WorldWideScience

Sample records for wire-patch cells wpcs

  1. Effects of fire retardants on physical, mechanical, and fire properties of flat-pressed WPCs

    Science.gov (United States)

    Nadir Ayrilmis; Jan T. Benthien; Heiko Thoemen; Robert H. White

    2012-01-01

    Physical, mechanical, and fire properties of the flat-pressed wood plastic composites (WPCs) incorporated with various fire retardants (10% by weight) at different levels of wood flour (WF) content, 40, 50, or 60 wt%, were investigated. The WPC panels were made from dry-blended WF, polypropylene (PP), and fire retardant (FR) powders with maleic anhydride-grafted PP (2...

  2. Wood plastic composites from modified wood. Part 3. Durability of WPCs with bioderived matrix

    NARCIS (Netherlands)

    Westin, M.; Larsson-Brelid, P.; Segerholm, B.K.; Oever, van den M.J.A.

    2008-01-01

    The decay resistance of fully bio-derived wood plastic composites, WPCs, was tested in both laboratory and field tests. The laboratory tests were performed according to modified versions of AWPA E10 (soil-block test) and ENV 807 (tests in three un-sterile soils) and the field tests according to EN

  3. Co-extrusion of WPCs with a clear cap layer to improve color stability

    Science.gov (United States)

    Nicole M. Stark; Laurent M. Matuana

    2009-01-01

    Wood-plastic composites (WPCs) have been gaining market share in residential construction applications such as lumber for decking, roof tiles, and siding. The durability of these materials in exterior environments is just beginning to be understood. Current research suggests that controlling moisture absorption by the composite is key to improving durability. Methods...

  4. Properties of wood-plastic composites (WPCs) reinforced with extracted and delignified wood flour

    Science.gov (United States)

    Yao Chen; Nicole M. Stark; Mandla A. Tshabalala; Jianmin Gao; Yongming Fan

    2014-01-01

    The water sorption and mechanical properties of wood-plastic composites (WPCs) made of extracted and delignified wood flour (WF) has been investigated. WF was prepared by extraction with the solvent systems toluene/ethanol (TE), acetone/water (AW), and hot water (HW), and its delignification was conducted by means of sodium chlorite/acetic acid (AA) solution. A 2 4...

  5. REMOTE MATERIAL HANDLING IN THE YUCCA MOUNTAIN WASTE PACKAGE CLOSURE CELL AND SUPPORT AREA GLOVEBOX

    International Nuclear Information System (INIS)

    K.M. Croft; S.M. Allen; M.W. Borland

    2005-01-01

    The Yucca Mountain Waste Package Closure System (WPCS) cells provide for shielding of highly radioactive materials contained in unsealed waste packages. The purpose of the cells is to provide safe environments for package handling and sealing operations. Once sealed, the packages are placed in the Yucca Mountain Repository. Closure of a typical waste package involves a number of remote operations. Those involved typically include the placement of matched lids onto the waste package. The lids are then individually sealed to the waste package by welding. Currently, the waste package includes three lids. One lid is placed before movement of the waste package to the closure cell; the final two are placed inside the closure cell, where they are welded to the waste package. These and other important operations require considerable remote material handling within the cell environment. This paper discusses the remote material handling equipment, designs, functions, operations, and maintenance, relative to waste package closure

  6. Hot water extracted wood fiber for production of wood plastic composites (WPCs)

    Science.gov (United States)

    Manuel Raul Pelaez-Samaniego; Vikram Yadama; Eini Lowell; Thomas E. Amidon; Timothy L. Chaffee

    2013-01-01

    Undebarked ponderosa pine chips were treated by hot water extraction to modify the chemical composition. In the treated pine (TP) , the mass was reduced by approximately 20%, and the extract was composed mainly of degradation products of hemicelluloses. Wood flour produced from TP and unextracted chips (untreated pine, UP) was blended with high-density polyethylene (...

  7. Stem Cells

    Science.gov (United States)

    Stem cells are cells with the potential to develop into many different types of cells in the body. They serve as a repair ... body. There are two main types of stem cells: embryonic stem cells and adult stem cells. Stem ...

  8. Cell-cell channels

    National Research Council Canada - National Science Library

    Baluška, F; Volkmann, Dieter; Barlow, P. W

    2006-01-01

    ...-Negative Bacteria Pheromone-Responsive Conjugative Plasmids in E. faecalis Nonpheromone-Responsive Plasmids in G+ Bacteria 21 22 27 28 Section II: Ciliate Cells 3. The Tetrahymena Conjugation Ju...

  9. Fuel cells

    Science.gov (United States)

    Hooie, D. T.; Harrington, B. C., III; Mayfield, M. J.; Parsons, E. L.

    1992-07-01

    The primary objective of DOE's Fossil Energy Fuel Cell program is to fund the development of key fuel cell technologies in a manner that maximizes private sector participation and in a way that will give contractors the opportunity for a competitive posture, early market entry, and long-term market growth. This summary includes an overview of the Fuel Cell program, an elementary explanation of how fuel cells operate, and a synopsis of the three major fuel cell technologies sponsored by the DOE/Fossil Energy Phosphoric Acid Fuel Cell program, the Molten Carbonate Fuel Cell program, and the Solid Oxide Fuel Cell program.

  10. Cell Motility

    CERN Document Server

    Lenz, Peter

    2008-01-01

    Cell motility is a fascinating example of cell behavior which is fundamentally important to a number of biological and pathological processes. It is based on a complex self-organized mechano-chemical machine consisting of cytoskeletal filaments and molecular motors. In general, the cytoskeleton is responsible for the movement of the entire cell and for movements within the cell. The main challenge in the field of cell motility is to develop a complete physical description on how and why cells move. For this purpose new ways of modeling the properties of biological cells have to be found. This long term goal can only be achieved if new experimental techniques are developed to extract physical information from these living systems and if theoretical models are found which bridge the gap between molecular and mesoscopic length scales. Cell Motility gives an authoritative overview of the fundamental biological facts, theoretical models, and current experimental developments in this fascinating area.

  11. Photovoltaic Cells

    Directory of Open Access Journals (Sweden)

    Karolis Kiela

    2012-04-01

    Full Text Available The article deals with an overview of photovoltaic cells that are currently manufactured and those being developed, including one or several p-n junction, organic and dye-sensitized cells using quantum dots. The paper describes the advantages and disadvantages of various photovoltaic cells, identifies the main parameters, explains the main reasons for the losses that may occur in photovoltaic cells and looks at the ways to minimize them.Article in Lithuanian

  12. Electrochemical Cell

    DEFF Research Database (Denmark)

    1999-01-01

    The invention relates to a rechargeable electrochemical cell comprising a negative electrode, an electrolyte and a positive electrode in which the positive electrode structure comprises a lithium cobalt manganese oxide of the composition Li¿2?Co¿y?Mn¿2-y?O¿4? where 0 ... for capacity losses in lithium ion cells and lithium-alloy cells....

  13. Types of Stem Cells

    Science.gov (United States)

    ... PDF) Download an introduction to stem cells and stem cell research. Stem Cell Glossary Stem cell terms to know. ... stem cells blog from the International Society for Stem Cell Research. Learn About Stem Cells From Lab to You ...

  14. Cell suicide

    International Nuclear Information System (INIS)

    May, E.; Coffigny, H.

    2000-01-01

    In the fight of the cell against the damages caused to its DNA by genotoxic agents and specially by ionizing radiations, the p53 protein plays a central part. It intervenes in the proliferation control and the differentiation but also in the keeping of genome integrity. It can direct the damages cells toward suicide, or apoptosis, to avoid the risk of tumor appearance that would be fatal to the whole organism. That is by the disordered state of cells suicide programs that the tumor cells are going to develop. The knowledge of apoptosis mechanisms, to eventually start them on demand, rises up broad hopes in the cancer therapy. (N.C.)

  15. Fuel Cells

    DEFF Research Database (Denmark)

    Smith, Anders; Pedersen, Allan Schrøder

    2014-01-01

    Fuel cells have been the subject of intense research and development efforts for the past decades. Even so, the technology has not had its commercial breakthrough yet. This entry gives an overview of the technological challenges and status of fuel cells and discusses the most promising applications...

  16. Fuel Cells

    Science.gov (United States)

    Hawkins, M. D.

    1973-01-01

    Discusses the theories, construction, operation, types, and advantages of fuel cells developed by the American space programs. Indicates that the cell is an ideal small-scale power source characterized by its compactness, high efficiency, reliability, and freedom from polluting fumes. (CC)

  17. Stem Cells

    DEFF Research Database (Denmark)

    Sommerlund, Julie

    2004-01-01

    '. This paper is about tech-noscience, and about the proliferation of connections and interdependencies created by it.More specifically, the paper is about stem cells. Biotechnology in general has the power to capture the imagination. Within the field of biotechnology nothing seems more provocative...... and tantalizing than stem cells, in research, in medicine, or as products....

  18. Solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Tsukamoto, Moriaki; Hayashibara, Mitsuo

    1988-08-18

    Concerning the exsisting solar cell utilizing wavelength transition, the area of the solar cell element necessary for unit electric power output can be made small, but transition efficiency of the solar cell as a whole including a plastic plate with phosphor is not high. This invention concerns a solar cell which is appropriate for transferring the light within a wide spectrum range of the sunlight to electricilty efficiently, utilizes wavelength transition and has high efficiency per unit area. In other words, the solar cell of this invention has the feature of providing in parallel with a photoelectric transfer layer a layer of wavelength transitioning material (phosphor) which absorbs the light within the range of wavelength of low photoelectric transfer efficiency at the photoelectric transfer layer and emits the light within the range of wavelength in which the photoelectric transfer rate is high on the light incident side of the photoelectric transfer layer. (5 figs)

  19. Bi-Cell Unit for Fuel Cell.

    Science.gov (United States)

    The patent concerns a bi-cell unit for a fuel cell . The bi-cell unit is comprised of two electrode packs. Each of the electrode packs includes an...invention relates in general to a bi-cell unit for a fuel cell and in particular, to a bi-cell unit for a hydrazine-air fuel cell .

  20. Dry cell battery poisoning

    Science.gov (United States)

    Batteries - dry cell ... Acidic dry cell batteries contain: Manganese dioxide Ammonium chloride Alkaline dry cell batteries contain: Sodium hydroxide Potassium hydroxide Lithium dioxide dry cell batteries ...

  1. Use of recycled plastics in wood plastic composites - a review.

    Science.gov (United States)

    Kazemi Najafi, Saeed

    2013-09-01

    The use of recycled and waste thermoplastics has been recently considered for producing wood plastic composites (WPCs). They have great potential for WPCs manufacturing according to results of some limited researches. This paper presents a detailed review about some essential properties of waste and recycled plastics, important for WPCs production, and of research published on the effect of recycled plastics on the physical and mechanical properties of WPCs. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Electrochemical cell

    Science.gov (United States)

    Redey, L.I.; Myles, K.M.; Vissers, D.R.; Prakash, J.

    1996-07-02

    An electrochemical cell is described with a positive electrode having an electrochemically active layer of at least one transition metal chloride. A negative electrode of an alkali metal and a compatible electrolyte including an alkali metal salt molten at cell operating temperature is included in the cell. The electrolyte is present at least partially as a corrugated {beta}{double_prime} alumina tube surrounding the negative electrode interior to the positive electrode. The ratio of the volume of liquid electrolyte to the volume of the positive electrode is in the range of from about 0.1 to about 3. A plurality of stacked electrochemical cells is disclosed each having a positive electrode, a negative electrode of an alkali metal molten at cell operating temperature, and a compatible electrolyte. The electrolyte is at least partially present as a corrugated {beta}{double_prime} alumina sheet separating the negative electrode and interior to the positive electrodes. The alkali metal is retained in a porous electrically conductive ceramic, and seals for sealing the junctures of the electrolyte and the adjacent electrodes at the peripheries thereof. 8 figs.

  3. Electrochemical cell

    Science.gov (United States)

    Kaun, T.D.

    An improved secondary electrochemical cell is disclosed having a negative electrode of lithium aluminum, a positive electrode of iron sulfide, a molten electrolyte of lithium chloride and potassium chloride, and the combination that the fully charged theoretical capacity of the negative electrode is in the range of 0.5 to 1.0 that of the positive electrode. The cell thus is negative electrode limiting during discharge cycling. Preferably, the negative electrode contains therein, in the approximate range of 1 to 10 volume % of the electrode, an additive from the materials of graphitized carbon, aluminum-iron alloy, and/or magnesium oxide.

  4. Solar cells

    International Nuclear Information System (INIS)

    1980-01-01

    A method of producing solar cells is described which consists of producing a substantially monocrystalline tubular body of silicon or other suitable semiconductor material, treating this body to form an annular rectifying junction and then cutting it longitudinally to form a number of nearly flat ribbons from which the solar cells are fabricated. The P=N rectifying junction produced by the formation of silicon dioxide on the layers at the inner and outer surfaces of the body can be formed by ion-implantation or diffusion. (U.K.)

  5. Tuning Collective Cell Migration by Cell-Cell Junction Regulation

    NARCIS (Netherlands)

    Friedl, P.; Mayor, R.

    2017-01-01

    Collective cell migration critically depends on cell-cell interactions coupled to a dynamic actin cytoskeleton. Important cell-cell adhesion receptor systems implicated in controlling collective movements include cadherins, immunoglobulin superfamily members (L1CAM, NCAM, ALCAM), Ephrin/Eph

  6. The use of new, aqueous chemical wood modifications to improve the durability of wood-plastic composites

    Science.gov (United States)

    Rebecca E. Ibach; Craig M. Clemons; George C. Chen

    2017-01-01

    The wood flour used in wood-plastic composites (WPCs) can biologically deteriorate and thus the overall mechanical performance of WPCs decrease when exposed to moisture and fungal decay. Protecting the wood flour by chemical modification can improve the durability of the wood in a nontoxic way so it is not harmful to the environment. WPCs were made with modified wood...

  7. Considerations in the weathering of wood-plastic composites

    Science.gov (United States)

    Nicole M. Stark

    2007-01-01

    During weathering, wood-plastic composites (WPCs) can fade and lose stiffness and strength. Weathering variables that induce these changes include exposure to UV light and water. Each variable degrades WPCs independently, but can also act synergistically. Recent efforts have highlighted the need to understand how WPCs weather, and to develop schemes for protection. The...

  8. Energy storage cells

    Energy Technology Data Exchange (ETDEWEB)

    Gulia, N.V.

    1980-01-01

    The book deals with the characteristics and potentialities of energy storage cells of various types. Attention is given to electrical energy storage cells (electrochemical, electrostatic, and electrodynamic cells), mechanical energy storage cells (mechanical flywheel storage cells), and hybrid storage systems.

  9. Squamous Cell Carcinoma

    Science.gov (United States)

    ... Kids’ zone Video library Find a dermatologist Squamous cell carcinoma Overview Squamous cell carcinoma: This man's skin ... a squamous cell carcinoma on his face. Squamous cell carcinoma: Overview Squamous cell carcinoma (SCC) is a ...

  10. Learn About Stem Cells

    Science.gov (United States)

    ... PDF) Download an introduction to stem cells and stem cell research. Stem Cell Glossary Stem cell terms to know. ... ISSCR Get Involved Media © 2015 International Society for Stem Cell Research Terms of Use Disclaimer Privacy Policy

  11. Electrochemical cell

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, D.H.; Kubala, D.M.; Bennett, R.J.

    1977-01-13

    The high energy densities of primary cells on the basis of lithium or sodium as anode material, liquid cathode materials and nonaqueous electrolytes could not previously be fully utilised, because volume changes appearing during the discharge process inside the cell lead to an increase of cell impedance. In order to overcome this disadvantage, according to the invention a tube consisting of carbon which is slotted in the longitudinal direction is used as the cathode current collector. It is elastic in the radial direction and exerts an even pressure in the beaker-shaped cell vessel on the separator and therefore on the anode material touching the inner wall of the vessel. In order to achieve the elastic deformability of the cathode current collector, acetylene soot is used, to which are added as described in the invention, elastomers and/or mixed polymers in quantities of 10 to 30% by weight. Further claims concern the use of at least one oxyhalide of an element of groups V or VI or a halide of an element of groups IV, V or VI of the periodic table in the cathode solution.

  12. Potent Cells

    Science.gov (United States)

    Liu, Dennis

    2007-01-01

    It seems hard to believe that Dolly the cloned sheep was born 10 years ago, kindling furious arguments over the prospects and ethics of cloning a human. Today, the controversy over cloning is entwined, often confused, with concerns over the use of human embryonic stem cells. Most people are unclear what cloning is, and they know even less when it…

  13. Fuel cells:

    DEFF Research Database (Denmark)

    Sørensen, Bent

    2013-01-01

    A brief overview of the progress in fuel cell applications and basic technology development is presented, as a backdrop for discussing readiness for penetration into the marketplace as a solution to problems of depletion, safety, climate or environmental impact from currently used fossil...... and nuclear fuel-based energy technologies....

  14. Stem Cells

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 12; Issue 3. Stem Cells: A Dormant Volcano Within Our Body? Devaveena Dey Annapoorni Rangarajan. General Article Volume 12 Issue 3 March 2007 pp 27-34. Fulltext. Click here to view fulltext PDF. Permanent link:

  15. Photovoltaic cell

    Science.gov (United States)

    Gordon, Roy G.; Kurtz, Sarah

    1984-11-27

    In a photovoltaic cell structure containing a visibly transparent, electrically conductive first layer of metal oxide, and a light-absorbing semiconductive photovoltaic second layer, the improvement comprising a thin layer of transition metal nitride, carbide or boride interposed between said first and second layers.

  16. Fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Enomoto, Hirofumi.

    1989-05-22

    This invention aims to maintain a long-term operation with stable cell output characteristics by uniformly supplying an electrolyte from the reserver to the matrix layer over the entire matrix layer, and further to prevent the excessive wetting of the catalyst layer by smoothly absorbing the volume change of the electrolyte, caused by the repeated stop/start-up of the fuel cell, within the reserver system. For this purpose, in this invention, an electrolyte transport layer, which connects with an electrolyte reservor formed at the electrode end, is partly formed between the electrode material and the catalyst layer; a catalyst layer, which faces the electrolyte transport layer, has through-holes, which connect to the matrix, dispersely distributed. The electrolyte-transport layer is a thin sheet of a hydrophilic fibers which are non-wovens of such fibers as carbon, silicon carbide, silicon nitride or inorganic oxides. 11 figs.

  17. Tuning Collective Cell Migration by Cell-Cell Junction Regulation.

    Science.gov (United States)

    Friedl, Peter; Mayor, Roberto

    2017-04-03

    Collective cell migration critically depends on cell-cell interactions coupled to a dynamic actin cytoskeleton. Important cell-cell adhesion receptor systems implicated in controlling collective movements include cadherins, immunoglobulin superfamily members (L1CAM, NCAM, ALCAM), Ephrin/Eph receptors, Slit/Robo, connexins and integrins, and an adaptive array of intracellular adapter and signaling proteins. Depending on molecular composition and signaling context, cell-cell junctions adapt their shape and stability, and this gradual junction plasticity enables different types of collective cell movements such as epithelial sheet and cluster migration, branching morphogenesis and sprouting, collective network migration, as well as coordinated individual-cell migration and streaming. Thereby, plasticity of cell-cell junction composition and turnover defines the type of collective movements in epithelial, mesenchymal, neuronal, and immune cells, and defines migration coordination, anchorage, and cell dissociation. We here review cell-cell adhesion systems and their functions in different types of collective cell migration as key regulators of collective plasticity. Copyright © 2017 Cold Spring Harbor Laboratory Press; all rights reserved.

  18. Electrorefining cell evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Bronson, M.C.; Thomas, R.L. (ed.)

    1989-04-14

    Operational characteristics of the LANL electrorefining cell, a modified LANL electrorefining cell, and an advanced electrorefining cell (known as the CRAC cell) were determined. Average process yields achieved were: 75% for the LANL cell, 82% for the modified LANL cell, and 86% for the CRAC cell. All product metal from the LANL and modified LANL cells was within foundry specifications. Metal from one run in the CRAC cell exceeded foundry specifications for tantalum. The LANL and modified LANL cells were simple in design and operation, but product separation was more labor intensive than with the CRAC cell. The CRAC cell was more complicated in design but remained relatively simple in operation. A decision analysis concluded that the modified LANL cell was the preferred cell. It was recommended that the modified LANL cell be implemented by the Plutonium Recovery Project at Rocky Flats and that development of the CRAC cell continue. 8 refs., 22 figs., 12 tabs.

  19. Basal Cell Carcinoma

    Science.gov (United States)

    ... Kids’ zone Video library Find a dermatologist Basal cell carcinoma Overview Basal cell carcinoma: This skin cancer ... that has received years of sun exposure. Basal cell carcinoma: Overview Basal cell carcinoma (BCC) is the ...

  20. Stem Cell Basics

    Science.gov (United States)

    ... healthy cells replace damaged cells in adult organisms. Stem cell research is one of the most fascinating areas of ... as with many expanding fields of scientific inquiry, research on stem cells raises scientific questions as rapidly as it generates ...

  1. Sickle cell anemia

    Science.gov (United States)

    Anemia - sickle cell; Hemoglobin SS disease (Hb SS); Sickle cell disease ... Sickle cell anemia is caused by an abnormal type of hemoglobin called hemoglobin S. Hemoglobin is a protein inside red blood cells ...

  2. DNA-cell conjugates

    Science.gov (United States)

    Hsiao, Shih-Chia; Francis, Matthew B.; Bertozzi, Carolyn; Mathies, Richard; Chandra, Ravi; Douglas, Erik; Twite, Amy; Toriello, Nicholas; Onoe, Hiroaki

    2016-05-03

    The present invention provides conjugates of DNA and cells by linking the DNA to a native functional group on the cell surface. The cells can be without cell walls or can have cell walls. The modified cells can be linked to a substrate surface and used in assay or bioreactors.

  3. Potency of Stem Cells

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. Potency of Stem Cells. Totipotent Stem Cells (Zygote + first 2 divisions). -Can form placenta, embryo, and any cell of the body. Pluripotent (Embryonic Stem Cells). -Can form any cell of the body but can not form placenta, hence no embryo. Multipotent (Adult stem cells).

  4. Skin Stem Cells in Skin Cell Therapy

    Directory of Open Access Journals (Sweden)

    Mollapour Sisakht

    2015-12-01

    Full Text Available Context Preclinical and clinical research has shown that stem cell therapy is a promising therapeutic option for many diseases. This article describes skin stem cells sources and their therapeutic applications. Evidence Acquisition Compared with conventional methods, cell therapy reduces the surgical burden for patients because it is simple and less time-consuming. Skin cell therapy has been developed for variety of diseases. By isolation of the skin stem cell from the niche, in vitro expansion and transplantation of cells offers a surprising healing capacity profile. Results Stem cells located in skin cells have shown interesting properties such as plasticity, transdifferentiation, and specificity. Mesenchymal cells of the dermis, hypodermis, and other sources are currently being investigated to promote regeneration. Conclusions Because skin stem cells are highly accessible from autologous sources and their immunological profile is unique, they are ideal for therapeutic approaches. Optimization of administrative routes requires more investigation own to the lack of a standard protocol.

  5. NKT Cell Responses to B Cell Lymphoma.

    Science.gov (United States)

    Li, Junxin; Sun, Wenji; Subrahmanyam, Priyanka B; Page, Carly; Younger, Kenisha M; Tiper, Irina V; Frieman, Matthew; Kimball, Amy S; Webb, Tonya J

    2014-06-01

    Natural killer T (NKT) cells are a unique subset of CD1d-restricted T lymphocytes that express characteristics of both T cells and natural killer cells. NKT cells mediate tumor immune-surveillance; however, NKT cells are numerically reduced and functionally impaired in lymphoma patients. Many hematologic malignancies express CD1d molecules and co-stimulatory proteins needed to induce anti-tumor immunity by NKT cells, yet most tumors are poorly immunogenic. In this study, we sought to investigate NKT cell responses to B cell lymphoma. In the presence of exogenous antigen, both mouse and human NKT cell lines produce cytokines following stimulation by B cell lymphoma lines. NKT cell populations were examined ex vivo in mouse models of spontaneous B cell lymphoma, and it was found that during early stages, NKT cell responses were enhanced in lymphoma-bearing animals compared to disease-free animals. In contrast, in lymphoma-bearing animals with splenomegaly and lymphadenopathy, NKT cells were functionally impaired. In a mouse model of blastoid variant mantle cell lymphoma, treatment of tumor-bearing mice with a potent NKT cell agonist, α-galactosylceramide (α-GalCer), resulted in a significant decrease in disease pathology. Ex vivo studies demonstrated that NKT cells from α-GalCer treated mice produced IFN-γ following α-GalCer restimulation, unlike NKT cells from vehicle-control treated mice. These data demonstrate an important role for NKT cells in the immune response to an aggressive hematologic malignancy like mantle cell lymphoma.

  6. Epithelial cell polarity, stem cells and cancer

    DEFF Research Database (Denmark)

    Martin-Belmonte, Fernando; Perez-Moreno, Mirna

    2011-01-01

    After years of extensive scientific discovery much has been learned about the networks that regulate epithelial homeostasis. Loss of expression or functional activity of cell adhesion and cell polarity proteins (including the PAR, crumbs (CRB) and scribble (SCRIB) complexes) is intricately related......, deregulation of adhesion and polarity proteins can cause misoriented cell divisions and increased self-renewal of adult epithelial stem cells. In this Review, we highlight some advances in the understanding of how loss of epithelial cell polarity contributes to tumorigenesis....

  7. Modeling cell-in-cell structure into its biological significance

    OpenAIRE

    He, M-f; Wang, S; Wang, Y; Wang, X-n

    2013-01-01

    Although cell-in-cell structure was noted 100 years ago, the molecular mechanisms of ?entering' and the destination of cell-in-cell remain largely unclear. It takes place among the same type of cells (homotypic cell-in-cell) or different types of cells (heterotypic cell-in-cell). Cell-in-cell formation affects both effector cells and their host cells in multiple aspects, while cell-in-cell death is under more intensive investigation. Given that cell-in-cell has an important role in maintainin...

  8. Sickle Cell Disease

    Science.gov (United States)

    Sickle cell anemia is a disease in which your body produces abnormally shaped red blood cells. The cells are shaped like a crescent or sickle. They ... last as long as normal, round red blood cells. This leads to anemia. The sickle cells also ...

  9. Host cell reactivation in mammalian cells

    International Nuclear Information System (INIS)

    Lytle, C.D.; Benane, S.G.; Stafford, J.E.

    1976-01-01

    The survival of UV-irradiated herpes simplex virus was determined in cultured Potoroo (a marsupial) and human cells under lighting conditions which promoted photereactivation. Photoreactivation was readily demonstrated for herpes virus in two lines of Potoroo cells with dose reduction factors of 0.7 to 0.8 for ovary cells and 0.5 to 0.7 for kidney cells. Light from Blacklite (near UV) lamps was more effective than from Daylight (mostly visible) lamps, suggesting that near UV radiation was more effecient for photoreactivation in Potoroo cells. The quantitative and qualitative aspects of this photoreactivation were similar to those reported for a similar virus infecting chick embryo cells. UV-survival curves of herpes virus in Potoroo cells indicated a high level of 'dark' host cell reactivation. No photoreactivation was found for UV-irradiated vaccinia virus in Potoroo cells. A similar photoreactivation study was done using special control lighting (lambda>600 nm) and human cells with normal repair and with cells deficient in excision repair (XP). No photoreactivation was found for UV-irradiated herpes virus in either human cell with either Blacklite or Daylight lamps as the sources of photoreactivating light. This result contrasts with a report of photoreactivation for a herpes virus in the same XP cells using incandescent lamps. (author)

  10. Fuel cell-fuel cell hybrid system

    Science.gov (United States)

    Geisbrecht, Rodney A.; Williams, Mark C.

    2003-09-23

    A device for converting chemical energy to electricity is provided, the device comprising a high temperature fuel cell with the ability for partially oxidizing and completely reforming fuel, and a low temperature fuel cell juxtaposed to said high temperature fuel cell so as to utilize remaining reformed fuel from the high temperature fuel cell. Also provided is a method for producing electricity comprising directing fuel to a first fuel cell, completely oxidizing a first portion of the fuel and partially oxidizing a second portion of the fuel, directing the second fuel portion to a second fuel cell, allowing the first fuel cell to utilize the first portion of the fuel to produce electricity; and allowing the second fuel cell to utilize the second portion of the fuel to produce electricity.

  11. Are mesenchymal stromal cells immune cells?

    NARCIS (Netherlands)

    M.J. Hoogduijn (Martin)

    2015-01-01

    textabstractMesenchymal stromal cells (MSCs) are considered to be promising agents for the treatment of immunological disease. Although originally identified as precursor cells for mesenchymal lineages, in vitro studies have demonstrated that MSCs possess diverse immune regulatory capacities.

  12. Galvanic cells: setting up the Daniell cell.

    OpenAIRE

    Milla González, Miguel

    2008-01-01

    With the reagents (0.05M copper nitrate solution, 0.05M zinc nitrate solution) and material (glassware, potentiometer, electric wire) availabe in the laboratory, the user must set up the Daniell cell. Different configurations can be possible if the half cells are filled with either electrolyte solution. The cell connections to the measuring device can also be changed. In all instances, an explanation of the set up cell is obtained as well as of the measured potential difference.

  13. Inside the Cell

    Science.gov (United States)

    ... NIGMS Home > Science Education > Inside the Cell Inside the Cell Seeing Cells Classroom Poster Order a Free Copy Spotlight The Cell’s Mailroom The Proteasome: The Cell’s Trash Processor in ...

  14. Stem Cell Information: Glossary

    Science.gov (United States)

    ... Long-term self-renewal Meiosis Mesenchymal stem cells Mesoderm Microenvironment Mitosis Multipotent Neural stem cell Neurons Oligodendrocyte ... layers. The three layers are the ectoderm , the mesoderm , and the endoderm . Hematopoietic stem cell - A stem ...

  15. Lung cancer - small cell

    Science.gov (United States)

    Cancer - lung - small cell; Small cell lung cancer; SCLC ... About 15% of all lung cancer cases are SCLC. Small cell lung cancer is slightly more common in men than women. Almost all cases of SCLC are ...

  16. [Natural killer cells complot with dendritic cells].

    Science.gov (United States)

    Bielawska-Pohl, Aleksandra; Pajtasz-Piasecka, Elżbieta; Duś, Danuta

    2013-03-18

    Dendritic cells (DC) were initially considered as antigen presenting cells participating in the polarization of the immune response. Further understanding of their biology allowed determining their additional functions such as immunoregulatory and cytotoxicity. Until recently natural killer (NK) cells were known as a homogeneous population of lymphocytes capable of non-specific recognizing and eliminating target cells. Now it is widely accepted that NK cells, as a heterogeneous population, may also possess immunomodulatory functions. Moreover, the most recent analysis of the interactions between DC and NK cells revealed the exceptional functions of these cells. As a result of these studies the existence of bitypic cell population was postulated. The distinguishing features of these hybrid cells are: the expression of surface receptors typical for NK cells and DC, the cytotoxic activity, the production of interferons as well as their ability to present antigen after prior stimulation. Despite the lack of strong direct evidence that the same cell can be both cytotoxic and effectively present the antigen at the same time, there are experimental findings suggesting that generated ex vivo bitypic cells may be used in antitumor therapy. 

  17. NK cells and T cells: mirror images?

    NARCIS (Netherlands)

    Versteeg, R.

    1992-01-01

    The expression of MHC class I molecules protects cells against lysis by natural killer (NK) cells. It is possible that NK cells are 'educated' to recognize self MHC class I molecules and that the combination of self peptide and MHC class I molecule blocks NK-mediated lysis. Here, Rogier Versteeg

  18. Snail modulates cell metabolism in MDCK cells

    Energy Technology Data Exchange (ETDEWEB)

    Haraguchi, Misako, E-mail: haraguci@m3.kufm.kagoshima-u.ac.jp [Department of Biochemistry and Molecular Biology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544 (Japan); Indo, Hiroko P. [Department of Maxillofacial Radiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544 (Japan); Iwasaki, Yasumasa [Health Care Center, Kochi University, Kochi 780-8520 (Japan); Iwashita, Yoichiro [Department of Maxillofacial Radiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544 (Japan); Fukushige, Tomoko [Department of Dermatology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544 (Japan); Majima, Hideyuki J. [Department of Maxillofacial Radiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544 (Japan); Izumo, Kimiko; Horiuchi, Masahisa [Department of Environmental Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544 (Japan); Kanekura, Takuro [Department of Dermatology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544 (Japan); Furukawa, Tatsuhiko [Department of Molecular Oncology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544 (Japan); Ozawa, Masayuki [Department of Biochemistry and Molecular Biology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544 (Japan)

    2013-03-22

    Highlights: ► MDCK/snail cells were more sensitive to glucose deprivation than MDCK/neo cells. ► MDCK/snail cells had decreased oxidative phosphorylation, O{sub 2} consumption and ATP content. ► TCA cycle enzyme activity, but not expression, was lower in MDCK/snail cells. ► MDCK/snail cells showed reduced PDH activity and increased PDK1 expression. ► MDCK/snail cells showed reduced expression of GLS2 and ACLY. -- Abstract: Snail, a repressor of E-cadherin gene transcription, induces epithelial-to-mesenchymal transition and is involved in tumor progression. Snail also mediates resistance to cell death induced by serum depletion. By contrast, we observed that snail-expressing MDCK (MDCK/snail) cells undergo cell death at a higher rate than control (MDCK/neo) cells in low-glucose medium. Therefore, we investigated whether snail expression influences cell metabolism in MDCK cells. Although gylcolysis was not affected in MDCK/snail cells, they did exhibit reduced pyruvate dehydrogenase (PDH) activity, which controls pyruvate entry into the tricarboxylic acid (TCA) cycle. Indeed, the activity of multiple enzymes involved in the TCA cycle was decreased in MDCK/snail cells, including that of mitochondrial NADP{sup +}-dependent isocitrate dehydrogenase (IDH2), succinate dehydrogenase (SDH), and electron transport Complex II and Complex IV. Consequently, lower ATP content, lower oxygen consumption and increased survival under hypoxic conditions was also observed in MDCK/snail cells compared to MDCK/neo cells. In addition, the expression and promoter activity of pyruvate dehydrogenase kinase 1 (PDK1), which phosphorylates and inhibits the activity of PDH, was increased in MDCK/snail cells, while expression levels of glutaminase 2 (GLS2) and ATP-citrate lyase (ACLY), which are involved in glutaminolysis and fatty acid synthesis, were decreased in MDCK/snail cells. These results suggest that snail modulates cell metabolism by altering the expression and activity of

  19. Cell control report

    CERN Document Server

    2013-01-01

    Please note this is a Short Discount publication. This extensive report provides an essential overview of cells and their use as factory automation building blocks. The following issues are discussed in depth: Cell integration Cell software and standards Future technologies applied to cells Plus Cell control applications including: - rotary parts manufacturing - diesel engine component development - general cell control development at the General Electric Corporation - a vendor list.

  20. GSPEL - Fuel Cell Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Fuel Cell Lab (FCL)Established to investigate, integrate, testand verifyperformance and technology readiness offuel cell systems and fuel reformers for use with...

  1. Squamous cell skin cancer

    Science.gov (United States)

    ... that reflect light more, such as water, sand, concrete, and areas that are painted white. The higher ... - skin - squamous cell; Skin cancer - squamous cell; Nonmelanoma skin cancer - squamous ...

  2. The hallmarks of cell-cell fusion.

    Science.gov (United States)

    Hernández, Javier M; Podbilewicz, Benjamin

    2017-12-15

    Cell-cell fusion is essential for fertilization and organ development. Dedicated proteins known as fusogens are responsible for mediating membrane fusion. However, until recently, these proteins either remained unidentified or were poorly understood at the mechanistic level. Here, we review how fusogens surmount multiple energy barriers to mediate cell-cell fusion. We describe how early preparatory steps bring membranes to a distance of ∼10 nm, while fusogens act in the final approach between membranes. The mechanical force exerted by cell fusogens and the accompanying lipidic rearrangements constitute the hallmarks of cell-cell fusion. Finally, we discuss the relationship between viral and eukaryotic fusogens, highlight a classification scheme regrouping a superfamily of fusogens called Fusexins, and propose new questions and avenues of enquiry. © 2017. Published by The Company of Biologists Ltd.

  3. Cell mechanics: a dialogue

    Science.gov (United States)

    Tao, Jiaxiang; Li, Yizeng; Vig, Dhruv K.; Sun, Sean X.

    2017-03-01

    Under the microscope, eukaryotic animal cells can adopt a variety of different shapes and sizes. These cells also move and deform, and the physical mechanisms driving these movements and shape changes are important in fundamental cell biology, tissue mechanics, as well as disease biology. This article reviews some of the basic mechanical concepts in cells, emphasizing continuum mechanics description of cytoskeletal networks and hydrodynamic flows across the cell membrane. We discuss how cells can generate movement and shape changes by controlling mass fluxes at the cell boundary. These mass fluxes can come from polymerization/depolymerization of actin cytoskeleton, as well as osmotic and hydraulic pressure-driven flow of water across the cell membrane. By combining hydraulic pressure control with force balance conditions at the cell surface, we discuss a quantitative mechanism of cell shape and volume control. The broad consequences of this model on cell mechanosensation and tissue mechanics are outlined.

  4. [Exosomes and Immune Cells].

    Science.gov (United States)

    Seo, Naohiro

    2017-05-01

    In addition to the cytokines and cytotoxic granules, exosomes have been known as the intercellular communicator and cytotoxic missile of immune cells for the past decade. It has been well known that mature dendritic cell(DC)-derived exosomes participate in the T cell and natural killer(NK)cell activation, while immature DCs secrete tolerogenic exosomes for regulatory T(Treg)cell generation. Treg cell-derived EVs act as a suppressor against pathogenic type-1 T helper(Th1)cell responses. CD8+ T cells produce tumoricidal exosomes for preventing tumor invasion and metastasis transiently after T cell receptor(TCR)-mediated stimulation. Thus, immune cells produce functional exosomes in the activation state- and/or differentiation stage-dependent manner. In this review, the role of immune cell-derived exosomes will be introduced, focusing mainly on immune reaction against tumor.

  5. Tracking adult stem cells

    NARCIS (Netherlands)

    Snippert, H.J.G.; Clevers, H.

    2011-01-01

    The maintenance of stem-cell-driven tissue homeostasis requires a balance between the generation and loss of cell mass. Adult stem cells have a close relationship with the surrounding tissue--known as their niche--and thus, stem-cell studies should preferably be performed in a physiological context,

  6. Mesenchymal stem cell like (MSCl) cells generated from human embryonic stem cells support pluripotent cell growth

    Energy Technology Data Exchange (ETDEWEB)

    Varga, Nora [Membrane Research Group of the Hungarian Academy of Sciences, Semmelweis University, Budapest (Hungary); Vereb, Zoltan; Rajnavoelgyi, Eva [Department of Immunology, Medical and Health Science Centre, University of Debrecen, Debrecen (Hungary); Nemet, Katalin; Uher, Ferenc; Sarkadi, Balazs [Membrane Research Group of the Hungarian Academy of Sciences, Semmelweis University, Budapest (Hungary); Apati, Agota, E-mail: apati@kkk.org.hu [Membrane Research Group of the Hungarian Academy of Sciences, Semmelweis University, Budapest (Hungary)

    2011-10-28

    Highlights: Black-Right-Pointing-Pointer MSC like cells were derived from hESC by a simple and reproducible method. Black-Right-Pointing-Pointer Differentiation and immunosuppressive features of MSCl cells were similar to bmMSC. Black-Right-Pointing-Pointer MSCl cells as feeder cells support the undifferentiated growth of hESC. -- Abstract: Mesenchymal stem cell like (MSCl) cells were generated from human embryonic stem cells (hESC) through embryoid body formation, and isolated by adherence to plastic surface. MSCl cell lines could be propagated without changes in morphological or functional characteristics for more than 15 passages. These cells, as well as their fluorescent protein expressing stable derivatives, efficiently supported the growth of undifferentiated human embryonic stem cells as feeder cells. The MSCl cells did not express the embryonic (Oct4, Nanog, ABCG2, PODXL, or SSEA4), or hematopoietic (CD34, CD45, CD14, CD133, HLA-DR) stem cell markers, while were positive for the characteristic cell surface markers of MSCs (CD44, CD73, CD90, CD105). MSCl cells could be differentiated toward osteogenic, chondrogenic or adipogenic directions and exhibited significant inhibition of mitogen-activated lymphocyte proliferation, and thus presented immunosuppressive features. We suggest that cultured MSCl cells can properly model human MSCs and be applied as efficient feeders in hESC cultures.

  7. Mammalian cell biology

    International Nuclear Information System (INIS)

    Elkind, M.M.

    1975-01-01

    Progress is reported on the following research projects: the effects of N-ethyl-maleimide and hydroxyurea on hamster cells in culture; sensitization of synchronized human cells to x rays by N-ethylmaleimide; sensitization of hypoxic mammalian cells with a sulfhydryl inhibitor; damage interaction due to ionizing and nonionizing radiation in mammalian cells; DNA damage relative to radioinduced cell killing; spurious photolability of DNA labeled with methyl- 14 C-thymidine; radioinduced malignant transformation of cultured mouse cells; a comparison of properties of uv and near uv light relative to cell function and DNA damage; Monte Carlo simulation of DNA damage and repair mechanisms; and radiobiology of fast neutrons

  8. Molten carbonate fuel cell

    Science.gov (United States)

    Kaun, T.D.; Smith, J.L.

    1986-07-08

    A molten electrolyte fuel cell is disclosed with an array of stacked cells and cell enclosures isolating each cell except for access to gas manifolds for the supply of fuel or oxidant gas or the removal of waste gas. The cell enclosures collectively provide an enclosure for the array and effectively avoid the problems of electrolyte migration and the previous need for compression of stack components. The fuel cell further includes an inner housing about and in cooperation with the array enclosure to provide a manifold system with isolated chambers for the supply and removal of gases. An external insulated housing about the inner housing provides thermal isolation to the cell components.

  9. Mesenchymal Stem Cells

    DEFF Research Database (Denmark)

    Horwood, Nicole J.; Dazzi, Francesco; Zaher, Walid

    2012-01-01

    Mesenchymal stem cells (MSC) are stem cell populations present among the bone marrow stroma and a number of other tissues that are capable of multi-lineage differentiation into mesoderm-type cells such as osteoblasts, adipocytes and chondrocytes. MSC provide supportive stroma for growth...... and differentiation of hematopoietic stem cells (HSC) and hematopoiesis. These cells have been described as important immunoregulators due to their ability to suppress T cells proliferation. MSC can also directly contribute to tissue repair by migrating to sites of injury and providing a source of cells...

  10. Removable hot cell liners

    International Nuclear Information System (INIS)

    Fitzgibbon, F.J.; Shaffer, D.S.; Ledbetter, J.M.; Wood, W.T.

    1978-01-01

    In 1959 the Los Alamos Scientific Laboratory (LASL) proposed design requirements for an alpha-gamma box system. Among the requirements was a provision for conveniently removing a contaminated cell liner (alpha-gamma box) from an operating cell. Various situations, such as a change in program direction, outmoded equipment, or an unexpected development, could result in a decision to replace a cell liner and reuse the cell for another purpose. The contaminated cell liners could either be stored temporarily for possible future use or disposed of at the LASL contaminated Waste Disposal Area. LASL's experience removing used hot cell liners from operating cells is described

  11. Cell-Based Therapy

    Directory of Open Access Journals (Sweden)

    Masaaki Kitada

    2012-01-01

    Full Text Available Cell transplantation is a strategy with great potential for the treatment of Parkinson's disease, and many types of stem cells, including neural stem cells and embryonic stem cells, are considered candidates for transplantation therapy. Mesenchymal stem cells are a great therapeutic cell source because they are easy accessible and can be expanded from patients or donor mesenchymal tissues without posing serious ethical and technical problems. They have trophic effects for protecting damaged tissues as well as differentiation ability to generate a broad spectrum of cells, including dopamine neurons, which contribute to the replenishment of lost cells in Parkinson's disease. This paper focuses mainly on the potential of mesenchymal stem cells as a therapeutic cell source and discusses their potential clinical application in Parkinson's disease.

  12. NK Cell Exhaustion

    Science.gov (United States)

    Bi, Jiacheng; Tian, Zhigang

    2017-01-01

    Natural killer cells are important effector lymphocytes of the innate immune system, playing critical roles in antitumor and anti-infection host defense. Tumor progression or chronic infections, however, usually leads to exhaustion of NK cells, thus limiting the antitumor/infection potential of NK cells. In many tumors or chronic infections, multiple mechanisms might contribute to the exhaustion of NK cells, such as dysregulated NK cell receptors signaling, as well as suppressive effects by regulatory cells or soluble factors within the microenvironment. Better understanding of the characteristics, as well as the underlying mechanisms of NK cell exhaustion, not only should increase our understanding of the basic biology of NK cells but also could reveal novel NK cell-based antitumor/infection targets. Here, we provide an overview of our current knowledge on NK cell exhaustion in tumors, and in chronic infections. PMID:28702032

  13. Fuel cells seminar

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-01

    This year`s meeting highlights the fact that fuel cells for both stationary and transportation applications have reached the dawn of commercialization. Sales of stationary fuel cells have grown steadily over the past 2 years. Phosphoric acid fuel cell buses have been demonstrated in urban areas. Proton-exchange membrane fuel cells are on the verge of revolutionizing the transportation industry. These activities and many more are discussed during this seminar, which provides a forum for people from the international fuel cell community engaged in a wide spectrum of fuel cell activities. Discussions addressing R&D of fuel cell technologies, manufacturing and marketing of fuel cells, and experiences of fuel cell users took place through oral and poster presentations. For the first time, the seminar included commercial exhibits, further evidence that commercial fuel cell technology has arrived. A total of 205 papers is included in this volume.

  14. Cell fusion of bone marrow cells and somatic cell reprogramming by embryonic stem cells

    OpenAIRE

    Bonde, Sabrina; Pedram, Mehrdad; Stultz, Ryan; Zavazava, Nicholas

    2010-01-01

    Bone marrow transplantation is a curative treatment for many diseases, including leukemia, autoimmune diseases, and a number of immunodeficiencies. Recently, it was claimed that bone marrow cells transdifferentiate, a much desired property as bone marrow cells are abundant and therefore could be used in regenerative medicine to treat incurable chronic diseases. Using a Cre/loxP system, we studied cell fusion after bone marrow transplantation. Fused cells were chiefly Gr-1+, a myeloid cell mar...

  15. Quantitative characterization of cell behaviors through cell cycle progression via automated cell tracking.

    Directory of Open Access Journals (Sweden)

    Yuliang Wang

    Full Text Available Cell behaviors are reflections of intracellular tension dynamics and play important roles in many cellular processes. In this study, temporal variations in cell geometry and cell motion through cell cycle progression were quantitatively characterized via automated cell tracking for MCF-10A non-transformed breast cells, MCF-7 non-invasive breast cancer cells, and MDA-MB-231 highly metastatic breast cancer cells. A new cell segmentation method, which combines the threshold method and our modified edge based active contour method, was applied to optimize cell boundary detection for all cells in the field-of-view. An automated cell-tracking program was implemented to conduct live cell tracking over 40 hours for the three cell lines. The cell boundary and location information was measured and aligned with cell cycle progression with constructed cell lineage trees. Cell behaviors were studied in terms of cell geometry and cell motion. For cell geometry, cell area and cell axis ratio were investigated. For cell motion, instantaneous migration speed, cell motion type, as well as cell motion range were analyzed. We applied a cell-based approach that allows us to examine and compare temporal variations of cell behavior along with cell cycle progression at a single cell level. Cell body geometry along with distribution of peripheral protrusion structures appears to be associated with cell motion features. Migration speed together with motion type and motion ranges are required to distinguish the three cell-lines examined. We found that cells dividing or overlapping vertically are unique features of cell malignancy for both MCF-7 and MDA-MB-231 cells, whereas abrupt changes in cell body geometry and cell motion during mitosis are unique to highly metastatic MDA-MB-231 cells. Taken together, our live cell tracking system serves as an invaluable tool to identify cell behaviors that are unique to malignant and/or highly metastatic breast cancer cells.

  16. Plant stem cell niches.

    Science.gov (United States)

    Aichinger, Ernst; Kornet, Noortje; Friedrich, Thomas; Laux, Thomas

    2012-01-01

    Multicellular organisms possess pluripotent stem cells to form new organs, replenish the daily loss of cells, or regenerate organs after injury. Stem cells are maintained in specific environments, the stem cell niches, that provide signals to block differentiation. In plants, stem cell niches are situated in the shoot, root, and vascular meristems-self-perpetuating units of organ formation. Plants' lifelong activity-which, as in the case of trees, can extend over more than a thousand years-requires that a robust regulatory network keep the balance between pluripotent stem cells and differentiating descendants. In this review, we focus on current models in plant stem cell research elaborated during the past two decades, mainly in the model plant Arabidopsis thaliana. We address the roles of mobile signals on transcriptional modules involved in balancing cell fates. In addition, we discuss shared features of and differences between the distinct stem cell niches of Arabidopsis.

  17. Bacterial Cell Wall Components

    Science.gov (United States)

    Ginsberg, Cynthia; Brown, Stephanie; Walker, Suzanne

    Bacterial cell-surface polysaccharides cells are surrounded by a variety of cell-surface structures that allow them to thrive in extreme environments. Components of the cell envelope and extracellular matrix are responsible for providing the cells with structural support, mediating intercellular communication, allowing the cells to move or to adhere to surfaces, protecting the cells from attack by antibiotics or the immune system, and facilitating the uptake of nutrients. Some of the most important cell wall components are polysaccharide structures. This review discusses the occurrence, structure, function, and biosynthesis of the most prevalent bacterial cell surface polysaccharides: peptidoglycan, lipopolysaccharide, arabinogalactan, and lipoarabinomannan, and capsular and extracellular polysaccharides. The roles of these polysaccharides in medicine, both as drug targets and as therapeutic agents, are also described.

