology Data Exchange (ETDEWEB)

    Adeva, B.; Gomez, F.; Pazos, A.; Pfau, R.; Plo, M. E-mail: maximo.plo@cern.ch; Rodriguez, J.M.; Vazquez, P.; Labbe, J.C

    1999-10-11

    We present the performance of a new proportional gas detector. Its geometry consists of a cathode plane with 70x70 {mu}m{sup 2} apertures, crossed by 25 {mu}m anode strips to which it is attached by 50 {mu}m kapton spacers. In the region where the avalanche takes place, the anode strips are suspended in the gas mixture as in a standard wire chamber. This detector exhibits high rate capability and large gains, introducing very little material. (author)

  20. Wiring regulations in brief

    CERN Document Server

    Tricker, Ray

    2012-01-01

    Tired of trawling through the Wiring Regs?Perplexed by Part P?Confused by cables, conductors and circuits?Then look no further! This handy guide provides an on-the-job reference source for Electricians, Designers, Service Engineers, Inspectors, Builders, Students, DIY enthusiastsTopic-based chapters link areas of working practice - such as cables, installations, testing and inspection, special locations - with the specifics of the Regulations themselves. This allows quick and easy identification of the official requirements relating to the situati

  1. Stabilized superconductive wires

    International Nuclear Information System (INIS)

    Randall, R.N.; Wong, J.

    1976-01-01

    A stable, high field, high current conductor is produced by packing multiple, multi-layer rods of a bronze core and niobium or vanadium inner jacket and copper outer jacket into a pure copper tube or other means for forming a pure copper matrix, sealing, working the packed tube to a wire, and by diffusion, heat treating to form a type II superconducting, Beta-Wolfram structure, intermetallic compound as a layer within each of several filaments derived from the rods. The layer of Beta-Wolfram structure compound may be formed in less than 2 h of diffusion heat treatment in a thickness of 0.5--2μ

  2. Diagnostics for exploding wires (abstract)

    International Nuclear Information System (INIS)

    Moosman, B.; Bystritskii, V.; Wessel, F.J.; Van Drie, A.

    1999-01-01

    Two diagnostics, capable of imaging fast, high temperature, plasmas were used on exploding wire experiments at UC Irvine. An atmospheric pressure nitrogen laser (λ=337.1 nm) was used to generate simultaneous shadow and shearing interferogram images with a temporal resolution of ∼1 ns and a spatial resolution of 10 μm. An x-ray backlighter imaged the exploding wire 90 degree with respect to the laser and at approximately the same instant in time. The backlighter spatial resolution as determined by geometry and film resolution was 25 μm. Copper wires of diameters (25, 50, and 100 μm) and steel wire d=25 μm were exploded in vacuum (10 -5 Torr) at a maximum current level of 12 kA, by a rectified marx bank at a voltage of 50 kV and a current rise time (quarter period) of 900 ns. Copper wires which were cleaned and then resistively heated under vacuum to incandescence for several hours prior to high current initiation, exhibited greater expansion velocities at peak current than wires which had not been heated prior to discharge. Axial variations on the surface of the wire observed with the laser were found to correlate with bulk axial mass differences from x-ray backlighting. High electron density, measured near the opaque surface of the exploding wire, suggests that much of the current is shunted outward away from the bulk of the wire. copyright 1999 American Institute of Physics

  3. Measurement of the saturation magnetostriction constant of amorphous wire

    International Nuclear Information System (INIS)

    Mitra, A.; Vazquez, M.

    1990-01-01

    Measurement of the magnetostriction constant of amorphous wire by conventional techniques is very difficult because of its small diameter. However, accurate determination of the magnetostriction constant is important in the study of amorphous wires. Here the saturation magnetostriction constant (λ s ) for a low-magnetostriction amorphous wire of nominal composition (Fe 6.3 Co 92.7 Nb 1 ) 77.5 Si 7.5 B 15 has been determined by means of the small-angle magnetization-rotation method. λ s has been evaluated to be 2.1x10 -7 for its as-received state. The dependence of thermal treatment is also reported

  4. Vibration of signal wires in wire detectors under irradiation

    International Nuclear Information System (INIS)

    Bojko, I.R.; Shelkov, G.A.; Dodonov, V.I.; Ignatenko, M.A.; Nikolenko, M.Yu.

    1995-01-01

    Radiation-induced vibration of signal wires in wire detectors is found and explained. The phenomenon is based on repulsion of a signal wire with a positive potential and a cloud of positive ions that remains after neutralization of the electron part of the avalanche formed in the course of gas amplification. Vibration with a noticeable amplitude may arise from fluctuations of repulsive forces, which act on the wire and whose sources are numerous ion clusters. A formula is obtained which allows wire oscillations to be estimated for all types of wire detectors. Calculation shows that oscillations of signal wires can be substantial for the coordinate accuracy of a detector working in the limited streamer mode at fluxes over 10 5 particles per second per wire. In the proportional mode an average oscillation amplitude can be as large as 20-30 μm at some detector parameters and external radiation fluxes over 10 5 . The experimental investigations show that the proposed model well describes the main features of the phenomenon. 6 refs., 8 figs

  5. Corrosion of Wires on Wooden Wire-Bound Packaging Crates

    Science.gov (United States)

    Samuel L. Zelinka; Stan Lebow

    2015-01-01

    Wire-bound packaging crates are used by the US Army to transport materials. Because these crates may be exposed to harsh environments, they are dip-treated with a wood preservative (biocide treatment). For many years, zinc-naphthenate was the most commonly used preservative for these packaging crates and few corrosion problems with the wires were observed. Recently,...

  6. Improved superconducting magnet wire

    Science.gov (United States)

    Schuller, I.K.; Ketterson, J.B.

    1983-08-16

    This invention is directed to a superconducting tape or wire composed of alternating layers of copper and a niobium-containing superconductor such as niobium of NbTi, Nb/sub 3/Sn or Nb/sub 3/Ge. In general, each layer of the niobium-containing superconductor has a thickness in the range of about 0.05 to 1.5 times its coherence length (which for Nb/sub 3/Si is 41 A) with each copper layer having a thickness in the range of about 170 to 600 A. With the use of very thin layers of the niobium composition having a thickness within the desired range, the critical field (H/sub c/) may be increased by factors of 2 to 4. Also, the thin layers of the superconductor permit the resulting tape or wire to exhibit suitable ductility for winding on a magnet core. These compositions are also characterized by relatively high values of critical temperature and therefore will exhibit a combination of useful properties as superconductors.

  7. Buoyant Helical Twin-Axial Wire Antenna

    Science.gov (United States)

    2016-11-15

    February 2017 The below identified patent application is available for licensing. Requests for information should be addressed to...300169 1 of 9 BUOYANT HELICAL TWIN-AXIAL WIRE ANTENNA CROSS REFERENCE TO OTHER PATENT APPLICATIONS [0001] This application is a divisional...application and claims the benefit of the filing date of United States Patent Application No. 14/280,889; filed on May 19, 2014; and entitled “Twin-Axial

  8. Spectral correlations in Anderson insulating wires

    Science.gov (United States)

    Marinho, M.; Micklitz, T.

    2018-01-01

    We calculate the spectral level-level correlation function of Anderson insulating wires for all three Wigner-Dyson classes. A measurement of its Fourier transform, the spectral form factor, is within reach of state-of-the-art cold atom quantum quench experiments, and we find good agreement with recent numerical simulations of the latter. Our derivation builds on a representation of the level-level correlation function in terms of a local generating function which may prove useful in other contexts.

  9. Thermal hydraulic evaluation of advanced wire-wrapped assemblies

    International Nuclear Information System (INIS)

    Wei, J.P.

    1975-01-01

    The thermal-hydraulic analyses presented in this report are based on application of the subchannel concept in association with the use of bulk parameters for coolant velocity and coolant temperature within a subchannel. The interactions between subchannels are due to turbulent interchange, pressure-induced diversion crossflow, directed sweeping crossflow induced by the helical wire wrap, and transverse thermal conduction. The FULMIX-II computer program was successfully developed to perform the steady-state temperature predictions for LMFBR fuel assemblies with the reference straight-start design and the advanced wire-wrap designs. Predicted steady-state temperature profiles are presented for a typical CRBRP 217-rod wire-wrapped assembly with the selected wire-wrap designs

  10. Electrochemical cleaning of Sv-08G2S wire surface

    International Nuclear Information System (INIS)

    Kozlov, E.I.; Degtyarev, V.G.; Novikov, M.P.

    1981-01-01

    Results of industrial tests of the Sv-08G2S wire with different state of surface fwith technological lubrication, after mechanical cleaning, with electrochemically cleaned surface) are presented. Advantages of welding-technological properties of the wire with electroe chemically cleaned surface are shown. An operation principle of the electrochemical cleaning facility is described. A brief specf ification f of the facility is given [ru

  11. Welding wire pressure sensor assembly

    Science.gov (United States)

    Morris, Timothy B. (Inventor); Milly, Peter F., Sr. (Inventor); White, J. Kevin (Inventor)

    1994-01-01

    The present invention relates to a device which is used to monitor the position of a filler wire relative to a base material being welded as the filler wire is added to a welding pool. The device is applicable to automated welding systems wherein nonconsumable electrode arc welding processes are utilized in conjunction with a filler wire which is added to a weld pool created by the electrode arc. The invention senses pressure deviations from a predetermined pressure between the filler wire and the base material, and provides electrical signals responsive to the deviations for actuating control mechanisms in an automatic welding apparatus so as to minimize the pressure deviation and to prevent disengagement of the contact between the filler wire and the base material.

  12. Forming Refractory Insulation On Copper Wire

    Science.gov (United States)

    Setlock, J.; Roberts, G.

    1995-01-01

    Alternative insulating process forms flexible coat of uncured refractory insulating material on copper wire. Coated wire formed into coil or other complex shape. Wire-coating apparatus forms "green" coat on copper wire. After wire coiled, heating converts "green" coat to refractory electrical insulator. When cured to final brittle form, insulating material withstands temperatures above melting temperature of wire. Process used to make coils for motors, solenoids, and other electrical devices to be operated at high temperatures.

  13. Control wiring diagrams

    International Nuclear Information System (INIS)

    McCauley, T.M.; Eskinazi, M.; Henson, L.L.

    1989-01-01

    This paper discusses the changes in electrical document requirements that occur when construction is complete and a generating station starts commercial operation. The needs of operations and maintenance (O and M) personnel are analyzed and contrasted with those of construction to illustrate areas in which the construction documents (drawings, diagrams, and databases) are difficult to use for work at an operating station. The paper discusses the O and M electrical documents that the Arizona Nuclear Power Project (ANPP) believes are most beneficial for the three operating units at Palo Verde; these are control wiring diagrams and an associated document cross-reference list. The benefits offered by these new, station O and M-oriented documents are weighted against the cost of their creation and their impact on drawing maintenance

  14. Electroplated superconducting wire

    International Nuclear Information System (INIS)

    Peger, C.H.

    1991-01-01

    A hard chromium solution has been considered the least efficient of all plating solutions. This is not exactly true if the correct plating conditions are used. The accepted efficiency is only 12% but that is only true for the parameters that were used long ago to make the determination. At 12% efficiency it would be impossible to plate Superconductor wire. The world's chromium plating shops have been plating at a .001 (.025u) per hour rate since the turn of the century. Shops in the Cleveland, Ohio area have been limiting their plating rate to .006 (152u) since 1935. A few have used .012 (304u) to .030 (762u) per hour for specialized jobs. These figures would indicate the apparent efficiency of the old 100 to 1 chromium, sulfate solution can be higher than 60%. The industry uses a 3 bus bar tank with wide spacing between anode and cathode. This results in high solution resistance and high heat generation and consequently slow plating rates. The Reversible Rack 2 Bus Bar System uses very close anode to cathode spacings. This results in the high plating rates with improved quality deposits. When first asked to chromium plate pure nickel wire reel to reel in long lengths, companies making reel to reel machines were asked if chromium plating was practical. In every case, the answer was it couldn't be done. Gold, tin and zinc plating was being done reel to reel. Using the same parameters that were used to determine a chromium solution efficiency was only 12%, these other metal solutions check out close to 100%

  15. Plasma chemistry in wire chambers

    International Nuclear Information System (INIS)

    Wise, J.

    1990-05-01

    The phenomenology of wire chamber aging is discussed and fundamentals of proportional counters are presented. Free-radical polymerization and plasma polymerization are discussed. The chemistry of wire aging is reviewed. Similarities between wire chamber plasma (>1 atm dc-discharge) and low-pressure rf-discharge plasmas, which have been more widely studied, are suggested. Construction and use of a system to allow study of the plasma reactions occurring in wire chambers is reported. A proportional tube irradiated by an 55 Fe source is used as a model wire chamber. Condensable species in the proportional tube effluent are concentrated in a cryotrap and analyzed by gas chromatography/mass spectrometry. Several different wire chamber gases (methane, argon/methane, ethane, argon/ethane, propane, argon/isobutane) are tested and their reaction products qualitatively identified. For all gases tested except those containing methane, use of hygroscopic filters to remove trace water and oxygen contaminants from the gas resulted in an increase in the average molecular weight of the products, consistent with results from low-pressure rf-discharge plasmas. It is suggested that because water and oxygen inhibit polymer growth in the gas phase that they may also reduce polymer deposition in proportional tubes and therefore retard wire aging processes. Mechanistic implications of the plasma reactions of hydrocarbons with oxygen are suggested. Unresolved issues in this work and proposals for further study are discussed

  16. Submerged-arc wire electrodes with nickel-plated surfaces

    International Nuclear Information System (INIS)

    Hagen, H. vom.

    1976-01-01

    The article reports on the development of SANWELD welding rods at GARHYTTAN's which is a wire free of impurities, copper, and hydrogen with a nickel surface. It is producted according to the SANBOND process. The wire has an optimum of mechanical quality grades depending on the powder used for welding, especially an improvement of notch impact strength. The elongation, especially the long-time values, are improved, hydrogen cracks are excluded depending on the correct powder or protective gas, and the low-temparature values are improved. An attendant phenomenon, which is not unimportant, is that the wires are practically corrosion-resistant in the non-welded state. The wire is suitable for submerged-arc welding in steam boilers and pressure vessels. (IHoe) [de

  17. Resistance microwelding of 316L stainless steel wire to block

    DEFF Research Database (Denmark)

    Friis, Kasper Storgaard; Khan, M.I.; Bay, Niels

    2011-01-01

    The excellent corrosion resistance of low carbon vacuum melted 316 stainless steel coupled with its non-magnetic properties makes it ideal for biomedical applications. The typical joint geometry for microcomponents, such as medical implants, includes joining of fine wire to a larger block. However......, this type of joint has received little attention in the current literature. The present study was conducted to examine the microstructure and mechanical properties of low carbon vacuum melted 316 stainless steel wire welded to a larger block. Results revealed solid state bonding occurring at low currents......, while fusion bonding occurred at higher currents. This was due to the highly asymmetrical heat generation resulting in almost complete melting of the wire before the initiation of interfacial melting. This is a distinctly different bonding mechanism compared to previous studies on crossed wire joints....

  18. Behavior of NiTiNb SMA wires under recovery stress or prestressing.

    Science.gov (United States)

    Choi, Eunsoo; Nam, Tae-Hyun; Chung, Young-Soo; Kim, Yeon-Wook; Lee, Seung-Yong

    2012-01-05

    The recovery stress of martensitic shape-memory alloy [SMA] wires can be used to confine concrete, and the confining effectiveness of the SMA wires was previously proved through experimental tests. However, the behavior of SMA wires under recovery stress has not been seriously investigated. Thus, this study conducted a series of tests of NiTiNb martensitic SMA wires under recovery stress with varying degrees of prestrain on the wires and compared the behavior under recovery stress with that under prestressing of the wires. The remaining stress was reduced by the procedure of additional strain loading and unloading. More additional strains reduced more remaining stresses. When the SMA wires were heated up to the transformation temperature under prestress, the stress on the wires increased due to the state transformation. Furthermore, the stress decreased with a decreasing temperature of the wires down to room temperature. The stress of the NiTiNb wires was higher than the prestress, and the developed stress seemed to depend on the composition of the SMAs. When an additional strain was subsequently loaded and unloaded on the prestressed SMA wires, the remaining stress decreased. Finally, the remaining stress becomes zero when loading and unloading a specific large strain.

  19. High-performance, stretchable, wire-shaped supercapacitors.

    Science.gov (United States)

    Chen, Tao; Hao, Rui; Peng, Huisheng; Dai, Liming

    2015-01-07

    A general approach toward extremely stretchable and highly conductive electrodes was developed. The method involves wrapping a continuous carbon nanotube (CNT) thin film around pre-stretched elastic wires, from which high-performance, stretchable wire-shaped supercapacitors were fabricated. The supercapacitors were made by twisting two such CNT-wrapped elastic wires, pre-coated with poly(vinyl alcohol)/H3PO4 hydrogel, as the electrolyte and separator. The resultant wire-shaped supercapacitors exhibited an extremely high elasticity of up to 350% strain with a high device capacitance up to 30.7 F g(-1), which is two times that of the state-of-the-art stretchable supercapacitor under only 100% strain. The wire-shaped structure facilitated the integration of multiple supercapacitors into a single wire device to meet specific energy and power needs for various potential applications. These supercapacitors can be repeatedly stretched from 0 to 200% strain for hundreds of cycles with no change in performance, thus outperforming all the reported state-of-the-art stretchable electronics. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Calculation of the Critical Current Reduction in a Brittle Round Multifilamentary Wire due to External Forces

    NARCIS (Netherlands)

    ten Haken, Bernard; Godeke, A.; ten Kate, Herman H.J.

    1994-01-01

    A simple model is presented that can describe the electro-mechanical state of a multifilamentary wire. An elastic cylinder model is used to derive the strain state analytically. Axial and transverse forces came a position dependent critical current density in the wire. The integral critical current

  1. Wire Array Solar Cells: Fabrication and Photoelectrochemical Studies

    Science.gov (United States)

    Spurgeon, Joshua Michael

    /polymer composite films showed that their energy-conversion properties were comparable to those of an array attached to the growth substrate. High quantum efficiencies were observed relative to the packing density of the wires, particularly with illumination at high angles of incidence. The results indicate that an inexpensive, solid-state Si wire array solar cell is possible, and a plan is presented to develop one.

  2. Modeling birds on wires.

    Science.gov (United States)

    Aydoğdu, A; Frasca, P; D'Apice, C; Manzo, R; Thornton, J M; Gachomo, B; Wilson, T; Cheung, B; Tariq, U; Saidel, W; Piccoli, B

    2017-02-21

    In this paper we introduce a mathematical model to study the group dynamics of birds resting on wires. The model is agent-based and postulates attraction-repulsion forces between the interacting birds: the interactions are "topological", in the sense that they involve a given number of neighbors irrespective of their distance. The model is first mathematically analyzed and then simulated to study its main properties: we observe that the model predicts birds to be more widely spaced near the borders of each group. We compare the results from the model with experimental data, derived from the analysis of pictures of pigeons and starlings taken in New Jersey: two different image elaboration protocols allow us to establish a good agreement with the model and to quantify its main parameters. We also discuss the potential handedness of the birds, by analyzing the group organization features and the group dynamics at the arrival of new birds. Finally, we propose a more refined mathematical model that describes landing and departing birds by suitable stochastic processes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Pull-pull position control of dual motor wire rope transmission.

    Science.gov (United States)

    Guo, Quan; Jiao, Zongxia; Yan, Liang; Yu, Qian; Shang, Yaoxing

    2016-08-01

    Wire rope transmission is very efficient because of the small total moving object mass. The wire rope could only transmit pulling force. Therefore it has to be kept in a tightened state during transmission; in high speed applications the dynamic performance depends on the rope's stiffness, which can be adjusted by the wire rope tension. To improve the system dynamic performance output, this paper proposes a novel pull-pull method based on dual motors connected by wire ropes, for precise, high speed position control applications. The method can regulate target position and wire rope tension simultaneously. Wire ropes remain in a pre-tightening state at all times, which prevents the influence of elasticity and reduces the position tracking error in the changing direction process. Simulations and experiments were conducted; the results indicate that both position precision and superior dynamic performance can be synchronously achieved. The research is relevant to space craft precision pointing instruments.

  4. STM tunneling through a quantum wire with a side-attached impurity

    International Nuclear Information System (INIS)

    Kwapinski, T.; Krawiec, M.; Jalochowski, M.

    2008-01-01

    The STM tunneling through a quantum wire (QW) with a side-attached impurity (atom, island) is investigated using a tight-binding model and the non-equilibrium Keldysh Green function method. The impurity can be coupled to one or more QW atoms. The presence of the impurity strongly modifies the local density of states of the wire atoms, thus influences the STM tunneling through all the wire atoms. The transport properties of the impurity itself are also investigated mainly as a function of the wire length and the way it is coupled to the wire. It is shown that the properties of the impurity itself and the way it is coupled to the wire strongly influence the STM tunneling, the density of states and differential conductance

  5. Steady-state and transient studies on critical heat flux of a PWR 5 x 5 fuel element bundle with complex spacer wire geometry

    International Nuclear Information System (INIS)

    Fulfs, H.; Katsaounis, A.; Kreubig, M.; Minden, C. von; Orlowski, R.

    1980-01-01

    The results will be described in exemplary presentations completely and concluding. The experimental examination of the steady state simularity of critical heat flux (CHF) in freon 12 and water at identical PWR-5 x 15-rod bundles will show that hot rod/hot channels position as well as CHF can be transformed from model to original fluid with good accuracy. The investigated mass flow and power transients (only in freon 12) point out a definite influence of initial and boundary conditions on CHF and CHF time delay at changing rates higher than 10 to 20%/s. On the contrary simulation of primary pump failure (LOFA) shows no or only small improvement in CHF behaviour while a coupled Scram prevents from reaching the boiling crisis. (orig.) [de

  6. Inhomogeneous wire explosion in water

    International Nuclear Information System (INIS)

    Hwangbo, C.K.; Kong, H.J.; Lee, S.S.

    1980-01-01

    Inhomogeneous processes are observed in underwater copper wire explosion induced by a condensed capacitor discharge. The wire used is 0.1 mm in diameter and 10 mm long, and the capacitor of 2 μF is charged to 5 KV. A N 2 laser is used for the diagnostic of spatial extension of exploding copper vapour. The photographs obtained in this experiment show unambiguously the inhomogeneous explosion along the exploding wire. The quenching of plasma by the surrounding water inhibits the expansion of the vapour. It is believed the observed inhomogeneous explosion along the wire is located and localized around Goronkin's striae, which was first reported by Goronkin and discussed by Froengel as a pre-breakdown phenomenon. (author)

  7. Topology Optimized Photonic Wire Splitters

    DEFF Research Database (Denmark)

    Frandsen, Lars Hagedorn; Borel, Peter Ingo; Jensen, Jakob Søndergaard

    2006-01-01

    Photonic wire splitters have been designed using topology optimization. The splitters have been fabricated in silicon-on-insulator material and display broadband low-loss 3dB splitting in a bandwidth larger than 100 nm.......Photonic wire splitters have been designed using topology optimization. The splitters have been fabricated in silicon-on-insulator material and display broadband low-loss 3dB splitting in a bandwidth larger than 100 nm....

  8. Composite conductor containing superconductive wires

    Energy Technology Data Exchange (ETDEWEB)

    Larson, W.L.; Wong, J.

    1974-03-26

    A superconductor cable substitute made by coworking multiple rods of superconductive niobium--titanium or niobium--zirconium alloy with a common copper matrix to extend the copper and rods to form a final elongated product which has superconductive wires distributed in a reduced cross-section copper conductor with a complete metallurgical bond between the normal-conductive copper and the superconductor wires contained therein is described. The superconductor cable can be in the form of a tube.

  9. HTS Wire Development Workshop: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    1994-07-01

    The 1994 High-Temperature Superconducting Wire Development Workshop was held on February 16--17 at the St. Petersburg Hilton and Towers in St. Petersburg, Florida. The meeting was hosted by Florida Power Corporation and sponsored by the US Department of Energy`s Superconductivity Program for Electric Power Systems. The meeting focused on recent high-temperature superconducting wire development activities in the Department of Energy`s Superconductivity Systems program. The meeting opened with a general discussion on the needs and benefits of superconductivity from a utility perspective, the US global competitiveness position, and an outlook on the overall prospects of wire development. The meeting then focused on four important technology areas: Wire characterization: issues and needs; technology for overcoming barriers: weak links and flux pinning; manufacturing issues for long wire lengths; and physical properties of HTS coils. Following in-depth presentations, working groups were formed in each technology area to discuss the most important current research and development issues. The working groups identified research areas that have the potential for greatly enhancing the wire development effort. These areas are discussed in the summary reports from each of the working groups. This document is a compilation of the workshop proceedings including all general session presentations and summary reports from the working groups.

  10. Wire Scanner Motion Control Card

    CERN Document Server

    Forde, S E

    2006-01-01

    Scientists require a certain beam quality produced by the accelerator rings at CERN. The discovery potential of LHC is given by the reachable luminosity at its interaction points. The luminosity is maximized by minimizing the beam size. Therefore an accurate beam size measurement is required for optimizing the luminosity. The wire scanner performs very accurate profile measurements, but as it can not be used at full intensity in the LHC ring, it is used for calibrating other profile monitors. As the current wire scanner system, which is used in the present CERN accelerators, has not been made for the required specification of the LHC, a new design of a wire scanner motion control card is part of the LHC wire scanner project. The main functions of this card are to control the wire scanner motion and to acquire the position of the wire. In case of further upgrades at a later stage, it is required to allow an easy update of the firmware, hence the programmable features of FPGAs will be used for this purpose. The...

  11. Magnetic field effects on the quantum wire energy spectrum and Green's function

    International Nuclear Information System (INIS)

    Morgenstern Horing, Norman J.

    2010-01-01

    We analyze the energy spectrum and propagation of electrons in a quantum wire on a 2D host medium in a normal magnetic field, representing the wire by a 1D Dirac delta function potential which would support just a single subband state in the absence of the magnetic field. The associated Schroedinger Green's function for the quantum wire is derived in closed form in terms of known functions and the Landau quantized subband energy spectrum is examined.

  12. 1 mil gold bond wire study.

    Energy Technology Data Exchange (ETDEWEB)

    Huff, Johnathon; McLean, Michael B.; Jenkins, Mark W.; Rutherford, Brian Milne

    2013-05-01

    In microcircuit fabrication, the diameter and length of a bond wire have been shown to both affect the current versus fusing time ratio of a bond wire as well as the gap length of the fused wire. This study investigated the impact of current level on the time-to-open and gap length of 1 mil by 60 mil gold bond wires. During the experiments, constant current was provided for a control set of bond wires for 250ms, 410ms and until the wire fused; non-destructively pull-tested wires for 250ms; and notched wires. The key findings were that as the current increases, the gap length increases and 73% of the bond wires will fuse at 1.8A, and 100% of the wires fuse at 1.9A within 60ms. Due to the limited scope of experiments and limited data analyzed, further investigation is encouraged to confirm these observations.

  13. Ignition and spread of electrical wire fires

    OpenAIRE

    Huang, Xinyan

    2012-01-01

    Ignition of electrical wires by external heating is investigated in order to gain a better understanding of the initiation of electrical-wire fires. An ignition-to- spread model is developed to systematically explain ignition and the following transition to spread. The model predicts that for a higher-conductance wire it is more difficult to achieve ignition and the weak flame may extinguish during the transition phase because of a large conductive heat loss along the wire core. Wires with tw...

  14. Examination of rapid phase change in copper wires to improve material models and understanding of burst

    Science.gov (United States)

    Olles, Joseph; Garasi, Christopher; Ball, J. Patrick

    2017-11-01

    Electrically-pulsed wires undergo multiple phase changes including a postulated metastable phase resulting in explosive wire growth. Simulations using the MHD approximation attempt to account for the governing physics, but lack the material properties (equations-of-state and electrical conductivity) to accurately predict the phase evolution of the exploding (bursting) wire. To explore the dynamics of an exploding copper wire (in water), we employ a digital micro-Schlieren streak photography technique. This imaging quantifies wire expansion and shock waves emitted from the wire during phase changes. Using differential voltage probes, a Rogowski coil, and timing fiducials, the phase change of the wire is aligned with electrical power and energy deposition. Time-correlated electrical diagnostics and imaging allow for detailed validation of MHD simulations, comparing observed phases with phase change details found in the material property descriptions. In addition to streak imaging, a long exposure image is taken to capture axial striations along the length of the wire. These images are used to compare with results from 3D MHD simulations which propose that these perturbations impact the rate of wire expansion and temporal change in phases. If successful, the experimental data will identify areas for improvement in the material property models, and modeling results will provide insight into the details of phase change in the wire with correlation to variations in the electrical signals.

  15. Laser Annealing on the Surface Treatment of Thin Super Elastic NiTi Wire

    Science.gov (United States)

    Samal, S.; Heller, L.; Brajer, J.; Tyc, O.; Kadrevek, L.; Sittner, P.

    2018-05-01

    Here the aim of this research is annealing the surface of NiTi wire for shape memory alloy, super-elastic wire by solid state laser beam. The laser surface treatment was carried out on the NiTi wire locally with fast, selective, surface heat treatment that enables precisely tune the localized material properties without any precipitation. Both as drawn (hard) and straight annealing NiTi wire were considered for laser annealing with input power 3 W, with precisely focusing the laser beam height 14.3 % of the Z-axis with a spot size of 1 mm. However, straight annealing wire is more interest due to its low temperature shape setting behavior and used by companies for stent materials. The variable parameter such as speed of the laser scanning and tensile stress on the NiTi wire were optimized to observe the effect of laser response on the sample. Superelastic, straight annealed NiTi wires (d: 0.10 mm) were held prestrained at the end of the superelastic plateau (ε: 5 ∼6.5 %) above the superelastic region by a tensile machine ( Mitter: miniature testing rig) at room temperature (RT). Simultaneously, the hardness of the wires along the cross-section was performed by nano-indentation (NI) method. The hardness of the NiTi wire corresponds to phase changes were correlated with NI test. The laser induced NiTi wire shows better fatigue performance with improved 6500 cycles.

  16. Eliminating a Major Cause of Wire Drawing Breakage in A-15 High-Field Superconductors

    International Nuclear Information System (INIS)

    Austen, Alfred R.

    2003-01-01

    Eliminating a Major Cause of Wire Drawing Breakage in A-15 High-Field Superconductors Phase 1 Summary Purpose of the research: The Phase 1 goal was to make a significant improvement in the wire drawing technology used for difficult to draw superconductor precursor composites. Many ductile Nb-Al and Nb-Sn precursor wire composites have experienced the onset of wire drawing breakage at about 1.5 mm diameter. Phase 1 focused on evaluating the role that precision rigid guidance of the wire into the drawing die and the hydrostatic stress state at the die entrance played in preventing wire breakage. Research carried out: The research performed depended upon the construction of both a mechanical wire guide and a hydrostatic pressure stiffened wire guidance system. Innovare constructed the two wire guidance systems and tested them for their ability to reduce wire drawing breakage. One set of hardware provided rigid alignment of the wires to their wire drawing die axes within 0.35 degrees using ''hydrostatic pressure stiffening'' to enable the precision guidance strategy to be implemented for these highly flexible small diameter wires. This apparatus was compared to a guide arrangement that used short span mechanical guide alignment with a misalignment limit of about 0.75 degrees. Four A-15 composite wires with breakage histories were drawn to evaluate the use of these wire guiding systems to reduce and/or eliminate wire breakage. Research findings and results: In Phase 1, a breakthrough in wire drawing technology for A-15 superconductor composites was achieved by dramatically limiting or eliminating breakage in four different A-15 composite precursor wire designs during the drawing of these very desirable composites that previously could not be drawn to near final size. Research results showed that the proposed Phase 1 mechanical wire guides were sufficiently effective and successful in eliminating breakage when used along with other advanced wire drawing technology to

  17. Electron Raman scattering in quantum well wires

    International Nuclear Information System (INIS)

    Zhao Xiangfu; Liu Cuihong

    2007-01-01

    Electron Raman scattering (ERS) is investigated in a semiconductor quantum well wire (QWW) of cylindrical geometry for T=0K and neglecting phonon-assisted transitions. The differential cross-section (DCS) involved in this process is calculated as a function of a scattering frequency and the cylindrical radius. Electron states are confined within a QWW. Single parabolic conduction and valence bands are assumed. The selection rules are studied. Singularities in the spectra are interpreted for various cylindrical radii. ERS discussed here can provide direct information about the electron band structure of the system

  18. Adhesion strength study of IBAD-MOCVD-based 2G HTS wire using a peel test

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Y., E-mail: yzhang@superpower-inc.com [SuperPower Inc., 450 Duane Avenue, Schenectady, NY 12304 (United States); Hazelton, D.W.; Knoll, A.R.; Duval, J.M.; Brownsey, P.; Repnoy, S.; Soloveichik, S.; Sundaram, A.; McClure, R.B. [SuperPower Inc., 450 Duane Avenue, Schenectady, NY 12304 (United States); Majkic, G.; Selvamanickam, V. [University of Houston, 4800 Calhoun Road, Houston, TX 77204 (United States)

    2012-02-15

    A peel test was used to study the adhesion strength of a commercial grade 2G HTS wire which features a characteristic multilayer structure with the rare earth-based MOCVD superconducting film deposited on an IBAD-MgO template. The peel test could be carried out at various peeling angles (from 90 Degree-Sign to 180 Degree-Sign) and the peel strength of a wire was defined as the steady-state peeling load determined from a load-displacement curve. The test results had good reproducibility and accuracy, making the test a reliable and useful method for studying the adhesion strength of the wire. By characterizing the peeled surfaces the weakest interface in a wire could be identified. The peel strength data of the wire was analyzed together with the performance of the experimental magnet coils fabricated using the wire. The effect of the silver contact layer annealing on the peel strength is discussed.

  19. Adhesion strength study of IBAD-MOCVD-based 2G HTS wire using a peel test

    International Nuclear Information System (INIS)

    Zhang, Y.; Hazelton, D.W.; Knoll, A.R.; Duval, J.M.; Brownsey, P.; Repnoy, S.; Soloveichik, S.; Sundaram, A.; McClure, R.B.; Majkic, G.; Selvamanickam, V.

    2012-01-01

    A peel test was used to study the adhesion strength of a commercial grade 2G HTS wire which features a characteristic multilayer structure with the rare earth-based MOCVD superconducting film deposited on an IBAD-MgO template. The peel test could be carried out at various peeling angles (from 90° to 180°) and the peel strength of a wire was defined as the steady-state peeling load determined from a load-displacement curve. The test results had good reproducibility and accuracy, making the test a reliable and useful method for studying the adhesion strength of the wire. By characterizing the peeled surfaces the weakest interface in a wire could be identified. The peel strength data of the wire was analyzed together with the performance of the experimental magnet coils fabricated using the wire. The effect of the silver contact layer annealing on the peel strength is discussed.

  20. Technical innovation: Wire guided ductography

    International Nuclear Information System (INIS)

    Aslam, Muhammad Ovais; Ramadan, Salwa; Al-Adwani, Muneera

    2012-01-01

    To introduce an easy and improved technique for performing ductography using inexpensive easily available intravenous cannula. Guide wire: Prolene/Surgipro 3-0 (Polypropylene mono filament non-absorbable surgical suture). A plastic 26 G intravenous cannula. Disposable syringe 2 ml. Non-ionic contrast (low density like Omnipaque 240 mg I/I). The guide wire (Prolene 3-0) is introduced into the orifice of the duct heaving discharge and 26 G intravenous plastic cannula is then passed over the guide wire. The cannula is advanced in the duct over guide wire by spinning around it. When the cannula is in place the guide wire is removed. Any air bubbles present in the hub of the cannula can be displaced by filling the hub from bottom upwards with needle attached to contrast filled syringe. 0.2–0.4 ml non-ionic contrast is gently injected. Injection is stopped if the patient has pain or burning. Magnified cranio-caudal view is obtained with cannula tapped in place and gentle compression is applied with the patient sitting. If duct filling is satisfactory a 90* lateral view is obtained. A successful adaptation of the technique for performing ductography is presented. The materials required for the technique are easily available in most radiology departments and are inexpensive, thus making the procedure comfortable for the patient and radiologist with considerable cost effectiveness.

  1. Californium Recovery from Palladium Wire

    Energy Technology Data Exchange (ETDEWEB)

    Burns, Jon D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2014-08-01

    The recovery of 252Cf from palladium-252Cf cermet wires was investigated to determine the feasibility of implementing it into the cermet wire production operation at Oak Ridge National Laboratory’s Radiochemical Engineering Development Center. The dissolution of Pd wire in 8 M HNO3 and trace amounts of HCl was studied at both ambient and elevated temperatures. These studies showed that it took days to dissolve the wire at ambient temperature and only 2 hours at 60°C. Adjusting the ratio of the volume of solvent to the mass of the wire segment showed little change in the kinetics of dissolution, which ranged from 0.176 mL/mg down to 0.019 mL/mg. A successful chromatographic separation of 153Gd, a surrogate for 252Cf, from Pd was demonstrated using AG 50x8 cation exchange resin with a bed volume of 0.5 mL and an internal diameter of 0.8 cm.

  2. Sample of superconducting wiring (Niobium Titanium)

    CERN Multimedia

    About NbTi cable: The cable consists of 36 strands of superconducting wire, each strand has a diameter of 0.825 mm and houses 6300 superconducting filaments of niobium-titanium (Nb-Ti, a superconducting alloy). Each filament has a diameter of about 0.006 mm, i.e. 10 times smaller than a typical human hair. The filaments are embedded in a high-purity copper matrix. Copper is a normal conducting material. The filaments are in the superconductive state when the temperature is below about -263ºC (10.15 K). When the filaments leave the superconductive state, the copper acts as conductor transports the electrical current. Each strand of The NbTi cable (at superconducting state) has a current density of up to above 2000 A/mm2 at 9 T and -271ºC (2.15 K). A cable transport a current of about 13000 A at 10 T and -271ºC (2.15 K). About LHC superconducting wiring: The high magnetic fields needed for the LHC can only be reached using superconductors. At very low temperatures, superconductors have no electrical resistan...

  3. Sample of superconducting wiring (Niobium Titanium)

    CERN Multimedia

    About NbTi cable: The cable consists of 36 strands of superconducting wire, each strand has a diameter of 0.825 mm and houses 6300 superconducting filaments of niobium-titanium (Nb-Ti, a superconducting alloy). Each filament has a diameter of about 0.006 mm, i.e. 10 times smaller than a typical human hair. The filaments are embedded in a high-purity copper matrix. Copper is a normal conducting material. The filaments are in the superconductive state when the temperature is below about -263ºC (10.15 K). When the filaments leave the superconductive state, the copper acts as conductor transports the electrical current. Each strand of The NbTi cable (at superconducting state) has a current density of up to above 2000 A/mm2 at 9 T and -271ºC (2.15 K). A cable transport a current of about 13000 A at 10 T and -271ºC (2.15 K). About LHC superconducting wiring: The high magnetic fields needed for the LHC can only be reached using superconductors. At very low temperatures, superconductors have no electrical resista...

  4. Cold atoms in microscopic traps: from wires to chips

    International Nuclear Information System (INIS)

    Cassettari, D.

    2000-05-01

    This thesis reports on the experimental demonstration of magnetic guides, traps and beam splitters for neutral atoms using current carrying wires. A straight wire allows to create two basic guide configurations: the magnetic field generated by the wire alone produces a guide where atoms in a strong field seeking state perform orbits around the wire (Kepler guide); by adding an external magnetic field, atoms in a weak field seeking state are guided at the location where the external field and the field generated by the wire cancel out (side guide). Furthermore, bending the wire in various shapes allows to modify the side guide potential and hence to create a large variety of three dimensional traps. A relevant property of these potentials is that higher trapping gradients are obtained by decreasing the current flowing in the wires. As the trap is compressed, it also moves closer to the wire. This feature has allowed us to create microscopic potentials by using thin wires designed on a surface (atom chip) by means of high resolution microfabrication techniques. Wires mounted on a surface have the advantage of being more robust and able to sustain larger currents due to their thermal coupling with the substrate. In our experiment we have developed methods to load these traps and guides with laser cooled atoms. Our first investigations have been performed with free standing wires which we have used to study the Kepler guide, the side guide and a three dimensional Ioffe-Pritchard trap. In the latter we have achieved the trapping parameters required in the experiments with Bose-Einstein condensates with much reduced power consumption. In a second time we have replaced the free standing wires with an atom chip, which we have used to compress the atomic cloud in potentials with trap frequencies above 100 kHz and ground state sizes below 100 nm. Such potentials are especially interesting for quantum information proposals of performing quantum gate operations with controlled

  5. Virtual Instrument Systems in Reality (VISIR) for Remote Wiring and Measurement of Electronic Circuits on Breadboard

    Science.gov (United States)

    Tawfik, M.; Sancristobal, E.; Martin, S.; Gil, R.; Diaz, G.; Colmenar, A.; Peire, J.; Castro, M.; Nilsson, K.; Zackrisson, J.; Hakansson, L.; Gustavsson, I.

    2013-01-01

    This paper reports on a state-of-the-art remote laboratory project called Virtual Instrument Systems in Reality (VISIR). VISIR allows wiring and measuring of electronic circuits remotely on a virtual workbench that replicates physical circuit breadboards. The wiring mechanism is developed by means of a relay switching matrix connected to a PCI…

  6. 77 FR 9701 - Steel Wire Garment Hangers From Taiwan And Vietnam

    Science.gov (United States)

    2012-02-17

    ...)] Steel Wire Garment Hangers From Taiwan And Vietnam Determinations On the basis of the record \\1...)) (the Act), that there is a reasonable indication that an industry in the United States is materially injured by reason of imports from Taiwan and Vietnam of steel wire garment hangers, provided for in...

  7. Very Efficient Single-Photon Sources Based on Quantum Dots in Photonic Wires

    DEFF Research Database (Denmark)

    Gerard, Jean-Michel; Claudon, Julien; Bleuse, Joel

    2014-01-01

    . By placing a tip-shaped or trumpet-like tapering at the output end of the wire, a highly directional Gaussian far-field emission pattern is obtained. More generally, a photonic wire containing a quantum dot appears as an attractive template to explore and exploit in a solid-state system the unique optical...

  8. Band structure dynamics in indium wires

    Science.gov (United States)

    Chávez-Cervantes, M.; Krause, R.; Aeschlimann, S.; Gierz, I.

