WorldWideScience

Sample records for wire flow visualization

  1. Two phase flow measurement and visualization using Wire Mesh Sensors (WMS)

    International Nuclear Information System (INIS)

    Rajalakshmi, R.; Robin, Roshini; Rama Rao, A.

    2016-01-01

    Two phase flow behavior studies have gained importance in nuclear power plants to enhance fuel performance and safety. In this paper, taking into consideration low cost, high space-time resolution and instantaneous mapping, electrical sensors such as wire mesh sensors (WMS) is proposed for measurement of void distribution and its visualization. The sensor works on the conductivity principle and by measuring the variations in conductivity values of the two phases, the flow distributions can be identified. This paper describes the conceptual design of the WMS for two phase void measurements, Mathematical modeling of the sensor for data evaluation, modeling of the sensor geometry and FEM simulation studies for optimizing sensor geometry and excitation parameters, CFD two phase flows simulations, development of suitable algorithm and programming for two phase visualization and void distribution studies, prototype sensor fabrication and testing

  2. Visualization for gas-liquid two-phase flow using wire mesh tomography

    International Nuclear Information System (INIS)

    Motegi, Yuichi; Wanjiraniran, Weerin; Kikura, Hiroshige; Aritomi, Masanori; Yamauchi, Toyoaki

    2003-01-01

    Wire Mesh Tomography (WMT), which is system to measure two-phase flow, has been developed in our laboratory. Measurement principle of WMT is detecting conductivity difference between gas and liquid. WMT measures void fraction as raw date, and calculates gas velocity and bubble volume etc. In this paper, this measurement technique was applied to vertical circular pipe of 50 mm diameter and about 7 m heights. New Wire Mesh Sensor (WMS), which is measurement part of WMT, for circular pipe, have been made. When experiment was performed, superficial gas and water velocity. The effect of each flow parameter was found for void fraction, true gas velocity and bubble volume and the results was in good agreement with the past research, qualitatively. (author)

  3. Creation of subsonic macro-and microjets facilities and automated measuring system (AMS-2) for the spatial - temporal hot - wire anemometric visualization of jet flow field

    Science.gov (United States)

    Sorokin, A. M.; Grek, G. R.; Gilev, V. M.; Zverkov, I. D.

    2017-10-01

    Macro-and microjets facilities for generation of the round and plane subsonic jets are designed and fabricated. Automated measuring system (AMS - 2) for the spatial - temporal hot - wire anemometric visualization of jet flow field is designed and fabricated. Coordinate device and unit of the measurement, collecting, storage and processing of hot - wire anemometric information were integrated in the AMS. Coordinate device is intended for precision movement of the hot - wire probe in jet flow field according to the computer program. At the same time accuracy of the hot - wire probe movement is 5 microns on all three coordinates (x, y, z). Unit of measurement, collecting, storage and processing of hot - wire anemometric information is intended for the hot - wire anemometric measurement of the jet flow field parameters (registration of the mean - U and fluctuation - u' characteristics of jet flow velocity), their accumulation and preservation in the computer memory, and also carries out their processing according to certain programms.

  4. Flow visualization

    CERN Document Server

    Merzkirch, Wolfgang

    1974-01-01

    Flow Visualization describes the most widely used methods for visualizing flows. Flow visualization evaluates certain properties of a flow field directly accessible to visual perception. Organized into five chapters, this book first presents the methods that create a visible flow pattern that could be investigated by visual inspection, such as simple dye and density-sensitive visualization methods. It then deals with the application of electron beams and streaming birefringence. Optical methods for compressible flows, hydraulic analogy, and high-speed photography are discussed in other cha

  5. Flow visualization

    International Nuclear Information System (INIS)

    Weinstein, L.M.

    1991-01-01

    Flow visualization techniques are reviewed, with particular attention given to those applicable to liquid helium flows. Three techniques capable of obtaining qualitative and quantitative measurements of complex 3D flow fields are discussed including focusing schlieren, particle image volocimetry, and holocinematography (HCV). It is concluded that the HCV appears to be uniquely capable of obtaining full time-varying, 3D velocity field data, but is limited to the low speeds typical of liquid helium facilities. 8 refs

  6. Flow pattern assessment in tubes with wire coil inserts in laminar and transition regimes

    International Nuclear Information System (INIS)

    Garcia, A.; Solano, J.P.; Vicente, P.G.; Viedma, A.

    2007-01-01

    The paper presents an analysis of the flow mechanisms in tubes with wire coils using hydrogen bubble visualization and PIV techniques. Results have been contrasted with experimental data on pressure drop. The relation between the observed flow patterns and the friction factor has been analysed. The experimental analysis that has been carried out allows one to state that at low Reynolds numbers (Re < 400) the flow in tubes with wire coils is basically similar to the flow in smooth tubes. At Reynolds numbers between 500 and 700 and in short pitch wire coils a recirculating flow appears. The insertion of wires coils in a smooth tube accelerates significantly the transition to turbulence. This is produced at Reynolds numbers between 700 and 1000 depending on the wire pitch

  7. Flow visualization using bubbles

    International Nuclear Information System (INIS)

    Henry, J.P.

    1974-01-01

    Soap bubbles were used for visualizing flows. The tests effected allowed some characteristics of flows around models in blow tunnels to be precised at mean velocities V 0 5 . The velocity of a bubble is measured by chronophotography, the bulk envelope of the trajectories is also registered [fr

  8. Experimental Study on EHD Flow Transition in a Small Scale Wire-plate ESP

    Directory of Open Access Journals (Sweden)

    Wang Chuan

    2016-06-01

    Full Text Available The electrohydrodynamic (EHD flow induced by the corona discharge was experimentally investigated in an electrostatic precipitator (ESP. The ESP was a narrow horizontal Plexiglas box (1300 mm×60 mm×60 mm. The electrode set consisted of a single wire discharge electrode and two collecting aluminum plate electrodes. Particle Image Velocimetry (PIV method was used to visualize the EHD flow characteristics inside the ESP seeded with fine oil droplets. The influence of applied voltage (from 8 kV to 10 kV and primary gas flow (0.15 m/s, 0.2 m/s, 0.4 m/s on the EHD flow transition was elucidated through experimental analysis. The formation and transition of typical EHD flows from onset to the fully developed were described and explained. Experimental results showed that the EHD flow patterns change depends on the gas velocity and applied voltage. EHD flow starts with flow streamlines near collecting plates bending towards the wire electrode, forming two void regions. An oscillating jet forming the downstream appeared and moved towards the wire electrode as voltage increased. For higher velocities (≥0.2 m/s, the EHD transition became near wire phenomenon with a jet-like flow structure near the wire, forming a void region behind the wire and expanding as voltage increased. Fully developed EHD secondary flow in the form of counter-rotating vortices appeared upstream with high applied voltage.

  9. Modeling and simulation of the fluid flow in wire electrochemical machining with rotating tool (wire ECM)

    Science.gov (United States)

    Klocke, F.; Herrig, T.; Zeis, M.; Klink, A.

    2017-10-01

    Combining the working principle of electrochemical machining (ECM) with a universal rotating tool, like a wire, could manage lots of challenges of the classical ECM sinking process. Such a wire-ECM process could be able to machine flexible and efficient 2.5-dimensional geometries like fir tree slots in turbine discs. Nowadays, established manufacturing technologies for slotting turbine discs are broaching and wire electrical discharge machining (wire EDM). Nevertheless, high requirements on surface integrity of turbine parts need cost intensive process development and - in case of wire-EDM - trim cuts to reduce the heat affected rim zone. Due to the process specific advantages, ECM is an attractive alternative manufacturing technology and is getting more and more relevant for sinking applications within the last few years. But ECM is also opposed with high costs for process development and complex electrolyte flow devices. In the past, few studies dealt with the development of a wire ECM process to meet these challenges. However, previous concepts of wire ECM were only suitable for micro machining applications. Due to insufficient flushing concepts the application of the process for machining macro geometries failed. Therefore, this paper presents the modeling and simulation of a new flushing approach for process assessment. The suitability of a rotating structured wire electrode in combination with an axial flushing for electrodes with high aspect ratios is investigated and discussed.

  10. Investigation on Characterizing Heated Pulsating Flows with Hot Wire Anemometers - A Hands-On Approach

    Directory of Open Access Journals (Sweden)

    Marius Alexandru PANAIT

    2014-06-01

    Full Text Available The pulsating heated flows are traditionally a difficult subject to treat with conventional hot wire or film methods. Special factors that complicate matters are flow reversal and non linear flow effects of vortices and wire probe wake disturbances on the heat transfer to the hot film or wire sensor in heated pulsating flows. The presence of these strongly nonlinear and unknown terms leads to great difficulties in calibration of hot film probes in this particular regime. The paper analyses the current state of matters in the field and reports a series of solutions that have been practically tested in a case of a high speed pulsated heated flow. Normally such measurements are made in a non-contact fashion using a LDV system or various visualization techniques but there have been recent attempts to use a constant temperature hot wire anemometer system (CTA.To obtain meaningful calibration for hot wire films in hot pulsating flows, a comparison system on other principles (LDV was used, as well as a specially designed nozzle to replace the calibrator unit that could not be operated with heated fluid due to structural integrity reasons. The method as described below works well for the expected speed range that could be generated using the special nozzle.

  11. Flow, affect and visual creativity.

    Science.gov (United States)

    Cseh, Genevieve M; Phillips, Louise H; Pearson, David G

    2015-01-01

    Flow (being in the zone) is purported to have positive consequences in terms of affect and performance; however, there is no empirical evidence about these links in visual creativity. Positive affect often--but inconsistently--facilitates creativity, and both may be linked to experiencing flow. This study aimed to determine relationships between these variables within visual creativity. Participants performed the creative mental synthesis task to simulate the creative process. Affect change (pre- vs. post-task) and flow were measured via questionnaires. The creativity of synthesis drawings was rated objectively and subjectively by judges. Findings empirically demonstrate that flow is related to affect improvement during visual creativity. Affect change was linked to productivity and self-rated creativity, but no other objective or subjective performance measures. Flow was unrelated to all external performance measures but was highly correlated with self-rated creativity; flow may therefore motivate perseverance towards eventual excellence rather than provide direct cognitive enhancement.

  12. Flow lab.: flow visualization and simulation

    International Nuclear Information System (INIS)

    Park, Chung Kyun; Cho, Won Jin; Hahn, Pil Soo

    2005-01-01

    The experimental setups for flow visualization and processes identification in laboratory scale (so called Flow Lab.) has developed to get ideas and answer fundamental questions of flow and migration in geologic media. The setup was made of a granite block of 50x50cm scale and a transparent acrylate plate. The tracers used in this experiments were tritiated water, anions, and sorbing cations as well as an organic dye, eosine, to visualize migration paths. The migration plumes were taken with a digital camera as a function of time and stored as digital images. A migration model was also developed to describe and identify the transport processes. Computer simulation was carried out not only for the hydraulic behavior such as distributions of pressure and flow vectors in the fracture but also for the migration plume and the elution curves

  13. Techniques of Flow Visualization

    Science.gov (United States)

    1987-12-01

    are sensitive. Within the bandwidth of their sensitivity, up to ten color hues may be discriminated by the eye. The visible edge between two colors...can be performed with conven- tional photography or cinematography . Video recording is of advantage for the further pro- cessing of the flow pictures

  14. Horizontal Air-Water Flow Analysis with Wire Mesh Sensor

    International Nuclear Information System (INIS)

    De Salve, M; Monni, G; Panella, B

    2012-01-01

    A Wire Mesh Sensor, based on the measurement of the local instantaneous conductivity of the two-phase mixture, has been used to characterize the fluid dynamics of the gas–liquid interface in a horizontal pipe flow. Experiments with a pipe of a nominal diameter of 19.5 mm and total length of 6 m, have been performed with air/water mixtures, at ambient conditions. The flow quality ranges from 0.00016 to 0.22 and the superficial velocities range from 0.1 to 10.5 m/s for air and from 0.02 to 1.7 m/s for water; the flow pattern is stratified, slug/plug and annular. A sensor (WMS200) with an inner diameter of 19.5 mm and a measuring matrix of 16×16 points equally distributed over the cross-section has been chosen for the measurements. From the analysis of the Wire Mesh Sensor digital signals the average and the local void fraction are evaluated and the flow patterns are identified with reference to space, time and flow rate boundary conditions.

  15. Wire-mesh sensors for two-phase flow investigations

    International Nuclear Information System (INIS)

    Prasser, H.M.

    1999-01-01

    In the annual report 1996 a new wire-mesh sensor for gas-liquid flows was presented. It was used to visualise the cavitation bubble behind a fast acting shut-off valve in a pipeline with a time resolution of over 1000 frames per second for the first time. In the last two years the sensor was applied to an air-water flow in a vertical pipeline (inner diameter D=51.2 mm) to study the flow structure in a wide range of superficial velocities. Besides the void fraction distributions, the high resolution of the sensor allows to calculate bubble size distributions from the primary measuring data. It was possible to study the evolution of the bubble size distribution along the flow path with growing distance from the gas injection (inlet length, L). (orig.)

  16. Wire-mesh sensors for two-phase flow investigations

    Energy Technology Data Exchange (ETDEWEB)

    Prasser, H.M.

    1999-07-01

    In the annual report 1996 a new wire-mesh sensor for gas-liquid flows was presented. It was used to visualise the cavitation bubble behind a fast acting shut-off valve in a pipeline with a time resolution of over 1000 frames per second for the first time. In the last two years the sensor was applied to an air-water flow in a vertical pipeline (inner diameter D=51.2 mm) to study the flow structure in a wide range of superficial velocities. Besides the void fraction distributions, the high resolution of the sensor allows to calculate bubble size distributions from the primary measuring data. It was possible to study the evolution of the bubble size distribution along the flow path with growing distance from the gas injection (inlet length, L). (orig.)

  17. Wire-mesh sensors for two-phase flow investigations

    Energy Technology Data Exchange (ETDEWEB)

    Prasser, H.M.

    1999-09-01

    In the annual report 1996 a new wire-mesh sensor for gas-liquid flows was presented. It was used to visualise the cavitation bubble behind a fast acting shut-off valve in a pipeline with a time resolution of over 1000 frames per second for the first time. In the last two years the sensor was applied to an air-water flow in a vertical pipeline (inner diameter D=51.2 mm) to study the flow structure in a wide range of superficial velocities. Besides the void fraction distributions, the high resolution of the sensor allows to calculate bubble size distributions from the primary measuring data. It was possible to study the evolution of the bubble size distribution along the flow path with growing distance from the gas injection (inlet length, L). (orig.)

  18. Effect of Flow Direction on the Extinction Limit for Flame Spread over Wire Insulation in Microgravity

    DEFF Research Database (Denmark)

    Nagachi, Masashi; Mitsui, Fumiya; Citerne, Jean-Marie

    Experiments to determine the Limiting Oxygen Concentration (LOC) of a flame spread over electric wire insulation were carried out in microgravity provided by parabolic flights. The difference between the LOC in opposed and concurrent flows was evidenced. Polyethylene insulated Copper (Cu) wires...... and polyethylene insulated Nickel-Chrome (NiCr) wires with inner core diameter of 0.50 mm and insulation thickness of 0.30 mm were examined with external flow velocities ranging from 50mm/s to 200mm/s. The results for the Copper wires show that with increasing external flow velocity, the LOC monotonically...... decreased for the concurrent flow conditions and the LOC first decreased and then increased (“U” trend) for the opposed flow conditions. Similar trends were found in the experiments with NiCr wires. Also, in terms of the minimum LOC value, the minimum LOC was comparable for both wire types in both flow...

  19. Control of flow past a circular cylinder via a spanwise surface wire: effect of the wire scale

    Energy Technology Data Exchange (ETDEWEB)

    Ekmekci, Alis [University of Toronto Institute for Aerospace Studies, Toronto, ON (Canada); Rockwell, Donald [Lehigh University, Department of Mechanical Engineering, Bethlehem, PA (United States)

    2011-09-15

    Flow phenomena induced by a single spanwise wire on the surface of a circular cylinder are investigated via a cinema technique of particle image velocimetry (PIV). The primary aim of this investigation is to assess the effect of the wire scale. To this end, consideration is given to wires with different diameters that are 0.5, 1.2, and 2.9% of the cylinder diameter. The Reynolds number has a subcritical value of 10,000. Compared to the thickness of the unperturbed boundary layer developing around the cylinder between 5 and 75 from the forward stagnation point, the former two wires have smaller scales and the latter has a larger scale. Two angular locations of the wire, defined with respect to the forward stagnation point of the cylinder, are found to be critical. When the wire is located at these critical angles, either the most significant extension or the contraction of the time-mean separation bubble occurs in the near wake. These critical angles depend on the wire scale: the smaller the wire, the larger the critical angle. The small-scale and large-scale wires that have diameters of 1.2 and 2.9% of the cylinder diameter induce bistable shear-layer oscillations between different separation modes when placed at their respective critical angles corresponding to maximum extension of the near-wake bubble. These oscillations have irregular time intervals that are much longer than the time scale associated with the classical Karman instability. Moreover, the large-scale wire can either significantly attenuate or intensify the Karman mode of vortex shedding at the critical states; in contrast, the small-scale wires do not notably alter the strength of the Karman instability. (orig.)

  20. Development and application of streakline visualization in hypervelocity flows

    Energy Technology Data Exchange (ETDEWEB)

    Lemieux, P.; Hornung, H.G. [Graduate Aeronautical Laboratories, California Institute of Technology, Pasadena, CA 91125 (United States)

    2002-07-01

    A method for visualizing streaklines in hypervelocity flows has been developed. The method uses the high temperatures produced in hypervelocity flows to ablate small amounts of sodium deposited onto a wire stretched across the flow and to broaden the lines in the sodium spectrum. By using a dye laser, tuned to a wavelength close to one of the sodium D-lines, as the light source in shadowgraph or Schlieren visualization, streaklines seeded with sodium become visible through absorption and/or enhanced refractivity. The technique has been used to investigate the stability of the shear layer produced by the curved bow shock on a cylindrically blunted wedge. The results suggest that the shear layer is unstable, exhibiting structures with a wavelength that is comparable to half the nose radius of the body. (orig.)

  1. Swirl flow analysis in a helical wire inserted tube using CFD code

    International Nuclear Information System (INIS)

    Park, Yusun; Chang, Soon Heung

    2010-01-01

    An analysis on the two-phase flow in a helical wire inserted tube using commercial CFD code, CFX11.0, was performed in bubbly flow and annular flow regions. The analysis method was validated with the experimental results of Takeshima. Bubbly and annular flows in a 10 mm inner diameter tube with varying pitch lengths and inserted wire diameters were simulated using the same analysis methods after validation. The geometry range of p/D was 1-4 and e/D was 0.08-0.12. The results show that the inserted wire with a larger diameter increased swirl flow generation. An increasing swirl flow was seen as the pitch length increased. Regarding pressure loss, smaller pitch lengths and inserted wires with larger diameters resulted in larger pressure loss. The average liquid film thickness increased as the pitch length and the diameter of the inserted wire increased in the annular flow region. Both in the bubbly flow and annular flow regions, the effect of pitch length on swirl flow generation and pressure loss was more significant than that of the inserted wire diameters. Pitch length is a more dominant factor than inserted wire diameter for the design of the swirl flow generator in small diameter tubes.

  2. Flow Visualization in Supersonic Turbulent Boundary Layers.

    Science.gov (United States)

    Smith, Michael Wayne

    This thesis is a collection of novel flow visualizations of two different flat-plate, zero pressure gradient, supersonic, turbulent boundary layers (M = 2.8, Re _theta ~ 82,000, and M = 2.5, Re_ theta ~ 25,000, respectively). The physics of supersonic shear flows has recently drawn increasing attention with the renewed interest in flight at super and hypersonic speeds. This work was driven by the belief that the study of organized, Reynolds -stress producing turbulence structures will lead to improved techniques for the modelling and control of high-speed boundary layers. Although flow-visualization is often thought of as a tool for providing qualitative information about complex flow fields, in this thesis an emphasis is placed on deriving quantitative results from image data whenever possible. Three visualization techniques were applied--'selective cut-off' schlieren, droplet seeding, and Rayleigh scattering. Two experiments employed 'selective cut-off' schlieren. In the first, high-speed movies (40,000 fps) were made of strong density gradient fronts leaning downstream at between 30^circ and 60^ circ and travelling at about 0.9U _infty. In the second experiment, the same fronts were detected with hot-wires and imaged in real time, thus allowing the examination of the density gradient fronts and their associated single-point mass -flux signals. Two experiments employed droplet seeding. In both experiments, the boundary layer was seeded by injecting a stream of acetone through a single point in the wall. The acetone is atomized by the high shear at the wall into a 'fog' of tiny (~3.5mu m) droplets. In the first droplet experiment, the fog was illuminated with copper-vapor laser sheets of various orientations. The copper vapor laser pulses 'froze' the fog motion, revealing a variety of organized turbulence structures, some with characteristic downstream inclinations, others with large-scale roll-up on the scale of delta. In the second droplet experiment, high

  3. Visualization study of flow in axial flow inducer.

    Science.gov (United States)

    Lakshminarayana, B.

    1972-01-01

    A visualization study of the flow through a three ft dia model of a four bladed inducer, which is operated in air at a flow coefficient of 0.065, is reported in this paper. The flow near the blade surfaces, inside the rotating passages, downstream and upstream of the inducer is visualized by means of smoke, tufts, ammonia filament, and lampblack techniques. Flow is found to be highly three dimensional, with appreciable radial velocity throughout the entire passage. The secondary flows observed near the hub and annulus walls agree with qualitative predictions obtained from the inviscid secondary flow theory.

  4. Three-dimensional flow phenomena in a wire-wrapped 37-pin fuel bundle for SFR

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Jae Ho; Yoo, Jin; Lee, Kwi Lim; Ha, Kwi Seok [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-08-15

    Three-dimensional flow phenomena in a wire-wrapped 37-pin fuel assembly mock-up of a Japanese loop-type sodium-cooled fast reactor, Monju, were investigated with a numerical analysis using a general-purpose commercial computational fluid dynamics code, CFX. Complicated and vortical flow phenomena in the wire-wrapped 37-pin fuel assembly were captured by a Reynolds-averaged Navier-Stokes flow simulation using a shear stress transport turbulence model. The main purpose of the current study is to understand the three-dimensional complex flow phenomena in a wire-wrapped fuel assembly to support the license issue for the core design. Computational fluid dynamics results show good agreement with friction factor correlation models. The secondary flow in the corner and edge subchannels is much stronger than that in an interior subchannel. The axial velocity averaged in the corner and edge subchannels is higher than that averaged in the interior subchannels. Three-dimensional multiscale vortex structures start to be formed by an interaction between secondary flows around each wire-wrapped pin. Behavior of the large-scale vortex structures in the corner and edge subchannels is closely related to the relative position between the hexagonal duct wall and the helically wrapped wire spacer. The small-scale vortex is axially developed in the interior subchannels. Furthermore, a driving force on each wire spacer surface is closely related to the relative position between the hexagonal duct wall and the wire spacer.

  5. Centrifuge in space fluid flow visualization experiment

    Science.gov (United States)

    Arnold, William A.; Wilcox, William R.; Regel, Liya L.; Dunbar, Bonnie J.

    1993-01-01

    A prototype flow visualization system is constructed to examine buoyancy driven flows during centrifugation in space. An axial density gradient is formed by imposing a thermal gradient between the two ends of the test cell. Numerical computations for this geometry showed that the Prandtl number plays a limited part in determining the flow.

  6. Visualizing vector field topology in fluid flows

    Science.gov (United States)

    Helman, James L.; Hesselink, Lambertus

    1991-01-01

    Methods of automating the analysis and display of vector field topology in general and flow topology in particular are discussed. Two-dimensional vector field topology is reviewed as the basis for the examination of topology in three-dimensional separated flows. The use of tangent surfaces and clipping in visualizing vector field topology in fluid flows is addressed.

  7. Visualization of numerically simulated aerodynamic flow fields

    International Nuclear Information System (INIS)

    Hian, Q.L.; Damodaran, M.

    1991-01-01

    The focus of this paper is to describe the development and the application of an interactive integrated software to visualize numerically simulated aerodynamic flow fields so as to enable the practitioner of computational fluid dynamics to diagnose the numerical simulation and to elucidate essential flow physics from the simulation. The input to the software is the numerical database crunched by a supercomputer and typically consists of flow variables and computational grid geometry. This flow visualization system (FVS), written in C language is targetted at the Personal IRIS Workstations. In order to demonstrate the various visualization modules, the paper also describes the application of this software to visualize two- and three-dimensional flow fields past aerodynamic configurations which have been numerically simulated on the NEC-SXIA Supercomputer. 6 refs

  8. Effect Of Low External Flow On Flame Spreading Over ETFE Insulated Wire Under Microgravity

    Science.gov (United States)

    Nishizawa, Katsuhiro; Fujita, Osamu; Ito, Kenichi; Kikuchi, Masao; Olson, Sandra L.; Kashiwagi, Takashi

    2003-01-01

    Fire safety is one of the most important issues for manned space missions. A likely cause of fires in spacecraft is wire insulation combustion in electrical system. Regarding the wire insulation combustion it important to know the effect of low external flow on the combustion because of the presence of ventilation flow in spacecraft. Although, there are many researches on flame spreading over solid material at low external flows under microgravity, research dealing with wire insulation is very limited. An example of wire insulation combustion in microgravity is the Space Shuttle experiments carried out by Greenberg et al. However, the number of experiments was very limited. Therefore, the effect of low flow velocity is still not clear. The authors have reported results on flame spreading over ETFE (ethylene - tetrafluoroetylene) insulated wire in a quiescent atmosphere in microgravity by 10 seconds drop tower. The authors also performed experiments of polyethylene insulated nichrom wire combustion in low flow velocity under microgravity. The results suggested that flame spread rate had maximum value in low flow velocity condition. Another interesting issue is the effect of dilution gas, especially CO2, which is used for fire extinguisher in ISS. There are some researches working on dilution gas effect on flame spreading over solid material in quiescent atmosphere in microgravity. However the research with low external flow is limited and, of course, the research discussing a relation of the appearance of maximum wire flammability in low flow velocity region with different dilution gas cannot be found yet. The present paper, therefore, investigates the effect of opposed flow with different dilution gas on flame spreading over ETFE insulated wire and change in the presence of the maximum flammability depending on the dilution gas type is discussed within the limit of microgravity time given by ground-based facility.

  9. Wired! and Visualizing Venice: Scaling up Digital Art History

    OpenAIRE

    Lanzoni, Kristin Huffman; Olson, Mark James-Vrooman; Szabo, Victoria E.

    2015-01-01

    This article focuses on Visualizing Venice, an interdisciplinary, cross-cultural collaboration that engages in mapping, 3-D modeling, and multimedia representations of historical change in Venice, Italy. Through a “laboratory” approach that integrates students and faculty in multi-year research teams, we ask new questions and pursue emerging lines of inquiry about architectural monuments, their relation to the larger urban setting, and the role of sculptural and painted decoration in sacred s...

  10. Reading wiring diagrams made easier for maintenance operators: contribution from research in visual attention and visual search

    International Nuclear Information System (INIS)

    Ponthieu, L.; Wolfe, J.M.

    1994-07-01

    This work has been carried out while the author was visiting the Visual Psychophysics lab at the Center for Ophthalmic Research, Harvard Medical School. The general framework is the design of a wiring diagrams visualization system for maintenance operators in electric plants. This study concentrates on how knowledge and experimental techniques from visual attention can help this goal. From this standpoint, the visualization system must best exploit the human visual system abilities. As electronic databases containing all the diagrams will soon be available, it is important to think in advance the display techniques. Presently, maintenance operators favor working with paper printouts even where such databases are already available. The study shows why such an approach is valuable for the design of a display that fits the operator's tasks. Beyond that, this work has been a mean to learn the experimental techniques of cognitive sciences in an applied frame. (authors). 9 figs., 5 annexes

  11. Flow visualization via partial differential equations

    NARCIS (Netherlands)

    Preusser, T.; Rumpf, M.; Telea, A.C.; Möller, T.; Hamann, B.; Russell, R.D.

    2009-01-01

    The visualization of stationary and time-dependent flow is an important and chaltenging topic in scientific visualization. lts aim is 10 represent transport phenomena govemed by vector fjelds in an intuitively understandable way. In this paper. we review the use of methods based on partial

  12. Characterizing the correlations between local phase fractions of gas-liquid two-phase flow with wire-mesh sensor.

    Science.gov (United States)

    Tan, C; Liu, W L; Dong, F

    2016-06-28

    Understanding of flow patterns and their transitions is significant to uncover the flow mechanics of two-phase flow. The local phase distribution and its fluctuations contain rich information regarding the flow structures. A wire-mesh sensor (WMS) was used to study the local phase fluctuations of horizontal gas-liquid two-phase flow, which was verified through comparing the reconstructed three-dimensional flow structure with photographs taken during the experiments. Each crossing point of the WMS is treated as a node, so the measurement on each node is the phase fraction in this local area. An undirected and unweighted flow pattern network was established based on connections that are formed by cross-correlating the time series of each node under different flow patterns. The structure of the flow pattern network reveals the relationship of the phase fluctuations at each node during flow pattern transition, which is then quantified by introducing the topological index of the complex network. The proposed analysis method using the WMS not only provides three-dimensional visualizations of the gas-liquid two-phase flow, but is also a thorough analysis for the structure of flow patterns and the characteristics of flow pattern transition. This article is part of the themed issue 'Supersensing through industrial process tomography'. © 2016 The Author(s).

  13. Characterizing the correlations between local phase fractions of gas–liquid two-phase flow with wire-mesh sensor

    Science.gov (United States)

    Liu, W. L.; Dong, F.

    2016-01-01

    Understanding of flow patterns and their transitions is significant to uncover the flow mechanics of two-phase flow. The local phase distribution and its fluctuations contain rich information regarding the flow structures. A wire-mesh sensor (WMS) was used to study the local phase fluctuations of horizontal gas–liquid two-phase flow, which was verified through comparing the reconstructed three-dimensional flow structure with photographs taken during the experiments. Each crossing point of the WMS is treated as a node, so the measurement on each node is the phase fraction in this local area. An undirected and unweighted flow pattern network was established based on connections that are formed by cross-correlating the time series of each node under different flow patterns. The structure of the flow pattern network reveals the relationship of the phase fluctuations at each node during flow pattern transition, which is then quantified by introducing the topological index of the complex network. The proposed analysis method using the WMS not only provides three-dimensional visualizations of the gas–liquid two-phase flow, but is also a thorough analysis for the structure of flow patterns and the characteristics of flow pattern transition. This article is part of the themed issue ‘Supersensing through industrial process tomography’. PMID:27185959

  14. Making waves: visualizing fluid flows

    NARCIS (Netherlands)

    Zweers, Wout; Zwart, Valerie; Bokhove, Onno

    2013-01-01

    We explore the visualization of violent wave dynamics and erosion by waves and jets in laser-cut reliefs, laser engravings, and three-dimensional printing. For this purpose we built table-top experiments to cast breaking waves, and also explored the creation of extreme or rogue waves in larger wave

  15. Turbulent-flow split model and supporting experiments for wire-wrapped core assemblies

    International Nuclear Information System (INIS)

    Chiu, C.; Todreas, N.; Rohsenow, W.

    1978-04-01

    A flow split model for the turbulent flow in a wire-wrapped nuclear fuel rod assembly is developed taking the form drag and sweeping flow between subchannels into consideration. This model is applicable to the flow distribution between two types of subchannels, i.e., interior and edge subchannels. The constants in this model for each type of subchannel were determined using all experimental data in the literature and the results of two tests performed as part of this study to fill a gap in the available literature. These experiments to measure flow split were performed on two wire-wrapped 61 pin bundles of pin pitch to pin diameter ratio, P/D, equal to 1.063 and wire lead to pin diameter ratios, H/D, of 4 and 8. The predictions of this model match all experimental data in the literature within +- 5%

  16. A low-power high-flow shape memory alloy wire gas microvalve

    International Nuclear Information System (INIS)

    Gradin, Henrik; Braun, Stefan; Stemme, Göran; Van der Wijngaart, Wouter; Clausi, Donato; Peirs, Jan; Reynaerts, Dominiek

    2012-01-01

    In this paper the use of shape memory alloy (SMA) wire actuators for high gas flow control is investigated. A theoretical model for effective gas flow control is presented and gate microvalve prototypes are fabricated. The SMA wire actuator demonstrates the robust flow control of more than 1600 sccm at a pressure drop of 200 kPa. The valve can be successfully switched at over 10 Hz and at an actuation power of 90 mW. Compared to the current state-of-the-art high-flow microvalves, the proposed solution benefits from a low-voltage actuator with low overall power consumption. This paper demonstrate that SMA wire actuators are well suited for high-pressurehigh-flow applications. (paper)

  17. Fast wire-mesh sensors for gas-liquid flows - Visualisation with up to 10 000 frames per second

    International Nuclear Information System (INIS)

    Prasser, H.M.; Zschau, J.; Peters, D.; Pietzsch, G.; Taubert, W.; Trepte, M.

    2002-01-01

    A wire-mesh sensor developed by the Forschungszentrum Rossendorf produces sequences of instantaneous gas fraction distributions in a cross section at a rate of up to 10 000 frames per second and a spatial resolution of about 2-3 mm. This sensor was applied to an upwards air-liquid flow in a vertical pipe of 51.2 mm diameter. After a brief introduction of the functioning of the sensor, the paper presents results obtained in a at vertical pipe operated with an air-water mixture. Two wire-mesh sensors with a measuring matrix of 24 x 24 points (resolution 2 mm) were placed in a small axial distance behind each other. They were used to study the flow structure in the transition region from bubble to slug flow at an imaging frequency of 2 500 Hz. The two available measuring planes allowed to obtain velocity profiles of the gaseous phase. A sensor with 16 x 16 points (resolution 3 mm) was applied to visualize the transition from bubbly via churn turbulent to annular flow with 10 000 frames per second. In the churn flow region, periodic plug-like structures were found. In the annular flow the sensor is able to resolve wispy structures. (authors)

  18. Measurements of Flow Mixing at Subchannels in a Wire-Wrapped 61-Rod Bundle for a Sodium Cooled Fast Reactor

    International Nuclear Information System (INIS)

    Lee, Dong Won; Kim, Hyungmo; Ko, Yung Joo; Choi, Hae Seob; Euh, Dong-Jin; Jeong, Ji-Young; Lee, Hyeong-Yeon

    2015-01-01

    For a safety analysis in a core thermal design of a sodium-cooled fast reactor (SFR), flow mixing characteristics at subchannels in a wire-wrapped rod bundle are crucial factor for the design code verification and validation. Wrapped wires make a cross flow in a circumference of the fuel rod, and this effect lets flow be mixed. Therefore the sub-channel analysis method is commonly used for thermal hydraulic analysis of a SFR, a wire wrapped sub-channel type. To measure flow mixing characteristics, a wire mesh sensing technique can be useful method. A wire mesh sensor has been traditionally used to measure the void fraction of a two-phase flow field, i.e. gas and liquid. However, the recent reports that the wire mesh sensor can be used successfully to recognize the flow field in liquid phase by injecting a tracing liquid with a different level of electric conductivity. The subchannel flow characteristics analysis method is commonly used for the thermal hydraulic analysis of a SFR, a wire wrapped subchannel type. In this study, mixing experiments were conducted successfully at a hexagonally arrayed 61-pin wire-wrapped fuel rod bundle test section. Wire mesh sensor was used to measure flow mixing characteristics. The developed post-processing method has its own merits, and flow mixing results were reasonable

  19. Study of fuel bundle geometry on inter subchannel flow in a 19 pin wire wrapped bundle

    International Nuclear Information System (INIS)

    Naveen Raj, M.; Velusamy, D.K.

    2015-01-01

    In typical sodium cooled fast reactor (SFR) fuel pin bundle, gap between the pins is maintained by helically wound wire wrap around each pin. The presence of wire induces large inter-subchannel transverse flow, eventually promoting mixing and heat transfer. The magnitude of the transverse flow is highly dependent on the various pin-bundle dimensions. Appropriate modeling of these transverse flows in subchannel codes is necessary to predict realistic temperature distribution in pin bundle. Hence, detailed parametric study of transverse flow on pin-bundle geometric parameters has been conducted. The parameters taken for the present study are pin diameter, wire diameter, helical wire pitch and edge gap. Towards this 3-D computational fluid dynamic analysis on a structured mesh of 19 pin bundle is carried out using k-epsilon turbulence model. Periodic oscillations along the primacy flow direction were found in subchannel transverse flow and peripheral pin clad temperatures with periodicity over one pitch length. Based on parametric studies, correlations for transverse flow in central subchannels are proposed. (author)

  20. Flow split, pressure drop, and mixing experiments in a 61-pin shaved-wire blanket assembly

    International Nuclear Information System (INIS)

    Wang, S.F.; Rohsenow, W.M.; Todreas, N.E.

    1981-10-01

    The experimental results of a series of hydraulic tests on a shaved-wire 61-pin blanket assembly are presented and compared to previously published MIT results for full-wire tests. The reduction of the wall subchannel flow area by incorporating the shaved-wire reduced the flow in edge and corner subchannels by 4.5 to 16.5% and 1.5%, respectively. The swirl velocity in the wall subchannels was reduced by 50%. The bundle average friction factor, the turbulent subchannel friction factors, and the mixing parameter and laminar/transition friction factors in the interior subchannels remained unchanged. However, the laminar/transition friction factors in the edge subchannels were significantly increased. These effects generally cannot be predicted by the current flow split, friction factor, and mixing parameter correlations

  1. Flow visualization in science and mathematics

    Energy Technology Data Exchange (ETDEWEB)

    Max, Nelson; Correa, Carlos; Muelder, Chris; Yan Shi; Chen, Cheng-Kai; Ma, Kwan-Liu, E-mail: max@cs.ucdavis.ed [Department of Computer Science, University of California, Davis 1 Shields Ave., Davis California, 95616 (United States)

    2009-07-01

    We present several methods for visualizing motion, vector fields, and flows, including polygonal surface advection, visibility driven transfer functions, feature extraction and tracking, and motion frequency analysis and enhancement. They are applied to chaotic attractors, turbulent vortices, supernovae, and seismic data.

  2. Visualization of multiphase flow by neutron radiography

    International Nuclear Information System (INIS)

    Mishima, Kaichiro; Takenaka, Nobuyuki.

    1991-01-01

    Neutron radiography (NRG) is a technique which produces images of the internal structure of a body, making use of the attenuation characteristics of neutrons in the materials being observed. Recently, attempts have been made to expand the application of this technique not only to non-destructive testing but also to a variety of industrial and basic research fields. The attenuation of neutrons is large in a light material like water and small in ordinary metals, which difference may make it possible to visualize a multiphase flow in a metallic container. Particularly, the neutron television, which is one of the applied techniques of NRG, is expected to be a useful tool for observing the behavior of two-phase flow, since it produces images in real time. In this paper the basic idea and the method of NRG are presented along with examples of visualization of multiphase flow by NRG. (author)

  3. Influence and applicability of wire-mesh sensor to acquire two phase flow dynamics

    International Nuclear Information System (INIS)

    Kanai, Taizo; Furuya, Masahiro; Arai, Takahiro; Shirakawa, Kenetsu

    2011-01-01

    Wire-mesh sensors (WMS) are able to measure void distributions and velocity profile at high speed. Immersing the wire-mesh affects the structure of two-phase flow. Experiments were performed for single rising air bubble in a vertical pipe of i.d. 50 mm and 224 mm at water velocities ranging from 0.05 to 0.52 m/s and 0.42 to 0.83 m/s. Distortion of a relatively large bubble with the wire-mesh was small in the water velocity over 0.25 m/s and confirmed by cross-correlation analysis as well. Bubble rising velocity acquired by WMS is in good agreement with that estimated high-speed camera in the experimental range. WMS has applicability to acquire two phase flow dynamics in the water velocity over 0.25 m/s. (author)

  4. CFD analysis of transverse flow in a wire-wrapped hexagonal seven-pin bundle

    International Nuclear Information System (INIS)

    Zhao, Pinghui; Liu, Jiaming; Ge, Zhihao; Wang, Xi; Cheng, Xu

    2017-01-01

    Highlights: • Transverse flow in a wire-wrapped hexagonal seven-pin bundle are simulated. • Four kinds of subchannels are taken as the object. • Effects of wire number and position on transverse velocities are studied. • Parameter studies reveal P/D and H/D have a great influence than Re. • Present transverse velocity correlations need to be modified. - Abstract: Transverse flow induced by helical spacer wires has important effects on the flow and heat transfer behavior of reactor core. In this paper, transverse flow in a wire-wrapped hexagonal seven-pin bundle was simulated by the open source code, OpenFOAM, based on computational fluid dynamic (CFD) method. The Shear Stress Transport (SST) k-ω model and Spalding wall function were used to resolve the momentum field. Hexahedral dominated meshes were generated to achieve high grid quality. Periodic boundary condition and parallel processing were adopted to save the computational cost. Transverse velocity distributions in four different kinds of subchannel gaps were analyzed. The results show that the influence of wire number and position on the transverse velocity distribution is obvious. For an interior gap, transverse flow seems to be dominated by wires near the gap, and its direction changes periodically in one helical pitch. However, for a peripheral gap, transverse velocity is affected by more wires and its direction is decided by the direction of wire rotation. Parameter studies reveal that the Reynolds number (Re, at the range of 6000–100,000) has little effect on the normalized transverse flow, while the pitch to pin diameter ratio (P/D, at the range of 1.11–1.22) and the helical pitch to pin diameter ratio (H/D, at the range of 12–24) have a great influence on it, especially the P/D. Large discrepancies between our simulation results and some existing correlations were observed. This indicates that new correlations comprehensively considering both P/D and H/D effects need to be developed

  5. CFD analysis of transverse flow in a wire-wrapped hexagonal seven-pin bundle

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Pinghui, E-mail: phzhao@mail.ustc.edu.cn [School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230026 (China); Liu, Jiaming; Ge, Zhihao [School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230026 (China); Wang, Xi; Cheng, Xu [Karlsruhe Institute of Technology, Institute of Fusion and Reactor Technologies, Kaiserstrasse 12, Karlsruhe (Germany)

    2017-06-15

    Highlights: • Transverse flow in a wire-wrapped hexagonal seven-pin bundle are simulated. • Four kinds of subchannels are taken as the object. • Effects of wire number and position on transverse velocities are studied. • Parameter studies reveal P/D and H/D have a great influence than Re. • Present transverse velocity correlations need to be modified. - Abstract: Transverse flow induced by helical spacer wires has important effects on the flow and heat transfer behavior of reactor core. In this paper, transverse flow in a wire-wrapped hexagonal seven-pin bundle was simulated by the open source code, OpenFOAM, based on computational fluid dynamic (CFD) method. The Shear Stress Transport (SST) k-ω model and Spalding wall function were used to resolve the momentum field. Hexahedral dominated meshes were generated to achieve high grid quality. Periodic boundary condition and parallel processing were adopted to save the computational cost. Transverse velocity distributions in four different kinds of subchannel gaps were analyzed. The results show that the influence of wire number and position on the transverse velocity distribution is obvious. For an interior gap, transverse flow seems to be dominated by wires near the gap, and its direction changes periodically in one helical pitch. However, for a peripheral gap, transverse velocity is affected by more wires and its direction is decided by the direction of wire rotation. Parameter studies reveal that the Reynolds number (Re, at the range of 6000–100,000) has little effect on the normalized transverse flow, while the pitch to pin diameter ratio (P/D, at the range of 1.11–1.22) and the helical pitch to pin diameter ratio (H/D, at the range of 12–24) have a great influence on it, especially the P/D. Large discrepancies between our simulation results and some existing correlations were observed. This indicates that new correlations comprehensively considering both P/D and H/D effects need to be developed

  6. Applications of flow visualization to the development of an innovative boom system

    International Nuclear Information System (INIS)

    Wong, K.F.V.; Wolek, A.

    1996-01-01

    A new oil retention boom system design was developed using a flow visualization technique. Hydrogen bubbles were generated on a fine wire cathode and placed in a stream of moving water with a strong light source to visualize the flow. Observations were made of the flow patterns around some basic shapes and booms modelled as cylinders with and without a skirt. The most effective system design had two booms with skirts in parallel with a submerged airfoil designed to cause the oil to separate and recirculate. Oil was allowed to flow above the airfoil into the recirculation region between the two floating booms. The new system is expected to outperform the conventional boom system only when flow velocity is high. Its most successful application would be in situations where flow is perpendicular to the length of the boom. 1 ref., 6 figs

  7. New devices for flow measurements: Hot film and burial wire sensors, infrared imagery, liquid crystal, and piezo-electric model

    Science.gov (United States)

    Mcree, Griffith J., Jr.; Roberts, A. Sidney, Jr.

    1991-01-01

    An experimental program aimed at identifying areas in low speed aerodynamic research where infrared imaging systems can make significant contributions is discussed. Implementing a new technique, a long electrically heated wire was placed across a laminar flow. By measuring the temperature distribution along the wire with the IR imaging camera, the flow behavior was identified.

  8. Measurements of Flow Mixing at Subchannels in a Wire-Wrapped 37-Rod Bundle for a Sodium Cooled Fast Reactor

    International Nuclear Information System (INIS)

    Kim, Hyungmo; Bae, Hwang; Chang, Seok-Kyu; Choi, Sun Rock; Lee, Dong Won; Ko, Yung Joo; Choi, Hae Seob; Euh, Dong-Jin; Lee, Hyeong-Yeon

    2014-01-01

    For a safety analysis in a core thermal design of a sodium-cooled fast reactor (SFR), flow mixing characteristics at subchannels in a wire-wrapped rod bundle are very important. Wrapped wires make a cross flow in a around the fuel rod) of the fuel rod, and this effect lets flow be mixed. Experimental results of flow mixing can be meaningful for verification and validation of thermal mixing correlation in a reactor core thermo-hydraulic design code. A wire mesh sensing technique can be useful method for measuring of flow mixing characteristics. A wire mesh sensor has been traditionally used to measure the void fraction of a two-phase flow field, i.e. gas and liquid. However, it has been recently reported that the wire mesh sensor can be used successfully to recognize the flow field in liquid phase by injecting a tracing liquid with a different level of electric conductivity. This can be powerfully adapted to recognize flow mixing characteristics by wrapped wires in SFR core thermal design. In this work, we conducted the flow mixing experiments using a custom designed wire mesh sensor. To verify and validate computer codes for the SFR core thermal design, mixing experiments were conducted at a hexagonally arrayed 37-pin wire-wrapped fuel rod bundle test section. The well-designed wire mesh sensor was used to measure flow mixing characteristics. The developed post-processing method has its own merits, and flow mixing results were reasonable. In addition, by uncertainty analysis, the system errors and the random error were estimated in experiments. Therefore, the present results and methods can be used for design code verification and validation

  9. 3D IBFV : Hardware-Accelerated 3D Flow Visualization

    NARCIS (Netherlands)

    Telea, Alexandru; Wijk, Jarke J. van

    2003-01-01

    We present a hardware-accelerated method for visualizing 3D flow fields. The method is based on insertion, advection, and decay of dye. To this aim, we extend the texture-based IBFV technique for 2D flow visualization in two main directions. First, we decompose the 3D flow visualization problem in a

  10. Comparison between wire mesh sensor and gamma densitometry void measurements in two-phase flows

    Science.gov (United States)

    Sharaf, S.; Da Silva, M.; Hampel, U.; Zippe, C.; Beyer, M.; Azzopardi, B.

    2011-10-01

    Wire mesh sensors (WMS) are fast imaging instruments that are used for gas-liquid and liquid-liquid two-phase flow measurements and experimental investigations. Experimental tests were conducted at Helmholtz-Zentrum Dresden-Rossendorf to test both the capacitance and conductance WMS against a gamma densitometer (GD). A small gas-liquid test facility was utilized. This consisted of a vertical round pipe approximately 1 m in length, and 50 mm internal diameter. A 16 × 16 WMS was used with high spatial and temporal resolutions. Air-deionized water was the two-phase mixture. The gas superficial velocity was varied between 0.05 m s-1 and 1.4 m s-1 at two liquid velocities of 0.2 and 0.7 m s-1. The GD consisted of a collimated source and a collimated detector. The GD was placed on a moving platform close to the plane of wires of the sensor, in order to align it accurately using a counter mechanism, with each of the wires of the WMS, and the platform could scan the full section of the pipe. The WMS was operated as a conductivity WMS for a half-plane with eight wires and as a capacitance WMS for the other half. For the cross-sectional void (time and space averaged), along each wire, there was good agreement between WMS and the GD chordal void fraction near the centre of the pipe.

  11. Comparison between wire mesh sensor and gamma densitometry void measurements in two-phase flows

    International Nuclear Information System (INIS)

    Sharaf, S; Azzopardi, B; Da Silva, M; Hampel, U; Zippe, C; Beyer, M

    2011-01-01

    Wire mesh sensors (WMS) are fast imaging instruments that are used for gas–liquid and liquid–liquid two-phase flow measurements and experimental investigations. Experimental tests were conducted at Helmholtz-Zentrum Dresden-Rossendorf to test both the capacitance and conductance WMS against a gamma densitometer (GD). A small gas–liquid test facility was utilized. This consisted of a vertical round pipe approximately 1 m in length, and 50 mm internal diameter. A 16 × 16 WMS was used with high spatial and temporal resolutions. Air–deionized water was the two-phase mixture. The gas superficial velocity was varied between 0.05 m s −1 and 1.4 m s −1 at two liquid velocities of 0.2 and 0.7 m s −1 . The GD consisted of a collimated source and a collimated detector. The GD was placed on a moving platform close to the plane of wires of the sensor, in order to align it accurately using a counter mechanism, with each of the wires of the WMS, and the platform could scan the full section of the pipe. The WMS was operated as a conductivity WMS for a half-plane with eight wires and as a capacitance WMS for the other half. For the cross-sectional void (time and space averaged), along each wire, there was good agreement between WMS and the GD chordal void fraction near the centre of the pipe

  12. Hot-Film and Hot-Wire Anemometry for a Boundary Layer Active Flow Control Test

    Science.gov (United States)

    Lenahan, Keven C.; Schatzman, David M.; Wilson, Jacob Samuel

    2013-01-01

    Unsteady active flow control (AFC) has been used experimentally for many years to minimize bluff-body drag. This technology could significantly improve performance of rotorcraft by cleaning up flow separation. It is important, then, that new actuator technologies be studied for application to future vehicles. A boundary layer wind tunnel was constructed with a 1ft-x-3ft test section and unsteady measurement instrumentation to study how AFC manipulates the boundary layer to overcome adverse pressure gradients and flow separation. This unsteady flow control research requires unsteady measurement methods. In order to measure the boundary layer characteristics, both hot-wire and hot-film Constant Temperature Anemometry is used. A hot-wire probe is mounted in the flow to measure velocity while a hot-film array lays on the test surface to measure skin friction. Hot-film sensors are connected to an anemometer, a Wheatstone bridge circuit with an output that corresponds to the dynamic flow response. From this output, the time varying flow field, turbulence, and flow reversal can be characterized. Tuning the anemometers requires a fan test on the hot-film sensors to adjust each output. This is a delicate process as several variables drastically affect the data, including control resistance, signal input, trim, and gain settings.

  13. Visualization of Flow Alternatives, Lower Missouri River

    Science.gov (United States)

    Jacobson, Robert B.; Heuser, Jeanne

    2002-01-01

    Background The U.S. Army Corps of Engineers (COE) 'Missouri River Master Water Control Manual' (Master Manual) review has resulted in consideration of many flow alternatives for managing the water in the river (COE, 2001; 1998a). The purpose of this report is to present flow-management alternative model results in a way that can be easily visualized and understood. This report was updated in October 2001 to focus on the specific flow-management alternatives presented by the COE in the 'Master Manual Revised Draft Environmental Impact Statement' (RDEIS; COE, 2001). The original version (February 2000) is available by clicking here. The COE, U.S. Fish and Wildlife Service (FWS), Missouri River states, and Missouri River basin tribes have been participating in discussions concerning water management of the Missouri River mainstem reservoir system (MRMRS), the Missouri River Bank Stabilization and Navigation Project, and the Kansas River reservoir system since 1986. These discussions include general input to the revision of the Master Manual as well as formal consultation under Section 7 of the Endangered Species Act. In 2000, the FWS issued a Biological Opinion that prescribed changes to reservoir management on the Missouri River that were believed to be necessary to preclude jeopardy to three endangered species, the pallid sturgeon, piping plover, and interior least tern (USFWS, 2000). The combined Missouri River system is large and complex, including many reservoirs, control structures, and free-flowing reaches extending over a broad region. The ability to assess future impacts of altered management scenarios necessarily involves complex, computational models that attempt to integrate physical, chemical, biological, and economic effects. Graphical visualization of the model output is intended to improve understanding of the differences among flow-management alternatives.