  18. What are Stem Cells?

    Directory of Open Access Journals (Sweden)

    Ahmadshah Farhat

    2014-05-01

    Full Text Available   Stem cells are undifferentiated self regenerating multi potential cells. There are three types of stem cells categories by the ability to form after cells and correlated with the body’s development process. Totipotent: these stem cells can form an entire organism such as fertilized egg. Ploripotent: ploripotent cells are those that can form any cell in the body but cannot form an entire organism such as developing embryo’s totipotent cells become ploripotent  Multipotent: Multi potent stem cells are those that can only form specific cells in the body such as blood cells based. Based on the sources of stem cells we have three types of these cells: Autologous: Sources of the patient own cells are (Autologous either the cells from patient own body or his or her cord blood. For this type of transplant the physician now usually collects the periphery rather than morrow because the procedure is easier on like a bane morrow harvest it take place outside of an operating room, and the patient does not to be under general unsetting . Allogenic: Sources of stem cells from another donore are primarily relatives (familial allogenic or completely unrelated donors. Xenogenic: In these stem cells from different species are transplanted e .g striatal porcine fetal mesan cephalic (FVM xenotransplants for Parkinson’s disease. On sites of isolation such as embryo, umbilical cord and other body tissues stem cells are named embnyonic, cord blood, and adult stem cells. The scope of results and clinical application of stem cells are such as: Neurodegenerative conditions (MS,ALS, Parkinson’s, Stroke, Ocular disorders- Glaucoma, retinitis Pigmentosa (RP, Auto Immune Conditions (Lupus, MS,R. arthritis, Diabetes, etc, Viral Conditions (Hepatitis C and AIDS, Heart Disease, Adrenal Disorders, Injury(Nerve, Brain, etc, Anti aging (hair, skin, weight control, overall well being/preventive, Emotional disorders, Organ / Tissue Cancers, Blood cancers, Blood diseases

  19. Induction of Functional Hair-Cell-Like Cells from Mouse Cochlear Multipotent Cells

    Directory of Open Access Journals (Sweden)

    Quanwen Liu

    2016-01-01

    Full Text Available In this paper, we developed a two-step-induction method of generating functional hair cells from inner ear multipotent cells. Multipotent cells from the inner ear were established and induced initially into progenitor cells committed to the inner ear cell lineage on the poly-L-lysine substratum. Subsequently, the committed progenitor cells were cultured on the mitotically inactivated chicken utricle stromal cells and induced into hair-cell-like cells containing characteristic stereocilia bundles. The hair-cell-like cells exhibited rapid permeation of FM1-43FX. The whole-cell patch-clamp technique was used to measure the membrane currents of cells differentiated for 7 days on chicken utricle stromal cells and analyze the biophysical properties of the hair-cell-like cells by recording membrane properties of cells. The results suggested that the hair-cell-like cells derived from inner ear multipotent cells were functional following differentiation in an enabling environment.

  20. Pluripotent Stem Cells for Schwann Cell Engineering

    NARCIS (Netherlands)

    Ma, Ming-San; Boddeke, Erik; Copray, Sjef

    Tissue engineering of Schwann cells (SCs) can serve a number of purposes, such as in vitro SC-related disease modeling, treatment of peripheral nerve diseases or peripheral nerve injury, and, potentially, treatment of CNS diseases. SCs can be generated from autologous stem cells in vitro by

  1. Regulation of cell polarity by cell adhesion receptors.

    Science.gov (United States)

    Ebnet, Klaus; Kummer, Daniel; Steinbacher, Tim; Singh, Amrita; Nakayama, Masanori; Matis, Maja

    2017-07-22

    The ability of cells to polarize is an intrinsic property of almost all cells and is required for the devlopment of most multicellular organisms. To develop cell polarity, cells integrate various signals derived from intrinsic as well as extrinsic sources. In the recent years, cell-cell adhesion receptors have turned out as important regulators of cellular polarization. By interacting with conserved cell polarity proteins, they regulate the recruitment of polarity complexes to specific sites of cell-cell adhesion. By initiating intracellular signaling cascades at those sites, they trigger their specific subcellular activation. Not surprisingly, cell-cell adhesion receptors regulate diverse aspects of cell polarity, including apico-basal polarity in epithelial and endothelial cells, front-to-rear polarity in collectively migrating cells, and planar cell polarity during organ development. Here, we review the recent developments highlighting the central roles of cell-cell adhesion molecules in the development of cell polarity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Cell cycle control by components of cell anchorage

    OpenAIRE

    Gad, Annica

    2005-01-01

    Extracellular factors, such as growth factors and cell anchorage to the extracellular matrix, control when and where cells may proliferate. This control is abolished when a normal cell transforms into a tumour cell. The control of cell proliferation by cell anchorage was elusive and less well studied than the control by growth factors. Therefore, we aimed to clarify at what points in the cell cycle and through which molecular mechanisms cell anchorage controls cell cycle pro...

  3. The cell cycle as a brake for β-cell regeneration from embryonic stem cells.

    Science.gov (United States)

    El-Badawy, Ahmed; El-Badri, Nagwa

    2016-01-13

    The generation of insulin-producing β cells from stem cells in vitro provides a promising source of cells for cell transplantation therapy in diabetes. However, insulin-producing cells generated from human stem cells show deficiency in many functional characteristics compared with pancreatic β cells. Recent reports have shown molecular ties between the cell cycle and the differentiation mechanism of embryonic stem (ES) cells, assuming that cell fate decisions are controlled by the cell cycle machinery. Both β cells and ES cells possess unique cell cycle machinery yet with significant contrasts. In this review, we compare the cell cycle control mechanisms in both ES cells and β cells, and highlight the fundamental differences between pluripotent cells of embryonic origin and differentiated β cells. Through critical analysis of the differences of the cell cycle between these two cell types, we propose that the cell cycle of ES cells may act as a brake for β-cell regeneration. Based on these differences, we discuss the potential of modulating the cell cycle of ES cells for the large-scale generation of functionally mature β cells in vitro. Further understanding of the factors that modulate the ES cell cycle will lead to new approaches to enhance the production of functional mature insulin-producing cells, and yield a reliable system to generate bona fide β cells in vitro.

  4. Regulatory T cells and B cells: implication on autoimmune diseases

    OpenAIRE

    Wang, Ping; Zheng, Song Guo

    2013-01-01

    The regulatory T (Treg) cells play an important role in the maintenance of homeostasis and the prevention of autoimmune diseases. Although most studies are focusing on the role of Treg cells in T cells and T cells-mediated diseases, these cells also directly affect B cells and other non-T cells. This manuscript updates the role of Treg cells on the B cells and B cell-mediated diseases. In addition, the mechanisms whereby Treg cells suppress B cell responses have been discussed.

  5. Sickle Cell Trait

    Science.gov (United States)

    ... cell trait toolkit » Sickle cell trait fact sheet » SCT and Athletes Some people with SCT have been ... ill. Recommendations on Screening of Student Athletes for SCT Recommendations of the Advisory Committee on Heritable Disorders ...

  6. Antioxidants: Protecting Healthy Cells

    Science.gov (United States)

    ... and Nutrients Antioxidants - Protecting Healthy Cells Print Email Antioxidants - Protecting Healthy Cells Reviewed by Taylor Wolfram, MS, ... to cardiovascular disease and certain types of cancers. Antioxidants — such as vitamins C and E and carotenoids, ...

  7. Fuel cells: Project Volta

    Energy Technology Data Exchange (ETDEWEB)

    Vellone, R.; Di Mario, F.

    1987-09-01

    This paper discusses research and development in the field of fuel cell power plants. Reference is made to the Italian research Project Volta. Problems related to research program financing and fuel cell power plant marketing are discussed.

  8. Border cell release

    DEFF Research Database (Denmark)

    Mravec, Jozef

    2017-01-01

    Plant border cells are specialised cells derived from the root cap with roles in the biomechanics of root growth and in forming a barrier against pathogens. The mechanism of highly localised cell separation which is essential for their release to the environment is little understood. Here I present...... in situ analysis of Brachypodium distachyon, a model organism for grasses which possess type II primary cell walls poor in pectin content. Results suggest similarity in spatial dynamics of pectic homogalacturonan during dicot and monocot border cell release. Integration of observations from different...... species leads to the hypothesis that this process most likely does not involve degradation of cell wall material but rather employs unique cell wall structural and compositional means enabling both the rigidity of the root cap as well as detachability of given cells on its surface....

  9. Giant Cell Arteritis

    Science.gov (United States)

    Giant cell arteritis is a disorder that causes inflammation of your arteries, usually in the scalp, neck, and arms. ... arteries, which keeps blood from flowing well. Giant cell arteritis often occurs with another disorder called polymyalgia ...

  10. Fluorescence live cell imaging.

    Science.gov (United States)

    Ettinger, Andreas; Wittmann, Torsten

    2014-01-01

    Fluorescence microscopy of live cells has become an integral part of modern cell biology. Fluorescent protein (FP) tags, live cell dyes, and other methods to fluorescently label proteins of interest provide a range of tools to investigate virtually any cellular process under the microscope. The two main experimental challenges in collecting meaningful live cell microscopy data are to minimize photodamage while retaining a useful signal-to-noise ratio and to provide a suitable environment for cells or tissues to replicate physiological cell dynamics. This chapter aims to give a general overview on microscope design choices critical for fluorescence live cell imaging that apply to most fluorescence microscopy modalities and on environmental control with a focus on mammalian tissue culture cells. In addition, we provide guidance on how to design and evaluate FP constructs by spinning disk confocal microscopy. © 2014 Elsevier Inc. All rights reserved.

  11. FUEL CELL ELECTRODE MATERIALS

    Science.gov (United States)

    FUEL CELL ELECTRODE MATERIALS. RAW MATERIAL SELECTION INFLUENCES POLARIZATION BUT IS NOT A SINGLE CONTROLLING FACTOR. AVAILABLE...DATA INDICATES THAT AN INTERRELATIONSHIP OF POROSITY, AVERAGE PORE VOLUME, AND PERMEABILITY CONTRIBUTES TO ELECTRODE FUEL CELL BEHAVIOR.

  12. Basal cell nevus syndrome

    Science.gov (United States)

    ... nevus syndrome Basal cell nevus syndrome - face References Evans DG, Farndon PA. Nevoid basal cell carcinoma syndrome. ... A.D.A.M. follows rigorous standards of quality and accountability. A.D.A.M. is among ...

  13. Merkel Cell Carcinoma

    Science.gov (United States)

    ... H, Shuda M, Chang Y, et al . “Clonal integration of a polyomavirus in human Merkel cell carcinoma.” ... look at it under the microscope. This process continues until the surgeon no longer sees cancer cells. ...

  14. Separators for electrochemical cells

    Energy Technology Data Exchange (ETDEWEB)

    Carlson, Steven Allen; Anakor, Ifenna Kingsley; Farrell, Greg Robert

    2018-01-16

    Provided are separators for use in an electrochemical cell comprising (a) an inorganic oxide and (b) an organic polymer, wherein the inorganic oxide comprises organic substituents. Also provided are electrochemical cells comprising such separators.

  15. Dendritic cell vaccines.

    Science.gov (United States)

    Mosca, Paul J; Lyerly, H Kim; Clay, Timothy M; Morse, Michael A; Lyerly, H Kim

    2007-05-01

    Dendritic cells are antigen-presenting cells that have been shown to stimulate tumor antigen-specific T cell responses in preclinical studies. Consequently, there has been intense interest in developing dendritic cell based cancer vaccines. A variety of methods for generating dendritic cells, loading them with tumor antigens, and administering them to patients have been described. In recent years, a number of early phase clinical trials have been performed and have demonstrated the safety and feasibility of dendritic cell immunotherapies. A number of these trials have generated valuable preliminary data regarding the clinical and immunologic response to DC-based immunotherapy. The emphasis of dendritic cell immunotherapy research is increasingly shifting toward the development of strategies to increase the potency of dendritic cell vaccine preparations.

  16. Stem Cell Transplant

    Science.gov (United States)

    ... Graft-versus-host disease: A potential risk when stem cells come from donors If you receive a transplant ... medications and blood products into your body. Collecting stem cells for transplant If a transplant using your own ...

  17. NIA Aging Cell Repository

    Data.gov (United States)

    Federal Laboratory Consortium — To facilitate aging research on cells in culture, the NIA provides support for the NIA Aging Cell Repository, located at the Coriell Institute for Medical Research...

  18. Sickle cell anemia.

    OpenAIRE

    ŘÍHOVÁ, Tereza

    2013-01-01

    This thesis is about the disease called sickle cell anemia, or drepanocytosis. In this thesis is described the history of the disease, pathophysiology, laboratory features, various clinical features, diferencial diagnosis, quality of life in sickle cell anemia and therapy.

  19. Mesenchymal Stem Cells

    DEFF Research Database (Denmark)

    Horwood, Nicole J.; Dazzi, Francesco; Zaher, Walid

    2012-01-01

    and differentiation of hematopoietic stem cells (HSC) and hematopoiesis. These cells have been described as important immunoregulators due to their ability to suppress T cells proliferation. MSC can also directly contribute to tissue repair by migrating to sites of injury and providing a source of cells......Mesenchymal stem cells (MSC) are stem cell populations present among the bone marrow stroma and a number of other tissues that are capable of multi-lineage differentiation into mesoderm-type cells such as osteoblasts, adipocytes and chondrocytes. MSC provide supportive stroma for growth...... for differentiation and/or providing bystander support for resident stromal cells. This chapter discusses the cellular and molecular properties of MSC, the mechanisms by which they can modulate immune responses and the clinical applications of MSC in disorders such as graft-versus-host disease and aplastic anaemia...

  20. Diagram of Cell to Cell Communication

    Science.gov (United States)

    2002-01-01

    Diagram depicts the importance of cell-cell communication as central to the understanding of cancer growth and progression, the focus of the NASA bioreactor demonstration system (BDS-05) investigation. Microgravity studies will allow us to unravel the signaling and communication between these cells with the host and potential development of therapies for the treatment of cancer metastasis. The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. The Bioreactor is rotated to provide gentle mixing of fresh and spent nutrient without inducing shear forces that would damage the cells. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators. Credit: Emory University.

  1. Cell Factory Engineering

    DEFF Research Database (Denmark)

    Davy, Anne Mathilde; Kildegaard, Helene Faustrup; Andersen, Mikael Rørdam

    2017-01-01

    focused on individual strategies or cell types, but collectively they fall under the broad umbrella of a growing field known as cell factory engineering. Here we condense >130 reviews and key studies in the art into a meta-review of cell factory engineering. We identified 33 generic strategies......-review provides general strategy guides for the broad range of applications of rational engineering of cell factories....

  2. Anterior Horn Cell Diseases

    Directory of Open Access Journals (Sweden)

    Merve Firinciogullari

    2016-09-01

    Full Text Available The anterior horn cells control all voluntary movement. Motor activity, respiratory, speech, and swallowing functions are dependent upon signals from the anterior horn cells. Diseases that damage the anterior horn cells, therefore, have a profound impact. Symptoms of anterior horn cell loss (weakness, falling, choking lead patients to seek medical attention. In this article, anterior horn diseases were reviewed, diagnostic criteria and management were discussed in detail. [Archives Medical Review Journal 2016; 25(3.000: 269-303

  3. Skeletal (stromal) stem cells

    DEFF Research Database (Denmark)

    Abdallah, Basem M; Kermani, Abbas Jafari; Zaher, Walid

    2015-01-01

    Skeletal (marrow stromal) stem cells (BMSCs) are a group of multipotent cells that reside in the bone marrow stroma and can differentiate into osteoblasts, chondrocytes and adipocytes. Studying signaling pathways that regulate BMSC differentiation into osteoblastic cells is a strategy....../preadipocyte factor 1 (Dlk1/Pref-1), the Wnt co-receptor Lrp5 and intracellular kinases. This article is part of a Special Issue entitled: Stem Cells and Bone....

  4. Red blood cell production

    Science.gov (United States)

    ... bone marrow of bones. Stem cells in the red bone marrow called hemocytoblasts give rise to all of the formed elements in blood. If a hemocytoblast commits to becoming a cell called a proerythroblast, it will develop into a new red blood cell. The formation of a red blood ...

  5. Criticality in cell differentiation

    Indian Academy of Sciences (India)

    Indrani Bose

    2017-11-09

    Nov 9, 2017 ... Cell differentiation is an important process in living organisms. Differentiation is mostly based on binary decisions with the progenitor cells choosing between two specific lineages. The differentiation dynamics have both deterministic and stochastic components. Several theoretical studies suggest that cell ...

  6. NCAM regulates cell motility

    DEFF Research Database (Denmark)

    Prag, Søren; Lepekhin, Eugene A; Kolkova, Kateryna

    2002-01-01

    Cell migration is required during development of the nervous system. The regulatory mechanisms for this process, however, are poorly elucidated. We show here that expression of or exposure to the neural cell adhesion molecule (NCAM) strongly affected the motile behaviour of glioma cells independe...

  7. Dazlin' pluripotent stem cells

    NARCIS (Netherlands)

    Welling, M.A.

    2014-01-01

    Pluripotent embryonic stem cells (ESCs) can be isolated from the inner cell mass (ICM) of blastocyst embryos and differentiate into all three germ layers in vitro. However, despite their similar origin, mouse embryonic stem cells represent a more naïve ICM-like pluripotent state whereas human

  8. Textured perovskite cells

    NARCIS (Netherlands)

    Deelen, J. van; Tezsevin, Y.; Barink, M.

    2017-01-01

    Most research of texturization of solar cells has been devoted to Si based cells. For perovskites, it was assumed that texturization would not have much of an impact because of the relatively low refractive indexes lead to relatively low reflection as compared to the Si based cells. However, our

  9. Cell phones and cancer

    Science.gov (United States)

    Cancer and cell phones; Do cell phones cause cancer? ... Several major studies show no link between cell phones and cancer at this time. However, since the information available is based on short-term studies, the impact of many years of ...

  10. Stem cell heterogeneity revealed

    DEFF Research Database (Denmark)

    Andersen, Marianne S; Jensen, Kim B

    2016-01-01

    The skin forms a protective, water-impermeable barrier consisting of heavily crosslinked epithelial cells. However, the specific role of stem cells in sustaining this barrier remains a contentious issue. A detailed analysis of the interfollicular epidermis now proposes a model for how a composite...... of cells with different properties are involved in its maintenance....

  11. Criticality in cell differentiation

    Indian Academy of Sciences (India)

    Cell differentiation is an important process in living organisms. Differentiation is mostly based on binary decisions with theprogenitor cells choosing between two specific lineages. The differentiation dynamics have both deterministic andstochastic components. Several theoretical studies suggest that cell differentiation is a ...

  12. Sickle Cell Disease

    Science.gov (United States)

    ... the sickle cell gene on to their kids. Symptoms of sickle cell disease Anemia is a common symptom of SCD. It occurs from a lack of ... SCD cannot be prevented since it is genetic. Sickle cell disease treatment ... of SCD, your symptoms, and your overall health. Most treatment options aim ...

  13. Sickle cell test

    Science.gov (United States)

    ... blood cells that carries oxygen. In sickle cell disease, a person has two abnormal hemoglobin S genes. A person with sickle cell trait has only one of these abnormal genes and no symptoms, or only mild ones. This test does not ...

  14. Aneuploidy in stem cells

    NARCIS (Netherlands)

    Garcia-Martinez, Jorge; Bakker, Bjorn; Schukken, Klaske M; Simon, Judith E; Foijer, Floris

    2016-01-01

    Stem cells hold enormous promise for regenerative medicine as well as for engineering of model systems to study diseases and develop new drugs. The discovery of protocols that allow for generating induced pluripotent stem cells (IPSCs) from somatic cells has brought this promise steps closer to

  15. Biomarkers of cell senescence

    Science.gov (United States)

    Dirmi, Goberdhan P.; Campisi, Judith; Peacocke, Monica

    1996-01-01

    The present invention provides a biomarker system for the in vivo and in vitro assessment of cell senescence. In the method of the present invention, .beta.-galactosidase activity is utilized as a means by which cell senescence may be assessed either in in vitro cell cultures or in vivo.

  16. Mouse Leydig Tumor Cells

    Directory of Open Access Journals (Sweden)

    Bo-Syong Pan

    2011-01-01

    Full Text Available Cordycepin is a natural pure compound extracted from Cordyceps sinensis (CS. We have demonstrated that CS stimulates steroidogenesis in primary mouse Leydig cell and activates apoptosis in MA-10 mouse Leydig tumor cells. It is highly possible that cordycepin is the main component in CS modulating Leydig cell functions. Thus, our aim was to investigate the steroidogenic and apoptotic effects with potential mechanism of cordycepin on MA-10 mouse Leydig tumor cells. Results showed that cordycepin significantly stimulated progesterone production in dose- and time-dependent manners. Adenosine receptor (AR subtype agonists were further used to treat MA-10 cells, showing that A1, A 2A , A 2B , and A3, AR agonists could stimulate progesterone production. However, StAR promoter activity and protein expression remained of no difference among all cordycepin treatments, suggesting that cordycepin might activate AR, but not stimulated StAR protein to regulate MA-10 cell steroidogenesis. Meanwhile, cordycepin could also induce apoptotic cell death in MA-10 cells. Moreover, four AR subtype agonists induced cell death in a dose-dependent manner, and four AR subtype antagonists could all rescue cell death under cordycepin treatment in MA-10 cells. In conclusion, cordycepin could activate adenosine subtype receptors and simultaneously induce steroidogenesis and apoptosis in MA-10 mouse Leydig tumor cells.

  17. Mutagenesis in mammalian cells

    International Nuclear Information System (INIS)

    Burki, H.J.

    1981-01-01

    Mutagenic processes in synchronous cultures of Chinese hamster ovary cells have been studied. There is a difference in the induction of mutants by ultraviolet light during the cell cycle. There appears to be a sensitive period in the middle of the G1 stage of the cell cycle suggesting some mutagenic mechanism is present at that time. Studies indicate that mutation induction during the cell cycle is also mutagen specific since exposure to ethyl nitrosourea in the same system produces different results. Two clones have been isolated which are ultrasensitive to ultraviolet light. These cells are being used to determine if this hypermutability is cell-cycle dependent, related to cell cycle biochemistry, or to repair processes independent of cell cycle. Tritium and bromodeoxyuridine induced damage to synchronously dividing cell cultures are also being studied in relation to DNA replication. Cell killing by ionizing radiation is also related to the cell cycle. Sensitive times in the cell cycle for mutation induction by ionization radiation are identified

  18. Mast cell activation disease

    African Journals Online (AJOL)

    EL-HAKIM

    Blood basophils also participate in allergic and other inflammatory reactions in the same way as mast cells.4. The capacity of mast cells and basophil to release mediators of anaphylaxis in response to cell activation, also termed releasability, depends on a number of different factors, including the primary underlying disease ...

  19. Nanostructured Organic Solar Cells

    DEFF Research Database (Denmark)

    Radziwon, Michal Jędrzej; Rubahn, Horst-Günter; Madsen, Morten

    Recent forecasts for alternative energy generation predict emerging importance of supporting state of art photovoltaic solar cells with their organic equivalents. Despite their significantly lower efficiency, number of application niches are suitable for organic solar cells. This work reveals...... the principles of bulk heterojunction organic solar cells fabrication as well as summarises major differences in physics of their operation....

  20. Spermatogonial stem cells

    NARCIS (Netherlands)

    de rooij, D. G.; Grootegoed, J. A.

    1998-01-01

    The mammalian seminiferous epithelium consists of a highly complex yet well-organized cell population, with germ cells in mitosis and meiosis and postmeiotic cells undergoing transformation to become spermatozoa. To study the factors which control renewal and differentiation of spermatogonial stem

  1. Place Cells, Grid Cells, Attractors, and Remapping

    Directory of Open Access Journals (Sweden)

    Kathryn J. Jeffery

    2011-01-01

    Full Text Available Place and grid cells are thought to use a mixture of external sensory information and internal attractor dynamics to organize their activity. Attractor dynamics may explain both why neurons react coherently following sufficiently large changes to the environment (discrete attractors and how firing patterns move smoothly from one representation to the next as an animal moves through space (continuous attractors. However, some features of place cell behavior, such as the sometimes independent responsiveness of place cells to environmental change (called “remapping”, seem hard to reconcile with attractor dynamics. This paper suggests that the explanation may be found in an anatomical separation of the two attractor systems coupled with a dynamic contextual modulation of the connection matrix between the two systems, with new learning being back-propagated into the matrix. Such a scheme could explain how place cells sometimes behave coherently and sometimes independently.

  2. When Blood Cells Bend: Understanding Sickle Cell Disease

    Science.gov (United States)

    ... Subscribe April 2012 Print this issue When Blood Cells Bend Understanding Sickle Cell Disease Send us your ... Diabetes? Sound Health Wise Choices Living with Sickle Cell Disease See a sickle cell disease expert regularly. ...

  3. Fuel cell catalyst degradation

    DEFF Research Database (Denmark)

    Arenz, Matthias; Zana, Alessandro

    2016-01-01

    Fuel cells are an important piece in our quest for a sustainable energy supply. Although there are several different types of fuel cells, the by far most popular is the proton exchange membrane fuel cell (PEMFC). Among its many favorable properties are a short start up time and a high power density...... increasing focus. Activity of the catalyst is important, but stability is essential. In the presented perspective paper, we review recent efforts to investigate fuel cell catalysts ex-situ in electrochemical half-cell measurements. Due to the amount of different studies, this review has no intention to give...

  4. Transparent ultraviolet photovoltaic cells.

    Science.gov (United States)

    Yang, Xun; Shan, Chong-Xin; Lu, Ying-Jie; Xie, Xiu-Hua; Li, Bing-Hui; Wang, Shuang-Peng; Jiang, Ming-Ming; Shen, De-Zhen

    2016-02-15

    Photovoltaic cells have been fabricated from p-GaN/MgO/n-ZnO structures. The photovoltaic cells are transparent to visible light and can transform ultraviolet irradiation into electrical signals. The efficiency of the photovoltaic cells is 0.025% under simulated AM 1.5 illumination conditions, while it can reach 0.46% under UV illumination. By connecting several such photovoltaic cells in a series, light-emitting devices can be lighting. The photovoltaic cells reported in this Letter may promise the applications in glass of buildings to prevent UV irradiation and produce power for household appliances in the future.

  5. Human mesenchymal stem cells

    DEFF Research Database (Denmark)

    Abdallah, Basem; Kassem, Moustapha

    2008-01-01

    Mesenchymal stem cells (MSC) are a group of clonogenic cells present among the bone marrow stroma and capable of multilineage differentiation into mesoderm-type cells such as osteoblasts, adipocytes and chondrocytes. Due to their ease of isolation and their differentiation potential, MSC are being...... introduced into clinical medicine in variety of applications and through different ways of administration. Here, we discuss approaches for isolation, characterization and directing differentiation of human mesenchymal stem cells (hMSC). An update of the current clinical use of the cells is also provided....

  6. Fuel Cell/Electrochemical Cell Voltage Monitor

    Science.gov (United States)

    Vasquez, Arturo

    2012-01-01

    A concept has been developed for a new fuel cell individual-cell-voltage monitor that can be directly connected to a multi-cell fuel cell stack for direct substack power provisioning. It can also provide voltage isolation for applications in high-voltage fuel cell stacks. The technology consists of basic modules, each with an 8- to 16-cell input electrical measurement connection port. For each basic module, a power input connection would be provided for direct connection to a sub-stack of fuel cells in series within the larger stack. This power connection would allow for module power to be available in the range of 9-15 volts DC. The relatively low voltage differences that the module would encounter from the input electrical measurement connection port, coupled with the fact that the module's operating power is supplied by the same substack voltage input (and so will be at similar voltage), provides for elimination of high-commonmode voltage issues within each module. Within each module, there would be options for analog-to-digital conversion and data transfer schemes. Each module would also include a data-output/communication port. Each of these ports would be required to be either non-electrical (e.g., optically isolated) or electrically isolated. This is necessary to account for the fact that the plurality of modules attached to the stack will normally be at a range of voltages approaching the full range of the fuel cell stack operating voltages. A communications/ data bus could interface with the several basic modules. Options have been identified for command inputs from the spacecraft vehicle controller, and for output-status/data feeds to the vehicle.

  7. Pancreatic cancer stem cells.

    Science.gov (United States)

    Lee, Cheong J; Dosch, Joseph; Simeone, Diane M

    2008-06-10

    Cellular heterogeneity in cancer was observed decades ago by studies in mice which showed that distinct subpopulations of cells within a tumor mass are capable of driving tumorigenesis. Conceptualized from this finding was the stem-cell hypothesis for cancer, which suggests that only a specific subset of cancer cells within each tumor is responsible for tumor initiation and propagation, termed tumor initiating cells or cancer stem cells (CSCs). Recent data has been provided to support the existence of CSCs in human blood cell-derived cancers and solid organ tumors of the breast, brain, prostate, colon, and skin. Study of human pancreatic cancers has also revealed a specific subpopulation of cancer cells that possess the characteristics of CSCs. These pancreatic cancer stem cells express the cell surface markers CD44, CD24, and epithelial-specific antigen, and represent 0.5% to 1.0% of all pancreatic cancer cells. Along with the properties of self-renewal and multilineage differentiation, pancreatic CSCs display upregulation of important developmental genes that maintain self-renewal in normal stem cells, including Sonic hedgehog (SHH) and BMI-1. Signaling cascades that are integral in tumor metastasis are also upregulated in the pancreatic CSC. Understanding the biologic behavior and the molecular pathways that regulate growth, survival, and metastasis of pancreatic CSCs will help to identify novel therapeutic approaches to treat this dismal disease.

  8. The Human Cell Atlas.

    Science.gov (United States)

    Regev, Aviv; Teichmann, Sarah A; Lander, Eric S; Amit, Ido; Benoist, Christophe; Birney, Ewan; Bodenmiller, Bernd; Campbell, Peter; Carninci, Piero; Clatworthy, Menna; Clevers, Hans; Deplancke, Bart; Dunham, Ian; Eberwine, James; Eils, Roland; Enard, Wolfgang; Farmer, Andrew; Fugger, Lars; Göttgens, Berthold; Hacohen, Nir; Haniffa, Muzlifah; Hemberg, Martin; Kim, Seung; Klenerman, Paul; Kriegstein, Arnold; Lein, Ed; Linnarsson, Sten; Lundberg, Emma; Lundeberg, Joakim; Majumder, Partha; Marioni, John C; Merad, Miriam; Mhlanga, Musa; Nawijn, Martijn; Netea, Mihai; Nolan, Garry; Pe'er, Dana; Phillipakis, Anthony; Ponting, Chris P; Quake, Stephen; Reik, Wolf; Rozenblatt-Rosen, Orit; Sanes, Joshua; Satija, Rahul; Schumacher, Ton N; Shalek, Alex; Shapiro, Ehud; Sharma, Padmanee; Shin, Jay W; Stegle, Oliver; Stratton, Michael; Stubbington, Michael J T; Theis, Fabian J; Uhlen, Matthias; van Oudenaarden, Alexander; Wagner, Allon; Watt, Fiona; Weissman, Jonathan; Wold, Barbara; Xavier, Ramnik; Yosef, Nir

    2017-12-05

    The recent advent of methods for high-throughput single-cell molecular profiling has catalyzed a growing sense in the scientific community that the time is ripe to complete the 150-year-old effort to identify all cell types in the human body. The Human Cell Atlas Project is an international collaborative effort that aims to define all human cell types in terms of distinctive molecular profiles (such as gene expression profiles) and to connect this information with classical cellular descriptions (such as location and morphology). An open comprehensive reference map of the molecular state of cells in healthy human tissues would propel the systematic study of physiological states, developmental trajectories, regulatory circuitry and interactions of cells, and also provide a framework for understanding cellular dysregulation in human disease. Here we describe the idea, its potential utility, early proofs-of-concept, and some design considerations for the Human Cell Atlas, including a commitment to open data, code, and community.

  9. Cell and Tissue Engineering

    CERN Document Server

    2012-01-01

    Cell and Tissue Engineering” introduces the principles and new approaches in cell and tissue engineering. It includes both the fundamentals and the current trends in cell and tissue engineering, in a way useful both to a novice and an expert in the field. The book is composed of 13 chapters all of which are written by the leading experts. It is organized to gradually assemble an insight in cell and tissue function starting form a molecular nano-level, extending to a cellular micro-level and finishing at the tissue macro-level. In specific, biological, physiological, biophysical, biochemical, medical, and engineering aspects are covered from the standpoint of the development of functional substitutes of biological tissues for potential clinical use. Topics in the area of cell engineering include cell membrane biophysics, structure and function of the cytoskeleton, cell-extracellular matrix interactions, and mechanotransduction. In the area of tissue engineering the focus is on the in vitro cultivation of ...

  10. Enteroendocrine cell types revisited

    DEFF Research Database (Denmark)

    Engelstoft, Maja S; Egerod, Kristoffer Lihme; Lund, Mari L

    2013-01-01

    The GI-tract is profoundly involved in the control of metabolism through peptide hormones secreted from enteroendocrine cells scattered throughout the gut mucosa. A large number of recently generated transgenic reporter mice have allowed for direct characterization of biochemical and cell...... biological properties of these previously highly elusive enteroendocrine cells. In particular the surprisingly broad co-expression of six functionally related hormones in the intestinal enteroendocrine cells indicates that it should be possible to control not only the hormone secretion but also the type...... and number of enteroendocrine cells. However, this will require a more deep understanding of the factors controlling differentiation, gene expression and specification of the enteroendocrine cells during their weekly renewal from progenitor cells in the crypts of the mucosa....

  11. Stem Cell Pathology.

    Science.gov (United States)

    Fu, Dah-Jiun; Miller, Andrew D; Southard, Teresa L; Flesken-Nikitin, Andrea; Ellenson, Lora H; Nikitin, Alexander Yu

    2018-01-24

    Rapid advances in stem cell biology and regenerative medicine have opened new opportunities for better understanding disease pathogenesis and the development of new diagnostic, prognostic, and treatment approaches. Many stem cell niches are well defined anatomically, thereby allowing their routine pathological evaluation during disease initiation and progression. Evaluation of the consequences of genetic manipulations in stem cells and investigation of the roles of stem cells in regenerative medicine and pathogenesis of various diseases such as cancer require significant expertise in pathology for accurate interpretation of novel findings. Therefore, there is an urgent need for developing stem cell pathology as a discipline to facilitate stem cell research and regenerative medicine. This review provides examples of anatomically defined niches suitable for evaluation by diagnostic pathologists, describes neoplastic lesions associated with them, and discusses further directions of stem cell pathology.

  12. Mammary gland stem cells

    DEFF Research Database (Denmark)

    Fridriksdottir, Agla J R; Petersen, Ole W; Rønnov-Jessen, Lone

    2011-01-01

    Distinct subsets of cells, including cells with stem cell-like properties, have been proposed to exist in normal human breast epithelium and breast carcinomas. The cellular origins of epithelial cells contributing to gland development, tissue homeostasis and cancer are, however, still poorly...... understood. The mouse is a widely used model of mammary gland development, both directly by studying the mouse mammary epithelial cells themselves and indirectly, by studying development, morphogenesis, differentiation and carcinogenesis of xenotransplanted human breast epithelium in vivo. While in early...... studies, human or mouse epithelium was implanted as fragments into the mouse gland, more recent technical progress has allowed the self-renewal capacity and differentiation potential of distinct cell populations or even individual cells to be interrogated. Here, we review and discuss similarities...

  13. Human regulatory B cells control the TFH cell response.

    Science.gov (United States)

    Achour, Achouak; Simon, Quentin; Mohr, Audrey; Séité, Jean-François; Youinou, Pierre; Bendaoud, Boutahar; Ghedira, Ibtissem; Pers, Jacques-Olivier; Jamin, Christophe

    2017-07-01

    Follicular helper T (T FH ) cells support terminal B-cell differentiation. Human regulatory B (Breg) cells modulate cellular responses, but their control of T FH cell-dependent humoral immune responses is unknown. We sought to assess the role of Breg cells on T FH cell development and function. Human T cells were polyclonally stimulated in the presence of IL-12 and IL-21 to generate T FH cells. They were cocultured with B cells to induce their terminal differentiation. Breg cells were included in these cultures, and their effects were evaluated by using flow cytometry and ELISA. B-cell lymphoma 6, IL-21, inducible costimulator, CXCR5, and programmed cell death protein 1 (PD-1) expressions increased on stimulated human T cells, characterizing T FH cell maturation. In cocultures they differentiated B cells into CD138 + plasma and IgD - CD27 + memory cells and triggered immunoglobulin secretions. Breg cells obtained by Toll-like receptor 9 and CD40 activation of B cells prevented T FH cell development. Added to T FH cell and B-cell cocultures, they inhibited B-cell differentiation, impeded immunoglobulin secretions, and expanded Foxp3 + CXCR5 + PD-1 + follicular regulatory T cells. Breg cells modulated IL-21 receptor expressions on T FH cells and B cells, and their suppressive activities involved CD40, CD80, CD86, and intercellular adhesion molecule interactions and required production of IL-10 and TGF-β. Human Breg cells control T FH cell maturation, expand follicular regulatory T cells, and inhibit the T FH cell-mediated antibody secretion. These novel observations demonstrate a role for the Breg cell in germinal center reactions and suggest that deficient activities might impair the T FH cell-dependent control of humoral immunity and might lead to the development of aberrant autoimmune responses. Copyright © 2016 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  14. Well-Controlled Cell-Trapping Systems for Investigating Heterogeneous Cell-Cell Interactions.

    Science.gov (United States)

    Kamiya, Koki; Abe, Yuta; Inoue, Kosuke; Osaki, Toshihisa; Kawano, Ryuji; Miki, Norihisa; Takeuchi, Shoji

    2018-03-01

    Microfluidic systems have been developed for patterning single cells to study cell-cell interactions. However, patterning multiple types of cells to understand heterogeneous cell-cell interactions remains difficult. Here, it is aimed to develop a cell-trapping device to assemble multiple types of cells in the well-controlled order and morphology. This device mainly comprises a parylene sheet for assembling cells and a microcomb for controlling the cell-trapping area. The cell-trapping area is controlled by moving the parylene sheet on an SU-8 microcomb using tweezers. Gentle downward flow is used as a driving force for the cell-trapping. The assembly of cells on a parylene sheet with round and line-shaped apertures is demonstrated. The cell-cell contacts of the trapped cells are then investigated by direct cell-cell transfer of calcein via connexin nanopores. Finally, using the device with a system for controlling the cell-trapping area, three different types of cells in the well-controlled order are assembled. The correct cell order rate obtained using the device is 27.9%, which is higher than that obtained without the sliding parylene system (0.74%). Furthermore, the occurrence of cell-cell contact between the three cell types assembled is verified. This cell-patterning device will be a useful tool for investigating heterogeneous cell-cell interactions. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Involvement of plant stem cells or stem cell-like cells in dedifferentiation

    Directory of Open Access Journals (Sweden)

    Fangwei eJiang

    2015-11-01

    Full Text Available Dedifferentiation is the transformation of cells from a given differentiated state to a less differentiated or stem cell-like state. Stem cell-related genes play important roles in dedifferentiation, which exhibits similar histone modification and DNA methylation features to stem cell maintenance. Hence, stem cell-related factors possibly synergistically function to provide a specific niche beneficial to dedifferentiation. During callus formation in Arabidopsis petioles, cells adjacent to procambium cells (stem cell-like cells are dedifferentiated and survive more easily than other cell types. This finding indicates that stem cells or stem cell-like cells may influence the dedifferentiating niche. In this paper, we provide a brief overview of stem cell maintenance and dedifferentiation regulation. We also summarize current knowledge of genetic and epigenetic mechanisms underlying the balance between differentiation and dedifferentiation. Furthermore, we discuss the correlation of stem cells or stem cell-like cells with dedifferentiation.

  16. What is Sickle Cell Disease?

    Science.gov (United States)

    ... Congenital Anemias Including Sickle Cell Disease (SCD) and Beta-Thalassemia. Are you an adult with sickle cell disease ... Severe Congenital Anemias Including Sickle Cell Disease and Beta-Thalassemia. Are you 16 or older with sickle cell ...

  17. Membrane Cells for Brine Electrolysis.

    Science.gov (United States)

    Tingle, M.

    1982-01-01

    Membrane cells were developed as alternatives to mercury and diaphragm cells for the electrolysis of brine. Compares the three types of cells, focusing on the advantages and disadvantages of membrane cells. (JN)

  18. Epithelial Cell Cultures

    Directory of Open Access Journals (Sweden)

    Imran S. Chaudhry

    2011-01-01

    Full Text Available The biological effects of only a finite number of tobacco toxins have been studied. Here, we describe exposure of cultures of human bronchial epithelial cells to low concentrations of tobacco carcinogens: nickel sulphate, benzo(bfluoranthene, N-nitrosodiethylamine, and 4-(methylnitrosamino-1-(3-pyridyl-1-butanone (NNK. After a 24-hour exposure, EGFR was expressed in cell membrane and cytoplasm, BCL-2 was expressed only in the irregular nuclei of large atypical cells, MKI67 was expressed in nuclei with no staining in larger cells, cytoplasmic BIRC5 with stronger nuclear staining was seen in large atypical cells, and nuclear TP53 was strongly expressed in all cells. After only a 24-hour exposure, cells exhibited atypical nuclear and cytoplasmic features. After a 48-hour exposure, EGFR staining was localized to the nucleus, BCL-2 was slightly decreased in intensity, BIRC5 was localized to the cytoplasm, and TP53 staining was increased in small and large cells. BCL2L1 was expressed in both the cytoplasm and nuclei of cells at 24- and 48-hour exposures. We illustrate that short-termexposure of a bronchial epithelial cell line to smoking-equivalent concentrations of tobacco carcinogens alters the expression of key proliferation regulatory genes, EGFR, BCL-2, BCL2L1, BIRC5, TP53, and MKI67, similar to that reported in biopsy specimens of pulmonary epithelium described to be preneoplastic lesions.

  19. Mast Cell Function

    Science.gov (United States)

    da Silva, Elaine Zayas Marcelino; Jamur, Maria Célia

    2014-01-01

    Since first described by Paul Ehrlich in 1878, mast cells have been mostly viewed as effectors of allergy. It has been only in the past two decades that mast cells have gained recognition for their involvement in other physiological and pathological processes. Mast cells have a widespread distribution and are found predominantly at the interface between the host and the external environment. Mast cell maturation, phenotype and function are a direct consequence of the local microenvironment and have a marked influence on their ability to specifically recognize and respond to various stimuli through the release of an array of biologically active mediators. These features enable mast cells to act as both first responders in harmful situations as well as to respond to changes in their environment by communicating with a variety of other cells implicated in physiological and immunological responses. Therefore, the critical role of mast cells in both innate and adaptive immunity, including immune tolerance, has gained increased prominence. Conversely, mast cell dysfunction has pointed to these cells as the main offenders in several chronic allergic/inflammatory disorders, cancer and autoimmune diseases. This review summarizes the current knowledge of mast cell function in both normal and pathological conditions with regards to their regulation, phenotype and role. PMID:25062998

  20. CELL RESPIRATION STUDIES

    Science.gov (United States)

    Daland, Geneva A.; Isaacs, Raphael

    1927-01-01

    1. The oxygen consumption of blood of normal individuals, when the hemoglobin is saturated with oxygen, is practically zero within the limits of experimental error of the microspirometer used. 2. The oxygen consumed in a microspirometer by the blood of patients with chronic myelogenous leucemia with a high white blood cell count, and of one with leucocytosis from sepsis, was proportional to the number of adult polymorphonuclear neutrophils in the blood. 3. No correlation could be made between the rate of oxygen absorption and the total number of white blood cells in the blood, or the total number of immature cells, or the number of red blood cells, or the amount of oxyhemoglobin. 4. The blood of patients with chronic myelogenous leucemia continued to use oxygen in the microspirometer longer than that of normal individuals, and the hemoglobin, in the leucemic bloods, became desaturated even though exposed to air. 5. In blood in which the bulk. of the cells were immature and the mature cells few, the oxygen consumption was lower than in blood in which the mature cells predominated. The rate of oxygen consumption of the immature cells was relatively low as compared to the mature. 6. The slower rate of oxygen absorption by the immature leucocytes in chronic myelogenous leucemia as compared to the mature cells, places them, in accord with Warburg's reports, in the class of the malignant tissues in this respect rather than in the group of young or embryonic cells. PMID:19869329

  1. Simple Cell Balance Circuit

    Science.gov (United States)

    Johnson, Steven D.; Byers, Jerry W.; Martin, James A.

    2012-01-01

    A method has been developed for continuous cell voltage balancing for rechargeable batteries (e.g. lithium ion batteries). A resistor divider chain is provided that generates a set of voltages representing the ideal cell voltage (the voltage of each cell should be as if the cells were perfectly balanced). An operational amplifier circuit with an added current buffer stage generates the ideal voltage with a very high degree of accuracy, using the concept of negative feedback. The ideal voltages are each connected to the corresponding cell through a current- limiting resistance. Over time, having the cell connected to the ideal voltage provides a balancing current that moves the cell voltage very close to that ideal level. In effect, it adjusts the current of each cell during charging, discharging, and standby periods to force the cell voltages to be equal to the ideal voltages generated by the resistor divider. The device also includes solid-state switches that disconnect the circuit from the battery so that it will not discharge the battery during storage. This solution requires relatively few parts and is, therefore, of lower cost and of increased reliability due to the fewer failure modes. Additionally, this design uses very little power. A preliminary model predicts a power usage of 0.18 W for an 8-cell battery. This approach is applicable to a wide range of battery capacities and voltages.

  2. NKT cells in leishmaniasis.

    Science.gov (United States)

    Zamora-Chimal, Jaime; Hernández-Ruiz, Joselín; Becker, Ingeborg

    2017-04-01

    The role of NKT cells in the resistance or susceptibility towards Leishmania infections remains to be defined, since controversial data persist. The response of these cells seems to depend on many variables such as the infection site, the number of infecting parasites, the virulence of the strain and the Leishmania species. We here revise the activation pathways leading to NKT cell activation. NKT cells can be activated by the direct pathway, in which Leishmania glycolipids are presented by CD1d molecules on antigen presenting cells, such as dendritic cells (DC), leading to the secretion of diverse cytokines by NKT. NKT cells can also be activated by the indirect pathway, in which Leishmania glycolipids, such as LPG, stimulate TLR2 in DC, inducing their IL-12 production, which in turn activates NKT cells. The review further analyzes the role of NKT cells in disease development, both in humans as in mouse models. Finally we propose the activation of NKT cells for controlling Leishmania infections. Copyright © 2016 Elsevier GmbH. All rights reserved.

  3. Biology of Schwann cells.

    Science.gov (United States)

    Kidd, Grahame J; Ohno, Nobuhiko; Trapp, Bruce D

    2013-01-01

    The fundamental roles of Schwann cells during peripheral nerve formation and regeneration have been recognized for more than 100 years, but the cellular and molecular mechanisms that integrate Schwann cell and axonal functions continue to be elucidated. Derived from the embryonic neural crest, Schwann cells differentiate into myelinating cells or bundle multiple unmyelinated axons into Remak fibers. Axons dictate which differentiation path Schwann cells follow, and recent studies have established that axonal neuregulin1 signaling via ErbB2/B3 receptors on Schwann cells is essential for Schwann cell myelination. Extracellular matrix production and interactions mediated by specific integrin and dystroglycan complexes are also critical requisites for Schwann cell-axon interactions. Myelination entails expansion and specialization of the Schwann cell plasma membrane over millimeter distances. Many of the myelin-specific proteins have been identified, and transgenic manipulation of myelin genes have provided novel insights into myelin protein function, including maintenance of axonal integrity and survival. Cellular events that facilitate myelination, including microtubule-based protein and mRNA targeting, and actin based locomotion, have also begun to be understood. Arguably, the most remarkable facet of Schwann cell biology, however, is their vigorous response to axonal damage. Degradation of myelin, dedifferentiation, division, production of axonotrophic factors, and remyelination all underpin the substantial regenerative capacity of the Schwann cells and peripheral nerves. Many of these properties are not shared by CNS fibers, which are myelinated by oligodendrocytes. Dissecting the molecular mechanisms responsible for the complex biology of Schwann cells continues to have practical benefits in identifying novel therapeutic targets not only for Schwann cell-specific diseases but other disorders in which axons degenerate. Copyright © 2013 Elsevier B.V. All rights

  4. Solar cell shingle

    Science.gov (United States)

    Forestieri, A. F.; Ratajczak, A. F.; Sidorak, L. G. (Inventor)

    1977-01-01

    A solar cell shingle was made of an array of solar cells on a lower portion of a substantially rectangular shingle substrate made of fiberglass cloth or the like. The solar cells may be encapsulated in flourinated ethylene propylene or some other weatherproof translucent or transparent encapsulant to form a combined electrical module and a roof shingle. The interconnected solar cells were connected to connectors at the edge of the substrate through a connection to a common electrical bus or busses. An overlap area was arranged to receive the overlap of a cooperating similar shingle so that the cell portion of the cooperating shingle may overlie the overlap area of the roof shingle. Accordingly, the same shingle serves the double function of an ordinary roof shingle which may be applied in the usual way and an array of cooperating solar cells from which electrical energy may be collected.

  5. NCAM regulates cell motility

    DEFF Research Database (Denmark)

    Prag, Søren; Lepekhin, Eugene A; Kolkova, Kateryna

    2002-01-01

    Cell migration is required during development of the nervous system. The regulatory mechanisms for this process, however, are poorly elucidated. We show here that expression of or exposure to the neural cell adhesion molecule (NCAM) strongly affected the motile behaviour of glioma cells...... independently of homophilic NCAM interactions. Expression of the transmembrane 140 kDa isoform of NCAM (NCAM-140) caused a significant reduction in cellular motility, probably through interference with factors regulating cellular attachment, as NCAM-140-expressing cells exhibited a decreased attachment...... to a fibronectin substratum compared with NCAM-negative cells. Ectopic expression of the cytoplasmic part of NCAM-140 also inhibited cell motility, presumably via the non-receptor tyrosine kinase p59(fyn) with which NCAM-140 interacts. Furthermore, we showed that the extracellular part of NCAM acted as a paracrine...

  6. The human cell atlas

    DEFF Research Database (Denmark)

    Regev, Aviv; Teichmann, Sarah A.; Lander, Eric S.

    2017-01-01

    The recent advent of methods for high-throughput single-cell molecular profiling has catalyzed a growing sense in the scientific community that the time is ripe to complete the 150-year-old effort to identify all cell types in the human body. The Human Cell Atlas Project is an international...... collaborative effort that aims to define all human cell types in terms of distinctive molecular profiles (such as gene expression profiles) and to connect this information with classical cellular descriptions (such as location and morphology). An open comprehensive reference map of the molecular state of cells...... in healthy human tissues would propel the systematic study of physiological states, developmental trajectories, regulatory circuitry and interactions of cells, and also provide a framework for understanding cellular dysregulation in human disease. Here we describe the idea, its potential utility, early...

