WorldWideScience

Sample records for wire temperature analysis

  1. Solution of magnetohydrodynamic flow and heat transfer of radiative viscoelastic fluid with temperature dependent viscosity in wire coating analysis.

    Science.gov (United States)

    Khan, Zeeshan; Khan, Muhammad Altaf; Siddiqui, Nasir; Ullah, Murad; Shah, Qayyum

    2018-01-01

    Wire coating process is a continuous extrusion process for primary insulation of conducting wires with molten polymers for mechanical strength and protection in aggressive environments. In the present study, radiative melt polymer satisfying third grade fluid model is used for wire coating process. The effect of magnetic parameter, thermal radiation parameter and temperature dependent viscosity on wire coating analysis has been investigated. Reynolds model and Vogel's models have been incorporated for variable viscosity. The governing equations characterizing the flow and heat transfer phenomena are solved analytically by utilizing homotopy analysis method (HAM). The computed results are also verified by ND-Solve method (Numerical technique) and Adomian Decomposition Method (ADM). The effect of pertinent parameters is shown graphically. In addition, the instability of the flow in the flows of the wall of the extrusion die is well marked in the case of the Vogel model as pointed by Nhan-Phan-Thien.

  2. A novel design and analysis of a MEMS ceramic hot-wire anemometer for high temperature applications

    International Nuclear Information System (INIS)

    Nagaiah, N R; Sleiti, A K; Rodriguez, S; Kapat, J S; An, L; Chow, L

    2006-01-01

    This paper attempts to prove the feasibility of high temperature MEMS hot-wire anemometer for gas turbine environment. No such sensor exists at present. Based on the latest improvement in a new type of Polymer-Derived Ceramic (PDC) material, the authors present a Novel design, structural and thermal analysis of MEMS hot-wire anemometer (HWA) based on PDC material, and show that such a sensor is indeed feasible. This MEMS Sensor is microfabricated by using three types of PDC materials such as SiAlCN, SiCN (lightly doped) and SiCN (heavily doped) for sensing element (hot-wire), support prongs and connecting leads respectively. This novel hot wire anemometer can perform better than a conventional HWA in which the hot wire is made of tungsten or platinum-iridium. This type of PDC-HWA can be used in harsh environment due to its high temperature resistance, tensile strength and resistance to oxidation. This HWA is fabricated using microstereolithography as a novel microfabrication technique to manufacture the proposed MEMS Sensor

  3. Contribution of ion beam analysis methods to the development of 2nd generation high temperature superconducting (HTS) wires

    Energy Technology Data Exchange (ETDEWEB)

    Usov, Igor O [Los Alamos National Laboratory; Arendt, Paul N [Los Alamos National Laboratory; Stan, Liliana [Los Alamos National Laboratory; Holesinger, Terry G [Los Alamos National Laboratory; Foltyn, Steven R [Los Alamos National Laboratory; Depaula, Raymond F [Los Alamos National Laboratory

    2009-01-01

    One of the crucial steps in the second generation high temperature superconducting wire program was development of the buffer layer architecture. The architecture designed at the Superconductivity Technology Center at Los Alamos National Laboratory consists of several oxide layers wherein each layer plays a specific role, namely: nucleation layer, diffusion barrier, biaxially textured template, and an intermediate layer with a good match to the lattice parameter of superconducting Y{sub 1}Ba{sub 2}Cu{sub 3}O{sub 7} (YBCO) compound. This report demonstrates how a wide range of ion beam analysis techniques (SIMS, RBS, channeling, PIXE, PIGE, NRA, ERD) was employed for analysis of each buffer layer and the YBCO films. These results assisted in understanding of a variety of physical processes occurring during the buffet layer fabrication and helped to optimize the buffer layer architecture as a whole.

  4. Subchannel Analysis of Wire Wrapped SCWR Assembly

    Directory of Open Access Journals (Sweden)

    Jianqiang Shan

    2014-01-01

    Full Text Available Application of wire wrap spacers in SCWR can reduce pressure drop and obtain better mixing capability. As a consequence, the required coolant pumping power is decreased and the coolant temperature profile inside the fuel bundle is flattened which will obviously decrease the peak cladding temperature. The distributed resistance model for wire wrap was developed and implemented in ATHAS subchannel analysis code. The HPLWR wire wrapped assembly was analyzed. The results show that: (1 the assembly with wire wrap can obtain a more uniform coolant temperature profile than the grid spaced assembly, which will result in a lower peak cladding temperature; (2 the pressure drop in a wire wrapped assembly is less than that in a grid spaced assembly, which can reduce the operating power of pump effectively; (3 the wire wrap pitch has significant effect on the flow in the assembly. Smaller Hwire/Drod will result in stronger cross flow a more uniform coolant temperature profile, and also a higher pressure drop.

  5. The role of temperature in copper wire drawing

    Science.gov (United States)

    Noseda, Corrado

    -isothermal temperature conditions at 25°C, 100°C, 150°C, 200°C, and 250°C using a custom designed apparatus. The surface appearance, together with the calculated coefficients of friction, gave indications as to the prevailing lubrication mechanism, which turned out to be of the boundary type in most cases, except at 100°C, where surface shaving was observed. Hardness measurements, tensile testing, metallographical investigations, as well as texture analysis indicated that at least partial recrystallization occurs when the wire is exposed to temperatures of 200°C and beyond during drawing. An account was also given on the annealing response of the as-drawn wire, by applying the concept of annealing index, a parameter that encompasses annealing time and temperature.

  6. Heat Transfer Analysis in Wire Bundles for Aerospace Vehicles

    Science.gov (United States)

    Rickman, S. L.; Iamello, C. J.

    2016-01-01

    Design of wiring for aerospace vehicles relies on an understanding of "ampacity" which refers to the current carrying capacity of wires, either, individually or in wire bundles. Designers rely on standards to derate allowable current flow to prevent exceedance of wire temperature limits due to resistive heat dissipation within the wires or wire bundles. These standards often add considerable margin and are based on empirical data. Commercial providers are taking an aggressive approach to wire sizing which challenges the conventional wisdom of the established standards. Thermal modelling of wire bundles may offer significant mass reduction in a system if the technique can be generalized to produce reliable temperature predictions for arbitrary bundle configurations. Thermal analysis has been applied to the problem of wire bundles wherein any or all of the wires within the bundle may carry current. Wire bundles present analytical challenges because the heat transfer path from conductors internal to the bundle is tortuous, relying on internal radiation and thermal interface conductance to move the heat from within the bundle to the external jacket where it can be carried away by convective and radiative heat transfer. The problem is further complicated by the dependence of wire electrical resistivity on temperature. Reduced heat transfer out of the bundle leads to higher conductor temperatures and, hence, increased resistive heat dissipation. Development of a generalized wire bundle thermal model is presented and compared with test data. The steady state heat balance for a single wire is derived and extended to the bundle configuration. The generalized model includes the effects of temperature varying resistance, internal radiation and thermal interface conductance, external radiation and temperature varying convective relief from the free surface. The sensitivity of the response to uncertainties in key model parameters is explored using Monte Carlo analysis.

  7. Low temperature annealing of cold-drawn pearlitic steel wire

    DEFF Research Database (Denmark)

    Zhang, Xiaodan; Bech, Jakob Ilsted; Hansen, Niels

    2015-01-01

    Cold-drawn pearlitic steel wires are nanostructured and the flow stress at room temperature can reach values above 6 GPa. A typical characteristic of the nanostructured metals, is the low ductility and thermal stability. In order to optimize both the processing and application of the wires, the t...

  8. Thermal analysis methods for LMFBR wire wrapped bundles

    International Nuclear Information System (INIS)

    Todreas, N.E.

    1976-11-01

    A note is presented which was written to stimulate an awareness and discussion of the fundamental differences in the formulation of certain existing analysis codes for LMFBR wire wrap bundles. The contention of the note is that for those array types where data exists (one wire per pin, equal start angles), the ENERGY method results for coolant temperature under forced convection conditions provide benchmarks of reliability equal to the results of codes COBRA and TH1-3D

  9. Inorganic Nanostructured High-Temperature Magnet Wires, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This project will develop a high-temperature tolerant electrically-insulating coating for magnet wires. The Phase I program will result in a flexible, inorganic...

  10. Determination of temperature fluctuations at high temperature by hot-wire anemometry

    International Nuclear Information System (INIS)

    Gokalp, Iskender; Bisch, Christian

    1978-01-01

    Thermal sensibility coefficients of a hot-wire are experimentally obtained for flow temperatures attaining 400 0 C. The linear evolution of the voltage signal of the hot-wire with temperature, observed earlier for flow temperatures not surpassing 60 0 C, is confirmed up to 400 0 C. The coefficients are then used for determining, in a hot turbulent flow, the temperature fluctuation evolution with flow mean temperature [fr

  11. Setup and programming of a one-wire temperature grid

    Energy Technology Data Exchange (ETDEWEB)

    Vischer, Janna [Georg-August-Universitaet, Goettingen (Germany)

    2016-07-01

    This project aims at building a field of ten by ten temperature Sensors as a prototype of a more precise temperature measurement in an inner detector layer. So it is possible to get a better resolution of the temperature near the sensitive pixel detectors there. A prominent example of such a detector is ATLAS at CERN. It is desirable to use as few wires as possible. This can be achieved with the One-wire technology where all sensors are connected in a row. They can be approached individually by unique addresses. With the help of an Arduino microcontroller the data can be read out, saved and displayed as a visual temperature map. This project was executed during the Netzwerk Teilchenwelt Projektwochen at CERN.

  12. TEMPERATURE-DEFORMATION CRITERION OF OPTIMIZATION OF FINE DRAWING HIGH CARBON WIRE ROUTE

    Directory of Open Access Journals (Sweden)

    Y. L. Bobarikin

    2012-01-01

    Full Text Available The temperature-deformation criterion of assessment and optimization of routes of the thin high-carbon wire drawing enabling to increase plastic properties of wire at retaining of its durability is offered.

  13. Force delivery of NiTi orthodontic arch wire at different magnitude of deflections and temperatures: A finite element study.

    Science.gov (United States)

    Razali, M F; Mahmud, A S; Mokhtar, N

    2018-01-01

    NiTi arch wires are used widely in orthodontic treatment due to its superelastic and biocompatibility properties. In brackets configuration, the force released from the arch wire is influenced by the sliding resistances developed on the arch wire-bracket contact. This study investigated the evolution of the forces released by a rectangular NiTi arch wire towards possible intraoral temperature and deflection changes. A three dimensional finite element model was developed to measure the force-deflection behavior of superelastic arch wire. Finite element analysis was used to distinguish the martensite fraction and phase state of arch wire microstructure in relation to the magnitude of wire deflection. The predicted tensile and bending results from the numerical model showed a good agreement with the experimental results. As contact developed between the wire and bracket, binding influenced the force-deflection curve by changing the martensitic transformation plateau into a slope. The arch wire recovered from greater magnitude of deflection released lower force than one recovered from smaller deflection. In contrast, it was observed that the plateau slope increased from 0.66N/mm to 1.1N/mm when the temperature was increased from 26°C to 46°C. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Investigation of Constant Temperature Hot-wire System Response using Laser Pulse

    Science.gov (United States)

    Jaffa, Nicholas; Morris, Scott; Cameron, Joshua

    2016-11-01

    Constant temperature hot-wire systems use a Wheatstone bridge and feedback amplifier circuit to maintain a constant average temperature across the wire yielding frequency responses of order 100 kHz. This high frequency response allows hot-wires to be used extensively for aerodynamic measurements in high speed flows and uncertainty at these high frequencies can be difficult to diagnose. The standard frequency response check for constant temperature hot-wires uses an electronic pulse across the circuit to check the electronic feedback circuit response time, but does not account for the impact of the heat transfer along the wire. In order to investigate the frequency response of the entire constant temperature hot-wire system, including the heat transfer along the wire, a novel method was developed using a pulsed PIV laser focused to illuminate only the hot-wire. The laser pulse duration was effectively an instantaneous change in wire surface temperature through radiation. A hot-wire was placed in a uniform open calibration jet for a range of flow conditions. The response of the entire hot-wire system was observed across a range of conditions including changes in flow, wire temperature, and thermal boundary conditions and compared with the electronic pulse test.

  15. Observation of high temperature plasma in nickel wire array implosions

    International Nuclear Information System (INIS)

    Deeney, C.; Nash, T.; LePell, P.D.; Childers, K.; Krishnan, M.

    1989-01-01

    Time- and space-resolved filtered pinhole photography and crystal X-ray spectroscopy have been used to diagnose K-shell emission from nickel wire array implosions on the DNA/Double-EAGLE 6TW generator. In this paper, results are presented which show electron beam induced Ni K α emission prior to and during a rapid localized heating of the plasma and the formation of intense hot spots. The observation of hydrogen-like nickel lines from the hot spots is indicative of multi-keV electron temperatures

  16. Effect of heat treatment temperature on nitinol wire

    Energy Technology Data Exchange (ETDEWEB)

    Cai, S.; Schaffer, J. E. [Fort Wayne Metals Research Products Corporation, 9609 Ardmore Ave., Fort Wayne, Indiana 46809 (United States); Daymond, M. R. [Department of Mechanical and Materials Engineering, Queen' s University, Nicol Hall, 60 Union Street, Kingston, Ontario K7L 3N6 (Canada); Yu, C. [State Key Laboratory of Heavy Oil Processing, China University of Petroleum, 102249 Beijing (China); Ren, Y. [Argonne National Laboratory, 9700 S. Cass Ave, 433/D008, Argonne, Illinois 60439 (United States)

    2014-08-18

    In-situ synchrotron X-ray diffraction has been used to study the influence of the heat treatment temperature on the subsequent micromechanical behavior of nitinol wire. It was found that increase in the heat treatment temperature rotated the austenite texture from the (332){sub B2} fiber towards the (111){sub B2} fiber, and the texture of the Stress-Induced Martensite phase changed from the (1{sup ¯}40){sub B19'} to the (1{sup ¯}20){sub B19'} fiber accordingly. Heat treatment at a low temperature reduces the internal residual strains in the austenite during super-elastic deformation and therefore improves the materials fatigue performance. The development of internal residual strains in austenite is controlled by transformation induced plasticity and the reversal martensite to austenite transformation.

  17. A High-Temperature Transient Hot-Wire Thermal Conductivity Apparatus for Fluids

    OpenAIRE

    Perkins, R. A.; Roder, H. M.; Nieto de Castro, C. A.

    1991-01-01

    A new apparatus for measuring both the thermal conductivity and thermal diffusivity of fluids at temperatures from 220 to 775 K at pressures to 70 MPa is described. The instrument is based on the step-power-forced transient hot-wire technique. Two hot wires are arranged in different arms of a Wheatstone bridge such that the response of the shorter compensating wire is subtracted from the response of the primary wire. Both hot wires are 12.7 ?m diameter platinum wire and are simultaneously use...

  18. Applications of surface analysis in the wire industry

    Science.gov (United States)

    Stout, David A.

    The quality of wire is judged not only by its physical properties such as tensile strength and fatigue resistance, but also by its surface finish. The surface roughness, oxide formation, cleanliness, and plating homogeneity and porosity are just a few of the surface properties than can influence the performance of a wire product. Coupled to this is the large amount of surface area generated in drawing wire. For example, a ten pound spool holds nine miles of 0.006″ diameter stainless steel wire. For these reasons surface analysis has become important both to the manufacturer and consumer of wire products. When surface analysis equipment such as AES, ESCA, and SIMS was first becoming commercially available in the late sixties and early seventies, the wire industry was beginning to enter a phase of technological development for many of its products. Wire manufacturers and users began using surface analysis to investigate such topics as adhesion of brass plated automobile tire cord to rubber and diffusion of layered deposits. Examples of surface analysis used for process control, problem solving, and project development include discoloration problems on stainless steel wire, welding problems with composite wires, diffusion formed brass coatings, and diffusion problems with solder coated and Cu plated steel wire.

  19. Conductance distributions of one-dimensional disordered wires at finite temperature and bias voltage

    Science.gov (United States)

    Foieri, Federico; Sánchez, María José; Arrachea, Liliana; Gopar, Victor A.

    2006-10-01

    We calculate the distribution of the conductance G in a one-dimensional disordered wire at finite temperature T and bias voltage V in an independent-electron picture and assuming full coherent transport. At high enough temperature and bias voltage, where several resonances of the system contribute to the conductance, the distribution P(G(T,V)) can be represented with good accuracy by autoconvolutions of the distribution of the conductance at zero temperature and zero bias voltage. The number of convolutions depends on T and V . In the regime of very low T and V , where only one resonance is relevant to G(T,V) , the conductance distribution is analyzed by a resonant tunneling conductance model. Strong effects of finite T and V on the conductance distribution are observed and well described by our theoretical analysis, as we verify by performing a number of numerical simulations of a one-dimensional disordered wire at different temperatures, voltages, and lengths of the wire. Analytical estimates for the first moments of P(G(T,V)) at high temperature and bias voltage are also provided.

  20. Microwave Wire Interrogation Method Mapping Pressure under High Temperatures

    Directory of Open Access Journals (Sweden)

    Xiaoyong Chen

    2017-12-01

    Full Text Available It is widely accepted that wireless reading for in-situ mapping of pressure under high-temperature environments is the most feasible method, because it is not subject to frequent heterogeneous jointing failures and electrical conduction deteriorating, or even disappearing, under heat load. However, in this article, we successfully demonstrate an in-situ pressure sensor with wire interrogation for high-temperature applications. In this proof-of-concept study of the pressure sensor, we used a microwave resonator as a pressure-sensing component and a microwave transmission line as a pressure characteristic interrogation tunnel. In the sensor, the line and resonator are processed into a monolith, avoiding a heterogeneous jointing failure; further, microwave signal transmission does not depend on electrical conduction, and consequently, the sensor does not suffer from the heat load. We achieve pressure monitoring under 400 °C when employing the sensor simultaneously. Our sensor avoids restrictions that exist in wireless pressure interrogations, such as environmental noise and interference, signal leakage and security, low transfer efficiency, and so on.

  1. High Temperature Life Testing of 80Ni-20Cr Wire in a Simulated Mars Atmosphere for the Sample Analysis at Mars (SAM) Instrument Suit Gas Processing System (GPS) Carbon Dioxide Scrubber

    Science.gov (United States)

    Gundersen, Cynthia; Hoffman, Christopher; Munoz, Bruno; Steohenson, Timothy; Thomas, Walter

    2008-01-01

    In support of the GPS for the SAM instrument suite built by GSFC, a life test facility was developed to test the suitability of 80Ni-20Cr wire, 0.0056 inches in diameter, for use as a heater element for the carbon dioxide scrubber. The wire would be required to operate at 1000 C in order to attain the 800 C required for regeneration of the getter. The wire also would need to operate in the Mars atmosphere, which consists mostly of CO2 at pressures between 4 and 12 torr. Data on the high temperature degradation mechanism of 80Ni-20Cr in low pressure CO2, together with the effects of thermal cycling, were unknown. In addition, the influence of work hardening of the wire during assembly and the potential for catastrophic grain growth also were unknown. Verification of the wire reliability as defined by the mission goals required the construction of a test facility that would accurately simulate the duty cycles in a simulated Mars atmosphere. The experimental set-up, along with the test protocol and results will be described.

  2. Controlled-Growth of ZnO Nano wires with Different Processing Temperature

    International Nuclear Information System (INIS)

    Yap Chi Chin; Muhammad Yahaya; Muhamad Mat Salleh; Dee Chang Fu

    2008-01-01

    ZnO nano wires have been synthesized using a catalyst-free carbothermal reduction approach on SiO 2 -coated Si substrates in a flowing nitrogen atmosphere with a mixture of ZnO and graphite as reactants. The collected ZnO nano wires have been characterized by X-ray diffraction, scanning electron microscopy, energy dispersive spectroscopy and photoluminescence spectroscopy. Controlled growth of the ZnO nano wires was achieved by manipulating the reactants heating temperature from 700 to 1000 degree Celsius. It was found that the optimum temperature to synthesize high density and long ZnO nano wires was about 800 degree Celsius. The possible growth mechanism of ZnO nano wires is also proposed. (author)

  3. The calibration of (multi-) hot-wire probes. 1. Temperature calibration

    NARCIS (Netherlands)

    Dijk, van A.; Nieuwstadt, F.T.M.

    2004-01-01

    We study the performance of the classical relation for the correction for ambient temperature drift of the signal of a hot-wire anemometer and the influence of practical assumptions. It is shown that most methods to estimate the operational temperature via the temperature/resistance coefficient lead

  4. Embedded resistance wire as a heating element for temperature control in microbioreactors

    DEFF Research Database (Denmark)

    Zainal Alam, Muhd Nazrul Hisham; Schäpper, Daniel; Gernaey, Krist

    2010-01-01

    This paper presents the technical realization of a low-cost heating element consisting of a resistance wire in a microbioreactor, as well as the implementation and performance assessment of an on/off controller for temperature control of the microbioreactor content based on this heating element...... surround the reactor chamber or are placed underneath it. The latter can achieve an even temperature distribution across the reactor chamber and direct heating of the reactor content. We show that an integrated resistance wire coupled to a simple on/off controller results in accurate temperature control...... temperature control in a batch Saccharomyces cerevisiae cultivation in a microbioreactor....

  5. Flux transformers made of commercial high critical temperature superconducting wires.

    Science.gov (United States)

    Dyvorne, H; Scola, J; Fermon, C; Jacquinot, J F; Pannetier-Lecoeur, M

    2008-02-01

    We have designed flux transformers made of commercial BiSCCO tapes closed by soldering with normal metal. The magnetic field transfer function of the flux transformer was calculated as a function of the resistance of the soldered contacts. The performances of different kinds of wires were investigated for signal delocalization and gradiometry. We also estimated the noise introduced by the resistance and showed that the flux transformer can be used efficiently for weak magnetic field detection down to 1 Hz.

  6. Observation of A15 phase transformation in RHQ-Nb3Al wire by neutron diffraction at high-temperature

    International Nuclear Information System (INIS)

    Jin Xinzhe; Nakamoto, Tatsushi; Harjo, Stefanus; Ito, Takayoshi; Ogitsu, Toru; Tsuchiya, Kiyosumi; Yamamoto, Akira; Kikuchi, Akihiro; Takeuchi, Takao; Hemmi, Tsutomu

    2012-01-01

    Highlights: ► A15 phase transition from solid solution occurred within 5 min in RHQ-Nb 3 Al wire. ► The holding duration of 9 h at 800 °C was found to optimize growth of the A15 phase. ► The residual strain in the Nb 3 Al filaments appeared between 200 and 300 °C. ► An isotropic tensile strain of 0.07% was found in the Nb 3 Al at room temperature. ► The tensile effect of the Nb/Ta matrix was dominant in the RHQ-Nb3Al wire. - Abstract: Nb 3 Al superconducting wires produced by rapid heating and quenching (RHQ) method have been developed for application to high field accelerator magnet. In an A15-type superconductor, it is known that residual strain in the superconducting phase induced by thermal contraction after heat treatment influences superconducting properties such as the critical current density. After RHQ treatment, a solid solution of NbAl y with a bcc structure was formed from a jelly-roll of Nb and Al sheets in the wire. To observe the A15 phase transition in the NbAl y and to clarify the mechanism of residual strain generation in the RHQ-Nb 3 Al wire, neutron diffraction measurements were carried out on the J-PARC “TAKUMI” between room-temperature and 800 °C, in which the Nb 3 Al superconducting phase is formed. Here, we report measurements on an RHQ-Nb 3 Al wire with an Nb/Ta composite matrix, using single-peak analysis and multi-peak analysis for peak intensity fitting and peak position fitting, respectively. The phase transition to the A15 was found to occur within a short period about 5 min while the temperature was increasing from 735 to 800 °C. Along the axial direction of the wire, growth of the A15 phase was found to be optimized using a subsequent holding process of 9 h at 800 °C. Following cooling to room temperature, the Nb 3 Al filaments in the wire exhibited an isotropic tensile residual strain of about 0.07%.

  7. A highly crystalline single Au wire network as a high temperature transparent heater.

    Science.gov (United States)

    Rao, K D M; Kulkarni, Giridhar U

    2014-06-07

    A transparent conductor which can generate high temperatures finds important applications in optoelectronics. In this article, a wire network made of Au on quartz is shown to serve as an effective high temperature transparent heater. The heater has been fabricated by depositing Au onto a cracked sacrificial template. The highly interconnected Au wire network thus formed exhibited a transmittance of ∼87% in a wide spectral range with a sheet resistance of 5.4 Ω □(-1). By passing current through the network, it could be joule heated to ∼600 °C within a few seconds. The extraordinary thermal performance and stability owe much to the seamless junctions present in the wire network. Furthermore, the wire network gets self-annealed through joule heating as seen from its increased crystallinity. Interestingly, both transmittance and sheet resistance improved following annealing to 92% and 3.2 Ω □(-1), respectively.

  8. Acquisition of Turbulence Data Using the DST Group Constant-Temperature Hot-Wire Anemometer System

    Science.gov (United States)

    2015-10-01

    Defence Science and Technology Group 506 Lorimer St Fishermans Bend , Victoria 3207 Australia Telephone: 1300 333 362 Fax: (03) 9626 7999...to both tensile and torsional loading. He joined the Aeronautical Research Laboratories (now called the Defence Science and Technology Group) in...the temperature becomes too high. A resistance ratio of 2 is generally used for Wollaston wire. The resistance of the wire and the leads combined

  9. Interlot variations of transition temperature range and force delivery in copper-nickel-titanium orthodontic wires.

    Science.gov (United States)

    Pompei-Reynolds, Renée C; Kanavakis, Georgios

    2014-08-01

    The manufacturing process for copper-nickel-titanium archwires is technique sensitive. The primary aim of this investigation was to examine the interlot consistency of the mechanical properties of copper-nickel-titanium wires from 2 manufacturers. Wires of 2 sizes (0.016 and 0.016 × 0.022 in) and 3 advertised austenite finish temperatures (27°C, 35°C, and 40°C) from 2 manufacturers were tested for transition temperature ranges and force delivery using differential scanning calorimetry and the 3-point bend test, respectively. Variations of these properties were analyzed for statistical significance by calculating the F statistic for equality of variances for transition temperature and force delivery in each group of wires. All statistical analyses were performed at the 0.05 level of significance. Statistically significant interlot variations in austenite finish were found for the 0.016 in/27°C (P = 0.041) and 0.016 × 0.022 in/35°C (P = 0.048) wire categories, and in austenite start for the 0.016 × 0.022 in/35°C wire category (P = 0.01). In addition, significant variations in force delivery were found between the 2 manufacturers for the 0.016 in/27°C (P = 0.002), 0.016 in/35.0°C (P = 0.049), and 0.016 × 0.022 in/35°C (P = 0.031) wires. Orthodontic wires of the same material, dimension, and manufacturer but from different production lots do not always have similar mechanical properties. Clinicians should be aware that copper-nickel-titanium wires might not always deliver the expected force, even when they come from the same manufacturer, because of interlot variations in the performance of the material. Copyright © 2014 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.

  10. A High-Temperature Transient Hot-Wire Thermal Conductivity Apparatus for Fluids.

    Science.gov (United States)

    Perkins, R A; Roder, H M; Nieto de Castro, C A

    1991-01-01

    A new apparatus for measuring both the thermal conductivity and thermal diffusivity of fluids at temperatures from 220 to 775 K at pressures to 70 MPa is described. The instrument is based on the step-power-forced transient hot-wire technique. Two hot wires are arranged in different arms of a Wheatstone bridge such that the response of the shorter compensating wire is subtracted from the response of the primary wire. Both hot wires are 12.7 µm diameter platinum wire and are simultaneously used as electrical heat sources and as resistance thermometers. A microcomputer controls bridge nulling, applies the power pulse, monitors the bridge response, and stores the results. Performance of the instrument was verified with measurements on liquid toluene as well as argon and nitrogen gas. In particular, new data for the thermal conductivity of liquid toluene near the saturation line, between 298 and 550 K, are presented. These new data can be used to illustrate the importance of radiative heat transfer in transient hot-wire measurements. Thermal conductivity data for liquid toluene, which are corrected for radiation, are reported. The precision of the thermal conductivity data is ± 0.3% and the accuracy is about ±1%. The accuracy of the thermal diffusivity data is about ± 5%. From the measured thermal conductivity and thermal diffusivity, we can calculate the specific heat, C p , of the fluid, provided that the density is measured, or available through an equation of state.

  11. Analysis of pulsed wire method for field integral measurements in ...

    Indian Academy of Sciences (India)

    In this paper, we present a theoretical analysis of this technique by finding out the analytic solution of the differential equation for the forced vibration of the wire taking dispersion due to stiffness into account. Method of images is used to extend these solutions to include reflections at the ends. For long undulators, the effect of ...

  12. Analysis of pulsed wire method for field integral measurements in ...

    Indian Academy of Sciences (India)

    of the acoustic wave in the wire could be significant and our analysis provides a method for the evaluation of the magnetic field profile even in such cases taking the effect due to dispersion into account in an exact way. Keywords. Undulator; free-electron laser; synchrotron radiation source; magnetic char- acterization.

  13. High-Temperature Extensometry and PdCr Temperature-Compensated Wire Resistance Strain Gages Compared

    Science.gov (United States)

    1997-01-01

    A detailed experimental evaluation is underway at the NASA Lewis Research Center to compare and contrast the performance of the PdCr/Pt dual-element temperature-compensated wire resistance strain gage with that of conventional high-temperature extensometry. The advanced PdCr gage, developed by researchers at Lewis, exhibits desirable properties and a relatively small and repeatable apparent strain to 800 C. This gage represents a significant advance in technology because existing commercial resistance strain gages are not reliable for quasi-static strain measurements above approx. 400 C. Various thermal and mechanical loading spectra are being applied by a high-temperature thermomechanical uniaxial testing system to evaluate the two strain-measurement systems. This is being done not only to compare and contrast the two strain sensors, but also to investigate the applicability of the PdCr strain gage to the coupon-level specimen testing environment typically employed when the high-temperature mechanical behavior of structural materials is characterized. Strain measurement capabilities to 800 C are being investigated with a nickel-base superalloy, Inconel 100 (IN 100), substrate material and application to TMC's is being examined with the model system, SCS-6/Ti-15-3. Furthermore, two gage application techniques are being investigated in the comparison study: namely, flame-sprayed and spot welding. The apparent strain responses of both the weldable and flame-sprayed PdCr wire strain gages were found to be cyclically repeatable on both IN 100 and SCS-6/Ti-15-3 [0]_8. In general, each gage exhibited some uniqueness with respect to apparent strain behavior. Gages mounted on the IN 100 specimens tended to show a repeatable apparent strain within the first few cycles, because the thermal response of IN 100 was stable. This was not the case, however, for the TMC specimens, which typically required several thermal cycles to stabilize the thermal strain response. Thus

  14. Numerical simulation of temperature field in multiple-wire submerged arc welding of X80 pipeline steel

    Science.gov (United States)

    Yan, Chunyan; Jiang, Han; Wu, Lichao; Kan, Chenxia; Yu, Wen

    2018-01-01

    Three dimensional (3D) finite element (FE) simulation was implemented to predict the temperature distribution during multiple-wire submerged arc welding (SAW) throughout the welded joint of X80 pipeline steel. A moving heat source model based on Goldak’s double-ellipsoid heat flux distribution was applied in the simulation to capture the heating effect of the welding arc. Effects of welding speed, wire spacing and leading wire current on temperature distribution were further investigated. The simulation results show that both welding speed and wire spacing have significant effects on welding temperature distribution in X80 pipeline steel welded joint.

  15. High Temperature Life Testing of 80Ni-20Cr Wire in a Simulated Mars Atmosphere for the Sample Analysis at Mars (SAM) Instrument Suite Gas Processing System (GPS) Carbon Dioxide Scrubber

    Science.gov (United States)

    Hoffman, Christopher; Munoz, Bruno; Gundersen, Cynthia; Thomas, Walter, III; Stephenson, Timothy

    2008-01-01

    In support of the GPS for the SAM instrument suite built by NASA/GSFC, a life test facility was developed to test the suitability of 80Ni-20Cr alloy wire, 0.0142 cm diameter, for use as a heater element for the carbon dioxide scrubber. The element would be required to operate at 1000 C in order to attain the 800 C required for regeneration of the getter. The element also would need to operate in the Mars atmosphere, which consists mostly of CO2 at pressures between 4 and 12 torr. Data on the high temperature degradation mechanism of 80Ni- 20Cr in low pressure CO2, coupled with the effects of thermal cycling, were unknown. In addition, the influence of work hardening of the wire during assembly and the potential for catastrophic grain growth also were unknown. Verification of the element reliability as defined by the mission goals required the construction of a test facility that would accurately simulate the duty cycles in a simulated Mars atmosphere. The experimental set-up, along with the test protocol and results will be described.

  16. Embedded resistance wire as a heating element for temperature control in microbioreactors

    International Nuclear Information System (INIS)

    Alam, Muhd Nazrul Hisham Zainal; Schäpper, Daniel; Gernaey, Krist V

    2010-01-01

    This paper presents the technical realization of a low-cost heating element consisting of a resistance wire in a microbioreactor, as well as the implementation and performance assessment of an on/off controller for temperature control of the microbioreactor content based on this heating element. The microbioreactor (working volume of 100 µL) is designed to work bubble-free, and is fabricated out of the polymers poly(methylmethacrylate) (PMMA) and poly(dimethylsiloxane) (PDMS). The temperature is measured with a Pt 100 sensor, and the resistance wires are embedded in the polymer such that they either surround the reactor chamber or are placed underneath it. The latter can achieve an even temperature distribution across the reactor chamber and direct heating of the reactor content. We show that an integrated resistance wire coupled to a simple on/off controller results in accurate temperature control of the reactor (±0.1 °C of the set point value) and provides a good disturbance rejection capability (corrective action for a sudden temperature drop of 2.5 °C at an operating temperature of 50 °C takes less than 30 s). Finally, we also demonstrate the workability of the established temperature control in a batch Saccharomyces cerevisiae cultivation in a microbioreactor.

  17. Wire scanner data analysis for the SSC Linac emittance measurement

    International Nuclear Information System (INIS)

    Yao, C.Y.; Hurd, J.W.; Sage, J.

    1993-07-01

    The wire scanners are designed in the SSC Linac for measurement of beam emittance at various locations. In order to obtain beam parameters from the scan signal, a data analysis program was developed that considers the problems of noise reduction, machine modeling, parameter fitting, and correction. This program is intended as a tool for Linac commissioning and also as part of the Linac control program. Some of the results from commissioning runs are presented

  18. The effects of temperature and use of vibrating wire strain gauges for braced excavations

    Energy Technology Data Exchange (ETDEWEB)

    Boone, S. J. [Golder Associates, Irvine, CA (United States); Crawford, A. M. [Toronto Univ., ON (Canada). Dept. of Civil Engineering

    2000-09-01

    Strut loads in bracer excavations are routinely monitored with strain gauges which range in complexity from simple mechanical measurements to vibrating wire transducers. While in soft soils the effect of temperature changes in strut loads may not be significant, these effects may be very signifciant for stiff and dense soils and rock thermal loading, where inadequate appreciation of the role played by thermal laods may lead to misinterpretations and faulty design that is not representative of potential field loading. This paper interprets the theoretical and practical implications of temperature change on strut loads and discusses the relative merits of using a vibrating wire strain gauge to measure and evaluate the effects of temperature and earth loads. It is shown that by comparing the incremental changes of strut load and temperature from vibrating wire strain gauge data, the temperature-dependent loads, the relative fixity of the strut end, and the earth loads, and mobilized ground stiffness can be deduced. The approach proposed provides a transparent and strut-specific means of evaluating the effects of temperature on struts with braced excavations and is supported by both empirical data and practical application of elastic theory. 9 refs., 6 figs.

  19. [Arc spectrum diagnostic and heat coupling mechanism analysis of double wire pulsed MIG welding].

    Science.gov (United States)

    Liu, Yong-qiang; Li, Huan; Yang, Li-jun; Zheng, Kai; Gao, Ying

    2015-01-01

    A double wire pulsed MIG welding test system was built in the present paper, in order to analyze the heat-coupling mechanism of double wire pulsed MIG welding, and study are temperature field. Spectroscopic technique was used in diagnostic analysis of the are, plasma radiation was collected by using hollow probe method to obtain the arc plasma optical signal The electron temperature of double wire pulsed MIG welding arc plasma was calculated by using Boltzmann diagram method, the electron temperature distribution was obtained, a comprehensive analysis of the arc was conducted combined with the high speed camera technology and acquisition means of electricity signal. The innovation of this paper is the combination of high-speed camera image information of are and optical signal of arc plasma to analyze the coupling mechanism for dual arc, and a more intuitive analysis for are temperature field was conducted. The test results showed that a push-pull output was achieved and droplet transfer mode was a drop in a pulse in the welding process; Two arcs attracted each other under the action of a magnetic field, and shifted to the center of the arc in welding process, so a new heat center was formed at the geometric center of the double arc, and flowing up phenomenon occurred on the arc; Dual arc electronic temperature showed an inverted V-shaped distribution overall, and at the geometric center of the double arc, the arc electron temperature at 3 mm off the workpiece surface was the highest, which was 16,887.66 K, about 4,900 K higher than the lowest temperature 11,963.63 K.

  20. Standard Guide for Use of Melt Wire Temperature Monitors for Reactor Vessel Surveillance, E 706 (IIIE)

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2006-01-01

    1.1 This guide describes the application of melt wire temperature monitors and their use for reactor vessel surveillance of light-water power reactors as called for in Practice E 185. 1.2 The purpose of this guide is to recommend the selection and use of the common melt wire technique where the correspondence between melting temperature and composition of different alloys is used as a passive temperature monitor. Guidelines are provided for the selection and calibration of monitor materials; design, fabrication, and assembly of monitor and container; post-irradiation examinations; interpretation of the results; and estimation of uncertainties. 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. (See Note 1.)

  1. Cu-Al-Ni Shape Memory Single Crystal Wires with High Transformation Temperature

    Science.gov (United States)

    Hautcoeur, Alain; Fouché, Florian; Sicre, Jacques

    2016-01-01

    CN-250X is a new material with higher performance than Nickel-Titanium Shape Memory Alloy (SMA). For space mechanisms, the main disadvantage of Nickel-Titanium Shape Memory Alloy is the limited transformation temperature. The new CN-250X Nimesis alloy is a Cu-Al-Ni single crystal wire available in large quantity because of a new industrial process. The triggering of actuators made with this Cu-Al-Ni single crystal wire can range from ambient temperature to 200 C in cycling and even to 250 C in one-shot mode. Another advantage of CN-250X is a better shape recovery (8 to 10%) than Ni-Ti (6 to 7%). Nimesis is the first company able to produce this type of material with its new special industrial process. A characterization study is presented in this work, including the two main solicitation modes for this material: tensile and torsion. Different tests measure the shape recovery of Cu-Al-Ni single crystals wires during heating from room temperature to a temperature higher than temperature of end of martensitic transformation.

  2. Constant-bandwidth constant-temperature hot-wire anemometer.

    Science.gov (United States)

    Ligeza, P

    2007-07-01

    A constant-temperature anemometer (CTA) enables the measurement of fast-changing velocity fluctuations. In the classical solution of CTA, the transmission band is a function of flow velocity. This is a minor drawback when the mean flow velocity does not significantly change, though it might lead to dynamic errors when flow velocity varies over a considerable range. A modification is outlined, whereby an adaptive controller is incorporated in the CTA system such that the anemometer's transmission band remains constant in the function of flow velocity. For that purpose, a second feedback loop is provided, and the output signal from the anemometer will regulate the controller's parameters such that the transmission bandwidth remains constant. The mathematical model of a CTA that has been developed and model testing data allow a through evaluation of the proposed solution. A modified anemometer can be used in measurements of high-frequency variable flows in a wide range of velocities. The proposed modification allows the minimization of dynamic measurement errors.

  3. A high-performance constant-temperature hot-wire anemometer

    Science.gov (United States)

    Watmuff, Jonathan H.

    1994-01-01

    A high-performance constant-temperature hot-wire anemometer has been designed based on a system theory analysis that can be extended to arbitrary order. A motivating factor behind the design was to achieve the highest possible frequency response while ensuring overall system stability. Based on these considerations, the design of the circuit and the selection of components is discussed in depth. Basic operating instructions are included in an operator's guide. The analysis is used to identify operating modes, observed in all anemometers, that are misleading in the sense that the operator can be deceived by interpreting an erroneous frequency response. Unlike other anemometers, this instrument provides front panel access to all the circuit parameters which affect system stability and frequency response. Instructions are given on how to identify and avoid these rather subtle and undesirable operating modes by appropriate adjustment of the controls. Details, such as fabrication drawings and a parts list, are provided to enable others to construct the instrument.

  4. Temperature dependence of quantum-wire intermediate-band solar cells

    Science.gov (United States)

    Sarollahi, Mirsaeid; Kunets, Vasyl P.; Mazur, Yuriy I.; Mortazavi, Mansour; Salamo, Gregory J.; Ware, Morgan

    2017-02-01

    This work investigates the performance of an intermediate band solar cell (IBSC) structure based on InGaAs/GaAs lateral quantum wires under elevated temperature. Un-optimized structures using the same quantum wire based IB material have demonstrated an increase in solar conversion efficiency in comparison with reference GaAs P-I-N diode devices. In order to further understand the physics behind this increase, an optimized structure was developed and characterized. The External Quantum Efficiencies (EQE) of doped and Un-doped samples have been measured using these optimized designs. We present here the results of varying both applied bias and temperature on the EQE of these IBSC devices to highlight the advantages of such a structure.

  5. Signals analysis of fluxgate array for wire rope defaults

    International Nuclear Information System (INIS)

    Gu Wei; Chu Jianxin

    2005-01-01

    In order to detecting the magnetic leakage fields of the wire rope defaults, a transducer made up of the fluxgate array is designed, and a series of the characteristic values of wire rope defaults signals are defined. By processing the characteristic signals, the LF or LMA of wire rope are distinguished, and the default extent is estimated. The experiment results of the new method for detecting the wire rope faults are introduced

  6. Tensile Residual Stress Mitigation Using Low Temperature Phase Transformation Filler Wire in Welded Armor Plates

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Zhili [ORNL; Bunn, Jeffrey R [ORNL; Tzelepis, Demetrios A [ORNL; Payzant, E Andrew [ORNL; Yu, Xinghua [ORNL

    2016-01-01

    Hydrogen induced cracking (HIC) has been a persistent issue in welding of high-strength steels. Mitigating residual stresses is one of the most efficient ways to control HIC. The current study develops a proactive in-process weld residual stress mitigation technique, which manipulates the thermal expansion and contraction sequence in the weldments during welding process. When the steel weld is cooled after welding, martensitic transformation will occur at a temperature below 400 C. Volume expansion in the weld due to the martensitic transformation will reduce tensile stresses in the weld and heat affected zone and in some cases produce compressive residual stresses in the weld. Based on this concept, a customized filler wire which undergoes a martensitic phase transformation during cooling was developed. The new filler wire shows significant improvement in terms of reducing the tendency of HIC in high strength steels. Bulk residual stress mapping using neutron diffraction revealed reduced tensile and compressive residual stresses in the welds made by the new filler wire.

  7. Characterization of velocity and temperature fields in a 217 pin wire wrapped fuel bundle of sodium cooled fast reactor

    International Nuclear Information System (INIS)

    Naveen Raj, M.; Velusamy, K.

    2016-01-01

    Highlights: • We simulate flow and temperature fields in fuel subassembly of fast reactor. • We perform high fidelity computations for 217 pin bundle of 7 axial pitch lengths. • We investigate transverse and axial flows in different types of subchannels. • Correlations are proposed for transverse flow, which form input for subchannel analysis. • Periodic variations of large magnitude are observed in subchannel flow rates. - Abstract: RANS based computational fluid dynamic (CFD) simulation of flow and temperature fields in a fast reactor fuel subassembly has been carried out. The sodium cooled prototype subassembly consists of 217 pins with helical wire spacers. An axial length of seven helical wire pitches has been considered for the study adopting a structured mesh having 36 million points and 84 processors in parallel. The computational model has been validated against in-house and published experimental data for friction factor and Nusselt number. Also, the transverse flow in the central subchannel and swirl flow in the peripheral subchannel are compared against reported experimental data and those computed by subchannel models. The focus of the study is investigation of transverse and axial flows in different types of subchannels. Based on the 3-dimensional CFD study, correlations have been proposed for calculation of transverse flow, which forms an important input for development of subchannel analysis codes. Periodic variations have been observed in the subchannel axial flow rates. For the subchannels located in the central region, the peak to peak variation in the axial flow rate is ∼21% and it is found to be contributed by the changes in the flow area and hydraulic resistance due to frequent passage of helical wires through the subchannel. For the subchannels located in the periphery, this variation is as high as 50%. The transverse flow in the central subchannels follows a cosine profile, for all the faces. However, there is a phase lag of 120

  8. Comparison and analysis of BNCT radiation dose between gold wire and JCDS measurement

    International Nuclear Information System (INIS)

    Kageji, T.; Mizobuchi, Y.; Nagahiro, S.; Nakagawa, Y.; Kumada, Hiroaki

    2006-01-01

    We compared and evaluated boron neutron capture therapy (BNCT) radiation dose between gold wire measurement and JAERI Computational Dosimetry System (JCDS). Gold wire analysis demonstrates the actual BNCT dose though it dose not reflect the real the maximum and minimum dose in tumor tissue. We can conclude that JCDS is precise and high-reliable dose planning system for BNCT. (author)

  9. Physical analysis for designing nested-wire arrays on Z-pinch implosion

    International Nuclear Information System (INIS)

    Yang Zhenhua; Liu Quan; Ding Ning; Ning Cheng

    2005-01-01

    Z-pinch experiments have demonstrated that the X-ray power increases 40% with a nested-wire array compared with that with a single-layered wire array. The design of the nested-wire array on Z accelerator is studied through the implosion dynamics and the growth of RT instabilities. The analysis shows that the nested-wire array does not produce more total X-ray radiation energy than the single-layered wire array, but it obviously increases the X-ray power. The radius of the outer array of the nested-wire array could be determined based on the radius of the optimized single-layered. The masses of the outer and inner arrays could be determined by the implosion time of the nested-wire array, which is roughly the same as that of the single-layered wire array. Some suggestions are put forward which may be helpful in the nested-wire array design for Z-pinch experiments. (authors)

  10. Wire-wrapped rod-bundle heat-transfer analysis for LMFBR

    International Nuclear Information System (INIS)

    Wong, C.N.C.; Todreas, N.E.

    1982-07-01

    Helical wire wraps are widely used in the LMFBR fuel and blanket assemblies to provide coolant mixing and maintain proper spacing between fuel pins. The presence of the helical wire, however, may possibly induce heat transfer problems, such as the uncertainty of the maximum clad temperature as a result of the contact between the wires and the pins. In this study, the detailed transient three dimensional velocity and temperature distributions for the coolant around the pin will be determined by solving the governing momentum and energy equation numerically. A computer code HEATRAN has been developed to perform this calculation. Before the computer code HEATRAN is applied to the wire wrapped rod bundle problem, it is used to analyze a wide range of fluid and heat transfer problem to verify its capabilities

  11. Transient Analysis of Lumped Circuit Networks Loaded Thin Wires By DGTD Method

    KAUST Repository

    Li, Ping

    2016-03-31

    With the purpose of avoiding very fine mesh cells in the proximity of a thin wire, the modified telegrapher’s equations (MTEs) are employed to describe the thin wire voltage and current distributions, which consequently results in reduced number of unknowns and augmented Courant-Friedrichs-Lewy (CFL) number. As hyperbolic systems, both the MTEs and the Maxwell’s equations are solved by the discontinuous Galerkin time-domain (DGTD) method. In realistic situations, the thin wires could be either driven or loaded by circuit networks. The thin wire-circuit interface performs as a boundary condition for the thin wire solver, where the thin wire voltage and current used for the incoming flux evaluation involved in the DGTD analyzed MTEs are not available. To obtain this voltage and current, an auxiliary current flowing through the thin wire-circuit interface is introduced at each interface. Corresponding auxiliary equations derived from the invariable property of characteristic variable for hyperbolic systems are developed and solved together with the circuit equations established by the modified nodal analysis (MNA) modality. Furthermore, in order to characterize the field and thin wire interactions, a weighted electric field and a volume current density are added into the MTEs and Maxwell-Ampere’s law equation, respectively. To validate the proposed algorithm, three representative examples are presented.

  12. THE METHODS OF CALCULATIONS OF THE TEMPERATURE BREAKDOWN FIELD IN THE LINE OF THE MODEM HIGH-SPEED WIRE MILL

    Directory of Open Access Journals (Sweden)

    S. M. Zhuchkov

    2007-01-01

    Full Text Available The calculation methods of the temperature field of the breakdown, being rolled in lines of the modern high-speed wire mill, is developed on the basis of solving of problem of the contact exchange of hot metal with cold rollers.

  13. Analysis in vitro of direct bonding system with cyanoacrylate ester and orthodontic wires.

    Science.gov (United States)

    Manfrin, Thais Mara; Poi, Wilson Roberto; de Mendonça, Marcos Rogério; Cardoso, Leandro Carvalho; Massa Sundefeld, Maria Lúcia Marçal; Sonoda, Celso Koogi; Panzarini, Sônia Regina

    2009-04-01

    The aim of this study was to evaluate the tensile strength of orthodontic wires bonded onto the enamel with cyanoacrylate ester. To obtain the specimens, 120 human premolars (extracted for orthodontic or periodontal reasons) were included in acrylic blocks of rapid polymerization with three teeth each. Four groups were formed with ten specimens each. In the specimens, a dental splint model was made with cyanoacrylate ester and round stainless steel wire. In groups I, II and III, cyanoacrylate ester was used with round steel wires, with variation in diameter: 0.014 inches; 0.016 inches and 0.018 inches, respectively. In group IV, round steel wire 0.018 inches was used with photo polymerizing resin composite with previous acid etching. The adhesive force of the materials was measured in two points under the action of the tensiometer (ETM-USA). The number of loose wires was counted along with those that remained fixed according to the different levels of force applied because of the direction of the tensile force (vertical or horizontal) and the diameter of the wire used. The data obtained were first submitted to a descriptive analysis and then submitted to a statistical analysis (Friedman's Test and Dunn's Test of Multiple Comparison - Epi-info 3.2). Within the limitations of the experimental conditions presented, the cyanoacrylate ester or 'Super Bonder' maintained bonded to enamel and steel wires (0.016 and 0.018 inches) during the tensile strength tests under different levels of applied forces.

  14. Heat transfer monitoring by means of the hot wire technique and finite element analysis software.

    Science.gov (United States)

    Hernández Wong, J; Suarez, V; Guarachi, J; Calderón, A; Rojas-Trigos, J B; Juárez, A G; Marín, E

    2014-01-01

    It is reported the study of the radial heat transfer in a homogeneous and isotropic substance with a heat linear source in its axial axis. For this purpose, the hot wire characterization technique has been used, in order to obtain the temperature distribution as a function of radial distance from the axial axis and time exposure. Also, the solution of the transient heat transport equation for this problem was obtained under appropriate boundary conditions, by means of finite element technique. A comparison between experimental, conventional theoretical model and numerical simulated results is done to demonstrate the utility of the finite element analysis simulation methodology in the investigation of the thermal response of substances. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Hard-Wired Dopant Networks and the Prediction of High Transition Temperatures in Ceramic Superconductors

    International Nuclear Information System (INIS)

    Phillips, J.C.

    2010-01-01

    The review multiple successes of the discrete hard-wired dopant network model ZZIP, and comment on the equally numerous failures of continuum models, in describing and predicting the properties of ceramic superconductors. The prediction of transition temperatures can be regarded in several ways, either as an exacting test of theory, or as a tool for identifying theoretical rules for defining new homology models. Popular first principle methods for predicting transition temperatures in conventional crystalline superconductors have failed for cuprate HTSC, as have parameterized models based on CuO2 planes (with or without apical oxygen). Following a path suggested by Bayesian probability, it was found that the glassy, self-organized dopant network percolative model is so successful that it defines a new homology class appropriate to ceramic superconductors. The reasons for this success in an exponentially complex (non-polynomial complete, NPC) problem are discussed, and a critical comparison is made with previous polynomial (PC) theories. The predictions are successful for the superfamily of all ceramics, including new non-cuprates based on FeAs in place of CuO2.

  16. A Stochastic Analysis of the Transient Current Induced along the Thin Wire Scatterer Buried in a Lossy Medium

    Directory of Open Access Journals (Sweden)

    Silvestar Šesnić

    2016-01-01

    Full Text Available The paper deals with the stochastic collocation analysis of a time domain response of a straight thin wire scatterer buried in a lossy half-space. The wire is excited either by a plane wave transmitted through the air-ground interface or by an equivalent current source representing direct lightning strike pulse. Transient current induced at the center of the wire, governed by corresponding Pocklington integrodifferential equation, is determined analytically. This antenna configuration suffers from uncertainties in various parameters, such as ground properties, wire dimensions, and position. The statistical processing of the results yields additional information, thus enabling more accurate and efficient analysis of buried wire configurations.

  17. Towards a non-wired simulator for reliability analysis

    International Nuclear Information System (INIS)

    Jurvillier, I.; Laviron, A.; Blin, A.

    1991-11-01

    This paper outlines the objectives and preliminary results of a research programme aiming to increase the advantages of electronic simulators used for reliability studies of complex systems. Research work has resulted in the design of a device based on an electronic simulator capable of carrying out all types of simulation without the drawback of wiring, as is currently the case. Its performance levels as regards speed are comparable to those of wired simulators and this is its main advantage over studies made on a computer. In addition, the simulator is connected to a computer which greatly increases system flexibility and user-friendliness. The first results obtained illustrate what characteristics can be expected of such a system, both as regards the anticipated computation time and the extended processing capabilities (such as the study of common cause failures). (author) [fr

  18. Experimental analysis of the velocity field in an anular channel with helicoidal wire

    International Nuclear Information System (INIS)

    Lemos, M.J.S. de.

    1979-06-01

    In general, nuclear reactor fuel elements are rod bundles with coolant flowing axially among them. LMFBR's (Liquid Metal Fast Breeder Reactor) have wire wrapped fuel rods, with the wire working as spacer and mixer. The present work consists in the experimental analysis of the velocity field created by a typical LMFBR fuel rod placed in a cylinder, yielding an annular channel with helicoidal wire. Using hot wire anemometry, the main and secondary velocity fields were measured. The range for Re was from 2.2x 10 4 to 6.1x 10 4 , for air. The aspect ratio, P/D, and the lead-to-diameter ratio, 1/D, were 1.2 and 15, respectively. (Author) [pt

  19. Transport current density at temperatures up to 25 K of Cu/Ag composite sheathed 122-type tapes and wires

    Science.gov (United States)

    Liu, Shifa; Lin, Kaili; Yao, Chao; Zhang, Xianping; Dong, Chiheng; Wang, Dongliang; Awaji, Satoshi; Kumakura, Hiroaki; Ma, Yanwei

    2017-11-01

    The fabrication of iron-based superconductors with high transport critical current density (J c) and low cost is a crucial determinant of whether they can be used for practical applications. In this paper, Cu/Ag composite sheathed Sr0.6K0.4Fe2As2 (Sr122) tapes and Ba0.6K0.4Fe2As2 (Ba122) round wires were fabricated via an ex situ powder-in-tube method and heat-treated by the hot pressing and hot isostatic pressing process respectively. In order to thoroughly reveal the application potential of Cu/Ag composite sheathed ‘122’ iron pnictide superconductors, transport J c of tapes and wires in high fields at temperatures up to 25 K was measured. High transport J c of 4.4 × 104 A cm-2 at 4.2 K and 3.6 × 103 A cm-2 at 20 K in 10 T was achieved in Cu/Ag composite sheathed Sr122 tapes. Transport J c of Ba122 wires is 9.4 × 103 A cm-2 at 4.2 K and 1.9 × 103 A cm-2 at 20 K in 10 T. These results demonstrate the great potential of Cu/Ag composite sheathed ‘122’ iron pnictide superconducting tapes and wires for high-field applications at intermediate temperatures around 20 K, which can be easily obtained by using cryocoolers.

  20. Assessment of the wire-wrap models and improvement of the MATRA-LMR for subchannel blockage analysis

    Energy Technology Data Exchange (ETDEWEB)

    Ha, K. S.; Jeong, H. Y.; Chang, W. P.; Lee, Y. B

    2003-06-01

    The distributed resistance model has been newly implemented into MATRA-LMR to improve its prediction capability over the wire-wrap model for the flow blockage analysis in LMR. The code capability has been investigated using the experimental data observed in FFM(Fuel Failure Mock-up)-2A and 5B for the two typical flow conditions in a blocked channel. The predicted results by MATRA-LMR with the distributed resistance model have agreed well with the experimental data for the wire-wrapped subchannels. However, it has been suggested that the parameter n in the distributed resistance model needs to be calibrated accurately for the reasonable prediction of the temperature field under a low flow condition.

  1. Thermal Behavior of Ag Micro/Nano Wires Formed by Low-Temperature Sintering of Ag Nanoparticles

    Science.gov (United States)

    Wang, Wen; Zhong, Yinghui; Li, Dongxue; Wang, Pan; Cai, Yuwei; Duan, Zhiyong

    2015-12-01

    Ag nanoparticles of 30 nm size were deposited onto a Si substrate to form Ag microwires. The nanoparticles were transformed into continuous Ag wires with low-temperature heat treatment at temperatures not higher than 200°C. The morphology, electrical properties, and interface of the sintered Ag nanoparticle wires are described. It is shown that the neck between the nanoparticles begins to form at 150°C, and obvious metallization was found at 170°C. The changes of the crystal structure of the Ag wires at different sintering temperatures were analyzed by x-ray diffractometry. The grain boundary resistance decreased as the crystal grain size increased above 130 nm. The corresponding resistivity of the microstructure is close to that of the bulk. Through the comparison between the Mayadas-Shatzkes's model and experimental data, the range of the grain boundary reflection coefficient C at different temperatures is obtained. This research lays the foundation for the study of nanoimprint lithography with a pseudoplastic metal nanoparticle fluid.