    2018-05-01

    One-dimensional indium wires grown on Si(111) substrates, which are metallic at high temperatures, become insulating below ˜100 K due to the formation of a charge density wave (CDW). The physics of this transition is not conventional and involves a multiband Peierls instability with strong interband coupling. This CDW ground state is readily destroyed with femtosecond laser pulses resulting in a light-induced insulator-to-metal phase transition. The current understanding of this transition remains incomplete, requiring measurements of the transient electronic structure to complement previous investigations of the lattice dynamics. Time- and angle-resolved photoemission spectroscopy with extreme ultraviolet radiation is applied to this end. We find that the transition from the insulating to the metallic band structure occurs within ˜660 fs, which is a fraction of the amplitude mode period. The long lifetime of the transient state (>100 ps) is attributed to trapping in a metastable state in accordance with previous work.

  9. 77 FR 72884 - Steel Wire Garment Hangers From Taiwan

    Science.gov (United States)

    2012-12-06

    ... From Taiwan Determination On the basis of the record \\1\\ developed in the subject investigation, the... Tariff Act of 1930 (19 U.S.C. 1673d(b)) (the Act), that an industry in the United States is materially injured by reason of imports of steel wire garment hangers from Taiwan, provided for in subheading 7326.20...

  10. 76 FR 21914 - Galvanized Steel Wire From China and Mexico

    Science.gov (United States)

    2011-04-19

    ... INTERNATIONAL TRADE COMMISSION [Investigation Nos. 701-TA-479 and 731-TA-1183-1184 (Preliminary)] Galvanized Steel Wire From China and Mexico AGENCY: United States International Trade Commission. ACTION: Revised schedule for the subject antidumping and countervailing duty investigations. DATES: Effective Date...

  11. 75 FR 8113 - Prestressed Concrete Steel Wire Strand From China

    Science.gov (United States)

    2010-02-23

    ... INTERNATIONAL TRADE COMMISSION [Investigation Nos. 701-TA-464 and 731-TA-1160 (Final)] Prestressed Concrete Steel Wire Strand From China AGENCY: United States International Trade Commission. ACTION: Revised schedule for the subject investigations. DATES: Effective Date: February 16, 2010. FOR FURTHER INFORMATION...

  12. Fabrication of tungsten wire needles

    International Nuclear Information System (INIS)

    Roder, A.

    1983-02-01

    Fine point needles for field emissoin are conventionally produced by electrolytically or chemically etching tungsten wire. Points formed in this manner have a typical tip radius of about 0.5 microns and a cone angle of some 30 degrees. The construction of needle matrix detector chambers has created a need for tungsten needles whose specifications are: 20 mil tungsten wire, 1.5 inch total length, 3 mm-long taper (resulting in a cone angle of about 5 degrees), and 25 micron-radius point (similar to that found on sewing needles). In the process described here for producing such needles, tungsten wire, immersed in a NaOH solution and in the presence of an electrode, is connected first to an ac voltage and then to a dc supply, to form a taper and a point on the end of the wire immersed in the solution. The process parameters described here are for needles that will meet the above specifications. Possible variations will be discussed under each approprite heading

  13. [Mechanics analysis of fracture of orthodontic wires].

    Science.gov (United States)

    Wang, Yeping; Sun, Xiaoye; Zhang, Longqi

    2003-03-01

    Fracture problem of orthodontic wires was discussed in this paper. The calculation formulae of bending stress and tensile stress were obtained. All main factors that affect bending stress and tensile stress of orthodontic wires were analyzed and discussed. It was concluded that the main causes of fracture of orthodontic wires were fatigue and static disruption. Some improving proposals for preventing fracture of orthodontic wires were put forward.

  14. Multifilamentary Cu-Nb3Sn superconductor wires

    International Nuclear Information System (INIS)

    Rodrigues, D.; Pinatti, D.G.

    1990-01-01

    This paper reports on one of the main technological problems concerning Nb 3 Sn superconducting wires production which is the optimization of heat treatments for the formation of the A-15 intermetallic compound. At the present work, Nb 3 Sn superconducting wire is produced by solid-liquid diffusion method which increases considerably the critical current values of the superconductor. Through this method, niobium, copper and Sn 7% wt Cu alloy are kept in the pure state. Thus, the method dispenses intermediate heat treatments of recrystallization during the manufacturing process of the wire. After the wire was ready, optimization work of heat treatments was accomplished aiming to obtain its best superconducting characteristics, Measurement of critical temperature, critical current versus magnetic field, normal and at room temperature resistivity were performed, as well as scanning electron microscopy for determination of Nb 3 Sn layers and transmission electron microscopy measurements of redetermining the grain sizes in Nb 3 Sn formed in each treatment. It was obtained critical current densities of 1.8 x 10 6 A/cm 2 in the Nb 3 Sn layer, at 10 Teslas and 4.2 K. The samples were analyzed by employing the superconducting collective flux pinning theories and a satisfactory agreement between the experimental and theoretical data was attained. The production process and the small size of the filaments used made a successful optimization of the wire possible

  15. 49 CFR 236.74 - Protection of insulated wire; splice in underground wire.

    Science.gov (United States)

    2010-10-01

    ... underground wire. 236.74 Section 236.74 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RULES, STANDARDS, AND INSTRUCTIONS GOVERNING... wire; splice in underground wire. Insulated wire shall be protected from mechanical injury. The...

  16. 49 CFR 234.241 - Protection of insulated wire; splice in underground wire.

    Science.gov (United States)

    2010-10-01

    ... underground wire. 234.241 Section 234.241 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION GRADE CROSSING SIGNAL SYSTEM SAFETY... of insulated wire; splice in underground wire. Insulated wire shall be protected from mechanical...

  17. Detection of a buried wire with two resistively loaded wire antennas

    NARCIS (Netherlands)

    Vossen, S.H.J.A.; Tijhuis, A.G.; Lepelaars, E.S.A.M.; Zwamborn, A.P.M.

    2002-01-01

    The use of two identical straight thin-wire antennas for the detection of a buried wire is analyzed with the aid of numerical calculations. The buried wire is located below an interface between two homogeneous half-spaces. The detection setup, which is formed by a transmitting and a receiving wire,

  18. One century of Kirschner wires and Kirschner wire insertion techniques : A historical review

    NARCIS (Netherlands)

    Franssen, Bas B. G. M.; Schuurman, Arnold H.; Van der Molen, Aebele Mink; Kon, Moshe

    A century ago, in 1909, Martin Kirschner (1879-942) introduced a smooth pin, presently known as the Kirschner wire (K-wire). The K-wire was initiallly used for skeletal traction and is now currently used for many different goals. The development of the K-wire and its insertion devices were mainly

  19. Pre-wired systems prove their worth.

    Science.gov (United States)

    2012-03-01

    The 'new generation' of modular wiring systems from Apex Wiring Solutions have been specified for two of the world's foremost teaching hospitals - the Royal London and St Bartholomew's Hospital, as part of a pounds sterling 1 billion redevelopment project, to cut electrical installation times, reduce on-site waste, and provide a pre-wired, factory-tested, power and lighting system. HEJ reports.

  20. 49 CFR 393.28 - Wiring systems.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 5 2010-10-01 2010-10-01 false Wiring systems. 393.28 Section 393.28 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL MOTOR CARRIER SAFETY... NECESSARY FOR SAFE OPERATION Lamps, Reflective Devices, and Electrical Wiring § 393.28 Wiring systems...

  1. Clinical bending of nickel titanium wires

    Directory of Open Access Journals (Sweden)

    Stephen Chain

    2015-01-01

    Full Text Available Since the evolution and the involvement of Nickel Titanium wires in the field of Orthodontics. The treatment plan has evolved with the use of low force Nickel Titanium wires. Because of their high springback, low stiffness, they are the key initial wires in leveling and alignment but have poor formability. Since poor formability limits its ability to create variable arch forms thus; limits the form of treatment. We have devised a method to bend the Nickel Titanium wires to help in our inventory but also customized the wire according to the treatment.

  2. Energy Deposition in a Septum Wire

    CERN Document Server

    Ferioli, G; Knaus, P; Koopman, J; CERN. Geneva. SPS and LHC Division

    2001-01-01

    The present note describes a machine development (MD) aimed to confirm experimentally the need for protection of the extraction wire septum ZS in SPS long straight section LSS6 during LHC operation. Single wires identical to the ones mounted on the extraction septum were fixed on a fast wire scanner and put into the beam path. The beam heated the wire until it broke after a measured number of turns. The maximum single shot intensity the septum wires could withstand was thus calculated and compared with simulation results.

  3. Electrodeposition of nickel nano wire arrays

    International Nuclear Information System (INIS)

    Nur Ubaidah Saidin; Kok Kuan Ying; Ng Inn Khuan; Nurazila Mat Zali; Siti Salwa Zainal Abidin

    2010-01-01

    Synthesis, characterization and assembly of one-dimensional nickel nano wires prepared by template directed electrodeposition are discussed in this paper. Parallel arrays of high aspect ratio nickel nano wires were electrodeposited using electrolytes with different cations and pH. The nano wires were characterized using X-ray diffractometry and scanning electron microscopy. It was found that the orientations of the electro deposited Ni nano wires were governed by the deposition current and the electrolyte conditions. Free standing nickel nano wires can be obtained by dissolving the template. Due to the magnetic nature of the nano wires, magnetic alignment was employed to assemble and position the free standing nano wires in the device structure. (author)

  4. Slice of LHC dipole wiring

    CERN Multimedia

    Dipole model slice made in 1994 by Ansaldo. The high magnetic fields needed for guiding particles around the Large Hadron Collider (LHC) ring are created by passing 12’500 amps of current through coils of superconducting wiring. At very low temperatures, superconductors have no electrical resistance and therefore no power loss. The LHC is the largest superconducting installation ever built. The magnetic field must also be extremely uniform. This means the current flowing in the coils has to be very precisely controlled. Indeed, nowhere before has such precision been achieved at such high currents. 50’000 tonnes of steel sheets are used to make the magnet yokes that keep the wiring firmly in place. The yokes constitute approximately 80% of the accelerator's weight and, placed side by side, stretch over 20 km!

  5. Modifications in straight wire treatment.

    Science.gov (United States)

    Cardona, Alvin

    2010-01-01

    Orthodontic treatments have been modified with each new generation of clinicians. Today the emphasis is on facial esthetics and healthy temporomandibular joints. With orthopedic treatment, we can develop dental arches to get the necessary space to align the teeth and we can reach adequate function and esthetics, all within relatively good stability. By combining two-phase treatment with low friction fixed orthodontics and super elastic wires we produce light but continuous forces and we can provide better treatment than before. These types of forces cause physiological and functional orthopedic orthodontic reactions. The purpose of this article is to demonstrate our fixed orthopedic and orthodontic approach called "Modified Straight Wire" or "Physiologic Arch Technique." This technique is very successful with our patients because it can exert slow and continuous forces with minimal patient cooperation.

  6. Vibrating wire for beam profile scanning

    Directory of Open Access Journals (Sweden)

    S. G. Arutunian

    1999-12-01

    Full Text Available A method that measures the transverse profile (emittance of the bunch by detecting radiation arising at the scattering of the bunch on scanning wire is widely used. In this work information about bunch scattering is obtained by measuring the oscillation frequency of the tightened scanning wire. In such a way, the system of radiation (or secondary particles extraction and measurement can be removed. The entire unit consists of a compact fork with tightened wire and a scanning system. Normal oscillation frequency of a wire depends on wire tension, its geometric parameters, and, in a second approximation, its elastic characteristics. Normal oscillations are generated by interaction of an alternating current through the wire with magnetic field of a permanent magnet. In this case, it is suggested that the magnetic field of the accelerator (field of dipole magnets or quadrupole magnets be used for excitation of oscillations. The dependence of oscillation frequency on beam scattering is determined by several factors, including changes of wire tension caused by transverse force of the beam and influence of beam self-field. Preliminary calculations show that the influence of wire heating will dominate. We have studied strain gauges on the basis of vibrating wire from various materials (tungsten, beryl bronze, and niobium zirconium alloys. A scheme of normal oscillation generation by alternating current in autogeneration circuit with automatic frequency adjustment was selected. A special method of wire fixation and elimination of transverse degrees of freedom allows us to achieve relative stability better than 10^{-5} during several days at a relative resolution of 10^{-6}. Experimental results and estimates of wire heating of existing scanners show that the wire heats up to a few hundred grades, which is enough for measurements. The usage of wire of micrometer thickness diminishes the problem of wire thermalization speed during the scanning of the bunch.

  7. Pin Wire Coating Trip Report

    International Nuclear Information System (INIS)

    Spellman, G P

    2004-01-01

    A meeting to discuss the current pin wire coating problems was held at the Reynolds plant in Los Angeles on 2MAR04. The attendance list for Reynolds personnel is attached. there was an initial presentation which gave a brief history and the current status of pin wire coating at Reynolds. There was a presentation by Lori Primus on the requirements and issues for the coating. There was a presentation by Jim Smith of LANL on the chemistry and to some extent process development done to date. There was a long session covering what steps should be taken in the short term and, to a lesser extent, the long term. The coating currently being used is a blend of two polymers, polyethersulfone and polyparabanic acid (PPA) and some TiO2 filler. This system was accepted and put into production when the pin wire coating was outsourced to another company in 1974. When that company no longer was interested, the wire coating was brought in-house to Reynolds. At that time polyparabanic acid was actually a commercial product available from Exxon under the trade name Tradlon. However, it appears that the material used at Reynolds was synthesized locally. Also, it appears that a single large batch was synthesized in that time period and used up to 1997 when the supply ran out. The reason for the inclusion of TiO2 is not known although it does act as a rheological thickener. However, a more controlled thickening can be obtained with materials such as fumed silica. This material would have less likelihood of causing point imperfections in the coatings. Also, the mixing technique being used for all stages of the process is a relatively low shear ball mill process and the author recommends a high shear process such as a three roll paint mill, at least for the final mixing. Since solvent is added to the powder at Reynolds, it may be that they need to have the paint mill there

  8. The HayWired Earthquake Scenario

    Science.gov (United States)

    Detweiler, Shane T.; Wein, Anne M.

    2017-04-24

    ForewordThe 1906 Great San Francisco earthquake (magnitude 7.8) and the 1989 Loma Prieta earthquake (magnitude 6.9) each motivated residents of the San Francisco Bay region to build countermeasures to earthquakes into the fabric of the region. Since Loma Prieta, bay-region communities, governments, and utilities have invested tens of billions of dollars in seismic upgrades and retrofits and replacements of older buildings and infrastructure. Innovation and state-of-the-art engineering, informed by science, including novel seismic-hazard assessments, have been applied to the challenge of increasing seismic resilience throughout the bay region. However, as long as people live and work in seismically vulnerable buildings or rely on seismically vulnerable transportation and utilities, more work remains to be done.With that in mind, the U.S. Geological Survey (USGS) and its partners developed the HayWired scenario as a tool to enable further actions that can change the outcome when the next major earthquake strikes. By illuminating the likely impacts to the present-day built environment, well-constructed scenarios can and have spurred officials and citizens to take steps that change the outcomes the scenario describes, whether used to guide more realistic response and recovery exercises or to launch mitigation measures that will reduce future risk.The HayWired scenario is the latest in a series of like-minded efforts to bring a special focus onto the impacts that could occur when the Hayward Fault again ruptures through the east side of the San Francisco Bay region as it last did in 1868. Cities in the east bay along the Richmond, Oakland, and Fremont corridor would be hit hardest by earthquake ground shaking, surface fault rupture, aftershocks, and fault afterslip, but the impacts would reach throughout the bay region and far beyond. The HayWired scenario name reflects our increased reliance on the Internet and telecommunications and also alludes to the

  9. NASA/BAE SYSTEMS SpaceWire Effort

    Science.gov (United States)

    Rakow, Glenn Parker; Schnurr, Richard G.; Kapcio, Paul

    2003-01-01

    This paper discusses the state of the NASA and BAE SYSTEMS developments of SpaceWire. NASA has developed intellectual property that implements SpaceWire in Register Transfer Level (RTL) VHDL for a SpaceWire link and router. This design has been extensively verified using directed tests from the SpaceWire Standard and design specification, as well as being randomly tested to flush out hard to find bugs in the code. The high level features of the design will be discussed, including the support for multiple time code masters, which will be useful for the James Webb Space Telescope electrical architecture. This design is now ready to be targeted to FPGA's and ASICs. Target utilization and performance information will be presented for Spaceflight worthy FPGA's and a discussion of the ASIC implementations will be addressed. In particular, the BAE SYSTEMS ASIC will be highlighted which will be implemented on their .25micron rad-hard line. The chip will implement a 4-port router with the ability to tie chips together to make larger routers without external glue logic. This part will have integrated LVDS drivers/receivers, include a PLL and include skew control logic. It will be targeted to run at greater than 300 MHz and include the implementation for the proposed SpaceWire transport layer. The need to provide a reliable transport mechanism for SpaceWire has been identified by both NASA And ESA, who are attempting to define a transport layer standard that utilizes a low overhead, low latency connection oriented approach that works end-to-end. This layer needs to be implemented in hardware to prevent bottlenecks.

  10. Pseudo-creep in Shape Memory Alloy Wires and Sheets

    Science.gov (United States)

    Russalian, V. R.; Bhattacharyya, A.

    2017-10-01

    Interruption of loading during reorientation and isothermal pseudoelasticity in shape memory alloys with a strain arrest ( i.e., holding strain constant) results in a time-dependent evolution in stress or with a stress arrest ( i.e., holding stress constant) results in a time-dependent evolution in strain. This phenomenon, which we term as pseudo-creep, is similar to what was reported in the literature three decades ago for some traditional metallic materials undergoing plastic deformation. In a previous communication, we reported strain arrest of isothermal pseudoelastic loading, isothermal pseudoelastic unloading, and reorientation in NiTi wires as well as a rate-independent phase diagram. In this paper, we provide experimental results of the pseudo-creep phenomenon during stress arrest of isothermal pseudoelasticity and reorientation in NiTi wires as well as strain arrest of isothermal pseudoelasticity and reorientation in NiTi sheets. Stress arrest in NiTi wires accompanied by strain accumulation or recovery is studied using the technique of multi-video extensometry. The experimental results were used to estimate the amount of mechanical energy needed to evolve the wire from one microstructural state to another during isothermal pseudoelastic deformation and the difference in energies between the initial and the final rest state between which the aforementioned evolution has occurred.

  11. Flow pattern assessment in tubes with wire coil inserts in laminar and transition regimes

    International Nuclear Information System (INIS)

    Garcia, A.; Solano, J.P.; Vicente, P.G.; Viedma, A.

    2007-01-01

    The paper presents an analysis of the flow mechanisms in tubes with wire coils using hydrogen bubble visualization and PIV techniques. Results have been contrasted with experimental data on pressure drop. The relation between the observed flow patterns and the friction factor has been analysed. The experimental analysis that has been carried out allows one to state that at low Reynolds numbers (Re < 400) the flow in tubes with wire coils is basically similar to the flow in smooth tubes. At Reynolds numbers between 500 and 700 and in short pitch wire coils a recirculating flow appears. The insertion of wires coils in a smooth tube accelerates significantly the transition to turbulence. This is produced at Reynolds numbers between 700 and 1000 depending on the wire pitch

  12. Laser shape setting of superelastic nitinol wires: Functional properties and microstructure

    Science.gov (United States)

    Tuissi, Ausonio; Coduri, Mauro; Biffi, Carlo Alberto

    Shape setting is one of the most important steps in the production route of Nitinol Shape Memory Alloys (SMAs), as it can fix the functional properties, such as the shape memory effect and the superelasticity (SE). The conventional method for making the shape setting is performed at 400-500∘C in furnaces. In this work, a laser beam was adopted for performing straight shape setting on commercially available austenitic Nitinol thin wires. The laser beam, at different power levels, was moved along the wire length for inducing the functional performances. Calorimetric, pseudo-elastic and microstructural features of the laser annealed wires were studied through differential scanning calorimetry, tensile testing and high energy X-ray diffraction, respectively. It can be stated that the laser technology can induce SE in thin Nitinol wires: the wire performances can be modulated in function of the laser power and improved functional properties can be obtained.

  13. Evidence for length-dependent wire expansion, filament dedensification and consequent degradation of critical current density in Ag-alloy sheathed Bi-2212 wires

    International Nuclear Information System (INIS)

    Malagoli, A; Lee, P J; Jiang, J; Trociewitz, U P; Hellstrom, E E; Larbalestier, D C; Ghosh, A K; Scheuerlein, C; Di Michiel, M

    2013-01-01

    It is well known that longer Bi-2212 conductors have significantly lower critical current density (J c ) than shorter ones, and recently it has become clear that a major cause of this reduction is internal gas pressure generated during heat treatment, which expands the wire diameter and dedensifies the Bi-2212 filaments. Here we report on the length-dependent expansion of 5–240 cm lengths of state-of-the-art, commercial Ag alloy sheathed Bi-2212 wire after full and some partial heat treatments. Detailed image analysis along the wire length shows that the wire diameter increases with distance from the ends, longer samples often showing evident damage and leaks provoked by the internal gas pressure. Comparison of heat treatments carried out just below the melting point and with the usual melt process makes it clear that melting is crucial to developing high internal pressure. The decay of J c away from the ends is directly correlated to the local wire diameter increase, which decreases the local Bi-2212 filament mass density and lowers J c , often by well over 50%. It is clear that control of the internal gas pressure is crucial to attaining the full J c of these very promising round wires and that the very variable properties of Bi-2212 wires are due to the fact that this internal gas pressure has so far not been well controlled. (paper)

  14. Progress in American Superconductor’s HTS wire and optimization for fault current limiting systems

    Energy Technology Data Exchange (ETDEWEB)

    Malozemoff, Alexis P., E-mail: amalozemoff@amsc.com

    2016-11-15

    Highlights: • AMSC HTS wire critical current needed for rotating machinery is doubled by 16 MeV Au irradiation. • Nonuniformity of HTS wires in power devices causes hot spot formation during power system faults. • Lower normal-state resistivity and critical current lower HTS wire hot spot heating during faults. • HTS wire hot spot heating in HTS cables during faults must stay below lN{sub 2} bubble nucleation point. • HTS wire can be designed to meet hot spot heating limits in fault current limiting cables. - Abstract: American Superconductor has developed composite coated conductor tape-shaped wires using high temperature superconductor (HTS) on a flexible substrate with laminated metal stabilizer. Such wires enable many applications, each requiring specific optimization. For example, coils for HTS rotating machinery require increased current density J at 25–50 K. A collaboration with Argonne, Brookhaven and Los Alamos National Laboratories and several universities has increased J using an optimized combination of precipitates and ion irradiation defects in the HTS. Major commercial opportunities also exist to enhance electric power grid resiliency by linking substations with distribution-voltage HTS power cables [10]. Such links provide alternative power sources if one substation's transmission-voltage power is compromised. But they must also limit fault currents which would otherwise be increased by such distribution-level links. This can be done in an HTS cable, exploiting the superconductor-to-resistive transition when current exceeds the wires’ critical J. A key insight is that such transitions are usually nonuniform; so the wire must be designed to prevent localized hot spots from damaging the wire or even generating gas bubbles in the cable causing dielectric breakdown. Analysis shows that local heating can be minimized by increasing the composite tape's total thickness, decreasing its total resistance in the normal state and

  15. Self-Catalyzed CdTe Wires

    Directory of Open Access Journals (Sweden)

    Tom Baines

    2018-04-01

    Full Text Available CdTe wires have been fabricated via a catalyst free method using the industrially scalable physical vapor deposition technique close space sublimation. Wire growth was shown to be highly dependent on surface roughness and deposition pressure, with only low roughness surfaces being capable of producing wires. Growth of wires is highly (111 oriented and is inferred to occur via a vapor-solid-solid growth mechanism, wherein a CdTe seed particle acts to template the growth. Such seed particles are visible as wire caps and have been characterized via energy dispersive X-ray analysis to establish they are single phase CdTe, hence validating the self-catalysation route. Cathodoluminescence analysis demonstrates that CdTe wires exhibited a much lower level of recombination when compared to a planar CdTe film, which is highly beneficial for semiconductor applications.

  16. Phosphorus in antique iron music wire.

    Science.gov (United States)

    Goodway, M

    1987-05-22

    Harpsichords and other wire-strung musical instruments were made with longer strings about the beginning of the 17th century. This change required stronger music wire. Although these changes coincided with the introduction of the first mass-produced steel (iron alloyed with carbon), carbon was not found in samples of antique iron harpsichord wire. The wire contained an amount of phosphorus sufficient to have impeded its conversion to steel, and may have been drawn from iron rejected for this purpose. The method used to select pig iron for wire drawing ensured the highest possible phosphorus content at a time when its presence in iron was unsuspected. Phosphorus as an alloying element has had the reputation for making steel brittle when worked cold. Nevertheless, in replicating the antique wire, it was found that lowcarbon iron that contained 0.16 percent phosphorus was easily drawn to appropriate gauges and strengths for restringing antique harpsichords.

  17. Electromagnetic Behaviour of Metallic Wire Structures

    CERN Document Server

    Chui, S T

    2013-01-01

    Despite the recent development and interest in the photonics of metallic wire structures, the relatively simple concepts and physics often remain obscured or poorly explained to those who do not specialize in the field. Electromagnetic Behaviour of Metallic Wire Structures provides a clear and coherent guide to understanding these phenomena without excessive numerical calculations.   Including both background material and detailed derivations of the various different formulae applied, Electromagnetic Behaviour of Metallic Wire Structures describes how to extend basic circuit theory relating to voltages, currents, and resistances of metallic wire networks to include situations where the currents are no longer spatially uniform along the wire. This lays a foundation for a deeper understanding of the many new phenomena observed in meta-electromagnetic materials.   Examples of applications are included to support this new approach making Electromagnetic Behaviour of Metallic Wire Structures a comprehensive and ...

  18. Electro-mechanics of drift tube wires

    International Nuclear Information System (INIS)

    Milburn, R.H.

    1997-01-01

    The position and stability of the sense wires in very long drift tubes are affected by both gravitational and electrostatic forces, as well as by the wire tension. For a tube to be used as an element of a high-resolution detector all these forces and their effects must be understood in appropriately precise detail. In addition, the quality control procedures applied during manufacture and detector installation must be adequate to ensure that the internal wire positions remain within tolerances. It may be instructive to practitioners to review the simple theory of a taut wire in the presence of anisotropic gravitational and electrostatic fields to illustrate the conditions for stability, the equilibrium wire displacement from straightness, and the effect of the fields on the mechanical vibration frequencies. These last may be used to monitor the wire configuration externally. A number of practical formulae result and these are applied to illustrative examples. (orig.)

  19. IEE wiring regulations explained and illustrated

    CERN Document Server

    Scaddan, Brian

    2013-01-01

    The IEE Wiring Regulations Explained and Illustrated, Second Edition discusses the recommendations of the IEE Regulations for the Electrical Equipment of Buildings for the safe selection or erection of wiring installations. The book emphasizes earthing, bonding, protection, and circuit design of electrical wirings. The text reviews the fundamental requirements for safety, earthing systems, the earth fault loop impedance, and supplementary bonding. The book also describes the different types of protection, such as protection against mechanical damage, overcurrent, under voltage (which prevents

  20. Radiofrequency Wire Recanalization of Chronically Thrombosed TIPS

    Energy Technology Data Exchange (ETDEWEB)

    Majdalany, Bill S., E-mail: bmajdala@med.umich.edu [University of Michigan Health System, Division of Interventional Radiology, Department of Radiology (United States); Elliott, Eric D., E-mail: eric.elliott@osumc.edu [The Ohio State University Wexner Medical Center, Division of Interventional Radiology, Department of Radiology (United States); Michaels, Anthony J., E-mail: Anthony.michaels@osumc.edu; Hanje, A. James, E-mail: James.Hanje@osumc.edu [The Ohio State University Wexner Medical Center, Division of Gastroenterology and Hepatology, Department of Medicine (United States); Saad, Wael E. A., E-mail: wsaad@med.umich.edu [University of Michigan Health System, Division of Interventional Radiology, Department of Radiology (United States)

    2016-07-15

    Radiofrequency (RF) guide wires have been applied to cardiac interventions, recanalization of central venous thromboses, and to cross biliary occlusions. Herein, the use of a RF wire technique to revise chronically occluded transjugular intrahepatic portosystemic shunts (TIPS) is described. In both cases, conventional TIPS revision techniques failed to revise the chronically thrombosed TIPS. RF wire recanalization was successfully performed through each of the chronically thrombosed TIPS, demonstrating initial safety and feasibility in this application.

  1. Minimisation of the wire position uncertainties of the new CERN vacuum wire scanner

    CERN Document Server

    AUTHOR|(CDS)2069346; Barjau Condomines, A

    In the next years the luminosity of the LHC will be significantly increased. This will require a much higher accuracy of beam profile measurement than actually achievable by the current wire scanner. The new fast wire scanner is foreseen to measure small emittance beams throughout the LHC injector chain, which demands a wire travelling speed up to 20 ms-1 and position measurement accuracy of the order of a few microns. The vibrations of the mechanical parts of the system, and particularly the vibrations of the thin carbon wire, were identified as the major error sources of wire position uncertainty. Therefore the understanding of the wire vibrations is a high priority for the design and operation of the new device. This document presents the work performed to understand the main causes of the wire vibrations observed in one of the existing wire scanner and the new proposed design.

  2. Hot wire radicals and reactions

    International Nuclear Information System (INIS)

    Zheng Wengang; Gallagher, Alan

    2006-01-01

    Threshold ionization mass spectroscopy is used to measure radical (and stable gas) densities at the substrate of a tungsten hot wire (HW) reactor. We report measurements of the silane reaction probability on the HW and the probability of Si and H release from the HW. We describe a model for the atomic H release, based on the H 2 dissociation model. We note major variations in silicon-release, with dependence on prior silane exposure. Measured radical densities versus silane pressure yield silicon-silane and H-silane reaction rate coefficients, and the dominant radical fluxes to the substrate

  3. DETECTORS: Vienna - beyond the wire

    International Nuclear Information System (INIS)

    Krammer, Manfred; Regler, Meinhard

    1995-01-01

    In 1986, at the fourth Vienna Wire Chamber Conference, Georges Charpak, the inventor of the multiwire proportional chamber, had confidently announced ''Les funérailles des chambres à fils''. Was this the writing on the wall for the conference series as well as this type of detector technology? The demand for detector innovation, coupled with imaginative thinking on the part of the organizers, have kept the Vienna venue at the forefront of the physics calendar. An additional boost to the success of the series was certainly the Nobel Prize awarded to Georges Charpak in 1992. While the major topic naturally is still wire chambers, alternative technologies are also covered. However in fields like calorimetry or ring imaging Cherenkovs, a sample of only a few prominent detectors were presented, giving some participants the impression of a biased selection. The fact that silicon detectors, electronics and track reconstruction strategies were, with the exception of the invited talks, restricted to poster presentations led to the same conclusion. As a result the organizing committee saw that it will have to revise its brief for the next conference. The conference opened with philosophical thoughts by Nobel Prizewinner Georges Charpak. The first day at Vienna is traditionally devoted to applications of gaseous detectors outside high energy physics. L. Shektman gave an overview of wire chambers for medical imaging. Further applications in medicine and in other fields like biology and space science were described by subsequent speakers. The exciting idea of flying a spectrometer on a balloon to study the fraction of electrons and positrons in cosmic rays attracted a lot of attention. The next day covered wire chambers in general. V. Polychronakos presented applications of cathode strip chambers in muon spectrometers for experiments at CERN's LHC proton-proton detector. Certainly the challenges of LHC for detector development dominated many

  4. The Installation for Fatigue and Destruction Tests of Thin Wires

    Directory of Open Access Journals (Sweden)

    D. V. Prosvirin

    2015-01-01

    Full Text Available The fatigue strength of high-strength materials such as wire is, essentially, dependent on the surface state, stress concentrators, non-metal inclusions, etc. Multifactorial process of damage accumulation and fracture under cyclic loading makes it difficult to predict the durability of structural materials. So fatigue tests, taking into account the operating conditions of stress exposure as much as possible, are of special importance.A feature of the wire fatigue tests is that it is complicated to secure the samples and create the alternate stresses. Currently, there is no equipment to study the fatigue strength of the wire in accordance with GOST 1579-93. Partly the problem of the wire fatigue tests was solved owing to using the installation developed in IMET RAS and considered as the base case. However, the installation has significant disadvantages, namely: a complicated for implementing in practice method to control stresses in the sample; an imperfect system to count cycles; an incapability to change the engine speed of the motor and thus, the frequency of loading.In developing the new design all the basic blocks of installation were upgraded such as drive unit; unit to control stress in the sample; unit for determining the number of cycles to failure.To change the stresses in the sample the paper offers to use the platform from polymethylmethacrylate with slotted curved channels of different radii. The stresses in the sample are dependent on the channel radius R, the wire diameter d and the modulus of elasticity E of the material and may vary in the range of 200 - 1200 MPa. The use of CNC machines in cutting the channels allows stress adjustment within ± 0,1 MPa.The developed design is used to drive the rotation of the wire and makes it possible to change the frequency of loading in the range of 0 - 100 Hz. It is shown that the use of the closing relay in drive design and the transition to an electronic system of determining the number of

  5. Quench detection method for 2G HTS wire

    International Nuclear Information System (INIS)

    Marchevsky, M; Xie, Y-Y; Selvamanickam, V

    2010-01-01

    2G HTS conductors are increasingly used in various commercial applications and their thermal and electrical stability is an important reliability factor. Detection and prevention of quenches in 2G wire-based cables and solenoids has proven to be a difficult engineering task. This is largely due to a very slow normal zone propagation in coated conductors that leads to formation of localized hotspots while the rest of the conductor remains in the superconducting state. We propose an original method of quench and hotspot detection for 2G wires and coils that is based upon local magnetic sensing and takes advantage of 2G wire planar geometry. We demonstrate our technique experimentally and show that its sensitivity is superior to the known voltage detection scheme. A unique feature of the method is its capability to remotely detect instant degradation of the wire critical current even before a normal zone is developed within the conductor. Various modifications of the method applicable to practical device configurations are discussed.

  6. Quench detection method for 2G HTS wire

    Energy Technology Data Exchange (ETDEWEB)

    Marchevsky, M; Xie, Y-Y; Selvamanickam, V, E-mail: maxmarche@gmail.co, E-mail: yxie@superpower-inc.co [SuperPower, Inc., 450 Duane Avenue, Schenectady, NY 12304 (United States)

    2010-03-15

    2G HTS conductors are increasingly used in various commercial applications and their thermal and electrical stability is an important reliability factor. Detection and prevention of quenches in 2G wire-based cables and solenoids has proven to be a difficult engineering task. This is largely due to a very slow normal zone propagation in coated conductors that leads to formation of localized hotspots while the rest of the conductor remains in the superconducting state. We propose an original method of quench and hotspot detection for 2G wires and coils that is based upon local magnetic sensing and takes advantage of 2G wire planar geometry. We demonstrate our technique experimentally and show that its sensitivity is superior to the known voltage detection scheme. A unique feature of the method is its capability to remotely detect instant degradation of the wire critical current even before a normal zone is developed within the conductor. Various modifications of the method applicable to practical device configurations are discussed.

  7. Coherent transport in a system of periodic linear chain of quantum dots situated between two parallel quantum wires

    International Nuclear Information System (INIS)

    Petrosyan, Lyudvig S

    2016-01-01

    We study coherent transport in a system of periodic linear chain of quantum dots situated between two parallel quantum wires. We show that the resonant-tunneling conductance between the wires exhibits a Rabi splitting of the resonance peak as a function of Fermi energy in the wires. This effect is an electron transport analogue of the Rabi splitting in optical spectra of two interacting systems. The conductance peak splitting originates from the anticrossing of Bloch bands in a periodic system that is caused by a strong coupling between the electron states in the quantum dot chain and quantum wires. (paper)

  8. Wire alignment system for ATF LINAC

    International Nuclear Information System (INIS)

    Hayano, H.; Takeda, S.; Matsumoto, H.; Matsui, T.

    1994-01-01

    A wire based alignment system is adopted to make less than 40μm precision alignment for injector linac of Accelerator Test Facility (ATF). The system consists of two stretched SUS wires, pickup coils and active mover stages. The position of pickup coils in a mount which will be installed into LINAC stages is set to the calculated wire position prior to installation. All of LINAC stages are then moved to keep the calculated position by the active mover. The test results of wire position detection in a long term are described. (author)

  9. Aircraft Wiring Support Equipment Integration Laboratory (AWSEIL)

    Data.gov (United States)

    Federal Laboratory Consortium — Purpose:The Aircraft Wiring Support Equipment Integration Laboratory (AWSEIL) provides a variety of research, design engineering and prototype fabrication services...

  10. Nickel contaminated titanium weld wire study

    International Nuclear Information System (INIS)

    Coffin, G.R.; Sumstine, R.L.

    1979-01-01

    Attachment of thermocouples to fuel rod welding problems at Exxon Nuclear Company and INEL prompted an investigation study of the titanium filler wire material. It was found that the titanium filler wire was contaminated with nickel which was jacketed on the wire prior to the drawing process at the manufacturers. A method was developed to 100% inspect all filler wire for future welding application. This method not only indicates the presence of nickel contamination but indicates quantity of contamination. The process is capable of high speed inspection necessary for various high speed manufacturing processes

  11. submitter Dynamical Models of a Wire Scanner

    CERN Document Server

    Barjau, Ana; Dehning, Bernd

    2016-01-01

    The accuracy of the beam profile measurements achievable by the current wire scanners at CERN is limited by the vibrations of their mechanical parts. In particular, the vibrations of the carbon wire represent the major source of wire position uncertainty which limits the beam profile measurement accuracy. In the coming years, due to the Large Hadron Collider (LHC) luminosity upgrade, a wire traveling speed up to 20 $m s^{−1}$ and a position measurement accuracy of the order of 1 μm will be required. A new wire scanner design based on the understanding of the wire vibration origin is therefore needed. We present the models developed to understand the main causes of the wire vibrations observed in an existing wire scanner. The development and tuning of those models are based on measurements and tests performed on that CERN proton synchrotron (PS) scanner. The final model for the (wire + fork) system has six degrees-of-freedom (DOF). The wire equations contain three different excitation terms: inertia...

  12. V-I transition and n-value of multifilamentary LTS and HTS wires and cables

    International Nuclear Information System (INIS)

    Ghosh, Arup K.

    2004-01-01

    For low T c multifilamentary conductors like NbTi and Nb 3 Sn, the V-I transition to the normal state is typically quantified by the parameter, n, defined by (ρ/ρ c )=(I/I c ) n . For NbTi, this parameterization has been very useful in the development of high J c wires, where the n-value is regarded as an index of the filament quality. In copper-matrix wires with undistorted filaments, the n-value at 5 T is ∼40-60, and drops monotonically with increasing field. However, n can vary significantly in conductors with higher resistivity matrices and those with a low copper fraction. Usually high n-values are associated with unstable resistive behavior and premature quenching. The n-value in NbTi Rutherford cables, when compared to that in the wires is useful in evaluating cabling degradation of the critical current due to compaction at the edges of the cable. In Nb 3 Sn wires, n-value has been a less useful tool, since often the resistive transition shows small voltages ∼ a few μV prior to quenching. However, in 'well behaved' wires, n is ∼30-40 at 12 T and also shows a monotonic behavior with field. Strain induced I c degradation in these wires is usually associated with lower n-values. For high T c multifilamentary wires and tapes, a similar power law often describes the resistive transition. At 4.2 K, Bi-2223 tapes as well as Bi-2212 wires exhibit n-values ∼15-20. In either case, n does not change appreciably with field. Rutherford cables of Bi-2212 wire show lower values of n than the virgin wire

  13. Stress-strain effects on powder-in-tube MgB2 tapes and wires

    International Nuclear Information System (INIS)

    Katagiri, Kazumune; Takaya, Ryuya; Kasaba, Koichi; Tachikawa, Kyoji; Yamada, Yutaka; Shimura, Satoshi; Koshizuka, Naoki; Watanabe, Kazuo

    2005-01-01

    The effects of stress-strain on the critical current, I c , of ex situ powder-in-tube (PIT)-processed Ni-sheathed MgB 2 tapes and round wires as well as in situ PIT-processed Cu-sheathed wires at 4.2 K in a magnetic field up to 5 T have been studied. The effect of In powder addition on the Ni-sheathed MgB 2 wire was not so clear compared with that in the tape, in which the irreversible strain, ε irr , for the I c degradation onset increases significantly by the addition. This is attributed to the difference in the microstructure of the core associated with cold workings. A peak and gradual degradation behaviour of I c with strain beyond ε irr was found in the wire, whereas no evident peak and a steep degradation behaviour was found in the tape. As a possible reason, the difference in the triaxial residual stress state at 4.2 K due to the difference in geometry of the cross-section is suspected. The transverse compression tests revealed that I c of the wire did not degrade up to 270 MPa. Again, the effect of In addition was minimal. The Young's modulus of MgB 2 , 31-41 GPa, at room temperature was estimated by a tensile test of Cu sheath wire using a high-accuracy extensometer and the law of mixtures. The tensile strain dependence of I c in the Cu sheath wire was similar to that in the Ni-sheathed wire, ε irr being 0.4%. However, the stress corresponding to ε irr , 50 MPa, was about 1/10 of that for the Ni-sheath wire and the irreversible transverse compressive stress, 150 MPa, was also lower. The effect of bending strain on the I c in Cu-sheathed wire was compared with that of the tensile strain

  14. FE modeling of Cu wire bond process and reliability

    NARCIS (Netherlands)

    Yuan, C.A.; Weltevreden, E.R.; Akker, P. van den; Kregting, R.; Vreugd, J. de; Zhang, G.Q.

    2011-01-01

    Copper based wire bonding technology is widely accepted by electronic packaging industry due to the world-wide cost reduction actions (compared to gold wire bond). However, the mechanical characterization of copper wire differs from the gold wire; hence the new wire bond process setting and new bond

  15. Low-field Instabilities in Nb$_{3}$Sn Multifilamentary Wires the Possible Role of Unreacted Nb

    CERN Document Server

    Devred, A; Celentano, G; Fabbricatore, P; Ferdeghini, C; Greco, M; Gambardella, U

    2007-01-01

    We report an experimental study aiming to demonstrate the not negligible role of unreacted Nb on the magnetic instabilities in superconducting Nb$_{3}$Sn multifilamentary wires, observable through partial flux jumps at magnetic field values below 0.5 T. The analysed wires were recently developed for use as dipoles required in future high-energy proton accelerators and are based on powder-in-tube technology. We studied both unreacted (only involving Nb filaments) and reacted wires, finding flux jump instabilities in both cases when performing magnetic measurements. The results can be interpreted on the basis of the critical state model and are coherent with the intrinsic stability criterion.