  7. Cell Factory Engineering

    DEFF Research Database (Denmark)

    Davy, Anne Mathilde; Kildegaard, Helene Faustrup; Andersen, Mikael Rørdam

    2017-01-01

    Rational approaches to modifying cells to make molecules of interest are of substantial economic and scientific interest. Most of these efforts aim at the production of native metabolites, expression of heterologous biosynthetic pathways, or protein expression. Reviews of these topics have largely...... focused on individual strategies or cell types, but collectively they fall under the broad umbrella of a growing field known as cell factory engineering. Here we condense >130 reviews and key studies in the art into a meta-review of cell factory engineering. We identified 33 generic strategies...... in the field, all applicable to multiple types of cells and products, and proven successful in multiple major cell types. These apply to three major categories: production of native metabolites and/or bioactives, heterologous expression of biosynthetic pathways, and protein expression. This meta...

  8. Gingival plasma cell granuloma

    Directory of Open Access Journals (Sweden)

    Amitkumar B Pandav

    2012-01-01

    Full Text Available Plasma cell granuloma, also known as inflammatory pseudotumor is a tumor-like lesion that manifests primarily in the lungs. But it may occur in various other anatomic locations like orbit, head and neck, liver and rarely in the oral cavity. We here report an exceedingly rare case of gingival plasma cell granuloma in a 58 year old woman who presented with upper gingival polypoidal growth. The histopathological examination revealed a mass composed of proliferation of benign spindle mesenchymal cells in a loose myxoid and fibrocollagenous stroma along with dense infiltrate of chronic inflammatory cells predominantly containing plasma cells. Immunohistochemistry for kappa and lambda light chains showed a polyclonal staining pattern confirming a diagnosis of plasma cell granuloma.

  9. Cell Therapy in Dermatology

    Science.gov (United States)

    Petrof, Gabriela; Abdul-Wahab, Alya; McGrath, John A.

    2014-01-01

    Harnessing the regenerative capacity of keratinocytes and fibroblasts from human skin has created new opportunities to develop cell-based therapies for patients. Cultured cells and bioengineered skin products are being used to treat patients with inherited and acquired skin disorders associated with defective skin, and further clinical trials of new products are in progress. The capacity of extracutaneous sources of cells such as bone marrow is also being investigated for its plasticity in regenerating skin, and new strategies, such as the derivation of inducible pluripotent stem cells, also hold great promise for future cell therapies in dermatology. This article reviews some of the preclinical and clinical studies and future directions relating to cell therapy in dermatology, particularly for inherited skin diseases associated with fragile skin and poor wound healing. PMID:24890834

  10. Basal cell carcinoma of the skin with areas of squamous cell carcinoma: a basosquamous cell carcinoma?

    OpenAIRE

    de Faria, J

    1985-01-01

    The diagnosis of basosquamous cell carcinoma is controversial. A review of cases of basal cell carcinoma showed 23 cases that had conspicuous areas of squamous cell carcinoma. This was distinguished from squamous differentiation and keratotic basal cell carcinoma by a comparative study of 40 cases of compact lobular and 40 cases of keratotic basal cell carcinoma. Areas of intermediate tumour differentiation between basal cell and squamous cell carcinoma were found. Basal cell carcinomas with ...

  11. Synaptic Cell Adhesion

    OpenAIRE

    Missler, Markus; Südhof, Thomas C.; Biederer, Thomas

    2012-01-01

    Chemical synapses are asymmetric intercellular junctions that mediate synaptic transmission. Synaptic junctions are organized by trans-synaptic cell adhesion molecules bridging the synaptic cleft. Synaptic cell adhesion molecules not only connect pre- and postsynaptic compartments, but also mediate trans-synaptic recognition and signaling processes that are essential for the establishment, specification, and plasticity of synapses. A growing number of synaptic cell adhesion molecules that inc...

  12. Direct hydrocarbon fuel cells

    Science.gov (United States)

    Barnett, Scott A.; Lai, Tammy; Liu, Jiang

    2010-05-04

    The direct electrochemical oxidation of hydrocarbons in solid oxide fuel cells, to generate greater power densities at lower temperatures without carbon deposition. The performance obtained is comparable to that of fuel cells used for hydrogen, and is achieved by using novel anode composites at low operating temperatures. Such solid oxide fuel cells, regardless of fuel source or operation, can be configured advantageously using the structural geometries of this invention.

  13. TECHNICAL PEER REVIEW REPORT - YUCCA MOUNTAIN: WASTE PACKAGE CLOSURE CONTROL SYSTEM

    International Nuclear Information System (INIS)

    2005-01-01

    The objective of the Waste Package Closure System (WPCS) project is to assist in the disposal of spent nuclear fuel (SNF) and associated high-level wastes (HLW) at the Yucca Mountain site in Nevada. Materials will be transferred from the casks into a waste package (WP), sealed, and placed into the underground facility. The SNF/HLW transfer and closure operations will be performed in an aboveground facility. The objective of the Control System is to bring together major components of the entire WPCS ensuring that unit operations correctly receive, and respond to, commands and requests for data. Integrated control systems will be provided to ensure that all operations can be performed remotely. Maintenance on equipment may be done using hands-on or remote methods, depending on complexity, exposure, and ease of access. Operating parameters and nondestructive examination results will be collected and stored as permanent electronic records. Minor weld repairs must be performed within the closure cell if the welds do not meet the inspection acceptance requirements. Any WP with extensive weld defects that require lids to be removed will be moved to the remediation facility for repair

  14. TECHNICAL PEER REVIEW REPORT - YUCCA MOUNTAIN: WASTE PACKAGE CLOSURE CONTROL SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    NA

    2005-10-25

    The objective of the Waste Package Closure System (WPCS) project is to assist in the disposal of spent nuclear fuel (SNF) and associated high-level wastes (HLW) at the Yucca Mountain site in Nevada. Materials will be transferred from the casks into a waste package (WP), sealed, and placed into the underground facility. The SNF/HLW transfer and closure operations will be performed in an aboveground facility. The objective of the Control System is to bring together major components of the entire WPCS ensuring that unit operations correctly receive, and respond to, commands and requests for data. Integrated control systems will be provided to ensure that all operations can be performed remotely. Maintenance on equipment may be done using hands-on or remote methods, depending on complexity, exposure, and ease of access. Operating parameters and nondestructive examination results will be collected and stored as permanent electronic records. Minor weld repairs must be performed within the closure cell if the welds do not meet the inspection acceptance requirements. Any WP with extensive weld defects that require lids to be removed will be moved to the remediation facility for repair.

  15. Different cell fates from cell-cell interactions: core architectures of two-cell bistable networks.

    Science.gov (United States)

    Rouault, Hervé; Hakim, Vincent

    2012-02-08

    The acquisition of different fates by cells that are initially in the same state is central to development. Here, we investigate the possible structures of bistable genetic networks that can allow two identical cells to acquire different fates through cell-cell interactions. Cell-autonomous bistable networks have been previously sampled using an evolutionary algorithm. We extend this evolutionary procedure to take into account interactions between cells. We obtain a variety of simple bistable networks that we classify into major subtypes. Some have long been proposed in the context of lateral inhibition through the Notch-Delta pathway, some have been more recently considered and others appear to be new and based on mechanisms not previously considered. The results highlight the role of posttranscriptional interactions and particularly of protein complexation and sequestration, which can replace cooperativity in transcriptional interactions. Some bistable networks are entirely based on posttranscriptional interactions and the simplest of these is found to lead, upon a single parameter change, to oscillations in the two cells with opposite phases. We provide qualitative explanations as well as mathematical analyses of the dynamical behaviors of various created networks. The results should help to identify and understand genetic structures implicated in cell-cell interactions and differentiation. Copyright © 2012 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  16. Bacterial Cell Mechanics.

    Science.gov (United States)

    Auer, George K; Weibel, Douglas B

    2017-07-25

    Cellular mechanical properties play an integral role in bacterial survival and adaptation. Historically, the bacterial cell wall and, in particular, the layer of polymeric material called the peptidoglycan were the elements to which cell mechanics could be primarily attributed. Disrupting the biochemical machinery that assembles the peptidoglycan (e.g., using the β-lactam family of antibiotics) alters the structure of this material, leads to mechanical defects, and results in cell lysis. Decades after the discovery of peptidoglycan-synthesizing enzymes, the mechanisms that underlie their positioning and regulation are still not entirely understood. In addition, recent evidence suggests a diverse group of other biochemical elements influence bacterial cell mechanics, may be regulated by new cellular mechanisms, and may be triggered in different environmental contexts to enable cell adaptation and survival. This review summarizes the contributions that different biomolecular components of the cell wall (e.g., lipopolysaccharides, wall and lipoteichoic acids, lipid bilayers, peptidoglycan, and proteins) make to Gram-negative and Gram-positive bacterial cell mechanics. We discuss the contribution of individual proteins and macromolecular complexes in cell mechanics and the tools that make it possible to quantitatively decipher the biochemical machinery that contributes to bacterial cell mechanics. Advances in this area may provide insight into new biology and influence the development of antibacterial chemotherapies.

  17. Atmospheric Absorption Cell Characterization.

    Science.gov (United States)

    1982-06-01

    was adequate for making empty cell measurements and filling the cell with artificial atmospheres. The procedure used in pumping and fillin the cell...carbon dioxide, nitrogen, and nitrous oxide. The artificial atmospheres in the cell used for these measurements are summarized in Table IV. Figures...LD_l -_10J J« LUZ . jr-U «—• »r—• «-CD CO — Q- —a CD -j" \\z — OC I — h- \\_IC\\J CM LUD -ÜU T 1 r 00*001 00󈧌 00*09 00*0

  18. Cancer stem cell metabolism.

    Science.gov (United States)

    Peiris-Pagès, Maria; Martinez-Outschoorn, Ubaldo E; Pestell, Richard G; Sotgia, Federica; Lisanti, Michael P

    2016-05-24

    Cancer is now viewed as a stem cell disease. There is still no consensus on the metabolic characteristics of cancer stem cells, with several studies indicating that they are mainly glycolytic and others pointing instead to mitochondrial metabolism as their principal source of energy. Cancer stem cells also seem to adapt their metabolism to microenvironmental changes by conveniently shifting energy production from one pathway to another, or by acquiring intermediate metabolic phenotypes. Determining the role of cancer stem cell metabolism in carcinogenesis has become a major focus in cancer research, and substantial efforts are conducted towards discovering clinical targets.

  19. Nanocrystal Solar Cells

    Energy Technology Data Exchange (ETDEWEB)

    Gur, Ilan [Univ. of California, Berkeley, CA (United States)

    2006-01-01

    This dissertation presents the results of a research agenda aimed at improving integration and stability in nanocrystal-based solar cells through advances in active materials and device architectures. The introduction of 3-dimensional nanocrystals illustrates the potential for improving transport and percolation in hybrid solar cells and enables novel fabrication methods for optimizing integration in these systems. Fabricating cells by sequential deposition allows for solution-based assembly of hybrid composites with controlled and well-characterized dispersion and electrode contact. Hyperbranched nanocrystals emerge as a nearly ideal building block for hybrid cells, allowing the controlled morphologies targeted by templated approaches to be achieved in an easily fabricated solution-cast device. In addition to offering practical benefits to device processing, these approaches offer fundamental insight into the operation of hybrid solar cells, shedding light on key phenomena such as the roles of electrode-contact and percolation behavior in these cells. Finally, all-inorganic nanocrystal solar cells are presented as a wholly new cell concept, illustrating that donor-acceptor charge transfer and directed carrier diffusion can be utilized in a system with no organic components, and that nanocrystals may act as building blocks for efficient, stable, and low-cost thin-film solar cells.

  20. Littoral Cells 2005

    Data.gov (United States)

    California Natural Resource Agency — Littoral cells along the California Coast. Originally digitized by Melanie Coyne from the Assessment and Atlas of Shoreline Erosion Along the California Coast...

  1. Microencapsulation Of Living Cells

    Science.gov (United States)

    Chang, Manchium; Kendall, James M.; Wang, Taylor G.

    1989-01-01

    In experimental technique, living cells and other biological materials encapsulated within submillimeter-diameter liquid-filled spheres. Sphere material biocompatible, tough, and compliant. Semipermeable, permitting relatively small molecules to move into and out of sphere core but preventing passage of large molecules. New technique promises to make such spherical capsules at high rates and in uniform, controllable sizes. Capsules injected into patient through ordinary hypodermic needle. Promising application for technique in treatment of diabetes. Also used to encapsulate pituitary cells and thyroid hormone adrenocortical cells for treatment of other hormonal disorders, to encapsulate other secreting cells for transplantation, and to package variety of pharmaceutical products and agricultural chemicals for controlled release.

  2. Applications of Cell Microencapsulation.

    Science.gov (United States)

    Opara, Emmanuel C

    2017-01-01

    The goal of this chapter is to provide an overview of the different purposes for which the cell microencapsulation technology can be used. These include immunoisolation of non-autologous cells used for cell therapy; immobilization of cells for localized (targeted) delivery of therapeutic products to ablate, repair, or regenerate tissue; simultaneous delivery of multiple therapeutic agents in cell therapy; spatial compartmentalization of cells in complex tissue engineering; expansion of cells in culture; and production of different probiotics and metabolites for industrial applications. For each of these applications, specific examples are provided to illustrate how the microencapsulation technology can be utilized to achieve the purpose. However, successful use of the cell microencapsulation technology for whatever purpose will ultimately depend upon careful consideration for the choice of the encapsulating polymers, the method of fabrication (cross-linking) of the microbeads, which affects the permselectivity, the biocompatibility and the mechanical strength of the microbeads as well as environmental parameters such as temperature, humidity, osmotic pressure, and storage solutions.The various applications discussed in this chapter are illustrated in the different chapters of this book and where appropriate relevant images of the microencapsulation products are provided. It is hoped that this outline of the different applications of cell microencapsulation would provide a good platform for tissue engineers, scientists, and clinicians to design novel tissue constructs and products for therapeutic and industrial applications.

  3. A brief history of T cell help to B cells.

    Science.gov (United States)

    Crotty, Shane

    2015-03-01

    In celebration of the 50th anniversary of the discovery of B cells, I take a look back at the history of T cell help to B cells, which was discovered 47 years ago. In addition, I summarize and categorize the distinct molecules that are expressed by CD4(+) T cells that constitute 'help' to B cells, and particularly the molecules expressed by T follicular helper (TFH) cells, which are the specialized providers of help to B cells.

  4. Regulation of beta cell replication

    DEFF Research Database (Denmark)

    Lee, Ying C; Nielsen, Jens Høiriis

    2008-01-01

    Beta cell mass, at any given time, is governed by cell differentiation, neogenesis, increased or decreased cell size (cell hypertrophy or atrophy), cell death (apoptosis), and beta cell proliferation. Nutrients, hormones and growth factors coupled with their signalling intermediates have been...... suggested to play a role in beta cell mass regulation. In addition, genetic mouse model studies have indicated that cyclins and cyclin-dependent kinases that determine cell cycle progression are involved in beta cell replication, and more recently, menin in association with cyclin-dependent kinase...... inhibitors has been demonstrated to be important in beta cell growth. In this review, we consider and highlight some aspects of cell cycle regulation in relation to beta cell replication. The role of cell cycle regulation in beta cell replication is mostly from studies in rodent models, but whether...

  5. Fuel Cell Demonstration Program

    Energy Technology Data Exchange (ETDEWEB)

    Gerald Brun

    2006-09-15

    In an effort to promote clean energy projects and aid in the commercialization of new fuel cell technologies the Long Island Power Authority (LIPA) initiated a Fuel Cell Demonstration Program in 1999 with six month deployments of Proton Exchange Membrane (PEM) non-commercial Beta model systems at partnering sites throughout Long Island. These projects facilitated significant developments in the technology, providing operating experience that allowed the manufacturer to produce fuel cells that were half the size of the Beta units and suitable for outdoor installations. In 2001, LIPA embarked on a large-scale effort to identify and develop measures that could improve the reliability and performance of future fuel cell technologies for electric utility applications and the concept to establish a fuel cell farm (Farm) of 75 units was developed. By the end of October of 2001, 75 Lorax 2.0 fuel cells had been installed at the West Babylon substation on Long Island, making it the first fuel cell demonstration of its kind and size anywhere in the world at the time. Designed to help LIPA study the feasibility of using fuel cells to operate in parallel with LIPA's electric grid system, the Farm operated 120 fuel cells over its lifetime of over 3 years including 3 generations of Plug Power fuel cells (Lorax 2.0, Lorax 3.0, Lorax 4.5). Of these 120 fuel cells, 20 Lorax 3.0 units operated under this Award from June 2002 to September 2004. In parallel with the operation of the Farm, LIPA recruited government and commercial/industrial customers to demonstrate fuel cells as on-site distributed generation. From December 2002 to February 2005, 17 fuel cells were tested and monitored at various customer sites throughout Long Island. The 37 fuel cells operated under this Award produced a total of 712,635 kWh. As fuel cell technology became more mature, performance improvements included a 1% increase in system efficiency. Including equipment, design, fuel, maintenance

  6. c-Myc-Dependent Cell Competition in Human Cancer Cells.

    Science.gov (United States)

    Patel, Manish S; Shah, Heta S; Shrivastava, Neeta

    2017-07-01

    Cell Competition is an interaction between cells for existence in heterogeneous cell populations of multicellular organisms. This phenomenon is involved in initiation and progression of cancer where heterogeneous cell populations compete directly or indirectly for the survival of the fittest based on differential gene expression. In Drosophila, cells having lower dMyc expression are eliminated by cell competition through apoptosis when present in the milieu of cells having higher dMyc expression. Thus, we designed a study to develop c-Myc (human homolog) dependent in vitro cell competition model of human cancer cells. Cells with higher c-Myc were transfected with c-myc shRNA to prepare cells with lower c-Myc and then co-cultured with the same type of cells having a higher c-Myc in equal ratio. Cells with lower c-Myc showed a significant decrease in numbers when compared with higher c-Myc cells, suggesting "loser" and "winner" status of cells, respectively. During microscopy, engulfment of loser cells by winner cells was observed with higher expression of JNK in loser cells. Furthermore, elimination of loser cells was prevented significantly, when co-cultured cells were treated with the JNK (apoptosis) inhibitor. Above results indicate elimination of loser cells in the presence of winner cells by c-Myc-dependent mechanisms of cell competition in human cancer cells. This could be an important mechanism in human tumors where normal cells are eliminated by c-Myc-overexpressed tumor cells. J. Cell. Biochem. 118: 1782-1791, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  7. Glycoprotein on cell surfaces

    International Nuclear Information System (INIS)

    Muramatsu, T.

    1975-01-01

    There are conjugated polysaccharides in cell membranes and outside of animal cells, and they play important role in the control of cell behavior. In this paper, the studies on the glycoprotein on cell surfaces are reported. It was found that the glycoprotein on cell surfaces have both N-glycoside type and O-glycoside type saccharic chains. Therefore it can be concluded that the basic structure of the saccharic chains in the glycoprotein on cell surfaces is similar to that of blood serum and body fluid. The main glycoprotein in the membranes of red blood corpuscles has been studied most in detail, and it also has both types of saccharic chains. The glycoprotein in liver cell membranes was found to have only the saccharic chains of acid type and to be in different pattern from that in endoplasmic reticula and nuclear membranes, which also has the saccharic chains of neutral type. The structure of the saccharic chains of H-2 antigen, i.e. the peculiar glycoprotein on the surfaces of lymph system cells, has been studied, and it is similar to the saccharic chains of glycoprotein in blood serum. The saccharic chain structures of H-2 antigen and TL antigen are different. TL, H-2 (D), Lna and H-2 (K) are the glycoprotein on cell surfaces, and are independent molecules. The analysis of the saccharic chain patterns on cell surfaces was carried out, and it was shown that the acid type saccharic chains were similar to those of ordinary glycoprotein, because the enzyme of pneumococci hydrolyzed most of the acid type saccharic chains. The change of the saccharic chain patterns of glycoprotein on cell surfaces owing to canceration and multiplication is complex matter. (Kako, I.)

  8. Molecular mechanisms controlling the cell cycle in embryonic stem cells.

    Science.gov (United States)

    Abdelalim, Essam M

    2013-12-01

    Embryonic stem (ES) cells are originated from the inner cell mass of a blastocyst stage embryo. They can proliferate indefinitely, maintain an undifferentiated state (self-renewal), and differentiate into any cell type (pluripotency). ES cells have an unusual cell cycle structure, consists mainly of S phase cells, a short G1 phase and absence of G1/S checkpoint. Cell division and cell cycle progression are controlled by mechanisms ensuring the accurate transmission of genetic information from generation to generation. Therefore, control of cell cycle is a complicated process, involving several signaling pathways. Although great progress has been made on the molecular mechanisms involved in the regulation of ES cell cycle, many regulatory mechanisms remain unknown. This review summarizes the current knowledge about the molecular mechanisms regulating the cell cycle of ES cells and describes the relationship existing between cell cycle progression and the self-renewal.

  9. Single-cell sequencing in stem cell biology.

    Science.gov (United States)

    Wen, Lu; Tang, Fuchou

    2016-04-15

    Cell-to-cell variation and heterogeneity are fundamental and intrinsic characteristics of stem cell populations, but these differences are masked when bulk cells are used for omic analysis. Single-cell sequencing technologies serve as powerful tools to dissect cellular heterogeneity comprehensively and to identify distinct phenotypic cell types, even within a 'homogeneous' stem cell population. These technologies, including single-cell genome, epigenome, and transcriptome sequencing technologies, have been developing rapidly in recent years. The application of these methods to different types of stem cells, including pluripotent stem cells and tissue-specific stem cells, has led to exciting new findings in the stem cell field. In this review, we discuss the recent progress as well as future perspectives in the methodologies and applications of single-cell omic sequencing technologies.

  10. Small cell glioblastoma or small cell carcinoma

    DEFF Research Database (Denmark)

    Hilbrandt, Christine; Sathyadas, Sathya; Dahlrot, Rikke H

    2013-01-01

    was admitted to the hospital with left-sided loss of motor function. A MRI revealed a 6 cm tumor in the right temporoparietal area. The histology was consistent with both glioblastoma multiforme (GBM) and small cell lung carcinoma (SCLC) but IHC was suggestive of a SCLC metastasis. PET-CT revealed...

  11. The cell biology of T-dependent B cell activation

    DEFF Research Database (Denmark)

    Owens, T; Zeine, R

    1989-01-01

    The requirement that CD4+ helper T cells recognize antigen in association with class II Major Histocompatibility Complex (MHC) encoded molecules constrains T cells to activation through intercellular interaction. The cell biology of the interactions between CD4+ T cells and antigen-presenting cells...

  12. Retinal stem cells and potential cell transplantation treatments

    Directory of Open Access Journals (Sweden)

    Tai-Chi Lin

    2014-11-01

    Full Text Available The retina, histologically composed of ten delicate layers, is responsible for light perception and relaying electrochemical signals to the secondary neurons and visual cortex. Retinal disease is one of the leading clinical causes of severe vision loss, including age-related macular degeneration, Stargardt's disease, and retinitis pigmentosa. As a result of the discovery of various somatic stem cells, advances in exploring the identities of embryonic stem cells, and the development of induced pluripotent stem cells, cell transplantation treatment for retinal diseases is currently attracting much attention. The sources of stem cells for retinal regeneration include endogenous retinal stem cells (e.g., neuronal stem cells, Müller cells, and retinal stem cells from the ciliary marginal zone and exogenous stem cells (e.g., bone mesenchymal stem cells, adipose-derived stem cells, embryonic stem cells, and induced pluripotent stem cells. The success of cell transplantation treatment depends mainly on the cell source, the timing of cell harvesting, the protocol of cell induction/transplantation, and the microenvironment of the recipient's retina. This review summarizes the different sources of stem cells for regeneration treatment in retinal diseases and surveys the more recent achievements in animal studies and clinical trials. Future directions and challenges in stem cell transplantation are also discussed.

  13. Mesenchymal stem cells: cell biology and potential use in therapy

    DEFF Research Database (Denmark)

    Kassem, Moustapha; Kristiansen, Malthe; Abdallah, Basem M

    2004-01-01

    Mesenchymal stem cells are clonogenic, non-haematopoietic stem cells present in the bone marrow and are able to differentiate into multiple mesoderm-type cell lineages e.g. osteoblasts, chondrocytes, endothelial-cells and also non-mesoderm-type lineages e.g. neuronal-like cells. Several methods...

  14. Hydrogen and fuel cells

    International Nuclear Information System (INIS)

    2006-06-01

    This road-map proposes by the Group Total aims to inform the public on the hydrogen and fuel cells. It presents the hydrogen technology from the production to the distribution and storage, the issues as motor fuel and fuel cells, the challenge for vehicles applications and the Total commitments in the domain. (A.L.B.)

  15. T-cell costimulation

    DEFF Research Database (Denmark)

    Owens, T

    1996-01-01

    The CD40L molecule expressed by CD4+ regulatory T lymphocytes is known to deliver signals that activate B cells and macrophages. It now appears that CD40L regulates T cells themselves, during both their development and their participation in adaptive immune responses....

  16. Cell phone explosion.

    Science.gov (United States)

    Atreya, Alok; Kanchan, Tanuj; Nepal, Samata; Pandey, Bhuwan Raj

    2016-03-01

    Cell phone explosions and resultant burn injuries are rarely reported in the scientific literature. We report a case of cell phone explosion that occurred when a young male was listening to music while the mobile was plugged in for charging. © The Author(s) 2015.

  17. The Constitution by Cell

    Science.gov (United States)

    Greenhut, Stephanie; Jones, Megan

    2010-01-01

    On their visit to the National Archives Experience in Washington, D.C., students in Jenni Ashley and Gay Brock's U.S. history classes at the Potomac School in McLean, Virginia, participated in a pilot program called "The Constitution by Cell." Armed with their cell phones, a basic understanding of the Constitution, and a willingness to…

  18. MICROBIAL FUEL CELL

    DEFF Research Database (Denmark)

    2008-01-01

    A novel microbial fuel cell construction for the generation of electrical energy. The microbial fuel cell comprises: (i) an anode electrode, (ii) a cathode chamber, said cathode chamber comprising an in let through which an influent enters the cathode chamber, an outlet through which an effluent...

  19. Cell Proliferation in Neuroblastoma

    Science.gov (United States)

    Stafman, Laura L.; Beierle, Elizabeth A.

    2016-01-01

    Neuroblastoma, the most common extracranial solid tumor of childhood, continues to carry a dismal prognosis for children diagnosed with advanced stage or relapsed disease. This review focuses upon factors responsible for cell proliferation in neuroblastoma including transcription factors, kinases, and regulators of the cell cycle. Novel therapeutic strategies directed toward these targets in neuroblastoma are discussed. PMID:26771642

  20. T-cell count

    Science.gov (United States)

    ... count URL of this page: //medlineplus.gov/ency/article/003516.htm T-cell count To use the sharing features on this ... as hepatitis or mononucleosis Lower than normal T-cell levels may be due to: Acute viral infections Aging Cancer Immune system diseases, such as HIV/AIDS ...

  1. Methanol Fuel Cell

    Science.gov (United States)

    Voecks, G. E.

    1985-01-01

    In proposed fuel-cell system, methanol converted to hydrogen in two places. External fuel processor converts only part of methanol. Remaining methanol converted in fuel cell itself, in reaction at anode. As result, size of fuel processor reduced, system efficiency increased, and cost lowered.

  2. Mesangial cell biology

    International Nuclear Information System (INIS)

    Abboud, Hanna E.

    2012-01-01

    Mesangial cells originate from the metanephric mesenchyme and maintain structural integrity of the glomerular microvascular bed and mesangial matrix homeostasis. In response to metabolic, immunologic or hemodynamic injury, these cells undergo apoptosis or acquire an activated phenotype and undergo hypertrophy, proliferation with excessive production of matrix proteins, growth factors, chemokines and cytokines. These soluble factors exert autocrine and paracrine effects on the cells or on other glomerular cells, respectively. MCs are primary targets of immune-mediated glomerular diseases such as IGA nephropathy or metabolic diseases such as diabetes. MCs may also respond to injury that primarily involves podocytes and endothelial cells or to structural and genetic abnormalities of the glomerular basement membrane. Signal transduction and oxidant stress pathways are activated in MCs and likely represent integrated input from multiple mediators. Such responses are convenient targets for therapeutic intervention. Studies in cultured MCs should be supplemented with in vivo studies as well as examination of freshly isolated cells from normal and diseases glomeruli. In addition to ex vivo morphologic studies in kidney cortex, cells should be studied in their natural environment, isolated glomeruli or even tissue slices. Identification of a specific marker of MCs should help genetic manipulation as well as selective therapeutic targeting of these cells. Identification of biological responses of MCs that are not mediated by the renin–angiotensin system should help development of novel and effective therapeutic strategies to treat diseases characterized by MC pathology.

  3. Mesangial cell biology

    Energy Technology Data Exchange (ETDEWEB)

    Abboud, Hanna E., E-mail: Abboud@uthscsa.edu

    2012-05-15

    Mesangial cells originate from the metanephric mesenchyme and maintain structural integrity of the glomerular microvascular bed and mesangial matrix homeostasis. In response to metabolic, immunologic or hemodynamic injury, these cells undergo apoptosis or acquire an activated phenotype and undergo hypertrophy, proliferation with excessive production of matrix proteins, growth factors, chemokines and cytokines. These soluble factors exert autocrine and paracrine effects on the cells or on other glomerular cells, respectively. MCs are primary targets of immune-mediated glomerular diseases such as IGA nephropathy or metabolic diseases such as diabetes. MCs may also respond to injury that primarily involves podocytes and endothelial cells or to structural and genetic abnormalities of the glomerular basement membrane. Signal transduction and oxidant stress pathways are activated in MCs and likely represent integrated input from multiple mediators. Such responses are convenient targets for therapeutic intervention. Studies in cultured MCs should be supplemented with in vivo studies as well as examination of freshly isolated cells from normal and diseases glomeruli. In addition to ex vivo morphologic studies in kidney cortex, cells should be studied in their natural environment, isolated glomeruli or even tissue slices. Identification of a specific marker of MCs should help genetic manipulation as well as selective therapeutic targeting of these cells. Identification of biological responses of MCs that are not mediated by the renin–angiotensin system should help development of novel and effective therapeutic strategies to treat diseases characterized by MC pathology.

  4. Perovskite Solar Cell

    Indian Academy of Sciences (India)

    Organic–inorganic halide perovskite, a newcomerin the solar cell industry has proved its potential forincreasing efficiency rapidly from 3.8% in 2009 to 22.1% in2016. High efficiency, flexibility, and cell architecture of theemerging hybrid halide perovskite have caught the attentionof researchers and technologists in the field.

  5. Fuel cell sesquicentennial

    Science.gov (United States)

    Cohn, E. M.

    1979-01-01

    The development of fuel cell technology is summarized, and the potential for utility-type fuel cell installations is assessed on the occasion of the 150th anniversary of the construction of the first fuel cell by Sir William Grove. The only functional fuel-cell systems developed to date, the hydrogen-oxygen cells used by NASA, are indicated, and hydrazine and alcohol (methanol) cells are considered. Areas requiring development before the implementation of fuel cells as general purpose utility-type electric generators include catalysts for naturally occurring hydrocarbons or processes for low-cost methanol or hydrazine production, efficient means of scrubbing and enriching air, self-regulating systems, and 15- to 20-fold power density increases. It is argued that although ideas for eliminating certain of the above-mentioned problems have been proposed, fuel-cell systems can never be expected to equal the efficiency, reliability and low cost of conventional power plants, and thus developmental support should be discontinued.

  6. Cystic Granular Cell Ameloblastoma

    OpenAIRE

    Thillaikarasi, Rathnavel; Balaji, Jayaram; Gupta, Bhawna; Ilayarja, Vadivel; Vani, Nandimandalam Venkata; Vidula, Balachander; Saravanan, Balasubramaniam; Ponniah, Irulandy

    2010-01-01

    Ameloblastoma is a locally aggressive benign epithelial odontogenic tumor, while unicystic ameloblastoma is a relatively less aggressive variant. Although rare in unicystic or cystic ameloblastoma, granular cell change in ameloblastoma is a recognized phenomenon. The purpose of the present article is to report a case of cystic granular cell ameloblastoma in 34-year old female.

  7. Cancer stem cells revisited

    NARCIS (Netherlands)

    Batlle, Eduard; Clevers, Hans

    2017-01-01

    The cancer stem cell (CSC) concept was proposed four decades ago, and states that tumor growth, analogous to the renewal of healthy tissues, is fueled by small numbers of dedicated stem cells. It has gradually become clear that many tumors harbor CSCs in dedicated niches, and yet their

  8. Biosensors for Cell Analysis.

    Science.gov (United States)

    Zhou, Qing; Son, Kyungjin; Liu, Ying; Revzin, Alexander

    2015-01-01

    Biosensors first appeared several decades ago to address the need for monitoring physiological parameters such as oxygen or glucose in biological fluids such as blood. More recently, a new wave of biosensors has emerged in order to provide more nuanced and granular information about the composition and function of living cells. Such biosensors exist at the confluence of technology and medicine and often strive to connect cell phenotype or function to physiological or pathophysiological processes. Our review aims to describe some of the key technological aspects of biosensors being developed for cell analysis. The technological aspects covered in our review include biorecognition elements used for biosensor construction, methods for integrating cells with biosensors, approaches to single-cell analysis, and the use of nanostructured biosensors for cell analysis. Our hope is that the spectrum of possibilities for cell analysis described in this review may pique the interest of biomedical scientists and engineers and may spur new collaborations in the area of using biosensors for cell analysis.

  9. Solar cell concentrating system

    International Nuclear Information System (INIS)

    Garg, H.P.; Sharma, V.K.; Agarwal, R.K.

    1986-11-01

    This study reviews fabrication techniques and testing facilities for different solar cells under concentration which have been developed and tested. It is also aimed to examine solar energy concentrators which are prospective candidates for photovoltaic concentrator systems. This may provide an impetus to the scientists working in the area of solar cell technology

  10. Programmed cell death

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    The purpose of this conference to provide a multidisciplinary forum for exchange of state-of-the-art information on the role programmed cell death plays in normal development and homeostasis of many organisms. This volume contains abstracts of papers in the following areas: invertebrate development; immunology/neurology; bcl-2 family; biochemistry; programmed cell death in viruses; oncogenesis; vertebrate development; and diseases.

  11. Mammary gland stem cells

    Indian Academy of Sciences (India)

    Mammary gland stem cells (MaSC) have not been identified in spite of extensive research spanning over several decades. This has been primarily due to the complexity of mammary gland structure and its development, cell heterogeneity in the mammary gland and the insufficient knowledge about MaSC markers.

  12. Cell-in-Cell Death Is Not Restricted by Caspase-3 Deficiency in MCF-7 Cells

    Science.gov (United States)

    Wang, Shan; He, Meifang; Li, Linmei; Liang, Zhihua; Zou, Zehong

    2016-01-01

    Purpose Cell-in-cell structures are created by one living cell entering another homotypic or heterotypic living cell, which usually leads to the death of the internalized cell, specifically through caspase-dependent cell death (emperitosis) or lysosome-dependent cell death (entosis). Although entosis has attracted great attention, its occurrence is controversial, because one cell line used in its study (MCF-7) is deficient in caspase-3. Methods We investigated this issue using MCF-7 and A431 cell lines, which often display cell-in-cell invasion, and have different levels of caspase-3 expression. Cell-in-cell death morphology, microstructures, and signaling pathways were compared in the two cell lines. Results Our results confirmed that MCF-7 cells are caspase-3 deficient with a partial deletion in the CASP-3 gene. These cells underwent cell death that lacked typical apoptotic properties after staurosporine treatment, whereas caspase-3-sufficient A431 cells displayed typical apoptosis. The presence of caspase-3 was related neither to the lysosome-dependent nor to the caspase-dependent cell-in-cell death pathway. However, the existence of caspase-3 was associated with a switch from lysosome-dependent cell-in-cell death to the apoptotic cell-in-cell death pathway during entosis. Moreover, cellular hypoxia, mitochondrial swelling, release of cytochrome C, and autophagy were observed in internalized cells during entosis. Conclusion The occurrence of caspase-independent entosis is not a cell-specific process. In addition, entosis actually represents a cellular self-repair system, functioning through autophagy, to degrade damaged mitochondria resulting from cellular hypoxia in cell-in-cell structures. However, sustained autophagy-associated signal activation, without reduction in cellular hypoxia, eventually leads to lysosome-dependent intracellular cell death. PMID:27721872

  13. Normal Untreated Jurkat Cells

    Science.gov (United States)

    2004-01-01

    Biomedical research offers hope for a variety of medical problems, from diabetes to the replacement of damaged bone and tissues. Bioreactors, which are used to grow cells and tissue cultures, play a major role in such research and production efforts. The objective of the research was to define a way to differentiate between effects due to microgravity and those due to possible stress from non-optimal spaceflight conditions. These Jurkat cells, a human acute T-cell leukemia was obtained to evaluate three types of potential experimental stressors: a) Temperature elevation; b) Serum starvation; and c) Centrifugal force. The data from previous spaceflight experiments showed that actin filaments and cell shape are significantly different for the control. These normal cells serve as the baseline for future spaceflight experiments.

  14. Fuel cells : emerging markets

    International Nuclear Information System (INIS)

    Callaghan Jerram, L.; Adamson, K.A.; Butler, J.; Huleatt-James, N.

    2009-01-01

    This presentation highlighted the findings of the 2009 review of the fuel cell industry and emerging markets as they appeared in Fuel Cell Today (FCT), a benchmark document on global fuel cell activity. Since 2008, the industry has seen a 50 per cent increase in fuel cell systems shipped, from 12,000 units to 18,000 units. Applications have increased for backup power for datacentres, telecoms and light duty vehicles. The 2009 review focused on emerging markets which include non-traditional regions that may experience considerable diffusion of fuel cells within the next 5 year forecast period. The 2009 review included an analysis on the United Arab Emirates, Mexico, Brazil and India and reviewed primary drivers, likely applications for near-term adoption, and government and private sector activity in these regions. The presentation provided a forecast of the global state of the industry in terms of shipments as well as a forecast of countries with emerging markets

  15. Cell manipulation in microfluidics

    International Nuclear Information System (INIS)

    Yun, Hoyoung; Kim, Kisoo; Lee, Won Gu

    2013-01-01

    Recent advances in the lab-on-a-chip field in association with nano/microfluidics have been made for new applications and functionalities to the fields of molecular biology, genetic analysis and proteomics, enabling the expansion of the cell biology field. Specifically, microfluidics has provided promising tools for enhancing cell biological research, since it has the ability to precisely control the cellular environment, to easily mimic heterogeneous cellular environment by multiplexing, and to analyze sub-cellular information by high-contents screening assays at the single-cell level. Various cell manipulation techniques in microfluidics have been developed in accordance with specific objectives and applications. In this review, we examine the latest achievements of cell manipulation techniques in microfluidics by categorizing externally applied forces for manipulation: (i) optical, (ii) magnetic, (iii) electrical, (iv) mechanical and (v) other manipulations. We furthermore focus on history where the manipulation techniques originate and also discuss future perspectives with key examples where available. (topical review)

  16. Solar cell radiation handbook

    Science.gov (United States)

    Tada, H. Y.; Carter, J. R., Jr.; Anspaugh, B. E.; Downing, R. G.

    1982-01-01

    The handbook to predict the degradation of solar cell electrical performance in any given space radiation environment is presented. Solar cell theory, cell manufacturing and how they are modeled mathematically are described. The interaction of energetic charged particles radiation with solar cells is discussed and the concept of 1 MeV equivalent electron fluence is introduced. The space radiation environment is described and methods of calculating equivalent fluences for the space environment are developed. A computer program was written to perform the equivalent fluence calculations and a FORTRAN listing of the program is included. Data detailing the degradation of solar cell electrical parameters as a function of 1 MeV electron fluence are presented.

  17. Toward sustainable fuel cells

    DEFF Research Database (Denmark)

    Stephens, Ifan; Rossmeisl, Jan; Chorkendorff, Ib

    2016-01-01

    A quarter of humanity's current energy consumption is used for transportation (1). Low-temperature hydrogen fuel cells offer much promise for replacing this colossal use of fossil fuels with renewables; these fuel cells produce negligible emissions and have a mileage and filling time equal to a r......% of the annual automotive vehicle production. Lowering the Pt loading in a fuel cell to a sustainable level requires the reactivity of Pt to be tuned so that it accelerates oxygen reduction more effectively (3). Two reports in this issue address this challenge (4, 5)....... to a regular gasoline car. However, current fuel cells require 0.25 g of platinum (Pt) per kilowatt of power (2) as catalysts to drive the electrode reactions. If the entire global annual production of Pt were devoted to fuel cell vehicles, fewer than 10 million vehicles could be produced each year, a mere 10...

  18. HTPEM Fuel Cell Impedance

    DEFF Research Database (Denmark)

    Vang, Jakob Rabjerg

    As part of the process to create a fossil free Denmark by 2050, there is a need for the development of new energy technologies with higher efficiencies than the current technologies. Fuel cells, that can generate electricity at higher efficiencies than conventional combustion engines, can...... potentially play an important role in the energy system of the future. One of the fuel cell technologies, that receives much attention from the Danish scientific community is high temperature proton exchange membrane (HTPEM) fuel cells based on polybenzimidazole (PBI) with phosphoric acid as proton conductor....... This type of fuel cell operates at higher temperature than comparable fuel cell types and they distinguish themselves by high CO tolerance. Platinum based catalysts have their efficiency reduced by CO and the effect is more pronounced at low temperature. This Ph.D. Thesis investigates this type of fuel...

  19. Cell fusions in mammals

    DEFF Research Database (Denmark)

    Larsson, Lars-Inge; Bjerregaard, Bolette; Talts, Jan Fredrik

    2008-01-01

    Cell fusions are important to fertilization, placentation, development of skeletal muscle and bone, calcium homeostasis and the immune defense system. Additionally, cell fusions participate in tissue repair and may be important to cancer development and progression. A large number of factors appear...... to regulate cell fusions, including receptors and ligands, membrane domain organizing proteins, proteases, signaling molecules and fusogenic proteins forming alpha-helical bundles that bring membranes close together. The syncytin family of proteins represent true fusogens and the founding member, syncytin-1......, has been documented to be involved in fusions between placental trophoblasts, between cancer cells and between cancer cells and host ells. We review the literature with emphasis on the syncytin family and propose that syncytins may represent universal fusogens in primates and rodents, which work...

  20. Cell Control Engineering

    DEFF Research Database (Denmark)

    Lynggaard, Hans Jørgen Birk; Alting, Leo

    1996-01-01

    The engineering process of creating cell control systems is described, and a Cell Control Engineering (CCE) concept is defined. The purpose is to assist people, representing different disciplines in the organisation, to implement cell controllers by addressing the complexity of having many systems...... in physically and logically different and changing manufacturing environments. The defined CCE concept combines state-of-the-art of commercially available enabling technologies for automation system software development, generic cell control models and guidelines for the complete engineering process....... It facilitates the understanding of the task and structure of cell controllers and uses this knowledge directly in the implementation of the system. By applying generic models CCE facilitates reuse of software components and maintenance of applications. In many enterprises, software makes up an increasing part...

  1. Photovoltaic solar cell

    Science.gov (United States)

    Nielson, Gregory N.; Gupta, Vipin P.; Okandan, Murat; Watts, Michael R.

    2015-09-08

    A photovoltaic solar concentrator is disclosed with one or more transverse-junction solar cells (also termed point contact solar cells) and a lens located above each solar cell to concentrate sunlight onto the solar cell to generate electricity. Piezoelectric actuators tilt or translate each lens to track the sun using a feedback-control circuit which senses the electricity generated by one or more of the solar cells. The piezoelectric actuators can be coupled through a displacement-multiplier linkage to provide an increased range of movement of each lens. Each lens in the solar concentrator can be supported on a frame (also termed a tilt plate) having three legs, with the movement of the legs being controlled by the piezoelectric actuators.

  2. CCL22-specific T Cells

    DEFF Research Database (Denmark)

    Martinenaite, Evelina; Munir Ahmad, Shamaila; Hansen, Morten

    2016-01-01

    Tumor cells and tumor-infiltrating macrophages produce the chemokine CCL22, which attracts regulatory T cells (Tregs) into the tumor microenvironment, decreasing anticancer immunity. Here, we investigated the possibility of targeting CCL22-expressing cells by activating specific T cells. We...... analyzed the CCL22 protein signal sequence, identifying a human leukocyte antigen A2- (HLA-A2-) restricted peptide epitope, which we then used to stimulate peripheral blood mononuclear cells (PMBCs) to expand populations of CCL22-specific T cells in vitro. T cells recognizing an epitope derived from...... the signal-peptide of CCL22 will recognize CCL22-expressing cells even though CCL22 is secreted out of the cell. CCL22-specific T cells recognized and killed CCL22-expressing cancer cells. Furthermore, CCL22-specific T cells lysed acute monocytic leukemia cells in a CCL22 expression-dependent manner. Using...

  3. Time evolution of cell size distributions in dense cell cultures

    Science.gov (United States)

    Khain, Evgeniy

    2015-03-01

    Living cells in a dense system are all in contact with each other. The common assumption is that such cells stop dividing due to a lack of space. Recent experimental observations have shown, however, that cells continue dividing for a while, but other cells in the system must shrink, to allow the newborn cells to grow to a normal size. Due to these ``pressure'' effects, the average cell size dramatically decreases with time, and the dispersion in cell sizes decreases, too. The collective cell behavior becomes even more complex when the system is expanding: cells near the edges are larger and migrate faster, while cells deep inside the colony are smaller and move slower. This exciting experimental data still needs to be described theoretically, incorporating the distribution of cell sizes in the system. We propose a mathematical model for time evolution of cell size distribution both in a closed and open system. The model incorporates cell proliferation, cell growth after division, cell shrinking due to ``pressure'' from other cells, and possible cell detachment from the interface of a growing colony. This research sheds light on physical and biological mechanisms of cell response to a dense environment and on the role of mechanical stresses in determining the distribution of cell sizes in the system.

  4. Oscillating Cell Culture Bioreactor

    Science.gov (United States)

    Freed, Lisa E.; Cheng, Mingyu; Moretti, Matteo G.

    2010-01-01

    To better exploit the principles of gas transport and mass transport during the processes of cell seeding of 3D scaffolds and in vitro culture of 3D tissue engineered constructs, the oscillatory cell culture bioreactor provides a flow of cell suspensions and culture media directly through a porous 3D scaffold (during cell seeding) and a 3D construct (during subsequent cultivation) within a highly gas-permeable closed-loop tube. This design is simple, modular, and flexible, and its component parts are easy to assemble and operate, and are inexpensive. Chamber volume can be very low, but can be easily scaled up. This innovation is well suited to work with different biological specimens, particularly with cells having high oxygen requirements and/or shear sensitivity, and different scaffold structures and dimensions. The closed-loop changer is highly gas permeable to allow efficient gas exchange during the cell seeding/culturing process. A porous scaffold, which may be seeded with cells, is fixed by means of a scaffold holder to the chamber wall with scaffold/construct orientation with respect to the chamber determined by the geometry of the scaffold holder. A fluid, with/without biological specimens, is added to the chamber such that all, or most, of the air is displaced (i.e., with or without an enclosed air bubble). Motion is applied to the chamber within a controlled environment (e.g., oscillatory motion within a humidified 37 C incubator). Movement of the chamber induces relative motion of the scaffold/construct with respect to the fluid. In case the fluid is a cell suspension, cells will come into contact with the scaffold and eventually adhere to it. Alternatively, cells can be seeded on scaffolds by gel entrapment prior to bioreactor cultivation. Subsequently, the oscillatory cell culture bioreactor will provide efficient gas exchange (i.e., of oxygen and carbon dioxide, as required for viability of metabolically active cells) and controlled levels of fluid

  5. Immunology of Langerhans Cells

    OpenAIRE

    TAMAKI,Kunihiko

    1990-01-01

    Langerhans cells (LC) are antigen-presenting cells residing in the epidermis of the skin. These cells show characteristic dendritic features and are continually repopulated by precursor cells originating in bone marrow. In this review, we will discuss about the characteristics of these cells.

  6. Quantitative imaging of epithelial cell scattering identifies specific inhibitors of cell motility and cell-cell dissociation

    NARCIS (Netherlands)

    Loerke, D.; le Duc, Q.; Blonk, I.; Kerstens, A.; Spanjaard, E.; Machacek, M.; Danuser, G.; de Rooij, J.

    2012-01-01

    The scattering of cultured epithelial cells in response to hepatocyte growth factor (HGF) is a model system that recapitulates key features of metastatic cell behavior in vitro, including disruption of cell-cell adhesions and induction of cell migration. We have developed image analysis tools that

  7. Radioresistance and hypoxic cells

    International Nuclear Information System (INIS)

    Ando, Koichi

    1989-01-01

    Current progress to explore further understanding of tumor hypoxia was reviewed. At subcellular level, hypoxia induces specific proteins, inhibits DNA synthesis as well as initiation of DNA replicon. Radioresistant characteristics of hypoxic cells is questioned in condition where irradiated cells were kept hypoxia during colony formation. Chronically hypoxic cells recovered from the inner layer of V79 multicellular spheroids are more sensitive to radiation than those from the oxic, outer layer. A novel sandwich culture method, which enables to reoxygenate chronic hypoxia, implies that chronically hypoxic cells are less sensitive to radiation after reoxygenation than oxic cells. For in vivo tumor, two types of tumor hypoxia are reported: diffusion-limited, chronic hypoxia and perfusion-limited, acute hypoxia. Evidence supporting the existence of perfusion-limited hypoxia is provided by an elegant method using vital staining and cell sorter. Data of our own laboratory also implies 2 types of tumor hypoxia; fractional hypoxia and incomplete hypoxia. Fractional hypoxia corresponds to a radioresistant tail on a biphasic tumor cell survival curves while tumors with incomplete hypoxia demonstrate only single component with radioresistant characteristics, instead. (author)

  8. Basic cell culture.

    Science.gov (United States)

    Pollard, J W

    1990-01-01

    This article will describe the basic techniques required for successful cell culture. It will also act to introduce some of the other chapters in this volume. It is not intended, as this volume is not, to describe the establishment of a tissue culture laboratory, nor to provide a historical or theoretical survey of cell culture. There are several books that adequately cover these areas, including the now somewhat dated but still valuable volume by Paul (1), the multi-authored Methods in Enzymology volume edited by Jakoby and Pastan (2), and the new edition of Freshney (3). Instead, this chapter's focus will be on the techniques for establishing primary rodent cell cultures from embryos and adult skin, maintaining and subculturing these fibro-blasts and their transformed derivatives, and the isolation of genetically pure strains. The cells described are all derived from Chinese hamsters since, to date, these cells, have proved to be the most useful for somatic cell genetics (4,5). The techniques, however, are generally applicable to most fibroblastic cell types.