  14. A wire length minimization approach to ocular dominance patterns in mammalian visual cortex

    Science.gov (United States)

    Chklovskii, Dmitri B.; Koulakov, Alexei A.

    2000-09-01

    The primary visual area (V1) of the mammalian brain is a thin sheet of neurons. Because each neuron is dominated by either right or left eye one can treat V1 as a binary mixture of neurons. The spatial arrangement of neurons dominated by different eyes is known as the ocular dominance (OD) pattern. We propose a theory for OD patterns based on the premise that they are evolutionary adaptations to minimize the length of intra-cortical connections. Thus, the existing OD patterns are obtained by solving a wire length minimization problem. We divide all the neurons into two classes: right- and left-eye dominated. We find that if the number of connections of each neuron with the neurons of the same class differs from that with the other class, the segregation of neurons into monocular regions indeed reduces the wire length. The shape of the regions depends on the relative number of neurons in the two classes. If both classes are equally represented we find that the optimal OD pattern consists of alternating stripes. If one class is less numerous than the other, the optimal OD pattern consists of patches of the underrepresented (ipsilateral) eye dominated neurons surrounded by the neurons of the other class. We predict the transition from stripes to patches when the fraction of neurons dominated by the ipsilateral eye is about 40%. This prediction agrees with the data in macaque and Cebus monkeys. Our theory can be applied to other binary cortical systems.

  15. Wire-mesh and ultrasound techniques applied for the characterization of gas-liquid slug flow

    Energy Technology Data Exchange (ETDEWEB)

    Ofuchi, Cesar Y.; Sieczkowski, Wytila Chagas; Neves Junior, Flavio; Arruda, Lucia V.R.; Morales, Rigoberto E.M.; Amaral, Carlos E.F.; Silva, Marco J. da [Federal University of Technology of Parana, Curitiba, PR (Brazil)], e-mails: ofuchi@utfpr.edu.br, wytila@utfpr.edu.br, neves@utfpr.edu.br, lvrarruda@utfpr.edu.br, rmorales@utfpr.edu.br, camaral@utfpr.edu.br, mdasilva@utfpr.edu.br

    2010-07-01

    Gas-liquid two-phase flows are found in a broad range of industrial applications, such as chemical, petrochemical and nuclear industries and quite often determine the efficiency and safety of process and plants. Several experimental techniques have been proposed and applied to measure and quantify two-phase flows so far. In this experimental study the wire-mesh sensor and an ultrasound technique are used and comparatively evaluated to study two-phase slug flows in horizontal pipes. The wire-mesh is an imaging technique and thus appropriated for scientific studies while ultrasound-based technique is robust and non-intrusive and hence well suited for industrial applications. Based on the measured raw data it is possible to extract some specific slug flow parameters of interest such as mean void fraction and characteristic frequency. The experiments were performed in the Thermal Sciences Laboratory (LACIT) at UTFPR, Brazil, in which an experimental two-phase flow loop is available. The experimental flow loop comprises a horizontal acrylic pipe of 26 mm diameter and 9 m length. Water and air were used to produce the two phase flow under controlled conditions. The results show good agreement between the techniques. (author)

  16. Monitoring of debris flows and landslides by wired and wireless systems. Experiences from the Catalan Pyrenees.

    Science.gov (United States)

    Hürlimann, Marcel; Abancó, Clàudia; Moya, José; Vilajosana, Ignasi; Llosa, Jordi

    2013-04-01

    Sophisticated monitoring of landslides for research purpose has started in the 1990thies in the Catalan Pyrenees. Since then several types of mass movements (large landslides, debris flows, shallow landslides and rock falls) and multiples techniques have been applied. In this contribution, special attention will be given to the debris-flow monitoring system installed since summer 2009 in the Rebaixader catchment, Central Pyrenees. The monitoring system has continuously been improved during the last years and nowadays includes devices studying the three major aspects: 1) initiation, 2) flow dynamics, and 3) accumulation. While some parts of the monitoring network include a traditional wired system, the newer parts were installed using low-power wireless devices. Two major aspects will be discussed. First, results of the Rebaixader monitoring site will be presented. Second, experience regarding the monitoring will be evaluated focussing on technical aspects and the comparison between wired and wireless techniques. In the Rebaixader catchment, 6 debris flows and 11 debris floods were observed between August 2009 and October 2012. Surprisingly, also 4 major rock falls were recorded. The rainfall analysis shows that the debris flows were triggered by short, high-intensity rainstorms with a preliminary threshold of about 15 mm during 1 hour. In addition, there was observed a positive trend between event volume and rainfall amount or intensity. The analysis of the ground vibration signals shows significant differences between the time series recorded at the different geophones. These differences are associated with the geophone location in the channel (distance and material), the mounting or the data acquisition system. For instance, the most downstream geophone, installed in bedrock, shows the clearest debris-flows vibration time series, while the uppermost is the most reliable regarding the detection of rockfalls. An evaluation of wired versus wireless monitoring

  17. Characterization of the frictional losses and heat transfer of oscillatory viscous flow through wire-mesh regenerators

    Directory of Open Access Journals (Sweden)

    A.A. Boroujerdi

    2015-12-01

    Full Text Available In this paper, new relations for calculating heat transfer and pressure drop characteristics of oscillatory flow through wire-mesh screen regenerator such as Darcy permeability, Forchheimer’s inertial coefficient, and heat transfer area per unit volume, as a function of the wire diameter are presented. According to the derived relations, thinner wires have higher pressure drop and higher heat transfer rate. The relations are applicable for all regenerative cryocoolers. Embedding the new relations into a numerical model, three Stirling-type orifice pulse tube cryocoolers with three regenerators different in length and diameter but same volume in a variety of wire diameters, have been modeled. The results achieved by the model reveal that the local heat transfer coefficient decreases with increase of the wire diameter and the length-to-diameter ratio. In addition, it was shown that the mean absolute gas–solid wire temperature difference is a linear function of wire diameter in the range investigated. The results show that for larger length-to-diameter ratios, Forchheimer’s effect will dominate frictional losses, and the variations of the frictional losses are proportional to the inverse of the wire diameter. Wire diameter has been optimized to maximize the coefficient of performance of the cryocooler. Shorter regenerators have thinner optimum wires.

  18. Flow of ideal fluid through a central region of a nuclear reactor wire-spaced fuel subassembly

    International Nuclear Information System (INIS)

    Schmid, J.

    1991-04-01

    The results are given of calculations of the flow of an ideal fluid through the central region of a nuclear reactor wire-spaced fuel subassembly. The computer code used is briefly described. (author). 10 figs., 4 refs

  19. The wire-mesh sensor as a two-phase flow meter

    Science.gov (United States)

    Shaban, H.; Tavoularis, S.

    2015-01-01

    A novel gas and liquid flow rate measurement method is proposed for use in vertical upward and downward gas-liquid pipe flows. This method is based on the analysis of the time history of area-averaged void fraction that is measured using a conductivity wire-mesh sensor (WMS). WMS measurements were collected in vertical upward and downward air-water flows in a pipe with an internal diameter of 32.5 mm at nearly atmospheric pressure. The relative frequencies and the power spectral density of area-averaged void fraction were calculated and used as representative properties. Independent features, extracted from these properties using Principal Component Analysis and Independent Component Analysis, were used as inputs to artificial neural networks, which were trained to give the gas and liquid flow rates as outputs. The present method was shown to be accurate for all four encountered flow regimes and for a wide range of flow conditions. Besides providing accurate predictions for steady flows, the method was also tested successfully in three flows with transient liquid flow rates. The method was augmented by the use of the cross-correlation function of area-averaged void fraction determined from the output of a dual WMS unit as an additional representative property, which was found to improve the accuracy of flow rate prediction.

  20. Large Eddy Simulation of turbulent flow in wire wrapped fuel pin bundles cooled by sodium

    International Nuclear Information System (INIS)

    Saxena, Aakanksha; Cadiou, Thierry; Bieder, Ulrich; Viazzo, Stephane

    2013-06-01

    The objective of the study is to understand the thermal hydraulics in a core sub-assembly with liquid sodium as coolant by performing detailed numerical simulations. The passage for the coolant flow between the fuel rods is maintained by thin wires wrapped around the rods. The contact point between the fuel pin and the spacer wire is the region of creation of hot spots and a cyclic variation of temperature in hot spots can adversely affect the mechanical properties of the clad due to the phenomena like thermal stripping. The current status quo provides two different models to perform the numerical simulations, namely Reynolds Averaged Navier-Stokes (RANS) and Large Eddy Simulation (LES). The two models differ in the extent of modelling used to close the Navier-Stokes equations. LES is a filtered approach where the large scale of motions are explicitly resolved while the small scale motions are modelled whereas RANS is a time averaging approach where all scale of motions are modelled. Thus LES involves less modelling as compared to RANS and so the results are comparatively more accurate. An attempt has been made to use the LES model. The simulations have been performed using the code Trio-U (developed by CEA). The turbulent statistics of the flow and thermal quantities are calculated. Finally the goal is to obtain the frequency of temperature oscillations at the region of hot spots near the spacer wire. (authors)

  1. Subsampling-based compression and flow visualization

    Energy Technology Data Exchange (ETDEWEB)

    Agranovsky, Alexy; Camp, David; Joy, I; Childs, Hank

    2016-01-19

    As computational capabilities increasingly outpace disk speeds on leading supercomputers, scientists will, in turn, be increasingly unable to save their simulation data at its native resolution. One solution to this problem is to compress these data sets as they are generated and visualize the compressed results afterwards. We explore this approach, specifically subsampling velocity data and the resulting errors for particle advection-based flow visualization. We compare three techniques: random selection of subsamples, selection at regular locations corresponding to multi-resolution reduction, and introduce a novel technique for informed selection of subsamples. Furthermore, we explore an adaptive system which exchanges the subsampling budget over parallel tasks, to ensure that subsampling occurs at the highest rate in the areas that need it most. We perform supercomputing runs to measure the effectiveness of the selection and adaptation techniques. Overall, we find that adaptation is very effective, and, among selection techniques, our informed selection provides the most accurate results, followed by the multi-resolution selection, and with the worst accuracy coming from random subsamples.

  2. Sheath-flow electrochemical detection of amino acids with a copper wire electrode in capillary electrophoresis.

    Science.gov (United States)

    Inoue, Junji; Kaneta, Takashi; Imasaka, Totaro

    2012-09-01

    Here, we report the detection of native amino acids using a sheath-flow electrochemical detector with a working electrode made of copper wire. A separation capillary that was inserted into a platinum tube in the detector acted as a grounded electrode for electrophoresis and as a flow channel for sheath liquid. Sheath liquid flowed outside the capillary to support the transport of the separated analytes to the working electrode for electrochemical detection. The copper wire electrode was aligned at the outlet of the capillary in a wall-jet configuration. Amino acids injected into the capillary were separated following elution from the end of the capillary and detection by the copper electrode. Three kinds of copper electrodes with different diameters-50, 125, and 300 μm-were examined to investigate the effect of the electrode diameter on sensitivity. The peak widths of the analytes were independent of the diameter of the working electrode, while the 300-μm electrode led to a decrease in the signal-to-noise ratio compared with the 50- and 125-μm electrodes, which showed no significant difference. The flow rate of the sheath liquid was also varied to optimize the detection conditions. The limits of detection for amino acids ranged from 4.4 to 27 μM under optimal conditions. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. 3D Flow visualization in virtual reality

    Science.gov (United States)

    Pietraszewski, Noah; Dhillon, Ranbir; Green, Melissa

    2017-11-01

    By viewing fluid dynamic isosurfaces in virtual reality (VR), many of the issues associated with the rendering of three-dimensional objects on a two-dimensional screen can be addressed. In addition, viewing a variety of unsteady 3D data sets in VR opens up novel opportunities for education and community outreach. In this work, the vortex wake of a bio-inspired pitching panel was visualized using a three-dimensional structural model of Q-criterion isosurfaces rendered in virtual reality using the HTC Vive. Utilizing the Unity cross-platform gaming engine, a program was developed to allow the user to control and change this model's position and orientation in three-dimensional space. In addition to controlling the model's position and orientation, the user can ``scroll'' forward and backward in time to analyze the formation and shedding of vortices in the wake. Finally, the user can toggle between different quantities, while keeping the time step constant, to analyze flow parameter relationships at specific times during flow development. The information, data, or work presented herein was funded in part by an award from NYS Department of Economic Development (DED) through the Syracuse Center of Excellence.

  4. Control of flow structure in the wake region of circular cylinder with meshy wire in deep water

    Directory of Open Access Journals (Sweden)

    Burcu Oğuz

    2016-08-01

    Full Text Available In this study the aim is decreasing the effect and the intensity of the temporary loads resulted from vortex shedding that have an impact on the cylinder (chimneys, high buildings etc. located in deep water and the object or objects in the wake region and definition of the optimum values (wire thickness and porosity β With different thickness and different porosity ratios the effect of meshy wire that surrounded a circular cylinder of D=50 mm diameter was observed at Re_D=5000. The porosity ratios were four different values between a range of β=0.5-0.8 with an interval of 0.1. The thicknesses of wire were 1 mm, 2 mm, 3 mm and 4 mm. The flow structure in the wake region of circular cylinder was tried to be controlled by meshy wire that surrounded the cylinder. Experiments were carried out by using particle image velocimetry (PIV technique. Comparing with bare cylinder results, turbulence kinetic energy (TKE and Reynolds shear stress values increase with wire thicknesses of b=1 mm, 2 mm for all porosity ratios and decrease with b=3 mm, 4 mm. With porosity ratio of β=0.6 and wire thickness of b=4 mm TKE and Reynolds shear stress results show that meshy wire controls the flow in the wake region of the cylinder. Frequency value results also define that best flow control is obtained with β=0.6 and b=4 mm.

  5. Flow visualization through metal enclosures with neutron radiography

    International Nuclear Information System (INIS)

    Cimbala, J.M.; Sathianathan, D.; Cosgrove, S.A.

    1989-01-01

    Many practical fluid flow problems involve flow inside metal shrouds (valves, combustors, boilers, turbomachinery, etc.) where visual access is not available. For flows under extreme pressure or heat, glass or transparent plastic can not be used; a flow visualization technique which permits visualization through metal containers is needed in these cases. Since neutrons can penetrate metal casings, neutron radiography has been developed for application to fluid flow visualization. This technique involves imaging of neutron opaque tracer materials, such as solid or fluid particles or streaklines, as they convect in neutron transparent ambient fluids. Surface flow visualization is also possible by using neutron opaque tufts. An extension of the surface tuft technique has also been developed, enabling the visualization of flow a patterns away from solid surfaces. This paper presents a summary of the various flow visualization techniques developed in the authors' laboratory, along with examples which illustrate how these techniques may be applied to practical fluid flow problems. These include flow over a circular cylinder, the recirculation pattern formed by a jet exhausting into a tank, and the flow pattern inside a rotating automotive torque converter

  6. Flow Visualization of Forced and Natural Convection in Internal Cavities

    International Nuclear Information System (INIS)

    Crepeau, John; Mcllroy, Hugh M. Jr.; McEligot, Donald M.; Condie, Keith G.; McCreery, Glenn; Clarsean, Randy; Brodkey, Robert S.; Guezennec, Yann G.

    2002-01-01

    The report describes innovative flow visualization techniques, fluid mechanics measurements and computational models of flows in a spent nuclear fuel canister. The flow visualization methods used a fluid that reacted with a metal plate to show how a local reaction affects the surrounding flow. A matched index of refraction facility was used to take mean flow and turbulence measurements within a generic spent nuclear fuel canister. Computational models were also made of the flow in the canister. It was determined that the flow field in the canister was very complex, and modifications may need to be made to ensure that the spent fuel elements are completely passivated

  7. Flow Visualization of Forced and Natural Convection in Internal Cavities

    Energy Technology Data Exchange (ETDEWEB)

    John Crepeau; Hugh M. Mcllroy,Jr.; Donald M. McEligot; Keith G. Condie; Glenn McCreery; Randy Clarsean; Robert S. Brodkey; Yann G. Guezennec

    2002-01-31

    The report descries innovative flow visualization techniques, fluid mechanics measurements and computational models of flows in a spent nuclear fuel canister. The flow visualization methods used a fluid that reacted with a metal plate to show how a local reaction affects the surrounding flow. A matched index of refraction facility was used to take mean flow and turbulence measurements within a generic spent nuclear fuel canister. Computational models were also made of the flow in the canister. It was determined that the flow field in the canister was very complex, and modifications may need to be made to ensure that the spent fuel elements are completely passivated.

  8. Application of neutron radiography to visualization of multiphase flows

    International Nuclear Information System (INIS)

    Takenaka, N.; Fujii, T.; Nishizaki, K.; Asano, H.; Ono, A.; Sonoda, K.; Akagawa, K.

    1990-01-01

    Visualizations by real-time neutron radiography are demonstrated of various flow patterns of nitrogen gas-water two-phase flow in a stainless-steel tube, water inverted annular flow in a stainless-steel tube, flashing flow in an aluminium nozzle and fluidized bed in aluminium tube and vessels. Photographs every 1/60 s are presented by an image processing method to show the dynamic behaviours of the various flow patterns. It is shown that this visualization method can be applied efficiently to multiphase flow researches and will be applicable to multiphase flows in industrial machines. (author)

  9. Visualization of pre-set vortices in boundary layer flow over wavy surface in rectangular channel

    KAUST Repository

    Budiman, Alexander Christantho

    2014-12-04

    Abstract: Smoke-wire flow visualization is used to study the development of pre-set counter-rotating streamwise vortices in boundary layer flow over a wavy surface in a rectangular channel. The formation of the vortices is indicated by the vortical structures on the cross-sectional plane normal to the wavy surface. To obtain uniform spanwise vortex wavelength which will result in uniform vortex size, two types of spanwise disturbances were used: a series of perturbation wires placed prior and normal to the leading edge of the wavy surface, and a jagged pattern in the form of uniform triangles cut at the leading edge. These perturbation wires and jagged pattern induce low-velocity streaks that result in the formation of counter-rotating streamwise vortices that evolve downstream to form the mushroom-like structures on the cross-sectional plane of the flow. The evolution of the most amplified disturbances can be attributed to the formation of these mushroom-like structures. It is also shown that the size of the mushroom-like structures depends on the channel entrance geometry, Reynolds number, and the channel gap.Graphical Abstract: [Figure not available: see fulltext.

  10. Wire-mesh sensor, ultrasound and high-speed videometry applied for the characterization of horizontal gas-liquid slug flow

    Science.gov (United States)

    Ofuchi, C. Y.; Morales, R. E. M.; Arruda, L. V. R.; Neves, F., Jr.; Dorini, L.; do Amaral, C. E. F.; da Silva, M. J.

    2012-03-01

    Gas-liquid flows occur in a broad range of industrial applications, for instance in chemical, petrochemical and nuclear industries. Correct understating of flow behavior is crucial for safe and optimized operation of equipments and processes. Thus, measurement of gas-liquid flow plays an important role. Many techniques have been proposed and applied to analyze two-phase flows so far. In this experimental research, data from a wire-mesh sensor, an ultrasound technique and high-speed camera are used to study two-phase slug flows in horizontal pipes. The experiments were performed in an experimental two-phase flow loop which comprises a horizontal acrylic pipe of 26 mm internal diameter and 9 m length. Water and air were used to produce the two-phase flow and their flow rates are separately controlled to produce different flow conditions. As a parameter of choice, translational velocity of air bubbles was determined by each of the techniques and comparatively evaluated along with a mechanistic flow model. Results obtained show good agreement among all techniques. The visualization of flow obtained by the different techniques is also presented.

  11. 3D IBFV : hardware-accelerated 3D flow visualization

    NARCIS (Netherlands)

    Telea, A.C.; Wijk, van J.J.

    2003-01-01

    We present a hardware-accelerated method for visualizing 3D flow fields. The method is based on insertion, advection, and decay of dye. To this aim, we extend the texture-based IBFV technique presented by van Wijk (2001) for 2D flow visualization in two main directions. First, we decompose the 3D

  12. Visualization of the air flow behind the automotive benchmark vent

    OpenAIRE

    Pech, Ondřej; Jedelský, Jan; Caletka, Petr; Jícha, Miroslav

    2015-01-01

    Passenger comfort in cars depends on appropriate function of the cabin HVAC system. A great attention is therefore paid to the effective function of automotive vents and proper formation of the flow behind the ventilation outlet. The article deals with the visualization of air flow from the automotive benchmark vent. The visualization was made for two different shapes of the inlet channel connected to the benchmark vent. The smoke visualization with the laser knife was used. The influence of ...

  13. Visualization study of helium-air counter flow through a small opening

    International Nuclear Information System (INIS)

    Fumizawa, Motoo

    2007-01-01

    Buoyancy-driven counter flows of helium-air were investigated through horizontal and inclined small openings. Counter flows may occur following a window opening as ventilation, fire in the room as well as a pipe rupture accident in a high temperature gas-cooled nuclear reactor. The experiment has carried out by a test chamber filled with helium and flow was visualized by the smoke wire method. The flow behavior has recorded by a high-speed camera with a computer system. The image of the flow was transferred to the digital data, thus the flow velocity was measured by PTV software. The mass fraction in the test chamber was measured by electronic balance. The detected data was arranged by the densimetric Floude number of the counter flow rate that derived from the dimensional analysis. The method of mass increment was developed and applied to measure the counter flow rate. By removing the cover plate placed on the top of the opening, the counter flow initiated. Air enters the test chamber and the mass of the gas mixture in the test chamber increased. The volumetric counter flow rate was evaluated from the mass increment data. In the case of inclination openings, the results of both methods were compared. The inclination angle for maximum densimetric Floude number decreased with increasing length-to-diameter ratio of the opening. For a horizontal opening, the results from the method of mass increment agreed with those obtained by other authors for a water-brine system. (author)

  14. Visualization of the air flow behind the automotive benchmark vent

    Science.gov (United States)

    Pech, Ondrej; Jedelsky, Jan; Caletka, Petr; Jicha, Miroslav

    2015-05-01

    Passenger comfort in cars depends on appropriate function of the cabin HVAC system. A great attention is therefore paid to the effective function of automotive vents and proper formation of the flow behind the ventilation outlet. The article deals with the visualization of air flow from the automotive benchmark vent. The visualization was made for two different shapes of the inlet channel connected to the benchmark vent. The smoke visualization with the laser knife was used. The influence of the shape of the inlet channel to the airflow direction, its enlargement and position of air flow axis were investigated.

  15. Visualization of the air flow behind the automotive benchmark vent

    Directory of Open Access Journals (Sweden)

    Pech Ondrej

    2015-01-01

    Full Text Available Passenger comfort in cars depends on appropriate function of the cabin HVAC system. A great attention is therefore paid to the effective function of automotive vents and proper formation of the flow behind the ventilation outlet. The article deals with the visualization of air flow from the automotive benchmark vent. The visualization was made for two different shapes of the inlet channel connected to the benchmark vent. The smoke visualization with the laser knife was used. The influence of the shape of the inlet channel to the airflow direction, its enlargement and position of air flow axis were investigated.

  16. Illustrative Line Styles for Flow Visualization

    NARCIS (Netherlands)

    Everts, Maarten H.; Bekker, Hendrik; Roerdink, Jos B. T. M.; Isenberg, Tobias

    2011-01-01

    We present a flexible illustrative line style model for the visualization of streamline data. Our model partitions view-oriented line strips into parallel bands whose basic visual properties can be controlled independently. We thus extend previous line stylization techniques specifically for

  17. Flow Visualization using Illustrative Line Styles

    NARCIS (Netherlands)

    Everts, Maarten H.; Bekker, Hendrik; Roerdink, Jos B. T. M.; Isenberg, Tobias; Bekker, Paulus

    2011-01-01

    We present a flexible illustrative line style model for the visualization of streamline data. Our model partitions view- oriented line strips into parallel bands whose basic visual properties can be controlled independently. We thus extend previous line stylization techniques specifically for

  18. Flow boiling in microgap channels experiment, visualization and analysis

    CERN Document Server

    Alam, Tamanna; Jin, Li-Wen

    2013-01-01

    Flow Boiling in Microgap Channels: Experiment, Visualization and Analysis presents an up-to-date summary of the details of the confined to unconfined flow boiling transition criteria, flow boiling heat transfer and pressure drop characteristics, instability characteristics, two phase flow pattern and flow regime map and the parametric study of microgap dimension. Advantages of flow boiling in microgaps over microchannels are also highlighted. The objective of this Brief is to obtain a better fundamental understanding of the flow boiling processes, compare the performance between microgap and c

  19. A study of bubbly flow characteristics in a vertical tube using wire mesh tomography

    International Nuclear Information System (INIS)

    Wangjiraniran, Weerin; Motegi, Yuichi; Kikura, Hiroshige; Aritomi, Masanori; Richter, Steffen; Yamamoto, Kazuhiko

    2003-01-01

    For the development of nuclear reactors and the assessment of their safety features, the development of computer code with the high quantity database from the measurement as well as the understanding of the multiphase flow physics are necessary. In this study, the characteristics of bubbly flow in a vertical tube are investigated using Wire Mesh Tomography (WMT). Void fraction is detected from the dependency of electrical conductivity on the local void fraction. The developed sensor is a circular type with two parallel measuring planes to have the capability of gas velocity and bubble size evaluation. The experiment is conducted in a 50 mm ID tube at the fully developed condition (93D). The mean bubble size is treated as a constant parameter independent from the superficial gas and liquid velocity by using the bubble generator with a water sub flow. The result shows the capability of WMT for bubbly flow characteristic study. The effects of superficial gas and liquid velocity and the additional bubble intensity on the void fraction distribution are presented. These effects are supposed to change the lateral lift force in both magnitude and directions which induce the bubble migrated toward to or depart from the wall. (author)

  20. Effect of the spatial filtering and alignment error of hot-wire probes in a wall-bounded turbulent flow

    International Nuclear Information System (INIS)

    Segalini, A; Cimarelli, A; Rüedi, J-D; De Angelis, E; Talamelli, A

    2011-01-01

    The effort to describe velocity fluctuation distributions in wall-bounded turbulent flows has raised different questions concerning the accuracy of hot-wire measurement techniques close to the wall and more specifically the effect of spatial averaging resulting from the finite size of the wire. Here, an analytical model which describes the effect of the spatial filtering and misalignment of hot-wire probes on the main statistical moments in turbulent wall-bounded flows is presented. The model, which is based on the two-point velocity correlation function, shows that the filtering is directly related to the transverse Taylor micro-scale. By means of turbulent channel flow DNS data, the capacity of the model to accurately describe the probe response is established. At the same time, the filtering effect is appraised for different wire lengths and for a range of misalignment angles which can be expected from good experimental practice. Effects of the second-order terms in the model equations are also taken into account and discussed. In order to use the model in a practical situation, the Taylor micro-scale distribution at least should be provided. A simple scaling law based on classic turbulence theory is therefore introduced and finally employed to estimate the filtering effect for different wire lengths

  1. High speed digital holographic interferometry for hypersonic flow visualization

    Science.gov (United States)

    Hegde, G. M.; Jagdeesh, G.; Reddy, K. P. J.

    2013-06-01

    Optical imaging techniques have played a major role in understanding the flow dynamics of varieties of fluid flows, particularly in the study of hypersonic flows. Schlieren and shadowgraph techniques have been the flow diagnostic tools for the investigation of compressible flows since more than a century. However these techniques provide only the qualitative information about the flow field. Other optical techniques such as holographic interferometry and laser induced fluorescence (LIF) have been used extensively for extracting quantitative information about the high speed flows. In this paper we present the application of digital holographic interferometry (DHI) technique integrated with short duration hypersonic shock tunnel facility having 1 ms test time, for quantitative flow visualization. Dynamics of the flow fields in hypersonic/supersonic speeds around different test models is visualized with DHI using a high-speed digital camera (0.2 million fps). These visualization results are compared with schlieren visualization and CFD simulation results. Fringe analysis is carried out to estimate the density of the flow field.

  2. Flow visualization studies of bodies with square cross sections

    Science.gov (United States)

    Chapman, G. T.; Clarkson, M. H.

    1983-01-01

    A water-tunnel study was conducted of four bodies. A solution of sodium fluorescein coating the body provided visualization of vortices and feeding sheets and isolated dots of methyl blue dye provided visualization of stream lines. These data, along with published oil-flow photos, were analyzed to develop the topological representation of the flows in cross-flow planes. Presented are the development of the flow along the body at fixed angles of attack and at a fixed body station with changes in angle of attack. Effects of roll angle, body corner radius, and nose bluntness are illustrated.

  3. Visual Analysis of Inclusion Dynamics in Two-Phase Flow.

    Science.gov (United States)

    Karch, Grzegorz Karol; Beck, Fabian; Ertl, Moritz; Meister, Christian; Schulte, Kathrin; Weigand, Bernhard; Ertl, Thomas; Sadlo, Filip

    2018-05-01

    In single-phase flow visualization, research focuses on the analysis of vector field properties. In two-phase flow, in contrast, analysis of the phase components is typically of major interest. So far, visualization research of two-phase flow concentrated on proper interface reconstruction and the analysis thereof. In this paper, we present a novel visualization technique that enables the investigation of complex two-phase flow phenomena with respect to the physics of breakup and coalescence of inclusions. On the one hand, we adapt dimensionless quantities for a localized analysis of phase instability and breakup, and provide detailed inspection of breakup dynamics with emphasis on oscillation and its interplay with rotational motion. On the other hand, we present a parametric tightly linked space-time visualization approach for an effective interactive representation of the overall dynamics. We demonstrate the utility of our approach using several two-phase CFD datasets.

  4. PIV Analysis of Ludwig Prandtl's Historic Flow Visualization Films

    OpenAIRE

    Willert, Christian; Kompenhans, Jürgen

    2010-01-01

    Around 1930 Ludwig Prandtl and his colleagues O. Tietjens and W. M\\"uller published two films with visualizations of flows around surface piercing obstacles to illustrate the unsteady process of flow separation. These visualizations were achieved by recording the motion of fine particles sprinkled onto the water surface in water channels. The resulting images meet the relevant criteria of properly seeded recordings for particle image velocimetry (PIV). Processing these image sequences with mo...

  5. Visualization of Flow Field: Application of PLIF Technique

    Directory of Open Access Journals (Sweden)

    Jiang Bo Peng

    2018-01-01

    Full Text Available The objective of this paper is to apply planar laser-induced fluorescence (PLIF technology to flow field visualization. This experiment was carried out in a one-meter wind tunnel to study the wake flow field around a circular cylinder. This experiment studied the method of injecting tracer into the flow field; the frequency of the vortex in the wake field and the vortex speed are quantitatively analyzed. This paper gives the correspondence between the speed of the flow field and the frequency of the laser, which could be used as a rough reference standard for future wind tunnel visualization experiments. The result shows that PLIF diagnostic technology has great potential in visualization of flow field.

  6. Flow visualization of two-phase flows using photochromic dye activation method

    International Nuclear Information System (INIS)

    Kawaji, M.; Ahmad, W.; DeJesus, J.M.; Sutharshan, B.; Lorencez, C.; Ojha, M.

    1993-01-01

    A non-intrusive flow visualization technique based on light activation of photochromic dye material has been used to obtain velocity profiles in gas-liquid flows including annular, slug and stratified flows. The preliminary results revealed several important two-phase flow mechanisms that have not been clearly seen previously. (orig.)

  7. Pressure Wire Compared to Microcatheter Sensing for Coronary Fractional Flow Reserve: The PERFORM Study.

    Science.gov (United States)

    Ali, Ziad A; Parviz, Yasir; Brinkman, Matthew; Matsumura, Mitsuaki; Redfors, Björn; Brogno, David A; Corral, Maria D; Fall, Khady N; Mintz, Gary S; Stone, Gregg W; Maehara, Akiko; Jeremias, Allen; Kirtane, Ajay J

    2018-05-15

    Among technologies used to assess FFR, a monorail, sensor-tipped micro pressure catheter (PC) may be advantageous for delivery and re-assessment. We sought to determine whether the larger cross-sectional area of the PC influences FFR measurements compared to the pressure wire. PERFORM was a single-center, prospective study designed to determine the precision and accuracy of the PC compared with the pressure wire (PW) for measurement of FFR. Eligible patients had native coronary artery target lesions with visually estimated diameter stenosis of 40-90%. The independently adjudicated primary endpoint was the difference in hyperemic PW-determined minimal FFR with and without the PC distal to the stenosis. Seventy-four patients (95 lesions) were prospectively analyzed between December 2015 and December 2016. Median hyperemic FFR was 0.84 [IQR 0.78, 0.89] with the PW and 0.79 [IQR 0.73, 0.85] with the PC distal to the stenosis (p0.80 to ≤0.80 in 17 of 95 measurements (19%). Median resting Pd/Pa was lower following introduction of the PC compared with the PW alone (0.93 [IQR 0.90, 0.97] versus 0.90 [IQR 0.86, 0.95], p<0.001). Median pressure drift was not different between the PW and the PC (0.01 [IQR -0.01, 0.05] versus 0.01 [IQR 0.00, 0.02], p=0.38). Introduction of the PC reduced device success and both hyperemic FFR and resting Pd/Pa compared with the PW alone, leading to re-classifying physiological significance to below ischemic threshold in one out of five assessments.

  8. Effect of Slow External Flow on Flame Spreading over Solid Material: Opposed Spreading over Polyethylene Wire Insulation

    Science.gov (United States)

    Fujita, O.; Nishizawa, K.; Ito, K.; Olson, S. L.; Kashigawa, T.

    2001-01-01

    The effect of slow external flow on solid combustion is very important from the view of fire safety in space because the solid material in spacecraft is generally exposed to the low air flow for ventilation. Further, the effect of low external flow on fuel combustion is generally fundamental information for industrial combustion system, such as gas turbine, boiler incinerator and so on. However, it is difficult to study the effect of low external flow on solid combustion in normal gravity, because the buoyancy-induced flow strongly disturbs the flow field, especially for low flow velocity. In this research therefore, the effect of slow external flow on opposed flame spreading over polyethylene (PE) wire insulation have been investigated in microgravity. The microgravity environment was provided by Japan Microgravity Center (JAMIC) in Japan and KC-135 at NASA GRC. The tested flow velocity range is 0-30cm/s with different oxygen concentration and inert gas component.

  9. Physically-based interactive Schlieren flow visualization

    Energy Technology Data Exchange (ETDEWEB)

    Mccormick, Patrick S [Los Alamos National Laboratory; Brownlee, Carson S [Los Alamos National Laboratory; Pegoraro, Vincent [UNIV OF UTAH; Shankar, Siddharth [UNIV OF UTAH; Hansen, Charles D [UNIV OF UTAH

    2009-01-01

    Understanding fluid flow is a difficult problem and of increasing importance as computational fluid dynamics produces an abundance of simulation data. Experimental flow analysis has employed techniques such as shadowgraph and schlieren imaging for centuries which allow empirical observation of inhomogeneous flows. Shadowgraphs provide an intuitive way of looking at small changes in flow dynamics through caustic effects while schlieren cutoffs introduce an intensity gradation for observing large scale directional changes in the flow. The combination of these shading effects provides an informative global analysis of overall fluid flow. Computational solutions for these methods have proven too complex until recently due to the fundamental physical interaction of light refracting through the flow field. In this paper, we introduce a novel method to simulate the refraction of light to generate synthetic shadowgraphs and schlieren images of time-varying scalar fields derived from computational fluid dynamics (CFD) data. Our method computes physically accurate schlieren and shadowgraph images at interactive rates by utilizing a combination of GPGPU programming, acceleration methods, and data-dependent probabilistic schlieren cutoffs. Results comparing this method to previous schlieren approximations are presented.

  10. Arterial secondary blood flow patterns visualized with vector flow ultrasound

    DEFF Research Database (Denmark)

    Pedersen, Mads Møller; Pihl, Michael Johannes; Hansen, Jens Munk

    2011-01-01

    This study presents the first quantification and visualisation of secondary flow patterns with vector flow ultrasound. The first commercial implementation of the vector flow method Transverse Oscillation was used to obtain in-vivo, 2D vector fields in real-time. The hypothesis of this study...... was that the rotational direction is constant within each artery. Three data sets of 10 seconds were obtained from three main arteries in healthy volunteers. For each data set the rotational flow patterns were identified during the diastole. Each data set contains a 2D vector field over time and with the vector angles...

  11. Visualization and simulation of complex flows in biomedical engineering

    CERN Document Server

    Imai, Yohsuke; Ishikawa, Takuji; Oliveira, Mónica

    2014-01-01

    This book focuses on the most recent advances in the application of visualization and simulation methods to understand the flow behavior of complex fluids used in biomedical engineering and other related fields. It shows the physiological flow behavior in large arteries, microcirculation, respiratory systems and in biomedical microdevices.

  12. Doppler Flow Wire Evaluation of Renal Blood Flow Reserve in Hypertensive Patients with Normal Renal Arteries

    International Nuclear Information System (INIS)

    Beregi, Jean-Paul; Mounier-Vehier, Claire; Devos, Patrick; Gautier, Corinne; Libersa, Christian; McFadden, Eugene P.; Carre, Alain

    2000-01-01

    Purpose: To study the vasomotor responses of the renal microcirculation in patients with essential hypertension.Methods: We studied the reactivity of the renal microcirculation to papaverine, with intraarterial Doppler and quantitative arteriography, in 34 renal arteries of 19 hypertensive patients without significant renal artery stenosis. Isosorbide dinitrate was given to maximally dilate proximal renal arteries. APV (average peak blood flow velocity) was used as an index of renal blood flow.Results: Kidneys could be divided into two distinct subgroups based on their response to papaverine. An increase in APV of up to 55% occurred in 21 kidneys, an increase > 55% in 13 kidneys. Within each group the values were normally distributed. Both baseline APV and the effect of papaverine on mean velocity differed significantly between groups.Conclusion: There seems to be a subgroup of patients with essential hypertension that has an impaired reactivity to papaverine, consistent with a functional impairment of the renal microcirculation. Further studies are required to determine whether this abnormality contributes to or results from elevated blood pressure

  13. Visualization and analysis of flow structures in an open cavity

    Science.gov (United States)

    Liu, Jun; Cai, Jinsheng; Yang, Dangguo; Wu, Junqiang; Wang, Xiansheng

    2018-05-01

    A numerical study is performed on the supersonic flow over an open cavity at Mach number of 1.5. A newly developed visualization method is employed to visualize the complicated flow structures, which provide an insight into major flow physics. Four types of shock/compressive waves which existed in experimental schlieren are observed in numerical visualization results. Furthermore, other flow structures such as multi-scale vortices are also obtained in the numerical results. And a new type of shocklet which is beneath large vortices is found. The shocklet beneath the vortex originates from leading edge, then, is strengthened by successive interactions between feedback compressive waves and its attached vortex. Finally, it collides against the trailing surface and generates a large number of feedback compressive waves and intensive pressure fluctuations. It is suggested that the shocklets beneath vortex play an important role of cavity self-sustained oscillation.

  14. Brief Communication: A low-cost Arduino®-based wire extensometer for earth flow monitoring

    Directory of Open Access Journals (Sweden)

    L. Guerriero

    2017-06-01

    Full Text Available Continuous monitoring of earth flow displacement is essential for the understanding of the dynamic of the process, its ongoing evolution and designing mitigation measures. Despite its importance, it is not always applied due to its expense and the need for integration with additional sensors to monitor factors controlling movement. To overcome these problems, we developed and tested a low-cost Arduino-based wire-rail extensometer integrating a data logger, a power system and multiple digital and analog inputs. The system is equipped with a high-precision position transducer that in the test configuration offers a measuring range of 1023 mm and an associated accuracy of ±1 mm, and integrates an operating temperature sensor that should allow potential thermal drift that typically affects this kind of systems to be identified and corrected. A field test, conducted at the Pietrafitta earth flow where additional monitoring systems had been installed, indicates a high reliability of the measurement and a high monitoring stability without visible thermal drift.

  15. Flow visualization of a low density hypersonic flow field

    International Nuclear Information System (INIS)

    Masson, B.S.; Jumper, E.J.; Walters, E.; Segalman, T.Y.; Founds, N.D.

    1989-01-01

    Characteristics of laser induced iodine fluorescence (LIIF) in low density hypersonic flows are being investigated for use as a diagnostic technique. At low pressures, doppler broadening dominates the iodine absorption profile producing a fluorescence signal that is primarily temperature and velocity dependent. From this dependency, a low pressure flow field has the potential to be mapped for its velocity and temperature fields. The theory for relating iodine emission to the velocity and temperature fields of a hypersonic flow is discussed in this paper. Experimental observations are made of a fluorescencing free expansion and qualitatively related to the theory. 7 refs

  16. System for flow visualization in swimming

    NARCIS (Netherlands)

    van Houwelingen, J.; van de Water, W.; Kunnen, R.P.J.; van Heijst, GJF; Clerx, H.J.H.; Jansen, A.J.

    2016-01-01

    Understanding the power balance of a swimmer, who needs to overcome power losses to drag and to water set in motion, requires detailed insight into the hydrodynamics of the flow around the swimmer. This will be done from a hydrodynamic point of view with techniques familiar from fluid mechanics.

  17. Investigations of flow and temperature field development in bare and wire-wrapped reactor fuel pin bundles cooled by sodium

    International Nuclear Information System (INIS)

    Govindha Rasu, N.; Velusamy, K.; Sundararajan, T.; Chellapandi, P.

    2013-01-01

    Highlights: ► We study sodium flow and temperature development in fuel pin bundles. ► Pin diameter, number of pins, wire wrap and ligament gap are varied as parameters. ► Flow development is achieved within ∼30–40 hydraulic diameters. ► Thermal development is attained only for small pin diameter and less number of pins. ► Wire wrap and ligament gap strongly influence Nusselt number. - Abstract: Simultaneous development of liquid sodium flow and temperature fields in the heat generating pin bundles of reactor has been investigated. Development characteristics are seen to be strongly influenced by pin diameter, number of pins, helical wire-wrap, ligament gap between the last row of pins and hexcan wall and Reynolds number. Flow development is achieved within an axial length of ∼125 hydraulic diameters, for all the pin bundle configurations considered. But temperature development is attained only if the pin diameter is small or the number of pins is less. In the case of large pin diameter with more pins, temperature development could not be achieved even after a length of ∼1000 hydraulic diameters. The reason for this behavior is traced to be the weak communication among sub-channels in tightly packed bundles. It is seen that the pin Nusselt number decreases from center to periphery in a bundle. Also, if the ligament gap is narrow, the Nusselt number is large and more uniform. Flow development length is short if the Reynolds number is large and the converse is true for thermal development length. Helical wire-wrap shortens the thermal entry length and significantly enhances the global Nusselt number. But, its influence on hydrodynamic entry length is not significant

  18. Two-phase flow pattern measurements with a wire mesh sensor in a direct steam generating solar thermal collector

    Science.gov (United States)

    Berger, Michael; Mokhtar, Marwan; Zahler, Christian; Willert, Daniel; Neuhäuser, Anton; Schleicher, Eckhard

    2017-06-01

    At Industrial Solar's test facility in Freiburg (Germany), two phase flow patterns have been measured by using a wire mesh sensor from Helmholtz Zentrum Dresden-Rossendorf (HZDR). Main purpose of the measurements was to compare observed two-phase flow patterns with expected flow patterns from models. The two-phase flow pattern is important for the design of direct steam generating solar collectors. Vibrations should be avoided in the peripheral piping, and local dry-outs or large circumferential temperature gradients should be prevented in the absorber tubes. Therefore, the choice of design for operation conditions like mass flow and steam quality are an important step in the engineering process of such a project. Results of a measurement with the wire mesh sensor are the flow pattern and the plug or slug frequency at the given operating conditions. Under the assumption of the collector power, which can be assumed from previous measurements at the same collector and adaption with sun position and incidence angle modifier, also the slip can be evaluated for a wire mesh sensor measurement. Measurements have been performed at different mass flows and pressure levels. Transient behavior has been tested for flashing, change of mass flow, and sudden changes of irradiation (cloud simulation). This paper describes the measurements and the method of evaluation. Results are shown as extruded profiles in top view and in side view. Measurement and model are compared. The tests have been performed at low steam quality, because of the limits of the test facility. Conclusions and implications for possible future measurements at larger collectors are also presented in this paper.

  19. Visual Modelling of Data Warehousing Flows with UML Profiles

    Science.gov (United States)

    Pardillo, Jesús; Golfarelli, Matteo; Rizzi, Stefano; Trujillo, Juan

    Data warehousing involves complex processes that transform source data through several stages to deliver suitable information ready to be analysed. Though many techniques for visual modelling of data warehouses from the static point of view have been devised, only few attempts have been made to model the data flows involved in a data warehousing process. Besides, each attempt was mainly aimed at a specific application, such as ETL, OLAP, what-if analysis, data mining. Data flows are typically very complex in this domain; for this reason, we argue, designers would greatly benefit from a technique for uniformly modelling data warehousing flows for all applications. In this paper, we propose an integrated visual modelling technique for data cubes and data flows. This technique is based on UML profiling; its feasibility is evaluated by means of a prototype implementation.

  20. Comparison between wire-mesh sensors and conductive needle-probes for measurements of two-phase flow parameters

    International Nuclear Information System (INIS)

    Manera, A.; Ozar, B.; Paranjape, S.; Ishii, M.; Prasser, H.-M.

    2009-01-01

    Measurements of two-phase flow parameters such as void-fraction, bubble velocities, and interfacial area density have been performed in an upwards air-water flow at atmospheric pressure by means of a four-tip needle-probe and a wire-mesh sensor. For the first time, a direct comparison between the two measuring techniques has been carried out. Both techniques are based on the measurement of the fluid conductivity. For void-fraction and velocity measurements, similarity exists between the two methodologies for signal analysis. A significantly different approach is followed, instead, for the estimation of the interfacial area concentration: while the evaluation based on the needle-probe signal is carried out by using projections of the gas-liquid interface velocity, the evaluation based on the wire-mesh signals consist in a full reconstruction of the bubbles interfaces. The comparison between the two techniques shows a good agreement.

  1. Comparison between wire-mesh sensors and conductive needle-probes for measurements of two-phase flow parameters

    Energy Technology Data Exchange (ETDEWEB)

    Manera, A. [Paul Scherrer Institute, 5232 Villigen (Switzerland); Research Center Dresden Rossendorf, Dresden (Germany)], E-mail: annalisa.manera@psi.ch; Ozar, B.; Paranjape, S.; Ishii, M. [Purdue University, West Lafayette (United States); Prasser, H.-M. [Research Center Dresden Rossendorf, Dresden (Germany); ETH Zuerich, Sonneggstrasse 3, 8092 Zuerich (Switzerland)

    2009-09-15

    Measurements of two-phase flow parameters such as void-fraction, bubble velocities, and interfacial area density have been performed in an upwards air-water flow at atmospheric pressure by means of a four-tip needle-probe and a wire-mesh sensor. For the first time, a direct comparison between the two measuring techniques has been carried out. Both techniques are based on the measurement of the fluid conductivity. For void-fraction and velocity measurements, similarity exists between the two methodologies for signal analysis. A significantly different approach is followed, instead, for the estimation of the interfacial area concentration: while the evaluation based on the needle-probe signal is carried out by using projections of the gas-liquid interface velocity, the evaluation based on the wire-mesh signals consist in a full reconstruction of the bubbles interfaces. The comparison between the two techniques shows a good agreement.

  2. Engine flow visualization using a copper vapor laser

    Science.gov (United States)

    Regan, Carolyn A.; Chun, Kue S.; Schock, Harold J., Jr.

    1987-01-01

    A flow visualization system has been developed to determine the air flow within the combustion chamber of a motored, axisymmetric engine. The engine has been equipped with a transparent quartz cylinder, allowing complete optical access to the chamber. A 40-Watt copper vapor laser is used as the light source. Its beam is focused down to a sheet approximately 1 mm thick. The light plane is passed through the combustion chamber, and illuminates oil particles which were entrained in the intake air. The light scattered off of the particles is recorded by a high speed rotating prism movie camera. A movie is then made showing the air flow within the combustion chamber for an entire four-stroke engine cycle. The system is synchronized so that a pulse generated by the camera triggers the laser's thyratron. The camera is run at 5,000 frames per second; the trigger drives one laser pulse per frame. This paper describes the optics used in the flow visualization system, the synchronization circuit, and presents results obtained from the movie. This is believed to be the first published study showing a planar observation of airflow in a four-stroke piston-cylinder assembly. These flow visualization results have been used to interpret flow velocity measurements previously obtained with a laser Doppler velocimetry system.

  3. Visualization periodic flows in a continuously stratified fluid.

    Science.gov (United States)

    Bardakov, R.; Vasiliev, A.

    2012-04-01

    To visualize the flow pattern of viscous continuously stratified fluid both experimental and computational methods were developed. Computational procedures were based on exact solutions of set of the fundamental equations. Solutions of the problems of flows producing by periodically oscillating disk (linear and torsion oscillations) were visualized with a high resolutions to distinguish small-scale the singular components on the background of strong internal waves. Numerical algorithm of visualization allows to represent both the scalar and vector fields, such as velocity, density, pressure, vorticity, stream function. The size of the source, buoyancy and oscillation frequency, kinematic viscosity of the medium effects were traced in 2D an 3D posing problems. Precision schlieren instrument was used to visualize the flow pattern produced by linear and torsion oscillations of strip and disk in a continuously stratified fluid. Uniform stratification was created by the continuous displacement method. The buoyancy period ranged from 7.5 to 14 s. In the experiments disks with diameters from 9 to 30 cm and a thickness of 1 mm to 10 mm were used. Different schlieren methods that are conventional vertical slit - Foucault knife, vertical slit - filament (Maksoutov's method) and horizontal slit - horizontal grating (natural "rainbow" schlieren method) help to produce supplementing flow patterns. Both internal wave beams and fine flow components were visualized in vicinity and far from the source. Intensity of high gradient envelopes increased proportionally the amplitude of the source. In domains of envelopes convergence isolated small scale vortices and extended mushroom like jets were formed. Experiments have shown that in the case of torsion oscillations pattern of currents is more complicated than in case of forced linear oscillations. Comparison with known theoretical model shows that nonlinear interactions between the regular and singular flow components must be taken

  4. Experimental study of bypass flow in near wall gaps of a pebble bed reactor using hot wire anemometry technique

    International Nuclear Information System (INIS)

    Amini, Noushin; Hassan, Yassin A.