  2. Effect of temperature and bias voltage on the conductance distribution of 1D-disordered wires with dirty contacts

    Energy Technology Data Exchange (ETDEWEB)

    Foieri, Federico [Departamento de Fisica, Pabellon I, Ciudad Universitaria (1428) Buenos Aires (Argentina)]. E-mail: ffoieri@df.uba.ar; Jose Sanchez, Maria [Centro Atomico Bariloche and Instituto Balseiro (8400) Bariloche (Argentina); Arrachea, Liliana [Instituto de Biocomputacion y Fisica de Sistemas Complejos, Universidad de Zaragoza, Corona de Aragon 42 (50009) Zaragoza (Spain); Departamento de Fisica de la Materia Condensada, Universidad de Zaragoza, Pedro Cerbuna 12 (50009) Zaragoza (Spain); Gopar, Victor [Instituto de Biocomputacion y Fisica de Sistemas Complejos, Universidad de Zaragoza, Corona de Aragon 42 (50009) Zaragoza (Spain)

    2007-09-01

    We compute the distribution of the conductance P(G(T,V)) of a one-dimensional (1D) disordered wire non-perfectly coupled to leads (dirty contacts) at finite temperature T and bias voltage V. At regimes of temperatures and/or bias voltages larger than the mean level spacing, we show that the conductance distribution can be accurately represented by a finite number of convolutions of the distribution p(g{sub c}) of the conductance g{sub c} at zero temperature and zero bias voltage.

  3. Effect of temperature and bias voltage on the conductance distribution of 1D-disordered wires with dirty contacts

    Science.gov (United States)

    Foieri, Federico; José Sánchez, María; Arrachea, Liliana; Gopar, Victor

    2007-09-01

    We compute the distribution of the conductance P(G(T,V)) of a one-dimensional (1D) disordered wire non-perfectly coupled to leads (dirty contacts) at finite temperature T and bias voltage V. At regimes of temperatures and/or bias voltages larger than the mean level spacing, we show that the conductance distribution can be accurately represented by a finite number of convolutions of the distribution p(gc) of the conductance gc at zero temperature and zero bias voltage.

  4. Static and free vibration analysis of carbon nano wires based on Timoshenko beam theory using differential quadrature method

    Directory of Open Access Journals (Sweden)

    Maziar Janghorban

    Full Text Available Static and free vibration analysis of carbon nano wires with rectangular cross section based on Timoshenko beam theory is studied in this research. Differential quadrature method (DQM is employed to solve the governing equations. From the knowledge of author, it is the first time that free vibration of nano wires is investigated. It is also the first time that differential quadrature method is used for bending analysis of nano wires.

  5. Mission-profile-based stress analysis of bond-wires in SiC power modules

    DEFF Research Database (Denmark)

    Bahman, Amir Sajjad; Iannuzzo, Francesco; Blaabjerg, Frede

    2016-01-01

    This paper proposes a novel mission-profile-based reliability analysis approach for stress on bond wires in Silicon Carbide (SiC) MOSFET power modules using statistics and thermo-mechanical FEM analysis. In the proposed approach, both the operational and environmental thermal stresses are taken...... and the mechanical stress on bond wires is consequently extracted by finite-element simulations. In the final step, the considered mission profile is translated in a stress sequence to be used for Rainflow counting calculation and lifetime estimation....

  6. ROOT Analysis of 2004 H8 Test Beam Data & Studies of MDT Sense Wire Displacements

    CERN Document Server

    2004-01-01

    Tests are being carried out at the CERN H8 Test Facility on the subdetectors of ATLAS. Using MUTRAK, a tool developed by Dan Levin, data from test muon beam runs are converted to PAW plots and ntuples for easy analysis. ROOT classes are currently being developed to convert the PAW output of MUTRAK to ROOT files for more detailed analysis. Also studies are currently underway to understand the effect of sense wire displacements in Monitored Drift Tubes on drift time spectra. Concurrent tests using simulations in GARFIELD and Cosmic Ray MDT experiments are underway to study wire sags which may be up to 480 micrometers due to gravitational and electrostatic forces .

  7. American superconductor technology to help CERN to explore the mysteries of matter company's high temperature superconductor wire to be used in CERN's Large Hadron Collider

    CERN Multimedia

    2003-01-01

    American Superconductor Corporation has been selected by CERN, to provide 14,000 meters of high temperature superconductor (HTS) wire for current lead devices that will be used in CERN's Large Hadron Collider (1 page).

  8. Nano wire conductance experiments above and below the reservoirs Curie temperature

    Energy Technology Data Exchange (ETDEWEB)

    Costa-Kraemer, J. L.; Briones, F. [Instituto de Microelectronica de Madrid, Madrid (Spain); Serena, P. A. [Instituto de Ciencias de Materiales de Madrid, Madrid (Spain)

    2001-03-01

    The transport properties of Ni nano wires are studied using a Scanning Tunneling Microscope (STM) under clean high vacuum conditions. A basically flat nano wire conductance histogram is found independently of the magnetic state of the electrodes. This agrees with our previous studies in air but disagrees with recently published results. The possible origin of these discrepancies, together with additional experiments trying to discern the existence of a spin-dependent conductance in ferromagnetic nano wires, are presented. [Spanish] Las propiedades de transporte de nanoalambres de Ni son estudiadas usando un microscopio de efecto tunel bajo condiciones limpias de alto vacio. Se encuentra un histograma esencialmente plano independiente del estado magnetico de los electrodos. Esto concuerda con nuestros estudios previos en aire pero contrasta con resultados publicados recientemente. Se presentara una discusion sobre el posible origen experimental de estas discrepancias, con el fin de discernir sobre la existencia de una conductancia dependiente del espin en nanoalambres ferromagneticos.

  9. Analysis of Mechanical Stresses/Strains in Superconducting Wire

    Science.gov (United States)

    Barry, Matthew; Chen, Jingping; Zhai, Yuhu

    2016-10-01

    The optimization of superconducting magnet performance and development of high-field superconducting magnets will greatly impact the next generation of fusion devices. A successful magnet development, however, relies deeply on the understanding of superconducting materials. Among the numerous factors that impact a superconductor's performance, mechanical stress is the most important because of the extreme operation temperature and large electromagnetic forces. In this study, mechanical theory is used to calculate the stresses/strains in typical superconducting strands, which consist of a stabilizer, a barrier, a matrix and superconducting filaments. Both thermal loads and mechanical loads are included in the analysis to simulate operation conditions. Because this model simulates the typical architecture of major superconducting materials, such as Nb3Sn, MgB2, Bi-2212 etc., it provides a good overall picture for us to understand the behavior of these superconductors in terms of thermal and mechanical loads. This work was supported in part by the U.S. Department of Energy, Office of Science, Office of Workforce Development for Teachers and Scientists (WDTS) under the Science Undergraduate Laboratory Internship (SULI) program.

  10. Trim cut machining and surface integrity analysis of Nimonic 80A alloy using wire cut EDM

    Directory of Open Access Journals (Sweden)

    Amitesh Goswami

    2017-02-01

    Full Text Available This present work deals with the features of trim cut wire EDM machining of Nimonic 80A in terms of machining parameters, to predict material removal rate (MRR, surface roughness (Ra, wire wear ratio (WWR and microstructure analysis. Trim cut is performed after rough cut to remove the rough layer deposited after machining due to melting and re-solidification of the eroded metal from workpiece as well as from wire electrode. Taguchi’s design of experiments methodology has been used for planning and designing the experiments. The relative significance of various factors has also been evaluated and analyzed using ANOVA. The results clearly indicate trim cut potential for high surface finish compared to rough cut machining.

  11. Heated wire humidification circuit attenuates the decrease of core temperature during general anesthesia in patients undergoing arthroscopic hip surgery.

    Science.gov (United States)

    Park, Sooyong; Yoon, Seok-Hwa; Youn, Ann Misun; Song, Seung Hyun; Hwang, Ja Gyung

    2017-12-01

    Intraoperative hypothermia is common in patients undergoing general anesthesia during arthroscopic hip surgery. In the present study, we assessed the effect of heating and humidifying the airway with a heated wire humidification circuit (HHC) to attenuate the decrease of core temperature and prevent hypothermia in patients undergoing arthroscopic hip surgery under general anesthesia. Fifty-six patients scheduled for arthroscopic hip surgery were randomly assigned to either a control group using a breathing circuit connected with a heat and moisture exchanger (HME) (n = 28) or an HHC group using a heated wire humidification circuit (n = 28). The decrease in core temperature was measured from anesthetic induction and every 15 minutes thereafter using an esophageal stethoscope. Decrease in core temperature from anesthetic induction to 120 minutes after induction was lower in the HHC group (-0.60 ± 0.27℃) compared to the control group (-0.86 ± 0.29℃) (P = 0.001). However, there was no statistically significant difference in the incidence of intraoperative hypothermia or the incidence of shivering in the postanesthetic care unit. The use of HHC may be considered as a method to attenuate intraoperative decrease in core temperature during arthroscopic hip surgery performed under general anesthesia and exceeding 2 hours in duration.

  12. Wire bonding in microelectronics

    CERN Document Server

    Harman, George G

    2010-01-01

    Wire Bonding in Microelectronics, Third Edition, has been thoroughly revised to help you meet the challenges of today's small-scale and fine-pitch microelectronics. This authoritative guide covers every aspect of designing, manufacturing, and evaluating wire bonds engineered with cutting-edge techniques. In addition to gaining a full grasp of bonding technology, you'll learn how to create reliable bonds at exceedingly high yields, test wire bonds, solve common bonding problems, implement molecular cleaning methods, and much more. Coverage includes: Ultrasonic bonding systems and technologies, including high-frequency systems Bonding wire metallurgy and characteristics, including copper wire Wire bond testing Gold-aluminum intermetallic compounds and other interface reactions Gold and nickel-based bond pad plating materials and problems Cleaning to improve bondability and reliability Mechanical problems in wire bonding High-yield, fine-pitch, specialized-looping, soft-substrate, and extreme-temperature wire bo...

  13. Seismic fragility analysis of lap-spliced reinforced concrete columns retrofitted by SMA wire jackets

    International Nuclear Information System (INIS)

    Choi, Eunsoo; Park, Sun-Hee; Chung, Young-Soo; Kim, Hee Sun

    2013-01-01

    The aim of this study is to provide seismic fragility curves of reinforced concrete columns retrofitted by shape memory alloy wire jackets and thus assess the seismic performance of the columns against earthquakes, comparing them with reinforced concrete columns with lap-spliced and continuous reinforcement. For that purpose, this study first developed analytical models of the experimental results of the three types of columns, (1) lap-spliced reinforcement, (2) continuous reinforcement and (3) lap-spliced reinforcement and retrofitted by SMA wire jackets, using the OpenSEES program, which is oriented to nonlinear dynamic analysis. Then, a suite of ten recorded ground motions was used to conduct dynamic analyses of the analytical models with scaling of the peak ground acceleration from 0.1g to 1.0g in steps of 0.1g. From the static experimental tests, the column retrofitted with SMA wire jackets had a larger displacement ductility by a factor of 2.3 times that of the lap-spliced column, which was 6% larger compared with the ductility of the continuous reinforcement column. From the fragility analyses, the SMA wire jacketed column had median values of 0.162g and 0.567g for yield and collapse, respectively. For the yield damage state, the SMA wire jacketed column had a median value similar to the continuous reinforcement column. However, for the complete damage state, the SMA wire jacketed column showed a 1.33 times larger median value than the continuously reinforcement column. (paper)

  14. GISS Surface Temperature Analysis

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The GISTEMP dataset is a global 2x2 gridded temperature anomaly dataset. Temperature data is updated around the middle of every month using current data files from...

  15. Properties of arc-sprayed coatings from Fe-based cored wires for high-temperature applications

    Science.gov (United States)

    Korobov, Yu. S.; Nevezhin, S. V.; Filiрpov, M. A.; Makarov, A. V.; Malygina, I. Yu.; Fantozzi, D.; Milanti, A.; Koivuluoto, H.; Vuoristo, P.

    2017-12-01

    Equipment of a thermal power plant is subjected to high temperature oxidation and wear. This raises operating costs through frequent repair of worn parts and high metal consumption. The paper proposes a possible solution to this problem through arc spraying of protective coatings. Cored wires of the Fe-Cr-C basic alloying system are used as a feedstock. Additional alloying by Al, B, Si, Ti and Y allows one to create wear- and heat-resistant coatings, which are an attractive substitute of more expensive Co- and Ni-based materials.

  16. Mapping the Galvanic Corrosion of Three Metals Coupled with a Wire Beam Electrode: The Influence of Temperature and Relative Geometrical Position

    Directory of Open Access Journals (Sweden)

    Hong Ju

    2018-02-01

    Full Text Available The local electrochemical properties of galvanic corrosion for three coupled metals in a desalination plant were investigated with three wire-beam electrodes as wire sensors: aluminum brass (HAl77-2, titanium (TA2, and 316L stainless steel (316L SS. These electrodes were used with artificial seawater at different temperatures. The potential and current–density distributions of the three-metal coupled system are inhomogeneous. The HAl77-2 wire anodes were corroded in the three-metal coupled system. The TA2 wires acted as cathodes and were protected; the 316L SS wires acted as secondary cathodes. The temperature and electrode arrangement have important effects on the galvanic corrosion of the three-metal coupled system. The corrosion current of the HAl77-2 increased with temperature indicating enhanced anode corrosion at higher temperature. In addition, the corrosion of HAl77-2 was more significant when the HAl77-2 wires were located in the middle of the coupled system than with the other two metal arrangement styles.

  17. Mapping the Galvanic Corrosion of Three Metals Coupled with a Wire Beam Electrode: The Influence of Temperature and Relative Geometrical Position.

    Science.gov (United States)

    Ju, Hong; Yang, Yuan-Feng; Liu, Yun-Fei; Liu, Shu-Fa; Duan, Jin-Zhuo; Li, Yan

    2018-02-28

    The local electrochemical properties of galvanic corrosion for three coupled metals in a desalination plant were investigated with three wire-beam electrodes as wire sensors: aluminum brass (HAl77-2), titanium (TA2), and 316L stainless steel (316L SS). These electrodes were used with artificial seawater at different temperatures. The potential and current-density distributions of the three-metal coupled system are inhomogeneous. The HAl77-2 wire anodes were corroded in the three-metal coupled system. The TA2 wires acted as cathodes and were protected; the 316L SS wires acted as secondary cathodes. The temperature and electrode arrangement have important effects on the galvanic corrosion of the three-metal coupled system. The corrosion current of the HAl77-2 increased with temperature indicating enhanced anode corrosion at higher temperature. In addition, the corrosion of HAl77-2 was more significant when the HAl77-2 wires were located in the middle of the coupled system than with the other two metal arrangement styles.

  18. Mapping the Galvanic Corrosion of Three Metals Coupled with a Wire Beam Electrode: The Influence of Temperature and Relative Geometrical Position

    Science.gov (United States)

    Liu, Yun-Fei; Liu, Shu-Fa; Duan, Jin-Zhuo

    2018-01-01

    The local electrochemical properties of galvanic corrosion for three coupled metals in a desalination plant were investigated with three wire-beam electrodes as wire sensors: aluminum brass (HAl77-2), titanium (TA2), and 316L stainless steel (316L SS). These electrodes were used with artificial seawater at different temperatures. The potential and current–density distributions of the three-metal coupled system are inhomogeneous. The HAl77-2 wire anodes were corroded in the three-metal coupled system. The TA2 wires acted as cathodes and were protected; the 316L SS wires acted as secondary cathodes. The temperature and electrode arrangement have important effects on the galvanic corrosion of the three-metal coupled system. The corrosion current of the HAl77-2 increased with temperature indicating enhanced anode corrosion at higher temperature. In addition, the corrosion of HAl77-2 was more significant when the HAl77-2 wires were located in the middle of the coupled system than with the other two metal arrangement styles. PMID:29495617

  19. Irradiation and annealing effects of deuteron irradiated NbTi and V3Ga multifilamentary composite wires at low temperature

    International Nuclear Information System (INIS)

    Seibt, E.

    1975-01-01

    To study the effects of low-temperature irradiation on technological type II-superconductors, NbTi and V 3 Ga multifilamentary composite wires, the critical current I/sub c/ and transition temperature T/sub c/ were measured before and after irradiation with 50-MeV deuterons at 10 and 15 0 K, respectively. While the irradiation effects on I/sub c/ and T/sub c/ of NbTi are substantially unaffected, the V 3 Ga wires undergo a reduction in I/sub c/ of about 50 percent and T/sub c/ decreases from 14.7 +- 0.1 0 K to 12.3 +- 0.1 0 K at a total deuteron flux of 2.6 x 10 17 cm -2 . Annealing experiments at room temperature and 100 0 C show only a small recovery of the superconducting properties up to 15 percent. The field dependence of the volume pinning force densities P/sub V/ was determined and the results are shown to be consistent with a qualitative dynamic pinning model

  20. APPLICATION OF THE X-RAY STRUCTURE ANALYSIS FOR IMPROVEMENT OF TECHNOLOGICAL PROCES- SES OF WIRE PRODUCTION AT BMZ

    Directory of Open Access Journals (Sweden)

    D. V. Kuznetsov

    2012-01-01

    Full Text Available The X-ray diffraction methods of qualitative and quantative analysis of phase composition of the brass coating, scale on the surface of brass wire, rod, patented wire, methods of determining the characteristics of the microstrains the lattice ferritic matrix pearlitic high-carbon steel, are explored.

  1. Low temperature back-surface-field contacts deposited by hot-wire CVD for heterojunction solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Munoz, D. [Universitat Politecnica de Catalunya, Grup de Recerca en Micro i Nanotecnologies, Jordi Girona 1-3, Barcelona 08034 (Spain)], E-mail: delfina@eel.upc.edu; Voz, C.; Martin, I.; Orpella, A.; Alcubilla, R. [Universitat Politecnica de Catalunya, Grup de Recerca en Micro i Nanotecnologies, Jordi Girona 1-3, Barcelona 08034 (Spain); Villar, F.; Bertomeu, J.; Andreu, J. [CeRMAE-Universitat de Barcelona, Departament de Fisica Aplicada i Optica, Diagonal 647, Barcelona 08028 (Spain); Roca-i-Cabarrocas, P. [LPICM-Ecole Polytechnique, CNRS 91128 Palaiseau (France)

    2008-08-30

    The growing interest in using thinner wafers (< 200 {mu}m) requires the development of low temperature passivation strategies for the back contact of heterojunction solar cells. In this work, we investigate low temperature deposited back contacts based on boron-doped amorphous silicon films obtained by Hot-Wire CVD. The influence of the deposition parameters and the use of an intrinsic buffer layer have been considered. The microstructure of the deposited thin films has been comprehensively studied by Spectroscopic Ellipsometry in the UV-visible range. The effective recombination velocity at the back surface has been measured by the Quasi-Steady-State Photoconductance technique. Complete double-side heterojunction solar cells (1 cm{sup 2}) have been fabricated and characterized by External Quantum Efficiency and current-voltage measurements. Total-area conversion efficiencies up to 14.5% were achieved in a fully low temperature process (< 200 deg. C)

  2. Mapping the Galvanic Corrosion of Three Metals Coupled with a Wire Beam Electrode: The Influence of Temperature and Relative Geometrical Position

    OpenAIRE

    Hong Ju; Yuan-Feng Yang; Yun-Fei Liu; Shu-Fa Liu; Jin-Zhuo Duan; Yan Li

    2018-01-01

    The local electrochemical properties of galvanic corrosion for three coupled metals in a desalination plant were investigated with three wire-beam electrodes as wire sensors: aluminum brass (HAl77-2), titanium (TA2), and 316L stainless steel (316L SS). These electrodes were used with artificial seawater at different temperatures. The potential and current–density distributions of the three-metal coupled system are inhomogeneous. The HAl77-2 wire anodes were corroded in the three-metal coupled...

  3. HAM on MHD Convective Flow of a Third grade Fluid through Porous Medium during Wire Coating Analysis with Hall effects

    Science.gov (United States)

    Reddy, B. Siva Kumar; Surya Narayana Rao, K. V.; Bhuvana Vijaya, R.

    2017-08-01

    In this study, wire coating is performed using MHD convective flow of third grade fluid through porous medium taking Hall current into account. The governing equations are first modelled and then solved analytically by utilizing the Homotopy analysis method (HAM). The convergence of the series solution is established. The effect of pertinent parameters on the velocity field and temperature profile is shown with the help of graphs. It is observed that the velocity profiles increase as the value of visco-elastic third grade fluid parameter β increase and decrease as the Hartmann number M and permeability parameter K increase. It is also observed that the temperature profiles increases as the Brinkman number Br, permeability parameter K, magnetic parameter M and third grade fluid parameter β increase.

  4. Dynamic characteristics of a simple constant-temperature hot-wire anemometer.

    Science.gov (United States)

    Lu, S S

    1979-06-01

    A simple constant-temperatue hot-wire anemometer has been analyzed and tested in a shock tube and by electronic tests. In the derivation of the governing equations, the finite open-loop gain of an operational amplifier is considered. The measured values of the natural frequency and the damping coefficient for the anemometer system are in satisfactory agreement with the theory. For short probe cables, the frequency response is found to be limited by the finite open-loop gain of the amplifier.

  5. Dimensional analysis of detrimental ozone generation by positive wire-to-plate corona discharge in air

    Science.gov (United States)

    Bo, Z.; Chen, J. H.

    2010-02-01

    The dimensional analysis technique is used to formulate a correlation between ozone generation rate and various parameters that are important in the design and operation of positive wire-to-plate corona discharges in indoor air. The dimensionless relation is determined by linear regression analysis based on the results from 36 laboratory-scale experiments. The derived equation is validated by experimental data and a numerical model published in the literature. Applications of such derived equation are illustrated through an example selection of the appropriate set of operating conditions in the design/operation of a photocopier to follow the federal regulations of ozone emission. Finally, a new current-voltage characteristic equation is proposed for positive wire-to-plate corona discharges based on the derived dimensionless equation.

  6. Dimensional analysis of detrimental ozone generation by positive wire-to-plate corona discharge in air

    International Nuclear Information System (INIS)

    Bo, Z; Chen, J H

    2010-01-01

    The dimensional analysis technique is used to formulate a correlation between ozone generation rate and various parameters that are important in the design and operation of positive wire-to-plate corona discharges in indoor air. The dimensionless relation is determined by linear regression analysis based on the results from 36 laboratory-scale experiments. The derived equation is validated by experimental data and a numerical model published in the literature. Applications of such derived equation are illustrated through an example selection of the appropriate set of operating conditions in the design/operation of a photocopier to follow the federal regulations of ozone emission. Finally, a new current-voltage characteristic equation is proposed for positive wire-to-plate corona discharges based on the derived dimensionless equation.

  7. Analysis of Steel Wire Rope Diagnostic Data Applying Multi-Criteria Methods

    Directory of Open Access Journals (Sweden)

    Audrius Čereška

    2018-02-01

    Full Text Available Steel ropes are complex flexible structures used in many technical applications, such as elevators, cable cars, and funicular cabs. Due to the specific design and critical safety requirements, diagnostics of ropes remains an important issue. Broken wire number in the steel ropes is limited by safety standards when they are used in the human lifting and carrying installations. There are some practical issues on loose wires—firstly, it shows end of lifetime of the entire rope, independently of wear, lubrication or wrong winding on the drums or through pulleys; and, secondly, it can stick in the tight pulley—support gaps and cause deterioration of rope structure up to birdcage formations. Normal rope operation should not generate broken wires, so increasing of their number shows a need for rope installation maintenance. This paper presents a methodology of steel rope diagnostics and the results of analysis using multi-criteria analysis methods. The experimental part of the research was performed using an original test bench to detect broken wires on the rope surface by its vibrations. Diagnostics was performed in the range of frequencies from 60 to 560 Hz with a pitch of 50 Hz. The obtained amplitudes of the broken rope wire vibrations, different from the entire rope surface vibration parameters, was the significant outcome. Later analysis of the obtained experimental results revealed the most significant values of the diagnostic parameters. The evaluation of the power of the diagnostics was implemented by using multi-criteria decision-making (MCDM methods. Various decision-making methods are necessary due to unknown efficiencies with respect to the physical phenomena of the evaluated processes. The significance of the methods was evaluated using objective methods from the structure of the presented data. Some of these methods were proposed by authors of this paper. Implementation of MCDM in diagnostic data analysis and definition of the

  8. Off-chip wire distribution and signal analysis

    OpenAIRE

    Shi, Rui

    2008-01-01

    With the steady progress of high performance electronic systems, the complexity of the electronic systems grows continuously and new features like high-speed, low power and low cost, become the key issues. The interconnection in the electronic systems distributes the power, clock and transfers the electrical signals among numerous components. As the feature size of microelectronic technology becomes smaller, the design and analysis of the interconnection are more important for the performance...

  9. Surface evolution during crystalline silicon film growth by low-temperature hot-wire chemical vapor deposition on silicon substrates

    Science.gov (United States)

    Richardson, Christine Esber; Park, Young-Bae; Atwater, Harry A.

    2006-06-01

    We investigate the low-temperature growth of crystalline thin silicon films: epitaxial, twinned, and polycrystalline, by hot-wire chemical vapor deposition (HWCVD). Using Raman spectroscopy, spectroscopic ellipsometry, and atomic force microscopy, we find the relationship between surface roughness evolution and (i) the substrate temperature (230-350°C) and (ii) the hydrogen dilution ratio (H2/SiH4=0-480) . The absolute silicon film thickness for fully crystalline films is found to be the most important parameter in determining surface roughness, hydrogen being the second most important. Higher hydrogen dilution increases the surface roughness as expected. However, surface roughness increases with increasing substrate-temperature, in contrast to previous studies of crystalline Si growth. We suggest that the temperature-dependent roughness evolution is due to the role of hydrogen during the HWCVD process, which in this high hydrogen dilution regime allows for epitaxial growth on the rms roughest films through a kinetic growth regime of shadow-dominated etch and desorption and redeposition of growth species.

  10. Present Status and Future Perspective of Bismuth-Based High-Temperature Superconducting Wires Realizing Application Systems

    Science.gov (United States)

    Sato, Ken-ichi; Kobayashi, Shin-ichi; Nakashima, Takayoshi

    2012-01-01

    Among a series of high-temperature superconducting materials that have been discovered to date, (Bi,Pb)2Sr2Ca2Cu3O10-x is the best candidate for superconducting wires that are long with commercial productivity, and critical current performance. In particular, the controlled overpressure (CT-OP) sintering technique gave us a 100% density of (Bi,Pb)2Sr2Ca2Cu3O10-x portion, which leads to robustness, increase in critical current, and mechanical tolerance. Many application prototypes are already verified and are being evaluated worldwide. Current leads for large magnets and magnetic billet heaters are already commercial products. Commercial applications for power cables, motors for ship propulsion and electric vehicles, and many kinds of magnets are promising in the near future.

  11. Analysis on Factors Affecting the Self-Repair Capability of SMA Wire Concrete Beam

    Directory of Open Access Journals (Sweden)

    Li Sun

    2013-01-01

    Full Text Available Crack expansion of concrete is the initial damage stage of structures, which may cause greater damage to structures subject to long-term loads or under extreme conditions. In recent years, the application of intelligent materials to crack self-repair has become a hotspot among researchers. In order to study the influence of factors on the self-repair capability of shape memory alloy (SMA wire concrete beam, both theoretical and experimental methods were employed for analysis. For the convenience of experiment, composite materials (epoxy cement mortar and silicone polymer clay instead of concrete were used. The SMA wires were externally installed on and internally embedded in epoxy resin cement mortar beams and silicone polymer clay beams. Comparison of crack repair situation between two installation methods turns out that both methods possess their own advantages and disadvantages and should be employed according to the actual situation. The influence of unbonded length on the self-repair capability of embedded type SMA wire beams and the necessary minimum unbonded length to achieve self-repair function were studied. The results state clearly that the longer the unbonded length is, the better the crack repair situation is.

  12. A novel method for shape analysis: deformation of bubbles during wire drawing in doped tungsten

    International Nuclear Information System (INIS)

    Harmat, P.; Bartha, L.; Grosz, T.; Rosta, L.

    2001-01-01

    A novel technique has been developed for monitoring shape and size of microscopic pores, bubbles, second phase particles in deformed PM materials. The anisotropic small angle neutron scattering (ASANS) measurement provides direct visualization of the shape of second phase objects after rolling, swaging, wire drawing. Also in case of mixture of different objects e. g. uniformly elongated bubbles and spherical ones they can be separated and their morphological parameters like relative number density, diameter, aspect ratio can be obtained from the quantitative analysis of ASANS data. Rods and wires from K-AI-Si doped tungsten containing residual porosity and K filled bubbles were studied from 6 mm to 0.2 mm in diameter. The increase of the average aspect ratio (∼1/d) was found to be much slower than expected from the usual theory (∼1/d 3 ). Instead of 'constant volume' assumption, the 'constant length' seems to be reliable. The ASANS investigation revealed also the occurrence of a small amount of spherical bubbles after several steps of wire drawing. (author)

  13. Low temperature deposition of crystalline silicon on glass by hot wire chemical vapor deposition

    Science.gov (United States)

    Chung, Yung-Bin; Park, Hyung-Ki; Lee, Dong-Kwon; Jo, Wook; Song, Jean-Ho; Lee, Sang-Hoon; Hwang, Nong-Moon

    2011-07-01

    Although the deposition of crystalline silicon on a glass substrate has been pursued using hot wire chemical vapor deposition or plasma enhanced chemical vapor deposition for applications in flat panel displays and solar cells, the process has been only partly successful because of the inevitable formation of an amorphous incubation layer on a glass substrate. Currently, the crystalline silicon films are prepared by depositing an amorphous silicon film on a glass substrate and then crystallizing it by excimer laser annealing (ELA), metal induced crystallization or rapid thermal annealing (RTA). Here we report a new process, which can remove the amorphous incubation layer and thereby deposit crystalline silicon directly on glass using HCl. The intrinsic crystalline silicon film has a conductivity of 3.7×10 -5 Scm -1 and the n-type doped crystalline silicon film has the Hall mobility of 15.8 cm 2V -1 s -1, whose values are comparable to those prepared by ELA and RTA, respectively.

  14. Fabrication of Nb{sub 3}Al superconducting wires by utilizing the mechanically alloyed Nb(Al){sub ss} supersaturated solid-solution with low-temperature annealing

    Energy Technology Data Exchange (ETDEWEB)

    Pan, X.F. [National Engineering Laboratory for Superconducting Material, Western Superconducting Technologies (WST) Co., Ltd., Xi’an 710018 (China); Superconducting Materials Center, Northwest Institute for Nonferrous Metal Research, Xi’an 710016 (China); Yan, G., E-mail: gyan@c-nin.com [National Engineering Laboratory for Superconducting Material, Western Superconducting Technologies (WST) Co., Ltd., Xi’an 710018 (China); Superconducting Materials Center, Northwest Institute for Nonferrous Metal Research, Xi’an 710016 (China); Qi, M. [Superconducting Materials Center, Northwest Institute for Nonferrous Metal Research, Xi’an 710016 (China); Cui, L.J. [National Engineering Laboratory for Superconducting Material, Western Superconducting Technologies (WST) Co., Ltd., Xi’an 710018 (China); Chen, Y.L.; Zhao, Y. [Key Laboratory of Magnetic Levitation Technologies and Maglev Trains (Ministry of Education of China), Superconductivity and New Energy R and D Center, Southwest Jiaotong University, Chengdu 610031 (China); Li, C.S. [Superconducting Materials Center, Northwest Institute for Nonferrous Metal Research, Xi’an 710016 (China); Liu, X.H. [National Engineering Laboratory for Superconducting Material, Western Superconducting Technologies (WST) Co., Ltd., Xi’an 710018 (China); Feng, Y.; Zhang, P.X. [National Engineering Laboratory for Superconducting Material, Western Superconducting Technologies (WST) Co., Ltd., Xi’an 710018 (China); Key Laboratory of Magnetic Levitation Technologies and Maglev Trains (Ministry of Education of China), Superconductivity and New Energy R and D Center, Southwest Jiaotong University, Chengdu 610031 (China); Liu, H.J. [Institute of Plasma Physics, Chinese Academy of Sciences (CAS), Hefei 230031 (China); and others

    2014-07-15

    Highlights: • This paper reported superconducting properties of the powder-in-tube Nb{sub 3}Al wires. • The Nb{sub 3}Al wires were made by using Nb(Al){sub ss} supersaturated solid solution powders. • The Cu-matrix Nb{sub 3}Al superconducting wires have been successfully fabricated. • The transport J{sub c} of Nb{sub 3}Al wires at 4.2 K, 10 T is up to 12,700 A/cm{sup 2}. - Abstract: High-performance Nb{sub 3}Al superconducting wire is a promising candidate to the application of high-field magnets. However, due to the production problem of km-grade wires that are free from low magnetic field instability, the Nb{sub 3}Al wires made by rapid heating, quenching and transformation (RHQT) are still not available to the large-scale engineering application. In this paper, we reported the properties of the in situ powder-in-tube (PIT) Nb{sub 3}Al superconducting wires, which were made by using the mechanically alloyed Nb(Al){sub ss} supersaturated solid solution, as well as the low temperature heat-treatment at 800 °C for 10 h. The results show that Nb{sub 3}Al superconductors in this method possess very fine grains and well superconducting properties, though a little of Nb{sub 2}Al and Nb impurities still keep being existence at present work. At the Nb{sub 3}Al with a nominal 26 at.% Al content, the onset T{sub c} reaches 15.8 K. Furthermore, a series of Nb{sub 3}Al wires and tapes with various sizes have been fabricated; for the 1.0 mm-diameter wire, the J{sub c} at 4.2 K, 10 T and 14 T have achieved 12,700 and 6900 A/cm{sup 2}, respectively. This work suggests it is possible to develop high-performance Cu-matrix Nb{sub 3}Al superconducting wires by directly using the Nb(Al){sub ss} supersaturated solid-solution without the complex RHQT heat-treatment process.

  15. Basic Wiring.

    Science.gov (United States)

    Kaltwasser, Stan; And Others

    This module is the first in a series of three wiring publications; it serves as the foundation for students enrolled in a wiring program. It is a prerequisite to either "Residential Wiring" or "Commercial and Industrial Wiring." The module contains 16 instructional units that cover the following topics: occupational…

  16. Analysis of electrical explosion of wire systems for the production of ...

    Indian Academy of Sciences (India)

    With the intention of developing better exploding wire system for the produc- ... the emphasise has been given to explain the process involved to produce nano phase material by EEW method experimentally. 2. Theory. For a wire of length 'l' and ... One exploder is a cage type open system (set-up I) where wires are mounted ...

  17. Transport in microcrystalline silicon thin films deposited at low temperature by hot-wire chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Bouree, Jean-Eric [Laboratoire de Physique des Interfaces et des Couches Minces, CNRS UMR 7647, Ecole Polytechnique, 91128 Palaiseau (France)]. E-mail: jean-eric.bouree@polytechnique.edu; Jadkar, Sandesh R. [School of Energy Studies, Department of Physics, University of Pune, Pune 411 007 (India); Kasouit, Samir [Laboratoire de Physique des Interfaces et des Couches Minces, CNRS UMR 7647, Ecole Polytechnique, 91128 Palaiseau (France); Vanderhaghen, Regis [Laboratoire de Physique des Interfaces et des Couches Minces, CNRS UMR 7647, Ecole Polytechnique, 91128 Palaiseau (France)

    2006-04-20

    This work is focused on the determination of the variation of local mobility of charge carriers with thickness (< 1 {mu}m) for undoped microcrystalline silicon layers deposited by the hot-wire chemical vapor deposition technique. We observed that the temperature of the layers T {sub s} evolves with the deposition time, once the tungsten filament has been heated from room temperature to a fixed definite value. Thus, experiments have been realized by fixing the gas pressure (41 mTorr), the dilution of silane in hydrogen (50%), by setting the filament temperature (1600 deg. C) and letting the time run. An average substrate temperature T {sub s,av} has been defined, whose value depends on deposition time. As a result, the local mobility deduced from time-resolved microwave conductivity increases almost linearly with T {sub s,av} up to 193 deg. C, i.e. with thickness up to 400 nm corresponding approximately to the amorphous-microcrystalline transition and then increases sublinearly up to T {sub s,av} = 221 deg. C, i.e. a 900-nm-thick layer. These results, compatible with the highest AM1.5 efficiency (> 9%) reported so far for p-i-n {mu}c-Si:H solar cells realized at T {sub s} = 185 deg. C [S. Klein, F. Finger, R. Carius, T. Dylla, B. Rech, M. Grimm, L. Houben, M. Stutzmann, Thin Solid Films 430 (2003) 202], suggest that in the range of T {sub s,av} from 190 deg. C to 220 deg. C, hydrogen plays a dominant role in the HWCVD growth of {mu}c-Si:H films.

  18. Stress distribution in delayed replanted teeth splinted with different orthodontic wires: a three-dimensional finite element analysis.

    Science.gov (United States)

    de Souza, Fernando Isquierdo; Poi, Wilson Roberto; da Silva, Vanessa Ferreira; Martini, Ana Paula; Melo, Regis Alexandre da Cunha; Panzarini, Sonia Regina; Rocha, Eduardo Passos

    2015-06-01

    The aim was to evaluate the biomechanical behavior of the supporting bony structures of replanted teeth and the periodontal ligament (PDL) of adjacent teeth when orthodontic wires with different mechanical properties are applied, with three-dimensional finite element analysis. Based on tomographic and microtomographic data, a three-dimensional model of the anterior maxilla with the corresponding teeth (tooth 13-tooth 23) was generated to simulate avulsion and replantation of the tooth 21. The teeth were splinted with orthodontic wire (Ø 0.8 mm) and composite resin. The elastic modulus of the three orthodontic wires used, that is, steel wire (FA), titanium-molybdenum wire (FTM), and nitinol wire (FN) were 200 GPa, 84 GPa, and 52 GPa, respectively. An oblique load (100 N) was applied at an angle of 45° on the incisal edge of the replanted tooth and was analyzed using Ansys Workbench software. The maximum (σmax) and minimum (σmin) principal stresses generated in the PDL, cortical and alveolar bones, and the modified von Mises (σvM) values for the orthodontic wires were obtained. With regard to the cortical bone and PDL, the highest σmin and σmax values for FTM, FN, and FA were checked. With regard to the alveolar bone, σmax and σmin values were highest for FA, followed by FTM and FN. The σvM values of the orthodontic wires followed the order of rigidity of the alloys, that is, FA > FTM > FN. The biomechanical behavior of the analyzed structures with regard to all the three patterns of flexibility was similar. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. Photoelastic analysis of stress generated by wires when conventional and self-ligating brackets are used: A pilot study

    Directory of Open Access Journals (Sweden)

    Guilherme Caiado Sobral

    2014-10-01

    Full Text Available OBJECTIVE: By means of a photoelastic model, this study analyzed the stress caused on conventional and self-ligating brackets with expanded arch wires. METHOD: Standard brackets were adhered to artificial teeth and a photoelastic model was prepared using the Interlandi 19/12 diagram as base. Successive activations were made with 0.014-in and 0.018-in rounded cross section Nickel-Titanium wires (NiTi and 0.019 x 0.025-in rectangular stainless steel wires all of which made on 22/14 Interlandi diagram. The model was observed on a plane polariscope - in a dark field microscope configuration - and photographed at each exchange of wire. Then, they were replaced by self-ligating brackets and the process was repeated. Analysis was qualitative and observed stress location and pattern on both models analyzed. CONCLUSIONS: Results identified greater stress on the region of the apex of premolars in both analyzed models. Upon comparing the stress between models, a greater amount of stress was found in the model with conventional brackets in all of its wires. Therefore, the present pilot study revealed that alignment of wires in self-ligating brackets produced lower stress in periodontal tissues in expansive mechanics.

  20. Photoelastic analysis of stress generated by wires when conventional and self-ligating brackets are used: a pilot study.

    Science.gov (United States)

    Sobral, Guilherme Caiado; Vedovello Filho, Mário; Degan, Viviane Veroni; Santamaria, Milton

    2014-01-01

    By means of a photoelastic model, this study analyzed the stress caused on conventional and self-ligating brackets with expanded arch wires. Standard brackets were adhered to artificial teeth and a photoelastic model was prepared using the Interlandi 19/12 diagram as base. Successive activations were made with 0.014-in and 0.018-in rounded cross section Nickel-Titanium wires (NiTi) and 0.019 x 0.025-in rectangular stainless steel wires all of which made on 22/14 Interlandi diagram. The model was observed on a plane polariscope--in a dark field microscope configuration--and photographed at each exchange of wire. Then, they were replaced by self-ligating brackets and the process was repeated. Analysis was qualitative and observed stress location and pattern on both models analyzed. Results identified greater stress on the region of the apex of premolars in both analyzed models. Upon comparing the stress between models, a greater amount of stress was found in the model with conventional brackets in all of its wires. Therefore, the present pilot study revealed that alignment of wires in self-ligating brackets produced lower stress in periodontal tissues in expansive mechanics.

  1. Analysis and optimization of silicon wafers wire sawing; Analyse et optimisation du procede de decoupe de plaques de silicium

    Energy Technology Data Exchange (ETDEWEB)

    Rouault de Coligny, P.

    2002-09-15

    This work has been done at the Centre de Mise en Forme des Materiaux and supported by the Agence de l'Environnement et la Maitrise de l'Energie and Photowatt International SA. It concerns one of the stages of the production of photovoltaic solar cells: the cutting of multi-crystalline silicon wafers by wire sawing. A review of the literature combined with the observation of rough wafers shows that wire sawing involves 3-body abrasion and that material removal is achieved in a ductile manner and forms micro-chips. Therefore, the depth of indentation which is necessary for the ductile-fragile transition as shown by the review of the literature is not reached. The resulting abrasion can be described thanks to Archard's Law. The subsurface damage is 2.5 {mu}m deep. A thermal study has shown that the temperature of the cutting is no higher than about 50 deg. C and that it depends on how much heat can be evacuated by the wire. Analyzing the flaws of the wafers has enabled us to identify their origins and to find solutions. The study of the wire's wear has proved that its diameter can be reduced only if the wire is drawn continuously. Energy can be saved at various stages, the surface of the wafers can be improved, these three arguments plead for the suppression of the back and forth. A tribological device has been set up which allows us to study the abrasion of silicon in the same conditions as in the wire sawing. A mechanical model linking the bending of the wire to the parameters collected during the wire sawing process can predict how high the wire web will be in the transitional and permanent regimes, the contact pressure and the wire wear. Material removal by plane strain scratch tests has been numerically simulated. The orders of magnitude of wear coefficients are identical to those deduced from tribological simulations and to those measured on the saws. This approach has opened new prospects which will improve the process by optimizing the

  2. Effect of annealing high-dose heavy-ion irradiated high-temperature superconductor wires

    Science.gov (United States)

    Strickland, N. M.; Wimbush, S. C.; Kluth, P.; Mota-Santiago, P.; Ridgway, M. C.; Kennedy, J. V.; Long, N. J.

    2017-10-01

    Heavy-ion irradiation of high-temperature superconducting thin films has long been known to generate damage tracks of amorphized material that are of close-to-ideal dimension to effectively contribute to pinning of magnetic flux lines and thereby enhance the in-field critical current. At the same time, though, the presence of these tracks reduces the superconducting volume fraction available to transport current while the irradiation process itself generates oxygen depletion and disorder in the remaining superconducting material. We have irradiated commercially available superconducting coated conductors consisting of a thick film of (Y,Dy)Ba2Cu3O7 deposited on a buffered metal tape substrate in a continuous reel-to-reel process. Irradiation was by 185 MeV 197Au ions. A high fluence of 3 × 1011 ions/cm2 was chosen to emphasize the detrimental effects. The critical current was reduced following this irradiation, but annealing at relatively low temperatures of 200 °C and 400 °C substantially restore the critical current of the irradiated material. At high fields and high temperatures there is a net benefit of critical current compared to the untreated material.

  3. Flutter and Thermal Buckling Analysis for Composite Laminated Panel Embedded with Shape Memory Alloy Wires in Supersonic Flow

    Directory of Open Access Journals (Sweden)

    Chonghui Shao

    2016-01-01

    Full Text Available The flutter and thermal buckling behavior of laminated composite panels embedded with shape memory alloy (SMA wires are studied in this research. The classical plate theory and nonlinear von-Karman strain-displacement relation are employed to investigate the aeroelastic behavior of the smart laminated panel. The thermodynamic behaviors of SMA wires are simulated based on one-dimensional Brinson SMA model. The aerodynamic pressure on the panel is described by the nonlinear piston theory. Nonlinear governing partial differential equations of motion are derived for the panel via the Hamilton principle. The effects of ply angle of the composite panel, SMA layer location and orientation, SMA wires temperature, volume fraction and prestrain on the buckling, flutter boundary, and amplitude of limit cycle oscillation of the panel are analyzed in detail.

  4. Flux Pinning and AC Loss in Second Generation High Temperature Superconductor Wires

    Energy Technology Data Exchange (ETDEWEB)

    Paranthaman, Mariappan Parans [ORNL; Selvamanickam, V. [SuperPower Incorporated, Schenectady, New York

    2007-01-01

    Major advances have been made in the last 18 years in high-temperature superconductor (HTS) reserach and development, resulting in increased use of HTS materials in commerical and pre-commercial electric-power applications. This new and important book addresses the issues related to flux pinning, AC losses and thick YBCO film growth. Written by top most scientists in the world, it presents the current status and issues related to YBCO coated conductors and the need for further fundamental materials science work in YBCO coated conductor. It will be a useful handbook for years to come.

  5. Experimental Analysis of the Hydraulic Performance of Wire-Wound Filter Cartridges in Domestic Plants

    Directory of Open Access Journals (Sweden)

    Giacomo Viccione

    2018-03-01

    Full Text Available Among the treatment processes in water networks—of increasing importance in recent decades due to the progressive deterioration of water quality—filtration still represents a major solution. The present work focuses in particular on the filtration of drinking water with wire-wound filter cartridges, the most widely used type of cartridge in domestic plants among the commercially available cartridges, due to their efficiency and relatively low costs. Specifically, the hydraulic performance of these cartridges was analyzed, i.e., mainly the effect of their introduction into a hydraulic system in terms of head losses. The local pressure drops produced by the cartridges may, in fact, create problems in hydraulic plants already characterized by low pressures, where pressure levels may fall below the minimum limit recommended to ensure the smooth operation of domestic devices. To this aim, a set of experiments was conducted in a pilot circuit in the Laboratory of Environmental and Maritime Hydraulics (LIDAM at University of Salerno, where pressure drops produced by the cartridges were measured in different operating conditions. The artificially dirty conditions of the wire-wound filters were analyzed in order to evaluate the effect of the filter obstruction. The analysis provided some useful information about the performance and duration of these filters, as well as suggestions for more efficient commercial filters.

  6. Three dimensional conjugated heat transfer analysis in sodium fast reactor wire-wrapped fuel assembly

    International Nuclear Information System (INIS)

    Peniguel, C.; Rupp, I.; Juhel, JP.; Rolfo, S.; Guillaud, M.; Gervais, N.

    2009-01-01

    Fast reactors with liquid metal coolant have recently received a renewed interest owing to a more efficient usage of the primary uranium resources, and they are one of the proposal for the next Generation IV. In order to evaluate nuclear power plant design and safety, 3D analysis of the flow and heat transfer in a wire spacer fuel assembly are ongoing at EDF. The introduction of the wire wrapped spacers, helically wound along the pin axis, enhances the mixing of the coolant between sub-channels and prevents contact between the fuel pins. The mesh generation step constitutes a challenging task if a reasonable amount of cells in conjunction with a suitable spatial discretization is wanted. Several approaches have been investigated and will be presented. Quite complex global flow patterns are found using either k-ε or preferably Reynolds Stress turbulent models. Preliminary conjugated heat transfer calculations using a coupling between the finite element thermal code SYRTHES and the finite volume CFD code Code Saturne are also shown. (author)

  7. Comparative short-term in vitro analysis of mutans streptococci adhesion on esthetic, nickel-titanium, and stainless-steel arch wires.

    Science.gov (United States)

    Kim, In-Hye; Park, Hyo-Sang; Kim, Young Kyung; Kim, Kyo-Han; Kwon, Tae-Yub

    2014-07-01

    To test the hypothesis that there are no differences in mutans streptococci (MS) adhesion between esthetic and metallic orthodontic arch wires based on their surface characteristics. Surface roughness (Ra) and apparent surface free energy (SFE) were measured for six wires-four esthetic, one nickel-titanium (NiTi), and one stainless-steel (SS)-using profilometry and dynamic contact angle analysis, respectively. The amount of MS (Streptococcus mutans and Streptococcus sobrinus) adhering to the wires was quantified using the colony-counting method. The surfaces, coating layers, and MS adhesion were also observed by scanning electron microscopy. Statistical significance was set at P wires were significantly different from one another depending on the coating method (P wire showed the highest SFE, followed by the SS wire and then the four esthetic wires. The NiTi wires produced a significantly higher MS adhesion than did the SS wires (P wires showed significantly lower MS adhesions than did the NiTi wire (P < .05). Pearson correlation analyses found moderate significant positive correlations between the SFE and the S mutans and S sobrinus adhesions (r  =  .636/.427, P < .001/P  =  .001, respectively). The hypothesis is rejected. This study indicates that some esthetic coatings on NiTi alloy might reduce MS adhesion in vitro in the short term.

  8. The effects of feedback amplifier characteristics on constant temperature hot-wire anemometer systems

    Science.gov (United States)

    Watmuff, J. H.

    1989-01-01

    The 3rd-order analysis of Perry and Morrison (1971) was extended to 7th-order by Watmuff (1987) by including both the bridge-capacitance and the frequency-response characteristics of the feedback amplifier. In this paper, the bridge capacitance has been excluded from the analysis. The influence of the gain K, roll-off frequency f(A), and offset voltage E(qi) of the feedback amplifier are examined in more detail together with their interactions with the bridge inductance.

  9. The US market for high-temperature superconducting wire in transmission cable applications

    Energy Technology Data Exchange (ETDEWEB)

    Forbes, D

    1996-04-01

    Telephone interviews were conducted with 23 utility engineers concerning the future prospects for high-temperature superconducting (HTS) transmission cables. All have direct responsibility for transmission in their utility, most of them in a management capacity. The engineers represented their utilities as members of the Electric Power Research Institute`s Underground Transmission Task Force (which has since been disbanded). In that capacity, they followed the superconducting transmission cable program and are aware of the cryogenic implications. Nineteen of the 23 engineers stated the market for underground transmission would grow during the next decade. Twelve of those specified an annual growth rate; the average of these responses was 5.6%. Adjusting that figure downward to incorporate the remaining responses, this study assumes an average growth rate of 3.4%. Factors driving the growth rate include the difficulty in securing rights-of-way for overhead lines, new construction techniques that reduce the costs of underground transmission, deregulation, and the possibility that public utility commissions will allow utilities to include overhead costs in their rate base. Utilities have few plans to replace existing cable as preventive maintenance, even though much of the existing cable has exceeded its 40-year lifetime. Ten of the respondents said the availability of a superconducting cable with the same life-cycle costs as a conventional cable and twice the ampacity would induce them to consider retrofits. The respondents said a cable with those characteristics would capture 73% of their cable retrofits.

  10. Temperature analysis in CFRP drilling

    Science.gov (United States)

    Matsumura, Takashi; Tamura, Shoichi

    2016-10-01

    The cutting temperature in drilling of carbon fiber reinforced plastics (CFRPs) is simulated numerically in finite difference analysis. The cutting force is predicted to estimate heat generation on the shear plane and the rake face by an energy approach. In the force model, three dimensional chip flow is interpreted as a piling up of the orthogonal cuttings in the planes containing the cutting velocities and the chip flow velocities, in which the chip flow direction is determined to minimize the cutting energy. Then, the cutting force is predicted in the determined chip flow model. The cutting temperature distribution is simulated with the thermal conductions, the thermal convections and the heat generations in the discrete elements of the tool, the chip and the workpiece. The heat generations on the shear plane and the rake face are given by stress distributions based on the cutting force predicted. The cutting temperature is analyzed on assumption that all mechanical works contribute the heat generation. The temperature of CFRP is compared with that of carbon steel in the numerical simulation. The maximum temperature of CFRP is much lower than carbon steel. The position at the maximum temperature is near the tool tip due to a low thermal conductivity of CFRP.

  11. Wire Chamber

    CERN Multimedia

    Magnetoscriptive readout wire chamber. Multi-wire detectors contain layers of positively and negatively charged wires enclosed in a chamber full of gas. A charged particle passing through the chamber knocks negatively charged electrons out of atoms in the gas, leaving behind positive ions. The electrons are pulled towards the positively charged wires. They collide with other atoms on the way, producing an avalanche of electrons and ions. The movement of these electrons and ions induces an electric pulse in the wires which is collected by fast electronics. The size of the pulse is proportional to the energy loss of the original particle.

  12. Wire chamber

    CERN Multimedia

    1967-01-01

    Magnetoscriptive readout wire chamber.Multi-wire detectors contain layers of positively and negatively charged wires enclosed in a chamber full of gas. A charged particle passing through the chamber knocks negatively charged electrons out of atoms in the gas, leaving behind positive ions. The electrons are pulled towards the positively charged wires. They collide with other atoms on the way, producing an avalanche of electrons and ions. The movement of these electrons and ions induces an electric pulse in the wires which is collected by fast electronics. The size of the pulse is proportional to the energy loss of the original particle.

  13. wire chamber

    CERN Multimedia

    Proportional multi-wire chamber. Multi-wire detectors contain layers of positively and negatively charged wires enclosed in a chamber full of gas. A charged particle passing through the chamber knocks negatively charged electrons out of atoms in the gas, leaving behind positive ions. The electrons are pulled towards the positively charged wires. They collide with other atoms on the way, producing an avalanche of electrons and ions. The movement of these electrons and ions induces an electric pulse in the wires which is collected by fast electronics. The size of the pulse is proportional to the energy loss of the original particle. Proportional wire chambers allow a much quicker reading than the optical or magnetoscriptive readout wire chambers.

  14. Analysis of critical current-bend strain relationships in composite Nb3Sn superconducting wires

    International Nuclear Information System (INIS)

    Luhman, T.; Welch, D.O.

    1979-01-01

    In order to be used successfully in fusion magnets, Nb 3 Sn conductors must meet several mechanical strain criteria, including tolerance to bending strains encountered during magnet construction. Since Nb 3 Sn is extremely brittle much information has been generated regarding the sensitivity of these conductros to tensile strain. A recent comparison of critical current-bend and tensile test data indicates that the strain required to initiate compound cracking during bending is significantly less than the strain required to do so by tensile of critical current on bending strains in monofilamentary Nb 3 Sn wires is calculated and compared with experimental data. The calculation takes into account a shift in the composite's neutral axis which occurs during bending. The analysis correctly predicts the observed depdndence of the critical current on bending strains

  15. Quartz-enhanced conductance spectroscopy for nanomechanical analysis of polymer wire

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Huadan; Yin, Xukun; Zhang, Guofeng; Wu, Hongpeng; Liu, Xiaoli; Ma, Weiguang; Zhang, Lei; Yin, Wangbao; Xiao, Liantuan; Jia, Suotang [State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan 030006 (China); Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006 (China); Dong, Lei, E-mail: donglei@sxu.edu.cn [State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan 030006 (China); Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006 (China); Department of Electrical and Computer Engineering, Rice University, Houston, Texas 77004 (United States); Tittel, Frank K. [Department of Electrical and Computer Engineering, Rice University, Houston, Texas 77004 (United States)

    2015-11-30

    Quartz-enhanced conductance spectroscopy is developed as an analytical tool to investigate dynamic nanomechanical behaviors of polymer wires, in order to determine the glass transition temperature (T{sub g}). A polymethyl methacrylate (PMMA) microwire with a diameter of 10 μm was bridged across the prongs of a quartz tuning fork (QTF). With the advantage of QTF self-sensing as compared with micro-cantilevers or other resonators, the resonance frequency and Q factor can be directly determined by means of its electrical conductance spectra with respect to the frequency of the external excitation source (dI/dV vs f), and therefore, no optical beam is required. The T{sub g} of the PMMA microwire was determined by the maximum loss modulus of the QTF, calculated from the resonance frequency and the Q factor as a function of temperature. The measured T{sub g} of the PMMA is 103 °C with an error of ±2 °C. Both heating/cooling and physical aging experiments were carried out, demonstrating that the technique is both reversible and reproducible.

  16. Post deposition annealing temperature effect on silicon quantum dots embedded in silicon nitride dielectric multilayer prepared by hot-wire chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Panchal, A.K., E-mail: ashishpanchal@me.iitb.ac.i [Department of Energy Science and Engineering, IIT Bombay, Powai, Mumbai 400 076 (India); Solanki, C.S. [Department of Energy Science and Engineering, IIT Bombay, Powai, Mumbai 400 076 (India)

    2009-04-30

    The preparations of the 20-period of a Si quantum dot (QD)/SiN{sub x} multilayer in a hot-wire chemical vapor deposition (HWCVD) chamber is presented in this paper. The changes in the properties of Si-QDs after the post deposition annealing treatment are studied in detail. Alternate a-Si:H and SiN{sub x} layers are grown in a single SiN{sub x} deposition chamber by cracking SiH{sub 4}, and SiH{sub 4} + NH{sub 3}, respectively at 250 {sup o}C. The as-deposited samples are annealed in the temperature range of 800 {sup o}C to 950 {sup o}C to grow Si-QDs. All the samples are characterized by confocal micro Raman, transmission electron microscope (TEM), and photoluminescence (PL) to study the changes in the film structures after the annealing treatment. The micro Raman analysis of the samples shows the frequency line shifting from 482 cm{sup -1} to 500 cm{sup -1} indicating the Si transition from an amorphous to a crystalline phase. The TEM micrograph inspection indicates the formation of Si-QDs of size 3 to 5 nm and a density of 5 x 10{sup 12}/cm{sup 2}. The high resolution TEM micrographs show an agglomeration of Si-QDs with an increase in the annealing temperature. The PL spectra show a peak shifting from 459 nm to 532 nm with increasing the annealing temperature of the film.