  16. THERMO-MECHANICALLY PROCESSED ROLLED WIRE FOR HIGH-STRENGTH ON-BOARD WIRE

    Directory of Open Access Journals (Sweden)

    V. A. Lutsenko

    2011-01-01

    Full Text Available It is shown that at twisting of wire of diameter 1,83 mm, produced by direct wire drawing of thermomechanically processed rolled wire of diameter 5,5 mm of steel 90, metal stratification is completely eliminated at decrease of carbon, manganese and an additional alloying of chrome.

  17. Bird on a (live) wire

    Energy Technology Data Exchange (ETDEWEB)

    Farr, M.

    2003-09-30

    Bird mortality as a result of contact with power lines is discussed. U. S. statistics are cited, according to which 174 million birds annually die as a result of contact with power lines, specifically when birds touch two phases of current at the same time. Raptors are particularly vulnerable to power-line electrocution due to their habit of perching on the highest vantage point available as they survey the ground for prey. Hydro lines located in agricultural areas, with bodies of water on one side and fields on the other, also obstruct flight of waterfowl as dusk and dawn when visibility is low. Various solutions designed to minimize the danger to birds are discussed. Among these are: changing the configuration of wires and cross arms to make them more visible to birds in flight and less tempting as perches, and adding simple wire markers such as flags, balloons, and coloured luminescent clips that flap and twirl in the wind. There is no evidence of any coordinated effort to deal with this problem in Ontario. However, a report is being prepared for submission to Environment Canada outlining risks to birds associated with the growing number of wind turbine power generators (negligible compared with power lines and communications towers), and offering suggestions on remedial measures. The Fatal Light Awareness Program (FLAP) also plans to lobby the Canadian Wildlife Service to discuss the possibility of coordinating efforts to monitor, educate about and ultimately reduce this form of bird mortality.

  18. 77 FR 17430 - Galvanized Steel Wire From the People's Republic of China: Final Determination of Sales at Less...

    Science.gov (United States)

    2012-03-26

    ... DEPARTMENT OF COMMERCE International Trade Administration [A-570-975] Galvanized Steel Wire From... Determination of sales at less than fair value (``LTFV'') in the antidumping investigation of galvanized steel... galvanized steel wire from the PRC is being, or is likely to be, sold in the United States at LTFV, as...

  19. Thermal-hydraulic analysis for wire-wrapped PWR cores

    Energy Technology Data Exchange (ETDEWEB)

    Diller, P. [General Electric Company, 3901 Castle Hayne Rd., Wilmington, NC 28401 (United States)], E-mail: pdiller@gmail.com; Todreas, N. [Massachusetts Institute of Technology, Cambridge, MA 02139 (United States)], E-mail: todreas@mit.edu; Hejzlar, P. [Massachusetts Institute of Technology, Cambridge, MA 02139 (United States)

    2009-08-15

    This work focuses on the steady-state and transient thermal-hydraulic analyses for PWR cores using wire wraps in a hexagonal array with either U (45% w/o)-ZrH{sub 1.6} (referred to as U-ZrH{sub 1.6}) or UO{sub 2} fuels. Equivalences (thermal-hydraulic and neutronic) were created between grid spacer and wire wrap designs, and were used to apply results calculated for grid spacers to wire wrap designs. Design limits were placed on the pressure drop, critical heat flux (CHF), fuel and cladding temperature and vibrations. The vibrations limits were imposed for flow-induced vibrations (FIV) and thermal-hydraulic vibrations (THV). The transient analysis examined an overpower accident, loss of coolant accident (LOCA) and loss of flow accident (LOFA). The thermal-hydraulic performance of U-ZrH{sub 1.6} and UO{sub 2} were found very similar. Relative to grid spacer designs, wire wrap designs were found to have smaller fretting wear, substantially lower pressure drop and higher CHF. As a result, wire wrap cores were found to offer substantially higher maximum powers than grid spacer cores, allowing for a 25% power increase relative to the grid spacer uprate [Shuffler, C.A., Malen, J.A., Trant, J.M., Todreas, N.E., 2009a. Thermal-hydraulic analysis for grid supported and inverted fueled PWR cores. Nuclear Technology (this special issue devoted to hydride fuel in LWRs)] and a 58% power increase relative to the reference core.

  20. WIRED 4 - A Generic Event Display Plugin for JAS 3

    International Nuclear Information System (INIS)

    Donszelmann, M.

    2004-01-01

    WIRED 4 is an experiment independent event display plugin module for the JAS 3 (Java Analysis Studio) generic analysis framework. Both WIRED and JAS are written in Java. WIRED, which uses HepRep (HEP Representables for Event Display) as its input format, supports viewing of events using either conventional 3D projections as well as specialized projections, such as a fish-eye or a ρ-Z projection. Projections allow the user to scale, rotate, position or change parameters on the plot as he wishes. All interactions are handled as separate edits which can be undone and/or redone, so the user can try out things and get back to a previous situation. All edits are scriptable by any of the scripting languages supported by JAS, such as pnuts, jython or java itself. Hits and tracks can be picked to display physics information and cuts can be made on physics parameters to allow the user to filter the number of objects drawn into the plot. Multiple event display plots can be laid out on pages combined with histograms and other plots, available from JAS itself or from other plugin modules. Configuration information on the state of all plots can be saved and restored allowing the user to save his session, share it with others or later continue where he left off. This version of WIRED is written to be easily extensible by the user/developer. Projections, representations, interaction handlers and edits are all services and new ones can be added by writing additional plugins. Both JAS 3 and WIRED 4 are built on top of the FreeHEP Java Libraries, which support a multitude of vector graphics output formats, such as PostScript, PDF, SVG, SWF and EMF, allowing document quality output of event display plots and histograms

  1. Atomistic calculation of size effects on elastic coefficients in nanometre-sized tungsten layers and wires

    International Nuclear Information System (INIS)

    Villain, P.; Beauchamp, P.; Badawi, K.F.; Goudeau, P.; Renault, P.-O.

    2004-01-01

    Equilibrium state and elastic coefficients of nanometre-sized single crystal tungsten layers and wires are investigated by atomistic simulations. The variations of the equilibrium distances as a function of the layer thickness or wire cross-section are mainly due to elastic effects of surface tension forces. A strong decrease of the Young's modulus is observed when the transverse dimensions are reduced below 2-3 nm

  2. Fluorescent silver nanoparticles via exploding wire technique

    Indian Academy of Sciences (India)

    Pure silver nanoparticles in double distilled water were generated via simple physical method using pure (99.9%) silver wires with 0.2 mm diameter. These wires have been exploded in water by bringing them into sudden contact with pure (99.9%) silver plate when subjected to a potential difference of 36 V DC. High current.

  3. WIRED magazine announces rave awards nominees

    CERN Document Server

    2002-01-01

    WIRED Magazine has anounced the nominees for its fourth annual WIRED Rave Awards, celebrating innovation and the individuals transforming commerce and culture. Jeffrey Hangst of the University of Aarhus has been nominated in the science category, for his work on the ATHENA Experiment, CERN (1/2 page).

  4. Lansce Wire Scanning Diagnostics Device Mechanical Design

    International Nuclear Information System (INIS)

    Rodriguez Esparza, Sergio; Batygin, Yuri K.; Gilpatrick, John D.; Gruchalla, Michael E.; Maestas, Alfred J.; Pillai, Chandra; Raybun, Joseph L.; Sattler, F.D.; Sedillo, James Daniel; Smith, Brian G.

    2011-01-01

    The Accelerator Operations and Technology Division at Los Alamos National Laboratory operates a linear particle accelerator which utilizes 110 wire scanning diagnostics devices to gain position and intensity information of the proton beam. In the upcoming LANSCE improvements, 51 of these wire scanners are to be replaced with a new design, up-to-date technology and off-the-shelf components. This document outlines the requirements for the mechanical design of the LANSCE wire scanner and presents the recently developed linac wire scanner prototype. Additionally, this document presents the design modifications that have been implemented into the fabrication and assembly of this first linac wire scanner prototype. Also, this document will present the design for the second, third, and fourth wire scanner prototypes being developed. Prototypes 2 and 3 belong to a different section of the particle accelerator and therefore have slightly different design specifications. Prototype 4 is a modification of a previously used wire scanner in our facility. Lastly, the paper concludes with a plan for future work on the wire scanner development.

  5. Lansce Wire Scanning Diagnostics Device Mechanical Design

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez Esparza, Sergio [Los Alamos National Laboratory; Batygin, Yuri K. [Los Alamos National Laboratory; Gilpatrick, John D. [Los Alamos National Laboratory; Gruchalla, Michael E. [Los Alamos National Laboratory; Maestas, Alfred J. [Los Alamos National Laboratory; Pillai, Chandra [Los Alamos National Laboratory; Raybun, Joseph L. [Los Alamos National Laboratory; Sattler, F. D. [Los Alamos National Laboratory; Sedillo, James Daniel [Los Alamos National Laboratory; Smith, Brian G. [Los Alamos National Laboratory

    2011-01-01

    The Accelerator Operations & Technology Division at Los Alamos National Laboratory operates a linear particle accelerator which utilizes 110 wire scanning diagnostics devices to gain position and intensity information of the proton beam. In the upcoming LANSCE improvements, 51 of these wire scanners are to be replaced with a new design, up-to-date technology and off-the-shelf components. This document outlines the requirements for the mechanical design of the LANSCE wire scanner and presents the recently developed linac wire scanner prototype. Additionally, this document presents the design modifications that have been implemented into the fabrication and assembly of this first linac wire scanner prototype. Also, this document will present the design for the second, third, and fourth wire scanner prototypes being developed. Prototypes 2 and 3 belong to a different section of the particle accelerator and therefore have slightly different design specifications. Prototype 4 is a modification of a previously used wire scanner in our facility. Lastly, the paper concludes with a plan for future work on the wire scanner development.

  6. Pretinning Nickel-Plated Wire Shields

    Science.gov (United States)

    Igawa, J. A.

    1985-01-01

    Nickel-plated copper shielding for wires pretinned for subsequent soldering with help of activated rosin flux. Shield cut at point 0.25 to 0.375 in. (6 to 10 mm) from cut end of outer jacket. Loosened end of shield straightened and pulled toward cut end. Insulation of inner wires kept intact during pretinning.

  7. Steer-by-wire innovations and demonstrator

    NARCIS (Netherlands)

    Lupker, H.A.; Zuurbier, J.; Verschuren, R.M.A.F.; Jansen, S.T.H.; Willemsen, D.M.C.

    2002-01-01

    Arguments for 'by-wire' systems include production costs, packaging and traffic safety. Innovations concern both product and development process e.g. combined virtual engineering and Hardware-in-the-loop testing. Three Steer-by-wire systems are discussed: a steering system simulator used as a

  8. Flywheel system using wire-wound rotor

    Science.gov (United States)

    Chiao, Edward Young; Bender, Donald Arthur; Means, Andrew E.; Snyder, Philip K.

    2016-06-07

    A flywheel is described having a rotor constructed of wire wound onto a central form. The wire is prestressed, thus mitigating stresses that occur during operation. In another aspect, the flywheel incorporates a low-loss motor using electrically non-conducting permanent magnets.

  9. Wire compensation: Performance, SPS MDs, pulsed system

    CERN Document Server

    Dorda, U

    2008-01-01

    A wire compensation (BBLR) scheme has been proposed in order to improve the long range beam-beam performance of the nominal LHC and its phase 1 and phase 2 upgrades[1]. In this paper we present experimental experience of the CERN SPS wires (BBLR) and report on progress with the RF BBLR.

  10. Method of preparing composite superconducting wire

    International Nuclear Information System (INIS)

    Verhoeven, J. D.; Finnemore, D. K.; Gibson, E. D.; Ostenson, J. E.; Schmidt, F. A.

    1985-01-01

    An improved method of preparing composite multifilament superconducting wire of Nb 3 Sn in a copper matrix which eliminates the necessity of coating the drawn wire with tin. A generalized cylindrical billet of an alloy of copper containing at least 15 weight percent niobium, present in the copper as discrete, randomly distributed and oriented dendritic-shaped particles, is provided with at least one longitudinal opening which is filled with tin to form a composite drawing rod. The drawing rod is then drawn to form a ductile composite multifilament wire containing a filament of tin. The ductile wire containing the tin can then be wound into magnet coils or other devices before heating to diffuse the tin through the wire to react with the niobium forming Nb 3 Sn. Also described is an improved method for making large billets of the copper-niobium alloy by consumable-arc casting

  11. Wiring Damage Analyses for STS OV-103

    Science.gov (United States)

    Thomas, Walter, III

    2006-01-01

    This study investigated the Shuttle Program s belief that Space Transportation System (STS) wiring damage occurrences are random, that is, a constant occurrence rate. Using Problem Reporting and Corrective Action (PRACA)-derived data for STS Space Shuttle OV-103, wiring damage was observed to increase over the vehicle s life. Causal factors could include wiring physical deterioration, maintenance and inspection induced damage, and inspection process changes resulting in more damage events being reported. Induced damage effects cannot be resolved with existent data. Growth analysis (using Crow-AMSAA, or CA) resolved maintenance/inspection effects (e.g., heightened awareness) on all wire damages and indicated an overall increase since Challenger Return-to-Flight (RTF). An increasing failure or occurrence rate per flight cycle was seen for each wire damage mode; these (individual) rates were not affected by inspection process effects, within statistical error.

  12. Wiring of electronic evaluation circuits

    International Nuclear Information System (INIS)

    Bauer, R.; Svoboda, Z.

    1977-01-01

    The wiring is described of electronic evaluation circuits for the automatic viewing of photographic paper strip negatives on which line tracks with an angular scatter relative to the spectrograph longitudinal axis were recorded during the oblique flight of nuclear particles during exposure in the spectrograph. In coincidence evaluation, the size of the angular scatter eventually requires that evaluation dead time be increased. The equipment consists of minimally two fixed registers and a block of logic circuits whose output is designed such as will allow connection to equipment for recording signals corresponding to the number of tracks on the film. The connection may be implemented using integrated circuits guaranteeing high operating reliability and life. (J.B.)

  13. Single wire drift chamber design

    International Nuclear Information System (INIS)

    Krider, J.

    1987-01-01

    This report summarizes the design and prototype tests of single wire drift chambers to be used in Fermilab test beam lines. The goal is to build simple, reliable detectors which require a minimum of electronics. Spatial resolution should match the 300 μm rms resolution of the 1 mm proportional chambers that they will replace. The detectors will be used in beams with particle rates up to 20 KHz. Single track efficiency should be at least 99%. The first application will be in the MT beamline, which has been designed for calibration of CDF detectors. A set of four x-y modules will be used to track and measure the momentum of beam particles

  14. Electron energy spectrum in core-shell elliptic quantum wire

    Directory of Open Access Journals (Sweden)

    V.Holovatsky

    2007-01-01

    Full Text Available The electron energy spectrum in core-shell elliptic quantum wire and elliptic semiconductor nanotubes are investigated within the effective mass approximation. The solution of Schrodinger equation based on the Mathieu functions is obtained in elliptic coordinates. The dependencies of the electron size quantization spectrum on the size and shape of the core-shell nanowire and nanotube are calculated. It is shown that the ellipticity of a quantum wire leads to break of degeneration of quasiparticle energy spectrum. The dependences of the energy of odd and even electron states on the ratio between semiaxes are of a nonmonotonous character. The anticrosing effects are observed at the dependencies of electron energy spectrum on the transversal size of the core-shell nanowire.

  15. Dissipation in a Quantum Wire: Fact and Fantasy

    International Nuclear Information System (INIS)

    Das, Mukunda P.; Green, Frederick

    2008-01-01

    Where, and how, does energy dissipation of electrical energy take place in a ballistic wire? Fully two decades after the advent of the transmissive phenomenology of electrical conductance, this deceptively simple query remains unanswered. We revisit the quantum kinetic basis of dissipation and show its power to give a definitive answer to our query. Dissipation leaves a clear, quantitative trace in the non-equilibrium current noise of a quantum point contact; this signature has already been observed in the laboratory. We then highlight the current state of accepted understandings in the light of well-known yet seemingly contradictory measurements. The physics of mesoscopic transport rests not in coherent carrier transmission through a perfect and dissipationless metallic channel, but explicitly in their dissipative inelastic scattering at the wire's interfaces and adjacent macroscopic leads.

  16. LANSCE wire scanning diagnostics device mechanical design

    International Nuclear Information System (INIS)

    Rodriguez Esparza, Sergio

    2010-01-01

    The Los Alamos Neutron Science Center (LANSCE) is one of the major experimental science facilities at the Los Alamos National Laboratory (LANL). The core of LANSCE's work lies in the operation of a powerful linear accelerator, which accelerates protons up to 84% the speed oflight. These protons are used for a variety of purposes, including materials testing, weapons research and isotopes production. To assist in guiding the proton beam, a series of over one hundred wire scanners are used to measure the beam profile at various locations along the half-mile length of the particle accelerator. A wire scanner is an electro-mechanical device that moves a set of wires through a particle beam and measures the secondary emissions from the resulting beam-wire interaction to obtain beam intensity information. When supplemented with data from a position sensor, this information is used to determine the cross-sectional profile of the beam. This measurement allows beam operators to adjust parameters such as acceleration, beam steering, and focus to ensure that the beam reaches its destination as effectively as possible. Some of the current wire scanners are nearly forty years old and are becoming obsolete. The problem with current wire scanners comes in the difficulty of maintenance and reliability. The designs of these wire scanners vary making it difficult to keep spare parts that would work on all designs. Also many of the components are custom built or out-dated technology and are no longer in production.

  17. LANSCE wire scanning diagnostics device mechanical design

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez Esparza, Sergio [Los Alamos National Laboratory

    2010-01-01

    The Los Alamos Neutron Science Center (LANSCE) is one of the major experimental science facilities at the Los Alamos National Laboratory (LANL). The core of LANSCE's work lies in the operation of a powerful linear accelerator, which accelerates protons up to 84% the speed oflight. These protons are used for a variety of purposes, including materials testing, weapons research and isotopes production. To assist in guiding the proton beam, a series of over one hundred wire scanners are used to measure the beam profile at various locations along the half-mile length of the particle accelerator. A wire scanner is an electro-mechanical device that moves a set of wires through a particle beam and measures the secondary emissions from the resulting beam-wire interaction to obtain beam intensity information. When supplemented with data from a position sensor, this information is used to determine the cross-sectional profile of the beam. This measurement allows beam operators to adjust parameters such as acceleration, beam steering, and focus to ensure that the beam reaches its destination as effectively as possible. Some of the current wire scanners are nearly forty years old and are becoming obsolete. The problem with current wire scanners comes in the difficulty of maintenance and reliability. The designs of these wire scanners vary making it difficult to keep spare parts that would work on all designs. Also many of the components are custom built or out-dated technology and are no longer in production.

  18. Fulleropyrrolidine end-capped molecular wires for molecular electronics--synthesis, spectroscopic, electrochemical, and theoretical characterization

    DEFF Research Database (Denmark)

    Sørensen, Jakob Kryger; Fock, Jeppe; Pedersen, Anders Holmen

    2011-01-01

    In continuation of previous studies showing promising metal-molecule contact properties a variety of C(60) end-capped "molecular wires" for molecular electronics were prepared by variants of the Prato 1,3-dipolar cycloaddition reaction. Either benzene or fluorene was chosen as the central wire...... state. However, the fluorescence of C(60) was quenched by charge transfer from the wire to C(60). Quantum chemical calculations predict and explain the collapse of coherent electronic transmission through one of the fulleropyrrolidine-terminated molecular wires......., and synthetic protocols for derivatives terminated with one or two fullero[c]pyrrolidine "electrode anchoring" groups were developed. An aryl-substituted aziridine could in some cases be employed directly as the azomethine ylide precursor for the Prato reaction without the need of having an electron...

  19. Selection of replacement material for the failed surface level gauge wire in Hanford waste tanks

    International Nuclear Information System (INIS)

    Anantatmula, R.P.; Pitman, S.G.; Lund, A.L.

    1995-10-01

    Surface level gauges fabricated from AISI Type 316 stainless steel (316) wire failed after only a few weeks of operation in underground storage tanks at the Hanford Site. The wire failure was determined to be due to chloride ion assisted corrosion of the 316 wire. Radiation-induced breakdown of the polyvinyl chloride (PVC) riser liners is suspected to be the primary source of the chloride ions. An extensive literature search followed by expert concurrence was undertaken to select a replacement material for the wire. Platinum (Pt)-20 % Iridium (Ir) alloy was selected as the replacement material from tile candidate materials, P-20% Ir, Pt-1O% Rhodium (Rh), Pt-20%Rh and Hastelloy C-22. The selection was made on the basis of the alloy's immunity towards acidic and basic environments as well as its adequate tensile properties in the fully annealed state

  20. Magnetoconductivity of quantum wires with elastic and inelastic scattering

    DEFF Research Database (Denmark)

    Bruus, Henrik; Flensberg, Karsten; Smith

    1993-01-01

    We use a Boltzmann equation to determine the magnetoconductivity of quantum wires. The presence of a confining potential in addtion to the magnetic field removes the degeneracy of the Landau levels and allows one to associate a group velocity with each single-particle state. The distribution...... function describing the occupation of these single-particle states satisfies a Boltzmann equation, which may be solved exactly in the case of impurity scattering. In the case where the electrons scatter against both phonons and impurities we solve numerically—and in certain limits analytically—the integral...

  1. Wire-rope emplacement of diagnostics systems

    International Nuclear Information System (INIS)

    Burden, W.L.

    1982-01-01

    The study reported here was initiated to determine if, with the Cable Downhole System (CDS) currently under development, there is an advantage to using continuous wire rope to lower the emplacement package to the bottom of the hole. A baseline design using two wire ropes as well as several alternatives are discussed in this report. It was concluded that the advantages of the wire-rope emplacement system do not justify the cost of converting to such a system, especially for LLNL's maximum emplacement package weights

  2. Plastic deformation of 2D crumpled wires

    International Nuclear Information System (INIS)

    Gomes, M A F; Donato, C C; Brito, V P; Coelho, A S O

    2008-01-01

    When a single long piece of elastic wire is injected through channels into a confining two-dimensional cavity, a complex structure of hierarchical loops is formed. In the limit of maximum packing density, these structures are described by several scaling laws. In this paper this packing process is investigated but using plastic wires which give rise to completely irreversible structures of different morphology. In particular, the plastic deformation from circular to oblate configurations of crumpled wires is experimentally studied, obtained by the application of an axial strain. Among other things, it is shown that in spite of plasticity, irreversibility and very large deformations, scaling is still observed.

  3. Fast wire scanner for intense electron beams

    Directory of Open Access Journals (Sweden)

    T. Moore

    2014-02-01

    Full Text Available We have developed a cost-effective, fast rotating wire scanner for use in accelerators where high beam currents would otherwise melt even carbon wires. This new design uses a simple planetary gear setup to rotate a carbon wire, fixed at one end, through the beam at speeds in excess of 20  m/s. We present results from bench tests, as well as transverse beam profile measurements taken at Cornell’s high-brightness energy recovery linac photoinjector, for beam currents up to 35 mA.

  4. Resonant tunneling of electrons in quantum wires

    International Nuclear Information System (INIS)

    Krive, I.V.; Shekhter, R.I.; Jonson, M.; Krive, I.V.

    2010-01-01

    We considered resonant electron tunneling in various nanostructures including single wall carbon nanotubes, molecular transistors and quantum wires formed in two-dimensional electron gas. The review starts with a textbook description of resonant tunneling of noninteracting electrons through a double-barrier structure. The effects of electron-electron interaction in sequential and resonant electron tunneling are studied by using Luttinger liquid model of electron transport in quantum wires. The experimental aspects of the problem (fabrication of quantum wires and transport measurements) are also considered. The influence of vibrational and electromechanical effects on resonant electron tunneling in molecular transistors is discussed.

  5. Fabrication of FFTF fuel pin wire wrap

    International Nuclear Information System (INIS)

    Epperson, E.M.

    1980-06-01

    Lateral spacing between FFTF fuel pins is required to provide a passageway for the sodium coolant to flow over each pin to remove heat generated by the fission process. This spacing is provided by wrapping each fuel pin with type 316 stainless steel wire. This wire has a 1.435mm (0.0565 in.) to 1.448mm (0.0570 in.) diameter, contains 17 +- 2% cold work and was fabricated and tested to exacting RDT Standards. About 500 kg (1100 lbs) or 39 Km (24 miles) of fuel pin wrap wire is used in each core loading. Fabrication procedures and quality assurance tests are described

  6. Problems associated with iridium-192 wire implants

    International Nuclear Information System (INIS)

    Arnott, S.J.; Law, J.; Ash, D.; Flynn, A.; Paine, C.H.; Durrant, K.R.; Barber, C.D.; Dixon-Brown, A.

    1985-01-01

    Three incidents are reported, from different radiotherapy centres, in which an implanted iridium-192 wire remained in the tissues of a patient after withdrawal of the plastic tubing in which it was contained. In each case the instrument used to cut the wire had probably formed a hook on the end of the wire which caused it to catch in the tissues. Detailed recommendations are made for avoiding such incidents in the future, the most important of which is that the patient should be effectively monitored after the supposed removal of all radioactive sources. (author)

  7. Investigation of wire motion in superconducting magnets

    International Nuclear Information System (INIS)

    Ogitsu, T.; Tsuchiya, K.; Devred, A.

    1990-09-01

    The large Lorentz forces occuring during the excitation of superconducting magnets can provoke sudden motions of wire, which eventually release enough energy to trigger a quench. These wire motions are accompanied by two electromagnetic effects: an induced emf along the moved wire, and a local change in flux caused by the minute dislocation of current. Both effects cause spikes in the coil voltage. Voltage data recorded during the excitation of a superconducting quadrupole magnet which early exhibit such events are here reported. Interpretations of the voltage spikes in terms of energy release are also presented, leading to insights on the spectrum of the disturbances which occur in real magnets. 15 refs

  8. Wire Bonder: Kulicke and Soffa Model 4526

    Data.gov (United States)

    Federal Laboratory Consortium — Description:CORAL Name: Wire BonderNeeds Description.Scientific Opportunities / Applications:Wedge bonderSemi-automatic and manual modesIndependent Z-axis control,...

  9. Diamond wire cutting of heat exchangers

    International Nuclear Information System (INIS)

    Beckman, T.R.; Bjerler, J.

    1991-01-01

    With the change-out of equipment at nuclear power plants comes large quantities of low level contaminated metallic waste. Of particular concern are large heat exchangers, preheaters and steam generators. These bulky items consume huge volumes of burial space. The need for volume reduction and recycling of these metals has created new demands for 'how' to cut heat exchangers into useful sizes for decontamination, melting or compaction. This paper reviews the cutting solution provided by a diamond wire system, with particular regard for cutting of a Ringhals Preheater Bundle at Studsvik Nuclear in 1989. The background of diamond wire sawing is discussed and basic components of wire sawing are explained. Other examples of wire cutting decommissioned components are also given. (author)

  10. Copyright and Wire Broadcasting Under Belgian Law

    Science.gov (United States)

    Namurois, Albert

    1975-01-01

    A discussion of a case whereby substantial damages, if not criminal proceedings, will sanction, according to circumstances, both television organizations and those who in certain conditions distribute their programs by wire or communicate them to the public. (Author/HB)

  11. Temperature Dependent Wire Delay Estimation in Floorplanning

    DEFF Research Database (Denmark)

    Winther, Andreas Thor; Liu, Wei; Nannarelli, Alberto

    2011-01-01

    Due to large variations in temperature in VLSI circuits and the linear relationship between metal resistance and temperature, the delay through wires of the same length can be different. Traditional thermal aware floorplanning algorithms use wirelength to estimate delay and routability. In this w......Due to large variations in temperature in VLSI circuits and the linear relationship between metal resistance and temperature, the delay through wires of the same length can be different. Traditional thermal aware floorplanning algorithms use wirelength to estimate delay and routability....... In this work, we show that using wirelength as the evaluation metric does not always produce a floorplan with the shortest delay. We propose a temperature dependent wire delay estimation method for thermal aware floorplanning algorithms, which takes into account the thermal effect on wire delay. The experiment...

  12. Angular response of hot wire probes

    International Nuclear Information System (INIS)

    Di Mare, L; Jelly, T O; Day, I J

    2017-01-01

    A new equation for the convective heat loss from the sensor of a hot-wire probe is derived which accounts for both the potential and the viscous parts of the flow past the prongs. The convective heat loss from the sensor is related to the far-field velocity by an expression containing a term representing the potential flow around the prongs, and a term representing their viscous effect. This latter term is absent in the response equations available in the literature but is essential in representing some features of the observed response of miniature hot-wire probes. The response equation contains only four parameters but it can reproduce, with great accuracy, the behaviour of commonly used single-wire probes. The response equation simplifies the calibration the angular response of rotated slanted hot-wire probes: only standard King’s law parameters and a Reynolds-dependent drag coefficient need to be determined. (paper)

  13. 47 CFR 32.2321 - Customer premises wiring.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Customer premises wiring. 32.2321 Section 32... Customer premises wiring. (a) This account shall include all amounts transferred from the former Account 232, Station Connections, inside wiring subclass. (b) Embedded Customer Premises Wiring is that...

  14. 29 CFR 1926.404 - Wiring design and protection.

    Science.gov (United States)

    2010-07-01

    .... Receptacles on a two-wire, single-phase portable or vehicle-mounted generator rated not more than 5kW, where the circuit conductors of the generator are insulated from the generator frame and all other grounded... wiring shall be grounded: (i) Three-wire DC systems. All 3-wire DC systems shall have their neutral...

  15. Automatic reel controls filler wire in welding machines

    Science.gov (United States)

    Millett, A. V.

    1966-01-01

    Automatic reel on automatic welding equipment takes up slack in the reel-fed filler wire when welding operation is terminated. The reel maintains constant, adjustable tension on the wire during the welding operation and rewinds the wire from the wire feed unit when the welding is completed.

  16. Modelling aluminium wire bond reliability in high power OMP devices

    NARCIS (Netherlands)

    Kregting, R.; Yuan, C.A.; Xiao, A.; Bruijn, F. de

    2011-01-01

    In a RF power application such as the OMP, the wires are subjected to high current (because of the high power) and high temperature (because of the heat from IC and joule-heating from the wire itself). Moreover, the wire shape is essential to the RF performance. Hence, the aluminium wire is

  17. Load-Deflection and Friction Properties of PEEK Wires as Alternative Orthodontic Wires.

    Science.gov (United States)

    Tada, Yoshifumi; Hayakawa, Tohru; Nakamura, Yoshiki

    2017-08-09

    Polyetheretherketone (PEEK) is now attracting attention as an alternative to metal alloys in the dental field. In the present study, we evaluated the load-deflection characteristics of PEEK wires in addition to their frictional properties. Three types of PEEK wires are used: two sizes of rectangular shape, 0.016 × 0.022 in² and 0.019 × 0.025 in² (19-25PEEK), and rounded shape, diameter 0.016 in (16PEEK). As a control, Ni-Ti orthodontic wire, diameter 0.016 in, was used. The three-point bending properties were evaluated in a modified three-point bending system for orthodontics. The static friction between the orthodontic wire and the bracket was also measured. The load-deflection curves were similar among Ni-Ti and PEEK wires, except for 16PEEK with slot-lid ligation. The bending force of 19-25PEEK wire was comparable with that of Ni-Ti wire. 19-25PEEK showed the highest load at the deflection of 1500 μm ( p 0.05). No significant difference was seen in static friction between all three PEEK wires and Ni-Ti wire ( p > 0.05). It is suggested that 19-25PEEK will be applicable for orthodontic treatment with the use of slot-lid ligation.

  18. Audio wiring guide how to wire the most popular audio and video connectors

    CERN Document Server

    Hechtman, John

    2012-01-01

    Whether you're a pro or an amateur, a musician or into multimedia, you can't afford to guess about audio wiring. The Audio Wiring Guide is a comprehensive, easy-to-use guide that explains exactly what you need to know. No matter the size of your wiring project or installation, this handy tool provides you with the essential information you need and the techniques to use it. Using The Audio Wiring Guide is like having an expert at your side. By following the clear, step-by-step directions, you can do professional-level work at a fraction of the cost.

  19. The Quantum Socket: Wiring for Superconducting Qubits - Part 1

    Science.gov (United States)

    McConkey, T. G.; Bejanin, J. H.; Rinehart, J. R.; Bateman, J. D.; Earnest, C. T.; McRae, C. H.; Rohanizadegan, Y.; Shiri, D.; Mariantoni, M.; Penava, B.; Breul, P.; Royak, S.; Zapatka, M.; Fowler, A. G.

    Quantum systems with ten superconducting quantum bits (qubits) have been realized, making it possible to show basic quantum error correction (QEC) algorithms. However, a truly scalable architecture has not been developed yet. QEC requires a two-dimensional array of qubits, restricting any interconnection to external classical systems to the third axis. In this talk, we introduce an interconnect solution for solid-state qubits: The quantum socket. The quantum socket employs three-dimensional wires and makes it possible to connect classical electronics with quantum circuits more densely and accurately than methods based on wire bonding. The three-dimensional wires are based on spring-loaded pins engineered to insure compatibility with quantum computing applications. Extensive design work and machining was required, with focus on material quality to prevent magnetic impurities. Microwave simulations were undertaken to optimize the design, focusing on the interface between the micro-connector and an on-chip coplanar waveguide pad. Simulations revealed good performance from DC to 10 GHz and were later confirmed against experimental measurements.

  20. Tracking with wire chambers at the SSC

    International Nuclear Information System (INIS)

    Hanson, G.G.; Gundy, M.C.; Palounek, A.P.T.

    1989-07-01

    Limitations placed on wire chambers by radiation damage and rate requirements in the SSC environment are reviewed. Possible conceptual designs for wire chamber tacking systems that meet these requirements are discussed. Computer simulation studies of tracking in such systems are presented. Simulations of events from interesting physics at the SSC, including hits from minimum bias background events, are examined. Results of some preliminary pattern recognition studies are given. 13 refs., 11 fig., 1 tab

  1. A Magnetic Sensor with Amorphous Wire

    Directory of Open Access Journals (Sweden)

    Dongfeng He

    2014-06-01

    Full Text Available Using a FeCoSiB amorphous wire and a coil wrapped around it, we have developed a sensitive magnetic sensor. When a 5 mm long amorphous wire with the diameter of 0.1 mm was used, the magnetic field noise spectrum of the sensor was about 30 pT/ÖHz above 30 Hz. To show the sensitivity and the spatial resolution, the magnetic field of a thousand Japanese yen was scanned with the magnetic sensor.

  2. Deformable wire array: fiber drawn tunable metamaterials

    DEFF Research Database (Denmark)

    Fleming, Simon; Stefani, Alessio; Tang, Xiaoli

    2017-01-01

    By fiber drawing we fabricate a wire array metamaterial, the structure of which can be actively modified. The plasma frequency can be tuned by 50% by compressing the metamaterial; recovers when released and the process can be repeated.......By fiber drawing we fabricate a wire array metamaterial, the structure of which can be actively modified. The plasma frequency can be tuned by 50% by compressing the metamaterial; recovers when released and the process can be repeated....

  3. Tracking with wire chambers at high luminosities

    International Nuclear Information System (INIS)

    Hanson, G.G.

    1989-12-01

    Radiation damage and rate limitations impose severe constraints on wire chambers at the SSC. Possible conceptual designs for wire chamber tracking systems that satisfy these constraints are discussed. Computer simulation studies of tracking in such systems are presented. Simulations of events from interesting physics at the SSC, including hits from minimum bias background events, are examined. Results of some preliminary pattern recognition studies are given. 11 refs., 10 figs

  4. COBRA-IV wire wrap data comparisons

    International Nuclear Information System (INIS)

    Donovan, T.E.; George, T.L.; Wheeler, C.L.

    1979-02-01

    Thermal hydraulic analyses of hexagonally packed wire-wrapped fuel assemblies are complicated by the induced crossflow between adjacent subchannels. The COBRA-IV computer code simultaneously solves the hydrodynamics and thermodynamics of fuel assemblies. The modifications and the results are presented which are predicted by the COBRA-IV calculation. Comparisons are made with data measured in five experimental models of a wire-wrapped fuel assembly

  5. Novel use of the "buddy"wire.

    LENUS (Irish Health Repository)

    O'Hare, A

    2008-12-29

    Summary: During interventional procedures the tortuosity of the vasculature hampers catheter stability. The buddy wire may be used to aid and maintain vascular access.We describe a case of acute subarachnoid haemorrhage secondary to dissecting aneurysm of the vertebral artery.We discuss the value of the buddy wire during balloon occlusion of the vertebral artery not as it is typically used, but to actually prevent the balloon repeatedly entering the posterior inferior cerebellar artery during the procedure.

  6. Electrical Crystallization Mechanism and Interface Characteristics of Nano wire Zn O/Al Structures Fabricated by the Solution Method

    International Nuclear Information System (INIS)

    Tseng, Y.W.; Hung, F.Y.; Lui, T.Sh.; Chen, Y.T.; Xiao, R.S.; Chen, K.J.

    2012-01-01

    Both solution nano wire Zn O and sputtered Al thin film on SiO 2 as the wire-film structure and the Al film were a conductive channel for electrical-induced crystallization (EIC). Direct current (DC) raised the temperature of the Al film and improved the crystallization of the nano structure. The effects of EIC not only induced Al atomic interface diffusion, but also doped Al on the roots of Zn O wires to form aluminum doped zinc oxide (AZO)/Zn O wires. The Al doping concentration and the distance of the Zn O wire increased with increasing the electrical duration. Also, the electrical current-induced temperature was ∼211 degree C (solid-state doped process) and so could be applied to low-temperature optoelectronic devices.

  7. Observation of fast expansion velocity with insulating tungsten wires on ∼80 kA facility

    Energy Technology Data Exchange (ETDEWEB)

    Li, M.; Li, Y. [State Key Laboratory of Electrical Insulation and Power Equipment, Xi' an Jiaotong University, Xi' an 710049 (China); State Key Laboratory of Intense Pulsed Radiation Simulation and Effect, Northwest Institute of Nuclear Technology, Xi' an 710024 (China); Zhang, J. H.; Sun, T. P.; Wang, L. P.; Sheng, L.; Qiu, M. T.; Mao, W. T. [State Key Laboratory of Intense Pulsed Radiation Simulation and Effect, Northwest Institute of Nuclear Technology, Xi' an 710024 (China); Wu, J., E-mail: jxjawj@mail.xjtu.edu.cn; Li, X. W. [State Key Laboratory of Electrical Insulation and Power Equipment, Xi' an Jiaotong University, Xi' an 710049 (China)

    2016-07-15

    This paper presents experimental results on the effects of insulating coatings on tungsten planar wire array Z-pinches on an 80 kA, 100 ns current facility. Expansion velocity is obviously increased from ∼0.25 km/s to ∼3.5 km/s by using the insulating coatings. It can be inferred that the wire cores are in gaseous state with this fast expansion velocity. An optical framing camera and laser probing images show that the standard wire arrays have typical ablation process which is similar to their behaviors on mega-ampere facilities. The ablation process and precursor plasma are suppressed for dielectric tungsten wires. The wire array implosion might be improved if these phenomena can be reproduced on Mega-ampere facilities.

  8. 77 FR 806 - Steel Wire Garment Hangers From Taiwan and Vietnam; Institution of Antidumping and Countervailing...

    Science.gov (United States)

    2012-01-06

    ... an industry in the United States is materially injured or threatened with material injury, or the establishment of an industry in the United States is materially retarded, by reason of imports from Taiwan and...)] Steel Wire Garment Hangers From Taiwan and Vietnam; Institution of Antidumping and Countervailing Duty...

  9. Induced Voltage in an Open Wire

    Science.gov (United States)

    Morawetz, K.; Gilbert, M.; Trupp, A.

    2017-07-01

    A puzzle arising from Faraday's law has been considered and solved concerning the question which voltage will be induced in an open wire with a time-varying homogeneous magnetic field. In contrast to closed wires where the voltage is determined by the time variance of the magnetic field and the enclosed area, in an open wire we have to integrate the electric field along the wire. It is found that the longitudinal electric field with respect to the wave vector contributes with 1/3 and the transverse field with 2/3 to the induced voltage. In order to find the electric fields the sources of the magnetic fields are necessary to know. The representation of a spatially homogeneous and time-varying magnetic field implies unavoidably a certain symmetry point or symmetry line which depend on the geometry of the source. As a consequence the induced voltage of an open wire is found to be the area covered with respect to this symmetry line or point perpendicular to the magnetic field. This in turn allows to find the symmetry points of a magnetic field source by measuring the voltage of an open wire placed with different angles in the magnetic field. We present exactly solvable models of the Maxwell equations for a symmetry point and for a symmetry line, respectively. The results are applicable to open circuit problems like corrosion and for astrophysical applications.

  10. Superconducting wires and methods of making thereof

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Xingchen; Sumption, Michael D.; Peng, Xuan

    2018-03-13

    Disclosed herein are superconducting wires. The superconducting wires can comprise a metallic matrix and at least one continuous subelement embedded in the matrix. Each subelement can comprise a non-superconducting core, a superconducting layer coaxially disposed around the non-superconducting core, and a barrier layer coaxially disposed around the superconducting layer. The superconducting layer can comprise a plurality of Nb.sub.3Sn grains stabilized by metal oxide particulates disposed therein. The Nb.sub.3Sn grains can have an average grain size of from 5 nm to 90 nm (for example, from 15 nm to 30 nm). The superconducting wire can have a high-field critical current density (J.sub.c) of at least 5,000 A/mm.sup.2 at a temperature of 4.2 K in a magnetic field of 12 T. Also described are superconducting wire precursors that can be heat treated to prepare superconducting wires, as well as methods of making superconducting wires.

  11. Impedance Characterisation of the SPS Wire Scanner

    CERN Document Server

    AUTHOR|(CDS)2091911; Prof. Sillanpää, Mika

    As a beam diagnostic tool, the SPS wire scanner interacts with the proton bunches traversing the vacuum pipes of the Super Proton Synchrotron particle accelerator. Following the interaction, the bunches decelerate or experience momentum kicks off-axis and couple energy to the cavity walls, resonances and to the diagnostic tool, the scanning wire. The beam coupling impedance and, in particular, the beam induced heating of the wire motivate the characterisation and redesign of the SPS wire scanner. In this thesis, we characterise RF-wise the low frequency modes of the SPS wire scanner. These have the highest contribution to the impedance. We measure the cavity modes in terms of resonance frequency and quality factor by traditional measurement techniques and data analysis. We carry out a 4-port measurement to evaluate the beam coupling to the scanning wire, that yields the spectral heating power. If combined with the simulations, one is able to extract the beam coupling impedance and deduce the spectral dissipa...