    2014-01-01

    Highlights: • Coolant flow behavior in near wall gaps of a pebble bed reactor is studied. • Hot wire anemometry is applied for high frequency velocity measurements. • Bypass flow is identified within the velocity profiles of near wall gaps. • Effect of gap geometry and Reynolds number on bypass flow is investigated. • Variation of velocity power spectra with radial location and Reynolds number is studied. - Abstract: Coolant flow behavior through the core of an annular pebble bed reactor is investigated in this experimental study. A high frequency hot wire anemometry system coupled with an X-probe is used for measurement of axial and radial velocity components at different points within two near wall gaps at five different modified Reynolds numbers (Re m = 2043–6857). The velocity profiles within the gaps verify the presence of an area of increased velocity close to the pebble bed outer reflector wall, which is known as the bypass flow. Moreover, the characteristics of the coolant flow profile are seen to be highly dependent on the gap geometry. The effect of Reynolds number on the velocity profiles varies as the geometry of the gap changes. The time histories of the local velocities measured with considerably high frequency are further analyzed using power spectral density technique. Power spectral plots illustrate substantial spatial variation of the energy content, spectral shape, and the slope of the energy cascade region. A significant correlation between Reynolds number and characteristics of the velocity power spectra is observed

  5. STRING 3: An Advanced Groundwater Flow Visualization Tool

    Science.gov (United States)

    Schröder, Simon; Michel, Isabel; Biedert, Tim; Gräfe, Marius; Seidel, Torsten; König, Christoph

    2016-04-01

    The visualization of 3D groundwater flow is a challenging task. Previous versions of our software STRING [1] solely focused on intuitive visualization of complex flow scenarios for non-professional audiences. STRING, developed by Fraunhofer ITWM (Kaiserslautern, Germany) and delta h Ingenieurgesellschaft mbH (Witten, Germany), provides the necessary means for visualization of both 2D and 3D data on planar and curved surfaces. In this contribution we discuss how to extend this approach to a full 3D tool and its challenges in continuation of Michel et al. [2]. This elevates STRING from a post-production to an exploration tool for experts. In STRING moving pathlets provide an intuition of velocity and direction of both steady-state and transient flows. The visualization concept is based on the Lagrangian view of the flow. To capture every detail of the flow an advanced method for intelligent, time-dependent seeding is used building on the Finite Pointset Method (FPM) developed by Fraunhofer ITWM. Lifting our visualization approach from 2D into 3D provides many new challenges. With the implementation of a seeding strategy for 3D one of the major problems has already been solved (see Schröder et al. [3]). As pathlets only provide an overview of the velocity field other means are required for the visualization of additional flow properties. We suggest the use of Direct Volume Rendering and isosurfaces for scalar features. In this regard we were able to develop an efficient approach for combining the rendering through raytracing of the volume and regular OpenGL geometries. This is achieved through the use of Depth Peeling or A-Buffers for the rendering of transparent geometries. Animation of pathlets requires a strict boundary of the simulation domain. Hence, STRING needs to extract the boundary, even from unstructured data, if it is not provided. In 3D we additionally need a good visualization of the boundary itself. For this the silhouette based on the angle of

  6. Characterizing the correlations between local phase fractions of gas���liquid two-phase flow with wire-mesh sensor

    OpenAIRE

    Tan, C.; Liu, W. L.; Dong, F.

    2016-01-01

    Understanding of flow patterns and their transitions is significant to uncover the flow mechanics of two-phase flow. The local phase distribution and its fluctuations contain rich information regarding the flow structures. A wire-mesh sensor (WMS) was used to study the local phase fluctuations of horizontal gas���liquid two-phase flow, which was verified through comparing the reconstructed three-dimensional flow structure with photographs taken during the experiments. Each crossing point of t...

  7. Development of a Flow-Through SQUID System for Non-Destructive Evaluation of MRI Wire

    National Research Council Canada - National Science Library

    Wellstood, Frederick C

    2007-01-01

    ...) superconducting quantum interference device (SQUID) system. The ability to detect small defects in km-long sections of NbTi magnet wire could improve the production yield of high-field magnets for power and medical applications...

  8. Investigation of air-water flow in a horizontal pipe with 90 degree bends using wire mesh sensors

    Energy Technology Data Exchange (ETDEWEB)

    Bowden, R.C.; Yang, S.K., E-mail: robert.bowden@cnl.ca, E-mail: sun-kyu.yang@cnl.ca [Canadian Nuclear Laboratories, Chalk River, ON (Canada)

    2015-07-01

    Wire mesh sensors were used to investigate the void fraction distribution along a 9 meter long, 50.8 mm diameter, horizontal test section that contained two 90 degree bends. Deionised water and compressed air were used as the working fluids, with the bubbly flow regime achieved at a superficial liquid velocity of 3.5 m/s and superficial gas velocities that varied between 0.1 and 1.2 m/s. The effects of superficial gas velocity and axial location on the void fraction distribution were investigated. Bubble and slug flow patterns were identified using a probability density function analysis based on a Gaussian mixture model. (author)

  9. Semi-empirical model for the calculation of flow friction factors in wire-wrapped rod bundles

    International Nuclear Information System (INIS)

    Carajilescov, P.; Fernandez y Fernandez, E.

    1981-08-01

    LMFBR fuel elements consist of wire-wrapped rod bundles, with triangular array, with the fluid flowing parallel to the rods. A semi-empirical model is developed in order to obtain the average bundle friction factor, as well as the friction factor for each subchannel. The model also calculates the flow distribution factors. The results are compared to experimental data for geometrical parameters in the range: P(div)D = 1.063 - 1.417, H(div)D = 4 - 50, and are considered satisfactory. (Author) [pt

  10. Fast virtual functional assessment of intermediate coronary lesions using routine angiographic data and blood flow simulation in humans: comparison with pressure wire - fractional flow reserve.

    Science.gov (United States)

    Papafaklis, Michail I; Muramatsu, Takashi; Ishibashi, Yuki; Lakkas, Lampros S; Nakatani, Shimpei; Bourantas, Christos V; Ligthart, Jurgen; Onuma, Yoshinobu; Echavarria-Pinto, Mauro; Tsirka, Georgia; Kotsia, Anna; Nikas, Dimitrios N; Mogabgab, Owen; van Geuns, Robert-Jan; Naka, Katerina K; Fotiadis, Dimitrios I; Brilakis, Emmanouil S; Garcia-Garcia, Héctor M; Escaned, Javier; Zijlstra, Felix; Michalis, Lampros K; Serruys, Patrick W

    2014-09-01

    To develop a simplified approach of virtual functional assessment of coronary stenosis from routine angiographic data and test it against fractional flow reserve using a pressure wire (wire-FFR). Three-dimensional quantitative coronary angiography (3D-QCA) was performed in 139 vessels (120 patients) with intermediate lesions assessed by wire-FFR (reference standard: ≤0.80). The 3D-QCA models were processed with computational fluid dynamics (CFD) to calculate the lesion-specific pressure gradient (ΔP) and construct the ΔP-flow curve, from which the virtual functional assessment index (vFAI) was derived. The discriminatory power of vFAI for ischaemia- producing lesions was high (area under the receiver operator characteristic curve [AUC]: 92% [95% CI: 86-96%]). Diagnostic accuracy, sensitivity and specificity for the optimal vFAI cut-point (≤0.82) were 88%, 90% and 86%, respectively. Virtual-FAI demonstrated superior discrimination against 3D-QCA-derived % area stenosis (AUC: 78% [95% CI: 70- 84%]; p<0.0001 compared to vFAI). There was a close correlation (r=0.78, p<0.0001) and agreement of vFAI compared to wire-FFR (mean difference: -0.0039±0.085, p=0.59). We developed a fast and simple CFD-powered virtual haemodynamic assessment model using only routine angiography and without requiring any invasive physiology measurements/hyperaemia induction. Virtual-FAI showed a high diagnostic performance and incremental value to QCA for predicting wire-FFR; this "less invasive" approach could have important implications for patient management and cost.

  11. Mass conservative fluid flow visualization for CFD velocity fields

    International Nuclear Information System (INIS)

    Li, Zhenquan; Mallinson, Gordon D.

    2001-01-01

    Mass conservation is a key issue for accurate streamline and stream surface visualization of flow fields. This paper complements an existing method (Feng et al., 1997) for CFD velocity fields defined at discrete locations in space that uses dual stream functions to generate streamlines and stream surfaces. Conditions for using the method have been examined and its limitations defined. A complete set of dual stream functions for all possible cases of the linear fields on which the method relies are presented. The results in this paper are important for developing new methods for mass conservative streamline visualization from CFD data and using the existing method

  12. The study on flow characteristics of butterfly valve using flow visualization

    International Nuclear Information System (INIS)

    Yang, S. M.; Hong, S. D.; Song, D. S.; Park, J. K.; Park, J. I.; Shin, S. K.; Kim, H. J.

    2005-01-01

    Flow visualization of butterfly valve is tested for four types(15 deg., 30 .deg., 45 .deg., and 90 .deg.) of valve opening angle. The inner flow characteristics of valve are studied. The flow variation was measured using a high speed camera which takes 500 frames per second with 1024 x 1024 pixels. These captured images were used for calculation to analyze two dimensional flow velocity of the valve. The smaller opening angle, the more increasing the differential pressure of a butterfly valve. Therefore, we know that the complex flow is occurred by increasing the differential pressure. And it is found that the flowing backward is more increased according to the increase of the opening angle of a butterfly valve. However, its flow pattern is similar to a simple pipe flow when the opening angle is 90 .deg.

  13. Distillation and Visualization of Spatiotemporal Structures in Turbulent Flow Fields

    International Nuclear Information System (INIS)

    Hege, Hans-Christian; Hotz, Ingrid; Kasten, Jens

    2011-01-01

    Although turbulence suggests randomness and disorder, organized motions that cause spatiotemporal 'coherent structures' are of particular interest. Revealing such structures in numerically given turbulent or semi-turbulent flows is of interest both for practically working engineers and theoretically oriented physicists. However, as long as there is no common agreement about the mathematical definition of coherent structures, extracting such structures is a vaguely defined task. Instead of searching for a general definition, the data visualization community takes a pragmatic approach and provides various tool chains implemented in flexible software frameworks that allow the user to extract distinct flow field structures. Thus physicists or engineers can select those flow structures which might advance their insight best. We present different approaches to distill important features from turbulent flows and discuss the necessary steps to be taken on the example of Lagrangian coherent structures.

  14. Subchannel and bundle friction factors and flow split parameters for laminar transition and turbulent longitudinal flows in wire wrap spaced hexagonal arrays

    International Nuclear Information System (INIS)

    Hawley, J.T.; Chiu, C.; Todreas, N.E.; Rohsenow, W.M.

    1980-01-01

    Correlations are presented for subchannel and bundle friction factors and flowsplit parameters for laminar, transition and turbulent longitudinal flows in wire wrap spaced hexagonal arrays. These results are obtained from pressure drop models of flow in individual subchannels. For turbulent flow, an existing pressure drop model for flow in edge subchannels is extended, and the resulting edge subchannel friction factor is identified. Using the expressions for flowsplit parameters and the equal pressure drops assumption, the interior subchannel and bundle friction factors are obtained. For laminar flow, models are developed for pressure drops of individual subchannels. From these models, expressions for the subchannel friction factors are identified and expressions for the flowsplit parameters are derived

  15. Flow visualization in models of high speed centrifugal separators

    International Nuclear Information System (INIS)

    Lagerstedt, T.; Nabo, O.

    1987-01-01

    The modern centrifugal separator is a fluid machine where the high ''G'' forces set up by rotation are utilized to separate phases of different densities. The fluid dynamics of the separator is complex and poorly known. Hundred years of (practical) experience has, however, turned the separator into an efficient machine. The present report shows how straight forward visualization experiments in model rigs provide valuable information on the flow inside the separator. The report concentrates on describing the flow between the closely spaced discs in a separator disc stack

  16. Flow visualization in heat-generating porous media

    International Nuclear Information System (INIS)

    Lee, D.O.; Nilson, R.H.

    1977-11-01

    The work reported is in support of the Sandia Post-Accident Heat Removal Program, in which simulated LMFBR beds will be subjected to in-pile heating in the ACPR (Annular Core Pulsed Reactor). Flow visualization experiments were performed to gain some insight into the flow patterns and temperature distributions in a fluid-saturated heat-generating porous medium. Although much of the information presented is of a qualitative nature, it is useful in the recognition of the controlling transport process and in the formulation of analytic and numerical models

  17. 3D flow visualizations by means of laser beam sweeps

    International Nuclear Information System (INIS)

    Prenel, J.P.; Porcar, R.; Diemunsch, G.

    1987-01-01

    A method in which two-dimensional aperiodic or periodic sweeps are used to produce three-dimensional light sweeps makes possible the quasi-simultaneous recording of different specific planes of a flow, or the characterization of a fluid without revolution symmetry. The optical device consists of two scanners (whose axes are orthogonal) set into a telescope, allowing fine focusing of the light sheets in the study zone. The method also allows visualizations on skewed surfaces, particularly those of flows without a cylindrical geometry; it is applicable from low velocity, as in heat convection, to supersonic velocity, as in the analysis of a nonaxisymmetric ejector. 8 references

  18. A three-dimensional mathematical model to predict air-cooling flow and temperature distribution of wire loops in the Stelmor air-cooling system

    International Nuclear Information System (INIS)

    Hong, Lingxiang; Wang, Bo; Feng, Shuai; Yang, Zhiliang; Yu, Yaowei; Peng, Wangjun; Zhang, Jieyu

    2017-01-01

    Highlights: • A 3-dimentioanl mathematical models for complex wire loops was set up in Stelmor. • The air flow field in the cooling process was simulated. • The convective heat transfer coefficient was simulated coupled with air flow field. • The temperature distribution with distances was predicted. - Abstract: Controlling the forced air cooling conditions in the Stelmor conveyor line is important for improving the microstructure and mechanical properties of steel wire rods. A three-dimensional mathematical model incorporating the turbulent flow of the cooling air and heat transfer of the wire rods was developed to predict the cooling process in the Stelmor air-cooling line of wire rolling mills. The distribution of cooling air from the plenum chamber and the forced convective heat transfer coefficient for the wire loops were simulated at the different locations over the conveyor. The temperature profiles and cooling curves of the wire loops in Stelmor conveyor lines were also calculated by considering the convective heat transfer, radiative heat transfer as well as the latent heat during transformation. The calculated temperature results using this model agreed well with the available measured results in the industrial tests. Thus, it was demonstrated that this model can be useful for studying the air-cooling process and predicting the temperature profile and microstructure evolution of the wire rods.

  19. Decoding complex flow-field patterns in visual working memory.

    Science.gov (United States)

    Christophel, Thomas B; Haynes, John-Dylan

    2014-05-01

    There has been a long history of research on visual working memory. Whereas early studies have focused on the role of lateral prefrontal cortex in the storage of sensory information, this has been challenged by research in humans that has directly assessed the encoding of perceptual contents, pointing towards a role of visual and parietal regions during storage. In a previous study we used pattern classification to investigate the storage of complex visual color patterns across delay periods. This revealed coding of such contents in early visual and parietal brain regions. Here we aim to investigate whether the involvement of visual and parietal cortex is also observable for other types of complex, visuo-spatial pattern stimuli. Specifically, we used a combination of fMRI and multivariate classification to investigate the retention of complex flow-field stimuli defined by the spatial patterning of motion trajectories of random dots. Subjects were trained to memorize the precise spatial layout of these stimuli and to retain this information during an extended delay. We used a multivariate decoding approach to identify brain regions where spatial patterns of activity encoded the memorized stimuli. Content-specific memory signals were observable in motion sensitive visual area MT+ and in posterior parietal cortex that might encode spatial information in a modality independent manner. Interestingly, we also found information about the memorized visual stimulus in somatosensory cortex, suggesting a potential crossmodal contribution to memory. Our findings thus indicate that working memory storage of visual percepts might be distributed across unimodal, multimodal and even crossmodal brain regions. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Wiring a periscope--ocelli, retinula axons, visual neuropils and the ancestrality of sea spiders.

    Science.gov (United States)

    Lehmann, Tobias; Hess, Martin; Melzer, Roland R

    2012-01-01

    The Pycnogonida or sea spiders are cryptic, eight-legged arthropods with four median ocelli in a 'periscope' or eye tubercle. In older attempts at reconstructing phylogeny they were Arthropoda incertae sedis, but recent molecular trees placed them as the sister group either to all other euchelicerates or even to all euarthropods. Thus, pycnogonids are among the oldest extant arthropods and hold a key position for the understanding of arthropod evolution. This has stimulated studies of new sets of characters conductive to cladistic analyses, e.g. of the chelifores and of the hox gene expression pattern. In contrast knowledge of the architecture of the visual system is cursory. A few studies have analysed the ocelli and the uncommon "pseudoinverted" retinula cells. Moreover, analyses of visual neuropils are still at the stage of Hanström's early comprehensive works. We have therefore used various techniques to analyse the visual fibre pathways and the structure of their interrelated neuropils in several species. We found that pycnogonid ocelli are innervated to first and second visual neuropils in close vicinity to an unpaired midline neuropil, i.e. possibly the arcuate body, in a way very similar to ancestral euarthropods like Euperipatoides rowelli (Onychophora) and Limulus polyphemus (Xiphosura). This supports the ancestrality of pycnogonids and sheds light on what eyes in the pycnogonid ground plan might have 'looked' like. Recently it was suggested that arthropod eyes originated from simple ocelli similar to larval eyes. Hence, pycnogonid eyes would be one of the early offshoots among the wealth of more sophisticated arthropod eyes.

  1. Wiring a periscope--ocelli, retinula axons, visual neuropils and the ancestrality of sea spiders.

    Directory of Open Access Journals (Sweden)

    Tobias Lehmann

    Full Text Available The Pycnogonida or sea spiders are cryptic, eight-legged arthropods with four median ocelli in a 'periscope' or eye tubercle. In older attempts at reconstructing phylogeny they were Arthropoda incertae sedis, but recent molecular trees placed them as the sister group either to all other euchelicerates or even to all euarthropods. Thus, pycnogonids are among the oldest extant arthropods and hold a key position for the understanding of arthropod evolution. This has stimulated studies of new sets of characters conductive to cladistic analyses, e.g. of the chelifores and of the hox gene expression pattern. In contrast knowledge of the architecture of the visual system is cursory. A few studies have analysed the ocelli and the uncommon "pseudoinverted" retinula cells. Moreover, analyses of visual neuropils are still at the stage of Hanström's early comprehensive works. We have therefore used various techniques to analyse the visual fibre pathways and the structure of their interrelated neuropils in several species. We found that pycnogonid ocelli are innervated to first and second visual neuropils in close vicinity to an unpaired midline neuropil, i.e. possibly the arcuate body, in a way very similar to ancestral euarthropods like Euperipatoides rowelli (Onychophora and Limulus polyphemus (Xiphosura. This supports the ancestrality of pycnogonids and sheds light on what eyes in the pycnogonid ground plan might have 'looked' like. Recently it was suggested that arthropod eyes originated from simple ocelli similar to larval eyes. Hence, pycnogonid eyes would be one of the early offshoots among the wealth of more sophisticated arthropod eyes.

  2. Wiring a Periscope – Ocelli, Retinula Axons, Visual Neuropils and the Ancestrality of Sea Spiders

    Science.gov (United States)

    Lehmann, Tobias; Heß, Martin; Melzer, Roland R.

    2012-01-01

    The Pycnogonida or sea spiders are cryptic, eight-legged arthropods with four median ocelli in a ‘periscope’ or eye tubercle. In older attempts at reconstructing phylogeny they were Arthropoda incertae sedis, but recent molecular trees placed them as the sister group either to all other euchelicerates or even to all euarthropods. Thus, pycnogonids are among the oldest extant arthropods and hold a key position for the understanding of arthropod evolution. This has stimulated studies of new sets of characters conductive to cladistic analyses, e.g. of the chelifores and of the hox gene expression pattern. In contrast knowledge of the architecture of the visual system is cursory. A few studies have analysed the ocelli and the uncommon “pseudoinverted” retinula cells. Moreover, analyses of visual neuropils are still at the stage of Hanström's early comprehensive works. We have therefore used various techniques to analyse the visual fibre pathways and the structure of their interrelated neuropils in several species. We found that pycnogonid ocelli are innervated to first and second visual neuropils in close vicinity to an unpaired midline neuropil, i.e. possibly the arcuate body, in a way very similar to ancestral euarthropods like Euperipatoides rowelli (Onychophora) and Limulus polyphemus (Xiphosura). This supports the ancestrality of pycnogonids and sheds light on what eyes in the pycnogonid ground plan might have ‘looked’ like. Recently it was suggested that arthropod eyes originated from simple ocelli similar to larval eyes. Hence, pycnogonid eyes would be one of the early offshoots among the wealth of more sophisticated arthropod eyes. PMID:22279594

  3. Flow instability and turbulence - ONERA water tunnel visualizations

    Science.gov (United States)

    Werle, H.

    The experimental technique used for visualizing laminar-turbulent transition phenomena, developed in previous tests in ONERA's small TH1 water tunnel, has been successfully applied in the new TH2 tunnel. With its very extensive Reynold's number domain (10 to the 4th - 10 to the 6th), this tunnel has shown itself to be well adapted to the study of turbulence and of the flow instabilities related to its appearance.

  4. Methods of Visually Determining the Air Flow Around Airplanes

    Science.gov (United States)

    Gough, Melvin N; Johnson, Ernest

    1932-01-01

    This report describes methods used by the National Advisory Committee for Aeronautics to study visually the air flow around airplanes. The use of streamers, oil and exhaust gas streaks, lampblack and kerosene, powdered materials, and kerosene smoke is briefly described. The generation and distribution of smoke from candles and from titanium tetrachloride are described in greater detail because they appear most advantageous for general application. Examples are included showing results of the various methods.

  5. Diversity and wiring variability of visual local neurons in the Drosophila medulla M6 stratum.

    Science.gov (United States)

    Chin, An-Lun; Lin, Chih-Yung; Fu, Tsai-Feng; Dickson, Barry J; Chiang, Ann-Shyn

    2014-12-01

    Local neurons in the vertebrate retina are instrumental in transforming visual inputs to extract contrast, motion, and color information and in shaping bipolar-to-ganglion cell transmission to the brain. In Drosophila, UV vision is represented by R7 inner photoreceptor neurons that project to the medulla M6 stratum, with relatively little known of this downstream substrate. Here, using R7 terminals as references, we generated a 3D volume model of the M6 stratum, which revealed a retinotopic map for UV representations. Using this volume model as a common 3D framework, we compiled and analyzed the spatial distributions of more than 200 single M6-specific local neurons (M6-LNs). Based on the segregation of putative dendrites and axons, these local neurons were classified into two families, directional and nondirectional. Neurotransmitter immunostaining suggested a signal routing model in which some visual information is relayed by directional M6-LNs from the anterior to the posterior M6 and all visual information is inhibited by a diverse population of nondirectional M6-LNs covering the entire M6 stratum. Our findings suggest that the Drosophila medulla M6 stratum contains diverse LNs that form repeating functional modules similar to those found in the vertebrate inner plexiform layer. © 2014 Wiley Periodicals, Inc.

  6. The art and science of flow control - case studies using flow visualization methods

    Science.gov (United States)

    Alvi, F. S.; Cattafesta, L. N., III

    2010-04-01

    Active flow control (AFC) has been the focus of significant research in the last decade. This is mainly due to the potentially substantial benefits it affords. AFC applications range from the subsonic to the supersonic (and beyond) regime for both internal and external flows. These applications are wide and varied, such as controlling flow transition and separation over various external components of the aircraft to active management of separation and flow distortion in engine components and over turbine and compressor blades. High-speed AFC applications include control of flow oscillations in cavity flows, supersonic jet screech, impinging jets, and jet-noise control. In this paper we review some of our recent applications of AFC through a number of case studies that illustrate the typical benefits as well as limitations of present AFC methods. The case studies include subsonic and supersonic canonical flowfields such as separation control over airfoils, control of supersonic cavity flows and impinging jets. In addition, properties of zero-net mass-flux (ZNMF) actuators are also discussed as they represent one of the most widely studied actuators used for AFC. In keeping with the theme of this special issue, the flowfield properties and their response to actuation are examined through the use of various qualitative and quantitative flow visualization methods, such as smoke, shadowgraph, schlieren, planar-laser scattering, and Particle image velocimetry (PIV). The results presented here clearly illustrate the merits of using flow visualization to gain significant insight into the flow and its response to AFC.

  7. Visualization of bubble behaviors in forced convective subcooled flow boiling

    International Nuclear Information System (INIS)

    Inaba, Noriaki; Matsuzaki, Mitsuo; Kikura, Hiroshige; Aritomi, Masanori; Komeno, Toshihiro

    2007-01-01

    Condensation characteristics of vapor bubble after the departure from a heated section in forced convective subcooled flow boiling were studied visually by using a high speed camera. The purpose of the present study was to measure two-phase flow parameters in subcooled flow boiling. These two-phase flow parameters are void fraction, interfacial area concentration and Sauter mean diameter, which express bubble interface behaviors. The experimental set-up was designed to measure the two-phase flow parameters necessary for developing composite equations for the two fluid models in subcooled flow boiling. In the present experiments, the mass flux, liquid subcooling and the heater were varied within 100-1000kg/m 2 s, 2-10K and 100-300kW/m 2 respectively. Under these experimental conditions, the bubble images were obtained by a high-speed camera, and analyzed paying attention to the condensation of vapor bubbles. These two-phase parameters were obtained by the experimental data, such as the bubble parameter, the bubble volume and the bubble surface. In the calculation process of the two phase flow parameters, it was confirmed that these parameters are related to the void fraction. (author)

  8. Development of gas-liquid two-phase flow measurement technique in narrow channel. Application of micro wire-mesh sensor to the flow between parallel plates

    International Nuclear Information System (INIS)

    Ito, Daisuke; Kikura, Hiroshige; Aritomi, Masanori

    2009-01-01

    A novel two-phase flow measuring technique based on local electrical conductivity measurement was developed for clarifications of three-dimensional flow structure in gas-liquid two-phase flow in a narrow channel. The measuring method applies the principle of conventional wire-mesh tomography, which can measure the instantaneous void fraction distributions in a cross-section of a flow channel. In this technique, the electrodes are fixed on the inside of the walls facing each other, and the local void fractions were obtained by the electrical conductivity measurement between electrodes arranged on each wall. Therefore, the flow structure and the bubble behavior can be investigated by three-dimensional void fraction distributions in the channel with narrow gap. In this paper, a micro Wire-Mesh Sensor (μWMS) which has the gap of 3 mm was developed, and the instantaneous void fraction distributions were measured. From the measured distributions, three-dimensional bubble distributions were reconstructed, and bubble volumes and bubble velocities were estimated. (author)

  9. Investigations of X-ray response of single wire anode Ar-N2 flow type gas scintillation proportional counters

    International Nuclear Information System (INIS)

    Garg, S.P.; Sharma, R.C.

    1984-01-01

    The X-ray response of single wire anode gas scintillation proportional counters of two different geometries operated with argon+nitrogen gases in continuous flow has been investigated with wire anodes of diameters 25 μm to 1.7 mm. An energy resolution of 19% is obtained for 5.9 keV X-rays entering the counter perpendicular to the anode in pill-box geometry with 25 μm diameter anode. With cylindrical geometry counters energy obtained at 5.9 keV are 18%, 24% and 33% for 50 μm, 0.5 mm and 1.7 mm diameter anodes respectively. An analysis of the observed resolution shows that the contribution from photon counting statistics to the relative variance of scintillation pulses even for X-rays in Ar-N 2 single wire anode gas scintillation proportional counters is small and is not a limiting factor. The energy resolution with thicker anodes, where the contribution from the variance of the charge multiplication factor also has been minimised, is found to deteriorate mainly by the interaction in the scintillation production region. Comments are made on the possibility of improvement in energy resolution by suppression of pulses due to such interactions with the help of the pulse risetime discrimination technique. (orig.)

  10. CAVITATION STUDY OF A PROPELLER OPERATING IN A NONUNIFORM FLOW CREATED BY A WIRE GRID SCREEN.

    Science.gov (United States)

    a given axial wake as produced by a wire mesh with the cavitation in the same wake as reported by van Manen . The second objective was to determine...observed by van Manen except that the intensity varied suggesting that the cavitation index used in the two studies may not be equivalent. (Author)

  11. Experimental Research of Dynamic Instabilities in the Presence of Coiled Wire Inserts on Two-Phase Flow

    Science.gov (United States)

    Omeroglu, Gokhan; Comakli, Omer; Karagoz, Sendogan; Sahin, Bayram

    2013-01-01

    The aim of this study is to experimentally investigate the effect of the coiled wire insertions on dynamic instabilities and to compare the results with the smooth tube for forced convection boiling. The experiments were conducted in a circular tube, and water was used as the working fluid. Two different pitch ratios (H/D = 2.77 and 5.55) of coiled wire with circular cross-sections were utilised. The constant heat flux boundary condition was applied to the outer side of the test tube, and the constant exit restriction was used at the tube outlet. The mass flow rate changed from 110 to 20 g/s in order to obtain a detailed idea about the density wave and pressure drop oscillations, and the range of the inlet temperature was 15–35°C. The changes in pressure drop, inlet temperature, amplitude, and the period with mass flow rate are presented. For each configuration, it is seen that density wave and pressure drop oscillations occur at all inlet temperatures. Analyses show that the decrease in the mass flow rate and inlet temperature causes the amplitude and the period of the density wave and the pressure drop oscillations to decrease separately. PMID:23365547

  12. Flow Injection Analysis of Mercury Using 4-(Dimethylamino Benzaldehyde-4-Ethylthiosemicarbazone as the Ionophore of a Coated Wire Electrode

    Directory of Open Access Journals (Sweden)

    Sulaiman Ab Ghani

    2012-11-01

    Full Text Available A flow injection analysis (FIA incorporating a thiosemicarbazone-based coated wire electrode (CWE was developed method for the determination of mercury(II. A 0.1 M KNO3 carrier stream with pH between 1 and 5 and flow rate of 1 mL·min−1 were used as optimum parameters. A linear plot within the concentration range of 5 × 10−6–0.1 M Hg(II, slope of 27.8 ± 1 mV per decade and correlation coefficient (R2 of 0.984 were obtained. The system was successfully applied for the determination of mercury(II in dental amalgam solutions and spiked environmental water samples. Highly reproducible measurements with relative standard deviation (RSD < 1% (n = 3 were obtained, giving a typical throughput of 30 samples·h−1.

  13. Two-Phase Flow in Wire Coating with Heat Transfer Analysis of an Elastic-Viscous Fluid

    Directory of Open Access Journals (Sweden)

    Zeeshan Khan

    2016-01-01

    Full Text Available This work considers two-phase flow of an elastic-viscous fluid for double-layer coating of wire. The wet-on-wet (WOW coating process is used in this study. The analytical solution of the theoretical model is obtained by Optimal Homotopy Asymptotic Method (OHAM. The expression for the velocity field and temperature distribution for both layers is obtained. The convergence of the obtained series solution is established. The analytical results are verified by Adomian Decomposition Method (ADM. The obtained velocity field is compared with the existing exact solution of the same flow problem of second-grade fluid and with analytical solution of a third-grade fluid. Also, emerging parameters on the solutions are discussed and appropriate conclusions are drawn.

  14. Experimental investigation of the mutual interference flow of two circular cylinders by flow visualization

    Science.gov (United States)

    Yokoi, Yoshifumi; Vitkovičová, Rut

    In order to understand the aspect of the mutual interference flow from two circular cylinders, the visual observation experiment was performed by use a water flow apparatus. The purpose of this study is accumulation of the basic image data for comparing with numerical computation or previous experimental results. In this report, the intervals of two circular cylinders were varied, the visualization experiment was performed, and the vortex shedding characteristics and the flow pattern in each case were investigated. The cylinder setting conditions were seven kinds (the position of the rear-side circular cylinder is changed). The cylinder diameter ratios were four kinds (D/d=1.0, 1.67, 2.5 and 5.0). The variation of Reynolds number was three kinds (Re=548.7, 1200 and 2500). The dye oozing streak method was used in this visualization experiment. Although the previous PIV experimental result and present result obtained the same flow feature, the aspect of an interference flow became clear by changing the color of tracer ink.

  15. Experimental investigation of the mutual interference flow of two circular cylinders by flow visualization

    Directory of Open Access Journals (Sweden)

    Yokoi Yoshifumi

    2017-01-01

    Full Text Available In order to understand the aspect of the mutual interference flow from two circular cylinders, the visual observation experiment was performed by use a water flow apparatus. The purpose of this study is accumulation of the basic image data for comparing with numerical computation or previous experimental results. In this report, the intervals of two circular cylinders were varied, the visualization experiment was performed, and the vortex shedding characteristics and the flow pattern in each case were investigated. The cylinder setting conditions were seven kinds (the position of the rear-side circular cylinder is changed. The cylinder diameter ratios were four kinds (D/d=1.0, 1.67, 2.5 and 5.0. The variation of Reynolds number was three kinds (Re=548.7, 1200 and 2500. The dye oozing streak method was used in this visualization experiment. Although the previous PIV experimental result and present result obtained the same flow feature, the aspect of an interference flow became clear by changing the color of tracer ink.

  16. Efficient Unsteady Flow Visualization with High-Order Access Dependencies

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jiang; Guo, Hanqi; Yuan, Xiaoru

    2016-04-19

    We present a novel high-order access dependencies based model for efficient pathline computation in unsteady flow visualization. By taking longer access sequences into account to model more sophisticated data access patterns in particle tracing, our method greatly improves the accuracy and reliability in data access prediction. In our work, high-order access dependencies are calculated by tracing uniformly-seeded pathlines in both forward and backward directions in a preprocessing stage. The effectiveness of our proposed approach is demonstrated through a parallel particle tracing framework with high-order data prefetching. Results show that our method achieves higher data locality and hence improves the efficiency of pathline computation.

  17. Enhanced flow field visualization using a flexible animation procedure

    International Nuclear Information System (INIS)

    Marconi, F.; Moretti, G.; Englund, D.C.

    1989-01-01

    A flexible and powerful procedure for transposing computer-generated images onto video tape is used in flowfield visualization. The result is animated sequences which can be used very effectively in the study of both steady and unsteady flows. The key to the procedure is the fact that the images (i.e., frames) of the animated sequence are recorded on the video tapes one at a time after they are created. Thus, the need for a mass storage system is eliminated because after a frame is recorded it is discarded. 7 references

  18. Multi-dimensional two-phase flow measurements in a large-diameter pipe using wire-mesh sensor

    International Nuclear Information System (INIS)

    Kanai, Taizo; Furuya, Masahiro; Arai, Takahiro; Shirakawa, Kenetsu; Nishi, Yoshihisa; Ueda, Nobuyuki

    2011-01-01

    The authors developed a method of measurement to determine the multi-dimensionality of two phase flow. A wire-mesh sensor (WMS) can acquire a void fraction distribution at a high temporal and spatial resolution and also estimate the velocity of a vertical rising flow by investigating the signal time-delay of the upstream WMS relative to downstream. Previously, one-dimensional velocity was estimated by using the same point of each WMS at a temporal resolution of 1.0 - 5.0 s. The authors propose to extend this time series analysis to estimate the multi-dimensional velocity profile via cross-correlation analysis between a point of upstream WMS and multiple points downstream. Bubbles behave in various ways according to size, which is used to classify them into certain groups via wavelet analysis before cross-correlation analysis. This method was verified by air-water straight and swirl flows within a large-diameter vertical pipe. A high-speed camera is used to set the parameter of cross-correlation analysis. The results revealed that for the rising straight and swirl flows, large scale bubbles tend to move to the center, while the small bubble is pushed to the outside or sucked into the space where the large bubbles existed. Moreover, it is found that this method can estimate the rotational component of velocity of the swirl flow as well as measuring the multi-dimensional velocity vector at high temporal resolutions of 0.2 s. (author)

  19. Flow visualization around a rotating body in a wind tunnel

    Science.gov (United States)

    Hiraki, K.; Zaitsu, D.; Yanaga, Y.; Kleine, H.

    2017-02-01

    The rotational behavior of capsule-shaped models is investigated in the transonic wind tunnel of JAXA. A special support is developed to allow the model to rotate around the pitch, yaw and roll axes. This 3-DOF free rotational mounting apparatus achieves the least frictional torque from the support and the instruments. Two types of capsule models are prepared, one is drag type (SPH model) and the other is lift type (HTV-R model). The developed mounting apparatus is used in the wind tunnel tests with these capsule models. In a flow of Mach 0.9, the SPH model exhibits oscillations in pitch and yaw, and it rolls half a turn during the test. Similarly, the HTV-R model exhibits pitch and yaw oscillations in a flow of Mach 0.5. Moreover, it rolls multiple times during the test. In order to investigate the flow field around the capsule, the combined technique of color schlieren and surface tufts is applied. This visualization clearly shows the flow reattachment on the back surface of a capsule, which is suspected to induce the rapid rolling motion.

  20. The Pd distribution and Cu flow pattern of the Pd-plated Cu wire bond and their effect on the nanoindentation

    International Nuclear Information System (INIS)

    Lin, Yu-Wei; Wang, Ren-You; Ke, Wun-Bin; Wang, I-Sheng; Chiu, Ying-Ta; Lu, Kuo-Chang; Lin, Kwang-Lung; Lai, Yi-Shao

    2012-01-01

    Highlights: ► Pd distribution in Pd-plated Cu wires reveals the whirlpool flow pattern of Cu. ► The mechanisms of the Cu flow behavior and Pd distribution are proposed. ► At Pd-rich phases, small voids formed and followed the direction of Cu flow. ► Nanoindentation studies show the Cu ball bond is harder in regions with Pd. - Abstract: The Pd plating on the 20 μm Cu wire dissolves in the free air ball (FAB) and the Cu ball bond during the wire bonding process without forming intermetallic compounds. The limiting supply of Pd and the short bonding process, 15 ms of thermosonic bonding, result in uneven distribution of Pd in the as produced Cu ball bond. Also, the Pd-rich phase may accompany small voids formed within the FAB and the wire bond, and following the direction of semi-solid Cu flow. The Pd distribution, as evidenced by the focused ion beam (FIB) and wavelength dispersive X-ray spectroscopy (WDS) mapping, reveals the whirlpool flow pattern of Cu within the FAB and the ball bond. Pd distributes within the copper ball through convective transport by the copper flow. Additionally, hardness measurements by nanoindentation testing show that the Cu ball bond is harder in the regions where Pd exists.

  1. Test Facility Construction for Flow Visualization on Mixing Flow inside Subchannels of PWR Rod Bundle

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seok; Jeon, Byong-Guk; Youn, Young-Jung; Choi, Hae-Seob; Euh, Dong-Jin [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    Flow inside rod bundles has a similarity with flow in porous media. To ensure thermal performance of a nuclear reactor, detailed information of the heat transfer and turbulent mixing flow phenomena taking place within the subchannels is required. The subchannel analysis is one of the key thermal-hydraulic calculations in the safety analysis of the nuclear reactor core. At present, subchannel computer codes are employed to simulate fuel elements of nuclear reactor cores and predict the performance of cores under normal operating and hypothetical accident conditions. The ability of these subchannels codes to predict both the flow and enthalpy distribution in fuel assemblies is very important in the design of nuclear reactors. Recently, according to the modern tend of the safety analysis for the nuclear reactor, a new component scale analysis code, named CUPID, and has been developed in KAERI. The CUPID code is based on a two-fluid and three-field model, and both the open and porous media approaches are incorporated. The PRIUS experiment has addressed many key topics related to flow behaviour in a rod bundle. These issues are related to the flow conditions inside a nuclear fuel element during normal operation of the plant or in accident scenarios. From the second half of 2016, flow visualization will be performed by using a high speed camera and image analysis technique, from which detailed information for the two-dimensional movement of single phase flow is quantified.

  2. Extracting quantitative three-dimensional unsteady flow direction from tuft flow visualizations

    Energy Technology Data Exchange (ETDEWEB)

    Omata, Noriyasu; Shirayama, Susumu, E-mail: omata@nakl.t.u-tokyo.ac.jp, E-mail: sirayama@sys.t.u-tokyo.ac.jp [Department of Systems Innovation, School of Engineering, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-8656 (Japan)

    2017-10-15

    We focus on the qualitative but widely used method of tuft flow visualization, and propose a method for quantifying it using information technology. By applying stereo image processing and computer vision, the three-dimensional (3D) flow direction in a real environment can be obtained quantitatively. In addition, we show that the flow can be divided temporally by performing appropriate machine learning on the data. Acquisition of flow information in real environments is important for design development, but it is generally considered difficult to apply simulations or quantitative experiments to such environments. Hence, qualitative methods including the tuft method are still in use today. Although attempts have been made previously to quantify such methods, it has not been possible to acquire 3D information. Furthermore, even if quantitative data could be acquired, analysis was often performed empirically or qualitatively. In contrast, we show that our method can acquire 3D information and analyze the measured data quantitatively. (paper)

  3. Extracting quantitative three-dimensional unsteady flow direction from tuft flow visualizations

    International Nuclear Information System (INIS)

    Omata, Noriyasu; Shirayama, Susumu

    2017-01-01

    We focus on the qualitative but widely used method of tuft flow visualization, and propose a method for quantifying it using information technology. By applying stereo image processing and computer vision, the three-dimensional (3D) flow direction in a real environment can be obtained quantitatively. In addition, we show that the flow can be divided temporally by performing appropriate machine learning on the data. Acquisition of flow information in real environments is important for design development, but it is generally considered difficult to apply simulations or quantitative experiments to such environments. Hence, qualitative methods including the tuft method are still in use today. Although attempts have been made previously to quantify such methods, it has not been possible to acquire 3D information. Furthermore, even if quantitative data could be acquired, analysis was often performed empirically or qualitatively. In contrast, we show that our method can acquire 3D information and analyze the measured data quantitatively. (paper)

  4. Caída de presión de un flujo turbulento en un espacio anular con hélices insertadas//The pressure drop of turbulent flow in an annular space with wire coil inserts

    Directory of Open Access Journals (Sweden)

    Josué Imbert González

    2015-05-01

    Full Text Available El trabajo presentado evaluó el comportamiento experimental de la caída de presión en un espacio anular con alambres enrollados insertados para números de Reynolds entre 1500 y 5000. La zona de prueba se seleccionó alejada de la influencia de los efectos de entrada. Anteriormente se realizaron pruebas de visualización del flujo para verificar la presencia de un flujo turbulento en esta gama del número de Reynolds. A partir de los datos experimentales se obtuvieron ecuaciones de correlación del factor de fricción para el flujo turbulento. Las ecuaciones obtenidas se compararon con los datos experimentales. Los resultados indican hasta qué punto las hélices inducen la aparición de turbulencias en un espacio anularPalabras claves: caída de presión, flujo anular, análisis hidrodinámico, visualización de flujo, hélices insertadas.______________________________________________________________________________AbstractThe work presented evaluates the experimental behavior of the pressure drop in an annular space with coiled wires inserted forReynolds numbers between 1500 and 5000. The test zone was selected away from the influence of entrance effects. Previously flow visualization tests were performed to verify the presence of a turbulent flow in this range of Reynolds number. From the experimental data were obtained correlation equations of the friction factor for turbulent flow. The equations obtained were compared with experimental data. The results indicate to what extent the helices induce the occurrence of turbulence in an annular space.Key words: drop pressure, annular flow, hydrodynamic analysis, visualization flow, wire coil inserts.

  5. Reading wiring diagrams made easier for maintenance operators: contribution from research in visual attention and visual search; Aide a la lecture des schemas electriques pour le depannage: apport de la recherche sur l`attention visuelle

    Energy Technology Data Exchange (ETDEWEB)

    Ponthieu, L; Wolfe, J M

    1994-07-01

    This work has been carried out while the author was visiting the Visual Psychophysics lab at the Center for Ophthalmic Research, Harvard Medical School. The general framework is the design of a wiring diagrams visualization system for maintenance operators in electric plants. This study concentrates on how knowledge and experimental techniques from visual attention can help this goal. From this standpoint, the visualization system must best exploit the human visual system abilities. As electronic databases containing all the diagrams will soon be available, it is important to think in advance the display techniques. Presently, maintenance operators favor working with paper printouts even where such databases are already available. The study shows why such an approach is valuable for the design of a display that fits the operator`s tasks. Beyond that, this work has been a mean to learn the experimental techniques of cognitive sciences in an applied frame. (authors). 9 figs., 5 annexes.

  6. Introduction to flow visualization system in SPARC test facility

    International Nuclear Information System (INIS)

    Lee, Wooyoung; Song, Simon; Na, Young Su; Hong, Seong Wan

    2016-01-01

    The released hydrogen can be accumulated and mixed by steam and air depending on containment conditions under severe accident, which generates flammable mixture. Hydrogen explosion induced by ignition source cause severe damage to a structure or facility. Hydrogen risk regarding mixing, distribution, and combustion has been identified by several expert groups and studied actively since TMI accident. A large-scale thermal-hydraulic experimental facility is required to simulate the complex severe accident phenomena in the containment building. We have prepared the test facility, called the SPARC (Spray, Aerosol, Recombiner, Combustion), to resolve the international open issues regarding hydrogen risk. Gas mixing and stratification test using helium instead of hydrogen and estimation of a stratification surface erosion of helium owing to the vertical jet flow will be performed in SPARC. The measurement system is need to observe the gas flow in the large scale test facility such as SPARC. The PIV (particle image velocimetry) system have been installed to visualize gas flow. We are preparing the test facility, called the SPARC, for estimation the thermal-hydraulic process of hydrogen in a closed containment building and the PIV system for quantitative assessment of gas flow. In particular, we will perform gas mixing and erosion of stratification surface test using helium which is the replacement of hydrogen. It will be evaluated by measuring 2D velocity field using the PIV system. The PIV system mainly consists of camera, laser and tracer particle. Expected maximum size of FOV is 750 x 750 mm 2 limited by focal length of lens and high power laser corresponding to 425mJ/pulse at 532 wavelength is required due to large FOV

  7. Laminar/transition sweeping flow-mixing model for wire-wrapped LMFBR assemblies

    International Nuclear Information System (INIS)

    Burns, K.F.; Rohsenow, W.M.; Todreas, N.E.

    1980-07-01

    Recent interest in analyzing the thermal hydraulic characteristics of LMFBR assemblies operating in the mixed convection regime motivates the extension of the aforementioned turbulent sweeping flow model to low Reynolds number flows. The accuracy to which knowledge of the mixing parameters is required has not been well determined, due to the increased influence of conduction and buoyancy effects with respect to energy transport at low Reynolds numbers. This study represents a best estimate attempt to correlate the existing low Reynolds number sweeping flow data. The laminar/transition model which is presented is expected to be useful in anayzing mixed convection conditions. However, the justification for making additional improvemements is contingent upon two factors. First, the ability of the proposed laminar/transition model to predict additional low Reynolds number sweeping flow data for other geometries needs to be investigated. Secondly, the sensitivity of temperature predictions to uncertainties in the values of the sweeping flow parameters should be quantified

  8. A micro-scale hot wire anemometer based on low stress (Ni/W) multi-layers deposited on nano-crystalline diamond for air flow sensing

    Czech Academy of Sciences Publication Activity Database

    Talbi, A.; Gimeno, L.; Gerbedoen, J.-C.; Viard, R.; Soltani, A.; Mortet, Vincent; Preobrazhensky, V.; Merlen, A.; Pernod, P.

    2015-01-01

    Roč. 25, č. 2 (2015), s. 1-8, č. článku 125029. ISSN 0960-1317 Institutional support: RVO:68378271 Keywords : hot wire * nano-crystalline diamond * active flow control * anemometry Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 1.768, year: 2015

  9. Numerical simulation of effect of catalyst wire-mesh pressure drop characteristics on flow distribution in catalytic parallel plate steam reformer

    DEFF Research Database (Denmark)

    Sigurdsson, Haftor Örn; Kær, Søren Knudsen

    2012-01-01

    Steam reforming of hydrocarbons using a catalytic plate-type-heat-exchanger (CPHE) reformer is an attractive method of producing hydrogen for a fuel cell-based micro combined-heat-and-power system. In this study the flow distribution in a CPHE reformer, which uses a coated wire-mesh catalyst...

  10. Local flow blockage analysis with checkerboard configuration in a wire wrapped fuel subassembly using the ASFRE code

    International Nuclear Information System (INIS)

    Nishimura, Masahiro; Fukano, Yoshitaka

    2014-01-01

    Local fault (LF) has been historically considered as one of the possible causes of severe accidents in sodium-cooled fast reactors because fuel pins are generally densely arranged in the fuel subassemblies (FSAs) in this type of reactors. Local flow blockage (LB) has been one of the dominant initiators of LFs. Therefore evaluations were performed on LBs in the past safety licensing assuming a planar and impermeable blockage of 66% of the total flow area at an FSA for the Japanese prototype fast breeder reactor. A conservative evaluation revealed that fuel pin damage propagation would be limited within a restricted area of the reactor core, even assuming such a hypothetical initiating event. In the newly formulated regulatory requirements, however, after the accident at the Fukushima Dai-ichi nuclear power plant, best estimate (BE) safety analyses on the basis of state-of-the-art knowledge are being required for beyond design basis accidents. A deterministic and BE evaluation therefore based on the most-recent knowledge was newly performed in this study for revalidation of the above-mentioned historical background using the ASFRE code, whereas the LF accidents would not be identified as a representative accident sequence from a viewpoint of both its frequencies and consequences. Nominal power and flow rate without safety margins were assumed for the analyses in order to make the accidental conditions to be realistic. A most likely and realistic blockage configuration was newly proposed and employed based on the existing experimental data in accordance with the BE concept mentioned above. The aforementioned blockage configuration was excessively conservative on a state-of-the-art knowledge basis. The most-recent experimental studies clarified that LBs due to foreign substances would be formed by accumulating the steel fragments of certain sizes trapped along the wrapping wires. This leads to an LB in a checkerboard configuration for an FSA of wire spacer type, which

  11. Flow visualization study of post-critical heat flux in inverted flow

    International Nuclear Information System (INIS)

    Babelli, I.; Revankar, S.T.; Ishii, M.

    1994-01-01

    A visual study of film boiling was carried out to determine the flow regime transition in the post-CHF region for a transient bottom reflooding of a hot transparent test section. The effect of test liquid subcooling and inlet velocity on flow transition as well as on the quench front propagation was investigated. The respective ranges for liquid velocity and subcooling were 1.8-26.8 cm/s, and 20-45 C, respectively. The test liquid was Freon 113 which was introduced into the bottom of the quartz test section whose walls were maintained well above the film boiling temperature of the test liquid, via a transparent heat transfer fluid. The flow regimes observed down stream of the upward moving quench front were the rough wavy, the agitated, and the dispersed droplet/ligaments in agreement with a steady state, two-phase core injection study carried on recently by one of the authors. A correlation for the flow regime transition between the inverted annular and the dispersed droplet/ligament flow patterns was developed. The correlation showed a marked dependence on the void fraction at the CHF location and hence on the flow regime encountered in the pre-CHF region. (orig.)

  12. Laser/fluorescent dye flow visualization technique developed for system component thermal hydraulic studies

    International Nuclear Information System (INIS)

    Oras, J.J.; Kasza, K.E.

    1988-01-01

    A novel laser flow visualization technique is presented together with examples of its use in visualizing complex flow patterns and plans for its further development. This technique has been successfully used to study (1) the flow in a horizontal pipe subject to temperature transients, to view the formation and breakup of thermally stratified flow and to determine instantaneous velocity distributions in the same flow at various axial locations; (2) the discharge of a stratified pipe flow into a plenum exhibiting a periodic vortex pattern; and (3) the thermal-buoyancy-induced flow channeling on the shell side of a heat exchanger with glass tubes and shell. This application of the technique to heat exchangers is unique. The flow patterns deep within a large tube bundle can be studied under steady or transient conditions. This laser flow visualization technique constitutes a very powerful tool for studying single or multiphase flows in complex thermal system components

  13. A Grid of Fine Wire Thermocouples to Study the Spatial Coherence of Turbulence within Katabatic Flow through a Vineyard Canopy

    Science.gov (United States)

    Everard, K.; Christen, A.; Sturman, A.; Skaloud, P.

    2016-12-01

    Knowledge of the dynamics and thermodynamics of katabatic flow is relevant in vineyards, where grapevines are sensitive to temperature changes (frost protection and cooling). Basic understanding of the occurrence and evolution of, and turbulence within, katabatic flow is well known over bare slopes. However, little work has been completed to extend this understanding to mid-sized canopies and how the presence of a canopy affects the turbulent exchange of momentum and heat within the flow. Measurements were carried out over a 6° vineyard slope near Oliver, BC, Canada in the Okanagan Valley between July 5 and July 22, 2016. The set-up consisted of an array of five vertically arranged CSAT 3D (Campbell Scientific, Inc.) ultrasonic anemometers at z = 0.45 m, 0.90 m, 1.49 m, 2.34 m, and 4.73 m above ground level (AGL), and a 2-D grid of 40 Type-E (copper-constantan) fine-wire thermocouples (FWTC) arranged at the same heights as the CSAT 3D array on 8 masts extending in the upslope (flow) direction at locations x = 0.0 m (CSAT 3D tower), 0.5 m, 1.0 m, 2.0 m, 4.0 m, 8.0 m, 16.0 m, and 32.0 m. The FWTC array formed a sheet of 40 sampling points in the upslope-vertical plane. The height of the grapevine canopy (h) was approximately 2 m AGL, and rows were aligned along the local slope direction with a row spacing of 2.45 m. CSAT-3s were sampled at 60 Hz with 20 Hz data recording, the FWTCs were sampled at 2 Hz, all synchronized by a data logger. Katabatic flow was observed on several nights during the campaign, with a wind speed maximum located within the canopy. This contribution will focus on the measurement techniques, combining ultrasonic anemometer data with the spatially synchronized FWTC array using image process techniques. We identify the dynamics and structure of the katabatic flow, relevant for heat exchange, using the spatial coherence of the temperature field given by the FWTC array. Improved knowledge of the vertical structure and the dynamics of katabatic

  14. The quantification of hemodynamic parameters downstream of a Gianturco Zenith stent wire using newtonian and non-newtonian analog fluids in a pulsatile flow environment.