  17. MIP Plasma Decapsulation of Copper-wired Semiconductor Devices for Failure Analysis

    NARCIS (Netherlands)

    Tang, J.

    2014-01-01

    The majority of Integrated Circuit (IC) devices are encapsulated in wire-bonded plastic IC packages. Epoxy molding compound is used as the encapsulation material and gold was used as the bonding wire material. However, the increase of gold material price from 400 USD/ounce in year 2005 to 1400

  18. Imperfection analysis of flexible pipe armor wires in compression and bending

    DEFF Research Database (Denmark)

    Østergaard, Niels Højen; Lyckegaard, Anders; Andreasen, Jens H.

    2012-01-01

    The work presented in this paper is motivated by a specific failure mode known as lateral wire buckling occurring in the tensile armor layers of flexible pipes. The tensile armor is usually constituted by two layers of initially helically wound steel wires with opposite lay directions. During pipe...... laying in ultra deep waters, a flexible pipe experiences repeated bending cycles and longitudinal compression. These loading conditions are known to impose a danger to the structural integrity of the armoring layers, if the compressive load on the pipe exceeds the total maximum compressive load carrying...... ability of the wires. This may cause the wires to buckle in the circumferential pipe direction, when these are restrained against radial deformations by adjacent layers. In the present paper, a single armoring wire modeled as a long and slender curved beam embedded in a frictionless cylinder bent...

  19. wire chamber

    CERN Multimedia

    Was used in ISR (Intersecting Storage Ring) split field magnet experiment. Multi-wire detectors contain layers of positively and negatively charged wires enclosed in a chamber full of gas. A charged particle passing through the chamber knocks negatively charged electrons out of atoms in the gas, leaving behind positive ions. The electrons are pulled towards the positively charged wires. They collide with other atoms on the way, producing an avalanche of electrons and ions. The movement of these electrons and ions induces an electric pulse in the wires which is collected by fast electronics. The size of the pulse is proportional to the energy loss of the original particle.

  20. Wire chamber

    CERN Multimedia

    Multi-wire detectors contain layers of positively and negatively charged wires enclosed in a chamber full of gas. A charged particle passing through the chamber knocks negatively charged electrons out of atoms in the gas, leaving behind positive ions. The electrons are pulled towards the positively charged wires. They collide with other atoms on the way, producing an avalanche of electrons and ions. The movement of these electrons and ions induces an electric pulse in the wires which is collected by fast electronics. The size of the pulse is proportional to the energy loss of the original particle.

  1. wire chamber

    CERN Multimedia

    Multi-wire detectors contain layers of positively and negatively charged wires enclosed in a chamber full of gas. A charged particle passing through the chamber knocks negatively charged electrons out of atoms in the gas, leaving behind positive ions. The electrons are pulled towards the positively charged wires. They collide with other atoms on the way, producing an avalanche of electrons and ions. The movement of these electrons and ions induces an electric pulse in the wires which is collected by fast electronics. The size of the pulse is proportional to the energy loss of the original particle.

  2. wire chamber

    CERN Multimedia

    1985-01-01

    Multi-wire detectors contain layers of positively and negatively charged wires enclosed in a chamber full of gas. A charged particle passing through the chamber knocks negatively charged electrons out of atoms in the gas, leaving behind positive ions. The electrons are pulled towards the positively charged wires. They collide with other atoms on the way, producing an avalanche of electrons and ions. The movement of these electrons and ions induces an electric pulse in the wires which is collected by fast electronics. The size of the pulse is proportional to the energy loss of the original particle.

  3. Influence of magnetic moment formation on the conductance of coupled quantum wires

    International Nuclear Information System (INIS)

    Puller, V I; Mourokh, L G; Bird, J P; Ochiai, Y

    2005-01-01

    In this paper, we develop a model for the resonant interaction between a pair of coupled quantum wires, under conditions where self-consistent effects lead to the formation of a local magnetic moment in one of the wires. Our analysis is motivated by the experimental results of Morimoto et al (2003 Appl. Phys. Lett. 82 3952), who showed that the conductance of one of the quantum wires exhibits a resonant peak at low temperatures, whenever the other wire is swept into the regime where local-moment formation is expected. In order to account for these observations, we develop a theoretical model for the inter-wire interaction that calculated the transmission properties of one (the fixed) wire when the device potential is modified by the presence of an extra scattering term, arising from the presence of the local moment in the swept wire. To determine the transmission coefficients in this system, we derive equations describing the dynamics of electrons in the swept and fixed wires of the coupled-wire geometry. Our analysis clearly shows that the observation of a resonant peak in the conductance of the fixed wire is correlated to the appearance of additional structure (near 0.75 x 2e 2 /h or 0.25 x 2e 2 /h) in the conductance of the swept wire, in agreement with the experimental results of Morimoto et al

  4. Helical wire stress analysis of unbonded flexible riser under irregular response

    Science.gov (United States)

    Wang, Kunpeng; Ji, Chunyan

    2017-06-01

    A helical wire is a critical component of an unbonded flexible riser prone to fatigue failure. The helical wire has been the focus of much research work in recent years because of the complex multilayer construction of the flexible riser. The present study establishes an analytical model for the axisymmetric and bending analyses of an unbonded flexible riser. The interlayer contact under axisymmetric loads in this model is modeled by setting radial dummy springs between adjacent layers. The contact pressure is constant during the bending response and applied to determine the slipping friction force per unit helical wire. The model tracks the axial stress around the angular position at each time step to calculate the axial force gradient, then compares the axial force gradient with the slipping friction force to judge the helical wire slipping region, which would be applied to determine the bending stiffness for the next time step. The proposed model is verified against the experimental data in the literature. The bending moment-curvature relationship under irregular response is also qualitatively discussed. The stress at the critical point of the helical wire is investigated based on the model by considering the local flexure. The results indicate that the present model can well simulate the bending stiffness variation during irregular response, which has significant effect on the stress of helical wire.

  5. Fine wire electromyography analysis of muscles of the shoulder during swimming.

    Science.gov (United States)

    Nuber, G W; Jobe, F W; Perry, J; Moynes, D R; Antonelli, D

    1986-01-01

    Fine wire EMG of the shoulder was performed on 11 swimmers; 5 performed during dry land studies and 7 during aquatic studies. One individual underwent both studies. A cinematographic analysis was synchronized with the EMG data to determine what muscles were firing at each phase of the swim stroke. Eight muscles were studied: biceps, subscapularis, latissimus dorsi, pectoralis major, supraspinatus, infraspinatus, serratus anterior, and deltoid. Three strokes were analyzed: freestyle, breaststroke, and butterfly. The freestyle and butterfly are frequently associated with impingement type syndromes in swimmers. It was determined that the supraspinatus, infraspinatus, middle deltoid, and serratus anterior were predominately recovery phase muscles. The latissimus dorsi and pectoralis major were predominately pull-through phase muscles. The biceps had mixed inconsistent activity during both phases. From dry land quantifications of the EMG signal it was determined that the serratus anterior functions near maximal muscle test during each stroke, and theoretically may fatigue with repetition. It is hoped that a training program aimed to strengthen the scapular rotators may help alleviate impingement syndrome in swimmers.

  6. Analysis of stainless steel clasp wire tensile strength and its effect after immersion on denture cleanser solution (A research

    Directory of Open Access Journals (Sweden)

    Endang Prawesthi

    2016-06-01

    Full Text Available Clasp wire is one of the important components in partial denture acrylic which serves as  a  retention. After the use of denture everyday, patient is advised to always clean it. Cleaning of denture by immersing in a solution of denture cleanser which containing organic acids in long term may be  cause corrosion. While corrosion can resulted changes in mechanical properties, among others, a reduction in tensile strength of stainless steel. The purpose of this research is to investigate the influence of immersion clasp wire of  stainless steel  on denture cleanser solution to its tensile strength and to know how far the influence of  quality of  clasp wire of stainless steel  on the market  for its tensile strength. Method is laboratory experimental  (double-blind, the study is 3 brands of stainless steel wire with a diameter of 0.6 mm on the market (good quality, medium and low, the specimen was 30, then each group was divided into 2 groups again based on  type of treatment, which is immersed in a solution without a denture cleanser and   for 7 days at room temperature (28ºC and  same volume. Measurement of  tensile strength was performed with a Universal Testing Machine. The ANOVA test (p<0.05 obtained tensile strength significantly different group of good quality with moderate and low groups, while the test results the T-test (p<0.05 tensile strength values obtained no significant difference between the immersed without denture cleanser  and with denture cleanser.

  7. Comparative analysis of treatment outcomes in patients with femoral neck fracture using monolateral wire and half-pin fixator of the authors' design and transosseous fixation wires

    Directory of Open Access Journals (Sweden)

    Allakhverdiev A.S.

    2014-12-01

    fractures of the proximal femur. Two groups of patients were studied: duration of surgery, duration of osteosynthesis, complications, and outcomes (in terms of one year after the dismantling clips using the modified scale Luboshyce — Mattis — Schwartzberg. Results. Fracture repair was achieved in 40 patients (62,5% of the 1st group. The following complications were observed in this group: non-union and pseudarthrosis — in 21 (32,8% case; aseptic necrosis of the femoral head in 3 (4,7% cases; hip ankyloses — in one (1,6% case, breakage and migration of wires into the joint cavity and smaller pelvis — 3 (4,7% patients and cutting out of wires from the femoral head was observed in 3 (4,7% cases. Totally 61 complication were revealed. In the second group of the patients non-union was found in one patient (64 years old. Complications were observed in 6 patients of this group — pint-tract infection, moderate secondary displacement of the fragments (the patient fell down on the operated limb and wire breakage. Conclusion. The efficiency of the femoral neck osteosynthesis with application of elaborated monolateral wire- and half-pin fixator made up 95,7% of the positive outcomes (in osteosynthesis using bunch of wires with llizarov frame fixation the same 60,9% of the positive outcomes.

  8. Analysis of Effects of Cutting Parameters of Wire Electrical Discharge Machining on Material Removal Rate and Surface Integrity

    Science.gov (United States)

    Tonday, H. R.; Tigga, A. M.

    2016-02-01

    As wire electrical discharge machining is pioneered as a vigorous, efficient and precise and complex nontraditional machining technique, research is needed in this area for efficient machining. In this paper, the influence of various input factors of wire electrical discharge machining (WEDM) on output variable has been analyzed by using Taguchi technique and analysis of variance. The design of experiments has been done and by applying L8 orthogonal arrays method and experiments have been conducted and collected required data. The objectives of the research are to maximize the material removal rate and to minimize the surface roughness value (Ra). Surface morphology of machined workpiece has been obtained and examined by employing scanning electron microscopy (SEM) technique.

  9. Analysis of Effects of Cutting Parameters of Wire Electrical Discharge Machining on Material Removal Rate and Surface Integrity

    International Nuclear Information System (INIS)

    Tonday, H. R.; Tigga, A. M.

    2016-01-01

    As wire electrical discharge machining is pioneered as a vigorous, efficient and precise and complex nontraditional machining technique, research is needed in this area for efficient machining. In this paper, the influence of various input factors of wire electrical discharge machining (WEDM) on output variable has been analyzed by using Taguchi technique and analysis of variance. The design of experiments has been done and by applying L8 orthogonal arrays method and experiments have been conducted and collected required data. The objectives of the research are to maximize the material removal rate and to minimize the surface roughness value (Ra). Surface morphology of machined workpiece has been obtained and examined by employing scanning electron microscopy (SEM) technique. (paper)

  10. Statistical Analysis of Compressive and Flexural Test Results on the Sustainable Adobe Reinforced with Steel Wire Mesh

    Science.gov (United States)

    Jokhio, Gul A.; Syed Mohsin, Sharifah M.; Gul, Yasmeen

    2018-04-01

    It has been established that Adobe provides, in addition to being sustainable and economic, a better indoor air quality without spending extensive amounts of energy as opposed to the modern synthetic materials. The material, however, suffers from weak structural behaviour when subjected to adverse loading conditions. A wide range of mechanical properties has been reported in literature owing to lack of research and standardization. The present paper presents the statistical analysis of the results that were obtained through compressive and flexural tests on Adobe samples. Adobe specimens with and without wire mesh reinforcement were tested and the results were reported. The statistical analysis of these results presents an interesting read. It has been found that the compressive strength of adobe increases by about 43% after adding a single layer of wire mesh reinforcement. This increase is statistically significant. The flexural response of Adobe has also shown improvement with the addition of wire mesh reinforcement, however, the statistical significance of the same cannot be established.

  11. A content analysis of smokeless tobacco coverage in U.S. newspapers and news wires.

    Science.gov (United States)

    Wackowski, Olivia A; Lewis, M Jane; Delnevo, Cristine D; Ling, Pamela M

    2013-07-01

    Research attention on smokeless tobacco (SLT) has focused on SLT use, health risks, harm-reduction potential, and risk perceptions, but few studies have examined mediated communications about SLT. This study aims to contribute to the literature by providing the first description of SLT coverage in the news, an important communication channel given its ability to educate and shape public opinion about tobacco issues. A content analysis was conducted on SLT-related news and opinion articles between 2006 and 2010 from top circulating national and state newspapers and select news wires. Articles were coded for the main SLT topic, SLT risk references, and slant of opinion articles. SLT was discussed in news/feature articles (n = 677) in terms of business (28%), new products, product regulation and harm reduction (19%), prevention/cessation (11.4%), taxation (10.2%), profiles/trends in use (9%), bans (8.1%), and tobacco industry promotional activities (4.9%). Health risk references (i.e., addictiveness, carcinogenicity, and specific health effects including oral cancer) were found in 40% of articles, though frequency differed by article topic. Although the majority of opinion articles (n = 176) conveyed an anti-SLT slant (64%), 25.6% were pro-SLT. SLT topics of both national and local importance are covered in the news. Public health professionals can participate in SLT coverage by sending in press releases about new study findings, events, or resources and by submitting opinion pieces to share views or respond to previous coverage. Research on SLT news should continue given its potential to shape the public's SLT knowledge and opinions.

  12. Wire-line logging analysis of the 2007 JOGMEC/NRCan/Aurora Mallik gas hydrate production test well

    Energy Technology Data Exchange (ETDEWEB)

    Fujii, T.; Takayama, T.; Nakamizu, M.; Yamamoto, K. [Japan Oil, Gas and Metals National Corp., Mihama-ku, Chiba (Japan); Dallimore, S.; Mwenifumbo, J.; Wright, F. [Natural Resources Canada, Sidney, BC (Canada). Geological Survey of Canada; Kurihara, M.; Sato, A. [Japan Oil Engineering Co., Chuo-ku, Tokyo (Japan); Al-Jubori, A. [Schlumberger Canada Ltd., Calgary, AB (Canada)

    2008-07-01

    Japan Oil, Gas and Metals National Corporation and Natural Resources Canada performed a full scale production test in the Mallik field, in Canada's Mackenzie Delta in April, 2007 in order to evaluate the productivity of methane hydrate (MH) by the depressurization method. The program involved an extensive wire-line logging program to evaluate reservoir properties; determine production/water injection intervals; evaluate cement bonding; and, interpret MH dissociation behavior throughout the production. The paper presented a review of the extensive wire-line logging program. It showed the role and workflow of wire-line logging applied in the production well. The well log evaluation for MH bearing zone was the primary focus of the paper. The paper discussed the objectives of the program as well as tools used as part of the study, including several new open hole wire-line logging tools such as magnetic resonance scanner, Rt Scanner, sonic scanner, as well as other advanced logging tools used to obtain data on the occurrence of MH, lithology, MH pore saturation, porosity and permeability. Perforation intervals of the production and water injection zones were selected using a multidisciplinary approach. Candidate test intervals considering lithology, MH pore saturation, initial effective permeability and absolute permeability were identified based on the results of geological interpretation and open hole logging analysis. Reservoir layer models were built to allow for reservoir numerical simulations for several perforation scenarios. Using the results of well log analysis, reservoir numerical simulation, and consideration of operational constraints, a MH bearing formation from 1093 to 1105 mKB was selected for 2007 testing. Three zones were selected for injection of produced water. It was concluded that at the perforation interval of the MH bearing formation (1093-1105 mKB) a selective dissociation was observed in the lateral direction. 20 refs., 3 tabs., 9 figs.

  13. Carbon-Isotopic Analysis of Individual Pigments by HPLC-Moving Wire-IRMS

    Science.gov (United States)

    Sessions, A. L.; Keely, B. J.; Hayes, J. M.

    2003-12-01

    We have developed a method for directly analyzing the carbon isotope ratios of individual pigments, including chlorophyll (chl) and its derivatives, by coupling a high-performance liquid chromatograph (HPLC) to an isotope-ratio mass spectrometer (IRMS) via a novel `moving-wire' interface. Pigments were separated on a reversed-phase C18 column, using a binary gradient modified from Airs et al. (2001, J. Chrom. A 917, 167-177). The HPLC effluent was dried onto a continuously-spooling nickel wire, and the involatile sample residue was combusted to CO2 and transferred to the IRMS for isotopic analysis. Replicate analyses of a standard solution yield precision for delta13C of better than 0.2‰ for injections containing ~5 μ g of chl-a. A five-fold improvement in sensitivity should be attainable using capillary HPLC to further reduce solvent volumes. The biomarker potential of tetrapyrrole pigments, combined with the geochemical information recorded by isotopic compositions, makes this combination a potent tool for biogeochemical studies. As a demonstration, we analyzed chlorophyll degradation products in sediments from a lake and a salina. First, compounds derived from bacteriochlorophylls (bchl)-c and -d were extracted from sediment cores taken at Kirisjes Lake (Larsmann Hills, Antarctica). These pigments are products of green sulfur bacteria and indicate the presence of an anoxic photic zone. The δ 13C values of bchl-related compounds are near -25‰ . Using published fractionations for Chlorobium species to extrapolate, dissolved CO2 in Kirisjes Lake probably had a δ 13C value of -12 to -21‰ and was strongly influenced by the recycling of organic carbon, possibly including methane. Second, compounds derived from chl-a, bchl-c, and bchl-d were isolated from sediments taken below a living microbial mat in the hypersaline les Salines de la Trinital (South Catalonia, Spain). The sediments contain visible remnants of past microbial mats and pigment distributions

  14. Radar micro-Doppler of wind turbines : Simulation and analysis using rotating linear wire structures

    NARCIS (Netherlands)

    Krasnov, O.A.; Yarovoy, A.

    2015-01-01

    A simple electromagnetic model of wind-turbine's main structural elements as the linear wired structures is developed to simulate the temporal patterns of observed radar return Doppler spectra (micro-Doppler). Using the model, the micro-Doppler for different combinations of the turbines rotation

  15. Analysis of electrical explosion of wire systems for the production of ...

    Indian Academy of Sciences (India)

    (Grassian 2008). So research in the direction of the development of better experimental system is the demand of the present situation. Many alternative methods have been proposed to realize production of particles. Electrical explosion of wire method (EEW) is one of the vapour phase methods in which particles are ...

  16. Wire Rupture Optimization in Wire Electrical Discharge Machining using Taguchi Approach

    Directory of Open Access Journals (Sweden)

    Maher Ibrahem

    2017-01-01

    Full Text Available Wire electrical discharge machining (WEDM is one of the most important nontraditional machining process that is well-known for cutting difficult to machine materials. The wire electrode along with machining parameters control the WEDM process. This research work focuses on optimizing WEDM parameters using Taguchi technique to minimize wire rupture. Experiments have been done using the L18 orthogonal array. Each experiment is repeated three times to ensure accurate readings of the wire rupture. The statistical methods of signal to noise ratio (S/N ratio is applied to study effects of peak current, pulse width, charging time, wire speed, and wire tension on wire rupture. As a results, the peak current, pulse width, and wire tension have the most significant effect on wire rupture followed by charging time and wire speed. The developed analysis can be used in the metal cutting field to identify the optimum machining parameters for less wire rupture.

  17. Load-deflection characteristics of superelastic and thermal nickel-titanium wires.

    Science.gov (United States)

    Gatto, Elda; Matarese, Giovanni; Di Bella, Guido; Nucera, Riccardo; Borsellino, Chiara; Cordasco, Giancarlo

    2013-02-01

    The aim of this study was to investigate the mechanical properties of superelastic and thermal nickel-titanium (NiTi) archwires for correct selection of orthodontic wires. Seven different NiTi wires of two different sizes (0.014 and 0.016 inches), commonly used during the alignment phase, were tested. A three-point bending test was carried out to evaluate the load-deflection characteristics. The archwires were subjected to bending at a constant temperature of 37°C and deflections of 2 and 4 mm. Analysis of variance showed that thermal NiTi wires exerted significantly lower working forces than superelastic wires of the same size in all experimental tests (P Wire size had a significant effect on the forces produced: with an increase in archwire dimension, the released strength increased for both thermal and superelastic wires. Superelastic wires showed, at a deflection of 2 mm, narrow and steep hysteresis curves in comparison with the corresponding thermal wires, which presented a wide interval between loading and unloading forces. During unloading at 4 mm of deflection, all wires showed curves with a wider plateau when compared with 2 mm deflection. Such a difference for the superelastic wires was caused by the martensite stress induced at higher deformation levels. A comprehensive understanding of mechanical characteristics of orthodontic wires is essential and selection should be undertaken in accordance with the behaviour of the different wires. It is also necessary to take into account the biomechanics used. In low-friction mechanics, thermal NiTi wires are to be preferred to superelastic wires, during the alignment phase due to their lower working forces. In conventional straightwire mechanics, a low force archwire would be unable to overcome the resistance to sliding.

  18. Architectural design and reliability analysis of a fail-operational brake-by-wire system from ISO 26262 perspectives

    International Nuclear Information System (INIS)

    Sinha, Purnendu

    2011-01-01

    Next generation drive-by-wire automotive systems enabling autonomous driving will build on the fail-operational capabilities of electronics, control and software (ECS) architectural solutions. Developing such architectural designs that would meet dependability requirements and satisfy other system constraints is a challenging task and will possibly lead to a paradigm shift in automotive ECS architecture design and development activities. This aspect is becoming quite relevant while designing battery-driven electric vehicles with integrated in-wheel drive-train and chassis subsystems. In such highly integrated dependable systems, many of the primary features and functions are attributed to the highest safety critical ratings. Brake-by-wire is one such system that interfaces with active safety features built into an automobile, and which in turn is expected to provide fail-operational capabilities. In this paper, building up on the basic concepts of fail-silent and fail-operational systems design we propose a system-architecture for a brake-by-wire system with fail-operational capabilities. The design choices are supported with proper rationale and design trade-offs. Safety and reliability analysis of the proposed system architecture is performed as per the ISO 26262 standard for functional safety of electrical/electronic systems in road vehicles.

  19. Boron doping: B/H/C/O gas-phase chemistry; H atom density dependences on pressure and wire temperature; puzzles regarding the gas-surface mechanism

    International Nuclear Information System (INIS)

    Mankelevich, Yuri A.; Ashfold, Michael N.R.; Comerford, Dane W.; Ma Jie; Richley, James C.

    2011-01-01

    Experimental and modeling studies of the gas-phase chemistry occurring in dilute, hot filament (HF) activated B 2 H 6 /CH 4 /H 2 gas mixtures appropriate for growth of boron-doped diamond are reported. The results of two-dimensional modeling of heat and mass transfer processes and the B/H/C chemistry prevailing in such HF activated gas mixtures (supplemented by reactions involving trace O 2 present as air impurity in the process gas mixture) are discussed and compared with measurements of B atom densities as functions of the hot wire temperature T w and distance from the wire. Most of the B 2 H 6 molecules that diffuse from the cool, near-wall regions into the hot, near wire region are thermally decomposed (yielding two BH 3 molecules as primary products) and then converted into various 'active' B-containing species like B, BH and BH 2 - some of which are able to accommodate into the growing diamond film. H-shifting reactions BH x + H ↔ BH x-1 + H 2 enable rapid inter-conversion between the various BH x (x = 0-3) species and the BH x source is limited by diffusional transfer of B 2 H 6 . H atoms play several key roles - e.g. activating the process gas mixture, and driving inter-conversions between the various H x B y C z O z' species. We show that the T w and gas pressure dependences of the H atom production rate (by H 2 dissociation on the HF surface) can be accommodated by a simple gas-surface reaction model.

  20. Hot-wire anemometer for spirography.

    Science.gov (United States)

    Plakk, P; Liik, P; Kingisepp, P H

    1998-01-01

    The use of a constant temperature hot-wire anemometer flow sensor for spirography is reported. The construction, operating principles and calibration procedure of the apparatus are described, and temperature compensation method is discussed. Frequency response is studied. It is shown that this hot-wire flow transducer satisfies common demands with respect to accuracy, response time and temperature variations.

  1. Reliability analysis of magnetic logic interconnect wire subjected to magnet edge imperfections

    Science.gov (United States)

    Zhang, Bin; Yang, Xiaokuo; Liu, Jiahao; Li, Weiwei; Xu, Jie

    2018-02-01

    Nanomagnet logic (NML) devices have been proposed as one of the best candidates for the next generation of integrated circuits thanks to its substantial advantages of nonvolatility, radiation hardening and potentially low power. In this article, errors of nanomagnetic interconnect wire subjected to magnet edge imperfections have been evaluated for the purpose of reliable logic propagation. The missing corner defects of nanomagnet in the wire are modeled with a triangle, and the interconnect fabricated with various magnetic materials is thoroughly investigated by micromagnetic simulations under different corner defect amplitudes and device spacings. The results show that as the defect amplitude increases, the success rate of logic propagation in the interconnect decreases. More results show that from the interconnect wire fabricated with materials, iron demonstrates the best defect tolerance ability among three representative and frequently used NML materials, also logic transmission errors can be mitigated by adjusting spacing between nanomagnets. These findings can provide key technical guides for designing reliable interconnects. Project supported by the National Natural Science Foundation of China (No. 61302022) and the Scientific Research Foundation for Postdoctor of Air Force Engineering University (Nos. 2015BSKYQD03, 2016KYMZ06).

  2. Design and Analysis of a Bio-Inspired Wire-Driven Multi-Section Flexible Robot

    Directory of Open Access Journals (Sweden)

    Zheng Li

    2013-04-01

    Full Text Available This paper presents a bio-inspired wire-driven multi-section flexible robot. It is inspired by the snake skeleton and octopus arm muscle arrangements. The robot consists of three sections and each section is made up of several identical vertebras, which are articulated by both spherical joints and a flexible backbone. Each section is driven by two groups of wires, controlling the bending motion in X and Y directions. This design integrates the serpentine robots' structure and the continuum robots' actuation. As a result, it is more compact than traditional serpentine robots and has a higher positioning accuracy than typical continuum soft robots, such as OctArm V. A Kinematics model and a workspace model of the robot are developed based on the piece wise constant curvature assumption. To evaluate the design, a prototype is built and experiments are carried out. The average distal end positioning error is less than 4%. Characteristics of the wire-driven robot are also discussed, including the leverage effect and the manipulability under constraint. These features makes the proposed robot well suited to confined spaces, especially for working in minimally invasive surgery, nuclear reactor pipelines, disaster debris, etc.

  3. PHASE ANALYSIS OF NITI WIRE BASED ON SYNCHROTRON 2D X-RAY DIFFRACTION PATTERN IN MATLAB

    Directory of Open Access Journals (Sweden)

    Martin Dudr

    2017-07-01

    Full Text Available This paper deals with simplified phase analysis of 2D diffraction patterns obtained using microfocused X-ray at various places of superelastic NiTi wire under combined load. For this purpose, MATLAB routines and functions were created, which carry out integration of the patterns in various sectors of Debye ring, fitting of the patterns by a mixture of austenite and martensite (having neglected the R-phase and successive evaluation of the quantitative phase content. The most crucial simplificating assumptions were: the neglection of the R-phase and the assumption of a fibre texture or b no texture.

  4. X-ray line emission and plasma conditions in exploded Fe wires

    International Nuclear Information System (INIS)

    Burkhalter, P.G.; Dozier, C.M.; Stallings, C.; Cowan, R.D.

    1978-01-01

    Single-wire Fe spectra collected from two different exploded-wire generators (Gamble II and Owl II) were analyzed to determined the ionization stages produced in the plasmas. The temperature for the hot-plasma pinches for both generators was 1.4 +- 0.2 keV at which an abundance of Fe XXIV transitions is produced. The Fe K spectra from exploded wires are basically similar to those produced in the pinched plasma generated randomly in the vacuum spark; however, the exploded wires have lower plasma temperatures than the hottest pinches produced in the vacuum spark. A detailed interpretation of the Fe L spectra formed in the exploded wires permitted line and ionization stage identifications in the 7-12-A region. Such spectroscopic data is useful for analysis of complex Fe spectra generated in multitemperature plasma devices like Tokamaks

  5. Severe deformation twinning in pure copper by cryogenic wire drawing

    International Nuclear Information System (INIS)

    Kauffmann, A.; Freudenberger, J.; Geissler, D.; Yin, S.; Schillinger, W.; Sarma, V. Subramanya; Bahmanpour, H.; Scattergood, R.; Khoshkhoo, M.S.; Wendrock, H.; Koch, C.C.; Eckert, J.; Schultz, L.

    2011-01-01

    The effect of low-temperature on the active deformation mechanism is studied in pure copper. For this purpose, cryogenic wire drawing at liquid nitrogen temperature (77 K) was performed using molybdenum disulfide lubrication. Microstructural investigation and texture analysis revealed severe twin formation in the cryogenically drawn copper, with a broad twin size distribution. The spacing of the observed deformation twins ranges from below 100 nm, as reported in previous investigations, up to several micrometers. The extent of twin formation, which is significantly higher when compared to other cryo-deformation techniques, is discussed with respect to the state of stress and the texture evolution during wire drawing.

  6. Thermo-Electrical Mathematical Model for Prediction of Ni-Cr Hot-Wire Temperature in Free Air and Inside Small Circular Cavities

    DEFF Research Database (Denmark)

    Petkov, Kiril; Hattel, Jesper Henri

    2017-01-01

    A one-dimensional thermo-electrical mathematical model describing the heating and cooling of thin Ni-Cr20% wires is presented. The model is applied for wires in a free air environment and to wires placed in small circular cavities formed by expanded polystyrene material. The basis of the model...... to select an appropriate heat transfer coefficient for the time-dependent heating and cooling of a wire. The model is tested against experimental data and is found to be in a good agreement with previous investigations. Based on the findings, expressions for the heat transfer coefficient of a hot wire...

  7. Intra-wire resistance and AC loss in multi-filamentary MgB2 wires

    NARCIS (Netherlands)

    Zhou, Chao; Offringa, Wietse; Bergen, Anne-Henriette; Wessel, Wilhelm A.J.; Krooshoop, Hendrikus J.G.; Dhalle, Marc M.J.; Sumption, M.D.; Collings, E.W.; Rindfleisch, M.; Tomsic, M.; ten Kate, Herman H.J.; Nijhuis, Arend

    2013-01-01

    Intra-wire resistance and AC loss of various multi-filamentary MgB2 wires with filaments surrounded by Nb barriers have been measured and analyzed. The intra-wire resistance is measured with a direct four-probe voltage–current method at various temperatures. The AC loss is acquired by both vibrating

  8. Grain-resolved analysis of localized deformation in nickel-titanium wire under tensile load

    Czech Academy of Sciences Publication Activity Database

    Sedmák, P.; Pilch, Jan; Heller, Luděk; Kopeček, Jaromír; Wright, J.; Sedlák, Petr; Frost, Miroslav; Šittner, Petr

    2016-01-01

    Roč. 353, č. 6299 (2016), 559-562 ISSN 0036-8075 R&D Projects: GA MŠk LM2015088; GA ČR GA14-15264S; GA ČR GAP107/12/0800; GA ČR GPP108/12/P111 Institutional support: RVO:68378271 ; RVO:61388998 Keywords : martensitic transformation * 3D x-ray diffraction * shape memory alloys * internal stress * NiTi wire * localized deformation * tension Subject RIV: BM - Solid Matter Physics ; Magnetism; BI - Acoustics (UT-L) Impact factor: 37.205, year: 2016

  9. Cluster analysis of stress corrosion mechanisms for steel wires used in bridge cables through acoustic emission particle swarm optimization.

    Science.gov (United States)

    Li, Dongsheng; Yang, Wei; Zhang, Wenyao

    2017-05-01

    Stress corrosion is the major failure type of bridge cable damage. The acoustic emission (AE) technique was applied to monitor the stress corrosion process of steel wires used in bridge cable structures. The damage evolution of stress corrosion in bridge cables was obtained according to the AE characteristic parameter figure. A particle swarm optimization cluster method was developed to determine the relationship between the AE signal and stress corrosion mechanisms. Results indicate that the main AE sources of stress corrosion in bridge cables included four types: passive film breakdown and detachment of the corrosion product, crack initiation, crack extension, and cable fracture. By analyzing different types of clustering data, the mean value of each damage pattern's AE characteristic parameters was determined. Different corrosion damage source AE waveforms and the peak frequency were extracted. AE particle swarm optimization cluster analysis based on principal component analysis was also proposed. This method can completely distinguish the four types of damage sources and simplifies the determination of the evolution process of corrosion damage and broken wire signals. Copyright © 2017. Published by Elsevier B.V.

  10. Two-Phase Flow in Wire Coating with Heat Transfer Analysis of an Elastic-Viscous Fluid

    Directory of Open Access Journals (Sweden)

    Zeeshan Khan

    2016-01-01

    Full Text Available This work considers two-phase flow of an elastic-viscous fluid for double-layer coating of wire. The wet-on-wet (WOW coating process is used in this study. The analytical solution of the theoretical model is obtained by Optimal Homotopy Asymptotic Method (OHAM. The expression for the velocity field and temperature distribution for both layers is obtained. The convergence of the obtained series solution is established. The analytical results are verified by Adomian Decomposition Method (ADM. The obtained velocity field is compared with the existing exact solution of the same flow problem of second-grade fluid and with analytical solution of a third-grade fluid. Also, emerging parameters on the solutions are discussed and appropriate conclusions are drawn.

  11. Polydimethylsiloxane pressure sensors for force analysis in tension band wiring of the olecranon.

    Science.gov (United States)

    Zens, Martin; Goldschmidtboeing, Frank; Wagner, Ferdinand; Reising, Kilian; Südkamp, Norbert P; Woias, Peter

    2016-11-14

    Several different surgical techniques are used in the treatment of olecranon fractures. Tension band wiring is one of the most preferred options by surgeons worldwide. The concept of this technique is to transform a tensile force into a compression force that adjoins two surfaces of a fractured bone. Currently, little is known about the resulting compression force within a fracture. Sensor devices are needed that directly transduce the compression force into a measurement quality. This allows the comparison of different surgical techniques. Ideally the sensor devices ought to be placed in the gap between the fractured segments. The design, development and characterization of miniaturized pressure sensors fabricated entirely from polydimethylsiloxane (PDMS) for a placement within a fracture is presented. The pressure sensors presented in this work are tested, calibrated and used in an experimental in vitro study. The pressure sensors are highly sensitive with an accuracy of approximately 3 kPa. A flexible fabrication process for various possible applications is described. The first in vitro study shows that using a single-twist or double-twist technique in tension band wiring of the olecranon has no significant effect on the resulting compression forces. The in vitro study shows the feasibility of the proposed measurement technique and the results of a first exemplary study.

  12. Photonically wired spacecraft panels: an economic analysis and demonstrator for telecommunication satellites

    Science.gov (United States)

    Putzer, Philipp; Hurni, Andreas; Ziegler, Bent; Panopoulou, Aikaterini; Lemke, Norbert; Costa, Ivo; Pereira, Celeste

    2017-09-01

    In this paper we present the design of smart satellite panels with integrated optical fibers for sensing and data communication. The project starts with a detailed analysis of the system needs and ends with a demonstrator breadboard showing the full performance during and after environmental tests such as vibrations and temperature. Future science missions will need higher bandwidth in the Gbit/s range for intra-satellite communications, so the step from electrical transmission media towards fiber-optical media is the logical next step to cope with future requirements. In addition, the fibers can be used to monitor temperatures directly underneath satellite payloads which will reduce the integration effort in a later phase. For temperature monitoring so called fiber Bragg gratings (FBGs) are written in special radiation tolerant fibers, which reflection wavelength allows a direct link to temperature at the grating position. A read-out system for FBGs to use within satellite applications is currently under development at OHB. For this study, first the environmental requirements for the panels are derived and in a second stage the functional requirements are defined. To define the functional requirements a telecommunication satellite platform, in the case here the Small-GEO series from OHB, has been taken as baseline. Based on the configuration of temperature sensors, communication lines and electrical signaling a possible replacement by fiber-optical technology was defined and traded w.r.t. its economic benefit. It has been pointed out that the replacement of temperature sensors will reduce harness mass, but the great benefit is seen here in the reduction of assembly effort. Once the satellite panel is manufactured, the temperature sensors are already implemented at certain positions. Another point for mass savings which has pointed out is the replacement of the high-voltage or high- current high power commands (HPC) by fiber optics. Replacing some of the several

  13. Structural Characterisation and Mechanical FE Analysis of Conventional and M-Wire Ni-Ti Alloys Used in Endodontic Rotary Instruments

    Directory of Open Access Journals (Sweden)

    Diogo Montalvão

    2014-01-01

    Full Text Available The purpose of this study is to understand how the M-Wire alloy conditions the mechanical flexibility of endodontic rotary files at body temperature.Two different rotary instruments, a Profile GT 20/.06 and a Profile GT Series X 20/.06, were selected due to their geometrical similarity and their different constituent alloy. GT series X files are made from M-Wire, a Ni-Ti alloy allegedly having higher flexibility at body temperature. Both files were analysed by X-Ray Diffraction and Differential Scanning Calorimetry to investigate phase transformations and the effects of working temperature on these different alloys. Mechanical behaviour was assessed by means of static bending and torsional Finite Element simulations, taking into account the nonlinear superelastic behaviour of Ni-Ti materials. It was found that GT files present austenitic phase at body temperature, whereas GT series X present R-phase at temperatures under 40°C with a potential for larger flexibility. For the same load conditions, simulations showed that the slight geometrical differences between the two files do not introduce great disagreement in the instruments’ mechanical response. It was confirmed that M-Wire increases the instrument’s flexibility, mainly due to the presence of R-phase at body temperature.

  14. An Icepak-PSpice Co-Simulation Method to Study the Impact of Bond Wires Fatigue on the Current and Temperature Distribution of IGBT Modules under Short-Circuit

    DEFF Research Database (Denmark)

    Wu, Rui; Iannuzzo, Francesco; Wang, Huai

    2014-01-01

    Bond wires fatigue is one of the dominant failure mechanisms of IGBT modules. Prior-art research mainly focuses on its impact on the end-of-life failure, while its effect on the short-circuit capability of IGBT modules is still an open issue. This paper proposes a new electro-thermal simulation...... approach enabling analyze the impact of the bond wires fatigue on the current and temperature distribution on IGBT chip surface under short-circuit. It is based on an Icepack-PSpice co-simulation by taking the advantage of both a finite element thermal model and an advanced PSpice-based multi-cell IGBT...

  15. Design of an optical fibre based angular position sensor for wire scanners complying with ultra-high vacuum, high temperature and radiation conditions of the CERN´s accelerators

    CERN Document Server

    Sirvent Blasco, Jose Luis; Azorin Poveda, Jose Maria

    The main objective of this thesis is to design and implement the relative optical position sensor based on optical fibre, related to the new design of wire scanner, also taking into account the general specifications of the whole design of the Vacuum Wire Scanner (VWS from here in advanced). According to the limitations of the environment this sensor must work under very hard conditions and provide as much accuracy as possible, this means that all the components must be carefully selected and also rated to high temperature, ultra high vacuum and radiation environment to provide the longest life time as possible.

  16. Study on elastic-plastic behaviour of inclusions in cold drawn wire by using reverse analysis and nanoindentation test

    Directory of Open Access Journals (Sweden)

    Lee Kyung-Hun

    2015-01-01

    Full Text Available The purpose of this study is to investigate the elastic-plastic behavior of inclusions, i.e. SiO2 particles, in cold drawn wire using reverse analysis and nanoindentation test. First, the nanoindentation tests were performed to obtain indentation load P – penetration depth h curves. Second, the reverse analysis which is consisted of various dimensionless functions including change in E∗/σr, Wp/Wt and n was used to extract the elastic-plastic properties of the indented inclusions and metals from indentation responses. To verify the accuracy of calculated properties, uniaxial tensile tests were performed for different materials which are AISI 1045 and AISI 1080. Results (E, σy, n of tensile tests for each material were also compared with those of nanoindentation tests.

  17. Analysis of axially symmetric wire antennas by the use of exact kernel of electric field integral equation

    Directory of Open Access Journals (Sweden)

    Krneta Aleksandra J.

    2016-01-01

    Full Text Available The paper presents a new method for the analysis of wire antennas with axial symmetry. Truncated cones have been applied to precisely model antenna geometry, while the exact kernel of the electric field integral equation has been used for computation. Accuracy and efficiency of the method has been further increased by the use of higher order basis functions for current expansion, and by selecting integration methods based on singularity cancelation techniques for the calculation of potential and impedance integrals. The method has been applied to the analysis of a typical dipole antenna, thick dipole antenna and a coaxial line. The obtained results verify the high accuracy of the method. [Projekat Ministarstva nauke Republike Srbije, br. TR-32005

  18. An Efficient Framework for Analysis of Wire-Grid Shielding Structures over a Broad Frequency Range

    Directory of Open Access Journals (Sweden)

    A. Karwowski

    2016-12-01

    Full Text Available A computationally efficient MoM-based framework for broadband electromagnetic simulation of wire-grid shielding structures is presented in the paper. Broadband capability of the approach is attained through supporting MoM by an adaptive frequency sweep combined with rational interpolation of the observable implemented via Stoer-Bulirsch algorithm. The performance increase is gained by employing CUDA-enabled CPU+GPU co-processing. For large-size problems exceeding the amount of memory available on the GPU device, a hybrid out-of-GPU memory LU decomposition algorithm is employed. The demonstration examples are provided to illustrate the the accuracy and high efficiency of the approach.

  19. Low temperature back-surface-field contacts deposited by hot-wire CVD for heterojunction solar cells

    International Nuclear Information System (INIS)

    Munoz, D.; Voz, C.; Martin, I.; Orpella, A.; Alcubilla, R.; Villar, F.; Bertomeu, J.; Andreu, J.; Roca-i-Cabarrocas, P.

    2008-01-01

    The growing interest in using thinner wafers ( 2 ) have been fabricated and characterized by External Quantum Efficiency and current-voltage measurements. Total-area conversion efficiencies up to 14.5% were achieved in a fully low temperature process (< 200 deg. C)

  20. Fabrication and superconducting properties of a simple-structured jelly-roll Nb{sub 3}Al wire with low-temperature heat-treatment

    Energy Technology Data Exchange (ETDEWEB)

    Cui, L.J. [National Engineering Laboratory for Superconducting Materials (NELSM), Western Superconducting Technologies (WST) Co. Ltd., Xi’an 710018 (China); Yan, G., E-mail: gyan@c-wst.com [National Engineering Laboratory for Superconducting Materials (NELSM), Western Superconducting Technologies (WST) Co. Ltd., Xi’an 710018 (China); Pan, X.F. [National Engineering Laboratory for Superconducting Materials (NELSM), Western Superconducting Technologies (WST) Co. Ltd., Xi’an 710018 (China); Zhang, P.X. [National Engineering Laboratory for Superconducting Materials (NELSM), Western Superconducting Technologies (WST) Co. Ltd., Xi’an 710018 (China); Northwest Institute for Nonferrous Metal Research (NIN), Xi’an 710016 (China); Qi, M. [Northwest Institute for Nonferrous Metal Research (NIN), Xi’an 710016 (China); Liu, X.H.; Feng, Y. [National Engineering Laboratory for Superconducting Materials (NELSM), Western Superconducting Technologies (WST) Co. Ltd., Xi’an 710018 (China); Chen, Y.L.; Zhao, Y. [Key Laboratory of Magnetic Levitation Technologies and Maglev Trains, Superconductivity and New Energy R& D Center, Southwest Jiaotong University (SWJTU), Chengdu 610031 (China)

    2015-06-15

    Highlights: • Nb{sub 3}Al superconducting wires with Cu-matrix and different filament numbers were prepared by the jelly-roll method. • The length of 18-cores Nb{sub 3}Al superconducting wire reaches 100 m without any breakage and intermediate anneal. • This wire has the uniform filament-shapes and fine long-wire homogeneity. • This Nb{sub 3}Al long wire has the T{sub c} of 13.4 K and J{sub c} of 4.7 × 10{sup 4} A/cm{sup 2} at 4.2 K and 12 T. - Abstract: With extremely high critical current density (J{sub c}) and excellent strain tolerance, Nb{sub 3}Al superconductor is considered as an alternative to Nb{sub 3}Sn for application of high-field magnets. However, owing to their complex structure, Nb{sub 3}Al superconducting wires can hardly meet the requirement of engineering application at present. In this work, a novel simple-structured Nb{sub 3}Al superconducting wires with Cu-matrix and different filament numbers were prepared by the conventional jelly-roll method, as well as a heat-treatment of 800–850 °C for 20–50 h. The results show that a 18-filament superconducting wire with length longer than 100 m can be successfully prepared by this method, and also this Nb{sub 3}Al long wire has the T{sub c} of 13.4 K and J{sub c} of 4.7 × 10{sup 4} A/cm{sup 2} at 4.2 K and 12 T. These suggest that with further optimization, the simple-structured Nb{sub 3}Al superconducting wires are very promising to fabricate the km-grade long wires to meet the requirement of engineering application.

  1. The Analysis of Force Parameters in Drawing Process of High Carbon Steel Wires in Conventional and Hydrodynamic Dies

    Directory of Open Access Journals (Sweden)

    Suliga M.

    2017-12-01

    Full Text Available The paper analyzes force parameters in the process of multistage drawing of steel wires in conventional and hydrodynamic dies. The drawing process of the wire rod with a diameter of 5.5 mm for wires with a diameter of 1.70 mm was performed in 12 drafts with the usage of the multistage drawbench Koch KGT with the speed range of 5-25 m/s.

  2. HTS Wire Development Workshop: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    1994-07-01

    The 1994 High-Temperature Superconducting Wire Development Workshop was held on February 16--17 at the St. Petersburg Hilton and Towers in St. Petersburg, Florida. The meeting was hosted by Florida Power Corporation and sponsored by the US Department of Energy`s Superconductivity Program for Electric Power Systems. The meeting focused on recent high-temperature superconducting wire development activities in the Department of Energy`s Superconductivity Systems program. The meeting opened with a general discussion on the needs and benefits of superconductivity from a utility perspective, the US global competitiveness position, and an outlook on the overall prospects of wire development. The meeting then focused on four important technology areas: Wire characterization: issues and needs; technology for overcoming barriers: weak links and flux pinning; manufacturing issues for long wire lengths; and physical properties of HTS coils. Following in-depth presentations, working groups were formed in each technology area to discuss the most important current research and development issues. The working groups identified research areas that have the potential for greatly enhancing the wire development effort. These areas are discussed in the summary reports from each of the working groups. This document is a compilation of the workshop proceedings including all general session presentations and summary reports from the working groups.

  3. Flow Injection Analysis of Mercury Using 4-(Dimethylamino Benzaldehyde-4-Ethylthiosemicarbazone as the Ionophore of a Coated Wire Electrode

    Directory of Open Access Journals (Sweden)

    Sulaiman Ab Ghani

    2012-11-01

    Full Text Available A flow injection analysis (FIA incorporating a thiosemicarbazone-based coated wire electrode (CWE was developed method for the determination of mercury(II. A 0.1 M KNO3 carrier stream with pH between 1 and 5 and flow rate of 1 mL·min−1 were used as optimum parameters. A linear plot within the concentration range of 5 × 10−6–0.1 M Hg(II, slope of 27.8 ± 1 mV per decade and correlation coefficient (R2 of 0.984 were obtained. The system was successfully applied for the determination of mercury(II in dental amalgam solutions and spiked environmental water samples. Highly reproducible measurements with relative standard deviation (RSD < 1% (n = 3 were obtained, giving a typical throughput of 30 samples·h−1.

  4. A temperature analysis in magnetic hyperthermia

    Science.gov (United States)

    Astefanoaei, Iordana; Stancu, Alexandru

    2017-12-01

    In the Magnetic Hyperthermia - the control of the temperature field within the malignant tissues is an important task which receives a considerable attention in the all experimental and theoretical researches. A temperature analysis focus the main parameters which influences strongly this therapy. The spatial distribution of the particles influences significantly the temperature field developed within a malignant tissue, when an external time - dependent magnetic field is applied. This paper analyses the temperature field induced by the particulate systems (magnetite and maghemite) with an exponential spatial distribution within a concentric tissues configuration (malignant and healthy tissues). The temperature field developed by these magnetic systems was computed using an analytical model which predicts the temperature at every point. This model was developed in order to compute the isothermal surfaces in the range of the therapeutic temperature range: 42÷46°C. The parameters involved in the burning process of the malignant tissues are optimized to get the uniform hyperthermic temperatures within malignant tissues for a corresponding clinically particle dosage.

  5. Multi-Response Optimization and Regression Analysis of Process Parameters for Wire-EDMed HCHCr Steel Using Taguchi’s Technique

    Directory of Open Access Journals (Sweden)

    K. Srujay Varma

    2017-04-01

    Full Text Available In this study, effect of machining process parameters viz. pulse-on time, pulse-off time, current and servo-voltage for machining High Carbon High Chromium Steel (HCHCr using copper electrode in wire EDM was investigated. High Carbon High Chromium Steel is a difficult to machine alloy, which has many applications in low temperature manufacturing, and copper is chosen as electrode as it has good electrical conductivity and most frequently used electrode all over the world. Tool making culture of copper has made many shops in Europe and Japan to used copper electrode. Experiments were conducted according to Taguchi’s technique by varying the machining process parameters at three levels. Taguchi’s method based on L9 orthogonal array was followed and number of experiments was limited to 9. Experimental cost and time consumption was reduced by following this statistical technique. Targeted output parameters are Material Removal Rate (MRR, Vickers Hardness (HV and Surface Roughness (SR. Analysis of Variance (ANOVA and Regression Analysis was performed using Minitab 17 software to optimize the parameters and draw relationship between input and output process parameters. Regression models were developed relating input and output parameters. It was observed that most influential factor for MRR, Hardness and SR are Ton, Toff and SV.

  6. Rigid Sternal Fixation Versus Modified Wire Technique for Poststernotomy Closures: A Retrospective Cost Analysis.

    Science.gov (United States)

    Park, Jiwon Sarah; Kuo, Jennifer H; Young, J Nilas; Wong, Michael S

    2017-05-01

    Rigid sternal fixation (RSF) has been shown to reduce sternal wound complications in high-risk patients. However, the higher initial cost continues to deter its use. This study evaluates the cost of caring for high-risk sternotomy patients who underwent RSF compared with those who underwent sternal closure with a modified wire technique (MWT). A retrospective single institution review of high-risk patients who underwent MWT (n = 45) and RSF (n = 30) for primary sternal closure from 2006 to 2009 was conducted. Total hospital cost, revenue, and net cost associated with surgery and subsequent care were analyzed. Overall rates of wound dehiscence and wound infections (superficial and deep) were higher in MWT patients (n = 14, 13, and 7, respectively) than RSF patients (n = 3, 2, and 0, respectively; P costs associated with their operative hospitalization, outpatient care, and home health than RSF patients (total net loss: US $41,436 ± 7327 vs US $10,612 ± 4,258; P = 0.034). In high-risk patients, RSF is associated with lower rates of infections, including the "never event" mediastinitis, compared with MWT. Moreover, despite the initial higher cost, RSF affords an overall lower cost of care compared with MWT in patients at high-risk for developing sternal complications.

  7. Noncontextual Wirings

    Science.gov (United States)

    Amaral, Barbara; Cabello, Adán; Cunha, Marcelo Terra; Aolita, Leandro

    2018-03-01

    Contextuality is a fundamental feature of quantum theory necessary for certain models of quantum computation and communication. Serious steps have therefore been taken towards a formal framework for contextuality as an operational resource. However, the main ingredient of a resource theory—a concrete, explicit form of free operations of contextuality—was still missing. Here we provide such a component by introducing noncontextual wirings: a class of contextuality-free operations with a clear operational interpretation and a friendly parametrization. We characterize them completely for general black-box measurement devices with arbitrarily many inputs and outputs. As applications, we show that the relative entropy of contextuality is a contextuality monotone and that maximally contextual boxes that serve as contextuality bits exist for a broad class of scenarios. Our results complete a unified resource-theoretic framework for contextuality and Bell nonlocality.

  8. Mini-plate versus Kirschner wire internal fixation for treatment of metacarpal and phalangeal fractures in Chinese Han population: a meta-analysis.

    Science.gov (United States)

    Xu, Jiaming; Zhang, Changqing

    2014-04-11

    This meta-analysis aimed to compare the therapeutic effect of mini-plate versus Kirschner wire (K-wire) internal fixation on the treatment of metacarpal and phalangeal fractures among Chinese Han population. Databases of China National Knowledge Infrastructure (CNKI), Wanfang, Chinese VIP, PubMed, and Embase were retrieved for studies on mini-plate (case group) versus K-wire (control group) internal fixation for the treatment of metacarpal and phalangeal fractures among Chinese Han population. The odds ratio (OR) and standardized mean difference (SMD) at 95% confidence interval (CI) were used for estimating the effects of dichotomous data and continuous data, respectively. All statistical analyses were performed by Review Manager 5.2 software. A total of 18 studies involving 1,375 metacarpal or phalangeal fracture patients (709 cases and 666 controls) were included in the meta-analysis. There were significant differences in fracture healing time (SMD = -1.28; 95% CI: -1.81, -0.76), postoperative infection rate (OR = 0.25; 95% CI: 0.16, 0.39), complication incidence (OR = 0.24; 95% CI: 0.15, 0.38), and surgery time (SMD = 1.57; 95% CI: 0.76, 2.37) between the case and the control group, while no significant difference was found in hospital stays between these two groups (SMD = 0.43; 95% CI: -0.34, 1.20; P = 0.27). For the treatment of metacarpal or phalangeal fracture among Chinese Han population, mini-plate has advantages of shorter healing time and lower infection rate and complication incidence compared with K-wire internal fixation, while a longer surgery time than K-wire. In conclusion, mini-plate is prior than K-wire internal fixation for the treatment of metacarpal or phalangeal fracture among Chinese Han population.

  9. Safe and consistent method of spot-welding platinum thermocouple wires and foils for high temperature measurements

    Science.gov (United States)

    Orr, G.; Roth, M.

    2012-08-01

    A low-voltage (mV) electronically triggered spot welding system for fabricating fine thermocouples and thin sheets used in high-temperature characterization of materials' properties is suggested. The system is based on the capacitance discharge method with a timed trigger for obtaining reliable and consistent welds. In contrast to existing techniques based on employing high voltage DC supplies for charging the capacitor or supplies with positive and negative rails, this method uses a simple, standard dual power supply available at most of the physical laboratories or can be acquired at a low cost. In addition, an efficient and simple method of fabricating non-sticking electrodes that do not contaminate the weld area is suggested and implemented.

  10. Influence of sliding friction on leveling force of superelastic NiTi arch wire: A computational analysis

    Science.gov (United States)

    Razali, M. F.; Mahmud, A. S.; Mokhtar, N.; Abdullah, J.

    2017-10-01

    This study investigated the influence of sliding friction toward the effective force of superelastic NiTi arch wire applied in orthodontic bracing for tooth leveling. A three-dimensional finite-element model integrated with superelastic subroutine and contact interaction was used to predict the contribution of friction on force-deflection curve of NiTi wire in three brackets bending configuration. It was found that the friction between the wire and the bracket increased proportionally as a function of wire deflection, thus transforming the constant force characteristic of NiTi material into a slope. The highest magnitude of sliding friction was measured to be 3.1 N and 2.2 N with respect to the activation and deactivation of the arch wire.

  11. Comparative analysis on temperature reduction effectiveness of ...

    African Journals Online (AJOL)

    Comparative analysis on temperature reduction effectiveness of ornamental tree species in University of Port Harcourt. ... The process of urbanization causes alterations in the landscape, affects the environment negatively and the community is placed at risk. In an attempt to sustain urban growth, urban areas have now ...

  12. Retrograde Wiring of Collateral Channels of the Heart in Chronic Total Occlusions: A Systematic Review and Meta-Analysis of Safety, Feasibility, and Incremental Value in Achieving Revascularization.

    Science.gov (United States)

    Khand, Aleem; Patel, Bilal; Palmer, Nicholas; Jones, Julia; Andron, Mohammed; Perry, Raph; Mehrotra, Sanjay; Mitsudo, Kazuaki

    2015-11-01

    To conduct a systematic review and meta-analysis on retrograde wiring in chronic total occlusions (CTOs) with focus on its safety and feasibility. We searched publications from 1990 to December 2013 in PubMed, Ovid, EMBASE, and the Cochrane database inserting a number of terms relating to the collateral circulation of the heart in CTOs. A total of 18 case series (n range17-462) with a total of 2280 CTO revascularization attempts fulfilled criteria for a study of retrograde wiring of collateral channels in CTOs. There were no randomized studies comparing a primary antegrade with a primary retrograde approach. Procedural CTO revascularization rates ranged from 67% to 90.6% with a large proportion having previously failed an "antegrade" approach. The septal perforator collaterals and epicardial channels were used in 73.2% (n = 1670) and 21.7% (n = 495) of cases. Although collateral/coronary perforation was not infrequent (n = 90, 5%), serious acute complications were uncommon; in the combined population 18 cases of cardiac tamponade (0.8%) and 3 deaths (0.1%). Septal perforating wiring (79.3%) was significantly more likely to be successful compared to epicardial coronary artery wiring (72.5%) when chosen by the operator as a route of retrograde access to the CTO body (relative risk 1.11 [95% confidence interval: 1.02-1.20; P = .013]). Successful retrograde wiring of collateral channels in selected patients undertaken by "CTO dedicated" operators can significantly enhance the chances of revascularization of complex CTOs with a low risk of acute serious complications. Septal perforator channels are significantly more likely to be successfully retrogradely wired compared to epicardial vessels when either is selected, by reference to their anatomical suitability by the operator, as a route of access. © The Author(s) 2015.