  12. Chemistry of radiation damage to wire chambers

    International Nuclear Information System (INIS)

    Wise, J.

    1992-08-01

    Proportional counters are used to study aspects of radiation damage to wire chambers (wire aging). Principles of low-pressure, rf plasma chemistry are used to predict the plasma chemistry in electron avalanches (1 atm, dc). (1) Aging is studied in CF 4 /iC 4 H 10 gas mixtures. Wire deposits are analyzed by Auger electron spectroscopy. An apparent cathode aging process resulting in loss of gain rather than in a self-sustained current is observed in CF 4 -rich gases. A four-part model considering plasma polymerization of the hydrocarbon, etching of wire deposits by CF 4 , acceleration of deposition processes in strongly etching environments, and reactivity of the wire surface is developed to understand anode wire aging in CF 4 /iC 4 H 10 gases. Practical guidelines suggested by the model are discussed. (2) Data are presented to suggest that trace amounts of Freons do not affect aging rates in either dimethyl ether or Ar/C 2 H 6 . Apparent loss of gain is explained by attachment of primary electrons to a continuously increasing concentration of Freon 11 (CCl 3 F) in the counter gas. An increase in the concentration of Freon 11 in dimethyl ether is caused by a distillation process in the gas supply bottle and is a natural consequence of the unequal volatilities of the two compounds

  13. Empolder and application of LiveWire program

    International Nuclear Information System (INIS)

    Zhang Bo; Li Jing; Wang Xiaoming

    2007-01-01

    LiveWire is a specific module of Netscape Web server to actualize CGI function; through LiveWire application program one can create dynamic web page on web site. This article introduces how to write LiveWire application code, have to compile, debug and manage LiveWire application programs, and how to apply LiveWire application program on Netscape Web server to create a dynamic web page. (authors)

  14. Supplemental Analysis Survey of C&P Telephone Inside Wiring.

    Science.gov (United States)

    1986-10-01

    telephone company facilities in 1984. In 1985, among other actions favorable to deregulation and detariffing of inside wiring, the FCC proposed to detariff ...installation of inside wiring, detariff the maintenance of all inside wiring, treat all inside wiring as customer premise equipment and pass ownership...85-148, 50 Fed. let. 13991 (April 9, 1985), pToposing to detariff the installation of simple inside wiring and also to detariff the maintenance of all

  15. Recoverable Wire-Shaped Supercapacitors with Ultrahigh Volumetric Energy Density for Multifunctional Portable and Wearable Electronics.

    Science.gov (United States)

    Shi, Minjie; Yang, Cheng; Song, Xuefeng; Liu, Jing; Zhao, Liping; Zhang, Peng; Gao, Lian

    2017-05-24

    Wire-shaped supercapacitors (SCs) based on shape memory materials are of considerable interest for next-generation portable and wearable electronics. However, the bottleneck in this field is how to develop the devices with excellent electrochemical performance while well-maintaining recoverability and flexibility. Herein, a unique asymmetric electrode concept is put forward to fabricate smart wire-shaped SCs with ultrahigh energy density, which is realized by using porous carbon dodecahedra coated on NiTi alloy wire and flexible graphene fiber as yarn electrodes. Notably, the wire-shaped SCs not only exhibit high flexibility that can be readily woven into real clothing but also represent the available recoverable ability. When irreversible plastic deformations happen, the deformed shape of the devices can automatically resume the initial predesigned shape in a warm environment (about 35 °C). More importantly, the wire-shaped SCs act as efficient energy storage devices, which display high volumetric energy density (8.9 mWh/cm 3 ), volumetric power density (1080 mW/cm 3 ), strong durability in multiple mechanical states, and steady electrochemical behavior after repeated shape recovery processes. Considering their relative facile fabrication technology and excellent electrochemical performance, this asymmetric electrode strategy produced smart wire-shaped supercapacitors desirable for multifunctional portable and wearable electronics.

  16. Enhancing GMI properties of melt-extracted Co-based amorphous wires by twin-zone Joule annealing

    Energy Technology Data Exchange (ETDEWEB)

    Liu, J.S.; Cao, F.Y.; Xing, D.W.; Zhang, L.Y. [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Qin, F.X. [Advanced Composite Center for Innovation and Science (ACCIS), Department of Aerospace Engineering, University of Bristol, University Walk, Bristol BS8 1TR (United Kingdom); Peng, H.X. [Advanced Composite Center for Innovation and Science (ACCIS), Department of Aerospace Engineering, University of Bristol, University Walk, Bristol BS8 1TR (United Kingdom); Centre for Nanoscience and Quantum Information, University of Bristol, Tyndall Avenue, Bristol BS8 1FD (United Kingdom); Xue, X. [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Sun, J.F., E-mail: jfsun_hit@263.net [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China)

    2012-11-15

    Highlights: Black-Right-Pointing-Pointer GMI effect is closely related to annealed microstructures observed by HRTEM. Black-Right-Pointing-Pointer Twin-zone Joule-heated annealing (TJHA) as a novel effective annealing treatment. Black-Right-Pointing-Pointer TJHA wires have relatively larger GMI ratio and field sensitivity. Black-Right-Pointing-Pointer From HRTEM perspective to explain the GMI peaks feature of different states wires. Black-Right-Pointing-Pointer TJHA wires are useful for high-resolution magnetic sensor applications. - Abstract: The influence of twin-zone Joule annealing (TJA) on the microstructure and magnetic properties of melt-extracted Co{sub 68.2}Fe{sub 4.3}B{sub 15}Si{sub 12.5} amorphous microwires has been investigated. Experimental results indicated that twin-zone Joule annealing treatment improved the GMI property of as-cast wires to a greater extent comparing with Joule annealing (JA) and conventional vacuum annealing (CVA) techniques. At 15 MHz, e.g., the maximum GMI ratio [{Delta}Z/Z{sub 0}]{sub max} of a TJA wire increases to 104.29%, which is more than 5 times of 20.49% for the as-cast wire, nearly two times of 56.47% for the JA wire, while the CVA wire has a decreased GMI ratio; the field response sensitivity of the TJA wire increased to 171.62%/Oe from 80.32%/Oe for the as-cast wire, exceeding the values of 140.76%/Oe for the JA wire and of 39.17%/Oe for the CVA wire. The stress or structural relaxation in TJA wire increases circumferential permeability, and magnetic moment achieves a critical state of excitation for overcoming eddy-current damping or 'nail-sticked' action in rotational magnetization process at relatively high frequency. From the microstructural point of view, the role of regularly arranged atomic micro-regions (RAAM) and of medium range order region (MROR) determines the efficiency of various annealing techniques. Conclusively, TJA is established as an efficient annealing technique to enhance the GMI effect

  17. The Analysis of the High Speed Wire Drawing Process of High Carbon Steel Wires Under Hydrodynamic Lubrication Conditions

    Directory of Open Access Journals (Sweden)

    Suliga M.

    2015-04-01

    Full Text Available In this work the analysis of the wire drawing process in hydrodynamic dies has been done. The drawing process of φ5.5 mm wire rod to the final wire of φ1.7 mm was conducted in 12 passes, in drawing speed range of 5-25 m/s. For final wires of φ1.7 mm the investigation of topography of wire surface, the amount of lubricant on the wire surface and the pressure of lubricant in hydrodynamic dies were determined. Additionally, in the work selected mechanical properties of the wires have been estimated.

  18. Mountain Plains Learning Experience Guide: Electrical Wiring. Course: Electrical Wiring Rough-In.

    Science.gov (United States)

    Arneson, R.; And Others

    One of two individualized courses included in an electrical wiring curriculum, this course covers electrical installations that are generally hidden within the structure. The course is comprised of four units: (1) Outlet and Switch Boxes, (2) Wiring, (3) Service Entrance, and (4) Signal and Low Voltage Systems. Each unit begins with a Unit…

  19. Effect of discrete wires on the implosion dynamics of wire array Z pinches

    International Nuclear Information System (INIS)

    Lebedev, S. V.; Beg, F. N.; Bland, S. N.; Chittenden, J. P.; Dangor, A. E.; Haines, M. G.; Kwek, K. H.; Pikuz, S. A.; Shelkovenko, T. A.

    2001-01-01

    A phenomenological model of wire array Z-pinch implosions, based on the analysis of experimental data obtained on the mega-ampere generator for plasma implosion experiments (MAGPIE) generator [I. H. Mitchell , Rev. Sci. Instrum. 67, 1533 (1996)], is described. The data show that during the first ∼80% of the implosion the wire cores remain stationary in their initial positions, while the coronal plasma is continuously jetting from the wire cores to the array axis. This phase ends by the formation of gaps in the wire cores, which occurs due to the nonuniformity of the ablation rate along the wires. The final phase of the implosion starting at this time occurs as a rapid snowplow-like implosion of the radially distributed precursor plasma, previously injected in the interior of the array. The density distribution of the precursor plasma, being peaked on the array axis, could be a key factor providing stability of the wire array implosions operating in the regime of discrete wires. The modified ''initial'' conditions for simulations of wire array Z-pinch implosions with one-dimension (1D) and two-dimensions (2D) in the r--z plane, radiation-magnetohydrodynamic (MHD) codes, and a possible scaling to a larger drive current are discussed

  20. Modeling and simulation of the fluid flow in wire electrochemical machining with rotating tool (wire ECM)

    Science.gov (United States)

    Klocke, F.; Herrig, T.; Zeis, M.; Klink, A.

    2017-10-01

    Combining the working principle of electrochemical machining (ECM) with a universal rotating tool, like a wire, could manage lots of challenges of the classical ECM sinking process. Such a wire-ECM process could be able to machine flexible and efficient 2.5-dimensional geometries like fir tree slots in turbine discs. Nowadays, established manufacturing technologies for slotting turbine discs are broaching and wire electrical discharge machining (wire EDM). Nevertheless, high requirements on surface integrity of turbine parts need cost intensive process development and - in case of wire-EDM - trim cuts to reduce the heat affected rim zone. Due to the process specific advantages, ECM is an attractive alternative manufacturing technology and is getting more and more relevant for sinking applications within the last few years. But ECM is also opposed with high costs for process development and complex electrolyte flow devices. In the past, few studies dealt with the development of a wire ECM process to meet these challenges. However, previous concepts of wire ECM were only suitable for micro machining applications. Due to insufficient flushing concepts the application of the process for machining macro geometries failed. Therefore, this paper presents the modeling and simulation of a new flushing approach for process assessment. The suitability of a rotating structured wire electrode in combination with an axial flushing for electrodes with high aspect ratios is investigated and discussed.

  1. Theory of wire number scaling in wire-array Z pinches

    International Nuclear Information System (INIS)

    Desjarlais, M.P.; Marder, B.M.

    1999-01-01

    Pulsed-power-driven Z pinches, produced by imploding cylindrical arrays of many wires, have generated very high x-ray radiation powers (>200 TW) and energies (2 MJ). Experiments have revealed a steady improvement in Z-pinch performance with increasing wire number at fixed total mass and array radius. The dominant mechanism acting to limit the performance of these devices is believed to be the Rayleigh-Taylor instability which broadens the radially imploding plasma sheath and consequently reduces the peak radiation power. A model is presented which describes an amplification over the two-dimensional Rayleigh-Taylor growth rate brought about by kink-like forces on the individual wires. This amplification factor goes to zero as the number of wires approaches infinity. This model gives results which are in good agreement with the experimental data and provides a scaling for wire-array Z pinches. copyright 1999 American Institute of Physics

  2. Evolution of cementite morphology in pearlitic steel wire during wet wire drawing

    International Nuclear Information System (INIS)

    Zhang Xiaodan; Godfrey, Andrew; Hansen, Niels; Huang Xiaoxu; Liu Wei; Liu Qing

    2010-01-01

    The evolution of the cementite phase during wet wire drawing of a pearlitic steel wire has been followed as a function of strain. Particular attention has been given to a quantitative characterization of changes in the alignment and in the dimensions of the cementite phase. Scanning electron microscope observations show that cementite plates become increasingly aligned with the wire axis as the drawing strain is increased. Measurements in the transmission electron microscope show that the cementite deforms plastically during wire drawing , with the average thickness of the cementite plates decreasing from 19 nm (ε = 0) to 2 nm (ε = 3.7) in correspondence with the reduction in wire diameter. The deformation of the cementite is strongly related to plastic deformation in the ferrite, with coarse slip steps, shear bands and cracks in the cementite plates/particles observed parallel to either {110} α or {112} α slip plane traces in the ferrite.

  3. Evolution of cementite morphology in pearlitic steel wire during wet wire drawing

    DEFF Research Database (Denmark)

    Zhang, Xiaodan; Godfrey, Andrew; Hansen, Niels

    2010-01-01

    The evolution of the cementite phase during wet wire drawing of a pearlitic steel wire has been followed as a function of strain. Particular attention has been given to a quantitative characterization of changes in the alignment and in the dimensions of the cementite phase. Scanning electron...... microscope observations show that cementite plates become increasingly aligned with the wire axis as the drawing strain is increased. Measurements in the transmission electron microscope show that the cementite deforms plastically during wire drawing , with the average thickness of the cementite plates...... decreasing from 19 nm (ε = 0) to 2 nm (ε = 3.7) in correspondence with the reduction in wire diameter. The deformation of the cementite is strongly related to plastic deformation in the ferrite, with coarse slip steps, shear bands and cracks in the cementite plates/particles observed parallel to either {110...

  4. New crosslinked polyvinyl chloride insulated wire by electron beam irradiation

    International Nuclear Information System (INIS)

    Takahata, Norio; Shingyouchi, Kazuo; Sato, Masakatsu; Sasaki, Hidemi; Terunuma, Haruji

    1978-01-01

    The polyvinyl chloride-coated wires crosslinked by electron beam irradiation have made rapid progress as electric and electronic wiring material and grown to hold a firm position in this field. In response to the requirements for wires with the advance of electronic equipments, Hitachi Cable Ltd. developed a peculiar graft polymer consisting of chlorinated polyethylene and polyvinyl chloride. To this polymer, the characteristics of a very wide range from toughness to flexibility can be given, and the crosslinked polyvinyl chloride wires utilizing these characteristics were put in practical use. Many kinds of the wires were developed as follows; 105 deg. C rating crosslinked vinyl-coated wires authorized by UL and CSA standards, crosslinked vinyl-coated wires with excellent flexibility, high strength crosslinked vinyl-coated wires with thin coating and crosslinked vinyl-coated wires for automobiles. They are expected to be developed into other new fields and applications. (Kobatake, H.)

  5. Micro Wire-Drawing: Experiments And Modelling

    International Nuclear Information System (INIS)

    Berti, G. A.; Monti, M.; Bietresato, M.; D'Angelo, L.

    2007-01-01

    In the paper, the authors propose to adopt the micro wire-drawing as a key for investigating models of micro forming processes. The reasons of this choice arose in the fact that this process can be considered a quasi-stationary process where tribological conditions at the interface between the material and the die can be assumed to be constant during the whole deformation. Two different materials have been investigated: i) a low-carbon steel and, ii) a nonferrous metal (copper). The micro hardness and tensile tests performed on each drawn wire show a thin hardened layer (more evident then in macro wires) on the external surface of the wire and hardening decreases rapidly from the surface layer to the center. For the copper wire this effect is reduced and traditional material constitutive model seems to be adequate to predict experimentation. For the low-carbon steel a modified constitutive material model has been proposed and implemented in a FE code giving a better agreement with the experiments

  6. Wire scanner software and firmware issues

    International Nuclear Information System (INIS)

    Gilpatrick, John Doug

    2008-01-01

    The Los Alamos Neutron Science Center facility presently has 110 slow wire scanning profile measurement instruments located along its various beam lines. These wire scanners were developed and have been operating for at least 30 years. While the wire scanners solved many problems to operate and have served the facility well they have increasingly suffered from several problems or limitations, such as maintenance and reliability problems, antiquated components, slow data acquisition, and etc. In order to refurbish these devices, these wire scanners will be replaced with newer versions. The replacement will consist of a completely new beam line actuator, new cables, new electronics and brand new software and firmware. This note describes the functions and modes of operation that LabVIEW VI software on the real time controller and FPGA LabVIEW firmware will be required. It will be especially interesting to understand the overall architecture of these LabVIEW VIs. While this note will endeavor to describe all of the requirements and issues for the wire scanners, undoubtedly, there will be missing details that will be added as time progresses.

  7. EVALUATION OF INDUCTANCE WITH ELECTRICAL WIRES

    Directory of Open Access Journals (Sweden)

    V. Kudry

    2016-08-01

    Full Text Available In this paper proved the possibility of developing passive electronic inductive elements based replace metal wire that is wound inductor, the wire is made of electret. The relative permeability of the electret S  10 000, several orders of magnitude greater than the permeability of conventional insulation materials, i < 10, resulting current in the wire acquires properties bias current. The essence of innovation is to replace the source of of magnetic induction flow that pervades the core of the coil. According to the theory of electrodynamics, current bias, in contrast to conduction current, generated no movement of charge along the wire, but the change of the charge in the local volume.Equivalence bias current and conduction current is manifested in the possibility of forming a magnetic field. The flow through magnetic induction coil core regardless of the current it generates, creates voltage at its ends.The paper also shows the numeric characteristics that determine the effective frequency range, specified the reason why electric a wire with і < 10 can not generate magnetic flux through the core and serve as a passive reactive component.

  8. Sensitive and simple method for measuring wire tensions

    International Nuclear Information System (INIS)

    Atac, M.; Mishina, M.

    1982-08-01

    Measuring tension of wires in drift chambers and multiwire proportional chambers after construction is an important process because sometimes wires get loose after soldering, crimping or glueing. One needs to sort out wires which have tensions below a required minimum value to prevent electrostatic instabilities. There have been several methods reported on this subject in which the wires were excited either with sinusoidal current under magnetic field or with sinusoidal voltage electrostatically coupled to the wire, searching for a resonating frequency with which the wires vibrate mechanically. Then the vibration is detected either visually, optically or with magnetic pick-up directly touching the wires. Any of these is only applicable to the usual multiwire chamber which has open access to the wire plane. They also need fairly large excitation currents to induce a detectable vibration to the wires. Here we report a very simple method that can be used for any type of wire chamber or proportional tube system for measuring wire tension. Only a very small current is required for the wire excitation to obtain a large enough signal because it detects the induced emf voltage across a wire. A sine-wave oscillator and a digital voltmeter are sufficient devices aside from a permanent magnet to provide the magnetic field around the wire. A useful application of this method to a large system is suggested

  9. Synthesis of one-dimensional metal-containing insulated molecular wire with versatile properties directed toward molecular electronics materials.

    Science.gov (United States)

    Masai, Hiroshi; Terao, Jun; Seki, Shu; Nakashima, Shigeto; Kiguchi, Manabu; Okoshi, Kento; Fujihara, Tetsuaki; Tsuji, Yasushi

    2014-02-05

    We report, herein, the design, synthesis, and properties of new materials directed toward molecular electronics. A transition metal-containing insulated molecular wire was synthesized through the coordination polymerization of a Ru(II) porphyrin with an insulated bridging ligand of well-defined structure. The wire displayed not only high linearity and rigidity, but also high intramolecular charge mobility. Owing to the unique properties of the coordination bond, the interconversion between the monomer and polymer states was realized under a carbon monoxide atmosphere or UV irradiation. The results demonstrated a high potential of the metal-containing insulated molecular wire for applications in molecular electronics.

  10. Microstructural evolution and deformation behavior of twinning-induced plasticity (TWIP) steel during wire drawing

    International Nuclear Information System (INIS)

    Hwang, Joong-Ki; Yi, Il-Cheol; Son, Il-Heon; Yoo, Jang-Yong; Kim, Byoungkoo; Zargaran, A.; Kim, Nack J.

    2015-01-01

    The effect of wire drawing on the microstructural evolution and deformation behavior of Fe–Mn–Al–C twinning-induced plasticity (TWIP) steel has been investigated. The inhomogeneities of the stress state, texture, microstructure, and mechanical properties were clarified over the cross section of drawn wire with the aid of numerical simulation, Schmid factor analysis, and electron backscatter diffraction (EBSD) techniques. The analysis of texture in drawn wire shows that a mixture of <111> and <100> fiber texture was developed with strain; however, the distribution of <111> and <100> fibers was inhomogeneous along the radial direction of wire due to uneven strain distribution and different stress state along the radial direction. It has also been shown that the morphology, volume fraction, and variant system of twins as well as twinning rate were dependent on the imposed stress state. The surface area was subjected to larger strain and more complex stress state involving compression, shear, and tension than the center area, resulting in a larger twin volume fraction and more twin variants in the former than in the latter at all the strain levels. While the surface area was saturated with twins at an early stage of drawing, the center area was not saturated with twins even at fracture, implying that the fracture of wire were initiated at the surface area because of the exhaustion of ductility due to twinning. Based on these results, it is suggested that imposing a uniform strain distribution along the radial direction of wire by the control of processing conditions such as die angle and amount of reduction per pass is necessary to increase the drawing limit of TWIP steel

  11. TRANSMISSION LINE-WIRE DANCING (GALLOPING – LYAPUNOV INSTABILITY

    Directory of Open Access Journals (Sweden)

    V. I. Vanko

    2014-01-01

    Full Text Available This article describes aerodynamic losses of damping, or aerodynamic instability, which we observe in experiments and in engineering practice. As applied to industrial high-voltage lines this phenomenon is usually called galloping (dancing of phase line wires. This phenolmenon can be explained by Lyapunov’s instability of equilibrium state of wires profile (cross-section. In addition to known condition of Grauert-den-Hartog’s instability there was obtained practical condition of instability, which depends only on stationary aerodynamic profile’s factor – dimensionless coefficient of head resistance and lift coefficient, and also on their derivative with respect to the angle of attack.There was suggested an effective numerical-analytical method of investigation of stability for equilibrium of profile’s state in flow, which was developed at the department “Applied mathematics” of Bauman MSTU. This method allows to determine the stationary aerodynamics characteristics of profile by numerical simulation of profile flow under different angles of attack by vortex element method and later on the application of analytical conditions of stability and Lyapunov’s instability of equilibrium positions. The obtained results during the investigation of rhombic and square profiles stability, as well as general profile of iced wire, and their comparisons with the known experiments’ results in aerodynamic tubes indicate the precision of developed methods and algorithms. The usage of mesh-free Lagrange method of vortex elements and software for their realization allows to solve also dual problems of aerohydroelasticity and to carry out direct numerical simulation of profile movement in flow. In this article the investigations’ results of different authors in this field were taken into account.

  12. A new route to process diamond wires

    Directory of Open Access Journals (Sweden)

    Marcello Filgueira

    2003-06-01

    Full Text Available We propose an original route to process diamond wires, denominated In Situ Technology, whose fabrication involves mechanical conformation processes, such as rotary forging, copper tubes restacking, and thermal treatments, such as sintering and recrystallisation of a bronze 4 wt.% diamond composite. Tensile tests were performed, reaching an ultimate tensile strength (UTS of 230 MPa for the diameter of Æ = 1.84 mm. Scanning electron microscopy showed the diamond crystals distribution along the composite rope during its manufacture, as well as the diamond adhesion to the bronze matrix. Cutting tests were carried out with the processed wire, showing a probable performance 4 times higher than the diamond sawing discs, however its probable performance was about 5 to 8 times less than the conventional diamond wires (pearl system due to the low abrasion resistance of the bronze matrix, and low adhesion between the pair bronze-diamond due to the use of not metallised diamond single crystals.

  13. Cockpit canopy shattering using exploding wire techniques

    International Nuclear Information System (INIS)

    Novac, B M; Smith, I R; Downs, P R; Marston, P; Fahey, D

    2007-01-01

    This paper presents the principal experimental results provided by a preliminary investigation into the possibility of using exploding wire (EW) techniques to shatter the plastic cockpit canopy of a modern jet aircraft. The data provided forms the basis for a qualitative understanding of the physics of interaction between the plasma produced by an EW and the surrounding elasto-plastic material in which the wire is embedded. To optimize the shock-wave 'clean cutting' effect, the significance of the material, the dimensions of the exploding wire and the amplitude of the current and voltage pulses are all considered. This leads to important conclusions concerning both the characteristics of the EW and the optimum arrangement of the electrical circuit, with the single most important optimization factor being the peak electrical power input to the EW, rather than the dissipated Joule energy. A full-scale system relevant to an actual cockpit canopy shattering is outlined and relevant results are presented and discussed

  14. Graphene wire medium: Homogenization and application

    DEFF Research Database (Denmark)

    Andryieuski, Andrei; Chigrin, Dmitry N.; Lavrinenko, Andrei

    2012-01-01

    In this contribution we analyze numerically the optical properties of the graphene wire medium, which unit cell consists of a stripe of graphene embedded into dielectric. We propose a simple method for retrieval of the isofrequency contour and effective permittivity tensor. As an example of the g......In this contribution we analyze numerically the optical properties of the graphene wire medium, which unit cell consists of a stripe of graphene embedded into dielectric. We propose a simple method for retrieval of the isofrequency contour and effective permittivity tensor. As an example...... of the graphene wire medium application we demonstrate a reconfigurable hyperlens for the terahertz subwavelength imaging capable of resolving two sources with separation λ0/5 in the far-field....

  15. Rotor Embedded with Shape Memory Alloy Wires

    Directory of Open Access Journals (Sweden)

    K. Gupta

    2000-01-01

    Full Text Available In the present analysis, the fundamental natural frequency of a Jeffcott and a two-mass rotor with fibre reinforced composite shaft embedded with shape memory alloy (SMA wires is evaluated by Rayleigh's procedure. The flexibility of rotor supports is taken into account. The effect of three factors, either singly or in combination with each other, on rotor critical speed is studied. The three factors are: (i increase in Young's modulus of SMA (NITINOL wires when activated, (ii tension in wires because of phase recovery stresses, and (iii variation of support stiffness by three times because of activation of SMA in rotor supports. It is shown by numerical examples that substantial variation in rotor critical speeds can be achieved by a combination of these factors which can be effectively used to avoid resonance during rotor coast up/down.

  16. Emulating Wired Backhaul with Wireless Network Coding

    DEFF Research Database (Denmark)

    Thomsen, Henning; De Carvalho, Elisabeth; Popovski, Petar

    2014-01-01

    In this paper we address the need for wireless network densification. We propose a solution wherein the wired backhaul employed in heterogeneous cellular networks is replaced with wireless links, while maintaining the rate requirements of the uplink and downlink traffic of each user. The first...... of the two-way protocol. The transmit power is set high enough to enable successive decoding at the small cell base station where the downlink data to the user is first decoded and its contribution removed from the received signal followed by the uplink data from the user. The decoding of the second layer......, the uplink traffic to the user, remains identical to the one performed in a wired system. In the broadcast phase, the decoding of the downlink traffic can also be guaranteed to remain identical. Hence, our solution claims an emulation of a wired backhaul with wireless network coding with same performance. We...

  17. The Fine Wire Technique for Flexor Tenolysis.

    Science.gov (United States)

    Rosenblum, Matthew K; Baltodano, Pablo A; Weinberg, Maxene H; Whipple, Lauren A; Gemmiti, Amanda L; Whipple, Richard E

    2017-11-01

    Flexor tenolysis surgery for flexor digitorum profundus and superficialis adhesions is a common procedure performed by hand surgeons. Releasing these adhered tendons can greatly improve hand function and improve quality of life. Recent evidence, however, has shown that the outcomes of tenolysis surgeries are often suboptimal and can result in relapsing adhesions or even tendon ruptures. This article describes a new technique with potential for reduced complication rates: The Fine Wire Technique for Flexor Tenolysis (FWT). Following FWT, the patient detailed in this article had an excellent recovery of function and no complications: including tendon rupture, infection, hematomas, or any other complications. She reported a major improvement from her preoperative functionality and continues to have this level of success. The wire's thinness allows for a swift tenolysis. The FWT is a new option available to the hand surgeon associated with good functional results. The wire is readily available to the clinician and is also inexpensive.

  18. Ultrasonic cleaning of electrodes of wire chambers

    International Nuclear Information System (INIS)

    Krasnov, V.A.; Kurepin, A.B.; Razin, V.I.

    1980-01-01

    A technological process of cleaning electrodes and working volume surfaces of wire chambers from contaminations by the simultaneous mechanical action of the energy of ultrasonic oscillations and the chemical action of detergents is discussed. A device for cleaning wire electrodes of proportional chambers of 0.3x0.4 m is described. The device uses two ultrasonic generators with a total power of 0.5 kW. As a detergent use is made of a mixture of ethyl alcohol, gasoline and freon. In the process of cleaning production defects can be detected in the wire chambers which makes it possible to timely remove the defects. Measurements of the surface resistance of fiberglass laminate of printed drift chamber electrodes at a voltage of 2 kV showed that after completing the cleaning process the resistance increases 15-20%

  19. A comparison of a 'J' wire and a straight wire in successful antegrade cannulation of the superficial femoral artery

    International Nuclear Information System (INIS)

    Gay, D.A.T.; Edwards, A.J.; Puckett, M.A.; Roobottom, C.A.

    2005-01-01

    AIMS: To evaluate the success of two different types of wire in common use in their ability to successfully cannulate the superficial femoral artery (SFA) using antegrade puncture. METHODS: 50 consecutive patients in whom antegrade infra-inguinal intervention was planned, underwent common femoral arterial puncture and then cannulation with either a standard 3 mm 'J' wire or a floppy tipped straight wire (William Cook--Europe). The frequency with which each type of wire entered the SFA or profunda femoris artery without image guidance was recorded. Further analysis was also made of the success of manipulation of the wire into the SFA following profunda cannulation and the use of alternative guide wires. RESULTS: In 19 out of 25 (76%) patients the 'J' wire correctly entered the SFA without image guidance. Only 5 out of 25 (25%) of straight wires entered the SFA with the initial pass (p<0.0001). Following further manipulation with the same wire all except 1 'J' wire was successfully negotiated into the SFA. The same was true for only 9 of the remaining straight wires with 11 patients requiring an alternative guide wire. CONCLUSIONS: When performing antegrade cannulation of the SFA a 'J' wire is more likely to be successful than a straight guide wire

  20. Investigation of method for Stainless Steel Welding Wire as a Replacement for Arc Wire Comsumables

    Directory of Open Access Journals (Sweden)

    Koiprasert, H.

    2005-01-01

    Full Text Available Arc spraying as a coating method is being employed in various industrial applications as a part of maintenance service, and also as a surface engineering technique for many machine parts and components. The major cost in producing the arc spray coating is, however, based on the cost of the arc wire comsumables. This project was carried out to investigate the use of the commercially-available gas metal arc welding wire (GMAW wire as a cheaper alternative to the special-purpose arc wire comsumables. The wire material chosen for this early study is the 316L stainless steel, due to its popularity in many applications as a built-up coating for worn parts. The physical properties of the coatings produced from the two sets of 316L stainless steel wire were determined to be different in the percentage of porosity and the oxide content. The mechanical properties, including the tensile bond strength and the wear rate of the coatings produced from the two types of sprayed wire, were also different. This will, in turn, result in a slight difference in the performance of thecoatings.

  1. Basic characteristics of thin wire arc plasma

    International Nuclear Information System (INIS)

    Urushihara, K.; Endoh, N.; Ono, S.; Teii, S.; Ishimura, T.

    1998-01-01

    The investigated plasma was generated by applying an electric current of about 50 A to a copper wire of 48 μm diameter in air. The development in time of emission spectra was measured and relative line intensity ratios were used to determine the temperature. The extension of the plasma was measured with a movable electrostatic probe which was placed next to the thin wire, and the electron density was estimated using the known electron mobility. The electron temperature was typically about 8000 K. On the other hand, the electron density tended to decrease with time from about 3.10 16 cm -3

  2. A Flying Wire System in the AGS

    International Nuclear Information System (INIS)

    Huang, H.; Buxton, W.; Mahler, G.; Marusic, A.; Roser, T.; Smith, G.; Syphers, M.; Williams, N.; Witkover, R.

    1999-01-01

    As the AGS prepares to serve as the injector for RHIC, monitoring and control of the beam transverse emittance become a major and important topic. Before the installation of the flying wire system, the emittance was measured with ionization profile monitors in the AGS, which require correction for space charge effects. It is desirable to have a second means of measuring profile that is less dependent on intensity. A flying wire system has been installed in the AGS recently to perform this task. This paper discusses the hardware and software setup and the capabilities of the system

  3. Quantum conductance in silicon quantum wires

    CERN Document Server

    Bagraev, N T; Klyachkin, L E; Malyarenko, A M; Gehlhoff, W; Ivanov, V K; Shelykh, I A

    2002-01-01

    The results of investigations of electron and hole quantum conductance staircase in silicon quantum wires are presented. The characteristics of self-ordering quantum wells of n- and p-types, which from on the silicon (100) surface in the nonequilibrium boron diffusion process, are analyzed. The results of investigations of the quantum conductance as the function of temperature, carrier concentration and modulation degree of silicon quantum wires are given. It is found out, that the quantum conductance of the one-dimensional channels is observed, for the first time, at an elevated temperature (T >= 77 K)

  4. Mesoscopic NbSe3 wires

    International Nuclear Information System (INIS)

    Zant, H.S.J. van der; Kalwij, A.; Mantel, O.C.; Markovic, N.

    1999-01-01

    We have fabricated wire structures with (sub)micron sizes in the charge-density wave conductor NbSe 3 . Electrical transport measurements include complete mode-locking on Shapiro steps and show that the patterning has not affected the CDW material. Our mesoscopic wires show strong fluctuation and hysteresis effects in the low-temperature current-voltage characteristics, as well as a strong reduction of the phase-slip voltage. This reduction can not be explained with existing models. We suggest that single phase-slip events are responsible for a substantial reduction of the CDW strain in micron-sized systems. (orig.)

  5. EDITORIAL More than a wire More than a wire

    Science.gov (United States)

    Demming, Anna

    2010-10-01

    Nanowires are the natural evolution of the connections in circuits when scaled down to nanometre sizes. On closer inspection, of course, the role of nanowires in developing new technologies is much more than just a current-bearing medium. By sizing the diameters of these objects down to the nanoscale, their properties become increasingly sensitive to factors such as the gas composition, temperature and incident light of their surrounding environment, as well as defects and variations in diameter. What becomes important in modern electronics innovations is not just what is connected, but how. Nanowires had already begun to attract the attention of researchers in the early 1990s as advances in imaging and measurement devices invited researchers to investigate the properties of these one-dimensional structures [1, 2]. This interest has sparked ingenious ways of fabricating nanowires such as the use of a DNA template. A collaboration of researchers at Louisiana Tech University in the US hs provided an overview of various methods to assemble conductive nanowires on a DNA template, including a summary of different approaches to stretching and positioning the templates [3]. Work in this area demonstrates a neat parallel for the role of DNA molecules as the building blocks of life and the foundations of nanoscale device architectures. Scientists at HP Labs in California are using nanowires to shrink the size of logic arrays [4]. One aspect of electronic interconnects that requires particular attention at nanoscale sizes is the effect of defects. The researchers at HP Labs demonstrate that their approach, which they name FPNI (field-programmable nanowire interconnect), is extremely tolerant of the high defect rates likely to be found in these nanoscale structures, and allows reduction in size and power without significantly sacrificing the clock rate. Another issue in scaling down electronics is the trend for an increasing resistivity with decreasing wire width. Researchers

  6. Multifilament Cable Wire versus Conventional Wire for Sternal Closure in Patients Undergoing Major Cardiac Surgery

    Directory of Open Access Journals (Sweden)

    You Na Oh

    2015-08-01

    Full Text Available Background: Stainless steel wiring remains the most popular technique for primary sternal closure. Recently, a multifilament cable wiring system (Pioneer Surgical Technology Inc., Marquette, MI, USA was introduced for sternal closure and has gained wide acceptance due to its superior resistance to tension. We aimed to compare conventional steel wiring to multifilament cable fixation for sternal closure in patients undergoing major cardiac surgery. Methods: Data were collected retrospectively on 1,354 patients who underwent sternal closure after major cardiac surgery, using either the multifilament cable wiring system or conventional steel wires between January 2009 and October 2010. The surgical outcomes of these two groups of patients were compared using propensity score matching based on 18 baseline patient characteristics. Results: Propensity score matching yielded 392 pairs of patients in the two groups whose baseline profiles showed no significant differences. No significant differences between the two groups were observed in the rates of early mortality (2.0% vs. 1.3%, p=0.578, major wound complications requiring reconstruction (1.3% vs. 1.3%, p>0.99, minor wound complications (3.6% vs. 2.0%, p=0.279, or mediastinitis (0.8% vs. 1.0%, p=1.00. Patients in the multifilament cable group had fewer sternal bleeding events than those in the conventional wire group, but this tendency was not statistically significant (4.3% vs. 7.4%, p=0.068. Conclusion: The surgical outcomes of sternal closure using multifilament cable wires were comparable to those observed when conventional steel wires were used. Therefore, the multifilament cable wiring system may be considered a viable option for sternal closure in patients undergoing major cardiac surgery.

  7. Multifilament Cable Wire versus Conventional Wire for Sternal Closure in Patients Undergoing Major Cardiac Surgery.

    Science.gov (United States)

    Oh, You Na; Ha, Keong Jun; Kim, Joon Bum; Jung, Sung-Ho; Choo, Suk Jung; Chung, Cheol Hyun; Lee, Jae Won

    2015-08-01

    Stainless steel wiring remains the most popular technique for primary sternal closure. Recently, a multifilament cable wiring system (Pioneer Surgical Technology Inc., Marquette, MI, USA) was introduced for sternal closure and has gained wide acceptance due to its superior resistance to tension. We aimed to compare conventional steel wiring to multifilament cable fixation for sternal closure in patients undergoing major cardiac surgery. Data were collected retrospectively on 1,354 patients who underwent sternal closure after major cardiac surgery, using either the multifilament cable wiring system or conventional steel wires between January 2009 and October 2010. The surgical outcomes of these two groups of patients were compared using propensity score matching based on 18 baseline patient characteristics. Propensity score matching yielded 392 pairs of patients in the two groups whose baseline profiles showed no significant differences. No significant differences between the two groups were observed in the rates of early mortality (2.0% vs. 1.3%, p=0.578), major wound complications requiring reconstruction (1.3% vs. 1.3%, p>0.99), minor wound complications (3.6% vs. 2.0%, p=0.279), or mediastinitis (0.8% vs. 1.0%, p=1.00). Patients in the multifilament cable group had fewer sternal bleeding events than those in the conventional wire group, but this tendency was not statistically significant (4.3% vs. 7.4%, p=0.068). The surgical outcomes of sternal closure using multifilament cable wires were comparable to those observed when conventional steel wires were used. Therefore, the multifilament cable wiring system may be considered a viable option for sternal closure in patients undergoing major cardiac surgery.

  8. Magnetic anisotropy and anisotropic ballistic conductance of thin magnetic wires

    International Nuclear Information System (INIS)

    Sabirianov, R.

    2006-01-01

    The magnetocrystalline anisotropy of thin magnetic wires of iron and cobalt is quite different from the bulk phases. The spin moment of monatomic Fe wire may be as high as 3.4 μ B , while the orbital moment as high as 0.5 μ B . The magnetocrystalline anisotropy energy (MAE) was calculated for wires up to 0.6 nm in diameter starting from monatomic wire and adding consecutive shells for thicker wires. I observe that Fe wires exhibit the change sign with the stress applied along the wire. It means that easy axis may change from the direction along the wire to perpendicular to the wire. We find that ballistic conductance of the wire depends on the direction of the applied magnetic field, i.e. shows anisotropic ballistic magnetoresistance. This effect occurs due to the symmetry dependence of the splitting of degenerate bands in the applied field which changes the number of bands crossing the Fermi level. We find that the ballistic conductance changes with applied stress. Even for thicker wires the ballistic conductance changes by factor 2 on moderate tensile stain in our 5x4 model wire. Thus, the ballistic conductance of magnetic wires changes in the applied field due to the magnetostriction. This effect can be observed as large anisotropic BMR in the experiment

  9. Comparison of Analysis, Simulation, and Measurement of Wire-to-Wire Crosstalk. Part 2

    Science.gov (United States)

    Bradley, Arthur T.; Yavoich, Brian James; Hodson, Shane M.; Godley, Franklin

    2010-01-01

    In this investigation, we compare crosstalk analysis, simulation, and measurement results for electrically short configurations. Methods include hand calculations, PSPICE simulations, Microstripes transient field solver, and empirical measurement. In total, four representative physical configurations are examined, including a single wire over a ground plane, a twisted pair over a ground plane, generator plus receptor wires inside a cylindrical conduit, and a single receptor wire inside a cylindrical conduit. Part 1 addresses the first two cases, and Part 2 addresses the final two. Agreement between the analysis methods and test data is shown to be very good.

  10. Comparison of Analysis, Simulation, and Measurement of Wire-to-Wire Crosstalk. Part 1

    Science.gov (United States)

    Bradley, Arthur T.; Yavoich, Brian James; Hodson, Shame M.; Godley, Richard Franklin

    2010-01-01

    In this investigation, we compare crosstalk analysis, simulation, and measurement results for electrically short configurations. Methods include hand calculations, PSPICE simulations, Microstripes transient field solver, and empirical measurement. In total, four representative physical configurations are examined, including a single wire over a ground plane, a twisted pair over a ground plane, generator plus receptor wires inside a cylindrical conduit, and a single receptor wire inside a cylindrical conduit. Part 1 addresses the first two cases, and Part 2 addresses the final two. Agreement between the analysis, simulation, and test data is shown to be very good.