    Science.gov (United States)

    Walker, Andrew M; Johnston, Clifton R; Rival, David E

    2012-11-01

    Although deployed in the vasculature to expand vessel diameter and improve blood flow, protruding stent struts can create complex flow environments associated with flow separation and oscillating shear gradients. Given the association between magnitude and direction of wall shear stress (WSS) and endothelial phenotype expression, accurate representation of stent-induced flow patterns is critical if we are to predict sites susceptible to intimal hyperplasia. Despite the number of stents approved for clinical use, quantification on the alteration of hemodynamic flow parameters associated with the Gianturco Z-stent is limited in the literature. In using experimental and computational models to quantify strut-induced flow, the majority of past work has assumed blood or representative analogs to behave as Newtonian fluids. However, recent studies have challenged the validity of this assumption. We present here the experimental quantification of flow through a Gianturco Z-stent wire in representative Newtonian and non-Newtonian blood analog environments using particle image velocimetry (PIV). Fluid analogs were circulated through a closed flow loop at physiologically appropriate flow rates whereupon PIV snapshots were acquired downstream of the wire housed in an acrylic tube with a diameter characteristic of the carotid artery. Hemodynamic parameters including WSS, oscillatory shear index (OSI), and Reynolds shear stresses (RSS) were measured. Our findings show that the introduction of the stent wire altered downstream hemodynamic parameters through a reduction in WSS and increases in OSI and RSS from nonstented flow. The Newtonian analog solution of glycerol and water underestimated WSS while increasing the spatial coverage of flow reversal and oscillatory shear compared to a non-Newtonian fluid of glycerol, water, and xanthan gum. Peak RSS were increased with the Newtonian fluid, although peak values were similar upon a doubling of flow rate. The introduction of the

  15. Wire core reactor for NTP

    International Nuclear Information System (INIS)

    Harty, R.B.

    1991-01-01

    The development of the wire core system for Nuclear Thermal Propulsion (NTP) that took place from 1963 to 1965 is discussed. A wire core consists of a fuel wire with spacer wires. It's an annular flow core having a central control rod. There are actually four of these, with beryllium solid reflectors on both ends and all the way around. Much of the information on the concept is given in viewgraph form. Viewgraphs are presented on design details of the wire core, the engine design, engine weight vs. thrust, a technique used to fabricate the wire fuel element, and axial temperature distribution

  16. Investigation of flow stabilization in a compact reactor vessel of a FBR. Flow visualization in a reactor vessel

    International Nuclear Information System (INIS)

    Sato, Hiroyuki; Igarashi, Minoru; Kimura, Nobuyuki; Kamide, Hideki

    2002-01-01

    In the feasibility studies of Commercialized Fast Breeder Reactor Cycle System, a compact reactor vessel is considered from economical improvement point of a sodium cooled loop type fast reactor. The flow field was visualized by water experiment for a reactor vessel with 'a column type UIS (Upper Internal Structure)', which has a slit for fuel handling mechanism and is useful for a compact fast reactor. In this research, the 1/20 scale test equipment using water was made to understand coolant flow through a slit of a column type UIS' and fundamental behavior of reactor upper plenum flow. In the flow visualization tests, tracer particles were added in the water, and illuminated by the slit-shaped pulse laser. The flow visualization image was taken with a CCD camera. We obtained fluid velocity vectors from the visualization image using the Particle Imaging Velocimetry (PIV). The results are as follows. 1. Most of coolant flow through a slit of 'column type UIS' arrived the dip plate directly. In the opposite side of a slit, most of coolant flowed toward reactor vessel wall before it arrived the dip plate. 2. The PIV was useful to measure the flow field in the reactor vessel. The obtained velocity field was consistent with the flow visualization result. 3. The jet through the UIS slit was dependent on the UIS geometry. There is a possibility to control the jet by the UIS geometry. (author)

  17. Measurement of air distribution and void fraction of an upwards air–water flow using electrical resistance tomography and a wire-mesh sensor

    International Nuclear Information System (INIS)

    Olerni, Claudio; Jia, Jiabin; Wang, Mi

    2013-01-01

    Measurements on an upwards air–water flow are reported that were obtained simultaneously with a dual-plane electrical resistance tomograph (ERT) and a wire-mesh sensor (WMS). The ultimate measurement target of both ERT and WMS is the same, the electrical conductivity of the medium. The ERT is a non-intrusive device whereas the WMS requires a net of wires that physically crosses the flow. This paper presents comparisons between the results obtained simultaneously from the ERT and the WMS for evaluation and calibration of the ERT. The length of the vertical testing pipeline section is 3 m with an internal diameter of 50 mm. Two distinct sets of air–water flow rate scenarios, bubble and slug regimes, were produced in the experiments. The fast impedance camera ERT recorded the data at an approximate time resolution of 896 frames per second (fps) per plane in contrast with the 1024 fps of the wire-mesh sensor WMS200. The set-up of the experiment was based on well established knowledge of air–water upwards flow, particularly the specific flow regimes and wall peak effects. The local air void fraction profiles and the overall air void fraction were produced from two systems to establish consistency for comparison of the data accuracy. Conventional bulk flow measurements in air mass and electromagnetic flow metering, as well as pressure and temperature, were employed, which brought the necessary calibration to the flow measurements. The results show that the profiles generated from the two systems have a certain level of inconsistency, particularly in a wall peak and a core peak from the ERT and WMS respectively, whereas the two tomography instruments achieve good agreement on the overall air void fraction for bubble flow. For slug flow, when the void fraction is over 30%, the ERT underestimates the void fraction, but a linear relation between ERT and WMS is still observed. (paper)

  18. Study on flow rate measurement and visualization of helium-air exchange flow through a small opening

    International Nuclear Information System (INIS)

    Fumizawa, Motoo

    1992-01-01

    This paper deals with an experimental investigation on buoyancy-driven exchange flows through horizontal and inclined openings. The method of the mass increment was developed to measure the flow rate in helium-air system and a displacement fringe technique was adopted in Mach-Zehnder interferometer to visualize the flow. As the result, the followings were obtained: Flow visualization results indicate that the upward and downward plumes of helium and air break through the opening intermittently, and they swing in the lateral direction through the horizontal opening. It is clearly visualized that the exchange flows through the inclined openings take place smoothly and stably in the separated passages. The inclination angle for the maximum Froude number decreases with increasing length-to-diameter ratio in the helium-air system, on the contrary to Mercer's experimental results in the water-brine system indicating that the angle remains almost constant. (author)

  19. Time resolved investigations on flow field and quasi wall shear stress of an impingement configuration with pulsating jets by means of high speed PIV and a surface hot wire array

    International Nuclear Information System (INIS)

    Janetzke, Timm; Nitsche, Wolfgang

    2009-01-01

    The effects of jet pulsation on flow field and quasi wall shear stress of an impingement configuration were investigated experimentally. The excitation Strouhal number and amplitude were varied as the most influential parameters. A line-array with three submerged air jets, and a confining plate were used. The flow field analysis by means of time resolved particle image velocimetry shows that the controlled excitation can considerably affect the near-field flow of an impinging jet array. These effects are visualized as organization of the coherent flow structures. Augmentation of the Kelvin-Helmholtz vortices in the jet shear layer depends on the Strouhal number and pulsation magnitude and can be associated with pairing of small scale vortices in the jet. A total maximum of vortex strength was observed when exciting with Sr = 0.82 and coincident high amplitudes. Time resolved interaction between impinging vortices and impingement plate boundary layer due to jet excitation was verified by using an array of 5 μm surface hot wires. Corresponding to the global flow field modification due to periodic jet pulsation, the impact of the vortex rings on the wall boundary layer is highly influenced by the above mentioned excitation parameters and reaches a maximum at Sr = 0.82.

  20. Flow distribution and pressure loss in subchannels of a wire-wrapped 37-pin rod bundle for sodium-cooled fast reactor

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Seok Kyu; Euh, Dong Jin; Choi, Hae Seob; Kim, Hyung Mo; Choi, Sun Rock; Lee, Hyeong Yeon [Thermal-Hydraulic Safety Research Department, Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-04-15

    A hexagonally arrayed 37-pin wire-wrapped rod bundle has been chosen to provide the experimental data of the pressure loss and flow rate in subchannels for validating subchannel analysis codes for the sodium-cooled fast reactor core thermal/hydraulic design. The iso-kinetic sampling method has been adopted to measure the flow rate at subchannels, and newly designed sampling probes which preserve the flow area of subchannels have been devised. Experimental tests have been performed at 20-115% of the nominal flow rate and 60 degrees C (equivalent to Re ∼ 37,100) at the inlet of the test rig. The pressure loss data in three measured subchannels were almost identical regardless of the subchannel locations. The flow rate at each type of subchannel was identified and the flow split factors were evaluated from the measured data. The predicted correlations and the computational fluid dynamics results agreed reasonably with the experimental data.

  1. Visualized investigation on flow regimes for vertical upward steam–water flow in a heated narrow rectangular channel

    International Nuclear Information System (INIS)

    Wang Junfeng; Huang Yanping; Wang Yanlin; Song Mingliang

    2012-01-01

    Highlights: ► Flow regimes were visually investigated in a heated narrow rectangular channel. ► Bubbly, churn, and annular flow were observed. Slug flow was never observed. ► Flow regime transition boundary could be predicted by existing criteria. ► Churn zone in present flow regime maps were poorly predicted by existing criteria. - Abstract: Flow regimes are very important in understanding two-phase flow resistance and heat transfer characteristics. In present work, two-phase flow regimes for steam–water flows in a single-side heated narrow rectangular channel, having a width of 40 mm and a gap of 3 mm, were visually studied at relatively low pressure and low mass flux condition. The flow regimes observed in this experiment could be classified into bubbly, churn and annular flow. Slug flow was never observed at any of the conditions in our experiment. Flow regime maps at the pressure of 0.7 MPa and 1.0 MPa were developed, and then the pressure effect on flow regime transition was analyzed. Based on the experimental results, the comparisons with some existing flow regime maps and transition criteria were conducted. The comparison results show that the bubbly transition boundary and annular formation boundary of heated steam–water flow were consistent with that of adiabatic air–water flow. However, the intermediate flow pattern between bubbly and annular flow was different. Hibiki and Mishima criteria could predict the bubbly transition boundary and annular formation boundary satisfactorily, but it poorly predicted churn zone in present experimental data.

  2. Ga N nano wires and nano tubes growth by chemical vapor deposition method at different NH{sub 3} flow rate

    Energy Technology Data Exchange (ETDEWEB)

    Li, P.; Liu, Y.; Meng, X. [Wuhan University, School of Physics and Technology, Key Laboratory of Artificial Micro and Nanostructures of Ministry of Education, Wuhan 430072 (China)

    2016-11-01

    Ga N nano wires and nano tubes have been successfully synthesized via the simple chemical vapor deposition method. NH{sub 3} flow rate was found to be a crucial factor in the synthesis of different type of Ga N which affects the shape and the diameter of generated Ga N nano structures. X-ray diffraction confirms that Ga N nano wires grown on Si(111) substrate under 900 degrees Celsius and with NH{sub 3} flow rate of 50 sc cm presents the preferred orientation growth in the (002) direction. It is beneficial to the growth of nano structure through catalyst annealing. Transmission electron microscopy and scanning electron microscopy were used to measure the size and structures of the samples. (Author)

  3. Visualization and analysis of flow patterns of human carotid bifurcation by computational fluid dynamics

    International Nuclear Information System (INIS)

    Xue Yunjing; Gao Peiyi; Lin Yan

    2007-01-01

    Objective: To investigate flow patterns at carotid bifurcation in vivo by combining computational fluid dynamics (CFD)and MR angiography imaging. Methods: Seven subjects underwent contrast-enhanced MR angiography of carotid artery in Siemens 3.0 T MR. Flow patterns of the carotid artery bifurcation were calculated and visualized by combining MR vascular imaging post-processing and CFD. Results: The flow patterns of the carotid bifurcations in 7 subjects were varied with different phases of a cardiac cycle. The turbulent flow and back flow occurred at bifurcation and proximal of internal carotid artery (ICA) and external carotid artery (ECA), their occurrence and conformation were varied with different phase of a cardiac cycle. The turbulent flow and back flow faded out quickly when the blood flow to the distal of ICA and ECA. Conclusion: CFD combined with MR angiography can be utilized to visualize the cyclical change of flow patterns of carotid bifurcation with different phases of a cardiac cycle. (authors)

  4. Thermal hydraulic test for reactor safety system; a visualization study on flow boiling and bubble behavior

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Soon Heung; Baek, Won Pil; Ban, In Cheol [Korea Advanced Institute of Science and Technology, Taejeon (Korea)

    2002-03-01

    The project contribute to understand and to clarify the physical mechanism of flow nucleate boiling and CHF phenomena through the visualization experiments. the results are useful in the development of the enhancement device of heat transfer and to enhance nuclear fuel safety 1. Visual experimental facility 2. Application method of visualization Technique 3. Visualization results of flow nucleate boiling regime - Overall Bubble Behavior on the Heated Surface - Bubble Behavior near CHF Condition - Identification of Flow Structure - Three-layer flow structure 4. Quantifying of bubble parameter through a digital image processing - Image Processing Techniques - Classification of objects and measurements of the size - Three dimensional surface plot with using the luminance 5. Development and estimation of a correlation between bubble diameter and flow parameter - The effect of system parameter on bubble diameter - The development of a bubble diameter correlation . 49 refs., 42 figs., 7 tabs. (Author)

  5. End-to-End Flow Control for Visual-Haptic Communication under Bandwidth Change

    Science.gov (United States)

    Yashiro, Daisuke; Tian, Dapeng; Yakoh, Takahiro

    This paper proposes an end-to-end flow controller for visual-haptic communication. A visual-haptic communication system transmits non-real-time packets, which contain large-size visual data, and real-time packets, which contain small-size haptic data. When the transmission rate of visual data exceeds the communication bandwidth, the visual-haptic communication system becomes unstable owing to buffer overflow. To solve this problem, an end-to-end flow controller is proposed. This controller determines the optimal transmission rate of visual data on the basis of the traffic conditions, which are estimated by the packets for haptic communication. Experimental results confirm that in the proposed method, a short packet-sending interval and a short delay are achieved under bandwidth change, and thus, high-precision visual-haptic communication is realized.

  6. Limiting oxygen concentration for extinction of upward spreading flames over inclined thin polyethylene-insulated NiCr electrical wires with opposed-flow under normal- and micro-gravity

    KAUST Repository

    Hu, Longhua

    2016-10-02

    Materials, such as electrical wire, used in spacecraft must pass stringent fire safety standards. Tests for such standards are typically performed under normal gravity conditions and then extended to applications under microgravity conditions. The experiments reported here used polyethylene (PE)-insulated (thickness of 0.15 mm) Nichrome (NiCr)-core (diameter of 0.5 mm) electrical wires. Limiting oxygen concentrations (LOC) at extinction were measured for upward spreading flame at various forced opposed-flow (downward) speeds (0−25 cm/s) at several inclination angles (0−75°) under normal gravity conditions. The differences from those previously obtained under microgravity conditions were quantified and correlated to provide a reference for the development of fire safety test standards for electrical wires to be used in space exploration. It was found that as the opposed-flow speed increased for a specified inclination angle (except the horizontal case), LOC first increased, then decreased and finally increased again. The first local maximum of this LOC variation corresponded to a critical forced flow speed resulted from the change in flame spread pattern from concurrent to counter-current type. This critical forced flow speed correlated well with the buoyancy-induced flow speed component in the wire\\'s direction when the flame base width along the wire was used as a characteristic length scale. LOC was generally higher under the normal gravity than under the microgravity and the difference between the two decreased as the opposed-flow speed increases, following a reasonably linear trend at relatively higher flow speeds (over 10 cm/s). The decrease in the difference in LOC under normal- and microgravity conditions as the opposed-flow speed increases correlated well with the gravity acceleration component in the wire\\'s direction, providing a measure to extend LOC determined by the tests under normal gravity conditions (at various inclination angles and opposed-flow

  7. Subchannel and bundle friction factors and flowsplit parameters for laminar, transition, and turbulent longitudinal flows in wire-wrap spaced hexagonal arrays. [LMFBR

    Energy Technology Data Exchange (ETDEWEB)

    Hawley, J.T.; Chiu, C.; Rohsenow, W.M.; Todreas, N.E.

    1980-08-01

    Correlations are presented for subchannel and bundle friction factors and flowsplit parameters for laminar, transition and turbulent longitudinal flows in wire wrap spaced hexagonal arrays. These results are obtained from pressure drop models of flow in individual subchannels. For turbulent flow, an existing pressure drop model for flow in edge subchannels is extended, and the resulting edge subchannel friction factor is identified. Using the expressions for flowsplit parameters and the equal pressured drop assumption, the interior subchannel and bundle friction factors are obtained. For laminar flow, models are developed for pressure drops of individual subchannels. From these models, expressions for the subchannel friction factors are identified and expressions for the flowsplit parameters are derived.

  8. Shaded computer graphic techniques for visualizing and interpreting analytic fluid flow models

    Science.gov (United States)

    Parke, F. I.

    1981-01-01

    Mathematical models which predict the behavior of fluid flow in different experiments are simulated using digital computers. The simulations predict values of parameters of the fluid flow (pressure, temperature and velocity vector) at many points in the fluid. Visualization of the spatial variation in the value of these parameters is important to comprehend and check the data generated, to identify the regions of interest in the flow, and for effectively communicating information about the flow to others. The state of the art imaging techniques developed in the field of three dimensional shaded computer graphics is applied to visualization of fluid flow. Use of an imaging technique known as 'SCAN' for visualizing fluid flow, is studied and the results are presented.

  9. LDV measurement, flow visualization and numerical analysis of flow distribution in a close-coupled catalytic converter

    International Nuclear Information System (INIS)

    Kim, Duk Sang; Cho, Yong Seok

    2004-01-01

    Results from an experimental study of flow distribution in a Close-coupled Catalytic Converter (CCC) are presented. The experiments were carried out with a flow measurement system specially designed for this study under steady and transient flow conditions. A pitot tube was a tool for measuring flow distribution at the exit of the first monolith. The flow distribution of the CCC was also measured by LDV system and flow visualization. Results from numerical analysis are also presented. Experimental results showed that the flow uniformity index decreases as flow Reynolds number increases. In steady flow conditions, the flow through each exhaust pipe made some flow concentrations on a specific region of the CCC inlet. The transient test results showed that the flow through each exhaust pipe in the engine firing order, interacted with each other to ensure that the flow distribution was uniform. The results of numerical analysis were qualitatively accepted with experimental results. They supported and helped explain the flow in the entry region of CCC

  10. Wire Chamber

    CERN Multimedia

    Magnetoscriptive readout wire chamber. Multi-wire detectors contain layers of positively and negatively charged wires enclosed in a chamber full of gas. A charged particle passing through the chamber knocks negatively charged electrons out of atoms in the gas, leaving behind positive ions. The electrons are pulled towards the positively charged wires. They collide with other atoms on the way, producing an avalanche of electrons and ions. The movement of these electrons and ions induces an electric pulse in the wires which is collected by fast electronics. The size of the pulse is proportional to the energy loss of the original particle.

  11. Wire chamber

    CERN Multimedia

    1967-01-01

    Magnetoscriptive readout wire chamber.Multi-wire detectors contain layers of positively and negatively charged wires enclosed in a chamber full of gas. A charged particle passing through the chamber knocks negatively charged electrons out of atoms in the gas, leaving behind positive ions. The electrons are pulled towards the positively charged wires. They collide with other atoms on the way, producing an avalanche of electrons and ions. The movement of these electrons and ions induces an electric pulse in the wires which is collected by fast electronics. The size of the pulse is proportional to the energy loss of the original particle.

  12. Visualization and Quantification of Rotor Tip Vortices in Helicopter Flows

    Science.gov (United States)

    Kao, David L.; Ahmad, Jasim U.; Holst, Terry L.

    2015-01-01

    This paper presents an automated approach for effective extraction, visualization, and quantification of vortex core radii from the Navier-Stokes simulations of a UH-60A rotor in forward flight. We adopt a scaled Q-criterion to determine vortex regions and then perform vortex core profiling in these regions to calculate vortex core radii. This method provides an efficient way of visualizing and quantifying the blade tip vortices. Moreover, the vortices radii are displayed graphically in a plane.

  13. wire chamber

    CERN Multimedia

    Proportional multi-wire chamber. Multi-wire detectors contain layers of positively and negatively charged wires enclosed in a chamber full of gas. A charged particle passing through the chamber knocks negatively charged electrons out of atoms in the gas, leaving behind positive ions. The electrons are pulled towards the positively charged wires. They collide with other atoms on the way, producing an avalanche of electrons and ions. The movement of these electrons and ions induces an electric pulse in the wires which is collected by fast electronics. The size of the pulse is proportional to the energy loss of the original particle. Proportional wire chambers allow a much quicker reading than the optical or magnetoscriptive readout wire chambers.

  14. Visual study of air--water mixtures flowing inside serpentine tubes

    International Nuclear Information System (INIS)

    Farukhi, M.N.; Parker, J.D.

    1974-01-01

    Hydrodynamic behavior of air-water mixtures flowing inside serpentine tubes, with bends in the vertical plane, was investigated. Flow visualization was accomplished by injecting dye into the liquid phase and recording the events on color slides and color movies. For certain combinations of gas and liquid flow rates, in the annular type flow regime, ''film inversion'' was observed in the bend as well as in the straight section immediately downstream of the bend. A new flow regime map particularly applicable to two phase flow inside serpentine tubes is presented. (U.S.)

  15. Visual Inspection of the Flow Distribution Plate Bolts of a Nuclear Steam Generator

    International Nuclear Information System (INIS)

    Jeong, Woo Tae; Kim, Suk Tae; Sohn, Wook; Kang, Duk Won; Kang, Seok Chul

    2007-01-01

    To develop a system for visually inspecting the flow distribution plate (FDP) bolts of a nuclear steam generator, we reviewed several types of similar inspection equipment. The equipment which are currently available are mostly for inspecting lower part of a steam generator such as tube sheets and annulus except ELVS (Eggcrate Visual Inspection System). However, the design concept of ELVS could not be used for developing a device which enables the visual inspection of flow distribution plate bolts. Therefore, based on the current state of the art technology on the similar equipment, we conceptually designed a new inspection system for checking the FDP bolts

  16. VISUALIZATION METHODS OF VORTICAL FLOWS IN COMPUTATIONAL FLUID DYNAMICS AND THEIR APPLICATIONS

    Directory of Open Access Journals (Sweden)

    K. N. Volkov

    2014-05-01

    Full Text Available The paper deals with conceptions and methods for visual representation of research numerical results in the problems of fluid mechanics and gas. The three-dimensional nature of unsteady flow being simulated creates significant difficulties for the visual representation of results. It complicates control and understanding of numerical data, and exchange and processing of obtained information about the flow field. Approaches to vortical flows visualization with the usage of gradients of primary and secondary scalar and vector fields are discussed. An overview of visualization techniques for vortical flows using different definitions of the vortex and its identification criteria is given. Visualization examples for some solutions of gas dynamics problems related to calculations of jets and cavity flows are presented. Ideas of the vortical structure of the free non-isothermal jet and the formation of coherent vortex structures in the mixing layer are developed. Analysis of formation patterns for spatial flows inside large-scale vortical structures within the enclosed space of the cubic lid-driven cavity is performed. The singular points of the vortex flow in a cubic lid-driven cavity are found based on the results of numerical simulation; their type and location are identified depending on the Reynolds number. Calculations are performed with fine meshes and modern approaches to the simulation of vortical flows (direct numerical simulation and large-eddy simulation. Paradigm of graphical programming and COVISE virtual environment are used for the visual representation of computational results. Application that implements the visualization of the problem is represented as a network which links are modules and each of them is designed to solve a case-specific problem. Interaction between modules is carried out by the input and output ports (data receipt and data transfer giving the possibility to use various input and output devices.

  17. Flutter and Thermal Buckling Analysis for Composite Laminated Panel Embedded with Shape Memory Alloy Wires in Supersonic Flow

    Directory of Open Access Journals (Sweden)

    Chonghui Shao

    2016-01-01

    Full Text Available The flutter and thermal buckling behavior of laminated composite panels embedded with shape memory alloy (SMA wires are studied in this research. The classical plate theory and nonlinear von-Karman strain-displacement relation are employed to investigate the aeroelastic behavior of the smart laminated panel. The thermodynamic behaviors of SMA wires are simulated based on one-dimensional Brinson SMA model. The aerodynamic pressure on the panel is described by the nonlinear piston theory. Nonlinear governing partial differential equations of motion are derived for the panel via the Hamilton principle. The effects of ply angle of the composite panel, SMA layer location and orientation, SMA wires temperature, volume fraction and prestrain on the buckling, flutter boundary, and amplitude of limit cycle oscillation of the panel are analyzed in detail.

  18. Visualizing and simulating flow conditions in concrete form filling using pigments

    DEFF Research Database (Denmark)

    Jacobsen, Stefan; Cepuritis, Rolands; Peng, Ya

    2013-01-01

    Flow variation at surfaces and reinforcement during form filling was visualized with grey and black SCC. The border between grey and black (pigmented) SCC was captured as frozen images on hardened sawn- and formwork surfaces in a flow box experiment. Maximum velocity occurred at the centre of the...

  19. Visualization and quantitative analysis of the CSF pulsatile flow with cine MR phase imaging

    International Nuclear Information System (INIS)

    Katayama, Shinji; Itoh, Takahiko; Kinugasa, Kazushi; Asari, Shoji; Nishimoto, Akira; Tsuchida, Shohei; Ono, Atsushi; Ikezaki, Yoshikazu; Yoshitome, Eiji.

    1991-01-01

    The visualization and the quantitative analysis of the CSF pulsatile flow were performed on ten healthy volunteers with cine MR phase imaging, a combination of the phase-contrast technique and the cardiac-gating technique. The velocities appropriate for the visualization and the quantitative analysis of the CSF pulsatile flow were from 6.0 cm/sec to 15.0 cm/sec. The applicability of this method for the quantitative analysis was proven with a steady-flow phantom. Phase images clearly demonstrated a to-and-fro motion of the CSF flow in the anterior subarachnoid space and in the posterior subarachnoid space. The flow pattern of CSF on healthy volunteers depends on the cardiac cycle. In the anterior subarachnoid space, the cephalic CSF flow continued until a 70-msec delay after the R-wave of the ECG and then reversed to caudal. At 130-190 msec, the caudal CSF flow reached its maximum velocity; thereafter it reversed again to cephalic. The same turn appeared following the phase, but then the amplitude decreased. The cephalic peaked at 370-430 msec, while the caudal peaked at 490-550 msec. The flow pattern of the CSF flow in the posterior subarachnoid space was almost identical to that in the anterior subarachnoid space. Cine MR phase imaging is thus useful for the visualization and the quantitative analysis of the CSF pulsative flow. (author)

  20. Visualization of Two Phase Flow in a Horizontal Flow with Electrical Resistance Tomography based on Extended Kalman Filter

    International Nuclear Information System (INIS)

    Lee, Jeong Seong; Malik, Nauman Muhammad; Khambampati, Anil Kumar; Rashid, Ahmar; Kim, Sin; Kim, Kyung Youn

    2008-01-01

    For the visualization of the phase distribution in two phase flows, the electrical resistance tomography (ERT) technique is introduced. In ERT, the internal resistivity distribution is reconstructed based on the known sets of the injected currents and measured voltages on the surface of the object. The physical relationship between the internal resistivity and the surface voltages is governed by a partial differential equation with appropriate boundary conditions. This paper considers the estimation of the phase distribution with ERT in two phase flow in a horizontal flow using extended Kalman filter. To evaluate the reconstruction performance of the proposed algorithm, the experiments simulated two phase flows in a horizontal flow were carried out. The experiments with two phase flow phantom were done to suggest a practical implication of this research in detecting gas bubble in a feed water pipe of heat transfer systems

  1. Visualization and PIV measurement of unsteady flow around a darrieus wind turbine in dynamic stall

    Energy Technology Data Exchange (ETDEWEB)

    Shibuya, Satoshi; Fujisawa, Nobuyuki; Takano, Tsuyoshi [Dept. of Mechanical and Production Engineering, Niigata Univ., Niigata (Japan)

    1999-07-01

    Flow around a Darrieus wind turbine in dynamic stall is studied by flow visualization and PIV (particle image velocimeter) measurement in a rotating frame of reference, which allows the successive observation of the dynamic stall over the blade. The qualitative features of the flow field in dynamic stall observed by the flow visualization, such as the formation and shedding of the stall vortices, are quantitatively reproduced in the instantaneous velocity distributions near the blade by using PIV. These results indicate that two pairs of stall vortices are generated from the blade during one rotation of the blade and that the size and the generating blade angle of the stall vortices are enlarged as the tip-speed ratio decreases. These stall vortices are produced by the in-flow motion from the outer surface to the inner surface through the trailing edge of the blade and the flow separation over the inner surface of the blade. (author)

  2. Visualize This The FlowingData Guide to Design, Visualization, and Statistics

    CERN Document Server

    Yau, Nathan

    2011-01-01

    Practical data design tips from a data visualization expert of the modern age Data doesn?t decrease; it is ever-increasing and can be overwhelming to organize in a way that makes sense to its intended audience. Wouldn?t it be wonderful if we could actually visualize data in such a way that we could maximize its potential and tell a story in a clear, concise manner? Thanks to the creative genius of Nathan Yau, we can. With this full-color book, data visualization guru and author Nathan Yau uses step-by-step tutorials to show you how to visualize and tell stories with data. He explains how to ga

  3. Flow visualization with laser light-sheet techniques in automotive research

    International Nuclear Information System (INIS)

    Hentschel, W.; Stoffregen, B.

    1987-01-01

    This paper presents different set-ups for the visualization of flow fields in automotive research i.e. aerodynamics and i.c. engines, with the help of laser light-sheet techniques. Special efforts are made to apply these techniques to temporarily resolved studies of unsteady flows and for the quantitative analysis of a flow field in two dimensions in a full plane instantaneously. Several examples taken from current work are presented

  4. wire chamber

    CERN Multimedia

    1985-01-01

    Multi-wire detectors contain layers of positively and negatively charged wires enclosed in a chamber full of gas. A charged particle passing through the chamber knocks negatively charged electrons out of atoms in the gas, leaving behind positive ions. The electrons are pulled towards the positively charged wires. They collide with other atoms on the way, producing an avalanche of electrons and ions. The movement of these electrons and ions induces an electric pulse in the wires which is collected by fast electronics. The size of the pulse is proportional to the energy loss of the original particle.

  5. Wire chamber

    CERN Multimedia

    Multi-wire detectors contain layers of positively and negatively charged wires enclosed in a chamber full of gas. A charged particle passing through the chamber knocks negatively charged electrons out of atoms in the gas, leaving behind positive ions. The electrons are pulled towards the positively charged wires. They collide with other atoms on the way, producing an avalanche of electrons and ions. The movement of these electrons and ions induces an electric pulse in the wires which is collected by fast electronics. The size of the pulse is proportional to the energy loss of the original particle.

  6. wire chamber

    CERN Multimedia

    Multi-wire detectors contain layers of positively and negatively charged wires enclosed in a chamber full of gas. A charged particle passing through the chamber knocks negatively charged electrons out of atoms in the gas, leaving behind positive ions. The electrons are pulled towards the positively charged wires. They collide with other atoms on the way, producing an avalanche of electrons and ions. The movement of these electrons and ions induces an electric pulse in the wires which is collected by fast electronics. The size of the pulse is proportional to the energy loss of the original particle.

  7. wire chamber

    CERN Multimedia

    Was used in ISR (Intersecting Storage Ring) split field magnet experiment. Multi-wire detectors contain layers of positively and negatively charged wires enclosed in a chamber full of gas. A charged particle passing through the chamber knocks negatively charged electrons out of atoms in the gas, leaving behind positive ions. The electrons are pulled towards the positively charged wires. They collide with other atoms on the way, producing an avalanche of electrons and ions. The movement of these electrons and ions induces an electric pulse in the wires which is collected by fast electronics. The size of the pulse is proportional to the energy loss of the original particle.

  8. Relationship among visual field, blood flow, and neural structure measurements in glaucoma.

    Science.gov (United States)

    Hwang, John C; Konduru, Ranjith; Zhang, Xinbo; Tan, Ou; Francis, Brian A; Varma, Rohit; Sehi, Mitra; Greenfield, David S; Sadda, Srinivas R; Huang, David

    2012-05-17

    To determine the relationship among visual field, neural structural, and blood flow measurements in glaucoma. Case-control study. Forty-seven eyes of 42 patients with perimetric glaucoma were age-matched with 27 normal eyes of 27 patients. All patients underwent Doppler Fourier-domain optical coherence tomography to measure retinal blood flow and standard glaucoma evaluation with visual field testing and quantitative structural imaging. Linear regression analysis was performed to analyze the relationship among visual field, blood flow, and structure, after all variables were converted to logarithmic decibel scale. Retinal blood flow was reduced in glaucoma eyes compared to normal eyes (P flow and structural loss of rim area and retinal nerve fiber layer (RNFL). There was no correlation or paradoxical correlation between blood flow and structure. Multivariate regression analysis revealed that reduced blood flow and structural loss are independent predictors of visual field loss. Each dB decrease in blood flow was associated with at least 1.62 dB loss in mean deviation (P ≤ 0.001), whereas each dB decrease in rim area and RNFL was associated with 1.15 dB and 2.56 dB loss in mean deviation, respectively (P ≤ 0.03). There is a close link between reduced retinal blood flow and visual field loss in glaucoma that is largely independent of structural loss. Further studies are needed to elucidate the causes of the vascular dysfunction and potential avenues for therapeutic intervention. Blood flow measurement may be useful as an independent assessment of glaucoma severity.

  9. Intuitive Visualization of Transient Flow: Towards a Full 3D Tool

    Science.gov (United States)

    Michel, Isabel; Schröder, Simon; Seidel, Torsten; König, Christoph

    2015-04-01

    Visualization of geoscientific data is a challenging task especially when targeting a non-professional audience. In particular, the graphical presentation of transient vector data can be a significant problem. With STRING Fraunhofer ITWM (Kaiserslautern, Germany) in collaboration with delta h Ingenieurgesellschaft mbH (Witten, Germany) developed a commercial software for intuitive 2D visualization of 3D flow problems. Through the intuitive character of the visualization experts can more easily transport their findings to non-professional audiences. In STRING pathlets moving with the flow provide an intuition of velocity and direction of both steady-state and transient flow fields. The visualization concept is based on the Lagrangian view of the flow which means that the pathlets' movement is along the direction given by pathlines. In order to capture every detail of the flow an advanced method for intelligent, time-dependent seeding of the pathlets is implemented based on ideas of the Finite Pointset Method (FPM) originally conceived at and continuously developed by Fraunhofer ITWM. Furthermore, by the same method pathlets are removed during the visualization to avoid visual cluttering. Additional scalar flow attributes, for example concentration or potential, can either be mapped directly to the pathlets or displayed in the background of the pathlets on the 2D visualization plane. The extensive capabilities of STRING are demonstrated with the help of different applications in groundwater modeling. We will discuss the strengths and current restrictions of STRING which have surfaced during daily use of the software, for example by delta h. Although the software focusses on the graphical presentation of flow data for non-professional audiences its intuitive visualization has also proven useful to experts when investigating details of flow fields. Due to the popular reception of STRING and its limitation to 2D, the need arises for the extension to a full 3D tool

  10. Visualization of Concrete Slump Flow Using the Kinect Sensor.

    Science.gov (United States)

    Kim, Jung-Hoon; Park, Minbeom

    2018-03-03

    Workability is regarded as one of the important parameters of high-performance concrete and monitoring it is essential in concrete quality management at construction sites. The conventional workability test methods are basically based on length and time measured by a ruler and a stopwatch and, as such, inevitably involves human error. In this paper, we propose a 4D slump test method based on digital measurement and data processing as a novel concrete workability test. After acquiring the dynamically changing 3D surface of fresh concrete using a 3D depth sensor during the slump flow test, the stream images are processed with the proposed 4D slump processing algorithm and the results are compressed into a single 4D slump image. This image basically represents the dynamically spreading cross-section of fresh concrete along the time axis. From the 4D slump image, it is possible to determine the slump flow diameter, slump flow time, and slump height at any location simultaneously. The proposed 4D slump test will be able to activate research related to concrete flow simulation and concrete rheology by providing spatiotemporal measurement data of concrete flow.

  11. Electrophysiological measurement of information flow during visual search

    OpenAIRE

    Cosman, Joshua D.; Arita, Jason T.; Ianni, Julianna D.; Woodman, Geoffrey F.

    2015-01-01

    The temporal relationship between different stages of cognitive processing is long-debated. This debate is ongoing, primarily because it is often difficult to measure the time course of multiple cognitive processes simultaneously. We employed a manipulation that allowed us to isolate ERP components related to perceptual processing, working memory, and response preparation, and then examined the temporal relationship between these components while observers performed a visual search task. We f...

  12. Turbulent subcooled boiling flow visualization experiments through a rectangular channel

    International Nuclear Information System (INIS)

    Estrada-Perez, Carlos E.; Dominguez-Ontiveros, Elvis E.; Hassan, Yassin A.

    2008-01-01

    Full text of publication follows: Proper characterization of subcooled boiling flow is of importance in many applications. It is of exceptional significance in the development of empirical models for the design of nuclear reactors, steam generators, and refrigeration systems. Most of these models are based on experimental studies that share the characteristics of utilizing point measurement probes with high temporal resolution, e.g. Hot Film Anemometry (HFA), Laser Doppler Velocimetry (LDV), and Fiber Optic Probes (FOP). However there appears to be a scarcity of experimental studies that can capture instantaneous whole-field measurements with a fast time response. Particle Tracking Velocimetry (PTV) may be used to overcome the limitations associated with point measurement techniques. PTV is a whole-flow-field technique providing instantaneous velocity vectors capable of high spatial and temporal resolution. PTV is also an exceptional tool for the analysis of boiling flow due to its ability to differentiate between the gas and liquid phases and subsequently deliver independent velocity fields associated with each phase. In this work, using PTV, liquid velocity fields of a turbulent subcooled boiling flow in a rectangular channel were successfully obtained. The present results agree with similar studies that used point measurement probes. However, the present study provides additional information; not only averaged profiles of the velocity components were obtained, instantaneous 2-D velocity fields were also readily available with a high temporal and spatial resolution. Analysis of fluctuating velocities, Reynolds stresses, and higher order statistics of the flow are presented. This work is an attempt to enrich the database already collected on turbulent subcooled boiling flow, with the hope that it will be useful in turbulence modeling efforts. (authors)

  13. Measuring method of liquid flow behavior using visualization

    International Nuclear Information System (INIS)

    Serizawa, Akimi; Kamei, Takashi; Takahashi, Osamu; Kawara, Zensaku

    1994-01-01

    It is important for the safety of nuclear reactor to understand the behavior of gas-liquid two-phase flow. For that analysis, we have to understand its time and spatial dependence. But most of the measuring methods applied to two-phase flow experiments are not enough for this purpose, because they consider the time averaged value, and they are put on the local position in test sections. Standing on such a point of view, we have been developing a measuring method using fluorescence. And from those pictures gotten by video camera, after processed by computer, we measure liquid film thickness. (author)

  14. Flow visualization and relative permeability measurements in rough-walled fractures

    International Nuclear Information System (INIS)

    Persoff, P.; Pruess, K.

    1993-01-01

    Two-phase (gas-liquid) flow experiments were done in a natural rock fracture and transparent replicas of natural fractures. Liquid was injected at constant volume flow rate, and gas was injected at either constant mass flow rate or constant pressure. When gas was injected at constant mass flow rate, the gas inlet pressure, and inlet and outlet capillary pressures, generally did not reach steady state but cycled irregularly. Flow visualization showed that this cycling was due to repeated blocking and unblocking of gas flow paths by liquid. Relative permeabilities calculated from flow rate and pressure data show that the sum of the relative permeabilities of the two phases is much less than 1, indicating that each phase interferes strongly with the flow of the other. Comparison of the relative permeability curves with typical curves for porous media (Corey curves) show that the phase interference is stronger in fractures than in typical porous media

  15. Visualization and Hierarchical Analysis of Flow in Discrete Fracture Network Models

    Science.gov (United States)

    Aldrich, G. A.; Gable, C. W.; Painter, S. L.; Makedonska, N.; Hamann, B.; Woodring, J.

    2013-12-01

    Flow and transport in low permeability fractured rock is primary in interconnected fracture networks. Prediction and characterization of flow and transport in fractured rock has important implications in underground repositories for hazardous materials (eg. nuclear and chemical waste), contaminant migration and remediation, groundwater resource management, and hydrocarbon extraction. We have developed methods to explicitly model flow in discrete fracture networks and track flow paths using passive particle tracking algorithms. Visualization and analysis of particle trajectory through the fracture network is important to understanding fracture connectivity, flow patterns, potential contaminant pathways and fast paths through the network. However, occlusion due to the large number of highly tessellated and intersecting fracture polygons preclude the effective use of traditional visualization methods. We would also like quantitative analysis methods to characterize the trajectory of a large number of particle paths. We have solved these problems by defining a hierarchal flow network representing the topology of particle flow through the fracture network. This approach allows us to analyses the flow and the dynamics of the system as a whole. We are able to easily query the flow network, and use paint-and-link style framework to filter the fracture geometry and particle traces based on the flow analytics. This allows us to greatly reduce occlusion while emphasizing salient features such as the principal transport pathways. Examples are shown that demonstrate the methodology and highlight how use of this new method allows quantitative analysis and characterization of flow and transport in a number of representative fracture networks.

  16. Beyond the arrow plot : new methods for flow visualization

    NARCIS (Netherlands)

    Wijk, van J.J.

    1999-01-01

    Within the realm of CFD-based flow analysis, the presentation of data is a vital issue. Researchers and developers need to gain insight, and non-technical managers and commercial staff have a critical need to understand the true ramifications of the data. Unfortunately, current methods for

  17. Flow visualization study of post critical heat flux region for inverted bubbly, slug and annular flow regimes

    International Nuclear Information System (INIS)

    Denten, J.G.; Ishii, M.

    1988-11-01

    A visual study of film boiling using still photographic and high- speed motion picture methods was carried out in order to analyze the post-CHF hydrodynamics for steady-state inlet pre-CHF two-phase flow regimes. Pre-CHF two-phase flow regimes were established by introducing Freon 113 liquid and nitrogen gas into a jet core injection nozzle. An idealized, post-CHF two-phase core initial flow geometry (cylindrical multiphase jet core surrounded by a coaxial annulus of gas) was established at the nozzle exit by introducing nitrogen gas into the annular gap between the jet nozzle two-phase effluent and the heated test section inlet. For the present study three basic post-CHF flow regimes have been observed: the rough wavy regime (inverted annular flow preliminary break down), the agitated regime (transition between inverted annular and dispersed droplet flow), and the dispersed ligament/droplet regime. For pre-CHF bubbly flow in the jet nozzle, the post-CHF flow (beginning from jet nozzle exit/heated test section inlet) consists of the rough wavy regime, followed by the agitated and then the dispersed ligament/droplet regime. In the same way, for pre-CHF slug flow in the jet core, the post-CHF flow is comprised of the agitated regime at the nozzle exit, followed by the dispersed regime. Pre-CHF annular jet core flow results in a small, depleted post-CHF agitated flow regime at the nozzle exit, immediately followed by the dispersed ligament/droplet regime. Observed post dryout hydrodynamic behavior is reported, with particular attention given to the transition flow pattern between inverted annular and dispersed droplet flow. 43 refs., 20 figs., 5 tabs

  18. Visualization of large waves in churn and annular two-phase flow

    International Nuclear Information System (INIS)

    Dasgupta, Arnab; Chandraker, D.K.; Nayak, A.K.; Vijayan, P.K.; Kshirasagar, S.; Reddy, B.R.; Walker, S.P.

    2015-01-01

    The study of churn and annular two-phase flow regimes is important for boiling systems like nuclear reactors, U-tube steam generators etc. In this paper, visualization studies on air-water churn and annular two-phase flow regimes are reported. Though there are differences between air-water and boiling steam water systems, the major flow-pattern characteristics are similar (if not same).The specific object of study is the large waves which exist in both churn and annular regimes. These waves are responsible for majority of the momentum and mass dispersion across the phases. The differentiating characteristics of these waves in the chum and annular flow regimes are reported. The visualization also leads to a more quantitative representation of the transition from churn to annular flow. A new interpretation of the criterion for onset of entrainment is also evolved from the studies. (author)

  19. Visualizing Dataflow Graphs of Deep Learning Models in TensorFlow.

    Science.gov (United States)

    Wongsuphasawat, Kanit; Smilkov, Daniel; Wexler, James; Wilson, Jimbo; Mane, Dandelion; Fritz, Doug; Krishnan, Dilip; Viegas, Fernanda B; Wattenberg, Martin

    2018-01-01

    We present a design study of the TensorFlow Graph Visualizer, part of the TensorFlow machine intelligence platform. This tool helps users understand complex machine learning architectures by visualizing their underlying dataflow graphs. The tool works by applying a series of graph transformations that enable standard layout techniques to produce a legible interactive diagram. To declutter the graph, we decouple non-critical nodes from the layout. To provide an overview, we build a clustered graph using the hierarchical structure annotated in the source code. To support exploration of nested structure on demand, we perform edge bundling to enable stable and responsive cluster expansion. Finally, we detect and highlight repeated structures to emphasize a model's modular composition. To demonstrate the utility of the visualizer, we describe example usage scenarios and report user feedback. Overall, users find the visualizer useful for understanding, debugging, and sharing the structures of their models.

  20. Visualization and measurement of pressurized multiphase flow using neutron radiography of JRR-3M system

    Energy Technology Data Exchange (ETDEWEB)

    Katoh, Yasuo [Yamaguchi Univ. (Japan); Matsubayasi, Masahito

    1998-01-01

    Concerning the transient phenomenon of solid-gas two-phase flow, an attempt was made to visualize and measure a flow phenomenon in which three-dimensional bubbles occurred, grew and collapsed in the vicinity of a gas injection nozzle while solid particles were circulating. Such a phenomenon could not or hardly be visualized and measured by conventional methods. Such two-phase flow was visualized using neutron radiography, its characteristics measured and the usefulness of the visualization by neutron radiography confirmed. For this purpose, three-dimensional fluidized bed vessels, rectangular or cylindrical-shaped, made of steel or aluminum sheet, were prepared. Polyethylene or glass beads were used as solid particles and activated carbon particles as the tracer. In the experiment, nitrogen gas was blown into the vessel from one nozzle and distributors provided at the bottom of the vessel and exhausted from the top via the exhaust valve, by which the pressure in the vessel was controlled. The imaging was done in the following way: A test chamber was provided beside the vessel to receive neutron beams from the JRR-3M system, the intensity of transmitted neutrons was converted to visible light by scintillator and the images were videotaped. The initial objectives of visualizing and measuring bubbles occurring, growing and collapsing and solid particles circulating in the solid-gas two-phase flow have been achieved by means of neutron radiography. (N.H.)

  1. Effect of pulsation on the near flow field of a submerged water jet

    Indian Academy of Sciences (India)

    HAREKRISHNA YADAV

    2018-03-22

    Mar 22, 2018 ... Department of Mechanical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai ... combustion engines, industrial type burners, drying of food, ... visualized the fluid flow characteristic using a smoke-wire.

  2. Three-dimensional visualization of myocardial motion and blood flow with cine-MR images

    International Nuclear Information System (INIS)

    Oshiro, Osamu; Matani, Ayumu; Chihara, Kunihiro; Mikami, Taisei; Kitabatake, Akira.

    1997-01-01

    This paper describes a three-dimensional (3D) reconstruction and presentation method to visualize myocardial motion and blood flow in a heart using cine-MR (magnetic resonance) images. Firstly, the region of myocardium and blood were segmented with certain threshold gray values. Secondly, some slices were interpolated linearly to reconstruct a 3D static image. Finally, a 3D dynamic image was presented with displaying the 3D static images sequentially. The experimental results indicate that this method enables to visualize not only normal but also abnormal blood flow in cine-mode. (author)

  3. Flow visualization of bubble behavior under two-phase natural circulation flow conditions using high speed digital camera

    Energy Technology Data Exchange (ETDEWEB)

    Lemos, Wanderley F.; Su, Jian, E-mail: wlemos@con.ufrj.br, E-mail: sujian@lasme.coppe.ufrj.br [Coordenacao dos Programas de Pos-Graduacao em Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Nuclear; Faccini, Jose L.H., E-mail: faccini@ien.gov.br [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil). Lab. de Termo-Hidraulica Experimental

    2013-07-01

    The The present work aims at identifying flow patterns and measuring interfacial parameters in two-phase natural circulation by using visualization technique with high-speed digital camera. The experiments were conducted in the Natural Circulation Circuit (CCN), installed at Nuclear Engineering Institute/CNEN. The thermo-hydraulic circuit comprises heater, heat exchanger, expansion tank, the pressure relief valve and pipes to interconnect the components. A glass tube is installed at the midpoint of the riser connected to the heater outlet. The natural circulation circuit is complemented by acquisition system of values of temperatures, flow and graphic interface. The instrumentation has thermocouples, volumetric flow meter, rotameter and high-speed digital camera. The experimental study is performed through analysis of information from measurements of temperatures at strategic points along the hydraulic circuit, besides natural circulation flow rates. The comparisons between analytical and experimental values are validated by viewing, recording and processing of the images for the flows patterns. Variables involved in the process of identification of flow regimes, dimensionless parameters, the phase velocity of the flow, initial boiling point, the phenomenon of 'flashing' pre-slug flow type were obtained experimentally. (author)

  4. Flow visualization of bubble behavior under two-phase natural circulation flow conditions using high speed digital camera

    International Nuclear Information System (INIS)

    Lemos, Wanderley F.; Su, Jian; Faccini, Jose L.H.

    2013-01-01

    The The present work aims at identifying flow patterns and measuring interfacial parameters in two-phase natural circulation by using visualization technique with high-speed digital camera. The experiments were conducted in the Natural Circulation Circuit (CCN), installed at Nuclear Engineering Institute/CNEN. The thermo-hydraulic circuit comprises heater, heat exchanger, expansion tank, the pressure relief valve and pipes to interconnect the components. A glass tube is installed at the midpoint of the riser connected to the heater outlet. The natural circulation circuit is complemented by acquisition system of values of temperatures, flow and graphic interface. The instrumentation has thermocouples, volumetric flow meter, rotameter and high-speed digital camera. The experimental study is performed through analysis of information from measurements of temperatures at strategic points along the hydraulic circuit, besides natural circulation flow rates. The comparisons between analytical and experimental values are validated by viewing, recording and processing of the images for the flows patterns. Variables involved in the process of identification of flow regimes, dimensionless parameters, the phase velocity of the flow, initial boiling point, the phenomenon of 'flashing' pre-slug flow type were obtained experimentally. (author)

  5. Flow visualization system for wind turbines without blades applied to micro reactors

    International Nuclear Information System (INIS)

    Santos, G.S.B.; Guimarães, L.N.F.; Placco, G.M.

    2017-01-01

    Flow visualization systems is a tool used in science and industry for characterization of projects that operate with drainage. This work presents the design and construction of a flow visualization system for passive turbines used in advanced fast micro reactors. In the system were generated images where it is possible to see the supersonic and transonic flow through the turbine disks. A test bench was assembled to generate images of the interior of the turbine where the flow is supersonic, allowing the study of the behavior of the boundary layer between disks. It is necessary to characterize the boundary layer of this type of turbine because its operation occurs in the transfer of kinetic energy between the fluid and the disks. The images generated, as well as their analyzes are presented as a result of this work

  6. Beam-modulation methods in quantitative and flow-visualization holographic interferometry

    Science.gov (United States)

    Decker, Arthur J.