  13. Mixed and dynamic response of hot wires and cold wires and measurements of turbulence statistics

    DEFF Research Database (Denmark)

    Larsen, Søren Ejling; Højstrup, Jørgen; Fairall, C. W.

    1986-01-01

    Hot wires respond to temperature as well as to velocity, whereas cold wires respond to velocity as well as to temperature. The static and dynamic response characteristics are summarized and it is shown that the frequency transfer functions for the four different responses in general are different...

  14. Optimization of Single-Sensor Two-State Hot-Wire Anemometer Transmission Bandwidth.

    Science.gov (United States)

    Ligęza, Paweł

    2008-10-28

    Hot-wire anemometric measurements of non-isothermal flows require the use of thermal compensation or correction circuitry. One possible solution is a two-state hot-wire anemometer that uses the cyclically changing heating level of a single sensor. The area in which flow velocity and fluid temperature can be measured is limited by the dimensions of the sensor's active element. The system is designed to measure flows characterized by high velocity and temperature gradients, although its transmission bandwidth is very limited. In this study, we propose a method to optimize the two-state hot-wire anemometer transmission bandwidth. The method is based on the use of a specialized constanttemperature system together with variable dynamic parameters. It is also based on a suitable measurement cycle paradigm. Analysis of the method was undertaken using model testing. Our results reveal a possible significant broadening of the two-state hot-wire anemometer's transmission bandwidth.

  15. Local flow blockage analysis with checkerboard configuration in a wire wrapped fuel subassembly using the ASFRE code

    International Nuclear Information System (INIS)

    Nishimura, Masahiro; Fukano, Yoshitaka

    2014-01-01

    Local fault (LF) has been historically considered as one of the possible causes of severe accidents in sodium-cooled fast reactors because fuel pins are generally densely arranged in the fuel subassemblies (FSAs) in this type of reactors. Local flow blockage (LB) has been one of the dominant initiators of LFs. Therefore evaluations were performed on LBs in the past safety licensing assuming a planar and impermeable blockage of 66% of the total flow area at an FSA for the Japanese prototype fast breeder reactor. A conservative evaluation revealed that fuel pin damage propagation would be limited within a restricted area of the reactor core, even assuming such a hypothetical initiating event. In the newly formulated regulatory requirements, however, after the accident at the Fukushima Dai-ichi nuclear power plant, best estimate (BE) safety analyses on the basis of state-of-the-art knowledge are being required for beyond design basis accidents. A deterministic and BE evaluation therefore based on the most-recent knowledge was newly performed in this study for revalidation of the above-mentioned historical background using the ASFRE code, whereas the LF accidents would not be identified as a representative accident sequence from a viewpoint of both its frequencies and consequences. Nominal power and flow rate without safety margins were assumed for the analyses in order to make the accidental conditions to be realistic. A most likely and realistic blockage configuration was newly proposed and employed based on the existing experimental data in accordance with the BE concept mentioned above. The aforementioned blockage configuration was excessively conservative on a state-of-the-art knowledge basis. The most-recent experimental studies clarified that LBs due to foreign substances would be formed by accumulating the steel fragments of certain sizes trapped along the wrapping wires. This leads to an LB in a checkerboard configuration for an FSA of wire spacer type, which

  16. Analysis of temperature data at the Olkiluoto

    Energy Technology Data Exchange (ETDEWEB)

    Sedighi, M.; Bennett, D.; Masum, S.; Thomas, H. [Cardiff Univ. (United Kingdom); Johansson, E. [Saanio and Riekkola Oy, Helsinki (Finland)

    2014-03-15

    As part of the rock mechanics monitoring programme 2012 at Olkiluoto, temperature data have been recorded. Temperature data have been measured, collected and monitored at the Olkiluoto site and in ONKALO in various locations, by different methods and in conjunction with other investigations carried out at the site. This report provides a detailed description of the investigation and analysis carried out on temperature datasets. This report aims to provide a better understanding of the in-situ temperature of the rock and soil at the site. Three categories of datasets have been analysed and studied from the Posiva thermal monitoring programme. These consist of: (i) data collected from the various drillholes during geophysical logging and Posiva Flow Log (PFL) measurements, (ii) measurements in the ONKALO ramp, the investigation niche located at elevation -140 m and a technical room located at 437 m below the surface, and (iii) surface temperature measurements from four weather stations and four measurement ditches. Time-series data obtained from the groundwater temperature measurements during the 'Posiva Flow Log' (PFL) tests in drillholes OL-KR1 to KR55 at different depths and years have been analysed. Temperature at a depth of 400 m was found to be in the range of 10 to 11 deg C. The geothermal gradient obtained from the PFL data without pumping was found to be approximately 1.4 deg C/100m with relatively uniform temporal and spatial patterns at the repository depth, i.e. at 400 m.The geothermal gradient obtained from the results of the PFL measurements and geophysical loggings indicate similar temperature values at the repository depths, i.e. 400 m. The characteristics of the time series data related to the ONKALO measurements, have been obtained through a series of Non-uniform Discrete Fourier Transform analysis Datasets related to the various chainages and investigation niche at ONKALO have been studied. The largest variation in the temperature

  17. Analysis of temperature data at the Olkiluoto

    International Nuclear Information System (INIS)

    Sedighi, M.; Bennett, D.; Masum, S.; Thomas, H.; Johansson, E.

    2014-03-01

    As part of the rock mechanics monitoring programme 2012 at Olkiluoto, temperature data have been recorded. Temperature data have been measured, collected and monitored at the Olkiluoto site and in ONKALO in various locations, by different methods and in conjunction with other investigations carried out at the site. This report provides a detailed description of the investigation and analysis carried out on temperature datasets. This report aims to provide a better understanding of the in-situ temperature of the rock and soil at the site. Three categories of datasets have been analysed and studied from the Posiva thermal monitoring programme. These consist of: (i) data collected from the various drillholes during geophysical logging and Posiva Flow Log (PFL) measurements, (ii) measurements in the ONKALO ramp, the investigation niche located at elevation -140 m and a technical room located at 437 m below the surface, and (iii) surface temperature measurements from four weather stations and four measurement ditches. Time-series data obtained from the groundwater temperature measurements during the 'Posiva Flow Log' (PFL) tests in drillholes OL-KR1 to KR55 at different depths and years have been analysed. Temperature at a depth of 400 m was found to be in the range of 10 to 11 deg C. The geothermal gradient obtained from the PFL data without pumping was found to be approximately 1.4 deg C/100m with relatively uniform temporal and spatial patterns at the repository depth, i.e. at 400 m.The geothermal gradient obtained from the results of the PFL measurements and geophysical loggings indicate similar temperature values at the repository depths, i.e. 400 m. The characteristics of the time series data related to the ONKALO measurements, have been obtained through a series of Non-uniform Discrete Fourier Transform analysis Datasets related to the various chainages and investigation niche at ONKALO have been studied. The largest variation in the temperature amplitude of data

  18. Analysis of ultra-relativistic charged particle beam and stretched wire measurement interactions with cylindrically symmetric structures

    International Nuclear Information System (INIS)

    Deibele, C.E.

    1996-01-01

    The beam impedance and wakefield are quantities which describe the stability of charged particles in their trajectory within an accelerator. The stretched wire measurement technique is a method which estimates the beam impedance and wakefield. Definitions for the beam impedance, the wakefield, and the stretched wire measurement are presented. A pillbox resonator with circular beampipes is studied for its relatively simple profile and mode structure. Theoretical predictions and measurement data are presented for the interaction of various charged particle beams and center conductor geometries between the cavity and beampipe. Time domain predictions for the stretched wire measurement and wakefield are presented and are shown to be a linear interaction

  19. Stretched Wire Mechanics

    Energy Technology Data Exchange (ETDEWEB)

    Bowden, Gordon; /SLAC

    2005-09-06

    Stretched wires are beginning to play an important role in the alignment of accelerators and synchrotron light sources. Stretched wires are proposed for the alignment of the 130 meter long LCLS undulator. Wire position technology has reached sub-micron resolution yet analyses of perturbations to wire straightness are hard to find. This paper considers possible deviations of stretched wire from the simple 2-dimensional catenary form.

  20. Bond between smooth prestressing wires and concrete : finite element model and transfer length analysis for pretensioned concrete crossties.

    Science.gov (United States)

    2014-04-03

    Pretensioned concrete ties are increasingly employed in railroad high speed : and heavy haul applications. The bond between prestressing wires or strands and : concrete plays an important role in determining the transfer length of pretensioned : conc...

  1. EBSD analysis of tungsten-filament carburization during the hot-wire CVD of multi-walled carbon nanotubes

    CSIR Research Space (South Africa)

    Oliphant, CJ

    2014-02-01

    Full Text Available Filament condition during hot-wire chemical vapor deposition conditions of multi-walled carbon nanotubes is a major concern for a stable deposition process. We report on the novel application of electron backscatter diffraction to characterize...

  2. Finite element analysis of contributing factors to the horizontal splitting cracks in concrete crossties pretensioned with seven-wire strands.

    Science.gov (United States)

    2017-04-04

    This paper employs the finite element (FE) modeling : method to investigate the contributing factors to the horizontal : splitting cracks observed in the upper strand plane in some : concrete crossties made with seven-wire strands. The concrete...

  3. Analysis of Different Positions of Fiber-Reinforced Composite Retainers versus Multistrand Wire Retainers Using the Finite Element Method

    Directory of Open Access Journals (Sweden)

    Arezoo Jahanbin

    2014-01-01

    Full Text Available Background. The aim of this study was to evaluate root displacement of the lower incisors fixed with FRC in different positions versus FSW retainers using the finite element method. Materials and Methods. 3D finite element models were designed for a mandibular anterior segment: Model 1: flexible spiral wire bonded to the lingual teeth surfaces, Model 2: FRC bonded to the upper third of lingual teeth surfaces, and Model 3: FRC bonded to the middle third. FE analysis was performed for three models and then tooth displacements were evaluated. Results. In contrast to lateral incisors and canines, the FSW retainer caused the central teeth to move more than the teeth bonded with FRC in both loadings. Comparison between Models 2 and 3 (in vertical loading showed that FRC retainers that bonded at the upper third of lingual teeth surfaces made central and canine teeth move less than FRC retainers bonded at the middle third; however, for lateral teeth it was the opposite. Conclusion. FRC retainers bonded at the upper third of lingual teeth surfaces make central and canine teeth move less than FRC retainers bonded at the middle third in vertical loading; however, for lateral teeth it was the opposite.

  4. Analysis of Different Positions of Fiber-Reinforced Composite Retainers versus Multistrand Wire Retainers Using the Finite Element Method.

    Science.gov (United States)

    Jahanbin, Arezoo; Abtahi, Mostafa; Heravi, Farzin; Hoseini, Mohsen; Shafaee, Hooman

    2014-01-01

    Background. The aim of this study was to evaluate root displacement of the lower incisors fixed with FRC in different positions versus FSW retainers using the finite element method. Materials and Methods. 3D finite element models were designed for a mandibular anterior segment: Model 1: flexible spiral wire bonded to the lingual teeth surfaces, Model 2: FRC bonded to the upper third of lingual teeth surfaces, and Model 3: FRC bonded to the middle third. FE analysis was performed for three models and then tooth displacements were evaluated. Results. In contrast to lateral incisors and canines, the FSW retainer caused the central teeth to move more than the teeth bonded with FRC in both loadings. Comparison between Models 2 and 3 (in vertical loading) showed that FRC retainers that bonded at the upper third of lingual teeth surfaces made central and canine teeth move less than FRC retainers bonded at the middle third; however, for lateral teeth it was the opposite. Conclusion. FRC retainers bonded at the upper third of lingual teeth surfaces make central and canine teeth move less than FRC retainers bonded at the middle third in vertical loading; however, for lateral teeth it was the opposite.

  5. Uncertainty Analysis of the Temperature–Resistance Relationship of Temperature Sensing Fabric

    Directory of Open Access Journals (Sweden)

    Muhammad Dawood Husain

    2016-11-01

    Full Text Available This paper reports the uncertainty analysis of the temperature–resistance (TR data of the newly developed temperature sensing fabric (TSF, which is a double-layer knitted structure fabricated on an electronic flat-bed knitting machine, made of polyester as a basal yarn, and embedded with fine metallic wire as sensing element. The measurement principle of the TSF is identical to temperature resistance detector (RTD; that is, change in resistance due to change in temperature. The regression uncertainty (uncertainty within repeats and repeatability uncertainty (uncertainty among repeats were estimated by analysing more than 300 TR experimental repeats of 50 TSF samples. The experiments were performed under dynamic heating and cooling environments on a purpose-built test rig within the temperature range of 20–50 °C. The continuous experimental data was recorded through LabVIEW-based graphical user interface. The result showed that temperature and resistance values were not only repeatable but reproducible, with only minor variations. The regression uncertainty was found to be less than ±0.3 °C; the TSF sample made of Ni and W wires showed regression uncertainty of <±0.13 °C in comparison to Cu-based TSF samples (>±0.18 °C. The cooling TR data showed considerably reduced values (±0.07 °C of uncertainty in comparison with the heating TR data (±0.24 °C. The repeatability uncertainty was found to be less than ±0.5 °C. By increasing the number of samples and repeats, the uncertainties may be reduced further. The TSF could be used for continuous measurement of the temperature profile on the surface of the human body.

  6. Progress in American Superconductor’s HTS wire and optimization for fault current limiting systems

    Energy Technology Data Exchange (ETDEWEB)

    Malozemoff, Alexis P., E-mail: amalozemoff@amsc.com

    2016-11-15

    Highlights: • AMSC HTS wire critical current needed for rotating machinery is doubled by 16 MeV Au irradiation. • Nonuniformity of HTS wires in power devices causes hot spot formation during power system faults. • Lower normal-state resistivity and critical current lower HTS wire hot spot heating during faults. • HTS wire hot spot heating in HTS cables during faults must stay below lN{sub 2} bubble nucleation point. • HTS wire can be designed to meet hot spot heating limits in fault current limiting cables. - Abstract: American Superconductor has developed composite coated conductor tape-shaped wires using high temperature superconductor (HTS) on a flexible substrate with laminated metal stabilizer. Such wires enable many applications, each requiring specific optimization. For example, coils for HTS rotating machinery require increased current density J at 25–50 K. A collaboration with Argonne, Brookhaven and Los Alamos National Laboratories and several universities has increased J using an optimized combination of precipitates and ion irradiation defects in the HTS. Major commercial opportunities also exist to enhance electric power grid resiliency by linking substations with distribution-voltage HTS power cables [10]. Such links provide alternative power sources if one substation's transmission-voltage power is compromised. But they must also limit fault currents which would otherwise be increased by such distribution-level links. This can be done in an HTS cable, exploiting the superconductor-to-resistive transition when current exceeds the wires’ critical J. A key insight is that such transitions are usually nonuniform; so the wire must be designed to prevent localized hot spots from damaging the wire or even generating gas bubbles in the cable causing dielectric breakdown. Analysis shows that local heating can be minimized by increasing the composite tape's total thickness, decreasing its total resistance in the normal state and

  7. Near-field optical spectroscopy of single quantum wires

    Science.gov (United States)

    Harris, T. D.; Gershoni, D.; Grober, R. D.; Pfeiffer, L.; West, K.; Chand, N.

    1996-02-01

    Low temperature near-field scanning optical microscopy is used for spectroscopic studies of single, nanometer dimension, cleaved edge overgrown quantum wires. A direct experimental comparison between a two dimensional system and a single genuinely one dimensional quantum wire system, inaccessible to conventional far field optical spectroscopy, is enabled by the enhanced spatial resolution. We show that the photoluminescence of a single quantum wire is easily distinguished from that of the surrounding quantum well. Emission from localized centers is shown to dominate the photoluminescence from both wires and wells at low temperatures. A factor of 3 absorption enhancement for these wires compared to the wells is concluded from the photoluminescence excitation data.

  8. Structural analysis of plasma- and wire arc- sprayed stainless steel coatings

    Czech Academy of Sciences Publication Activity Database

    Ctibor, Pavel; Nourozi, S.; Inizan, M.; Bonnet, N.; Enžl, R.

    2004-01-01

    Roč. 49, č. 12 (2004), s. 1-12 ISSN 0001-7043 Grant - others:GA(XX) Barrande 2003-040-2 Institutional research plan: CEZ:AV0Z2043910 Keywords : stainless steel , microstructure, image analysis Subject RIV: JG - Metallurgy

  9. A New Method for Carbon Isotopic Analysis of Nanogram Quantities of Carbon from Dissolved Chitin Using A Spooling-wire Microcombustion Interface

    Science.gov (United States)

    Zhao, Y.; Nelson, D. M.; Clegg, B. F.; Berry, J.; Hu, F.

    2016-12-01

    δ13C analysis of specific taxa or compounds is commonly used for investigating past environmental change, including methane dynamics in lakes. However, most analytical methods require large sample sizes, prohibiting routine analysis of fossils of individual taxa found in sediment deposits. For example, 10-100 individual head capsules of fossil midges are required for δ13C analysis using an elemental analyzer (EA) interfaced with an isotope-ratio mass spectrometer (IRMS). Here we present a new method that uses a spooling-wire microcombustion (SWiM) device interfaced with an IRMS for measuring δ13C values of carbon dissolved from individual head capsules of chitinous aquatic zooplankton. We extracted chitin (a major biochemical component of insect exoskeleton) from modern midge material obtained from four commercial suppliers. We first assessed the effects of sample treatments on carbon yields and δ13C values of dissolved chitin by varying the concentration of HCl used for dissolution, the duration of reaction in HCl, and the temperature of dissolution. We then investigated potential fractionation of carbon isotopes associated with chitin dissolution, by comparing δ13C values of dissolved chitin obtained via SWiM-IRMS with those from untreated head capsules obtained via a EA-IRMS. The average δ13C values of untreated head capsules varied between -25.1 and -30.1‰. Higher acid concentrations and temperatures, as well as longer reaction times, increased dissolution of carbon from the head capsules and the precision of δ13C values. For example, carbon yields from reaction of head capsules with 6N HCl at 25°C increased from 1 to 3 Vs as reaction times increased from 1 to 24 hours. Acid concentration and reaction time had the greatest influence on carbon yields and isotopic precision. The δ13C values of dissolved chitin mirrored the δ13C values of untreated head capsules with minimal offset of absolute values, which suggests no systematic fractionation

  10. Comparative analysis of load/deflection ratios of conventional and heat-activated rectangular NiTi wires

    Directory of Open Access Journals (Sweden)

    Fabio Schemann-Miguel

    2012-06-01

    Full Text Available OBJECTIVE: This study compared the load-deflection ratios between 0.019 x 0.025-in rectangular orthodontic wires using 5 conventional preformed nickel-titanium (NiTi and 5 heat-activated NiTi archwires from four different manufacturers (Abzil, Morelli, 3M Unitek and Ormco, totaling 40 archwires. The archwires were placed in typodonts without tooth # 11 and tested using a universal testing machine connected to a computer. RESULTS: The comparisons of mean load-deflection values of conventional NiTi wires revealed that the lowest mean-deflection ratio was found for 3M Unitek, followed by Ormco, Morelli and Abzil. Regarding the heat-activated wires, the lowest load-deflection ratio was found for Ormco, followed by 3M Unitek, Abzil, and Morelli. CONCLUSION: The comparison of mean load-deflection ratios revealed that the heat-activated wires had lowest mean load-deflection ratios, and this trend was seen during all the study. However, at 2-mm deflection, mean load-deflection ratios for heat-activated Morelli and conventional 3M Unitek wires were very similar, and this difference was not statistically significant.

  11. Analysis on micro-regional characters of the resistance wires surface in electrical immersion heater by SEM/EDX.

    Science.gov (United States)

    Gu, Haixin; Xue, Lin; Zhang, Yongfeng; Cao, Liying; Ding, Minju; Huang, Hao; Bao, Renlie

    2014-05-01

    We present a novel method for identifying the conditions of electrical resistance wires before fire basing on micro-regional characters. The morphology and elemental compositions of resistance wires surface under normally used, misused and external heating conditions were respectively studied by scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX). The results show that the normally used wire has a smooth surface and stable metal composition. While the resistance wire under misused condition for the certain time could be characterized as a coarse surface covered by compacted and silica-embedded oxide layer, and the proportion of elemental compositions of different metals is also changed with higher content of Al and lower content of Fe and Cr. The external heating condition has little influence on inside wires. The mechanism of changes formed under misused condition was explained. We demonstrate that this approach is practical and functional to aid fire investigators in determining the cause of related fires. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  12. A hybrid DGTD scheme for transient analysis of electromagnetic field interactions on microwave systems loaded with thin wires

    KAUST Repository

    Li, Ping

    2015-10-15

    Use of the discontinuous Galerkin time-domain (DGTD) method for analyzing electromagnetic field interactions on microwave structures loaded with thin wires has been very limited despite its well-known advantages. Direct application of the three dimensional (3D) DGTD method to such structures calls for very fine volumetric discretizations in the proximity of the thin wires. In this work, to avoid this possible source of computational inefficiency, electromagnetic field interactions on thin wires and the rest of the structures are modeled separately using the modified telegrapher and Maxwell equations, respectively. Then, 1D and 3D DGTD methods are used to discretize them. The coupling between the two resulting matrix systems is realized by introducing equivalent source terms in each equation set. A weighted electric field obtained from the 3D discretization around the wire is introduced as a voltage source in the telegrapher equations. A volume current density obtained from the 1D discretization on the wire is introduced as a current source in the Ampere law equation. © 2015 IEEE.

  13. Analysis and Sliding Mode Control of Four-Wire Three-Leg Shunt Active Power Filter

    Directory of Open Access Journals (Sweden)

    Farid Hamoudi

    2015-01-01

    Full Text Available In this paper, the analysis and the sliding mode control application for a shunt active filter is presented. The active filter is based on a three-leg split-capacitor voltage source inverter which is used to compensate harmonics and unbalance in the phase currents, and therefore to cancel neutral current. The proposed sliding mode control is formulated from the multivariable state model established in dq0 frames. The selection of the sliding mode functions takes in account simultaneously, the current tracking and the dc-bus regulation and balancing, without the need of outer loops for the dc-bus control. A particular attention is given to the sliding mode functions design in order to optimize the convergence of the zero-sequence error and the dc-bus voltage unbalance. The effectiveness of the proposed control has been verified through computer simulation where satisfactory results are obtained over different conditions.

  14. Improved superconducting magnet wire

    Science.gov (United States)

    Schuller, I.K.; Ketterson, J.B.

    1983-08-16

    This invention is directed to a superconducting tape or wire composed of alternating layers of copper and a niobium-containing superconductor such as niobium of NbTi, Nb/sub 3/Sn or Nb/sub 3/Ge. In general, each layer of the niobium-containing superconductor has a thickness in the range of about 0.05 to 1.5 times its coherence length (which for Nb/sub 3/Si is 41 A) with each copper layer having a thickness in the range of about 170 to 600 A. With the use of very thin layers of the niobium composition having a thickness within the desired range, the critical field (H/sub c/) may be increased by factors of 2 to 4. Also, the thin layers of the superconductor permit the resulting tape or wire to exhibit suitable ductility for winding on a magnet core. These compositions are also characterized by relatively high values of critical temperature and therefore will exhibit a combination of useful properties as superconductors.

  15. A Vibrating Wire System For Quadrupole Fiducialization

    Energy Technology Data Exchange (ETDEWEB)

    Wolf, Zachary

    2010-12-13

    A vibrating wire system is being developed to fiducialize the quadrupoles between undulator segments in the LCLS. This note provides a detailed analysis of the system. The LCLS will have quadrupoles between the undulator segments to keep the electron beam focused. If the quadrupoles are not centered on the beam axis, the beam will receive transverse kicks, causing it to deviate from the undulator axis. Beam based alignment will be used to move the quadrupoles onto a straight line, but an initial, conventional alignment must place the quadrupole centers on a straight line to 100 {micro}m. In the fiducialization step of the initial alignment, the position of the center of the quadrupole is measured relative to tooling balls on the outside of the quadrupole. The alignment crews then use the tooling balls to place the magnet in the tunnel. The required error on the location of the quadrupole center relative to the tooling balls must be less than 25 {micro}m. In this note, we analyze a system under construction for the quadrupole fiducialization. The system uses the vibrating wire technique to position a wire onto the quadrupole magnetic axis. The wire position is then related to tooling balls using wire position detectors. The tooling balls on the wire position detectors are finally related to tooling balls on the quadrupole to perform the fiducialization. The total 25 {micro}m fiducialization error must be divided between these three steps. The wire must be positioned onto the quadrupole magnetic axis to within 10 {micro}m, the wire position must be measured relative to tooling balls on the wire position detectors to within 15 {micro}m, and tooling balls on the wire position detectors must be related to tooling balls on the quadrupole to within 10 {micro}m. The techniques used in these three steps will be discussed. The note begins by discussing various quadrupole fiducialization techniques used in the past and discusses why the vibrating wire technique is our method

  16. Water Desalination with Wires

    NARCIS (Netherlands)

    Porada, S.; Sales, B.B.; Hamelers, H.V.M.; Biesheuvel, P.M.

    2012-01-01

    We show the significant potential of water desalination using a novel capacitive wire-based technology in which anode/cathode wire pairs are constructed from coating a thin porous carbon electrode layer on top of electrically conducting rods (or wires). By alternately dipping an array of electrode

  17. Potential fatigue strength improvement of AA 5083-H111 notched parts by wire brush hammering: Experimental analysis and numerical simulation

    International Nuclear Information System (INIS)

    Sidhom, Naziha; Moussa, Naoufel Ben; Janeb, Sameh; Braham, Chedly; Sidhom, Habib

    2014-01-01

    Highlights: • Wire brush hammering increases by 20% the AA 5083-H111 notched parts fatigue limit. • Improvement of fatigue strength is related to the fatigue cracks nucleation. • Fatigue strength prediction accounts for wire brush hammering effects. - Abstract: The effects of milling as machining process and a post-machining treatment by wire-brush hammering, on the near surface layer characteristics of AA 5083-H111 were investigated. Surface texture, work-hardening and residual stress profiles were determined by roughness measurement, scanning electron microscope (SEM) examinations, microhardness and X-ray diffraction (XRD) measurements. The effects of surface preparation on the fatigue strength were assessed by bending fatigue tests performed on notched samples for two loading stress ratios R 0.1 and R 0.5 . It is found that the bending fatigue limit at R 0.1 and 10 7 cycles is 20% increased, with respect to the machined surface, by wire-brush hammering. This improvement was discussed on the basis of the role of surface topography, stabilized residual stress and work-hardening on the fatigue-crack network nucleation and growth. The effects biaxial residual stress field and surface work-hardening were taken into account in the finite element model. A multi-axial fatigue criterion was proposed to predict the fatigue strength of aluminum alloy notched parts for both machined and treated states

  18. Combined effects of different heat treatments and Cu element on transformation behavior of NiTi orthodontic wires.

    Science.gov (United States)

    Seyyed Aghamiri, S M; Ahmadabadi, M Nili; Raygan, Sh

    2011-04-01

    The shape memory nickel-titanium alloy has been applied in many fields due to its unique thermal and mechanical performance. One of the successful applications of NiTi wires is in orthodontics because of its good characteristics such as low stiffness, high spring back, high stored energy, biocompatibility, superelasticity and shape memory effect. The mechanical properties of wires are paid special attention which results in achieving continuous optimal forces and eventually causing rapid tooth movement without any damage. The behavior of the alloy can be controlled by chemical composition and thermo-mechanical treatment during the manufacturing process. In this study two kinds of commercial superelastic NiTi archwires of 0.41 mm diameter were investigated: Copper NiTi and Highland Metal. The chemical analysis of both wires was estimated by energy dispersive spectroscopy (EDS). It was showed that Copper NiTi wire contained copper and chromium. The two types of wires were exposed to different heat treatment conditions at 400 and 500 °C for 10 and 60 min to compare the behavior of the wires at aged and as-received conditions. Phase transformation temperatures clarified by differential scanning calorimetry (DSC) showed B2 R B19 transformation in Highland Metal wire and B2 B19(') transformation in Copper NiTi wire. Three point bending (TPB) tests in the certain designed fixture were performed at 37 °C to evaluate the mechanical behavior of the wires. The experimental results revealed the superelastic behavior of the Highland Metal wire after 60 min ageing at 400 and 500 °C and the plastic deformation of the Copper NiTi wire after annealing due to the effect of copper in the alloy composition. Copyright © 2010 Elsevier Ltd. All rights reserved.

  19. PS wire chamber

    CERN Document Server

    1970-01-01

    A wire chamber used at CERN's Proton Synchrotron accelerator in the 1970s. Multi-wire detectors contain layers of positively and negatively charged wires enclosed in a chamber full of gas. A charged particle passing through the chamber knocks negatively charged electrons out of atoms in the gas, leaving behind positive ions. The electrons are pulled towards the positively charged wires. They collide with other atoms on the way, producing an avalanche of electrons and ions. The movement of these electrons and ions induces an electric pulse in the wires which is collected by fast electronics. The size of the pulse is proportional to the energy loss of the original particle.

  20. Multiscale analysis of the CMB temperature derivatives

    Science.gov (United States)

    Marcos-Caballero, A.; Martínez-González, E.; Vielva, P.

    2017-02-01

    We study the Planck CMB temperature at different scales through its derivatives up to second order, which allows one to characterize the local shape and isotropy of the field. The problem of having an incomplete sky in the calculation and statistical characterization of the derivatives is addressed in the paper. The analysis confirms the existence of a low variance in the CMB at large scales, which is also noticeable in the derivatives. Moreover, deviations from the standard model in the gradient, curvature and the eccentricity tensor are studied in terms of extreme values on the data. As it is expected, the Cold Spot is detected as one of the most prominent peaks in terms of curvature, but additionally, when the information of the temperature and its Laplacian are combined, another feature with similar probability at the scale of 10o is also observed. However, the p-value of these two deviations increase above the 6% when they are referred to the variance calculated from the theoretical fiducial model, indicating that these deviations can be associated to the low variance anomaly. Finally, an estimator of the directional anisotropy for spinorial quantities is introduced, which is applied to the spinors derived from the field derivatives. An anisotropic direction whose probability is <1% is detected in the eccentricity tensor.

  1. Microstructure analysis of the martensitic stainless steel surface fine-cut by the wire electrode discharge machining (WEDM)

    International Nuclear Information System (INIS)

    Huang, C.A.; Hsu, F.Y.; Yao, S.J.

    2004-01-01

    In this research, quenched and tempered martensitic stainless steels, AISI 440A, were subjected to multi-cutting passes by wire electrical discharge machining (WEDM). The WEDM is widely applied to final surface shaping of harden steel. The steel was roughly machined at first cutting pass, semi-finished by two cutting passes, and then finished by one cutting passes, all machined by WEDM. The negatively polarized wire electrode (NPWE) was used for all of these four cutting passes. Some finished specimens were further extra-finished by using the positively polarized wire electrode (PPWE). Microstructures of the finished surfaces using NPWE as well as PPWE were studied with scanning and transmission electron microscopes (SEM and TEM). Chemical composition was analyzed by an energy-dispersive X-ray spectrometer (EDX) integrated in SEM or TEM. The study of the finished surfaces with NPWE shows that a heat-affected zone (HAZ) of about 1.5 μm thick was developed. The HAZ is composed of very fine equiaxed martensitic grains of about 200 nm with concentrated dislocations, but the temper-induced carbides were not found. A few spherical deposits of wire electrode material were also registered. Oxides with ca. 10 nm in diameter were detected around the deposits. The spherical deposits were characterized as 'bull eye' in TEM according to their appearance. For the surface finished with PPWE, no obvious HAZ was detected, but a very thin (<50 nm) and uniform amorphous layer composed of wire electrode and workpiece material was found. The structural difference between the two finished surfaces was explained based on the theory of electrical discharging and metallurgical physics

  2. A comparison of a 'J' wire and a straight wire in successful antegrade cannulation of the superficial femoral artery

    International Nuclear Information System (INIS)

    Gay, D.A.T.; Edwards, A.J.; Puckett, M.A.; Roobottom, C.A.

    2005-01-01

    AIMS: To evaluate the success of two different types of wire in common use in their ability to successfully cannulate the superficial femoral artery (SFA) using antegrade puncture. METHODS: 50 consecutive patients in whom antegrade infra-inguinal intervention was planned, underwent common femoral arterial puncture and then cannulation with either a standard 3 mm 'J' wire or a floppy tipped straight wire (William Cook--Europe). The frequency with which each type of wire entered the SFA or profunda femoris artery without image guidance was recorded. Further analysis was also made of the success of manipulation of the wire into the SFA following profunda cannulation and the use of alternative guide wires. RESULTS: In 19 out of 25 (76%) patients the 'J' wire correctly entered the SFA without image guidance. Only 5 out of 25 (25%) of straight wires entered the SFA with the initial pass (p<0.0001). Following further manipulation with the same wire all except 1 'J' wire was successfully negotiated into the SFA. The same was true for only 9 of the remaining straight wires with 11 patients requiring an alternative guide wire. CONCLUSIONS: When performing antegrade cannulation of the SFA a 'J' wire is more likely to be successful than a straight guide wire

  3. Efficacy and safety of tension band wiring versus plate fixation in olecranon fractures: a systematic review and meta-analysis.

    Science.gov (United States)

    Ren, Yi-Ming; Qiao, Hu-Yun; Wei, Zhi-Jian; Lin, Wei; Fan, Bao-You; Liu, Jun; Li, Ang; Kang, Yi; Liu, Shen; Hao, Yan; Zhou, Xian-Hu; Feng, Shi-Qing

    2016-11-14

    Olecranon fracture (OF) is a common upper limb fracture, and the most commonly used techniques are still tension band wiring (TBW) and plate fixation (PF). The aim of the current study is to discuss whether TBW or PF technique of internal fixation is better in the treatment of OFs, using the method of meta-analysis. The eligible studies were acquired from PubMed, CNKI, Embase, Cochrane Library, and other sources. The data were extracted by two of the coauthors independently and were analyzed by RevMan5.3. Standardized mean differences (SMDs), odds ratios (ORs), and 95% confidence intervals (CIs) were calculated. Cochrane Collaboration's Risk of Bias Tool and Newcastle-Ottawa Scale were used to assess risk of bias. Thirteen studies including 1 RCT and 12 observational studies were assessed. Our meta-analysis results showed that both in RCT and observational studies, there were no significant differences between the two groups in disabilities of the arm, shoulder and hand (DASH) (SMD = 0.07, 95% CI = -0.32 to 0.46, p = 0.73), improvement rate (OR = 0.76, 95% CI = 0.48-1.22, p = 0.26), range of motion (ROM), operation time (SMD = -0.51, 95% CI = -1.17 to 0.14, p = 0.12) and blood loss (SMD = -0.97, 95% CI = -2.06 to 0.11, p = 0.08). The overall estimate of complications indicated that the pooled OR was 2.61 (95% CI = 1.65-4.14, p < 0.0001), suggesting that the difference was statistically significant. We also compared the outcomes of patients with mayo type IIA OFs treated by TBW and PF in DASH and ROM and found no differences. Both TBW and PF interventions had treatment benefit in OFs. The current study reveals that there are no significant differences in DASH, improvement rate, ROM, operation time, and blood loss between TBW and PF for OFs. Due to the less complications, we recommend the PF approach as the optical choice for OFs. More high-quality studies are required to further confirm our results.

  4. Josephson junction arrays and superconducting wire networks

    International Nuclear Information System (INIS)

    Lobb, C.J.

    1992-01-01

    Techniques used to fabricate integrated circuits make it possible to construct superconducting networks containing as many as 10 6 wires or Josephson junctions. Such networks undergo phase transitions from resistive high-temperature states to ordered low-resistance low-temperature states. The nature of the phase transition depends strongly on controllable parameters such as the strength of the superconductivity in each wire or junction and the external magnetic field. This paper will review the physics of these phase transitions, starting with the simplest zero-magnetic field case. This leads to a Kosterlitz-Thouless transition when the junctions or wires are weak, and a simple mean-field fransition when the junctions or wires are strong. Rich behavior, resulting from frustration, occurs in the presence of a magnetic field. (orig.)

  5. Note: Improved wire-wound heater.

    Science.gov (United States)

    Steinmann, Ricardo G; Vitoux, Hugo

    2015-01-01

    The authors have measured, at cryogenic temperature, the upper limit of the heat transfer in different configurations of a wire-wound heater. We found that the heat transferred has an upper limit of about 15 W/cm(2) and is dependent on the diameter of the wire. In this paper, we present three ways of increasing the heat transferred by this type of heater and its application in different continuous flow cryostats.

  6. Analysis of soil temperature harmonics and filtering characteristics ...

    African Journals Online (AJOL)

    Soil temperature determines the biological, chemical and physical processes taking place, and the energy and mass exchanges at the soil-temperature interface. The incident solar energy determines the periodic variation of the soil temperatures and the attenuation with depth. Harmonic analysis of soil temperatures at ...

  7. A method for rapid sampling and characterization of smokeless powder using sorbent-coated wire mesh and direct analysis in real time - mass spectrometry (DART-MS).

    Science.gov (United States)

    Li, Frederick; Tice, Joseph; Musselman, Brian D; Hall, Adam B

    2016-09-01

    Improvised explosive devices (IEDs) are often used by terrorists and criminals to create public panic and destruction, necessitating rapid investigative information. However, backlogs in many forensic laboratories resulting in part from time-consuming GC-MS and LC-MS techniques prevent prompt analytical information. Direct analysis in real time - mass spectrometry (DART-MS) is a promising analytical technique that can address this challenge in the forensic science community by permitting rapid trace analysis of energetic materials. Therefore, we have designed a qualitative analytical approach that utilizes novel sorbent-coated wire mesh and dynamic headspace concentration to permit the generation of information rich chemical attribute signatures (CAS) for trace energetic materials in smokeless powder with DART-MS. Sorbent-coated wire mesh improves the overall efficiency of capturing trace energetic materials in comparison to swabbing or vacuuming. Hodgdon Lil' Gun smokeless powder was used to optimize the dynamic headspace parameters. This method was compared to traditional GC-MS methods and validated using the NIST RM 8107 smokeless powder reference standard. Additives and energetic materials, notably nitroglycerin, were rapidly and efficiently captured by the Carbopack X wire mesh, followed by detection and identification using DART-MS. This approach has demonstrated the capability of generating comparable results with significantly reduced analysis time in comparison to GC-MS. All targeted components that can be detected by GC-MS were detected by DART-MS in less than a minute. Furthermore, DART-MS offers the advantage of detecting targeted analytes that are not amenable to GC-MS. The speed and efficiency associated with both the sample collection technique and DART-MS demonstrate an attractive and viable potential alternative to conventional techniques. Copyright © 2016 The Chartered Society of Forensic Sciences. Published by Elsevier Ireland Ltd. All rights

  8. Towards plant wires

    OpenAIRE

    Adamatzky, Andrew

    2014-01-01

    In experimental laboratory studies we evaluate a possibility of making electrical wires from living plants. In scoping experiments we use lettuce seedlings as a prototype model of a plant wire. We approximate an electrical potential transfer function by applying direct current voltage to the lettuce seedlings and recording output voltage. We analyse oscillation frequencies of the output potential and assess noise immunity of the plant wires. Our findings will be used in future designs of self...

  9. Photovoltaic Wire, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This Small Business Innovation Research Phase I project will investigate a new architecture for photovoltaic devices based on nanotechnology: photovoltaic wire. The...

  10. Photovoltaic Wire Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This Small Business Innovation Research Phase I project will investigate a new architecture for photovoltaic devices based on nanotechnology: photovoltaic wire. The...

  11. Charpak hemispherical wire chamber

    CERN Document Server

    1970-01-01

    pieces. Mesures are of the largest one. Multi-wire detectors contain layers of positively and negatively charged wires enclosed in a chamber full of gas. A charged particle passing through the chamber knocks negatively charged electrons out of atoms in the gas, leaving behind positive ions. The electrons are pulled towards the positively charged wires. They collide with other atoms on the way, producing an avalanche of electrons and ions. The movement of these electrons and ions induces an electric pulse in the wires which is collected by fast electronics. The size of the pulse is proportional to the energy loss of the original particle.

  12. Measurement of Thermal Conductivities of Two Cryoprotective Agent Solutions for Vitreous Cryopreservation of Organs at the Temperature Range of 77 K-300 K Using a Thermal Sensor Made of Microscale Enamel Copper Wire.

    Science.gov (United States)

    Li, Yufang; Zhao, Gang; Hossain, S M Chapal; Panhwar, Fazil; Sun, Wenyu; Kong, Fei; Zang, Chuanbao; Jiang, Zhendong

    2017-06-01

    Biobanking of organs by cryopreservation is an enabling technology for organ transplantation. Compared with the conventional slow freezing method, vitreous cryopreservation has been regarded to be a more promising approach for long-term storage of organs. The major challenges to vitrification are devitrification and recrystallization during the warming process, and high concentrations of cryoprotective agents (CPAs) induced metabolic and osmotic injuries. For a theoretical model based optimization of vitrification, thermal properties of CPA solutions are indispensable. In this study, the thermal conductivities of M22 and vitrification solution containing ethylene glycol and dimethyl sulfoxide (two commonly used vitrification solutions) were measured using a self-made microscaled hot probe with enameled copper wire at the temperature range of 77 K-300 K. The data obtained by this study will further enrich knowledge of the thermal properties for CPA solutions at low temperatures, as is of primary importance for optimization of vitrification.

  13. 1998 wire development workshop proceedings

    International Nuclear Information System (INIS)

    1998-04-01

    This report consists of vugraphs of the presentations at the conference. The conference was divided into the following sessions: (1) First Generation Wire Development: Status and Issues; (2) First Generation Wire in Pre-Commercial Prototypes; (3) Second Generation Wire Development: Private Sector Progress and Issues; (4) Second Generation Wire Development: Federal Laboratories; and (5) Fundamental Research Issues for HTS Wire Development

  14. Electrochemically deposited BiTe-based nano wires for thermoelectric applications

    International Nuclear Information System (INIS)

    Inn-Khuan, N.; Kuan-Ying, K.; Che Zuraini Che Abdul Rahman; Nur Ubaidah Saidin; Suhaila Hani Ilias; Thye-Foo, C.

    2013-01-01

    Full-text: Nano structured materials systems such as thin-films and nano wires (NWs) are promising for thermoelectric power generation and refrigeration compared to traditional counterparts in bulk, due to their enhanced thermoelectric figures-of-merit. BiTe and its derivative compounds, in particular, are well-known for their near-room temperature thermoelectric performance. In this work, both the binary and ternary BiTe-based nano wires namely, BiTe and BiSbTe, were synthesized using template-assisted electrodeposition. Diameters of the nano wires were controlled by the pore sizes of the anodised alumina (AAO) templates used. Systematic study on the compositional change as a function of applied potential was carried out via Linear Sweep Voltametry (LSV). Chemical compositions of the nano wires were studied using Energy Dispersive X-ray Spectrometry (EDXS) and their microstructures evaluated using diffraction and imaging techniques. Results from chemical analysis on the nano wires indicated that while the Sb content in BiSbTe nano wires increased with more negative deposition potentials, the formation of Te 0 and Bi 2 Te 3 were favorable at more positive potentials. (author)

  15. Wire Array Photovoltaics

    Science.gov (United States)

    Turner-Evans, Dan

    Over the past five years, the cost of solar panels has dropped drastically and, in concert, the number of installed modules has risen exponentially. However, solar electricity is still more than twice as expensive as electricity from a natural gas plant. Fortunately, wire array solar cells have emerged as a promising technology for further lowering the cost of solar. Si wire array solar cells are formed with a unique, low cost growth method and use 100 times less material than conventional Si cells. The wires can be embedded in a transparent, flexible polymer to create a free-standing array that can be rolled up for easy installation in a variety of form factors. Furthermore, by incorporating multijunctions into the wire morphology, higher efficiencies can be achieved while taking advantage of the unique defect relaxation pathways afforded by the 3D wire geometry. The work in this thesis shepherded Si wires from undoped arrays to flexible, functional large area devices and laid the groundwork for multijunction wire array cells. Fabrication techniques were developed to turn intrinsic Si wires into full p-n junctions and the wires were passivated with a-Si:H and a-SiNx:H. Single wire devices yielded open circuit voltages of 600 mV and efficiencies of 9%. The arrays were then embedded in a polymer and contacted with a transparent, flexible, Ni nanoparticle and Ag nanowire top contact. The contact connected >99% of the wires in parallel and yielded flexible, substrate free solar cells featuring hundreds of thousands of wires. Building on the success of the Si wire arrays, GaP was epitaxially grown on the material to create heterostructures for photoelectrochemistry. These cells were limited by low absorption in the GaP due to its indirect bandgap, and poor current collection due to a diffusion length of only 80 nm. However, GaAsP on SiGe offers a superior combination of materials, and wire architectures based on these semiconductors were investigated for multijunction

  16. Slice of LHC dipole wiring

    CERN Multimedia

    Dipole model slice made in 1994 by Ansaldo. The high magnetic fields needed for guiding particles around the Large Hadron Collider (LHC) ring are created by passing 12’500 amps of current through coils of superconducting wiring. At very low temperatures, superconductors have no electrical resistance and therefore no power loss. The LHC is the largest superconducting installation ever built. The magnetic field must also be extremely uniform. This means the current flowing in the coils has to be very precisely controlled. Indeed, nowhere before has such precision been achieved at such high currents. 50’000 tonnes of steel sheets are used to make the magnet yokes that keep the wiring firmly in place. The yokes constitute approximately 80% of the accelerator's weight and, placed side by side, stretch over 20 km!

  17. Analysis of stainless steel clasp wire tensile strength and its effect after immersion on denture cleanser solution (A research)

    OpenAIRE

    Endang Prawesthi; Handoko Tirta

    2016-01-01

    Clasp wire is one of the important components in partial denture acrylic which serves as  a  retention. After the use of denture everyday, patient is advised to always clean it. Cleaning of denture by immersing in a solution of denture cleanser which containing organic acids in long term may be  cause corrosion. While corrosion can resulted changes in mechanical properties, among others, a reduction in tensile strength of stainless steel. The purpose of this research is to investigate the inf...

  18. Automating wiring formboard design

    NARCIS (Netherlands)

    Van den Berg, T.

    2013-01-01

    Increase in aircraft wiring complexity call for manufacturing design improvements to reduce cost and lead-time. To achieve such improvements, a joint research project was performed by the Flight Performance and Propulsion (FPP) group and Fokker Elmo BV, the second largest aircraft wiring harness

  19. Modelling and analysis of material removal rate and surface roughness in wire-cut EDM of armour materials

    Directory of Open Access Journals (Sweden)

    Ravindranadh Bobbili

    2015-12-01

    Full Text Available The current work presents a comparative study of wire electrical discharge machining (WEDM of armour materials such as aluminium alloy 7017 and rolled homogeneous armour (RHA steel using buckingham pi theorem to model the input variables and thermo-physical characteristics of WEDM on material removal rate (MRR and surface roughness (Ra of Al 7017 and RHA steel. The parameters of the model such as pulse-on time, flushing pressure, input power, thermal diffusivity and latent heat of vaporization have been determined through design of experiment methodology. Wear rate of brass wire increases with rise in input energy in machining Al 7017. The dependence of thermo-physical properties and machining variables on mechanism of MRR and Ra has been described by performing scanning electron microscope (SEM study. The rise in pulse-on time from 0.85μs to 1.25μs causes improvement in MRR and deterioration of surface finish. The machined surface has revealed that craters are found on the machined surface. The propensity of formation of craters increases during WEDM with a higher current and larger pulse-on time.

  20. Variability of Soil Temperature: A Spatial and Temporal Analysis.

    Science.gov (United States)

    Walsh, Stephen J.; And Others

    1991-01-01

    Discusses an analysis of the relationship of soil temperatures at 3 depths to various climatic variables along a 200-kilometer transect in west-central Oklahoma. Reports that temperature readings increased from east to west. Concludes that temperature variations were explained by a combination of spatial, temporal, and biophysical factors. (SG)

  1. Inverse analysis of inner surface temperature history from outer surface temperature measurement of a pipe

    International Nuclear Information System (INIS)

    Kubo, S; Ioka, S; Onchi, S; Matsumoto, Y

    2010-01-01

    When slug flow runs through a pipe, nonuniform and time-varying thermal stresses develop and there is a possibility that thermal fatigue occurs. Therefore it is necessary to know the temperature distributions and the stress distributions in the pipe for the integrity assessment of the pipe. It is, however, difficult to measure the inner surface temperature directly. Therefore establishment of the estimation method of the temperature history on inner surface of pipe is needed. As a basic study on the estimation method of the temperature history on the inner surface of a pipe with slug flow, this paper presents an estimation method of the temperature on the inner surface of a plate from the temperature on the outer surface. The relationship between the temperature history on the outer surface and the inner surface is obtained analytically. Using the results of the mathematical analysis, the inverse analysis method of the inner surface temperature history estimation from the outer surface temperature history is proposed. It is found that the inner surface temperature history can be estimated from the outer surface temperature history by applying the inverse analysis method, even when it is expressed by the multiple frequency components.

  2. COMPARATIVE ANALYSIS OF ELECTRICAL AND THERMAL CONTROL OF THE LINING STATE OF INDUCTION APPARATUS OF COPPER WIRE MANUFACTURE

    Directory of Open Access Journals (Sweden)

    V. M. Zolotaryov

    2018-02-01

    Full Text Available Aim. This article is intended to develop a technique for monitoring the lining state of induction channel furnaces for melting oxygen-free copper by monitoring changes in the distribution of thermal fields in their lining and carrying out a comparative analysis of the developed technique with the existing one that controls the electrical resistance of the melting channel of the furnaces. Technique. For carrying out the research, the theories of electromagnetic field, thermodynamics, mathematical physics, mathematical modeling based on the finite element method were used. Results. A technique for diagnosing the lining state of the induction channel furnaces for melting oxygen-free copper has been developed, which makes it possible to determine the dislocation and the size of the liquid metal leaks by analyzing the temperature distribution over the body surface both the inductor and the furnace. Scientific novelty. The connection between the temperature field distribution on the surface of the furnace body and the dislocation and dimensions of the liquid metal leaks in its lining is determined for the first time. Practical significance. Using the proposed technique will allow to conduct more accurate diagnostics of the lining conditions of the induction channel furnaces, as well as to determine the location and size of the liquid metal leaks, creating the basis for predicting the working life of the furnace.

  3. Quantum conductance in silicon quantum wires

    CERN Document Server

    Bagraev, N T; Klyachkin, L E; Malyarenko, A M; Gehlhoff, W; Ivanov, V K; Shelykh, I A

    2002-01-01

    The results of investigations of electron and hole quantum conductance staircase in silicon quantum wires are presented. The characteristics of self-ordering quantum wells of n- and p-types, which from on the silicon (100) surface in the nonequilibrium boron diffusion process, are analyzed. The results of investigations of the quantum conductance as the function of temperature, carrier concentration and modulation degree of silicon quantum wires are given. It is found out, that the quantum conductance of the one-dimensional channels is observed, for the first time, at an elevated temperature (T >= 77 K)

  4. Numerical Simulation of Wire-Coating

    DEFF Research Database (Denmark)

    Wapperom, Peter; Hassager, Ole

    1999-01-01

    A finite element program has been used to analyze the wire-coating process of an MDPE melt. The melt is modeled by a nonisothermal Carreau model. The emphasis is on predicting an accurate temperature field. Therefore, it is necessary to include the heat conduction in the metal parts. A comparison...... is made with the results of a simulation that models the heat conduction in the metal head by means of a Biot boundary condition. The influence of the wire velocity, inlet temperature and power-law index will be examined....

  5. Notched K-wire for low thermal damage bone drilling.

    Science.gov (United States)

    Liu, Yao; Belmont, Barry; Wang, Yiwen; Tai, Bruce; Holmes, James; Shih, Albert

    2017-07-01

    The Kirschner wire (K-wire) is a common bone drilling tool in orthopedic surgery to affix fractured bone. Significant heat is produced due to both the cutting and the friction between the K-wire and the bone debris during drilling. Such heat can result in high temperatures, leading to osteonecrosis and other secondary injuries. To reduce thermal injury and other high-temperature associated complications, a new K-wire design with three notches along the three-plane trocar tip fabricated using a thin micro-saw tool is studied. These notches evacuate bone debris and reduce the clogging and heat generation during bone drilling. A set of four K-wires, one without notches and three notched, with depths of 0.5, 0.75, and 1mm, are evaluated. Bone drilling experiments conducted on bovine cortical bone show that notched K-wires could effectively decrease the temperature, thrust force, and torque during bone drilling. K-wires with notches 1mm deep reduced the thrust force and torque by approximately 30%, reduced peak temperatures by 43%, and eliminated blackened burn marks in bone. This study demonstrates that a simple modification of the tip of K-wires can effectively reduce bone temperatures during drilling. Copyright © 2017 IPEM. Published by Elsevier Ltd. All rights reserved.

  6. Comparative analysis of the mechanical properties of fiber and stainless steel multistranded wires used for lingual fixed retention.

    Science.gov (United States)

    Annousaki, O; Zinelis, S; Eliades, G; Eliades, T

    2017-05-01

    To evaluate the effect of different resins used for the co-polymerization of EverStick fiber-reinforced fixed orthodontic retainer on its mechanical properties and to compare the mechanical properties of these configurations to commonly used multistrand wires. Ten 0.0175-in. WildCat (WC175), ten 0.0215-in. WildCat (WC215) three-strand twisted wires and thirty EverStick fibers were tested in this study. The EverStcik fibers were equally shared in three groups (n=10). The samples of first group (ESRE) were polymerized employing Stickresin (Light cure enamel adhesives), the second one (ESFT) employing Flow Tain (Light cured composite), whilst the specimens for the third group (ES) were not combined with resin. All samples were loaded in tensile up to fracture in a universal tensile testing machine and the modulus of elasticity, tensile strength and strain after fracture were recorded. The same groups were also tested employing Instrumented Indentation Testing (IIT) and Martens Hardness (HM), Indentation Modulus (E IT ) and elastic index (η IT ) were determined. The results of tensile testing and IIT were statistically analyzed employing one way Anova and the Student Newman Keuls test (SNK) at a=0.05 level of significance. WC175 and WC215 showed higher modulus of elasticity and tensile strength but lower strain after fracture compared to Everstic groups. IIT illustrated significantly higher values for HM, E IT , and η IT for WC groups compared to ESRE, ESFT and ES. ESFT showed higher HM and elastic index compared to ESRE and ES, a finding which is attributed to the fact the FlowTain is a filler-reinforce composite with higher hardness compared to unfilled resins. Multistrand wires demonstrated higher values in mechanical properties compared to EverStick ones. The co-polymerization with difference resins does not affect the tensile properties of Everstic, however the use of a light cured composite has a beneficial effect on hardness. Copyright © 2017 The Academy of

  7. Measurement of Thermal Conductivity of Porcine Liver in the Temperature Range of Cryotherapy and Hyperthermia (250~315k) by A Thermal Sensor Made of A Micron-Scale Enameled Copper Wire.

    Science.gov (United States)

    Jiang, Z D; Zhao, G; Lu, G R

      BACKGROUND: Cryotherapy and hyperthermia are effective treatments for several diseases, especially for liver cancers. Thermal conductivity is a significant thermal property for the prediction and guidance of surgical procedure. However, the thermal conductivities of organs and tissues, especially over the temperature range of both cryotherapy and hyperthermia are scarce. To provide comprehensive thermal conductivity of liver for both cryotherapy and hyperthermia. A hot probe made of stain steel needle and micron-sized copper wire is used for measurement. To verify data processing, both the least square method and the Monte Carlo inversion method are used to determine the hot probe constants, respectively, with reference materials of water and 29.9 % Ca 2 Cl aqueous solution. Then the thermal conductivities of Hanks solution and pork liver bathed in Hanks solution are measured. The effective length for two methods is nearly the same, but the heat capacity of probe calibrated by the Monte Carlo inversion is temperature dependent. Fairly comprehensive thermal conductivity of porcine liver measured with these two methods in the target temperature range is verified to be similar. We provide an integrated thermal conductivity of liver for cryotherapy and hyperthermia in two methods, and make more accurate predictions possible for surgery. The least square method and the Monte Carlo inversion method have their advantages and disadvantages. The least square method is available for measurement of liquids that not prone to convection or solids in a wide temperature range, while the Monte Carlo inversion method is available for accurate and rapid measurement.

  8. Thermosonic wire bonding of IC devices using palladium wire

    International Nuclear Information System (INIS)

    Shze, J.H.; Poh, M.T.; Tan, R.M.

    1996-01-01

    The feasibility of replacing gold wire by palladium wire in thermosonic wire bonding of CMOS and bipolar devices are studied in terms of the manufacturability, physical, electrical and assembly performance. The results that palladium wire is a viable option for bonding the bipolar devices but not the CMOS devices

  9. Towards plant wires.

    Science.gov (United States)

    Adamatzky, Andrew

    2014-08-01

    In experimental laboratory studies we evaluate a possibility of making electrical wires from living plants. In scoping experiments we use lettuce seedlings as a prototype model of a plant wire. We approximate an electrical potential transfer function by applying direct current voltage to the lettuce seedlings and recording output voltage. We analyse oscillation frequencies of the output potential and assess noise immunity of the plant wires. Our findings will be used in future designs of self-growing wetware circuits and devices, and integration of plant-based electronic components into future and emergent bio-hybrid systems. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  10. Superconducting wires and methods of making thereof

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Xingchen; Sumption, Michael D.; Peng, Xuan

    2018-03-13

    Disclosed herein are superconducting wires. The superconducting wires can comprise a metallic matrix and at least one continuous subelement embedded in the matrix. Each subelement can comprise a non-superconducting core, a superconducting layer coaxially disposed around the non-superconducting core, and a barrier layer coaxially disposed around the superconducting layer. The superconducting layer can comprise a plurality of Nb.sub.3Sn grains stabilized by metal oxide particulates disposed therein. The Nb.sub.3Sn grains can have an average grain size of from 5 nm to 90 nm (for example, from 15 nm to 30 nm). The superconducting wire can have a high-field critical current density (J.sub.c) of at least 5,000 A/mm.sup.2 at a temperature of 4.2 K in a magnetic field of 12 T. Also described are superconducting wire precursors that can be heat treated to prepare superconducting wires, as well as methods of making superconducting wires.