  9. Cell line provenance.

    Science.gov (United States)

    Freshney, R Ian

    2002-07-01

    Cultured cell lines have become an extremely valuable resource, both in academic research and in industrial biotechnology. However, their value is frequently compromised by misidentification and undetected microbial contamination. As detailed elsewhere in this volume, the technology, both simple and sophisticated, is available to remedy the problems of misidentification and contamination, given the will to apply it. Combined with proper records of the origin and history of the cell line, assays for authentication and contamination contribute to the provenance of the cell line. Detailed records should start from the initiation or receipt of the cell line, and should incorporate data on the donor as well as the tissue from which the cell line was derived, should continue with details of maintenance, and include any accidental as well as deliberate deviations from normal maintenance. Records should also contain details of authentication and regular checks for contamination. With this information, preferably stored in a database, and suitable backed up, the provenance of the cell line so created makes the cell line a much more valuable resource, fit for validation in industrial applications and more likely to provide reproducible experimental results when disseminated for research in other laboratories.

  10. Llgl1 Connects Cell Polarity with Cell-Cell Adhesion in Embryonic Neural Stem Cells.

    Science.gov (United States)

    Jossin, Yves; Lee, Minhui; Klezovitch, Olga; Kon, Elif; Cossard, Alexia; Lien, Wen-Hui; Fernandez, Tania E; Cooper, Jonathan A; Vasioukhin, Valera

    2017-06-05

    Malformations of the cerebral cortex (MCCs) are devastating developmental disorders. We report here that mice with embryonic neural stem-cell-specific deletion of Llgl1 (Nestin-Cre/Llgl1 fl/fl ), a mammalian ortholog of the Drosophila cell polarity gene lgl, exhibit MCCs resembling severe periventricular heterotopia (PH). Immunohistochemical analyses and live cortical imaging of PH formation revealed that disruption of apical junctional complexes (AJCs) was responsible for PH in Nestin-Cre/Llgl1 fl/fl brains. While it is well known that cell polarity proteins govern the formation of AJCs, the exact mechanisms remain unclear. We show that LLGL1 directly binds to and promotes internalization of N-cadherin, and N-cadherin/LLGL1 interaction is inhibited by atypical protein kinase C-mediated phosphorylation of LLGL1, restricting the accumulation of AJCs to the basolateral-apical boundary. Disruption of the N-cadherin-LLGL1 interaction during cortical development in vivo is sufficient for PH. These findings reveal a mechanism responsible for the physical and functional connection between cell polarity and cell-cell adhesion machineries in mammalian cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Analysis of Cell Cycle Dynamics using Probabilistic Cell Cycle Models

    Science.gov (United States)

    Gurkan-Cavusoglu, Evren; Schupp, Jane E.; Kinsella, Timothy J.; Loparo, Kenneth A.

    2013-01-01

    In this study, we develop asynchronous probabilistic cell cycle models to quantitatively assess the effect of ionizing radiation on a human colon cancer cell line. We use both synchronous and asynchronous cell populations and follow treated cells for up to 2 cell cycle times. The model outputs quantify the changes in cell cycle dynamics following ionizing radiation treatment, principally in the duration of both G1 and G2/M phases. PMID:22254270

  12. Myeloproliferative neoplasm stem cells.

    Science.gov (United States)

    Mead, Adam J; Mullally, Ann

    2017-03-23

    Myeloproliferative neoplasms (MPNs) arise in the hematopoietic stem cell (HSC) compartment as a result of the acquisition of somatic mutations in a single HSC that provides a selective advantage to mutant HSC over normal HSC and promotes myeloid differentiation to engender a myeloproliferative phenotype. This population of somatically mutated HSC, which initiates and sustains MPNs, is termed MPN stem cells. In >95% of cases, mutations that drive the development of an MPN phenotype occur in a mutually exclusive manner in 1 of 3 genes: JAK2 , CALR , or MPL The thrombopoietin receptor, MPL, is the key cytokine receptor in MPN development, and these mutations all activate MPL-JAK-STAT signaling in MPN stem cells. Despite common biological features, MPNs display diverse disease phenotypes as a result of both constitutional and acquired factors that influence MPN stem cells, and likely also as a result of heterogeneity in the HSC in which MPN-initiating mutations arise. As the MPN clone expands, it exerts cell-extrinsic effects on components of the bone marrow niche that can favor the survival and expansion of MPN stem cells over normal HSC, further sustaining and driving malignant hematopoiesis. Although developed as targeted therapies for MPNs, current JAK2 inhibitors do not preferentially target MPN stem cells, and as a result, rarely induce molecular remissions in MPN patients. As the understanding of the molecular mechanisms underlying the clonal dominance of MPN stem cells advances, this will help facilitate the development of therapies that preferentially target MPN stem cells over normal HSC. © 2017 by The American Society of Hematology.

  13. Conversion of primordial germ cells to pluripotent stem cells: methods for cell tracking and culture conditions.

    Science.gov (United States)

    Nagamatsu, Go; Suda, Toshio

    2013-01-01

    Primordial germ cells (PGCs) are unipotent cells committed to germ lineage: PGCs can only differentiate into gametes in vivo. However, upon fertilization, germ cells acquire the capacity to differentiate into all cell types in the body, including germ cells. Therefore, germ cells are thought to have the potential for pluripotency. PGCs can convert to pluripotent stem cells in vitro when cultured under specific conditions that include bFGF, LIF, and the membrane-bound form of SCF (mSCF). Here, the culture conditions which efficiently convert PGCs to pluripotent embryonic germ (EG) cells are described, as well as methods used for identifying pluripotent candidate cells during culture.

  14. PLUTONIUM ELECTROREFINING CELLS

    Science.gov (United States)

    Mullins, L.J. Jr.; Leary, J.A.; Bjorklund, C.W.; Maraman, W.J.

    1963-07-16

    Electrorefining cells for obtaining 99.98% plutonium are described. The cells consist of an impure liquid plutonium anode, a molten PuCl/sub 3/-- alkali or alkaline earth metal chloanode, a molten PuCl/sub 3/-alkali or alkaline earth metal chloride electrolyte, and a nonreactive cathode, all being contained in nonreactive ceramic containers which separate anode from cathode by a short distance and define a gap for the collection of the purified liquid plutonium deposited on the cathode. Important features of these cells are the addition of stirrer blades on the anode lead and a large cathode surface to insure a low current density. (AEC)

  15. Protoparvovirus cell entry

    DEFF Research Database (Denmark)

    Ros, Carlos; Bayat, Nooshin; Wolfisberg, Raphael

    2017-01-01

    and oncolytic activities while being nonpathogenic for humans. The PtPVs invade and replicate within the nucleus making extensive use of the transport, transcription and replication machineries of the host cells. In order to reach the nucleus, PtPVs need to cross over several intracellular barriers and traffic...... through different cell compartments, which limit their infection efficiency. In this review we summarize molecular interactions, capsid structural transitions and hijacking of cellular processes, by which the PtPVs enter and deliver their single-stranded DNA genome into the host cell nucleus...

  16. Quantum dot solar cells

    CERN Document Server

    Wu, Jiang

    2013-01-01

    The third generation of solar cells includes those based on semiconductor quantum dots. This sophisticated technology applies nanotechnology and quantum mechanics theory to enhance the performance of ordinary solar cells. Although a practical application of quantum dot solar cells has yet to be achieved, a large number of theoretical calculations and experimental studies have confirmed the potential for meeting the requirement for ultra-high conversion efficiency. In this book, high-profile scientists have contributed tutorial chapters that outline the methods used in and the results of variou

  17. Solar cell array interconnects

    Science.gov (United States)

    Carey, Paul G.; Thompson, Jesse B.; Colella, Nicolas J.; Williams, Kenneth A.

    1995-01-01

    Electrical interconnects for solar cells or other electronic components using a silver-silicone paste or a lead-tin (Pb-Sn) no-clean fluxless solder cream, whereby the high breakage of thin (copper strips which are secured to the solar cells by a silver-silicone conductive paste which can be used at room temperature, or by a Pb-Sn solder cream which eliminates undesired residue on the active surfaces of the solar cells. Electrical testing using the interconnects of this invention has shown that no degradation of the interconnects developed under high current testing, while providing a very low contact resistance value.

  18. Fuel cell systems

    International Nuclear Information System (INIS)

    Kotevski, Darko

    2003-01-01

    Fuel cell systems are an entirely different approach to the production of electricity than traditional technologies. They are similar to the batteries in that both produce direct current through electrochemical process. There are six types of fuel cells each with a different type of electrolyte, but they all share certain important characteristics: high electrical efficiency, low environmental impact and fuel flexibility. Fuel cells serve a variety of applications: stationary power plants, transport vehicles and portable power. That is why world wide efforts are addressed to improvement of this technology. (Original)

  19. The effect of foxp3-overexpressing Treg cells on non-small cell lung cancer cells.

    Science.gov (United States)

    Peng, Jiangzhou; Yu, Zigang; Xue, Lei; Wang, Jiabin; Li, Jun; Liu, Degang; Yang, Qiang; Lin, Yihui

    2018-04-01

    The aim of the present study was to investigate the novel mechanisms of forkhead box protein P3 (foxp3) in T regulatory (Treg) cells in lung cancer behavior. Treg cells were isolated from the peripheral blood of healthy volunteers and then co‑cultured with 95D cells. A plasmid overexpressing foxp3 was constructed and transfected into Treg cells and an MTS assay was performed to assess cell viability. Flow cytometry was performed to evaluate cell apoptosis and reverse transcription‑quantitative polymerase chain reaction was used to measure mRNA expression. A Transwell assay was used to assess cell invasion. Treg cells were successfully isolated from peripheral blood with purity of 94.26%. Foxp3 expression in Treg cells was significantly increased following co‑culture with 95D cells, while matrix metalloproteinase‑9 expression was upregulated in 95D cells co‑cultured with Treg cells. The apoptosis, invasion and migration abilities of 95D cells were suppressed by co‑culture with Treg cells, whereas the adhesive ability was enhanced. Foxp3 overexpression in Treg cells enhanced the viability and invasiveness of 95D cells, whereas cell adhesion and migration were decreased. The results of the present study demonstrate that the viability and invasiveness of 95D cells are enhanced by foxp3 overexpression in Treg cells, indicating that increased levels of foxp3 in the tumor microenvironment may promote tumor cell growth.

  20. WideCells Group PLC.

    Science.gov (United States)

    Hollands, Peter

    2017-07-01

    WideCells Group PLC (Manchester, UK) is a global stem cell services company with the aim of leading a transformation in cord blood banking and stem cell treatment. There are three key divisions: WideCells, WideAcademy and CellPlan. WideCells provides contract, collaborative and in-house research, and stem cell processing and storage facilities for a wide range of human tissues. WideAcademy, the education and training branch of the WideCells Group, aims to become the thought leader in stem cell technology, influencing and informing the next generation of healthcare professionals working in stem cell technology. CellPlan is a first-of-its-kind medical insurance plan to make stem cell treatment accessible and affordable by providing access to renowned specialists and hospitals globally with financial cover for cord blood transplantation and for participation in clinical trials using cord blood.

  1. Sickle Cell Disease (For Parents)

    Science.gov (United States)

    ... disease, such as hemoglobin SC disease or sickle beta thalassemia . How Is Sickle Cell Disease Diagnosed? Sickle cell ... Test: Hemoglobin Electrophoresis Prenatal Genetic Counseling Genetic Testing Beta Thalassemia Sickle Cell Disease The Truth About Transfusions About ...

  2. Fuel cells: Problems and prospects

    OpenAIRE

    Shukla, AK; Ramesh, KV; Kannan, AM

    1986-01-01

    n recent years, fuel cell technology has advanced significantly. Field trials on certain types of fuel cells have shown promise for electrical use. This article reviews the electrochemistry, problems and prospects of fuel cell systems.

  3. Cell Adhesions: Actin-Based Modules that Mediate Cell-Extracellular Matrix and Cell-Cell Interactions

    Science.gov (United States)

    Bachir, Alexia; Horwitz, Alan Rick; Nelson, W. James; Bianchini, Julie M.

    2018-01-01

    Cell adhesions link cells to the extracellular matrix (ECM) and to each other, and depend on interactions with the actin cytoskeleton. Both cell-ECM and cell-cell adhesion sites contain discrete, yet overlapping functional modules. These modules establish physical association with the actin cytoskeleton, locally modulate actin organization and dynamics, and trigger intracellular signaling pathways. Interplay between these modules generates distinct actin architectures that underlie different stages, types, and functions of cell-ECM and cell-cell adhesions. Actomyosin contractility is required to generate mature, stable adhesions, as well as sense and translate the mechanical properties of the cellular environment to changes in cell organization and behavior. In this chapter we discuss the organization and function of different adhesion modules and how they interact with the actin cytoskeleton. We highlight the molecular mechanisms of mechanotransduction in adhesions, and how adhesion molecules mediate crosstalk between cell-ECM and cell-cell adhesion sites. PMID:28679638

  4. Stem Cell Transplants (For Teens)

    Science.gov (United States)

    ... Safe Videos for Educators Search English Español Stem Cell Transplants KidsHealth / For Teens / Stem Cell Transplants What's ... Take to Recover? Coping Print What Are Stem Cells? As you probably remember from biology class, every ...

  5. Fuel cell system with interconnect

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Zhien; Goettler, Richard

    2016-12-20

    The present invention includes an integrated planar, series connected fuel cell system having electrochemical cells electrically connected via interconnects, wherein the anodes of the electrochemical cells are protected against Ni loss and migration via an engineered porous anode barrier layer.

  6. Sertoli-Leydig cell tumor

    Science.gov (United States)

    Sertoli-stromal cell tumor; Arrhenoblastoma; Androblastoma; Ovarian cancer - Sertoli-Leydig cell tumor ... PA: Elsevier Saunders; 2013:chap 13. Prat J. Ovarian sex cord - stromal and steroid cell tumors. In: Mutter GL, Prat J, eds. Pathology of ...

  7. FUEL CELLS IN ENERGY PRODUCTION

    OpenAIRE

    Huang, Xiaoyu

    2011-01-01

    The purpose of this thesis is to study fuel cells. They convert chemical energy directly into electrical energy with high efficiency and low emmission of pollutants. This thesis provides an overview of fuel cell technology.The basic working principle of fuel cells and the basic fuel cell system components are introduced in this thesis. The properties, advantages, disadvantages and applications of six different kinds of fuel cells are introduced. Then the efficiency of each fuel cell is p...

  8. The cell biology of T-dependent B cell activation

    DEFF Research Database (Denmark)

    Owens, T; Zeine, R

    1989-01-01

    The requirement that CD4+ helper T cells recognize antigen in association with class II Major Histocompatibility Complex (MHC) encoded molecules constrains T cells to activation through intercellular interaction. The cell biology of the interactions between CD4+ T cells and antigen-presenting cells...... includes multipoint intermolecular interactions that probably involve aggregation of both polymorphic and monomorphic T cell surface molecules. Such aggregations have been shown in vitro to markedly enhance and, in some cases, induce T cell activation. The production of T-derived lymphokines that have been...... implicated in B cell activation is dependent on the T cell receptor for antigen and its associated CD3 signalling complex. T-dependent help for B cell activation is therefore similarly MHC-restricted and involves T-B intercellular interaction. Recent reports that describe antigen-independent B cell...

  9. Mast cells & Company

    Directory of Open Access Journals (Sweden)

    Friederike eJönsson

    2012-02-01

    Full Text Available Classically, allergy depends on IgE antibodies and on high-affinity IgE receptors expressed by mast cells and basophils. This long accepted IgE/FcεRI/mast cell paradigm, on which the definition of immediate hypersensitivity was based in the Gell and Coomb’s classification, appears too reductionist. Recently accumulated evidence indeed requires that not only IgE but also IgG antibodies, that not only FcεRI but also FcγR of the different types, that not only mast cells and basophils but also neutrophils, monocytes, macrophages, eosinophils, and other myeloid cells by considered as important players in allergy. This view markedly changes our understanding of allergic diseases and, possibly, their treatment.

  10. Acoustics Noise Test Cell

    Data.gov (United States)

    Federal Laboratory Consortium — The Acoustic Noise Test Cell at the NASA/Caltech Jet Propulsion Laboratory (JPL) is located adjacent to the large vibration system; both are located in a class 10K...

  11. Hurthle Cell Cancer

    Science.gov (United States)

    ... breath Hurthle cell cancer Symptoms & causes Diagnosis & treatment Advertisement Mayo Clinic does not endorse companies or products. ... a Job Site Map About This Site Twitter Facebook Google YouTube Pinterest Mayo Clinic is a not- ...

  12. Schwann Cell Myelination

    Science.gov (United States)

    Salzer, James L.

    2015-01-01

    Myelinated nerve fibers are essential for the rapid propagation of action potentials by saltatory conduction. They form as the result of reciprocal interactions between axons and Schwann cells. Extrinsic signals from the axon, and the extracellular matrix, drive Schwann cells to adopt a myelinating fate, whereas myelination reorganizes the axon for its role in conduction and is essential for its integrity. Here, we review our current understanding of the development, molecular organization, and function of myelinating Schwann cells. Recent findings into the extrinsic signals that drive Schwann cell myelination, their cognate receptors, and the downstream intracellular signaling pathways they activate will be described. Together, these studies provide important new insights into how these pathways converge to activate the transcriptional cascade of myelination and remodel the actin cytoskeleton that is critical for morphogenesis of the myelin sheath. PMID:26054742

  13. Lipocytes (fat cells) (image)

    Science.gov (United States)

    ... to energy output, there is no expansion of fat cells (lipocytes) to accommodate excess. It is only when more calories are taken in than used that the extra fat is stored in the lipocytes and the person ...

  14. Thin Solid Oxide Cell

    DEFF Research Database (Denmark)

    2010-01-01

    The present invention relates to a thin and in principle unsupported solid oxide cell, comprising at least a porous anode layer, an electrolyte layer and a porous cathode layer, wherein the anode layer and the cathode layer comprise an electrolyte material, at least one metal and a catalyst...... material, and wherein the overall thickness of the thin reversible cell is about 150 [mu]m or less, and to a method for producing same. The present invention also relates to a thin and in principle unsupported solid oxide cell, comprising at least a porous anode layer, an electrolyte layer and a porous...... cathode layer, wherein the anode layer and the cathode layer comprise an electrolyte material and a catalyst material, wherein the electrolyte material is doper zirconia, and wherein the overall thickness of the thin reversible cell is about 150 [mu]m or less, and to a method for producing same...

  15. Plasma cell leukemia

    DEFF Research Database (Denmark)

    Fernández de Larrea, C; Kyle, R A; Durie, B G M

    2013-01-01

    Plasma cell leukemia (PCL) is a rare and aggressive variant of myeloma characterized by the presence of circulating plasma cells. It is classified as either primary PCL occurring at diagnosis or as secondary PCL in patients with relapsed/refractory myeloma. Primary PCL is a distinct clinic......-pathological entity with different cytogenetic and molecular findings. The clinical course is aggressive with short remissions and survival duration. The diagnosis is based upon the percentage (≥ 20%) and absolute number (≥ 2 × 10(9)/l) of plasma cells in the peripheral blood. It is proposed that the thresholds...... regimens and bortezomib-based regimens are recommended followed by high-dose therapy with autologous stem cell transplantation if feasible. Allogeneic transplantation can be considered in younger patients. Prospective multicenter studies are required to provide revised definitions and better understanding...

  16. Conjugated Polymer Solar Cells

    National Research Council Canada - National Science Library

    Paraschuk, Dmitry Y

    2006-01-01

    This report results from a contract tasking Moscow State University as follows: Conjugated polymers are promising materials for many photonics applications, in particular, for photovoltaic and solar cell devices...

  17. Fuel Exhaling Fuel Cell.

    Science.gov (United States)

    Manzoor Bhat, Zahid; Thimmappa, Ravikumar; Devendrachari, Mruthyunjayachari Chattanahalli; Kottaichamy, Alagar Raja; Shafi, Shahid Pottachola; Varhade, Swapnil; Gautam, Manu; Thotiyl, Musthafa Ottakam

    2018-01-18

    State-of-the-art proton exchange membrane fuel cells (PEMFCs) anodically inhale H 2 fuel and cathodically expel water molecules. We show an unprecedented fuel cell concept exhibiting cathodic fuel exhalation capability of anodically inhaled fuel, driven by the neutralization energy on decoupling the direct acid-base chemistry. The fuel exhaling fuel cell delivered a peak power density of 70 mW/cm 2 at a peak current density of 160 mA/cm 2 with a cathodic H 2 output of ∼80 mL in 1 h. We illustrate that the energy benefits from the same fuel stream can at least be doubled by directing it through proposed neutralization electrochemical cell prior to PEMFC in a tandem configuration.

  18. White Blood Cell Disorders

    Science.gov (United States)

    ... Abbreviations Weights & Measures ENGLISH View Professional English Deutsch Japanese Espaniol Find information on medical topics, symptoms, drugs, ... sample? Analysis of cell surface proteins Chromosomal analysis Cultures for bacteria Determination of the original arrangement of ...

  19. Plasma Cell Disorders

    Science.gov (United States)

    ... Abbreviations Weights & Measures ENGLISH View Professional English Deutsch Japanese Espaniol Find information on medical topics, symptoms, drugs, ... sample? Analysis of cell surface proteins Chromosomal analysis Cultures for bacteria Determination of the original arrangement of ...

  20. Fuel cells flows study

    International Nuclear Information System (INIS)

    Riva, R.; Bador, B.; Marchand, M.; Lebaigue, O.

    1999-01-01

    Fuel cells are energy converters, which directly and continuously produce electricity from paired oxidation reduction-reactions: In most cases, the reactants are oxygen and hydrogen with water as residue. There are several types of fuel cells using various electrolytes and working at different temperatures. Proton Exchange Membrane Fuel Cells are, in particular, studied in the GESTEAU facility. PEMFC performance is chiefly limited by two thermal-hydraulic phenomena: the drying of membranes and the flooding of gas distributors. Up to now, work has been focused on water flooding of gas channels. This has showed the influence of flow type on the electrical behaviour of the cells and the results obtained have led to proposals for new duct geometries. (authors)

  1. Managing sickle cell disease

    OpenAIRE

    Claster, Susan; Vichinsky, Elliott P

    2003-01-01

    Advances are being made in the management of sickle cell disease for all age groups. This review discusses the progress in amelioration of symptoms, problems unique to particular age groups, and the types of drugs and treatments currently under investigation

  2. Cell Centred Database (CCDB)

    Data.gov (United States)

    U.S. Department of Health & Human Services — The Cell Centered Database (CCDB) is a web accessible database for high resolution 2D, 3D and 4D data from light and electron microscopy, including correlated imaging.

  3. Sperm cell proteomics.

    Science.gov (United States)

    Oliva, Rafael; de Mateo, Sara; Estanyol, Josep Maria

    2009-02-01

    The spermatozoon is an accessible cell which can be easily purified and therefore it is particularly well suited for proteomic analysis. It is also an extremely differentiated cell with very marked genetic, cellular, functional and chromatin changes as compared to other cells, and has profound implications for fertility, embryo development and heredity. The recent developments in MS have boosted the potential for identification and study of the sperm proteins. Catalogues of hundreds to thousands of spermatozoan proteins in human and in model species are becoming available setting up the basis for subsequent research, diagnostic applications and the development of specific treatments. The present article reviews the available scientific publications dealing with the composition and function of the sperm cell using an MS proteomic approach.

  4. Beta Cell Breakthroughs

    Science.gov (United States)

    ... enough islets into a patient to achieve insulin independence." The so-called "Edmonton protocol" has some major ... in response to Melton's article in Cell, Baylor College of Medicine researcher Jake Kushner, MD, argued that ...

  5. T-Cell Lymphoma

    Science.gov (United States)

    ... Cell Lymphoma (AITL) is a rare, aggressive type accounting for about seven percent of all patients with ... 100 Buildings Worldwide Will Join the Lymphoma Research Foundation to Light Red to Raise Awareness for Blood ...

  6. Photovoltaic solar cell

    Science.gov (United States)

    Nielson, Gregory N; Okandan, Murat; Cruz-Campa, Jose Luis; Resnick, Paul J

    2013-11-26

    A photovoltaic solar cell for generating electricity from sunlight is disclosed. The photovoltaic solar cell comprises a plurality of spaced-apart point contact junctions formed in a semiconductor body to receive the sunlight and generate the electicity therefrom, the plurality of spaced-apart point contact junctions having a first plurality of regions having a first doping type and a second plurality of regions having a second doping type. In addition, the photovoltaic solar cell comprises a first electrical contact electrically connected to each of the first plurality of regions and a second electrical contact electrically connected to each of the second plurality of regions, as well as a passivation layer covering major surfaces and sidewalls of the photovoltaic solar cell.

  7. CAM and NK Cells

    Directory of Open Access Journals (Sweden)

    Kazuyoshi Takeda

    2004-01-01

    Full Text Available It is believed that tumor development, outgrowth and metastasis are under the surveillance of the immune system. Although both innate and acquired immune systems play roles, innate immunity is the spearhead against tumors. Recent studies have revealed the critical role of natural killer (NK cells in immune surveillance and that NK cell activity is considerably influenced by various agents, such as environmental factors, stress, foods and drugs. Some of these NK cell stimulants have been used in complementary and alternative medicine (CAM since ancient times. Therefore, the value of CAM should be re-evaluated from this point of view. In this review, we overview the intimate correlation between NK cell functions and CAM agents, and discuss possible underlying mechanisms mediating this. In particular, neuro-immune crosstalk and receptors for CAM agents are the most important and interesting candidates for such mechanisms.

  8. Renal cell carcinoma

    Science.gov (United States)

    ... lining of very small tubes (tubules) in the kidney. ... Kidney cancer; Hypernephroma; Adenocarcinoma of renal cells; Cancer - kidney ... Follow your provider's recommendations in the treatment of kidney disorders, especially those that may require dialysis.

  9. Nanodiamond internalization in cells and the cell uptake mechanism

    International Nuclear Information System (INIS)

    Perevedentseva, E.; Hong, S.-F.; Huang, K.-J.; Chiang, I.-T.; Lee, C.-Y.; Tseng, Y.-T.; Cheng, C.-L.

    2013-01-01

    Cell type-dependent penetration of nanodiamond in living cells is one of the important factors for using nanodiamond as cellular markers/labels, for drug delivery as well as for other biomedical applications. In this work, internalization of 100 nm nanodiamonds by A549 lung human adenocarcinoma cell, Beas-2b non-tumorigenic human bronchial epithelial cell, and HFL-1 fibroblast-like human fetal lung cell is studied and compared. The penetration of nanodiamond into the cells was observed using confocal fluorescence imaging and Raman imaging methods. Visualization of the nanodiamond in cells allows comparison of the internalization for diamond nanoparticles in cancer A549 cell, non-cancer HFL-1, and Beas-2b cells. The dose-dependent and time-dependent behavior of nanodiamond uptake is observed in both cancer as well as non-cancer cells. The mechanism of nanodiamond uptake by cancer and non-cancer cells is analyzed by blocking different pathways. The uptake of nanodiamond in both cancer and non-cancer cells was found predominantly via clathrin-dependent endocytosis. In spite of observed similarity in the uptake mechanism for cancer and non-cancer cells, the nanodiamond uptake for cancer cell quantitatively exceeds the uptake for non-cancer cells, for the studied cell lines. The observed difference in internalization of nanodiamond by cancer and non-cancer cells is discussed

  10. Nanodiamond internalization in cells and the cell uptake mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Perevedentseva, E. [National Dong Hwa University, Department of Physics (China); Hong, S.-F.; Huang, K.-J. [National Dong Hwa University, Department of Life Sciences (China); Chiang, I.-T.; Lee, C.-Y. [National Dong Hwa University, Department of Physics (China); Tseng, Y.-T. [National Dong Hwa University, Department of Life Sciences (China); Cheng, C.-L., E-mail: clcheng@mail.ndhu.edu.tw [National Dong Hwa University, Department of Physics (China)

    2013-08-15

    Cell type-dependent penetration of nanodiamond in living cells is one of the important factors for using nanodiamond as cellular markers/labels, for drug delivery as well as for other biomedical applications. In this work, internalization of 100 nm nanodiamonds by A549 lung human adenocarcinoma cell, Beas-2b non-tumorigenic human bronchial epithelial cell, and HFL-1 fibroblast-like human fetal lung cell is studied and compared. The penetration of nanodiamond into the cells was observed using confocal fluorescence imaging and Raman imaging methods. Visualization of the nanodiamond in cells allows comparison of the internalization for diamond nanoparticles in cancer A549 cell, non-cancer HFL-1, and Beas-2b cells. The dose-dependent and time-dependent behavior of nanodiamond uptake is observed in both cancer as well as non-cancer cells. The mechanism of nanodiamond uptake by cancer and non-cancer cells is analyzed by blocking different pathways. The uptake of nanodiamond in both cancer and non-cancer cells was found predominantly via clathrin-dependent endocytosis. In spite of observed similarity in the uptake mechanism for cancer and non-cancer cells, the nanodiamond uptake for cancer cell quantitatively exceeds the uptake for non-cancer cells, for the studied cell lines. The observed difference in internalization of nanodiamond by cancer and non-cancer cells is discussed.

  11. Liquid fuel cells

    Directory of Open Access Journals (Sweden)

    Grigorii L. Soloveichik

    2014-08-01

    Full Text Available The advantages of liquid fuel cells (LFCs over conventional hydrogen–oxygen fuel cells include a higher theoretical energy density and efficiency, a more convenient handling of the streams, and enhanced safety. This review focuses on the use of different types of organic fuels as an anode material for LFCs. An overview of the current state of the art and recent trends in the development of LFC and the challenges of their practical implementation are presented.

  12. Liquid fuel cells.

    Science.gov (United States)

    Soloveichik, Grigorii L

    2014-01-01

    The advantages of liquid fuel cells (LFCs) over conventional hydrogen-oxygen fuel cells include a higher theoretical energy density and efficiency, a more convenient handling of the streams, and enhanced safety. This review focuses on the use of different types of organic fuels as an anode material for LFCs. An overview of the current state of the art and recent trends in the development of LFC and the challenges of their practical implementation are presented.

  13. Liquid fuel cells

    Science.gov (United States)

    2014-01-01

    Summary The advantages of liquid fuel cells (LFCs) over conventional hydrogen–oxygen fuel cells include a higher theoretical energy density and efficiency, a more convenient handling of the streams, and enhanced safety. This review focuses on the use of different types of organic fuels as an anode material for LFCs. An overview of the current state of the art and recent trends in the development of LFC and the challenges of their practical implementation are presented. PMID:25247123

  14. Syndecans and cell adhesion

    DEFF Research Database (Denmark)

    Couchman, J R; Chen, L; Woods, A

    2001-01-01

    Now that transmembrane signaling through primary cell-matrix receptors, integrins, is being elucidated, attention is turning to how integrin-ligand interactions can be modulated. Syndecans are transmembrane proteoglycans implicated as coreceptors in a variety of physiological processes, including...... cell adhesion, migration, response to growth factors, development, and tumorigenesis. This review will describe this family of proteoglycans in terms of their structures and functions and their signaling in conjunction with integrins, and indicate areas for future research....

  15. Stem cells in psoriasis.

    Science.gov (United States)

    Hou, Ruixia; Li, Junqin; Niu, Xuping; Liu, Ruifeng; Chang, Wenjuan; Zhao, Xincheng; Wang, Qiang; Li, Xinhua; Yin, Guohua; Zhang, Kaiming

    2017-06-01

    Psoriasis is a complex chronic relapsing inflammatory disease. Although the exact mechanism remains unknown, it is commonly accepted that the development of psoriasis is a result of multi-system interactions among the epidermis, dermis, blood vessels, immune system, neuroendocrine system, metabolic system, and hematopoietic system. Many cell types have been confirmed to participate in the pathogenesis of psoriasis. Here, we review the stem cell abnormalities related to psoriasis that have been investigated recently. Copyright © 2016. Published by Elsevier B.V.

  16. Mouse ES cell-derived hematopoietic progenitor cells.

    Science.gov (United States)

    Kim, Eun-Mi; Manzar, Gohar; Zavazava, Nicholas

    2013-01-01

    Future stem cell-based therapies will benefit from the new discoveries being made on pluripotent stem cells such as embryonic stem (ES) cells and induced pluripotent stem (IPS) cells. Understanding the genes regulating pluripotency has opened new opportunities to generate patient-tailored therapies. However, protocols for deriving progenitor cells of therapeutic grade from these pluripotent stem cells are not yet worked out. In particular the potential of these cells in treating diseases when compared to their adult progenitor counterparts is unknown. This is crucial work that needs to be studied in detail because we will need to determine engraftment potential of these cells and their ability for multi-lineage engraftment in the in vivo setting before any clinical applications. The ability of these cells to engraft is dependent on their expression of cell surface markers which guide their homing patterns. In this review, I discuss murine hematopoietic progenitor cells derived from mouse ES cells. Stem cells in the bone marrow are found in the bone marrow niches. Our knowledge of the bone marrow niches is growing and will ultimately lead to improved clinical transplantation of bone marrow cells. We are, however, a long way in appreciating how hematopoietic progenitor cells migrate and populate lymphoid tissues. One of the variables in generating hematopoietic progenitor cells is that different labs use different approaches in generating progenitor cells. In some cases, the ES cell lines used show some variability as well. The cell culture media used by the different investigators highly influence the maturation level of the cells and their homing patterns. Here, mouse ES cell-derived progenitor cells are discussed.

  17. Avian Primordial Germ Cells.

    Science.gov (United States)

    Tagami, Takahiro; Miyahara, Daichi; Nakamura, Yoshiaki

    2017-01-01

    Germ cells transmit genetic information to the next generation through gametogenesis. Primordial germ cells (PGCs) are the first germ-cell population established during development, and are the common origins of both oocytes and spermatogonia. Unlike in other species, PGCs in birds undergo blood circulation to migrate toward the genital ridge, and are one of the major biological properties of avian PGCs. Germ cells enter meiosis and arrest at prophase I during embryogenesis in females, whereas in males they enter mitotic arrest during embryogenesis and enter meiosis only after birth. In chicken, gonadal sex differentiation occurs as early as embryonic day 6, but meiotic initiation of female germ cells starts from a relatively late stage (embryonic day 15.5). Retinoic acid controls meiotic entry in developing chicken gonads through the expressions of retinaldehyde dehydrogenase 2, a major retinoic acid synthesizing enzyme, and cytochrome P450 family 26, subfamily B member 1, a major retinoic acid-degrading enzyme. The other major biological property of avian PGCs is that they can be propagated in vitro for the long term, and this technique is useful for investigating proliferation mechanisms. The main factor involved in chicken PGC proliferation is fibroblast growth factor 2, which activates the signaling of MEK/ERK and thus promotes the cell cycle and anti-apoptosis. Furthermore, the activation of PI3K/Akt signaling is indispensable for the proliferation and survival of chicken PGCs.

  18. Hematopoietic stem cell transplantation

    Directory of Open Access Journals (Sweden)

    Eleftheria Hatzimichael

    2010-08-01

    Full Text Available Eleftheria Hatzimichael1, Mark Tuthill21Department of Haematology, Medical School of Ioannina, University of Ioannina, Ioannina, Greece; 2Department of Medical Oncology, Hammersmith Hospital, Imperial College National Health Service Trust, London, UKAbstract: More than 25,000 hematopoietic stem cell transplantations (HSCTs are performed each year for the treatment of lymphoma, leukemia, immune-deficiency illnesses, congenital metabolic defects, hemoglobinopathies, and myelodysplastic and myeloproliferative syndromes. Before transplantation, patients receive intensive myeloablative chemoradiotherapy followed by stem cell “rescue.” Autologous HSCT is performed using the patient’s own hematopoietic stem cells, which are harvested before transplantation and reinfused after myeloablation. Allogeneic HSCT uses human leukocyte antigen (HLA-matched stem cells derived from a donor. Survival after allogeneic transplantation depends on donor–recipient matching, the graft-versus-host response, and the development of a graft versus leukemia effect. This article reviews the biology of stem cells, clinical efficacy of HSCT, transplantation procedures, and potential complications.Keywords: hematopoietic stem cell transplantation, complications

  19. Live-cell imaging.

    Science.gov (United States)

    Cole, Richard

    2014-01-01

    It would be hard to argue that live-cell imaging has not changed our view of biology. The past 10 years have seen an explosion of interest in imaging cellular processes, down to the molecular level. There are now many advanced techniques being applied to live cell imaging. However, cellular health is often under appreciated. For many researchers, if the cell at the end of the experiment has not gone into apoptosis or is blebbed beyond recognition, than all is well. This is simply incorrect. There are many factors that need to be considered when performing live-cell imaging in order to maintain cellular health such as: imaging modality, media, temperature, humidity, PH, osmolality, and photon dose. The wavelength of illuminating light, and the total photon dose that the cells are exposed to, comprise two of the most important and controllable parameters of live-cell imaging. The lowest photon dose that achieves a measureable metric for the experimental question should be used, not the dose that produces cover photo quality images. This is paramount to ensure that the cellular processes being investigated are in their in vitro state and not shifted to an alternate pathway due to environmental stress. The timing of the mitosis is an ideal canary in the gold mine, in that any stress induced from the imaging will result in the increased length of mitosis, thus providing a control model for the current imagining conditions.

  20. Microbial Cell Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Doktycz, Mitchel John [ORNL; Sullivan, Claretta [Eastern Virginia Medical School; Mortensen, Ninell P [ORNL; Allison, David P [ORNL

    2011-01-01

    Atomic force microscopy (AFM) is finding increasing application in a variety of fields including microbiology. Until the emergence of AFM, techniques for ivnestigating processes in single microbes were limited. From a biologist's perspective, the fact that AFM can be used to generate high-resolution images in buffers or media is its most appealing feature as live-cell imaging can be pursued. Imaging living cells by AFM allows dynamic biological events to be studied, at the nanoscale, in real time. Few areas of biological research have as much to gain as microbiology from the application of AFM. Whereas the scale of microbes places them near the limit of resolution for light microscopy. AFM is well suited for the study of structures on the order of a micron or less. Although electron microscopy techniques have been the standard for high-resolution imaging of microbes, AFM is quickly gaining favor for several reasons. First, fixatives that impair biological activity are not required. Second, AFM is capable of detecting forces in the pN range, and precise control of the force applied to the cantilever can be maintained. This combination facilitates the evaluation of physical characteristics of microbes. Third, rather than yielding the composite, statistical average of cell populations, as is the case with many biochemical assays, the behavior of single cells can be monitored. Despite the potential of AFM in microbiology, there are several limitations that must be considered. For example, the time required to record an image allows for the study of gross events such as cell division or membrane degradation from an antibiotic but precludes the evaluation of biological reactions and events that happen in just fractions of a second. Additionally, the AFM is a topographical tool and is restricted to imaging surfaces. Therefore, it cannot be used to look inside cells as with opticla and transmission electron microscopes. other practical considerations are the

  1. Microfluidics for single cell analysis

    DEFF Research Database (Denmark)

    Jensen, Marie Pødenphant

    Isolation and manipulation of single cells have gained an increasing interest from researchers because of the heterogeneity of cells from the same cell culture. Single cell analysis can ensure a better understanding of differences between individual cells and potentially solve a variety of clinical...... problems. In this thesis lab on a chip systems for rare single cell analysis are investigated. The focus was to develop a commercial, disposable device for circulating tumour cell (CTC) analysis. Such a device must be able to separate rare cells from blood samples and subsequently capture the specific...... cells, and simultaneously be fabricated and operated at low costs and be user-friendly. These challenges were addressed through development of two microfluidic devices, one for rare cell isolation based on pinched flow fractionation (PFF) and one for single cell capture based on hydrodynamic trapping...

  2. Germline and Pluripotent Stem Cells.

    Science.gov (United States)

    Reik, Wolf; Surani, M Azim

    2015-11-02

    Epigenetic mechanisms play an essential role in the germline and imprinting cycle. Germ cells show extensive epigenetic programming in preparation for the generation of the totipotent state, which in turn leads to the establishment of pluripotent cells in blastocysts. The latter are the cells from which pluripotent embryonic stem cells are derived and maintained in culture. Following blastocyst implantation, postimplantation epiblast cells develop, which give rise to all somatic cells as well as primordial germ cells, the precursors of sperm and eggs. Pluripotent stem cells in culture can be induced to undergo differentiation into somatic cells and germ cells in culture. Understanding the natural cycles of epigenetic reprogramming that occur in the germline will allow the generation of better and more versatile stem cells for both therapeutic and research purposes. Copyright © 2015 Cold Spring Harbor Laboratory Press; all rights reserved.

  3. Anti-regulatory T cells

    DEFF Research Database (Denmark)

    Andersen, Mads Hald

    2017-01-01

    Our initial understanding of immune-regulatory cells was based on the discovery of suppressor cells that assure peripheral T-cell tolerance and promote immune homeostasis. Research has particularly focused on the importance of regulatory T cells (Tregs) for immune modulation, e.g. directing host...... responses to tumours or inhibiting autoimmunity development. However, recent studies report the discovery of self-reactive pro-inflammatory T cells—termed anti-regulatory T cells (anti-Tregs)—that target immune-suppressive cells. Thus, regulatory cells can now be defined as both cells that suppress immune...... reactions as well as effector cells that counteract the effects of suppressor cells and support immune reactions. Self-reactive anti-Tregs have been described that specifically recognize human leukocyte antigen-restricted epitopes derived from proteins that are normally expressed by regulatory immune cells...

  4. Bidirectional regulation between B cells and T cells

    NARCIS (Netherlands)

    Margry, B.

    2014-01-01

    B cells were often thought of as simple precursors of end-stage effector cells that are merely in charge of antibody production. Research in the last decades has shown that B cells possess important other roles as well, including their involvement in the regulation and functioning of T cell-mediated

  5. Mesenchymal stem cells differentiate into hepatocyte-like cells ...

    African Journals Online (AJOL)

    ... failure was induced in vitro into hepatocytes-like cells by three cell culture media (serum-free medium (group 1), auto serum-containing medium (group 2) and medium supplemented with fetal bovine serum (FBS) (group 3)). Cell morphology, cell growth curve, amount of urea and glycogen and mRNA expressions of ALB, ...

  6. A fine romance: T follicular helper cells and B cells.

    Science.gov (United States)

    King, Cecile

    2011-06-24

    T follicular helper (Tfh) cells help B cells to generate affinity-matured antibodies. Three papers in this issue of Immunity (Choi et al., 2011; Kerfoot et al., 2011; Kitano et al., 2011) provide information about the reciprocal relationship between B cells and Tfh cells. Copyright © 2011 Elsevier Inc. All rights reserved.

  7. Establishment of cell lines with rat spermatogonial stem cell characteristics

    NARCIS (Netherlands)

    van Pelt, Ans M. M.; Roepers-Gajadien, Hermien L.; Gademan, Iris S.; Creemers, Laura B.; de Rooij, Dirk G.; van Dissel-Emiliani, Federica M. F.

    2002-01-01

    Spermatogonial cell lines were established by transfecting a mixed population of purified rat A(s) (stem cells), A(pr) and A(al) spermatogonia with SV40 large T antigen. Two cell lines were characterized and found to express Hsp90alpha and oct-4, specific markers for germ cells and A spermatogonia,

  8. Optimizing cell viability in droplet-based cell deposition

    NARCIS (Netherlands)

    Hendriks, Jan; Visser, C.W.; Henke, S.J.; Leijten, Jeroen Christianus Hermanus; Saris, Daniël B.F.; Sun, Chao; Lohse, Detlef; Karperien, Hermanus Bernardus Johannes

    2015-01-01

    Biofabrication commonly involves the use of liquid droplets to transport cells to the printed structure. However, the viability of the cells after impact is poorly controlled and understood, hampering applications including cell spraying, inkjet bioprinting, and laser-assisted cell transfer. Here,

  9. Fuel Cell Electrodes for Hydrogen-Air Fuel Cell Assemblies.

    Science.gov (United States)

    The report describes the design and evaluation of a hydrogen-air fuel cell module for use in a portable hydrid fuel cell -battery system. The fuel ... cell module consists of a stack of 20 single assemblies. Each assembly contains 2 electrically independent cells with a common electrolyte compartment

  10. Cell supermarket: Adipose tissue as a source of stem cells

    Science.gov (United States)

    Adipose tissue is derived from numerous sources, and in recent years has been shown to provide numerous cells from what seemingly was a population of homogeneous adipocytes. Considering the types of cells that adipose tissue-derived cells may form, these cells may be useful in a variety of clinical ...

  11. Stabilization Of Apoptotic Cells: Generation Of Zombie Cells

    Directory of Open Access Journals (Sweden)

    José A. Sánchez Alcázar

    2015-08-01

    Stabilization of apoptotic cells can be used for reliable detection and quantification of apoptosis in cultured cells and may allow a safer administration of apoptotic cells in clinical applications. Furthermore, it opens new avenues in the functional reconstruction of apoptotic cells for longer preservation.

  12. An Effective Feedback Loop between Cell-Cell Contact Duration and Morphogen Signaling Determines Cell Fate.

    Science.gov (United States)

    Barone, Vanessa; Lang, Moritz; Krens, S F Gabriel; Pradhan, Saurabh J; Shamipour, Shayan; Sako, Keisuke; Sikora, Mateusz; Guet, Călin C; Heisenberg, Carl-Philipp

    2017-10-23

    Cell-cell contact formation constitutes an essential step in evolution, leading to the differentiation of specialized cell types. However, remarkably little is known about whether and how the interplay between contact formation and fate specification affects development. Here, we identify a positive feedback loop between cell-cell contact duration, morphogen signaling, and mesendoderm cell-fate specification during zebrafish gastrulation. We show that long-lasting cell-cell contacts enhance the competence of prechordal plate (ppl) progenitor cells to respond to Nodal signaling, required for ppl cell-fate specification. We further show that Nodal signaling promotes ppl cell-cell contact duration, generating a positive feedback loop between ppl cell-cell contact duration and cell-fate specification. Finally, by combining mathematical modeling and experimentation, we show that this feedback determines whether anterior axial mesendoderm cells become ppl or, instead, turn into endoderm. Thus, the interdependent activities of cell-cell signaling and contact formation control fate diversification within the developing embryo. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. β-Cell regeneration through the transdifferentiation of pancreatic cells: Pancreatic progenitor cells in the pancreas.

    Science.gov (United States)

    Kim, Hyo-Sup; Lee, Moon-Kyu

    2016-05-01

    Pancreatic progenitor cell research has been in the spotlight, as these cells have the potential to replace pancreatic β-cells for the treatment of type 1 and 2 diabetic patients with the absence or reduction of pancreatic β-cells. During the past few decades, the successful treatment of diabetes through transplantation of the whole pancreas or isolated islets has nearly been achieved. However, novel sources of pancreatic islets or insulin-producing cells are required to provide sufficient amounts of donor tissues. To overcome this limitation, the use of pancreatic progenitor cells is gaining more attention. In particular, pancreatic exocrine cells, such as duct epithelial cells and acinar cells, are attractive candidates for β-cell regeneration because of their differentiation potential and pancreatic lineage characteristics. It has been assumed that β-cell neogenesis from pancreatic progenitor cells could occur in pancreatic ducts in the postnatal stage. Several studies have shown that insulin-producing cells can arise in the duct tissue of the adult pancreas. Acinar cells also might have the potential to differentiate into insulin-producing cells. The present review summarizes recent progress in research on the transdifferentiation of pancreatic exocrine cells into insulin-producing cells, especially duct and acinar cells.

  14. Asymmetric cell division during T cell development controls downstream fate

    Science.gov (United States)

    Pham, Kim; Shimoni, Raz; Charnley, Mirren; Ludford-Menting, Mandy J.; Hawkins, Edwin D.; Ramsbottom, Kelly; Oliaro, Jane; Izon, David; Ting, Stephen B.; Reynolds, Joseph; Lythe, Grant; Molina-Paris, Carmen; Melichar, Heather; Robey, Ellen; Humbert, Patrick O.; Gu, Min

    2015-01-01

    During mammalian T cell development, the requirement for expansion of many individual T cell clones, rather than merely expansion of the entire T cell population, suggests a possible role for asymmetric cell division (ACD). We show that ACD of developing T cells controls cell fate through differential inheritance of cell fate determinants Numb and α-Adaptin. ACD occurs specifically during the β-selection stage of T cell development, and subsequent divisions are predominantly symmetric. ACD is controlled by interaction with stromal cells and chemokine receptor signaling and uses a conserved network of polarity regulators. The disruption of polarity by deletion of the polarity regulator, Scribble, or the altered inheritance of fate determinants impacts subsequent fate decisions to influence the numbers of DN4 cells arising after the β-selection checkpoint. These findings indicate that ACD enables the thymic microenvironment to orchestrate fate decisions related to differentiation and self-renewal. PMID:26370500

  15. Plant cell wall polysaccharide analysis during cell elongation

    DEFF Research Database (Denmark)

    Guo, Xiaoyuan

    Plant cell walls are complex structures whose composition and architecture are important to various cellular activities. Plant cell elongation requires a high level of rearrangement of the cell wall polymers to enable cell expansion. However, the cell wall polysaccharides dynamics during plant cell...... elongation is poorly understood. This PhD project aims to elucidate the cell wall compositional and structural change during cell elongation by using Comprehensive Microarray Polymer Profiling (CoMPP), microscopic techniques and molecular modifications of cell wall polysaccharide. Developing cotton fibre......, pea and Arabidopsis thaliana were selected as research models to investigate different types of cell elongation, developmental elongation and tropism elongation. A set of comprehensive analysis covering 4 cotton species and 11 time points suggests that non-cellulosic polysaccharides contribute...