    1986-01-01

    Heterodyne holographic interferometry and time-average holography with a frequency shifted reference beam are discussed. Both methods will be used for the measurement and visualization of internal transonic flows where the target facility is a flutter cascade. The background and experimental requirements for both methods are reviewed. Measurements using heterodyne holographic interferometry are presented. The performance of the laser required for time-average holography of time-varying transonic flows is discussed.

  7. Beam-modulation methods in quantitative and flow visualization holographic interferometry

    Science.gov (United States)

    Decker, A.

    1986-01-01

    This report discusses heterodyne holographic interferometry and time-average holography with a frequency shifted reference beam. Both methods will be used for the measurement and visualization of internal transonic flows, where the target facility is a flutter cascade. The background and experimental requirements for both methods are reviewed. Measurements using heterodyne holographic interferometry are presented. The performance of the laser required for time-average holography of time-varying transonic flows is discussed.

  8. Improved dynamic CT angiography visualization by flow territory masking

    Directory of Open Access Journals (Sweden)

    Søren Christensen

    2015-01-01

    Full Text Available Backgound and Purpose: Computerized tomography (CT perfusion (or CTP source images from CT scanners with small detector widths can be used to create a dynamic CT angiogram (CTA similar to digital subtraction angiography (DSA. Because CTP studies use a single intravenous injection, all arterial territories enhance simultaneously, and individual arterial territories [i.e., anterior cerebral artery (ACA, middle cerebral artery (MCA, and posterior cerebral artery (PCA] cannot be delineated. This limits the ability to assess collateral flow patterns on dynamic CTAs. The aim of this study was to devise and test a postprocessing method to selectively color-label the major arterial territories on dynamic CTA. Materials and Methods: We identified 22 acute-stroke patients who underwent CTP on a 320-slice CT scanner within 6 h from symptom onset. For each case, two investigators independently generated an arterial territory map from CTP bolus arrival maps using a semiautomated method. The volumes of the arterial territories were calculated for each map and the average relative difference between these volumes was calculated for each case as a measure of interrater agreement. Arterial territory maps were superimposed on the dynamic CTA to create a vessel-selective dynamic CTA with color-coding of the main arterial territories. Two experts rated the arterial territory maps and the color-coded CTAs for consistency with expected arterial territories on a 3-point scale (excellent, moderate, poor. Results: Arterial territory maps were generated for all 22 patients. The median difference in arterial territory volumes between investigators was 2.2% [interquartile range (IQR 0.6-8.5%]. Based on expert review, the arterial territory maps and the vessel-selective dynamic CTAs showed excellent consistency with the expected arterial territories in 18 of 22 patients, moderate consistency in 2 patients, and poor consistency in another 2 patients. Conclusion: Using a

  9. Spatio-temporal flow maps for visualizing movement and contact patterns

    Directory of Open Access Journals (Sweden)

    Bing Ni

    2017-03-01

    Full Text Available The advanced telecom technologies and massive volumes of intelligent mobile phone users have yielded a huge amount of real-time data of people’s all-in-one telecommunication records, which we call telco big data. With telco data and the domain knowledge of an urban city, we are now able to analyze the movement and contact patterns of humans in an unprecedented scale. Flow map is widely used to display the movements of humans from one single source to multiple destinations by representing locations as nodes and movements as edges. However, it fails the task of visualizing both movement and contact data. In addition, analysts often need to compare and examine the patterns side by side, and do various quantitative analysis. In this work, we propose a novel spatio-temporal flow map layout to visualize when and where people from different locations move into the same places and make contact. We also propose integrating the spatiotemporal flow maps into existing spatiotemporal visualization techniques to form a suite of techniques for visualizing the movement and contact patterns. We report a potential application the proposed techniques can be applied to. The results show that our design and techniques properly unveil hidden information, while analysis can be achieved efficiently. Keywords: Spatio-temporal data, Flow map, Urban mobility

  10. OpinionFlow: Visual Analysis of Opinion Diffusion on Social Media.

    Science.gov (United States)

    Wu, Yingcai; Liu, Shixia; Yan, Kai; Liu, Mengchen; Wu, Fangzhao

    2014-12-01

    It is important for many different applications such as government and business intelligence to analyze and explore the diffusion of public opinions on social media. However, the rapid propagation and great diversity of public opinions on social media pose great challenges to effective analysis of opinion diffusion. In this paper, we introduce a visual analysis system called OpinionFlow to empower analysts to detect opinion propagation patterns and glean insights. Inspired by the information diffusion model and the theory of selective exposure, we develop an opinion diffusion model to approximate opinion propagation among Twitter users. Accordingly, we design an opinion flow visualization that combines a Sankey graph with a tailored density map in one view to visually convey diffusion of opinions among many users. A stacked tree is used to allow analysts to select topics of interest at different levels. The stacked tree is synchronized with the opinion flow visualization to help users examine and compare diffusion patterns across topics. Experiments and case studies on Twitter data demonstrate the effectiveness and usability of OpinionFlow.

  11. Wire chamber gases

    International Nuclear Information System (INIS)

    Va'vra, J.

    1992-04-01

    In this paper, we describe new developments in gas mixtures which have occurred during the last 3--4 years. In particular, we discuss new results on the measurement and modeling of electron drift parameters, the modeling of drift chamber resolution, measurements of primary ionization and the choice of gas for applications such as tracking, single electron detection, X-ray detection and visual imaging. In addition, new results are presented on photon feedback, breakdown and wire aging

  12. Multimodal flow visualization and optimization of pneumatic blood pump for sorbent hemodialysis system.

    Science.gov (United States)

    Shu, Fangjun; Parks, Robert; Maholtz, John; Ash, Steven; Antaki, James F

    2009-04-01

    Renal Solutions Allient Sorbent Hemodialysis System utilizes a two-chambered pneumatic pump (Pulsar Blood Pump, Renal Solutions, Inc., Warrendale, PA, USA) to avoid limitations associated with peristaltic pumping systems. Single-needle access is enabled by counter-pulsing the two pump chambers, thereby obviating compliance chambers or blood reservoirs. Each chamber propels 20 cc per pulse of 3 s (dual access) or 6 s (single access) duration, corresponding to a peak Reynolds number of approximately 8000 (based on inlet velocity and chamber diameter). A multimodal series of flow visualization studies (tracer particle, dye washout, and dye erosion) was conducted on a sequence of pump designs with varying port locations and diaphragms to improve the geometry with respect to risk of thrombogenesis. Experiments were conducted in a simplified flow loop using occluders to simulate flow resistance induced by tubing and dialyzer. Tracer visualization revealed flow patterns and qualitatively indicated turbulence intensity. Dye washout identified dwell volume and areas of flow stagnation for each design. Dye erosion results indicated the effectiveness and homogeneity of surface washing. Compared to a centered inlet which resulted in a fluid jet that produced two counter-rotating vortices, a tangential inlet introduced a single vortex, and kept the flow laminar. It also provided better surface washing on the pump inner surface. However, a tangential outlet did not present as much benefit as expected. On the contrary, it created a sharp defection to the flow when transiting from filling to ejection.

  13. MotionFlow: Visual Abstraction and Aggregation of Sequential Patterns in Human Motion Tracking Data.

    Science.gov (United States)

    Jang, Sujin; Elmqvist, Niklas; Ramani, Karthik

    2016-01-01

    Pattern analysis of human motions, which is useful in many research areas, requires understanding and comparison of different styles of motion patterns. However, working with human motion tracking data to support such analysis poses great challenges. In this paper, we propose MotionFlow, a visual analytics system that provides an effective overview of various motion patterns based on an interactive flow visualization. This visualization formulates a motion sequence as transitions between static poses, and aggregates these sequences into a tree diagram to construct a set of motion patterns. The system also allows the users to directly reflect the context of data and their perception of pose similarities in generating representative pose states. We provide local and global controls over the partition-based clustering process. To support the users in organizing unstructured motion data into pattern groups, we designed a set of interactions that enables searching for similar motion sequences from the data, detailed exploration of data subsets, and creating and modifying the group of motion patterns. To evaluate the usability of MotionFlow, we conducted a user study with six researchers with expertise in gesture-based interaction design. They used MotionFlow to explore and organize unstructured motion tracking data. Results show that the researchers were able to easily learn how to use MotionFlow, and the system effectively supported their pattern analysis activities, including leveraging their perception and domain knowledge.

  14. The flow of a thin liquid film on a stationary and rotating disk. I - Experimental analysis and flow visualization

    Science.gov (United States)

    Thomas, S.; Faghri, A.; Hankey, W.

    1990-01-01

    The mean thickness of a thin liquid film of deionized water with a free surface on a stationary and rotating horizontal disk has been measured with a nonobtrusive capacitance technique. The measurements were taken when the rotational speed was 0-300 RPM and the flow rate was 7.0-15.0 LPM. A flow visualization study of the thin film was also performed to determine the characteristics of the waves on the free surface. When the disk was stationary, a circular hydraulic jump was present on the disk. Surface waves were found in the supercritical and subcritical regions at all flow rates studied. When the rotational speed of the disk is low, a standing wave at the edge of the disk was present. As the rotational speed increased, the surface waves changed from the wavy-laminar region to a region in which the waves ran nearly radially across the disk on top of a thin substrate of fluid.

  15. Flow Visualization at Cryogenic Conditions Using a Modified Pressure Sensitive Paint Approach

    Science.gov (United States)

    Watkins, A. Neal; Goad, William K.; Obara, Clifford J.; Sprinkle, Danny R.; Campbell, Richard L.; Carter, Melissa B.; Pendergraft, Odis C., Jr.; Bell, James H.; Ingram, JoAnne L.; Oglesby, Donald M.

    2005-01-01

    A modification to the Pressure Sensitive Paint (PSP) method was used to visualize streamlines on a Blended Wing Body (BWB) model at full-scale flight Reynolds numbers. In order to achieve these conditions, the tests were carried out in the National Transonic Facility operating under cryogenic conditions in a nitrogen environment. Oxygen is required for conventional PSP measurements, and several tests have been successfully completed in nitrogen environments by injecting small amounts (typically < 3000 ppm) of oxygen into the flow. A similar technique was employed here, except that air was purged through pressure tap orifices already existent on the model surface, resulting in changes in the PSP wherever oxygen was present. The results agree quite well with predicted results obtained through computational fluid dynamics analysis (CFD), which show this to be a viable technique for visualizing flows without resorting to more invasive procedures such as oil flow or minitufts.

  16. Flow visualization and velocity measurement in a small-scale open channel using an electron microscope

    International Nuclear Information System (INIS)

    Yasuda, K; Sogo, M; Iwamoto, Y

    2013-01-01

    The present note describes a method for use in conjunction with a scanning electron microscope (SEM) that has been developed to visualize a liquid flow under a high-level vacuum and to measure a velocity field in a small-scale flow through an open channel. In general, liquid cannot be observed via a SEM, because liquid evaporates under the high-vacuum environment of the SEM. As such, ionic liquid and room temperature molten salt having a vapor pressure of nearly zero is used in the present study. We use ionic liquid containing Au-coated tracer particles to visualize a small-scale flow under a SEM. Furthermore, the velocity distribution in the open channel is obtained by particle tracking velocimetry measurement and a parabolic profile is confirmed. (technical design note)

  17. Visualization of boundary layer separation and passive flow control on airfoils and bodies in wind-tunnel and in-flight experiments

    Directory of Open Access Journals (Sweden)

    Matejka Milan

    2012-04-01

    Full Text Available Infrared camera, Particle Image Velocimetry, smoke-wire, tuft filaments and oil-flow visualization techniques were used for wind-tunnel and in-flight investigation of boundary layer separation, both stall and separation bubbles, related to the low-Reynolds numbers transition mechanism. Airfoils of Wortmann FX66 series and FX66 series wing-fuselage interaction, as well as modern airfoils and their wing-fuselage geometry were subject to study. The presence of previously identified structures in the CFD modelling, such as horse-shoe vortices, was confirmed in the flow. Wind-tunnels and in-flight measurements on sailplanes were carried out and effect of passive flow control devices - vortex generators - was surveyed; namely counter-rotating vortex generators and Zig-zag type turbulators were applied. Separation suppression and consequent drag coefficient reduction of test aircrafts was reached. PIV investigation was further extended by Time-Resolved techniques. An important study on structure of the turbulent flow in the lower atmosphere, creating an environment of the soaring flight, was presented.

  18. Visualization of boundary layer separation and passive flow control on airfoils and bodies in wind-tunnel and in-flight experiments

    Science.gov (United States)

    Popelka, Lukas; Kuklova, Jana; Simurda, David; Souckova, Natalie; Matejka, Milan; Uruba, Vaclav

    2012-04-01

    Infrared camera, Particle Image Velocimetry, smoke-wire, tuft filaments and oil-flow visualization techniques were used for wind-tunnel and in-flight investigation of boundary layer separation, both stall and separation bubbles, related to the low-Reynolds numbers transition mechanism. Airfoils of Wortmann FX66 series and FX66 series wing-fuselage interaction, as well as modern airfoils and their wing-fuselage geometry were subject to study. The presence of previously identified structures in the CFD modelling, such as horse-shoe vortices, was confirmed in the flow. Wind-tunnels and in-flight measurements on sailplanes were carried out and effect of passive flow control devices - vortex generators - was surveyed; namely counter-rotating vortex generators and Zig-zag type turbulators were applied. Separation suppression and consequent drag coefficient reduction of test aircrafts was reached. PIV investigation was further extended by Time-Resolved techniques. An important study on structure of the turbulent flow in the lower atmosphere, creating an environment of the soaring flight, was presented.

  19. Velocity Vector Field Visualization of Flow in Liquid Acquisition Device Channel

    Science.gov (United States)

    McQuillen, John B.; Chao, David F.; Hall, Nancy R.; Zhang, Nengli

    2012-01-01

    A capillary flow liquid acquisition device (LAD) for cryogenic propellants has been developed and tested in NASA Glenn Research Center to meet the requirements of transferring cryogenic liquid propellants from storage tanks to an engine in reduced gravity environments. The prototypical mesh screen channel LAD was fabricated with a mesh screen, covering a rectangular flow channel with a cylindrical outlet tube, and was tested with liquid oxygen (LOX). In order to better understand the performance in various gravity environments and orientations at different liquid submersion depths of the screen channel LAD, a series of computational fluid dynamics (CFD) simulations of LOX flow through the LAD screen channel was undertaken. The resulting velocity vector field visualization for the flow in the channel has been used to reveal the gravity effects on the flow in the screen channel.

  20. Quasi-isentropic compression using compressed water flow generated by underwater electrical explosion of a wire array

    Science.gov (United States)

    Gurovich, V.; Virozub, A.; Rososhek, A.; Bland, S.; Spielman, R. B.; Krasik, Ya. E.

    2018-05-01

    A major experimental research area in material equation-of-state today involves the use of off-Hugoniot measurements rather than shock experiments that give only Hugoniot data. There is a wide range of applications using quasi-isentropic compression of matter including the direct measurement of the complete isentrope of materials in a single experiment and minimizing the heating of flyer plates for high-velocity shock measurements. We propose a novel approach to generating quasi-isentropic compression of matter. Using analytical modeling and hydrodynamic simulations, we show that a working fluid composed of compressed water, generated by an underwater electrical explosion of a planar wire array, might be used to efficiently drive the quasi-isentropic compression of a copper target to pressures ˜2 × 1011 Pa without any complex target designs.

  1. Simultaneous acquisition of X-ray spectra using a multi-wire, position-sensitive gas flow detector

    International Nuclear Information System (INIS)

    Beaven, Peter A.; Marmotti, Mauro; Kampmann, Reinhard; Knoth, Joachim; Schwenke, Heinrich

    2003-01-01

    A multi-wire, gas-filled position-sensitive detector has been developed for the simultaneous recording of wavelength-dispersed X-ray signals that enables X-ray fluorescence spectrometry with a limited multi-element capability in the low Z element range. Details of the modular construction of the detector are given. The detector performance was characterized using Al-Kα radiation and a variable slit system. The detector has been applied in a laboratory spectrometer equipped with an electron source and a double multilayer mirror device as the wavelength-dispersing element. Spectra from Al and Si obtained in the simultaneous acquisition mode show good agreement with calculations performed using a ray-tracing model

  2. Visualization and void fraction measurement of decompressed boiling flow in a capillary tube

    International Nuclear Information System (INIS)

    Asano, H.; Murakawa, H.; Takenaka, N.; Takiguchi, K.; Okamoto, M.; Tsuchiya, T.; Kitaide, Y.; Maruyama, N.

    2011-01-01

    A capillary tube is often used as a throttle for a refrigerating cycle. Subcooled refrigerant usually flows from a condenser into the capillary tube. Then, the refrigerant is decompressed along the capillary tube. When the static pressure falls below the saturation pressure for the liquid temperature, spontaneous boiling occurs. A vapor-liquid two-phase mixture is discharged from the tube. In designing a capillary tube, it is necessary to calculate the flow rate for given boundary conditions on pressure and temperature at the inlet and exit. Since total pressure loss is dominated by frictional and acceleration losses during two-phase flow, it is first necessary to specify the boiling inception point. However, there will be a delay in boiling inception during decompressed flow. This study aimed to clarify the boiling inception point and two-phase flow characteristics of refrigerant in a capillary tube. Refrigerant flows in a coiled copper capillary tube were visualized by neutron radiography. The one-dimensional distribution of volumetric average void fraction was measured from radiographs through image processing. From the void fraction distribution, the boiling inception point was determined. Moreover, a simplified CT method was successfully applied to a radiograph for cross-sectional measurements. The experimental results show the flow pattern transition from intermittent flow to annular flow that occurred at a void fraction of about 0.45.

  3. Flow visualization and aero-optics in simulated environments; Proceedings of the Meeting, Orlando, FL, May 21, 22, 1987

    International Nuclear Information System (INIS)

    Bentley, H.T. III.

    1987-01-01

    The present conference on high speed aerooptics facilities, aerodynamic holography, and photooptical techniques gives attention to the prediction of image degradation through a turbulent medium, wind tunnel studies of optical beam degradation through heterogeneous aerodynamic flows, wavelength effects on images formed through turbulence, holographic visualizations of hypersonic flow viscous interactions, holographic interferometry for gas flow pattern studies, and a holographic flow field analysis of Spacelab-3 crystal growth experiments. Also discussed are the interferometric reconstruction of continuous flow fields, the flow visualization of turbine film cooling flows, the use of the phosphor technique for remote thermometry in a combustor, pulsed laser cinematography of deflagration, and a digital image sequence analysis for optical flow computation in flame propagation visualization

  4. Pacemaker wires

    International Nuclear Information System (INIS)

    Fransson, S.G.

    1993-01-01

    Evaluation of pacemaker wires were performed by comparing Advanced Multiple Beam Equalization Radiography (AMBER) with conventional chest radiography. The scanning equalization technique of the AMBER unit makes it superior to conventional technique in the depiction of different structures in the mediastinum or in the pleural sinuses. So far motion artifacts have not been considered clinically important. The longer exposure time, however, may impair the assessment of pacemaker wires. The motion artifact described may not only make adequate evaluation impossible but may even give a false impression of a lead fracture. The difference between the two systems was significant. (orig.)

  5. Visualization of boiling two-phase flow in a small diameter tube using neutron radiography

    International Nuclear Information System (INIS)

    Hibiki, Takashi; Mishima, Kaichiro; Yoneda, Kenji; Fujine, Shigenori; Kanda, Keiji; Nishihara, Hideaki

    1991-01-01

    The characteristics of boiling two-phase flow in a small diameter tube are very important for cooling the blanket in a nuclear fusion reactor or a high performance electronic device. For all these subjects, it is necessary to visualize the flow in a tube as a starting point of the study. However, when an optical method cannot be used for the visualization, it is expected that neutron radiography is useful. In this study, the feasibility of visualization of boiling two-phase flow in a small diameter tube was investigated by using various facilities of neutron radiography as the first step. The basic concept of neutron radiography and the block diagram of a neutron television system are shown. The neutron beam attenuated by water in the test section makes a scintillator emit visible light, and produces an image of two-phase flow, which is taken with a TV camera. Thus the image can be observed at real time. Three kinds of the experiments were performed with the facilities of KUR, NSRR and JRR-3. The experimental methods and the results are reported. The images obtained were sufficiently clear. (K.I.)

  6. Color surface-flow visualization of fin-generated shock wave boundary-layer interactions

    Science.gov (United States)

    Lu, F. K.; Settles, G. S.

    1990-03-01

    Kerosene-lampblack mixtures with addition of a ground colored chalk were used in an experiment on visualizing surface flows of swept shock boundary-layer interactions. The results show that contrasting colors intensify the visualization of different regions of the interaction surface, and help the eye in following the fine streaks to locate the upstream influence. The study confirms observations of the separation occurring at shock strength below accepted values. The superiority of the reported technique over the previous monochrome technique is demonstrated.

  7. Flow visualization study of inverted annular flow of post dryout heat transfer region

    International Nuclear Information System (INIS)

    Ishii, M.; De Jarlais, G.

    1985-01-01

    The inverted annular flow is important in the area of LWR accident analysis in terms of the maximum cladding temperature and effectiveness of the emergency core cooling. However, the inverted annular flow thermal-hydraulics is not well understood due to its special heat transfer condition of film boiling. In view of this, the inverted flow is studied in detail experimentally. A new experimental apparatus has been constructed in which film boiling heat transfer can be established in a transparent test section. Data on liquid core stability, core break-up mechanism, and dispersed-core liquid slug and droplet sizes are obtained using F 113 as a test fluid. Both high speed movies and flash photographs are used

  8. Investigation of flow mechanism of a robotic fish swimming by using flow visualization synchronized with hydrodynamic force measurement

    Science.gov (United States)

    Tan, Guang-Kun; Shen, Gong-Xin; Huang, Shuo-Qiao; Su, Wen-Han; Ke, Yu

    When swimming in water by flapping its tail, a fish can overcome the drag from uniform flow and propel its body. The involved flow mechanism concerns 3-D and unsteady effects. This paper presents the investigation of the flow mechanism on the basis of a 3-D robotic fish model which has the typical geometry of body and tail with periodic flapping 2-freedom kinematical motion testing in the case of St = 0.78, Re = 6,600 and phase delay mode (φ = - 75°), in which may have a greater or maximum propulsion (without consideration of the optimal efficiency). Using a special technique of dye visualization which can clearly show vortex sheet and vortices in detail and using the inner 3-component force balance and cable supporting system with the phase-lock technique, the 3-D flow structure visualized in the wake of fish and the hydrodynamic force measurement were synchronized and obtained. Under the mentioned flapping parameters, we found the key flow structure and its evolution, a pair of complex 3-D chain-shape vortex (S-H vortex-rings, S1 - H1 and S2 - H2, and their legs L1 and L2) flow structures, which attach the leading edge and the trailing edge, then shed, move downstream and outwards and distribute two antisymmetric staggering arrays along with the wake of the fish model in different phase stages during the flapping period. It is different with in the case of St = 0.25-0.35. Its typical flow structure and evolution are described and the results prove that they are different from the viewpoints based on the investigation of 2-D cases. For precision of the dynamic force measurement, in this paper it was provided with the method and techniques by subtracting the inertial forces and the forces induced by buoyancy and gravity effect in water, etc. from original data measured. The evolution of the synchronized measuring forces directly matching with the flow structure was also described in this paper.

  9. Numerical Study for Turbulent Heat Transfer in Helical Wired Sub-channel Flow Regime of Duct-less Assembly in SFR

    International Nuclear Information System (INIS)

    You, Byunghyun; Jeong, Yong Hoon

    2014-01-01

    A fuel assembly had hexagonal structure adjacent to 6 fuel assemblies, which influence to the target fuel assembly due to elimination of duct. For calculating the influence, 6 additional channels were generated between the adjacent fuel assemblies and cross flow model was applied to the channels. The adjacent fuel assemblies were analyzed and the results were used in the additional channel as boundary condition of the target fuel assembly. To design the specifications of duct-less assembly, modified or brand-new thermal-hydraulic methodology is needed which is using MATRA-LMR and CFD codes in this study. The MATRA-LMR is a sub-channel analysis code for LMR that has been developed in Korea Atomic Energy Research Institute. It is designed to analyze a fuel assembly with wire-wrap and duct structure. However, the duct-less core is not able to be analyzed by the MATRA-LMR which doesn't consider cross flow between the fuel assemblies and effect of grid spacer. The code need improvement by editing source code to eliminate effect of duct and analyze pressure drop and mixing between the sub-channels caused by grid spacer and cross flow between the fuel assemblies. To validate reformed pressure drop model and cross flow model in MATRA-LMR, CFD analysis is performed. For verifying the results of CFD, LMR subchannel experimental data is benchmarked which is done by ORNL. The verified CFD for thermalhydraulic analysis calculated pressure drop and mixing caused by grid spacer and cross flow between fuel assemblies

  10. Postural response to predictable and nonpredictable visual flow in children and adults.

    Science.gov (United States)

    Schmuckler, Mark A

    2017-11-01

    Children's (3-5years) and adults' postural reactions to different conditions of visual flow information varying in its frequency content was examined using a moving room apparatus. Both groups experienced four conditions of visual input: low-frequency (0.20Hz) visual oscillations, high-frequency (0.60Hz) oscillations, multifrequency nonpredictable visual input, and no imposed visual information. Analyses of the frequency content of anterior-posterior (AP) sway revealed that postural reactions to the single-frequency conditions replicated previous findings; children were responsive to low- and high-frequency oscillations, whereas adults were responsive to low-frequency information. Extending previous work, AP sway in response to the nonpredictable condition revealed that both groups were responsive to the different components contained in the multifrequency visual information, although adults retained their frequency selectivity to low-frequency versus high-frequency content. These findings are discussed in relation to work examining feedback versus feedforward control of posture, and the reweighting of sensory inputs for postural control, as a function of development and task context. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Verbal or Visual Memory Score and Regional Cerebral Blood Flow in Alzheimer Disease

    Directory of Open Access Journals (Sweden)

    Satoshi Hayashi

    2018-01-01

    Full Text Available Objective: Among many cognitive function deficits, memory impairment is an initial and cardinal symptom in Alzheimer disease (AD. In most cases, verbal and visual memory scores correlate highly, but in some cases the deficit of verbal or visual memory is very different from that of the other memory. In this study, we examined the neural substrates of verbal and visual memory in patients with AD. Methods: One hundred eighty-eight consecutive patients with AD were recruited from outpatient units. Verbal and visual memory scores were evaluated using the Wechsler Memory Scale – revised. The patients underwent brain SPECT with 99mTc-ethylcysteinate dimer. Results: After removing the effects of age, sex, education, and Mini-Mental State Examination scores, correlation analysis showed a significant correlation of verbal memory scores to regional cerebral blood flow (rCBF in the bilateral cingulate gyrus and left precuneus. Similarly, a significant correlation of visual memory scores to rCBF was found in the right precuneus and right cingulate gyrus. Conclusion: The posterior medial cortices (PMC are very important areas in episodic memory among patients with mild AD. Verbal memory is more closely related to the both sides of the PMC, while visual memory is more closely related to the right PMC.

  12. Verbal or Visual Memory Score and Regional Cerebral Blood Flow in Alzheimer Disease.

    Science.gov (United States)

    Hayashi, Satoshi; Terada, Seishi; Oshima, Etsuko; Sato, Shuhei; Kurisu, Kairi; Takenoshita, Shintaro; Yokota, Osamu; Yamada, Norihito

    2018-01-01

    Among many cognitive function deficits, memory impairment is an initial and cardinal symptom in Alzheimer disease (AD). In most cases, verbal and visual memory scores correlate highly, but in some cases the deficit of verbal or visual memory is very different from that of the other memory. In this study, we examined the neural substrates of verbal and visual memory in patients with AD. One hundred eighty-eight consecutive patients with AD were recruited from outpatient units. Verbal and visual memory scores were evaluated using the Wechsler Memory Scale - revised. The patients underwent brain SPECT with 99m Tc-ethylcysteinate dimer. After removing the effects of age, sex, education, and Mini-Mental State Examination scores, correlation analysis showed a significant correlation of verbal memory scores to regional cerebral blood flow (rCBF) in the bilateral cingulate gyrus and left precuneus. Similarly, a significant correlation of visual memory scores to rCBF was found in the right precuneus and right cingulate gyrus. The posterior medial cortices (PMC) are very important areas in episodic memory among patients with mild AD. Verbal memory is more closely related to the both sides of the PMC, while visual memory is more closely related to the right PMC.

  13. Flow visualization of forced and natural convection in internal cavities. 1998 annual progress report

    International Nuclear Information System (INIS)

    Brodkey, R.S.; Clarksean, R.; Crepeau, J.C.; Guezennec, Y.G.; McEligot, D.M.

    1998-01-01

    'The objective of this research program is to understand the fluid physics when corroded spent nuclear fuel (SNF) elements are passivated by injecting treatment gases into a storage canister. By developing a reliable predictive technique for the energy, mass, and momentum transfer in the presence of surface reactions, transfer and storage systems can be efficiently and safely designed. The objective will be reached by using innovative flow visualization techniques and experimental measurements of the flow field to support computational models. This report summarizes work completed after eight months of a three-year, collaborative project. A generic idealization of a combined drying and passivation approach has been defined, which represents a section of a vertical canister with baskets of SNF elements. This simulation includes flow phenomena that occur in canisters for high- and/or low-enrichment fuels. A steady flow of the passivation fluid is introduced at the bottom of the canister via a central tube from the top. Fluid flows through an array of holes in the perforated basket support plate then around the simulated elements and out the top. Dimensions and flow rates for the idealized situation correspond to those for typical drying canisters. Approximate calculations have identified the ranges of values of flow parameters needed to determine the flow regimes occurring in practice.'

  14. Relationship Between Ureteral Jet Flow, Visual Analogue Scale, and Ureteral Stone Size.

    Science.gov (United States)

    Ongun, Sakir; Teken, Abdurrazak; Yılmaz, Orkun; Süleyman, Sakir

    2017-06-01

    To contribute to the diagnosis and treatment of ureteral stones by investigating the relationship between the ureteral jet flow measurements of patients with ureteral stones and the size of the stones and the patients' pain scores. The sample consisted of patients who presented acute renal colic between December 2014 and 2015 and from a noncontrast computed tomography were found to have a urinary stone. The ureteral jet flow velocities were determined using Doppler ultrasonography. The patients were all assessed in terms of stone size, localization and area, anteroposterior pelvis (AP) diameter, and visual analogue scale (VAS) scores. A total of 102 patients were included in the study. As the VAS score decreased, the peak jet flow velocity on the stone side increased, whereas the flow velocity on the other side, AP diameter, and stone area were reduced (P flow velocity was reduced and the AP diameter increased significantly (P flow was not observed in 17 patients on the stone side. A statistically significant difference was found between these patients and the remaining patients in terms of all parameters (P flow velocity of ureteral jet is low and with a severe level of pain or the peak flow velocity of ureteral jet cannot be measured, there is a low possibility of spontaneous passage and a high possibility of a large stone, and therefore the treatment should be started immediately. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Flow visualization study of inverted annular flow of post dryout heat transfer region

    International Nuclear Information System (INIS)

    Ishii, M.; De Jarlais, G.

    1987-01-01

    The inverted annular flow is important in the area of LWR accident analysis in terms of the maximum cladding temperature and effectiveness of the emergency core cooling. However, the inverted annular flow thermal-hydraulics is not well understood due to its special heat transfer condition of film boiling. In view of this, the inverted flow is studied in detail experimentally. A new experimental apparatus has been constructed in which film boiling heat transfer can be established in a transparent test section. Data on liquid core stability, core break-up mechanism, and dispersed-core liquid slug and droplet sizes are obtained using F 113 as a test fluid. Both high speed movies and flash photographs are used. The inlet section consists of specially designed coaxial nozzles for gas and liquid such that the ideal inverted annular flow can be generated. The roll wave formation, droplet entrainment from wave crests, agitated sections with large interfacial areas, classical sinuous jet instability, jet break-up into multiple liquid ligaments and drop formation from liquid ligaments have been observed in detail. (orig.)

  16. Limiting oxygen concentration for extinction of upward spreading flames over inclined thin polyethylene-insulated NiCr electrical wires with opposed-flow under normal- and micro-gravity

    KAUST Repository

    Hu, Longhua; Lu, Yong; Yoshioka, Kosuke; Zhang, Yangshu; Fernandez-Pello, Carlos; Chung, Suk-Ho; Fujita, Osamu

    2016-01-01

    . The experiments reported here used polyethylene (PE)-insulated (thickness of 0.15 mm) Nichrome (NiCr)-core (diameter of 0.5 mm) electrical wires. Limiting oxygen concentrations (LOC) at extinction were measured for upward spreading flame at various forced opposed-flow

  17. How humans use visual optic flow to regulate stepping during walking.

    Science.gov (United States)

    Salinas, Mandy M; Wilken, Jason M; Dingwell, Jonathan B

    2017-09-01

    Humans use visual optic flow to regulate average walking speed. Among many possible strategies available, healthy humans walking on motorized treadmills allow fluctuations in stride length (L n ) and stride time (T n ) to persist across multiple consecutive strides, but rapidly correct deviations in stride speed (S n =L n /T n ) at each successive stride, n. Several experiments verified this stepping strategy when participants walked with no optic flow. This study determined how removing or systematically altering optic flow influenced peoples' stride-to-stride stepping control strategies. Participants walked on a treadmill with a virtual reality (VR) scene projected onto a 3m tall, 180° semi-cylindrical screen in front of the treadmill. Five conditions were tested: blank screen ("BLANK"), static scene ("STATIC"), or moving scene with optic flow speed slower than ("SLOW"), matched to ("MATCH"), or faster than ("FAST") walking speed. Participants took shorter and faster strides and demonstrated increased stepping variability during the BLANK condition compared to the other conditions. Thus, when visual information was removed, individuals appeared to walk more cautiously. Optic flow influenced both how quickly humans corrected stride speed deviations and how successful they were at enacting this strategy to try to maintain approximately constant speed at each stride. These results were consistent with Weber's law: healthy adults more-rapidly corrected stride speed deviations in a no optic flow condition (the lower intensity stimuli) compared to contexts with non-zero optic flow. These results demonstrate how the temporal characteristics of optic flow influence ability to correct speed fluctuations during walking. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Visualization of diffusion mixing in a micro-mixer with flow paths fabricated by photolithography

    Science.gov (United States)

    Horiuchi, Toshiyuki; Morizane, Yuta

    2017-09-01

    Mixing processes of two liquids were investigated by visualizing the mixing when they were simultaneously injected in a micro-mixer with lithographically fabricated Y-shape flow paths, and the mixing phenomena was analyzed in detail. To visualize the mixing, flows were observed by an optical microscope, and a clearly detectable chemical reaction was utilized. As the two liquids, a transparent aqueous solution of a strong alkali and a phenolphthalein ethanol solution were used. When they were simultaneously injected in Y-shape flow paths of a micro-mixer, they flowed at first in parallel along the joined path as laminar flows. This is because the Reynolds' number became very small caused by the narrow flow-path widths of 50-100 μm. However, because two liquids were always contacted at the boundary, they were gradually mixed by diffusion, and the color of the mixed parts changed to vivid red. For this reason, it was able to measure the diffusion distance from the flow path center. Because the flow speeds were much faster than the diffusion speeds, the area colored in red did not depend on the time but depended on the distance from the joint point. It was known that the distance from the joint point corresponded to the time for mixing the liquids by the diffusion. It was clarified that the diffusion distance x was proportional to the square root of the diffusion time t or the distance from the joint point. The calculated diffusion coefficient D was (0.87-1.00)×10-9 m2/s.

  19. Visualization of airflow growing soap bubbles

    Science.gov (United States)

    Al Rahbi, Hamood; Bock, Matthew; Ryu, Sangjin

    2016-11-01

    Visualizing airflow inside growing soap bubbles can answer questions regarding the fluid dynamics of soap bubble blowing, which is a model system for flows with a gas-liquid-gas interface. Also, understanding the soap bubble blowing process is practical because it can contribute to controlling industrial processes similar to soap bubble blowing. In this study, we visualized airflow which grows soap bubbles using the smoke wire technique to understand how airflow blows soap bubbles. The soap bubble blower setup was built to mimic the human blowing process of soap bubbles, which consists of a blower, a nozzle and a bubble ring. The smoke wire was placed between the nozzle and the bubble ring, and smoke-visualized airflow was captured using a high speed camera. Our visualization shows how air jet flows into the growing soap bubble on the ring and how the airflow interacts with the soap film of growing bubble.

  20. Virtual reality aided visualization of fluid flow simulations with application in medical education and diagnostics.

    Science.gov (United States)

    Djukic, Tijana; Mandic, Vesna; Filipovic, Nenad

    2013-12-01

    Medical education, training and preoperative diagnostics can be drastically improved with advanced technologies, such as virtual reality. The method proposed in this paper enables medical doctors and students to visualize and manipulate three-dimensional models created from CT or MRI scans, and also to analyze the results of fluid flow simulations. Simulation of fluid flow using the finite element method is performed, in order to compute the shear stress on the artery walls. The simulation of motion through the artery is also enabled. The virtual reality system proposed here could shorten the length of training programs and make the education process more effective. © 2013 Published by Elsevier Ltd.

  1. Determination of Critical Properties of Endothermic Hydrocarbon Fuel RP-3 Based on Flow Visualization

    Science.gov (United States)

    Wang, Ning; Zhou, Jin; Pan, Yu; Wang, Hui

    2014-01-01

    The critical pressure and temperature of an endothermic hydrocarbon fuel RP-3 were determined by flow visualization. The flow pattern images of RP-3 at different pressures and temperatures were obtained. The critical pressure is identified by disappearance of the phase change while the critical temperature is determined by appearance of the opalescence phenomenon under the critical pressure. The opalescence phenomenon is unique to the critical point. The critical pressure and temperature of RP-3 are determined to be 2.3 MPa and 646 K, respectively.

  2. Visualization of velocity field and phase distribution in gas-liquid two-phase flow by NMR imaging

    International Nuclear Information System (INIS)

    Matsui, G.; Monji, H.; Obata, J.

    2004-01-01

    NMR imaging has been applied in the field of fluid mechanics, mainly single phase flow, to visualize the instantaneous flow velocity field. In the present study, NMR imaging was used to visualize simultaneously both the instantaneous phase structure and velocity field of gas-liquid two-phase flow. Two methods of NMR imaging were applied. One is useful to visualize both the one component of liquid velocity and the phase distribution. This method was applied to horizontal two-phase flow and a bubble rising in stagnant oil. It was successful in obtaining some pictures of velocity field and phase distribution on the cross section of the pipe. The other is used to visualize a two-dimensional velocity field. This method was applied to a bubble rising in a stagnant water. The velocity field was visualized after and before the passage of a bubble at the measuring cross section. Furthermore, the distribution of liquid velocity was obtained. (author)

  3. Hot-wire air flow meter for gasoline fuel-injection system. Calculation of air mass in cylinder during transient condition; Gasoline funsha system yo no netsusenshiki kuki ryuryokei. Kato untenji no cylinder juten kukiryo no keisan

    Energy Technology Data Exchange (ETDEWEB)

    Oyama, Y [Hitachi Car Engineering, Ltd., Tokyo (Japan); Nishimura, Y; Osuga, M; Yamauchi, T [Hitachi, Ltd., Tokyo (Japan)

    1997-10-01

    Air flow characteristics of hot-wire air flow meters for gasoline fuel-injection systems with supercharging and exhaust gas recycle during transient conditions were investigated to analyze a simple method for calculating air mass in cylinder. It was clarified that the air mass in cylinder could be calculated by compensating for the change of air mass in intake system by using aerodynamic models of intake system. 3 refs., 6 figs., 1 tab.

  4. Visualizing flow fields using acoustic Doppler current profilers and the Velocity Mapping Toolbox

    Science.gov (United States)

    Jackson, P. Ryan

    2013-01-01

    The purpose of this fact sheet is to provide examples of how the U.S. Geological Survey is using acoustic Doppler current profilers for much more than routine discharge measurements. These instruments are capable of mapping complex three-dimensional flow fields within rivers, lakes, and estuaries. Using the Velocity Mapping Toolbox to process the ADCP data allows detailed visualization of the data, providing valuable information for a range of studies and applications.

  5. Flow visualization around cylinders in a channel flow using particle image velocimetry

    International Nuclear Information System (INIS)

    Hassan, Y.A.; Martinez, R.S.; Schmidl, W.D.; Philip, O.G.

    2004-01-01

    One of the major concerns with power plant steam generators is tube vibration caused by turbulent flow buffeting. The vibration can cause wear of the tubes at the tube supports and at tube joints that eventually leads to leaks and rupture. When the cumulative leaks affect the steam generator performance, the plant is shut down and the leaking tubes are either repaired or plugged. Not only is the repair procedure very costly in terms of the repair costs themselves and loss of income due to the plant outage, but it is also costly in the sense that the steam generator design has been altered or has been totally replaced. This normally leads to more repairs in the future. To better understand this behavior of turbulent flow buffeting (the cause of many tube problems), it was felt that quantitative experimental data is needed to test the empirical correlations that predict the behavior of turbulent flow around cylinders. Perhaps this quantitative data could lead to a better understanding of this particular fluid behavior and motion and this understanding would hopefully then lead to design solutions that can be implemented to avoid the problem. (author)

  6. Flow visualization study of inverted annular flow of post dryout heat transfer region

    International Nuclear Information System (INIS)

    Ishii, M.; De Jarlais, G.

    1985-01-01

    The inverted annular flow is important in the area of LWR accident analysis in terms of the maximum cladding temperature and effectiveness of the emergency core cooling. However, the inverted annular flow thermal-hydraulics is not well understood due to its special heat transfer condition of film boiling. The review of existing data indicates further research is needed in the areas of basic hydrodynamics related to liquid core disintegration mechanisms, slug and droplet formation, entrainment, and droplet size distributions. In view of this, the inverted flow is studied in detail experimentally. A new experimental apparatus has been constructed in which film boiling heat transfer can be established in a transparent test section. The test section consists of two coaxial quartz tubes. The annular gap between these two tubes is filled with a hot, clear fluid (syltherm 800) so as to maintain film boiling temperatures and heat transfer rates at the inner quartz tube wall. Data on liquid core stability, core break-up mechanism, and dispersed-core liquid slug and droplet sizes are obtained using F 113 as a test fluid. Both high speed movies and flash photographs (3 μsec) are used

  7. #FluxFlow: Visual Analysis of Anomalous Information Spreading on Social Media.

    Science.gov (United States)

    Zhao, Jian; Cao, Nan; Wen, Zhen; Song, Yale; Lin, Yu-Ru; Collins, Christopher

    2014-12-01

    We present FluxFlow, an interactive visual analysis system for revealing and analyzing anomalous information spreading in social media. Everyday, millions of messages are created, commented, and shared by people on social media websites, such as Twitter and Facebook. This provides valuable data for researchers and practitioners in many application domains, such as marketing, to inform decision-making. Distilling valuable social signals from the huge crowd's messages, however, is challenging, due to the heterogeneous and dynamic crowd behaviors. The challenge is rooted in data analysts' capability of discerning the anomalous information behaviors, such as the spreading of rumors or misinformation, from the rest that are more conventional patterns, such as popular topics and newsworthy events, in a timely fashion. FluxFlow incorporates advanced machine learning algorithms to detect anomalies, and offers a set of novel visualization designs for presenting the detected threads for deeper analysis. We evaluated FluxFlow with real datasets containing the Twitter feeds captured during significant events such as Hurricane Sandy. Through quantitative measurements of the algorithmic performance and qualitative interviews with domain experts, the results show that the back-end anomaly detection model is effective in identifying anomalous retweeting threads, and its front-end interactive visualizations are intuitive and useful for analysts to discover insights in data and comprehend the underlying analytical model.

  8. Geometric Optimization for Non-Thrombogenicity of a Centrifugal Blood Pump through Flow Visualization

    Science.gov (United States)

    Toyoda, Masahiro; Nishida, Masahiro; Maruyama, Osamu; Yamane, Takashi; Tsutsui, Tatsuo; Sankai, Yoshiyuki

    A monopivot centrifugal blood pump, whose impeller is supported with a pivot bearing and a passive magnetic bearing, is under development for implantable artificial heart. The hemolysis level is less than that of commercial centrifugal pumps and the pump size is as small as 160 mL in volume. To solve a problem of thrombus caused by fluid dynamics, flow visualization experiments and animal experiments have been undertaken. For flow visualization a three-fold scale-up model, high-speed video system, and particle tracking velocimetry software were used. To verify non-thrombogenicity one-week animal experiments were conducted with sheep. The initially observed thrombus around the pivot was removed through unifying the separate washout holes to a small centered hole to induce high shear around the pivot. It was found that the thrombus contours corresponded to the shear rate of 300s-1 for red thrombus and 1300-1700s-1 for white thrombus, respectively. Thus flow visualization technique was found to be a useful tool to predict thrombus location.

  9. Flow visualization study of two-phase flow in a single bend outlet feeder pipe of a CANDU reactor

    International Nuclear Information System (INIS)

    Savalaxs, S.-A.; Lister, D.H.; Steward, F.R.

    2005-01-01

    In CANDU reactors, the feeder piping that is used to direct the high-temperature water coolant between the fuel channels and the steam generators is made of carbon steel. Since 1996, several CANDU stations have reported excessive corrosion of their outlet feeders. The first metre is particularity vulnerable because the piping there consists of single or double bends, which have relatively thin walls produced by the bending process. Early studies related the attack to the hydrodynamics of the coolant and verified that it was a type of flow-accelerated corrosion. In order to understand the hydrodynamics of the coolant in the outlet feeders by flow visualization, a full-scale transparent test section simulating the geometry and orientation of an outlet feeder bend with its upstream components was fabricated. The feeder consisted of a 54 mm diameter acrylic pipe with a 73 degree bend. This was connected to the upstream component with an acrylic simulation of a Grayloc flanged fitting. A test loop supplied room temperature water to the test section at flow rates up to 0.019 m3/s. Air could be injected into the water to give a mean volume fraction of up to 0.56. In this preliminary investigation, the size and velocity of air bubbles at different flow conditions and their distribution within the pipe bend were studied. Particular attention was paid to the flow pattern at the inside of the bend, where a CFD (computational fluid dynamics) code - Fluent 6.1-had failed to predict a liquid film in an earlier study. A high-speed digital video camera was used to determine the relation between bubble size and velocity. Such a relation should help to explain the discrepancy in the CFD modelling and provide the basis for accurate predictions of phase distribution in complex geometries at high flow rates. (authors)

  10. Experimental comparison and visualization of in-tube continuous and pulsating flow boiling

    DEFF Research Database (Denmark)

    Kærn, Martin Ryhl; Markussen, Wiebke Brix; Meyer, Knud Erik

    2018-01-01

    This experimental study investigated the application of fluid flow pulsations for in-tube flow boiling heat transfer enhancement in an 8 mm smooth round tube made of copper. The fluid flow pulsations were introduced by a flow modulating expansion device and were compared with continuous flow...... cycle time (7 s) reduced the time-averaged heat transfer coefficients by 1.8% and 2.3% for the low and high subcooling, respectively, due to significant dry-out when the flow-modulating expansion valve was closed. Furthermore, the flow pulsations were visualized by high-speed camera to assist...... generated by a stepper-motor expansion valve in terms of the time-averaged heat transfer coefficient. The cycle time ranged from 1 s to 7 s for the pulsations, the time-averaged refrigerant mass flux ranged from 50 kg m−2 s−1 to 194 kg m−2 s−1 and the time-averaged heat flux ranged from 1.1 kW m−2 to 30.6 k...

  11. The effect of visualizing the flow of multimedia content among and inside devices.

    Science.gov (United States)

    Lee, Dong-Seok

    2009-05-01

    This study introduces a user interface, referred to as the flow interface, which provides a graphical representation of the movement of content among and inside audio/video devices. The proposed interface provides a different frame of reference with content-oriented visualization of the generation, manipulation, storage, and display of content as well as input and output. The flow interface was applied to a VCR/DVD recorder combo, one of the most complicated consumer products. A between-group experiment was performed to determine whether the flow interface helps users to perform various tasks and to examine the learning effect of the flow interface, particularly in regard to hooking up and recording tasks. The results showed that participants with access to the flow interface performed better in terms of success rate and elapsed time. In addition, the participants indicated that they could easily understand the flow interface. The potential of the flow interface for application to other audio video devices, and design issues requiring further consideration, are discussed.

  12. A visualization study of flow-induced acoustic resonance in a branched pipe

    International Nuclear Information System (INIS)

    Li, Yanrong; Someya, Satoshi; Okamoto, Koji

    2008-01-01

    Systems with closed side-branches are liable to an excitation of sound, as called cavity tones. It may occur in pipe branches leading to safety valves or to boiler relief valves. The outbreak mechanism of the cavity tone has been known by phase-averaged measurement in previous researches, while the relation between sound propagation and flow field is still unclear due to the difficulty of detecting instantaneous pressure field. High time-resolved PIV has a possibility to analyze the pressure field and the relation mentioned above. In this report, flow-induced acoustic resonances of piping system containing closed side-branches were investigated experimentally. A High-Time-Resolved PIV technique was applied to measure a gas-flow in a cavity-tone. Air flow containing an oil mist as tracer particles was measured using a high frequency pulse laser and a high-speed camera. The present investigation on the coaxial closed side-branches is the first rudimentary study to measure the flow field two-dimensionally and simultaneously with the pressure measurement at multi-points and to visualize the fluid flow in the cross-section by using PIV. The fluid flows at different points in the cavity interact with some phase differences and the relation should be clarified. (author)

  13. Evolution of the two-phase flow in a vertical tube-decomposition of gas fraction profiles according to bubble size classes using wire-mesh sensors

    Energy Technology Data Exchange (ETDEWEB)

    Prasser, H.M.; Krepper, E.; Lucas, D. [Forschungszentrum Rossendorf e.V., Dresden (Germany)

    2002-01-01

    The wire-mesh sensor developed by the Forschungszentrum Rossendorf produces sequences of instantaneous gas fraction distributions in a cross section with a time resolution of 1200 frames per second and a spatial resolution of about 2-3 mm. At moderate flow velocities (up to 1-2 m.s{sup -1}), bubble size distributions can be obtained, since each individual bubble is mapped in several successive distributions. The method was used to study the evolution of the bubble size distribution in a vertical two-phase flow. For this purpose, the sensor was placed downstream of an air injector, the distance between air injection and sensor was varied. The bubble identification algorithm allows to select bubbles of a given range of the effective diameter and to calculate partial gas fraction profiles for this diameter range. In this way, the different behaviour of small and large bubbles in respect to the action of the lift force was observed in a mixture of small and large bubbles. (authors)

  14. 4D phase contrast flow imaging for in-stent flow visualization and assessment of stent patency in peripheral vascular stents – A phantom study

    International Nuclear Information System (INIS)

    Bunck, Alexander C.; Jüttner, Alena; Kröger, Jan Robert; Burg, Matthias C.; Kugel, Harald; Niederstadt, Thomas; Tiemann, Klaus; Schnackenburg, Bernhard; Crelier, Gerard R.

    2012-01-01

    Purpose: 4D phase contrast flow imaging is increasingly used to study the hemodynamics in various vascular territories and pathologies. The aim of this study was to assess the feasibility and validity of MRI based 4D phase contrast flow imaging for the evaluation of in-stent blood flow in 17 commonly used peripheral stents. Materials and methods: 17 different peripheral stents were implanted into a MR compatible flow phantom. In-stent visibility, maximal velocity and flow visualization were assessed and estimates of in-stent patency obtained from 4D phase contrast flow data sets were compared to a conventional 3D contrast-enhanced magnetic resonance angiography (CE-MRA) as well as 2D PC flow measurements. Results: In all but 3 of the tested stents time-resolved 3D particle traces could be visualized inside the stent lumen. Quality of 4D flow visualization and CE-MRA images depended on stent type and stent orientation relative to the magnetic field. Compared to the visible lumen area determined by 3D CE-MRA, estimates of lumen patency derived from 4D flow measurements were significantly higher and less dependent on stent type. A higher number of stents could be assessed for in-stent patency by 4D phase contrast flow imaging (n = 14) than by 2D phase contrast flow imaging (n = 10). Conclusions: 4D phase contrast flow imaging in peripheral vascular stents is feasible and appears advantageous over conventional 3D contrast-enhanced MR angiography and 2D phase contrast flow imaging. It allows for in-stent flow visualization and flow quantification with varying quality depending on stent type

  15. 4D phase contrast flow imaging for in-stent flow visualization and assessment of stent patency in peripheral vascular stents--a phantom study.