  11. Elastic anisotropy in multifilament Nb$_3$Sn superconducting wires

    CERN Document Server

    Scheuerlein, C; Alknes, P; Arnau, G; Bjoerstad, R; Bordini, B

    2015-01-01

    The elastic anisotropy caused by the texture in the Nb3Sn filaments of PIT and RRP wires has been calculated by averaging the estimates of Voigt and Reuss, using published Nb3Sn single crystal elastic constants and the Nb3Sn grain orientation distribution determined in both wire types by Electron Backscatter Diffraction. At ambient temperature the calculated Nb3Sn E-moduli in axial direction in the PIT and the RRP wire are 130 GPa and 140 GPa, respectively. The calculated E-moduli are compared with tensile test results obtained for the corresponding wires and extracted filament bundles.

  12. Cryogenic Pressure Seal for Wires

    Science.gov (United States)

    Ciana, J. J.

    1984-01-01

    High-pressure-seal formed by forcing polyurethane into space surrounding wire or cable in special fitting. Wire or cable routed through fitting then through a tightly fitting cap. Wire insulation left intact. Cap filled with sealant and forced onto the fitting: this pushes sealant into fitting so it seals wire or cable in fitting as well as in cap.

  13. Thermosonic wire bonding of gold wire onto copper pad using the saturated interfacial phenomena

    Science.gov (United States)

    Jeng, Yeau-Ren; Aoh, Jong-Hing; Wang, Chang-Ming

    2001-12-01

    Copper has been used to replace conventional aluminium interconnection to improve the performance of deep submicron integrated circuits. This study used the saturated interfacial phenomena found in thermosonic ball bonding of gold wire onto aluminium pad to investigate thermosonic ball bonding of gold wire onto copper pad. The effects of preheat temperatures and ultrasonic powers on the bonding force were investigated by using a thermosonic bonding machine and a shear tester. This work shows that under proper preheat temperatures, the bonding force of thermosonic wire bonding can be explained based on interfacial microcontact phenomena such as energy intensity, interfacial temperature and real contact area. It is clearly shown that as the energy intensity is increased, the shear force increases, reaches a maximum, and then decreases. After saturation, i.e. the establishment of maximum atomic bonding, any type of additional energy input will damage the bonding, decreasing the shear force. If the preheat temperature is not within the proper range, the interfacial saturation phenomenon does not exist. For a preload of 0.5 N and a welding time of 15 ms in thermosonic wire bonding of gold wire onto copper pads, a maximum shear force of about 0.33 N is found where the interfacial energy intensity equals 1.8×106 J m-2 for preheat temperatures of 150°C and 170°C. Moreover, the corresponding optimal ultrasonic power is about 110 units.

  14. Copper wire bonding

    CERN Document Server

    Chauhan, Preeti S; Zhong, ZhaoWei; Pecht, Michael G

    2014-01-01

    This critical volume provides an in-depth presentation of copper wire bonding technologies, processes and equipment, along with the economic benefits and risks.  Due to the increasing cost of materials used to make electronic components, the electronics industry has been rapidly moving from high cost gold to significantly lower cost copper as a wire bonding material.  However, copper wire bonding has several process and reliability concerns due to its material properties.  Copper Wire Bonding book lays out the challenges involved in replacing gold with copper as a wire bond material, and includes the bonding process changes—bond force, electric flame off, current and ultrasonic energy optimization, and bonding tools and equipment changes for first and second bond formation.  In addition, the bond–pad metallurgies and the use of bare and palladium-coated copper wires on aluminum are presented, and gold, nickel and palladium surface finishes are discussed.  The book also discusses best practices and re...

  15. Analysis of fuel end-temperature peaking

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Z.; Jiang, Q.; Lai, L.; Shams, M. [CANDU Energy Inc., Fuel Engineering Dept., Mississauga, Ontario (Canada)

    2013-07-01

    During normal operation and refuelling of CANDU® fuel, fuel temperatures near bundle ends will increase due to a phenomenon called end flux peaking. Similar phenomenon would also be expected to occur during a postulated large break LOCA event. The end flux peaking in a CANDU fuel element is due to the fact that neutron flux is higher near a bundle end, in contact with a neighbouring bundle or close to heavy water coolant, than in the bundle mid-plane, because of less absorption of thermal neutrons by Zircaloy or heavy water than by the UO{sub 2} material. This paper describes Candu Energy experience in analysing behaviour of bundle due to end flux peaking using fuel codes FEAT, ELESTRES and ELOCA. (author)

  16. Body of Knowledge (BOK) for Copper Wire Bonds

    Science.gov (United States)

    Rutkowski, E.; Sampson, M. J.

    2015-01-01

    Copper wire bonds have replaced gold wire bonds in the majority of commercial semiconductor devices for the latest technology nodes. Although economics has been the driving mechanism to lower semiconductor packaging costs for a savings of about 20% by replacing gold wire bonds with copper, copper also has materials property advantages over gold. When compared to gold, copper has approximately: 25% lower electrical resistivity, 30% higher thermal conductivity, 75% higher tensile strength and 45% higher modulus of elasticity. Copper wire bonds on aluminum bond pads are also more mechanically robust over time and elevated temperature due to the slower intermetallic formation rate - approximately 1/100th that of the gold to aluminum intermetallic formation rate. However, there are significant tradeoffs with copper wire bonding - copper has twice the hardness of gold which results in a narrower bonding manufacturing process window and requires that the semiconductor companies design more mechanically rigid bonding pads to prevent cratering to both the bond pad and underlying chip structure. Furthermore, copper is significantly more prone to corrosion issues. The semiconductor packaging industry has responded to this corrosion concern by creating a palladium coated copper bonding wire, which is more corrosion resistant than pure copper bonding wire. Also, the selection of the device molding compound is critical because use of environmentally friendly green compounds can result in internal CTE (Coefficient of Thermal Expansion) mismatches with the copper wire bonds that can eventually lead to device failures during thermal cycling. Despite the difficult problems associated with the changeover to copper bonding wire, there are billions of copper wire bonded devices delivered annually to customers. It is noteworthy that Texas Instruments announced in October of 2014 that they are shipping microcircuits containing copper wire bonds for safety critical automotive applications

  17. Effects of duct configuration on flow and temperature structure in sodium-cooled 19-rod simulated LMFBR fuel bundles with helical wire-wrap spacers

    International Nuclear Information System (INIS)

    Wantland, J.L.; Fontana, M.H.; Gnadt, P.A.; Hanus, N.; MacPherson, R.E.; Smith, C.M.

    1976-01-01

    Thermal-hydrodynamic testing of sodium-cooled 19-rod simulated LMFBR fuel bundles is being conducted at the O ak Ridge National Laboratory in the Fuel Failure Mockup (FFM), an engineering-scale high-temperature sodium facility which provides prototypic flows, temperatures and power densities. Electrically heated bundles have been tested with two scalloped and two hexagonal duct configurations. Peripheral helical flows, attributed to the spacers, have been observed with strengths dependent upon the evenness and relative sizes of the peripheral flow areas. Diametral sodium temperature profiles are more uniform with smaller peripheral flow areas

  18. Research regarding stiffness optimization of wires used for joints actuation from an elephant's trunk robotic arm

    Science.gov (United States)

    Ciofu, C.; Stan, G.

    2016-11-01

    Elephant's trunk robotic arms driven by wires and pulley mechanisms have issues with wires stiffness because of the entailed elastic deformations that is causing errors of positioning. Static and dynamic loads from each joint of the robotic arm affect the stiffness of driving wires and precision positioning. The influence of wires elastic deformation on precision positioning decreases with the increasing of wires stiffness by using different pre-tensioning devices. In this paper, we analyze the variation of driving wires stiffness particularly to each wire driven joint. We obtain optimum wires stiffness variation by using an analytical method that highlights the efficiency of pre-tensioning mechanism. The analysis of driving wires stiffness is necessary for taking appropriate optimization measures of robotic arm dynamic behavior and, thus, for decreasing positioning errors of the elephant's trunk robotic arm with inner actuation through wires/cables.

  19. Modeling birds on wires.

    Science.gov (United States)

    Aydoğdu, A; Frasca, P; D'Apice, C; Manzo, R; Thornton, J M; Gachomo, B; Wilson, T; Cheung, B; Tariq, U; Saidel, W; Piccoli, B

    2017-02-21

    In this paper we introduce a mathematical model to study the group dynamics of birds resting on wires. The model is agent-based and postulates attraction-repulsion forces between the interacting birds: the interactions are "topological", in the sense that they involve a given number of neighbors irrespective of their distance. The model is first mathematically analyzed and then simulated to study its main properties: we observe that the model predicts birds to be more widely spaced near the borders of each group. We compare the results from the model with experimental data, derived from the analysis of pictures of pigeons and starlings taken in New Jersey: two different image elaboration protocols allow us to establish a good agreement with the model and to quantify its main parameters. We also discuss the potential handedness of the birds, by analyzing the group organization features and the group dynamics at the arrival of new birds. Finally, we propose a more refined mathematical model that describes landing and departing birds by suitable stochastic processes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Signal Analysis and Waveform Reconstruction of Shock Waves Generated by Underwater Electrical Wire Explosions with Piezoelectric Pressure Probes

    Directory of Open Access Journals (Sweden)

    Haibin Zhou

    2016-04-01

    Full Text Available Underwater shock waves (SWs generated by underwater electrical wire explosions (UEWEs have been widely studied and applied. Precise measurement of this kind of SWs is important, but very difficult to accomplish due to their high peak pressure, steep rising edge and very short pulse width (on the order of tens of μs. This paper aims to analyze the signals obtained by two kinds of commercial piezoelectric pressure probes, and reconstruct the correct pressure waveform from the distorted one measured by the pressure probes. It is found that both PCB138 and Müller-plate probes can be used to measure the relative SW pressure value because of their good uniformities and linearities, but none of them can obtain precise SW waveforms. In order to approach to the real SW signal better, we propose a new multi-exponential pressure waveform model, which has considered the faster pressure decay at the early stage and the slower pressure decay in longer times. Based on this model and the energy conservation law, the pressure waveform obtained by the PCB138 probe has been reconstructed, and the reconstruction accuracy has been verified by the signals obtained by the Müller-plate probe. Reconstruction results show that the measured SW peak pressures are smaller than the real signal. The waveform reconstruction method is both reasonable and reliable.

  1. Innovative Instrumentation and Analysis of the Temperature Measurement for High Temperature Gasification

    Energy Technology Data Exchange (ETDEWEB)

    Seong W. Lee

    2005-10-01

    The objectives of this project during this semi-annual reporting period are to test the effects of coating layer of the thermal couple on the temperature measurement and to screen out the significant factors affecting the temperature reading under different operational conditions. The systematic tests of the gasifier simulator on the high velocity oxygen fuel (HVOF) spray coated thermal couples were completed in this reporting period. The comparison tests of coated and uncoated thermal couples were conducted under various operational conditions. The temperature changes were recorded and the temperature differences were calculated to describe the thermal spray coating effect on the thermal couples. To record the temperature data accurately, the computerized data acquisition system (DAS) was adopted to the temperature reading. The DAS could record the data with the accuracy of 0.1 C and the recording parameters are configurable. In these experiments, DAS was set as reading one data for every one (1) minute. The operational conditions are the combination of three parameters: air flow rate, water/ammonia flow rate and the amount of fine dust particles. The results from the temperature readings show the temperature of uncoated thermal couple is uniformly higher than that of coated thermal couple for each operational condition. Analysis of Variances (ANOVA) was computed based on the results from systematic tests to screen out the significant factors and/or interactions. The temperature difference was used as dependent variable and three operational parameters (i.e. air flow rate, water/ammonia flow rate and amount of fine dust particle) were used as independent factors. The ANOVA results show that the operational parameters are not the statistically significant factors affecting the temperature readings which indicate that the coated thermal couple could be applied to temperature measurement in gasifier. The actual temperature reading with the coated thermal couple in

  2. NOAA High-Resolution Sea Surface Temperature (SST) Analysis Products

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This archive covers two high resolution sea surface temperature (SST) analysis products developed using an optimum interpolation (OI) technique. The analyses have a...

  3. Elastocaloric effect of Ni-Ti wire for application in a cooling device

    DEFF Research Database (Denmark)

    Tusek, Jaka; Engelbrecht, Kurt; Mikkelsen, Lars Pilgaard

    2015-01-01

    We report on the elastocaloric effect of a superelastic Ni-Ti wire to be used in a cooling device. Initially, each evaluated wire was subjected to 400 loading/unloading training cycles in order to stabilize its superelastic behavior. The wires were trained at different temperatures, which lead...

  4. Near-field optical spectroscopy of semiconductor quantum wires

    Science.gov (United States)

    Gershoni, D.; Harris, T. D.; Pfeiffer, L. N.

    1997-09-01

    We discuss low temperature near-field scanning optical spectroscopical studies of single, nanometer dimension, cleaved edge overgrown quantum wires. We use the enhanced spatial resolution of near-field microscopy, to spectroscopically investigate these single wires, which are inaccessible to conventional far-field optical spectroscopy. We thus performed a direct experimental comparison between a two-dimensional quantum system and a single genuine one-dimensional quantum system. We show that the photoluminescence of a single quantum wire is easily distinguished from that of the surrounding quantum well. Emission from localized centers is shown to dominate the photoluminescence from both wires and wells at low temperatures. A factor of three enhancement in the optical absorption of a wire, in comparison with that of a similar well, is concluded from the photoluminescence excitation data.

  5. A combined stochastic analysis of mean daily temperature and diurnal temperature range

    Science.gov (United States)

    Sirangelo, B.; Caloiero, T.; Coscarelli, R.; Ferrari, E.

    2018-03-01

    In this paper, a stochastic model, previously proposed for the maximum daily temperature, has been improved for the combined analysis of mean daily temperature and diurnal temperature range. In particular, the procedure applied to each variable sequentially performs the deseasonalization, by means of truncated Fourier series expansions, and the normalization of the temperature data, with the use of proper transformation functions. Then, a joint stochastic analysis of both the climatic variables has been performed by means of a FARIMA model, taking into account the stochastic dependency between the variables, namely introducing a cross-correlation between the standardized noises. The model has been applied to five daily temperature series of southern Italy. After the application of a Monte Carlo simulation procedure, the return periods of the joint behavior of the mean daily temperature and the diurnal temperature range have been evaluated. Moreover, the annual maxima of the temperature excursions in consecutive days have been analyzed for the synthetic series. The results obtained showed different behaviors probably linked to the distance from the sea and to the latitude of the station.

  6. Analysis of overvoltages in overhead ground wires of extra high voltage (EHV) power transmission line under single-phase-to-ground faults

    NARCIS (Netherlands)

    Dudurych, [No Value; Rosolowski, E

    2000-01-01

    Overhead ground wires (GW) of extra high voltage (EHV) power transmission lines, apart from lightning-induced overvoltage protection are frequently used for carrier-current communication. In this case the ground wires are suspended on insulators, the dielectric strength of which should be sufficient

  7. INNOVATIVE INSTRUMENTATION AND ANALYSIS OF THE TEMPERATURE MEASUREMENT FOR HIGH TEMPERATURE GASIFICATION

    Energy Technology Data Exchange (ETDEWEB)

    Seong W. Lee

    2003-09-01

    During this reporting period, the literature survey including the gasifier temperature measurement literature, the ultrasonic application and its background study in cleaning application, and spray coating process are completed. The gasifier simulator (cold model) testing has been successfully conducted. Four factors (blower voltage, ultrasonic application, injection time intervals, particle weight) were considered as significant factors that affect the temperature measurement. The Analysis of Variance (ANOVA) was applied to analyze the test data. The analysis shows that all four factors are significant to the temperature measurements in the gasifier simulator (cold model). The regression analysis for the case with the normalized room temperature shows that linear model fits the temperature data with 82% accuracy (18% error). The regression analysis for the case without the normalized room temperature shows 72.5% accuracy (27.5% error). The nonlinear regression analysis indicates a better fit than that of the linear regression. The nonlinear regression model's accuracy is 88.7% (11.3% error) for normalized room temperature case, which is better than the linear regression analysis. The hot model thermocouple sleeve design and fabrication are completed. The gasifier simulator (hot model) design and the fabrication are completed. The system tests of the gasifier simulator (hot model) have been conducted and some modifications have been made. Based on the system tests and results analysis, the gasifier simulator (hot model) has met the proposed design requirement and the ready for system test. The ultrasonic cleaning method is under evaluation and will be further studied for the gasifier simulator (hot model) application. The progress of this project has been on schedule.

  8. Curie temperature determination via thermogravimetric and continuous wavelet transformation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Hasier, John; Nash, Philip [Thermal Processing Technology Center, IIT, Chicago, IL (United States); Riolo, Maria Annichia [University of Michigan, Center for the Study of Complex Systems, Ann Arbor, MI (United States)

    2017-12-15

    A cost effective method for conversion of a vertical tube thermogravimetric analysis system into a magnetic balance capable of measuring Curie Temperatures is presented. Reference and preliminary experimental data generated using this system is analyzed via a general-purpose wavelet based Curie point edge detection technique allowing for enhanced speed, ease and repeatability of magnetic balance data analysis. The Curie temperatures for a number of Heusler compounds are reported. (orig.)

  9. temperature

    Directory of Open Access Journals (Sweden)

    G. Polt

    2015-10-01

    Full Text Available In-situ X-ray diffraction was applied to isotactic polypropylene with a high volume fraction of α-phase (α-iPP while it has been compressed at temperatures below and above its glass transition temperature Tg. The diffraction patterns were evaluated by the Multi-reflection X-ray Profile Analysis (MXPA method, revealing microstructural parameters such as the density of dislocations and the size of coherently scattering domains (CSD-size. A significant difference in the development of the dislocation density was found compared to compression at temperatures above Tg, pointing at a different plastic deformation mechanism at these temperatures. Based on the individual evolutions of the dislocation density and CSD-size observed as a function of compressive strain, suggestions for the deformation mechanisms occurring below and above Tg are made.

  10. The sub-wavelength imaging performance of disordered wire media

    International Nuclear Information System (INIS)

    Powell, David A.

    2008-01-01

    An analysis of the sub-wavelength imaging performance of disordered thin wire media is undertaken, in order to understand how its performance may be affected by manufacturing errors. The structure is found to be extremely robust to disorder which keeps the wires parallel. Variation in the orientation of the wires and their longitudinal position causes more significant degradation in the image quality, which is quantified numerically

  11. Microbiota analysis to reveal temperature abuse of fresh pork

    DEFF Research Database (Denmark)

    Buschhardt, Tasja; Bahl, Martin Iain; Hansen, Tina Beck

    monitored during aerobic chill-storage (4 °C and 7 °C) and temperature abuse (12 °C and 16 °C) for 96 hours, by culture-based methods and 16S rRNA gene sequencing. Bacterial genera that dominated during prolonged temperature abuse were Acinetobacter, Serratia and Pseudomonas, whereas chill-stored meat...... was dominated by Pseudomonas only. We also showed that the initial community affects subsequent changes during storage. The results suggest that principal coordinate analysis of beta diversity could be a useful tool to reveal temperature abused meat. Sequence data and culturing data revealed a strong positive......Violations of temperature regulations in the meat chain may affect meat safety. Methods are lacking to estimate whether meat has been subjected to temperature abuse. Exposure to too high temperatures may lead to systematic changes in the diverse bacterial communities of fresh meat. We investigated...

  12. Microbiota analysis to reveal temperature abuse of fresh pork

    DEFF Research Database (Denmark)

    Buschhardt, Tasja; Bahl, Martin Iain; Hansen, Tina Beck

    2017-01-01

    Violations of temperature regulations in the meat chain may affect meat safety. Methods are lacking to estimate whether meat has been subjected to temperature abuse. Exposure to too high temperatures may lead to systematic changes in the diverse bacterial communities of fresh meat. We investigated...... monitored during aerobic chill-storage (4 °C and 7 °C) and temperature abuse (12 °C and 16 °C) for 96 hours, by culture-based methods and 16S rRNA gene sequencing. Bacterial genera that dominated during prolonged temperature abuse were Acinetobacter, Serratia and Pseudomonas, whereas chill-stored meat...... was dominated by Pseudomonas only. We also showed that the initial community affects subsequent changes during storage. The results suggest that principal coordinate analysis of beta diversity could be a useful tool to reveal temperature abused meat. Sequence data and culturing data revealed a strong positive...

  13. Effect of pyrolysis temperature and sulfuric acid during the fast pyrolysis of cellulose and douglas fir in an atmospheric pressure wire mesh reactor

    NARCIS (Netherlands)

    Wang, Zhouhong; Zhou, Shuai; Pecha, Brennan; Westerhof, Roel J M; Garcia-Perez, Manuel

    2014-01-01

    The goal of this study is to better understand important reactions responsible for the suppression of anhydrosugars during the pyrolysis of microcrystalline Avicel, ball-milled Avicel, levoglucosan, cellobiosan, and Douglas fir at varied pyrolysis conditions (heating rate 100°C/s, temperature

  14. Comparison study of inelastic analysis codes for high temperature structure

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jong Bum; Lee, H. Y.; Park, C. K.; Geon, G. P.; Lee, J. H

    2004-02-01

    LMR high temperature structures subjected to operating and transient loadings may exhibit very complex deformation behaviors due to the use of ductile material such as 316SS and the systematic analysis technology of high temperature structure for reliable safety assessment is essential. In this project, comparative study with developed inelastic analysis program NONSTA and the existing analysis codes was performed applying various types of loading including non-proportional loading. The performance of NONSTA was confirmed and the effect of inelastic constants on the analysis result was analyzed. Also, the applicability of the inelastic analysis was enlarged as a result of applying both the developed program and the existing codes to the analyses of the enhanced creep behavior and the elastic follow-up behavior of high temperature structures and the necessary items for improvements were deduced. Further studies on the improvement of NONSTA program and the decision of the proper values of inelastic constants are necessary.

  15. Wired to freedom

    DEFF Research Database (Denmark)

    Jepsen, Kim Sune Karrasch; Bertilsson, Margareta

    2017-01-01

    dimension of life science through a notion of public politics adopted from the political theory of John Dewey. We show how cochlear implantation engages different social imaginaries on the collective and individual levels and we suggest that users share an imaginary of being “wired to freedom” that involves...... new access to social life, continuous communicative challenges, common practices, and experiences. In looking at their lives as “wired to freedom,” we hope to promote a wider spectrum of civic participation in the benefit of future life science developments within and beyond the field of Cochlear...

  16. Wiring and lighting

    CERN Document Server

    Kitcher, Chris

    2013-01-01

    Wiring and Lighting provides a comprehensive guide to DIY wiring around the home. It sets out the regulations and legal requirements surrounding electrical installation work, giving clear guidelines that will enable the reader to understand what electrical work they are able to carry out, and what the testing and certification requirements are once the work is completed. Topics covered include: Different types of circuits; Types of cables and cable installation under floors and through joists; Isolating, earthing and bonding; Accessory boxes and fixings; Voltage bands; Detailed advice on safe

  17. Electric wiring domestic

    CERN Document Server

    Coker, A J

    1992-01-01

    Electric Wiring: Domestic, Tenth Edition, is a clear and reliable guide to the practical aspects of domestic electric wiring. Intended for electrical contractors, installation engineers, wiremen and students, its aim is to provide essential up to date information on modern methods and materials in a simple, clear, and concise manner. The main changes in this edition are those necessary to bring the work into line with the 16th Edition of the Regulations for Electrical Installations issued by the Institution of Electrical Engineers. The book begins by introducing the basic features of domestic

  18. Modern wiring practice

    CERN Document Server

    Steward, W E

    2012-01-01

    Continuously in print since 1952, Modern Wiring Practice has now been fully revised to provide an up-to-date source of reference to building services design and installation in the 21st century. This compact and practical guide addresses wiring systems design and electrical installation together in one volume, creating a comprehensive overview of the whole process for contractors and architects, as well as electricians and other installation engineers. Best practice is incorporated throughout, combining theory and practice with clear and accessible explanation, all

  19. Advanced energy analysis of high temperature fuel cell systems

    NARCIS (Netherlands)

    De Groot, A.

    2004-01-01

    In this thesis the performance of high temperature fuel cell systems is studied using a new method of exergy analysis. The thesis consists of three parts: ⢠In the first part a new analysis method is developed, which not only considers the total exergy losses in a unit operation, but which

  20. Simulation of temperature distribution by finite element analysis on ...

    Indian Academy of Sciences (India)

    on exposure to the synchrotron beam has been simulated by finite element analysis. Design of the cooling mechanism for each of these components has been carried out and estimation of the temperature rise has also been done incorporating the cooling mechanism. Keywords. Synchrotron; EXAFS; finite element analysis.

  1. Characterization of HAZ of API X70 Microalloyed Steel Welded by Cold-Wire Tandem Submerged Arc Welding

    Science.gov (United States)

    Mohammadijoo, Mohsen; Kenny, Stephen; Collins, Laurie; Henein, Hani; Ivey, Douglas G.

    2017-05-01

    High-strength low-carbon microalloyed steels may be adversely affected by the high-heat input and thermal cycle that they experience during tandem submerged arc welding. The heat-affected zone (HAZ), particularly the coarse-grained heat-affected zone (CGHAZ), i.e., the region adjacent to the fusion line, has been known to show lower fracture toughness compared with the rest of the steel. The deterioration in toughness of the CGHAZ is attributed to the formation of martensite-austenite (M-A) constituents, local brittle zones, and large prior austenite grains (PAG). In the present work, the influence of the addition of a cold wire at various wire feed rates in cold-wire tandem submerged arc welding, a recently developed welding process for pipeline manufacturing, on the microstructure and mechanical properties of the HAZ of a microalloyed steel has been studied. The cold wire moderates the heat input of welding by consuming the heat of the trail electrode. Macrostructural analysis showed a decrease in the CGHAZ size by addition of a cold wire. Microstructural evaluation, using both tint etching optical microscopy and scanning electron microscopy, indicated the formation of finer PAGs and less fraction of M-A constituents with refined morphology within the CGHAZ when the cold wire was fed at 25.4 cm/min. This resulted in an improvement in the HAZ impact fracture toughness. These improvements are attributed to lower actual heat introduced to the weldment and lower peak temperature in the CGHAZ by cold-wire addition. However, a faster feed rate of the cold wire at 76.2 cm/min adversely affected the toughness due to the formation of slender M-A constituents caused by the relatively faster cooling rate in the CGHAZ.

  2. Parametric sensitivity analysis for temperature control in outdoor photobioreactors.

    Science.gov (United States)

    Pereira, Darlan A; Rodrigues, Vinicius O; Gómez, Sonia V; Sales, Emerson A; Jorquera, Orlando

    2013-09-01

    In this study a critical analysis of input parameters on a model to describe the broth temperature in flat plate photobioreactors throughout the day is carried out in order to assess the effect of these parameters on the model. Using the design of experiment approach, variation of selected parameters was introduced and the influence of each parameter on the broth temperature was evaluated by a parametric sensitivity analysis. The results show that the major influence on the broth temperature is that from the reactor wall and the shading factor, both related to the direct and reflected solar irradiation. Other parameter which play an important role on the temperature is the distance between plates. This study provides information to improve the design and establish the most appropriate operating conditions for the cultivation of microalgae in outdoor systems. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Basic study of HTS magnet using 2G wires for maglev train

    Energy Technology Data Exchange (ETDEWEB)

    Ogata, M., E-mail: ogata@rtri.or.j [Railway Technical Research Institute, 2-8-38, Hikari-cho, Kokubunji-shi, Tokyo 185-8540 (Japan); Miyazaki, Y.; Hasegawa, H.; Sasakawa, T.; Nagashima, K. [Railway Technical Research Institute, 2-8-38, Hikari-cho, Kokubunji-shi, Tokyo 185-8540 (Japan)

    2010-11-01

    There are several advantages by applying a high-temperature superconducting wire to an on-board superconducting magnet for the maglev train. At first, an increase of thermal capacity of superconducting coils contributes a stability of the superconducting state of the coils. In addition, a reliability of superconducting magnet improves by simplification of the magnet structure. And the weight of the superconducting magnet and the energy consumption of the on-board cryocooler will decrease. Therefore, we examined the possibility on application of the 2G wire with a high critical current density in a high magnetic field. We performed numerical analysis regarding the weight of a superconducting magnet and the energy consumption of an on-board cryocooler in consideration of the characteristics of the 2G wire. Furthermore, we have carried out the I{sub c} measurement for the commercial 2G wires under various experimental conditions such as temperature, magnetic field strength and angle. We also performed the trial manufacture and evaluation of I{sub c} characteristics for the small race track-shaped superconducting coil.

  4. Preliminary study of HTS magnet using 2G wires for maglev train

    Energy Technology Data Exchange (ETDEWEB)

    Ogata, Masafumi; Miyazaki, Yoshiki; Hasegawa, Hitoshi; Sasakawa, Takashi; Nagashima, Ken, E-mail: ogata@rtri.or.j [Railway Technical Research Institute, Hikari-cho 2-8-38, Kokubunji-shi, Tokyo (Japan)

    2010-06-01

    There are several advantages by applying a high temperature superconducting wire to an on-board superconducting magnet for the maglev train. At first, an increase of thermal capacity of superconducting coils contributes a stability of the superconducting state of the coils. In addition, a reliability of superconducting magnet improves by simplification of the magnet structure. And the weight of the superconducting magnet and the energy consumption of the on-board cryocooler will decrease. Therefore, we examined the possibility on application of the 2G wire with a high critical current density in a high magnetic field. We performed numerical analysis regarding the weight of a superconducting magnet and the energy consumption of an on-board cryocooler in consideration of the characteristics of the 2G wire. Furthermore, we have carried out the I{sub c} measurement for the commercial 2G wires under various experimental conditions such as temperature, magnetic field strength and angle. We also performed the trial manufacture and evaluation of I{sub c} characteristics for the small race track-shaped superconducting coil.

  5. Basic study of HTS magnet using 2G wires for maglev train

    Science.gov (United States)

    Ogata, M.; Miyazaki, Y.; Hasegawa, H.; Sasakawa, T.; Nagashima, K.

    2010-11-01

    There are several advantages by applying a high-temperature superconducting wire to an on-board superconducting magnet for the maglev train. At first, an increase of thermal capacity of superconducting coils contributes a stability of the superconducting state of the coils. In addition, a reliability of superconducting magnet improves by simplification of the magnet structure. And the weight of the superconducting magnet and the energy consumption of the on-board cryocooler will decrease. Therefore, we examined the possibility on application of the 2G wire with a high critical current density in a high magnetic field. We performed numerical analysis regarding the weight of a superconducting magnet and the energy consumption of an on-board cryocooler in consideration of the characteristics of the 2G wire. Furthermore, we have carried out the Ic measurement for the commercial 2G wires under various experimental conditions such as temperature, magnetic field strength and angle. We also performed the trial manufacture and evaluation of Ic characteristics for the small race track-shaped superconducting coil.

  6. Preliminary study of HTS magnet using 2G wires for maglev train

    Science.gov (United States)

    Ogata, Masafumi; Miyazaki, Yoshiki; Hasegawa, Hitoshi; Sasakawa, Takashi; Nagashima, Ken

    2010-06-01

    There are several advantages by applying a high temperature superconducting wire to an on-board superconducting magnet for the maglev train. At first, an increase of thermal capacity of superconducting coils contributes a stability of the superconducting state of the coils. In addition, a reliability of superconducting magnet improves by simplification of the magnet structure. And the weight of the superconducting magnet and the energy consumption of the on-board cryocooler will decrease. Therefore, we examined the possibility on application of the 2G wire with a high critical current density in a high magnetic field. We performed numerical analysis regarding the weight of a superconducting magnet and the energy consumption of an on-board cryocooler in consideration of the characteristics of the 2G wire. Furthermore, we have carried out the Ic measurement for the commercial 2G wires under various experimental conditions such as temperature, magnetic field strength and angle. We also performed the trial manufacture and evaluation of Ic characteristics for the small race track-shaped superconducting coil.

  7. Preliminary study of HTS magnet using 2G wires for maglev train

    International Nuclear Information System (INIS)

    Ogata, Masafumi; Miyazaki, Yoshiki; Hasegawa, Hitoshi; Sasakawa, Takashi; Nagashima, Ken

    2010-01-01

    There are several advantages by applying a high temperature superconducting wire to an on-board superconducting magnet for the maglev train. At first, an increase of thermal capacity of superconducting coils contributes a stability of the superconducting state of the coils. In addition, a reliability of superconducting magnet improves by simplification of the magnet structure. And the weight of the superconducting magnet and the energy consumption of the on-board cryocooler will decrease. Therefore, we examined the possibility on application of the 2G wire with a high critical current density in a high magnetic field. We performed numerical analysis regarding the weight of a superconducting magnet and the energy consumption of an on-board cryocooler in consideration of the characteristics of the 2G wire. Furthermore, we have carried out the I c measurement for the commercial 2G wires under various experimental conditions such as temperature, magnetic field strength and angle. We also performed the trial manufacture and evaluation of I c characteristics for the small race track-shaped superconducting coil.

  8. INNOVATIVE INSTRUMENTATION AND ANALYSIS OF THE TEMPERATURE MEASUREMENT FOR HIGH TEMPERATURE GASIFICATION

    Energy Technology Data Exchange (ETDEWEB)

    Seong W. Lee

    2005-04-01

    The systematic tests of the gasifier simulator on the ultrasonic vibration application for cleaning method were completed in this reporting period. Within the systematic tests on the ultrasonic vibration application, the ambient temperature and high temperature status condition were tested separately. The sticky dirt on the thermocouple tip was simulated by the cement-covered layer on the thermocouple tip. At the ambient temperature status, four (4) factors were considered as the input factors affecting the response variable of peeling off rate. The input factors include the shape of the cement-covered layer (thickness and length), the ultrasonic vibration output power, and application time. At the high temperature tests, four (4) different environments were considered as the experimental parameters including air flow supply, water and air supply environment, water/air/fine dust particle supply, and air/water/ammonia/fine dust particle supply environment. The factorial design method was used in the experiment design with twelve (12) data sets of readings. Analysis of Variances (ANOVA) was applied to the results from systematic tests. The ANOVA results show that the thickness and length of the cement-covered layer have the significant impact on the peeling off rate of ultrasonic vibration application at the ambient temperature environment. For the high temperature tests, the different environments do not seem to have significant impact on the temperature changes. These results may indicate that the ultrasonic vibration is one of best cleaning methods for the thermocouple tip.

  9. Structural analysis for elevated temperature design of the LMFBR

    International Nuclear Information System (INIS)

    Griffin, D.S.

    1976-02-01

    In the structural design of LMFBR components for elevated temperature service it is necessary to take account of the time-dependent, creep behavior of materials. The accommodation of creep to assure design reliability has required (1) development of new design limits and criteria, (2) development of more detailed representations of material behavior, and (3) application of the most advanced analysis techniques. These developments are summarized and examples are given to illustrate the current state of technology in elevated temperature design

  10. Practical wiring in SI units

    CERN Document Server

    Miller, Henry A

    2013-01-01

    Practical Wiring, Volume 1 is a 13-chapter book that first describes some of the common hand tools used in connection with sheathed wiring. Subsequent chapters discuss the safety in wiring, cables, conductor terminations, insulating sheathed wiring, conductor sizes, and consumer's control equipments. Other chapters center on socket outlets, plugs, lighting subcircuits, lighting accessories, bells, and primary and secondary cells. This book will be very valuable to students involved in this field of interest.

  11. Wire EDM for Refractory Materials

    Science.gov (United States)

    Zellars, G. R.; Harris, F. E.; Lowell, C. E.; Pollman, W. M.; Rys, V. J.; Wills, R. J.

    1982-01-01

    In an attempt to reduce fabrication time and costs, Wire Electrical Discharge Machine (Wire EDM) method was investigated as tool for fabricating matched blade roots and disk slots. Eight high-strength nickel-base superalloys were used. Computer-controlled Wire EDM technique provided high quality surfaces with excellent dimensional tolerances. Wire EDM method offers potential for substantial reductions in fabrication costs for "hard to machine" alloys and electrically conductive materials in specific high-precision applications.

  12. Wire chambers: Trends and alternatives

    International Nuclear Information System (INIS)

    Regler, Meinhard

    1992-01-01

    The subtitle of this year's Vienna Wire Chamber Conference - 'Recent Trends and Alternative Techniques' - signalled that it covered a wide range of science and technology. While an opening Vienna talk by wire chamber pioneer Georges Charpak many years ago began 'Les funerailles des chambres a fils (the burial of wire chambers)', the contrary feeling this year was that wire chambers are very much alive!

  13. A Low Temperature Analysis of the Boundary Driven Kawasaki Process

    Science.gov (United States)

    Maes, Christian; O'Kelly de Galway, Winny

    2013-12-01

    Low temperature analysis of nonequilibrium systems requires finding the states with the longest lifetime and that are most accessible from other states. We determine these dominant states for a one-dimensional diffusive lattice gas subject to exclusion and with nearest neighbor interaction. They do not correspond to lowest energy configurations even though the particle current tends to zero as the temperature reaches zero. That is because the dynamical activity that sets the effective time scale, also goes to zero with temperature. The result is a non-trivial asymptotic phase diagram, which crucially depends on the interaction coupling and the relative chemical potentials of the reservoirs.

  14. Command Wire Sensor Measurements

    Science.gov (United States)

    2012-09-01

    CFAR Constant False Alarm Rate CWIE Command Wire-Improvised Explosive Device EMI Electromagnetic Induction GPR Ground Penetrating Radar...this, some type of constant false alarm rate ( CFAR ) receiver is required. CFAR automatically raises the threshold level to keep clutter echoes and

  15. Transport in quantum wires

    Indian Academy of Sciences (India)

    Transport in quantum wires. SIDDHARTHA LAL, SUMATHI RAO£ and DIPTIMAN SEN. Centre for Theoretical Studies, Indian Institute of Science, Bangalore 560 012, India. £ Harish-chandra Research Institute, Chhatnag Road, Jhusi, Allahabad 211 019, India. Abstract. With a brief introduction to one-dimensional channels ...

  16. Wire chamber conference

    International Nuclear Information System (INIS)

    Bartl, W.; Neuhofer, G.; Regler, M.

    1986-02-01

    This booklet contains program and the abstracts of the papers presented at the conference, most of them dealing with performance testing of various types of wire chambers. The publication of proceedings is planned as a special issue of 'Nuclear instruments and methods' later on. All abstracts are in English. An author index for the book of abstracts is given. (A.N.)

  17. Dynamic analysis of the CTAR (constant temperature adsorption refrigeration) cycle

    International Nuclear Information System (INIS)

    Hassan, H.Z.; Mohamad, A.A.; Al-Ansary, H.A.; Alyousef, Y.M.

    2014-01-01

    The basic SAR (solar-driven adsorption refrigeration) machine is an intermittent cold production system. Recently, the CO-SAR (continuous operation solar-powered adsorption refrigeration) system is developed. The CO-SAR machine is based on the theoretical CTAR (constant temperature adsorption refrigeration) cycle in which the adsorption process takes place at a constant temperature that equals the ambient temperature. Practically, there should be a temperature gradient between the adsorption bed and the surrounding atmosphere to provide a driving potential for heat transfer. In the present study, the dynamic analysis of the CTAR cycle is developed. This analysis provides a comparison between the theoretical and the dynamic operation of the CTAR cycle. The developed dynamic model is based on the D-A adsorption equilibrium equation and the energy and mass balances in the adsorption reactor. Results obtained from the present work demonstrate that, the idealization of the constant temperature adsorption process in the theoretical CTAR cycle is not far from the real situation and can be approached. Furthermore, enhancing the heat transfer between the adsorption bed and the ambient during the bed pre-cooling process helps accelerating the heat rejection process from the adsorption reactor and therefore approaching the isothermal process. - Highlights: • The dynamic analysis of the CTAR (constant temperature adsorption refrigeration) cycle is developed. • The CTAR theoretical and dynamic cycles are compared. • The dynamic cycle approaches the ideal one by enhancing the bed precooling

  18. Shivering and rewarming after cardiac surgery: comparison of ventilator circuits with humidifier and heated wires to heat and moisture exchangers.

    Science.gov (United States)

    McEvoy, M T; Carey, T J

    1995-07-01

    Detrimental physiologic effects of shivering in the cardiac surgery patient have been well documented. Rewarming techniques have been compared, with noted differences in the incidence of shivering. Ventilator circuits have not been examined independently from other rewarming variables. To compare heated wire humidification circuits with heat and moisture exchanger circuits on the incidence of shivering and speed and pattern of rewarming in mechanically ventilated patients. A prospective, descriptive, correlational study was done on 140 adult cardiac surgery patients in a university teaching medical center. All subjects underwent cardiac surgical procedures with hypothermic cardiopulmonary bypass. Subjects were randomized to humidified, heated wire circuits (n = 70) or heat and moisture exchanger circuits (n = 70). Heated water blankets were used on all patients. Mean intensive care unit admission temperature was 35.28 degrees C. No statistical differences were found in preoperative, demographic, or operative course data between treatment and control groups. Shivering was more common in the heat and moisture exchanger group than in the heated wire group. In our analysis, the only variable associated with shivering was the type of ventilator circuit. Patients using heated wire systems rewarmed more rapidly and had significantly higher temperatures than did patients using heat and moisture exchangers. These data suggest that use of heated wire humidified ventilator circuits with heated water blankets in adult cardiac surgery patients significantly reduces the incidence of shivering and results in a more rapid return to normothermia.

  19. Development of environmental-friendly wire and cable

    International Nuclear Information System (INIS)

    Ueno, Keiji

    1996-01-01

    The electron beam technology has been used in many industrial fields as a method of conventional polymer modification or optimum processability. The main industrial fields of radiation crosslinking are wire and cable, heat shrinkable tubings, plastic foams, precuring of tires, floppy disk curing, foods packaging films, and so on. The radiation crosslinking of wire and cable was started in 1961 in Japan and 15 wire and cable companies are now using electron beam accelerators for production or R and D. The dominant characteristics of crosslinking of insulation materials are application at high temperature, good oil and chemical resistibility and high mechanical properties. These radiation crosslinking wire and cable are applied widely in electronics equipments and automobiles. Recently, electronics manufacturers have indicated deep concern over the effects on the environment. Wire and cable also are required to be applicable for environmental preservation. (J.P.N.)

  20. The wire array Z pinch programme at Imperial College

    International Nuclear Information System (INIS)

    Haines, M.G.; Lebedev, S.V.; Chittenden, J.P.; Bland, S.N.; Beg, F.N.; Dangor, A.E.; Pikuz, S.A.; Shelkovenko, T.A.

    2001-01-01

    Plasma formation and implosion dynamics of wire array z-pinches have been studied experimentally using the MAGPIE generator (1.4MA, 240ns) at Imperial College. Simulations and theory verify much of the data. Both laser probing and x-ray radiography show after an initial volumetric heating of the wires the presence of dense wire cores surrounded by low density coronal plasma. Radiography shows development of perturbations on the dense core of each wire, while laser probing shows inward jetting of the coronal plasma caused by the global JxB force, and these plasma streams are axially non-uniform on the same spatial scale as later seen in the wire cores. The spatial scale of these perturbations (∼0.5mm for Al, ∼0.25mm for W) increases with the size of the wire cores (∼0.25mm for Al, ∼0.1mm for W). The inward flow of the coronal plasma is usually field free and leads to formation on the array axis of a straight plasma column, the dynamics of which is strongly affected by radiation cooling. Images obtained by optical streak camera show that the wire cores start their inward motion late and the implosion trajectory deviates significantly from the expected from 0-D analysis. An increase of the number of wires (decrease of inter-wire gap) resulted in a transition to 0-D trajectory for aluminium wire arrays, but not for tungsten. In experiments with nested wire arrays two modes of behaviour are observed; in the first the inner array is transparent to the imploding outer array, but the current transfers to it, leading to a fast implosion. The second mode occurs when a significant fraction of current is flowing in the inner array and the two arrays apparently implode simultaneously. In both modes the x-ray pulse is significantly sharpened in comparison with that generated in implosion of a single wire array. (author)

  1. Metallurgical investigation of wire breakage of tyre bead grade

    Directory of Open Access Journals (Sweden)

    Piyas Palit

    2015-10-01

    Full Text Available Tyre bead grade wire is used for tyre making application. The wire is used as reinforcement inside the polymer of tyre. The wire is available in different size/section such as 1.6–0.80 mm thin Cu coated wire. During tyre making operation at tyre manufacturer company, wire failed frequently. In this present study, different broken/defective wire samples were collected from wire mill for detailed investigation of the defect. The natures of the defects were localized and similar in nature. The fracture surface was of finger nail type. Crow feet like defects including button like surface abnormalities were also observed on the broken wire samples. The defect was studied at different directions under microscope. Different advanced metallographic techniques have been used for detail investigation. The analysis revealed that, white layer of surface martensite was formed and it caused the final breakage of wire. In this present study we have also discussed about the possible reason for the formation of such kind of surface martensite (hard-phase.

  2. Societal costs in displaced transverse olecranon fractures: using decision analysis tools to find the most cost-effective strategy between tension band wiring and locked plating.

    Science.gov (United States)

    Francis, Tittu; Washington, Travis; Srivastava, Karan; Moutzouros, Vasilios; Makhni, Eric C; Hakeos, William

    2017-11-01

    Tension band wiring (TBW) and locked plating are common treatment options for Mayo IIA olecranon fractures. Clinical trials have shown excellent functional outcomes with both techniques. Although TBW implants are significantly less expensive than a locked olecranon plate, TBW often requires an additional operation for implant removal. To choose the most cost-effective treatment strategy, surgeons must understand how implant costs and return to the operating room influence the most cost-effective strategy. This cost-effective analysis study explored the optimal treatment strategies by using decision analysis tools. An expected-value decision tree was constructed to estimate costs based on the 2 implant choices. Values for critical variables, such as implant removal rate, were obtained from the literature. A Monte Carlo simulation consisting of 100,000 trials was used to incorporate variability in medical costs and implant removal rates. Sensitivity analysis and strategy tables were used to show how different variables influence the most cost-effective strategy. TBW was the most cost-effective strategy, with a cost savings of approximately $1300. TBW was also the dominant strategy by being the most cost-effective solution in 63% of the Monte Carlo trials. Sensitivity analysis identified implant costs for plate fixation and surgical costs for implant removal as the most sensitive parameters influencing the cost-effective strategy. Strategy tables showed the most cost-effective solution as 2 parameters vary simultaneously. TBW is the most cost-effective strategy in treating Mayo IIA olecranon fractures despite a higher rate of return to the operating room. Copyright © 2017 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  3. Recent development of drastically innovative BSCCO wire (DI-BISCCO)

    International Nuclear Information System (INIS)

    Kikuchi, M.; Kato, T.; Ohkura, K.; Ayai, N.; Fujikami, J.; Fujino, K.; Kobayashi, S.; Ueno, E.; Yamazaki, K.; Yamade, S.; Hayashi, K.; Sato, K.; Nagai, T.; Matsui, Y.

    2006-01-01

    Up to this day, Ag-sheathed Bi2223 superconducting wires have been widely investigated and the long wires about 1000 m have been produced by using powder-in-tube (PIT) method on a commercial basis in the various facilities or companies. Although the wires are used for some applications such as HTS cables, magnets, motor and so on, the Bi2223 wires not only require much more improvements of the superconducting properties such as critical current, mechanical properties, but also longer and more uniform wires. Recently, the performances of Bi2223 wires have been drastically improved by using Controlled Over Pressure (CT-OP) sintering process. CT-OP process increased critical current (I c ) by more than 60% at 77 K and self field and improved the mechanical strength by more than 70%. The maximum I c was increased up to 166 A. These drastic improvements were caused by the higher density of Bi2223 filament up to almost 100% and better connectivity of the Bi2223 grains. The dense structure of the Bi2223 filaments prevents the ballooning phenomenon which is caused by the gasification of the trapped liquid nitrogen during temperature rise. Additionally, higher uniformity and higher production yield of long length wire were also achieved by exterminating defects during sintering. These high performance levels in CT-OP wires have contributed commercial level applications. We call as Drastically Innovative BSCCO (DI-BSCCO)

  4. Trace vanadium analysis by catalytic adsorptive stripping voltammetry using mercury-coated micro-wire and polystyrene-coated bismuth film electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Dansby-Sparks, Royce; Chambers, James Q. [Department of Chemistry, University of Tennessee, Knoxville, TN 37996-1600 (United States); Xue Ziling, E-mail: xue@ion.chem.utk.edu [Department of Chemistry, University of Tennessee, Knoxville, TN 37996-1600 (United States)

    2009-06-08

    An electrochemical technique has been developed for ultra-trace (ng L{sup -1}) vanadium (V) measurement. Catalytic adsorptive stripping voltammetry for V analysis was developed at mercury-coated gold micro-wire electrodes (MWEs, 100 {mu}m) in the presence of gallic acid (GA) and bromate ion. A potential of -0.275 V (vs Ag/AgCl) was used to accumulate the complex in acetate buffer (pH 5.0) at the electrode surface followed by a differential pulse voltammetric scan. Parameters affecting the electrochemical response, including pH, concentration of GA and bromate, deposition potential and time have been optimized. Linear response was obtained in the 0-1000 ng L{sup -1} range (2 min deposition), with a detection limit of 0.88 ng L{sup -1}. The method was validated by comparison of results for an unknown solution of V by atomic absorption measurement. The protocol was evaluated in a real sample by measuring the amount of V in river water samples. Thick bismuth film electrodes with protective polystyrene films have also been made and evaluated as a mercury free alternative. However, ng L{sup -1} level detection was only attainable with extended (10 min) deposition times. The proposed use of MWEs for the detection of V is sensitive enough for future use to test V concentration in biological fluids treated by the advanced oxidation process (AOP).

  5. Thermal Testing and Integration: Magnetospheric MultiScale (MMS) Observatories with Digital 1-Wire Sensors

    Science.gov (United States)

    Solimani, Jason A.; Rosanova, Santino

    2015-01-01

    Thermocouples require two thin wires to be routed out of the spacecraft to connect to the ground support equipment used to monitor and record the temperature data. This large number of wires that exit the observatory complicates integration and creates an undesirable heat path during testing. These wires exiting the spacecraft need to be characterized as a thermal short that will not exist during flight. To minimize complexity and reduce thermal variables from these ground support equipment (GSE) wires, MMS pursued a hybrid path for temperature monitoring, utilizing thermocouples and digital 1-wire temperature sensors. Digital 1-wire sensors can greatly reduce harness mass, length and complexity as they can be spliced together. For MMS, 350 digital 1-wire sensors were installed on the spacecraft with only 18 wires exiting as opposed to a potential 700 thermocouple wires. Digital 1-wire sensors had not been used in such a large scale at NASAGSFC prior to the MMS mission. During the MMS thermal vacuum testing a lessons learned matrix was formulated that will assist future integration of 1-wires into thermal testing and one day into flight.

  6. Hemispherical Resonator Gyroscope Accuracy Analysis Under Temperature Influence

    Directory of Open Access Journals (Sweden)

    Boran LI

    2014-06-01

    Full Text Available Frequency splitting of hemispherical resonator gyroscope will change as system operating temperature changes. This phenomenon leads to navigation accuracy of hemispherical resonator gyroscope reduces. By researching on hemispherical resonator gyroscope dynamical model and its frequency characteristic, the frequency splitting formula and the precession angle formula of gyroscope vibrating mode based on hemispherical resonator gyroscope dynamic equation parameters are derived. By comparison, gyroscope precession angle deviation caused by frequency splitting can be obtained. Based on analysis of temperature variation against gyroscope resonator, the design of hemispherical resonator gyroscope feedback controller under temperature variation conditions is researched and the maximum theoretical fluctuation of gyroscope dynamical is determined by using a numerical analysis example.

  7. Simplified Analysis Methods for Primary Load Designs at Elevated Temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Carter, Peter [Stress Engineering Services Inc.; Jetter, Robert I [Consultant; Sham, Sam [ORNL

    2011-01-01

    The use of simplified (reference stress) analysis methods is discussed and illustrated for primary load high temperature design. Elastic methods are the basis of the ASME Section III, Subsection NH primary load design procedure. There are practical drawbacks with this approach, particularly for complex geometries and temperature gradients. The paper describes an approach which addresses these difficulties through the use of temperature-dependent elastic-perfectly plastic analysis. Correction factors are defined to address difficulties traditionally associated with discontinuity stresses, inelastic strain concentrations and multiaxiality. A procedure is identified to provide insight into how this approach could be implemented but clearly there is additional work to be done to define and clarify the procedural steps to bring it to the point where it could be adapted into code language.

  8. Thermal analysis of high temperature phase transformations of steel

    Directory of Open Access Journals (Sweden)

    K. Gryc

    2013-10-01

    Full Text Available The series of thermal analysis measurements of high temperature phase transformations of real grain oriented electrical steel grade under conditions of two analytical devices (Netzsch STA 449 F3 Jupiter; Setaram SETSYS 18TM were carried out. Two thermo analytical methods were used (DTA and Direct thermal analysis. The different weight of samples was used (200 mg, 23 g. The stability/reproducibility of results obtained by used methodologies was verified. The liquidus and solidus temperatures for close to equilibrium conditions and during cooling (20 °C/min; 80 °C/min were determined. It has been shown that the higher cooling rate lead to lower temperatures for start and end of solidification process of studied steel grade.

  9. Simulation of temperature distribution by finite element analysis on ...

    Indian Academy of Sciences (India)

    Several optical and mechanical components of the beamline are exposed to high intensity synchrotron radiation while in operation. The temperature rise on different components of the beamline on exposure to the synchrotron beam has been simulated by finite element analysis. Design of the cooling mechanism for each of ...

  10. Use of objective analysis to estimate winter temperature and ...

    Indian Academy of Sciences (India)

    improved physical realism in this technique. 4. Conclusion. Barnes objective analysis has been used to inter- polate irregularly distributed station observations to the specific locations. In addition to the station interpolations, corrections based on temperature- elevation and precipitation-elevation have been employed.

  11. Analysis of the tin diffusion step in Nb3Sn-Cu superconducting wire produced by the external tin process

    International Nuclear Information System (INIS)

    Verhoeven, J.D.; Heimes, K.; Efron, A.; Department of Materials Science and Engineering, Iowa State University, Ames, Iowa 50011)

    1986-01-01

    Assuming volume diffusion is dominant, an analysis has been presented which allows one to analytically describe the three stages of the solid-state diffusion process for adding Sn in the external tin method for preparing Nb 3 Sn/Cu superconducting material. It is shown that one obtains a maximum intermetallic compound layer thickness in stage III which then decreases to zero thickness. Important practical questions in utilizing this process are the times required to complete stages I and II of the process, and this analysis predicts that the times required to complete stage I are on the order of days while stage II is completed in a matter of hours. The roles of grain-boundary diffusion and sample geometry are discussed and it is concluded that the analysis may be regarded as an upper bound for determining the times required to complete stages I and II of the solid state Sn diffusion process

  12. Micromachined hot-wire thermal conductivity probe for biomedical applications.

    Science.gov (United States)

    Yi, Ming; Panchawagh, Hrishikesh V; Podhajsky, Ronald J; Mahajan, Roop L

    2009-10-01

    This paper presents the design, fabrication, numerical simulation, and experimental validation of a micromachined probe that measures thermal conductivity of biological tissues. The probe consists of a pair of resistive line heating elements and resistance temperature detector sensors, which were fabricated by using planar photolithography on a glass substrate. The numerical analysis revealed that the thermal conductivity and diffusivity can be determined by the temperature response induced by the uniform heat flux in the heating elements. After calibrating the probe using a material (agar gel) of known thermal conductivity, the probe was deployed to calculate the thermal conductivity of Crisco. The measured value is in agreement with that determined by the macro-hot-wire probe method to within 3%. Finally, the micro thermal probe was used to investigate the change of thermal conductivity of pig liver before and after RF ablation treatment. The results show an increase in thermal conductivity of liver after the RF ablation.

  13. Research regarding wires elastic deformations influence on joints positioning of a wire-driven robotic arm

    Science.gov (United States)

    Ciofu, C.; Stan, G.

    2016-08-01

    In this paper, we present the influence of driving wires deformation on positioning precision of joints from an elephant's trunk robotic arm. Robotic arms driven by wires have the joint accuracy largely depending on wires rigidity. The joint moment of resistance causes elastic deformation of wires and it is determined by: manipulated object load, weight loads previous to the analyzed joint and inherent resistance moment of joint. Static load analysis emphasizes the particular wires elastic deformation of each driven joint from an elephant's trunk robotic arm with five degrees of freedom. We consider the case of a constant manipulated load. Errors from each driving system of joints are not part of the closed loop system. Thus, precision positioning depends on wires elastic deformation which is about microns and causes angle deviation of joints about tens of minutes of sexagesimal degrees. The closer the joints to base arm the smaller positioning precision of joint. The obtained results are necessary for further compensation made by electronic corrections in the programming algorithm of the elephant's trunk robotic arm to improve accuracy.