  11. Superconductivity optimization and phase formation kinetics study of internal-Sn Nb3Sn superconducting wires

    International Nuclear Information System (INIS)

    Zhang, Chaowu

    2007-07-01

    Superconductors Nb 3 Sn wires are one of the most applicable cryogenic superconducting materials and the best choice for high-field magnets exceeding 10 T. One of the most significant utilization is the ITER project which is regarded as the hope of future energy source. The high-Cu composite designs with smaller number of sub-element and non-reactive diffusion barrier, and the RRP (Restacked Rod Process) internal-Sn technology are usually applied for the wire manufacturing. Such designed and processed wires were supplied by MSA/Alstom and WST/NIN in this research. The systematic investigation on internal-Sn superconducting wires includes the optimization of heat treatment (HT) conditions, phase formation and its relation with superconductivity, microstructure analysis, and the phase formation kinetics. Because of the anfractuosity of the configuration design and metallurgical processing, the MF wires are not sufficient for studying a sole factor effect on superconductivity. Therefore, four sets of mono-element (ME) wires with different Sn ratios and different third-element addition were designed and fabricated in order to explore the relationship between phase formation and superconducting performances, particularly the A15 layer growth kinetics. Different characterization technic have been used (magnetization measurements, neutron diffraction and SEM/TEM/EDX analysis). The A15 layer thicknesses of various ME samples were measured and carried out linear and non-linear fits by means of two model equations. The results have clearly demonstrated that the phase formation kinetics of Nb 3 Sn solid-state reaction is in accordance with an n power relation and the n value is increased with the increase of HT temperature and the Sn ratio in the wire composite. (author)

  12. Experimental study on underwater electrical explosion of a copper wire

    International Nuclear Information System (INIS)

    Zhou Qing; Zhang Jun; Tan Xiangyu; Ren Baozhong; Zhang Qiaogen

    2010-01-01

    Through analyzing the physical process of underwater electrical wire explosion, electrical wire explosions with copper wires were investigated underwater using pulsed voltage in the time scale of a few microseconds. A self-integrating Rogowsky coil and a voltage divider were used for current and voltage at the wire load, respectively. The shock wave pressure is measured with a piezoelectric pressure probe at the same distance. The current rise rate was adjusted by changing the applied voltage, circuit inductance, length and diameter of copper wire. The change of the current rise rate had a great effect on the process of underwater electrical wire explosion with copper wires. At last, the effect of discharge voltage, circuit inductance, length and diameter of copper wire were obtained on the explosion voltage and current as well as shock wave pressure. (authors)

  13. Acoustic Emission from Elevator Wire Ropes During Tensile Testing

    Science.gov (United States)

    Bai, Wenjie; Chai, Mengyu; Li, Lichan; Li, Yongquan; Duan, Quan

    The acoustic emission (AE) technique was used to monitor the tensile testing process for two kinds of elevator wire ropes in our work. The AE signals from wire breaks were obtained and analyzed by AE parameters and waveforms. The results showed that AE technique can be a useful tool to monitor wire break phenomenon of wire ropes and effectively capture information of wire break signal. The relationship between AE signal characteristics and wire breaks is investigated and it is found that the most effective acoustic signal discriminators are amplitude and absolute energy. Moreover, the wire break signal of two kinds of ropes is a type of burst signal and it is believed that the waveform and spectrum can be applied to analyze the AE wire break signals.

  14. Tungsten wire and tubing joined by nickel brazing

    Science.gov (United States)

    1965-01-01

    Thin tungsten wire and tungsten tubing are brazed together using a contacting coil of nickel wire heated to its melting point in an inert-gas atmosphere. This method is also effective for brazing tungsten to tungsten-rhenium parts.

  15. Quantum logic gates based on coherent electron transport in quantum wires.

    Science.gov (United States)

    Bertoni, A; Bordone, P; Brunetti, R; Jacoboni, C; Reggiani, S

    2000-06-19

    It is shown that the universal set of quantum logic gates can be realized using solid-state quantum bits based on coherent electron transport in quantum wires. The elementary quantum bits are realized with a proper design of two quantum wires coupled through a potential barrier. Numerical simulations show that (a) a proper design of the coupling barrier allows one to realize any one-qbit rotation and (b) Coulomb interaction between two qbits of this kind allows the implementation of the CNOT gate. These systems are based on a mature technology and seem to be integrable with conventional electronics.

  16. One phonon resonant Raman scattering in free-standing quantum wires

    International Nuclear Information System (INIS)

    Zhao, Xiang-Fu; Liu, Cui-Hong

    2007-01-01

    The scattering intensity (SI) of a free-standing cylindrical semiconductor quantum wire for an electron resonant Raman scattering (ERRS) process associated with bulk longitudinal optical (LO) phonon modes and surface optical (SO) phonon modes is calculated separately for T=0 K. The Frohlich interaction is considered to illustrate the theory for GaAs and CdS systems. Electron states are confined within a free-standing quantum wire (FSW). Single parabolic conduction and valence bands are assumed. The selection rules are studied. Numerical results and a discussion are also presented for various radii of the cylindrical

  17. Effect of Ag in structural, electrical and magnetic properties of Ag-sheated Bi-2223 wires

    Directory of Open Access Journals (Sweden)

    D Sohrabi

    2009-08-01

    Full Text Available  In this study, the superconducting properties of Bi-2223/Ag wires, made by the PIT method have been studied. Powder samples were prepared using conventional solid state reaction method. After calcination, samples with different Ag percent (0, 5, 10, 15, 20, and 25 prepared and sintered at 830 °C. It was shown that Ag addition has not only affected the formation of the desired Bi-2223 phase and the microstructure of these wires, but also influenced on the critical current density (JC and critical temperature.

  18. Minimal performances of high Tc wires for cost effective SMES compared with low Tc's

    International Nuclear Information System (INIS)

    Levillain, C.; Therond, P.G.

    1996-01-01

    On the basis of a 22MJ/10MVA unit without stray field, the authors determine minimal performances for High T c Superconducting (HTS) wires, in order to obtain HTS Superconducting Magnetic Energy Storage (SMES) competitive compared with Low T c Superconducting (LTS) ones. The cost equation mainly considers the wire volume, the fabrication process and losses. They then recommend HTS critical current densities and operating magnetic fields close to the present state of the art for short samples. A 30% gain for HTS SMES compared with LTS one could be expected

  19. Vibration Control of a Flexible Rotor Using Shape Memory Alloy Wires

    DEFF Research Database (Denmark)

    Alves, Marco Túlio Santana; Enemark, Søren; Steffen Jr, Valdar

    2015-01-01

    In the present contribution, a theoretical model of a test rig containing a flexible rotor is simulated considering pseudoelastic SMA (Shape Memory Alloy) wires connected to a bearing in order to dissipate energy and consequently reduce vibration. SMAs have characteristics of shape memory...... of rotor and SMA wires are coupled. The chosen constitutive model that governs the SMA behaviour is a modified version of the model by Brinson for the one-dimensional case. Both transient and steady-state tests arenumerically simulated. The first one, a run-up test, is performed only at room temperature...

  20. A proton wire and water channel revealed in the crystal structure of isatin hydrolase

    DEFF Research Database (Denmark)

    Bjerregaard-Andersen, Kaare; Sommer, Theis; Jensen, Jan Kristian

    2014-01-01

    to a novel family of metalloenzymes that include the bacterial kynurenine formamidase. The product state, mimicked by bound thioisatinate, reveals a water molecule that bridges the thioisatinate to a proton wire in an adjacent water channel and thus allows the proton released by the reaction to escape only...... when the product is formed. The functional proton wire present in IH-b represents a unique catalytic feature common to all hydrolases is here trapped and visualized for the first time. The local molecular environment required to coordinate thioisatinate allows stronger and more confident identification...

  1. Numerical Simulation of Wire-Coating

    DEFF Research Database (Denmark)

    Wapperom, Peter; Hassager, Ole

    1999-01-01

    A finite element program has been used to analyze the wire-coating process of an MDPE melt. The melt is modeled by a nonisothermal Carreau model. The emphasis is on predicting an accurate temperature field. Therefore, it is necessary to include the heat conduction in the metal parts. A comparison...

  2. Brain Wiring in the Fourth Dimension.

    Science.gov (United States)

    Wernet, Mathias F; Desplan, Claude

    2015-07-02

    In this issue of Cell, Langen et al. use time-lapse multiphoton microscopy to show how Drosophila photoreceptor growth cones find their targets. Based on the observed dynamics, they develop a simple developmental algorithm recapitulating the highly complex connectivity pattern of these neurons, suggesting a basic framework for establishing wiring specificity. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Wire anode for isotope separation apparatus

    International Nuclear Information System (INIS)

    Janes, G.S.; Dotson, J.P.

    1976-01-01

    In uranium enrichment, an electrode structure of thin, tensioned, parallel wires is claimed for use in applying an electric field to a region of a flowing uranium plasma including selectively ionized particles in order to accelerate the ionized particles for separate collection without interfering with the motion of neutral particles. 24 claims, 3 drawing figures

  4. Wire chamber degradation at the Argonne ZGS

    International Nuclear Information System (INIS)

    Haberichter, W.; Spinka, H.

    1986-01-01

    Experience with multiwire proportional chambers at high rates at the Argonne Zero Gradient Synchrotron is described. A buildup of silicon on the sense wires was observed where the beam passed through the chamber. Analysis of the chamber gas indicated that the density of silicon was probably less than 10 ppM

  5. Niobium Titanium and Copper wire samples

    CERN Multimedia

    2009-01-01

    Two wire samples, both for carrying 13'000Amperes. I sample is copper. The other is the Niobium Titanium wiring used in the LHC magnets. The high magnetic fields needed for guiding particles around the Large Hadron Collider (LHC) ring are created by passing 12’500 amps of current through coils of superconducting wiring. At very low temperatures, superconductors have no electrical resistance and therefore no power loss. The LHC is the largest superconducting installation ever built. The magnetic field must also be extremely uniform. This means the current flowing in the coils has to be very precisely controlled. Indeed, nowhere before has such precision been achieved at such high currents. Magnet coils are made of copper-clad niobium–titanium cables — each wire in the cable consists of 9’000 niobium–titanium filaments ten times finer than a hair. The cables carry up to 12’500 amps and must withstand enormous electromagnetic forces. At full field, the force on one metre of magnet is comparable ...

  6. Description of CBETA magnet tuning wire holders

    Energy Technology Data Exchange (ETDEWEB)

    Brooks, S. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2017-07-19

    A non-­magnetic insert will be placed directly inside the permanent magnet blocks in every CBETA Halbach magnet in order to hold a set of iron “tuning wires”. These wires have various lengths around the perimeter of the aperture in order to cancel multipole field errors from the permanent magnet blocks.

  7. Cutting bubbles with a single wire

    NARCIS (Netherlands)

    Baltussen, M.W.; Segers, Q.I.E.; Kuipers, J.A.M.; Deen, N.G.

    2017-01-01

    Many gas-liquid-solid contactors, such as trickle bed and bubble slurry columns, suffer from heat and mass transfer limitations. To overcome these limitations, new micro-structured bubble column reactor is proposed. In this reactor, a catalyst coated wire mesh is introduced in a bubble column to cut

  8. Two-wire Interface for Digital Microphones

    NARCIS (Netherlands)

    Groothedde, Wouter; Klumperink, Eric A.M.; Nauta, Bram; Eschauzier, Rudolphe Gustave Hubertus; van Rijn, Nico

    2003-01-01

    A two-wire interface for a digital microphone circuit includes a power line and a ground line. The interface utilizes the ground line as a "voltage active line" to transmit both clock and data signals between the digital microphone circuit and a receiving circuit. The digital microphone circuit

  9. Two-Wire interface for digital microphones

    NARCIS (Netherlands)

    Groothedde, Wouter; Klumperink, Eric A.M.; Nauta, Bram; Eschauzier, Rudolphe Gustave Hubertus; van Rijn, Nico

    2005-01-01

    A two-wire interface for a digital microphone circuit includes a power line and a ground line. The interface utilizes the ground line as a "voltage active line" to transmit both clock and data signals between the digital microphone circuit and a receiving circuit. The digital microphone circuit

  10. Signals analysis of fluxgate array for wire rope defaults

    International Nuclear Information System (INIS)

    Gu Wei; Chu Jianxin

    2005-01-01

    In order to detecting the magnetic leakage fields of the wire rope defaults, a transducer made up of the fluxgate array is designed, and a series of the characteristic values of wire rope defaults signals are defined. By processing the characteristic signals, the LF or LMA of wire rope are distinguished, and the default extent is estimated. The experiment results of the new method for detecting the wire rope faults are introduced

  11. Regulation of Drosophila Brain Wiring by Neuropil Interactions via a Slit-Robo-RPTP Signaling Complex.

    Science.gov (United States)

    Oliva, Carlos; Soldano, Alessia; Mora, Natalia; De Geest, Natalie; Claeys, Annelies; Erfurth, Maria-Luise; Sierralta, Jimena; Ramaekers, Ariane; Dascenco, Dan; Ejsmont, Radoslaw K; Schmucker, Dietmar; Sanchez-Soriano, Natalia; Hassan, Bassem A

    2016-10-24

    The axonal wiring molecule Slit and its Round-About (Robo) receptors are conserved regulators of nerve cord patterning. Robo receptors also contribute to wiring brain circuits. Whether molecular mechanisms regulating these signals are modified to fit more complex brain wiring processes is unclear. We investigated the role of Slit and Robo receptors in wiring Drosophila higher-order brain circuits and identified differences in the cellular and molecular mechanisms of Robo/Slit function. First, we find that signaling by Robo receptors in the brain is regulated by the Receptor Protein Tyrosine Phosphatase RPTP69d. RPTP69d increases membrane availability of Robo3 without affecting its phosphorylation state. Second, we detect no midline localization of Slit during brain development. Instead, Slit is enriched in the mushroom body, a neuronal structure covering large areas of the brain. Thus, a divergent molecular mechanism regulates neuronal circuit wiring in the Drosophila brain, partly in response to signals from the mushroom body. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  12. Development of 'low activation superconducting wire' for an advanced fusion reactor

    International Nuclear Information System (INIS)

    Hishinuma, Y.; Yamada, S.; Sagara, A.; Kikuchi, A.; Takeuchi, T.; Matsuda, K.; Taniguchi, H.

    2011-01-01

    In the D-T burning plasma reactor beyond ITER such as DEMO and fusion power plants assuming the steady-state and long time operation, it will be necessary to consider carefully induced radioactivity and neutron irradiation properties on the all components for fusion reactors. The decay time of the induced radioactivity can control the schedule and scenarios of the maintenance and shutdown on the fusion reactor. V 3 Ga and MgB 2 compound have shorter decay time within 1 years and they will be desirable as a candidate material to realize 'low activation and high magnetic field superconducting magnet' for advanced fusion reactor. However, it is well known that J c -B properties of V 3 Ga and MgB 2 wires are lower than that of the Nb-based A15 compound wires, so the J c -B enhancements on the V 3 Ga and MgB 2 wires are required in order to apply for an advanced fusion reactor. We approached and succeeded to developing the new process in order to improve J c properties of V 3 Ga and MgB 2 wires. In this paper, the recent activities for the J c improvements and detailed new process in V 3 Ga and MgB 2 wires are investigated. (author)

  13. Metallurgical processing and properties of multifilamentary V3Ga composite wires

    International Nuclear Information System (INIS)

    Howe, D.G.; Weinman, L.S.

    1976-01-01

    Multifilamentary composite wires of V - 6.1 at. percent Ga filaments in a Cu-17.5 at. percent Ga matrix were fabricated. High purity V and Ga were arc melted and cast to form an alloy rod. High purity Cu and Ga were induction melted and also cast as an alloy rod. The alloy rods were reduced in diameter by swaging. The larger diameter Cu - Ga matrix rod was drilled with 19 holes which terminated within the matrix-rod. The holes served as receptacles for 19 V-Ga rods which were inserted into the matrix. The composite assembly was evacuated under high vacuum and sealed by an electron beam weld. The composite was then reduced in diameter through swaging and wire drawing to 0.032-in. dia wire. V 3 Ga layers at the filament/matrix interface were formed through an isothermal solid-state reaction. Growth rates for V 3 Ga are strongly influenced by alloy composition and formation temperature, with more rapid growth occurring in composite wires with higher Ga contents. Improved critical current densities (J/sub c/) resulted from lower formation temperatures, J/sub c/ values of over 1 x 10 6 A/cm 2 in a transverse magnetic field of 100 kG were obtained in the multifilamentary composite wire. 9 figs

  14. Annual coded wire tag program (Washington) missing production groups : annual report 2000; ANNUAL

    International Nuclear Information System (INIS)

    Dammers, Wolf; Mills, Robin D.

    2002-01-01

    The Bonneville Power Administration (BPA) funds the ''Annual Coded-wire Tag Program - Missing Production Groups for Columbia River Hatcheries'' project. The Washington Department of Fish and Wildlife (WDFW), Oregon Department of Fish and Wildlife (ODFW) and the United States Fish and Wildlife Service (USFWS) all operate salmon and steelhead rearing programs in the Columbia River basin. The intent of the funding is to coded-wire tag at least one production group of each species at each Columbia Basin hatchery to provide a holistic assessment of survival and catch distribution over time and to meet various measures of the Northwest Power Planning Council's (NWPPC) Fish and Wildlife Program. The WDFW project has three main objectives: (1) coded-wire tag at least one production group of each species at each Columbia Basin hatchery to enable evaluation of survival and catch distribution over time, (2) recover coded-wire tags from the snouts of fish tagged under objective 1 and estimate survival, contribution, and stray rates for each group, and (3) report the findings under objective 2 for all broods of chinook, and coho released from WDFW Columbia Basin hatcheries. Objective 1 for FY-00 was met with few modifications to the original FY-00 proposal. Under Objective 2, snouts containing coded-wire tags that were recovered during FY-00 were decoded. Under Objective 3, this report summarizes available recovery information through 2000 and includes detailed information for brood years 1989 to 1994 for chinook and 1995 to 1997 for coho

  15. Investigation on Characterizing Heated Pulsating Flows with Hot Wire Anemometers - A Hands-On Approach

    Directory of Open Access Journals (Sweden)

    Marius Alexandru PANAIT

    2014-06-01

    Full Text Available The pulsating heated flows are traditionally a difficult subject to treat with conventional hot wire or film methods. Special factors that complicate matters are flow reversal and non linear flow effects of vortices and wire probe wake disturbances on the heat transfer to the hot film or wire sensor in heated pulsating flows. The presence of these strongly nonlinear and unknown terms leads to great difficulties in calibration of hot film probes in this particular regime. The paper analyses the current state of matters in the field and reports a series of solutions that have been practically tested in a case of a high speed pulsated heated flow. Normally such measurements are made in a non-contact fashion using a LDV system or various visualization techniques but there have been recent attempts to use a constant temperature hot wire anemometer system (CTA.To obtain meaningful calibration for hot wire films in hot pulsating flows, a comparison system on other principles (LDV was used, as well as a specially designed nozzle to replace the calibrator unit that could not be operated with heated fluid due to structural integrity reasons. The method as described below works well for the expected speed range that could be generated using the special nozzle.

  16. NaAuS chicken-wire-like semiconductor: Electronic structure and optical properties

    International Nuclear Information System (INIS)

    Reshak, A.H.; Khan, Saleem Ayaz; Kamarudin, H.; Bila, Jiri

    2014-01-01

    Highlights: • Chicken wire like semiconductor NaAuS was investigated. • Good agreement with experimental data was found. • Electronic charge density of chicken wire like semiconductor NaAuS was obtained. • The calculated uniaxial anisotropy is −0.0005, indicating the strong anisotropy. -- Abstract: The electronic structure, charge density and optical properties of NaAuS a chicken-wire-like semiconductor was calculated using full potential linear augmented plane wave based on density functional theory. The Ceperley-Alder local density approximation, Perdew Becke Ernzerhof Generalized gradient approximation and Engel Voskov Generalized Gradient Approximation were applied to solve the exchange correlation potential. The investigation of band structures and density of states elucidates that Engle Vasko Generalized Gradient Approximation shows close agreement to the experimental data. The calculated valence charge density shows pure ionic nature of Au–Au bond. It becomes partially covalent when Au is connected with two Na atoms. The linear optical susceptibilities of chicken-wire-like NaAuS semiconductor are calculated so as to obtain further insight into the electronic properties. The uniaxial anisotropy is −0.0005, indicating the strong anisotropy of the dielectric function in the NaAuS a chicken-wire-like semiconductor

  17. NaAuS chicken-wire-like semiconductor: Electronic structure and optical properties

    Energy Technology Data Exchange (ETDEWEB)

    Reshak, A.H. [Institute of Complex Systems, FFPW, CENAKVA, University of South Bohemia in CB, Nove Hrady 37333 (Czech Republic); Center of Excellence Geopolymer and Green Technology, School of Material Engineering, University Malaysia Perlis, 01007 Kangar, Perlis (Malaysia); Khan, Saleem Ayaz, E-mail: sayaz_usb@yahoo.com [Institute of Complex Systems, FFPW, CENAKVA, University of South Bohemia in CB, Nove Hrady 37333 (Czech Republic); Kamarudin, H. [Center of Excellence Geopolymer and Green Technology, School of Material Engineering, University Malaysia Perlis, 01007 Kangar, Perlis (Malaysia); Bila, Jiri [Department of Instrumentation and Control Engineering, Faculty of Mechanical Engineering, CTU in Prague, Technicka 4, 166 07 Prague 6 (Czech Republic)

    2014-01-05

    Highlights: • Chicken wire like semiconductor NaAuS was investigated. • Good agreement with experimental data was found. • Electronic charge density of chicken wire like semiconductor NaAuS was obtained. • The calculated uniaxial anisotropy is −0.0005, indicating the strong anisotropy. -- Abstract: The electronic structure, charge density and optical properties of NaAuS a chicken-wire-like semiconductor was calculated using full potential linear augmented plane wave based on density functional theory. The Ceperley-Alder local density approximation, Perdew Becke Ernzerhof Generalized gradient approximation and Engel Voskov Generalized Gradient Approximation were applied to solve the exchange correlation potential. The investigation of band structures and density of states elucidates that Engle Vasko Generalized Gradient Approximation shows close agreement to the experimental data. The calculated valence charge density shows pure ionic nature of Au–Au bond. It becomes partially covalent when Au is connected with two Na atoms. The linear optical susceptibilities of chicken-wire-like NaAuS semiconductor are calculated so as to obtain further insight into the electronic properties. The uniaxial anisotropy is −0.0005, indicating the strong anisotropy of the dielectric function in the NaAuS a chicken-wire-like semiconductor.

  18. Novel trends in the study of magnetically soft Co-based amorphous glass-coated wires

    International Nuclear Information System (INIS)

    Chiriac, H.; Ovari, T.-A.

    2011-01-01

    An overview of the recent progress and state-of-the-art results in the investigation of the amorphous glass-coated wires with nearly zero magnetostriction is presented. These versatile microwires display enhanced soft magnetic properties, which make them suitable as sensing elements in various sensors for biomedical and automotive applications. Current results on their magnetic characteristics refer to a major refinement of their core-shell magnetic structure by taking into account the interdomain wall and to the thorough analysis of the magnetization within the outer shell. Experimental techniques such as giant magneto-impedance, magneto-resistance, and magneto-optical Kerr effect measurements are employed to prove the outcome of the theoretical calculations. The impact of the magnetic structure of the outer shell on the propagation of domain walls in bistable amorphous wires is analyzed. Very recent results on the magnetization process in nearly zero magnetostrictive amorphous glass-coated wires with submicron dimensions are also reviewed. - Highlights: → The most recent advances in the study of amorphous glass-coated wires with nearly zero magnetostriction are surveyed. → Major progress in the study of their domain structure: the wide interdomain wall, which affects high frequency phenomena. → The magnetization of the outer shell depends on wire diameter and affects the wall propagation in bistable samples. → These novel results are important for future sensor applications of nearly zero magnetostrictive amorphous microwires.

  19. Nano wire conductance experiments above and below the reservoirs Curie temperature

    Energy Technology Data Exchange (ETDEWEB)

    Costa-Kraemer, J. L.; Briones, F. [Instituto de Microelectronica de Madrid, Madrid (Spain); Serena, P. A. [Instituto de Ciencias de Materiales de Madrid, Madrid (Spain)

    2001-03-01

    The transport properties of Ni nano wires are studied using a Scanning Tunneling Microscope (STM) under clean high vacuum conditions. A basically flat nano wire conductance histogram is found independently of the magnetic state of the electrodes. This agrees with our previous studies in air but disagrees with recently published results. The possible origin of these discrepancies, together with additional experiments trying to discern the existence of a spin-dependent conductance in ferromagnetic nano wires, are presented. [Spanish] Las propiedades de transporte de nanoalambres de Ni son estudiadas usando un microscopio de efecto tunel bajo condiciones limpias de alto vacio. Se encuentra un histograma esencialmente plano independiente del estado magnetico de los electrodos. Esto concuerda con nuestros estudios previos en aire pero contrasta con resultados publicados recientemente. Se presentara una discusion sobre el posible origen experimental de estas discrepancias, con el fin de discernir sobre la existencia de una conductancia dependiente del espin en nanoalambres ferromagneticos.

  20. The HayWired earthquake scenario—We can outsmart disaster

    Science.gov (United States)

    Hudnut, Kenneth W.; Wein, Anne M.; Cox, Dale A.; Porter, Keith A.; Johnson, Laurie A.; Perry, Suzanne C.; Bruce, Jennifer L.; LaPointe, Drew

    2018-04-18

    The HayWired earthquake scenario, led by the U.S. Geological Survey (USGS), anticipates the impacts of a hypothetical magnitude-7.0 earthquake on the Hayward Fault. The fault is along the east side of California’s San Francisco Bay and is among the most active and dangerous in the United States, because it runs through a densely urbanized and interconnected region. One way to learn about a large earthquake without experiencing it is to conduct a scientifically realistic scenario. The USGS and its partners in the HayWired Coalition and the HayWired Campaign are working to energize residents and businesses to engage in ongoing and new efforts to prepare the region for such a future earthquake.

  1. Fabrication of sub-15 nm aluminum wires by controlled etching

    International Nuclear Information System (INIS)

    Morgan-Wall, T.; Hughes, H. J.; Hartman, N.; Marković, N.; McQueen, T. M.

    2014-01-01

    We describe a method for the fabrication of uniform aluminum nanowires with diameters below 15 nm. Electron beam lithography is used to define narrow wires, which are then etched using a sodium bicarbonate solution, while their resistance is simultaneously measured in-situ. The etching process can be stopped when the desired resistance is reached, and can be restarted at a later time. The resulting nanowires show a superconducting transition as a function of temperature and magnetic field that is consistent with their smaller diameter. The width of the transition is similar to that of the lithographically defined wires, indicating that the etching process is uniform and that the wires are undamaged. This technique allows for precise control over the normal state resistance and can be used to create a variety of aluminum nanodevices

  2. A low-power high-flow shape memory alloy wire gas microvalve

    International Nuclear Information System (INIS)

    Gradin, Henrik; Braun, Stefan; Stemme, Göran; Van der Wijngaart, Wouter; Clausi, Donato; Peirs, Jan; Reynaerts, Dominiek

    2012-01-01

    In this paper the use of shape memory alloy (SMA) wire actuators for high gas flow control is investigated. A theoretical model for effective gas flow control is presented and gate microvalve prototypes are fabricated. The SMA wire actuator demonstrates the robust flow control of more than 1600 sccm at a pressure drop of 200 kPa. The valve can be successfully switched at over 10 Hz and at an actuation power of 90 mW. Compared to the current state-of-the-art high-flow microvalves, the proposed solution benefits from a low-voltage actuator with low overall power consumption. This paper demonstrate that SMA wire actuators are well suited for high-pressurehigh-flow applications. (paper)

  3. A portable borehole temperature logging system using the four-wire resistance method

    Science.gov (United States)

    Erkan, Kamil; Akkoyunlu, Bülent; Balkan, Elif; Tayanç, Mete

    2017-12-01

    High-quality temperature-depth information from boreholes with a depth of 100 m or more is used in geothermal studies and in studies of climate change. Electrical wireline tools with thermistor sensors are capable of measuring borehole temperatures with millikelvin resolution. The use of a surface readout mode allows analysis of the thermally conductive state of a borehole, which is especially important for climatic and regional heat flow studies. In this study we describe the design of a portable temperature logging tool that uses the four-wire resistance measurement method. The four-wire method enables the elimination of cable resistance effects, thus allowing millikelvin resolution of temperature data at depth. A preliminary two-wire model of the system is also described. The portability of the tool enables one to collect data from boreholes down to 300 m, even in locations with limited accessibility.

  4. Communication and Wiring in the Cortical Connectome

    Directory of Open Access Journals (Sweden)

    Julian eBudd

    2012-10-01

    Full Text Available In cerebral cortex, the huge mass of axonal wiring that carries information between near and distant neurons is thought to provide the neural substrate for cognitive and perceptual function. The goal of mapping the connectivity of cortical axons at different spatial scales, the cortical connectome, is to trace the paths of information flow in cerebral cortex. To appreciate the relationship between the connectome and cortical function, we need to discover the nature and purpose of the wiring principles underlying cortical connectivity. A popular explanation has been that axonal length is strictly minimized both within and between cortical regions. In contrast, we have hypothesized the existence of a multi-scale principle of cortical wiring where to optimise communication there is a trade-off between spatial (construction and temporal (routing costs. Here, using recent evidence concerning cortical spatial networks we critically evaluate this hypothesis at neuron, local circuit, and pathway scales. We report three main conclusions. First, the axonal and dendritic arbor morphology of single neocortical neurons may be governed by a similar wiring principle, one that balances the conservation of cellular material and conduction delay. Second, the same principle may be observed for fibre tracts connecting cortical regions. Third, the absence of sufficient local circuit data currently prohibits any meaningful assessment of the hypothesis at this scale of cortical organization. To avoid neglecting neuron and microcircuit levels of cortical organization, the connectome framework should incorporate more morphological description. In addition, structural analyses of temporal cost for cortical circuits should take account of both axonal conduction and neuronal integration delays, which appear mostly of the same order of magnitude. We conclude the hypothesized trade-off between spatial and temporal costs may potentially offer a powerful explanation for

  5. Processing of flexible high-Tc superconducting wires

    International Nuclear Information System (INIS)

    Lee, B.I.; Modi, V.

    1989-01-01

    Wires superconducting at temperatures above 77 K are produced by using YBa 2 Cu 3 O 7 materials. Flexibility was obtained by support from prefabricated fibers or a metallic coating on the extruded YBa 2 Cu 3 O 7 wires. The microstructure, the T c and the critical current densities of the wires were determined. Processing variables and steps are described

  6. A Laser-Wire System for the International Linear Collider

    International Nuclear Information System (INIS)

    Delerue, N.; Dixit, S.; Gannaway, F.; Howell, D.; Qurshi, M.; Blair, G.; Boogert, S.; Boorman, G.; Driouichi, C.; Deacon, L.; Aryshev, A.; Karataev, P.; Terunuma, N.; Urakawa, J.; Brachmann, A.; Frisch, J.; Ross, M.

    2009-01-01

    A new laser-wire has been installed in the extraction line of the ATF at KEK. It aims at demonstrating that laser-wires can be used to measure micrometre scale beam size. In parallel, studies have been made to specify a laser suitable for the ILC laser-wires.

  7. 46 CFR 111.30-19 - Buses and wiring.

    Science.gov (United States)

    2010-10-01

    ... control wiring must be— (1) Suitable for installation within in a switchboard enclosure and be rated at 90... 46 Shipping 4 2010-10-01 2010-10-01 false Buses and wiring. 111.30-19 Section 111.30-19 Shipping... REQUIREMENTS Switchboards § 111.30-19 Buses and wiring. (a) General. Each bus must meet the requirements of...

  8. 47 CFR 76.802 - Disposition of cable home wiring.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false Disposition of cable home wiring. 76.802... MULTICHANNEL VIDEO AND CABLE TELEVISION SERVICE Cable Inside Wiring § 76.802 Disposition of cable home wiring. (a)(1) Upon voluntary termination of cable service by a subscriber in a single unit installation, a...

  9. Lunar Module Wiring Design Considerations and Failure Modes

    Science.gov (United States)

    Interbartolo, Michael

    2009-01-01

    This slide presentation reviews the considerations for the design of wiring for the Lunar Module. Included are a review of the choice of conductors and insulations, the wire splicing (i.e., crimping, and soldering), the wire connectors, and the fabrication of the wire harnesses. The problems in fabrication include the wires being the wrong length, the damage due to the sharp edges, the requried use of temproary protective covers and inadequate training. The problems in the wire harness installation include damge from sharp eges, work on adjacent harnesses, connector damage, and breaking wires. Engineering suggestions from the Apollo-era in reference to the conductors that are reviewed include: the use of plated conductors, and the use of alloys for stronger wiring. In refernce to insulation, the suggestions from Apollo era include the use of polymer tape-wrap wire insulation due to the light weight, however, other types of modern insulation might be more cost-effective. In reference to wire splices and terminal boards the suggestions from the Apollo Era include the use of crimp splices as superior to solder splices, joining multiple wire to a common point using modular plug-ins might be more reliable, but are heavier than crimp splicing. For connectors, the lessons from the Apollo era indicate that a rear environmental seal that does not require additional potting is preferred, and pins should be crimped or welded to the incoming wires and be removable from the rear of the connector.

  10. Experimental investigation of industrial copper deformed by wire ...

    African Journals Online (AJOL)

    drawing on microstructure and physical properties of industrial copper wires. Copper wires were provided by E.N.I.CA.Biskra (Algeria). We investigated some wires with different strain levels (as received, 1.20, 2.10, and ε = 3.35).

  11. Domain observations of Fe and Co based amorphous wires

    International Nuclear Information System (INIS)

    Takajo, M.; Yamasaki, J.

    1993-01-01

    Domain observations were made on Fe and Co based amorphous magnetic wires that exhibit a large Barkhausen discontinuity during flux reversal. Domain patterns observed on the wire surface were compared with those found on a polished section through the center of the wire. It was confirmed that the Fe based wire consists of a shell and core region as previously proposed, however, there is a third region between them. This fairly thick transition region made up of domains at an angle of about 45 degree to the wire axis clearly lacking the closure domains of the previous model. The Co based wire does not have a clear core and shell domain structure. The center of the wire had a classic domain structure expected of uniaxial anisotropy with the easy axis normal to the wire axis. When a model for the residual stress quenched-in during cooling of large Fe bars is applied to the wire, the expected anisotropy is consistent with the domain patterns in the Fe based wire, however, shape anisotropy still plays a dominant role in defining the wire core in the Co based wire

  12. A laser-wire system for the International Linear Collider

    Indian Academy of Sciences (India)

    A new laser-wire has been installed in the extraction line of the ATF at KEK. It aims at demonstrating ... beam size measurements to extract the phase space of the electron and positron ... the laser-wire (LW), instead of a conventional solid wire.

  13. Electronic conductance of quantum wire with serial periodic potential structures

    International Nuclear Information System (INIS)

    Fayad, Hisham M.; Shabat, Mohammed M.; Abdus Salam International Centre for Theoretical Physics, Trieste

    2000-08-01

    A theory based on the total transfer matrix is presented to investigate the electronic conductance in a quantum wire with serial periodic potentials. We apply the formalism in computation of the electronic conductance in a wire with different physical parameters of the wire structure. The numerical results could be used in designing some future quantum electronic devices. (author)

  14. Kirschner Wires : insertion techniques and bone related consequences

    NARCIS (Netherlands)

    Franssen, B.B.G.M.

    2010-01-01

    The Kirschner (K-) wire was first introduced in 1909 by Martin Kirschner. This is a thin unthreaded wire of surgical steel with a diameter of up to three millimeters and a selection of different tips. The use of K-wires is often promoted as a simple technique because of its easy placement,

  15. 76 FR 29266 - Galvanized Steel Wire From China and Mexico

    Science.gov (United States)

    2011-05-20

    ...)] Galvanized Steel Wire From China and Mexico Determinations On the basis of the record \\1\\ developed in the... reason of imports from China and Mexico of galvanized steel wire, provided for in subheading 7217.20.30... subsidized imports of galvanized steel wire from China and Mexico. Accordingly, effective March 31, 2011, the...

  16. 77 FR 28404 - Galvanized Steel Wire From China and Mexico

    Science.gov (United States)

    2012-05-14

    ...)] Galvanized Steel Wire From China and Mexico Determinations On the basis of the record \\1\\ developed in the... reason of imports from Mexico of galvanized steel wire, provided for in subheadings 7217.20.30, 7217.20... galvanized steel wire from China and Mexico were sold at LTFV within the meaning of 733(b) of the Act (19 U.S...

  17. A laser-wire system for the International Linear Collider

    Indian Academy of Sciences (India)

    A new laser-wire has been installed in the extraction line of the ATF at KEK. It aims at demonstrating that laser-wires can be used to measure micrometre scale beam size. In parallel, studies have been made to specify a laser suitable for the ILC laser-wires.

  18. On grouping individual wire segments into equivalent wires or chains, and introduction of multiple domain basis functions

    CSIR Research Space (South Africa)

    Lysko, AA

    2009-06-01

    Full Text Available The paper introduces a method to cover several wire segments with a single basis function, describes related practical algorithms, and gives some results. The process involves three steps: identifying chains of wire segments, splitting the chains...

  19. Feasibility studies on the direct wire readout on wire scanners in electron accelerators

    International Nuclear Information System (INIS)

    Markert, Michael

    2010-10-01

    This bachelor thesis deals essentially with the signal processing of a so-called wire scanner, a special monitor, which comes to application in the beam diagnostics of particle accelerators. In this direct wire readout the voltage signal, which is induced by the particle beam in the measurement wire of the wire scanner, shall be directly read out. The aim of this thesis is to show fundamental considerations and perform studies, which study, whether and how in the future by means of a suited data transmission as well as readout electronics conclusion on the most important parameters of the beam, like position and profile, are possible. The measurement system presented here is divided in three main components: Signal measurement, signal preparation, and signal stretching. A suited test facility was developed and is presented in detail, in which then all components, like for instance the transmission cables, the wire-scanner fork, and the developed measurement circuit, are studied, which are of importance for a faultless signal transmission and presentation. Extensive measurements on the single components, as well as calculations for the signal transmission on and in the wire scanner were performed, whereby a good agreement could be found. Thereafter a comparison and a selection of the component used in this project were made. Furthermore improvement proposals, new constructions, and outlooks are presented, which could be of importance in further works.

  20. K-wire and tension band wire fixation in treating sternoclavicular joint dislocation.

    Science.gov (United States)

    Chen, Qing-yu; Cheng, Shao-wen; Wang, Wei; Lin, Zhong-qin; Zhang, Wei; Kou, Dong-quan; Shen, Yue; Ying, Xiao-zhou; Cheng, Xiao-jie; Lv, Chuan-zhu; Peng, Lei

    2011-02-01

    To evaluate the feasibility and therapeutic effect of treating sternoclavicular joint dislocation by K-wire and tension band wire fixation, and to improve the safety and stability of this technique. This study consisted of 9 cases, 6 males and 3 females with the mean age of 25 years (range, 9-62 years). The causes were traffic accident in 7 cases, falling in 1 case and fight in 1 case. The duration from injury to operation was 2 hours to 7 days. There were 5 left dislocations and 4 right dislocations; 8 anterior dislocations and 1 posterior dislocation, including one combined with left scapular fracture and one with left olecranon fracture. Open reduction and internal fixation using K-wires and tension band wires were performed to treat dislocations. All patients were followed up for 6 to 24 months, 10 months on average. According to Rockwood's rating scale on postoperative sternoclavicular joint, 8 cases achieved excellent outcomes with an average score of 13.88, and the rest case achieved a good outcome with the score of 12. Anatomical reduction was obtained in all cases. There were no such postoperative complications as severe infection, injury to blood vessel and nerve, failure of fixation, etc. Patients were all satisfied with the anatomical reduction and functional recovery. The technique of K-wire and tension band wire fixation is safe, simple, effective, less invasive and has been successfully used in orthopedic surgery. It is effective in treating sternoclavicular joint dislocation though it has some disadvantages.

  1. An interconnecting bus power optimization method combining interconnect wire spacing with wire ordering

    International Nuclear Information System (INIS)

    Zhu Zhang-Ming; Hao Bao-Tian; En Yun-Fei; Yang Yin-Tang; Li Yue-Jin

    2011-01-01

    On-chip interconnect buses consume tens of percents of dynamic power in a nanometer scale integrated circuit and they will consume more power with the rapid scaling down of technology size and continuously rising clock frequency, therefore it is meaningful to lower the interconnecting bus power in design. In this paper, a simple yet accurate interconnect parasitic capacitance model is presented first and then, based on this model, a novel interconnecting bus optimization method is proposed. Wire spacing is a process for spacing wires for minimum dynamic power, while wire ordering is a process that searches for wire orders that maximally enhance it. The method, i.e., combining wire spacing with wire ordering, focuses on bus dynamic power optimization with a consideration of bus performance requirements. The optimization method is verified based on various nanometer technology parameters, showing that with 50% slack of routing space, 25.71% and 32.65% of power can be saved on average by the proposed optimization method for a global bus and an intermediate bus, respectively, under a 65-nm technology node, compared with 21.78% and 27.68% of power saved on average by uniform spacing technology. The proposed method is especially suitable for computer-aided design of nanometer scale on-chip buses. (interdisciplinary physics and related areas of science and technology)

  2. Seismic fragility analysis of lap-spliced reinforced concrete columns retrofitted by SMA wire jackets

    International Nuclear Information System (INIS)

    Choi, Eunsoo; Park, Sun-Hee; Chung, Young-Soo; Kim, Hee Sun

    2013-01-01

    The aim of this study is to provide seismic fragility curves of reinforced concrete columns retrofitted by shape memory alloy wire jackets and thus assess the seismic performance of the columns against earthquakes, comparing them with reinforced concrete columns with lap-spliced and continuous reinforcement. For that purpose, this study first developed analytical models of the experimental results of the three types of columns, (1) lap-spliced reinforcement, (2) continuous reinforcement and (3) lap-spliced reinforcement and retrofitted by SMA wire jackets, using the OpenSEES program, which is oriented to nonlinear dynamic analysis. Then, a suite of ten recorded ground motions was used to conduct dynamic analyses of the analytical models with scaling of the peak ground acceleration from 0.1g to 1.0g in steps of 0.1g. From the static experimental tests, the column retrofitted with SMA wire jackets had a larger displacement ductility by a factor of 2.3 times that of the lap-spliced column, which was 6% larger compared with the ductility of the continuous reinforcement column. From the fragility analyses, the SMA wire jacketed column had median values of 0.162g and 0.567g for yield and collapse, respectively. For the yield damage state, the SMA wire jacketed column had a median value similar to the continuous reinforcement column. However, for the complete damage state, the SMA wire jacketed column showed a 1.33 times larger median value than the continuously reinforcement column. (paper)

  3. SPECIFIC FEATURES OF TECHNOLOGY OF MANUFACTURING A ZINC-COATED TUB WIRE FOR MUZZLE (BOTTLE’ HOOD WIRE

    Directory of Open Access Journals (Sweden)

    D. B. Zuev

    2016-01-01

    Full Text Available The paper presents the main technical specifications of galvanized low carbon wire for muzzles (bottle’hood wire, consistent with the exploitation requirements to the wire in the manufacture and use of muzzles. The main criteria when selecting the steel grade and upon selection of the technological processes are given. 