  16. Reprogramming of retinoblastoma cancer cells into cancer stem cells.

    Science.gov (United States)

    Yue, Fengming; Hirashima, Kanji; Tomotsune, Daihachiro; Takizawa-Shirasawa, Sakiko; Yokoyama, Tadayuki; Sasaki, Katsunori

    2017-01-22

    Retinoblastoma is the most common intraocular malignancy in pediatric patients. It develops rapidly in the retina and can be fatal if not treated promptly. It has been proposed that a small population of cancer cells, termed cancer stem cells (CSCs), initiate tumorigenesis from immature tissue stem cells or progenitor cells. Reprogramming technology, which can convert mature cells into pluripotent stem cells (iPS), provides the possibility of transducing malignant cancer cells back to CSCs, a type of early stage of cancer. We herein took advantage of reprogramming technology to induce CSCs from retinoblastoma cancer cells. In the present study, the 4 Yamanaka transcription factors, Oct4, Sox2, Klf4 and c-myc, were transduced into retinoblastoma cells (Rbc51). iPS-like colonies were observed 15 days after transduction and showed significantly enhanced CSC properties. The gene and protein expression levels of pluripotent stem cell markers (Tra-1-60, Oct4, Nanog) and cancer stem cell markers (CD133, CD44) were up-regulated in transduced Rbc51 cells compared to control cells. Moreover, iPS-like CSCs could be sorted using the Magnetic-activated cell sorting (MACS) method. A sphere formation assay demonstrated spheroid formation in transduced Rbc51 cells cultured in serum free media, and these spheroids could be differentiated into Pax6-, Nestin-positive neural progenitors and rhodopsin- and recoverin-positive mature retinal cells. The cell viability after 5-Fu exposure was higher in transduced Rbc51 cells. In conclusion, CSCs were generated from retinoblastoma cancer cells using reprogramming technology. Our novel method can generate CSCs, the study of which can lead to better understanding of cancer-specific initiation, cancer epigenetics, and the overlapping mechanisms of cancer development and pluripotent stem cell behavior. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Cell proliferation alterations in Chlorella cells under stress conditions

    International Nuclear Information System (INIS)

    Rioboo, Carmen; O'Connor, Jose Enrique; Prado, Raquel; Herrero, Concepcion; Cid, Angeles

    2009-01-01

    Very little is known about growth and proliferation in relation to the cell cycle regulation of algae. The lack of knowledge is even greater when referring to the potential toxic effects of pollutants on microalgal cell division. To assess the effect of terbutryn, a triazine herbicide, on the proliferation of the freshwater microalga Chlorella vulgaris three flow cytometric approaches were used: (1) in vivo cell division using 5-,6-carboxyfluorescein diacetate succinimidyl ester (CFSE) staining was measured, (2) the growth kinetics were determined by cytometric cell counting and (3) cell viability was evaluated with the membrane-impermeable double-stranded nucleic acid stain propidium iodide (PI). The results obtained in the growth kinetics study using CFSE to identify the microalgal cell progeny were consistent with those determined by cytometric cell counting. In all C. vulgaris cultures, each mother cell had undergone only one round of division through the 96 h of assay and the cell division occurred during the dark period. Cell division of the cultures exposed to the herbicide was asynchronous. Terbutryn altered the normal number of daughter cells (4 autospores) obtained from each mother cell. The number was only two in the cultures treated with 250 nM. The duration of the lag phase after the exposure to terbutryn could be dependent on the existence of a critical cell size to activate cytoplasmic division. Cell size, complexity and fluorescence of chlorophyll a of the microalgal cells presented a marked light/dark (day/night) cycle, except in the non-dividing 500 nM cultures, where terbutryn arrested cell division at the beginning of the cycle. Viability results showed that terbutryn has an algastatic effect in C. vulgaris cells at this concentration. The rapid and precise determination of cell proliferation by CFSE staining has allowed us to develop a model for assessing both the cell cycle of C. vulgaris and the in vivo effects of pollutants on growth and

  18. Cell proliferation alterations in Chlorella cells under stress conditions

    Energy Technology Data Exchange (ETDEWEB)

    Rioboo, Carmen [Laboratorio de Microbiologia, Facultad de Ciencias, Universidad de A Coruna, Campus da Zapateira s/n, 15008 A Coruna (Spain); O' Connor, Jose Enrique [Laboratorio de Citomica, Unidad Mixta de Investigacion CIPF-UVEG, Centro de Investigacion Principe Felipe, Avda. Autopista del Saler, 16, 46013 Valencia (Spain); Prado, Raquel; Herrero, Concepcion [Laboratorio de Microbiologia, Facultad de Ciencias, Universidad de A Coruna, Campus da Zapateira s/n, 15008 A Coruna (Spain); Cid, Angeles, E-mail: cid@udc.es [Laboratorio de Microbiologia, Facultad de Ciencias, Universidad de A Coruna, Campus da Zapateira s/n, 15008 A Coruna (Spain)

    2009-09-14

    Very little is known about growth and proliferation in relation to the cell cycle regulation of algae. The lack of knowledge is even greater when referring to the potential toxic effects of pollutants on microalgal cell division. To assess the effect of terbutryn, a triazine herbicide, on the proliferation of the freshwater microalga Chlorella vulgaris three flow cytometric approaches were used: (1) in vivo cell division using 5-,6-carboxyfluorescein diacetate succinimidyl ester (CFSE) staining was measured, (2) the growth kinetics were determined by cytometric cell counting and (3) cell viability was evaluated with the membrane-impermeable double-stranded nucleic acid stain propidium iodide (PI). The results obtained in the growth kinetics study using CFSE to identify the microalgal cell progeny were consistent with those determined by cytometric cell counting. In all C. vulgaris cultures, each mother cell had undergone only one round of division through the 96 h of assay and the cell division occurred during the dark period. Cell division of the cultures exposed to the herbicide was asynchronous. Terbutryn altered the normal number of daughter cells (4 autospores) obtained from each mother cell. The number was only two in the cultures treated with 250 nM. The duration of the lag phase after the exposure to terbutryn could be dependent on the existence of a critical cell size to activate cytoplasmic division. Cell size, complexity and fluorescence of chlorophyll a of the microalgal cells presented a marked light/dark (day/night) cycle, except in the non-dividing 500 nM cultures, where terbutryn arrested cell division at the beginning of the cycle. Viability results showed that terbutryn has an algastatic effect in C. vulgaris cells at this concentration. The rapid and precise determination of cell proliferation by CFSE staining has allowed us to develop a model for assessing both the cell cycle of C. vulgaris and the in vivo effects of pollutants on growth and

  19. Basal cell carcinoma: pathophysiology.

    Science.gov (United States)

    Sehgal, Virendra N; Chatterjee, Kingshuk; Pandhi, Deepika; Khurana, Ananta

    2014-01-01

    Basal cell carcinoma (BCC) is the most common skin cancer in humans, which typically appears over the sun-exposed skin as a slow-growing, locally invasive lesion that rarely metastasizes. Although the exact etiology of BCC is unknown, there exists a well-established relationship between BCC and the pilo-sebaceous unit, and it is currently thought to originate from pluri-potential cells in the basal layer of the epidermis or the follicle. The patched/hedgehog intracellular signaling pathway plays a central role in both sporadic BCCs and nevoid BCC syndrome (Gorlin syndrome). This pathway is vital for the regulation of cell growth, and differentiation and loss of inhibition of this pathway is associated with development of BCC. The sonic hedgehog protein is the most relevant to BCC; nevertheless, the Patched (PTCH) protein is the ligand-binding component of the hedgehog receptor complex in the cell membrane. The other protein member of the receptor complex, smoothened (SMO), is responsible for transducing hedgehog signaling to downstream genes, leading to abnormal cell proliferation. The importance of this pathway is highlighted by the successful use in advanced forms of BCC of vismodegib, a Food and Drug Administration-approved drug, that selectively inhibits SMO. The UV-specific nucleotide changes in the tumor suppressor genes, TP53 and PTCH, have also been implicated in the development of BCC.

  20. Limbal stem cell transplantation

    Directory of Open Access Journals (Sweden)

    Fernandes Merle

    2004-01-01

    Full Text Available The past two decades have witnessed remarkable progress in limbal stem cell transplantation. In addition to harvesting stem cells from a cadaver or a live related donor, it is now possible to cultivate limbal stem cells in vitro and then transplant them onto the recipient bed. A clear understanding of the basic disease pathology and a correct assessment of the extent of stem cell deficiency are essential. A holistic approach towards management of limbal stem cell deficiency is needed. This also includes management of the underlying systemic disease, ocular adnexal pathology and dry eye. Conjunctival limbal autografts from the healthy contralateral eye are performed for unilateral cases. In bilateral cases, tissue may be harvested from a cadaver or a living related donor; prolonged immunosuppression is needed to avoid allograft rejection in such cases. This review describes the surgical techniques, postoperative treatment regimes (including immunosuppression for allografts, the complications and their management. The short and long-term outcomes of the various modalities reported in the literature are also described.

  1. Alkaline fuel cells applications

    Science.gov (United States)

    Kordesch, Karl; Hacker, Viktor; Gsellmann, Josef; Cifrain, Martin; Faleschini, Gottfried; Enzinger, Peter; Fankhauser, Robert; Ortner, Markus; Muhr, Michael; Aronson, Robert R.

    On the world-wide automobile market technical developments are increasingly determined by the dramatic restriction on emissions as well as the regimentation of fuel consumption by legislation. Therefore there is an increasing chance of a completely new technology breakthrough if it offers new opportunities, meeting the requirements of resource preservation and emission restrictions. Fuel cell technology offers the possibility to excel in today's motive power techniques in terms of environmental compatibility, consumer's profit, costs of maintenance and efficiency. The key question is economy. This will be decided by the costs of fuel cell systems if they are to be used as power generators for future electric vehicles. The alkaline hydrogen-air fuel cell system with circulating KOH electrolyte and low-cost catalysed carbon electrodes could be a promising alternative. Based on the experiences of Kordesch [K. Kordesch, Brennstoffbatterien, Springer, Wien, 1984, ISBN 3-387-81819-7; K. Kordesch, City car with H 2-air fuel cell and lead-battery, SAE Paper No. 719015, 6th IECEC, 1971], who operated a city car hybrid vehicle on public roads for 3 years in the early 1970s, improved air electrodes plus new variations of the bipolar stack assembly developed in Graz are investigated. Primary fuel choice will be a major issue until such time as cost-effective, on-board hydrogen storage is developed. Ammonia is an interesting option. The whole system, ammonia dissociator plus alkaline fuel cell (AFC), is characterised by a simple design and high efficiency.

  2. Cell Culturing of Cytoskeleton

    Science.gov (United States)

    2004-01-01

    Biomedical research offers hope for a variety of medical problems, from diabetes to the replacement of damaged bone and tissues. Bioreactors, which are used to grow cells and tissue cultures, play a major role in such research and production efforts. Cell culturing, such as this bone cell culture, is an important part of biomedical research. The BioDyn payload includes a tissue engineering investigation. The commercial affiliate, Millenium Biologix, Inc., has been conducting bone implant experiments to better understand how synthetic bone can be used to treat bone-related illnesses and bone damaged in accidents. On STS-95, the BioDyn payload will include a bone cell culture aimed to help develop this commercial synthetic bone product. Millenium Biologix, Inc., is exploring the potential for making human bone implantable materials by seeding its proprietary artificial scaffold material with human bone cells. The product of this tissue engineering experiment using the Bioprocessing Modules (BPMs) on STS-95 is space-grown bone implants, which could have potential for dental implants, long bone grafts, and coating for orthopedic implants such as hip replacements.

  3. RELIABILITY EVALUATION OF PRIMARY CELLS

    African Journals Online (AJOL)

    Dr Obe

    ABSTRACT. Evaluation of the reliability of a primary cell took place in three stages: 192 cells went through a slow-discharged test. A designed experiment was conducted on 144 cells; there were three factors in the experiment: Storage temperature (three levels), thermal shock (two levels) and date code (two levels). 16 cells ...

  4. Sickle Cell Crisis (For Teens)

    Science.gov (United States)

    ... Safe Videos for Educators Search English Español Sickle Cell Crisis (Pain Crisis) KidsHealth / For Teens / Sickle Cell ... drepanocíticas (Crisis de dolor) What Is a Sickle Cell Crisis? Sickle cell disease changes the shape of ...

  5. Stem Cells in Burn Eschar

    NARCIS (Netherlands)

    van der Veen, V. C.; Vlig, M.; van Milligen-Kummer, F.J.; de Vries, S.I.; Middelkoop, E.; Ulrich, M.

    2012-01-01

    This study compares mesenchymal cells isolated from excised burn wound eschar with adipose-derived stem cells (ASCs) and dermal fibroblasts in their ability to conform to the requirements for multipotent mesenchymal stem cells (MSCs). A population of multipotent stem cells in burn eschar could be an

  6. Sickle Cell Disease (For Teens)

    Science.gov (United States)

    ... Staying Safe Videos for Educators Search English Español Sickle Cell Disease KidsHealth / For Teens / Sickle Cell Disease What's in ... Well? Print en español Anemia falciforme What Is Sickle Cell Disease? Sickle cell disease is a blood disorder that's ...

  7. Seventh Edition Fuel Cell Handbook

    Energy Technology Data Exchange (ETDEWEB)

    NETL

    2004-11-01

    Provides an overview of fuel cell technology and research projects. Discusses the basic workings of fuel cells and their system components, main fuel cell types, their characteristics, and their development status, as well as a discussion of potential fuel cell applications.

  8. Advanced Microscopy of Microbial Cells

    DEFF Research Database (Denmark)

    Haagensen, Janus Anders Juul; Regenberg, Birgitte; Sternberg, Claus

    2011-01-01

    Growing awareness of heterogeneity in cells of microbial populations has emphasized the importance of advanced microscopy for visualization and understanding of the molecular mechanisms underlying cell-to-cell variation. In this review, we highlight some of the recent advances in confocal...... for visualization of variation between cells in phenotypic traits such as gene expression....

  9. Primordial germ cell-like cells differentiated in vitro from skin-derived stem cells.

    Directory of Open Access Journals (Sweden)

    Katja Linher

    Full Text Available BACKGROUND: We have previously demonstrated that stem cells isolated from fetal porcine skin have the potential to form oocyte-like cells (OLCs in vitro. However, primordial germ cells (PGCs, which must also be specified during the stem cell differentiation to give rise to these putative oocytes at more advanced stages of culture, were not systematically characterized. The current study tested the hypothesis that a morphologically distinct population of cells derived from skin stem cells prior to OLC formation corresponds to putative PGCs, which differentiate further into more mature gametes. METHODOLOGY/PRINCIPAL FINDINGS: When induced to differentiate in an appropriate microenvironment, a subpopulation of morphologically distinct cells, some of which are alkaline phosphatase (AP-positive, also express Oct4, Fragilis, Stella, Dazl, and Vasa, which are markers indicative of germ cell formation. A known differentially methylated region (DMR within the H19 gene locus, which is demethylated in oocytes after establishment of the maternal imprint, is hypomethylated in PGC-like cells compared to undifferentiated skin-derived stem cells, suggesting that the putative germ cell population undergoes imprint erasure. Additional evidence supporting the germ cell identity of in vitro-generated PGC-like cells is that, when labeled with a Dazl-GFP reporter, these cells further differentiate into GFP-positive OLCs. SIGNIFICANCE: The ability to generate germ cell precursors from somatic stem cells may provide an in vitro model to study some of the unanswered questions surrounding early germ cell formation.

  10. Cell-cell interactions mediate cytoskeleton organization and collective endothelial cell chemotaxis.

    Science.gov (United States)

    Shamloo, Amir

    2014-09-01

    This study investigates the role of cell-cell and cell-ligand interactions in cytoskeleton organization of endothelial cells (ECs) and their directional migration within a microfluidic device. The migration of ECs in response to a biochemical factor was studied. Mathematical analysis of the cell migration pathways and cellular cytoskeleton revealed that directional migration, migration persistence length, migration speed, and cytoskeletal stress fiber alignment can be mediated by the level of cell contacts as well as the presence or absence of a biochemical polarizing factor. It was shown that in the presence of a biochemical polarizing factor, higher cell density and more frequent cell contacts has a reinforcing effect on collective cell chemotaxis. In contrast, in the absence of a polarizing factor, high cell density can decrease or suppress the ability of the cells to migrate. Also, the correlation of actin stress fiber organization and alignment with directional migration of ECs was investigated. It was shown that in the presence of a biochemical polarizing factor, stress fibers within the cytoskeleton of ECs can be significantly aligned parallel to the gradient direction when the cells have higher level of contacts. The results also show that the organization and alignment of actin stress fibers is mediated by cell adhesion junctions during collective cell migration and introduce cell-cell interactions as a key factor during collective cell chemotaxis. © 2014 Wiley Periodicals, Inc.

  11. Proton exchange membrane fuel cells

    CERN Document Server

    Qi, Zhigang

    2013-01-01

    Preface Proton Exchange Membrane Fuel CellsFuel CellsTypes of Fuel CellsAdvantages of Fuel CellsProton Exchange Membrane Fuel CellsMembraneCatalystCatalyst LayerGas Diffusion MediumMicroporous LayerMembrane Electrode AssemblyPlateSingle CellStackSystemCell Voltage Monitoring Module (CVM)Fuel Supply Module (FSM)Air Supply Module (ASM)Exhaust Management Module (EMM)Heat Management Module (HMM)Water Management Module (WMM)Internal Power Supply Module (IPM)Power Conditioning Module (PCM)Communications Module (COM)Controls Module (CM)SummaryThermodynamics and KineticsTheoretical EfficiencyVoltagePo

  12. Materials as stem cell regulators

    Science.gov (United States)

    Murphy, William L.; McDevitt, Todd C.; Engler, Adam J.

    2014-01-01

    The stem cell/material interface is a complex, dynamic microenvironment in which the cell and the material cooperatively dictate one another's fate: the cell by remodelling its surroundings, and the material through its inherent properties (such as adhesivity, stiffness, nanostructure or degradability). Stem cells in contact with materials are able to sense their properties, integrate cues via signal propagation and ultimately translate parallel signalling information into cell fate decisions. However, discovering the mechanisms by which stem cells respond to inherent material characteristics is challenging because of the highly complex, multicomponent signalling milieu present in the stem cell environment. In this Review, we discuss recent evidence that shows that inherent material properties may be engineered to dictate stem cell fate decisions, and overview a subset of the operative signal transduction mechanisms that have begun to emerge. Further developments in stem cell engineering and mechanotransduction are poised to have substantial implications for stem cell biology and regenerative medicine. PMID:24845994

  13. The role of Rap1 in cell-cell junction formation

    NARCIS (Netherlands)

    Kooistra, M.R.H.

    2008-01-01

    Both epithelial and endothelial cells form cell-cell junctions at the cell-cell contacts to maintain tissue integrity. Proper regulation of cell-cell junctions is required for the organisation of the tissue and to prevent leakage of blood vessels. In endothelial cells, the cell-cell junctions are

  14. Trophoblast lineage cells derived from human induced pluripotent stem cells

    International Nuclear Information System (INIS)

    Chen, Ying; Wang, Kai; Chandramouli, Gadisetti V.R.; Knott, Jason G.; Leach, Richard

    2013-01-01

    Highlights: •Epithelial-like phenotype of trophoblast lineage cells derived from human iPS cells. •Trophoblast lineage cells derived from human iPS cells exhibit trophoblast function. •Trophoblasts from iPS cells provides a proof-of-concept in regenerative medicine. -- Abstract: Background: During implantation, the blastocyst trophectoderm attaches to the endometrial epithelium and continues to differentiate into all trophoblast subtypes, which are the major components of a placenta. Aberrant trophoblast proliferation and differentiation are associated with placental diseases. However, due to ethical and practical issues, there is almost no available cell or tissue source to study the molecular mechanism of human trophoblast differentiation, which further becomes a barrier to the study of the pathogenesis of trophoblast-associated diseases of pregnancy. In this study, our goal was to generate a proof-of-concept model for deriving trophoblast lineage cells from induced pluripotency stem (iPS) cells from human fibroblasts. In future studies the generation of trophoblast lineage cells from iPS cells established from patient’s placenta will be extremely useful for studying the pathogenesis of individual trophoblast-associated diseases and for drug testing. Methods and results: Combining iPS cell technology with BMP4 induction, we derived trophoblast lineage cells from human iPS cells. The gene expression profile of these trophoblast lineage cells was distinct from fibroblasts and iPS cells. These cells expressed markers of human trophoblasts. Furthermore, when these cells were differentiated they exhibited invasive capacity and placental hormone secretive capacity, suggesting extravillous trophoblasts and syncytiotrophoblasts. Conclusion: Trophoblast lineage cells can be successfully derived from human iPS cells, which provide a proof-of-concept tool to recapitulate pathogenesis of patient placental trophoblasts in vitro

  15. Trophoblast lineage cells derived from human induced pluripotent stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Ying, E-mail: ying.chen@hc.msu.edu [Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, 333 Bostwick NE, Grand Rapids, MI 49503 (United States); Wang, Kai; Chandramouli, Gadisetti V.R. [Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, 333 Bostwick NE, Grand Rapids, MI 49503 (United States); Knott, Jason G. [Developmental Epigenetics Laboratory, Department of Animal Science, Michigan State University (United States); Leach, Richard, E-mail: Richard.leach@hc.msu.edu [Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, 333 Bostwick NE, Grand Rapids, MI 49503 (United States); Department of Obstetrics, Gynecology and Women’s Health, Spectrum Health Medical Group (United States)

    2013-07-12

    Highlights: •Epithelial-like phenotype of trophoblast lineage cells derived from human iPS cells. •Trophoblast lineage cells derived from human iPS cells exhibit trophoblast function. •Trophoblasts from iPS cells provides a proof-of-concept in regenerative medicine. -- Abstract: Background: During implantation, the blastocyst trophectoderm attaches to the endometrial epithelium and continues to differentiate into all trophoblast subtypes, which are the major components of a placenta. Aberrant trophoblast proliferation and differentiation are associated with placental diseases. However, due to ethical and practical issues, there is almost no available cell or tissue source to study the molecular mechanism of human trophoblast differentiation, which further becomes a barrier to the study of the pathogenesis of trophoblast-associated diseases of pregnancy. In this study, our goal was to generate a proof-of-concept model for deriving trophoblast lineage cells from induced pluripotency stem (iPS) cells from human fibroblasts. In future studies the generation of trophoblast lineage cells from iPS cells established from patient’s placenta will be extremely useful for studying the pathogenesis of individual trophoblast-associated diseases and for drug testing. Methods and results: Combining iPS cell technology with BMP4 induction, we derived trophoblast lineage cells from human iPS cells. The gene expression profile of these trophoblast lineage cells was distinct from fibroblasts and iPS cells. These cells expressed markers of human trophoblasts. Furthermore, when these cells were differentiated they exhibited invasive capacity and placental hormone secretive capacity, suggesting extravillous trophoblasts and syncytiotrophoblasts. Conclusion: Trophoblast lineage cells can be successfully derived from human iPS cells, which provide a proof-of-concept tool to recapitulate pathogenesis of patient placental trophoblasts in vitro.

  16. Fuel cells in transportation

    Energy Technology Data Exchange (ETDEWEB)

    Erdmann, G. [Technische Univ., Berlin (Germany); Hoehlein, B. [Research Center Juelich (Germany)

    1996-12-01

    A promising new power source for electric drive systems is the fuel cell technology with hydrogen as energy input. The worldwide fuel cell development concentrates on basic research efforts aiming at improving this new technology and at developing applications that might reach market maturity in the very near future. Due to the progress achieved, the interest is now steadily turning to the development of overall systems such as demonstration plants for different purposes: electricity generation, drive systems for road vehicles, ships and railroads. This paper does not present results concerning the market potential of fuel cells in transportation but rather addresses some questions and reflections that are subject to further research of both engineers and economists. Some joint effort of this research will be conducted under the umbrella of the IEA Implementing Agreement 026 - Annex X, but there is a lot more to be done in this challenging but also promising fields. (EG) 18 refs.

  17. Cell Phone Detection Techniques

    Energy Technology Data Exchange (ETDEWEB)

    Pratt, Richard M.; Bunch, Kyle J.; Puzycki, David J.; Slaugh, Ryan W.; Good, Morris S.; McMakin, Douglas L.

    2007-10-01

    A team composed of Rick Pratt, Dave Puczyki, Kyle Bunch, Ryan Slaugh, Morris Good, and Doug McMakin teamed together to attempt to exploit cellular telephone features and detect if a person was carrying a cellular telephone into a Limited Area. The cell phone’s electromagnetic properties were measured, analyzed, and tested in over 10 different ways to determine if an exploitable signature exists. The method that appears to have the most potential for success without adding an external tag is to measure the RF spectrum, not in the cell phone band, but between 240 and 400MHz. Figures 1- 7 show the detected signal levels from cell phones from three different manufacturers.

  18. Characterization of solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Haerkoenen, J.; Tuominen, E.; Nybergh, K.; Ezer, Y.; Yli-Koski, M.; Sinkkonen, J. [Helsinki Univ. of Technology (Finland). Dept. of Electrical and Communications Engineering

    1998-12-31

    Photovoltaic research began at the Electron Physics Laboratory of the Helsinki University of Tehnology in 1993, when the laboratory joined the national NEMO 2 research program. During the early stages of the photovoltaic research the main objective was to establish necessary measurement and characterisation routines, as well as to develop the fabrication process. The fabrication process development work has been supported by characterisation and theoretical modelling of the solar cells. Theoretical investigations have been concerned with systematic studies of solar cell parameters, such as diffusion lengths, surface recombination velocities and junction depths. The main result of the modelling and characterisation work is a method which is based on a Laplace transform of the so-called spatial collection efficiency function of the cell. The basic objective of the research has been to develop a fabrication process cheap enough to be suitable for commercial production

  19. Solid Oxide Electrolyser Cell

    DEFF Research Database (Denmark)

    Jensen, Søren Højgaard

    Solid oxide fuel cells (SOFCs) produced at Risø National Laboratory was tested as steam electrolysers under various current densities, operating temperatures and steam partial pressures. At 950 °C and a cell voltage of 1.48V the current density was -3.6A/cm2 with app. 30% H2 + 70% H2O in the inlet...... it is possible to achieve a production price of 0.7 US$/kg H2 with an electricity price of 1.3 US¢/kWh. The cell voltage was measured as function of time. In test ofabout two month of duration a long-term degradation was observed. At 850 °C, -0.5 A/cm2 with 50 vol% H2 the degradation rate was app. 20 mV/1000h...

  20. Human leukaemic cells

    International Nuclear Information System (INIS)

    Andronikashvili, E.L.; Mosulishvili, L.M.; Belokobil'skiy, A.I.; Kharabadze, N.E.; Shonia, N.I.; Desai, L.S.; Foley, G.E.

    1976-01-01

    The results of the determination of trace elements in nucleic acids and histones in human leukaemic cells by activation analysis are reported. The Cr 2+ , Fe 2+ , Zn 2+ , Co 2+ and Sb 2+ content of DNA and RNA of leukaemic cells compared to that of lymphocytes from a patient with infectious mononucleosis or a normal donor are shown tabulated. Similar comparisons are shown for the same trace metal content of histones isolated from the same type of cells. It is felt that the results afford further interesting speculation that trace metals may be involved in the interactions between histones and DNA (especially at the binding sites of histones to DNA), which affect transcription characteristics. (U.K.)

  1. ELECTROMOTIVE FORCE, EMF (CELLS)

    Energy Technology Data Exchange (ETDEWEB)

    Archer, M.D.; Feldberg, S.W.

    1998-09-16

    The voltage or electric potential difference across the terminals of a cell when no current is drawn from it. The emf of a cell is the sum of the electric potential differences (PDs) produced by a separation of charges (electrons or ions) that can occur at each phase boundary (or interface) in the cell. The magnitude of each PD depends on the chemical nature of the two contacting phases. Thus, at the interface between two different metals, some electrons will have moved from the metal with a higher free energy of electrons to the metal with a lower free energy of electrons. The resultant charge separation will produce a PD (just as charge separation produces a voltage across a capacitor) that, at equilibrium, exactly opposes further electron flow. Similarly, PDs can be produced when electrons partition across a metal/solution interface or metal/solid interface, and when ions partition across a solution/membrane/solution interface.

  2. Cell proliferation in carcinogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, S.M.; Ellwein, L.B. (Univ. of Nebraska Medical Center, Omaha (USA))

    1990-08-31

    Chemicals that induce cancer at high doses in animal bioassays often fail to fit the traditional characterization of genotoxins. Many of these nongenotoxic compounds (such as sodium saccharin) have in common the property that they increase cell proliferation in the target organ. A biologically based, computerized description of carcinogenesis was used to show that the increase in cell proliferation can account for the carcinogenicity of nongenotoxic compounds. The carcinogenic dose-response relationship for genotoxic chemicals (such as 2-acetylaminofluorene) was also due in part to increased cell proliferation. Mechanistic information is required for determination of the existence of a threshold for the proliferative (and carcinogenic) response of nongenotoxic chemicals and the estimation of risk for human exposure.

  3. Dense pattern optical multipass cell

    Science.gov (United States)

    Silver, Joel A [Santa Fe, NM

    2009-01-13

    A multiple pass optical cell and method comprising providing a pair of opposed cylindrical mirrors having curved axes with substantially equal focal lengths, positioning an entrance hole for introducing light into the cell and an exit hole for extracting light from the cell, wherein the entrance hole and exit hole are coextensive or non-coextensive, introducing light into the cell through the entrance hole, and extracting light from the cell through the exit hole.

  4. Dense pattern multiple pass cells

    Science.gov (United States)

    Silver, Joel A.; Bomse, David S.

    2010-09-21

    An optical cell and a method of operating an optical cell comprising employing a first mirror comprising a first hole therein at approximately a center of the first mirror and through which laser light enters the cell, employing a second mirror comprising a second hole therein at approximately a center of the second mirror and through which laser light exits the cell, and forming a Lissajous pattern of spots on the mirrors by repeated reflection of laser light entering the cell.

  5. Radiosensitivity of mesothelioma cell lines

    International Nuclear Information System (INIS)

    Haekkinen, A.M.; Laasonen, A.; Linnainmaa, K.; Mattson, K.; Pyrhoenen, S.

    1996-01-01

    The present study was carried out in order to examine the radiosensitivity of malignant pleural mesothelioma cell lines. Cell kinetics, radiation-induced delay of the cell cycle and DNA ploidy of the cell lines were also determined. For comparison an HeLa and a human foetal fibroblast cell line were simultaneously explored. Six previously cytogenetically and histologically characterized mesothelioma tumor cell lines were applied. A rapid tiazolyl blue microtiter (MTT) assay was used to analyze radiosensitivity and cell kinetics and DNA ploidy of the cultured cells were determined by flow cytometry. The survival fraction after a dose of 2 Gy (SF2), parameters α and β of the linear quadratic model (LQ-model) and mean inactivation dose (D MID ) were also estimated. The DNA index of four cell lines equaled 1.0 and two cell lines equaled 1.5 and 1.6. Different mesothelioma cell lines showed a great variation in radiosensitivity. Mean survival fraction after a radiation dose of 2 Gy (SF2) was 0.60 and ranged from 0.36 to 0.81 and mean α value was 0.26 (range 0.48-0.083). The SF2 of the most sensitive diploid mesothelioma cell line was 0.36: Less than that of the foetal fibroblast cell line (0.49). The survival fractions (0.81 and 0.74) of the two most resistant cell lines, which also were aneuploid, were equal to that of the HeLa cell line (0.78). The α/β ratios of the most sensitive cell lines were almost an order of magnitude greater than those of the two most resistant cell lines. Radiation-induced delay of the most resistant aneuploid cell line was similar to that of HeLa cells but in the most sensitive (diploid cells) there was practically no entry into the G1 phase following the 2 Gy radiation dose during 36 h. (orig.)

  6. Interband Cascade Photovoltaic Cells

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Rui Q. [Univ. of Oklahoma, Norman, OK (United States); Santos, Michael B. [Univ. of Oklahoma, Norman, OK (United States); Johnson, Matthew B. [Univ. of Oklahoma, Norman, OK (United States)

    2014-09-24

    In this project, we are performing basic and applied research to systematically investigate our newly proposed interband cascade (IC) photovoltaic (PV) cells [1]. These cells follow from the great success of infrared IC lasers [2-3] that pioneered the use of quantum-engineered IC structures. This quantum-engineered approach will enable PV cells to efficiently convert infrared radiation from the sun or other heat source, to electricity. Such cells will have important applications for more efficient use of solar energy, waste-heat recovery, and power beaming in combination with mid-infrared lasers. The objectives of our investigations are to: achieve extensive understanding of the fundamental aspects of the proposed PV structures, develop the necessary knowledge for making such IC PV cells, and demonstrate prototype working PV cells. This research will focus on IC PV structures and their segments for utilizing infrared radiation with wavelengths from 2 to 5 μm, a range well suited for emission by heat sources (1,000-2,000 K) that are widely available from combustion systems. The long-term goal of this project is to push PV technology to longer wavelengths, allowing for relatively low-temperature thermal sources. Our investigations address material quality, electrical and optical properties, and their interplay for the different regions of an IC PV structure. The tasks involve: design, modeling and optimization of IC PV structures, molecular beam epitaxial growth of PV structures and relevant segments, material characterization, prototype device fabrication and testing. At the end of this program, we expect to generate new cutting-edge knowledge in the design and understanding of quantum-engineered semiconductor structures, and demonstrate the concepts for IC PV devices with high conversion efficiencies.

  7. Clear cell chondrosarcoma

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, R.; David, R.; Cierney, G. III

    1985-01-01

    The clinical, radiologic, and histopathologic features of three cases of clear cell chondrosarcoma are described. On radiographs, this rather benign-appearing tumor resembles a chondroblastoma when it occurs at the end of a long bone, and may occasionally show a calcified matrix. However, it has distinctive tumor cells with a centrally placed vesicular nucleus surrounded by clear cytoplasm. The lesion has a low-grade malignancy and is amenable to en bloc surgical resection, which results in a much better prognosis than that of conventional chondrosarcoma.

  8. Iron sulphide solar cells

    Science.gov (United States)

    Ennaoui, A.; Tributsch, H.

    1984-12-01

    The abundant, naturally occurring natural compound pyrite (FeS2) can be used as a semiconducting material for photoelectrochemical and photovoltaic solar cells. Unlike most of the intensively studied photoactive materials, pyrite solar cell production would never be limited by the availability of the elements or by their compatibility with the environment. An energy gap of 0.95 eV has been determined for pyrite, and it is noted that the theoretical efficiency limit for solar energy conversion in this material is of the order of 15-20 percent.

  9. Rectenna solar cells

    CERN Document Server

    Moddel, Garret

    2013-01-01

    Rectenna Solar Cells discusses antenna-coupled diode solar cells, an emerging technology that has the potential to provide ultra-high efficiency, low-cost solar energy conversion. This book will provide an overview of solar rectennas, and provide thorough descriptions of the two main components: the diode, and the optical antenna. The editors discuss the science, design, modeling, and manufacturing of the antennas coupled with the diodes. The book will provide concepts to understanding the challenges, fabrication technologies, and materials required to develop rectenna structures. Written by e

  10. The illuminated plant cell.

    Science.gov (United States)

    Mathur, Jaideep

    2007-11-01

    The past decade has provided biologists with a palette of genetically encoded, multicolored fluorescent proteins. The living plant cell turned into a 'coloring book' and today, nearly every text-book organelle has been highlighted in scintillating fluorescent colors. This review provides a concise listing of the earliest representative fluorescent-protein probes used to highlight various targets within the plant cell, and introduces the idea of using the numerous multicolor, subcellular probes for the development of an early intracellular response profile of plants.

  11. Characterization of solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Haerkoenen, J.; Tuominen, E.; Nybergh, K.; Ezer, Y.; Yli-Koski, M.; Sinkkonen, J. [Helsinki Univ. of Technology, Otaniemi (Finland). Dept. of Electrical and Communications Engineering

    1998-10-01

    Photovoltaic research in the Electron Physics Laboratory started in 1993, when laboratory joined the national TEKES/NEMO 2 research program. Since the beginning of the project, characterization as well as experimentally orientated development of the fabrication process of the solar cells were carried out parallery. The process development research started by the initiatives of the Finnish industry. At the moment a large amount of the laboratory personnel works on solar cell research and the financing comes mainly from external projects. The funding for the research has come from TEKES, Ministry of Education, Finnish Academy, GETA graduate school, special equipment grants of the university, and from the laboratory

  12. Printed biofuel cells

    Science.gov (United States)

    Wang, Joseph; Windmiller, Joshua Ray; Jia, Wenzhao

    2016-11-22

    Methods, systems, and devices are disclosed for implementing a biofuel cell device for extracting energy from a biofuel. In one aspect, a biofuel cell device includes a substrate, an anode including a catalyst to facilitate the conversion of a fuel in a biological fluid in an oxidative process that releases electrons captured at the anode, thereby extracting energy from the fuel substance, a cathode configured on the substrate adjacent to the anode and separated from the anode by a spacing region, and a load electrically coupled to the anode and cathode via electrical interconnects to obtain the extracted energy as electrical energy.

  13. Carbon Nanotube Solar Cells

    OpenAIRE

    Klinger, Colin; Patel, Yogeshwari; Postma, Henk W. Ch.

    2012-01-01

    We present proof-of-concept all-carbon solar cells. They are made of a photoactive side of predominantly semiconducting nanotubes for photoconversion and a counter electrode made of a natural mixture of carbon nanotubes or graphite, connected by a liquid electrolyte through a redox reaction. The cells do not require rare source materials such as In or Pt, nor high-grade semiconductor processing equipment, do not rely on dye for photoconversion and therefore do not bleach, and are easy to fabr...

  14. Fingerprints in cancer cells

    International Nuclear Information System (INIS)

    Servomaa, K.

    1994-01-01

    Gene research has shown that factors causing cancer, or carcinogens, may leave marks typical of each particular carcinogen (fingerprints) in the genotype of the cell. Radiation, for instance, may leave such fingerprints in a cancer cell. In particular, the discovery of a gene called p53 has yielded much new information on fingerprints. It has been discovered, for example, that toxic fungus and UV-radiation each leave fingerprints in the p53 gene. Based on the detection of fingerprints, it may be possible in the future to tell a cancer patient what factor had trigged the maglinancy

  15. Silicon heterojunction solar cells

    CERN Document Server

    Fahrner, W R; Neitzert, H C

    2006-01-01

    The world of today must face up to two contradictory energy problems: on the one hand, there is the sharply growing consumer demand in countries such as China and India. On the other hand, natural resources are dwindling. Moreover, many of those countries which still possess substantial gas and oil supplies are politically unstable. As a result, renewable natural energy sources have received great attention. Among these, solar-cell technology is one of the most promising candidates. However, there still remains the problem of the manufacturing costs of such cells. Many attempts have been made

  16. Gingival squamous cell carcinoma

    Directory of Open Access Journals (Sweden)

    Amit Walvekar

    2017-01-01

    Full Text Available Oral squamous cell carcinoma (OSCC is the most common epithelial malignancy affecting the oral cavity. The most common sites for the development are lateral surface of tongue and floor of mouth; the least common sites are soft palate, gingiva, and buccal mucosa. Gingival squamous cell carcinoma can mimic a multitude of oral lesions and enlargements, especially those of inflammatory origin. In addition, predisposing and presenting factors are different from those of other OSCCs. Careful examination as well as routine biopsy are crucial for accurate diagnosis.

  17. Microfluidic Cell Culture Device

    Science.gov (United States)

    Takayama, Shuichi (Inventor); Cabrera, Lourdes Marcella (Inventor); Heo, Yun Seok (Inventor); Smith, Gary Daniel (Inventor)

    2014-01-01

    Microfluidic devices for cell culturing and methods for using the same are disclosed. One device includes a substrate and membrane. The substrate includes a reservoir in fluid communication with a passage. A bio-compatible fluid may be added to the reservoir and passage. The reservoir is configured to receive and retain at least a portion of a cell mass. The membrane acts as a barrier to evaporation of the bio-compatible fluid from the passage. A cover fluid may be added to cover the bio-compatible fluid to prevent evaporation of the bio-compatible fluid.

  18. Colorectal Cancer Stem Cells and Cell Death

    Energy Technology Data Exchange (ETDEWEB)

    Catalano, Veronica [Department of Surgical and Oncological Sciences, University of Palermo, Via Liborio Giuffrè 5, 90127 Palermo, PA (Italy); Gaggianesi, Miriam [Department of Surgical and Oncological Sciences, University of Palermo, Via Liborio Giuffrè 5, 90127 Palermo, PA (Italy); Department of Cellular and Molecular Oncology, IRCCS Fondazione Salvatore Maugeri, Via Salvatore Maugeri, 27100 Pavia, PV (Italy); Spina, Valentina; Iovino, Flora [Department of Surgical and Oncological Sciences, University of Palermo, Via Liborio Giuffrè 5, 90127 Palermo, PA (Italy); Dieli, Francesco [Departement of Biopathology and Medicine Biotechnologies, University of Palermo, Via Liborio Giuffrè 5, 90127 Palermo, PA (Italy); Stassi, Giorgio, E-mail: giorgio.stassi@unipa.it [Department of Surgical and Oncological Sciences, University of Palermo, Via Liborio Giuffrè 5, 90127 Palermo, PA (Italy); Department of Cellular and Molecular Oncology, IRCCS Fondazione Salvatore Maugeri, Via Salvatore Maugeri, 27100 Pavia, PV (Italy); Todaro, Matilde [Department of Surgical and Oncological Sciences, University of Palermo, Via Liborio Giuffrè 5, 90127 Palermo, PA (Italy)

    2011-04-11

    Nowadays it is reported that, similarly to other solid tumors, colorectal cancer is sustained by a rare subset of cancer stem–like cells (CSCs), which survive conventional anticancer treatments, thanks to efficient mechanisms allowing escape from apoptosis, triggering tumor recurrence. To improve patient outcomes, conventional anticancer therapies have to be replaced with specific approaches targeting CSCs. In this review we provide strong support that BMP4 is an innovative therapeutic approach to prevent colon cancer growth increasing differentiation markers expression and apoptosis. Recent data suggest that in colorectal CSCs, protection from apoptosis is achieved by interleukin-4 (IL-4) autocrine production through upregulation of antiapoptotic mediators, including survivin. Consequently, IL-4 neutralization could deregulate survivin expression and localization inducing chemosensitivity of the colon CSCs pool.

  19. Recent Progress in Cell Reprogramming Technology for Cell Transplantation Therapy.

    Science.gov (United States)

    Yamashita, Toru; Abe, Koji

    2016-01-01

    The discovery of induced pluripotent stem (iPS) cells opened the gate for reprogramming technology with which we can change the cell fate through overexpression of master transcriptional factors. Now we can prepare various kinds of neuronal cells directly induced from somatic cells. It has been reported that overexpression of a neuron-specific transcriptional factors might change the cell fate of endogenous astroglia to neuronal cells in vivo. In addition, some research groups demonstrated that chemical compound can induce chemical-induced neuronal cells, without transcriptional factors overexpression. In this review, we briefly review recent progress in the induced neuronal (iN) cells, and discuss the possibility of application for cell transplantation therapy.

  20. Induced pluripotent stem cell lines derived from human somatic cells.

    Science.gov (United States)

    Yu, Junying; Vodyanik, Maxim A; Smuga-Otto, Kim; Antosiewicz-Bourget, Jessica; Frane, Jennifer L; Tian, Shulan; Nie, Jeff; Jonsdottir, Gudrun A; Ruotti, Victor; Stewart, Ron; Slukvin, Igor I; Thomson, James A

    2007-12-21

    Somatic cell nuclear transfer allows trans-acting factors present in the mammalian oocyte to reprogram somatic cell nuclei to an undifferentiated state. We show that four factors (OCT4, SOX2, NANOG, and LIN28) are sufficient to reprogram human somatic cells to pluripotent stem cells that exhibit the essential characteristics of embryonic stem (ES) cells. These induced pluripotent human stem cells have normal karyotypes, express telomerase activity, express cell surface markers and genes that characterize human ES cells, and maintain the developmental potential to differentiate into advanced derivatives of all three primary germ layers. Such induced pluripotent human cell lines should be useful in the production of new disease models and in drug development, as well as for applications in transplantation medicine, once technical limitations (for example, mutation through viral integration) are eliminated.

  1. Bio optofluidics cell sorter: cell-BOCS concept and applications

    Science.gov (United States)

    Roth, Tue; Glückstad, Jesper

    2012-03-01

    The cell-BOCS is a novel microfluidics based cell-sorting instrument utilizing next generation optical trapping technology developed at the Technical University of Denmark. It is targeted emerging bio-medical research and diagnostics markets where it for certain applications offers a number of advantages over conventional fluorescence activated cell-sorting (FACSTM) technology. Advantages include gentle handling of cells, sterile sorting, easy operation, small footprint and lower cost allowing out-of-core-facility use. Application examples are found within sorting of fragile transfected cells, high value samples and primary cell lines, where traditional FACS technology has limited application due to it's droplet-based approach to cell-sorting. In the diagnostics field, in particular applying the cell-BOCS for isolating pure populations of circulating tumor cells is an area that has generated a lot of interest.

  2. Microencapsulating and Banking Living Cells for Cell-Based Medicine

    Directory of Open Access Journals (Sweden)

    Wujie Zhang

    2011-01-01

    Full Text Available A major challenge to the eventual success of the emerging cell-based medicine such as tissue engineering, regenerative medicine, and cell transplantation is the limited availability of the desired cell sources. This challenge can be addressed by cell microencapsulation to overcome the undesired immune response (i.e., to achieve immunoisolation so that non-autologous cells can be used to treat human diseases, and by cell/tissue preservation to bank living cells for wide distribution to end users so that they are readily available when needed in the future. This review summarizes the status quo of research in both cell microencapsulation and banking the microencapsulated cells. It is concluded with a brief outlook of future research directions in this important field.

  3. Stochastic models for cell division

    Science.gov (United States)

    Stukalin, Evgeny; Sun, Sean

    2013-03-01

    The probability of cell division per unit time strongly depends of age of cells, i.e., time elapsed since their birth. The theory of cell populations in the age-time representation is systematically applied for modeling cell division for different spreads in generation times. We use stochastic simulations to address the same issue at the level of individual cells. Our approach unlike deterministic theory enables to analyze the size fluctuations of cell colonies at different growth conditions (in the absence and in the presence of cell death, for initially synchronized and asynchronous cell populations, for conditions of restricted growth). We find the simple quantitative relation between the asymptotic values of relative size fluctuations around mean values for initially synchronized cell populations under growth and the coefficients of variation of generation times. Effect of initial age distribution for asynchronous growth of cell cultures is also studied by simulations. The influence of constant cell death on fluctuations of sizes of cell populations is found to be essential even for small cell death rates, i.e., for realistic growth conditions. The stochastic model is generalized for biologically relevant case that involves both cell reproduction and cell differentiation.

  4. Fuel Cell Testing - Degradation of Fuel Cells and its Impact on Fuel Cell Applications

    OpenAIRE

    PFRANG Andreas

    2008-01-01

    Fuel cells are expected to play a major role in the future energy supply, especially polymer electrolyte membrane fuel cells could become an integral part in future cars. Reduction of degradation of fuel cell performance while keeping fuel cell cost under control is the key for an introduction into mass markets.

  5. Focal Adhesion Kinase regulates cell-cell contact formation in epithelial cells via modulation of Rho

    International Nuclear Information System (INIS)

    Playford, Martin P.; Vadali, Kavita; Cai Xinming; Burridge, Keith; Schaller, Michael D.

    2008-01-01

    Focal Adhesion Kinase (FAK) is a non-receptor tyrosine kinase that plays a key role in cellular processes such as cell adhesion, migration, proliferation and survival. Recent studies have also implicated FAK in the regulation of cell-cell adhesion. Here, evidence is presented showing that siRNA-mediated suppression of FAK levels in NBT-II cells and expression of dominant negative mutants of FAK caused loss of epithelial cell morphology and inhibited the formation of cell-cell adhesions. Rac and Rho have been implicated in the regulation of cell-cell adhesions and can be regulated by FAK signaling. Expression of active Rac or Rho in NBT-II cells disrupted formation of cell-cell contacts, thus promoting a phenotype similar to FAK-depleted cells. The loss of intercellular contacts in FAK-depleted cells is prevented upon expression of a dominant negative Rho mutant, but not a dominant negative Rac mutant. Inhibition of FAK decreased tyrosine phosphorylation of p190RhoGAP and elevated the level of GTP-bound Rho. This suggests that FAK regulates cell-cell contact formation by regulation of Rho

  6. Cell Cycle Related Differentiation of Bone Marrow Cells into Lung Cells

    Energy Technology Data Exchange (ETDEWEB)

    Dooner, Mark; Aliotta, Jason M.; Pimental, Jeffrey; Dooner, Gerri J.; Abedi, Mehrdad; Colvin, Gerald; Liu, Qin; Weier, Heinz-Ulli; Dooner, Mark S.; Quesenberry, Peter J.

    2007-12-31

    Green-fluorescent protein (GFP) labeled marrow cells transplanted into lethally irradiated mice can be detected in the lungs of transplanted mice and have been shown to express lung specific proteins while lacking the expression of hematopoietic markers. We have studied marrow cells induced to transit cell cycle by exposure to IL-3, IL-6, IL-11 and steel factor at different times of culture corresponding to different phases of cell cycle. We have found that marrow cells at the G1/S interface have a 3-fold increase in cells which assume a lung phenotype and that this increase is no longer seen in late S/G2. These cells have been characterized as GFP{sup +} CD45{sup -} and GFP{sup +} cytokeratin{sup +}. Thus marrow cells with the capacity to convert into cells with a lung phenotype after transplantation show a reversible increase with cytokine induced cell cycle transit. Previous studies have shown the phenotype of bone marrow stem cells fluctuates reversibly as these cells traverse cell cycle, leading to a continuum model of stem cell regulation. The present studies indicate that marrow stem cell production of nonhematopoietic cells also fluctuates on a continuum.

  7. Sertoli cells maintain Leydig cell number and peritubular myoid cell activity in the adult mouse testis.

    Directory of Open Access Journals (Sweden)

    Diane Rebourcet

    Full Text Available The Sertoli cells are critical regulators of testis differentiation and development. In the adult, however, their known function is restricted largely to maintenance of spermatogenesis. To determine whether the Sertoli cells regulate other aspects of adult testis biology we have used a novel transgenic mouse model in which Amh-Cre induces expression of the receptor for Diphtheria toxin (iDTR specifically within Sertoli cells. This causes controlled, cell-specific and acute ablation of the Sertoli cell population in the adult animal following Diphtheria toxin injection. Results show that Sertoli cell ablation leads to rapid loss of all germ cell populations. In addition, adult Leydig cell numbers decline by 75% with the remaining cells concentrated around the rete and in the sub-capsular region. In the absence of Sertoli cells, peritubular myoid cell activity is reduced but the cells retain an ability to exclude immune cells from the seminiferous tubules. These data demonstrate that, in addition to support of spermatogenesis, Sertoli cells are required in the adult testis both for retention of the normal adult Leydig cell population and for support of normal peritubular myoid cell function. This has implications for our understanding of male reproductive disorders and wider androgen-related conditions affecting male health.