  14. Innovative Instrumentation and Analysis of the Temperature Measurement for High Temperature Gasification

    Energy Technology Data Exchange (ETDEWEB)

    Seong W. Lee

    2006-09-30

    The project entitled, ''Innovative Instrumentation and Analysis of the Temperature Measurement for High Temperature Gasification'', was successfully completed by the Principal Investigator, Dr. S. Lee and his research team in the Center for Advanced Energy Systems and Environmental Control Technologies at Morgan State University. The major results and outcomes were presented in semi-annual progress reports and annual project review meetings/presentations. Specifically, the literature survey including the gasifier temperature measurement, the ultrasonic application in cleaning application, and spray coating process and the gasifier simulator (cold model) testing has been successfully conducted during the first year. The results show that four factors (blower voltage, ultrasonic application, injection time intervals, particle weight) were considered as significant factors that affect the temperature measurement. Then the gasifier simulator (hot model) design and the fabrication as well as the systematic tests on hot model were completed to test the significant factors on temperature measurement in the second year. The advanced Industrial analytic methods such as statistics-based experimental design, analysis of variance (ANOVA) and regression methods were applied in the hot model tests. The results show that operational parameters (i.e. air flow rate, water flow rate, fine dust particle amount, ammonia addition) presented significant impact on the temperature measurement inside the gasifier simulator. The experimental design and ANOVA are very efficient way to design and analyze the experiments. The results show that the air flow rate and fine dust particle amount are statistically significant to the temperature measurement. The regression model provided the functional relation between the temperature and these factors with substantial accuracy. In the last year of the project period, the ultrasonic and subsonic cleaning methods and coating

  15. Dental Arch Wire

    Science.gov (United States)

    1979-01-01

    Straightening teeth is an arduous process requiring months, often years, of applying corrective pressure by means of arch wires-better known as brace-which may have to be changed several times in the course of treatment. A new method has been developed by Dr. George Andreasen, orthodontist and dental scientist at the University of Iowa. The key is a new type of arch wire material, called Nitinol, with exceptional elasticity which helps reduce the required number of brace changes. An alloy of nickel and titanium, Nitinol was originally developed for aerospace applications by the Naval Ordnance Laboratory, now the Naval Surface Weapons Laboratory, White Oaks, Maryland. NASA subsequently conducted additional research on the properties of Nitinol and on procedures for processing the metal.

  16. Experience of precision measuring distances by invar wires at accelerators

    International Nuclear Information System (INIS)

    Porubaj, N.I.

    1977-01-01

    With a view to determining the deformations and displacements of the ring foundation of the ITEP accelerator, the method of very accurate distance measurements by means of invar wires and strips is described. Measurement errors are analyzed. This method has allowed to measure distances up to 40 m with a mean-square error of less than 40 μm. The calibration accuracy of 3 and 25-m measuring wires has been determined to be +- 27 μm. Time instability of the wires is +- 16 μm. It is shown that strips are more stable in time than wires. Elongation of 6, 19, 25 and 38 m invar wires has been measured as function of the tension time. The error due to tension of a 38-m wire may be tangible. Data on thermal coefficient variation in time has been obtained for invar wires and strips. The multiannual measurements of the ring foundation deformations show that variations of the mean radius are caused by increases of concrete temperature. Temperature increase by only 1 deg caused mean radius increase of 0.3 mm

  17. Wire chamber gases

    International Nuclear Information System (INIS)

    Va'vra, J.

    1992-04-01

    In this paper, we describe new developments in gas mixtures which have occurred during the last 3--4 years. In particular, we discuss new results on the measurement and modeling of electron drift parameters, the modeling of drift chamber resolution, measurements of primary ionization and the choice of gas for applications such as tracking, single electron detection, X-ray detection and visual imaging. In addition, new results are presented on photon feedback, breakdown and wire aging

  18. Vienna Wire Chamber Conference

    International Nuclear Information System (INIS)

    Anon.

    1983-01-01

    After those of 1978 and 1980, a third Wire Chamber Conference was held from 15-18 February in the Technical University of Vienna. Eight invited speakers covered the field from sophisticated applications in biology and medicine, via software, to the state of the art of gaseous detectors. In some forty other talks the speakers tackled in more detail the topics of gaseous detectors, calorimetry and associated electronics and software

  19. Polyurethane spray coating of aluminum wire bonds to prevent corrosion and suppress resonant oscillations

    CERN Document Server

    Izen, Joseph; The ATLAS collaboration; Kurth, Matthew Glenn

    2015-01-01

    Unencapsulated aluminum wedge wire bonds are common in particle-physics pixel and strip detectors. Industry-favored bulk encapsulation is eschewed due to the range of operating temperatures and radiation. Wire bond failures are a persistent, source of tracking detector failure Unencapsulated bonds are vulnerable to condensation-induced corrosion, particularly when halides are present. Oscillations from periodic Lorenz forces are documented as another source of wire bond failure. Spray application of polyurethane coatings, performance of polyurethane-coated wire bonds after climate chamber exposure, and resonant properties of PU-coated wire bonds and their resistance to periodic Lorenz forces will be described.

  20. Analysis of building envelope insulation performance utilizing integrated temperature and humidity sensors.

    Science.gov (United States)

    Hung, San-Shan; Chang, Chih-Yuan; Hsu, Cheng-Jui; Chen, Shih-Wei

    2012-01-01

    A major cause of high energy consumption for air conditioning in indoor spaces is the thermal storage characteristics of a building's envelope concrete material; therefore, the physiological signals (temperature and humidity) within concrete structures are an important reference for building energy management. The current approach to measuring temperature and humidity within concrete structures (i.e., thermocouples and fiber optics) is limited by problems of wiring requirements, discontinuous monitoring, and high costs. This study uses radio frequency integrated circuits (RFIC) combined with temperature and humidity sensors (T/H sensors) for the design of a smart temperature and humidity information material (STHIM) that automatically, regularly, and continuously converts temperature and humidity signals within concrete and transmits them by radio frequency (RF) to the Building Physiology Information System (BPIS). This provides a new approach to measurement that incorporates direct measurement, wireless communication, and real-time continuous monitoring to assist building designers and users in making energy management decisions and judgments.

  1. Thermal poling of multi-wire array optical fiber

    DEFF Research Database (Denmark)

    Huang, Lin; An, Honglin; Hayashi, Juliano G.

    2018-01-01

    We demonstrate in this paper thermal poling of multi-wire array fibers, which extends poling of fibers with two anodes to similar to 50 and similar to 500 wire array anodes. The second harmonic microscopy observations show that second order nonlinearity (SON) layers are developed surrounding all...... the rings of wires in the similar to 50 anode array fiber with poling of 1.8kV, 250 degrees C and 30min duration, and the outer rings of the similar to 500 anode array fiber at lower poling temperature. Our simulations based on a two-dimensional charge dynamics model confirm this can be explained...

  2. Luttinger liquid behavior of weakly disordered quantum wires

    International Nuclear Information System (INIS)

    Palevski, A.; Levy, E.; Karpovski, M.; Tsukernik, A.; Dwir, B.; Kapon, E.

    2005-01-01

    Full Text:The talk will be devoted to the electronic transport in quantum nano wires. The temperature dependence of the conductance in long V-groove quantum wires fabricated in GaAs/AlGaAs heterostructures is consistent with recent theories given within the framework of the Luttinger liquid model, in the limit of weakly disordered wires. We show that for the relatively small amount of disorder in our quantum wires, the value of the interaction parameter g is g=0.66, which is the expected value for GaAs. However, samples with a higher level of disorder show conductance with stronger temperature dependence, which exceeds the range of validity of a perturbation theory. Trying to fit such data with perturbation-theory models leads inevitably to wrong (lower) values of g

  3. Equivalent Circulation Density Analysis of Geothermal Well by Coupling Temperature

    Directory of Open Access Journals (Sweden)

    Xiuhua Zheng

    2017-02-01

    Full Text Available The accurate control of the wellbore pressure not only prevents lost circulation/blowout and fracturing formation by managing the density of the drilling fluid, but also improves productivity by mitigating reservoir damage. Calculating the geothermal pressure of a geothermal well by constant parameters would easily bring big errors, as the changes of physical, rheological and thermal properties of drilling fluids with temperature are neglected. This paper researched the wellbore pressure coupling by calculating the temperature distribution with the existing model, fitting the rule of density of the drilling fluid with the temperature and establishing mathematical models to simulate the wellbore pressures, which are expressed as the variation of Equivalent Circulating Density (ECD under different conditions. With this method, the temperature and ECDs in the wellbore of the first medium-deep geothermal well, ZK212 Yangyi Geothermal Field in Tibet, were determined, and the sensitivity analysis was simulated by assumed parameters, i.e., the circulating time, flow rate, geothermal gradient, diameters of the wellbore, rheological models and regimes. The results indicated that the geothermal gradient and flow rate were the most influential parameters on the temperature and ECD distribution, and additives added in the drilling fluid should be added carefully as they change the properties of the drilling fluid and induce the redistribution of temperature. To ensure the safe drilling and velocity of pipes tripping into the hole, the depth and diameter of the wellbore are considered to control the surge pressure.

  4. Energy and exergy analysis of low temperature district heating network

    International Nuclear Information System (INIS)

    Li, Hongwei; Svendsen, Svend

    2012-01-01

    Low temperature district heating with reduced network supply and return temperature provides better match of the low quality building heating demand and the low quality heating supply from waste heat or renewable energy. In this paper, a hypothetical low temperature district heating network is designed to supply heating for 30 low energy detached residential houses. The network operational supply/return temperature is set as 55 °C/25 °C, which is in line with a pilot project carried out in Denmark. Two types of in-house substations are analyzed to supply the consumer domestic hot water demand. The space heating demand is supplied through floor heating in the bathroom and low temperature radiators in the rest of rooms. The network thermal and hydraulic conditions are simulated under steady state. A district heating network design and simulation code is developed to incorporate the network optimization procedure and the network simultaneous factor. Through the simulation, the overall system energy and exergy efficiencies are calculated and the exergy losses for the major district heating system components are identified. Based on the results, suggestions are given to further reduce the system energy/exergy losses and increase the quality match between the consumer heating demand and the district heating supply. -- Highlights: ► Exergy and energy analysis for low and medium temperature district heating systems. ► Different district heating network dimensioning methods are analyzed. ► Major exergy losses are identified in the district heating network and the in-house substations. ► Advantages to apply low temperature district heating are highlighted through exergy analysis. ► The influence of thermal by-pass on system exergy/energy performance is analyzed.

  5. Niobium Titanium and Copper wire samples

    CERN Multimedia

    2009-01-01

    Two wire samples, both for carrying 13'000Amperes. I sample is copper. The other is the Niobium Titanium wiring used in the LHC magnets. The high magnetic fields needed for guiding particles around the Large Hadron Collider (LHC) ring are created by passing 12’500 amps of current through coils of superconducting wiring. At very low temperatures, superconductors have no electrical resistance and therefore no power loss. The LHC is the largest superconducting installation ever built. The magnetic field must also be extremely uniform. This means the current flowing in the coils has to be very precisely controlled. Indeed, nowhere before has such precision been achieved at such high currents. Magnet coils are made of copper-clad niobium–titanium cables — each wire in the cable consists of 9’000 niobium–titanium filaments ten times finer than a hair. The cables carry up to 12’500 amps and must withstand enormous electromagnetic forces. At full field, the force on one metre of magnet is comparable ...

  6. Dual wire welding torch and method

    Science.gov (United States)

    Diez, Fernando Martinez; Stump, Kevin S.; Ludewig, Howard W.; Kilty, Alan L.; Robinson, Matthew M.; Egland, Keith M.

    2009-04-28

    A welding torch includes a nozzle with a first welding wire guide configured to orient a first welding wire in a first welding wire orientation, and a second welding wire guide configured to orient a second welding wire in a second welding wire orientation that is non-coplanar and divergent with respect to the first welding wire orientation. A method of welding includes moving a welding torch with respect to a workpiece joint to be welded. During moving the welding torch, a first welding wire is fed through a first welding wire guide defining a first welding wire orientation and a second welding wire is fed through a second welding wire guide defining a second welding wire orientation that is divergent and non-coplanar with respect to the first welding wire orientation.

  7. Modeling high temperature materials behavior for structural analysis

    CERN Document Server

    Naumenko, Konstantin

    2016-01-01

    This monograph presents approaches to characterize inelastic behavior of materials and structures at high temperature. Starting from experimental observations, it discusses basic features of inelastic phenomena including creep, plasticity, relaxation, low cycle and thermal fatigue. The authors formulate constitutive equations to describe the inelastic response for the given states of stress and microstructure. They introduce evolution equations to capture hardening, recovery, softening, ageing and damage processes. Principles of continuum mechanics and thermodynamics are presented to provide a framework for the modeling materials behavior with the aim of structural analysis of high-temperature engineering components.

  8. Tuning the Electrical Conductivity of Nanotube-Encapsulated Metallocene Wires

    Science.gov (United States)

    García-Suárez, Víctor M.; Ferrer, Jaime; Lambert, Colin J.

    2006-03-01

    We analyze a new family of carbon nanotube-based molecular wires, formed by encapsulating metallocene molecules inside the nanotubes. Our simulations, which are based on a combination of nonequilibrium Green function techniques and density functional theory, indicate that these wires can be engineered to exhibit desirable magnetotransport effects for use in spintronics devices. The proposed structures should also be resilient to room-temperature fluctuations, and are expected to have a high yield.

  9. Finite volume analysis of temperature effects induced by active MRI implants: 2. Defects on active MRI implants causing hot spots

    Directory of Open Access Journals (Sweden)

    Grönemeyer Dietrich HW

    2006-05-01

    investigations. The finite volume analysis calculates the time developing temperature maps for the model of a broken linear metallic wire embedded in tissue. Half of the total hot spot power loss is assumed to diffuse into both wire parts at the location of a defect. The energy is distributed from there by heat conduction. Additionally the effect of blood perfusion and blood flow is respected in some simulations because the simultaneous appearance of all worst case conditions, especially the absence of blood perfusion and blood flow near the hot spot, is very unlikely for vessel implants. Results The analytical solution as worst case scenario as well as the finite volume analysis for near worst case situations show not negligible volumes with critical temperature increases for part of the modeled hot spot situations. MR investigations with a high rf-pulse density lasting below a minute can establish volumes of several cubic millimeters with temperature increases high enough to start cell destruction. Longer exposure times can involve volumes larger than 100 mm3. Even temperature increases in the range of thermal ablation are reached for substantial volumes. MR sequence exposure time and hot spot power loss are the primary factors influencing the volume with critical temperature increases. Wire radius, wire material as well as the physiological parameters blood perfusion and blood flow inside larger vessels reduce the volume with critical temperature increases, but do not exclude a volume with critical tissue heating for resonators with a large product of resonator volume and quality factor. Conclusion The worst case scenario assumes thermal equilibrium for a hot spot embedded in homogeneous tissue without any cooling due to blood perfusion or flow. The finite volume analysis can calculate the results for near and not close to worst case conditions. For both cases a substantial volume can reach a critical temperature increase in a short time. The analytical solution, as absolute

  10. A medium energy facility for variable temperature implantation and analysis

    International Nuclear Information System (INIS)

    Chaumont, J.; Lalu, F.; Salome, M.; Lamoise, A.M.; Bernas, H.

    1981-01-01

    We describe the new ion implantation system at Orsay, which operates from 5 to 190 kV. Sixty-five elements from H to U have been implanted in insulators, semiconductors or metals. Significant currents (several μA) of three-fold ionized elements have been implanted at energies up to 570 keV. Details are provided on the target-holders used, particularly on a variable temperature (1.7-300 K) cryostat and a variable temperature (80-300 K) goniometer, and on an in situ Rutherford back-scattering analysis set-up (using the 380 keV He 2+ beam) used in conjunction with all these target-holders. The latter system is used for studies of metastable low-temperature implanted alloys: specific examples will be given. (orig.)

  11. Metering Wheel-Wire Track Wire Boom Deployment Mechanism

    Science.gov (United States)

    Granoff, Mark S.

    2014-01-01

    The NASA MMS Spin Plane Double Probe (SDP) Deployer utilizes a helical path, rotating Metering Wheel and a spring loaded Wire "Holding" Track to pay out a "fixed end" 57 meter x 1.5 mm diameter Wire Boom stored between concentric storage cylinders. Unlike rotating spool type storage devices, the storage cylinders remain stationary, and the boom wire is uncoiled along the length of the cylinder via the rotation of the Metering Wheel. This uncoiling action avoids the need for slip-ring contacts since the ends of the wire can remain stationary. Conventional fixed electrical connectors (Micro-D type) are used to terminate to operational electronics.

  12. Analysis of Low Temperature Organic Rankine Cycles for Solar Applications

    Science.gov (United States)

    Li, Yunfei

    The present work focuses on Organic Rankine Cycle (ORC) systems and their application to low temperature waste heat recovery, combined heat and power as well as off-grid solar power generation applications. As CO_2 issues come to the fore front and fossil fuels become more expensive, interest in low grade heat recovery has grown dramatically in the past few years. Solar energy, as a clean, renewable, pollution-free and sustainable energy has great potential for the use of ORC systems. Several ORC solutions have been proposed to generate electricity from low temperature sources. The ORC systems discussed here can be applied to fields such as solar thermal, biological waste heat, engine exhaust gases, small-scale cogeneration, domestic boilers, etc. The current work presents a thermodynamic and economic analysis for the use of ORC systems to convert solar energy or low exergy energy to generate electrical power. The organic working fluids investigated here were selected to investigate the effect of the fluid saturation temperature on the performance of ORCs. The working fluids under investigation are R113, R245fa, R123, with boiling points between 40°C and 200°C at pressures from 10 kPa to 10 MPa. Ambient temperature air at 20oC to 30oC is utilized as cooling resource, and allowing for a temperature difference 10°C for effective heat transfer. Consequently, the working fluids are condensed at 40°C. A combined first- and second-law analysis is performed by varying some system independent parameters at various reference temperatures. The present work shows that ORC systems can be viable and economical for the applications such as waste heat use and off-grid power generation even though they are likely to be more expensive than grid power.

  13. Towards slide enhancement with the titanium-molybdenum wire?

    Science.gov (United States)

    Thiry, Pol; Barthélémi, Stéphane

    2010-12-01

    This study aims to improve the tribological properties of titanium-molybdenum wire. Following an analysis of the wire/bracket/ligation friction parameters and an overview of the technological research into means of reducing such friction,we set up several types of surface treatment in the laboratory by physical deposition in the vapor phase and using cold plasma technology. The specimens obtained underwent two types of tribological tests and were then subjected to traction and bending tests in order to determine the variations in their mechanical properties induced by the different types of treatment. For purposes of comparison, all the tests were conducted on untreated wire, TMA® Low-friction® wire and stainless steel wire and with two types of elastomeric ties. We were able to demonstrate some remarkable slide performances obtained using cold plasma nitriding while preserving the mechanical properties. A significant difference was observed relative to the other surface treatments.

  14. Single Wire Detector Performance Over One Year of Operation

    CERN Document Server

    Hervas Aguilar, David Alberto

    2014-01-01

    Abstract When ionizing radiation passes through gas chambers in single wire detectors gas molecules separate into ions and electrons. By applying a strong localized electric field near the single wire an avalanche of electrons is created and it can be collected. The current produced in the wire is then proportional to the energy of the particle detected. Nevertheless, many factors can contribute to detector aging effects which are visible in a loss of gain caused by deposition of contaminants on the collecting wire. This study consists on novel data analysis techniques used to process large amounts of data produced by two simultaneously running single wire detectors. Aging effects are analyzed while environmental fluctuations are corrected for. A series of scripts carry out data filtering, data matching, corrections, and finally trend plotting by using ROOT’s extensive libraries developed at CERN.

  15. Investigation of material removal rate (MRR) and wire wear ratio (WWR) for alloy Ti6Al4 V exposed to heat treatment processing in WEDM and optimization of parameters using Grey relational analysis

    Energy Technology Data Exchange (ETDEWEB)

    Altug, Mehmet [Inonu Univ., Malatya (Turkey). Dept. of Machine and Metal Technologies

    2016-11-01

    The study examines the changes of the microstructural, mechanical and conductivity characteristics of the titanium alloy Ti6Al4 V as a result of heat treatment using wire electrical discharge machining, and their effect on machinability. By means of optical microscopy and scanning electron microscopy (SEM), analyses have been performed to determine various characteristics and additionally, microhardness and conductivity measurements have been conducted. Material removal rate (MRR) and wire wear ratio (WWR) values have been determined by using L18 Taguchi test design. The microstructures of the samples have been changed by thermal procedures. Results have been obtained by using the Grey relational analysis (GRA) optimization technique to solve the maximum MRR and minimum WWR values. The best (highest) MRR value is obtained from sample E which was water quenched in dual phase processing. The microstructure of this sample is composed of primary α and α' phases. The best (lowest) WWR value is obtained from sample A.

  16. Microbial community analysis of ambient temperature anaerobic digesters

    Energy Technology Data Exchange (ETDEWEB)

    Ciotola, R. [Ohio State Univ., Columbus, OH (United States). Dept. of Food, Agriculture and Biological Engineering

    2010-07-01

    This paper reported on a study in which designs for Chinese and Indian fixed-dome anaerobic digesters were modified in an effort to produce smaller and more affordable digesters. While these types of systems are common in tropical regions of developing countries, they have not been used in colder climates because of the low biogas yield during the winter months. Although there is evidence that sufficient biogas production can be maintained in colder temperatures through design and operational changes, there is a lack of knowledge about the seasonal changes in the composition of the microbial communities in ambient temperature digesters. More knowledge is needed to design and operate systems for maximum biogas yield in temperate climates. The purpose of this study was to cultivate a microbial community that maximizes biogas production at psychrophilic temperatures. The study was conducted on a 300 gallon experimental anaerobic digester on the campus of Ohio State University. Culture-independent methods were used on weekly samples collected from the digester in order to examine microbial community response to changes in ambient temperature. Microbial community profiles were established using universal bacterial and archaeal primers that targeted the 16S rRNA gene. In addition to the methanogenic archaea, this analysis also targeted some of the other numerically and functionally important microbial taxa in anaerobic digesters, such as hydrolytic, fermentative, acetogenic and sulfate reducing bacteria. According to preliminary results, the composition of the microbial community shifts with changes in seasonal temperature.

  17. An analysis of spatial representativeness of air temperature monitoring stations

    Science.gov (United States)

    Liu, Suhua; Su, Hongbo; Tian, Jing; Wang, Weizhen

    2018-05-01

    Surface air temperature is an essential variable for monitoring the atmosphere, and it is generally acquired at meteorological stations that can provide information about only a small area within an r m radius ( r-neighborhood) of the station, which is called the representable radius. In studies on a local scale, ground-based observations of surface air temperatures obtained from scattered stations are usually interpolated using a variety of methods without ascertaining their effectiveness. Thus, it is necessary to evaluate the spatial representativeness of ground-based observations of surface air temperature before conducting studies on a local scale. The present study used remote sensing data to estimate the spatial distribution of surface air temperature using the advection-energy balance for air temperature (ADEBAT) model. Two target stations in the study area were selected to conduct an analysis of spatial representativeness. The results showed that one station (AWS 7) had a representable radius of about 400 m with a possible error of less than 1 K, while the other station (AWS 16) had the radius of about 250 m. The representable radius was large when the heterogeneity of land cover around the station was small.

  18. Wearout Reliability and Intermetallic Compound Diffusion Kinetics of Au and PdCu Wires Used in Nanoscale Device Packaging

    Directory of Open Access Journals (Sweden)

    C. L. Gan

    2013-01-01

    Full Text Available Wearout reliability and diffusion kinetics of Au and Pd-coated Cu (PdCu ball bonds are useful technical information for Cu wire deployment in nanoscale semiconductor device packaging. This paper discusses the HAST (with bias and UHAST (unbiased HAST wearout reliability performance of Au and PdCu wires used in fine pitch BGA packages. In-depth failure analysis has been carried out to identify the failure mechanism under various wearout conditions. Intermetallic compound (IMC diffusion constants and apparent activation energies (Eaa of both wire types were investigated after high temperature storage life test (HTSL. Au bonds were identified to have faster IMC formation, compared to slower IMC growth of PdCu. PdCu wire was found to exhibit equivalent or better wearout reliability margin compared to conventional Au wire bonds. Failure mechanisms of Au, Cu ball bonds post-HAST and UHAST tests are been proposed, and both Au and PdCu IMC diffusion kinetics and their characteristics are discussed in this paper.

  19. Development of the Cylindrical Wire Electrical Discharge Machining Process.

    Energy Technology Data Exchange (ETDEWEB)

    McSpadden, SB

    2002-01-22

    Results of applying the wire Electrical Discharge Machining (EDM) process to generate precise cylindrical forms on hard, difficult-to-machine materials are presented. A precise, flexible, and corrosion-resistant underwater rotary spindle was designed and added to a conventional two-axis wire EDM machine to enable the generation of free-form cylindrical geometries. A detailed spindle error analysis identifies the major source of error at different frequency. The mathematical model for the material removal of cylindrical wire EDM process is derived. Experiments were conducted to explore the maximum material removal rate for cylindrical and 2D wire EDM of carbide and brass work-materials. Compared to the 2D wire EDM, higher maximum material removal rates may be achieved in the cylindrical wire EDM. This study also investigates the surface integrity and roundness of parts created by the cylindrical wire EDM process. For carbide parts, an arithmetic average surface roughness and roundness as low as 0.68 and 1.7 {micro}m, respectively, can be achieved. Surfaces of the cylindrical EDM parts were examined using Scanning Electron Microscopy (SEM) to identify the craters, sub-surface recast layers and heat-affected zones under various process parameters. This study has demonstrated that the cylindrical wire EDM process parameters can be adjusted to achieve either high material removal rate or good surface integrity.

  20. Wire communication engineering

    International Nuclear Information System (INIS)

    Son, Byeong Tae

    1997-02-01

    This book describes wire telecommunication engineering/ It is divided into eleven chapter, which deal with Introduction with development of telecommunication, voice and sound wave and communication network, Telegraphy with summary of telegraphy, code of telegraphy, communication speed, morse and telex, Telephone on structure, circuit and image telephone, Traffic on telecommunication traffic, transmission of line about theory, cable line and loaded cable, carrier communication with carrier telegraphy and carrier telephone, optical communication with types, structure, specialty, laser and equipment, DATA, Mobile telecommunication on summary, mobile telephone, radio paging and digital mobile telecommunication, ISDN with channel of ISDN, and service of ISDN, and design of telecommunication.

  1. Wiring regulations in brief

    CERN Document Server

    Tricker, Ray

    2012-01-01

    Tired of trawling through the Wiring Regs?Perplexed by Part P?Confused by cables, conductors and circuits?Then look no further! This handy guide provides an on-the-job reference source for Electricians, Designers, Service Engineers, Inspectors, Builders, Students, DIY enthusiastsTopic-based chapters link areas of working practice - such as cables, installations, testing and inspection, special locations - with the specifics of the Regulations themselves. This allows quick and easy identification of the official requirements relating to the situati

  2. The Micro Wire Detector

    Energy Technology Data Exchange (ETDEWEB)

    Adeva, B.; Gomez, F.; Pazos, A.; Pfau, R.; Plo, M. E-mail: maximo.plo@cern.ch; Rodriguez, J.M.; Vazquez, P.; Labbe, J.C

    1999-10-11

    We present the performance of a new proportional gas detector. Its geometry consists of a cathode plane with 70x70 {mu}m{sup 2} apertures, crossed by 25 {mu}m anode strips to which it is attached by 50 {mu}m kapton spacers. In the region where the avalanche takes place, the anode strips are suspended in the gas mixture as in a standard wire chamber. This detector exhibits high rate capability and large gains, introducing very little material. (author)

  3. Epitaxial semiconductor quantum wires.

    Science.gov (United States)

    Wu, J; Chen, Y H; Wang, Z G

    2008-07-01

    The investigation on the direct epitaxial quantum wires (QWR) using MBE or MOCVD has been persuited for more than two decades, more lengthy in history as compared with its quantum dot counterpart. Up to now, QWRs with various structural configurations have been produced with different growth methods. This is a reviewing article consisting mainly of two parts. The first part discusses QWRs of various configurations, together with laser devices based on them, in terms of the two growth mechanisms, self-ordering and self-assembling. The second part gives a brief review of the electrical and optical properties of QWRs.

  4. Neutron analysis of the fuel of high temperature nuclear reactors

    International Nuclear Information System (INIS)

    Bastida O, G. E.; Francois L, J. L.

    2014-10-01

    In this work a neutron analysis of the fuel of some high temperature nuclear reactors is presented, studying its main features, besides some alternatives of compound fuel by uranium and plutonium, and of coolant: sodium and helium. For this study was necessary the use of a code able to carry out a reliable calculation of the main parameters of the fuel. The use of the Monte Carlo method was convenient to simulate the neutrons transport in the reactor core, which is the base of the Serpent code, with which the calculations will be made for the analysis. (Author)

  5. Flexural magneto-elastic vibrations of thin metal wires

    International Nuclear Information System (INIS)

    Lukyanov, A; Molokov, S

    2004-01-01

    Flexural vibrations of thin metal wires owing to a high, pulsed electric current have been investigated. The current is sufficiently low to inhibit melting but sufficiently high to induce stresses, leading to the wire fragmentation. The problem is treated numerically on the basis of the theory of three-dimensional linear elasticity. The model has been verified on the well-known exact, eigenmode solution for the flexural vibrations of an infinite wire. The agreement is excellent. Further, the model has been used to study vibrations owing to two sources. The first one is perturbations of wires owing to the Lorentz force leading to a kink-type instability similar to that in plasmas. As the main cause of the wire fragmentation has been previously found to be the thermal expansion of material owing to Joule heating, this problem mainly serves to compare results between the three-dimensional and the one-dimensional, thin-rod models. Comparison of the growth rate of the instability obtained by the two models has shown an excellent agreement. The second source of vibrations is the magnetic fields induced in the external electric circuit. The results show that depending on the shape of the circuit, the induced stresses may exceed 20 MPa for the aluminium wires used in the low-current experiments. Although the external fields are not the main source of the wire fragmentation, these values alone may cause the fracture process at elevated temperatures

  6. The status of commercial and developmental HTS wires

    Energy Technology Data Exchange (ETDEWEB)

    Masur, L.J.; Buczek, D.; Harley, E.; Kodenkandath, T.; Li, X.; Lynch, J.; Nguyen, N.; Rupich, M.; Schoop, U.; Scudiere, J.; Siegal, E.; Thieme, C.; Verebelyi, D.; Zhang, W.; Kellers, J

    2003-10-15

    This paper provides an update on the development, performance and application of first and second generation high temperature superconductor (HTS) wires fabricated at American Superconductor (AMSC). First generation, multifilamentary composite wire is available commercially today in different viable product forms. This conductor carries 140 x the current of copper of the same cross-section, and is robust enough to stand tough industrial requirements. Second generation HTS wires, having a coated conductor composite architecture, are under development today and achieved substantial progress recently. AMSC's first generation wire will continue as the workhorse of the industry for the next 3-4 years while AMSC's second generation coated conductor wire is on track to be reproducible, uniform, scalable, and low cost. This paper provides a product differentiation with a view on the application of HTS wire in the electric power sector. Basic engineering data is reviewed that shall aid the engineer in the selection of the HTS wire product.

  7. Error analysis for mesospheric temperature profiling by absorptive occultation sensors

    Directory of Open Access Journals (Sweden)

    M. J. Rieder

    Full Text Available An error analysis for mesospheric profiles retrieved from absorptive occultation data has been performed, starting with realistic error assumptions as would apply to intensity data collected by available high-precision UV photodiode sensors. Propagation of statistical errors was investigated through the complete retrieval chain from measured intensity profiles to atmospheric density, pressure, and temperature profiles. We assumed unbiased errors as the occultation method is essentially self-calibrating and straight-line propagation of occulted signals as we focus on heights of 50–100 km, where refractive bending of the sensed radiation is negligible. Throughout the analysis the errors were characterized at each retrieval step by their mean profile, their covariance matrix and their probability density function (pdf. This furnishes, compared to a variance-only estimation, a much improved insight into the error propagation mechanism. We applied the procedure to a baseline analysis of the performance of a recently proposed solar UV occultation sensor (SMAS – Sun Monitor and Atmospheric Sounder and provide, using a reasonable exponential atmospheric model as background, results on error standard deviations and error correlation functions of density, pressure, and temperature profiles. Two different sensor photodiode assumptions are discussed, respectively, diamond diodes (DD with 0.03% and silicon diodes (SD with 0.1% (unattenuated intensity measurement noise at 10 Hz sampling rate. A factor-of-2 margin was applied to these noise values in order to roughly account for unmodeled cross section uncertainties. Within the entire height domain (50–100 km we find temperature to be retrieved to better than 0.3 K (DD / 1 K (SD accuracy, respectively, at 2 km height resolution. The results indicate that absorptive occultations acquired by a SMAS-type sensor could provide mesospheric profiles of fundamental variables such as temperature with

  8. 46 CFR 111.60-11 - Wire.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Wire. 111.60-11 Section 111.60-11 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Wiring Materials and Methods § 111.60-11 Wire. (a) Wire must be in an enclosure. (b) Wire must be...

  9. The effect of clamping a tensioned wire: implications for the Ilizarov external fixation system.

    Science.gov (United States)

    Watson, M A; Mathias, K J; Maffulli, N; Hukins, D W L

    2003-01-01

    This study demonstrates that clamping a tensioned wire can cause a reduction in wire tension. Tension (about 1275 N) was applied to a wire that was subsequently clamped, using cannulated bolts, to the steel half-ring of an Ilizarov external fixator. The tension in the wire was monitored before, during and after clamping. The apparatus was disassembled and the deformations in the wire caused by the clamps were measured. This experiment was repeated 15 times. When the wire was clamped to the frame, the wire tension was reduced by 22 +/- 7 per cent (mean +/- standard deviation, SD). The drop in wire tension was linearly correlated (r = 0.96; p toothpaste from a tube) and so reduce its tension during fixator assembly. To assess the magnitude of this effect in the clinical situation, the FE model analysis was repeated to replicate clamping a 1.8-mm-diameter wire to a 180-mm-diameter steel Ilizarov ring component. The analysis showed that for these conditions the tension reduced by 8-29 per cent. The results of this study highlight a general engineering problem: how can a tensioned wire be secured to a structure without an appreciable loss of tension? If the performance of the structure depends on the wire tension, this performance will change when the wire is secured.

  10. Analysis of Anomaly in Land Surface Temperature Using MODIS Products

    Science.gov (United States)

    Yorozu, K.; Kodama, T.; Kim, S.; Tachikawa, Y.; Shiiba, M.

    2011-12-01

    Atmosphere-land surface interaction plays a dominant role on the hydrologic cycle. Atmospheric phenomena cause variation of land surface state and land surface state can affect on atmosphereic conditions. Widely-known article related in atmospheric-land interaction was published by Koster et al. in 2004. The context of this article is that seasonal anomaly in soil moisture or soil surface temperature can affect summer precipitation generation and other atmospheric processes especially in middle North America, Sahel and south Asia. From not only above example but other previous research works, it is assumed that anomaly of surface state has a key factor. To investigate atmospheric-land surface interaction, it is necessary to analyze anomaly field in land surface state. In this study, soil surface temperature should be focused because it can be globally and continuously observed by satellite launched sensor. To land surface temperature product, MOD11C1 and MYD11C1 products which are kinds of MODIS products are applied. Both of them have 0.05 degree spatial resolution and daily temporal resolution. The difference of them is launched satellite, MOD11C1 is Terra and MYD11C1 is Aqua. MOD11C1 covers the latter of 2000 to present and MYD11C1 covers the early 2002 to present. There are unrealistic values on provided products even if daily product was already calibrated or corrected. For pre-analyzing, daily data is aggregated into 8-days data to remove irregular values for stable analysis. It was found that there are spatial and temporal distribution of 10-years average and standard deviation for each 8-days term. In order to point out extreme anomaly in land surface temperature, standard score for each 8-days term is applied. From the analysis of standard score, it is found there are large anomaly in land surface temperature around north China plain in early April 2005 and around Bangladesh in early May 2009.

  11. Cable pin system versus K-wire tension band fixation for patella fractures in Chinese Han population: A meta-analysis.

    Science.gov (United States)

    Zha, Kun; Liu, Guo-Hui; Yang, Shu-Hua; Zhou, Wu; Liu, Yi; Wu, Qi-Peng

    2017-10-01

    This meta-analysis compared the therapeutic effect of cable pin system (CPS) with K-wire tension band (KTB) in the treatment of patella fractures among Chinese Han population. The databases of PubMed, Cochrane library, China National Knowledge Infrastructure (CNKI), Chinese WanFang and Chinese VIP were searched for studies on CPS versus KTB in the treatment of patella fractures among Chinese Han population. Literatures were screened according to the inclusion and exclusion criteria. The quality of the studies was assessed, and meta-analysis was performed using the Cochrane Collaboration's REVMAN 5.3 software. A total of 932 patients from 15 studies were included in this meta-analysis (426 fractures treated with CPS and 506 fractures treated with KTB). There were significant differences in duration of hospital stay [mean difference (MD)=-1.07; 95% confidence interval (CI):-1.71 to-0.43], fracture healing time (MD=-1.23; 95% CI:-1.68 to-0.77), flexion degree of knee joint at 6th month after operation (MD=14.82; 95% CI: 10.93 to 18.71), incidence of postoperative complication [risk ratio (RR)=0.16; 95% CI: 0.09 to 0.27] and excellent-good rate of Böstman score (RR=1.09; 95% CI: 1.03 to 1.16) between the CPS group and KTB group, while no significant difference was found in operative time between the two groups (MD=-4.52; 95% CI:-11.70 to 2.67). For the treatment of patella fractures among Chinese Han population, limited evidence suggests that the CPS is more suitable than the KTB when considering the hospital stay, fracture healing time, flexion degree of knee at 6th month after operation, incidence of postoperative complication and excellent-good rate of Böstman joint score. Due to the limitation of high quality evidence and sample size, more large-scale randomized controlled trials are needed to validate the findings in the future.

  12. Corrosion of Wires on Wooden Wire-Bound Packaging Crates

    Science.gov (United States)

    Samuel L. Zelinka; Stan Lebow

    2015-01-01

    Wire-bound packaging crates are used by the US Army to transport materials. Because these crates may be exposed to harsh environments, they are dip-treated with a wood preservative (biocide treatment). For many years, zinc-naphthenate was the most commonly used preservative for these packaging crates and few corrosion problems with the wires were observed. Recently,...

  13. Analysis of air temperature and relative humidity: study of microclimates

    Directory of Open Access Journals (Sweden)

    Elis Dener Lima Alves

    2012-12-01

    Full Text Available Understanding the variability of climate elements in time and space is fundamental to the knowledge of the dynamics of microclimate. Thus, the objective was to analyze the variability of air temperature and relative humidity on the Cuiabá campus of the Federal University of Mato Grosso, and, through the clustering technique, to analyze the formation of groups to propose a zoning microclimate in the area study. To this end, collection data of air temperature and relative humidity at 15 points in two seasons (April to September at three times (8h, 14h and 20h was held in 2010. The results showed that sites with a predominance of buildings with asphalt pavement had high temperatures and low humidity, revealing the importance of introducing trees. The cluster analysis showed that the combination of data of air temperature and relative humidity provides a better grouping of the points with a smaller distance connection to the formation of groups. It is noted that the use of the clustering technique was satisfactory for the microclimatic zoning at the Cuiabá campus of Universidade Federal de Mato Grosso, which can be used in microclimatic scale.

  14. NUMERICAL MODELING AND INVESTIGATION OF CONTACT FRICTION INFLUENCE ON THERMAL FIELDS DISTRIBUTION AND DEFLECTED MODE IN STEEL WIRE AT HIGH-SPEED WIRE DRAWING

    Directory of Open Access Journals (Sweden)

    M. N. Vereshchagin

    2009-01-01

    Full Text Available The appraisal of  character of  the temperature fields distribution in dies at their interactions in the processes of  wire drawing in dependence on contact friction in conditions of  the system wire-die is given.

  15. CFD Analysis of the Fuel Temperature in High Temperature Gas-Cooled Reactors

    International Nuclear Information System (INIS)

    In, W. K.; Chun, T. H.; Lee, W. J.; Chang, J. H.

    2005-01-01

    High temperature gas-cooled reactors (HTGR) have received a renewed interest as potential sources for future energy needs, particularly for a hydrogen production. Among the HTGRs, the pebble bed reactor (PBR) and a prismatic modular reactor (PMR) are considered as the nuclear heat source in Korea's nuclear hydrogen development and demonstration project. PBR uses coated fuel particles embedded in spherical graphite fuel pebbles. The fuel pebbles flow down through the core during an operation. PMR uses graphite fuel blocks which contain cylindrical fuel compacts consisting of the fuel particles. The fuel blocks also contain coolant passages and locations for absorber and control material. The maximum fuel temperature in the core hot spot is one of the important design parameters for both PBR and PMR. The objective of this study is to predict the fuel temperature distributions in PBR and PMR using a computational fluid dynamics(CFD) code, CFX-5. The reference reactor designs used in this analysis are PBMR400 and GT-MHR600

  16. Disorder and Interaction Effects in Quantum Wires

    International Nuclear Information System (INIS)

    Smith, L W; Ritchie, D A; Farrer, I; Griffiths, J P; Jones, G A C; Thomas, K J; Pepper, M

    2012-01-01

    We present conductance measurements of quasi-one-dimensional quantum wires affected by random disorder in a GaAs/AlGaAs heterostructure. In addition to quantised conductance plateaux, we observe structure superimposed on the conductance characteristics when the channel is wide and the density is low. Magnetic field and temperature are varied to characterize the conductance features which depend on the lateral position of the 1D channel formed in a split-gate device. Our results suggest that there is enhanced backscattering in the wide channel limit, which gives rise to quantum interference effects. When the wires are free of disorder and wide, the confinement is weak so that the mutual repulsion of the electrons forces a single row to split into two. The relationship of this topological change to the disorder in the system will be discussed.

  17. Superconducting wire turns to electrical power

    CERN Document Server

    Sargent, P

    2003-01-01

    Two years after the discovery that magnesium diboride is a superconductor, engineers and entrepreneurs are keen to transform its properties into profit. The discovery of superconductivity at 39 K in the metallic compound magnesium diboride two years ago created quite a stir. Since then, physicists and chemists have come a long way in understanding the curious set of circumstances that lead to such a high critical temperature in this widely available material. At the same time, metallurgists, engineers and entrepreneurs have been focusing on the commercial potential of magnesium diboride as superconducting wire, which was the subject of a one-day meeting in Cambridge, UK, in April. Superconducting wire made from magnesium diboride could make 'second- generation' electrical machines commercially viable. (U.K.)

  18. Differential evaluation of the magnetic state of wire packages

    Science.gov (United States)

    Gorkunov, E. S.; Povolotskaya, A. M.; Zadvorkin, S. M.

    2017-12-01

    In an effort to estimate the applicability of magnetic methods to the evaluation of the performance of steel ropes, have been made on specimens in the form of wire packages modeling section loss due to the wear and rupture of individual wires, as well as a change in the structural state of the wires in ropes working under high temperatures. A linear relationship between saturation induction and rope section reduction both under abrasion and due to the rupture of individual wires is demonstrated. The coercive force of the rope tested or the comparison of magnetic fluxes in the rope with those in the standard specimen in the field equal to the coercive force of the standard specimen can serve as informative parameters for the determination of changes in the structural state of the metal of a steel rope.

  19. Torsion-induced magnetoimpedance in nanocrystalline Fe-based wires

    International Nuclear Information System (INIS)

    Santos, J.D.; Olivera, J.; Alvarez, P.; Sanchez, T.; Perez, M.J.; Sanchez, M.L.; Gorria, P.; Hernando, B.

    2007-01-01

    The magnetic field influence on the real and imaginary parts of axial-diagonal (ζ zz ) and off-diagonal (ζ φz ) components of the surface magnetoimpedance (MI) tensor has been studied in amorphous and nanocrystalline Fe 73.5 Si 13.5 B 9 Cu 1 Nb 3 wires. Twisted and untwisted wires were annealed at a temperature near to that of primary crystallization. The MI response has been measured at 1MHz and 5mA rms drive current in all the samples. Even though the higher values for both components of the MI tensor are achieved for the untwisted annealed wire, the most interesting features are observed in the torsion annealed wire

  20. Shape memory alloy wire-based smart natural rubber bearing

    International Nuclear Information System (INIS)

    Hedayati Dezfuli, F; Shahria Alam, M

    2013-01-01

    In this study, two types of smart elastomeric bearings are presented using shape memory alloy (SMA) wires. Due to the unique characteristics of SMAs, such as the superelastic effect and the recentering capability, the residual deformation in SMA-based natural rubber bearings (SMA-NRBs) is significantly reduced whereas the energy dissipation capacity is increased. Two different configurations of SMA wires incorporated in elastomeric bearings are considered. The effect of several parameters, including the shear strain amplitude, the type of SMA, the aspect ratio of the base isolator, the thickness of SMA wire, and the amount of pre-strain in the wires on the performance of SMA-NRBs is investigated. Rubber bearings are composed of natural rubber layers bonded to steel shims as reinforcement. Results show that ferrous SMA wire, FeNiCuAlTaB, with 13.5% superelastic strain and a very low austenite finish temperature (−62 °C), is the best candidate to be used in SMA-NRBs subjected to high shear strain amplitudes. In terms of the lateral flexibility and wire strain level, the smart rubber bearing with a cross configuration of SMA wires is more efficient. Moreover, the cross configuration can be implemented in high-aspect-ratio elastomeric bearings since the strain induced in the wire does not exceed the superelastic range. When cross SMA wires with 2% pre-strain are used in a smart NRB, the dissipated energy is increased by 74% and the residual deformation is decreased by 15%. (paper)

  1. Stochastic analysis of temperature fields in frozen foundation soils

    Science.gov (United States)

    Burkov, Pyotr; Konan, Eme Cesar; Burkov, Vladimir; Burkova, Svetlana; Kolesov, Aleks

    2017-01-01

    One of the most crucial issues of compressor stations engineering and construction is to provide foundation stability and robustness of such stations in permafrost conditions. To date, one of the most used protection methods for compressor stations in permafrost conditions is thermal stabilization of soil. This paper is focused on calculation of the temperature stabilizing foundation based on the mathematical model of stochastic analysis and the forecast of temperature field impacts. Thermotechnical calculations can be used to provide the best estimate of the standard values of strength and deformation parameters of permafrost soils subjected to shear stress and pile foot pressure. The best estimate will be useful for optimization of engineering solutions in terms of support and foundation structures.

  2. Wire and Packing Tape Sandwiches

    Science.gov (United States)

    Rabinowitz, Sandy

    2009-01-01

    In this article, the author describes how students can combine craft wire with clear packing tape to create a two-dimensional design that can be bent and twisted to create a three-dimensional form. Students sandwich wire designs between two layers of tape. (Contains 1 online resource.)

  3. High temperature autoclave vacuum seals

    Science.gov (United States)

    Hoffman, J. R.; Simpson, W. G.; Walker, H. M.

    1971-01-01

    Aluminum sheet forms effective sealing film at temperatures up to 728 K. Soft aluminum wire rings provide positive seal between foil and platen. For applications at temperatures above aluminum's service temperature, stainless steel is used as film material and copper wire as sealant.

  4. Analysis of Low-Temperature Utilization of Geothermal Resources

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Brian

    2015-06-30

    Full realization of the potential of what might be considered “low-grade” geothermal resources will require that we examine many more uses for the heat than traditional electricity generation. To demonstrate that geothermal energy truly has the potential to be a national energy source we will be designing, assessing, and evaluating innovative uses for geothermal-produced water such as hybrid biomass-geothermal cogeneration of electricity and district heating and efficiency improvements to the use of cellulosic biomass in addition to utilization of geothermal in district heating for community redevelopment projects. The objectives of this project were: 1) to perform a techno-economic analysis of the integration and utilization potential of low-temperature geothermal sources. Innovative uses of low-enthalpy geothermal water were designed and examined for their ability to offset fossil fuels and decrease CO2 emissions. 2) To perform process optimizations and economic analyses of processes that can utilize low-temperature geothermal fluids. These processes included electricity generation using biomass and district heating systems. 3) To scale up and generalize the results of three case study locations to develop a regionalized model of the utilization of low-temperature geothermal resources. A national-level, GIS-based, low-temperature geothermal resource supply model was developed and used to develop a series of national supply curves. We performed an in-depth analysis of the low-temperature geothermal resources that dominate the eastern half of the United States. The final products of this study include 17 publications, an updated version of the cost estimation software GEOPHIRES, and direct-use supply curves for low-temperature utilization of geothermal resources. The supply curves for direct use geothermal include utilization from known hydrothermal, undiscovered hydrothermal, and near-hydrothermal EGS resources and presented these results at the Stanford

  5. Growth of Hierarchically Structured High-Surface Area Alumina on FeCrAl Alloy Wires

    Directory of Open Access Journals (Sweden)

    Chandni Rallan

    2013-01-01

    Full Text Available The formation of metastable alumina phases due to the oxidation of commercial FeCrAl alloy wires (0.5 mm thickness at various temperatures and time periods has been examined. Samples were isothermally oxidised in air using a thermogravimetric analyzer (TGA. The morphology of the oxidised samples was analyzed using an Electronic Scanning Electron Microscope (ESEM and X-ray on the surface analysis was done using an Energy Dispersive X-Ray (EDX analyzer. The technique of X-Ray Diffraction (XRD was used to characterize the phase of the oxide growth. The entire study showed that it was possible to grow high-surface area gamma alumina on the FeCrAl alloy wire surfaces when isothermally oxidised above 800°C over several hours.

  6. Investigation about the Chrome Steel Wire Arc Spray Process and the Resulting Coating Properties

    Science.gov (United States)

    Wilden, J.; Bergmann, J. P.; Jahn, S.; Knapp, S.; van Rodijnen, F.; Fischer, G.

    2007-12-01

    Nowadays, wire-arc spraying of chromium steel has gained an important market share for corrosion and wear protection applications. However, detailed studies are the basis for further process optimization. In order to optimize the process parameters and to evaluate the effects of the spray parameters DoE-based experiments had been carried out with high-speed camera shoots. In this article, the effects of spray current, voltage, and atomizing gas pressure on the particle jet properties, mean particle velocity and mean particle temperature and plume width on X46Cr13 wire are presented using an online process monitoring device. Moreover, the properties of the coatings concerning the morphology, composition and phase formation were subject of the investigations using SEM, EDX, and XRD-analysis. These deep investigations allow a defined verification of the influence of process parameters on spray plume and coating properties and are the basis for further process optimization.

  7. Wire metamaterials: physics and applications.

    Science.gov (United States)

    Simovski, Constantin R; Belov, Pavel A; Atrashchenko, Alexander V; Kivshar, Yuri S

    2012-08-16

    The physics and applications of a broad class of artificial electromagnetic materials composed of lattices of aligned metal rods embedded in a dielectric matrix are reviewed. Such structures are here termed wire metamaterials. They appear in various settings and can operate from microwaves to THz and optical frequencies. An important group of these metamaterials is a wire medium possessing extreme optical anisotropy. The study of wire metamaterials has a long history, however, most of their important and useful properties have been revealed and understood only recently, especially in the THz and optical frequency ranges where the wire media correspond to the lattices of microwires and nanowires, respectively. Another group of wire metamaterials are arrays and lattices of nanorods of noble metals whose unusual properties are driven by plasmonic resonances. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Wire system ageing assessment and condition monitoring (WASCO)

    Energy Technology Data Exchange (ETDEWEB)

    Fantoni, P.F. (Institute for Energy Technology (IFE) (Norway))

    2009-07-15

    Nuclear facilities rely on electrical wire systems to perform a variety of functions for successful operation. Many of these functions directly support the safe operation of the facility; therefore, the continued reliability of wire systems, even as they age, is critical. Condition Monitoring (CM) of installed wire systems is an important part of any aging program, both during the first 40 years of the qualified life and even more in anticipation of the license renewal for a nuclear power plant. This report contains the results of experiments performed in collaboration with Tecnatom SA, Spain, to compare several cable condition monitoring techniques including LIRA (LIne Resonance Analysis) (au)

  9. Wire system ageing assessment and condition monitoring (WASCO)

    International Nuclear Information System (INIS)

    Fantoni, P.F.

    2009-07-01

    Nuclear facilities rely on electrical wire systems to perform a variety of functions for successful operation. Many of these functions directly support the safe operation of the facility; therefore, the continued reliability of wire systems, even as they age, is critical. Condition Monitoring (CM) of installed wire systems is an important part of any aging program, both during the first 40 years of the qualified life and even more in anticipation of the license renewal for a nuclear power plant. This report contains the results of experiments performed in collaboration with Tecnatom SA, Spain, to compare several cable condition monitoring techniques including LIRA (LIne Resonance Analysis) (au)

  10. 3D Wire 2015

    DEFF Research Database (Denmark)

    Jordi, Moréton; F, Escribano; J. L., Farias

    , therefore, we’ve drawn conclusions and recommendations for future editions of the event, also generalizable to other experiences of gamification especially in events. This report details the methodology and working elements from the design phase, human resources and organization of production......This document is a general report on the implementation of gamification in 3D Wire 2015 event. As the second gamification experience in this event, we have delved deeply in the previous objectives (attracting public areas less frequented exhibition in previous years and enhance networking) and have...... proposed new ones (viralization of the event on social networks and improvement of the integration of international attendees). On the other hand we defined a set of research objectives related to the study of gamification in an eminently social place like an event. Most of the goals have been met and...

  11. Further elucidation of nanofluid thermal conductivity measurement using a transient hot-wire method apparatus

    Science.gov (United States)

    Yoo, Donghoon; Lee, Joohyun; Lee, Byeongchan; Kwon, Suyong; Koo, Junemo

    2018-02-01

    The Transient Hot-Wire Method (THWM) was developed to measure the absolute thermal conductivity of gases, liquids, melts, and solids with low uncertainty. The majority of nanofluid researchers used THWM to measure the thermal conductivity of test fluids. Several reasons have been suggested for the discrepancies in these types of measurements, including nanofluid generation, nanofluid stability, and measurement challenges. The details of the transient hot-wire method such as the test cell size, the temperature coefficient of resistance (TCR) and the sampling number are further investigated to improve the accuracy and consistency of the measurements of different researchers. It was observed that smaller test apparatuses were better because they can delay the onset of natural convection. TCR values of a coated platinum wire were measured and statistically analyzed to reduce the uncertainty in thermal conductivity measurements. For validation, ethylene glycol (EG) and water thermal conductivity were measured and analyzed in the temperature range between 280 and 310 K. Furthermore, a detailed statistical analysis was conducted for such measurements, and the results confirmed the minimum number of samples required to achieve the desired resolution and precision of the measurements. It is further proposed that researchers fully report the information related to their measurements to validate the measurements and to avoid future inconsistent nanofluid data.

  12. Suppression of Red Luminescence in Wire Explosion Derived Eu:ZnO

    Science.gov (United States)

    Pallavi, Bandi; Sathyan, Sneha; Yoshimura, Takuya; Kumar, Praveen; Anbalagan, Kousika; Talluri, Bhusankar; Ramanujam, Sarathi; Ranjan, Prem; Thomas, Tiju

    2018-03-01

    Europium oxide (Eu2O3) is coated on zinc (Zn) wire using the electrophoretic deposition process. The coated Zn wire is subjected to the wire explosion process (WEP) which is rapid (material has ˜ 0.24 at.% doping. This analysis also shows that, unlike another popular material GaN, in the case of ZnO, Eu3+ strictly substitutes for Zn2+ (i.e., dopant replacing a cation-anion pair does not seem possible). It may be noted that Eu3+ in a suitable host is oftentimes reported to be an efficient luminophore. The IR spectra show a band shift from 486 cm-1 to 493 cm-1; with peak shifts from 436 cm-1 to 430 cm-1 in Raman spectra. These too indicate the presence of Eu in the samples. However, at room temperature, only green luminescence (centered at 534 nm) is observed from the sample indicating (1) high concentrations of OZn anti-site defects and Zn vacancies, and (2) concomitant quenching of the luminescence at room temperature. Our results suggest that WEP is viable for synthesizing rare earth doped ceramic materials. However, obtaining efficient phosphors using this approach will likely require, (1) reduction of defect densities, and (2) appropriate passivation using post-processing.

  13. Si, Ge and SiGe wires for sensor application

    International Nuclear Information System (INIS)

    Druzhinin, A.A.; Khoverko, Yu.M.; Ostrovskii, I.P.; Nichkalo, S.I.; Nikolaeva, A.A.; Konopko, L.A.; Stich, I.

    2011-01-01

    Resistance and magnetoresistance of Si, Ge and Si-Ge micro- and nanowires were studied in temperature range 4,2-300 K at magnetic fields up to 14 T. The wires diameters range from 200 nm to 20 μm. Ga-In gates were created to wires and ohmic I-U characteristics were observed in all temperature range. It was found high elastic strain for Ge nanowires (of about 0,7%) as well as high magnitude of magnetoresistance (of about 250% at 14 T), which was used to design multifunctional sensor of simultaneous measurements of strain and magnetic field intensity. (authors)

  14. Deflection load characteristics of laser-welded orthodontic wires.

    Science.gov (United States)

    Watanabe, Etsuko; Stigall, Garrett; Elshahawy, Waleed; Watanabe, Ikuya

    2012-07-01

    To compare the deflection load characteristics of homogeneous and heterogeneous joints made by laser welding using various types of orthodontic wires. Four kinds of straight orthodontic rectangular wires (0.017 inch × 0.025 inch) were used: stainless-steel (SS), cobalt-chromium-nickel (Co-Cr-Ni), beta-titanium alloy (β-Ti), and nickel-titanium (Ni-Ti). Homogeneous and heterogeneous end-to-end joints (12 mm long each) were made by Nd:YAG laser welding. Two types of welding methods were used: two-point welding and four-point welding. Nonwelded wires were also used as a control. Deflection load (N) was measured by conducting the three-point bending test. The data (n  =  5) were statistically analyzed using analysis of variance/Tukey test (P wires measured were as follows: SS: 21.7 ± 0.8 N; Co-Cr-Ni: 20.0 ± 0.3 N; β-Ti: 13.9 ± 1.3 N; and Ni-Ti: 6.6 ± 0.4 N. All of the homogeneously welded specimens showed lower deflection loads compared to corresponding control wires and exhibited higher deflection loads compared to heterogeneously welded combinations. For homogeneous combinations, Co-Cr-Ni/Co-Cr-Ni showed a significantly (P wires provide a deflection load that is comparable to that of homogeneously welded orthodontic wires.