  4. Microstructure analysis and damage patterns of thermally cycled Ti–49.7Ni (at.%) wires

    International Nuclear Information System (INIS)

    Karhu, Marjaana; Lindroos, Tomi

    2012-01-01

    Long-term behaviour and fatigue endurance are the key issues in the utilization of SMA actuators, but systematic research work is still needed in this field. This study concentrates on the effects of three major design parameters on the long-term behaviour of binary Ti–49.7Ni-based actuators: the effect of the temperature interval used on thermal cycling, the effect of the stress level used and the effect of the heat-treatment state of the wire used. The long-term behaviour of the wires was studied in a custom-built fatigue test frame in which the wires were thermally cycled under a constant stress level. Before the fatigue testing, a series of heat treatments was carried out to generate optimal actuator properties for the wires. This paper concentrates on the systematic fractographic analysis of the fatigue fractured Ti–49.7Ni wires. The aim was to discover the relationships between the macro-scale behaviour and the microstructural changes of the material. During thermal cycling the surfaces of the Ti–49.7Ni wires were examined with an optical microscope. Clear connections between the detected surface defects and fracture nucleation sites were not established. Multiple cracks were initiated and grew during thermal cycling. SEM examinations showed that the fracture surfaces can be divided into different and separate zones: a smooth surface region with radial marks indicating the fatigue crack propagation area, a rougher ductile fracture surface region area and the roughest surface region on the interface of these two surfaces. It was detected that the size of the crack propagation area is related to the fatigue lives of the thermally cycled wires. Surface cracking and subsequent crack growth proved to be responsible for the accumulation of fatigue damage in the studied wires. It was detected from the fracture surface cross-sections that cracks were not initiated at the oxide layer. The major factor for nucleating the surface cracking and then shortening the

  5. Laparoscopic extraction of fractured Kirschner wire from the pelvis

    Directory of Open Access Journals (Sweden)

    Vinaykumar N Thati

    2014-01-01

    Full Text Available Kirschner wire is a sharp stainless steel guide wire commonly used in fixation of fractured bone segments. There are case reports of migrated K wire from the upper limb into the spine and chest, and from the lower limb in to the abdomen and pelvis. Here, we present a case report of accidental intra-operative fracture of K wire during percutaneous femoral nailing for sub-trochanteric fracture of right femur, which migrated in to the pelvis when the orthopaedician tried to retrieve the broken segment of the K wire. This case highlights the use of laparoscopy as minimally invasive surgical option.

  6. NASA requirements and applications environments for electrical power wiring

    International Nuclear Information System (INIS)

    Stavnes, M.W.; Hammond, A.N.

    1992-01-01

    Serious problems can occur from insulation failures in the wiring harnesses of aerospace vehicles. In most recorded incidents, the failures have been identified to be the result of arc tracking, the propagation of an arc along wiring bundles through degradation of insulation. Propagation of the arc can lead to the loss of the entire wiring harness and the functions which it supports. While an extensive database of testing for arc track resistant wire insulations have been developed for aircraft applications, the counterpart requirements for spacecraft are very limited. This paper presents the electrical, thermal, mechanical, chemical, and operational requirements for specification and testing of candidate wiring systems for spacecraft applications

  7. Carbon wire chamber at sub-atmospheric pressure

    Energy Technology Data Exchange (ETDEWEB)

    Charles, G., E-mail: charlesg@ipno.in2p3.fr; Audouin, L., E-mail: audouin@ipno.in2p3.fr; Bettane, J.; Dupre, R.; Genolini, B.; Hammoudi, N.; Imre, M.; Le Ven, V.; Maroni, A.; Mathon, B.; Nguyen Trung, T.; Rauly, E.

    2017-05-21

    Present in many experiments, wire and drift chambers have been used in a large variety of shapes and configurations during the last decades. Nevertheless, their readout elements has not evolved much: tungsten, sometimes gold-plated or aluminum, wires. By taking advantage of the developments in the manufacture of conducting carbon fiber, we could obtain interesting improvements for wire detectors. In this article, we present recent tests and simulations using carbon fibers to readout signal in place of traditional tungsten wires. Unlike metallic wires, their low weight guaranties a reduced quantity of material in the active area.

  8. Universal quantum computation in a semiconductor quantum wire network

    International Nuclear Information System (INIS)

    Sau, Jay D.; Das Sarma, S.; Tewari, Sumanta

    2010-01-01

    Universal quantum computation (UQC) using Majorana fermions on a two-dimensional topological superconducting (TS) medium remains an outstanding open problem. This is because the quantum gate set that can be generated by braiding of the Majorana fermions does not include any two-qubit gate and also no single-qubit π/8 phase gate. In principle, it is possible to create these crucial extra gates using quantum interference of Majorana fermion currents. However, it is not clear if the motion of the various order parameter defects (vortices, domain walls, etc.), to which the Majorana fermions are bound in a TS medium, can be quantum coherent. We show that these obstacles can be overcome using a semiconductor quantum wire network in the vicinity of an s-wave superconductor, by constructing topologically protected two-qubit gates and any arbitrary single-qubit phase gate in a topologically unprotected manner, which can be error corrected using magic-state distillation. Thus our strategy, using a judicious combination of topologically protected and unprotected gate operations, realizes UQC on a quantum wire network with a remarkably high error threshold of 0.14 as compared to 10 -3 to 10 -4 in ordinary unprotected quantum computation.

  9. Electromechanical characterization of superconducting wires and tapes at 77 K

    CERN Document Server

    Bjoerstad, Roger

    The strain dependency of the critical current in state-of-the-art cuprate high-temperature superconductors (HTS) has been characterized. A universal test machine (UTM) combined with a critical current measurement system has been used to characterize the mechanical and the superconducting properties of conductors immersed in an open liquid nitrogen dewar. A set-up has been developed in order to perform simultaneous measurements of the superconductor lattice parameter changes, critical current, as well as the stress and strain at 77 K in self-field in a high energy synchrotron beamline. The HTS tapes and wires studied were based on YBCO, Bi-2223 and Bi-2212. The YBCO tapes were produced by SuperPower and American Superconductors (AMSC). Two types of Bi-2223 tapes, HT and G, were produced by Sumitomo Electric Industries (SEI). The Bi-2212 wires were produced by Oxford Superconducting Technology (OST) using Nexans granulate precursor, before undergoing a specialized over pressure (OP) processing and heat treatmen...

  10. Development of rare earth regenerator materials in fine wire form

    International Nuclear Information System (INIS)

    Wong, T.; Seuntjens, J.M.

    1997-01-01

    The use of rare earth metals, both in the pure and alloyed state, have been examined for use as regenerators in cryocooler applications and as the working material in active magnetic refrigerators. In both applications there is a requirement for the rare earth material to have a constant and uniform cross section, an average size on the order of 50-200 microns in diameter, and low levels of impurities. Existing powder production methods have drawbacks such as oxygen contamination, non-uniform size, inconsistent cross sections, and low production yields. A novel approach for the production of rare earth metals and alloys in fine wire form has been developed. This is accomplished by assembling a copperjacket and niobium barrier around a RE ingot, extruding the assembly, and reducing it with standard wire drawing practices. Strand anneals are utilized between drawing passes when necessary in order to recrystallize the RE core and restore ductility. The copperjacket is removed by chemical means at final size, leaving the Nb barrier in place as a protective coating. This process has been applied to gadolinium, dysprosium and a GdDy alloy

  11. K-wire and tension band wire fixation in treating sternoclavicular joint dislocation

    Directory of Open Access Journals (Sweden)

    CHEN Qing-yu

    2011-02-01

    Full Text Available 【Abstract】Objective: To evaluate the feasibility and therapeutic effect of treating sternoclavicular joint dislocation by K-wire and tension band wire fixation, and to improve the safety and stability of this technique. Methods: This study consisted of 9 cases, 6 males and 3 females with the mean age of 25 years (range, 9-62 years. The causes were traffic accident in 7 cases, falling in 1 case and fight in 1 case. The duration from injury to operation was 2 hours to 7 days. There were 5 left dislocations and 4 right dislocations; 8 anterior dislocations and 1 posterior dislocation, including one combined with left scapular fracture and one with left olecranon fracture. Open reduction and internal fixation using K-wires and tension band wires were performed to treat dislocations. Results: All patients were followed up for 6 to 24 months, 10 months on average. According to Rockwood’s rating scale on postoperative sternoclavicular joint, 8 cases achieved excellent outcomes with an average score of 13.88, and the rest case achieved a good outcome with the score of 12. Anatomical reduction was obtained in all cases. There were no such postoperative complications as severe infection, injury to blood vessel and nerve, failure of fixation, etc. Patients were all satisfied with the anatomical reduction and functional recovery. Conclusions: The technique of K-wire and tension band wire fixation is safe, simple, effective, less invasive and has been successfully used in orthopedic surgery. It is effective in treating sternoclavicular joint dislocation though it has some disadvantages. Key words: Sternoclavicular joint; Dislocations; Bone wires; Fracture fixation, internal

  12. Superconducting wire for the T-15 toroidal magnet

    International Nuclear Information System (INIS)

    Klimenko, E.Yu.; Kruglov, V.S.; Martovetskij, N.N.

    1987-01-01

    Main characteristics of a wire designed for the T-15 toroidal superconducting magnet production are given. The wire with circulation cooling is a twist of 11 niobium-tin wires 1.5 mm in diameter, joined electrolytically by two copper tubes with 3 mm inside diameter. The wire is capable to carry 10 kA current in the 8.5 T induction field. Wire features and structures promote to receive high structural current density in winding: diffuseness of superconducting-to-normal transition increases wire stability, screw symmetry od a current-carrying core provides wire resistance to pulse longitudinal field effect at plasma current disruption, low bronze thermal conductivity in a twist increases stability to outside pulse perturbations

  13. Development of wire wrapping technology for FBR fuel pin

    International Nuclear Information System (INIS)

    Nogami, Tetsuya; Seki, Nobuo; Sawayama, Takeo; Ishibashi, Takashi

    1991-01-01

    For the FBR fuel assembly, the spacer wire is adopted to maintain the space between fuel pins. The developments have been carried out to achieve automatically wire wrapping with high precision. Based on the fundamental technology developed through the mock-up test operation, Joyo 'MK-I', fuel pin fabrication was started using partially mechanized wire wrapping machine in 1973. In 1978, an automated wire wrapping machine for Joyo 'MK-II' was developed by the adoption of some improvements for the wire inserting system to end plug hole and the precision of wire pitch. On the bases of these experiences, fully automated wire wrapping machine for 'Monju' fuel pin was installed at Plutonium Fuel Production Facility (PFPF) in 1987. (author)

  14. The Fine Wire Technique for Flexor Tenolysis

    Science.gov (United States)

    Baltodano, Pablo A.; Weinberg, Maxene H.; Whipple, Lauren A.; Gemmiti, Amanda L.; Whipple, Richard E.

    2017-01-01

    Background: Flexor tenolysis surgery for flexor digitorum profundus and superficialis adhesions is a common procedure performed by hand surgeons. Releasing these adhered tendons can greatly improve hand function and improve quality of life. Recent evidence, however, has shown that the outcomes of tenolysis surgeries are often suboptimal and can result in relapsing adhesions or even tendon ruptures. Methods: This article describes a new technique with potential for reduced complication rates: The Fine Wire Technique for Flexor Tenolysis (FWT). Results: Following FWT, the patient detailed in this article had an excellent recovery of function and no complications: including tendon rupture, infection, hematomas, or any other complications. She reported a major improvement from her preoperative functionality and continues to have this level of success. The wire’s thinness allows for a swift tenolysis. Conclusions: The FWT is a new option available to the hand surgeon associated with good functional results. The wire is readily available to the clinician and is also inexpensive. PMID:29263961

  15. Disorder and Interaction Effects in Quantum Wires

    International Nuclear Information System (INIS)

    Smith, L W; Ritchie, D A; Farrer, I; Griffiths, J P; Jones, G A C; Thomas, K J; Pepper, M

    2012-01-01

    We present conductance measurements of quasi-one-dimensional quantum wires affected by random disorder in a GaAs/AlGaAs heterostructure. In addition to quantised conductance plateaux, we observe structure superimposed on the conductance characteristics when the channel is wide and the density is low. Magnetic field and temperature are varied to characterize the conductance features which depend on the lateral position of the 1D channel formed in a split-gate device. Our results suggest that there is enhanced backscattering in the wide channel limit, which gives rise to quantum interference effects. When the wires are free of disorder and wide, the confinement is weak so that the mutual repulsion of the electrons forces a single row to split into two. The relationship of this topological change to the disorder in the system will be discussed.

  16. From barbed wire to radar traps

    International Nuclear Information System (INIS)

    Anon.

    1978-01-01

    Several million DM are required already to protect the building sites of power plants. From the very beginning concrete, wood, and barbed wire are used to make a protective wall against intruders, or in official German, 'unauthorized persons'. This expensive provisional set-up is later supplanted by electronic alarm and safety systems. A review of available systems helps to give a picture of power plant protection. (orig.) 891 HP [de

  17. Wire chambers with their magnetostrictive readout

    CERN Multimedia

    1974-01-01

    This set of wire chamber planes shaped as a cylinder sector was installed inside the magnet of a polarized spin target modified to allow as well momentum analysis of the produced particles. The experiment (S126) was set up by the CERN-Trieste Collaboration in the PS beam m9 to measure spin effects in the associated production of of a positive kaon and a positive Sigma by interaction of a positive pion with polarized protons.

  18. Visible emission from exploding wire in water

    Czech Academy of Sciences Publication Activity Database

    Šimek, Milan; Prukner, Václav; Schmidt, Jiří; Koláček, Karel; Štraus, Jaroslav; Frolov, Oleksandr

    2007-01-01

    Roč. 53, č. 10 (2007), s. 53-53 ISSN 0003-0503. [The 61st Annual Gaseous Electronic Conference. Dallas,Texas, 13.10.2008-17.10.2008] R&D Projects: GA ČR GA202/06/1324 Institutional research plan: CEZ:AV0Z20430508 Keywords : Exploding wire * emission Subject RIV: BL - Plasma and Gas Discharge Physics

  19. Snow accretion on overhead wires

    Energy Technology Data Exchange (ETDEWEB)

    Sakamoto, Y. [Meteorological Research Inst. for Technology Co. Ltd., Tokyo (Japan); Tachizaki, S.; Sudo, N. [Tohoku Electric Power Co. Ltd., Miyagi (Japan)

    2005-07-01

    Wet snow accretion can cause extensive damage to transmission systems. This paper reviewed some of the difficulties faced by researchers in the study of wet snow accretion on overhead lines in Japan. The study of snow accretion phenomena is complicated by the range of phase changes in water. Snowflakes produced in an upper atmospheric layer with a temperature below freezing do not melt when they go through a lower atmospheric layer with a temperature above freezing, but are in a mixed state of solid and liquid due to the latent heat of melting. The complicated properties of water make studies of snow accretion difficult, as well as the fact that snow changes its physical properties rapidly, due to the effects of ambient temperature, rainfall, and solar radiation. The adhesive forces that cause snow accretion include freezing; bonding through freezing; sintering; condensation and freezing of vapor in the air; mechanical intertwining of snowflakes; capillary action due to liquids; coherent forces between ice particles and water formed through the metamorphosis of snowflakes. In addition to these complexities, differences in laboratory room environments and natural snow environments can also pose difficulties for researchers. Equations describing the relationship between the density of accreted snow and the meteorological parameters involved were presented, as well as empirical equations which suggested that snow accretion efficiency has a dependency on air temperature. An empirical model for estimating snow loads in Japan was outlined, as well as various experiments observing show shedding. Correlations for wet snow accretion included precipitation intensity; duration of precipitation; air temperature; wind speed and wind direction in relation to the overhead line. Issues concerning topography and wet snow accretion were reviewed. It was concluded that studies of snow accretion will benefit by the collection of data in each matrix of the relevant parameters. 12 refs

  20. Demonstrating diamond wire cutting of the TFTR

    International Nuclear Information System (INIS)

    Rule, K.; Perry, E.; Larson, S.; Viola, M.

    2000-01-01

    The Tokamak Fusion Test Reactor (TFTR) ceased operation in April 1997 and decommissioning commenced in October 1999. The deuterium-tritium fusion experiments resulted in contaminating the vacuum vessel with tritium and activating the materials with 14 Mev neutrons. The total tritium content within the vessel is in excess of 7,000 Curies while dose rates approach 50 mRem/hr. These radiological hazards along with the size of the Tokamak (100 cubic meters) present a unique and challenging task for dismantling. Plasma arc cutting is the current baseline technology for the dismantlement of fission reactors. This technology is typically used because of its faster cutting times. Alternatively, an innovative approach for dismantlement of the TFTR is the use of diamond wire cutting technology. Recent improvements in diamond wire technology have allowed the cutting of carbon steel components such as pipe, plate, and tube bundles in heat exchangers. Some expected benefits of this technology include: significantly reduction in airborne contaminates, reduced personnel exposure, a reduced risk of spread of tritium contamination, and reduced overall costs as compared to using plasma arc cutting. This paper will provide detailed results of the diamond wire cutting demonstration that was completed in September of 1999, on a mock-up of this complex reactor. The results will identify cost, safety, industrial and engineering parameters, and the related performance of each situation

  1. Transport properties of different BSCCO wires

    International Nuclear Information System (INIS)

    Metra, P.; Gherardi, L.; Vellego, G.; Masini, R.; Zannella, S.

    1990-01-01

    This paper reports on two classes of solver sheathed BSCCO wires and laminates were prepared from 2223 (Pb substituted) and 2212 powders, respectively, by the powder in tube method. By suitable heat treatments (sintering and annealing below the melting temperature for 2223, melting + annealing for 2212), we obtained sample wires with Tc of ∼110 and ∼85 K respectively, comparable Jc at 77 K (∼10 3 A/cm 2 ), and dramatically different transport behavior. Measurements of critical current at different temperatures and as a function of applied magnetic field were carried out, to characterize the two classes of samples, together with other electrical testing (e.g. d.c. susceptibility) and structural analyses. The granular nature of the higher Tc BSCCO, qualitatively similar to the one of YBCO, was well documented. The melt-processed material showed no apparent granularity, but very strong field dependence of Jc at high temperature. The effect of mechanical deformation on Jc was also investigated by bending samples on different diameters before and after heat treatment. Wires and tapes with 2212 were found to be bendable on very small diameters before treatment, but also the 2223 filled samples were shown to accept significant deformation before sintering

  2. NA48: Wiring up for Change

    CERN Multimedia

    2001-01-01

    The NA48 Collaboration is rebuilding its drift chambers ready for the experiment to start up again this coming July. An intricate task involving the soldering of over 24,000 wires! The future of the NA48 experiment is coming right down to the wire, that is, the wires which the Collaboration is installing in the clean room of Hall 887 on the Prévessin site. Six days a week, technicians are working in shifts to rebuild the experiment's drift chambers. The original chambers were damaged when a section of a vacuum tube imploded at the end of 1999. A year ago, CERN gave the green light for this essential part of the spectrometer to be rebuilt, so the NA48 experiment, which studies CP violation (see box), still has a bright future ahead of it. Three years of data-taking ahead The NA48 experiment aims to penetrate the secrets of CP (Charge Parity) violation. Charge and parity are two parameters which distinguish a particle from an antiparticle. In other words, an electron possesses a negative electric ...

  3. Reliability of the wire drawing dies

    International Nuclear Information System (INIS)

    Sheikh, A.K.; Khany, S.E.

    1993-01-01

    A wear based model is proposed for the dies used in wire drawing process. Using this wear model, it is possible to predict life of the die corresponding to a wear limit criterion. Since various quantities in the model are random in nature the resulting die life will also be random quantity characterized by an appropriate distribution. Using a probabilistic characterization of the parameters of the predictive model, Monte Carlo simulations were conducted to establish the die life distribution. To asses the sensitivity of life distribution with respect to various contributing variables (parameters), the simulation runs were conducted at different levels of these variables (parameters). It is shown that wire drawing die life is Weibull distributed. To compare the simulated results with actual time to failure, data of dies was obtained from a large wire drawing company and was compared with corresponding scenario generated by Monte Carlo simulation. Results obtained by Monte Carlo simulations were very close to the actual time to failure data. (author)

  4. A Prototype Wire Position Monitoring System

    International Nuclear Information System (INIS)

    Wang, Wei

    2010-01-01

    The Wire Position Monitoring System (WPM) will track changes in the transverse position of LCLS Beam Position Monitors (BPMs) to 1(micro)m over several weeks. This position information will be used between applications of beam based alignment to correct for changes in component alignment. The WPM system has several requirements. The sensor range must be large enough so that precision sensor positioning is not required. The resolution needs to be small enough so that the signal can be used to monitor motion to 1(micro)m. The system must be stable enough so that system drift does not mimic motion of the component being monitored. The WPM sensor assembly consists of two parts, the magnetic sensor and an integrated lock-in amplifier. The magnetic sensor picks up a signal from the alternating current in a stretched wire. The voltage v induced in the sensor is proportional to the wire displacement from the center of the sensor. The integrated lock-in amplifier provides a DC output whose magnitude is proportional to the AC signal from the magnetic sensor. The DC output is either read on a digital voltmeter or digitized locally and communicated over a computer interface.

  5. Demonstrating diamond wire cutting of the TFTR

    Energy Technology Data Exchange (ETDEWEB)

    Rule, K.; Perry, E.; Larson, S.; Viola, M. [and others

    2000-02-24

    The Tokamak Fusion Test Reactor (TFTR) ceased operation in April 1997 and decommissioning commenced in October 1999. The deuterium-tritium fusion experiments resulted in contaminating the vacuum vessel with tritium and activating the materials with 14 Mev neutrons. The total tritium content within the vessel is in excess of 7,000 Curies while dose rates approach 50 mRem/hr. These radiological hazards along with the size of the Tokamak (100 cubic meters) present a unique and challenging task for dismantling. Plasma arc cutting is the current baseline technology for the dismantlement of fission reactors. This technology is typically used because of its faster cutting times. Alternatively, an innovative approach for dismantlement of the TFTR is the use of diamond wire cutting technology. Recent improvements in diamond wire technology have allowed the cutting of carbon steel components such as pipe, plate, and tube bundles in heat exchangers. Some expected benefits of this technology include: significantly reduction in airborne contaminates, reduced personnel exposure, a reduced risk of spread of tritium contamination, and reduced overall costs as compared to using plasma arc cutting. This paper will provide detailed results of the diamond wire cutting demonstration that was completed in September of 1999, on a mock-up of this complex reactor. The results will identify cost, safety, industrial and engineering parameters, and the related performance of each situation.

  6. Spin-charge separation in quantum wires

    International Nuclear Information System (INIS)

    Yacoby, A.

    2004-01-01

    Full Text:Using momentum resolved tunneling between two clean parallel quantum wires in a AlGaAs/GaAs heterostructure we directly measure the dispersion of the quantum many-body modes in ballistic wires and follow their dependence on Coulomb interactions by varying the electron density. We find clear signatures of three excitation modes in the data: The anti-symmetric charge mode of the coupled wire system and two spin modes. The density dependence of the anti-symmetric charge mode agrees well with Luttinger-liquid theory. As the density of electrons is lowered, the Coulomb interaction is seen to become increasingly dominant leading to excitation velocities that are up to 2.5 times faster than the bare Fermi velocity, determined experimentally from the carrier density. The symmetric charge excitation, also expected from theory, is, however, not visible in the data. The observed spin velocities are found to be 25% slower than the bare Fermi velocities and depend linearly on carrier density. The dispersions are mapped down to a critical density at which spontaneous localization is observed. Some of the experimental findings concerning this phase will be discussed

  7. Contact conductance between graphene and quantum wires

    International Nuclear Information System (INIS)

    Li Haidong; Zheng Yisong

    2009-01-01

    The contact conductance between graphene and two quantum wires which serve as the leads to connect graphene and electron reservoirs is theoretically studied. Our investigation indicates that the contact conductance depends sensitively on the graphene-lead coupling configuration. When each quantum wire couples solely to one carbon atom, the contact conductance vanishes at the Dirac point if the two carbon atoms coupling to the two leads belong to the same sublattice of graphene. We find that such a feature arises from the chirality of the Dirac electron in graphene. Such a chirality associated with conductance zero disappears when a quantum wire couples to multiple carbon atoms. The general result irrelevant to the coupling configuration is that the contact conductance decays rapidly with the increase of the distance between the two leads. In addition, in the weak graphene-lead coupling limit, when the distance between the two leads is much larger than the size of the graphene-lead contact areas and the incident electron energy is close to the Dirac point, the contact conductance is proportional to the square of the product of the two graphene-lead contact areas, and inversely proportional to the square of the distance between the two leads

  8. Results of the Fermilab wire production program

    International Nuclear Information System (INIS)

    Strauss, B.P.; Remsbottom, R.H.; Reardon, P.J.; Curtis, C.W.; McDonald, W.K.

    1976-01-01

    In examining the various schedules of wire drawing and heat treating, the Critchlow type of schedule provided the highest and most uniform data from billet to billet. It consists of a long anneal at 400 +- 20 0 C at a cold work point giving about 99 percent reduction in area from the extrusion size. Several quick copper anneals at 300 0 C may be interspersed to aid in fabrication. A final anneal at finished size both peaks up the resistivity ratio of the copper as well as the critical current of the alloy by moving dislocations to subcell walls. Using this method, critical currents of 1.7 x 10 5 A/cm 2 could be maintained in all billets. The copper cladding and sinking method looks promising and should save production costs. In spite of this, it was important to attain good packing density in the billets to assure uniform filament pattern and reduce breakage in wire drawing. Overall, a procedure was found for fabricating wire in large production lots that would be acceptable for constructing dipole magnets. It is felt that this method could be peaked up with time

  9. Numerical Investigation of Corrugated Wire Mesh Laminate

    Directory of Open Access Journals (Sweden)

    Jeongho Choi

    2013-01-01

    Full Text Available The aim of this work is to develop a numerical model of Corrugated Wire Mesh Laminate (CWML capturing all its complexities such as nonlinear material properties, nonlinear geometry and large deformation behaviour, and frictional behaviour. Development of such a model will facilitate numerical simulation of the mechanical behaviour of the wire mesh structure under various types of loading as well as the variation of the CWML configuration parameters to tailor its mechanical properties to suit the intended application. Starting with a single strand truss model consisting of four waves with a bilinear stress-strain model to represent the plastic behaviour of stainless steel, the finite element model is gradually built up to study single-layer structures with 18 strands of corrugated wire meshes consistency and double- and quadruple-layered laminates with alternating crossply orientations. The compressive behaviour of the CWML model is simulated using contact elements to model friction and is compared to the load-deflection behaviour determined experimentally in uniaxial compression tests. The numerical model of the CWML is then employed to conduct the aim of establishing the upper and lower bounds of stiffness and load capacity achievable by such structures.

  10. Using wire shaping techniques and holographic optics to optimize deposition characteristics in wire-based laser cladding.

    Science.gov (United States)

    Goffin, N J; Higginson, R L; Tyrer, J R

    2016-12-01

    In laser cladding, the potential benefits of wire feeding are considerable. Typical problems with the use of powder, such as gas entrapment, sub-100% material density and low deposition rate are all avoided with the use of wire. However, the use of a powder-based source material is the industry standard, with wire-based deposition generally regarded as an academic curiosity. This is because, although wire-based methods have been shown to be capable of superior quality results, the wire-based process is more difficult to control. In this work, the potential for wire shaping techniques, combined with existing holographic optical element knowledge, is investigated in order to further improve the processing characteristics. Experiments with pre-placed wire showed the ability of shaped wire to provide uniformity of wire melting compared with standard round wire, giving reduced power density requirements and superior control of clad track dilution. When feeding with flat wire, the resulting clad tracks showed a greater level of quality consistency and became less sensitive to alterations in processing conditions. In addition, a 22% increase in deposition rate was achieved. Stacking of multiple layers demonstrated the ability to create fully dense, three-dimensional structures, with directional metallurgical grain growth and uniform chemical structure.

  11. Thermosonic wire bonding of gold wire onto copper pad using the saturated interfacial phenomena

    Science.gov (United States)

    Jeng, Yeau-Ren; Aoh, Jong-Hing; Wang, Chang-Ming

    2001-12-01

    Copper has been used to replace conventional aluminium interconnection to improve the performance of deep submicron integrated circuits. This study used the saturated interfacial phenomena found in thermosonic ball bonding of gold wire onto aluminium pad to investigate thermosonic ball bonding of gold wire onto copper pad. The effects of preheat temperatures and ultrasonic powers on the bonding force were investigated by using a thermosonic bonding machine and a shear tester. This work shows that under proper preheat temperatures, the bonding force of thermosonic wire bonding can be explained based on interfacial microcontact phenomena such as energy intensity, interfacial temperature and real contact area. It is clearly shown that as the energy intensity is increased, the shear force increases, reaches a maximum, and then decreases. After saturation, i.e. the establishment of maximum atomic bonding, any type of additional energy input will damage the bonding, decreasing the shear force. If the preheat temperature is not within the proper range, the interfacial saturation phenomenon does not exist. For a preload of 0.5 N and a welding time of 15 ms in thermosonic wire bonding of gold wire onto copper pads, a maximum shear force of about 0.33 N is found where the interfacial energy intensity equals 1.8×106 J m-2 for preheat temperatures of 150°C and 170°C. Moreover, the corresponding optimal ultrasonic power is about 110 units.

  12. Optimization of the Single Staggered Wire and Tube Heat Exchanger

    Directory of Open Access Journals (Sweden)

    Arsana I Made

    2016-01-01

    Full Text Available Wire and tube heat exchanger consists of a coiled tube, and wire is welded on the two sides of it in normal direction of the tube. Generally,wire and tube heat exchanger uses inline wire arrangement between the two sides, whereas in this study, it used staggered wire arrangement that reduces the restriction of convection heat transfer. This study performed the optimization of single staggered wire and tube heat exchanger to increase the capacity and reduce the mass of the heat exchanger. Optimization was conducted with the Hooke-Jeeves method, which aims to optimize the geometry of the heat exchanger, especially on the diameter (dw and the distance between wires (pw. The model developed to present heat transfer correlations on single staggered wire and tube heat exchanger was valid. The maximum optimization factor obtained when the diameter wire was 0.9 mm and the distance between wires (pw was 11 mm with the fref value = 1.5837. It means that the optimized design only using mass of 59,10 % and could transfer heat about 98,5 % from the basis design.

  13. Corrosion fatigue behaviors of steel wires used in coalmine

    International Nuclear Information System (INIS)

    Wang, Songquan; Zhang, Dekun; Chen, Kai; Xu, Linmin; Ge, Shirong

    2014-01-01

    Highlights: • The CF life of steel wire in acid solution is the shortest. • The fatigue source zone showed dimple morphology when coupled with anode potential. • The area of dimple increases with the increase of the applied anode potential. • The strong cathode potential cannot reduce the CF life of the smooth steel wire. • The hydrogen impacted mainly on the plastic deformation of the wire surface. - Abstract: The corrosion fatigue (CF) behaviors of the mining steel wire in different solutions at different applied polarization potentials were investigated in this paper. The surfaces and fracture morphologies of the steel wire at different applied potentials were observed by scanning electron microscope (SEM). The results showed that the CF life of steel wire in acid solution is the shortest. Moreover, the strong anodic polarization potential greatly reduced the CF life of steel wire, while the strong cathode potential did not reduce the CF life. For the smooth steel wire, the hydrogen impacted mainly on the plastic deformation of the wire surface. There was obvious dimple in the fatigue source zone of the wire when coupled with anode potential, and the area of the dimple increased with the increase of the applied anode potential. Conversely, the fatigue source zone of the fracture was relatively smooth at cathode polarization potential, which indicated that the crack propagation followed the mechanism of hydrogen induced cracking

  14. Metallurgical characterization of M-Wire nickel-titanium shape memory alloy used for endodontic rotary instruments during low-cycle fatigue.

    Science.gov (United States)

    Ye, Jia; Gao, Yong

    2012-01-01

    Rotary instruments made of a new nickel-titanium (NiTi) alloy (M-Wire) have shown improved cyclic fatigue resistance and mechanical properties compared with those made of conventional superelastic NiTi wires. The objective of this study was to characterize microstructural changes of M-Wire throughout the cyclic fatigue process under controlled strain amplitude. The average fatigue life was calculated from 30 M-Wire samples that were subjected to a strain-controlled (≈ 4%) rotating bend fatigue test at room temperature and rotational speed of 300 rpm. Microstructural evolution of M-Wire has been investigated by different metallurgical characterization techniques, including differential scanning calorimetry, Vickers microhardness, and transmission electron microscopy at 4 different stages (as-received state, 30%, 60%, and 90% of average fatigue life). During rotating bend fatigue test, no statistically significant difference (P > .05) was found on austenite finish temperatures between as-received M-Wire and fatigued samples. However, significant differences (P Wire are expected to have higher strength and wear resistance than similar instruments made of conventional superelastic NiTi wires because of its unique nano-crystalline martensitic microstructure. Copyright © 2012 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  15. Body of Knowledge (BOK) for Copper Wire Bonds

    Science.gov (United States)

    Rutkowski, E.; Sampson, M. J.

    2015-01-01

    Copper wire bonds have replaced gold wire bonds in the majority of commercial semiconductor devices for the latest technology nodes. Although economics has been the driving mechanism to lower semiconductor packaging costs for a savings of about 20% by replacing gold wire bonds with copper, copper also has materials property advantages over gold. When compared to gold, copper has approximately: 25% lower electrical resistivity, 30% higher thermal conductivity, 75% higher tensile strength and 45% higher modulus of elasticity. Copper wire bonds on aluminum bond pads are also more mechanically robust over time and elevated temperature due to the slower intermetallic formation rate - approximately 1/100th that of the gold to aluminum intermetallic formation rate. However, there are significant tradeoffs with copper wire bonding - copper has twice the hardness of gold which results in a narrower bonding manufacturing process window and requires that the semiconductor companies design more mechanically rigid bonding pads to prevent cratering to both the bond pad and underlying chip structure. Furthermore, copper is significantly more prone to corrosion issues. The semiconductor packaging industry has responded to this corrosion concern by creating a palladium coated copper bonding wire, which is more corrosion resistant than pure copper bonding wire. Also, the selection of the device molding compound is critical because use of environmentally friendly green compounds can result in internal CTE (Coefficient of Thermal Expansion) mismatches with the copper wire bonds that can eventually lead to device failures during thermal cycling. Despite the difficult problems associated with the changeover to copper bonding wire, there are billions of copper wire bonded devices delivered annually to customers. It is noteworthy that Texas Instruments announced in October of 2014 that they are shipping microcircuits containing copper wire bonds for safety critical automotive applications

  16. Effect of Cu4Ti compound formation on the characteristics of NbTi accelerator magnet wire

    International Nuclear Information System (INIS)

    Garber, M.; Suenaga, M.; Sampson, W.B.; Sabatini, R.L.

    1985-01-01

    High critical current density, J/sub c/ > 2500 A/mm 2 , and small filament diameter, d approx. 3 μm, are required in multifilamentary NbTi wire used for superconducting accelerator magnets. Wires obtained from various commercial sources had J/sub c/'s in the range 1000 to 2800 A/mm 2 amd d's in the range 1 to 23 μm. The filaments were examined by means of scanning electron microscopy in order to determine the reason for the variation in J/sub c/. It was found that the filaments in high J/sub c/ wires had clean smooth surfaces and uniform cross section along their lengths. Filaments in low J/sub c/ wires show formation of Cu 4 Ti compound particles on their surfaces and large variations in cross section. The lower critical current measured in these wires is believed to be largely due to this effect. The superconducting-normal state transition is relatively wide in these wires

  17. On the existence of bound states in asymmetric leaky wires

    Czech Academy of Sciences Publication Activity Database

    Exner, Pavel; Vugalter, S.

    2016-01-01

    Roč. 57, č. 2 (2016), s. 022104 ISSN 0022-2488 R&D Projects: GA ČR(CZ) GA14-06818S Institutional support: RVO:61389005 Keywords : quantum wave-guides * graphs Subject RIV: BE - Theoretical Physics Impact factor: 1.077, year: 2016

  18. Method for wrapping a wire round a nuclear fuel rod

    International Nuclear Information System (INIS)

    Nakayasu, Fumio.

    1974-01-01

    Object: To provide a method for winding a wire round a nuclear fuel rod with accurate pitches without imparting any local strain or torsion to the wire. Structure: A wire is fixed on one end of the fuel rod, and the other end of the wire is secured to a universal joint leaving a winding allowance to the fuel rod. The wire is linearly stretched by a predetermined tension through the universal joint so as to provide an angle of development theta corresponding to the desired winding pitch, and then, the fuel rod may be rotated so that the end of the wire on the side of the universal joint is moved towards the fuel rod so as to render the angle of development theta constant in proportion to said rotation of the fuel rod. (Kamimura, M.)

  19. ''Water bath'' effect during the electrical underwater wire explosion

    International Nuclear Information System (INIS)

    Oreshkin, V. I.; Chaikovsky, S. A.; Ratakhin, N. A.; Grinenko, A.; Krasik, Ya. E.

    2007-01-01

    The results of a simulation of underwater electrical wire explosion at a current density >10 9 A/cm 2 , total discharge current of ∼3 MA, and rise time of the current of ∼100 ns are presented. The electrical wire explosion was simulated using a one-dimensional radiation-magnetohydrodynamic model. It is shown that the radiation of the exploded wire produces a thin conducting plasma shell in the water in the vicinity of the exploding wire surface. It was found that this plasma shell catches up to 30% of the discharge current. Nevertheless, it was shown that the pressure and temperature of the wire material remain unchanged as compared with the idealized case of the electrical wire explosion in vacuum. This result is explained by a 'water bath' effect

  20. Failure analysis of the fractured wires in sternal perichronal loops.

    Science.gov (United States)

    Chao, Jesús; Voces, Roberto; Peña, Carmen

    2011-10-01

    We report failure analysis of sternal wires in two cases in which a perichronal fixation technique was used to close the sternotomy. Various characteristics of the retrieved wires were compared to those of unused wires of the same grade and same manufacturer and with surgical wire specifications. In both cases, wire fracture was un-branched and transgranular and proceeded by a high cycle fatigue process, apparently in the absence of corrosion. However, stress anlysis indicates that the effective stress produced during strong coughing is lower than the yield strength. Our findings suggest that in order to reduce the risk for sternal dehiscence, the diameter of the wire used should be increased. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Welding wire velocity modelling and control using an optical sensor

    DEFF Research Database (Denmark)

    Nielsen, Kirsten M.; Pedersen, Tom S.

    2007-01-01

    In this paper a method for controlling the velocity of a welding wire at the tip of the handle is described. The method is an alternative to the traditional welding apparatus control system where the wire velocity is controlled internal in the welding machine implying a poor disturbance reduction....... To obtain the tip velocity a dynamic model of the wire/liner system is developed and verified.  In the wire/liner system it turned out that backlash and reflections are influential factors. An idea for handling the backlash has been suggested. In addition an optical sensor for measuring the wire velocity...... at the tip has been constructed. The optical sensor may be used but some problems due to focusing cause noise in the control loop demanding a more precise mechanical wire feed system or an optical sensor with better focusing characteristics....

  2. Surface cleaning of metal wire by atmospheric pressure plasma

    International Nuclear Information System (INIS)

    Nakamura, T.; Buttapeng, C.; Furuya, S.; Harada, N.

    2009-01-01

    In this study, the possible application of atmospheric pressure dielectric barrier discharge plasma for the annealing of metallic wire is examined and presented. The main purpose of the current study is to examine the surface cleaning effect for a cylindrical object by atmospheric pressure plasma. The experimental setup consists of a gas tank, plasma reactor, and power supply with control panel. The gas assists in the generation of plasma. Copper wire was used as an experimental cylindrical object. This copper wire was irradiated with the plasma, and the cleaning effect was confirmed. The result showed that it is possible to remove the tarnish which exists on the copper wire surface. The experiment reveals that atmospheric pressure plasma is usable for the surface cleaning of metal wire. However, it is necessary to examine the method for preventing oxidization of the copper wire.

  3. Ferromagnetic artificial pinning centers in multifilamentary superconducting wires

    International Nuclear Information System (INIS)

    Wang, J.Q.; Rizzo, N.D.; Prober, D.E.

    1997-01-01

    The authors fabricated multifilamentary NbTi wires with ferromagnetic (FM) artificial pinning centers (APCs) to enhance the critical current density (J c ) in magnetic fields. They used a bundle and draw technique to process the APC wires with either Ni or Fe as the pinning centers. Both wires produced higher J c in the high field range (5-9 T) than previous non-magnetic APC wires similarly processed, even though the authors have not yet optimized pin percentage. Using a magnetometer they found that the pins remained ferromagnetic for the wires with maximum J c . However, they did observe a substantial loss of FM material for the wires where the pin diameter approached 3 nm. Thus, they expect further enhancement of J c with better pin quality

  4. Prediction of grain deformation in drawn copper wire

    OpenAIRE

    Chang Chao-Cheng; Wang Zi-Wei; Huang Chien-Kuo; Wu Hsu-Fu

    2015-01-01

    Most copper wire is produced using a drawing process. The crystallographic texture of copper wire, which is strongly associated with grain deformation, can have a profound effect on the formability and mechanical and electrical properties. Thus, the ability to predict grain deformation in drawn copper wire could help to elucidate the evolution of microstructure, which could be highly valuable in product design. This study developed a novel method for predicting grain deformation in drawn copp...

  5. Modern trends of aircraft fly-by-wire systems

    Directory of Open Access Journals (Sweden)

    С. С. Юцкевич

    2013-07-01

    Full Text Available Specifics of civil aviation modern transport aircraft fly-by-wire control systems are described. A comparison of the systems-level hardware and software, expressed through modes of guidance, provision of aircraft Airbus A-320, Boeing B-777, Tupolev Tu-214, Sukhoi Superjet SSJ-100 are carried out. The possibility of transition from mechanical control wiring to control through fly-by-wire system in the backup channel is shown.

  6. The sub-wavelength imaging performance of disordered wire media

    International Nuclear Information System (INIS)

    Powell, David A.