  8. Cell wall, cytoskeleton, and cell expansion in higher plants.

    Science.gov (United States)

    Bashline, Logan; Lei, Lei; Li, Shundai; Gu, Ying

    2014-04-01

    To accommodate two seemingly contradictory biological roles in plant physiology, providing both the rigid structural support of plant cells and the adjustable elasticity needed for cell expansion, the composition of the plant cell wall has evolved to become an intricate network of cellulosic, hemicellulosic, and pectic polysaccharides and protein. Due to its complexity, many aspects of the cell wall influence plant cell expansion, and many new and insightful observations and technologies are forthcoming. The biosynthesis of cell wall polymers and the roles of the variety of proteins involved in polysaccharide synthesis continue to be characterized. The interactions within the cell wall polymer network and the modification of these interactions provide insight into how the plant cell wall provides its dual function. The complex cell wall architecture is controlled and organized in part by the dynamic intracellular cytoskeleton and by diverse trafficking pathways of the cell wall polymers and cell wall-related machinery. Meanwhile, the cell wall is continually influenced by hormonal and integrity sensing stimuli that are perceived by the cell. These many processes cooperate to construct, maintain, and manipulate the intricate plant cell wall--an essential structure for the sustaining of the plant stature, growth, and life.

  9. Choosing Cell Fate Through a Dynamic Cell Cycle.

    Science.gov (United States)

    Chen, Xinyue; Hartman, Amaleah; Guo, Shangqin

    2015-01-01

    A close relationship between proliferation and cell fate specification has been well documented in many developmental systems. In addition to the gradual cell fate changes accompanying normal development and tissue homeostasis, it is now commonly appreciated that cell fate could also undergo drastic changes, as illustrated by the induction of pluripotency from many differentiated somatic cell types during the process of Yamanaka reprogramming. Strikingly, the drastic cell fate change induced by Yamanaka factors (Oct4, Sox2, Klf4, and c-Myc) is preceded by extensive cell cycle acceleration. Prompted by our recent discovery that progression toward pluripotency from rare somatic cells could bypass the stochastic phase of reprogramming and that a key feature of these somatic cells is an ultrafast cell cycle (~8 h/cycle), we assess whether cell cycle dynamics could provide a general framework for controlling cell fate. Several potential mechanisms on how cell cycle dynamics may impact cell fate determination by regulating chromatin, key transcription factor concentration, or their interactions are discussed. Specific challenges and implications for studying and manipulating cell fate are considered.

  10. BRACHYURY confers cancer stem cell characteristics on colorectal cancer cells.

    Science.gov (United States)

    Sarkar, Debalina; Shields, Brian; Davies, Melanie L; Müller, Jürgen; Wakeman, Jane A

    2012-01-15

    Cancer stem cells (CSCs) are initiating cells in colorectal cancer (CRC). Colorectal tumours undergo epithelial to mesenchymal transition (EMT)-like processes at the invasive front, enabling invasion and metastasis, and recent studies have linked this process to the acquisition of stem cell-like properties. It is of fundamental importance to understand the molecular events leading to the establishment of cancer initiating cells and how these mechanisms relate to cellular transitions during tumourigenesis. We use an in vitro system to recapitulate changes in CRC cells at the invasive front (mesenchymal-like cells) and central mass (epithelial-like cells) of tumours. We show that the mesoderm inducer BRACHYURY is expressed in a subpopulation of CRC cells that resemble invasive front mesenchymal-like cells, where it acts to impose characteristics of CSCs in a fully reversible manner, suggesting reversible formation and modulation of such cells. BRACHYURY, itself regulated by the oncogene β-catenin, influences NANOG and other 'stemness' markers including a panel of markers defining CRC-CSC whose presence has been linked to poor patient prognosis. Similar regulation of NANOG through BRACHYURY was observed in other cells lines, suggesting this might be a pathway common to cancer cells undergoing mesenchymal transition. We suggest that BRACHYURY may regulate NANOG in mesenchymal-like CRC cells to impose a 'plastic-state', allowing competence of cells to respond to signals prompting invasion or metastasis. Copyright © 2011 UICC.

  11. Chromosome aberrations and cell survival in irradiated mammalian cells

    International Nuclear Information System (INIS)

    Tremp, J.

    1981-01-01

    A possible correlation between chromosome aberrations and reduced proliferation capacity or cell death was investigated. Synchronized Chinese hamster fibroblast cells were irradiated with 300 rad of x rays in early G 1 . Despite synchronization the cells reached the subsequent mitosis at different times. The frequency of chromosome aberrations was determined in the postirradiation division at 2-h intervals. The highest frequency occurred in cells with a first cell cycle of medium length. The colony-forming ability of mitotic cells was measured in parallel samples by following the progress of individual mitoses. The proportion of cells forming macrocolonies decreased with increasing cell cycle length, and the number of non-colony-forming cells increased. Irrespective of various first cell cycle lengths and different frequencies of chromosome aberrations, the number of cells forming microcolonies remained constant. A correlation was found between the absence of chromosome aberrations and the ability of cells to form macrocolonies. However, cells with a long first cell cycle formed fewer macrocolonies than expected

  12. Asymmetric cell division in polyploid giant cancer cells and low eukaryotic cells.

    Science.gov (United States)

    Zhang, Dan; Wang, Yijia; Zhang, Shiwu

    2014-01-01

    Asymmetric cell division is critical for generating cell diversity in low eukaryotic organisms. We previously have reported that polyploid giant cancer cells (PGCCs) induced by cobalt chloride demonstrate the ability to use an evolutionarily conserved process for renewal and fast reproduction, which is normally confined to simpler organisms. The budding yeast, Saccharomyces cerevisiae, which reproduces by asymmetric cell division, has long been a model for asymmetric cell division studies. PGCCs produce daughter cells asymmetrically in a manner similar to yeast, in that both use budding for cell polarization and cytokinesis. Here, we review the results of recent studies and discuss the similarities in the budding process between yeast and PGCCs.

  13. Selfish cells in altruistic cell society - a theoretical oncology.

    Science.gov (United States)

    Chigira, M

    1993-09-01

    In multicellular organisms, internal evolution of individual cells is strictly forbidden and 'evolutional' DNA replication should be performed only by the sexual reproduction system. Wholistic negative control system called 'homeostasis' serves all service to germ line cells. All somatic cells are altruistic to the germ line cells. However, in malignant tumors, it seems that individual cells replicate and behave 'selfishly' and evolve against the internal microenvironment. Tumor cells only express the occult selfishness which is programmed in normal cells a priori. This phenomenon is based on the failure of identical DNA replication, and results in 'autonomy' and 'anomie' of cellular society as shown in tumor cells. Genetic programs of normal cells connote this cellular autonomy and anomie introduced by the deletion of regulators on structure genes. It is rather paradoxical that the somatic cells get their freedom from wholistic negative regulation programmed internally. However, this is not a true paradox, since multicellular organisms have clearly been evolved from 'monads' in which cells proliferate without wholistic regulation. Somatic cells revolt against germ cell DNA, called 'selfish replicator' by Dawkins. It is an inevitable destiny that the 'selfishness' coded in genome should be revenged by itself. Selfish replicator in germ cell line should be revolted by its selfishness in the expansion of somatic cells, since they have an orthogenesis to get more selfishness in order to increase their genome. Tumor heterogeneity and progression can be fully explained by this self-contradictory process which produces heterogeneous gene copies different from the original clone in the tumor, although 'selfish' gene replication is the final target of being. Furthermore, we have to discard the concept of clonality of tumor cells since genetic instability is a fundamental feature of tumors. Finally, tumor cells and proto-oncogenes can be considered as the ultimate parasite

  14. Activation of glioma cells generates immune tolerant NKT cells.

    Science.gov (United States)

    Tang, Bo; Wu, Wei; Wei, Xiaowei; Li, Yang; Ren, Gang; Fan, Wenhai

    2014-12-12

    Therapeutic outcomes of glioma are currently not encouraging. Tumor tolerance plays an important role in the pathogenesis of glioma. It is reported that micro RNAs (miR) are associated with tumor development. This study aims to investigate the role of miR-92a in the development of tolerant natural killer T (NKT) cells. In this study, U87 cells (a human glioma cell line) and primary glioma cells were prepared. The assessment of miR-92a was performed by real time RT-PCR. The expression of interleukin (IL)-10 and IL-6 in NKT cells was evaluated by flow cytometry. Results showed that abundant IL-6(+) IL-10(+) NKT cells were detected in glioma tissue. Cultures of glioma cells and NKT cells induced the expression of IL-6 and IL-10 in NKT cells. Glioma cells expressed miR-92a; the latter played a critical role in the induction of IL-6 and IL-10 expression in NKT cells. The expression of the antitumor molecules, including perforin, Fas ligand, and interferon-γ, was significantly attenuated compared with control NKT cells. The IL-6(+) IL-10(+) NKT cells showed less capability in the induction of apoptosis in glioma cells, but showed the immune suppressor functions on CD8(+) T cell activities. We conclude that glioma-derived miR-92a induces IL-6(+) IL-10(+) NKT cells; this fraction of NKT cells can suppress cytotoxic CD8(+) T cells. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. Cell biology of mesangial cells: the third cell that maintains the glomerular capillary.

    Science.gov (United States)

    Kurihara, Hidetake; Sakai, Tatsuo

    2017-03-01

    The renal glomerulus consists of glomerular endothelial cells, podocytes, and mesangial cells, which cooperate with each other for glomerular filtration. We have produced monoclonal antibodies against glomerular cells in order to identify different types of glomerular cells. Among these antibodies, the E30 clone specifically recognizes the Thy1.1 molecule expressed on mesangial cells. An injection of this antibody into rats resulted in mesangial cell-specific injury within 15 min, and induced mesangial proliferative glomerulonephritis in a reproducible manner. We examined the role of mesangial cells in glomerular function using several experimental tools, including an E30-induced nephritis model, mesangial cell culture, and the deletion of specific genes. Herein, we describe the characterization of E30-induced nephritis, formation of the glomerular capillary network, mesangial matrix turnover, and intercellular signaling between glomerular cells. New molecules that are involved in a wide variety of mesangial cell functions are also introduced.

  16. Cloning mice and ES cells by nuclear transfer from somatic stem cells and fully differentiated cells.

    Science.gov (United States)

    Wang, Zhongde

    2011-01-01

    Cloning animals by nuclear transfer (NT) has been successful in several mammalian species. In addition to cloning live animals (reproductive cloning), this technique has also been used in several species to establish cloned embryonic stem (ntES) cell lines from somatic cells. It is the latter application of this technique that has been heralded as being the potential means to produce isogenic embryonic stem cells from patients for cell therapy (therapeutic cloning). These two types of cloning differ only in the steps after cloned embryos are produced: for reproductive cloning the cloned embryos are transferred to surrogate mothers to allow them to develop to full term and for therapeutic cloning the cloned embryos are used to derive ntES cells. In this chapter, a detailed NT protocol in mouse by using somatic stem cells (neuron and skin stem cells) and fully differentiated somatic cells (cumulus cells and fibroblast cells) as nuclear donors is described.

  17. Fake news portrayals of stem cells and stem cell research.

    Science.gov (United States)

    Marcon, Alessandro R; Murdoch, Blake; Caulfield, Timothy

    2017-10-01

    This study examines how stem cells and stem cell research are portrayed on websites deemed to be purveyors of distorted and dubious information. Content analysis was conducted on 224 articles from 2015 to 2016, compiled by searching with the keywords 'stem cell(s)' on a list of websites flagged for containing either 'fake' or 'junk science' news. Articles contained various exaggerated positive and negative claims about stem cells and stem cell science, health and science related conspiracy theories, and statements promoting fear and mistrust of conventional medicine. Findings demonstrate the existence of organized misinformation networks, which may lead the public away from accurate information and facilitate a polarization of public discourse.

  18. Development of PEM fuel cell technology at international fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Wheeler, D.J.

    1996-04-01

    The PEM technology has not developed to the level of phosphoric acid fuel cells. Several factors have held the technology development back such as high membrane cost, sensitivity of PEM fuel cells to low level of carbon monoxide impurities, the requirement to maintain full humidification of the cell, and the need to pressurize the fuel cell in order to achieve the performance targets. International Fuel Cells has identified a hydrogen fueled PEM fuel cell concept that leverages recent research advances to overcome major economic and technical obstacles.

  19. 2-Aminopurine overrides multiple cell cycle checkpoints in BHK cells.

    OpenAIRE

    Andreassen, P R; Margolis, R L

    1992-01-01

    BHK cells blocked at any of several points in the cell cycle override their drug-induced arrest and proceed in the cycle when exposed concurrently to the protein kinase inhibitor 2-aminopurine (2-AP). For cells arrested at various points in interphase, 2-AP-induced cell cycle progression is made evident by arrival of the drug-treated cell population in mitosis. Cells that have escaped from mimosine G1 arrest, from hydroxyurea or aphidicolin S-phase arrest, or from VM-26-induced G2 arrest subs...

  20. Moisture Sorption in Artificially aged wood-plastic composites

    Science.gov (United States)

    B. Kristoffer Segerholm; Rebecca E. Ibach; Magnus E.P. Wålinder

    2012-01-01

    Moisture sorption in wood-plastic composites (WPCs) affects their durability and dimensional stability. In certain outdoor exposures, the moisture properties of WPCs are altered due to e.g. cracks induced by swelling and shrinkage of the components, as well as UV degradation or biological attack. The aim of this work was to study the effect of different artificial...

  1. Recent activities in flame retardancy of wood-plastic composites at the Forest Products Laboratory

    Science.gov (United States)

    Robert H. White; Nicole M. Stark; Nadir Ayrilmis

    2011-01-01

    For a variety of reasons, wood-plastic composite (WPC) products are widely available for some building applications. In applications such as outdoor decking, WPCs have gained a significant share of the market. As an option to improve the efficient use of wood fiber, the USDA Forest Service, Forest Products Laboratory (FPL), has an extensive research program on WPCs....

  2. Characterization of weathered wood-plastic composite surfaces using FTIR spectroscopy, contact angle, and XPS

    Science.gov (United States)

    Nicole M. Stark; Laurent M. Matuana

    2007-01-01

    Much of the current growth of wood-plastic composites (WPCs) is due to increased penetration into the decking market; therefore it has become imperative to understand the durability of WPCs in outdoor applications. In this study, wood flour filled high-density polyethylene (HDPE) composites were manufactured through either injection molding or extrusion. A set of...

  3. Long term durability of wood-plastic composites made with chemically modified wood

    Science.gov (United States)

    Rebecca E. Ibach; Craig M. Clemons

    2017-01-01

    Wood-plastic composites (WPCs) have slower moisture sorption than solid wood, but over time moisture can impact the strength, stiffness, and decay of the composite. These changes will become increasingly important if WPCs are used in more challenging environments such as in ground-contact applications. There are several options for mitigating the moisture sorption of...

  4. Decay resistance of wood-plastic composites reinforced with extracted or delignified wood flour

    Science.gov (United States)

    Rebecca E. Ibach; Yao Chen; Nicole M. Stark; Mandla A. Tshabalala; Yongming Fan; Jianmin Gao

    2014-01-01

    The moisture and decay resistance of wood-plastic composites (WPCs) reinforced with extracted or delignified wood flour (WF) was investigated. Three different extractions were preformed: toluene/ethanol (TE), acetone/water (AW), and hot water (HW). Delignification (DL) was performed using a sodium chlorite/acetic acid solution. All WPCs specimens were made with 50% by...

  5. NASA Facts, Solar Cells.

    Science.gov (United States)

    National Aeronautics and Space Administration, Washington, DC.

    The design and function of solar cells as a source of electrical power for unmanned space vehicles is described in this pamphlet written for high school physical science students. The pamphlet is one of the NASA Facts Science Series (each of which consists of four pages) and is designed to fit in the standard size three-ring notebook. Review…

  6. Dental pulp stem cells

    DEFF Research Database (Denmark)

    Ashri, N. Y.; Ajlan, S. A.; Aldahmash, Abdullah M.

    2015-01-01

    Inflammatory periodontal disease is a major cause of loss of tooth-supporting structures. Novel approaches for regeneration of periodontal apparatus is an area of intensive research. Periodontal tissue engineering implies the use of appropriate regenerative cells, delivered through a suitable sca...

  7. Granular Cell Tumor

    African Journals Online (AJOL)

    Necrosis within the tumor was absent, no mitosis was. Granular cell tumors are seldom diagnosed identified in the section and the edges of the accurately clinically. The lesion in this case was sample were tumor free (Figure 2). mistaken for a sebaceous cyst and following ulceration resembled carcinoma of the vulvar.

  8. Cell Membrane Coating Nanotechnology.

    Science.gov (United States)

    Fang, Ronnie H; Kroll, Ashley V; Gao, Weiwei; Zhang, Liangfang

    2018-03-27

    Nanoparticle-based therapeutic, prevention, and detection modalities have the potential to greatly impact how diseases are diagnosed and managed in the clinic. With the wide range of nanomaterials available, the rational design of nanocarriers on an application-specific basis has become increasingly commonplace. Here, a comprehensive overview is provided on an emerging platform: cell-membrane-coating nanotechnology. As a fundamental unit of biology, cells carry out a wide range of functions, including the remarkable ability to interface and interact with their surrounding environment. Instead of attempting to replicate such functions via synthetic techniques, researchers are now directly leveraging naturally derived cell membranes as a means of bestowing nanoparticles with enhanced biointerfacing capabilities. This top-down technique is facile, highly generalizable, and has the potential to greatly augment existing nanocarriers. Further, the introduction of a natural membrane substrate onto nanoparticles surfaces has enabled additional applications beyond those traditionally associated with nanomedicine. Despite its relative youth, there exists an impressive body of literature on cell membrane coating, which is covered here in detail. Overall, there is still significant room for development, as researchers continue to refine existing workflows while finding new and exciting applications that can take advantage of this developing technology. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Criticality in cell differentiation

    Indian Academy of Sciences (India)

    Indrani Bose

    2017-11-09

    Nov 9, 2017 ... diverse as ecosystems, financial markets, population biology and complex diseases (Scheffer et al. 2009, 2012). Similar studies on the signatures of regime .... and in the maintenance of homeostasis in adult tissues. (Semrau and van Oudenaarden 2015). Cell differentiation occurs when the undifferentiated ...

  10. The cell phone dilemma

    International Nuclear Information System (INIS)

    Mertens, J.; Wiedemann, P.

    2008-01-01

    It is explored if and how the Media generate social technophobias and in particular provoke antagonism against Cell Phones. The role of science and politics in this context is discussed. The authors caution against a progressive creation of hysteria in risk debates. (orig.)

  11. Infections and endothelial cells

    NARCIS (Netherlands)

    Keller, Tymen T.; Mairuhu, Albert T. A.; de Kruif, Martijn D.; Klein, Saskia K.; Gerdes, Victor E. A.; ten Cate, Hugo; Brandjes, Dees P. M.; Levi, Marcel; van Gorp, Eric C. M.

    2003-01-01

    Systemic infection by various pathogens interacts with the endothelium and may result in altered coagulation, vasculitis and atherosclerosis. Endothelium plays a role in the initiation and regulation of both coagulation and fibrinolysis. Exposure of endothelial cells may lead to rapid activation of

  12. Goblet cell carcinoids

    DEFF Research Database (Denmark)

    Olsen, Ingrid Holst; Holt, Nanna; Langer, Seppo W

    2015-01-01

    BACKGROUND: Appendiceal goblet cell carcinoids (GCCs) exhibit neuroendocrine and adenocarcinoma features. PATIENTS AND METHODS: Analysis of demography, pathology, prognostic markers, treatment and survival in 83 GCC patients (f/m: 56/27) diagnosed 1992-2013. RESULTS: Median age for f/m was 59...

  13. Cell Phone RF Radiation

    Science.gov (United States)

    Abdul-Razzaq, Wathiq

    2015-01-01

    In a recent article in "Physics Today," Meredith and Redish emphasized the need to make introductory physics courses beneficial for life sciences majors. In this study, a lab activity is proposed to measure the intensity of electromagnetic waves emitted by cell phones and connect these measurements to various standards, biological…

  14. Solid Oxide Fuel Cell

    DEFF Research Database (Denmark)

    2010-01-01

    The solid oxide fuel cell comprising a metallic support material, an active anode layer consisting of a good hydrocarbon cracking catalyst, an electrolyte layer, an active cathode layer, and a transition layer consisting of preferably a mixture of LSM and a ferrite to the cathode current collector...

  15. Reliance Cell Operator

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. Reliance Cell Operator. Reliance was the only bidder for cellular licences for Assam and NE. Services allowed only in Guwahati and Shillong due to “security reasons”. Only major cities in the country with only one operator.

  16. FUEL CELL BIBLIOGRAPHY

    Science.gov (United States)

    References in this bibliography on fuel cells are arranged alphabetically by the authors. References for which no author is cited are arranged alphabetically by title under the general heading, Anon. The numerous references cover the time period of 1895 to 1961.

  17. Criticality in cell differentiation

    Indian Academy of Sciences (India)

    The differentiation dynamics have both deterministic andstochastic components. Several theoretical studies suggest that cell differentiation is a bifurcation phenomenon, well-knownin dynamical systems theory. The bifurcation point has the character of a critical point with the system dynamics exhibitingspecific features in its ...

  18. Mammalian cell biology

    International Nuclear Information System (INIS)

    Anon.

    1976-01-01

    Progress is reported on studies of the molecular biology and functional changes in cultured mammalian cells following exposure to x radiation, uv radiation, fission neutrons, or various chemical environmental pollutants alone or in combinations. Emphasis was placed on the separate and combined effects of polycyclic aromatic hydrocarbons released during combustion of fossil fuels and ionizing and nonionizing radiations. Sun lamps, which emit a continuous spectrum of near ultraviolet light of 290 nm to 315 nm were used for studies of predictive cell killing due to sunlight. Results showed that exposure to uv light (254 nm) may not be adequate to predict effects produced by sunlight. Data are included from studies on single-strand breaks and repair in DNA of cultured hamster cells exposed to uv or nearultraviolet light. The possible interactions of the polycyclic aromatic hydrocarbon 7,12-dimethylbenz(a)-anthracene (DmBA) alone or combined with exposure to x radiation, uv radiation (254 nm) or near ultraviolet simulating sunlight were compared for effects on cell survival

  19. Cell Towers and Songbirds

    Science.gov (United States)

    Klosterman, Michelle; Mesa, Jennifer; Milton, Katie

    2009-01-01

    This article describes how our common addiction to cell phones was used to launch a discussion about their use, impacts on the environment, and connections to issues of civic concern. By encouraging middle school science students to adopt the perspectives of special-interest groups debating communication tower restrictions designed to protect…

  20. Fuel cell electronics packaging

    National Research Council Canada - National Science Library

    Kuang, Ken; Easler, Keith

    2007-01-01

    ... more energy independent. Despite the fact that the primary focus of the new initiative revolved around automotive technologies, the President's Hydrogen Fuel Initiative was crafted into a balanced program that benefited a wide range of technologies and applications, including micro, portable, stationary fuel cells. This massive effort was given an addition...

  1. Cell control with agents

    NARCIS (Netherlands)

    Ir Peter Boots; Ir. Dick van Schenk Brill

    2000-01-01

    A software system is described that uses the agent concept in the Cell Control layer. Important design goals are: the system continues as good as possible after a process crash, crashed processes are recreated whenever possible, and equivalent workstations are allocated dynamically. This project is

  2. Human leukaemic cells

    International Nuclear Information System (INIS)

    Andronikashvili, E.L.; Mosulishvili, L.M.; Belokobil'skiy, A.I.; Kharabadze, N.E.; Shonia, N.I.; Desai, L.S.; Foley, G.E.

    1976-01-01

    Trace metals were measured by neutron-activation analyses in purified nucleic acids and histone(s) of lymphocytes from patients with acute lymphocytic leukaemia or infectious mononucleosis, and from normal donors. DNA isolated from lymphocytes of a patient with infectious mononucleosis and a normal donor showed a high content of Cr 2+ , Sb 2+ , Fe 2+ , Zn 2+ , whereas DNA of lymphoblasts from a patient with acute lymphocytic leukaemia had a lower content of these trace metals, but the Co 2+ content was 20-fold higher than in DNA of normal donor lymphocytic cells. Total histones from leukaemic cells had higher contents of most of the trace metals except for Zn 2+ , which was present in lesser concentration than in histones from normal donor lymphocytic cells. Lysine-rich (F1) histones showed lower contents of Cr 2+ , Sb 2+ and Co 2+ , whereas arginine-rich (F3) histones had significantly higher contents of these trace metals. These observations may be of interest in that F3 histones more effectively inhibit RNA synthesis in human lymphocytic cells than do other species of histones. (author)

  3. Sickle cell anemia

    African Journals Online (AJOL)

    salah

    to chronic pain, strokes and premature death has been reported by CBS News,. U.S.A. in background of the fact that ..... Since the pain of sickle cell ane- mia comes from blood vessels be- ing blocked off, another method ... from the umbilical cord and placenta at child birth. Cord blood transplants are especially promising for ...

  4. Eukaryotic Cell Panorama

    Science.gov (United States)

    Goodsell, David S.

    2011-01-01

    Diverse biological data may be used to create illustrations of molecules in their cellular context. This report describes the scientific results that support an illustration of a eukaryotic cell, enlarged by one million times to show the distribution and arrangement of macromolecules. The panoramic cross section includes eight panels that extend…

  5. Unmasking circulating tumor cells

    NARCIS (Netherlands)

    Swennenhuis, Joost Franciscus

    2017-01-01

    The number of Circulating Tumor Cells (CTCs) that can be isolated from blood of cancer patients is prognostic for the course of the disease. A higher number of CTCs correlates with a worse prognosis. A change from a higher number to a lower number of CTCs indicates a benefit of the current treatment

  6. Intraosseous acinic cell carcinoma

    African Journals Online (AJOL)

    2011-12-17

    Dec 17, 2011 ... provisional diagnosis of benign odontogenic tumor was given. Intraosseous acinic cell carcinoma. V Hiremath, N Mishra1, SG Patil2. Departments of Oral Pathology and 1Oral Medicine and Radiology, Mansarovar Dental College, Bhopal, 2 Department Of. Oral and Maxillofacial Surgery, H.K.E' S.N. Dental ...

  7. Nature's Solar Cell

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 1; Issue 2. Nature's Solar Cell. Stephen Suresh Gautham Nadig. Research News Volume 1 Issue 2 February 1996 pp 102-104. Fulltext. Click here to view fulltext PDF. Permanent link: http://www.ias.ac.in/article/fulltext/reso/001/02/0102-0104 ...

  8. Sickle Cell Anemia Bibliography.

    Science.gov (United States)

    Christy, Steven C.

    Presents sources for the acquisition of medical, social, psychological, educational, and practical knowledge of sickle cell anemia. The materials listed are designed to help parents, educators, and public service workers. Materials include journal articles, films, brochures, slides, and fact sheets. The usual bibliographic information is given.…

  9. Porcine embryonic stem cells

    DEFF Research Database (Denmark)

    Hall, Vanessa Jane

    2008-01-01

    The development of porcine embryonic stem cell lines (pESC) has received renewed interest given the advances being made in the production of immunocompatible transgenic pigs. However, difficulties are evident in the production of pESCs in-vitro. This may largely be attributable to differences...

  10. Stem cell therapy for diabetes

    Directory of Open Access Journals (Sweden)

    K O Lee

    2012-01-01

    Full Text Available Stem cell therapy holds immense promise for the treatment of patients with diabetes mellitus. Research on the ability of human embryonic stem cells to differentiate into islet cells has defined the developmental stages and transcription factors involved in this process. However, the clinical applications of human embryonic stem cells are limited by ethical concerns, as well as the potential for teratoma formation. As a consequence, alternative forms of stem cell therapies, such as induced pluripotent stem cells, umbilical cord stem cells and bone marrow-derived mesenchymal stem cells, have become an area of intense study. Recent advances in stem cell therapy may turn this into a realistic treatment for diabetes in the near future.

  11. Beta cell adaptation in pregnancy

    DEFF Research Database (Denmark)

    Nielsen, Jens Høiriis

    2016-01-01

    Pregnancy is associated with a compensatory increase in beta cell mass. It is well established that somatolactogenic hormones contribute to the expansion both indirectly by their insulin antagonistic effects and directly by their mitogenic effects on the beta cells via receptors for prolactin...... and growth hormone expressed in rodent beta cells. However, the beta cell expansion in human pregnancy seems to occur by neogenesis of beta cells from putative progenitor cells rather than by proliferation of existing beta cells. Claes Hellerström has pioneered the research on beta cell growth for decades......, but the mechanisms involved are still not clarified. In this review the information obtained in previous studies is recapitulated together with some of the current attempts to resolve the controversy in the field: identification of the putative progenitor cells, identification of the factors involved...

  12. Dendritic cell neoplasms: an overview.

    Science.gov (United States)

    Kairouz, Sebastien; Hashash, Jana; Kabbara, Wadih; McHayleh, Wassim; Tabbara, Imad A

    2007-10-01

    Dendritic cell neoplasms are rare tumors that are being recognized with increasing frequency. They were previously classified as lymphomas, sarcomas, or histiocytic neoplasms. The World Health Organization (WHO) classifies dendritic cell neoplasms into five groups: Langerhans' cell histiocytosis, Langerhans' cell sarcoma, Interdigitating dendritic cell sarcoma/tumor, Follicular dendritic cell sarcoma/tumor, and Dendritic cell sarcoma, not specified otherwise (Jaffe, World Health Organization classification of tumors 2001; 273-289). Recently, Pileri et al. provided a comprehensive immunohistochemical classification of histiocytic and dendritic cell tumors (Pileri et al., Histopathology 2002;59:161-167). In this article, a concise overview regarding the pathological, clinical, and therapeutic aspects of follicular dendritic, interdigitating dendritic, and Langerhans' cell tumors is presented.

  13. Clear cells in acral melanoma.

    Science.gov (United States)

    Schmuth, M; Spötl, L; Zelger, B; Weinlich, G; Zelger, B

    2001-01-01

    Acral melanoma may present clinically and histologically with atypical features causing a delay in proper diagnosis. The aim of the present study was to assess the frequency of a histological variant with clear cell changes. Clinical information, hematoxylin & eosin stained paraffin sections and immunohistochemical staining profiles were reviewed in 49 cases of acral melanoma. Twenty-one (43%) specimens contained tumor cells with clear cell changes in focal areas, whereas in 7 (14%) specimens clear cells were the major tumor constituting cells. The tumor thickness ranged from melanoma in situ to 14 mm. Immunohistochemistry demonstrated weak staining for S100 and HMB45 as well as strong positivity for Melan A and NK1C3. Recognition of clear cell features is important since differential diagnosis includes a variety of other clear cell malignancies, among them metastasis from renal cell carcinoma, clear cell sarcoma and hidradenocarcinoma.

  14. BIOLOGICALLY INSPIRED HARDWARE CELL ARCHITECTURE

    DEFF Research Database (Denmark)

    2010-01-01

    Disclosed is a system comprising: - a reconfigurable hardware platform; - a plurality of hardware units defined as cells adapted to be programmed to provide self-organization and self-maintenance of the system by means of implementing a program expressed in a programming language defined as DNA...... language, where each cell is adapted to communicate with one or more other cells in the system, and where the system further comprises a converter program adapted to convert keywords from the DNA language to a binary DNA code; where the self-organisation comprises that the DNA code is transmitted to one...... or more of the cells, and each of the one or more cells is adapted to determine its function in the system; where if a fault occurs in a first cell and the first cell ceases to perform its function, self-maintenance is performed by that the system transmits information to the cells that the first cell has...

  15. Pericytes limit tumor cell metastasis

    DEFF Research Database (Denmark)

    Xian, Xiaojie; Håkansson, Joakim; Ståhlberg, Anders

    2006-01-01

    Previously we observed that neural cell adhesion molecule (NCAM) deficiency in beta tumor cells facilitates metastasis into distant organs and local lymph nodes. Here, we show that NCAM-deficient beta cell tumors grew leaky blood vessels with perturbed pericyte-endothelial cell-cell interactions...... and deficient perivascular deposition of ECM components. Conversely, tumor cell expression of NCAM in a fibrosarcoma model (T241) improved pericyte recruitment and increased perivascular deposition of ECM molecules. Together, these findings suggest that NCAM may limit tumor cell metastasis by stabilizing...... the microvessel wall. To directly address whether pericyte dysfunction increases the metastatic potential of solid tumors, we studied beta cell tumorigenesis in primary pericyte-deficient Pdgfb(ret/ret) mice. This resulted in beta tumor cell metastases in distant organs and local lymph nodes, demonstrating a role...

  16. Stem Cells and Tissue Engineering

    CERN Document Server

    Pavlovic, Mirjana

    2013-01-01

    Stem cells are the building blocks for all other cells in an organism. The human body has about 200 different types of cells and any of those cells can be produced by a stem cell. This fact emphasizes the significance of stem cells in transplantational medicine, regenerative therapy and bioengineering. Whether embryonic or adult, these cells can be used for the successful treatment of a wide range of diseases that were not treatable before, such as osteogenesis imperfecta in children, different forms of leukemias, acute myocardial infarction, some neural damages and diseases, etc. Bioengineering, e.g. successful manipulation of these cells with multipotential capacity of differentiation toward appropriate patterns and precise quantity, are the prerequisites for successful outcome and treatment. By combining in vivo and in vitro techniques, it is now possible to manage the wide spectrum of tissue damages and organ diseases. Although the stem-cell therapy is not a response to all the questions, it provides more...

  17. 2009 Fuel Cell Market Report

    Energy Technology Data Exchange (ETDEWEB)

    Vincent, Bill [Breakthrough Technologies Inst., Washington, DC (United States); Gangi, Jennifer [Breakthrough Technologies Inst., Washington, DC (United States); Curtin, Sandra [Breakthrough Technologies Inst., Washington, DC (United States); Delmont, Elizabeth [Breakthrough Technologies Inst., Washington, DC (United States)

    2010-11-01

    Fuel cells are electrochemical devices that combine hydrogen and oxygen to produce electricity, water, and heat. Unlike batteries, fuel cells continuously generate electricity, as long as a source of fuel is supplied. Moreover, fuel cells do not burn fuel, making the process quiet, pollution-free and two to three times more efficient than combustion. Fuel cell systems can be a truly zero-emission source of electricity, if the hydrogen is produced from non-polluting sources. Global concerns about climate change, energy security, and air pollution are driving demand for fuel cell technology. More than 630 companies and laboratories in the United States are investing $1 billion a year in fuel cells or fuel cell component technologies. This report provides an overview of trends in the fuel cell industry and markets, including product shipments, market development, and corporate performance. It also provides snapshots of select fuel cell companies, including general.

  18. Memory B and T cells.

    Science.gov (United States)

    Vitetta, E S; Berton, M T; Burger, C; Kepron, M; Lee, W T; Yin, X M

    1991-01-01

    Three remarkable and unique features of the immune system are specificity, diversity, and memory. Immunological memory involves both T and B cells and results in a secondary antibody response that is faster, of higher affinity, and results in the secretion of non-IgM isotypes of Ig. In this review we discuss the properties of memory T and B cells, their specific receptors, and the events which occur both in the nucleus and on the cell surface during generation and activation of these cells. Although memory T and B cells use different mechanisms to elaborate memory, there are a number of interesting analogies: lymphokines vs antibodies and affinity maturation of B cell antigen receptors vs upregulation of adhesion molecules on T cells. Finally, we discuss the importance of these cells in health and disease and suggest what impact additional information about these cells might have on the manipulation of the immune response.

  19. Self-reactive T cells

    DEFF Research Database (Denmark)

    Becker, Jürgen C; thor Straten, Per; Andersen, Mads Hald

    2014-01-01

    -proteins expressed in regulatory immune cells have been reported, especially in patients with cancer. The seemingly lack of tolerance toward such proteins is interesting, as it suggests a regulatory function of self-reactive T (srT) cells, which may be important for the fine tuning of the immune system....... In particular, surprising has been the description of cytotoxic srT cells that are able to eliminate normal regulatory immune cells. Such srT cells may be important as effector cells that suppress regulatory suppressor cells. The current knowledge of the nature and function of srT cells is still limited. Still......, the therapeutic targeting of srT cells offers a novel approach to harness immune-regulatory networks in cancer....

  20. Cell division cycle 20 promotes cell proliferation and invasion and inhibits apoptosis in osteosarcoma cells.

    Science.gov (United States)

    Shang, Guanning; Ma, Xu; Lv, Gang

    2018-01-01

    Cdc20 (cell division cycle 20 homologue) has been reported to exhibit an oncogenic role in human tumorigenesis. However, the function of Cdc20 in osteosarcoma (OS) has not been investigated. In the current study, we aim to explore the role of Cdc20 in human OS cells. Multiple approaches were used to measure cell growth, apoptosis, cell cycle, migration and invasion in OS cells after depletion of Cdc20 or overexpression of Cdc20. We found that down-regulation of Cdc20 inhibited cell growth, induced apoptosis and triggered cell cycle arrest in OS cells. Moreover, Cdc20 down-regulation let to inhibition of cell migration and invasion in OS cells. Consistently, overexpression of Cdc20 in OS cells promoted cell growth, inhibited apoptosis, enhanced cell migration and invasion. Mechanistically, our Western blotting results showed that overexpression of Cdc20 reduced the expression of Bim and p21, whereas depletion of Cdc20 upregulated Bim and p21 levels in OS cells. Altogether, our findings demonstrated that Cdc20 exerts its oncogenic role partly due to regulation of Bim and p21 in OS cells, suggesting that targeting Cdc20 could be useful for the treatment of OS.

  1. Single-Cell Expression Profiling and Proteomics of Primordial Germ Cells, Spermatogonial Stem Cells, Adult Germ Stem Cells, and Oocytes.

    Science.gov (United States)

    Conrad, Sabine; Azizi, Hossein; Skutella, Thomas

    2018-01-04

    The mammalian germ cells, cell assemblies, tissues, and organs during development and maturation have been extensively studied at the tissue level. However, to investigate and understand the fundamental insights at the molecular basis of germ and stem cells, their cell fate plasticity, and determination, it is of most importance to analyze at the large scale on the single-cell level through different biological windows. Here, modern molecular techniques optimized for single-cell analysis, including single fluorescence-activated cell sorting (FACS) and single-cell RNA sequencing (scRNA-seq) or microfluidic high-throughput quantitative real-time polymerase chain reaction (qRT-PCR) for single-cell gene expression and liquid chromatography coupled to tandem mass spectrometry (LC-MSMS) for protein profiling, have been established and are still getting optimized.This review aims on describing and discussing recent single-cell expression profiling and proteomics of different types of human germ cells, including primordial germ cells (PGCs), spermatogonial stem cells (SSCs), human adult germ stem cells (haGSCs), and oocytes.

  2. Negative regulators of cell proliferation

    Science.gov (United States)

    Johnson, T. C.; Spooner, B. S. (Principal Investigator)

    1994-01-01

    Cell proliferation is governed by the influence of both mitogens and inhibitors. Although cell contact has long been thought to play a fundamental role in cell cycling regulation, and negative regulators have long been suspected to exist, their isolation and purification has been complicated by a variety of technical difficulties. Nevertheless, over recent years an ever-expanding list of putative negative regulators have emerged. In many cases, their biological inhibitory activities are consistent with density-dependent growth inhibition. Most likely their interactions with mitogenic agents, at an intracellular level, are responsible for either mitotic arrest or continued cell cycling. A review of naturally occurring cell growth inhibitors is presented with an emphasis on those factors shown to be residents of the cell surface membrane. Particular attention is focused on a cell surface sialoglycopeptide, isolated from intact bovine cerebral cortex cells, which has been shown to inhibit the proliferation of an unusually wide range of target cells. The glycopeptide arrest cells obtained from diverse species, both fibroblasts and epithelial cells, and a broad variety of transformed cells. Signal transduction events and a limited spectrum of cells that are refractory to the sialoglycopeptide have provided insight into the molecular events mediated by this cell surface inhibitor.

  3. Therapeutic potential of stem cells in auditory hair cell repair

    Directory of Open Access Journals (Sweden)

    Ryuji Hata

    2009-01-01

    Full Text Available The prevalence of acquired hearing loss is very high. About 10% of the total population and more than one third of the population over 65 years suffer from debilitating hearing loss. The most common type of hearing loss in adults is idiopathic sudden sensorineural hearing loss (ISSHL. In the majority of cases, ISSHL is permanent and typically associated with loss of sensory hair cells in the organ of Corti. Following the loss of sensory hair cells, the auditory neurons undergo secondary degeneration. Sensory hair cells and auditory neurons do not regenerate throughout life, and loss of these cells is irreversible and cumulative. However, recent advances in stem cell biology have gained hope that stem cell therapy comes closer to regenerating sensory hair cells in humans. A major advance in the prospects for the use of stem cells to restore normal hearing comes with the recent discovery that hair cells can be generated ex vivo from embryonic stem (ES cells, adult inner ear stem cells and neural stem cells. Furthermore, there is increasing evidence that stem cells can promote damaged cell repair in part by secreting diffusible molecules such as growth factors. These results suggest that stem-cell-based treatment regimens can be applicable to the damaged inner ear as future clinical applications.Previously we have established an animal model of cochlear ischemia in gerbils and showed progressive hair cell loss up to 4 days after ischemia. Auditory brain stem response (ABR recordings have demonstrated that this gerbil model displays severe deafness just after cochlear ischemia and gradually recovers thereafter. These pathological findings and clinical manifestations are reminiscent of ISSHL in humans. In this study, we have shown the effectiveness of stem cell therapy by using this animal model of ISSHL.

  4. Limbal Stem Cell Deficiency and Treatment with Stem Cell Transplantation.

    Science.gov (United States)

    Barut Selver, Özlem; Yağcı, Ayşe; Eğrilmez, Sait; Gürdal, Mehmet; Palamar, Melis; Çavuşoğlu, Türker; Ateş, Utku; Veral, Ali; Güven, Çağrı; Wolosin, Jose Mario

    2017-10-01

    The cornea is the outermost tissue of the eye and it must be transparent for the maintenance of good visual function. The superficial epithelium of the cornea, which is renewed continuously by corneal stem cells, plays a critical role in the permanence of this transparency. These stem cells are localized at the cornea-conjunctival transition zone, referred to as the limbus. When this zone is affected/destroyed, limbal stem cell deficiency ensues. Loss of limbal stem cell function allows colonization of the corneal surface by conjunctival epithelium. Over 6 million people worldwide are affected by corneal blindness, and limbal stem cell deficiency is one of the main causes. Fortunately, it is becoming possible to recover vision by autologous transplantation of limbal cells obtained from the contralateral eye in unilateral cases. Due to the potential risks to the donor eye, only a small amount of tissue can be obtained, in which only 1-2% of the limbal epithelial cells are actually limbal stem cells. Vigorous attempts are being made to expand limbal stem cells in culture to preserve or even enrich the stem cell population. Ex vivo expanded limbal stem cell treatment in limbal stem cell deficiency was first reported in 1997. In the 20 years since, various protocols have been developed for the cultivation of limbal epithelial cells. It is still not clear which method promotes effective stem cell viability and this remains a subject of ongoing research. The most preferred technique for limbal cell culture is the explant culture model. In this approach, a small donor eye limbal biopsy is placed as an explant onto a biocompatible substrate (preferably human amniotic membrane) for expansion. The outgrowth (cultivated limbal epithelial cells) is then surgically transferred to the recipient eye. Due to changing regulations concerning cell-based therapy, the implementation of cultivated limbal epithelial transplantation in accordance with Good Laboratory Practice using

  5. Human renal tubular epithelial cells suppress alloreactive T cell proliferation.

    Science.gov (United States)

    Demmers, M W H J; Korevaar, S S; Roemeling-van Rhijn, M; van den Bosch, T P P; Hoogduijn, M J; Betjes, M G H; Weimar, W; Baan, C C; Rowshani, A T

    2015-03-01

    Renal tubular epithelial cells (TECs) are one of the main targets of alloreactive T cells during acute rejection. We hypothesize that TECs modulate the outcome of alloimmunity by executing immunosuppressive effects in order to dampen the local inflammation. We studied whether TECs possess immunosuppressive capacities and if indoleamine 2,3-dioxygenase (IDO) might play a role in suppressing T cell alloreactivity. Next, we studied the role of programmed death ligand 1 (PD-L1) and intercellular adhesion molecule-1 (ICAM-1 with regard to TEC-related immunomodulatory effects. CD3/CD28 and alloactivated peripheral blood mononuclear cells were co-cultured with activated TECs. We analysed CD4(+) and CD8(+) T cell proliferation and apoptosis in the absence or presence of IDO inhibitor 1-methyl-L-tryptophan (1-L-MT), anti-PD-L1 and anti-ICAM-1. Further, we examined whether inhibition of T cell proliferation was cell-cell contact-dependent. We found that TECs dose-dependently inhibited CD4(+) and CD8(+) T cell proliferation (Pcell proliferation was only partially restored or failed to restore using 1-L-MT. Activated TECs increased early and late apoptosis of proliferating CD4(+) and CD8(+) T cells; only CD4(+) T cell apoptosis was statistically affected by 1-L-MT. Transwell experiments revealed that TEC-mediated immunosuppression is cell-cell contact-dependent. We found that anti-ICAM-1 affected only CD4(+) T cell apoptosis and not T cell proliferation. Our data show that TECs suppress both CD4(+) and CD8(+) T cell proliferation contact dependently. Interestingly, inhibition of proliferation and enhancement of apoptosis of T cell subsets is differentially regulated by indoleamine 2,3-dioxygenase and ICAM-1, with no evidence for the involvement of PD-L1 in our system. © 2014 British Society for Immunology.

  6. Limbal Stem Cell Deficiency and Treatment with Stem Cell Transplantation

    Directory of Open Access Journals (Sweden)

    Özlem Barut Selver

    2017-12-01

    Full Text Available The cornea is the outermost tissue of the eye and it must be transparent for the maintenance of good visual function. The superficial epithelium of the cornea, which is renewed continuously by corneal stem cells, plays a critical role in the permanence of this transparency. These stem cells are localized at the cornea-conjunctival transition zone, referred to as the limbus. When this zone is affected/destroyed, limbal stem cell deficiency ensues. Loss of limbal stem cell function allows colonization of the corneal surface by conjunctival epithelium. Over 6 million people worldwide are affected by corneal blindness, and limbal stem cell deficiency is one of the main causes. Fortunately, it is becoming possible to recover vision by autologous transplantation of limbal cells obtained from the contralateral eye in unilateral cases. Due to the potential risks to the donor eye, only a small amount of tissue can be obtained, in which only 1-2% of the limbal epithelial cells are actually limbal stem cells. Vigorous attempts are being made to expand limbal stem cells in culture to preserve or even enrich the stem cell population. Ex vivo expanded limbal stem cell treatment in limbal stem cell deficiency was first reported in 1997. In the 20 years since, various protocols have been developed for the cultivation of limbal epithelial cells. It is still not clear which method promotes effective stem cell viability and this remains a subject of ongoing research. The most preferred technique for limbal cell culture is the explant culture model. In this approach, a small donor eye limbal biopsy is placed as an explant onto a biocompatible substrate (preferably human amniotic membrane for expansion. The outgrowth (cultivated limbal epithelial cells is then surgically transferred to the recipient eye. Due to changing regulations concerning cell-based therapy, the implementation of cultivated limbal epithelial transplantation in accordance with Good Laboratory

  7. Tetherin restricts productive HIV-1 cell-to-cell transmission.

    Directory of Open Access Journals (Sweden)

    Nicoletta Casartelli

    2010-06-01

    Full Text Available The IFN-inducible antiviral protein tetherin (or BST-2/CD317/HM1.24 impairs release of mature HIV-1 particles from infected cells. HIV-1 Vpu antagonizes the effect of tetherin. The fate of virions trapped at the cell surface remains poorly understood. Here, we asked whether tetherin impairs HIV cell-to-cell transmission, a major means of viral spread. Tetherin-positive or -negative cells, infected with wild-type or DeltaVpu HIV, were used as donor cells and cocultivated with target lymphocytes. We show that tetherin inhibits productive cell-to-cell transmission of DeltaVpu to targets and impairs that of WT HIV. Tetherin accumulates with Gag at the contact zone between infected and target cells, but does not prevent the formation of virological synapses. In the presence of tetherin, viruses are then mostly transferred to targets as abnormally large patches. These viral aggregates do not efficiently promote infection after transfer, because they accumulate at the surface of target cells and are impaired in their fusion capacities. Tetherin, by imprinting virions in donor cells, is the first example of a surface restriction factor limiting viral cell-to-cell spread.

  8. Human Pluripotent Stem Cell Differentiation into Functional Epicardial Progenitor Cells

    Directory of Open Access Journals (Sweden)

    Juan Antonio Guadix

    2017-12-01

    Full Text Available Summary: Human pluripotent stem cells (hPSCs are widely used to study cardiovascular cell differentiation and function. Here, we induced differentiation of hPSCs (both embryonic and induced to proepicardial/epicardial progenitor cells that cover the heart during development. Addition of retinoic acid (RA and bone morphogenetic protein 4 (BMP4 promoted expression of the mesodermal marker PDGFRα, upregulated characteristic (proepicardial progenitor cell genes, and downregulated transcription of myocardial genes. We confirmed the (proepicardial-like properties of these cells using in vitro co-culture assays and in ovo grafting of hPSC-epicardial cells into chick embryos. Our data show that RA + BMP4-treated hPSCs differentiate into (proepicardial-like cells displaying functional properties (adhesion and spreading over the myocardium of their in vivo counterpart. The results extend evidence that hPSCs are an excellent model to study (proepicardial differentiation into cardiovascular cells in human development and evaluate their potential for cardiac regeneration. : The authors have shown that hPSCs can be instructed in vitro to differentiate into a specific cardiac embryonic progenitor cell population called the proepicardium. Proepicardial cells are required for normal formation of the heart during development and might contribute to the development of cell-based therapies for heart repair. Keywords: human pluripotent stem cells, proepicardium, progenitor cells, cardiovascular, differentiation

  9. Mast cells and their activations

    Directory of Open Access Journals (Sweden)

    Dilek Bayramgürler

    2013-06-01

    Full Text Available Mast cells which are traditionally known as the major cells of IgE-dependent immediate hypersensitivity reactions are currently recognized to have a role as effector cells in many settings of the both innate and adaptive immunity. Mast cells secrete a wide spectrum of preformed or newly synthesized biologically active mediators with proinflammatory, anti-inflammatory and/or immunosupressive functions, in response to several stimuli. Current knowledge about mast cells and their activation, mast cell mediators, their roel s in inflammation and immune system will be discussed in thisr eview.