  15. Wire chambers with their magnetostrictive readout

    CERN Multimedia

    1974-01-01

    This set of wire chamber planes shaped as a cylinder sector was installed inside the magnet of a polarized spin target modified to allow as well momentum analysis of the produced particles. The experiment (S126) was set up by the CERN-Trieste Collaboration in the PS beam m9 to measure spin effects in the associated production of of a positive kaon and a positive Sigma by interaction of a positive pion with polarized protons.

  16. Plasma chemistry in wire chambers

    International Nuclear Information System (INIS)

    Wise, J.

    1990-05-01

    The phenomenology of wire chamber aging is discussed and fundamentals of proportional counters are presented. Free-radical polymerization and plasma polymerization are discussed. The chemistry of wire aging is reviewed. Similarities between wire chamber plasma (>1 atm dc-discharge) and low-pressure rf-discharge plasmas, which have been more widely studied, are suggested. Construction and use of a system to allow study of the plasma reactions occurring in wire chambers is reported. A proportional tube irradiated by an 55 Fe source is used as a model wire chamber. Condensable species in the proportional tube effluent are concentrated in a cryotrap and analyzed by gas chromatography/mass spectrometry. Several different wire chamber gases (methane, argon/methane, ethane, argon/ethane, propane, argon/isobutane) are tested and their reaction products qualitatively identified. For all gases tested except those containing methane, use of hygroscopic filters to remove trace water and oxygen contaminants from the gas resulted in an increase in the average molecular weight of the products, consistent with results from low-pressure rf-discharge plasmas. It is suggested that because water and oxygen inhibit polymer growth in the gas phase that they may also reduce polymer deposition in proportional tubes and therefore retard wire aging processes. Mechanistic implications of the plasma reactions of hydrocarbons with oxygen are suggested. Unresolved issues in this work and proposals for further study are discussed

  17. Advanced High Temperature Reactor Systems and Economic Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Holcomb, David Eugene [ORNL; Peretz, Fred J [ORNL; Qualls, A L [ORNL

    2011-09-01

    The Advanced High Temperature Reactor (AHTR) is a design concept for a large-output [3400 MW(t)] fluoride-salt-cooled high-temperature reactor (FHR). FHRs, by definition, feature low-pressure liquid fluoride salt cooling, coated-particle fuel, a high-temperature power cycle, and fully passive decay heat rejection. The AHTR's large thermal output enables direct comparison of its performance and requirements with other high output reactor concepts. As high-temperature plants, FHRs can support either high-efficiency electricity generation or industrial process heat production. The AHTR analysis presented in this report is limited to the electricity generation mission. FHRs, in principle, have the potential to be low-cost electricity producers while maintaining full passive safety. However, no FHR has been built, and no FHR design has reached the stage of maturity where realistic economic analysis can be performed. The system design effort described in this report represents early steps along the design path toward being able to predict the cost and performance characteristics of the AHTR as well as toward being able to identify the technology developments necessary to build an FHR power plant. While FHRs represent a distinct reactor class, they inherit desirable attributes from other thermal power plants whose characteristics can be studied to provide general guidance on plant configuration, anticipated performance, and costs. Molten salt reactors provide experience on the materials, procedures, and components necessary to use liquid fluoride salts. Liquid metal reactors provide design experience on using low-pressure liquid coolants, passive decay heat removal, and hot refueling. High temperature gas-cooled reactors provide experience with coated particle fuel and graphite components. Light water reactors (LWRs) show the potentials of transparent, high-heat capacity coolants with low chemical reactivity. Modern coal-fired power plants provide design experience

  18. Noise in the wire: the real impact of wire resistance for the Johnson (-like) noise based secure communicator

    OpenAIRE

    Kish, Laszlo B.; Scheuer, Jacob

    2010-01-01

    We re-evaluate the impact of wire resistance on the noise voltage and current in the Johnson-(like)-noise based secure communicator, correcting the result presented in [Physics Letters A 359 (2006) 737]. The analysis shown here is based on the fluctuation-dissipation and the linear response theorems. The results indicate that the impact of wire resistance in practical communicators is significantly lower than the previous estimation.

  19. Noise in the wire: The real impact of wire resistance for the Johnson(-like) noise based secure communicator

    International Nuclear Information System (INIS)

    Kish, Laszlo B.; Scheuer, Jacob

    2010-01-01

    We re-evaluate the impact of wire resistance on the noise voltage and current in the Johnson(-like) noise based secure communicator, correcting the result presented in [J. Scheuer, A. Yariv, Phys. Lett. A 359 (2006) 737]. The analysis shown here is based on the fluctuation-dissipation and the linear response theorems. The results indicate that the impact of wire resistance in practical communicators is significantly lower than the previous estimation.

  20. Skin-friction measurements with hot-wire gages

    Science.gov (United States)

    Houdeville, R.; Juillen, J. C.; Cousteix, J.

    1983-11-01

    The development of two hot-wire gauges for implantation in wind-tunnel models and their application to the measurement of skin-friction phenomena are reported. The measurement principle is explained; the design and calibration of a single-wire gage containing a thermocouple for temperature determination (Cousteix and Juillen, 1982-1983) are summarized; and sample results for 2D and 3D flows with positive pressure gradients are shown. An advanced design employing a thin hot film deposited on an 80-micron-diameter quartz fiber extending into a 1-mm-sq 0.8-mm-deep cavity is characterized and demonstrated on a pulsed flow on a flat plate, Tollmien-Schlichting waves, and a turbulent boundary layer. Two cold-wire temperature sensors are added to this gage to permit detection of the skin of the skin friction in the separated flow over a cylinder.

  1. Detection of coolant disturbances in the fuel elements of an LMFBR by temperature fluctuation analysis

    International Nuclear Information System (INIS)

    Weinkoetz, G.; Martin, H.; Krebs, L.

    1980-01-01

    Sodium temperature noise measurements were performed at the coolant fluid outlets of an electrically heated 169-rod bundle and also a 28-rod bundle, with different partially blocked coolant sections. On both test assemblies, a flow mixer was installed downstream of the bundle fluid exit plane. For all tests, measuring planes with three-wire thermocouples containing both steel-sodium and chromel-alumel junctions were located on the upstream and downstream sides of the flow mixer. Statistical parameters such as the root mean square (RMS) and the power spectral density (PSD) of temperature fluctuations were investigated. The influences of flow velocity, heat flux, thermocouple cut-off frequency, and different blockage sizes on these statistical parameters were analysed. Moreover, an essential result of interpretation of the experiments is that a characteristic geometrical bundle coefficient was found which indicates coolant channel disturbances only, independent of the operational conditions of the bundles such as heat flux and flow velocity. (orig.)

  2. Effect of ammonia on Ta filaments in the hot wire CVD process

    NARCIS (Netherlands)

    Verlaan, V.; van der Werf, C.H.M.; Oliphant, C.J.; Bakker, R.; Houweling, Z.S.; Schropp, R.E.I.

    2009-01-01

    The exposure of Ta filaments to a pure NH3 ambient in a hot wire chemical vapour deposition (HWCVD) reactor affects the resistance of the wires. For filament temperatures below 1950 °C the resistance increases over time, which is probably caused by in-diffusion of N atoms. Using the filaments in a

  3. Effect of electrical spot welding on load deflection rate of orthodontic wires.

    Science.gov (United States)

    Alavi, Shiva; Abrishami, Arezoo

    2015-01-01

    One of the methods used for joining metals together is welding, which can be carried out using different techniques such as electric spot welding. This study evaluated the effect of electric spot welding on the load deflection rate of stainless steel and chromium-cobalt orthodontic wires. In this experimental-laboratory study, load deflection rate of 0.016 × 0.022 inch stainless steel and chromium cobalt wires were evaluated in five groups (n =18): group one: Stainless steel wires, group two: chromium-cobalt wires, group three: stainless steel wires welded to stainless steel wires, group four: Stainless steel wires welded to chromium-cobalt wires, group five: chromium-cobalt wire welded to chromium-cobalt wires. Afterward, the forces induced by the samples in 0.5 mm, 1 mm, 1.5 mm deflection were measured using a universal testing machine. Then mean force measured for each group was compared with other groups. The data were analyzed using repeated measure analysis of variance (ANOVA), one-way ANOVA, and paired t-test by the SPSS software. The significance level was set as 0.05. The Tukey test showed that there were significant differences between the load deflection rates of welded groups compared to control ones (P wires increased their load deflection rates.

  4. COMPARATIVE STUDY BETWEEN TENSION BAND WIRING OF PATELLAR FRACTURES WITH KIRSCHNER WIRES AND CANNULATED SCREWS IN TERMS OF FUNCTIONAL OUTCOME AND COMPLICATIONS

    Directory of Open Access Journals (Sweden)

    Kumaran Chettiar

    2016-11-01

    Full Text Available BACKGROUND Various treatment modalities are described for the treatment of displaced transverse fractures of patella. As patella is very important biomechanically, open reduction and internal fixation with maximal preservation of patella is the standard treatment. Most commonly used method is modified tension band wiring with Kirschner wires. In a modification, cannulated screws are used instead of K wires and wire is passed through the cannulation of the screw and anterior surface of the patella. The aim of our study was to compare the complications and functional outcomes after surgical treatment of patellar fractures using modified tension band wiring with Kirschner wires and with cannulated screws. MATERIALS AND METHODS This study was conducted in Department of Orthopaedics, Government Medical College, Kozhikode, during the period 2014- 2015. Total sample size was 36. They were randomised into two groups. Among them, 17 had undergone tension band wiring with cannulated screws and 19 with Kirschner wires. They were evaluated in postoperative period at 1 month, 3 months and 6 months by looking for complications like postoperative infection, postoperative loss of reduction, skin irritation by prominent hardware. Functional outcome was assessed by knee pain score and Good Fellows grading of range of motion. RESULTS According to this study while comparing these two surgical techniques, there are no statistically significant differences in terms of complications and functional outcome. We observed that cannulated screw with tension band wiring has better patient tolerance, less complications like skin irritation by prominent hardware, loss of fixation and knee pain. We found that tension band wiring through cannulated screws is technically more difficult than using Kirschner wires. CONCLUSION Although, the statistical analysis showed no significant differences regarding the union and final outcome, cannulated screw with tension band wiring has

  5. Simulation analysis of temperature control on RCC arch dam of hydropower station

    Science.gov (United States)

    XIA, Shi-fa

    2017-12-01

    The temperature analysis of roller compacted concrete (RCC) dam plays an important role in their design and construction. Based on three-dimensional finite element method, in the computation of temperature field, many cases are included, such as air temperature, elevated temperature by cement hydration heat, concrete temperature during placing, the influence of water in the reservoir, and boundary temperature. According to the corresponding parameters of RCC arch dam, the analysis of temperature field and stress field during the period of construction and operation is performed. The study demonstrates that detailed thermal stress analysis should be performed for RCC dams to provide a basis to minimize and control the occurrence of thermal cracking.

  6. 49 CFR 393.28 - Wiring systems.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 5 2010-10-01 2010-10-01 false Wiring systems. 393.28 Section 393.28... NECESSARY FOR SAFE OPERATION Lamps, Reflective Devices, and Electrical Wiring § 393.28 Wiring systems. Electrical wiring shall be installed and maintained to conform to SAE J1292—Automobile, Truck, Truck-Tractor...

  7. ANALYSIS OF EXPOSURE OF REINFORCED CONCRETE BUILDINGS TO TEMPERATURE LOADS

    Directory of Open Access Journals (Sweden)

    Mkrtychev Oleg Vartanovich

    2012-10-01

    Full Text Available The co-authors consider the problem of analysis of building structures in respect of combined effects of forces and temperatures. Results of fire tests of reinforced concrete walls and slabs are presented. Overview of the analysis of the fire resistance of reinforced-concrete buildings is also provided. As a result of the research, numerical solutions were obtained in respect of deflections, stresses, deformations and internal forces arising in a reinforced concrete bearing wall and plate exposed to a combination of forces and thermal loads. Comparative analysis of the experimental data and the results of the numerical solution was performed. The conclusion is that the experimental data are in good fit to the results of the numerical solution. Overall limit state of the monolithic building under consideration in terms of its fire resistance means its failure as a result of collapse. The limit state value is equal to 60; therefore, it is equal to 60 minutes. This value, if considered in respect of separate bearing elements, fits the fire resistance limit of buildings of Grade III (Fire Resistance that is equal to 45. Evidently, assurance of higher fire resistance limits of the building under consideration requires special fire safety actions to be applied.

  8. Development of high voltage PEEK wire with radiation-resistance and cryogenic characteristics

    International Nuclear Information System (INIS)

    Fujita, T.; Hirata, T.; Araki, S.; Ohara, H.; Nishimura, H.

    1989-01-01

    High voltage electric wires insulated with highly-refined polyetheretherketone (PEEK) have been developed for the wiring in fusion reactors, where the wire is required to withstand high voltage under high vacuum up to 10 -5 Torr. The PEEK wires having the advantages of PEEK resin including superior radiation resistance and cryogenic characteristics are usable over a wide range of temperature and in radiation fields. The results of withstand voltage tests proved that the PEEK wires exceeding 0.8 mm in insulation thickness withstand such specified high voltage conditions as 24 kV for 1 minutes by 10 times and 6.6 kV for 110 hours. The results also revealed that the withstand voltage is improved by providing a jacket layer over the insulation and decreased by periodical voltage charge, by bending of the specimen and by water in the conductor. This paper deal with the withstand voltage test results under varied conditions of the PEEK wires. (author)

  9. Startup analysis for a high temperature gas loaded heat pipe

    Science.gov (United States)

    Sockol, P. M.

    1973-01-01

    A model for the rapid startup of a high-temperature gas-loaded heat pipe is presented. A two-dimensional diffusion analysis is used to determine the rate of energy transport by the vapor between the hot and cold zones of the pipe. The vapor transport rate is then incorporated in a simple thermal model of the startup of a radiation-cooled heat pipe. Numerical results for an argon-lithium system show that radial diffusion to the cold wall can produce large vapor flow rates during a rapid startup. The results also show that startup is not initiated until the vapor pressure p sub v in the hot zone reaches a precise value proportional to the initial gas pressure p sub i. Through proper choice of p sub i, startup can be delayed until p sub v is large enough to support a heat-transfer rate sufficient to overcome a thermal load on the heat pipe.

  10. Wire system aging assessment and condition monitoring (WASCO)

    Energy Technology Data Exchange (ETDEWEB)

    Fantoni, P.F. [Institutt for energiteknikk, IFE (Norway)

    2007-04-15

    Nuclear facilities rely on electrical wire systems to perform a variety of functions for successful operation. Many of these functions directly support the safe operation of the facility; therefore, the continued reliability of wire systems, even as they age, is critical. Condition Monitoring (CM) of installed wire systems is an important part of any aging program, both during the first 40 years of the qualified life and even more in anticipation of the license renewal for a nuclear power plant. This report contains some test results of a method for wire system condition monitoring, developed at the Halden Reactor Project, called LIRA (LIne Resonance Analysis), which can be used on-line to detect any local or global changes in the cable electrical parameters as a consequence of insulation faults or degradation. (au)

  11. A comparison of wire- and Kevlar-reinforced provisional restorations.

    Science.gov (United States)

    Powell, D B; Nicholls, J I; Yuodelis, R A; Strygler, H

    1994-01-01

    Stainless steel wire 0.036 inch in diameter was compared with Kevlar 49 polyaramid fiber as a means of reinforcing a four-unit posterior provisional fixed restoration with 2 pontics. Three reinforcement patterns for wire and two for Kevlar 49 were evaluated and compared with the control, which was an unreinforced provisional restoration. A central tensile load was placed on the cemented provisional restoration and the variables were measured: (1) the initial stiffness; (2) the load at initial fracture; and (3) the unit toughness, or the energy stored in the beam at a point where the load had undergone a 1.0-mm deflection. Statistical analysis showed (1) the bent wire configuration had a significantly higher initial stiffness (P < or = .05), (2) there was no difference between designs for load at initial fracture, and (3) the bent wire had a significantly higher unit toughness value (P < or = .05).

  12. Rotary slanted single wire CTA – a useful tool for 3D flows investigations

    Directory of Open Access Journals (Sweden)

    Jonáš P.

    2013-04-01

    Full Text Available The procedure is described of experimental investigation of a statistically stationary generally nonisothermal 3D flow by means of a constant temperature anemometer (CTA using single slanted heated wire, rotary round the fixed axis. The principle of this procedure is quite clear. The change of the heated wire temperature modifies ratio of CTA sensitivities to temperature and velocity fluctuations. Turning the heated wire through a proper angle changes the sensitivity to components of the instantaneous velocity vector. Some recommendations are presented based on long time experiences, e.g. on the choice of probe, on the probe calibration, to the measurement organization and to the evaluation of results.

  13. Topology Optimized Photonic Wire Splitters

    DEFF Research Database (Denmark)

    Frandsen, Lars Hagedorn; Borel, Peter Ingo; Jensen, Jakob Søndergaard

    2006-01-01

    Photonic wire splitters have been designed using topology optimization. The splitters have been fabricated in silicon-on-insulator material and display broadband low-loss 3dB splitting in a bandwidth larger than 100 nm.......Photonic wire splitters have been designed using topology optimization. The splitters have been fabricated in silicon-on-insulator material and display broadband low-loss 3dB splitting in a bandwidth larger than 100 nm....

  14. Composite conductor containing superconductive wires

    Energy Technology Data Exchange (ETDEWEB)

    Larson, W.L.; Wong, J.

    1974-03-26

    A superconductor cable substitute made by coworking multiple rods of superconductive niobium--titanium or niobium--zirconium alloy with a common copper matrix to extend the copper and rods to form a final elongated product which has superconductive wires distributed in a reduced cross-section copper conductor with a complete metallurgical bond between the normal-conductive copper and the superconductor wires contained therein is described. The superconductor cable can be in the form of a tube.

  15. Hot drawn Fe–6.5 wt.%Si wires with good ductility

    International Nuclear Information System (INIS)

    Yang, W.; Li, H.; Yang, K.; Liang, Y.F.; Yang, J.; Ye, F.

    2014-01-01

    Highlights: • Fe–6.5wt%Si steel wire with diameter of 1.6 mm can be successfully obtained by hot drawing process. • The ductility of Fe–6.5wt%Si alloy can be improved significantly when it is fabricated in the form of wire. • The Dc magnetic property of Fe–6.5wt%Si steel wire 1.6 mm in diameter is excellent, which is close to that of 0.3 mm thick cold-rolling sheet. - Abstract: Fe–6.5 wt.%Si high silicon steel wires with a diameter of 1.6 mm are fabricated successfully by hot drawing. The high silicon steel wires show much better ductility than sheets. The tensile strength and elongation of the wires at the room temperature can reach 1.31 GPa and 1.4%, respectively. The tensile strength and elongation of the rolling sheet at the room temperature are 0.8 GPa and 0, respectively. The microstructure analyses show that the elongated grains after drawing and reduced ordering phases by deformation in the wires might contribute to its good ductility. Bs value of 1.437 T and Hc value of 16.96 A/m are obtained for the wire after proper heat treatment for the wires

  16. Hot drawn Fe–6.5 wt.%Si wires with good ductility

    Energy Technology Data Exchange (ETDEWEB)

    Yang, W.; Li, H.; Yang, K.; Liang, Y.F.; Yang, J.; Ye, F., E-mail: yefeng@skl.ustb.edu.cn

    2014-08-01

    Highlights: • Fe–6.5wt%Si steel wire with diameter of 1.6 mm can be successfully obtained by hot drawing process. • The ductility of Fe–6.5wt%Si alloy can be improved significantly when it is fabricated in the form of wire. • The Dc magnetic property of Fe–6.5wt%Si steel wire 1.6 mm in diameter is excellent, which is close to that of 0.3 mm thick cold-rolling sheet. - Abstract: Fe–6.5 wt.%Si high silicon steel wires with a diameter of 1.6 mm are fabricated successfully by hot drawing. The high silicon steel wires show much better ductility than sheets. The tensile strength and elongation of the wires at the room temperature can reach 1.31 GPa and 1.4%, respectively. The tensile strength and elongation of the rolling sheet at the room temperature are 0.8 GPa and 0, respectively. The microstructure analyses show that the elongated grains after drawing and reduced ordering phases by deformation in the wires might contribute to its good ductility. Bs value of 1.437 T and Hc value of 16.96 A/m are obtained for the wire after proper heat treatment for the wires.

  17. 30 CFR 75.701-4 - Grounding wires; capacity of wires.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Grounding wires; capacity of wires. 75.701-4... SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Grounding § 75.701-4 Grounding wires; capacity of wires. Where grounding wires are used to ground metallic sheaths, armors, conduits, frames...

  18. 1 mil gold bond wire study.

    Energy Technology Data Exchange (ETDEWEB)

    Huff, Johnathon; McLean, Michael B.; Jenkins, Mark W.; Rutherford, Brian Milne

    2013-05-01

    In microcircuit fabrication, the diameter and length of a bond wire have been shown to both affect the current versus fusing time ratio of a bond wire as well as the gap length of the fused wire. This study investigated the impact of current level on the time-to-open and gap length of 1 mil by 60 mil gold bond wires. During the experiments, constant current was provided for a control set of bond wires for 250ms, 410ms and until the wire fused; non-destructively pull-tested wires for 250ms; and notched wires. The key findings were that as the current increases, the gap length increases and 73% of the bond wires will fuse at 1.8A, and 100% of the wires fuse at 1.9A within 60ms. Due to the limited scope of experiments and limited data analyzed, further investigation is encouraged to confirm these observations.

  19. Wiring cost and topological participation of the mouse brain connectome.

    Science.gov (United States)

    Rubinov, Mikail; Ypma, Rolf J F; Watson, Charles; Bullmore, Edward T

    2015-08-11

    Brain connectomes are topologically complex systems, anatomically embedded in 3D space. Anatomical conservation of "wiring cost" explains many but not all aspects of these networks. Here, we examined the relationship between topology and wiring cost in the mouse connectome by using data from 461 systematically acquired anterograde-tracer injections into the right cortical and subcortical regions of the mouse brain. We estimated brain-wide weights, distances, and wiring costs of axonal projections and performed a multiscale topological and spatial analysis of the resulting weighted and directed mouse brain connectome. Our analysis showed that the mouse connectome has small-world properties, a hierarchical modular structure, and greater-than-minimal wiring costs. High-participation hubs of this connectome mediated communication between functionally specialized and anatomically localized modules, had especially high wiring costs, and closely corresponded to regions of the default mode network. Analyses of independently acquired histological and gene-expression data showed that nodal participation colocalized with low neuronal density and high expression of genes enriched for cognition, learning and memory, and behavior. The mouse connectome contains high-participation hubs, which are not explained by wiring-cost minimization but instead reflect competitive selection pressures for integrated network topology as a basis for higher cognitive and behavioral functions.

  20. Finite volume analysis of temperature effects induced by active MRI implants with cylindrical symmetry: 1. Properly working devices

    Directory of Open Access Journals (Sweden)

    Schnorr Jörg

    2005-04-01

    Full Text Available Abstract Background Active Magnetic Resonance Imaging implants are constructed as resonators tuned to the Larmor frequency of a magnetic resonance system with a specific field strength. The resonating circuit may be embedded into or added to the normal metallic implant structure. The resonators build inductively coupled wireless transmit and receive coils and can amplify the signal, normally decreased by eddy currents, inside metallic structures without affecting the rest of the spin ensemble. During magnetic resonance imaging the resonators generate heat, which is additional to the usual one described by the specific absorption rate. This induces temperature increases of the tissue around the circuit paths and inside the lumen of an active implant and may negatively influence patient safety. Methods This investigation provides an overview of the supplementary power absorbed by active implants with a cylindrical geometry, corresponding to vessel implants such as stents, stent grafts or vena cava filters. The knowledge of the overall absorbed power is used in a finite volume analysis to estimate temperature maps around different implant structures inside homogeneous tissue under worst-case assumptions. The "worst-case scenario" assumes thermal heat conduction without blood perfusion inside the tissue around the implant and mostly without any cooling due to blood flow inside vessels. Results The additional power loss of a resonator is proportional to the volume and the quality factor, as well as the field strength of the MRI system and the specific absorption rate of the applied sequence. For properly working devices the finite volume analysis showed only tolerable heating during MRI investigations in most cases. Only resonators transforming a few hundred mW into heat may reach temperature increases over 5 K. This requires resonators with volumes of several ten cubic centimeters, short inductor circuit paths with only a few 10 cm and a quality

  1. Analysis of variability of tropical Pacific sea surface temperatures

    Science.gov (United States)

    Davies, Georgina; Cressie, Noel

    2016-11-01

    Sea surface temperature (SST) in the Pacific Ocean is a key component of many global climate models and the El Niño-Southern Oscillation (ENSO) phenomenon. We shall analyse SST for the period November 1981-December 2014. To study the temporal variability of the ENSO phenomenon, we have selected a subregion of the tropical Pacific Ocean, namely the Niño 3.4 region, as it is thought to be the area where SST anomalies indicate most clearly ENSO's influence on the global atmosphere. SST anomalies, obtained by subtracting the appropriate monthly averages from the data, are the focus of the majority of previous analyses of the Pacific and other oceans' SSTs. Preliminary data analysis showed that not only Niño 3.4 spatial means but also Niño 3.4 spatial variances varied with month of the year. In this article, we conduct an analysis of the raw SST data and introduce diagnostic plots (here, plots of variability vs. central tendency). These plots show strong negative dependence between the spatial standard deviation and the spatial mean. Outliers are present, so we consider robust regression to obtain intercept and slope estimates for the 12 individual months and for all-months-combined. Based on this mean-standard deviation relationship, we define a variance-stabilizing transformation. On the transformed scale, we describe the Niño 3.4 SST time series with a statistical model that is linear, heteroskedastic, and dynamical.

  2. Phase transitions in coated nickel titanium arch wires: A differential ...

    Indian Academy of Sciences (India)

    Abstract. Shape memory and super-elastic properties of orthodontic nickel titanium wires, which are crucial for its clinical performance are dependent on the austenitic–martensitic phase transitions in its metallic microstructure that happen as a result of temperature or stress. The objective of this study was to compare the ...

  3. Phase transitions in coated nickel titanium arch wires: A differential ...

    Indian Academy of Sciences (India)

    Martensitic–austenitic thermograms showed an intermediate rhombohedral phase in the heating cycle of both groups, but cooling cycles showed direct reversal from austenitic to martensitic phase. Lower austenitic start (s = 10.78 ± 0.46° C) and finish (f = 22.26 ± 0.24° C) temperatures of coated wires compared to the ...

  4. Analysis of Building Envelope Insulation Performance Utilizing Integrated Temperature and Humidity Sensors

    Directory of Open Access Journals (Sweden)

    Shih-Wei Chen

    2012-06-01

    Full Text Available A major cause of high energy consumption for air conditioning in indoor spaces is the thermal storage characteristics of a building’s envelope concrete material; therefore, the physiological signals (temperature and humidity within concrete structures are an important reference for building energy management. The current approach to measuring temperature and humidity within concrete structures (i.e., thermocouples and fiber optics is limited by problems of wiring requirements, discontinuous monitoring, and high costs. This study uses radio frequency integrated circuits (RFIC combined with temperature and humidity sensors (T/H sensors for the design of a smart temperature and humidity information material (STHIM that automatically, regularly, and continuously converts temperature and humidity signals within concrete and transmits them by radio frequency (RF to the Building Physiology Information System (BPIS. This provides a new approach to measurement that incorporates direct measurement, wireless communication, and real-time continuous monitoring to assist building designers and users in making energy management decisions and judgments.

  5. Microbiota analysis to reveal temperature abuse of fresh pork

    DEFF Research Database (Denmark)

    Buschhardt, Tasja; Bahl, Martin Iain; Hansen, Tina Beck

    whether temperature induced changes in the community composition on fresh meat surfaces can reflect the temperature-history (combination of time and temperature). Sterile pieces of pork were inoculated with a carcass swab homogenate, to which Salmonella was added. Changes in the meat microbiota were...

  6. [Study on temperature correctional models of quantitative analysis with near infrared spectroscopy].

    Science.gov (United States)

    Zhang, Jun; Chen, Hua-cai; Chen, Xing-dan

    2005-06-01

    Effect of enviroment temperature on near infrared spectroscopic quantitative analysis was studied. The temperature correction model was calibrated with 45 wheat samples at different environment temperaturs and with the temperature as an external variable. The constant temperature model was calibated with 45 wheat samples at the same temperature. The predicted results of two models for the protein contents of wheat samples at different temperatures were compared. The results showed that the mean standard error of prediction (SEP) of the temperature correction model was 0.333, but the SEP of constant temperature (22 degrees C) model increased as the temperature difference enlarged, and the SEP is up to 0.602 when using this model at 4 degrees C. It was suggested that the temperature correctional model improves the analysis precision.

  7. Wear out Reliability and Intermetallic Compound Diffusion Kinetics of Au and PdCu Wires Used in Nano scale Device Packaging

    International Nuclear Information System (INIS)

    Gan, C.L.; Ng, E.K.; Chan, B.L.; Gan, C.L.; Hashim, U.; Classe, F.C.; Kwuanjai, T.

    2013-01-01

    Wear out reliability and diffusion kinetics of Au and Pd-coated Cu (PdCu) ball bonds are useful technical information for Cu wire deployment in nano scale semiconductor device packaging. This paper discusses the HAST (with bias) and UHAST (unbiased HAST) wear out reliability performance of Au and PdCu wires used in fine pitch BGA packages. In-depth failure analysis has been carried out to identify the failure mechanism under various wear out conditions. Intermetallic compound (IMC) diffusion constants and apparent activation energies (E a a) of both wire types were investigated after high temperature storage life test (HTSL). Au bonds were identified to have faster IMC formation, compared to slower IMC growth of PdCu. PdCu wire was found to exhibit equivalent or better wear out reliability margin compared to conventional Au wire bonds. Failure mechanisms of Au, Cu ball bonds post-HAST and UHAST tests are been proposed, and both Au and PdCu IMC diffusion kinetics and their characteristics are discussed in this paper.

  8. Temperature analysis with voltage-current time differential operation of electrochemical sensors

    Energy Technology Data Exchange (ETDEWEB)

    Woo, Leta Yar-Li; Glass, Robert Scott; Fitzpatrick, Joseph Jay; Wang, Gangqiang; Henderson, Brett Tamatea; Lourdhusamy, Anthoniraj; Steppan, James John; Allmendinger, Klaus Karl

    2018-01-02

    A method for temperature analysis of a gas stream. The method includes identifying a temperature parameter of an affected waveform signal. The method also includes calculating a change in the temperature parameter by comparing the affected waveform signal with an original waveform signal. The method also includes generating a value from the calculated change which corresponds to the temperature of the gas stream.

  9. Prediction of multi performance characteristics of wire EDM process using grey ANFIS

    Science.gov (United States)

    Kumanan, Somasundaram; Nair, Anish

    2017-09-01

    Super alloys are used to fabricate components in ultra-supercritical power plants. These hard to machine materials are processed using non-traditional machining methods like Wire cut electrical discharge machining and needs attention. This paper details about multi performance optimization of wire EDM process using Grey ANFIS. Experiments are designed to establish the performance characteristics of wire EDM such as surface roughness, material removal rate, wire wear rate and geometric tolerances. The control parameters are pulse on time, pulse off time, current, voltage, flushing pressure, wire tension, table feed and wire speed. Grey relational analysis is employed to optimise the multi objectives. Analysis of variance of the grey grades is used to identify the critical parameters. A regression model is developed and used to generate datasets for the training of proposed adaptive neuro fuzzy inference system. The developed prediction model is tested for its prediction ability.

  10. The development of the high-tension wire for nuclear fusion superconductive magnet measurement

    International Nuclear Information System (INIS)

    Yoshida, Kiyoshi; Morita, Yohsuke; Yamazaki, Takanori; Watanabe, Kiyoshi; Furusawa, Ken-ichi.

    1987-01-01

    Following on tokamak critical plasma testing device JT-60, experimental fusion reactor JT-100 is being developed. The 6 kV high-tension wire has been developed for use in JT-100 under ultra-low temperature and high radiation environment. Used for superconductive magnet measurement, the wire is inserted in the vacuum vessel, being immersed within the liquid helium. As the insulating material of this wire, polyetherimido was found to be most suitable in the respects of radiation resistance and voltage-withstand property. In an electric wire covered with polyetherimido, which was made in trial, its test in voltage-withstand and bending characteristics at ultra-low temperature showed the wire to be usable for the intended purpose. (Mori, K.)

  11. Epitaxially aligned cuprous oxide nanowires for all-oxide, single-wire solar cells.

    Science.gov (United States)

    Brittman, Sarah; Yoo, Youngdong; Dasgupta, Neil P; Kim, Si-in; Kim, Bongsoo; Yang, Peidong

    2014-08-13

    As a p-type semiconducting oxide that can absorb visible light, cuprous oxide (Cu2O) is an attractive material for solar energy conversion. This work introduces a high-temperature, vapor-phase synthesis that produces faceted Cu2O nanowires that grow epitaxially along the surface of a lattice-matched, single-crystal MgO substrate. Individual wires were then fabricated into single-wire, all-oxide diodes and solar cells using low-temperature atomic layer deposition (ALD) of TiO2 and ZnO films to form the heterojunction. The performance of devices made from pristine Cu2O wires and chlorine-exposed Cu2O wires was investigated under one-sun and laser illumination. These faceted wires allow the fabrication of well-controlled heterojunctions that can be used to investigate the interfacial properties of all-oxide solar cells.

  12. Fast and High Accuracy Wire Scanner

    CERN Document Server

    Koujili, M; Koopman, J; Ramos, D; Sapinski, M; De Freitas, J; Ait Amira, Y; Djerdir, A

    2009-01-01

    Scanning of a high intensity particle beam imposes challenging requirements on a Wire Scanner system. It is expected to reach a scanning speed of 20 m.s-1 with a position accuracy of the order of 1 μm. In addition a timing accuracy better than 1 millisecond is needed. The adopted solution consists of a fork holding a wire rotating by a maximum of 200°. Fork, rotor and angular position sensor are mounted on the same axis and located in a chamber connected to the beam vacuum. The requirements imply the design of a system with extremely low vibration, vacuum compatibility, radiation and temperature tolerance. The adopted solution consists of a rotary brushless synchronous motor with the permanent magnet rotor installed inside of the vacuum chamber and the stator installed outside. The accurate position sensor will be mounted on the rotary shaft inside of the vacuum chamber, has to resist a bake-out temperature of 200°C and ionizing radiation up to a dozen of kGy/year. A digital feedback controller allows maxi...

  13. Sample of superconducting wiring (Niobium Titanium)

    CERN Multimedia

    About NbTi cable: The cable consists of 36 strands of superconducting wire, each strand has a diameter of 0.825 mm and houses 6300 superconducting filaments of niobium-titanium (Nb-Ti, a superconducting alloy). Each filament has a diameter of about 0.006 mm, i.e. 10 times smaller than a typical human hair. The filaments are embedded in a high-purity copper matrix. Copper is a normal conducting material. The filaments are in the superconductive state when the temperature is below about -263ºC (10.15 K). When the filaments leave the superconductive state, the copper acts as conductor transports the electrical current. Each strand of The NbTi cable (at superconducting state) has a current density of up to above 2000 A/mm2 at 9 T and -271ºC (2.15 K). A cable transport a current of about 13000 A at 10 T and -271ºC (2.15 K). About LHC superconducting wiring: The high magnetic fields needed for the LHC can only be reached using superconductors. At very low temperatures, superconductors have no electrical resista...

  14. Sample of superconducting wiring (Niobium Titanium)

    CERN Multimedia

    About NbTi cable: The cable consists of 36 strands of superconducting wire, each strand has a diameter of 0.825 mm and houses 6300 superconducting filaments of niobium-titanium (Nb-Ti, a superconducting alloy). Each filament has a diameter of about 0.006 mm, i.e. 10 times smaller than a typical human hair. The filaments are embedded in a high-purity copper matrix. Copper is a normal conducting material. The filaments are in the superconductive state when the temperature is below about -263ºC (10.15 K). When the filaments leave the superconductive state, the copper acts as conductor transports the electrical current. Each strand of The NbTi cable (at superconducting state) has a current density of up to above 2000 A/mm2 at 9 T and -271ºC (2.15 K). A cable transport a current of about 13000 A at 10 T and -271ºC (2.15 K). About LHC superconducting wiring: The high magnetic fields needed for the LHC can only be reached using superconductors. At very low temperatures, superconductors have no electrical resistan...

  15. Textured YBCO films grown on wires: application to superconducting cables

    International Nuclear Information System (INIS)

    Dechoux, N; Jiménez, C; Chaudouët, P; Rapenne, L; Sarigiannidou, E; Robaut, F; Petit, S; Garaudée, S; Porcar, L; Soubeyroux, J L; Odier, P; Bruzek, C E; Decroux, M

    2012-01-01

    Efforts to fabricate superconducting wires made of YBa 2 Cu 3 O 7 (YBCO) on La 2 Zr 2 O 7 (LZO) buffered and biaxially textured Ni-5 at.%W (NiW) are described. Wires were manually shaped from LZO buffered NiW tapes. Different diameters were produced: 1.5, 2 and 3 mm. The wires were further covered with YBCO grown by metal organic chemical vapor deposition (MOCVD). We developed an original device in which the round substrate undergoes an alternated rotation of 180° around its axis in addition to a reel-to-reel translation. This new approach allows covering the whole circumference of the wire with a YBCO layer. This was confirmed by energy dispersive x-ray spectroscopy (EDX) analysis coupled to a scanning electron microscope (SEM). For all wire diameters, the YBCO layer thickness varied from 300 to 450 nm, and the cationic composition was respected. Electron backscattering diffraction (EBSD) measurements were performed directly on an as-deposited wire without surface preparation allowing the investigation of the crystalline quality of the film surface. Combining EBSD with XRD results we show that YBCO grows epitaxially on the LZO buffered NiW wires. For the first time, superconductive behaviors have been detected on round substrates in both the rolling and circular direction. J c reached 0.3 MA cm −2 as measured at 77 K by transport and third-harmonic detection. Those preliminary results confirm the effectiveness of the MOCVD for complex geometries, especially for YBCO deposition on small diameter wires. This approach opens huge perspectives for the elaboration of a new generation of YBCO-based round conductors. (paper)

  16. Thermomechanical analysis of Natural Rubber behaviour stressed at room temperature.

    Directory of Open Access Journals (Sweden)

    Chrysochoos A.

    2010-06-01

    Full Text Available Owing to their high molecular mobility, stressed rubber chains can easily change their conformations and get orientated. This phenomena leads to so high reversible draw ratio that this behaviour is called rubber elasticity [1-3]. The analogy with ideal gases leads to an internal energy independent of elongation, the stress being attributed to a so-called configuration entropy. However, this analysis cannot take thermal expansion into account and moreover prohibits predicting standard thermo-elastic effect noticed at small elongations and the thermoelastic inversion effects [4]. This paper aims at : observing and quantifying dissipative and coupling effects associated with deformation energy, generated when Natural Rubber is stretched. re-examine the thermomechanical behaviour model of rubberlike materials, under the generalised standard material concept. From an experimental viewpoint, energy balance is created using infrared and quantitative imaging techniques. Digital Image Correlation (DIC provides in-the-plane displacement fields and, after derivation, strain and strain-rate fields. We have used those techniques to evidence the thermoelastic inversion effect as shown on Figure 1 where different weights have been fixed to warmed specimen and we monitored the sample deformation while it recovers room temperature. But we have also used those techniques to perform energy balance : analysis of the mechanical equilibrium allows estimates of the stress pattern and computation of deformation energy rates under a plane stress hypothesis [5]. Infrared Thermography (IRT gives the surface temperature of the sample. To estimate the distribution of heat sources, image processing with a local heat equation and a minimal set of approximation functions (image filtering was used. The time courses of deformation energy and heat associated with cyclic process are plotted in Figure 2. The time derivatives of both forms of energy are approximately similar. This

  17. Gold Wire-networks: Particle Array Guided Evaporation Lithograpy

    KAUST Repository

    Lone, Saifullah

    2015-06-29

    We exploited the combination of dry deposition of monolayer of 2D (two dimensional) templates, lift-up transfer of 2D template onto flat surfaces and evaporation lithography [1] to fabricate gold micro- and submicron size wire networks. The approach relies upon the defect free dry deposition of 2D monolayer of latex particles [2] on patterned silicon template and flat PDMS-substrate to create square centered and honey-comb wire networks respectively. The process is followed by lift-up transfer of 2D latex crystal on glass substrate. Subsequently, a small amount of AuNP-suspension is doped on top of the transferred crystal; the suspension is allowed to spread instantaneously and dried at low temperature. The liquid evaporates uniformly to the direction perpendicular to glass substrate. During evaporation, AuNPs are de-wetted along with the movement of liquid to self-assemble in-between the inter-particle spaces and therefore, giving rise to liquid-bridge networks which upon delayed evaporation, transforms into wire networks. The approach is used to fabricate both micro- and submicron wire-networks by simply changing the template dimensions. One of the prime motives behind this study is to down-scale the existing particle array template-based evaporation lithography process to fabricate connected gold wire networks at both micro- and submicron scale. Secondly, the idea of combining the patterned silicon wafer with lifted latex particle template creates an opportunity to clean and res-use the patterned wafer more often and thereby, saving fabrication time and resources. Finally, we illustrated the validity of this approach by creating an easy and high-speed approach to develop gold wire networks on a flexible substrate with a thin deposited adhesive. These advances will not only serve as a platform to scale up the production, but also demonstrated that the fabrication method can produce metallic wire networks of different scale and onto a variety of substrates.

  18. Investigation of the degradation mechanism of catalytic wires during oxidation of ammonia process

    Energy Technology Data Exchange (ETDEWEB)

    Pura, Jarosław, E-mail: jaroslawpura@gmail.com [Faculty of Material Science and Engineering, Warsaw University of Technology, Wołoska 141, 02-507 Warsaw (Poland); Wieciński, Piotr; Kwaśniak, Piotr; Zwolińska, Marta; Garbacz, Halina; Zdunek, Joanna [Faculty of Material Science and Engineering, Warsaw University of Technology, Wołoska 141, 02-507 Warsaw (Poland); Laskowski, Zbigniew; Gierej, Maciej [Precious Metal Mint, Weteranów 95, 05-250 Radzymin (Poland)

    2016-12-01

    Highlights: • Degradation mechanisms of precious metal catalytic gauzes is proposed. • Significant change of gauzes morphology and chemical composition was observed. • Samples were analyzed using SEM, EDS and micro-XCT techniques. - Abstract: The most common catalysts for the ammonia oxidation process are 80 μm diameter platinum-rhodium wires knitted or woven into the form of a gauze. In an aggressive environment and under extreme conditions (temperature 800–900 °C, intensive gas flow, high pressure) precious elements are drained from the surface of the wires. Part of this separated material quickly decomposes on the surface in the form of characteristic “cauliflower-shape protrusions”. The rest of the platinum is captured by palladium-nickel catalytic-capture gauzes located beneath. In our investigation we focused on the effects of the degradation of gauzes from one industrial catalytic system. The aim of the study was to compare the degree and the mechanism of degradation of gauzes from a different part of the reactor. The study covered PtRh7 catalytic and PdNi5 catalytic-capture gauzes. X-ray computer microtomography investigation revealed that despite strong differences in morphology, each Pt-Rh wire has a similar specific surface area. This indicates that the oxidation process and morphological changes of the wires occur in a self-regulating balance, resulting in the value of the specific surface area of the catalyst. Microtomography analysis of Pd-Ni wires revealed strong redevelopment of the wires’ surface, which is related to the platinum capture phenomenon. Scanning electron microscope observations also revealed the nanostructure in the cauliflower-shape protrusions and large grains in the wires’ preserved cores. The high temperature in the reactor and the long-term nature of the process do not favor the occurrence of the nanostructure in this type of material. Further and detailed analysis of this phenomena will provide a better

  19. The Consumers Characteristics Analysis of Low Temperature Home Delivery

    Directory of Open Access Journals (Sweden)

    Shu-Fang Lai

    2013-01-01

    Full Text Available Because of technological advancements and the popularity of the Internet, online shopping has become an important shopping channel for consumers. Because people increasingly eat out, more consumers shop online, and food products are collected from convenience stores, or frozen food home delivery services are used. This study used questionnaire surveys to analyze the consumption habits of residents who shop online for frozen foods in the urban areas of northern Taiwan (Taipei City and New Taipei City. We distributed and collected 548 questionnaires, of which 484 were valid. Descriptive statistics, a chi-square test, and logistics regression analysis were used to analyze consumer characteristics, as well as important influential factors. The research results indicated that most online shoppers were women, and the top 3 factors influencing their purchasing decisions were freshness, delivery convenience, and ordering convenience. Participants in the age group of 40-49 years old, living in the urban area of New Taipei City, without junior college education, and with less than 10,000 NTD monthly incomes, were less likely to purchase frozen foods using low-temperature logistics services.

  20. Analysis of low-temperature EAST system operation unit

    International Nuclear Information System (INIS)

    Zhuang Ming; Hu Liangbing; Feng Hansheng; Zhang Qiyong; Yuan Chunyan

    2010-01-01

    EAST (Experimental Advanced Superconductive Tokamak) is the first fully superconductive Tokamak fusion experimental devices in the world. The CIC (cable in conduit) type toroidal field (TF) and poloidal field (PF) coils are made of NbTi/Cu hybrid materials. The main EAST cryogenic users are TF and PF coils, their current leads, the superconducting (SC) buslines, the magnet support structures, and thermal shields. EAST cryogenic system is responsible for supplying supercritical helium and cold helium to cold components, the safe and steady operation of which is an essential condition for successful physics experiments. Since the first commissioning in February 2006, it was cooled down for five plasma physics experimental campaigns. In the fifth experiment, stable and repeatable 60 seconds plasma discharge were achieved with D-shape cross-section and double null divertor configuration under the condition that the temperature of central electrons is 15 million degrees celsius and elongation ratio is 1.9. This paper presents the operating behavior of the cryogenic system in the past 5 experiments. This analysis is helpful for increasing the stability of the cryogenic system, and also with further purpose to guarantee the success of the long plasma duration experiments in future. (authors)

  1. Comparative assessment between eyelet wiring and direct interdental wiring for achieving intermaxillary fixation: a prospective randomized clinical study.

    Science.gov (United States)

    Rai, Anshul; Datarkar, Abhay; Borle, Rajeev; Rai, Monika

    2012-08-01

    The intention of this study was to compare the efficacy of eyelet wiring and direct interdental (Gilmer) wiring for achieving intermaxillary fixation (IMF). This study was a prospective randomized clinical trial. The study sample was derived from the population of patients who underwent IMF at the Department of Oral and Maxillofacial Surgery, Sharad Pawar Dental College, Wardha, India, between October 2008 and September 2010. The time required for placement and removal (in minutes) was compared between the eyelet wiring and direct interdental wiring techniques. Postoperative stability after achieving IMF was analyzed in the 2 groups. The plaque accumulation in both groups was evaluated using the Turesky-Gilmore-Glickman modification of the Quigley-Hein plaque index. Complications in the form of soft tissue injury, glove puncture, and trauma to the operator's finger were also recorded. Statistical analysis was performed with SPSS statistical software for Windows, version 8.0 (SPSS, Chicago, IL) using the χ(2) test and Student t test. The mean working time for placement and removal of eyelet wiring (group I) was 18.00 minutes and 9.67 minutes, respectively. For direct interdental wiring (group II), it was 30.50 minutes and 23.12 minutes, respectively. The mean plaque index values were 1.78 and 2.54 for groups I and II, respectively, which signifies a higher plaque deposition in group II. No occlusal disturbance was seen in either group. The incidences of glove perforation, soft tissue trauma, and trauma to the operator's finger were higher in group II. Eyelet wiring is preferable to direct interdental wiring as evidenced by fewer complications, and requires a shorter operating time in patients with minimally displaced fractures. Copyright © 2012 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.

  2. Design of a Probe for Strain Sensitivity Studies of Critical Current Densities in SC Wires and Tapes

    Energy Technology Data Exchange (ETDEWEB)

    Dhanaraj, N.; Barzi, E.; Turrioni, D.; Rusy, A.; Lombardo, V.; /Fermilab

    2011-07-01

    The design of a variable-temperature probe used to perform strain sensitivity measurements on LTS wires and HTS wires and tapes is described. The measurements are intended to be performed at liquid helium temperatures (4.2 K). The wire or tape to be measured is wound and soldered on to a helical spring device, which is fixed at one end and subjected to a torque at the free end. The design goal is to be able to achieve {+-} 0.8 % strain in the wire and tape. The probe is designed to carry a current of 2000A.

  3. Thermal instability during an electrical wire explosion

    International Nuclear Information System (INIS)

    Oreshkin, V. I.

    2008-01-01

    The development of thermal instabilities during an electrical wire explosion is analyzed in the present work based on the methods of small perturbation theory. For two cases, with and without allowance for motion, the dispersion equations are derived that describe a relationship between the instantaneous buildup increment and the axial wave vector component. It is demonstrated that the thermal instabilities are always formed during electrical explosion, irrespective of the explosion mode. There are three destabilizing factors leading to the development of the thermal instabilities: a temperature rise, an increase in the specific resistance with increasing temperature, and an increase in the specific resistance with decreasing density. The critical value of current density below which the sausage instabilities grow faster than the thermal ones and above which, on the contrary, the thermal instabilities are dominant can be found for each metal.

  4. Thermal instability during an electrical wire explosion

    Science.gov (United States)

    Oreshkin, V. I.

    2008-09-01

    The development of thermal instabilities during an electrical wire explosion is analyzed in the present work based on the methods of small perturbation theory. For two cases, with and without allowance for motion, the dispersion equations are derived that describe a relationship between the instantaneous buildup increment and the axial wave vector component. It is demonstrated that the thermal instabilities are always formed during electrical explosion, irrespective of the explosion mode. There are three destabilizing factors leading to the development of the thermal instabilities: a temperature rise, an increase in the specific resistance with increasing temperature, and an increase in the specific resistance with decreasing density. The critical value of current density below which the sausage instabilities grow faster than the thermal ones and above which, on the contrary, the thermal instabilities are dominant can be found for each metal.

  5. Empirical analysis of skin friction under variations of temperature

    International Nuclear Information System (INIS)

    Parra Alvarez, A. R. de la; Groot Viana, M. de

    2014-01-01

    In soil geotechnical characterization, strength parameters, cohesion (c) and internal friction angle (Φ) has been traditional measured without taking into account temperature, been a very important issue in energy geostructures. The present document analyzes the variation of these parameters in soil-concrete interface at different temperatures. A traditional shear strength case with a forced plane of failure was used. Several tests were carried out to determine the variation of skin friction in granular and cohesive oils with temperature. (Author)

  6. Analysis of temperature regime of watercourses in Slovenia

    OpenAIRE

    Matul, Nika

    2015-01-01

    In line with global warming trends, warming of surface waters is expected. As part of the thesis, we analysed existing data of river water temperature in Slovenia. Most analysed hydrological gauging stations proved statistically significant upward trend, using Mann–Kendall statistical test. We noted that causes for statistically insignificant results on some stations, are deficiencies and irregularities in sets of temperature data and anthropogenic impacts on watercourses. Water temperature i...

  7. In-situ transmission electron microscopy observation of electromigration in Au thin wires.

    Science.gov (United States)

    Murakami, Yosuke; Arita, Masashi; Hamada, Kouichi; Takahashi, Yasuo

    2012-11-01

    Electromigration of thin Au wire is studied by the use of in-situ transmission electron microscopy (TEM) techniques from the viewpoint of nanogap formation. We use a relatively wide Au wire as a starting material because the position-dependent structure change in the wire provides information of the thermal effect caused by the current flow. In-situ TEM observation, in which current measurements of the Au wire are simultaneously performed, reveals the process of the growth of voids and grains. Finally the formation of a nanogap by electromigration is observed doing with current measurements. All the results observed by in-situ TEM indicate the fact that the thermal effects or temperature increase in the wire region take an important role for the structure change caused by electromigration of Au in the wire. It is suggested that the position of the nanogap can roughly be arranged by setting the wire structure and current direction even though a relatively wide wire was used. The detailed observation by in-situ TEM also suggests that the control of heat generation in the wire makes the nanogap sharp because of the well-controlled recrystallization of Au nanowires.

  8. Eliashberg Analysis of Temperature Dependent Pairing Mechanism in d-Wave Superconductors: Application to High Temperature Superconductivity

    OpenAIRE

    Ahmadi, O.; Coffey, L.

    2012-01-01

    Results are presented for the temperature and frequency dependence of the real and imaginary parts of the diagonal self energy for a d-wave superconductor. An Eliashberg analysis, which has been successful in recent fitting of superconductor-insulator-superconductor tunnel junction conductances for BiSrCaCuO (Bi-2212), is extended to finite temperatures. The effect of the temperature dependence of the 40 meV spin resonance mode, measured in inelastic neutron scattering (INS) in Bi-2212, on th...

  9. Creep behaviour of near-equiatomic nickel-titanium wires

    Energy Technology Data Exchange (ETDEWEB)

    Eker, Aysegul Akdogan; Kucukyildirim, Bedri Onur [Yildiz Technical Univ., Istanbul (Turkey). Mechanical Engineering Dept.; Sonmez, Deniz

    2013-02-01

    The creep behaviour of near-equiatomic (50.8 at.-% Ni) NiTi wire with a diameter of 0.49 mm is studied between 82 MPa and 127 MPa tensile stress as well as in a temperature range of 575 C to 650 C. For 600 C and between 82-107 MPa a stress exponent of n = 4.5 as well as for 82 MPa between 600-625 C an activation energy of Q = 300 kJ mol-1 have been found, these results have been compared with previous creep studies. In contrast to previous studies, this investigation has been performed with high stresses for thin NiTi wires. Moreover, fracture surfaces and ductility of wires have been investigated. The main reasons for the various results are discussed. (orig.)

  10. Electromechanical behaviour of PIT $Nb_{3}Sn$ wires for NED

    CERN Document Server

    Seeber, B; Buta, F; Flükiger, R; Boutboul, T; Scheuerlein, C; Oberli, L; Rossi, L

    2009-01-01

    The critical current vs. axial tensile strain and transverse compressive force for two PIT Nb3Sn conductors, manufactured by SMI (now EAS), has been investigated. In addition, the distribution of the critical temperature has been determined by specific heat measurements. After identical reaction heat treatments wire #B207 has a slightly broader Tc distribution than wire #B215 and less volume fraction of Nb3Sn. The behaviour under axial tensile strain is as expected, although the strain for maximum current, m, is relativly low. However the studied wires are rather sensitive to transverse compressive forces. For instance at 10 kN and 15 T the critical current is reduced to 48% of its initial value and recovers only partially after unloading.

  11. GHRSST Level 4 ODYSSEA Mediterranean Sea Regional Foundation Sea Surface Temperature Analysis (GDS version 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A Group for High Resolution Sea Surface Temperature (GHRSST) Level 4 sea surface temperature analysis produced daily on an operational basis at Ifremer/CERSAT...

  12. GHRSST Level 4 G1SST Global Foundation Sea Surface Temperature Analysis (GDS version 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A Group for High Resolution Sea Surface Temperature (GHRSST) Level 4 sea surface temperature analysis produced daily on an operational basis by the JPL OurOcean...

  13. GHRSST Level 4 RAMSSA Australian Regional Foundation Sea Surface Temperature Analysis (GDS version 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A Group for High Resolution Sea Surface Temperature (GHRSST) Level 4 sea surface temperature analysis produced daily on an operational basis at the Australian Bureau...

  14. GHRSST Level 4 GAMSSA Global Foundation Sea Surface Temperature Analysis (GDS version 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A Group for High Resolution Sea Surface Temperature (GHRSST) Level 4 sea surface temperature analysis produced daily on an operational basis at the Australian Bureau...

  15. GHRSST Level 4 AVHRR_AMSR_OI Global Blended Sea Surface Temperature Analysis (GDS version 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A Group for High Resolution Sea Surface Temperature (GHRSST) global Level 4 sea surface temperature analysis produced daily on a 0.25 degree grid at the NOAA...

  16. GHRSST Level 4 EUR Mediterranean Sea Regional Foundation Sea Surface Temperature Analysis (GDS version 2)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A Group for High Resolution Sea Surface Temperature (GHRSST) Level 4 sea surface temperature analysis produced daily by Ifremer/CERSAT (France) using optimal...

  17. GHRSST Level 4 OSPO Global Nighttime Foundation Sea Surface Temperature Analysis (GDS version 2)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A Group for High Resolution Sea Surface Temperature (GHRSST) Level 4 sea surface temperature analysis produced daily on an operational basis at the Office of...

  18. GHRSST Level 4 MUR North America Regional Foundation Sea Surface Temperature Analysis (GDS version 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A Group for High Resolution Sea Surface Temperature (GHRSST) Level 4 sea surface temperature analysis produced as a retrospective dataset at the JPL Physical...

  19. Climate Prediction Center(CPC)Ensemble Canonical Correlation Analysis Forecast of Temperature

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Ensemble Canonical Correlation Analysis (ECCA) temperature forecast is a 90-day (seasonal) outlook of US surface temperature anomalies. The ECCA uses Canonical...

  20. GHRSST Level 4 ODYSSEA Global Foundation Sea Surface Temperature Analysis (GDS version 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A Group for High Resolution Sea Surface Temperature (GHRSST) Level 4 sea surface temperature analysis produced daily on an operational basis at Ifremer/CERSAT...

  1. GHRSST Level 4 K10_SST Global 1 meter Sea Surface Temperature Analysis (GDS version 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A Group for High Resolution Sea Surface Temperature (GHRSST) Level 4 sea surface temperature analysis produced daily on an operational basis at the Naval...