    Science.gov (United States)

    Bunck, Alexander C; Jüttner, Alena; Kröger, Jan Robert; Burg, Matthias C; Kugel, Harald; Niederstadt, Thomas; Tiemann, Klaus; Schnackenburg, Bernhard; Crelier, Gerard R; Heindel, Walter; Maintz, David

    2012-09-01

    4D phase contrast flow imaging is increasingly used to study the hemodynamics in various vascular territories and pathologies. The aim of this study was to assess the feasibility and validity of MRI based 4D phase contrast flow imaging for the evaluation of in-stent blood flow in 17 commonly used peripheral stents. 17 different peripheral stents were implanted into a MR compatible flow phantom. In-stent visibility, maximal velocity and flow visualization were assessed and estimates of in-stent patency obtained from 4D phase contrast flow data sets were compared to a conventional 3D contrast-enhanced magnetic resonance angiography (CE-MRA) as well as 2D PC flow measurements. In all but 3 of the tested stents time-resolved 3D particle traces could be visualized inside the stent lumen. Quality of 4D flow visualization and CE-MRA images depended on stent type and stent orientation relative to the magnetic field. Compared to the visible lumen area determined by 3D CE-MRA, estimates of lumen patency derived from 4D flow measurements were significantly higher and less dependent on stent type. A higher number of stents could be assessed for in-stent patency by 4D phase contrast flow imaging (n=14) than by 2D phase contrast flow imaging (n=10). 4D phase contrast flow imaging in peripheral vascular stents is feasible and appears advantageous over conventional 3D contrast-enhanced MR angiography and 2D phase contrast flow imaging. It allows for in-stent flow visualization and flow quantification with varying quality depending on stent type. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  16. Investigation and visualization of internal flow through particle aggregates and microbial flocs using particle image velocimetry.

    Science.gov (United States)

    Xiao, Feng; Lam, Kit Ming; Li, Xiao-yan

    2013-05-01

    An advanced particle-tracking and flow-visualization technology, particle image velocimetry (PIV), was utilized to investigate the hydrodynamic properties of large aggregates in water. The laser-based PIV system was used together with a settling column to capture the streamlines around two types of aggregates: latex particle aggregates and activated sludge (AS) flocs. Both types of the aggregates were highly porous and fractal with fractal dimensions of 2.13±0.31 for the latex particle aggregates (1210-2144 μm) and 1.78±0.24 for the AS flocs (1265-3737 μm). The results show that PIV is a powerful flow visualization technique capable of determining flow field details at the micrometer scale around and through settling aggregates and flocs. The PIV streamlines provided direct experimental proof of internal flow through the aggregate interiors. According to the PIV images, fluid collection efficiency ranged from 0.052 to 0.174 for the latex particle aggregates and from 0.008 to 0.126 for AS flocs. AS flocs are apparently less permeable than the particle aggregates, probably due to the extracellular polymeric substances (EPSs) produced by bacteria clogging the pores within the flocs. The internal permeation of fractal aggregates and bio-flocs would enhance flocculation between particles and material transport into the aggregates. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. Quantitative evaluation of regional cerebral blood flow by visual stimulation in {sup 99m}Tc- HMPAO brain SPECT

    Energy Technology Data Exchange (ETDEWEB)

    Juh, Ra Hyeong; Suh, Tae Suk; Kwark, Chul Eun; Choe, Bo Young; Lee, Hyoung Koo; Chung, Yong An; Kim, Sung Hoon; Chung, Soo Kyo [College of Medicine, The Catholic Univ. of Seoul, Seoul (Korea, Republic of)

    2002-06-01

    The purpose of this study is to investigate the effects of visual activation and quantitative analysis of regional cerebral blood flow. Visual activation was known to increase regional cerebral blood flow in the visual cortex in occipital lobe. We evaluated that change in the distribution of '9{sup 9m}Tc-HMPAO (Hexamethyl propylene amine oxime) to reflect in regional cerebral blood flow. The six volunteers were injected with 925 MBq (mean ages: 26.75 years, n=6, 3men, 3women) underwent MRI and {sup 99m}Tc-HMPAO SPECT during a rest state with closed eyes and visual stimulated with 8 Hz LED. We delineate the region of interest and calculated the mean count per voxel in each of the fifteen slices to quantitative analysis. The ROI to whole brain ratio and regional index was calculated pixel to pixel subtraction visual non-activation image from visual activation image and constructed brain map using a statistical parameter map(SPM99). The mean regional cerebral blood flow was increased due to visual stimulation. The increase rate of the mean regional cerebral blood flow which of the activation region in primary visual cortex of occipital lobe was 32.50{+-}5.67%. The significant activation sites using a statistical parameter of brain constructed a rendering image and image fusion with SPECT and MRI. Visual activation was revealed significant increase through quantitative analysis in visual cortex. Activation region was certified in Talairach coordinate and primary visual cortex (Ba17),visual association area (Ba18,19) of Brodmann.

  18. Quantitative evaluation of regional cerebral blood flow by visual stimulation in 99mTc-HMPAO brain SPECT

    International Nuclear Information System (INIS)

    Juh, R. H.; Suh, T. S.; Chung, Y. A.

    2002-01-01

    The purpose of this study is to investigate the effects of visual activation and quantitative analysis of regional cerebral blood flow. Visual activation was known to increase regional cerebral blood flow in the visual cortex in occipital lobe. We evaluated that change in the distribution of 99mTc-HMPAO (Hexamethyl propylene amine oxime) to reflect in regional cerebral blood flow. The six volunteers were injected with 925 MBq (mean ages: 26.75 years, n=6, 3men, 3women) underwent MRI and 99mTc- HMPAO SPECT during a rest state with closed eyes and visual stimulated with 8 Hz LED. We delineate the region of interest and calculated the mean count per voxel in each of the fifteen slices to quantitative analysis. The ROI to whole brain ratio and regional index was calculated pixel to pixel subtraction visual non-activation image from visual activation image and constructed brain map using a statistical parameter map (SPM99). The mean regional cerebral blood flow was increased due to visual stimulation. The increase rate of the mean regional cerebral blood flow which of the activation region in primary visual cortex of occipital lobe was 32.50±5.67%. The significant activation sites using a statistical parameter of brain constructed a rendering image and image fusion with SPECT and MRI. Visual activation was revealed significant increase through quantitative analysis in visual cortex. Activation region was certified in Talairach coordinate and primary visual cortex (Ba17),visual association area (Ba18,19) of Brodmann

  19. Quantitative evaluation of regional cerebral blood flow by visual stimulation in 99mTc- HMPAO brain SPECT

    International Nuclear Information System (INIS)

    Juh, Ra Hyeong; Suh, Tae Suk; Kwark, Chul Eun; Choe, Bo Young; Lee, Hyoung Koo; Chung, Yong An; Kim, Sung Hoon; Chung, Soo Kyo

    2002-01-01

    The purpose of this study is to investigate the effects of visual activation and quantitative analysis of regional cerebral blood flow. Visual activation was known to increase regional cerebral blood flow in the visual cortex in occipital lobe. We evaluated that change in the distribution of '9 9m Tc-HMPAO (Hexamethyl propylene amine oxime) to reflect in regional cerebral blood flow. The six volunteers were injected with 925 MBq (mean ages: 26.75 years, n=6, 3men, 3women) underwent MRI and 99m Tc-HMPAO SPECT during a rest state with closed eyes and visual stimulated with 8 Hz LED. We delineate the region of interest and calculated the mean count per voxel in each of the fifteen slices to quantitative analysis. The ROI to whole brain ratio and regional index was calculated pixel to pixel subtraction visual non-activation image from visual activation image and constructed brain map using a statistical parameter map(SPM99). The mean regional cerebral blood flow was increased due to visual stimulation. The increase rate of the mean regional cerebral blood flow which of the activation region in primary visual cortex of occipital lobe was 32.50±5.67%. The significant activation sites using a statistical parameter of brain constructed a rendering image and image fusion with SPECT and MRI. Visual activation was revealed significant increase through quantitative analysis in visual cortex. Activation region was certified in Talairach coordinate and primary visual cortex (Ba17),visual association area (Ba18,19) of Brodmann

  20. Quantitative evaluation of regional cerebral blood flow by visual stimulation in {sup 99m}Tc-HMPAO brain SPECT

    Energy Technology Data Exchange (ETDEWEB)

    Juh, R. H.; Suh, T. S.; Chung, Y. A. [The Catholic Univ., of Korea, Seoul (Korea, Republic of)

    2002-07-01

    The purpose of this study is to investigate the effects of visual activation and quantitative analysis of regional cerebral blood flow. Visual activation was known to increase regional cerebral blood flow in the visual cortex in occipital lobe. We evaluated that change in the distribution of 99mTc-HMPAO (Hexamethyl propylene amine oxime) to reflect in regional cerebral blood flow. The six volunteers were injected with 925 MBq (mean ages: 26.75 years, n=6, 3men, 3women) underwent MRI and 99mTc- HMPAO SPECT during a rest state with closed eyes and visual stimulated with 8 Hz LED. We delineate the region of interest and calculated the mean count per voxel in each of the fifteen slices to quantitative analysis. The ROI to whole brain ratio and regional index was calculated pixel to pixel subtraction visual non-activation image from visual activation image and constructed brain map using a statistical parameter map (SPM99). The mean regional cerebral blood flow was increased due to visual stimulation. The increase rate of the mean regional cerebral blood flow which of the activation region in primary visual cortex of occipital lobe was 32.50{+-}5.67%. The significant activation sites using a statistical parameter of brain constructed a rendering image and image fusion with SPECT and MRI. Visual activation was revealed significant increase through quantitative analysis in visual cortex. Activation region was certified in Talairach coordinate and primary visual cortex (Ba17),visual association area (Ba18,19) of Brodmann.

  1. Visualization of two-phase flow in metallic pipes using neutron radiographic technique

    International Nuclear Information System (INIS)

    Luiz, L.C.; Crispim, V.R.

    2007-01-01

    The study of two-phase flow is a matter of great interest both for the engineering and oil industries. The production of oil and natural gas involves the transportation of fluids in their liquid and gaseous states, respectively, to the processing plant for refinement. The forecasting of two-phase flow in oil pipes is of the utmost important yet an extremely difficult task. With the development of the electronic imaging system, installed in J-9 irradiation channel of the IEN/CNEN Argonauta Reactor, it is possible to visualize the different types of two phase air-water flows in small-diameter metallic pipes. After developing the captured image the liquid-gas drift flux correlation as well as the void fraction in relation to the injected air outflow for a fixed water outflow can be obtained. (author)

  2. High-speed flow visualization in a pump-turbine under off-design operating conditions

    International Nuclear Information System (INIS)

    Hasmatuchi, V; Roth, S; Botero, F; Avellan, F; Farhat, M

    2010-01-01

    The flow hydrodynamics in a low specific speed radial pump-turbine reduced scale model is experimentally investigated under off-design operating conditions in generating mode. Wall pressure measurements, in the stator, synchronized with high-speed flow visualizations in the vaneless space between the impeller and the guide vanes using air bubbles injection are performed. When starting from the best efficiency point and increasing the runner speed, a significant increase of the pressure fluctuations is observed mainly in channels between wicket gates. The spectral analysis shows a rise of one stall cell, rotating with about 70% of the impeller frequency, at runaway, which further increases as the zero discharge condition is approached. Then a specific image processing technique is detailed and applied to create a synthetic instantaneous view of the flow pattern on the entire guide vanes circumference for an operating point in turbine-brake mode, where backflow and vortices accompany the stall passage.

  3. Oil flow at the scroll compressor discharge: visualization and CFD simulation

    Science.gov (United States)

    Xu, Jiu; Hrnjak, Pega

    2017-08-01

    Oil is important to the compressor but has other side effect on the refrigeration system performance. Discharge valves located in the compressor plenum are the gateway for the oil when leaving the compressor and circulate in the system. The space in between: the compressor discharge plenum has the potential to separate the oil mist and reduce the oil circulation ratio (OCR) in the system. In order to provide information for building incorporated separation feature for the oil flow near the compressor discharge, video processing method is used to quantify the oil droplets movement and distribution. Also, CFD discrete phase model gives the numerical approach to study the oil flow inside compressor plenum. Oil droplet size distributions are given by visualization and simulation and the results show a good agreement. The mass balance and spatial distribution are also discussed and compared with experimental results. The verification shows that discrete phase model has the potential to simulate the oil droplet flow inside the compressor.

  4. Advanced Supersonic Nozzle Concepts: Experimental Flow Visualization Results Paired With LES

    Science.gov (United States)

    Berry, Matthew; Magstadt, Andrew; Stack, Cory; Gaitonde, Datta; Glauser, Mark; Syracuse University Team; The Ohio State University Team

    2015-11-01

    Advanced supersonic nozzle concepts are currently under investigation, utilizing multiple bypass streams and airframe integration to bolster performance and efficiency. This work focuses on the parametric study of a supersonic, multi-stream jet with aft deck. The single plane of symmetry, rectangular nozzle, displays very complex and unique flow characteristics. Flow visualization techniques in the form of PIV and schlieren capture flow features at various deck lengths and Mach numbers. LES is compared to the experimental results to both validate the computational model and identify limitations of the simulation. By comparing experimental results to LES, this study will help create a foundation of knowledge for advanced nozzle designs in future aircraft. SBIR Phase II with Spectral Energies, LLC under direction of Barry Kiel.

  5. Visualization Measurement of Streaming Flows Associated with a Single-Acoustic Levitator

    Science.gov (United States)

    Hasegawa, Koji; Abe, Yutaka; Kaneko, Akiko; Yamamoto, Yuji; Aoki, Kazuyoshi

    2009-08-01

    The purpose of the study is to experimentally investigate flow fields generated by an acoustic levitator. This flow field has been observed using flow visualization, PIV method. In the absent of a drop, the flow field was strongly influenced by sound pressure level (SPL). In light of the interfacial stability of a levitated drop, SPL was set at 161-163 [dB] in our experiments. In the case of any levitated drop at a pressure node of a standing wave, the toroidal vortices were appeared around a drop and clearly observed the flow fields around the drop by PIV measurement. It is found that the toroidal vortices around a levitated drop were strongly affected by the viscosity of a drop. For more detailed research, experiments in the reduced gravity were conducted with aircraft parabolic flights. By comparison with experimental results in the earth and reduced gravity, it is also indicated that the configuration of the external flow field around a drop is most likely to be affected by a position of a drop as well.

  6. Visualizing and measuring flow in shale matrix using in situ synchrotron X-ray microtomography

    Science.gov (United States)

    Kohli, A. H.; Kiss, A. M.; Kovscek, A. R.; Bargar, J.

    2017-12-01

    Natural gas production via hydraulic fracturing of shale has proliferated on a global scale, yet recovery factors remain low because production strategies are not based on the physics of flow in shale reservoirs. In particular, the physical mechanisms and time scales of depletion from the matrix into the simulated fracture network are not well understood, limiting the potential to optimize operations and reduce environmental impacts. Studying matrix flow is challenging because shale is heterogeneous and has porosity from the μm- to nm-scale. Characterizing nm-scale flow paths requires electron microscopy but the limited field of view does not capture the connectivity and heterogeneity observed at the mm-scale. Therefore, pore-scale models must link to larger volumes to simulate flow on the reservoir-scale. Upscaled models must honor the physics of flow, but at present there is a gap between cm-scale experiments and μm-scale simulations based on ex situ image data. To address this gap, we developed a synchrotron X-ray microscope with an in situ cell to simultaneously visualize and measure flow. We perform coupled flow and microtomography experiments on mm-scale samples from the Barnett, Eagle Ford and Marcellus reservoirs. We measure permeability at various pressures via the pulse-decay method to quantify effective stress dependence and the relative contributions of advective and diffusive mechanisms. Images at each pressure step document how microfractures, interparticle pores, and organic matter change with effective stress. Linking changes in the pore network to flow measurements motivates a physical model for depletion. To directly visualize flow, we measure imbibition rates using inert, high atomic number gases and image periodically with monochromatic beam. By imaging above/below X-ray adsorption edges, we magnify the signal of gas saturation in μm-scale porosity and nm-scale, sub-voxel features. Comparing vacuumed and saturated states yields image

  7. Modernized Approach for Generating Reproducible Heterogeneity Using Transmitted-Light for Flow Visualization Experiments

    Science.gov (United States)

    Jones, A. A.; Holt, R. M.

    2017-12-01

    Image capturing in flow experiments has been used for fluid mechanics research since the early 1970s. Interactions of fluid flow between the vadose zone and permanent water table are of great interest because this zone is responsible for all recharge waters, pollutant transport and irrigation efficiency for agriculture. Griffith, et al. (2011) developed an approach where constructed reproducible "geologically realistic" sand configurations are deposited in sandfilled experimental chambers for light-transmitted flow visualization experiments. This method creates reproducible, reverse graded, layered (stratified) thin-slab sand chambers for point source experiments visualizing multiphase flow through porous media. Reverse-graded stratification of sand chambers mimic many naturally occurring sedimentary deposits. Sandfilled chambers use light as nonintrusive tools for measuring water saturation in two-dimensions (2-D). Homogeneous and heterogeneous sand configurations can be produced to visualize the complex physics of the unsaturated zone. The experimental procedure developed by Griffith, et al. (2011) was designed using now outdated and obsolete equipment. We have modernized this approach with new Parker Deadel linear actuator and programed projects/code for multiple configurations. We have also updated the Roper CCD software and image processing software with the latest in industry standards. Modernization of transmitted-light source, robotic equipment, redesigned experimental chambers, and newly developed analytical procedures have greatly reduced time and cost per experiment. We have verified the ability of the new equipment to generate reproducible heterogeneous sand-filled chambers and demonstrated the functionality of the new equipment and procedures by reproducing several gravity-driven fingering experiments conducted by Griffith (2008).

  8. Application of fast neutron radiography to three-dimensional visualization of steady two-phase flow in a rod bundle

    CERN Document Server

    Takenaka, N; Fujii, T; Mizubata, M; Yoshii, K

    1999-01-01

    Three-dimensional void fraction distribution of air-water two-phase flow in a 4x4 rod-bundle near a spacer was visualized by fast neutron radiography using a CT method. One-dimensional cross sectional averaged void fraction distribution was also calculated. The behaviors of low void fraction (thick water) two-phase flow in the rod bundle around the spacer were clearly visualized. It was shown that the void fraction distributions were visualized with a quality similar to those by thermal neutron radiography for low void fraction two-phase flow which is difficult to visualize by thermal neutron radiography. It is concluded that the fast neutron radiography is efficiently applicable to two-phase flow studies.

  9. Flow Visualization with Quantified Spatial and Temporal Errors Using Edge Maps

    KAUST Repository

    Bhatia, H.

    2012-09-01

    Robust analysis of vector fields has been established as an important tool for deriving insights from the complex systems these fields model. Traditional analysis and visualization techniques rely primarily on computing streamlines through numerical integration. The inherent numerical errors of such approaches are usually ignored, leading to inconsistencies that cause unreliable visualizations and can ultimately prevent in-depth analysis. We propose a new representation for vector fields on surfaces that replaces numerical integration through triangles with maps from the triangle boundaries to themselves. This representation, called edge maps, permits a concise description of flow behaviors and is equivalent to computing all possible streamlines at a user defined error threshold. Independent of this error streamlines computed using edge maps are guaranteed to be consistent up to floating point precision, enabling the stable extraction of features such as the topological skeleton. Furthermore, our representation explicitly stores spatial and temporal errors which we use to produce more informative visualizations. This work describes the construction of edge maps, the error quantification, and a refinement procedure to adhere to a user defined error bound. Finally, we introduce new visualizations using the additional information provided by edge maps to indicate the uncertainty involved in computing streamlines and topological structures. © 2012 IEEE.

  10. Flow Visualization with Quantified Spatial and Temporal Errors Using Edge Maps

    KAUST Repository

    Bhatia, H.; Jadhav, S.; Bremer, P.; Guoning Chen,; Levine, J. A.; Nonato, L. G.; Pascucci, V.

    2012-01-01

    Robust analysis of vector fields has been established as an important tool for deriving insights from the complex systems these fields model. Traditional analysis and visualization techniques rely primarily on computing streamlines through numerical integration. The inherent numerical errors of such approaches are usually ignored, leading to inconsistencies that cause unreliable visualizations and can ultimately prevent in-depth analysis. We propose a new representation for vector fields on surfaces that replaces numerical integration through triangles with maps from the triangle boundaries to themselves. This representation, called edge maps, permits a concise description of flow behaviors and is equivalent to computing all possible streamlines at a user defined error threshold. Independent of this error streamlines computed using edge maps are guaranteed to be consistent up to floating point precision, enabling the stable extraction of features such as the topological skeleton. Furthermore, our representation explicitly stores spatial and temporal errors which we use to produce more informative visualizations. This work describes the construction of edge maps, the error quantification, and a refinement procedure to adhere to a user defined error bound. Finally, we introduce new visualizations using the additional information provided by edge maps to indicate the uncertainty involved in computing streamlines and topological structures. © 2012 IEEE.

  11. Google-Earth Based Visualizations for Environmental Flows and Pollutant Dispersion in Urban Areas

    Directory of Open Access Journals (Sweden)

    Daoming Liu

    2017-03-01

    Full Text Available In the present study, we address the development and application of an efficient tool for conversion of results obtained by an integrated computational fluid dynamics (CFD and computational reaction dynamics (CRD approach and their visualization in the Google Earth. We focus on results typical for environmental fluid mechanics studies at a city scale that include characteristic wind flow patterns and dispersion of reactive scalars. This is achieved by developing a code based on the Java language, which converts the typical four-dimensional structure (spatial and temporal dependency of data results in the Keyhole Markup Language (KML format. The visualization techniques most often used are revisited and implemented into the conversion tool. The potential of the tool is demonstrated in a case study of smog formation due to an intense traffic emission in Rotterdam (The Netherlands. It is shown that the Google Earth can provide a computationally efficient and user-friendly means of data representation. This feature can be very useful for visualization of pollution at street levels, which is of great importance for the city residents. Various meteorological and traffic emissions can be easily visualized and analyzed, providing a powerful, user-friendly tool for traffic regulations and urban climate adaptations.

  12. Visualization of Flow Field of Weis-Fogh Type Water Turbine Using the PIV

    Energy Technology Data Exchange (ETDEWEB)

    Ro, Ki Deok [Gyeongsang Nat’l Univ., Jinju (Korea, Republic of)

    2017-03-15

    In this study, the visualization of the unsteady flow field of a Weis-Fogh-type water turbine was investigated using particle-image velocimetry. The visualization experiments were performed in a parameter range that provided relatively high-efficiency wing conditions, that is, at a wing opening angle α= 40 .deg. and at a velocity ratio of the uniform flow to the moving wing U/V = 1.5~2.5. The flow fields at the opening, translational, and closing stages were investigated for each experimental parameter. In the opening stage, the fluid was drawn in between the wing and wall at a velocity that increased with an increase in the opening angle and velocity ratio. In the translational stage, the fluid on the pressure face of the wing moved in the direction of the wing motion, and the boundary layer at the back face of the wing was the thinnest and had a velocity ratio of 2.0. In the closing stage, the fluid between the wing and wall was jetted at a velocity that increased as the opening angle decreased; however, the velocity was independent of the velocity ratio.

  13. Visualization and evaluation of flow during water filtration: Parameterization and sensitivity analysis

    Directory of Open Access Journals (Sweden)

    Bílek Petr

    2016-01-01

    Full Text Available This paper deals with visualization and evaluation of flow during filtration of water seeded by artificial microscopic particles. Planar laser induced fluorescence (PLIF is a wide spread method for visualization and non-invasive characterization of flow. However the method uses fluorescent dyes or fluorescent particles in special cases. In this article the flow is seeded by non-fluorescent monodisperse polystyrene particles with the diameter smaller than one micrometer. The monodisperse sub-micron particles are very suitable for testing of textile filtration materials. Nevertheless non-fluorescent particles are not useful for PLIF method. A water filtration setup with an optical access to the place, were a tested filter is mounted, was built and used for the experiments. Concentration of particles in front of and behind the tested filter in a laser light sheet measured is and the local filtration efficiency expressed is. The article describes further progress in the measurement. It was carried out sensitivity analysis, parameterization and performance of the method during several simulations and experiments.

  14. UV reactor flow visualization and mixing quantification using three-dimensional laser-induced fluorescence.

    Science.gov (United States)

    Gandhi, Varun; Roberts, Philip J W; Stoesser, Thorsten; Wright, Harold; Kim, Jae-Hong

    2011-07-01

    Three-dimensional laser-induced fluorescence (3DLIF) was applied to visualize and quantitatively analyze mixing in a lab-scale UV reactor consisting of one lamp sleeve placed perpendicular to flow. The recirculation zone and the von Karman vortex shedding that commonly occur in flows around bluff bodies were successfully visualized. Multiple flow paths were analyzed by injecting the dye at various heights with respect to the lamp sleeve. A major difference in these pathways was the amount of dye that traveled close to the sleeve, i.e., a zone of higher residence time and higher UV exposure. Paths away from the center height had higher velocities and hence minimal influence by the presence of sleeve. Approach length was also characterized in order to increase the probability of microbes entering the region around the UV lamp. The 3DLIF technique developed in this study is expected to provide new insight on UV dose delivery useful for the design and optimization of UV reactors. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Experimental Visualization of the Flow Structure for Jet in Crossflow with a Curved Hole Passage

    Directory of Open Access Journals (Sweden)

    Jun Yu Liang

    2012-01-01

    Full Text Available The objective of this paper is to investigate the influence of a hole curvature on the flow structure and characteristics downstream of JICF (jet in cross-Flow by means of smoke visualization and particle image velocimetry (PIV. The experiment was performed in a low speed wind tunnel with Reynolds numbers of about 480 and 1000, based on the hole diameter and main flow speed. Two geometries were tested: a circular hole with 90° curvature and a circular straight hole for comparison, under blowing ratios 0.5 and 1.0. The measurements were done in the symmetric plane and four cross-sections. The results show that the curved hole could decrease the mixing behavior of jet flow with the main flow as the hole leading edge also increases the chance of transportingthecoolant to the wall surface and the transverse coverage. The curved hole shows a high potential to increase the cooling effectiveness once it is applied to the turbine blades.

  16. A study of natural circulation cooling using a flow visualization rig

    International Nuclear Information System (INIS)

    Bowman, W.C.; Ferch, R.L.; Omar, A.M.

    1985-01-01

    A flow visualization rig has been built at Monserco Limited to provide visual insight into the thermalhydraulic phenomena which occur during single phase and two phase thermosyphoning in a figure-of-eight heat transport loop. Tests performed with the rig have provided design information for the scaling and instrumentation of a high pressure rig being investigated for simulating CANDU reactor conditions during natural circulation cooling. A videotape was produced, for viewing at this presentation, to show important thermalhydraulic features of the thermosyphoning process. The rig is a standard figure-of-eight loop with two steam generators and three heated channels per pass. An elevated surge tank open to atmosphere was used for pressure control. Two variable speed pumps provided forced circulation for warming up the rig, and for establishing the desired initial conditions for testing. Test rig power could be varied between 0 and 15 kW

  17. Visualizing request-flow comparison to aid performance diagnosis in distributed systems.

    Science.gov (United States)

    Sambasivan, Raja R; Shafer, Ilari; Mazurek, Michelle L; Ganger, Gregory R

    2013-12-01

    Distributed systems are complex to develop and administer, and performance problem diagnosis is particularly challenging. When performance degrades, the problem might be in any of the system's many components or could be a result of poor interactions among them. Recent research efforts have created tools that automatically localize the problem to a small number of potential culprits, but research is needed to understand what visualization techniques work best for helping distributed systems developers understand and explore their results. This paper compares the relative merits of three well-known visualization approaches (side-by-side, diff, and animation) in the context of presenting the results of one proven automated localization technique called request-flow comparison. Via a 26-person user study, which included real distributed systems developers, we identify the unique benefits that each approach provides for different problem types and usage modes.

  18. A novel five-wire micro anemometer with 3D directionality for low speed air flow detection and acoustic particle velocity detecting capability

    Science.gov (United States)

    Li, Zhe; Chang, Wenhan; Gao, Chengchen; Hao, Yilong

    2018-04-01

    In this paper, a novel five-wire micro-fabricated anemometer with 3D directionality based on calorimetric principle is proposed, which is capable of measuring low speed airflow. This structure is realized by vertically bonding two different dies, which can be fabricated on the same wafer resulting in a simple fabrication process. Experiments on speed lower than 200 mm s-1 are conducted, showing good repeatability and directionality. The speed of airflow is controlled by the volumetric flow rate. The measured velocity sensitivity is 9.4 mV · s m-1, with relative direction sensitivity of 37.1 dB. The deviation between the expected and the measured directivity is analyzed by both theories and simulations. A correction procedure is proposed and turns out to be useful to eliminate this deviation. To further explore the potential of our device, we expose it to acoustic plane waves in a standing wave tube, showing consistent planar directivity of figure of eight. The measured velocity sensitivity at 1 kHz and 120 dBC is 4.4 mV · s m-1, with relative direction sensitivity of 27.0 dB. By using the correction method proposed above, the maximum angle error is about  ±2°, showing its good directionality accuracy.

  19. Matching-index-of-refraction of transparent 3D printing models for flow visualization

    Energy Technology Data Exchange (ETDEWEB)

    Song, Min Seop; Choi, Hae Yoon; Seong, Jee Hyun; Kim, Eung Soo, E-mail: kes7741@snu.ac.kr

    2015-04-01

    Matching-index-of-refraction (MIR) has been used for obtaining high-quality flow visualization data for the fundamental nuclear thermal-hydraulic researches. By this method, distortions of the optical measurements such as PIV and LDV have been successfully minimized using various combinations of the model materials and the working fluids. This study investigated a novel 3D printing technology for manufacturing models and an oil-based working fluid for matching the refractive indices. Transparent test samples were fabricated by various rapid prototyping methods including selective layer sintering (SLS), stereolithography (SLA), and vacuum casting. As a result, the SLA direct 3D printing was evaluated to be the most suitable for flow visualization considering manufacturability, transparency, and refractive index. In order to match the refractive indices of the 3D printing models, a working fluid was developed based on the mixture of herb essential oils, which exhibit high refractive index, high transparency, high density, low viscosity, low toxicity, and low price. The refractive index and viscosity of the working fluid range 1.453–1.555 and 2.37–6.94 cP, respectively. In order to validate the MIR method, a simple test using a twisted prism made by the SLA technique and the oil mixture (anise and light mineral oil) was conducted. The experimental results show that the MIR can be successfully achieved at the refractive index of 1.51, and the proposed MIR method is expected to be widely used for flow visualization studies and CFD validation for the nuclear thermal-hydraulic researches.

  20. Matching-index-of-refraction of transparent 3D printing models for flow visualization

    International Nuclear Information System (INIS)

    Song, Min Seop; Choi, Hae Yoon; Seong, Jee Hyun; Kim, Eung Soo

    2015-01-01

    Matching-index-of-refraction (MIR) has been used for obtaining high-quality flow visualization data for the fundamental nuclear thermal-hydraulic researches. By this method, distortions of the optical measurements such as PIV and LDV have been successfully minimized using various combinations of the model materials and the working fluids. This study investigated a novel 3D printing technology for manufacturing models and an oil-based working fluid for matching the refractive indices. Transparent test samples were fabricated by various rapid prototyping methods including selective layer sintering (SLS), stereolithography (SLA), and vacuum casting. As a result, the SLA direct 3D printing was evaluated to be the most suitable for flow visualization considering manufacturability, transparency, and refractive index. In order to match the refractive indices of the 3D printing models, a working fluid was developed based on the mixture of herb essential oils, which exhibit high refractive index, high transparency, high density, low viscosity, low toxicity, and low price. The refractive index and viscosity of the working fluid range 1.453–1.555 and 2.37–6.94 cP, respectively. In order to validate the MIR method, a simple test using a twisted prism made by the SLA technique and the oil mixture (anise and light mineral oil) was conducted. The experimental results show that the MIR can be successfully achieved at the refractive index of 1.51, and the proposed MIR method is expected to be widely used for flow visualization studies and CFD validation for the nuclear thermal-hydraulic researches

  1. Visualized Evaluation of Blood Flow to the Gastric Conduit and Complications in Esophageal Reconstruction.

    Science.gov (United States)

    Noma, Kazuhiro; Shirakawa, Yasuhiro; Kanaya, Nobuhiko; Okada, Tsuyoshi; Maeda, Naoaki; Ninomiya, Takayuki; Tanabe, Shunsuke; Sakurama, Kazufumi; Fujiwara, Toshiyoshi

    2018-03-01

    Evaluation of the blood supply to gastric conduits is critically important to avoid complications after esophagectomy. We began visual evaluation of blood flow using indocyanine green (ICG) fluorescent imaging in July 2015, to reduce reconstructive complications. In this study, we aimed to statistically verify the efficacy of blood flow evaluation using our simplified ICG method. A total of 285 consecutive patients who underwent esophagectomy and gastric conduit reconstruction were reviewed and divided into 2 groups: before and after introduction of ICG evaluation. The entire cohort and 68 patient pairs after propensity score matching (PS-M) were evaluated for clinical outcomes and the effect of visualized evaluation on reducing the risk of complication. The leakage rate in the ICG group was significantly lower than in the non-ICG group for each severity grade, both in the entire cohort (285 subjects) and after PS-M; the rates of other major complications, including recurrent laryngeal nerve palsy and pneumonia, were not different. The duration of postoperative ICU stay was approximately 1 day shorter in the ICG group than in the non-ICG group in the entire cohort, and approximately 2 days shorter after PS-M. Visualized evaluation of blood flow with ICG methods significantly reduced the rate of anastomotic complications of all Clavien-Dindo (CD) grades. Odds ratios for ICG evaluation decreased with CD grade (0.3419 for CD ≥ 1; 0.241 for CD ≥ 2; and 0.2153 for CD ≥ 3). Objective evaluation of blood supply to the reconstructed conduit using ICG fluorescent imaging reduces the risk and degree of anastomotic complication. Copyright © 2017 American College of Surgeons. Published by Elsevier Inc. All rights reserved.

  2. Visualization of Atomization Gas Flow and Melt Break-up Effects in Response to Nozzle Design

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Iver; Rieken, Joel; Meyer, John; Byrd, David; Heidloff, Andy

    2011-04-01

    Both powder particle size control and efficient use of gas flow energy are highly prized goals for gas atomization of metal and alloy powder to minimize off-size powder inventory (or 'reverb') and excessive gas consumption. Recent progress in the design of close-coupled gas atomization nozzles and the water model simulation of melt feed tubes were coupled with previous results from several types of gas flow characterization methods, e.g., aspiration measurements and gas flow visualization, to make progress toward these goals. Size distribution analysis and high speed video recordings of gas atomization reaction synthesis (GARS) experiments on special ferritic stainless steel alloy powders with an Ar+O{sub 2} gas mixture were performed to investigate the operating mechanisms and possible advantages of several melt flow tube modifications with one specific gas atomization nozzle. In this study, close-coupled gas atomization under closed wake gas flow conditions was demonstrated to produce large yields of ultrafine (dia.<20 {mu}m) powders (up to 32%) with moderate standard deviations (1.62 to 1.99). The increased yield of fine powders is consistent with the dual atomization mechanisms of closed wake gas flow patterns in the near-field of the melt orifice. Enhanced size control by stabilized pre-filming of the melt with a slotted trumpet bell pour tube was not clearly demonstrated in the current experiments, perhaps confounded by the influence of the melt oxidation reaction that occurred simultaneously with the atomization process. For this GARS variation of close-coupled gas atomization, it may be best to utilize the straight cylindrical pour tube and closed wake operation of an atomization nozzle with higher gas mass flow to promote the maximum yields of ultrafine powders that are preferred for the oxide dispersion strengthened alloys made from these powders.

  3. Flow visualization IV; Proceedings of the Fourth International Symposium, Ecole Nationale Superieure de Techniques Avancees, Paris, France, Aug. 26-29, 1986

    International Nuclear Information System (INIS)

    Veret, C.

    1987-01-01

    Papers are presented on optical techniques, speckle techniques, observation methods, image processing, boundary layers and separated flows, stratified flows and the mixing layer, vortices and wakes, jets, supersonic and hypersonic flows, the velocity field, two-phase flows, heat transfer, and engines. Specific attention is paid to applications including shear layer stability in axisymmetric backstep flows, visualization of the pulsating flow past aortic prostheses, and flow visualization by dye and by optical interferometry. Other topics include photochromic flow visualization in liquid-liquid two-phase flow, shear flow patterns analyzed by video systems, the visualization of longitudinal vortices in stagnation flows, and the development of the Karman vortex due to buoyant force in opposing flow

  4. Hummingbirds generate bilateral vortex loops during hovering: evidence from flow visualization

    Science.gov (United States)

    Pournazeri, Sam; Segre, Paolo S.; Princevac, Marko; Altshuler, Douglas L.

    2013-01-01

    Visualization of the vortex wake of a flying animal provides understanding of how wingbeat kinematics are translated into the aerodynamic forces for powering and controlling flight. Two general vortex flow patterns have been proposed for the wake of hovering hummingbirds: (1) The two wings form a single, merged vortex ring during each wing stroke; and (2) the two wings form bilateral vortex loops during each wing stroke. The second pattern was proposed after a study with particle image velocimetry that demonstrated bilateral source flows in a horizontal measurement plane underneath hovering Anna's hummingbirds ( Calypte anna). Proof of this hypothesis requires a clear perspective of bilateral pairs of vortices. Here, we used high-speed image sequences (500 frames per second) of C. anna hover feeding within a white plume to visualize the vortex wake from multiple perspectives. The films revealed two key structural features: (1) Two distinct jets of downwards airflow are present under each wing; and (2) vortex loops around each jet are shed during each upstroke and downstroke. To aid in the interpretation of the flow visualization data, we analyzed high-speed kinematic data (1,000 frames per second) of wing tips and wing roots as C. anna hovered in normal air. These data were used to refine several simplified models of vortex topology. The observed flow patterns can be explained by either a single loop model with an hourglass shape or a bilateral model, with the latter being more likely. When hovering in normal air, hummingbirds used an average stroke amplitude of 153.6° (range 148.9°-164.4°) and a wingbeat frequency of 38.5 Hz (range 38.1-39.1 Hz). When hovering in the white plume, hummingbirds used shallower stroke amplitudes ( bar{x} = 129.8°, range 116.3°-154.1°) and faster wingbeat frequencies ( bar{x} = 41.1 Hz, range 38.5-44.7 Hz), although the bilateral jets and associated vortices were observed across the full kinematic range. The plume did not

  5. Experimental study on two-phase flow in horizontal duct using a visualization technique

    International Nuclear Information System (INIS)

    Oliveira, Livia A.; Tomas, Bruno T.; Cunha Filho, Jurandyr S.; Su, Jian

    2009-01-01

    In this paper an experimental study is performed for visualization of water-air two phase flow, stratified and intermittent, in a 51 mm internal diameter circular section horizontal tube. The study consists in filming a water-air mixture passin by a transparent interval of the tube, using a high speed camera. After that, the obtained images are analysed frame after frame and then, data are extracted of weight of gas-liquid interfaces, length and gas bubbles speeds. Then, these data are verified with experimental and theoretical correlations available in the literature

  6. Application of TensorFlow to recognition of visualized results of fragment molecular orbital (FMO) calculations

    OpenAIRE

    Saitou, Sona; Iijima, Jun; Fujimoto, Mayu; Mochizuki, Yuji; Okuwaki, Koji; Doi, Hideo; Komeiji, Yuto

    2018-01-01

    We have applied Google's TensorFlow deep learning toolkit to recognize the visualized results of the fragment molecular orbital (FMO) calculations. Typical protein structures of alpha-helix and beta-sheet provide some characteristic patterns in the two-dimensional map of inter-fragment interaction energy termed as IFIE-map (Kurisaki et al., Biophys. Chem. 130 (2007) 1). A thousand of IFIE-map images with labels depending on the existences of alpha-helix and beta-sheet were prepared by employi...

  7. Experimental study of natural two-phase flow circulation using a visualization technique

    International Nuclear Information System (INIS)

    Vinhas, Pedro A.M.; Su, Jian

    2013-01-01

    This paper presents an experimental study of natural two-phase flow in a circuit that simulates, on a smaller scale, a typical residual heat removal system of passive reactors APWR (Advanced Pressurized Water Reactor). The circuit was formed by a heater, a heat exchanger and piping. The experimental study was the application of a visualization technique, using a high speed camera, for measuring the size and speed of vapor bubbles generated in the heater with different power heating. The camera was positioned in the central region of the pipe connecting the heater to the heat exchanger, where there is a clear passage. The flow of images were processed and analyzed using commercial software that allowed the determination of the length and velocity of the bubbles. The results were then compared with correlations available in literature

  8. A qualitative and quantitative laser-based computer-aided flow visualization method. M.S. Thesis, 1992 Final Report

    Science.gov (United States)

    Canacci, Victor A.; Braun, M. Jack

    1994-01-01

    The experimental approach presented here offers a nonintrusive, qualitative and quantitative evaluation of full field flow patterns applicable in various geometries in a variety of fluids. This Full Flow Field Tracking (FFFT) Particle Image Velocimetry (PIV) technique, by means of particle tracers illuminated by a laser light sheet, offers an alternative to Laser Doppler Velocimetry (LDV), and intrusive systems such as Hot Wire/Film Anemometry. The method makes obtainable the flow patterns, and allows quantitative determination of the velocities, accelerations, and mass flows of an entire flow field. The method uses a computer based digitizing system attached through an imaging board to a low luminosity camera. A customized optical train allows the system to become a long distance microscope (LDM), allowing magnifications of areas of interest ranging up to 100 times. Presented in addition to the method itself, are studies in which the flow patterns and velocities were observed and evaluated in three distinct geometries, with three different working fluids. The first study involved pressure and flow analysis of a brush seal in oil. The next application involved studying the velocity and flow patterns in a cowl lip cooling passage of an air breathing aircraft engine using water as the working fluid. Finally, the method was extended to a study in air to examine the flows in a staggered pin arrangement located on one side of a branched duct.

  9. Flow regime visualization and pressure drops of HFO-1234yf, R-134a and R-410A during downward two-phase flow in vertical return bends

    International Nuclear Information System (INIS)

    Padilla, Miguel; Revellin, Rémi; Wallet, Jérémy; Bonjour, Jocelyn

    2013-01-01

    Highlights: ► Visual observation of two-phase flow regimes during downward flow in a return bend. ► Bubble and vapor slug dynamical behaviors in downward slug flow are reported. ► Perturbation lengths up- and downstream of the return bend have been investigated. ► Measurement of 285 pressure drop data points for HFO-1234yf, R-134a and R-410A. -- Abstract: This paper provides a qualitative visual observation of the two-phase flow patterns for HFO-1234yf and R-134a during downward flow in a vertical 6.7 mm inner diameter glass return bend. The different flow regimes observed are: slug, intermittent and annular flows. Bubble and vapor slug dynamical behaviors in downward slug flow are reported for HFO-1234yf. In addition, to determine the perturbation lengths up- and downstream of the return bend, the total pressure drop has been measured at different pressure tap location up- and downstream of the singularity. Furthermore, 285 pressure drop data points measured for two-phase flow of HFO-1234yf, R-134a and R-410A in vertical downward flow return bends are presented. The flow behavior in the return bend, which is subjected to the complex combined actions of gravity and centrifugal force was expressed in terms of the vapor Froude number. This experimental pressure drop database, which is included in the appendix, is compared to four well-known prediction methods available in the literature

  10. Flow Visualization Studies in the Novacor Left Ventricular Assist System CRADA PC91-002, Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Borovetz, H.S.; Shaffer, F.; Schaub, R.; Lund, L.; Woodard, J.

    1999-01-01

    This paper discusses a series of experiments to visualize and measure flow fields in the Novacor left ventricular assist system (LVAS). The experiments utilize a multiple exposure, optical imaging technique called fluorescent image tracking velocimetry (FITV) to hack the motion of small, neutrally-buoyant particles in a flowing fluid.

  11. Visualization of two-phase gas-liquid flow regimes in horizontal and slightly-inclined circular tubes

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Livia Alves [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil); Nuclear Engineering Institute (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil)], E-mail: livia@lasme.coppe.ufrj.br; Cunha Filho, Jurandyr; Su, Jian [Coordenacao dos Programas de Pos-Graduacao de Engenharia (COPPE/UFRJ), RJ (Brazil). Nuclear Engineering Program], Emails: cunhafilho@lasme.coppe.ufrj.br, sujian@lasme.coppe.ufrj.br; Faccini, Jose Luiz Horacio [Nuclear Engineering Institute (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil)], E-mail: faccini@ien.gov.br

    2010-07-01

    In this paper a flow visualization study was performed for two-phase gas-liquid flow in horizontal and slightly inclined tubes. The test section consists of a 2.54 cm inner diameter stainless steel circular tube, followed by a transparent acrylic tube with the same inner diameter. The working fluids were air and water, with liquid superficial velocities ranging from 0:11 to 3:28 m/s and gas superficial velocities ranging from 0:27 to 5:48 m/s. Flow visualization was executed for upward flow at 5 deg and 10 deg and downward flow at 2:5 deg, 5 deg and 10 deg, as well as for horizontal flow. The visualization technique consists of a high-speed digital camera that records images at rates of 125 and 250 frames per second of a concurrent air-water mixture through a transparent part of the tube. From the obtained images, the flow regimes were identified (except for annular flow), observing the effect of inclination angles on flow regime transition boundaries. Finally, the experimental results were compared with empirical and theoretical flow pattern maps available in literature. (author)

  12. Visualization of three pathways for macromolecule transport across cultured endothelium and their modification by flow.

    Science.gov (United States)

    Ghim, Mean; Alpresa, Paola; Yang, Sung-Wook; Braakman, Sietse T; Gray, Stephen G; Sherwin, Spencer J; van Reeuwijk, Maarten; Weinberg, Peter D

    2017-11-01

    Transport of macromolecules across vascular endothelium and its modification by fluid mechanical forces are important for normal tissue function and in the development of atherosclerosis. However, the routes by which macromolecules cross endothelium, the hemodynamic stresses that maintain endothelial physiology or trigger disease, and the dependence of transendothelial transport on hemodynamic stresses are controversial. We visualized pathways for macromolecule transport and determined the effect on these pathways of different types of flow. Endothelial monolayers were cultured under static conditions or on an orbital shaker producing different flow profiles in different parts of the wells. Fluorescent tracers that bound to the substrate after crossing the endothelium were used to identify transport pathways. Maps of tracer distribution were compared with numerical simulations of flow to determine effects of different shear stress metrics on permeability. Albumin-sized tracers dominantly crossed the cultured endothelium via junctions between neighboring cells, high-density lipoprotein-sized tracers crossed at tricellular junctions, and low-density lipoprotein-sized tracers crossed through cells. Cells aligned close to the angle that minimized shear stresses across their long axis. The rate of paracellular transport under flow correlated with the magnitude of these minimized transverse stresses, whereas transport across cells was uniformly reduced by all types of flow. These results contradict the long-standing two-pore theory of solute transport across microvessel walls and the consensus view that endothelial cells align with the mean shear vector. They suggest that endothelial cells minimize transverse shear, supporting its postulated proatherogenic role. Preliminary data show that similar tracer techniques are practicable in vivo. NEW & NOTEWORTHY Solutes of increasing size crossed cultured endothelium through intercellular junctions, through tricellular

  13. Application of irradiated wire

    International Nuclear Information System (INIS)

    Uda, I.; Kozima, K.; Suzuki, S.; Tada, S.; Torisu, S.; Veno, K.

    1984-01-01

    Rubber insulated wires are still useful for internal wiring in motor vehicles and electrical equipment because of flexibility and toughness. Irradiated cross-linked rubber materials have been successfully introduced for use with fusible link wire and helically coiled cord

  14. Improving the visualization of electron-microscopy data through optical flow interpolation

    KAUST Repository

    Carata, Lucian

    2013-01-01

    Technical developments in neurobiology have reached a point where the acquisition of high resolution images representing individual neurons and synapses becomes possible. For this, the brain tissue samples are sliced using a diamond knife and imaged with electron-microscopy (EM). However, the technique achieves a low resolution in the cutting direction, due to limitations of the mechanical process, making a direct visualization of a dataset difficult. We aim to increase the depth resolution of the volume by adding new image slices interpolated from the existing ones, without requiring modifications to the EM image-capturing method. As classical interpolation methods do not provide satisfactory results on this type of data, the current paper proposes a re-framing of the problem in terms of motion volumes, considering the depth axis as a temporal axis. An optical flow method is adapted to estimate the motion vectors of pixels in the EM images, and this information is used to compute and insert multiple new images at certain depths in the volume. We evaluate the visualization results in comparison with interpolation methods currently used on EM data, transforming the highly anisotropic original dataset into a dataset with a larger depth resolution. The interpolation based on optical flow better reveals neurite structures with realistic undistorted shapes, and helps to easier map neuronal connections. © 2011 ACM.

  15. Visual hull method for tomographic PIV measurement of flow around moving objects

    Energy Technology Data Exchange (ETDEWEB)

    Adhikari, D.; Longmire, E.K. [University of Minnesota, Department of Aerospace Engineering and Mechanics, Minneapolis, MN (United States)

    2012-10-15

    Tomographic particle image velocimetry (PIV) is a recently developed method to measure three components of velocity within a volumetric space. We present a visual hull technique that automates identification and masking of discrete objects within the measurement volume, and we apply existing tomographic PIV reconstruction software to measure the velocity surrounding the objects. The technique is demonstrated by considering flow around falling bodies of different shape with Reynolds number {proportional_to}1,000. Acquired image sets are processed using separate routines to reconstruct both the volumetric mask around the object and the surrounding tracer particles. After particle reconstruction, the reconstructed object mask is used to remove any ghost particles that otherwise appear within the object volume. Velocity vectors corresponding with fluid motion can then be determined up to the boundary of the visual hull without being contaminated or affected by the neighboring object velocity. Although the visual hull method is not meant for precise tracking of objects, the reconstructed object volumes nevertheless can be used to estimate the object location and orientation at each time step. (orig.)

  16. Noncontextual Wirings

    Science.gov (United States)

    Amaral, Barbara; Cabello, Adán; Cunha, Marcelo Terra; Aolita, Leandro

    2018-03-01

    Contextuality is a fundamental feature of quantum theory necessary for certain models of quantum computation and communication. Serious steps have therefore been taken towards a formal framework for contextuality as an operational resource. However, the main ingredient of a resource theory—a concrete, explicit form of free operations of contextuality—was still missing. Here we provide such a component by introducing noncontextual wirings: a class of contextuality-free operations with a clear operational interpretation and a friendly parametrization. We characterize them completely for general black-box measurement devices with arbitrarily many inputs and outputs. As applications, we show that the relative entropy of contextuality is a contextuality monotone and that maximally contextual boxes that serve as contextuality bits exist for a broad class of scenarios. Our results complete a unified resource-theoretic framework for contextuality and Bell nonlocality.

  17. UNCERT: geostatistics, uncertainty analysis and visualization software applied to groundwater flow and contaminant transport modeling

    International Nuclear Information System (INIS)

    Wingle, W.L.; Poeter, E.P.; McKenna, S.A.