  10. Human stromal (mesenchymal) stem cells

    DEFF Research Database (Denmark)

    Aldahmash, Abdullah; Zaher, Walid; Al-Nbaheen, May

    2012-01-01

    Human stromal (mesenchymal) stem cells (hMSC) represent a group of non-hematopoietic stem cells present in the bone marrow stroma and the stroma of other organs including subcutaneous adipose tissue, placenta, and muscles. They exhibit the characteristics of somatic stem cells of self......-renewal and multi-lineage differentiation into mesoderm-type of cells, e.g., to osteoblasts, adipocytes, chondrocytes and possibly other cell types including hepatocytes and astrocytes. Due to their ease of culture and multipotentiality, hMSC are increasingly employed as a source for cells suitable for a number...

  11. Cell Division Drives Epithelial Cell Rearrangements during Gastrulation in Chick.

    Science.gov (United States)

    Firmino, Joao; Rocancourt, Didier; Saadaoui, Mehdi; Moreau, Chloe; Gros, Jerome

    2016-02-08

    During early embryonic development, cells are organized as cohesive epithelial sheets that are continuously growing and remodeled without losing their integrity, giving rise to a wide array of tissue shapes. Here, using live imaging in chick embryo, we investigate how epithelial cells rearrange during gastrulation. We find that cell division is a major rearrangement driver that powers dramatic epithelial cell intercalation events. We show that these cell division-mediated intercalations, which represent the majority of epithelial rearrangements within the early embryo, are absolutely necessary for the spatial patterning of gastrulation movements. Furthermore, we demonstrate that these intercalation events result from overall low cortical actomyosin accumulation within the epithelial cells of the embryo, which enables dividing cells to remodel junctions in their vicinity. These findings uncover a role for cell division as coordinator of epithelial growth and remodeling that might underlie various developmental, homeostatic, or pathological processes in amniotes. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Collective cell streams in epithelial monolayers depend on cell adhesion

    International Nuclear Information System (INIS)

    Czirók, András; Varga, Katalin; Méhes, Előd; Szabó, András

    2013-01-01

    We report spontaneously emerging, randomly oriented, collective streaming behavior within a monolayer culture of a human keratinocyte cell line, and explore the effect of modulating cell adhesions by perturbing the function of calcium-dependent cell adhesion molecules. We demonstrate that decreasing cell adhesion induces narrower and more anisotropic cell streams, reminiscent of decreasing the Taylor scale of turbulent liquids. To explain our empirical findings, we propose a cell-based model that represents the dual nature of cell–cell adhesions. Spring-like connections provide mechanical stability, while a cellular Potts model formalism represents surface-tension driven attachment. By changing the relevance and persistence of mechanical links between cells, we are able to explain the experimentally observed changes in emergent flow patterns. (paper)

  13. The Antigen Presenting Cells Instruct Plasma Cell Differentiation

    Directory of Open Access Journals (Sweden)

    Wei eXu

    2014-01-01

    Full Text Available The professional antigen presenting cells (APCs, including many subsets of dendritic cells and macrophages, not only mediate prompt but nonspecific response against microbes, but also bridge the antigen-specific adaptive immune response through antigen presentation. In the latter, typically activated B cells acquire cognate signals from T helper cells in the germinal center of lymphoid follicles to differentiate into plasma cells, which generate protective antibodies. Recent advances have revealed that many APC subsets provide not only signal 1 (the antigen, but also signal 2 to directly instruct the differentiation process of plasma cells in a T cell-independent manner. Herein, the different signals provided by these APC subsets to direct B cell proliferation, survival, class switching and terminal differentiation are discussed. We furthermore propose that the next generation of vaccines for boosting antibody response could be designed by targeting APCs.

  14. Cell Fate Decision Making through Oriented Cell Division.

    Science.gov (United States)

    Dewey, Evan B; Taylor, Danielle T; Johnston, Christopher A

    2015-12-01

    The ability to dictate cell fate decisions is critical during animal development. Moreover, faithful execution of this process ensures proper tissue homeostasis throughout adulthood, whereas defects in the molecular machinery involved may contribute to disease. Evolutionarily conserved protein complexes control cell fate decisions across diverse tissues. Maintaining proper daughter cell inheritance patterns of these determinants during mitosis is therefore a fundamental step of the cell fate decision-making process. In this review, we will discuss two key aspects of this fate determinant segregation activity, cortical cell polarity and mitotic spindle orientation, and how they operate together to produce oriented cell divisions that ultimately influence daughter cell fate. Our focus will be directed at the principal underlying molecular mechanisms and the specific cell fate decisions they have been shown to control.

  15. Immune roles of dendritic cells in stem cell transplantation.

    Science.gov (United States)

    Zhang, Cheng; Liao, Wenwei; Liu, Furong; Zhu, Xiaofeng; He, Xiaoshun; Hu, Anbin

    2017-11-01

    Dendritic cells (DCs) are professional antigen-presenting cells and initial stimulators for immune response. DCs can shape their functions based on their immune states, which are crucial for the balance of immunity and tolerance to preserve homeostasis. In the immune response involved in stem cell transplantation, DCs also play important roles in inducing immune tolerance and antitumor immunity. After the rapid development of stem cell transplantation technology in recent years, the risks of graft rejection, tumor recurrence, and tumorigenicity are still present after stem cell transplantation. It is important to understand the mechanisms of DC-mediated immune tolerance and stimulation during stem cell transplantation. In this review, we will summarize and analyze the regulatory mechanisms of DCs in stem cell transplantation and their application in clinical settings. It may help to promote the innovation in basic theories and therapeutic approaches of stem cell transplantation. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  16. Priming of the Cells: Hypoxic Preconditioning for Stem Cell Therapy

    Directory of Open Access Journals (Sweden)

    Zheng Z Wei

    2017-01-01

    Conclusions: In cell transplantation therapy, hypoxic pretreatment of stem cells and neural progenitors markedly increases the survival and regenerative capabilities of these cells in the host environment, leading to enhanced therapeutic effects in various disease models. Regenerative treatments can mobilize endogenous stem cells for neurogenesis and angiogenesis in the adult brain. Furthermore, transplantation of stem cells/neural progenitors achieves therapeutic benefits via cell replacement and/or increased trophic support. Combinatorial approaches of cell-based therapy with additional strategies such as neuroprotective protocols, anti-inflammatory treatment, and rehabilitation therapy can significantly improve therapeutic benefits. In this review, we will discuss the recent progress regarding cell types and applications in regenerative medicine as well as future applications.

  17. Inflammatory Cell Distribution in Primary Merkel Cell Carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Wheat, Rachel [School of Cancer Sciences and CR UK Centre for Cancer Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT (United Kingdom); Roberts, Claudia [School of Cancer Sciences and CR UK Centre for Cancer Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT (United Kingdom); University Hospitals Birmingham NHS Foundation Trust, New Queen Elizabeth Hospital Birmingham, Mindelsohn Way, Edgbaston, Birmingham, B15 2WB (United Kingdom); Waterboer, Tim [Infection and Cancer Program, DKFZ (German Cancer Research Centre), 69120 Heidelberg (Germany); Steele, Jane [Human Biomaterials Resource Centre, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT (United Kingdom); Marsden, Jerry [University Hospitals Birmingham NHS Foundation Trust, New Queen Elizabeth Hospital Birmingham, Mindelsohn Way, Edgbaston, Birmingham, B15 2WB (United Kingdom); Steven, Neil M., E-mail: n.m.steven@bham.ac.uk [School of Cancer Sciences and CR UK Centre for Cancer Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT (United Kingdom); University Hospitals Birmingham NHS Foundation Trust, New Queen Elizabeth Hospital Birmingham, Mindelsohn Way, Edgbaston, Birmingham, B15 2WB (United Kingdom); Blackbourn, David J., E-mail: n.m.steven@bham.ac.uk [Department of Microbial and Cellular Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, GU2 7XH (United Kingdom)

    2014-05-06

    Merkel cell carcinoma (MCC) is an aggressive poorly differentiated neuroendocrine cutaneous carcinoma associated with older age, immunodeficiency and Merkel cell polyomavirus (MCPyV) integrated within malignant cells. The presence of intra-tumoural CD8+ lymphocytes reportedly predicts better MCC-specific survival. In this study, the distribution of inflammatory cells and properties of CD8+ T lymphocytes within 20 primary MCC specimens were characterised using immunohistochemistry and multicolour immunofluorescent staining coupled to confocal microscopy. CD8+ cells and CD68+ macrophages were identified in 19/20 primary MCC. CD20+ B cells were present in 5/10, CD4+ cells in 10/10 and FoxP3+ cells in 7/10 specimens. Only two specimens had almost no inflammatory cells. Within specimens, inflammatory cells followed the same patchy distribution, focused at the edge of sheets and nodules and, in some cases, more intense in trabecular areas. CD8+ cells were outside vessels on the edge of tumour. Those few within malignant sheets typically lined up in fine septa not contacting MCC cells expressing MCPyV large T antigen. The homeostatic chemokine CXCL12 was expressed outside malignant nodules whereas its receptor CXCR4 was identified within tumour but not on CD8+ cells. CD8+ cells lacked CXCR3 and granzyme B expression irrespective of location within stroma versus malignant nodules or of the intensity of the intra-tumoural infiltrate. In summary, diverse inflammatory cells were organised around the margin of malignant deposits suggesting response to aberrant signaling, but were unable to penetrate the tumour microenvironment itself to enable an immune response against malignant cells or their polyomavirus.

  18. HYBRID FUEL CELL-SOLAR CELL SPACE POWER SUBSYSTEM CAPABILITY.

    Science.gov (United States)

    This report outlines the capabilities and limitations of a hybrid solar cell- fuel cell space power subsystem by comparing the proposed hybrid system...to conventional power subsystem devices. The comparisons are based on projected 1968 capability in the areas of primary and secondary battery, fuel ... cell , solar cell, and chemical dynamic power subsystems. The purpose of the investigation was to determine the relative merits of a hybrid power

  19. Single Cell Characterization of Prostate Cancer-Circulating Tumor Cells

    Science.gov (United States)

    2013-09-01

    contaminating WBC. Scale bar = 20 microns. (E) MagSweeper versus CellSearch comparison. Samples with 0 CTC were assigned a value of 1. 10...cancer patient blood sample, and contaminating WBC found after MagSweeper isolation. Scale bar = 20 microns. (E) MagSweeper versus CellSearch...Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144: 646–674. 4. Ashworth TR (1869) A case of cancer in which cells similar to those in

  20. Inflammatory Cell Distribution in Primary Merkel Cell Carcinoma

    International Nuclear Information System (INIS)

    Wheat, Rachel; Roberts, Claudia; Waterboer, Tim; Steele, Jane; Marsden, Jerry; Steven, Neil M.; Blackbourn, David J.

    2014-01-01

    Merkel cell carcinoma (MCC) is an aggressive poorly differentiated neuroendocrine cutaneous carcinoma associated with older age, immunodeficiency and Merkel cell polyomavirus (MCPyV) integrated within malignant cells. The presence of intra-tumoural CD8+ lymphocytes reportedly predicts better MCC-specific survival. In this study, the distribution of inflammatory cells and properties of CD8+ T lymphocytes within 20 primary MCC specimens were characterised using immunohistochemistry and multicolour immunofluorescent staining coupled to confocal microscopy. CD8+ cells and CD68+ macrophages were identified in 19/20 primary MCC. CD20+ B cells were present in 5/10, CD4+ cells in 10/10 and FoxP3+ cells in 7/10 specimens. Only two specimens had almost no inflammatory cells. Within specimens, inflammatory cells followed the same patchy distribution, focused at the edge of sheets and nodules and, in some cases, more intense in trabecular areas. CD8+ cells were outside vessels on the edge of tumour. Those few within malignant sheets typically lined up in fine septa not contacting MCC cells expressing MCPyV large T antigen. The homeostatic chemokine CXCL12 was expressed outside malignant nodules whereas its receptor CXCR4 was identified within tumour but not on CD8+ cells. CD8+ cells lacked CXCR3 and granzyme B expression irrespective of location within stroma versus malignant nodules or of the intensity of the intra-tumoural infiltrate. In summary, diverse inflammatory cells were organised around the margin of malignant deposits suggesting response to aberrant signaling, but were unable to penetrate the tumour microenvironment itself to enable an immune response against malignant cells or their polyomavirus

  1. Numerical analysis on cell-cell interaction of red blood cells during sedimentation

    Science.gov (United States)

    Shi, Xing

    2017-07-01

    The long-range hydrodynamic interaction among red blood cells plays an important role on the macroscopic behaviors, however, the molecular interaction at such scale is much weaker. In this paper, the sedimentations under external body force of two red blood cells are numerical simulated to investigate the hydrodynamic interaction between cells. The flow is solved by lattice Boltzmann method and the membrane of red blood cell is model by the spring model where the fluid-membrane interaction is coupled by fictitious domain method. It is found that the cells have the tendency to aggregate and may be aligned in a line along the sediment direction. Compared to the properties of a single cell under the same conditions, the sediment velocity of red blood cell group is larger; the leading cell deforms less and the following cell endures larger deformation.

  2. Endothelial cell subpopulations in vitro: cell volume, cell cycle, and radiosensitivity

    International Nuclear Information System (INIS)

    Rubin, D.B.; Drab, E.A.; Bauer, K.D.

    1989-01-01

    Vascular endothelial cells (EC) are important clinical targets of radiation and other forms of free radical/oxidant stresses. In this study, we found that the extent of endothelial damage may be determined by the different cytotoxic responses of EC subpopulations. The following characteristics of EC subpopulations were examined: (1) cell volume; (2) cell cycle position; and (3) cytotoxic indexes for both acute cell survival and proliferative capacity after irradiation (137Cs, gamma, 0-10 Gy). EC cultured from bovine aortas were separated by centrifugal elutriation into subpopulations of different cell volumes. Through flow cytometry, we found that cell volume was related to the cell cycle phase distribution. The smallest EC were distributed in G1 phase and the larger cells were distributed in either early S, middle S, or late S + G2M phases. Cell cycle phase at the time of irradiation was not associated with acute cell loss. However, distribution in the cell cycle did relate to cell survival based on proliferative capacity (P less than 0.01). The order of increasing radioresistance was cells in G1 (D0 = 110 cGy), early S (135 cGy), middle S (145 cGy), and late S + G2M phases (180 cGy). These findings (1) suggest an age-related response to radiation in a nonmalignant differentiated cell type and (2) demonstrate EC subpopulations in culture

  3. Natural killer cells for immunotherapy – Advantages of cell lines over blood NK cells

    Directory of Open Access Journals (Sweden)

    Hans eKlingemann

    2016-03-01

    Full Text Available Natural killer cells are potent cytotoxic effector cells for cancer therapy and potentially for severe viral infections. However, there are technical challenges to obtain sufficient numbers of functionally active NK cells form a patient’s blood since they represent only 10% of the lymphocytes. Especially, cancer patients are known to have dysfunctional NK cells. The alternative is to obtain cells from a healthy donor, which requires depletion of the allogeneic T-cells. Establishing cell lines from donor blood NK cells have not been successful, in contrast to blood NK cells obtained from patients with a clonal NK cell lymphoma. Those cells can be expanded in culture in the presence of IL-2. However, except for the NK-92 cell line none of the other six known cell lines has consistent and reproducibly high anti-tumor cytotoxicity, nor can they be easily genetically manipulated to recognize specific tumor antigens or to augment monoclonal antibody activity through ADCC. NK-92 is also the only cell line product that has been widely given to patients with advanced cancer with demonstrated efficiency and minimal side effects.

  4. Combination cell therapy with mesenchymal stem cells and neural stem cells for brain stroke in rats.

    Science.gov (United States)

    Hosseini, Seyed Mojtaba; Farahmandnia, Mohammad; Razi, Zahra; Delavari, Somayeh; Shakibajahromi, Benafsheh; Sarvestani, Fatemeh Sabet; Kazemi, Sepehr; Semsar, Maryam

    2015-05-01

    Brain stroke is the second most important events that lead to disability and morbidity these days. Although, stroke is important, there is no treatment for curing this problem. Nowadays, cell therapy has opened a new window for treating central nervous system disease. In some previous studies the Mesenchymal stem cells and neural stem cells. In this study, we have designed an experiment to assess the combination cell therapy (Mesenchymal and Neural stem cells) effects on brain stroke. The Mesenchymal stem cells were isolated from adult rat bone marrow and the neural stem cells were isolated from ganglion eminence of rat embryo 14 days. The Mesenchymal stem cells were injected 1 day after middle cerebral artery occlusion (MCAO) and the neural stem cells transplanted 7 day after MCAO. After 28 days, the neurological outcomes and brain lesion volumes were evaluated. Also, the activity of Caspase 3 was assessed in different groups. The group which received combination cell therapy had better neurological examination and less brain lesion. Also the combination cell therapy group had the least Caspase 3 activity among the groups. The combination cell therapy is more effective than Mesenchymal stem cell therapy and neural stem cell therapy separately in treating the brain stroke in rats.

  5. Low Doses of Curcuma longa Modulates Cell Migration and Cell-Cell Adhesion.

    Science.gov (United States)

    de Campos, Paloma Santos; Matte, Bibiana Franzen; Diel, Leonardo Francisco; Jesus, Luciano Henrique; Bernardi, Lisiane; Alves, Alessandro Menna; Rados, Pantelis Varvaki; Lamers, Marcelo Lazzaron

    2017-09-01

    Cell invasion and metastasis are involved in clinical failures in cancer treatment, and both events require the acquisition of a migratory behavior by tumor cells. Curcumin is a promising natural product with anti-proliferative activity, but its effects on cell migration are still unclear. We evaluated the effects of curcumin on the proliferation, apoptosis, migration, and cell-cell adhesion of keratinocyte, oral squamous cell carcinoma (OSCC), and fibroblast cell lines, as well as in a xenograft model of OSCC. Curcumin (2 μM) decreased cell proliferation in cell lines with mesenchymal characteristics, while cell death was detected only at 50 μM. We observed that highly migratory cells showed a decrease on migration speed and directionality when treated with 2 or 5 μM of curcumin (50% and 40%, respectively, p < 0.05). Using spheroids, we observed that curcumin dose dependently decreased cell-cell adhesion, especially on tumor-derived spheroids. Also, in a xenograft model with patient-derived OSCC cells, the administration of curcumin decreased tumor growth and aggressiveness when compared with untreated tumors, indicating the potential antitumor effect in oral cancer. These results suggest that lower doses of curcumin can influence several steps involved in tumorigenesis, including migration properties, suggesting a possible use in cancer therapy. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  6. Pharmacologic suppression of target cell recognition by engineered T cells expressing chimeric T-cell receptors.

    Science.gov (United States)

    Alvarez-Vallina, L; Yañez, R; Blanco, B; Gil, M; Russell, S J

    2000-04-01

    Adoptive therapy with autologous T cells expressing chimeric T-cell receptors (chTCRs) is of potential interest for the treatment of malignancy. To limit possible T-cell-mediated damage to normal tissues that weakly express the targeted tumor antigen (Ag), we have tested a strategy for the suppression of target cell recognition by engineered T cells. Jurkat T cells were transduced with an anti-hapten chTCR tinder the control of a tetracycline-suppressible promoter and were shown to respond to Ag-positive (hapten-coated) but not to Ag-negative target cells. The engineered T cells were then reacted with hapten-coated target cells at different effector to target cell ratios before and after exposure to tetracycline. When the engineered T cells were treated with tetracycline, expression of the chTCR was greatly decreased and recognition of the hapten-coated target cells was completely suppressed. Tetracycline-mediated suppression of target cell recognition by engineered T cells may be a useful strategy to limit the toxicity of the approach to cancer gene therapy.

  7. Analysis of individual cells identifies cell-to-cell variability following induction of cellular senescence.

    Science.gov (United States)

    Wiley, Christopher D; Flynn, James M; Morrissey, Christapher; Lebofsky, Ronald; Shuga, Joe; Dong, Xiao; Unger, Marc A; Vijg, Jan; Melov, Simon; Campisi, Judith

    2017-10-01

    Senescent cells play important roles in both physiological and pathological processes, including cancer and aging. In all cases, however, senescent cells comprise only a small fraction of tissues. Senescent phenotypes have been studied largely in relatively homogeneous populations of cultured cells. In vivo, senescent cells are generally identified by a small number of markers, but whether and how these markers vary among individual cells is unknown. We therefore utilized a combination of single-cell isolation and a nanofluidic PCR platform to determine the contributions of individual cells to the overall gene expression profile of senescent human fibroblast populations. Individual senescent cells were surprisingly heterogeneous in their gene expression signatures. This cell-to-cell variability resulted in a loss of correlation among the expression of several senescence-associated genes. Many genes encoding senescence-associated secretory phenotype (SASP) factors, a major contributor to the effects of senescent cells in vivo, showed marked variability with a subset of highly induced genes accounting for the increases observed at the population level. Inflammatory genes in clustered genomic loci showed a greater correlation with senescence compared to nonclustered loci, suggesting that these genes are coregulated by genomic location. Together, these data offer new insights into how genes are regulated in senescent cells and suggest that single markers are inadequate to identify senescent cells in vivo. © 2017 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  8. Nonimmune cells equipped with T-cell-receptor-like signaling for cancer cell ablation.

    Science.gov (United States)

    Kojima, Ryosuke; Scheller, Leo; Fussenegger, Martin

    2018-01-01

    The ability to engineer custom cell-contact-sensing output devices into human nonimmune cells would be useful for extending the applicability of cell-based cancer therapies and for avoiding risks associated with engineered immune cells. Here we have developed a new class of synthetic T-cell receptor-like signal-transduction device that functions efficiently in human nonimmune cells and triggers release of output molecules specifically upon sensing contact with a target cell. This device employs an interleukin signaling cascade, whose OFF/ON switching is controlled by biophysical segregation of a transmembrane signal-inhibitory protein from the sensor cell-target cell interface. We further show that designer nonimmune cells equipped with this device driving expression of a membrane-penetrator/prodrug-activating enzyme construct could specifically kill target cells in the presence of the prodrug, indicating its potential usefulness for target-cell-specific, cell-based enzyme-prodrug cancer therapy. Our study also contributes to the advancement of synthetic biology by extending available design principles to transmit extracellular information to cells.

  9. Fuel Cell Handbook, Fourth Edition

    Energy Technology Data Exchange (ETDEWEB)

    Stauffer, D.B; Hirschenhofer, J.H.; Klett, M.G.; Engleman, R.R.

    1998-11-01

    Robust progress has been made in fuel cell technology since the previous edition of the Fuel Cell Handbook was published in January 1994. This Handbook provides a foundation in fuel cells for persons wanting a better understanding of the technology, its benefits, and the systems issues that influence its application. Trends in technology are discussed, including next-generation concepts that promise ultra high efficiency and low cost, while providing exceptionally clean power plant systems. Section 1 summarizes fuel cell progress since the last edition and includes existing power plant nameplate data. Section 2 addresses the thermodynamics of fuel cells to provide an understanding of fuel cell operation at two levels (basic and advanced). Sections 3 through 6 describe the four major fuel cell types and their performance based on cell operating conditions. The section on polymer electrolyte membrane fuel cells has been added to reflect their emergence as a significant fuel cell technology. Phosphoric acid, molten carbonate, and solid oxide fuel cell technology description sections have been updated from the previous edition. New information indicates that manufacturers have stayed with proven cell designs, focusing instead on advancing the system surrounding the fuel cell to lower life cycle costs. Section 7, Fuel Cell Systems, has been significantly revised to characterize near-term and next-generation fuel cell power plant systems at a conceptual level of detail. Section 8 provides examples of practical fuel cell system calculations. A list of fuel cell URLs is included in the Appendix. A new index assists the reader in locating specific information quickly.

  10. Casticin impairs cell growth and induces cell apoptosis via cell cycle arrest in human oral cancer SCC-4 cells.

    Science.gov (United States)

    Chou, Guan-Ling; Peng, Shu-Fen; Liao, Ching-Lung; Ho, Heng-Chien; Lu, Kung-Wen; Lien, Jin-Cherng; Fan, Ming-Jen; La, Kuang-Chi; Chung, Jing-Gung

    2018-02-01

    Casticin, a polymethoxyflavone, present in natural plants, has been shown to have biological activities including anti-cancer activities. Herein, we investigated the anti-oral cancer activity of casticin on SCC-4 cells in vitro. Viable cells, cell cycle distribution, apoptotic cell death, reactive oxygen species (ROS) production, and Ca 2+ production, levels of ΔΨ m and caspase activity were measured by flow cytometric assay. Cell apoptosis associated protein expressions were examined by Western blotting and confocal laser microscopy. Results indicated that casticin induced cell morphological changes, DNA condensation and damage, decreased the total viable cells, induced G 2 /M phase arrest in SCC-4 cells. Casticin promoted ROS and Ca 2+ productions, decreases the levels of ΔΨ m , promoted caspase-3, -8, and -9 activities in SCC-4 cells. Western blotting assay demonstrated that casticin affect protein level associated with G2/M phase arrest and apoptosis. Confocal laser microscopy also confirmed that casticin increased the translocation of AIF and cytochrome c in SCC-4 cells. In conclusion, casticin decreased cell number through G 2 /M phase arrest and the induction of cell apoptosis through caspase- and mitochondria-dependent pathways in SCC-4 cells. © 2017 Wiley Periodicals, Inc.

  11. Antitumor Immunity Produced by the Liver Kupffer Cells, NK Cells, NKT Cells, and CD8+ CD122+ T Cells

    Directory of Open Access Journals (Sweden)

    Shuhji Seki

    2011-01-01

    Full Text Available Mouse and human livers contain innate immune leukocytes, NK cells, NKT cells, and macrophage-lineage Kupffer cells. Various bacterial components, including Toll-like receptor (TLR ligands and an NKT cell ligand (α-galactocylceramide, activate liver Kupffer cells, which produce IL-1, IL-6, IL-12, and TNF. IL-12 activates hepatic NK cells and NKT cells to produce IFN-γ, which further activates hepatic T cells, in turn activating phagocytosis and cytokine production by Kupffer cells in a positive feedback loop. These immunological events are essentially evoked to protect the host from bacterial and viral infections; however, these events also contribute to antitumor and antimetastatic immunity in the liver by activated liver NK cells and NKT cells. Bystander CD8+CD122+ T cells, and tumor-specific memory CD8+T cells, are also induced in the liver by α-galactocylceramide. Furthermore, adoptive transfer experiments have revealed that activated liver lymphocytes may migrate to other organs to inhibit tumor growth, such as the lungs and kidneys. The immunological mechanism underlying the development of hepatocellular carcinoma in cirrhotic livers in hepatitis C patients and liver innate immunity as a double-edged sword (hepatocyte injury/regeneration, septic shock, autoimmune disease, etc. are also discussed.

  12. Satellite Cell Self-Renewal.

    Science.gov (United States)

    Giordani, Lorenzo; Parisi, Alice; Le Grand, Fabien

    2018-01-01

    Adult skeletal muscle is endowed with regenerative potential through partially recapitulating the embryonic developmental program. Upon acute injury or in pathological conditions, quiescent muscle-resident stem cells, called satellite cells, become activated and give rise to myogenic progenitors that massively proliferate, differentiate, and fuse to form new myofibers and restore tissue functionality. In addition, a proportion of activated cells returns back to quiescence and replenish the pool of satellite cells in order to maintain the ability of skeletal muscle tissue to repair. Self-renewal is the process by which stem cells divide to make more stem cells to maintain the stem cell population throughout life. This process is controlled by cell-intrinsic transcription factors regulated by cell-extrinsic signals from the niche and the microenvironment. This chapter provides an overview about the general aspects of satellite cell biology and focuses on the cellular and molecular aspects of satellite cell self-renewal. To date, we are still far from understanding how a very small proportion of the satellite cell progeny maintain their stem cell identity when most of their siblings progress through the myogenic program to construct myofibers. © 2018 Elsevier Inc. All rights reserved.

  13. Single-cell western blotting.

    Science.gov (United States)

    Quadri, Syed M S

    2015-01-01

    Cell heterogeneity is a variation in cellular processes in functionally similar cells. Cells from the same tissue which are considered genetically identical may have difference in size, structure, and level of protein expression which can lead to major impact on the functions of cell leading to difference in physiological consequences. Single-cell proteome-wide studies are used to detect cell heterogeneity. Flow cytometry and immunocytochemistry do play an important role in evaluating cell heterogeneity. However, these methods are based on separation by antibodies with limited specificity. Cross-reactivity can occur leading to bias in result. Western blot is done to separate the proteins according to molecular weight. Therefore, off-target and on-target signals can be discriminated. Detection of protein expression from a tissue can be done with the help of western blot. However, it is unable to differentiate protein expression of individual cells. For detection of this cell-to-cell variation, a highly advanced technique termed "single-cell western blotting" is carried out. Single-cell western blot has enabled us to detect protein expression at cellular level at a fairly advanced high resolution using a western blot designed to assess cell heterogeneity.

  14. Single Cell Isolation and Analysis

    Directory of Open Access Journals (Sweden)

    Ping Hu

    2016-10-01

    Full Text Available Increasing evidence shows that the heterogeneity of individual cells within a genetically identical population can be critical to their peculiar function and fate. Conventional cell based assays mainly analysis the average responses from a population cells, while the difference within individual cells may often be masked. The cell size, RNA transcripts and protein expression level are quite different within individual cells and these variations are key point to answer the problems in cancer, neurobiology, stem cell biology, immunology and developmental biology. To better understand the cell-to-cell variations, the single cell analysis can provide much more detailed information which may be helpful for therapeutic decisions in an increasingly personalized medicine. In this review, we will focus on the recent development in single cell analysis, including methods used in single cell isolation, analysis and some application examples. The review provides the historical background to single cell analysis, discusses limitations, and current and future possibilities in this exciting field of research.

  15. Measuring single-cell density.

    Science.gov (United States)

    Grover, William H; Bryan, Andrea K; Diez-Silva, Monica; Suresh, Subra; Higgins, John M; Manalis, Scott R

    2011-07-05

    We have used a microfluidic mass sensor to measure the density of single living cells. By weighing each cell in two fluids of different densities, our technique measures the single-cell mass, volume, and density of approximately 500 cells per hour with a density precision of 0.001 g mL(-1). We observe that the intrinsic cell-to-cell variation in density is nearly 100-fold smaller than the mass or volume variation. As a result, we can measure changes in cell density indicative of cellular processes that would be otherwise undetectable by mass or volume measurements. Here, we demonstrate this with four examples: identifying Plasmodium falciparum malaria-infected erythrocytes in a culture, distinguishing transfused blood cells from a patient's own blood, identifying irreversibly sickled cells in a sickle cell patient, and identifying leukemia cells in the early stages of responding to a drug treatment. These demonstrations suggest that the ability to measure single-cell density will provide valuable insights into cell state for a wide range of biological processes.

  16. Proliferating cells in psoriatic dermis are comprised primarily of T cells, endothelial cells, and factor XIIIa+ perivascular dendritic cells

    International Nuclear Information System (INIS)

    Morganroth, G.S.; Chan, L.S.; Weinstein, G.D.; Voorhees, J.J.; Cooper, K.D.

    1991-01-01

    Determination of the cell types proliferating in the dermis of patients with psoriasis should identify those cells experiencing activation or responding to growth factors in the psoriatic dermal milieu. Toward that end, sections of formalin-fixed biopsies obtained from 3H-deoxyuridine (3H-dU)-injected skin of eight psoriatic patients were immunostained, followed by autoradiography. Proliferating dermal cells exhibit silver grains from tritium emissions. The identity of the proliferating cells could then be determined by simultaneous visualization with antibodies specific for various cell types. UCHL1+ (CD45RO+) T cells (recall antigen-reactive helper T-cell subset) constituted 36.6 +/- 3.1% (mean +/- SEM, n = 6) of the proliferating dermal cells in involved skin, whereas Leu 18+ (CD45RA+) T cells (recall antigen naive T-cell subsets) comprised only 8.7 +/- 1.5% (n = 6). The Factor XIIIa+ dermal perivascular dendritic cell subset (24.9 +/- 1.5% of proliferating dermal cells, n = 6) and Factor VIII+ endothelial cells represented the two other major proliferating populations in lesional psoriatic dermis. Differentiated tissue macrophages, identified by phase microscopy as melanophages or by immunostaining with antibodies to Leu M1 (CD15) or myeloid histiocyte antigen, comprised less than 5% of the proliferating population in either skin type. In addition to calculating the relative proportions of these cells to each other as percent, we also determined the density of cells, in cells/mm2 of tissue. The density of proliferating cells within these populations was increased in involved versus uninvolved skin: UCHL1+, 9.0 +/- 1.7 cells/mm2 versus 1.8 +/- 0.6 cells/mm2, p less than 0.01; Factor XIIIa+, 6.0 +/- 0.7 cells/mm2 versus 1.5 +/- 0.5 cells/mm2, p less than 0.01; Factor VIII+, 5.5 +/- 1.4 cells/mm2 versus 0.0 cells/mm2, p less than 0.05

  17. Computational cell model based on autonomous cell movement regulated by cell-cell signalling successfully recapitulates the "inside and outside" pattern of cell sorting

    Directory of Open Access Journals (Sweden)

    Ajioka Itsuki

    2007-09-01

    Full Text Available Abstract Background Development of multicellular organisms proceeds from a single fertilized egg as the combined effect of countless numbers of cellular interactions among highly dynamic cells. Since at least a reminiscent pattern of morphogenesis can be recapitulated in a reproducible manner in reaggregation cultures of dissociated embryonic cells, which is known as cell sorting, the cells themselves must possess some autonomous cell behaviors that assure specific and reproducible self-organization. Understanding of this self-organized dynamics of heterogeneous cell population seems to require some novel approaches so that the approaches bridge a gap between molecular events and morphogenesis in developmental and cell biology. A conceptual cell model in a computer may answer that purpose. We constructed a dynamical cell model based on autonomous cell behaviors, including cell shape, growth, division, adhesion, transformation, and motility as well as cell-cell signaling. The model gives some insights about what cellular behaviors make an appropriate global pattern of the cell population. Results We applied the model to "inside and outside" pattern of cell-sorting, in which two different embryonic cell types within a randomly mixed aggregate are sorted so that one cell type tends to gather in the central region of the aggregate and the other cell type surrounds the first cell type. Our model can modify the above cell behaviors by varying parameters related to them. We explored various parameter sets with which the "inside and outside" pattern could be achieved. The simulation results suggested that direction of cell movement responding to its neighborhood and the cell's mobility are important for this specific rearrangement. Conclusion We constructed an in silico cell model that mimics autonomous cell behaviors and applied it to cell sorting, which is a simple and appropriate phenomenon exhibiting self-organization of cell population. The model

  18. Henrietta Lacks, HeLa cells, and cell culture contamination.

    Science.gov (United States)

    Lucey, Brendan P; Nelson-Rees, Walter A; Hutchins, Grover M

    2009-09-01

    Henrietta Lacks died in 1951 of an aggressive adenocarcinoma of the cervix. A tissue biopsy obtained for diagnostic evaluation yielded additional tissue for Dr George O. Gey's tissue culture laboratory at Johns Hopkins (Baltimore, Maryland). The cancer cells, now called HeLa cells, grew rapidly in cell culture and became the first human cell line. HeLa cells were used by researchers around the world. However, 20 years after Henrietta Lacks' death, mounting evidence suggested that HeLa cells contaminated and overgrew other cell lines. Cultures, supposedly of tissues such as breast cancer or mouse, proved to be HeLa cells. We describe the history behind the development of HeLa cells, including the first published description of Ms Lacks' autopsy, and the cell culture contamination that resulted. The debate over cell culture contamination began in the 1970s and was not harmonious. Ultimately, the problem was not resolved and it continues today. Finally, we discuss the philosophical implications of the immortal HeLa cell line.

  19. Glial Cells: The Other Cells of the Nervous System

    Indian Academy of Sciences (India)

    In the early part of the twentieth century, the important role played by a set of small cells under pathological conditions in the brain was recognized for the first time by De RioHortega. He developed a staining technique that could distinguish these cells from neurons and other glial cells and coined the term. 'microglia' to ...

  20. Electromechanical Nanogenerator-Cell Interaction Modulates Cell Activity.

    Science.gov (United States)

    Murillo, Gonzalo; Blanquer, Andreu; Vargas-Estevez, Carolina; Barrios, Lleonard; Ibáñez, Elena; Nogués, Carme; Esteve, Jaume

    2017-06-01

    Noninvasive methods for in situ electrical stimulation of human cells open new frontiers to future bioelectronic therapies, where controlled electrical impulses could replace the use of chemical drugs for disease treatment. Here, this study demonstrates that the interaction of living cells with piezoelectric nanogenerators (NGs) induces a local electric field that self-stimulates and modulates their cell activity, without applying an additional chemical or physical external stimulation. When cells are cultured on top of the NGs, based on 2D ZnO nanosheets, the electromechanical NG-cell interactions stimulate the motility of macrophages and trigger the opening of ion channels present in the plasma membrane of osteoblast-like cells (Saos-2) inducing intracellular calcium transients. In addition, excellent cell viability, proliferation, and differentiation are validated. This in situ cell-scale electrical stimulation of osteoblast-like cells can be extrapolated to other excitable cells such as neurons or muscle cells, paving the way for future bioelectronic medicines based on cell-targeted electrical impulses. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Glial Cells: The Other Cells of the Nervous System

    Indian Academy of Sciences (India)

    specializes in electron microscopy of muscle, nerve and brain tumors. Part 1. An Introduction to Glial. Cells, Resonance, VoL7, No.1, pp.4-lO, 2002. Keywords. Glial cells, astrocytes, reactive gliosis, radial glia. In 1846 Rudolf Virchow recognized for the first time that the vertebrate brain had a large population of cells other.

  2. CellNet: network biology applied to stem cell engineering.

    Science.gov (United States)

    Cahan, Patrick; Li, Hu; Morris, Samantha A; Lummertz da Rocha, Edroaldo; Daley, George Q; Collins, James J

    2014-08-14

    Somatic cell reprogramming, directed differentiation of pluripotent stem cells, and direct conversions between differentiated cell lineages represent powerful approaches to engineer cells for research and regenerative medicine. We have developed CellNet, a network biology platform that more accurately assesses the fidelity of cellular engineering than existing methodologies and generates hypotheses for improving cell derivations. Analyzing expression data from 56 published reports, we found that cells derived via directed differentiation more closely resemble their in vivo counterparts than products of direct conversion, as reflected by the establishment of target cell-type gene regulatory networks (GRNs). Furthermore, we discovered that directly converted cells fail to adequately silence expression programs of the starting population and that the establishment of unintended GRNs is common to virtually every cellular engineering paradigm. CellNet provides a platform for quantifying how closely engineered cell populations resemble their target cell type and a rational strategy to guide enhanced cellular engineering. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Glial Cells: The Other Cells of the Nervous System

    Indian Academy of Sciences (India)

    General Properties of Glial Cells. Glial cells are observed to be metabolically active, very like any other cell of the body, with the usual array of organelles. Depos- its of fats and glycogen are often seen in their cytoplasm. Micro- scopically they can be distinguished from the neurons on the basis of the absence of an axon.

  4. TOPICAL REVIEW: Stem cells engineering for cell-based therapy

    Science.gov (United States)

    Taupin, Philippe

    2007-09-01

    Stem cells carry the promise to cure a broad range of diseases and injuries, from diabetes, heart and muscular diseases, to neurological diseases, disorders and injuries. Significant progresses have been made in stem cell research over the past decade; the derivation of embryonic stem cells (ESCs) from human tissues, the development of cloning technology by somatic cell nuclear transfer (SCNT) and the confirmation that neurogenesis occurs in the adult mammalian brain and that neural stem cells (NSCs) reside in the adult central nervous system (CNS), including that of humans. Despite these advances, there may be decades before stem cell research will translate into therapy. Stem cell research is also subject to ethical and political debates, controversies and legislation, which slow its progress. Cell engineering has proven successful in bringing genetic research to therapy. In this review, I will review, in two examples, how investigators are applying cell engineering to stem cell biology to circumvent stem cells' ethical and political constraints and bolster stem cell research and therapy.

  5. Single cell transcriptome profiling of developing chick retinal cells.

    Science.gov (United States)

    Laboissonniere, Lauren A; Martin, Gregory M; Goetz, Jillian J; Bi, Ran; Pope, Brock; Weinand, Kallie; Ellson, Laura; Fru, Diane; Lee, Miranda; Wester, Andrea K; Liu, Peng; Trimarchi, Jeffrey M

    2017-08-15

    The vertebrate retina is a specialized photosensitive tissue comprised of six neuronal and one glial cell types, each of which develops in prescribed proportions at overlapping timepoints from a common progenitor pool. While each of these cells has a specific function contributing to proper vision in the mature animal, their differential representation in the retina as well as the presence of distinctive cellular subtypes makes identifying the transcriptomic signatures that lead to each retinal cell's fate determination and development challenging. We have analyzed transcriptomes from individual cells isolated from the chick retina throughout retinogenesis. While we focused our efforts on the retinal ganglion cells, our transcriptomes of developing chick cells also contained representation from multiple retinal cell types, including photoreceptors and interneurons at different stages of development. Most interesting was the identification of transcriptomes from individual mixed lineage progenitor cells in the chick as these cells offer a window into the cell fate decision-making process. Taken together, these data sets will enable us to uncover the most critical genes acting in the steps of cell fate determination and early differentiation of various retinal cell types. © 2017 Wiley Periodicals, Inc.

  6. Natural killer cells complot with dendritic cells 

    Directory of Open Access Journals (Sweden)

    Aleksandra Bielawska-Pohl

    2013-03-01

    Full Text Available Dendritic cells (DC were initially considered as antigen presenting cells participating in the polarization of the immune response. Further understanding of their biology allowed determining their additional functions such as immunoregulatory and cytotoxicity. Until recently natural killer (NK cells were known as a homogeneous population of lymphocytes capable of non-specific recognizing and eliminating target cells. Now it is widely accepted that NK cells, as a heterogeneous population, may also possess immunomodulatory functions. Moreover, the most recent analysis of the interactions between DC and NK cells revealed the exceptional functions of these cells. As a result of these studies the existence of bitypic cell population was postulated. The distinguishing features of these hybrid cells are: the expression of surface receptors typical for NK cells and DC, the cytotoxic activity, the production of interferons as well as their ability to present antigen after prior stimulation. Despite the lack of strong direct evidence that the same cell can be both cytotoxic and effectively present the antigen at the same time, there are experimental findings suggesting that generated ex vivo bitypic cells may be used in antitumor therapy. 

  7. Glial Cells: The Other Cells of the Nervous System

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 7; Issue 1. Glial Cells: The Other Cells of the Nervous System - An Introduction to Glial Cells. Medha S Rajadhyaksha Yasmin Khan. Series Article Volume 7 Issue 1 January 2002 pp 4-10 ...

  8. Skeletal Muscle Cell Induction from Pluripotent Stem Cells

    Directory of Open Access Journals (Sweden)

    Yusaku Kodaka

    2017-01-01

    Full Text Available Embryonic stem cells (ESCs and induced pluripotent stem cells (iPSCs have the potential to differentiate into various types of cells including skeletal muscle cells. The approach of converting ESCs/iPSCs into skeletal muscle cells offers hope for patients afflicted with the skeletal muscle diseases such as the Duchenne muscular dystrophy (DMD. Patient-derived iPSCs are an especially ideal cell source to obtain an unlimited number of myogenic cells that escape immune rejection after engraftment. Currently, there are several approaches to induce differentiation of ESCs and iPSCs to skeletal muscle. A key to the generation of skeletal muscle cells from ESCs/iPSCs is the mimicking of embryonic mesodermal induction followed by myogenic induction. Thus, current approaches of skeletal muscle cell induction of ESCs/iPSCs utilize techniques including overexpression of myogenic transcription factors such as MyoD or Pax3, using small molecules to induce mesodermal cells followed by myogenic progenitor cells, and utilizing epigenetic myogenic memory existing in muscle cell-derived iPSCs. This review summarizes the current methods used in myogenic differentiation and highlights areas of recent improvement.

  9. Triggered cell release from shellac-cell composite microcapsules

    NARCIS (Netherlands)

    Hamad, S.A.; Stoyanov, S.D.; Paunov, V.N.

    2012-01-01

    We report the fabrication of novel shellac-cell composite microcapsules with programmed release of cells upon change of pH in a narrow range. The microcapsules were prepared from yeast cells as a model for probiotics combined with aqueous solution of ammonium shellac doped with a pH sensitive

  10. Stem cells engineering for cell-based therapy.

    Science.gov (United States)

    Taupin, Philippe

    2007-09-01

    Stem cells carry the promise to cure a broad range of diseases and injuries, from diabetes, heart and muscular diseases, to neurological diseases, disorders and injuries. Significant progresses have been made in stem cell research over the past decade; the derivation of embryonic stem cells (ESCs) from human tissues, the development of cloning technology by somatic cell nuclear transfer (SCNT) and the confirmation that neurogenesis occurs in the adult mammalian brain and that neural stem cells (NSCs) reside in the adult central nervous system (CNS), including that of humans. Despite these advances, there may be decades before stem cell research will translate into therapy. Stem cell research is also subject to ethical and political debates, controversies and legislation, which slow its progress. Cell engineering has proven successful in bringing genetic research to therapy. In this review, I will review, in two examples, how investigators are applying cell engineering to stem cell biology to circumvent stem cells' ethical and political constraints and bolster stem cell research and therapy.

  11. Pancreatic stellate cells enhance stem cell-like phenotypes in pancreatic cancer cells

    International Nuclear Information System (INIS)

    Hamada, Shin; Masamune, Atsushi; Takikawa, Tetsuya; Suzuki, Noriaki; Kikuta, Kazuhiro; Hirota, Morihisa; Hamada, Hirofumi; Kobune, Masayoshi; Satoh, Kennichi; Shimosegawa, Tooru

    2012-01-01

    Highlights: ► Pancreatic stellate cells (PSCs) promote the progression of pancreatic cancer. ► Pancreatic cancer cells co-cultured with PSCs showed enhanced spheroid formation. ► Expression of stem cell-related genes ABCG2, Nestin and LIN28 was increased. ► Co-injection of PSCs enhanced tumorigenicity of pancreatic cancer cells in vivo. ► This study suggested a novel role of PSCs as a part of the cancer stem cell niche. -- Abstract: The interaction between pancreatic cancer cells and pancreatic stellate cells (PSCs), a major profibrogenic cell type in the pancreas, is receiving increasing attention. There is accumulating evidence that PSCs promote the progression of pancreatic cancer by increasing cancer cell proliferation and invasion as well as by protecting them from radiation- and gemcitabine-induced apoptosis. Recent studies have identified that a portion of cancer cells, called “cancer stem cells”, within the entire cancer tissue harbor highly tumorigenic and chemo-resistant phenotypes, which lead to the recurrence after surgery or re-growth of the tumor. The mechanisms that maintain the “stemness” of these cells remain largely unknown. We hypothesized that PSCs might enhance the cancer stem cell-like phenotypes in pancreatic cancer cells. Indirect co-culture of pancreatic cancer cells with PSCs enhanced the spheroid-forming ability of cancer cells and induced the expression of cancer stem cell-related genes ABCG2, Nestin and LIN28. In addition, co-injection of PSCs enhanced tumorigenicity of pancreatic cancer cells in vivo. These results suggested a novel role of PSCs as a part of the cancer stem cell niche.

  12. Basal cell carcinoma

    International Nuclear Information System (INIS)

    Baruah, J.D.

    1981-01-01

    Seven cases of basal cell carcinoma are reported in this paper. The incidence of this disease is two percent of all malignancies seen at the Miraj Medical Centre, Miraj, Maharashtra. There were five male and two female patients in this series. The youngest patient was 40 years old and the oldest 70 years. The average age of the patients was 57.3 years. All the cases in the series had lesions confined to the head and neck region. Radiation therapy was given to all the seven cases which was the primary form of treatment in five cases. In two cases surgical excision had been done and the growth in both the cases had recurred. Radiation therapy is considered more ideal and suitable in the treatment of basal cell carcinomas. (auth.)

  13. [Cell biology and cosmetology].

    Science.gov (United States)

    Traniello, S; Cavalletti, T

    1991-01-01

    Cellular biology can become the natural support of research in the field of cosmetics because it is able to provide alternative experimental models which can partially replace the massive use of laboratory animals. Cultures of human skin cells could be used in tests investigating irritation of the skin. We have developed an "in vitro" experimental model that allows to evaluate the damage caused by the free radicals to the fibroblasts in culture and to test the protective action of the lipoaminoacids. Experimenting on human cell cultures presents the advantage of eliminating the extrapolation between the different species, of allowing a determination of the biological action of a substance and of evaluating its dose/response effect. This does not mean that "in vitro" experimenting could completely replace experimenting on living animals, but the "in vitro" model can be introduced in the realisation of preliminary screenings.

  14. Breast cancer stem cells

    Directory of Open Access Journals (Sweden)

    Thomas W Owens

    2013-08-01

    Full Text Available Cancer metastasis, resistance to therapies and disease recurrence are significant hurdles to successful treatment of breast cancer. Identifying mechanisms by which cancer spreads, survives treatment regimes and regenerates more aggressive tumours are critical to improving patient survival. Substantial evidence gathered over the last 10 years suggests that breast cancer progression and recurrence is supported by cancer stem cells (CSCs. Understanding how CSCs form and how they contribute to the pathology of breast cancer will greatly aid the pursuit of novel therapies targeted at eliminating these cells. This review will summarise what is currently known about the origins of breast CSCs, their role in disease progression and ways in which they may be targeted therapeutically.

  15. Colorful Microbial Cell Factories

    DEFF Research Database (Denmark)

    Petersen, Pia Damm

    Yeast cell factories are powerful tools used for the production of high-value natural compounds otherwise not easily available. Many bioactive and industrially important plant secondary metabolites can be produced in yeast by engineering their biosynthetic pathways into yeast cells, as these both...... possess the cellular functions to synthesize, express and fold the eukaryotic genes and proteins, as well as many of the precursors needed as substrates for biosynthesis of most classes of plant natural products. Natural colorants represent an important class of food ingredients in industry, as they have...... desirable properties compared to chemically synthetized artificial dyes; one of the most prominent being their health-promoting properties. Several problems in the form of low concentrations in host tissues, seasonal availability, and chemical in stability exist for plant pigments, such as the desirable...

  16. [Perinatal sources of stem cells].

    Science.gov (United States)

    Piskorska-Jasiulewicz, Magdalena Maria; Witkowska-Zimny, Małgorzata

    2015-03-08

    Recently, stem cell biology has become an interesting topic. Several varieties of human stem cells have been isolated and identified in vivo and in vitro. Successful application of hematopoietic stem cells in hematology has led to the search for other sources of stem cells and expanding the scale of their application. Perinatal stem cells are a versatile cell population, and they are interesting for both scientific and practical objectives. Stem cells from perinatal tissue may be particularly useful in the clinic for autologous transplantation for fetuses and newborns, and after banking in later stages of life, as well as for in utero transplantation in the case of genetic disorders. In this review paper we focus on the extraction and therapeutic potential of stem cells derived from perinatal tissues such as the placenta, the amnion, amniotic fluid, umbilical cord blood and Wharton's jelly.