    2008-01-01

    An analysis of the sub-wavelength imaging performance of disordered thin wire media is undertaken, in order to understand how its performance may be affected by manufacturing errors. The structure is found to be extremely robust to disorder which keeps the wires parallel. Variation in the orientation of the wires and their longitudinal position causes more significant degradation in the image quality, which is quantified numerically

  7. Wire Rope Failure on the Guppy Winch

    Science.gov (United States)

    Figert, John

    2016-01-01

    On January 6, 2016 at El Paso, the Guppy winch motor was changed. After completion of the operational checks, the load bar was being reinstalled on the cargo pallet when the motor control FORWARD relay failed in the energized position. The pallet was pinned at all locations (each pin has a load capacity of 16,000 lbs.) while the winch was running. The wire rope snapped before aircraft power could be removed. After disassembly, the fractured wire rope was shipped to ES4 lab for further characterization of the wire rope portion of the failure. The system was being operated without a clear understanding of the system capability and function. The proximate cause was the failure of the K48 -Forward Winch Control Relay in the energized position, which allowed the motor to continuously run without command from the hand controller, and operation of the winch system with both controllers connected to the system. This prevented the emergency stop feature on the hand controller from functioning as designed. An electrical checkout engineering work instruction was completed and identified the failed relay and confirmed the emergency stop only paused the system when the STOP button on both connected hand controllers were depressed simultaneously. The winch system incorporates a torque limiting clutch. It is suspected that the clutch did not slip and the motor did not stall or overload the current limiter. Aircraft Engineering is looking at how to change the procedures to provide a checkout of the clutch and set to a slip torque limit appropriate to support operations.

  8. In-Situ Wire Damage Detection System

    Science.gov (United States)

    Williams, Martha K. (Inventor); Roberson, Luke B. (Inventor); Tate, Lanetra C. (Inventor); Smith, Trent M. (Inventor); Gibson, Tracy L. (Inventor); Jolley, Scott T. (Inventor); Medelius, Pedro J. (Inventor)

    2014-01-01

    An in-situ system for detecting damage in an electrically conductive wire. The system includes a substrate at least partially covered by a layer of electrically conductive material forming a continuous or non-continuous electrically conductive layer connected to an electrical signal generator adapted to delivering electrical signals to the electrically conductive layer. Data is received and processed to identify damage to the substrate or electrically conductive layer. The electrically conductive material may include metalized carbon fibers, a thin metal coating, a conductive polymer, carbon nanotubes, metal nanoparticles or a combination thereof.

  9. Optical absorption in a thin nickel wire

    OpenAIRE

    INAGAKI, Takashi; Goudonnet, J.P.; ARAKAWA, E.T.

    1986-01-01

    Absorption of a 633-nm phonton in a cylindrical nickel wire with diameter 13 m was measured by a photoacoustic method as a function of angle of phonton incidence . A good photoacoustic signal was obtained with a 6-m W He-Ne laser as a light source without employing focusing optics. The absorption measured for p-polarized phontons was found to be in good agreement with geometrical optics calculation. For s-polarized light, however, significant excess absorption was found for >35.

  10. Optical absorption in a thin nickel wire

    International Nuclear Information System (INIS)

    Inagaki, T.; Goudonnet, J.P.; Arakawa, E.T.

    1986-01-01

    Absorption of a 633-nm photon in a cylindrical nickel wire with diameter 13 μm was measured by a photoacoustic method as a function of angle of photon incidence theta. A good photoacoustic signal was obtained with a 6-mW He-Ne laser as a light source without employing focusing optics. The absorption measured for p-polarized photons was found to be in good agreement with geometrical optics calculation. For s-polarized light, however, significant excess absorption was found for theta > 35 0

  11. Pneumatic artificial rubber muscle using shape-memory polymer sheet with embedded electrical heating wire

    Science.gov (United States)

    Takashima, Kazuto; Sugitani, Kazuhiro; Morimoto, Naohiro; Sakaguchi, Seiya; Noritsugu, Toshiro; Mukai, Toshiharu

    2014-12-01

    Shape-memory polymer (SMP) can be deformed by applying a small load above its glass transition temperature (Tg). Shape-memory polymer maintains its shape after it has cooled below Tg and returns to a predefined shape when subsequently heated above Tg. The reversible change in the elastic modulus between the glassy and rubbery states of an SMP can be on the order of several hundred times. Based on the change in stiffness of the SMP in relation to the change in temperature, the present study attempts to evaluate the application of the SMP to soft actuators of a robot. In order to control the temperature of the SMP, we developed an SMP sheet with an embedded electrical heating wire. We formed a uniform, thin SMP sheet without air bubbles using a heat press. The SMP sheet with a heating wire can be heated quickly and can be maintained at a constant temperature. Moreover, the effects of the embedded wire on the mechanical properties in bending and tensile tests were small. Then, we applied the SMP sheet with the embedded electrical heating wire to a pneumatic artificial rubber muscle. The enhanced versatility of SMP sheet applications is demonstrated through a series of experiments conducted using a prototype. The initial shape and bending displacement of the pneumatic artificial rubber muscle can be changed by controlling the temperature of the SMP sheet.

  12. Pneumatic artificial rubber muscle using shape-memory polymer sheet with embedded electrical heating wire

    International Nuclear Information System (INIS)

    Takashima, Kazuto; Sugitani, Kazuhiro; Morimoto, Naohiro; Sakaguchi, Seiya; Noritsugu, Toshiro; Mukai, Toshiharu

    2014-01-01

    Shape-memory polymer (SMP) can be deformed by applying a small load above its glass transition temperature (T g ). Shape-memory polymer maintains its shape after it has cooled below T g and returns to a predefined shape when subsequently heated above T g . The reversible change in the elastic modulus between the glassy and rubbery states of an SMP can be on the order of several hundred times. Based on the change in stiffness of the SMP in relation to the change in temperature, the present study attempts to evaluate the application of the SMP to soft actuators of a robot. In order to control the temperature of the SMP, we developed an SMP sheet with an embedded electrical heating wire. We formed a uniform, thin SMP sheet without air bubbles using a heat press. The SMP sheet with a heating wire can be heated quickly and can be maintained at a constant temperature. Moreover, the effects of the embedded wire on the mechanical properties in bending and tensile tests were small. Then, we applied the SMP sheet with the embedded electrical heating wire to a pneumatic artificial rubber muscle. The enhanced versatility of SMP sheet applications is demonstrated through a series of experiments conducted using a prototype. The initial shape and bending displacement of the pneumatic artificial rubber muscle can be changed by controlling the temperature of the SMP sheet. (paper)

  13. Obtention of copper-magnesium alloys wires used in electrical transmission lines

    International Nuclear Information System (INIS)

    Fernandes, Marcos Gonzales

    2010-01-01

    The aim of this work was to obtain copper wires in three different chemical compositions starting from electrolytic copper and magnesium. The mains steps were evaluated, starting from the melting of small eutectic cooper-magnesium specimens in an electric arc furnace, followed by further dilution of this buttons in a resistive furnace and casting it in a copper mould. The as cast billets were homogenized in a resistive furnace at 910 degree C for 2 h. The billets were mechanically cold worked by swaging and a final drawing step to attain a round shape and a reasonable surface quality. The cast ingots chemical analysis indicated that the processing route showed to be adequate, in laboratory scale, to obtain wires with cross sectional area of 4 mm2 and 10 m in length. The wires in both conditions - as cold worked and after a recovering heat treatment at 510 degree C for 1 h, were mechanically characterized by tensile testing and hardness. The wires had also the electric conductivity assessed in the recovered heat-treated state and the results were compared to the literature data. The obtained material showed to be adequate to be used as electric conductor. The yield strain and ultimate tensile strength were improved with the increasing amount of Mg in the alloy, 11 % and 24 %, respectively, while the electric conductivity decreased to 60 % IACS (International Annealed Copper Standard). (author)

  14. Two ways to model voltage-current curves of adiabatic MgB2 wires

    International Nuclear Information System (INIS)

    Stenvall, A; Korpela, A; Lehtonen, J; Mikkonen, R

    2007-01-01

    Usually overheating of the sample destroys attempts to measure voltage-current curves of conduction cooled high critical current MgB 2 wires at low temperatures. Typically, when a quench occurs a wire burns out due to massive heat generation and negligible cooling. It has also been suggested that high n values measured with MgB 2 wires and coils are not an intrinsic property of the material but arise due to heating during the voltage-current measurement. In addition, quite recently low n values for MgB 2 wires have been reported. In order to find out the real properties of MgB 2 an efficient computational model is required to simulate the voltage-current measurement. In this paper we go back to basics and consider two models to couple electromagnetic and thermal phenomena. In the first model the magnetization losses are computed according to the critical state model and the flux creep losses are considered separately. In the second model the superconductor resistivity is described by the widely used power law. Then the coupled current diffusion and heat conduction equations are solved with the finite element method. In order to compare the models, example runs are carried out with an adiabatic slab. Both models produce a similar significant temperature rise near the critical current which leads to fictitiously high n values

  15. Metallization of a Rashba wire by a superconducting layer in the strong-proximity regime

    Science.gov (United States)

    Reeg, Christopher; Loss, Daniel; Klinovaja, Jelena

    2018-04-01

    Semiconducting quantum wires defined within two-dimensional electron gases and strongly coupled to thin superconducting layers have been extensively explored in recent experiments as promising platforms to host Majorana bound states. We study numerically such a geometry, consisting of a quasi-one-dimensional wire coupled to a disordered three-dimensional superconducting layer. We find that, in the strong-coupling limit of a sizable proximity-induced superconducting gap, all transverse subbands of the wire are significantly shifted in energy relative to the chemical potential of the wire. For the lowest subband, this band shift is comparable in magnitude to the spacing between quantized levels that arises due to the finite thickness of the superconductor (which typically is ˜500 meV for a 10-nm-thick layer of aluminum); in higher subbands, the band shift is much larger. Additionally, we show that the width of the system, which is usually much larger than the thickness, and moderate disorder within the superconductor have almost no impact on the induced gap or band shift. We provide a detailed discussion of the ramifications of our results, arguing that a huge band shift and significant renormalization of semiconducting material parameters in the strong-coupling limit make it challenging to realize a topological phase in such a setup, as the strong coupling to the superconductor essentially metallizes the semiconductor. This metallization of the semiconductor can be tested experimentally through the measurement of the band shift.

  16. Basic study of HTS magnet using 2G wires for maglev train

    International Nuclear Information System (INIS)

    Ogata, M.; Miyazaki, Y.; Hasegawa, H.; Sasakawa, T.; Nagashima, K.

    2010-01-01

    There are several advantages by applying a high-temperature superconducting wire to an on-board superconducting magnet for the maglev train. At first, an increase of thermal capacity of superconducting coils contributes a stability of the superconducting state of the coils. In addition, a reliability of superconducting magnet improves by simplification of the magnet structure. And the weight of the superconducting magnet and the energy consumption of the on-board cryocooler will decrease. Therefore, we examined the possibility on application of the 2G wire with a high critical current density in a high magnetic field. We performed numerical analysis regarding the weight of a superconducting magnet and the energy consumption of an on-board cryocooler in consideration of the characteristics of the 2G wire. Furthermore, we have carried out the I c measurement for the commercial 2G wires under various experimental conditions such as temperature, magnetic field strength and angle. We also performed the trial manufacture and evaluation of I c characteristics for the small race track-shaped superconducting coil.

  17. Preliminary study of HTS magnet using 2G wires for maglev train

    International Nuclear Information System (INIS)

    Ogata, Masafumi; Miyazaki, Yoshiki; Hasegawa, Hitoshi; Sasakawa, Takashi; Nagashima, Ken

    2010-01-01

    There are several advantages by applying a high temperature superconducting wire to an on-board superconducting magnet for the maglev train. At first, an increase of thermal capacity of superconducting coils contributes a stability of the superconducting state of the coils. In addition, a reliability of superconducting magnet improves by simplification of the magnet structure. And the weight of the superconducting magnet and the energy consumption of the on-board cryocooler will decrease. Therefore, we examined the possibility on application of the 2G wire with a high critical current density in a high magnetic field. We performed numerical analysis regarding the weight of a superconducting magnet and the energy consumption of an on-board cryocooler in consideration of the characteristics of the 2G wire. Furthermore, we have carried out the I c measurement for the commercial 2G wires under various experimental conditions such as temperature, magnetic field strength and angle. We also performed the trial manufacture and evaluation of I c characteristics for the small race track-shaped superconducting coil.

  18. Basic study of HTS magnet using 2G wires for maglev train

    Energy Technology Data Exchange (ETDEWEB)

    Ogata, M., E-mail: ogata@rtri.or.j [Railway Technical Research Institute, 2-8-38, Hikari-cho, Kokubunji-shi, Tokyo 185-8540 (Japan); Miyazaki, Y.; Hasegawa, H.; Sasakawa, T.; Nagashima, K. [Railway Technical Research Institute, 2-8-38, Hikari-cho, Kokubunji-shi, Tokyo 185-8540 (Japan)

    2010-11-01

    There are several advantages by applying a high-temperature superconducting wire to an on-board superconducting magnet for the maglev train. At first, an increase of thermal capacity of superconducting coils contributes a stability of the superconducting state of the coils. In addition, a reliability of superconducting magnet improves by simplification of the magnet structure. And the weight of the superconducting magnet and the energy consumption of the on-board cryocooler will decrease. Therefore, we examined the possibility on application of the 2G wire with a high critical current density in a high magnetic field. We performed numerical analysis regarding the weight of a superconducting magnet and the energy consumption of an on-board cryocooler in consideration of the characteristics of the 2G wire. Furthermore, we have carried out the I{sub c} measurement for the commercial 2G wires under various experimental conditions such as temperature, magnetic field strength and angle. We also performed the trial manufacture and evaluation of I{sub c} characteristics for the small race track-shaped superconducting coil.

  19. Preliminary study of HTS magnet using 2G wires for maglev train

    Energy Technology Data Exchange (ETDEWEB)

    Ogata, Masafumi; Miyazaki, Yoshiki; Hasegawa, Hitoshi; Sasakawa, Takashi; Nagashima, Ken, E-mail: ogata@rtri.or.j [Railway Technical Research Institute, Hikari-cho 2-8-38, Kokubunji-shi, Tokyo (Japan)

    2010-06-01

    There are several advantages by applying a high temperature superconducting wire to an on-board superconducting magnet for the maglev train. At first, an increase of thermal capacity of superconducting coils contributes a stability of the superconducting state of the coils. In addition, a reliability of superconducting magnet improves by simplification of the magnet structure. And the weight of the superconducting magnet and the energy consumption of the on-board cryocooler will decrease. Therefore, we examined the possibility on application of the 2G wire with a high critical current density in a high magnetic field. We performed numerical analysis regarding the weight of a superconducting magnet and the energy consumption of an on-board cryocooler in consideration of the characteristics of the 2G wire. Furthermore, we have carried out the I{sub c} measurement for the commercial 2G wires under various experimental conditions such as temperature, magnetic field strength and angle. We also performed the trial manufacture and evaluation of I{sub c} characteristics for the small race track-shaped superconducting coil.

  20. Steady state heat transfer of helium cooled cable bundles

    International Nuclear Information System (INIS)

    Khalil, A.

    1982-01-01

    In the present study nucleate and film boiling heat transfer characteristics of horizontal conductor bundles are investigated at steady state conditions. The effect of gaps between wires, number of wires, wire position, wire size and bundle orientation on the departure from nucleate boiling and transition to film boiling is studied. For gaps close to the bubble departure diameter, the critical heat flux can approach up to 90% of the single wire value. Consequently, the maximum stable current for a given bundle can be significantly increased above the single conductor value for the same cross-sectional area. (author)

  1. Monitoring and evaluation of wire mesh forming life

    Science.gov (United States)

    Enemuoh, Emmanuel U.; Zhao, Ping; Kadlec, Alec

    2018-03-01

    Forming tables are used with stainless steel wire mesh conveyor belts to produce variety of products. The forming tables will typically run continuously for several days, with some hours of scheduled downtime for maintenance, cleaning and part replacement after several weeks of operation. The wire mesh conveyor belts show large variation in their remaining life due to associated variations in their nominal thicknesses. Currently the industry is dependent on seasoned operators to determine the replacement time for the wire mesh formers. The drawback of this approach is inconsistency in judgements made by different operators and lack of data knowledge that can be used to develop decision making system that will be more consistent with wire mesh life prediction and replacement time. In this study, diagnostic measurements about the health of wire mesh former is investigated and developed. The wire mesh quality characteristics considered are thermal measurement, tension property, gage thickness, and wire mesh wear. The results show that real time thermal sensor and wear measurements would provide suitable data for the estimation of wire mesh failure, therefore, can be used as a diagnostic parameter for developing structural health monitoring (SHM) system for stainless steel wire mesh formers.

  2. Metallurgical investigation of wire breakage of tyre bead grade

    Directory of Open Access Journals (Sweden)

    Piyas Palit

    2015-10-01

    Full Text Available Tyre bead grade wire is used for tyre making application. The wire is used as reinforcement inside the polymer of tyre. The wire is available in different size/section such as 1.6–0.80 mm thin Cu coated wire. During tyre making operation at tyre manufacturer company, wire failed frequently. In this present study, different broken/defective wire samples were collected from wire mill for detailed investigation of the defect. The natures of the defects were localized and similar in nature. The fracture surface was of finger nail type. Crow feet like defects including button like surface abnormalities were also observed on the broken wire samples. The defect was studied at different directions under microscope. Different advanced metallographic techniques have been used for detail investigation. The analysis revealed that, white layer of surface martensite was formed and it caused the final breakage of wire. In this present study we have also discussed about the possible reason for the formation of such kind of surface martensite (hard-phase.

  3. Electron transport in quantum wires: possible current instability mechanism

    International Nuclear Information System (INIS)

    Sablikov, V.A.

    2001-01-01

    The electrons nonlinear and dynamic transition in quantum wires connecting the electron reservoirs, are studies with an account of the Coulomb interaction distribution of electron density between the reservoirs and the wire. It is established that there exist two processes, leading to electrical instability in such structure. One of them is expressed in form of multistability of the charge accumulated in the wire, and negative differential conductivity. The other one is connected with origination of negative dynamic conductivity in the narrow frequency range near the resonance frequency of the charge waves on the wire length [ru

  4. Interchip link system using an optical wiring method.

    Science.gov (United States)

    Cho, In-Kui; Ryu, Jin-Hwa; Jeong, Myung-Yung

    2008-08-15

    A chip-scale optical link system is presented with a transmitter/receiver and optical wire link. The interchip link system consists of a metal optical bench, a printed circuit board module, a driver/receiver integrated circuit, a vertical cavity surface-emitting laser/photodiode array, and an optical wire link composed of plastic optical fibers (POFs). We have developed a downsized POF and an optical wiring method that allows on-site installation with a simple annealing as optical wiring technologies for achieving high-density optical interchip interconnection within such devices. Successful data transfer measurements are presented.

  5. Printed Wiring Board Cleaner Technologies Substitutes Assessment: Making Holes Conductive

    Science.gov (United States)

    This document presents comparative risk, competitiveness, and resource requirements on technologies for performing the “making holes conductive” function during printed wiring board manufacturing.

  6. Seeded perturbations in wire array Z-Pinches

    International Nuclear Information System (INIS)

    Robinson, Allen Conrad; Fedin, Dmitry; Kantsyrev, Victor Leonidovich; Wunsch, Scott Edward; Oliver, Bryan Velten; Lebedev, Sergey V.; Coverdale, Christine Anne; Ouart, Nicholas D.; LePell, Paul David; Safronova, Alla S.; Shrestha, I.; McKenney, John Lee; Ampleford, David J.; Rapley, J.; Bott, S.C.; Palmer, J.B.A.; Sotnikov, Vladimir Isaakovich; Bland, Simon Nicholas; Ivanov, Vladimir V.; Chittenden, Jeremy Paul; Jones, B.; Garasi, Christopher Joseph; Hall, Gareth Neville; Yilmaz, M. Faith; Mehlhorn, Thomas Alan; Deeney, Christopher; Pokala, S.; Nalajala, V.

    2005-01-01

    Controlled seeding of perturbations is employed to study the evolution of wire array z-pinch implosion instabilities which strongly impact x-ray production when the 3D plasma stagnates on axis. Wires modulated in radius exhibit locally enhanced magnetic field and imploding bubble formation at discontinuities in wire radius due to the perturbed current path. Wires coated with localized spectroscopic dopants are used to track turbulent material flow. Experiments and MHD modeling offer insight into the behavior of z-pinch instabilities.

  7. Fabrication of mesoscopic floating Si wires by introducing dislocations

    International Nuclear Information System (INIS)

    Motohashi, Mitsuya; Shimizu, Kazuya; Niwa, Masaaki; Suzuki, Toshiaki

    2014-01-01

    We fabricated a mesoscopic Si wire by introducing dislocations in a silicon wafer before HF anodization. The dislocations formed along the (111) crystal plane. The outline of the dislocation line was an inverted triangle. The resulting wire floated on a bridge girder and had a hybrid structure consisting of a porous layer and crystalline Si. The cross section of the wire had an inverted triangle shape. The wire formation mechanism is discussed in terms of carrier transport, crystal structure, and dislocation formation during anodization. (paper)

  8. Fabrication of mesoscopic floating Si wires by introducing dislocations

    Science.gov (United States)

    Motohashi, Mitsuya; Shimizu, Kazuya; Suzuki, Toshiaki; Niwa, Masaaki

    2014-12-01

    We fabricated a mesoscopic Si wire by introducing dislocations in a silicon wafer before HF anodization. The dislocations formed along the (111) crystal plane. The outline of the dislocation line was an inverted triangle. The resulting wire floated on a bridge girder and had a hybrid structure consisting of a porous layer and crystalline Si. The cross section of the wire had an inverted triangle shape. The wire formation mechanism is discussed in terms of carrier transport, crystal structure, and dislocation formation during anodization.

  9. Ultrahigh-strength submicron-sized metallic glass wires

    International Nuclear Information System (INIS)

    Wang, Y.B.; Lee, C.C.; Yi, J.; An, X.H.; Pan, M.X.; Xie, K.Y.; Liao, X.Z.; Cairney, J.M.; Ringer, S.P.; Wang, W.H.

    2014-01-01

    In situ deformation experiments were performed in a transmission electron microscope to investigate the mechanical properties of submicron-sized Pd 40 Cu 30 Ni 10 P 20 metallic glass (MG) wires. Results show that the submicron-sized MG wires exhibit intrinsic ultrahigh tensile strength of ∼2.8 GPa, which is nearly twice as high as that in their bulk counterpart, and ∼5% elastic strain approaching the elastic limits. The tensile strength, engineering strain at failure and deformation mode of the submicron-sized MG wires depend on the diameter of the wires

  10. Fabrication and physical properties of permalloy nano-size wires

    International Nuclear Information System (INIS)

    Yu, C.; Lee, S.F.; Yao, Y.D.; Wong, M.S.; Huang, E.W.; Ma, Y.-R.; Tsai, J.L.; Chang, C.R.

    2003-01-01

    Nano-size NiFe wires with patterned shapes in half-ring-in-series, octagon-in-series, and zigzag-in-series configurations were fabricated. Their magnetoresistance was studied below room temperature and their magnetic domain images were investigated at room temperature by a magnetic force microscope. In general, we have experimentally demonstrated that the variation of the magnetoresistance of our patterned nano-size wires can be related to different domain configurations and explained by the domain switching effect. The number of magnetic domain walls in our patterned wires can be controlled by the shape anisotropy and the size of each section of patterns that form the wires

  11. Anodic Aluminum Oxide Templates for Nano wires Array Fabrication

    International Nuclear Information System (INIS)

    Nur Ubaidah Saidin; Kok, K.Y.; Ng, I.K.

    2011-01-01

    This paper reports on the process developed to fabricate anodic aluminium oxide (AAO) templates suitable for the fabrication of nano wire arrays. Anodization process has been used to fabricate the AAO templates with pore diameters ranging from 15 nm to 30 nm. Electrodeposition of parallel arrays of high aspect ratio nickel nano wires were demonstrated using these fabricated AAO templates. The nano wires produced were characterized using X-ray diffraction (XRD) and scanning electron microscopy (SEM). It was found that the orientations of the electrodeposited nickel nano wires were governed by the deposition current and electrolyte conditions. (author)

  12. Minimally invasive tension band wiring technique for olecranon fractures.

    Science.gov (United States)

    Takada, Naoya; Kato, Kenji; Fukuta, Makoto; Wada, Ikuo; Otsuka, Takanobu

    2013-12-01

    Some types of implants, such as plates, screws, wires, and nails, have been used for open reduction and internal fixation of olecranon fractures. A ≥ 10 cm longitudinal incision is used for open reduction and internal fixation of olecranon fractures. According to previous studies, tension band wiring is a popular method that gives good results. However, back out of the wires after the surgery is one of the main postoperative complications. Moreover, if the Kirschner wires are inserted through the anterior ulnar cortex, they may impinge on the radial neck, supinator muscle, or biceps tendon. Herein, we describe the minimally invasive tension band wiring technique using Ring-Pin. This technique can be performed through a 2 cm incision. Small skin incisions are advantageous from an esthetic viewpoint. Ring-Pin was fixed by using a dedicated cable wire that does not back out unless the cable wire breaks or slips out of the dedicated metallic clamp. As the pins are placed in intramedullary canal, this technique does not lead to postoperative complications that may occur after transcortical fixation by conventional tension band wiring. Minimally invasive tension band wiring is one of the useful options for the treatment of olecranon fractures with some advantages.

  13. Formation of plasma around wire fragments created by electrically exploded copper wire

    International Nuclear Information System (INIS)

    Taylor, Michael J.

    2002-01-01

    The physical processes occurring during the electrical explosion of metallic conductors has attracted interest for many years. Applications include circuit breakers, segmented lightning divertor strips for aircraft radomes, disruption of metallic shaped charge jets, plasma armatures for electromagnetic railguns and plasma generators for electrothermal-chemical guns. Recent work has cited the phenomenology of the fragmentation processes, particularly the development of a plasma around the lower resistance condensed fragments. An understanding of both the fragmentation process and the development of the accompanying formation of plasma is essential for the optimization of devices that utilize either of these phenomena. With the use of x-radiography and fast photography, this paper explores the wire explosion process, in particular the relationship between the fragmentation, plasma development and resistance rise that occurs during this period. A hypothesis is put forward to account for the development of plasma around the condensed wire fragments. Experimental parameters used in this study are defined. Wires studied were typically copper, with a diameter of 1 mm and length in excess of 150 mm. Circuit inductance used were from 26 to 800 μH. This relatively high circuit inductance gave circuit rise times less than 180 MA s -1 , slow with respect to many other exploding wire studies. Discharge duration ranged from 0.8 to 10 ms. (author)

  14. Percutaneous Kirschner wire (K-wire) fixation for humerus shaft fractures in children: A treatment concept.

    Science.gov (United States)

    Sahu, Ramji Lal

    2013-09-01

    Fractures of the humeral shaft are uncommon, representing less than 10 percent of all fractures in children. Humeral shaft fractures in children can be treated by immobilisation alone. A small number of fractures are unable to be reduced adequately or maintained in adequate alignment, and these should be treated surgically. In the present study, Kirschner wires (K-wire) were used to achieve a closed intramedullary fixation of humeral shaft fractures. The objective of this study was to evaluate the efficacy of intramedullary K-wires for the treatment of humeral shaft fracture in children. This prospective study was conducted in the Department of Orthopaedic surgery in M. M. Medical College from June 2005 to June 2010. Sixty-eight children with a mean age of 7.7 years (range, 2-14 years) were recruited from Emergency and out patient department having closed fracture of humerus shaft. All patients were operated under general anaesthesia. All patients were followed for 12 months. Out of 68 patients, 64 patients underwent union in 42-70 days with a mean of 56 days. Complications found in four patients who had insignificant delayed union which were united next 3 weeks. Intramedullary K-wires were removed after an average of 5 months without any complications. The results were excellent in 94.11% and good in 5% children. This technique is simple, quick to perform, safe and reliable and avoids prolonged hospitalization with good results and is economical.

  15. Mountain Plains Learning Experience Guide: Electrical Wiring. Course: Electrical Wiring Trim-Out.

    Science.gov (United States)

    Arneson, R.; And Others

    One of two individualized courses included in an electrical wiring curriculum, this course covers electrical materials installation for the trim-out stage. The course is comprised of five units: (1) Outlets, (2) Fixtures, (3) Switches, (4) Appliances, and (5) Miscellaneous. Each unit begins with a Unit Learning Experience Guide that gives…

  16. MATHEMATICAL FORMULATION OF PLASTIC CHARACTERISTICS OF WIRE OF STEEL 70 AT HIGH-SPEED WIRE DRAWING

    Directory of Open Access Journals (Sweden)

    Yu. L. Bobarikin

    2011-01-01

    Full Text Available The carried out numerical experiments subject to initial and boundary conditions indicate that mathematical model of elastic-plastic characteristics of steel 90 can be used for numerical calculations of wire drawing routes for this grade of steel.

  17. Prediction of Bond Wire Fatigue of IGBTs in a PV Inverter Under a Long-Term Operation

    DEFF Research Database (Denmark)

    Reigosa, Paula Diaz; Wang, Huai; Yang, Yongheng

    2016-01-01

    consumption of bond wires of IGBT modules in a Photovoltaic (PV) inverter. The variations in IGBT parameters (e.g., on-state collector-emitter voltage), lifetime models, and environmental and operational stresses are taken into account in the lifetime prediction. The distribution of the annual lifetime...... consumption is estimated based on a long-term annual stress profile of solar irradiance and ambient temperature. The proposed method enables a more realistic lifetime prediction with a specified confidence level compared to the state-of-the-art approaches. A study case of IGBT modules in a 10 kW three......Bond wire fatigue is one of the dominant failure mechanisms in IGBT modules under cyclic stresses. However, there are still major challenges ahead to achieve a realistic bond wire lifetime prediction in field operation. This paper proposes a Monte Carlo based analysis method to predict the lifetime...

  18. Wire-number effects on high-power annular z-pinches and some characteristics at high wire number

    Energy Technology Data Exchange (ETDEWEB)

    SANFORD,THOMAS W. L.

    2000-05-23

    Characteristics of annular wire-array z-pinches as a function of wire number and at high wire number are reviewed. The data, taken primarily using aluminum wires on Saturn are comprehensive. The experiments have provided important insights into the features of wire-array dynamics critical for high x-ray power generation, and have initiated a renaissance in z-pinches when high numbers of wires are used. In this regime, for example, radiation environments characteristic of those encountered during the early pulses required for indirect-drive ICF ignition on the NIF have been produced in hohlraums driven by x-rays from a z-pinch, and are commented on here.

  19. Wire-number effects on high-power annular z-pinches and some characteristics at high wire number

    International Nuclear Information System (INIS)

    SANFORD, THOMAS W. L.

    2000-01-01

    Characteristics of annular wire-array z-pinches as a function of wire number and at high wire number are reviewed. The data, taken primarily using aluminum wires on Saturn are comprehensive. The experiments have provided important insights into the features of wire-array dynamics critical for high x-ray power generation, and have initiated a renaissance in z-pinches when high numbers of wires are used. In this regime, for example, radiation environments characteristic of those encountered during the early pulses required for indirect-drive ICF ignition on the NIF have been produced in hohlraums driven by x-rays from a z-pinch, and are commented on here

  20. 29 CFR 1926.405 - Wiring methods, components, and equipment for general use.

    Science.gov (United States)

    2010-07-01

    ... Electrical Installation Safety Requirements § 1926.405 Wiring methods, components, and equipment for general... lighting wiring methods which may be of a class less than would be required for a permanent installation... subpart for permanent wiring shall apply to temporary wiring installations. Temporary wiring shall be...

  1. Fast and High Accuracy Wire Scanner

    CERN Document Server

    Koujili, M; Koopman, J; Ramos, D; Sapinski, M; De Freitas, J; Ait Amira, Y; Djerdir, A

    2009-01-01

    Scanning of a high intensity particle beam imposes challenging requirements on a Wire Scanner system. It is expected to reach a scanning speed of 20 m.s-1 with a position accuracy of the order of 1 μm. In addition a timing accuracy better than 1 millisecond is needed. The adopted solution consists of a fork holding a wire rotating by a maximum of 200°. Fork, rotor and angular position sensor are mounted on the same axis and located in a chamber connected to the beam vacuum. The requirements imply the design of a system with extremely low vibration, vacuum compatibility, radiation and temperature tolerance. The adopted solution consists of a rotary brushless synchronous motor with the permanent magnet rotor installed inside of the vacuum chamber and the stator installed outside. The accurate position sensor will be mounted on the rotary shaft inside of the vacuum chamber, has to resist a bake-out temperature of 200°C and ionizing radiation up to a dozen of kGy/year. A digital feedback controller allows maxi...

  2. Wired and Wireless Camera Triggering with Arduino

    Science.gov (United States)

    Kauhanen, H.; Rönnholm, P.

    2017-10-01

    Synchronous triggering is an important task that allows simultaneous data capture from multiple cameras. Accurate synchronization enables 3D measurements of moving objects or from a moving platform. In this paper, we describe one wired and four wireless variations of Arduino-based low-cost remote trigger systems designed to provide a synchronous trigger signal for industrial cameras. Our wireless systems utilize 315 MHz or 434 MHz frequencies with noise filtering capacitors. In order to validate the synchronization accuracy, we developed a prototype of a rotating trigger detection system (named RoTriDeS). This system is suitable to detect the triggering accuracy of global shutter cameras. As a result, the wired system indicated an 8.91 μs mean triggering time difference between two cameras. Corresponding mean values for the four wireless triggering systems varied between 7.92 and 9.42 μs. Presented values include both camera-based and trigger-based desynchronization. Arduino-based triggering systems appeared to be feasible, and they have the potential to be extended to more complicated triggering systems.

  3. Wire chamber radiation detector with discharge control

    International Nuclear Information System (INIS)

    Perez-Mendez, V.; Mulera, T.A.

    1984-01-01

    A wire chamber radiation detector has spaced apart parallel electrodes and grids defining an ignition region in which charged particles or other ionizing radiations initiate brief localized avalanche discharges and defining an adjacent memory region in which sustained glow discharges are initiated by the primary discharges. Conductors of the grids at each side of the memory section extend in orthogonal directions enabling readout of the X-Y coordinates of locations at which charged particles were detected by sequentially transmitting pulses to the conductors of one grid while detecting transmissions of the pulses to the orthogonal conductors of the other grid through glow discharges. One of the grids bounding the memory region is defined by an array of conductive elements each of which is connected to the associated readout conductor through a separate resistance. The wire chamber avoids ambiguities and imprecisions in the readout of coordinates when large numbers of simultaneous or near simultaneous charged particles have been detected. Down time between detection periods and the generation of radio frequency noise are also reduced

  4. Humidity effects on wire insulation breakdown strength.

    Energy Technology Data Exchange (ETDEWEB)

    Appelhans, Leah

    2013-08-01

    Methods for the testing of the dielectric breakdown strength of insulation on metal wires under variable humidity conditions were developed. Two methods, an ASTM method and the twisted pair method, were compared to determine if the twisted pair method could be used for determination of breakdown strength under variable humidity conditions. It was concluded that, although there were small differences in outcomes between the two testing methods, the non-standard method (twisted pair) would be appropriate to use for further testing of the effects of humidity on breakdown performance. The dielectric breakdown strength of 34G copper wire insulated with double layer Poly-Thermaleze/Polyamide-imide insulation was measured using the twisted pair method under a variety of relative humidity (RH) conditions and exposure times. Humidity at 50% RH and below was not found to affect the dielectric breakdown strength. At 80% RH the dielectric breakdown strength was significantly diminished. No effect for exposure time up to 140 hours was observed at 50 or 80%RH.

  5. Sample of superconducting wiring from the LHC

    CERN Multimedia

    The high magnetic fields needed for guiding particles around the Large Hadron Collider (LHC) ring are created by passing 12’500 amps of current through coils of superconducting wiring. At very low temperatures, superconductors have no electrical resistance and therefore no power loss. The LHC is the largest superconducting installation ever built. The magnetic field must also be extremely uniform. This means the current flowing in the coils has to be very precisely controlled. Indeed, nowhere before has such precision been achieved at such high currents. Magnet coils are made of copper-clad niobium–titanium cables — each wire in the cable consists of 9’000 niobium–titanium filaments ten times finer than a hair. The cables carry up to 12’500 amps and must withstand enormous electromagnetic forces. At full field, the force on one metre of magnet is comparable to the weight of a jumbo jet. Coil winding requires great care to prevent movements as the field changes. Friction can create hot spots wh...

  6. A New Superconducting Wire for Future Accelerators

    CERN Multimedia

    2006-01-01

    The CARE/NED project has developed a new superconducting wire that can achieve very high currents (1400 amps) at high magnetic fields (12 teslas). Cross-section of the CARE/NED wire produced by SMI. As we prepare to enter a new phase of particle physics with the LHC, technological development is a continuous process to ensure the demands of future research are met. The next generation of colliders and upgrades of the present ones will require significantly larger magnetic fields for bending and focusing the particle beams. NED (Next European Dipole) is one of the projects taking on this challenge to push technology beyond the present limit (see: More about NED). The magnets in the LHC rely on niobium titanium (NbTi) as the superconducting material, with a maximum magnetic field of 8 to 10T (tesla). In order to exceed this limitation, a different material together with the corresponding technology needs to be developed. NED is assessing the suitability of niobium tin (Nb3Sn), which has the potential to at le...

  7. Wire Position Monitoring with FPGA based Electronics

    International Nuclear Information System (INIS)

    Eddy, N.; Lysenko, O.

    2009-01-01

    This fall the first Tesla-style cryomodule cooldown test is being performed at Fermilab. Instrumentation department is preparing the electronics to handle the data from a set of wire position monitors (WPMs). For simulation purposes a prototype pipe with a WMP has been developed and built. The system is based on the measurement of signals induced in pickups by 320 MHz signal carried by a wire through the WPM. The wire is stretched along the pipe with a tensioning load of 9.07 kg. The WPM consists of four 50 (Omega) striplines spaced 90 o apart. FPGA based digitizer scans the WPM and transmits the data to a PC via VME interface. The data acquisition is based on the PC running LabView. In order to increase the accuracy and convenience of the measurements some modifications were required. The first is implementation of an average and decimation filter algorithm in the integrator operation in the FPGA. The second is the development of alternative tool for WPM measurements in the PC. The paper describes how these modifications were performed and test results of a new design. The last cryomodule generation has a single chain of seven WPMs (placed in critical positions: at each end, at the three posts and between the posts) to monitor a cold mass displacement during cooldown. The system was developed in Italy in collaboration with DESY. Similar developments have taken place at Fermilab in the frame of cryomodules construction for SCRF research. This fall preliminary cryomodule cooldown test is being performed. In order to prepare an appropriate electronic system for the test a prototype pipe with a WMP has been developed and built, figure 1. The system is based on the measurement of signals induced in pickups by 320 MHz signal carried by a wire through the WPM. The 0.5 mm diameter Cu wire is stretched along the pipe with a tensioning load of 9.07 kg and has a length of 1.1 m. The WPM consists of four 50 (Omega) striplines spaced 90 o apart. An FPGA based digitizer

  8. Temperature Diffusion Distribution of Electric Wire Deteriorated by Overcurrent

    Science.gov (United States)

    Choi, Chung-Seog; Kim, Hyang-Kon; Kim, Dong-Woo; Lee, Ki-Yeon

    This study presents thermal diffusion distribution of the electric wires when overcurrent is supplied to copper wires. And then, this study intends to provide a basis of knowledge for analyzing the causes of electric accidents through hybrid technology. In the thermal image distribution analysis of the electric wire to which fusing current was supplied, it was found that less heat was accumulated in the thin wires because of easier heat dispersion, while more heat was accumulated in the thicker wires. The 3-dimensional thermal image analysis showed that heat distribution was concentrated at the center of the wire and the inclination of heat distribution was steep in the thicker wires. When 81A was supplied to 1.6mm copper wire for 500 seconds, the surface temperature of wire was maximum 46.68°C and minimum 30.87°C. It revealed the initial characteristics of insulation deterioration that generates white smoke without external deformation. In the analysis with stereoscopic microscope, the surface turned dark brown and rough with the increase of fusing current. Also, it was known that exfoliation occurred when wire melted down with 2 times the fusing current. With the increase of current, we found the number of primary arms of the dendrite structure to be increased and those of the secondary and tertiary arms to be decreased. Also, when the overcurrent reached twice the fusing current, it was found that columnar composition, observed in the cross sectional structure of molten wire, appeared and formed regular directivity. As described above, we could present the burning pattern and change in characteristics of insulation and conductor quantitatively. And we could not only minimize the analysis error by combining the information but also present the scientific basis in the analysis of causes of electric accidents, mediation of disputes on product liability concerning the electric products.

  9. Annual coded wire tag program (Washington) missing production groups: annual report for 1997; ANNUAL

    International Nuclear Information System (INIS)

    Byrne, J.; Fuss, H.; Ashbrook, C.