    1999-01-01

    UNCERT is a 2D and 3D geostatistics, uncertainty analysis and visualization software package applied to ground water flow and contaminant transport modeling. It is a collection of modules that provides tools for linear regression, univariate statistics, semivariogram analysis, inverse-distance gridding, trend-surface analysis, simple and ordinary kriging and discrete conditional indicator simulation. Graphical user interfaces for MODFLOW and MT3D, ground water flow and contaminant transport models, are provided for streamlined data input and result analysis. Visualization tools are included for displaying data input and output. These include, but are not limited to, 2D and 3D scatter plots, histograms, box and whisker plots, 2D contour maps, surface renderings of 2D gridded data and 3D views of gridded data. By design, UNCERT's graphical user interface and visualization tools facilitate model design and analysis. There are few built in restrictions on data set sizes and each module (with two exceptions) can be run in either graphical or batch mode. UNCERT is in the public domain and is available from the World Wide Web with complete on-line and printable (PDF) documentation. UNCERT is written in ANSI-C with a small amount of FORTRAN77, for UNIX workstations running X-Windows and Motif (or Lesstif). This article discusses the features of each module and demonstrates how they can be used individually and in combination. The tools are applicable to a wide range of fields and are currently used by researchers in the ground water, mining, mathematics, chemistry and geophysics, to name a few disciplines. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  18. Visualized study on specific points on demand curves and flow patterns in a single-side heated narrow rectangular channel

    International Nuclear Information System (INIS)

    Wang Junfeng; Huang Yanping; Wang Yanlin

    2011-01-01

    Highlights: → Specific points on the demand curve and flow patterns are visually studied. → Bubbly, churn, and annular flows were observed. → Onset of flow instability and bubbly-churn transition occurs at the same time. → The evolution of specific points and flow pattern transitions were examined. - Abstract: A simultaneous visualization and measurement study on some specific points on demand curves, such as onset of nucleate boiling (ONB), onset of significant void (OSV), onset of flow instability (OFI), and two-phase flow patterns in a single-side heated narrow rectangular channel, having a width of 40 mm and a gap of 3 mm, was carried out. New experimental approaches were adopted to identify OSV and OFI in a narrow rectangular channel. Under experimental conditions, the ONB could be predicted well by the Sato and Matsumura model. The OSV model of Bowring can reasonably predict the OSV if the single-side heated condition is considered. The OFI was close to the saturated boiling point and could be described accurately by Kennedy's correlation. The two-phase flow patterns observed in this experiment could be classified into bubbly, churn, and annular flow. Slug flow was never observed. The OFI always occurred when the bubbles at the channel exit began to coalesce, which corresponded to the beginning of the bubbly-churn transition in flow patterns. Finally, the evolution of specific points and flow pattern transitions were examined in a single-side heated narrow rectangular channel.

  19. Experimental study of heavy-liquid metal (LBE) flow and heat transfer along a hexagonal 19-rod bundle with wire spacers

    Energy Technology Data Exchange (ETDEWEB)

    Pacio, J., E-mail: julio.pacio@kit.edu; Daubner, M.; Fellmoser, F.; Litfin, K.; Wetzel, Th.

    2016-05-15

    Highlights: • A unique experiment with lead–bismuth eutectic (LBE) as working fluid was performed. • Detailed temperature measurements were implemented at three axial positions. • The experimental results present a good repeatability within the uncertainties. • Pressure drop results agree with water correlations, as expected. • The Nusselt number is well predicted by the most conservative correlation. - Abstract: An experimental campaign considering a 19-pin hexagonal rod bundle with wire spacers, cooled by forced-convective LBE was completed at the Karlsruhe Liquid Metal Laboratory (KALLA). In the frame of the European research project SEARCH (Safe Exploitation Related Chemistry for HLM Reactors, 2011–2015) the geometry and operating conditions of temperature, flow velocity and power density are representative of the fuel assemblies envisaged for the MYRRHA reactor. An extensive test matrix is evaluated, with 33 experimental runs covering a wide range of Reynolds (ca. 14 000–48 000) and Péclet (ca. 400–1500) numbers, as well as thermal powers (up to 295 kW) at 200 °C inlet temperature, indicating a good degree of reproducibility within the relatively small experimental uncertainties. Both the pressure drop and heat transfer performances are studied. When possible, a comparison with correlations available in the reviewed literature (namely, friction and heat transfer coefficients) is given. Furthermore, the detailed cross-sectional temperature distribution at three selected axial positions is obtained in the experiments and represents the main validation data for CFD. In non-dimensional terms, these profiles could be repeated at different operating conditions, for example hot and cold spots are consistently found at given locations.

  20. Visualization of Biosurfactant Film Flow in a Bacillus subtilis Swarm Colony on an Agar Plate.

    Science.gov (United States)

    Kim, Kyunghoon; Kim, Jung Kyung

    2015-08-26

    Collective bacterial dynamics plays a crucial role in colony development. Although many research groups have studied the behavior of fluidic swarm colonies, the detailed mechanics of its motion remains elusive. Here, we developed a visualization method using submicron fluorescent beads for investigating the flow field in a thin layer of fluid that covers a Bacillus subtilis swarm colony growing on an agar plate. The beads were initially embedded in the agar plate and subsequently distributed spontaneously at the upper surface of the expanding colony. We conducted long-term live cell imaging of the B. subtilis colony using the fluorescent tracers, and obtained high-resolution velocity maps of microscale vortices in the swarm colony using particle image velocimetry. A distinct periodic fluctuation in the average speed and vorticity of flow in swarm colony was observed at the inner region of the colony, and correlated with the switch between bacterial swarming and growth phases. At the advancing edge of the colony, both the magnitudes of velocity and vorticity of flow in swarm colony were inversely correlated with the spreading speed of the swarm edge. The advanced imaging tool developed in this study would facilitate further understanding of the effect of micro vortices in swarm colony on the collective dynamics of bacteria.

  1. A flow visualization study of single-arm sculling movement emulating cephalopod thrust generation

    Science.gov (United States)

    Kazakidi, Asimina; Gnanamanickam, Ebenezer P.; Tsakiris, Dimitris P.; Ekaterinaris, John A.

    2014-11-01

    In addition to jet propulsion, octopuses use arm-swimming motion as an effective means of generating bursts of thrust, for hunting, defense, or escape. The individual role of their arms, acting as thrust generators during this motion, is still under investigation, in view of an increasing robotic interest for alternative modes of propulsion, inspired by the octopus. Computational studies have revealed that thrust generation is associated with complex vortical flow patterns in the wake of the moving arm, however further experimental validation is required. Using the hydrogen bubble technique, we studied the flow disturbance around a single octopus-like robotic arm, undergoing two-stroke sculling movements in quiescent fluid. Although simplified, sculling profiles have been found to adequately capture the fundamental kinematics of the octopus arm-swimming behavior. In fact, variation of the sculling parameters alters considerably the generation of forward thrust. Flow visualization revealed the generation of complex vortical structures around both rigid and compliant arms. Increased disturbance was evident near the tip, particularly at the transitional phase between recovery and power strokes. These results are in good qualitative agreement with computational and robotic studies. Work funded by the ESF-GSRT HYDRO-ROB Project PE7(281).

  2. Flow visualizations, velocity measurements, and surface convection measurements in simulated 20.8-cm Nova box amplifier cavities

    International Nuclear Information System (INIS)

    Julien, J.L.; Molishever, E.L.

    1983-01-01

    Reported are fluid mechanics experiments performed in models of the 20.8-cm Nova amplifier lamp and disk cavities. Lamp cavity nitrogen flows are shown, by both flow visualization and velocity measurements, to be acceptably uniform and parallel to the flashlamps. In contrast, the nitrogen flows in the disk cavity are shown to be disordered. Even though disk cavity flows are disordered, the simplest of three proposed nitrogen introduction systems for the disk cavity was found to be acceptable based on convection measurements made at the surfaces of simulated laser disks

  3. Sensitive and simple method for measuring wire tensions

    International Nuclear Information System (INIS)

    Atac, M.; Mishina, M.

    1982-08-01

    Measuring tension of wires in drift chambers and multiwire proportional chambers after construction is an important process because sometimes wires get loose after soldering, crimping or glueing. One needs to sort out wires which have tensions below a required minimum value to prevent electrostatic instabilities. There have been several methods reported on this subject in which the wires were excited either with sinusoidal current under magnetic field or with sinusoidal voltage electrostatically coupled to the wire, searching for a resonating frequency with which the wires vibrate mechanically. Then the vibration is detected either visually, optically or with magnetic pick-up directly touching the wires. Any of these is only applicable to the usual multiwire chamber which has open access to the wire plane. They also need fairly large excitation currents to induce a detectable vibration to the wires. Here we report a very simple method that can be used for any type of wire chamber or proportional tube system for measuring wire tension. Only a very small current is required for the wire excitation to obtain a large enough signal because it detects the induced emf voltage across a wire. A sine-wave oscillator and a digital voltmeter are sufficient devices aside from a permanent magnet to provide the magnetic field around the wire. A useful application of this method to a large system is suggested

  4. Flow Visualization in Evaporating Liquid Drops and Measurement of Dynamic Contact Angles and Spreading Rate

    Science.gov (United States)

    Zhang, Neng-Li; Chao, David F.

    2001-01-01

    A new hybrid optical system, consisting of reflection-refracted shadowgraphy and top-view photography, is used to visualize flow phenomena and simultaneously measure the spreading and instant dynamic contact angle in a volatile-liquid drop on a nontransparent substrate. Thermocapillary convection in the drop, induced by evaporation, and the drop real-time profile data are synchronously recorded by video recording systems. Experimental results obtained from this unique technique clearly reveal that thermocapillary convection strongly affects the spreading process and the characteristics of dynamic contact angle of the drop. Comprehensive information of a sessile drop, including the local contact angle along the periphery, the instability of the three-phase contact line, and the deformation of the drop shape is obtained and analyzed.

  5. Quantitative flow visualization of fluidized-bed heat exchanger by neutron radiography

    International Nuclear Information System (INIS)

    Ozawa, M.; Umekawa, H.; Furui, S.; Hayashi, K.; Takenaka, N.

    2004-01-01

    Quantitative flow visualization of a gas-solid fluidized-bed installed vertical tube-bank has been successfully conducted using neutron radiography and image processing technique. The quantitative data of void fraction distribution as well as the fluctuation data are presented. The time-averaged void fraction is well correlated by the drift-flux model. The bubbles formed in the bed, rise along the vertical tubes and the observed bubble size is smaller than that in a free bubbling bed without tube-banks. The bubble diameter is well correlated by the modified Mori and Wen's correlation taking into account the pitch of tube arrangement. The bubble rise velocity is also well correlated by applying the drift-flux model. These results are consistent for both bed materials of Geldart's B- and A-particles, while the bubble size is significantly different between two kinds of particles

  6. A flow visualization study of spore release using a wind tunnel-mounted laser light sheet

    International Nuclear Information System (INIS)

    Davis, J.M.; Eisner, A.D.; Wiener, R.W.; Main, C.E.

    1997-01-01

    A phase Doppler anemometry system in combination with a laser light sheet was used in a low-speed recirculating wind tunnel to examine the flow field around an individual leaf. Turbulence similar to that encountered near the surface of the earth in a neutral stability boundary layer was generated using a grid at the upwind end of the wind tunnel test section. Individual healthy and diseased plant leaves were introduced into the tunnel with the leaf tip pointing downwind. The Mie-scattered radiation from the spores departing the diseased leaf was captured on videotape. Image processing software was used to enhance the visual quality of the individual frames from the videotape and to make spore velocity calculations. Three main vortex regions around the leaf were identified. The importance of these regions to the separation of the spores from the leaf surface and their subsequent downwind movement was analyzed

  7. Visualization of flowing current in braided carbon fiber reinforced plastics using SQUID gradiometer for nondestructive evaluation

    International Nuclear Information System (INIS)

    Hatsukade, Y; Yoshida, K; Kage, T; Tanaka, S; Takai, Y; Aly-Hassan, M S; Hamada, H; Nakai, A

    2013-01-01

    In this paper, visualization of flowing current in various braided carbon fiber reinforced plastics (CFRPs) was demonstrated using high-temperature superconductor (HTS) superconducting quantum interference device (SQUID) gradiometer, in order to study electrical properties and integrity of the braided CFRP samples. Step-by-step tensile loading was also applied to the samples, in order to study their mechanical properties and destructive mechanism. Experimental results indicated that the addition of carbon nano fibers and middle-end carbon fiber bundles attributed to modify not only the mechanical properties, but also the electrical properties of the samples. Combining the results by the both methods, a scenario of the destructive mechanism of one sample was estimated.

  8. Flow visualization in superfluid helium-4 using He2 molecular tracers

    Science.gov (United States)

    Guo, Wei

    Flow visualization in superfluid helium is challenging, yet crucial for attaining a detailed understanding of quantum turbulence. Two problems have impeded progress: finding and introducing suitable tracers that are small yet visible; and unambiguous interpretation of the tracer motion. We show that metastable He2 triplet molecules are outstanding tracers compared with other particles used in helium. These molecular tracers have small size and relatively simple behavior in superfluid helium: they follow the normal fluid motion at above 1 K and will bind to quantized vortex lines below about 0.6 K. A laser-induced fluorescence technique has been developed for imaging the He2 tracers. We will present our recent experimental work on studying the normal-fluid motion by tracking thin lines of He2 tracers created via femtosecond laser-field ionization in helium. We will also discuss a newly launched experiment on visualizing vortex lines in a magnetically levitated superfluid helium drop by imaging the He2 tracers trapped on the vortex cores. This experiment will enable unprecedented insight into the behavior of a rotating superfluid drop and will untangle several key issues in quantum turbulence research. We acknowledge the support from the National Science Foundation under Grant No. DMR-1507386 and the US Department of Energy under Grant No. DE-FG02 96ER40952.

  9. Inversion prepared coronary MR angiography: direct visualization of coronary blood flow

    International Nuclear Information System (INIS)

    Katoh, M.; Spuentrup, E.; Buecker, A.; Guenther, R.W.; Stuber, M.; Manning, W.J.; Botnar, R.M.

    2005-01-01

    Purpose: visualization of coronary blood flow by means of a slice-selective inversion pre-pulse in concert with bright-blood coronary MRA. Materials and methods: coronary magnetic resonance angiography (MRA) of the right coronary artery (RCA) was performed in eight healthy adult subjects on a 1.5 Tesla MR system (Gyroscan ACS-NT, Philips Medical Systems, Best, NL) using a free-breathing navigator-gated and cardiac-triggered 3D steady-state free-precession (SSFP) sequence with radial k-space sampling. Imaging was performed with and without a slice-selective inversion pre-pulse, which was positioned along the main axis of the coronary artery but perpendicular to the imaging volume. Objective image quality parameters such as SNR, CNR, maximal visible vessel length, and vessel border definition were analyzed. Results: in contrast to conventional bright-blood 3D coronary MRA, the selective inversion pre-pulse provided a direct measure of coronary blood flow. In addition, CNR between the RCA and right ventricular blood pool was increased and the vessels had a tendency towards better delineation. Blood SNR and CNR between right coronary blood and epicardial fat were comparable in both sequences. (orig.)

  10. Experimental analysis and flow visualization of a thin liquid film on a stationary and rotating disk

    Science.gov (United States)

    Thomas, S.; Faghri, A.; Hankey, W.

    1991-01-01

    The mean thickness of a thin liquid film of deionized water with a free surface on a stationary and rotating horizontal disk has been measured with a nonobtrusive capacitance technique. The measurements were taken when the rotational speed ranged from 0-300 rpm and the flow rate varied from 7.0-15.0 lpm. A flow visualization study of the thin film was also performed to determine the characteristics of the waves on the free surface. When the disk was stationary, a circular hydraulic jump was present on the disk. Upstream from the jump, the film thickness was determined by the inertial and frictional forces on the fluid, and the radial spreading of the film. The surface tension at the edge of the disk affected the film thickness downstream from the jump. For the rotating disk, the film thickness was dependent upon the inertial and frictional forces near the center of the disk and the centrifugal forces near the edge of the disk.

  11. Measurement and flow visualization research of thermal hydraulic characteristics for the SFR reactor Vessel

    International Nuclear Information System (INIS)

    Cha, J. E.; Kim, S. O.; Choi, H. L.; Kim, H. B.; Kim, H. W.; Lee, S. H.

    2012-01-01

    In this report, the thermal hydraulic and flow visualization experiment was described for the KALIMER-600 water-scaled model. In order to investigate a thermal hydraulic characteristics for the SFR KALIMER-600, which has been conceptually designed in the KAERI, a water-scaled 1/10 reactor vessel model was designed and prepared through the scaling analysis during three-years research. In this research, SFR Photos system, which has inherently very complicated the internal structures, was fabricated with a transparent vessel. It was shown that a serious of thermal hydraulic test was conducted within a short period if modeled with water than sodium. Natural circulation test was successfully performed with the modeled heater assembly and heat exchanger system coupled with cooling system. The water-scaled RSV experimental facility made in this research could be used to study the USA development for the future SFR system and utilized to analyze the flow characteristics before changing a main internal part of Photos system. It could also be used to test a pool-inspection study and a sensor selection study before large scale sodium experiment. The PCV system prepared in this research could be utilized to test other TSH experiment and temperature field measurement

  12. Flow visualization study of two-phase flow in the horizontal annulus of the fuel-channel outlet end-fitting of a CANDU reactor

    International Nuclear Information System (INIS)

    Supa-Amornkul, S.; Steward, F.R.; Lister, D.H.

    2005-01-01

    In CANDU-6 reactors, the pressurized hightemperature coolant flows through 380 fuel channels passing horizontally through the core. In 1996, higher than expected rates of wall thinning of the outlet feeders were ascribed to flow-accelerated corrosion (FAC). Such corrosion is strongly influenced by the hydrodynamics of the coolant. Results of preliminary flow visualization and modelling studies have suggested that flow conditions in the end-fitting annulus upstream of the outlet feeder may influence the pattern of FAC. For a full-scale flow visualization, an acrylic test section was built to simulate the cylindrical end-fitting with its annulus flow path. The tests were performed with water and air at atmospheric pressure and room temperature. The phase distribution along the length of the annulus was recorded with a digital video recorder. Size, concentration and velocity of the air bubbles at particular locations were studied with a high-speed digital still camera and a high-speed digital video camera. Phase distributions and variations in bubble size with velocity were determined. Significant effects on the flow patterns of spacer buttons in the annulus were observed. A commercial computational fluid dynamics (CFD) code-Fluent 6.1-was used to model the results. (authors)

  13. Static and Dynamic Flow Visualization Studies of Two Double-Delta Wing Models at High Angles of Attack

    Science.gov (United States)

    1992-03-01

    body, ft U.= free-stream velocity, ft/sec In the case of a wing pitching about its mid-chord location, it can be interpreted as the ratio of the...Over Moderately Swept Delta Wings," HTP -5 Workshop On Vortical Flow Breakdown and Structural Interactions, NASA Langley Research Center, August 15-16...January 6- 9,1992/Reno,Nevada. 18. User’s Manual , Flow Visualization Water Tunnel Operation for Model 1520, Eidelic International, Inc., Torrance

  14. Wire breakage in SLC wire profile monitors

    International Nuclear Information System (INIS)

    Field, C.; McCormick, D.; Raimondi, P.; Ross, M.

    1998-05-01

    Wire scanning beam profile monitors are used at the Stanford Linear Collider (SLC) for emittance preservation control and beam optics optimization. Twenty such scanners have proven most useful for this purpose and have performed a total of 1.5 million scans in the 4 to 6 years since their installation. Most of the essential scanners are equipped with 20 to 40 microm tungsten wires. SLC bunch intensities and sizes often exceed 2 x 10 7 particles/microm 2 (3C/m 2 ). The authors believe that this has caused a number of tungsten wire failures that appear at the ends of the wire, near the wire support points, after a few hundred scans are accumulated. Carbon fibers, also widely used at SLAC, have been substituted in several scanners and have performed well. In this paper, the authors present theories for the wire failure mechanism and techniques learned in reducing the failures

  15. Visualization of synthetic jet formation in air

    Czech Academy of Sciences Publication Activity Database

    Trávníček, Zdeněk; Broučková, Zuzana; Kordík, Jozef; Vít, T.

    2015-01-01

    Roč. 18, č. 4 (2015), s. 595-609 ISSN 1343-8875 R&D Projects: GA ČR GA14-08888S Institutional support: RVO:61388998 Keywords : synthetic jet * flow visualization * hot-wire anemometry Subject RIV: JU - Aeronautics, Aerodynamics, Aircrafts Impact factor: 0.720, year: 2015 http://link.springer.com/article/10.1007/s12650-015-0273-2

  16. Investigation of velocity distribution in an inner subchannel of wire wrapped fuel pin bundle of sodium-cooled fast reactor

    International Nuclear Information System (INIS)

    Nishimura, Masahiro; Kamide, Hideki; Ohshima, Hiroyuki; Kobayashi, Jun; Sato, Hiroyuki

    2011-01-01

    A sodium cooled fast reactor is designed to attain a high burn-up of core fuel in commercialized fast reactor cycle systems. In high burn-up fuel subassemblies, deformation of fuel pin due to the swelling and thermal bowing may decrease local flow velocity via change of flow area in the subassembly and influence the heat removal capability. Therefore, it is important to obtain the detail of flow velocity distribution in a wire wrapped pin bundle. In this study, water experiments were carried out to investigate the detailed velocity distribution in a subchannel of nominal pin geometry as the first step. These basic data are not only useful for understanding of pin bundle thermal hydraulics but also a code validation. A wire-wrapped 3-pin bundle water model was applied to investigate the detailed velocity distribution in the subchannel which is surrounded by 3 pins with wrapping wire. The test section consists of an irregular hexagonal acrylic duct tube and three pins made of fluorinated resin pins which has nearly the same refractive index with that of water and a high light transmission rate. This enables to visualize the central subchannel through the pins. The velocity distribution in the central subchannel with the wrapping wire was measured by PIV (Particle Image Velocimetry) through a side wall of the duct tube. Typical flow velocity conditions in the pin bundle were 0.36m/s (Re=2,700) and 1.6m/s (Re=13,500). Influence of the wrapping wire on the velocity distributions in vertical and horizontal directions was confirmed. A clockwise swirl flow around the wire was found in subchannel. Significant differences were not recognized between the two cases of Re=2,700 and 13,500 concerning flow patterns. (author)

  17. Visualization of cross-sectional flow structure during condensation of steam in a slightly inclined horizontal tube

    Energy Technology Data Exchange (ETDEWEB)

    Puseya, Andree; Kim, H. [Kyung Hee University, Yongin (Korea, Republic of); Kwon, T. S. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    These flow characteristics called flow patterns still depend on a proper visualization technique in order to identify such local distribution. These proper distributions will have a dependence on the inclination of the tube as well, as it was demonstrated by Lips and Mayer. This work is focused on presenting an experimental investigation to visualize the cross sectional two-phase flow structure for condensation of steam in a horizontal tube and identify the liquid-gas interface using the axial-viewing technique. This innovative technique developed by Hewitt and more recently used in visualization works by Badie, permits the achievement to identify those systems in the area of interest by looking directly into the two-phase flow system during condensation of steam inside a pipe with technology such a high speed camera. An experimental work to visualize and locate the liquid-gas interface for steam condensation in horizontal tubes with slightly inclination was developed on this research The experimental results shows that the axial viewing technique works well with condensation phenomena and can be used for further developments in the field such as determination of liquid film geometry and calculation of void fraction.

  18. Three-dimensional visualization of material flow during friction stir welding by two pairs of X-ray transmission systems

    International Nuclear Information System (INIS)

    Morisada, Y.; Fujii, H.; Kawahito, Y.; Nakata, K.; Tanaka, M.

    2011-01-01

    Material flow during friction stir welding is crucial to obtaining sound joints. However, this phenomenon is still not fully understood despite many investigations and numerous models. In this study, the material flow is three-dimensionally visualized by X-ray radiography using a tiny spherical tungsten tracer. The movement of the tracer during the friction stir welding is observed by two pairs of X-ray transmission real-time imaging systems. The three-dimensional material flow is obtained by following the locus of the tracer.

  19. Experiments and correlations of pressure loss coefficients for hexagonal arranged rod bundles (P/D > 1.02) with helical wire spacers in laminar and turbulent flows

    International Nuclear Information System (INIS)

    Marten, K.; Yonekawa, S.; Hoffmann, H.

    1987-05-01

    Advanced pressurized water reactors as well as sodium cooled fast reactors, in their breeding and absorber elements, use tightly packed rod bundles with hexagonally arranged rods. Helical wires or helical fins serve as spacers. The pressure loss coefficients of twelve bundles with helical wires were determined systematically in water experiments. High measuring accuracy was achieved by very precise fabrication of the bundles and the shroud as well as by investigations of the proper measuring techniques. The results show a dependency of the loss coefficients on the Reynolds number and on the P/D and H/D ratios of the bundles. These results together with available systematic experimental results of investigations at P/D > 1.1 were used to develop a correlation to determine the pressure loss coefficients of tightly and widely packed hexagonally arranged rod bundles with helical wire spacers. These correlations were used to recalculate and compare results of pressure loss investigations found in the literature; good agreement was demonstrated. Hence, calculation methods exist for a broad range of applications to determine the pressure loss coefficients of hexagonally arranged rod bundles with helical wires for spacers. (orig./HP) [de

  20. Visualization of pre-set vortices in boundary layer flow over wavy surface in rectangular channel

    KAUST Repository

    Budiman, Alexander Christantho; Mitsudharmadi, Hatsari; Bouremel, Yann; Winoto, Sonny H.; Low, H. T.

    2014-01-01

    structures on the cross-sectional plane normal to the wavy surface. To obtain uniform spanwise vortex wavelength which will result in uniform vortex size, two types of spanwise disturbances were used: a series of perturbation wires placed prior and normal

  1. Base Information Transport Infrastructure Wired (BITI Wired)

    Science.gov (United States)

    2016-03-01

    2016 Major Automated Information System Annual Report Base Information Transport Infrastructure Wired (BITI Wired) Defense Acquisition Management...Combat Information Transport System program was restructured into two pre-Major Automated Information System (pre-MAIS) components: Information...Major Automated Information System MAIS OE - MAIS Original Estimate MAR – MAIS Annual Report MDA - Milestone Decision Authority MDD - Materiel

  2. Wire bonding in microelectronics

    CERN Document Server

    Harman, George G

    2010-01-01

    Wire Bonding in Microelectronics, Third Edition, has been thoroughly revised to help you meet the challenges of today's small-scale and fine-pitch microelectronics. This authoritative guide covers every aspect of designing, manufacturing, and evaluating wire bonds engineered with cutting-edge techniques. In addition to gaining a full grasp of bonding technology, you'll learn how to create reliable bonds at exceedingly high yields, test wire bonds, solve common bonding problems, implement molecular cleaning methods, and much more. Coverage includes: Ultrasonic bonding systems and technologies, including high-frequency systems Bonding wire metallurgy and characteristics, including copper wire Wire bond testing Gold-aluminum intermetallic compounds and other interface reactions Gold and nickel-based bond pad plating materials and problems Cleaning to improve bondability and reliability Mechanical problems in wire bonding High-yield, fine-pitch, specialized-looping, soft-substrate, and extreme-temperature wire bo...

  3. A single photon emission computed tomograph based on a limited dumber of detectors for fluid flow visualization

    International Nuclear Information System (INIS)

    Legoupil, S.

    1999-01-01

    We present in this work a method for fluid flow visualization in a system using radioactive tracers. The method is based on single photon emission computed tomography techniques, applied to a limited number of discrete detectors. We propose in this work a method for the estimation of the transport matrix of photons, associated to the acquisition system. This method is based on the modelization of profiles acquired for a set of point sources located in the imaged volume. Monte Carlo simulations allow to separate scattered photons from those directly collected by the system. The influence of the energy tracer is exposed. The reconstruction method is based on the maximum likelihood - expectation maximization algorithm. An experimental device, based on 36 detectors was realised for the visualization of water circulation in a vessel. A video monitoring allows to visualize the dye water tracer. Dye and radioactive tracers are injected simultaneously in a water flow circulating in the vessel. Reconstructed and video images are compared. Quantitative and qualitative analysis show that fluid flow visualization is feasible with a limited number of detectors. This method can be applied for system involving circulations of fluids. (author)

  4. Two-phase pressure drop and flow visualization of FC-72 in a silicon microchannel heat sink

    International Nuclear Information System (INIS)

    Megahed, Ayman; Hassan, Ibrahim

    2009-01-01

    The rapid development of two-phase microfluidic devices has triggered the demand for a detailed understanding of the flow characteristics inside microchannel heat sinks to advance the cooling process of micro-electronics. The present study focuses on the experimental investigation of pressure drop characteristics and flow visualization of a two-phase flow in a silicon microchannel heat sink. The microchannel heat sink consists of a rectangular silicon chip in which 45 rectangular microchannels were chemically etched with a depth of 276 μm, width of 225 μm, and a length of 16 mm. Experiments are carried out for mass fluxes ranging from 341 to 531 kg/m 2 s and heat fluxes from 60.4 to 130.6 kW/m 2 using FC-72 as the working fluid. Bubble growth and flow regimes are observed using high speed visualization. Three major flow regimes are identified: bubbly, slug, and annular. The frictional two-phase pressure drop increases with exit quality for a constant mass flux. An assessment of various pressure drop correlations reported in the literature is conducted for validation. A new general correlation is developed to predict the two-phase pressure drop in microchannel heat sinks for five different refrigerants. The experimental pressure drops for laminar-liquid laminar-vapor and laminar-liquid turbulent-vapor flow conditions are predicted by the new correlation with mean absolute errors of 10.4% and 14.5%, respectively.

  5. Water Desalination with Wires

    NARCIS (Netherlands)

    Porada, S.; Sales, B.B.; Hamelers, H.V.M.; Biesheuvel, P.M.

    2012-01-01

    We show the significant potential of water desalination using a novel capacitive wire-based technology in which anode/cathode wire pairs are constructed from coating a thin porous carbon electrode layer on top of electrically conducting rods (or wires). By alternately dipping an array of electrode

  6. Thermofluid experiments for Fusion Reactor Safety. Visualization of exchange flows through breaches of a vacuum vessel in a fusion reactor under the LOVA condition

    International Nuclear Information System (INIS)

    Fujii, Sadao; Shibazaki, Hiroaki; Takase, Kazuyuki; Kunugi, Tomoaki.

    1997-01-01

    Exchange flow rates through breaches of a vacuum vessel in a fusion reactor under the LOVA (Loss of VAcuum event) conditions were measured quantitatively by using a preliminary LOVA apparatus and exchange flow patterns over the breach were visualized qualitatively by smoke. Velocity distributions in the exchange flows were predicted from the observed flow patterns by using the correlation method in the flow visualization procedures. Mean velocities calculated from the predicted velocity distributions at the outside of the breach were in good agreement with the LOVA experimental results when the exchange flow velocities were low. It was found that the present flow visualization and the image processing system might be an useful procedure to evaluate the exchange flow rates. (author)

  7. Angular response of hot wire probes

    International Nuclear Information System (INIS)

    Di Mare, L; Jelly, T O; Day, I J

    2017-01-01

    A new equation for the convective heat loss from the sensor of a hot-wire probe is derived which accounts for both the potential and the viscous parts of the flow past the prongs. The convective heat loss from the sensor is related to the far-field velocity by an expression containing a term representing the potential flow around the prongs, and a term representing their viscous effect. This latter term is absent in the response equations available in the literature but is essential in representing some features of the observed response of miniature hot-wire probes. The response equation contains only four parameters but it can reproduce, with great accuracy, the behaviour of commonly used single-wire probes. The response equation simplifies the calibration the angular response of rotated slanted hot-wire probes: only standard King’s law parameters and a Reynolds-dependent drag coefficient need to be determined. (paper)

  8. Volume Tracking: A new method for quantitative assessment and visualization of intracardiac blood flow from three-dimensional, time-resolved, three-component magnetic resonance velocity mapping

    International Nuclear Information System (INIS)

    Töger, Johannes; Carlsson, Marcus; Söderlind, Gustaf; Arheden, Håkan; Heiberg, Einar

    2011-01-01

    Functional and morphological changes of the heart influence blood flow patterns. Therefore, flow patterns may carry diagnostic and prognostic information. Three-dimensional, time-resolved, three-directional phase contrast cardiovascular magnetic resonance (4D PC-CMR) can image flow patterns with unique detail, and using new flow visualization methods may lead to new insights. The aim of this study is to present and validate a novel visualization method with a quantitative potential for blood flow from 4D PC-CMR, called Volume Tracking, and investigate if Volume Tracking complements particle tracing, the most common visualization method used today. Eight healthy volunteers and one patient with a large apical left ventricular aneurysm underwent 4D PC-CMR flow imaging of the whole heart. Volume Tracking and particle tracing visualizations were compared visually side-by-side in a visualization software package. To validate Volume Tracking, the number of particle traces that agreed with the Volume Tracking visualizations was counted and expressed as a percentage of total released particles in mid-diastole and end-diastole respectively. Two independent observers described blood flow patterns in the left ventricle using Volume Tracking visualizations. Volume Tracking was feasible in all eight healthy volunteers and in the patient. Visually, Volume Tracking and particle tracing are complementary methods, showing different aspects of the flow. When validated against particle tracing, on average 90.5% and 87.8% of the particles agreed with the Volume Tracking surface in mid-diastole and end-diastole respectively. Inflow patterns in the left ventricle varied between the subjects, with excellent agreement between observers. The left ventricular inflow pattern in the patient differed from the healthy subjects. Volume Tracking is a new visualization method for blood flow measured by 4D PC-CMR. Volume Tracking complements and provides incremental information compared to particle

  9. Fabrication of FFTF fuel pin wire wrap

    International Nuclear Information System (INIS)

    Epperson, E.M.

    1980-06-01

    Lateral spacing between FFTF fuel pins is required to provide a passageway for the sodium coolant to flow over each pin to remove heat generated by the fission process. This spacing is provided by wrapping each fuel pin with type 316 stainless steel wire. This wire has a 1.435mm (0.0565 in.) to 1.448mm (0.0570 in.) diameter, contains 17 +- 2% cold work and was fabricated and tested to exacting RDT Standards. About 500 kg (1100 lbs) or 39 Km (24 miles) of fuel pin wrap wire is used in each core loading. Fabrication procedures and quality assurance tests are described

  10. 3D visualization of two-phase flow in the micro-tube by a simple but effective method

    International Nuclear Information System (INIS)

    Fu, X; Zhang, P; Hu, H; Huang, C J; Huang, Y; Wang, R Z

    2009-01-01

    The present study provides a simple but effective method for 3D visualization of the two-phase flow in the micro-tube. An isosceles right-angle prism combined with a mirror located 45° bevel to the prism is employed to synchronously obtain the front and side views of the flow patterns with a single camera, where the locations of the prism and the micro-tube for clear imaging should satisfy a fixed relationship which is specified in the present study. The optical design is proven successfully by the tough visualization work at the cryogenic temperature range. The image deformation due to the refraction and geometrical configuration of the test section is quantitatively investigated. It is calculated that the image is enlarged by about 20% in inner diameter compared to the real object, which is validated by the experimental results. Meanwhile, the image deformation by adding a rectangular optical correction box outside the circular tube is comparatively investigated. It is calculated that the image is reduced by about 20% in inner diameter with a rectangular optical correction box compared to the real object. The 3D re-construction process based on the two views is conducted through three steps, which shows that the 3D visualization method can easily be applied for two-phase flow research in micro-scale channels and improves the measurement accuracy of some important parameters of the two-phase flow such as void fraction, spatial distribution of bubbles, etc

  11. COPASutils: an R package for reading, processing, and visualizing data from COPAS large-particle flow cytometers.

    Directory of Open Access Journals (Sweden)

    Tyler C Shimko

    Full Text Available The R package COPASutils provides a logical workflow for the reading, processing, and visualization of data obtained from the Union Biometrica Complex Object Parametric Analyzer and Sorter (COPAS or the BioSorter large-particle flow cytometers. Data obtained from these powerful experimental platforms can be unwieldy, leading to difficulties in the ability to process and visualize the data using existing tools. Researchers studying small organisms, such as Caenorhabditis elegans, Anopheles gambiae, and Danio rerio, and using these devices will benefit from this streamlined and extensible R package. COPASutils offers a powerful suite of functions for the rapid processing and analysis of large high-throughput screening data sets.

  12. Flow visualization on a natural circulation inter-wrapper flow. Experimental and numerical results under a geometric condition of button type spacer pads

    Energy Technology Data Exchange (ETDEWEB)

    Yasuda, A.; Miyakoshi, H.; Hayashi, K.; Nishimura, M.; Kamide, H.; Hishida, K. [Japan Nuclear Cycle Development Inst., Oarai, Ibaraki (Japan). Oarai Engineering Center

    1999-04-01

    Investigations on the inter-wrapper flow (IWF) in a liquid metal cooled fast breeder reactor core have been carried out. The IWF is a natural circulation flow between wrapper tubes in the core barrel where cold fluid is coming from a direct heat exchanger (DHX) in the upper plenum. It was shown by the sodium experiment using 7-subassembly core model that the IWF can cool the subassemblies. To clarify thermal-hydraulic characteristics of the IWF in the core, the water experiment was performed using the flow visualization technique. The test rig for IWF (TRIF) has the core simulating the fuel subassemblies and radial reflectors. The subassemblies are constructed featuring transparent heater to enable both Joule heating and flow visualization. The transparent heater was made of glass with thin conductor film coating of tin oxide, and the glass heater was embedded on the wall of modeled wrapper tube made of acrylic plexiglass. In the present experiment, influences of peripheral geometric parameters such as flow holes of core formers on the thermal-hydraulic field were investigated with the button type spacer pads of the wrapper tube. Through the water tests, flow patterns of the IWF were revealed and velocity fields were quantitatively measured with a particle image velocimetry (PIV). Also, no substantial influence of peripheral geometry was found on the temperature field of the IWF, as far as the button type spacer pad was applied. Numerical simulation was applied to the experimental analysis of IWF by using multidimensional code with porous body model. The numerical results reproduced the flow patterns within TRIF and agreed well to experimental temperature distributions, showing capability of predicting IWF with porous body model. (author)

  13. PS wire chamber

    CERN Multimedia

    1970-01-01

    A wire chamber used at CERN's Proton Synchrotron accelerator in the 1970s. Multi-wire detectors contain layers of positively and negatively charged wires enclosed in a chamber full of gas. A charged particle passing through the chamber knocks negatively charged electrons out of atoms in the gas, leaving behind positive ions. The electrons are pulled towards the positively charged wires. They collide with other atoms on the way, producing an avalanche of electrons and ions. The movement of these electrons and ions induces an electric pulse in the wires which is collected by fast electronics. The size of the pulse is proportional to the energy loss of the original particle.

  14. Effect of wire shape on wire array discharge

    Energy Technology Data Exchange (ETDEWEB)

    Shimomura, N.; Tanaka, Y.; Yushita, Y.; Nagata, M. [University of Tokushima, Department of Electrical and Electronic Engineering, Tokushima (Japan); Teramoto, Y.; Katsuki, S.; Akiyama, H. [Kumamoto University, Department of Electrical and Computer Engineering, Kumamoto (Japan)

    2001-09-01

    Although considerable investigations have been reported on z-pinches to achieve nuclear fusion, little attention has been given from the point of view of how a wire array consisting of many parallel wires explodes. Instability existing in the wire array discharge has been shown. In this paper, the effect of wire shape in the wire array on unstable behavior of the wire array discharge is represented by numerical analysis. The claws on the wire formed in installation of wire may cause uniform current distribution on wire array. The effect of error of wire diameter in production is computed by Monte Carlo Method. (author)

  15. Effect of wire shape on wire array discharge

    International Nuclear Information System (INIS)

    Shimomura, N.; Tanaka, Y.; Yushita, Y.; Nagata, M.; Teramoto, Y.; Katsuki, S.; Akiyama, H.

    2001-01-01

    Although considerable investigations have been reported on z-pinches to achieve nuclear fusion, little attention has been given from the point of view of how a wire array consisting of many parallel wires explodes. Instability existing in the wire array discharge has been shown. In this paper, the effect of wire shape in the wire array on unstable behavior of the wire array discharge is represented by numerical analysis. The claws on the wire formed in installation of wire may cause uniform current distribution on wire array. The effect of error of wire diameter in production is computed by Monte Carlo Method. (author)

  16. An investigation of flow and resistance characteristics of heat exchanger with the 2-D LDV system and visualization technique

    International Nuclear Information System (INIS)

    Wang Zongsen; Shen Xiong; Xu Yuanhui; Bi Shuxun

    1987-12-01

    An experimental study of the heat exchanger which would be used in a nuclear reactor for low temperature heat-supplying is presented. A 2-D Laser Doppler Velocimeter was used as a unique technique to measure the mean velocity and turbulence intensity distributions in different sections of the model. The relationship between the resistance coefficient and Reynolds number also obtained in terms of the total pressure rakes covered by the casings and the wall static pressure pick-up holes. The flow visualization has realized by using a piece of light source with an Argon-Ion laser. It is apparent that the polystyrene particles seeded in the flow can trace the mean flow. The results showed that the self-similar phenomenon exists in the tube bundle flow system. There are some secondary vortices in the cross sections between two passages of the model

  17. Shear Evaluation by Quantitative Flow Visualization Near the Casing Surface of a Centrifugal Blood Pump

    Science.gov (United States)

    Nishida, Masahiro; Yamane, Takashi; Tsukamoto, Yuki; Ito, Kazuyuki; Konishi, Yoshiaki; Masuzawa, Toru; Tsukiya, Tomonori; Endo, Seiko; Taenaka, Yoshiyuki

    To clarify the correlation between high-shear flow and hemolysis in blood pumps, detail shear velocity distribution was quantified by an experimental method with a model centrifugal blood pump that has a series data of hemolysis tests and computational fluid dynamic analyses. Particular attention was paid to the shear velocity near the casing surface in the volute where the high shear causes in circumferentially wide region that is considerable to cause high hemolysis. Three pump models were compared concern with the radial gap width between the impeller and casing (the radial volute width) also with the outlet position whereas the impeller geometry was identical. These casing geometries were as follows: model 1-the gap width is standard 3mm and the outlet locates to make a smooth geometrical connection with the volute, model 2-the gap width is small 0.5mm and the outlet locates to make the smooth geometrical connection with the volute, and model 3-the gap width is small 0.5mm and the outlet locates to hardly make the smooth geometrical connection with the volute but be similar radial position with that of model 1. Velocity was quantified with a particle tracking velocimetry that is one of the quantitative flow visualization techniques, and the shear velocity was calculated. Results showed that all large shear velocity existed within the layers of about 0.1mm from the casing surface and that those layers were hardly affected by a vane passage even if the gap width is 0.5mm. They also showed that the maximum shear velocity appeared on the casing surface, and the shear velocities of models 2 and 3 were almost twice as large as that of model 1. This finding is in full corresponding with the results of hemolysis tests which showed that the hemolysis levels of both models 2 and 3 were 1.5 times higher than that of model 1. These results suggest that detailed high-shear evaluation near the casing surface in the volute is one of the most important keys in estimating the

  18. Visualization of the structure of vortex breakdown in free swirling jet flow

    NARCIS (Netherlands)

    Vanierschot, M.; Perçin, M.; van Oudheusden, B.W.

    2016-01-01

    In this paper we investigate the three dimensional flow structures in a free annular swirling jet flow undergoing vortex breakdown. The flow field is analyzed by means of time-resolved Tomographic Particle Image Velocimetry measurements. Both time-averaged and instantaneous flow structures are

  19. Calculation of quantities of interest in high energy physics using visual basic 3.0. The Flow Tensor Program

    International Nuclear Information System (INIS)

    Besliu, C.; Jipa, A.; Zaharia, R.

    1995-01-01

    The Flow Tensor is an important physical quantity in High Energy Physics. The program used for the calculation of the Flow Tensor has been a complex menu-driven application, to allow the selection of various triggers for the studied reaction, of the number of traces in each studied event, of the momentum cut values for the resulting particles of fragments in each event, etc. We realised all that requests using a very modern and powerful tool: Visual Basic 3.0. This programming system allows the realisation of Windows-like programs and has numerous facilities: OLE (Object Linking and Embedding), the possibility to create professional graphics, to work with databases, to create and compile Windows-like help files. All these advantages make the effort to learn Visual Basic 3.0 worthwhile. (author)

  20. Visualization of flows in a motored rotary combustion engine using holographic interferometry

    Science.gov (United States)

    Hicks, Y. R.; Schock, H. J.; Craig, J. E.; Umstatter, H. L.; Lee, D. Y.

    1986-01-01

    The use of holographic interferometry to view the small- and large-scale flow field structures in the combustion chamber of a motored Wankel engine assembly is described. In order that the flow patterns of interest could be observed, small quantities of helium were injected with the intake air. Variation of the air flow patterns with engine speed, helium flow rate, and rotor position are described. The air flow at two locations within the combustion chamber was examined using this technique.

  1. Flat Plate Boundary Layer Stimulation Using Trip Wires and Hama Strips

    Science.gov (United States)

    Peguero, Charles; Henoch, Charles; Hrubes, James; Fredette, Albert; Roberts, Raymond; Huyer, Stephen

    2017-11-01

    Water tunnel experiments on a flat plate at zero angle of attack were performed to investigate the effect of single roughness elements, i.e., trip wires and Hama strips, on the transition to turbulence. Boundary layer trips are traditionally used in scale model testing to force a boundary layer to transition from laminar to turbulent flow at a single location to aid in scaling of flow characteristics. Several investigations of trip wire effects exist in the literature, but there is a dearth of information regarding the influence of Hama strips on the flat plate boundary layer. The intent of this investigation is to better understand the effects of boundary layer trips, particularly Hama strips, and to investigate the pressure-induced drag of both styles of boundary layer trips. Untripped and tripped boundary layers along a flat plate at a range of flow speeds were characterized with multiple diagnostic measurements in the NUWC/Newport 12-inch water tunnel. A wide range of Hama strip and wire trip thicknesses were used. Measurements included dye flow visualization, direct skin friction and parasitic drag force, boundary layer profiles using LDV, wall shear stress fluctuations using hot film anemometry, and streamwise pressure gradients. Test results will be compared to the CFD and boundary layer model results as well as the existing body of work. Conclusions, resulting in guidance for application of Hama strips in model scale experiments and non-dimensional predictions of pressure drag will be presented.

  2. Experimental visualization of temperature fields and study of heat transfer enhancement in oscillatory flow in a grooved channel

    Energy Technology Data Exchange (ETDEWEB)

    Herman, C.; Kang, E. [Dept. of Mechanical Engineering, Johns Hopkins Univ., Baltimore, MD (United States)

    2001-01-01

    An experimental study was conducted of incompressible, moderate Reynolds number flow of air over heated rectangular blocks in a two-dimensional, horizontal channel. Holographic interferometry combined with high-speed cinematography was used to visualize the unsteady temperature fields in self- sustained oscillatory flow. Experiments were conducted in the laminar, transitional and turbulent flow regimes for Reynolds numbers in the range from Re = 520 to Re = 6600. Interferometric measurements were obtained in the thermally and fluiddynamically periodically fully developed flow region on the ninth heated block. Flow oscillations were first observed between Re = 1054 and Re = 1318. The period of oscillations, wavelength and propagation speed of the Tollmien-Schlichting waves in the main channel were measured at two characteristic flow velocities, Re = 1580 and Re = 2370. For these Reynolds numbers it was observed that two to three waves span one geometric periodicity length. At Re = 1580 the dominant oscillation frequency was found to be around 26 Hz and at Re = 2370 the frequency distribution formed a band around 125 Hz. Results regarding heat transfer and pressure drop are presented as a function of the Reynolds number, in terms of the block-average Nusselt number and the local Nusselt number as well as the friction factor. Measurements of the local Nusselt number together with visual observations indicate that the lateral mixing caused by flow instabilities is most pronounced along the upstream vertical wall of the heated block in the groove region, and it is accompanied by high heat transfer coefficients. At Reynolds numbers beyond the onset of oscillations the heat transfer in the grooved channel exceeds the performance of the reference geometry, the asymmetrically heated parallel plate channel. (orig.)

  3. Physically-Based Interactive Flow Visualization Based on Schlieren and Interferometry Experimental Techniques

    KAUST Repository

    Brownlee, C.; Pegoraro, V.; Shankar, S.; McCormick, Patrick S.; Hansen, C. D.

    2011-01-01

    Understanding fluid flow is a difficult problem and of increasing importance as computational fluid dynamics (CFD) produces an abundance of simulation data. Experimental flow analysis has employed techniques such as shadowgraph, interferometry

  4. Analysis of Limit Cycle Oscillation/Transonic High Alpha Flow Visualization. Part 1: Discussion

    National Research Council Canada - National Science Library

    Cunningham, Atlee M

    1998-01-01

    ...) at low alpha conditions typical of transonic LCO flows with and without tip stores. Laser light sheet/water vapor techniques were used to illuminate the flows, and video recording was used to obtain the data...

  5. Analysis of Limit Cycle Oscillation/Transonic High ALPHA Flow Visualization. Part 2 Stationary Model Data

    National Research Council Canada - National Science Library

    Cunningham, Atlee M

    1998-01-01

    ...) at low alpha conditions typical of transonic LCO flows with and without tip stores. Laser light sheet/water vapor techniques were used to illuminate the flows, and video recording was used to obtain the data...

  6. Analysis of Limit Cycle Oscillation/Transonic High Alpha Flow Visualization

    National Research Council Canada - National Science Library

    Cunningham, Atlee M

    1997-01-01

    ...) at low alpha condition typical of transonic LCO flows with and without tip stores. Laser light sheet/water vapor techniques were used to illuminate the flows, and video recording was used to obtain the data...

  7. Analysis of Limit Cycle Oscillation/Transonic High ALPHA Flow Visualization. Part 3 Oscillating Model Data

    National Research Council Canada - National Science Library

    Cunningham, Atlee M

    1998-01-01

    ...) at low alpha conditions typical of transonic LCO flows with and without tip stores. Laser light sheet/water vapor techniques were used to illuminate the flows, and video recording was used to obtain the data...

  8. PIV Visualization of Bubble Induced Flow Circulation in 2-D Rectangular Pool for Ex-Vessel Debris Bed Coolability

    Energy Technology Data Exchange (ETDEWEB)

    Han, Teayang; Kim, Eunho; Park, Hyun Sun; Moriyama, Kiyofumi [POSTECH, Pohang (Korea, Republic of)

    2015-10-15

    The previous research works demonstrated the debris bed formation on the flooded cavity floor in experiments. Even in the cases the core melt is once solidified, the debris bed can be re-melted due to the decay heat. If the debris bed is not cooled enough by the coolant, the re-melted debris bed will react with the concrete base mat. This situation is called the molten core-concrete interaction (MCCI) which threatens the integrity of the containment by generated gases which pressurize the containment. Therefore securing the long term coolability of the debris bed in the cavity is crucial. According to the previous research works, the natural convection driven by the rising bubbles affects the coolability and the formation of the debris bed. Therefore, clarification of the natural convection characteristics in and around the debris bed is important for evaluation of the coolability of the debris bed. In this study, two-phase flow around the debris bed in a 2D slice geometry is visualized by PIV method to obtain the velocity map of the flow. The DAVINCI-PIV was developed to investigate the flow around the debris bed. In order to simulate the boiling phenomena induced by the decay heat of the debris bed, the air was injected separately by the air chamber system which consists of the 14 air-flowmeters. The circulation flow developed by the rising bubbles was visualized by PIV method.

  9. A research of vapour-film characteristics of inverted-annular flow film boiling by visual method

    International Nuclear Information System (INIS)

    Xu Jijun; Guo Zhichao; Yan An; Bi Haoran

    1988-01-01

    The vapour-film characteristics are an interesting topic in inverted-annular flow film boiling. A practical set of experimental rig has been designed and constructed for visual observation. Photographic method is adopted for obtaining number of photographs in the conditions of steady state. For references at hands, photographs under steady conditions of water flow film boiling have not been published yet. This paper discusses the typical vapour film characteristics and regards Elias' two-region model summarized from transient visual experiment as reasonable. In addition, under heated conditions, at least, three types of vapour-water interfaces have been observed. They are asymmetric sine waves, symmetic varicose waves, and roll waves offered by Jarlais from an adiabatic simulation. In diabatic conditions a transition of flow pattern to slug flow is usually caused by hydrodynamic instability and/or by thermodynamic instability. The effects of mass velocity, inlet subcooling, heat flux input, initial quality and pressure to vapour-film characteristics are described. An empirical correlation is fitted to 23 sets of tests of discussion

  10. Slice of LHC dipole wiring

    CERN Multimedia

    Dipole model slice made in 1994 by Ansaldo. The high magnetic fields needed for guiding particles around the Large Hadron Collider (LHC) ring are created by passing 12’500 amps of current through coils of superconducting wiring. At very low temperatures, superconductors have no electrical resistance and therefore no power loss. The LHC is the largest superconducting installation ever built. The magnetic field must also be extremely uniform. This means the current flowing in the coils has to be very precisely controlled. Indeed, nowhere before has such precision been achieved at such high currents. 50’000 tonnes of steel sheets are used to make the magnet yokes that keep the wiring firmly in place. The yokes constitute approximately 80% of the accelerator's weight and, placed side by side, stretch over 20 km!