  2. GHRSST Level 4 OSTIA Global Foundation Sea Surface Temperature Analysis (GDS versions 1 and 2)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A Group for High Resolution Sea Surface Temperature (GHRSST) Level 4 sea surface temperature analysis produced daily on an operational basis at the UK Met Office...

  3. GHRSST Level 4 OSPO Global Foundation Sea Surface Temperature Analysis (GDS version 2)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A Group for High Resolution Sea Surface Temperature (GHRSST) Level 4 sea surface temperature analysis produced daily on an operational basis at the Office of...

  4. GHRSST Level 4 DMI_OI Global Foundation Sea Surface Temperature Analysis (GDS version 2)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A Group for High Resolution Sea Surface Temperature (GHRSST) Level 4 sea surface temperature analysis produced daily on an operational basis by the Danish...

  5. GHRSST Level 4 ODYSSEA Eastern Central Pacific Regional Foundation Sea Surface Temperature Analysis (GDS version 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A Group for High Resolution Sea Surface Temperature (GHRSST) Level 4 sea surface temperature analysis produced daily on an operational basis at Ifremer/CERSAT...

  6. GHRSST Level 4 MW_OI Global Foundation Sea Surface Temperature analysis (GDS version 2)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A Group for High Resolution Sea Surface Temperature (GHRSST) global Level 4 sea surface temperature analysis produced daily on a 0.25 degree grid at Remote Sensing...

  7. Analysis of Low Temperature Preheating Effect Based on Battery Temperature-Rise Model

    Directory of Open Access Journals (Sweden)

    Xiaogang Wu

    2017-08-01

    Full Text Available It is difficult to predict the heating time and power consumption associated with the self-heating process of lithium-ion batteries at low temperatures. A temperature-rise model considering the dynamic changes in battery temperature and state of charge is thus proposed. When this model is combined with the ampere-hour integral method, the quantitative relationship among the discharge rate, heating time, and power consumption, during the constant-current discharge process in an internally self-heating battery, is realized. Results show that the temperature-rise model can accurately reflect actual changes in battery temperature. The results indicate that the discharge rate and the heating time present an exponential decreasing trend that is similar to the discharge rate and the power consumption. When a 2 C discharge rate is selected, the battery temperature can rise from −10 °C to 5 °C in 280 s. In this scenario, power consumption of the heating process does not exceed 15% of the rated capacity. As the discharge rate gradually reduced, the heating time and power consumption of the heating process increase slowly. When the discharge rate is 1 C, the heating time is more than 1080 s and the power consumption approaches 30% of the rated capacity. The effect of discharge rate on the heating time and power consumption during the heating process is significantly enhanced when it is less than 1 C.

  8. Synthesise of Zn O nano wires by direct oxidation method

    International Nuclear Information System (INIS)

    Farbod, M.; Ahangarpour, A.

    2007-01-01

    Zn O is a semiconductor which has a direct and wide energy band which is about 3.37 eV at room temperature. It has various applications from UV lasers, sensitive sensors, solar cells to photo catalysis applications. Zn O has different nano structures such as nanoparticles, nano wires, nano rods, nano tubes and nano belts. The one dimensional Zn O nano structures such as nano wires are very important because of their applications in nano electronics and nano photonics so different methods have been proposed to synthesize them. In this work large scale of Zn O nano wires are produced by direct oxidation a Zn substrate (which was cleaned by chemical methods) in air or oxygen atmosphere at 400 d eg C . Nano wires were investigated by scanning electron microscopy and energy dispersive x-ray measurements. Their diameter is about 30-150 nanometer and their length is about several micrometer. This method which acts without any catalyst is a convenient method to synthesis semiconductor nano wires.

  9. Basic ideas and concepts in hot wire anemometry: an experimental approach for introductory physics students

    Science.gov (United States)

    El Abed, Mohamed

    2016-01-01

    The purpose of hot wire anemometry is to measure the speed of an air stream. The classical method is based on the measure of the value of a temperature dependant resistor inserted in a Wheatstone bridge (Lomas 1986 Fundamentals of Hot Wire Anemometry (Cambridge: Cambridge University Press)). In this paper we exhibit the physics behind this method and show that by using a wire whose resistance does not vary on the field of temperature explored (from 20 °C to 200 °C), it is however possible to make accurate measurements. Finally, limitations of the method are discussed.

  10. Optimization of electron beam crosslinking of wire and cable insulation

    International Nuclear Information System (INIS)

    Zimek, Zbigniew; Przybytniak, Grażyna; Nowicki, Andrzej

    2012-01-01

    The computer simulations based on Monte Carlo (MC) method and the ModeCEB software were carried out in connection with electron beam (EB) radiation set-up for crosslinking of electric wire and cable insulation. The theoretical predictions for absorbed dose distribution in irradiated electric insulation induced by scanned EB were compared to the experimental results of irradiation that was carried out in the experimental set-up based on ILU 6 electron accelerator with electron energy 0.5–2.0 MeV. The computer simulation of the dose distributions in two-sided irradiation system by a scanned electron beam in multilayer circular objects was performed for various process parameters, namely electric wire and cable geometry (thickness of insulation layers and copper wire diameter), type of polymer insulation, electron energy, energy spread and geometry of electron beam, electric wire and cable layout in irradiation zone. The geometry of electron beam distribution in the irradiation zone was measured using CTA and PVC foil dosimeters for available electron energy range. The temperature rise of the irradiated electric wire and irradiation homogeneity were evaluated for different experimental conditions to optimize technological process parameters. The results of computer simulation are consistent with the experimental data of dose distribution evaluated by gel-fraction measurements. Such conformity indicates that ModeCEB computer simulation is reliable and sufficient for optimization absorbed dose distribution in the multi-layer circular objects irradiated with scanned electron beams. - Highlights: ► We model wire and cables irradiation process by Monte Carlo simulations. ► We optimize irradiation configuration for various process parameters. ► Temperature rise and irradiation homogeneity were evaluated. ► Calculation (dose) and experimental (gel-fraction) results were compared. ► Computer simulation was found reliable and sufficient for process optimization.

  11. Analysis of temperature distribution in a heat conducting fiber with ...

    African Journals Online (AJOL)

    The temperature distribution in a heat conducting fiber is computed using the Galerkin Finite Element Method in the present study. The weak form of the governing differential equation is obtained and nodal temperatures for linear and quadratic interpolation functions for different mesh densities are calculated for Neumann ...

  12. Spectroscopic analysis applied to temperature measurement in plasmas

    International Nuclear Information System (INIS)

    Fieffe-Prevost, P.

    1978-01-01

    The plasma temperature is defined only if the plasma is in a state near thermodynamic equilibrium. This plasma state is analysed in detail and spectroscopic methods for measuring the temperature are discussed. As an application the hydrogen arc of the National Institute of Metrology of the Conservatoire National des Arts et Metiers (Paris) is briefly described [fr

  13. Theoretical analysis of effect of temperature on threshold ...

    Indian Academy of Sciences (India)

    TECS

    laser diodes, we investigated the effect of temperature on optical confinement by analysing the near field intensity. The physical parameters such as band gap energy, thresh- old current, mirror loss and others show great dependence on temperature (Patil and Gautam 2004). Hence, we took great care to explore the effect ...

  14. Analysis of the temperature field around salt diapirs

    DEFF Research Database (Denmark)

    Jensen, Peter Klint

    1990-01-01

    heat flux should be higher over 3D structures. On the other hand the areal extent of the temperature anomaly around the salt structures is less in the 3D case. Calculation examples indicate that low temperature geothermal energy exploitation of the formations around the top of a salt diapir can...

  15. design and analysis of a multipoint temperature datalogger

    African Journals Online (AJOL)

    user

    Fig 3 shows the format of temperature reading compilation in the memory card retrieved after a typical monitoring period. Column 1 represents the time periods, in this case the serial numbers actually represents interval of 30 secs. At every 30 secs. a new temperature is measured, recorded and stored in the memory card.

  16. Modelling and analysis of radial thermal stresses and temperature ...

    African Journals Online (AJOL)

    A theoretical investigation has been undertaken to study operating temperatures, heat fluxes and radial thermal stresses in the valves of a modern diesel engine with and without air-cavity. Temperatures, heat fluxes and radial thermal stresses were measured theoretically for both cases under all four thermal loading ...

  17. Use of objective analysis to estimate winter temperature and ...

    Indian Academy of Sciences (India)

    characterized by mild temperatures and deep snow pack. The middle climatic zone has snow climate similar to that of continental snow climate and is characterized by very low temperature and shallow snow pack. The weather on various regions/road axes of Himalaya is monitored by various obser- vatories in each of the ...

  18. Enhancing wire-composite bond strength of bonded retainers with wire surface treatment.

    Science.gov (United States)

    Oesterle, L J; Shellhart, W C; Henderson, S

    2001-06-01

    Bonded orthodontic retainers with wires embedded in composite resin are commonly used for orthodontic retention. The purpose of this study was to test, in vitro, various wire surface treatments to determine the optimal method of enhancing the wire-composite bond strength. Coaxial wires and stainless steel wires with different surface treatments were bonded to bovine enamel and then pulled along their long axes with an Instron universal testing machine. Wire surface treatments included placing a right-angle bend in the wire, microetching the wire, and treating the wire with adhesion promoters; combinations of treatments were also examined. The results demonstrated a 24-fold increase in the wire-composite bond strength of wire that was microetched (sandblasted), compared with that of untreated straight wire. The difference between the amount of force required to break the bond produced by microetching alone (246.1 +/- 46.0 MPa) and that required for the bonds produced by the retentive bend (87.8 +/- 16.3 MPa), the adhesion promoters (silane, 11.0 +/- 3.1 MPa; Metal Primer, 28.5 +/- 15.8 MPa), or for any combination of surface treatments, was statistically significant. Microetching a stainless steel wire produced a higher wire-composite bond strength than that obtained from a coaxial wire (113.5 +/- 27.5 MPa). The results of this study indicate that microetching or sandblasting a stainless steel wire significantly increases the strength of the wire-composite bond.

  19. Energy and exergy analysis of low temperature district heating network

    DEFF Research Database (Denmark)

    Li, Hongwei; Svendsen, Svend

    2012-01-01

    is designed to supply heating for 30 low energy detached residential houses. The network operational supply/return temperature is set as 55 °C/25 °C, which is in line with a pilot project carried out in Denmark. Two types of in-house substations are analyzed to supply the consumer domestic hot water demand......Low temperature district heating with reduced network supply and return temperature provides better match of the low quality building heating demand and the low quality heating supply from waste heat or renewable energy. In this paper, a hypothetical low temperature district heating network....... The space heating demand is supplied through floor heating in the bathroom and low temperature radiators in the rest of rooms. The network thermal and hydraulic conditions are simulated under steady state. A district heating network design and simulation code is developed to incorporate the network...

  20. Influence of Wire Electrical Discharge Machining (WEDM) process parameters on surface roughness

    Science.gov (United States)

    Yeakub Ali, Mohammad; Banu, Asfana; Abu Bakar, Mazilah

    2018-01-01

    In obtaining the best quality of engineering components, the quality of machined parts surface plays an important role. It improves the fatigue strength, wear resistance, and corrosion of workpiece. This paper investigates the effects of wire electrical discharge machining (WEDM) process parameters on surface roughness of stainless steel using distilled water as dielectric fluid and brass wire as tool electrode. The parameters selected are voltage open, wire speed, wire tension, voltage gap, and off time. Empirical model was developed for the estimation of surface roughness. The analysis revealed that off time has a major influence on surface roughness. The optimum machining parameters for minimum surface roughness were found to be at a 10 V open voltage, 2.84 μs off time, 12 m/min wire speed, 6.3 N wire tension, and 54.91 V voltage gap.

  1. Calculation and analysis of the cutting temperature at grinding

    Directory of Open Access Journals (Sweden)

    О. С. Кленов

    2016-07-01

    Full Text Available The work deals with the definition of conditions for rational use of the grinding process at the finishing operations, the thermal stress reduction due to the establishment of optimal grinding conditions and characteristics of the abrasive disk, the application of new kinematic grinding schemes and elimination of intense friction of the disk bond with the material being processed which is the main source of temperature defects on the surface being processed. A mathematical model for determining the temperature of cutting at grinding with due regard to temperature change laws in the allowance layer being removed for definite depth of heat penetration into the surface of the workpiece has been developed. A problem in cutting infinitely thin adiabatic rods (thought of as the allowance to be removed with an abrasive disk, a new analytical dependence for determining the cutting temperature with regard to contact time of the abrasive disk with the adiabatic rod was obtained. It has been shown that a 10 times decrease in conventional cutting stress resulted in proportional maximum cutting in temperature reduction during grinding, it corresponding to the practical data. Knowing the cutting temperature change dependence on adiabatic rod heating time, cutting temperature for any grinding scheme can be determined, the contact time of the grinding wheel with the adiabatic rod can be set as well as the speed of the heat source movement speed along the adiabatic rod. Examples of cutting temperature calculation for the specific conditions of grinding have been given. It was found that in the course of time the temperature of cutting at grinding increases continuously, approaching the value of the energy balance, that is equal to the ratio of the conventional cutting stress to the specific heat multiplied by the density of the material being processed. The terms of the cutting temperature reduction at grinding have been laid out and practical recommendations

  2. Characterisation of Fracture Behaviour of Starch Gels Using Conventional Fracture Mechanics and Wire Cutting Tests

    Science.gov (United States)

    Gamonpilas, C.; Charalambides, M. N.; Williams, J. G.; Dooling, P. J.; Gibbon, S. R.

    2008-07-01

    The fracture behaviour of starch gels is investigated through experimental tests and finite element simulations. Both conventional fracture and wire cutting experiments were performed. The results from these two tests were consistent with the fracture toughness increasing with loading rate. In the FE analysis, a non-linear elastic constitutive relationship was used to model the starch gels and frictionless condition was assumed between the wire-starch gel contact interface. A failure criterion based on critical fracture strain was assumed. Predictions of the steady-state cutting force at various wire diameters were found to be in good agreement with the wire cutting data.

  3. Engineering task plan and status of 241-S-106 Enraf level gauge wire break

    International Nuclear Information System (INIS)

    Moore, T.L.

    1994-09-01

    This report discusses the findings of a task team which was formed which identified the need for short-term actions to re-establish tank waste level monitoring and to permanently address wire failure. The failed wire was removed and sent to Pacific Northwest Laboratory (PNL) for analysis. It was determined that the cause of the wire failure was due to chloride ion stress corrosion cracking (SCC) of the 316 stainless steel (SS) wire. Radiation induced breakdown of the polyvinyl chloride (PVC) riser liners is suspected to be the source of the chloride ions

  4. Performance analysis of PV panel under varying surface temperature

    Directory of Open Access Journals (Sweden)

    Kumar Tripathi Abhishek

    2018-01-01

    Full Text Available The surface temperature of PV panel has an adverse impact on its performance. The several electrical parameters of PV panel, such as open circuit voltage, short circuit current, power output and fill factor depends on the surface temperature of PV panel. In the present study, an experimental work was carried out to investigate the influence of PV panel surface temperature on its electrical parameters. The results obtained from this experimental study show a significant reduction in the performance of PV panel with an increase in panel surface temperature. A 5W PV panel experienced a 0.4% decrease in open circuit voltage for every 1°C increase in panel surface temperature. Similarly, there was 0.6% and 0.32% decrease in maximum power output and in fill factor, respectively, for every 1°C increase in panel surface temperature. On the other hand, the short circuit current increases with the increase in surface temperature at the rate of 0.09%/°C.

  5. Turbine blade temperature calculation and life estimation - a sensitivity analysis

    Directory of Open Access Journals (Sweden)

    Majid Rezazadeh Reyhani

    2013-06-01

    Full Text Available The overall operating cost of the modern gas turbines is greatly influenced by the durability of hot section components operating at high temperatures. In turbine operating conditions, some defects may occur which can decrease hot section life. In the present paper, methods used for calculating blade temperature and life are demonstrated and validated. Using these methods, a set of sensitivity analyses on the parameters affecting temperature and life of a high pressure, high temperature turbine first stage blade is carried out. Investigated uncertainties are: (1 blade coating thickness, (2 coolant inlet pressure and temperature (as a result of secondary air system, and (3 gas turbine load variation. Results show that increasing thermal barrier coating thickness by 3 times, leads to rise in the blade life by 9 times. In addition, considering inlet cooling temperature and pressure, deviation in temperature has greater effect on blade life. One of the interesting points that can be realized from the results is that 300 hours operation at 70% load can be equal to one hour operation at base load.

  6. Functional fatigue recovery of superelastic cycled NiTi wires based on near 100 °C aging treatments

    Directory of Open Access Journals (Sweden)

    Isalgue Antonio

    2015-01-01

    Full Text Available Functional fatigue affecting superelastic behaviour of NiTi wires includes an accumulation of residual strain and an uneven decrement of transformation stress on cycling. Although this evolution is observed to diminish asymptotically, it represents an important loss in the maximum recoverable strain level and in the hysteretic dissipative capacity of the material. In this work, the effect of moderate temperature aging treatment on the functionally degraded material properties was studied with two experimental setups. NiTi pseudoelastic wire samples of 0.5 and 2.46 mm diameter were subjected to different cycling programs intercalated by aging treatments of different durations up to 48 h at 100°C. Results show that important levels of recovery on the residual strains and the transformation stresses were attained after the aging treatments. The analysis indicates that the characteristics of the recovered cycles are rather independent from the treatment duration and from the reached condition before each treatment.

  7. Analysis of the high-temperature particulate collection problem

    Energy Technology Data Exchange (ETDEWEB)

    Razgaitis, R.

    1977-10-01

    Particulate agglomeration and separation at high temperatures and pressures are examined, with particular emphasis on the unique features of the direct-cycle application of fluidized-bed combustion. The basic long-range mechanisms of aerosol separation are examined, and the effects of high temperature and high pressure on usable collection techniques are assessed. Primary emphasis is placed on those avenues that are not currently attracting widespread research. The high-temperature, particulate-collection problem is surveyed, together with the peculiar requirements associated with operation of turbines with particulate-bearing gas streams. 238 references.

  8. Put Your Cable Wiring to the Test.

    Science.gov (United States)

    Day, C. William

    2001-01-01

    Discusses why schools and universities should use testing procedures in any wire bid specification for cable wiring and also know how experienced the installers are in testing and installing structured cabling systems. Key cabling terms are included. (GR)

  9. Fabrication of superconducting wire using organometallic precursors and infiltration

    International Nuclear Information System (INIS)

    Lee, Y.J.

    1991-01-01

    Organometallic precursors from naphthenic acid and metal nitrates were used for the synthesis of YBCO oxide superconducting compounds. The characteristics of metal naphthenates as organometallic precursors were investigated by IR spectra, viscosity measurements, and infiltration. 123 superconducting compound obtained from 123 naphthenate showed a Tc of 90 degree K and a rather dense and elongated microstructure. Also, the melting behavior of Ba-cuprates which were used for 123 making was studied. A low-temperature melting process was developed to fabricate silver-sheathed superconducting wire with the powder-in-tube method; flowing argon gas is introduced to the system at 930-945 degree C to reduce the melting temperature of the 123 compound without silver sheath melting. It resulted in a 90 degree K Tc superconducting core with dense and locally aligned microstructure. SEM-EDS and XRD analysis, 4-probe resistance and Jc measurements, and carbon-content determinations were carried out to characterize the microstructure, grain alignment, and superconducting properties of the samples

  10. Exergy and Energy Analysis of Low Temperature District Heating Network

    DEFF Research Database (Denmark)

    Li, Hongwei; Svendsen, Svend

    Low temperature district heating (LTDH) with reduced network supply and return temperature provides better match of the low quality building thermal demand and the low quality waste heat supply. In this paper, an exemplary LTDH network was designed for 30 low energy demand residential houses, which...... is in line with a pilot project that is carrying out in Denmark with network supply/return temperature at 55oC/25 oC. The consumer domestic hot water (DHW) demand is supplied with a special designed district heating (DH) storage tank. The space heating (SH) demand is supplied with a low temperature radiator....... The network thermal and hydraulic conditions were simulated under steady state with an in-house district heating network design and simulation code. Through simulation, the overall system energetic and exergetic efficiencies were calculated and the exergy losses for the major district heating system...

  11. Computational analysis of frp composite under different temperature gradient

    Science.gov (United States)

    Gunasekar, P.; Manigandan, S.

    2017-05-01

    Composite material strength depends on the stiffness of fiber and the resin which is used for reinforcement. The strength of the laminate can be increased by applying good manufacturing practices. The strength is directly depending on the property of resin. The property of the any compound subjected to changed when they exposed to the temperature. This paper investigates the strength of laminate when they subjected to different temperature gradient of resin while manufacturing. The resin is preheated before adding hardener with them. These types of laminate reinforced with resin at different levels of temperature 20c, 40c, and 60c. These different temperature resin are used for reinforcement and the specimen tested. The comparative results are made to find how the stiffness of laminate changes with respect to the thermal property of resin. The results are helpful to obtain high strength laminate.

  12. Structural analysis technology for high-temperature design

    International Nuclear Information System (INIS)

    Greenstreet, W.L.

    1977-01-01

    Results from an ongoing program devoted to the development of verified high-temperature structural design technology applicable to nuclear reactor systems are described. The major aspects addressed by the program are (1) deformation behavior; (2) failure associated with creep rupture, brittle fracture, fatigue, creep-fatigue interactions, and crack propagation; and (3) the establishment of appropriate design criteria. This paper discusses information developed in the deformation behavior category. The material considered is type 304 stainless steel, and the temperatures range to 1100 0 F (593 0 C). In essence, the paper considers the ingredients necessary for predicting relatively high-temperature inelastic deformation behavior of engineering structures under time-varying temperature and load conditions and gives some examples. These examples illustrate the utility and acceptability of the computational methods identified and developed for prediting essential features of complex inelastic behaviors. Conditions and responses that can be encountered under nuclear reactor service conditions and invoked in the examples. (Auth.)

  13. Spatial and Temporal Analysis of Bias HAST System Temperature

    Energy Technology Data Exchange (ETDEWEB)

    Pfeifer, Kent B. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Furrer, III, Clint T [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Sandoval, Paul Anthony [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Garrett, Stephen E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Pfeifer, Nathaniel Bryant [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-03-01

    High-reliability components for high-consequence systems require detailed testing of operation after having undergone highly accelerated stress testing (HAST) under unusual conditions of high-temperature and humidity. This paper describes the design and operation of a system called "Wormwood" that is a highly multiplexed temperature measurement system that is designed to operate under HAST conditions to allow measurement of the temperature as a function of time and position in a HAST chamber. HAST chambers have single-point temperature measurements that can be traceable to NIST standards. The objective of these "Wormwood" measurements is to verify the uniformity and stability of the remaining volume of the HAST chamber with respect to the single traceable standard.

  14. Sample of superconducting wiring from the LHC

    CERN Multimedia

    The high magnetic fields needed for guiding particles around the Large Hadron Collider (LHC) ring are created by passing 12’500 amps of current through coils of superconducting wiring. At very low temperatures, superconductors have no electrical resistance and therefore no power loss. The LHC is the largest superconducting installation ever built. The magnetic field must also be extremely uniform. This means the current flowing in the coils has to be very precisely controlled. Indeed, nowhere before has such precision been achieved at such high currents. Magnet coils are made of copper-clad niobium–titanium cables — each wire in the cable consists of 9’000 niobium–titanium filaments ten times finer than a hair. The cables carry up to 12’500 amps and must withstand enormous electromagnetic forces. At full field, the force on one metre of magnet is comparable to the weight of a jumbo jet. Coil winding requires great care to prevent movements as the field changes. Friction can create hot spots wh...

  15. Analysis of air temperature and relative humidity: study of microclimates

    OpenAIRE

    Elis Dener Lima Alves; Marcelo Sacardi Biudes

    2012-01-01

    Understanding the variability of climate elements in time and space is fundamental to the knowledge of the dynamics of microclimate. Thus, the objective was to analyze the variability of air temperature and relative humidity on the Cuiabá campus of the Federal University of Mato Grosso, and, through the clustering technique, to analyze the formation of groups to propose a zoning microclimate in the area study. To this end, collection data of air temperature and relative humidity at 15 points ...

  16. Applying Time Series Analysis Model to Temperature Data in Greenhouses

    Directory of Open Access Journals (Sweden)

    Abdelhafid Hasni

    2011-03-01

    Full Text Available The objective of the research is to find an appropriate Seasonal Auto-Regressive Integrated Moving Average (SARIMA Model for fitting the inside air temperature (Tin of a naturally ventilated greenhouse under Mediterranean conditions by considering the minimum of Akaike Information Criterion (AIC. The results of fitting were as follows: the best SARIMA Model for fitting air temperature of greenhouse is SARIMA (1,0,0 (1,0,224.

  17. Novel Wiring Technologies for Aerospace Applications

    Science.gov (United States)

    Gibson, Tracy L.; Parrish, Lewis M.

    2014-01-01

    Because wire failure in aerospace vehicles could be catastrophic, smart wiring capabilities have been critical for NASA. Through the years, researchers at Kennedy Space Center (KSC) have developed technologies, expertise, and research facilities to meet this need. In addition to aerospace applications, NASA has applied its knowledge of smart wiring, including self-healing materials, to serve the aviation industry. This webinar will discuss the development efforts of several wiring technologies at KSC and provide insight into both current and future research objectives.

  18. Clinical bending of nickel titanium wires

    OpenAIRE

    Stephen Chain; Priyank Seth; Namrata Rastogi; Kenneth Tan; Mayank Gupta; Richa Singh

    2015-01-01

    Since the evolution and the involvement of Nickel Titanium wires in the field of Orthodontics. The treatment plan has evolved with the use of low force Nickel Titanium wires. Because of their high springback, low stiffness, they are the key initial wires in leveling and alignment but have poor formability. Since poor formability limits its ability to create variable arch forms thus; limits the form of treatment. We have devised a method to bend the Nickel Titanium wires to help in our invento...

  19. Towards Unconventional Applications of Wire Bonding

    OpenAIRE

    Schröder, Stephan

    2018-01-01

    This thesis presents novel heterogeneous integration approaches of wire materials to fabricated and package MEMS devices by exploring unconventional applications of wire bonding technology. Wire bonding, traditionally endemic in the realm of device packaging to establish electrical die-to-package interconnections, is an attractive back-end technology, offering promising features, such as high throughput, flexibility and placement accuracy. Exploiting the advantages of state-of-the-art wire bo...

  20. Different mechanical properties in Seldinger guide wires

    Directory of Open Access Journals (Sweden)

    Wolfram Schummer

    2015-01-01

    Full Text Available Background and Aims: Most central venous catheters are placed using Seldinger guide wires. EN ISO 11070 is the guideline for testing guide wire flexing performance and tensile strength, and we can safely assume that guide wires in use meet these requirements. Unfortunately, EN ISO 11070 guidelines do not reflect the clinical requirements and we continue to see mechanical failures and their associated complications. Material and Methods: This in vitro study was performed in an accredited laboratory. With regard to flexing, we: (1 Established the minimum flexing performance needed to meet clinical requirements, (2 developed flexing performance tests which mimic clinical requirement, and (3 evaluated the mechanical properties of various guide wires relative to these requirements. With regard to tensile strength, we used the testing method prescribed in ISO 11070, but did not end the test at 5 Newton (N. We continued until the guide wire was damaged, or we reached maximum tractive force. We then did a wire-to-wire comparison. We examined two basic wire constructions, monofil and core and coil. Results: Tensile strength: All wires tested, except one, met EN ISO 11070 requirements for 5 N tensile strength. The mean of the wire types tested ranged from 15.06 N to 257.76 N. Flexing performance: None of the wires kinked. The monofil had no evidence of bending. Two core/coil wires displayed minor bending (angle 1.5°. All other wires displayed bending angles between 22.5° and 43.0°. Conclusion: We recommend that: (1 Clinicians use guide wires with high-end mechanical properties, (2 EN ISO 11070 incorporate our flexing test into their testing method, raise the flexing requirement to kink-proof, (3 and raise the tensile strength requirement to a minimum of 30 N, and (3 all manufacturers and suppliers be required to display mechanical properties of all guide wire, and guide wire kits sold.

  1. Vocational Preparation Curriculum: Electrical Wiring.

    Science.gov (United States)

    Usoro, Hogan

    This document is a curriculum guide for instructors teaching vocational preparation for electrical wiring to special needs students. The purpose of the curriculum guide is to provide minimum skills for disadvantaged and handicapped students entering the mainstream; to supplement vocational skills of those students already in a regular training…

  2. Transparency in nanophotonic quantum wires

    International Nuclear Information System (INIS)

    Singh, Mahi R

    2009-01-01

    We have studied the quantum optics of a photonic quantum nanowire doped with an ensemble of three-level nanoparticles. The wire is made from two photonic crystals A and B. Crystal A is embedded within crystal B and acts as a photonic nanowire. It is considered that the conduction band of crystal A lies below that of crystal B. As a result, photons are confined in crystal A and are reflected from crystal B. The bound states of the confined photons are calculated using the transfer matrix method. It is found that the number of bound states in the wire depends on the size of the wire and the energy difference between the conduction band extrema of crystals A and B. The absorption coefficient of the system has also been calculated using the Schroedinger equation method. It is considered that the nanoparticles interact with the photonic bound states. Numerical simulations show that when one of the resonance energies lies near the bound state, the system becomes transparent. However, when the resonance energy lies away from the bound state the crystal reverts to an absorbing state. Similarly, when the radius of the dielectric spheres is changed the location of the transparency peak is shifted. This means that the present system can be switched between two states by changing the size of the wire and the transition energy. These findings can be used to make new types of optical devices.

  3. Health care's 100 most wired.

    Science.gov (United States)

    Solovy, A; Serb, C

    1999-02-01

    They're wired all right, and America's 100 most techno-savvy hospitals and health systems share one more thing: a commitment to using technology to link with employees, patients, suppliers, and insurers. "We want to be a health care travel agency for our community," says one chief information officer. "And we see Internet technology as a key."

  4. Correlation analysis on alpha attenuation and nasal skin temperature

    International Nuclear Information System (INIS)

    Nozawa, Akio; Tacano, Munecazu

    2009-01-01

    Some serious accidents caused by declines in arousal level, such as traffic accidents and mechanical control mistakes, have become issues of social concern. The physiological index obtained by human body measurement is expected to offer a leading tool for evaluating arousal level as an objective indicator. In this study, declines in temporal arousal levels were evaluated by nasal skin temperature. As arousal level declines, sympathetic nervous activity is decreased and blood flow in peripheral vessels is increased. Since peripheral vessels exist just under the skin on the fingers and nose, the psychophysiological state can be judged from the displacement of skin temperature caused by changing blood flow volume. Declining arousal level is expected to be observable as a temperature rise in peripheral parts of the body. The objective of this experiment was to obtain assessment criteria for judging declines in arousal level by nasal skin temperature using the alpha attenuation coefficient (AAC) of electroencephalography (EEG) as a reference benchmark. Furthermore, a psychophysical index of sleepiness was also measured using a visual analogue scale (VAS). Correlations between nasal skin temperature index and EEG index were analyzed. AAC and maximum displacement of nasal skin temperature displayed a clear negative correlation, with a correlation coefficient of −0.55

  5. Analysis for transient temperature distribution two phase flow using test section QUEEN-02

    International Nuclear Information System (INIS)

    Ainur Rosidi; Joko Prasetio; Edy Sumarno; Kiswanta; Heru Bambang

    2013-01-01

    Experiments on the transient temperature distribution using a two-phase flow test facility QUEEN-02 and BETA test loop was conducted. Purpose of the experiment is to study temperature distribution during the transient cooling process. Experiments performed with the variation of the initial temperature of hot rod test section QUEEN-02 of 350 °C and 500 °C as well as the flow of cooling water temperature is 90 °C with the direction of flow from the bottom up from the BETA test loop. The analysis shows that temperature have the same downward trend in its every point thermocouple for the same initial temperature during cooling. Initial temperature of 350 °C hot rods produced when temperatures drop to 90 °C (the same as the temperature of the cooling water) for 78 seconds while the initial temperature of 500 °C produces hot rod drop time 190 seconds. (author)

  6. Multi-anode wire straw tube tracker

    International Nuclear Information System (INIS)

    Oh, S.H.; Ebenstein, W.L.; Wang, C.W.

    2011-01-01

    We report on a test of a straw tube detector design having several anode (sense) wires inside a straw tube. The anode wires form a circle inside the tube and are read out independently. This design could solve several shortcomings of the traditional single wire straw tube design such as double hit capability and stereo configuration.

  7. Home and School Technology: Wired versus Wireless.

    Science.gov (United States)

    Van Horn, Royal

    2001-01-01

    Presents results of informal research on smart homes and appliances, structured home wiring, whole-house audio/video distribution, hybrid cable, and wireless networks. Computer network wiring is tricky to install unless all-in-one jacketed cable is used. Wireless phones help installers avoid pre-wiring problems in homes and schools. (MLH)

  8. On the preparation of superconducting wires

    International Nuclear Information System (INIS)

    Topare, R.J.; Chinchure, A.D.; Shah, S.S.; Hadole, G.B.

    1993-01-01

    The different methods of preparation of superconducting wires have been discussed. The powder-in-tube technique is followed for the preparation of YBCO and BISCCO superconducting wires. The results are discussed. The present status of the industries in preparing the superconducting wires having the maximum J c values is discussed. (author). 30 refs., 6 figs., 2 tabs

  9. Pre-wired systems prove their worth.

    Science.gov (United States)

    2012-03-01

    The 'new generation' of modular wiring systems from Apex Wiring Solutions have been specified for two of the world's foremost teaching hospitals - the Royal London and St Bartholomew's Hospital, as part of a pounds sterling 1 billion redevelopment project, to cut electrical installation times, reduce on-site waste, and provide a pre-wired, factory-tested, power and lighting system. HEJ reports.

  10. 75 FR 4584 - Wire Decking From China

    Science.gov (United States)

    2010-01-28

    ... COMMISSION Wire Decking From China AGENCY: United States International Trade Commission. ACTION: Scheduling... retarded, by reason of subsidized and less-than-fair-value imports from China of wire decking, provided for..., producers, or exporters in China of wire decking, and that such ] products are being sold in the United...

  11. Analysis of Class II patients, successfully treated with the straight-wire and Forsus appliances, based on cervical vertebral maturation status.

    Science.gov (United States)

    Servello, David F; Fallis, Drew W; Alvetro, Lisa

    2015-01-01

    To assess skeletal and dental changes in patients successfully treated with the Forsus appliance based on cervical vertebral maturation status. Forty-seven Class II patients, successfully treated with the Forsus appliance, were divided into peak and postpeak growth groups determined immediately prior to Forsus placement. The mean (SD) ages of the peak and postpeak groups were 13.4 (1.0) and 14.1 (1.3) years, respectively. Superimpositions of initial, Forsus placement, Forsus removal, and final cephalometric radiographs were completed, allowing the measurement of changes during three treatment phases. There were no significant differences between groups during treatment phase 1 (alignment/leveling), with both groups demonstrating a worsening of the Class II molar relationship. However, during treatment phase 2 (Class II correction), patients within the peak group demonstrated significantly higher mean apical base, mandibular and molar changes, and an increased rate of change compared with those in the postpeak group. No significant differences were observed during treatment phase 3 (detail/finishing). Following an initial worsening of the Class II molar relationship as a result of straight-wire appliance effects, Forsus appliance treatment initiated during cervical vertebral maturation status (CS) 3-4 elicits more effective and efficient correction of Class II molar relationships than when initiated during CS 5-6. Data support that these effects are due mainly to maxillary skeletal and dentoalveolar restraint during a period of more rapid mandibular growth.

  12. First Experimental Results And Improvements On Profile Measurements With The Vibrating Wire Scanner

    CERN Document Server

    Arutunian, S G; Dobrovolski, N M; Mailian, M R; Soghoyan, H E; Vasiniuk, I E

    2003-01-01

    The paper presents the first experimental results of transverse profile scans using a wire scanner based on a vibrating wire (vibrating wire scanner - VWS). The measurements were performed at the injector electron beam (6 nA) of the Yerevan synchrotron. The beam profile information is obtained by measuring the wire natural oscillations that depend on the wire temperature. This first experiments on weak electron beam proved this new method as a very sensitive tool, even suitable for tail measurements. Additional, improvements were tested to overcome some problems connected with signal conditioning and signal transfer in the presence of electromagnetic noise. As a result the noises were neatly separated and reduced. A mathematical method for rejection of distorted data was developed. Experiments with the scanner at the PETRA accelerator at DESY are planned for measurements of beam tails.

  13. Wire array z-pinch insights for high x-ray power generation

    International Nuclear Information System (INIS)

    Sanford, T.W.L.; Mock, R.C.; Marder, B.M.

    1998-08-01

    The discovery that the use of very large numbers of wires enables high x-ray power to be generated from wire-array z-pinches represents a breakthrough in load design for large pulsed power generators, and has permitted high temperatures to be generated in radiation cavities on Saturn and Z. In this paper, changes in x-ray emission characteristics as a function of wire number, array mass, and load radius, for 20-mm-long aluminum arrays on Saturn that led to these breakthrough hohlraum results, are discussed and compared with a few related emission characteristics of high-wire-number aluminum and tungsten arrays on Z. X=ray measurement comparisons with analytic models and 2-D radiation-magnetohydrodynamic (RMHC) code simulations in the x-y and r-z planes provide confidence in the ability of the models and codes to predict future x-ray performance with very-large-number wire arrays

  14. Reduction of tensile residual stresses during the drawing process of tungsten wires

    International Nuclear Information System (INIS)

    Rodriguez Ripoll, Manel; Weygand, Sabine M.; Riedel, Hermann

    2010-01-01

    Tungsten wires are commonly used in the lighting industry as filaments for lamps. During the drawing process, the inhomogeneous deformation imparted by the drawing die causes tensile residual stresses at the wire surface in circumferential direction. These stresses have a detrimental effect for the wire because they are responsible for driving longitudinal cracks, known as splits. This work proposes two methods for reducing the residual stresses during wire drawing, namely applying an advanced die geometry and performing an inexpensive post-drawing treatment based on targeted bending operations. These two methods are analyzed with finite element simulations using material parameters obtained by mechanical tests on tungsten wires at different temperatures as input data. The computed results predict a substantial reduction of the circumferential residual stresses, thus reducing the risk of splitting.

  15. Wire array z-pinch insights for high X-ray power generation

    Energy Technology Data Exchange (ETDEWEB)

    Sanford, T.W.L.; Marder, B.M.; Desjarlais, M.P. [and others

    1998-12-31

    The discovery that the use of very large numbers of wires enables high x-ray power to be generated from wire-array z-pinches represents a breakthrough in load design for large pulsed power generators, and has permitted high temperatures to be generated in radiation cavities on Saturn and Z. In this paper, changes in x-ray emission characteristics as a function of wire number, array mass, and load radius, for 20-mm-long aluminum arrays on Saturn that led to these breakthrough hohlraum results, are discussed and compared with a few related emission characteristics of high-wire-number aluminum and tungsten arrays on Z. X-ray measurement comparisons with analytic models and 2-D radiation-magnetohydrodynamic (RMHC) code simulations in the x-y and r-z planes provide confidence in the ability of the models and codes to predict future x-ray performance with very-large-number wire arrays.

  16. Wire array z-pinch insights for high x-ray power generation

    Energy Technology Data Exchange (ETDEWEB)

    Sanford, T.W.L.; Mock, R.C.; Nash, T.J. [and others

    1998-08-01

    The discovery that the use of very large numbers of wires enables high x-ray power to be generated from wire-array z-pinches represents a breakthrough in load design for large pulsed power generators, and has permitted high temperatures to be generated in radiation cavities on Saturn. In this paper, changes in x-ray emission characteristics as a function of wire number, array mass, and load radius, for 20-mm-long aluminum arrays on Saturn that led to these breakthrough hohlraum results, are discussed and compared with a few related emission characteristics of high-wire-number aluminum and tungsten arrays on Z. X=ray measurement comparisons with analytic models and 2-D radiation-magnetohydrodynamic (RMHC) code simulations in the x-y and r-z planes provide confidence in the ability of the models and codes to predict future x-ray performance with very-large-number wire arrays.

  17. Wire array z-pinch insights for high x-ray power generation

    Energy Technology Data Exchange (ETDEWEB)

    Sanford, T.W.L.; Mock, R.C.; Marder, B.M. [and others

    1997-12-31

    The discovery that the use of very large numbers of wires enables high x-ray power to be generated from wire-array z-pinches represents a breakthrough in load design for large pulsed power generators, and has permitted high temperatures to be generated in radiation cavities on Saturn and Z. In this paper, changes in x-ray emission characteristics as a function of wire number, array mass, and load radius, for 20-mm-long aluminum arrays on Saturn that led to these breakthrough hohlraum results, are discussed and compared with a few related emission characteristics of high-wire-number aluminum and tungsten arrays on Z. X-ray measurement comparisons with analytic models and 2-D radiation-magnetohydrodynamic (RMHC) code simulations in the x-y and r-z planes provide confidence in the ability of the models and codes to predict future x-ray performance with very-large-number wire arrays.

  18. Wire array z-pinch insights for high X-ray power generation

    International Nuclear Information System (INIS)

    Sanford, T.W.L.; Marder, B.M.; Desjarlais, M.P.

    1998-01-01

    The discovery that the use of very large numbers of wires enables high x-ray power to be generated from wire-array z-pinches represents a breakthrough in load design for large pulsed power generators, and has permitted high temperatures to be generated in radiation cavities on Saturn and Z. In this paper, changes in x-ray emission characteristics as a function of wire number, array mass, and load radius, for 20-mm-long aluminum arrays on Saturn that led to these breakthrough hohlraum results, are discussed and compared with a few related emission characteristics of high-wire-number aluminum and tungsten arrays on Z. X-ray measurement comparisons with analytic models and 2-D radiation-magnetohydrodynamic (RMHC) code simulations in the x-y and r-z planes provide confidence in the ability of the models and codes to predict future x-ray performance with very-large-number wire arrays

  19. Polyurethane spray coating of aluminum wire bonds to prevent corrosion and suppress resonant oscillations

    CERN Document Server

    INSPIRE-00092738; Kurth, Matthew; Boyd, Rusty

    2016-01-01

    Unencapsulated aluminum wedge wire bonds are common in particle physics pixel and strip detectors. Industry-favored bulk encapsulation is eschewed due to the range of operating temperatures and radiation. Wire bond failures are a persistent source of tracking-detector failure. Unencapsulated bonds are vulnerable to condensation-induced corrosion, particularly when halides are present. Oscillations from periodic Lorentz forces are documented as another source of wire bond failure. Spray application of polyurethane coatings, performance of polyurethane-coated wire bonds after climate chamber exposure, and resonant properties of polyurethane-coated wire bonds and their resistance to periodic Lorentz forces are under study for use in a future High Luminosity Large Hadron Collider detector such as the ATLAS Inner Tracker upgrade.

  20. A model of the ground surface temperature for micrometeorological analysis

    Science.gov (United States)

    Leaf, Julian S.; Erell, Evyatar

    2017-07-01

    Micrometeorological models at various scales require ground surface temperature, which may not always be measured in sufficient spatial or temporal detail. There is thus a need for a model that can calculate the surface temperature using only widely available weather data, thermal properties of the ground, and surface properties. The vegetated/permeable surface energy balance (VP-SEB) model introduced here requires no a priori knowledge of soil temperature or moisture at any depth. It combines a two-layer characterization of the soil column following the heat conservation law with a sinusoidal function to estimate deep soil temperature, and a simplified procedure for calculating moisture content. A physically based solution is used for each of the energy balance components allowing VP-SEB to be highly portable. VP-SEB was tested using field data measuring bare loess desert soil in dry weather and following rain events. Modeled hourly surface temperature correlated well with the measured data (r 2 = 0.95 for a whole year), with a root-mean-square error of 2.77 K. The model was used to generate input for a pedestrian thermal comfort study using the Index of Thermal Stress (ITS). The simulation shows that the thermal stress on a pedestrian standing in the sun on a fully paved surface, which may be over 500 W on a warm summer day, may be as much as 100 W lower on a grass surface exposed to the same meteorological conditions.

  1. Black-body anomaly: analysis of temperature offsets

    International Nuclear Information System (INIS)

    Szopa, M.; Hofmann, R.; Schwarz, M.; Giacosa, F.

    2008-01-01

    Based on the postulate that photon propagation is governed by a dynamically broken SU(2) gauge symmetry (scale ∝10 -4 eV) we make predictions for temperature offsets due to a low-temperature (a few times the present CMB temperature) spectral anomaly at low frequencies. Temperature offsets are extracted from least-square fits of the anomalous black-body spectra to their conventional counterparts. We discuss statistical errors, compare our results with those obtained from calibration data of the FIRAS instrument, and point out that our predicted offsets are screened by experimental errors given the frequency range used by FIRAS to perform their spectral fits. We also make contact with the WMAP observation by blueshifting their frequency bands. Although our results hint towards a strong dynamical component in the CMB dipole and an explanation of low-l suppression, it is important in view of its particle-physics implications that the above postulate be verified/falsified by an independent low-temperature black-body precision experiment. (orig.)

  2. Two dimensional analysis of a high temperature gaseous radiation receiver

    Science.gov (United States)

    Mcfall, K. A.; Mattick, A. T.

    1992-01-01

    The characteristics of the Flowing Gas Radiation Receiver (FGRR), a device that absorbs solar radiation volumetrically in a gas to produce high temperatures for space propulsion and power applications, are analyzed using a two-dimensional axisymmetric numerical model of the flow and radiation fields within a diffusely reflecting channel. The results show that an FGRR system is capable of generating temperatures in excess of 3000 K with collection efficiencies of approximately 75 percent for a channel with a reflectivity of 0.9. For a collinear radiation source, outflow temperatures of 3193 and 3092 K were achieved for axial and radial flow inputs, respectively, with receiver efficiencies of 0.82 and 0.76.

  3. Optimization of electron beam crosslinking of wire and cable insulation

    International Nuclear Information System (INIS)

    Zimek, Z.; Przybytniak, G.; Nowicki, A.

    2011-01-01

    Complete text of publication follows. The computer simulations based on Monte Carlo method and the ModeCEB software program were carried out in connection with EB radiation set-up for crosslinking of electrical wire and cable insulation, located at the Center for Radiation Research and Technology of the Institute of Nuclear Chemistry and Technology. The theoretical predictions for absorbed dose distribution in irradiated electrical wire and cable insulation caused by scanned EB were compared to the experimental results of irradiation which were carried out in the experimental set-up based on ILU 6 electron accelerator, which is characterized by the following parameters: Electron energy 0.5-2.0 MeV; Average beam current 40-10 mA, pulse duration 400 μs; Width of scanning up to 80 cm; Scan frequency up to 50 Hz. The computer simulation of the dose distributions in two-sided irradiation system by a scanned electron beam in multilayer circular objects was performed for different process parameters; electrical wire and cable geometry (thickness of insulation layers and cupper wire diameter), type of polymer isolation, electron energy, energy spread, geometry of electron beam and electrical wire and cable distribution at irradiation zone. The geometry of electron beam distribution in irradiation zone was measured using TVA and PVC foil dosimeters for electron energy range available in ILU 6 accelerator. The temperature rise of irradiated electrical wire and irradiation homogeneity were evaluated for different experimental conditions to optimize process parameters. The obtained results of computer simulation were supported by experimental data of dose distribution based on gel-fraction measurements. Such agreement indicates that computer simulation ModeCEB is correct and sufficient for modelling of absorbed dose distribution in multi-layer circular objects irradiated with scanned electron beams. Acknowledgement: The R and D activities are supported by the European

  4. Analysis of the temperature field around salt diapirs

    DEFF Research Database (Denmark)

    Jensen, Peter Klint

    1990-01-01

    heat flux should be higher over 3D structures. On the other hand the areal extent of the temperature anomaly around the salt structures is less in the 3D case. Calculation examples indicate that low temperature geothermal energy exploitation of the formations around the top of a salt diapir can...... be favoured by a reduced drilling depth of 30% compared with the diapir-free case. It is further concluded thatsurface heat flow measurements in profiles across the diapir may be used in distinguishing between salt and shale diapirs....

  5. NOAA Optimum Interpolation 1/4 Degree Daily Sea Surface Temperature (OISST) Analysis, Version 2

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This high-resolution sea surface temperature (SST) analysis product was developed using an optimum interpolation (OI) technique. The SST analysis has a spatial grid...

  6. Clinical bending of nickel titanium wires

    Directory of Open Access Journals (Sweden)

    Stephen Chain

    2015-01-01

    Full Text Available Since the evolution and the involvement of Nickel Titanium wires in the field of Orthodontics. The treatment plan has evolved with the use of low force Nickel Titanium wires. Because of their high springback, low stiffness, they are the key initial wires in leveling and alignment but have poor formability. Since poor formability limits its ability to create variable arch forms thus; limits the form of treatment. We have devised a method to bend the Nickel Titanium wires to help in our inventory but also customized the wire according to the treatment.

  7. Emittance growth due to Tevatron flying wires

    Energy Technology Data Exchange (ETDEWEB)

    Syphers, M; Eddy, Nathan

    2004-06-01

    During Tevatron injection, Flying Wires have been used to measure the transverse beam size after each transfer from the Main Injector in order to deduce the transverse emittances of the proton and antiproton beams. This amounts to 36 + 9 = 45 flies of each of 3 wire systems, with an individual wire passing through each beam bunch twice during a single ''fly''. below they estimate the emittance growth induced by the interaction of the wires with the particles during these measurements. Changes of emittance from Flying Wire measurements conducted during three recent stores are compared with the estimations.

  8. Mechanical properties and surface characterization of beta titanium and stainless steel orthodontic wire following topical fluoride treatment.

    Science.gov (United States)

    Walker, Mary P; Ries, David; Kula, Katherine; Ellis, Micheal; Fricke, Brian

    2007-03-01

    To study the effect of fluoride prophylactic agents on the loading and unloading mechanical properties and surface quality of beta titanium and stainless steel orthodontic wires. Rectangular beta titanium and stainless steel wires were immersed in either an acidulated fluoride agent, a neutral fluoride agent, or distilled water (control) for 1.5 hours at 37 degrees C. After immersion, the loading and unloading elastic modulus and yield strength of the wires were measured using a 3-point bend test in a water bath at 37 degrees C. A one-way analysis of variance and Dunnett's post hoc, alpha = .05, were used to analyze the mechanical testing data. Scanning electron microscopy was also used to qualitatively evaluate the wire topography as a function of the fluoride treatments. Unloading mechanical properties of beta titanium and stainless steel wires were significantly decreased (P steel wire could decrease the functional unloading mechanical properties of the wires and potentially contribute to prolonged orthodontic treatment.

  9. Comparing the thermal stability of NbTi and Nb3Sn wires

    International Nuclear Information System (INIS)

    Breschi, M; Trevisani, L; Bottura, L; Devred, A; Trillaud, F

    2009-01-01

    The investigation of quenching in low temperature superconducting wires is of great relevance for a proper design of superconductive cables and magnets. This paper reports the experimental results of a vast measurement campaign of quench induced by laser pulses on NbTi and Nb 3 Sn wires in pool boiling helium I. A comparison of the quench behavior of two typical NbTi and Nb 3 Sn wires is shown from different standpoints. Different qualitative behaviors of the voltage traces recorded during quenches and recoveries on NbTi and Nb 3 Sn wires are reported and analyzed. It is shown that the Nb 3 Sn wire exhibits a quench or no-quench behavior, whereas quenches and recoveries are exhibited by the NbTi wire. The two wires are also compared by considering the behaviors of the two main parameters describing quench, i.e. quench energies and quench velocities, with respect to operating current, pulse duration, and magnetic field. It is shown that the Nb 3 Sn wire exhibits a 'kink' of the quench energy versus current curve that makes the quench energy of Nb 3 Sn lower than that of NbTi at some intermediate current levels. Both the qualitative differences of the voltage traces and the different behaviors of quench energies and velocities are interpreted through a coupled electromagnetic-thermal model, with special emphasis on the detailed description of heat exchange with liquid helium.

  10. Statistical analysis of the effects of relative humidity and temperature ...

    African Journals Online (AJOL)

    Meteorological data from the Department of Satellite Application Facility on Climate Monitoring (CMSAF), DWD Germany have been used to study and investigate the effect of relative humidity and temperature on refractivity in twenty six locations grouped into for climatic regions aloft Nigeria (Coastal, Guinea savannah, ...

  11. Statistical analysis of the effects of relative humidity and temperature ...

    African Journals Online (AJOL)

    Isreal

    Meteorological data from the Department of Satellite Application Facility on Climate Monitoring (CM-. SAF), DWD Germany have been used to study and investigate the effect of relative humidity and temperature on refractivity in twenty six locations grouped into for climatic regions aloft Nigeria. (Coastal, Guinea savannah ...

  12. Second law analysis of a reacting temperature dependent viscous ...

    African Journals Online (AJOL)

    In this paper, entropy generation during the flow of a reacting viscous fluid through an inclined Channel with isothermal walls are investigated. The coupled energy and momentum equations were solved numerically. Previous results in literature (Adesanya et al 2006 [[17]) showed both velocity and temperature have two ...

  13. Climate Prediction Center (CPC) Global Land Surface Air Temperature Analysis

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A station observation-based global land monthly mean surface air temperature dataset at 0.5 0.5 latitude-longitude resolution for the period from 1948 to the present...

  14. Hemispherical Resonator Gyroscope Accuracy Analysis Under Temperature Influence

    OpenAIRE

    Boran LI; Guangcheng MA; Changhong WANG

    2014-01-01

    Frequency splitting of hemispherical resonator gyroscope will change as system operating temperature changes. This phenomenon leads to navigation accuracy of hemispherical resonator gyroscope reduces. By researching on hemispherical resonator gyroscope dynamical model and its frequency characteristic, the frequency splitting formula and the precession angle formula of gyroscope vibrating mode based on hemispherical resonator gyroscope dynamic equation parameters are derived. By comparison, gy...

  15. Climate Prediction Center (CPC) Global Land Surface Air Temperature Analysis

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A station observation-based global land monthly mean surface air temperature dataset at 0.5 x 0.5 latitude-longitude resolution for the period from 1948 to the...

  16. Renormalization group analysis of quantum chromodynamics at finite temperature

    International Nuclear Information System (INIS)

    Yamada, Hirofumi.

    1988-03-01

    We re-investigate the behaviour of the effective coupling constant using the gauge invariant Wilson loop in Minkowsky space-time. The result tells us that the interaction of static q-q-bar pair becomes weak at high temperatures and at large distances. (author)

  17. Low temperature fluidized wood chip drying with monoterpene analysis

    Science.gov (United States)

    Bridget N. Bero; Alarick Reiboldt; Ward Davis; Natalie Bedard; Evan Russell

    2011-01-01

    This paper describes the drying of ponderosa pine wood chips at low (20°C and 50°C) temperatures using a bench-scale batch pulsed fluidizer to evaluate both volatile pine oils (monoterpenes) and moisture losses during drying.

  18. Towards Energy Efficiency: Forecasting Indoor Temperature via Multivariate Analysis

    Directory of Open Access Journals (Sweden)

    Juan Pardo

    2013-09-01

    Full Text Available The small medium large system (SMLsystem is a house built at the Universidad CEU Cardenal Herrera (CEU-UCH for participation in the Solar Decathlon 2013 competition. Several technologies have been integrated to reduce power consumption. One of these is a forecasting system based on artificial neural networks (ANNs, which is able to predict indoor temperature in the near future using captured data by a complex monitoring system as the input. A study of the impact on forecasting performance of different covariate combinations is presented in this paper. Additionally, a comparison of ANNs with the standard statistical forecasting methods is shown. The research in this paper has been focused on forecasting the indoor temperature of a house, as it is directly related to HVAC—heating, ventilation and air conditioning—system consumption. HVAC systems at the SMLsystem house represent 53:89% of the overall power consumption. The energy used to maintain temperature was measured to be 30%–38:9% of the energy needed to lower it. Hence, these forecasting measures allow the house to adapt itself to future temperature conditions by using home automation in an energy-efficient manner. Experimental results show a high forecasting accuracy and therefore, they might be used to efficiently control an HVAC system.

  19. A study on MFL based wire rope damage detection

    Science.gov (United States)

    Park, J.; Kim, J.-W.; Kim, J.; Park, S.

    2017-04-01

    Non-destructive testing on wire rope is in great demand to prevent safety accidents at sites where many heavy equipment using ropes are installed. In this paper, a research on quantification of magnetic flux leakage (MFL) signals were carried out to detect damages on wire rope. First, a simulation study was performed with a steel rod model using a finite element analysis (FEA) program. The leakage signals from the simulation study were obtained and it was compared for parameter: depth of defect. Then, an experiment on same conditions was conducted to verify the results of the simulation. Throughout the results, the MFL signal was quantified and a wire rope damage detection was then confirmed to be feasible. In further study, it is expected that the damage characterization of an entire specimen will be visualized as well.

  20. Thermite welding of Cu-Nb microcomposite wires

    Energy Technology Data Exchange (ETDEWEB)

    Visniakov, Nikolaj; Mikalauskas, Gediminas; Lukauskaite, Raimonda; Cernasejus, Olegas; Rudzinskas, Vitalijus [Vilnius Gediminas Technical Univ. (Lithuania). Faculty of Mechanics; Skamat, Jelena; Boris, Renata [Vilnius Gediminas Technical Univ. (Lithuania). Inst. of Thermal Insulation

    2017-10-15

    Thermite welding of Cu-Nb microcomposite wires was investigated. Suitable compositions of thermite material and slag were determined from the equation of the exothermic combustion synthesis reaction. The phase compositions of the thermite mixture and slag determined by X-ray diffraction analysis correspond to those assessed from the equation. According to non-destructive radiographic testing, the joint structure does not have welding defects. Microstructural examination of the joint cross-section with scanning electron microscopy showed that the Cu-Nb wire retained its shape and microstructure and only a thin surface layer of wire was melted during welding. The difference in electrical resistances of the conductor and welded joint was below 20 %. The thermite joint can withstand a maximum load equal to 62.5 % of the load-bearing capacity of microcomposite conductor.