    1998-01-01

    The Bonneville Power Administration (BPA) funds the ''Annual Coded Wire Tag Program - Missing Production Groups for Columbia River Hatcheries'' project. The Washington Department of Fish and Wildlife (WDFW), Oregon Department of Fish and Wildlife (ODFW) and the United States Fish and Wildlife Service (USFWS) all operate salmon and steelhead rearing programs in the Columbia River basin. The intent of the funding is to coded-wire tag at least one production group of each species at each Columbia Basin hatchery to provide a holistic assessment of survival and catch distribution over time and to meet various measures of the Northwest Power Planning Councils (NWPPC) Fish and Wildlife Program. The WDFW project has three main objectives: (1) coded-wire tag at least one production group of each species at each Columbia Basin hatchery to enable evaluation of survival and catch distribution over time, (2) recover coded-wire tags from the snouts of fish tagged under objective 1 and estimate survival, contribution, and stray rates for each group, and (3) report the findings under objective 2 for all broods of chinook, and coho released from WDFW Columbia Basin hatcheries. Objective 1 for FY-97 was met with few modifications to the original FY-97 proposal. Under Objective 2, snouts containing coded-wire tags that were recovered during FY-97 were decoded. Under Objective 3, survival, contribution and stray rate estimates for the 1991-96 broods of chinook and 1993-96 broods of coho have not been made because recovery data for 1996-97 fisheries and escapement are preliminary. This report summarizes recovery information through 1995

  10. Simulation of dynamic magnetic particle capture and accumulation around a ferromagnetic wire

    Energy Technology Data Exchange (ETDEWEB)

    Choomphon-anomakhun, Natthaphon [Department of Physics, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Bangkok 10330 (Thailand); Ebner, Armin D. [Department of Chemical Engineering, University of South Carolina, Columbia, SC 29208 (United States); Natenapit, Mayuree [Department of Physics, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Bangkok 10330 (Thailand); Ritter, James A. [Department of Chemical Engineering, University of South Carolina, Columbia, SC 29208 (United States)

    2017-04-15

    A new approach for modeling high gradient magnetic separation (HGMS)-type systems during the time-dependent capture and accumulation of magnetic particles by a ferromagnetic wire was developed. This new approach assumes the fluid (slurry) viscosity, comprised of water and magnetic particles, is a function of the magnetic particle concentration in the fluid, with imposed maxima on both the particle concentration and fluid viscosity to avoid unrealistic limits. In 2-D, the unsteady-state Navier-Stokes equations for compressible fluid flow and the unsteady-state continuity equations applied separately to the water and magnetic particle phases in the slurry were solved simultaneously, along with the Laplace equations for the magnetic potential applied separately to the slurry and wire, to evaluate the velocities and concentrations around the wire in a narrow channel using COMSOL Multiphysics. The results from this model revealed very realistic magnetically attractive and repulsive zones forming in time around the wire. These collection zones formed their own impermeable viscous phase during accumulation that was also magnetic with its area and magnetism impacting locally both the fluid flow and magnetic fields around the wire. These collection zones increased with an increase in the applied magnetic field. For a given set of conditions, the capture ability peaked and then decreased to zero at infinite time during magnetic particle accumulation in the collection zones. Predictions of the collection efficiency from a steady-state, clean collector, trajectory model could not show this behavior; it also agreed only qualitatively with the dynamic model and then only at the early stages of collection and more so at a higher applied magnetic field. Also, the collection zones decreased in size when the accumulation regions included magnetic particle magnetization (realistic) compared to when they excluded it (unrealistic). Overall, this might be the first time a mathematical

  11. Ultrasound-guided wire localization of lesions detected on ...

    African Journals Online (AJOL)

    Background: Wire localization for planned surgical treatment in the management of breast cancer is underutilized in our environment. The objective of this study is to assess the role of ultrasound-guided wire localization of breast masses detected on screening mammography and its impact on biopsy and breast ...

  12. PRODUCTION OF ELECTROTECHNICAL WIRE OF SCRAP AND COPPER WASTES

    Directory of Open Access Journals (Sweden)

    I. P. Volchok

    2006-01-01

    Full Text Available Chemical composition, structure and properties of copper upon base steps of wire production technology (melting of anode copper with using of scrap and waste, electrolitical refining, producing of rod by continuous casting, manufacture of electrotechnical wire and fibres is described.

  13. Liquid Metal Machine Triggered Violin-Like Wire Oscillator.

    Science.gov (United States)

    Yuan, Bin; Wang, Lei; Yang, Xiaohu; Ding, Yujie; Tan, Sicong; Yi, Liting; He, Zhizhu; Liu, Jing

    2016-10-01

    The first ever oscillation phenomenon of a copper wire embraced inside a self-powered liquid metal machine is discovered. When contacting a copper wire to liquid metal machine, it would be swallowed inside and then reciprocally moves back and forth, just like a violin bow. Such oscillation could be easily regulated by touching a steel needle on the liquid metal surface.

  14. Test plan for Enraf Series 854 level gauge wire testing

    International Nuclear Information System (INIS)

    Barnes, G.A.

    1994-01-01

    An Enraf Series 854 level gauge was installed on tank 241-S-106 during the first week of June 1994. On August 11, 1994, the gauge's stainless steel measuring wire broke. After examination and laboratory analysis, it was determined that the wire broke due to severe chloride ion corrosion. It is suspected that the chloride ion contamination came from the radiation induced breakdown of the polyvinyl chloride (PVC) riser liner. It is well documented that the breakdown of PVC due to radiation produces chloride containing compounds. This document provides a qualification test plan to remove and have analyzed the wire in all of the Enraf Series 854 that have been installed to date. These tests will confirm the presence or absence of chloride ions in the PVC liners and/or on the Enraf measuring wires installed in the tanks. This test will involve removing the 316 stainless steel wire drums from all of the existing Enraf Series 854 level gauges that have been installed. New 316 stainless steel wire drums shall be installed into the gauges and the gauges will be placed back into service. The wire that is removed from the gauges shall be sent to the 222-S Lab or the Pacific Northwest Laboratory (PNL) for analysis. Additional wire replacements will occur at intervals as determined necessary by the results of the laboratory analyses

  15. Wire winding increases lifetime of oxide coated cathodes

    Science.gov (United States)

    Kerslake, W.; Vargo, D.

    1965-01-01

    Refractory-metal heater base wound with a thin refractory metal wire increases the longevity of oxide-coated cathodes. The wire-wound unit is impregnated with the required thickness of metal oxide. This cathode is useful in magnetohydrodynamic systems and in electron tubes.

  16. Notched K-wire for low thermal damage bone drilling.

    Science.gov (United States)

    Liu, Yao; Belmont, Barry; Wang, Yiwen; Tai, Bruce; Holmes, James; Shih, Albert

    2017-07-01

    The Kirschner wire (K-wire) is a common bone drilling tool in orthopedic surgery to affix fractured bone. Significant heat is produced due to both the cutting and the friction between the K-wire and the bone debris during drilling. Such heat can result in high temperatures, leading to osteonecrosis and other secondary injuries. To reduce thermal injury and other high-temperature associated complications, a new K-wire design with three notches along the three-plane trocar tip fabricated using a thin micro-saw tool is studied. These notches evacuate bone debris and reduce the clogging and heat generation during bone drilling. A set of four K-wires, one without notches and three notched, with depths of 0.5, 0.75, and 1mm, are evaluated. Bone drilling experiments conducted on bovine cortical bone show that notched K-wires could effectively decrease the temperature, thrust force, and torque during bone drilling. K-wires with notches 1mm deep reduced the thrust force and torque by approximately 30%, reduced peak temperatures by 43%, and eliminated blackened burn marks in bone. This study demonstrates that a simple modification of the tip of K-wires can effectively reduce bone temperatures during drilling. Copyright © 2017 IPEM. Published by Elsevier Ltd. All rights reserved.

  17. 29 CFR 1910.304 - Wiring design and protection.

    Science.gov (United States)

    2010-07-01

    ... contacts effectively grounded except for receptacles mounted on portable and vehicle-mounted generators in... types of current (ac or dc) on the same premises shall be of such design that the attachment plugs used... premises wiring shall be grounded as follows: (i) All 3-wire dc systems shall have their neutral conductor...

  18. Variations in the Magnetic Torque Acting on a Wire

    Science.gov (United States)

    Bonati, Claudio

    2012-01-01

    The relation M = [mu] x B is presented in all elementary courses on electromagnetism, but it is usually given just for the simple case of a rectangular wire. We will present a completely general but elementary proof of this relation together with two more advanced proof methods. We will then provide some extensions: non-closed wires and…

  19. 26 CFR 49.4252-7 - Wire and equipment service.

    Science.gov (United States)

    2010-04-01

    ... of illegal entry, fire, leakage, etc. (2) Wire lines or channels furnished between a point of origin... subscriber may obtain information as to a given condition at the remote point, such as water level, water pressure, gas pressure, etc. (4) Remote control wire lines or channels furnished between a remote point and...

  20. Loss of Guide Wire: A Lesson Learnt Review of Literature

    African Journals Online (AJOL)

    or sometimes with delay.[2-5] Here, we elucidate a case of retained guide wire during cannulation of the right external iliac vein, which was ... [3,5] If this rule is followed, the guide wire cannot get lost. The diagnosis is very simple, which is often established incidentally during routine radiographic exams.[4,5]. We report the ...

  1. Optimum driving of magnetostrictive amorphous wire micro-motor

    International Nuclear Information System (INIS)

    Takezawa, Masaaki; Ishizaki, Yuichi; Honda, Takashi; Yamasaki, Jiro

    2004-01-01

    Characteristics of a magnetostrictive vibration micro-motor were investigated in relation to a supporting position of a magnetostrictive amorphous wire for optimization of the motor. It was found that a vibration of the wire resembled a vibration mode of both ends free and a maximum rotational speed was obtained by supporting the nodes of vibration

  2. Recent development of drastically innovative BSCCO wire (DI-BISCCO)

    International Nuclear Information System (INIS)

    Kikuchi, M.; Kato, T.; Ohkura, K.; Ayai, N.; Fujikami, J.; Fujino, K.; Kobayashi, S.; Ueno, E.; Yamazaki, K.; Yamade, S.; Hayashi, K.; Sato, K.; Nagai, T.; Matsui, Y.

    2006-01-01

    Up to this day, Ag-sheathed Bi2223 superconducting wires have been widely investigated and the long wires about 1000 m have been produced by using powder-in-tube (PIT) method on a commercial basis in the various facilities or companies. Although the wires are used for some applications such as HTS cables, magnets, motor and so on, the Bi2223 wires not only require much more improvements of the superconducting properties such as critical current, mechanical properties, but also longer and more uniform wires. Recently, the performances of Bi2223 wires have been drastically improved by using Controlled Over Pressure (CT-OP) sintering process. CT-OP process increased critical current (I c ) by more than 60% at 77 K and self field and improved the mechanical strength by more than 70%. The maximum I c was increased up to 166 A. These drastic improvements were caused by the higher density of Bi2223 filament up to almost 100% and better connectivity of the Bi2223 grains. The dense structure of the Bi2223 filaments prevents the ballooning phenomenon which is caused by the gasification of the trapped liquid nitrogen during temperature rise. Additionally, higher uniformity and higher production yield of long length wire were also achieved by exterminating defects during sintering. These high performance levels in CT-OP wires have contributed commercial level applications. We call as Drastically Innovative BSCCO (DI-BSCCO)

  3. Analytical guide wire motion algorithm for simulation of endovascular interventions

    NARCIS (Netherlands)

    Konings, M. K.; van de Kraats, E. B.; Alderliesten, T.; Niessen, W. J.

    2003-01-01

    Performing minimally invasive vascular interventions requires proper training, as a guide wire needs to be manipulated, by the tail, under fluoroscopic guidance. To provide a training environment, the motion of the guide wire inside the human vasculature can be simulated by computer. Such a

  4. Wire bond degradation under thermo- and pure mechanical loading

    DEFF Research Database (Denmark)

    Pedersen, Kristian Bonderup; Nielsen, Dennis Achton; Czerny, Bernhard

    2017-01-01

    This paper presents a fundamental study on degradation of heavy Al bond wires typically used in high power modules. Customized samples are designed to only consist of Al bond wires on standard Si diodes. These samples are subjected to pure mechanical and passive thermal cycling to investigate...

  5. Safe corridors for K-wiring in phalangeal fractures

    Directory of Open Access Journals (Sweden)

    C Rex

    2015-01-01

    Conclusion: K-wiring through the safe corridor has proved to yield the best clinical results because of least tethering of soft tissues as evidenced by performing "on-table active finger movement test" at the time of surgery. We strongly recommend K-wiring through safe portals in all phalangeal fractures.

  6. Water-cooled grid ''wires'' for direct converters

    International Nuclear Information System (INIS)

    Schwer, C.J.

    1976-01-01

    A study was conducted to determine the feasibility of internal convective cooling of grid ''wires'' for direct converters. Detailed computer calculations reveal that the use of small diameter water cooled tubes as grid ''wires'' is feasible for a considerable range of lengths and thermal fluxes

  7. 46 CFR 183.340 - Cable and wiring requirements.

    Science.gov (United States)

    2010-10-01

    ... a manner as to avoid chafing and other damage. The use of plastic tie wraps must be limited to... requirements. (a) If individual wires, rather than cable, are used in systems greater than 50 volts, the wire... current carrying capacity for the circuit in which they are used; (2) Be installed in a manner to avoid or...

  8. 46 CFR 120.340 - Cable and wiring requirements.

    Science.gov (United States)

    2010-10-01

    ... chafing and other damage. The use of plastic tie wraps must be limited to bundling or retention of... wires, rather than cables, are used in systems greater than 50 volts, the wire must be in conduit. (b... for the circuit in which they are used; (2) Be installed in a manner to avoid or reduce interference...

  9. Exciton dephasing in ZnSe quantum wires

    DEFF Research Database (Denmark)

    Wagner, Hans Peter; Langbein, Wolfgang Werner; Hvam, Jørn Märcher

    1998-01-01

    The homogeneous linewidths of excitons in wet-etched ZnSe quantum wires of lateral sizes down to 23 nm are studied by transient four-wave mixing. The low-density dephasing time is found to increase with decreasing wire width. This is attributed mainly to a reduction of electron-exciton scattering...

  10. Superconductivity optimization and phase formation kinetics study of internal-Sn Nb{sub 3}Sn superconducting wires

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Chaowu

    2007-07-15

    Superconductors Nb{sub 3}Sn wires are one of the most applicable cryogenic superconducting materials and the best choice for high-field magnets exceeding 10 T. One of the most significant utilization is the ITER project which is regarded as the hope of future energy source. The high-Cu composite designs with smaller number of sub-element and non-reactive diffusion barrier, and the RRP (Restacked Rod Process) internal-Sn technology are usually applied for the wire manufacturing. Such designed and processed wires were supplied by MSA/Alstom and WST/NIN in this research. The systematic investigation on internal-Sn superconducting wires includes the optimization of heat treatment (HT) conditions, phase formation and its relation with superconductivity, microstructure analysis, and the phase formation kinetics. Because of the anfractuosity of the configuration design and metallurgical processing, the MF wires are not sufficient for studying a sole factor effect on superconductivity. Therefore, four sets of mono-element (ME) wires with different Sn ratios and different third-element addition were designed and fabricated in order to explore the relationship between phase formation and superconducting performances, particularly the A15 layer growth kinetics. Different characterization technic have been used (magnetization measurements, neutron diffraction and SEM/TEM/EDX analysis). The A15 layer thicknesses of various ME samples were measured and carried out linear and non-linear fits by means of two model equations. The results have clearly demonstrated that the phase formation kinetics of Nb{sub 3}Sn solid-state reaction is in accordance with an n power relation and the n value is increased with the increase of HT temperature and the Sn ratio in the wire composite. (author)

  11. A tentative opinion of modeling plasma formation in metallic wire Z pinch

    International Nuclear Information System (INIS)

    Ding Ning

    2002-01-01

    Numerous experiments in both single wire and in wire arrays have attracted much attention. For the wire array Z-pinch implosions the plasma formation in the metallic wire Z pinches is a key question. By means of analyzing a number of single-wire and multi-wire experiments, two models to describe the behavior of a wire array Z-pinch in initial phase are suggested. In this phase each wire carries a rising current and behaves independently in a way similar to that found in single wire Z-pinch experiments in which a comparable current in one wire is employed. Based on one- or/and two-dimensional magnetohydrodynamics (MHD) theory, one model is used to simulate the electrical explosion stage of the metallic wire, another is used to simulate the wire-plasma formation stage

  12. Self-organization of mesoscopic silver wires by electrochemical deposition

    Directory of Open Access Journals (Sweden)

    Sheng Zhong

    2014-08-01

    Full Text Available Long, straight mesoscale silver wires have been fabricated from AgNO3 electrolyte via electrodeposition without the help of templates, additives, and surfactants. Although the wire growth speed is very fast due to growth under non-equilibrium conditions, the wire morphology is regular and uniform in diameter. Structural studies reveal that the wires are single-crystalline, with the [112] direction as the growth direction. A possible growth mechanism is suggested. Auger depth profile measurements show that the wires are stable against oxidation under ambient conditions. This unique system provides a convenient way for the study of self-organization in electrochemical environments as well as for the fabrication of highly-ordered, single-crystalline metal nanowires.

  13. Single Wire Detector Performance Over One Year of Operation

    CERN Document Server

    Hervas Aguilar, David Alberto

    2014-01-01

    Abstract When ionizing radiation passes through gas chambers in single wire detectors gas molecules separate into ions and electrons. By applying a strong localized electric field near the single wire an avalanche of electrons is created and it can be collected. The current produced in the wire is then proportional to the energy of the particle detected. Nevertheless, many factors can contribute to detector aging effects which are visible in a loss of gain caused by deposition of contaminants on the collecting wire. This study consists on novel data analysis techniques used to process large amounts of data produced by two simultaneously running single wire detectors. Aging effects are analyzed while environmental fluctuations are corrected for. A series of scripts carry out data filtering, data matching, corrections, and finally trend plotting by using ROOT’s extensive libraries developed at CERN.

  14. Breakdown dynamics of electrically exploding thin metal wires in vacuum

    Science.gov (United States)

    Sarkisov, G. S.; Caplinger, J.; Parada, F.; Sotnikov, V. I.

    2016-10-01

    Using a two-frame intensified charge coupled device (iCCD) imaging system with a 2 ns exposure time, we observed the dynamics of voltage breakdown and corona generation in experiments of fast ns-time exploding fine Ni and stainless-steel (SS) wires in a vacuum. These experiments show that corona generation along the wire surface is subjected to temporal-spatial inhomogeneity. For both metal wires, we observed an initial generation of a bright cathode spot before the ionization of the entire wire length. This cathode spot does not expand with time. For 25.4 μm diameter Ni and SS wire explosions with positive polarity, breakdown starts from the ground anode and propagates to the high voltage cathode with speeds approaching 3500 km/s or approximately one percent of light speed.

  15. Electromagnetic densification of MgB2/Cu wires

    International Nuclear Information System (INIS)

    Woźniak, M; Glowacki, B A

    2014-01-01

    Electromagnetic compaction of in situ MgB 2 /Cu wire has been achieved using a custom-built 200 J device. The monofilament core packing density was increased by 8% and up to 31% for unreacted and reacted wires respectively. The higher density of the MgB 2 core resulted in a critical current density increase of up to 75% in comparison to that for cold-drawn-only wire. Applying this treatment to a wire with Cu powder additions to the core and with an optimized heat treatment resulted in one of the highest ever reported values of J c for MgB 2 /Cu wires of 6.83 × 10 3  A cm −2 at 4.2 K and 6 T. (paper)

  16. Development of environmental-friendly wire and cable

    International Nuclear Information System (INIS)

    Ueno, Keiji

    1996-01-01

    The electron beam technology has been used in many industrial fields as a method of conventional polymer modification or optimum processability. The main industrial fields of radiation crosslinking are wire and cable, heat shrinkable tubings, plastic foams, precuring of tires, floppy disk curing, foods packaging films, and so on. The radiation crosslinking of wire and cable was started in 1961 in Japan and 15 wire and cable companies are now using electron beam accelerators for production or R and D. The dominant characteristics of crosslinking of insulation materials are application at high temperature, good oil and chemical resistibility and high mechanical properties. These radiation crosslinking wire and cable are applied widely in electronics equipments and automobiles. Recently, electronics manufacturers have indicated deep concern over the effects on the environment. Wire and cable also are required to be applicable for environmental preservation. (J.P.N.)

  17. Hierarchical structures in cold-drawn pearlitic steel wire

    DEFF Research Database (Denmark)

    Zhang, Xiaodan; Godfrey, Andrew; Hansen, Niels

    2013-01-01

    The microstructure and crystallography of drawn pearlitic steel wires have been quantified by a number of electron microscopy techniques including scanning electron microscopy, transmission electron microscopy, electron backscatter diffraction and nanobeam diffraction, with focus on the change...... in the structure and crystallography when a randomly oriented cementite structure in a patented wire during wire drawing is transformed into a lamellar structure parallel to the drawing axis. Changes in the interlamellar spacing and in the misorientation angle along and across the ferrite lamellae show significant...... through-diameter variations in wires drawn to large strains P 1.5. The structural evolution is hierarchical as the structural variations have their cause in a different macroscopic orientation of the cementite in the initial (patented) structure with respect to the wire axis. The through...

  18. Hierarchical structures in cold-drawn pearlitic steel wire

    DEFF Research Database (Denmark)

    Zhang, Xiaodan; Godfrey, Andrew; Hansen, Niels

    2013-01-01

    The microstructure and crystallography of drawn pearlitic steel wires have been quantified by a number of electron microscopy techniques including scanning electron microscopy, transmission electron microscopy, electron backscatter diffraction and nanobeam diffraction, with focus on the change...... in the structure and crystallography when a randomly oriented cementite structure in a patented wire during wire drawing is transformed into a lamellar structure parallel to the drawing axis. Changes in the interlamellar spacing and in the misorientation angle along and across the ferrite lamellae show significant...... through-diameter variations in wires drawn to large strains ⩾ 1.5. The structural evolution is hierarchical as the structural variations have their cause in a different macroscopic orientation of the cementite in the initial (patented) structure with respect to the wire axis. The through...

  19. A New Flying Wire System for the Tevatron

    Science.gov (United States)

    Blokland, Willem; Dey, Joseph; Vogel, Greg

    1997-05-01

    A new Flying Wires system replaces the old system to enhance the analysis of the beam emittance, improve the reliability, and handle the upcoming upgrades of the Tevatron. New VME data acquisition modules and timing modules allow for more bunches to be sampled more precisely. The programming language LabVIEW, running on a Macintosh computer, controls the VME modules and the nuLogic motion board that flies the wires. LabVIEW also analyzes and stores the data, and handles local and remote commands. The new system flies three wires and fits profiles of 72 bunches to a gaussian function within two seconds. A new console application operates the flying wires from any control console. This paper discusses the hardware and software setup, the capabilities and measurement results of the new Flying Wires system.

  20. 77 FR 50160 - Steel Wire Garment Hangers From Taiwan and Vietnam; Scheduling of the Final Phase of...

    Science.gov (United States)

    2012-08-20

    ...)] Steel Wire Garment Hangers From Taiwan and Vietnam; Scheduling of the Final Phase of Countervailing Duty...(b) of the Act (19 U.S.C. 1673d(b)) to determine whether an industry in the United States is materially injured or threatened with material injury, or the establishment of an industry in the United...

  1. 77 FR 50713 - Steel Wire Garment Hangers From Taiwan and Vietnam; (Corrected Notice) Scheduling of the Final...

    Science.gov (United States)

    2012-08-22

    ...)] Steel Wire Garment Hangers From Taiwan and Vietnam; (Corrected Notice) Scheduling of the Final Phase of...) under section 735(b) of the Act (19 U.S.C. 1673d(b)) to determine whether an industry in the United States is materially injured or threatened with material injury, or the establishment of an industry in...

  2. AC application of second generation HTS wire

    Science.gov (United States)

    Thieme, C. L. H.; Gagnon, K.; Voccio, J.; Aized, D.; Claassen, J.

    2008-02-01

    For the production of Second Generation (2G) YBCO High Temperature Superconductor wire American Superconductor uses a wide-strip MOD-YBCO/RABiTSTM process, a low-cost approach for commercial manufacturing. It can be engineered with a high degree of flexibility to manufacture practical 2G conductors with architectures and properties tailored for specific applications and operating conditions. For ac applications conductor and coil design can be geared towards low hysteretic losses. For applications which experience high frequency ac fields, the stabilizer needs to be adjusted for low eddy current losses. For these applications a stainless-steel laminate is used. An example is a Low Pass Filter Inductor which was developed and built in this work.

  3. Wire-array initiation and interwire-plasma merger concerns in PBFA-Z tungsten z-pinch implosions

    Energy Technology Data Exchange (ETDEWEB)

    Sanford, T.W.L.; Spielman, R.B.; Allshouse, G.O. [Sandia National Labs., Albuquerque, NM (United States)] [and others

    1997-12-31

    Experiments with annular wire-array loads to generate high quality, high-power, z-pinch implosions on Saturn have shown the importance of maintaining azimuthal symmetry and how the individual wire plasmas merge to form a plasma shell. Here the authors discuss the impact of current symmetry, current prepulse, interwire spacing, and wire size on generating high-quality, high-power, z-pinch implosions on PBFA-Z, with annular tungsten wire loads. B-dot monitors measured the current as a function of azimuth in the MITLs and 4.5 cm upstream of the load. Bolometers and filtered XRDs and PCDs, spanning the energy range {approximately} 0 eV to 6 keV, monitored the temporal characteristics of the radiation. Time-integrated and time-resolved, filtered, fast-framing, x-ray pinhole cameras, and a crystal spectrometer monitored the spatial and spectral structure of the radiation. The radial dynamics of single-wire plasmas from the solid-state, using the measured current, was calculated by 1D radiation magnetohydrodynamics code (RMHC) and used as input to an xy RMHC. These calculations together with 2D RMHC simulations in the rz plane are discussed and correlated with the measurements.

  4. Wire-array initiation and interwire-plasma merger concerns in PBFA-Z tungsten z-pinch implosions

    International Nuclear Information System (INIS)

    Sanford, T.W.L.; Spielman, R.B.; Allshouse, G.O.

    1997-01-01

    Experiments with annular wire-array loads to generate high quality, high-power, z-pinch implosions on Saturn have shown the importance of maintaining azimuthal symmetry and how the individual wire plasmas merge to form a plasma shell. Here the authors discuss the impact of current symmetry, current prepulse, interwire spacing, and wire size on generating high-quality, high-power, z-pinch implosions on PBFA-Z, with annular tungsten wire loads. B-dot monitors measured the current as a function of azimuth in the MITLs and 4.5 cm upstream of the load. Bolometers and filtered XRDs and PCDs, spanning the energy range ∼ 0 eV to 6 keV, monitored the temporal characteristics of the radiation. Time-integrated and time-resolved, filtered, fast-framing, x-ray pinhole cameras, and a crystal spectrometer monitored the spatial and spectral structure of the radiation. The radial dynamics of single-wire plasmas from the solid-state, using the measured current, was calculated by 1D radiation magnetohydrodynamics code (RMHC) and used as input to an xy RMHC. These calculations together with 2D RMHC simulations in the rz plane are discussed and correlated with the measurements

  5. Description and Flight Test Results of the NASA F-8 Digital Fly-by-Wire Control System

    Science.gov (United States)

    1975-01-01

    A NASA program to develop digital fly-by-wire (DFBW) technology for aircraft applications is discussed. Phase I of the program demonstrated the feasibility of using a digital fly-by-wire system for aircraft control through developing and flight testing a single channel system, which used Apollo hardware, in an F-8C airplane. The objective of Phase II of the program is to establish a technology base for designing practical DFBW systems. It will involve developing and flight testing a triplex digital fly-by-wire system using state-of-the-art airborne computers, system hardware, software, and redundancy concepts. The papers included in this report describe the Phase I system and its development and present results from the flight program. Man-rated flight software and the effects of lightning on digital flight control systems are also discussed.

  6. Initial Stages of GaAs/Au Eutectic Alloy Formation for the Growth of GaAs Nano wires

    International Nuclear Information System (INIS)

    Rosnita, M.; Yussof, W.; Zuhairi, I.; Zulkafli, O.; Samsudi, S.

    2012-01-01

    Annealing temperature plays an important role in the formation of an Au-Ga eutectic alloy. The effects of the annealing temperature on gold nanoparticles colloid and substrate surface were studied using AFM, FE-SEM and TEM. At 600 degree Celsius, the layer of gold colloids particle formed an island in the state of molten eutectic alloy and absorbed evaporated metal-organics to formed nano wire (NW) underneath the alloy. Pit formed on the substrate surface due to the chemical reactions during the annealing process have an impact on the direction of growth of the NW. Without annealing, the NW formed vertically on the GaAs (100) surface. The growth direction depends on the original nucleation facets and surface energy when annealed. When annealed, the wire base is large and curved due to the migration of Ga atoms on the substrate surface towards the tip of the wire and the line tension between the substrate surface and gold particle. (author)

  7. A Transflective Nano-Wire Grid Polarizer Based Fiber-Optic Sensor

    Directory of Open Access Journals (Sweden)

    Yan-Qing Lu

    2011-02-01

    Full Text Available A transflective nano-wire grid polarizer is fabricated on a single mode fiber tip by focused ion beam machining. In contrast to conventional absorptive in-line polarizers, the wire grids reflect TE-mode, while transmitting TM-mode light so that no light power is discarded. A reflection contrast of 13.7 dB and a transmission contrast of 4.9 dB are achieved in the 1,550 nm telecom band using a 200-nm wire grid fiber polarizer. With the help of an optic circulator, the polarization states of both the transmissive and reflective lights in the fiber may be monitored simultaneously. A kind of robust fiber optic sensor is thus proposed that could withstand light power variations. To verify the idea, a fiber pressure sensor with the sensitivity of 0.24 rad/N is demonstrated. The corresponding stress-optic coefficient of the fiber is measured. In addition to pressure sensing, this technology could be applied in detecting any polarization state change induced by magnetic fields, electric currents and so on.

  8. Switchable DNA wire: deposition-stripping of copper nanoclusters as an "ON-OFF" nanoswitch.

    Science.gov (United States)

    Zhu, Xiaoli; Liu, Siyu; Cao, Jiepei; Mao, Xiaoxia; Li, Genxi

    2016-01-19

    Today, a consensus that DNA working as a molecular wire shows promise in nanoscale electronics is reached. Considering that the "ON-OFF" switch is the basis of a logic circuit, the switch of DNA-mediated charge transport (DNA CT) should be conquered. Here, on the basis of chemical or electrochemical deposition and stripping of DNA-templated copper nanoclusters (CuNCs), we develop an "ON-OFF" nanoswitch for DNA CT. While CuNCs are deposited, the DNA CT is blocked, which can be also recovered after stripping the CuNCs. A switch cycle can be completed in a few seconds and can be repeated for many times. Moreover, by regulating the amount of reagents, deposition/stripping time, applied potential, etc., the switch is adjustable to make the wire at either an "ON-OFF" state or an intermediate state. We believe that this concept and the successful implementation will promote the practical application of DNA wire one step further.

  9. Switchable DNA wire: deposition-stripping of copper nanoclusters as an “ON-OFF” nanoswitch

    Science.gov (United States)

    Zhu, Xiaoli; Liu, Siyu; Cao, Jiepei; Mao, Xiaoxia; Li, Genxi

    2016-01-01

    Today, a consensus that DNA working as a molecular wire shows promise in nanoscale electronics is reached. Considering that the “ON-OFF” switch is the basis of a logic circuit, the switch of DNA-mediated charge transport (DNA CT) should be conquered. Here, on the basis of chemical or electrochemical deposition and stripping of DNA-templated copper nanoclusters (CuNCs), we develop an “ON-OFF” nanoswitch for DNA CT. While CuNCs are deposited, the DNA CT is blocked, which can be also recovered after stripping the CuNCs. A switch cycle can be completed in a few seconds and can be repeated for many times. Moreover, by regulating the amount of reagents, deposition/stripping time, applied potential, etc., the switch is adjustable to make the wire at either an “ON-OFF” state or an intermediate state. We believe that this concept and the successful implementation will promote the practical application of DNA wire one step further. PMID:26781761

  10. Universal transport characteristics of multiple topological superconducting wires with large charging energy

    Energy Technology Data Exchange (ETDEWEB)

    Kashuba, Oleksiy; Trauzettel, Bjoern [Institut fuer Theoretische Physik und Astrophysik, Universitaet Wuerzburg, 97074 Wuerzburg (Germany); Timm, Carsten [Institut fuer Theoretische Physik, TU Dresden, 01062 Dresden (Germany)

    2016-07-01

    The system with multiple Majorana states coupled to the normal lead can potentially support the interaction between Majorana fermions and electrons. Such system can be implemented by several floating topological superconducting wires with large charging energy asymmetrically coupled to two normal leads. The analysis of the renormalization flow shows that there is a single fixed point - the strong coupling limit of isotropic antiferromagnetic Kondo model. The topological Kondo-like interaction leads also to the selective renormalization of the tunneling coefficients, strongly enhancing one component and suppressing others. Thus, charging energy crucially changes the transport properties of the system leading to the universal single-channel conductance independently from the values of the initial leads-wires coupling.

  11. Measuring the complex admittance and tunneling rate of a germanium hut wire hole quantum dot

    Science.gov (United States)

    Li, Yan; Li, Shu-Xiao; Gao, Fei; Li, Hai-Ou; Xu, Gang; Wang, Ke; Liu, He; Cao, Gang; Xiao, Ming; Wang, Ting; Zhang, Jian-Jun; Guo, Guo-Ping

    2018-05-01

    We investigate the microwave reflectometry of an on-chip reflection line cavity coupled to a Ge hut wire hole quantum dot. The amplitude and phase responses of the cavity can be used to measure the complex admittance and evaluate the tunneling rate of the quantum dot, even in the region where transport signal through the quantum dot is too small to be measured by conventional direct transport means. The experimental observations are found to be in good agreement with a theoretical model of the hybrid system based on cavity frequency shift and linewidth shift. Our experimental results take the first step towards fast and sensitive readout of charge and spin states in Ge hut wire hole quantum dot.

  12. Hydrogenic donor impurity in parallel-triangular quantum wires: Hydrostatic pressure and applied electric field effects

    International Nuclear Information System (INIS)

    Restrepo, R.L.; Giraldo, E.; Miranda, G.L.; Ospina, W.; Duque, C.A.

    2009-01-01

    The combined effects of the hydrostatic pressure and in-growth direction applied electric field on the binding energy of hydrogenic shallow-donor impurity states in parallel-coupled-GaAs-Ga 1-x Al x As-quantum-well wires are calculated using a variational procedure within the effective-mass and parabolic-band approximations. Results are obtained for several dimensions of the structure, shallow-donor impurity positions, hydrostatic pressure, and applied electric field. Our results suggest that external inputs such us hydrostatic pressure and in-growth direction electric field are two useful tools in order to modify the binding energy of a donor impurity in parallel-coupled-quantum-well wires.

  13. Nano-powder production by electrical explosion of wires

    International Nuclear Information System (INIS)

    Mao Zhiguo; Zou Xiaobing; Wang Xinxin; Jiang Weihua

    2010-01-01

    A device for nano-powder production by electrical explosion of wires was designed and built. Eight wires housed in the discharge chamber are exploded one by one before opening the chamber for the collection of the produced nano-powder. To increase the rate of energy deposition into a wire, the electrical behavior of the discharge circuit including the exploding wire was simulated. The results showed that both reducing the circuit inductance and reducing the capacitance of the energy-storage capacitor (keeping the storage energy constant) can increase the energy deposition rate. To better understand the physical processes of the nano-powder formation by the wire vapor, a Mach-Zehnder interferometer was used to record the time evolution of the wire vapor as well as the plasma. A thermal expansion lag of the dense vapor core as well as more than one times of the vapor burst was observed for the first time. Finally, nano-powders of titanium nitride, titanium dioxide, copper oxides and zinc oxide were produced by electrical explosion of wires. (authors)

  14. Strain sensing systems tailored for tensile measurement of fragile wires

    Science.gov (United States)

    Nyilas, Arman

    2005-12-01

    Fundamental stress versus strain measurements were completed on superconducting Nb3Sn wires within the framework of IEC/TC90 and VAMAS/TWA16. A key task was the assessment of sensing systems regarding resolution, accuracy, and precision when measuring Young's modulus. Prior to actual Nb3Sn wire measurements metallic wires, consisting of copper and stainless steel having diameters similar to the Nb3Sn wire, were extensively investigated with respect to their elastic line properties using different types of extensometers. After these calibration tests Nb3Sn wire measurements of different companies resulted in several important facts with respect to total size and weight of the used extensometers. The size could be correlated to the initial stage of stress versus strain behaviour. In fact, the effect of wire curls resulting from the production line had a profound effect on Young's modulus measurements. Within this context, the possibility of determining Young's modulus from unloading compliance lines in the plastic regime of the stress-strain curve was considered. The data obtained using this test methodology were discussed under consideration of the composite nature of Nb3Sn wire. In addition, a non-contacting sensing system based on a double-beam laser extensometer was used to investigate the potential of this new sensing system.

  15. Strain sensing systems tailored for tensile measurement of fragile wires

    International Nuclear Information System (INIS)

    Nyilas, Arman

    2005-01-01

    Fundamental stress versus strain measurements were completed on superconducting Nb 3 Sn wires within the framework of IEC/TC90 and VAMAS/TWA16. A key task was the assessment of sensing systems regarding resolution, accuracy, and precision when measuring Young's modulus. Prior to actual Nb 3 Sn wire measurements metallic wires, consisting of copper and stainless steel having diameters similar to the Nb 3 Sn wire, were extensively investigated with respect to their elastic line properties using different types of extensometers. After these calibration tests Nb 3 Sn wire measurements of different companies resulted in several important facts with respect to total size and weight of the used extensometers. The size could be correlated to the initial stage of stress versus strain behaviour. In fact, the effect of wire curls resulting from the production line had a profound effect on Young's modulus measurements. Within this context, the possibility of determining Young's modulus from unloading compliance lines in the plastic regime of the stress-strain curve was considered. The data obtained using this test methodology were discussed under consideration of the composite nature of Nb 3 Sn wire. In addition, a non-contacting sensing system based on a double-beam laser extensometer was used to investigate the potential of this new sensing system

  16. Beam Position and Phase Monitor - Wire Mapping System

    International Nuclear Information System (INIS)

    Watkins, Heath A.; Shurter, Robert B.; Gilpatrick, John D.; Kutac, Vincent G.; Martinez, Derwin

    2012-01-01

    The Los Alamos Neutron Science Center (LANSCE) deploys many cylindrical beam position and phase monitors (BPPM) throughout the linac to measure the beam central position, phase and bunched-beam current. Each monitor is calibrated and qualified prior to installation to insure it meets LANSCE requirements. The BPPM wire mapping system is used to map the BPPM electrode offset, sensitivity and higher order coefficients. This system uses a three-axis motion table to position the wire antenna structure within the cavity, simulating the beam excitation of a BPPM at a fundamental frequency of 201.25 MHz. RF signal strength is measured and recorded for the four electrodes as the antenna position is updated. An effort is underway to extend the systems service to the LANSCE facility by replacing obsolete electronic hardware and taking advantage of software enhancements. This paper describes the upgraded wire positioning system's new hardware and software capabilities including its revised antenna structure, motion control interface, RF measurement equipment and Labview software upgrades. The main purpose of the wire mapping system at LANSCE is to characterize the amplitude response versus beam central position of BPPMs before they are installed in the beam line. The wire mapping system is able to simulate a beam using a thin wire and measure the signal response as the wire position is varied within the BPPM aperture.

  17. The status of commercial and developmental HTS wires

    Energy Technology Data Exchange (ETDEWEB)

    Masur, L.J.; Buczek, D.; Harley, E.; Kodenkandath, T.; Li, X.; Lynch, J.; Nguyen, N.; Rupich, M.; Schoop, U.; Scudiere, J.; Siegal, E.; Thieme, C.; Verebelyi, D.; Zhang, W.; Kellers, J

    2003-10-15

    This paper provides an update on the development, performance and application of first and second generation high temperature superconductor (HTS) wires fabricated at American Superconductor (AMSC). First generation, multifilamentary composite wire is available commercially today in different viable product forms. This conductor carries 140 x the current of copper of the same cross-section, and is robust enough to stand tough industrial requirements. Second generation HTS wires, having a coated conductor composite architecture, are under development today and achieved substantial progress recently. AMSC's first generation wire will continue as the workhorse of the industry for the next 3-4 years while AMSC's second generation coated conductor wire is on track to be reproducible, uniform, scalable, and low cost. This paper provides a product differentiation with a view on the application of HTS wire in the electric power sector. Basic engineering data is reviewed that shall aid the engineer in the selection of the HTS wire product.

  18. Cleanliness of disposable vs nondisposable electrocardiography lead wires in children.

    Science.gov (United States)

    Addison, Nancy; Quatrara, Beth; Letzkus, Lisa; Strider, David; Rovnyak, Virginia; Syptak, Virginia; Fuzy, Lisa

    2014-09-01

    Mediastinitis costs hospitals thousands of dollars a year and increases the incidence of patient morbidity and mortality. No studies have been done to evaluate adenosine triphosphate (ATP) counts on disposable and nondisposable electrocardiography (ECG) lead wires in pediatric patients. To compare the cleanliness of disposable and nondisposable ECG lead wires in postoperative pediatric cardiac surgery patients by measuring the quantity of ATP (in relative luminescence units [RLUs]). ATP levels correlate with microbial cell counts and are used by institutions to assess hospital equipment and cleanliness. A prospective, randomized trial was initiated with approval from the institutional review board. Verbal consent was obtained from the parents/guardians for each patient. Trained nurses performed ATP swabs on the right and left upper ECG cables on postoperative days 1, 2, and 3. This study enrolled 51 patients. The disposable ECG lead wire ATP count on postoperative day 1 (median, 157 RLUs) was significantly lower (P disposable ECG lead wires (median, 200 RLUs) was also lower (P = .06) than the count for the nondisposable ECG lead wires (median, 453 RLUs). Results of this study support the use of disposable ECG lead wires in postoperative pediatric cardiac surgery patients for at least the first 48 hours as a direct strategy to reduce the ATP counts on ECG lead wires. ©2014 American Association of Critical-Care Nurses.

  19. Experience of precision measuring distances by invar wires at accelerators

    International Nuclear Information System (INIS)

    Porubaj, N.I.

    1977-01-01

    With a view to determining the deformations and displacements of the ring foundation of the ITEP accelerator, the method of very accurate distance measurements by means of invar wires and strips is described. Measurement errors are analyzed. This method has allowed to measure distances up to 40 m with a mean-square error of less than 40 μm. The calibration accuracy of 3 and 25-m measuring wires has been determined to be +- 27 μm. Time instability of the wires is +- 16 μm. It is shown that strips are more stable in time than wires. Elongation of 6, 19, 25 and 38 m invar wires has been measured as function of the tension time. The error due to tension of a 38-m wire may be tangible. Data on thermal coefficient variation in time has been obtained for invar wires and strips. The multiannual measurements of the ring foundation deformations show that variations of the mean radius are caused by increases of concrete temperature. Temperature increase by only 1 deg caused mean radius increase of 0.3 mm

  20. Thermal performance in circular tube fitted with coiled square wires

    International Nuclear Information System (INIS)

    Promvonge, Pongjet

    2008-01-01

    The effects of wires with square cross section forming a coil used as a turbulator on the heat transfer and turbulent flow friction characteristics in a uniform heat flux, circular tube are experimentally investigated in the present work. The experiments are performed for flows with Reynolds numbers ranging from 5000 to 25,000. Two different spring coiled wire pitches are introduced. The results are also compared with those obtained from using a typical coiled circular wire, apart from the smooth tube. The experimental results reveal that the use of coiled square wire turbulators leads to a considerable increase in heat transfer and friction loss over those of a smooth wall tube. The Nusselt number increases with the rise of Reynolds number and the reduction of pitch for both circular and square wire coils. The coiled square wire provides higher heat transfer than the circular one under the same conditions. Also, performance evaluation criteria to assess the real benefits in using both coil wires of the enhanced tube are determined