  17. Why do cells release vesicles?

    NARCIS (Netherlands)

    Nieuwland, Rienk; Sturk, Augueste

    2010-01-01

    Prokaryotic and eukaryotic cells release vesicles into their environment. To answer the question why eukaryotic cells release vesicles, we may learn from prokaryotes. Bacteria release outer membrane vesicles, resembling microparticles, which act as "multi-purpose carriers". They contain signalling

  18. Alkaline Phosphatase in Stem Cells

    Czech Academy of Sciences Publication Activity Database

    Štefková, K.; Procházková, Jiřina; Pachernik, J.

    2015-01-01

    Roč. 2015, č. 2015 (2015) ISSN 1687-966X Institutional support: RVO:68081707 Keywords : PRIMORDIAL GERM-CELLS * P38 MAP KINASE * EMBRYONAL CARCINOMA-CELLS Subject RIV: BO - Biophysics Impact factor: 3.687, year: 2015

  19. Bilateral papillary renal cell carcinoma

    International Nuclear Information System (INIS)

    Gossios, K.; Vazakas, P.; Argyropoulou, M.; Stefanaki, S.; Stavropoulos, N.E.

    2001-01-01

    Papillary renal cell carcinoma is a subgroup of malignant renal epithelial neoplasms. We report the clinical and imaging findings of a case with multifocal and bilateral renal cell carcinoma which are nonspecific. (orig.)

  20. Perinatal sources of stem cells

    Directory of Open Access Journals (Sweden)

    Magdalena Maria Piskorska-Jasiulewicz

    2015-03-01

    Full Text Available Recently, stem cell biology has become an interesting topic. Several varieties of human stem cells have been isolated and identified in vivo and in vitro. Successful application of hematopoietic stem cells in hematology has led to the search for other sources of stem cells and expanding the scale of their application. Perinatal stem cells are a versatile cell population, and they are interesting for both scientific and practical objectives. Stem cells from perinatal tissue may be particularly useful in the clinic for autologous transplantation for fetuses and newborns, and after banking in later stages of life, as well as for in utero transplantation in the case of genetic disorders. In this review paper we focus on the extraction and therapeutic potential of stem cells derived from perinatal tissues such as the placenta, the amnion, amniotic fluid, umbilical cord blood and Wharton’s jelly.

  1. The mechanics of cell crawling

    Science.gov (United States)

    Wolgemuth, Charles; Mogilner, Alex; Oster, George

    2004-03-01

    Crawling eukaryotic cells play many roles in biology. White blood cells chemotactically track down pathogens. Fibroblasts crawl and pull skin back together during wound healing. Cancer cells become metastatic and migrate to other points in the body. Therefore, understanding the physical mechanism driving crawling motility is very important. In crawling cells, a polymer meshwork, usually composed of actin filaments, provides both the structural integrity of the cell and is reponsible for the force production during migration. We present a theory that describes the dynamics of this actin gel and apply it to the crawling motility of nematode sperm cells. This model maintains the shape of the cell during crawling as occurs during the migration of Ascaris suum spermatozoa and also produces forces comparable to what has been measured in other crawling cells.

  2. Engineering CAR-T cells.

    Science.gov (United States)

    Zhang, Cheng; Liu, Jun; Zhong, Jiang F; Zhang, Xi

    2017-01-01

    Chimeric antigen receptor redirected T cells (CAR-T cells) have achieved inspiring outcomes in patients with B cell malignancies, and are now being investigated in other hematologic malignancies and solid tumors. CAR-T cells are generated by the T cells from patients' or donors' blood. After the T cells are expanded and genetically modified, they are reinfused into the patients. However, many challenges still need to be resolved in order for this technology to gain widespread adoption. In this review, we first discuss the structure and evolution of chimeric antigen receptors. We then report on the tools used for production of CAR-T cells. Finally, we address the challenges posed by CAR-T cells.

  3. Cell boundary fault detection system

    Science.gov (United States)

    Archer, Charles Jens [Rochester, MN; Pinnow, Kurt Walter [Rochester, MN; Ratterman, Joseph D [Rochester, MN; Smith, Brian Edward [Rochester, MN

    2009-05-05

    A method determines a nodal fault along the boundary, or face, of a computing cell. Nodes on adjacent cell boundaries communicate with each other, and the communications are analyzed to determine if a node or connection is faulty.

  4. Fuel Cell Technical Team Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    None

    2013-06-01

    The Fuel Cell Technical Team promotes the development of a fuel cell power system for an automotive powertrain that meets the U.S. DRIVE Partnership (United States Driving Research and Innovation for Vehicle efficiency and Energy sustainability) goals.

  5. Single Molecule Spectroscopy: Single Live Cell

    Indian Academy of Sciences (India)

    kbhattacharjee

    Live Cell Imaging: Seeing inside a cell. • Cell: ~20,000 nm ~ 100 times bigger than focus. • Label different parts of a cell with fluorescent dye. • Cancer Cell: How different from a normal cell? cell. Space & time resolution ...

  6. Bacterial cell culture

    OpenAIRE

    sprotocols

    2014-01-01

    ### Materials 1. Glass culture tubes with metal caps and labels - Growth medium, from media room or customized - Glass pipette tubes - Parafilm ### Equipment 1. Vortexer - Fireboy or Bunsen burner - Motorized pipette - Micropipettes and sterile tips ### Procedure For a typical liquid culture, use 5 ml of appropriate medium. The amount in each tube does not have to be exact if you are just trying to culture cells for their precious DNA. 1. Streak an a...

  7. Hydrogen Fuel Cell Vehicles

    OpenAIRE

    Delucchi, Mark

    1992-01-01

    Hydrogen is an especially attractive transportation fuel. It is the least polluting fuel available, and can be produced anywhere there is water and a clean source of electricity. A fuel cycle in which hydrogen is produced by solar-electrolysis of water, or by gasification of renewably grown biomass, and then used in a fuel-cell powered electric-motor vehicle (FCEV), would produce little or no local, regional, or global pollution. Hydrogen FCEVs would combine the best features of bat...

  8. Clear cell hidradenocarcinoma:

    OpenAIRE

    Lamovec, Janez; Pohar-Marinšek, Živa

    2003-01-01

    A case of eccrine clear cell hidradenocarcinoma of sweat gland origin is presented, disclosing its clinical behavior and morphologic characteristics asevidenced by fine needle aspiration biopsy and tissue section histology. Thepatient was a 53-years old male who had a tumor on his fifth toe for 16 years. The tumor recurred 18 months after excision and metastasized widely 17 months following the amputation of the toe due to the recurrence. In spite of chemotherapy the patient died 37 months af...

  9. Photosynthetic Photovoltaic Cells

    Science.gov (United States)

    2007-06-21

    Immobilization of Proteins on a Carbon Electrode Surface - Oriented Immobilization of Photosynthetic Reaction Centers. Journal of Electroanalytical ...NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) B. PERFORMING ORGANIZATION MASSACHUSETTS INSTITUTE OF TECHNOLOGY REPORT...no longer must absorb all the light. Thus, its quantum efficiency can approach 100% potentially doubling the performance of organic solar cells. 15

  10. Cell culture compositions

    Science.gov (United States)

    Dunn-Coleman, Nigel; Goedegebuur, Frits; Ward, Michael; Yiao, Jian

    2014-03-18

    The present invention provides a novel endoglucanase nucleic acid sequence, designated egl6 (SEQ ID NO:1 encodes the full length endoglucanase; SEQ ID NO:4 encodes the mature form), and the corresponding endoglucanase VI amino acid sequence ("EGVI"; SEQ ID NO:3 is the signal sequence; SEQ ID NO:2 is the mature sequence). The invention also provides expression vectors and host cells comprising a nucleic acid sequence encoding EGVI, recombinant EGVI proteins and methods for producing the same.

  11. Fast automatic quantitative cell replication with fluorescent live cell imaging

    Directory of Open Access Journals (Sweden)

    Wang Ching-Wei

    2012-01-01

    Full Text Available Abstract Background live cell imaging is a useful tool to monitor cellular activities in living systems. It is often necessary in cancer research or experimental research to quantify the dividing capabilities of cells or the cell proliferation level when investigating manipulations of the cells or their environment. Manual quantification of fluorescence microscopic image is difficult because human is neither sensitive to fine differences in color intensity nor effective to count and average fluorescence level among cells. However, auto-quantification is not a straightforward problem to solve. As the sampling location of the microscopy changes, the amount of cells in individual microscopic images varies, which makes simple measurement methods such as the sum of stain intensity values or the total number of positive stain within each image inapplicable. Thus, automated quantification with robust cell segmentation techniques is required. Results An automated quantification system with robust cell segmentation technique are presented. The experimental results in application to monitor cellular replication activities show that the quantitative score is promising to represent the cell replication level, and scores for images from different cell replication groups are demonstrated to be statistically significantly different using ANOVA, LSD and Tukey HSD tests (p-value Conclusion A robust automated quantification method of live cell imaging is built to measure the cell replication level, providing a robust quantitative analysis system in fluorescent live cell imaging. In addition, the presented unsupervised entropy based cell segmentation for live cell images is demonstrated to be also applicable for nuclear segmentation of IHC tissue images.

  12. Small-cell osteosarcoma

    International Nuclear Information System (INIS)

    Edeiken, J.; Raymond, A.K.; Ayala, A.G.; Benjamin, R.S.; Murray, J.A.; Carrasco, H.C.

    1987-01-01

    Small-cell osteosarcoma, a subtype of osteogenic sarcoma, consists of sheets of round cells that produce an osteoid matrix. It may be confused with Ewing sarcoma if the osteoid matrix is not included in the biopsy. The distinctive radiographic features of an osteoblastic tumor and a pattern of permeative destruction will confirm the histologic diagnosis or indicate the true nature if tumor osteoid is not included in the histological sections. We add 13 patients to the 32 previously reported in the literature. Fourteen (31%) of the 45 are living and well, though three have been followed for only 2 months. The treatments have been so varied that a statistically significant evaluation cannot be developed. The radiographic features are not distinctive, but the diagnosis may be suggested when a tumor has osteoblastic features in the metaphysis and extends well down into the shaft with a pattern of permeative destruction. The radiographic features are especially important when limited biopsies reveal only sheets of round cells, thus suggesting Ewing sarcoma. The presence of an osteoid-producing tumor as evident by osteoblastic new bone formation will lead to the correct diagnosis. (orig.)

  13. Pulmonary langerhans cell histiocytosis

    Directory of Open Access Journals (Sweden)

    Suri Harpreet S

    2012-03-01

    Full Text Available Abstract Pulmonary Langerhans Cell Histiocytosis (PLCH is a relatively uncommon lung disease that generally, but not invariably, occurs in cigarette smokers. The pathologic hallmark of PLCH is the accumulation of Langerhans and other inflammatory cells in small airways, resulting in the formation of nodular inflammatory lesions. While the overwhelming majority of patients are smokers, mechanisms by which smoking induces this disease are not known, but likely involve a combination of events resulting in enhanced recruitment and activation of Langerhans cells in small airways. Bronchiolar inflammation may be accompanied by variable lung interstitial and vascular involvement. While cellular inflammation is prominent in early disease, more advanced stages are characterized by cystic lung destruction, cicatricial scarring of airways, and pulmonary vascular remodeling. Pulmonary function is frequently abnormal at presentation. Imaging of the chest with high resolution chest CT scanning may show characteristic nodular and cystic abnormalities. Lung biopsy is necessary for a definitive diagnosis, although may not be required in instances were imaging findings are highly characteristic. There is no general consensus regarding the role of immunosuppressive therapy in smokers with PLCH. All smokers must be counseled on the importance of smoking cessation, which may result in regression of disease and obviate the need for systemic immunosuppressive therapy. The prognosis for most patients is relatively good, particularly if longitudinal lung function testing shows stability. Complications like pneumothoraces and secondary pulmonary hypertension may shorten life expectancy. Patients with progressive disease may require lung transplantation.

  14. Cascade Organic Solar Cells

    KAUST Repository

    Schlenker, Cody W.

    2011-09-27

    We demonstrate planar organic solar cells consisting of a series of complementary donor materials with cascading exciton energies, incorporated in the following structure: glass/indium-tin-oxide/donor cascade/C 60/bathocuproine/Al. Using a tetracene layer grown in a descending energy cascade on 5,6-diphenyl-tetracene and capped with 5,6,11,12-tetraphenyl- tetracene, where the accessibility of the π-system in each material is expected to influence the rate of parasitic carrier leakage and charge recombination at the donor/acceptor interface, we observe an increase in open circuit voltage (Voc) of approximately 40% (corresponding to a change of +200 mV) compared to that of a single tetracene donor. Little change is observed in other parameters such as fill factor and short circuit current density (FF = 0.50 ± 0.02 and Jsc = 2.55 ± 0.23 mA/cm2) compared to those of the control tetracene-C60 solar cells (FF = 0.54 ± 0.02 and Jsc = 2.86 ± 0.23 mA/cm2). We demonstrate that this cascade architecture is effective in reducing losses due to polaron pair recombination at donor-acceptor interfaces, while enhancing spectral coverage, resulting in a substantial increase in the power conversion efficiency for cascade organic photovoltaic cells compared to tetracene and pentacene based devices with a single donor layer. © 2011 American Chemical Society.

  15. Biological and microbial fuel cells

    OpenAIRE

    Scott, Keith; Yu, Eileen Hao; Ghangrekar, Makarand Madhao; Erable, Benjamin; Duţeanu, Narcis Mihai

    2012-01-01

    Biological fuel cells have attracted increasing interest in recent years because of their applications in environmental treatment, energy recovery, and small-scale power sources. Biological fuel cells are capable of producing electricity in the same way as a chemical fuel cell: there is a constant supply of fuel into the anode and a constant supply of oxidant into the cathode; however, typically the fuel is a hydrocarbon compound present in the wastewater, for example. Microbial fuel cells (M...

  16. Cell kinetics and therapeutic efficiency

    International Nuclear Information System (INIS)

    Andreeff, M.; Abenhardt, W.; Gruner, B.; Stoffner, D.; Mainz Univ.

    1976-01-01

    The study shows that cell kinetics effects correlate with the effects of cytostatic drugs in the tumour model investigated here. It should, however, be noted that even genetically related tumour cell types may react differently to the same cytostatic drug, and that the cell kinetics effects, due to the changes in the cell cycle, cannot be predicted but should be followed with a very fast method, e.g. sequential flan fluorescence cytophotometry, for optimal therapeutic results. (orig./GSE) [de

  17. Thigmotropism of Malignant Melanoma Cells

    OpenAIRE

    Quatresooz, Pascale; Pi?rard-Franchimont, Claudine; No?l, Fanchon; Pi?rard, G?rald E.

    2011-01-01

    During malignant melanoma (MM) progression including incipient metastasis, neoplastic cells follow some specific migration paths inside the skin. In particular, they progress along the dermoepidermal basement membrane, the hair follicles, the sweat gland apparatus, nerves, and the near perivascular space. These features evoke the thigmotropism phenomenon defined as a contact-sensing growth of cells. This process is likely connected to modulation in cell tensegrity (control of the cell shape)....

  18. LIQUID HYDROCARBON FUEL CELL DEVELOPMENT.

    Science.gov (United States)

    A compound anode consists of a reforming catalyst bed in direct contact with a palladium-silver fuel cell anode. The objective of this study was to...prove the feasibility of operating a compound anode fuel cell on a liquid hydrocarbon and to define the important parameters that influence cell...performance. Both reformer and fuel cell tests were conducted with various liquid hydrocarbon fuels. Included in this report is a description of the

  19. Fuel cell system with interconnect

    Energy Technology Data Exchange (ETDEWEB)

    Goettler, Richard; Liu, Zhien

    2017-12-12

    The present invention includes a fuel cell system having a plurality of adjacent electrochemical cells formed of an anode layer, a cathode layer spaced apart from the anode layer, and an electrolyte layer disposed between the anode layer and the cathode layer. The fuel cell system also includes at least one interconnect, the interconnect being structured to conduct free electrons between adjacent electrochemical cells. Each interconnect includes a primary conductor embedded within the electrolyte layer and structured to conduct the free electrons.

  20. B Cells in Autoimmune Diseases

    OpenAIRE

    Hampe, Christiane S.

    2012-01-01

    The role of B cells in autoimmune diseases involves different cellular functions, including the well-established secretion of autoantibodies, autoantigen presentation and ensuing reciprocal interactions with T cells, secretion of inflammatory cytokines, and the generation of ectopic germinal centers. Through these mechanisms B cells are involved both in autoimmune diseases that are traditionally viewed as antibody mediated and also in autoimmune diseases that are commonly classified as T cell...

  1. Plasma cell granuloma of lip

    Directory of Open Access Journals (Sweden)

    B Sabarinath

    2012-01-01

    Full Text Available Plasma cells are medium-sized round-to-oval cells with eccentrically placed nuclei, usually found in the red pulp of the spleen, tonsils, medulla of the lymph nodes, nasal mucosa, upper airway, lamina propria of the gastrointestinal tract, and sites of inflammation. Plasma cell granuloma is a rare reactive tumor-like proliferation composed chiefly of plasmacytic infiltrate. Here, we present a case of plasma cell granuloma of lip in a female patient.

  2. B Cell Subsets in Atherosclerosis

    OpenAIRE

    Perry, Heather M.; Bender, Timothy P.; McNamara, Coleen A.

    2012-01-01

    Atherosclerosis, the underlying cause of heart attacks and strokes, is a chronic inflammatory disease of the artery wall. Immune cells, including lymphocytes modulate atherosclerotic lesion development through interconnected mechanisms. Elegant studies over the past decades have begun to unravel a role for B cells in atherosclerosis. Recent findings provide evidence that B cell effects on atherosclerosis may be subset-dependent. B-1a B cells have been reported to protect from atherosclerosis ...

  3. Activated allogeneic NK cells preferentially kill poor prognosis B-cell chronic lymphocytic leukemia cells

    Directory of Open Access Journals (Sweden)

    Diego Sanchez-Martinez

    2016-10-01

    Full Text Available Mutational status of TP53 together with expression of wild type (wt IGHV represents the most widely accepted biomarkers, establishing a very poor prognosis in B-cell chronic lymphocytic leukemia (B-CLL patients. Adoptive cell therapy using allogeneic HLA mismatched Natural Killer (NK cells has emerged as an effective and safe alternative in the treatment of acute myeloid and lymphoid leukemias that do not respond to traditional therapies. We have described that allogeneic activated NK cells eliminate hematological cancer cell lines with multidrug resistance acquired by mutations in the apoptotic machinery. This effect depends on the activation protocol, being B-lymphoblastoid cell lines (LCLs the most effective stimulus to activate NK cells. Here we have further analyzed the molecular determinants involved in allogeneic NK cell recognition and elimination of B-CLL cells, including the expression of ligands of the main NK cell activating receptors (NKG2D and NCRs and HLA mismatch. We present preliminary data suggesting that B-CLL susceptibility significantly correlates with HLA mismatch between NK cell donor and B-CLL patient. Moreover, we show that the sensitivity of B-CLL cells to NK cells depends on the prognosis based on TP53 and IGHV mutational status. Cells from patients with worse prognosis (mutated TP53 and wt IGHV are the most susceptible to activated NK cells. Hence, B-CLL prognosis may predict the efficacy of allogenic activated NK cells and, thus, NK cell transfer represents a good alternative to treat poor prognosis B-CLL patients who present a very short life expectancy due to lack of effective treatments.□

  4. Stem cells: science, policy, and ethics

    OpenAIRE

    Fischbach, Gerald D.; Fischbach, Ruth L.

    2004-01-01

    Human embryonic stem cells offer the promise of a new regenerative medicine in which damaged adult cells can be replaced with new cells. Research is needed to determine the most viable stem cell lines and reliable ways to promote the differentiation of pluripotent stem cells into specific cell types (neurons, muscle cells, etc.). To create new cell lines, it is necessary to destroy preimplantation blastocysts. This has led to an intense debate that threatens to limit embryonic stem cell resea...

  5. Quantification of plant cell coupling with live-cell microscopy

    DEFF Research Database (Denmark)

    Liesche, Johannes; Schulz, Alexander

    2015-01-01

    cell wall interface. Transport through plasmodesmata, the cell wall channels that directly connect plant cells, is regulated not only by a fixed size exclusion limit, but also by physiological and pathological adaptation. The noninvasive approach described here offers the possibility of precisely...... by confocal microscopy, loaded tracer is activated by UV illumination in a target cell and its spread to neighboring cells monitored. When combined with high-speed acquisition by resonant scanning or spinning disc confocal microscopy, the high signal-to-noise ratio of photoactivation allows collection...

  6. Effect of chaetocin on renal cell carcinoma cells and cytokine-induced killer cells

    Directory of Open Access Journals (Sweden)

    Rombo, Roman

    2016-04-01

    Full Text Available We examined the cytotoxic effects of chaetocin on clear cell renal cell carcinoma (ccRCC cells and the possibility to combine the effects of chaetocin with the effects of cytokine-induced killer cells (CIK assayed by MTT assay and FACS analysis. Chaetocin is a thiodioxopiperazine produced by fungi belonging to the chaetomiaceae family. In 2007, it was first reported that chaetocin shows potent and selectiveanti-cancer activity by inducing reactive oxygen species. CIK cells are generated from CD3+/CD56- T lymphocytes with double negative phenotype that are isolated from human blood. The addition of distinct interleukins and antibodies results in the generation of CIK cells that are able to specifically target and destroy renal carcinoma cells. The results of this research state that the anti-ccRCC activity of chaetocin is weak and does not show a high grade of selectivity on clear cell renal cell carcinoma cells. Although the CIK cells show a high grade of selective anti-ccRCC activity, this effect could not be improved by the addition of chaetocin. So chaetocin seems to be no suitable agent for specific targeting ccRCC cells or for the combination therapy with CIK cells in renal cancer.

  7. Contact inhibition of locomotion determines cell-cell and cell-substrate forces in tissues.

    Science.gov (United States)

    Zimmermann, Juliane; Camley, Brian A; Rappel, Wouter-Jan; Levine, Herbert

    2016-03-08

    Cells organized in tissues exert forces on their neighbors and their environment. Those cellular forces determine tissue homeostasis as well as reorganization during embryonic development and wound healing. To understand how cellular forces are generated and how they can influence the tissue state, we develop a particle-based simulation model for adhesive cell clusters and monolayers. Cells are contractile, exert forces on their substrate and on each other, and interact through contact inhibition of locomotion (CIL), meaning that cell-cell contacts suppress force transduction to the substrate and propulsion forces align away from neighbors. Our model captures the traction force patterns of small clusters of nonmotile cells and larger sheets of motile Madin-Darby canine kidney (MDCK) cells. In agreement with observations in a spreading MDCK colony, the cell density in the center increases as cells divide and the tissue grows. A feedback between cell density, CIL, and cell-cell adhesion gives rise to a linear relationship between cell density and intercellular tensile stress and forces the tissue into a nonmotile state characterized by a broad distribution of traction forces. Our model also captures the experimentally observed tissue flow around circular obstacles, and CIL accounts for traction forces at the edge.

  8. Adult Stem and Progenitor Cells

    Science.gov (United States)

    Geraerts, Martine; Verfaillie, Catherine M.

    The discovery of adult stem cells in most adult tissues is the basis of a number of clinical studies that are carried out, with therapeutic use of hematopoietic stem cells as a prime example. Intense scientific debate is still ongoing as to whether adult stem cells may have a greater plasticity than previously thought. Although cells with some features of embryonic stem cells that, among others, express Oct4, Nanog and SSEA1 are isolated from fresh tissue, it is not clear if the greater differentiation potential is acquired during cell culture. Moreover, adult more pluripotent cells do not have all pluripotent characteristics typical for embryonic stem cells. Recently, some elegant studies were published in which adult cells could be completely reprogrammed to embryonic stem cell-like cells by overexpression of some key transcription factors for pluripotency (Oct4, Sox2, Klf4 and c-Myc). It will be interesting for the future to investigate the exact mechanisms underlying this reprogramming and whether similar transcription factor pathways are present and/or can be activated in adult more pluripotent stem cells.

  9. Cell reprogramming: Into the groove

    Science.gov (United States)

    Xu, Yan; Liu, Longqi; Laslett, Andrew L.; Esteban, Miguel A.

    2013-12-01

    Adult cells can be routinely reprogrammed into pluripotent stem cells by chemical and genetic means, such as the expression of a cocktail of exogenous transcription factors. It is now shown that growing cells on substrates with aligned features such as microgrooves can enhance this process.

  10. Bone regeneration and stem cells

    DEFF Research Database (Denmark)

    Arvidson, K; Abdallah, B M; Applegate, L A

    2011-01-01

    cells, use of platelet rich plasma for tissue repair, osteogenesis and its molecular markers. A variety of cells in addition to stem cells, as well as advances in materials science to meet specific requirements for bone and soft tissue regeneration by addition of bioactive molecules, are discussed....

  11. Coronaviruses in polarized epithelial cells

    NARCIS (Netherlands)

    Rossen, J. W.; Bekker, C. P.; Voorhout, W. F.; Horzinek, M. C.; van der Ende, A.; Strous, G. J.; Rottier, P. J.

    1995-01-01

    Coronaviruses have a marked tropism for epithelial cells. In this paper the interactions of the porcine transmissible gastroenteritis virus (TGEV) and mouse hepatitis virus (MHV-A59) with epithelial cells are compared. Porcine (LLC-PK1) and murine (mTAL) epithelial cells were grown on permeable

  12. Four-cell solar tracker

    Science.gov (United States)

    Berdahl, C. M.

    1981-01-01

    Forty cm Sun tracker, consisting of optical telescope and four solar cells, stays pointed at Sun throughout day for maximum energy collection. Each solar cell generates voltage proportional to part of solar image it receives; voltages drive servomotors that keep image centered. Mirrored portion of cylinder extends acquisition angle of device by reflecting Sun image back onto solar cells.

  13. Late onset globoid cell leukodystrophy.

    OpenAIRE

    Grewal, R P; Petronas, N; Barton, N W

    1991-01-01

    A 29 year old male with onset of globoid cell leukodystrophy at age 14 is described. This is the first case of enzymatically confirmed globoid cell leukodystrophy with onset of symptoms after the age of ten. This patient is unique because of the late onset and slow progression and extends the clinical spectrum of globoid cell leukodystrophy.

  14. Late onset globoid cell leukodystrophy.

    Science.gov (United States)

    Grewal, R P; Petronas, N; Barton, N W

    1991-11-01

    A 29 year old male with onset of globoid cell leukodystrophy at age 14 is described. This is the first case of enzymatically confirmed globoid cell leukodystrophy with onset of symptoms after the age of ten. This patient is unique because of the late onset and slow progression and extends the clinical spectrum of globoid cell leukodystrophy.

  15. Single cell electroporation on chip

    NARCIS (Netherlands)

    Valero, Ana

    2006-01-01

    In this thesis the results of the development of microfluidic cell trap devices for single cell electroporation are described, which are to be used for gene transfection. The performance of two types of Lab-on-a-Chip trapping devices was tested using beads and cells, whereas the functionality for

  16. CLO : The cell line ontology

    NARCIS (Netherlands)

    Sarntivijai, Sirarat; Lin, Yu; Xiang, Zuoshuang; Meehan, Terrence F.; Diehl, Alexander D.; Vempati, Uma D.; Schuerer, Stephan C.; Pang, Chao; Malone, James; Parkinson, Helen; Liu, Yue; Takatsuki, Terue; Saijo, Kaoru; Masuya, Hiroshi; Nakamura, Yukio; Brush, Matthew H.; Haendel, Melissa A.; Zheng, Jie; Stoeckert, Christian J.; Peters, Bjoern; Mungall, Christopher J.; Carey, Thomas E.; States, David J.; Athey, Brian D.; He, Yongqun

    2014-01-01

    Background: Cell lines have been widely used in biomedical research. The community-based Cell Line Ontology (CLO) is a member of the OBO Foundry library that covers the domain of cell lines. Since its publication two years ago, significant updates have been made, including new groups joining the CLO

  17. Information on Stem Cell Research

    Science.gov (United States)

    ... Home » Current Research » Focus on Research Focus on Stem Cell Research Stem cells possess the unique ability to differentiate into ... virus infection. To search the complete list of stem cell research projects funded by NIH please go to NIH ...

  18. Fuel cell report to congress

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2003-02-28

    This report describes the status of fuel cells for Congressional committees. It focuses on the technical and economic barriers to the use of fuel cells in transportation, portable power, stationary, and distributed power generation applications, and describes the need for public-private cooperative programs to demonstrate the use of fuel cells in commercial-scale applications by 2012. (Department of Energy, February 2003).

  19. On the avian Merkel cells.

    OpenAIRE

    Nafstad, P H

    1986-01-01

    Small Merkel cells are described in the hard palate epithelium of the chick. Further, spherical juxtaepithelial Merkel cells and more deeply situated apparently degenerating Merkel corpuscles are also described. The observations are interpreted as a reflection of a sequence of growth and decay of Merkel corpuscles, and seem to support the hypothesis of an epithelial origin of the Merkel cells.

  20. The Skeletal Muscle Satellite Cell

    Science.gov (United States)

    2011-01-01

    The skeletal muscle satellite cell was first described and named based on its anatomic location between the myofiber plasma and basement membranes. In 1961, two independent studies by Alexander Mauro and Bernard Katz provided the first electron microscopic descriptions of satellite cells in frog and rat muscles. These cells were soon detected in other vertebrates and acquired candidacy as the source of myogenic cells needed for myofiber growth and repair throughout life. Cultures of isolated myofibers and, subsequently, transplantation of single myofibers demonstrated that satellite cells were myogenic progenitors. More recently, satellite cells were redefined as myogenic stem cells given their ability to self-renew in addition to producing differentiated progeny. Identification of distinctively expressed molecular markers, in particular Pax7, has facilitated detection of satellite cells using light microscopy. Notwithstanding the remarkable progress made since the discovery of satellite cells, researchers have looked for alternative cells with myogenic capacity that can potentially be used for whole body cell-based therapy of skeletal muscle. Yet, new studies show that inducible ablation of satellite cells in adult muscle impairs myofiber regeneration. Thus, on the 50th anniversary since its discovery, the satellite cell’s indispensable role in muscle repair has been reaffirmed. PMID:22147605

  1. Stages of Merkel Cell Carcinoma

    Science.gov (United States)

    ... tissue. Merkel cells are in the layer of basal cells at the deepest part of the epidermis and are connected to nerves. Merkel cell carcinoma tends to grow quickly and to metastasize (spread) at an early stage . It usually spreads first to nearby lymph nodes and then may spread to lymph nodes or ...

  2. T cell receptor-engineered T cells to treat solid tumors: T cell processing toward optimal T cell fitness

    NARCIS (Netherlands)

    C.H.J. Lamers (Cor); S. van Steenbergen-Langeveld (Sabine); M. van Brakel (Mandy); C.M. Groot-van Ruijven (Corrien); P.M.M.L. van Elzakker (Pascal); B.A. van Krimpen (Brigitte); S. Sleijfer (Stefan); J.E.M.A. Debets (Reno)

    2014-01-01

    textabstractTherapy with autologous T cells that have been gene-engineered to express chimeric antigen receptors (CAR) or T cell receptors (TCR) provides a feasible and broadly applicable treatment for cancer patients. In a clinical study in advanced renal cell carcinoma (RCC) patients with CAR T

  3. Imposed currents in galvanic cells

    NARCIS (Netherlands)

    Biesheuvel, P.M.; Soestbergen, M.; Bazant, M.Z.

    2009-01-01

    We analyze the steady-state behavior of a general mathematical model for reversible galvanic cells, such as redox flow cells, reversible solid oxide fuel cells, and rechargeable batteries. We consider not only operation in the galvanic discharging mode, spontaneously generating a positive current

  4. Commercialization of fuel-cells

    Energy Technology Data Exchange (ETDEWEB)

    Penner, S.S.; Appleby, A.J.; Baker, B.S.; Bates, J.L.; Buss, L.B.; Dollard, W.J.; Farris, P.J.; Gillis, E.A.; Gunsher, J.A.; Khandkar, A.; Krumpelt, M.; O' Sullivan, J.B.; Runte, G.; Savinell, R.F.; Selman, J.R.; Shores, D.A.; Tarman, P.

    1995-03-01

    This report is an abbreviated version of the ''Report of the DOE Advanced Fuel Cell Commercialization Working Group (AFC2WG),'' released January 1995. We describe fuel-cell commercialization for stationary power applications of phosphoric acid, molten carbonate, solid oxide, and polymer electrolyte membrane fuel cells.

  5. Modeling the Shapes of Cells

    Science.gov (United States)

    Garimella, Umadevi I.; Robertson, Belinda M.

    2015-01-01

    A solid understanding of the structure and function of cells can help establish the foundation for learning advanced concepts in the biological sciences. The concept of the cell is introduced in middle school life science courses and is continued at the undergraduate level in college (NRC 2012; Reece et al. 2014). Cells are introduced to students…

  6. Towards optical cell transfection inside a micro flow cell

    Science.gov (United States)

    Breunig, H. G.; Uchugonova, A.; König, K.

    2014-03-01

    For optical transfection, cells are shortly subjected to intense, focused laser radiation which leads to a temporary opening in the cell membrane. Although the method is very efficient and ensures high cell viability, the targeting of single cells with laser pulses is a tedious and slow approach. We present first measurements aiming at an experimental setup which is suitable for high throughput and automated optical cell transfection. In our setup, cells flow through a micro flow cell where they are spatially confined. The laser radiation is focused into the cell in a way that an elongated focal region is realized. This makes the time consuming aiming of the laser beam at individual cells unnecessary and opens the possibility to develop a completely automated system. The elongated laser focal region is realized by a quasi-Bessel beam which is generated by an axicon lens setup and continuously scanned from side to side of the cell. We present test measurements of the newly employed setup and discuss its suitability to be fully integrated into a flow cell sequencing system.

  7. Reprogramming primordial germ cells into pluripotent stem cells.

    Directory of Open Access Journals (Sweden)

    Gabriela Durcova-Hills

    Full Text Available Specification of primordial germ cells (PGCs results in the conversion of pluripotent epiblast cells into monopotent germ cell lineage. Blimp1/Prmt5 complex plays a critical role in the specification and maintenance of the early germ cell lineage. However, PGCs can be induced to dedifferentiate back to a pluripotent state as embryonic germ (EG cells when exposed to exogenous signaling molecules, FGF-2, LIF and SCF.Here we show that Trichostatin A (TSA, an inhibitor of histone deacetylases, is a highly potent agent that can replace FGF-2 to induce dedifferentiation of PGCs into EG cells. A key early event during dedifferentiation of PGCs in response to FGF-2 or TSA is the down-regulation of Blimp1, which reverses and apparently relieves the cell fate restriction imposed by it. Notably, the targets of Blimp1, which include c-Myc and Klf-4, which represent two of the key factors known to promote reprogramming of somatic cells to pluripotent state, are up-regulated. We also found early activation of the LIF/Stat-3 signaling pathway with the translocation of Stat-3 into the nucleus. By contrast, while Prmt5 is retained in EG cells, it translocates from the nucleus to the cytoplasm where it probably has an independent role in regulating pluripotency.We propose that dedifferentiation of PGCs into EG cells may provide significant mechanistic insights on early events associated with reprogramming of committed cells to a pluripotent state.

  8. The Emerging Cell Biology of Thyroid Stem Cells

    Science.gov (United States)

    Latif, Rauf; Minsky, Noga C.; Ma, Risheng

    2011-01-01

    Context: Stem cells are undifferentiated cells with the property of self-renewal and give rise to highly specialized cells under appropriate local conditions. The use of stem cells in regenerative medicine holds great promise for the treatment of many diseases, including those of the thyroid gland. Evidence Acquisition: This review focuses on the progress that has been made in thyroid stem cell research including an overview of cellular and molecular events (most of which were drawn from the period 1990–2011) and discusses the remaining problems encountered in their differentiation. Evidence Synthesis: Protocols for the in vitro differentiation of embryonic stem cells, based on normal developmental processes, have generated thyroid-like cells but without full thyrocyte function. However, agents have been identified, including activin A, insulin, and IGF-I, which are able to stimulate the generation of thyroid-like cells in vitro. In addition, thyroid stem/progenitor cells have been identified within the normal thyroid gland and within thyroid cancers. Conclusions: Advances in thyroid stem cell biology are providing not only insight into thyroid development but may offer therapeutic potential in thyroid cancer and future thyroid cell replacement therapy. PMID:21778219

  9. Stem cells in dentistry--part I: stem cell sources.

    Science.gov (United States)

    Egusa, Hiroshi; Sonoyama, Wataru; Nishimura, Masahiro; Atsuta, Ikiru; Akiyama, Kentaro

    2012-07-01

    Stem cells can self-renew and produce different cell types, thus providing new strategies to regenerate missing tissues and treat diseases. In the field of dentistry, adult mesenchymal stem/stromal cells (MSCs) have been identified in several oral and maxillofacial tissues, which suggests that the oral tissues are a rich source of stem cells, and oral stem and mucosal cells are expected to provide an ideal source for genetically reprogrammed cells such as induced pluripotent stem (iPS) cells. Furthermore, oral tissues are expected to be not only a source but also a therapeutic target for stem cells, as stem cell and tissue engineering therapies in dentistry continue to attract increasing clinical interest. Part I of this review outlines various types of intra- and extra-oral tissue-derived stem cells with regard to clinical availability and applications in dentistry. Additionally, appropriate sources of stem cells for regenerative dentistry are discussed with regard to differentiation capacity, accessibility and possible immunomodulatory properties. Copyright © 2012 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.

  10. Cell wall biology: perspectives from cell wall imaging.

    Science.gov (United States)

    Lee, Kieran J D; Marcus, Susan E; Knox, J Paul

    2011-03-01

    Polysaccharide-rich plant cell walls are important biomaterials that underpin plant growth, are major repositories for photosynthetically accumulated carbon, and, in addition, impact greatly on the human use of plants. Land plant cell walls contain in the region of a dozen major polysaccharide structures that are mostly encompassed by cellulose, hemicelluloses, and pectic polysaccharides. During the evolution of land plants, polysaccharide diversification appears to have largely involved structural elaboration and diversification within these polysaccharide groups. Cell wall chemistry is well advanced and a current phase of cell wall science is aimed at placing the complex polysaccharide chemistry in cellular contexts and developing a detailed understanding of cell wall biology. Imaging cell wall glycomes is a challenging area but recent developments in the establishment of cell wall molecular probe panels and their use in high throughput procedures are leading to rapid advances in the molecular understanding of the spatial heterogeneity of individual cell walls and also cell wall differences at taxonomic levels. The challenge now is to integrate this knowledge of cell wall heterogeneity with an understanding of the molecular and physiological mechanisms that underpin cell wall properties and functions.

  11. K+ channels and cell cycle progression in tumor cells

    Directory of Open Access Journals (Sweden)

    HALIMA eOUADID-AHIDOUCH

    2013-08-01

    Full Text Available K+ ions play a major role in many cellular processes. The deregulation of K+ signaling is associated with a variety of diseases such as hypertension, atherosclerosis, or diabetes. K+ ions are important for setting the membrane potential, the driving force for Ca2+ influx, and regulate volume of growing cells. Moreover, it is increasingly recognized that K+ channels control cell proliferation through a novel signaling mechanisms triggered and modulated independently of ion fluxes. In cancer, aberrant expression, regulation and/or sublocalization of K+ channels can alter the downstream signals that converge on the cell cycle machinery. Various K+ channels are involved in cell cycle progression and are needed only at particular stages of the cell cycle. Consistent with this idea, the expression of Eag1 and HERG channels fluctuate along the cell cycle. Despite of acquired knowledge, our understanding of K+ channels functioning in cancer cells requires further studies. These include identifying the molecular mechanisms controling the cell cycle machinery. By understanding how K+ channels regulate cell cycle progression in cancer cells, we will gain insights into how cancer cells subvert the need for K+ signal and its downstream targets to proliferate.

  12. Fuel Cell Handbook, Fifth Edition

    Energy Technology Data Exchange (ETDEWEB)

    Energy and Environmental Solutions

    2000-10-31

    Progress continues in fuel cell technology since the previous edition of the Fuel Cell Handbook was published in November 1998. Uppermost, polymer electrolyte fuel cells, molten carbonate fuel cells, and solid oxide fuel cells have been demonstrated at commercial size in power plants. The previously demonstrated phosphoric acid fuel cells have entered the marketplace with more than 220 power plants delivered. Highlighting this commercial entry, the phosphoric acid power plant fleet has demonstrated 95+% availability and several units have passed 40,000 hours of operation. One unit has operated over 49,000 hours. Early expectations of very low emissions and relatively high efficiencies have been met in power plants with each type of fuel cell. Fuel flexibility has been demonstrated using natural gas, propane, landfill gas, anaerobic digester gas, military logistic fuels, and coal gas, greatly expanding market opportunities. Transportation markets worldwide have shown remarkable interest in fuel cells; nearly every major vehicle manufacturer in the U.S., Europe, and the Far East is supporting development. This Handbook provides a foundation in fuel cells for persons wanting a better understanding of the technology, its benefits, and the systems issues that influence its application. Trends in technology are discussed, including next-generation concepts that promise ultrahigh efficiency and low cost, while providing exceptionally clean power plant systems. Section 1 summarizes fuel cell progress since the last edition and includes existing power plant nameplate data. Section 2 addresses the thermodynamics of fuel cells to provide an understanding of fuel cell operation at two levels (basic and advanced). Sections 3 through 8 describe the six major fuel cell types and their performance based on cell operating conditions. Alkaline and intermediate solid state fuel cells were added to this edition of the Handbook. New information indicates that manufacturers have stayed

  13. The antigen presenting cells instruct plasma cell differentiation.

    Science.gov (United States)

    Xu, Wei; Banchereau, Jacques

    2014-01-06

    The professional antigen presenting cells (APCs), including many subsets of dendritic cells and macrophages, not only mediate prompt but non-specific response against microbes, but also bridge the antigen-specific adaptive immune response through antigen presentation. In the latter, typically activated B cells acquire cognate signals from T helper cells in the germinal center of lymphoid follicles to differentiate into plasma cells (PCs), which generate protective antibodies. Recent advances have revealed that many APC subsets provide not only "signal 1" (the antigen), but also "signal 2" to directly instruct the differentiation process of PCs in a T-cell-independent manner. Herein, the different signals provided by these APC subsets to direct B cell proliferation, survival, class switching, and terminal differentiation are discussed. We furthermore propose that the next generation of vaccines for boosting antibody response could be designed by targeting APCs.

  14. Cell and organ printing 1: protein and cell printers.

    Science.gov (United States)

    Wilson, W Cris; Boland, Thomas

    2003-06-01

    We have developed several devices for positioning organic molecules, molecular aggregates, cells, and single-cell organisms onto solid supports. These printers can create stable, functional protein arrays using an inexpensive technology. The cell printer allows us to create cell libraries as well as cellular assemblies that mimic their respective position in organs. The printers are derived from commercially available ink-jet printers that are modified to dispense protein or cell solutions instead of ink. We describe here the modifications to the print heads, and the printer hardware and software that enabled us to adapt the ink-jet printers for the manufacture of cell and protein arrays. The printers have the advantage of being fully automated and computer controlled, and allow for the high-throughput manufacture of protein and cell arrays. Copyright 2003 Wiley-Liss, Inc.

  15. Single-cell Raman spectroscopy of irradiated tumour cells

    Science.gov (United States)

    Matthews, Quinn

    This work describes the development and application of a novel combination of single-cell Raman spectroscopy (RS), automated data processing, and principal component analysis (PCA) for investigating radiation induced biochemical responses in human tumour cells. The developed techniques are first validated for the analysis of large data sets (˜200 spectra) obtained from single cells. The effectiveness and robustness of the automated data processing methods is demonstrated, and potential pitfalls that may arise during the implementation of such methods are identified. The techniques are first applied to investigate the inherent sources of spectral variability between single cells of a human prostate tumour cell line (DU145) cultured in vitro. PCA is used to identify spectral differences that correlate with cell cycle progression and the changing confluency of a cell culture during the first 3-4 days after sub-culturing. Spectral variability arising from cell cycle progression is (i) expressed as varying intensities of protein and nucleic acid features relative to lipid features, (ii) well correlated with known biochemical changes in cells as they progress through the cell cycle, and (iii) shown to be the most significant source of inherent spectral variability between cells. This characterization provides a foundation for interpreting spectral variability in subsequent studies. The techniques are then applied to study the effects of ionizing radiation on human tumour cells. DU145 cells are cultured in vitro and irradiated to doses between 15 and 50 Gy with single fractions of 6 MV photons from a medical linear accelerator. Raman spectra are acquired from irradiated and unirradiated cells, up to 5 days post-irradiation. PCA is used to distinguish radiation induced spectral changes from inherent sources of spectral variability, such as those arising from cell cycle. Radiation induced spectral changes are found to correlate with both the irradiated dose and the

  16. Operando fuel cell spectroscopy

    Science.gov (United States)

    Kendrick, Ian Michael

    The active state of a catalyst only exists during catalysis (1) provided the motivation for developing operando spectroscopic techniques. A polymer electrolyte membrane fuel cell (PEMFC) was designed to interface with commercially available instruments for acquisition of infrared spectra of the catalytic surface of the membrane electrode assembly (MEA) during normal operation. This technique has provided insight of the complex processes occurring at the electrode surface. Nafion, the solid electrolyte used in most modern-day polymer electrolyte membrane fuel cells (PEMFC), serves many purposes in fuel cell operation. However, there is little known of the interface between Nafion and the electrode surface. Previous studies of complex Stark tuning curves of carbon monoxide on the surface of a platinum electrode were attributed the co-adsorption of bisulfite ions originating from the 0.5M H2SO4 electrolyte used in the study(2). Similar tuning curves obtained on a fuel cell MEA despite the absence of supplemental electrolytes suggest the adsorption of Nafion onto platinum (3). The correlation of spectra obtained using attenuated total reflectance spectroscopy (ATR) and polarization modulated IR reflection-absorption spectroscopy (PM-IRRAS) to a theoretical spectrum generated using density functional theory (DFT) lead to development of a model of Nafion and platinum interaction which identified participation of the SO3- and CF3 groups in Nafion adsorption. The use of ethanol as a fuel stream in proton exchange membrane fuel cells provides a promising alternative to methanol. Relative to methanol, ethanol has a greater energy density, lower toxicity and can be made from the fermentation of biomass(4). Operando IR spectroscopy was used to study the oxidation pathway of ethanol and Stark tuning behavior of carbon monoxide on Pt, Ru, and PtRu electrodes. Potential dependent products such as acetaldehyde, acetic acid and carbon monoxide are identified as well as previously

  17. Characterisation of cell adhesion in airway epithelial cell types using electric cell-substrate impedance sensing

    NARCIS (Netherlands)

    Heijink, I H; Brandenburg, S M; Noordhoek, J A; Postma, D S; Slebos, D-J; van Oosterhout, A J M

    Research on epithelial cell lines and primary epithelium is required to dissect the mechanisms underlying the structural abnormalities in airway epithelium observed for respiratory diseases, including asthma and chronic obstructive pulmonary disease. The novel electric cell-substrate impedance

  18. Establishment of cell lines from adult T-cell leukemia cells dependent on negatively charged polymers.

    Science.gov (United States)

    Kagami, Yoshitoyo; Uchiyama, Susumu; Kato, Harumi; Okada, Yasutaka; Seto, Masao; Kinoshita, Tomohiro

    2017-07-05

    Growing adult T-cell leukemia/lymphoma (ATLL) cells in vitro is difficult. Here, we examined the effects of static electricity in the culture medium on the proliferation of ATLL cells. Six out of 10 ATLL cells did not proliferate in vitro and thus had to be cultured in a medium containing negatively charged polymers. In the presence of poly-γ-glutamic acid (PGA) or chondroitin sulfate (CDR), cell lines (HKOX3-PGA, HKOX3-CDR) were established from the same single ATLL case using interleukin (IL)-2, IL-4, and feeder cells expressing OX40L (OX40L + HK). Dextran sulfate inhibited growth in both HKOX3 cell lines. Both PGA and OX40L + HK were indispensable for HKOX3-PGA growth, but HKOX3-CDR could proliferate in the presence of CDR or OX40L + HK alone. Thus, the specific action of each negatively charged polymer promoted the growth of specific ATLL cells in vitro.

  19. Naive Pluripotent Stem Cells Derived Directly from Isolated Cells of the Human Inner Cell Mass

    Directory of Open Access Journals (Sweden)

    Ge Guo

    2016-04-01

    Full Text Available Conventional generation of stem cells from human blastocysts produces a developmentally advanced, or primed, stage of pluripotency. In vitro resetting to a more naive phenotype has been reported. However, whether the reset culture conditions of selective kinase inhibition can enable capture of naive epiblast cells directly from the embryo has not been determined. Here, we show that in these specific conditions individual inner cell mass cells grow into colonies that may then be expanded over multiple passages while retaining a diploid karyotype and naive properties. The cells express hallmark naive pluripotency factors and additionally display features of mitochondrial respiration, global gene expression, and genome-wide hypomethylation distinct from primed cells. They transition through primed pluripotency into somatic lineage differentiation. Collectively these attributes suggest classification as human naive embryonic stem cells. Human counterparts of canonical mouse embryonic stem cells would argue for conservation in the phased progression of pluripotency in mammals.

  20. Naive Pluripotent Stem Cells Derived Directly from Isolated Cells of the Human Inner Cell Mass.

    Science.gov (United States)

    Guo, Ge; von Meyenn, Ferdinand; Santos, Fatima; Chen, Yaoyao; Reik, Wolf; Bertone, Paul; Smith, Austin; Nichols, Jennifer

    2016-04-12

    Conventional generation of stem cells from human blastocysts produces a developmentally advanced, or primed, stage of pluripotency. In vitro resetting to a more naive phenotype has been reported. However, whether the reset culture conditions of selective kinase inhibition can enable capture of naive epiblast cells directly from the embryo has not been determined. Here, we show that in these specific conditions individual inner cell mass cells grow into colonies that may then be expanded over multiple passages while retaining a diploid karyotype and naive properties. The cells express hallmark naive pluripotency factors and additionally display features of mitochondrial respiration, global gene expression, and genome-wide hypomethylation distinct from primed cells. They transition through primed pluripotency into somatic lineage differentiation. Collectively these attributes suggest classification as human naive embryonic stem cells. Human counterparts of canonical mouse embryonic stem cells would argue for conservation in the phased progression of pluripotency in mammals. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.