  11. Math for visualization, visualizing math

    NARCIS (Netherlands)

    Wijk, van J.J.; Hart, G.; Sarhangi, R.

    2013-01-01

    I present an overview of our work in visualization, and reflect on the role of mathematics therein. First, mathematics can be used as a tool to produce visualizations, which is illustrated with examples from information visualization, flow visualization, and cartography. Second, mathematics itself

  12. Visualization of the boiling phenomena and counter-current flow limit of annular heat pipe

    Energy Technology Data Exchange (ETDEWEB)

    Kim, In Guk; Kim, Kyung Mo; Jeong, Yeong Shin; Bang, In Cheol [UNIST, Ulsan (Korea, Republic of)

    2015-10-15

    The thermal resistance of conventional heat pipes increases over the capillary limit because of the insufficient supplement of the working fluid. Due to the shortage of the liquid supplement, thermosyphon is widely used for vertically oriented heat transport and high heat load conditions. Thermosyphons are two-phase heat transfer devices that have the highly efficient heat transport from evaporation to condensation section that makes an upward driving force for vapor. In the condenser section, the vapor condenses and releases the latent heat. Due to the gravitation force acting on the liquid in the tube, working fluid back to the evaporator section, normally this process operate at the vertical and inclination position. The use of two-phase closed thermosyphon (TPCT) for the cooling devices has the limitation due to the phase change of the working fluid assisted by gravity force. Due to the complex phenomenon of two-phase flow, it is required to understand what happened in TPCT. The visualization of the thermosyphon and heat pipe is investigated for the decrease of thermal resistance and enhancement of operation limit. Weibel et al. investigated capillary-fed boiling of water with porous sintered powder wick structure using high speed camera. At the high heat flux condition, dry-out phenomenon and a thin liquid film are observed at the porous wick structure. Wong and Kao investigated the evaporation and boiling process of mesh wicked heat pipe using optical camera. At the high heat flux condition, the water filing became thin and partial dry-out was observed in the evaporator section. Our group suggested the concept of a hybrid heat pipe with control rod as Passive IN-core Cooling System (PINCs) for decay heat removal for advanced nuclear power plant. The hybrid heat pipe is the combination of the heat pipe and control rod. It is necessary for PINCs to contain a neutron absorber (B{sub 4}C) to have the ability of reactivity control. It has annular vapor space and

  13. Visualization of the boiling phenomena and counter-current flow limit of annular heat pipe

    International Nuclear Information System (INIS)

    Kim, In Guk; Kim, Kyung Mo; Jeong, Yeong Shin; Bang, In Cheol

    2015-01-01

    The thermal resistance of conventional heat pipes increases over the capillary limit because of the insufficient supplement of the working fluid. Due to the shortage of the liquid supplement, thermosyphon is widely used for vertically oriented heat transport and high heat load conditions. Thermosyphons are two-phase heat transfer devices that have the highly efficient heat transport from evaporation to condensation section that makes an upward driving force for vapor. In the condenser section, the vapor condenses and releases the latent heat. Due to the gravitation force acting on the liquid in the tube, working fluid back to the evaporator section, normally this process operate at the vertical and inclination position. The use of two-phase closed thermosyphon (TPCT) for the cooling devices has the limitation due to the phase change of the working fluid assisted by gravity force. Due to the complex phenomenon of two-phase flow, it is required to understand what happened in TPCT. The visualization of the thermosyphon and heat pipe is investigated for the decrease of thermal resistance and enhancement of operation limit. Weibel et al. investigated capillary-fed boiling of water with porous sintered powder wick structure using high speed camera. At the high heat flux condition, dry-out phenomenon and a thin liquid film are observed at the porous wick structure. Wong and Kao investigated the evaporation and boiling process of mesh wicked heat pipe using optical camera. At the high heat flux condition, the water filing became thin and partial dry-out was observed in the evaporator section. Our group suggested the concept of a hybrid heat pipe with control rod as Passive IN-core Cooling System (PINCs) for decay heat removal for advanced nuclear power plant. The hybrid heat pipe is the combination of the heat pipe and control rod. It is necessary for PINCs to contain a neutron absorber (B 4 C) to have the ability of reactivity control. It has annular vapor space and it

  14. Towards plant wires

    OpenAIRE

    Adamatzky, Andrew

    2014-01-01

    In experimental laboratory studies we evaluate a possibility of making electrical wires from living plants. In scoping experiments we use lettuce seedlings as a prototype model of a plant wire. We approximate an electrical potential transfer function by applying direct current voltage to the lettuce seedlings and recording output voltage. We analyse oscillation frequencies of the output potential and assess noise immunity of the plant wires. Our findings will be used in future designs of self...

  15. Computational modeling of unsteady third-grade fluid flow over a vertical cylinder: A study of heat transfer visualization

    Science.gov (United States)

    Reddy, G. Janardhana; Hiremath, Ashwini; Kumar, Mahesh

    2018-03-01

    The present paper aims to investigate the effect of Prandtl number for unsteady third-grade fluid flow over a uniformly heated vertical cylinder using Bejan's heat function concept. The mathematical model of this problem is given by highly time-dependent non-linear coupled equations and are resolved by an efficient unconditionally stable implicit scheme. The time histories of average values of momentum and heat transport coefficients as well as the steady-state flow variables are displayed graphically for distinct values of non-dimensional control parameters arising in the system. As the non-dimensional parameter value gets amplified, the time taken for the fluid flow variables to attain the time-independent state is decreasing. The dimensionless heat function values are closely associated with an overall rate of heat transfer. Thermal energy transfer visualization implies that the heat function contours are compact in the neighborhood of the leading edge of the hot cylindrical wall. It is noticed that the deviations of flow-field variables from the hot wall for a non-Newtonian third-grade fluid flow are significant compared to the usual Newtonian fluid flow.

  16. A visual study of radial inward choked flow of liquid nitrogen.

    Science.gov (United States)

    Hendricks, R. C.; Simoneau, R. J.; Hsu, Y. Y.

    1973-01-01

    Data and high speed movies were acquired on pressurized subcooled liquid nitrogen flowing radially inward through a 0.0076 cm gap. The stagnation pressure ranged from 0.7 to 4 MN/sq m. Steady radial inward choked flow appears equivalent to steady choked flow through axisymmetric nozzles. Transient choked flows through the radial gap are not uniform and the discharge pattern appears as nonuniform impinging jets. The critical mass flow rate data for the transient case appear different from those for the steady case. On the mass flow rate vs pressure map, the slope and separation of the isotherms appear to be less for transient than for steady radial choked flow.

  17. Photovoltaic Wire, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This Small Business Innovation Research Phase I project will investigate a new architecture for photovoltaic devices based on nanotechnology: photovoltaic wire. The...

  18. Charpak hemispherical wire chamber

    CERN Multimedia

    1970-01-01

    pieces. Mesures are of the largest one. Multi-wire detectors contain layers of positively and negatively charged wires enclosed in a chamber full of gas. A charged particle passing through the chamber knocks negatively charged electrons out of atoms in the gas, leaving behind positive ions. The electrons are pulled towards the positively charged wires. They collide with other atoms on the way, producing an avalanche of electrons and ions. The movement of these electrons and ions induces an electric pulse in the wires which is collected by fast electronics. The size of the pulse is proportional to the energy loss of the original particle.

  19. 1998 wire development workshop proceedings

    International Nuclear Information System (INIS)

    1998-04-01

    This report consists of vugraphs of the presentations at the conference. The conference was divided into the following sessions: (1) First Generation Wire Development: Status and Issues; (2) First Generation Wire in Pre-Commercial Prototypes; (3) Second Generation Wire Development: Private Sector Progress and Issues; (4) Second Generation Wire Development: Federal Laboratories; and (5) Fundamental Research Issues for HTS Wire Development

  20. 1998 wire development workshop proceedings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-04-01

    This report consists of vugraphs of the presentations at the conference. The conference was divided into the following sessions: (1) First Generation Wire Development: Status and Issues; (2) First Generation Wire in Pre-Commercial Prototypes; (3) Second Generation Wire Development: Private Sector Progress and Issues; (4) Second Generation Wire Development: Federal Laboratories; and (5) Fundamental Research Issues for HTS Wire Development.

  1. Neutron radiography for visualization of liquid metal processes: bubbly flow for CO2 free production of Hydrogen and solidification processes in EM field

    Science.gov (United States)

    Baake, E.; Fehling, T.; Musaeva, D.; Steinberg, T.

    2017-07-01

    The paper describes the results of two experimental investigations aimed to extend the abilities of a neutron radiography to visualize two-phase processes in the electromagnetically (EM) driven melt flow. In the first experiment the Argon bubbly flow in the molten Gallium - a simulation of the CO2 free production of Hydrogen process - was investigated and visualized. Abilities of EM stirring for control on the bubbles residence time in the melt were tested. The second experiment was directed to visualization of a solidification front formation under the influence of EM field. On the basis of the neutron shadow pictures the form of growing ingot, influenced by turbulent flows, was considered. In the both cases rotating permanent magnets were agitating the melt flow. The experimental results have shown that the neutron radiography can be successfully employed for obtaining the visual information about the described processes.

  2. Development of a method for detecting nuclear fuel debris and water leaks at a nuclear reactor/containment vessel by flow visualization

    International Nuclear Information System (INIS)

    Umezawa, Shuichi; Tanaka, Katsuhiko

    2013-01-01

    It is the important issue to fill up each nuclear reactor/containment vessel with water and to take out debris of damaged fuel from them for decommissioning of Fukushima Daiichi nuclear power plants. It is necessary to detect the debris and water leaks at a nuclear reactor/containment vessel for the purpose. However, the method is not completely developed in the present stage. Accordingly, we have developed a method for detecting debris and water leaks at a nuclear reactor/containment vessel by flow visualization. Experiments of the flow visualization were conducted using two types of water tanks. An optical fiber and a collimator lens were employed for modifying a straight laser beam into a sheet projection. Some visualized images were obtained through the experiments. Particle Image Velocimetry, i.e. PIV, analysis was applied to the images for quantitative flow rate analysis. Consequently, it is considered that the flow visualization method has a possibility for the practical use. (author)

  3. Effects of duct configuration on flow and temperature structure in sodium-cooled 19-rod simulated LMFBR fuel bundles with helical wire-wrap spacers

    International Nuclear Information System (INIS)

    Wantland, J.L.; Fontana, M.H.; Gnadt, P.A.; Hanus, N.; MacPherson, R.E.; Smith, C.M.

    1976-01-01

    Thermal-hydrodynamic testing of sodium-cooled 19-rod simulated LMFBR fuel bundles is being conducted at the O ak Ridge National Laboratory in the Fuel Failure Mockup (FFM), an engineering-scale high-temperature sodium facility which provides prototypic flows, temperatures and power densities. Electrically heated bundles have been tested with two scalloped and two hexagonal duct configurations. Peripheral helical flows, attributed to the spacers, have been observed with strengths dependent upon the evenness and relative sizes of the peripheral flow areas. Diametral sodium temperature profiles are more uniform with smaller peripheral flow areas

  4. Wire Array Photovoltaics

    Science.gov (United States)

    Turner-Evans, Dan

    Over the past five years, the cost of solar panels has dropped drastically and, in concert, the number of installed modules has risen exponentially. However, solar electricity is still more than twice as expensive as electricity from a natural gas plant. Fortunately, wire array solar cells have emerged as a promising technology for further lowering the cost of solar. Si wire array solar cells are formed with a unique, low cost growth method and use 100 times less material than conventional Si cells. The wires can be embedded in a transparent, flexible polymer to create a free-standing array that can be rolled up for easy installation in a variety of form factors. Furthermore, by incorporating multijunctions into the wire morphology, higher efficiencies can be achieved while taking advantage of the unique defect relaxation pathways afforded by the 3D wire geometry. The work in this thesis shepherded Si wires from undoped arrays to flexible, functional large area devices and laid the groundwork for multijunction wire array cells. Fabrication techniques were developed to turn intrinsic Si wires into full p-n junctions and the wires were passivated with a-Si:H and a-SiNx:H. Single wire devices yielded open circuit voltages of 600 mV and efficiencies of 9%. The arrays were then embedded in a polymer and contacted with a transparent, flexible, Ni nanoparticle and Ag nanowire top contact. The contact connected >99% of the wires in parallel and yielded flexible, substrate free solar cells featuring hundreds of thousands of wires. Building on the success of the Si wire arrays, GaP was epitaxially grown on the material to create heterostructures for photoelectrochemistry. These cells were limited by low absorption in the GaP due to its indirect bandgap, and poor current collection due to a diffusion length of only 80 nm. However, GaAsP on SiGe offers a superior combination of materials, and wire architectures based on these semiconductors were investigated for multijunction

  5. Flow transients induced on a 2D airfoil by pulse-modulated actuation

    Energy Technology Data Exchange (ETDEWEB)

    Amitay, Michael [Rensselaer Polytechnic Institute, Mechanical, Aerospace and Nuclear Engineering, Troy, NY (United States); Glezer, Ari [Georgia Institute of Technology, Woodruff School of Mechanical Engineering, Atlanta, GA (United States)

    2006-02-01

    The transitory response of the flow over a stalled, 2D airfoil to a momentary synthetic jet actuation that is realized by low-duty cycle amplitude modulation of the actuator's resonant waveform is investigated experimentally using hot-wire anemometry and flow visualization. The pulse-like actuation results in the shedding of large vortical structures and a momentary flow attachment. (orig.)

  6. Direct experimental visualization of the global Hamiltonian progression of two-dimensional Lagrangian flow topologies from integrable to chaotic state

    Energy Technology Data Exchange (ETDEWEB)

    Baskan, O.; Clercx, H. J. H [Fluid Dynamics Laboratory, Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven (Netherlands); Speetjens, M. F. M. [Energy Technology Laboratory, Department of Mechanical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven (Netherlands); Metcalfe, G. [Commonwealth Scientific and Industrial Research Organisation, Melbourne, Victoria 3190 (Australia); Swinburne University of Technology, Department of Mechanical Engineering, Hawthorn VIC 3122 (Australia)

    2015-10-15

    Countless theoretical/numerical studies on transport and mixing in two-dimensional (2D) unsteady flows lean on the assumption that Hamiltonian mechanisms govern the Lagrangian dynamics of passive tracers. However, experimental studies specifically investigating said mechanisms are rare. Moreover, they typically concern local behavior in specific states (usually far away from the integrable state) and generally expose this indirectly by dye visualization. Laboratory experiments explicitly addressing the global Hamiltonian progression of the Lagrangian flow topology entirely from integrable to chaotic state, i.e., the fundamental route to efficient transport by chaotic advection, appear non-existent. This motivates our study on experimental visualization of this progression by direct measurement of Poincaré sections of passive tracer particles in a representative 2D time-periodic flow. This admits (i) accurate replication of the experimental initial conditions, facilitating true one-to-one comparison of simulated and measured behavior, and (ii) direct experimental investigation of the ensuing Lagrangian dynamics. The analysis reveals a close agreement between computations and observations and thus experimentally validates the full global Hamiltonian progression at a great level of detail.

  7. Direct experimental visualization of the global Hamiltonian progression of two-dimensional Lagrangian flow topologies from integrable to chaotic state.

    Science.gov (United States)

    Baskan, O; Speetjens, M F M; Metcalfe, G; Clercx, H J H

    2015-10-01

    Countless theoretical/numerical studies on transport and mixing in two-dimensional (2D) unsteady flows lean on the assumption that Hamiltonian mechanisms govern the Lagrangian dynamics of passive tracers. However, experimental studies specifically investigating said mechanisms are rare. Moreover, they typically concern local behavior in specific states (usually far away from the integrable state) and generally expose this indirectly by dye visualization. Laboratory experiments explicitly addressing the global Hamiltonian progression of the Lagrangian flow topology entirely from integrable to chaotic state, i.e., the fundamental route to efficient transport by chaotic advection, appear non-existent. This motivates our study on experimental visualization of this progression by direct measurement of Poincaré sections of passive tracer particles in a representative 2D time-periodic flow. This admits (i) accurate replication of the experimental initial conditions, facilitating true one-to-one comparison of simulated and measured behavior, and (ii) direct experimental investigation of the ensuing Lagrangian dynamics. The analysis reveals a close agreement between computations and observations and thus experimentally validates the full global Hamiltonian progression at a great level of detail.

  8. Visual detection of West Nile virus using reverse transcription loop-mediated isothermal amplification combined with a vertical flow visualization strip

    Directory of Open Access Journals (Sweden)

    Zengguo eCao

    2016-04-01

    Full Text Available West Nile virus (WNV causes a severe zoonosis, which can lead to a large number of casualties and considerable economic losses. A rapid and accurate identification methodfor WNV for use in field laboratories is urgently needed. Here, a method utilizing reverse transcription loop-mediated isothermal amplification combined with a vertical flow visualization strip (RT-LAMP-VF was developed to detect the envelope (E gene of WNV. The RT-LAMP-VF assay could detect 102 copies/μl ofan WNV RNA standard using a 40 min amplification reaction followed by a 2 min incubationof the amplification product on the visualization strip, and no cross-reaction with other closely related members of theFlavivirus genus was observed. The assay was further evaluated using cells and mouse brain tissues infected with a recombinant rabies virus expressing the E protein of WNV.The assay produced sensitivities of 101.5TCID50/ml and 101.33 TCID50/ml for detection of the recombinant virus in the cells and brain tissues, respectively. Overall, the RT-LAMP-VF assay developed in this study is rapid, simple and effective, and it is therefore suitable for clinical application in the field.

  9. Flow visualization of three-dimensionality inside the 12 cc Penn State pulsatile pediatric ventricular assist device.

    Science.gov (United States)

    Roszelle, Breigh N; Deutsch, Steven; Manning, Keefe B

    2010-02-01

    In order to aid the ongoing concern of limited organ availability for pediatric heart transplants, Penn State has continued development of a pulsatile Pediatric Ventricular Assist Device (PVAD). Initial studies of the PVAD observed an increase in thrombus formation due to differences in flow field physics when compared to adult sized devices, which included a higher degree of three-dimensionality. This unique flow field brings into question the use of 2D planar particle image velocimetry (PIV) as a flow visualization technique, however the small size and high curvature of the PVAD make other tools such as stereoscopic PIV impractical. In order to test the reliability of the 2D results, we perform a pseudo-3D PIV study using planes both parallel and normal to the diaphragm employing a mock circulatory loop containing a viscoelastic fluid that mimics 40% hematocrit blood. We find that while the third component of velocity is extremely helpful to a physical understanding of the flow, particularly of the diastolic jet and the development of a desired rotational pattern, the flow data taken parallel to the diaphragm is sufficient to describe the wall shear rates, a critical aspect to the study of thrombosis and design of such pumps.

  10. Commercial and Industrial Wiring.

    Science.gov (United States)

    Kaltwasser, Stan; Flowers, Gary

    This module is the third in a series of three wiring publications, includes additional technical knowledge and applications required for job entry in the commercial and industrial wiring trade. The module contains 15 instructional units that cover the following topics: blueprint reading and load calculations; tools and equipment; service;…

  11. Burnout in subcooled flow boiling of water. A visual experimental study

    Energy Technology Data Exchange (ETDEWEB)

    Celata, G.P.; Mariani, A.; Zummo, G. [ENEA, Engineering Div., National Institute of Thermal Fluid-Dynamics, Rome (Italy); Cumo, M. [University of Rome la Sapienza, Rome (Italy)

    2000-12-01

    The objective of the present work is to perform a photographic study of the burnout in highly subcooled flow boiling, in order to provide a qualitative description of the flow pattern under different conditions of boiling regime: ONB (onset of nucleate boiling), subcooled flow boiling and thermal crisis. In particular, the flow visualisation is focused on the phenomena occurring on the heated wall during the thermal crisis up to the physical burnout of the heater. Vapour bubble parameters are measured from flow images recorded, while the wall temperature is measured with an indirect method, by recording the heater elongation during all flow regimes studied. The combination of bubble parameters and wall temperature measurements as well as direct observations of the flow pattern, for all flow regimes, are collected in graphs which provide a useful global point of view of boiling phenomena, especially during boiling crisis. Under these conditions, a detailed analysis of the mechanisms leading to the critical heat flux is reported, and the so called events sequence, from thermal crisis occurrence up to heater burnout, is illustrated. (authors)

  12. Burnout in subcooled flow boiling of water. A visual experimental study

    International Nuclear Information System (INIS)

    Celata, G.P.; Mariani, A.; Zummo, G.; Cumo, M.

    2000-01-01

    The objective of the present work is to perform a photographic study of the burnout in highly subcooled flow boiling, in order to provide a qualitative description of the flow pattern under different conditions of boiling regime: ONB (onset of nucleate boiling), subcooled flow boiling and thermal crisis. In particular, the flow visualisation is focused on the phenomena occurring on the heated wall during the thermal crisis up to the physical burnout of the heater. Vapour bubble parameters are measured from flow images recorded, while the wall temperature is measured with an indirect method, by recording the heater elongation during all flow regimes studied. The combination of bubble parameters and wall temperature measurements as well as direct observations of the flow pattern, for all flow regimes, are collected in graphs which provide a useful global point of view of boiling phenomena, especially during boiling crisis. Under these conditions, a detailed analysis of the mechanisms leading to the critical heat flux is reported, and the so called events sequence, from thermal crisis occurrence up to heater burnout, is illustrated. (authors)

  13. Flow visualization through particle image velocimetry in realistic model of rhesus monkey's upper airway.

    Science.gov (United States)

    Kim, Ji-Woong; Phuong, Nguyen Lu; Aramaki, Shin-Ichiro; Ito, Kazuhide

    2018-05-01

    Studies concerning inhalation toxicology and respiratory drug-delivery systems require biological testing involving experiments performed on animals. Particle image velocimetry (PIV) is an effective in vitro technique that reveals detailed inhalation flow patterns, thereby assisting analyses of inhalation exposure to various substances. A realistic model of a rhesus-monkey upper airway was developed to investigate flow patterns in its oral and nasal cavities through PIV experiments performed under steady-state constant inhalation conditions at various flow rates-4, 10, and 20 L/min. Flow rate of the fluid passing through the inlet into the trachea was measured to obtain characteristic flow mechanisms, and flow phenomena in the model were confirmed via characterized flow fields. It was observed that increase in flow rate leads to constant velocity profiles in upper and lower trachea regions. It is expected that the results of this study would contribute to future validation of studies aimed at developing in silico models, especially those involving computational fluid dynamic (CFD) analysis. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Flow visualization techniques, new developments and modernization of the existing Schlieren system in the Trisonic Wind Tunnel

    Directory of Open Access Journals (Sweden)

    Marius PANAIT

    2011-06-01

    Full Text Available Schlieren flow visualization methods are an important part of high speed wind tunnel testing, being a fast and reliable method of graphically presenting complex dynamic phenomena that occur in high subsonic, transonic and supersonic regimes. Images can be processed and effects of configuration changes can be understood faster. Quantitative variations of the Schlieren method enable CFD simulations to use real data, resulting in greater precision and thus help improve efficiency of the re-design phase for the aerodynamic object. A modification of the classic Schlieren system is proposed, that would enable extraction of such data with minimal costs

  15. Using active power filter to compensate the current component of asymmetrical non-linear load in the four wire network

    Directory of Open Access Journals (Sweden)

    Руслан Володимирович Власенко

    2016-07-01

    Full Text Available Electricity quality improving is extremely relevant nowadays. With such industrial loads as induction motors, induction furnaces, welding machines, controlled or uncontrolled rectifiers, frequency converters and others reactive power, harmonics and unbalance are generated in power grid. Reactive power, higher harmonic currents and asymmetry loads influence the functioning of electric devices and electrical mains. An effective technical solution is the use of new compensating devices, that is active power filters. The emergence of consumers with a unit capacity of four wire networks requires a new approach to building system control active power filter. When designing the active power filter control system the current flowing in the neutral wire must be taken into account. To assess the power balance in the four wire active power filter, scientists have proposed to apply pqr theory of power based on the Clarke transformation. There are different topologies of three-phase four wire active power filters. A visual simulation of Matlab / Simulink model with an active power filter based on pqr theory of power has been created. A method of pulse width modulation with four control channels was used as pulses forming systems with transistor keys. Operating conditions of three-phase four wire active power filter with asymmetry, non-sinosoidal voltage source and asymmetric load have been studied. The correction taking into account the means improving the active power filter has been offered as pqr theory of power does not take into account non-sinosoidal voltage

  16. Heat Transfer Analysis in Wire Bundles for Aerospace Vehicles

    Science.gov (United States)

    Rickman, S. L.; Iamello, C. J.

    2016-01-01

    Design of wiring for aerospace vehicles relies on an understanding of "ampacity" which refers to the current carrying capacity of wires, either, individually or in wire bundles. Designers rely on standards to derate allowable current flow to prevent exceedance of wire temperature limits due to resistive heat dissipation within the wires or wire bundles. These standards often add considerable margin and are based on empirical data. Commercial providers are taking an aggressive approach to wire sizing which challenges the conventional wisdom of the established standards. Thermal modelling of wire bundles may offer significant mass reduction in a system if the technique can be generalized to produce reliable temperature predictions for arbitrary bundle configurations. Thermal analysis has been applied to the problem of wire bundles wherein any or all of the wires within the bundle may carry current. Wire bundles present analytical challenges because the heat transfer path from conductors internal to the bundle is tortuous, relying on internal radiation and thermal interface conductance to move the heat from within the bundle to the external jacket where it can be carried away by convective and radiative heat transfer. The problem is further complicated by the dependence of wire electrical resistivity on temperature. Reduced heat transfer out of the bundle leads to higher conductor temperatures and, hence, increased resistive heat dissipation. Development of a generalized wire bundle thermal model is presented and compared with test data. The steady state heat balance for a single wire is derived and extended to the bundle configuration. The generalized model includes the effects of temperature varying resistance, internal radiation and thermal interface conductance, external radiation and temperature varying convective relief from the free surface. The sensitivity of the response to uncertainties in key model parameters is explored using Monte Carlo analysis.

  17. Velocity distribution measurement in wire-spaced fuel pin bundle

    International Nuclear Information System (INIS)

    Mizuta, Hiroshi; Ohtake, Toshihide; Uruwashi, Shinichi; Takahashi, Keiichi

    1974-01-01

    Flow distribution measurement was made in the subchannels of a pin bundle in air flow. The present paper is interim because the target of this work is the decision of temperature of the pin surface in contact with wire spacers. The wire-spaced fuel pin bundle used for the experiment consists of 37 simulated fuel pins of stainless steel tubes, 3000 mm in length and 31.6 mm in diameter, which are wound spirally with 6 mm stainless steel wire. The bundle is wrapped with a hexagonal tube, 3500 mm in length and 293 mm in flat-to-flat distance. The bundle is fixed with knock-bar at the entrance of air flow in the hexagonal tube. The pitch of pins in the bundle is 37.6 mm (P/D=1.19) and the wrapping pitch of wire is 1100 mm (H/D=34.8). A pair of arrow-type 5-hole Pitot tubes are used to measure the flow velocity and the direction of air flow in the pin bundle. The measurement of flow distribution was made with the conditions of air flow rate of 0.33 m 3 /sec, air temperature of 45 0 C, and average Reynolds number of 15100 (average air velocity of 20.6 m/sec.). It was found that circular flow existed in the down stream of wire spacers, that axial flow velocity was slower in the subchannels, which contained wire spacers, than in those not affected by the wire, and that the flow angle to the axial velocity at the boundary of subchannels was two thirds smaller than wire wrapping angle. (Tai, I.)

  18. Physically-Based Interactive Flow Visualization Based on Schlieren and Interferometry Experimental Techniques

    KAUST Repository

    Brownlee, C.

    2011-11-01

    Understanding fluid flow is a difficult problem and of increasing importance as computational fluid dynamics (CFD) produces an abundance of simulation data. Experimental flow analysis has employed techniques such as shadowgraph, interferometry, and schlieren imaging for centuries, which allow empirical observation of inhomogeneous flows. Shadowgraphs provide an intuitive way of looking at small changes in flow dynamics through caustic effects while schlieren cutoffs introduce an intensity gradation for observing large scale directional changes in the flow. Interferometry tracks changes in phase-shift resulting in bands appearing. The combination of these shading effects provides an informative global analysis of overall fluid flow. Computational solutions for these methods have proven too complex until recently due to the fundamental physical interaction of light refracting through the flow field. In this paper, we introduce a novel method to simulate the refraction of light to generate synthetic shadowgraph, schlieren and interferometry images of time-varying scalar fields derived from computational fluid dynamics data. Our method computes physically accurate schlieren and shadowgraph images at interactive rates by utilizing a combination of GPGPU programming, acceleration methods, and data-dependent probabilistic schlieren cutoffs. Applications of our method to multifield data and custom application-dependent color filter creation are explored. Results comparing this method to previous schlieren approximations are finally presented. © 2011 IEEE.

  19. Seeded perturbations in wire array Z-Pinches

    International Nuclear Information System (INIS)

    Robinson, Allen Conrad; Fedin, Dmitry; Kantsyrev, Victor Leonidovich; Wunsch, Scott Edward; Oliver, Bryan Velten; Lebedev, Sergey V.; Coverdale, Christine Anne; Ouart, Nicholas D.; LePell, Paul David; Safronova, Alla S.; Shrestha, I.; McKenney, John Lee; Ampleford, David J.; Rapley, J.; Bott, S.C.; Palmer, J.B.A.; Sotnikov, Vladimir Isaakovich; Bland, Simon Nicholas; Ivanov, Vladimir V.; Chittenden, Jeremy Paul; Jones, B.; Garasi, Christopher Joseph; Hall, Gareth Neville; Yilmaz, M. Faith; Mehlhorn, Thomas Alan; Deeney, Christopher; Pokala, S.; Nalajala, V.

    2005-01-01

    Controlled seeding of perturbations is employed to study the evolution of wire array z-pinch implosion instabilities which strongly impact x-ray production when the 3D plasma stagnates on axis. Wires modulated in radius exhibit locally enhanced magnetic field and imploding bubble formation at discontinuities in wire radius due to the perturbed current path. Wires coated with localized spectroscopic dopants are used to track turbulent material flow. Experiments and MHD modeling offer insight into the behavior of z-pinch instabilities.

  20. Comparison between visual half-field performance and cerebral blood flow changes as indicators of language dominance.

    Science.gov (United States)

    Krach, S; Chen, L M; Hartje, W

    2006-03-01

    The determination of hemispheric language dominance (HLD) can be accomplished in two ways. One approach relies on hemispheric differences in cerebral blood flow velocity (CBFV) changes during language activity, while the other approach makes use of performance differences between the left and right visual field when verbal stimuli are presented in a tachistoscopic visual field paradigm. Since both methodologically different approaches claim to assess functional HLD, it seems plausible to expect that the respective laterality indices (LI) would correspond. To test this expectation we measured language lateralisation in 58 healthy right-handed, left-handed, and ambidextrous subjects with both approaches. CBFV changes were recorded with functional transcranial Doppler sonography (fTCD). We applied a lexical decision task with bilateral visual field presentation of abstract nouns and, in addition, a task of mental word generation. In the lexical decision task, a highly significant right visual field advantage was observed for number of correct responses and reaction times, while at the same time and contrary to expectation the increase of CBFV was significantly higher in the right than left hemisphere. During mental word generation, the acceleration of CBF was significantly higher in the left hemisphere. A comparison between individual LI derived from CBF measurement during mental word generation and from visual field performances in the lexical decision task showed a moderate correspondence in classifying the subjects' HLD. However, the correlation between the corresponding individual LI was surprisingly low and not significant. The results are discussed with regard to the issue of a limited reliability of behavioural LI on the one hand and the possibility of a fundamental difference between the behavioural and the physiological indicators of laterality on the other hand.

  1. Global Skin-Friction Measurements Using Particle Image Surface FLow Visualization and a Luminescent Oil-Film

    Science.gov (United States)

    Husen, Nicholas; Roozeboom, Nettie; Liu, Tianshu; Sullivan, John P.

    2015-01-01

    A quantitative global skin-friction measurement technique is proposed. An oil-film is doped with a luminescent molecule and thereby made to fluoresce in order to resolve oil-film thickness, and Particle Image Surface Flow Visualization is used to resolve the velocity field of the surface of the oil-film. Skin-friction is then calculated at location x as (x )xh, where x is the displacement of the surface of the oil-film and is the dynamic viscosity of the oil. The data collection procedure and data analysis procedures are explained, and preliminary experimental skin-friction results for flow over the wing of the CRM are presented.

  2. Volume Tracking: A new method for quantitative assessment and visualization of intracardiac blood flow from three-dimensional, time-resolved, three-component magnetic resonance velocity mapping

    Directory of Open Access Journals (Sweden)

    Arheden Håkan

    2011-04-01

    Full Text Available Abstract Background Functional and morphological changes of the heart influence blood flow patterns. Therefore, flow patterns may carry diagnostic and prognostic information. Three-dimensional, time-resolved, three-directional phase contrast cardiovascular magnetic resonance (4D PC-CMR can image flow patterns with unique detail, and using new flow visualization methods may lead to new insights. The aim of this study is to present and validate a novel visualization method with a quantitative potential for blood flow from 4D PC-CMR, called Volume Tracking, and investigate if Volume Tracking complements particle tracing, the most common visualization method used today. Methods Eight healthy volunteers and one patient with a large apical left ventricular aneurysm underwent 4D PC-CMR flow imaging of the whole heart. Volume Tracking and particle tracing visualizations were compared visually side-by-side in a visualization software package. To validate Volume Tracking, the number of particle traces that agreed with the Volume Tracking visualizations was counted and expressed as a percentage of total released particles in mid-diastole and end-diastole respectively. Two independent observers described blood flow patterns in the left ventricle using Volume Tracking visualizations. Results Volume Tracking was feasible in all eight healthy volunteers and in the patient. Visually, Volume Tracking and particle tracing are complementary methods, showing different aspects of the flow. When validated against particle tracing, on average 90.5% and 87.8% of the particles agreed with the Volume Tracking surface in mid-diastole and end-diastole respectively. Inflow patterns in the left ventricle varied between the subjects, with excellent agreement between observers. The left ventricular inflow pattern in the patient differed from the healthy subjects. Conclusion Volume Tracking is a new visualization method for blood flow measured by 4D PC-CMR. Volume Tracking

  3. Investigation of influence of the wavelength of probing optical emission on the conditions of visualization of the flow's phase structures in the energy-technique elements

    International Nuclear Information System (INIS)

    Volevatyj, A.A.; Tolkach, A.V.; Bykovskij, Yu.M.

    2002-01-01

    Certain problems of objective visualization of two-phases flows in the energy-technique elements at the investigations by means of photo-, cinema- and video-registration are considered. It is shown an advisability of using of the more long-wave illumination of the medium at the high steam-content values in the flow

  4. Improving the visualization of electron-microscopy data through optical flow interpolation

    KAUST Repository

    Carata, Lucian; Shao, Dan; Hadwiger, Markus; Grö eller, Eduard

    2013-01-01

    with electron-microscopy (EM). However, the technique achieves a low resolution in the cutting direction, due to limitations of the mechanical process, making a direct visualization of a dataset difficult. We aim to increase the depth resolution of the volume

  5. Flow visualization studies of transverse fuel injection patterns in a nonreacting Mach 2 combustor

    Science.gov (United States)

    Mcdaniel, J. C.

    1987-01-01

    Planar visualization images are recorded of transverse jet mixing in a supersonic combustor flowfield, without chemical reaction, using laser-induced fluorescence from iodine molecules. Digital image processing and three-dimensional display enable complete representations of fuel penetration boundary and shock surfaces corresponding to several injection geometries and pressures.

  6. Visualization of microscale phase displacement proceses in retention and outflow experiments: nonuniquensess of unsaturated flow properties

    DEFF Research Database (Denmark)

    Mortensen, Annette Pia; Glass, R.J.; Hollenbeck, K.J.

    2001-01-01

    -scale heterogeneities. Because the mixture of these microscale processes yields macroscale effective behavior, measured unsaturated flow properties are also a function of these controls. Such results suggest limitations on the current definitions and uniqueness of unsaturated hydraulic properties....

  7. A visual description of the convective flow field around the heat of a human

    DEFF Research Database (Denmark)

    Özcan, Oktay; Meyer, Knud Erik; Melikov, Arsen Krikor

    2005-01-01

    Mean velocity data obtained by PIV (Particle Image Velocimetry) around the head of a real-life size breathing thermal manikin are presented for two cases of `no breathing' and `continuous exhalation through nose'. Experiments were conducted in a special chamber which provided stationary convectiv...... flows around the seated manikin. Results are limited to the plane of symmetry. The paper aims to describe the physical structure of the turbulent flow field by presenting velocity and vorticity data in color graphics....

  8. Wire anode for isotope separation apparatus

    International Nuclear Information System (INIS)

    Janes, G.S.; Dotson, J.P.

    1976-01-01

    In uranium enrichment, an electrode structure of thin, tensioned, parallel wires is claimed for use in applying an electric field to a region of a flowing uranium plasma including selectively ionized particles in order to accelerate the ionized particles for separate collection without interfering with the motion of neutral particles. 24 claims, 3 drawing figures

  9. Study of visualized simulation and analysis of nuclear fuel cycle system based on multilevel flow model

    International Nuclear Information System (INIS)

    Liu Jingquan; Yoshikawa, H.; Zhou Yangping

    2005-01-01

    Complex energy and environment system, especially nuclear fuel cycle system recently raised social concerns about the issues of economic competitiveness, environmental effect and nuclear proliferation. Only under the condition that those conflicting issues are gotten a consensus between stakeholders with different knowledge background, can nuclear power industry be continuingly developed. In this paper, a new analysis platform has been developed to help stakeholders to recognize and analyze various socio-technical issues in the nuclear fuel cycle sys- tem based on the functional modeling method named Multilevel Flow Models (MFM) according to the cognition theory of human being, Its character is that MFM models define a set of mass, energy and information flow structures on multiple levels of abstraction to describe the functional structure of a process system and its graphical symbol representation and the means-end and part-whole hierarchical flow structure to make the represented process easy to be understood. Based upon this methodology, a micro-process and a macro-process of nuclear fuel cycle system were selected to be simulated and some analysis processes such as economics analysis, environmental analysis and energy balance analysis related to those flows were also integrated to help stakeholders to understand the process of decision-making with the introduction of some new functions for the improved Multilevel Flow Models Studio, and finally the simple simulation such as spent fuel management process simulation and money flow of nuclear fuel cycle and its levelised cost analysis will be represented as feasible examples. (authors)

  10. Study of visualized simulation and analysis of nuclear fuel cycle system based on multilevel flow model

    Institute of Scientific and Technical Information of China (English)

    LIU Jing-Quan; YOSHIKAWA Hidekazu; ZHOU Yang-Ping

    2005-01-01

    Complex energy and environment system, especially nuclear fuel cycle system recently raised social concerns about the issues of economic competitiveness, environmental effect and nuclear proliferation. Only under the condition that those conflicting issues are gotten a consensus between stakeholders with different knowledge background, can nuclear power industry be continuingly developed. In this paper, a new analysis platform has been developed to help stakeholders to recognize and analyze various socio-technical issues in the nuclear fuel cycle system based on the functional modeling method named Multilevel Flow Models (MFM) according to the cognition theory of human being. Its character is that MFM models define a set of mass, energy and information flow structures on multiple levels of abstraction to describe the functional structure of a process system and its graphical symbol representation and the means-end and part-whole hierarchical flow structure to make the represented process easy to be understood. Based upon this methodology, a micro-process and a macro-process of nuclear fuel cycle system were selected to be simulated and some analysis processes such as economics analysis, environmental analysis and energy balance analysis related to those flows were also integrated to help stakeholders to understand the process of decision-making with the introduction of some new functions for the improved Multilevel Flow Models Studio, and finally the simple simulation such as spent fuel management process simulation and money flow of nuclear fuel cycle and its levelised cost analysis will be represented as feasible examples.

  11. Parameter Identification and Uncertainty Analysis for Visual MODFLOW based Groundwater Flow Model in a Small River Basin, Eastern India

    Science.gov (United States)

    Jena, S.

    2015-12-01

    The overexploitation of groundwater resulted in abandoning many shallow tube wells in the river Basin in Eastern India. For the sustainability of groundwater resources, basin-scale modelling of groundwater flow is essential for the efficient planning and management of the water resources. The main intent of this study is to develope a 3-D groundwater flow model of the study basin using the Visual MODFLOW package and successfully calibrate and validate it using 17 years of observed data. The sensitivity analysis was carried out to quantify the susceptibility of aquifer system to the river bank seepage, recharge from rainfall and agriculture practices, horizontal and vertical hydraulic conductivities, and specific yield. To quantify the impact of parameter uncertainties, Sequential Uncertainty Fitting Algorithm (SUFI-2) and Markov chain Monte Carlo (MCMC) techniques were implemented. Results from the two techniques were compared and the advantages and disadvantages were analysed. Nash-Sutcliffe coefficient (NSE) and coefficient of determination (R2) were adopted as two criteria during calibration and validation of the developed model. NSE and R2 values of groundwater flow model for calibration and validation periods were in acceptable range. Also, the MCMC technique was able to provide more reasonable results than SUFI-2. The calibrated and validated model will be useful to identify the aquifer properties, analyse the groundwater flow dynamics and the change in groundwater levels in future forecasts.

  12. Preliminary experiments on surface flow visualization in the cryogenic wind tunnel by use of condensing or freezing gases

    Science.gov (United States)

    Goodyer, M. J.

    1988-01-01

    Cryogenic wind tunnel users must have available surface flow visualization techniques to satisfy a variety of needs. While the ideal from an aerodynamic stand would be non-intrusive, until an economical technique is developed there will be occasions when the user will be prepared to resort to an intrusive method. One such method is proposed, followed by preliminary evaluation experiments carried out in environments representative of the cryogenic nitrogen tunnel. The technique uses substances which are gases at normal temperature and pressure but liquid or solid at cryogenic temperatures. These are deposited on the model in localized regions, the patterns of the deposits and their subsequent melting or evaporation revealing details of the surface flow. The gases were chosen because of the likelihood that they will not permanently contaminate the model or tunnel. Twenty-four gases were identified as possibly suitable and four of these were tested from which it was concluded that surface flow direction can be shown by the method. Other flow details might also be detectable. The cryogenic wind tunnel used was insulated on the outside and did not show signs of contamination.

  13. EVALUATION OF INDUCTANCE WITH ELECTRICAL WIRES

    Directory of Open Access Journals (Sweden)

    V. Kudry

    2016-08-01

    Full Text Available In this paper proved the possibility of developing passive electronic inductive elements based replace metal wire that is wound inductor, the wire is made of electret. The relative permeability of the electret S  10 000, several orders of magnitude greater than the permeability of conventional insulation materials, i < 10, resulting current in the wire acquires properties bias current. The essence of innovation is to replace the source of of magnetic induction flow that pervades the core of the coil. According to the theory of electrodynamics, current bias, in contrast to conduction current, generated no movement of charge along the wire, but the change of the charge in the local volume.Equivalence bias current and conduction current is manifested in the possibility of forming a magnetic field. The flow through magnetic induction coil core regardless of the current it generates, creates voltage at its ends.The paper also shows the numeric characteristics that determine the effective frequency range, specified the reason why electric a wire with і < 10 can not generate magnetic flux through the core and serve as a passive reactive component.

  14. Experimental and visual study on flow patterns and pressure drops in U-tubes

    International Nuclear Information System (INIS)

    Da Silva Lima, J. R.

    2011-01-01

    In single- and two-phase flow heat exchangers (in particular 'coils'), besides the straight tubes there are also many singularities, in particular the 180° return bends (also called return bends or U-bends). However, contrary to the literature concerning pressure drops and heat transfer in straight tubes, where many experimental data and predicting methods are available, only a limited number of studies concerning U-bends can be found. Neither reliable experimental data nor proven prediction methods are available. Indeed, flow structure, pressure drop and heat transfer in U-bends are an old unresolved design problem in the heat transfer industry. Thus, the present study aims at providing further insight on two-phase pressure drops and flows patterns in U-bends. Based on a new type of U-bend test section, an extensive experimental study was conducted. The experimental campaign covered five test sections with three internal diameters (7.8, 10.8 and 13.4 mm), five bend diameters (24.8, 31.7, 38.1, 54.8 and 66.1 mm), tested for three orientations (horizontal, vertical upflow and vertical downflow), two fluids (R134a and R410A), two saturation temperatures (5 and 10 °C) and mass velocities ranging from 150 to 1000 kg s -1 m -2 . The flow pattern observations identified were stratified-wavy, slug-stratified-wavy, intermittent, annular, dryout and mist flows. The effects of the U-bend on the flow patterns were also observed. A total of 5655 pressure drop data were measured at seven different locations in the test section ( straight tubes and U-bend) providing a total of almost 40,000 data points. The straight tube data were first used to improve the actual two-phase straight tube model of Moreno-Quibén and Thome. This updated model was then used to developed a two-phase U-bend pressure drop model. Based on a comparison between experimental and predicted values, it is concluded that the new two-phase frictional pressure drop model for U-bends successfully

  15. Efficient in-situ visualization of unsteady flows in climate simulation

    Science.gov (United States)

    Vetter, Michael; Olbrich, Stephan

    2017-04-01

    The simulation of climate data tends to produce very large data sets, which hardly can be processed in classical post-processing visualization applications. Typically, the visualization pipeline consisting of the processes data generation, visualization mapping and rendering is distributed into two parts over the network or separated via file transfer. Within most traditional post-processing scenarios the simulation is done on a supercomputer whereas the data analysis and visualization is done on a graphics workstation. That way temporary data sets with huge volume have to be transferred over the network, which leads to bandwidth bottlenecks and volume limitations. The solution to this issue is the avoidance of temporary storage, or at least significant reduction of data complexity. Within the Climate Visualization Lab - as part of the Cluster of Excellence "Integrated Climate System Analysis and Prediction" (CliSAP) at the University of Hamburg, in cooperation with the German Climate Computing Center (DKRZ) - we develop and integrate an in-situ approach. Our software framework DSVR is based on the separation of the process chain between the mapping and the rendering processes. It couples the mapping process directly to the simulation by calling methods of a parallelized data extraction library, which create a time-based sequence of geometric 3D scenes. This sequence is stored on a special streaming server with an interactive post-filtering option and then played-out asynchronously in a separate 3D viewer application. Since the rendering is part of this viewer application, the scenes can be navigated interactively. In contrast to other in-situ approaches where 2D images are created as part of the simulation or synchronous co-visualization takes place, our method supports interaction in 3D space and in time, as well as fixed frame rates. To integrate in-situ processing based on our DSVR framework and methods in the ICON climate model, we are continuously evolving

  16. Flow visualization study of two phase flow in a single bend outlet feeder pipe and horizontal annulus of outlet end-fitting of a CANDU reactor

    International Nuclear Information System (INIS)

    Supa-Amornkul, S.; Lister, D.H.; Steward, F.R.

    2005-01-01

    'Full text:' In CANDU-6 reactors, the pressurized high-temperature coolant flows through 380 fuel channels passing horizontally through the core. Each end of a fuel channel has a stainless steel annular end-fitting connected to a carbon steel feeder pipe. The outlet coolant, which is at 310 o C with up to 0.30 steam voidage, turns through 90 o as it passes from flow in the annular end-fitting to pipe flow in the feeder via a Grayloc connector. Since 1996, several CANDU stations have reported excessive corrosion of their outlet feeder pipes; especially between the first metre, which consisted of single or double bends. Early studies related the attack to the hydrodynamics of the coolant and verified that it was a type of flow accelerated corrosion. In order to understand the hydrodynamics of the coolant in the outlet feeders by flow-visualization, a full-scale transparent test section simulating the geometry and orientation of an outlet feeder bend with its upstream annular end-fitting were fabricated. The feeder consisted of a 54 mm inside diameter acrylic pipe with a 73 o bend, connecting to an acrylic simulation of a Grayloc flanged fitting and annular end-fitting. The annular end-fitting consisted of an inner pipe, 110 mm outer diameter, and an outer pipe, 150 mm inner diameter, both 190.7 cm long in length. The tests were performed with water and air at atmospheric pressure and room temperature. The maximum water volumetric flow rate was 19 L/s and the volume fraction of air varied from 0.05 to 0.56. The phase distributions within the feeder pipe and along the length of the annulus were investigated with a digital video recorder. Size, concentration and velocity of the air bubbles at particular locations were studied with a high-speed digital still camera and a high-speed digital video camera. Phase distributions and variations in bubble size with velocity were determined. Particular attention was paid to the flow pattern at the inside of the bend, where a CFD

  17. Flow visualization study of two phase flow in a single bend outlet feeder pipe and horizontal annulus of outlet end-fitting of a CANDU reactor

    Energy Technology Data Exchange (ETDEWEB)

    Supa-Amornkul, S.; Lister, D.H.; Steward, F.R. [Univ. of New Brunswick, Fredericton, New Brunswick (Canada)]. E-mail: h796e@unb.ca; dlister@unb.ca; fsteward@unb.ca

    2005-07-01

    'Full text:' In CANDU-6 reactors, the pressurized high-temperature coolant flows through 380 fuel channels passing horizontally through the core. Each end of a fuel channel has a stainless steel annular end-fitting connected to a carbon steel feeder pipe. The outlet coolant, which is at 310{sup o}C with up to 0.30 steam voidage, turns through 90{sup o} as it passes from flow in the annular end-fitting to pipe flow in the feeder via a Grayloc connector. Since 1996, several CANDU stations have reported excessive corrosion of their outlet feeder pipes; especially between the first metre, which consisted of single or double bends. Early studies related the attack to the hydrodynamics of the coolant and verified that it was a type of flow accelerated corrosion. In order to understand the hydrodynamics of the coolant in the outlet feeders by flow-visualization, a full-scale transparent test section simulating the geometry and orientation of an outlet feeder bend with its upstream annular end-fitting were fabricated. The feeder consisted of a 54 mm inside diameter acrylic pipe with a 73{sup o} bend, connecting to an acrylic simulation of a Grayloc flanged fitting and annular end-fitting. The annular end-fitting consisted of an inner pipe, 110 mm outer diameter, and an outer pipe, 150 mm inner diameter, both 190.7 cm long in length. The tests were performed with water and air at atmospheric pressure and room temperature. The maximum water volumetric flow rate was 19 L/s and the volume fraction of air varied from 0.05 to 0.56. The phase distributions within the feeder pipe and along the length of the annulus were investigated with a digital video recorder. Size, concentration and velocity of the air bubbles at particular locations were studied with a high-speed digital still camera and a high-speed digital video camera. Phase distributions and variations in bubble size with velocity were determined. Particular attention was paid to the flow pattern at the inside

  18. Towards plant wires.

    Science.gov (United States)

    Adamatzky, Andrew

    2014-08-01

    In experimental laboratory studies we evaluate a possibility of making electrical wires from living plants. In scoping experiments we use lettuce seedlings as a prototype model of a plant wire. We approximate an electrical potential transfer function by applying direct current voltage to the lettuce seedlings and recording output voltage. We analyse oscillation frequencies of the output potential and assess noise immunity of the plant wires. Our findings will be used in future designs of self-growing wetware circuits and devices, and integration of plant-based electronic components into future and emergent bio-hybrid systems. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  19. Visualization of flow patterns in shaking vessels with various geometry; Shushu no kika keijo wo motsu yodo kakuhan sonai no ryudo jotai no kashika

    Energy Technology Data Exchange (ETDEWEB)

    Kato, Y; Hiraoka, S; Tada, Y; Ue, T [Nagoya Institute of Technology, Nagoya (Japan); Koh, S [Toyo Engineering Corp., Tokyo (Japan); Lee, Y [Keimyung University, (Korea, Republic of)

    1996-03-10

    The flow patterns in shaking vessels with various geometries were visualized with a tracer method using aluminum powder. The spherical and conical vessels were effective for the shake mixing in the same manner as the cylindrical vessel, because these vessels have circular cross sections that develop the rotational flow. Neither a rectangular vessel nor a cylindrical vessel with baffles should be used for shake mixing, because rotational flows are not developed in these vessels. 2 refs., 6 figs.

  20. Thermosonic wire bonding of IC devices using palladium wire

    International Nuclear Information System (INIS)

    Shze, J.H.; Poh, M.T.; Tan, R.M.

    1996-01-01

    The feasibility of replacing gold wire by palladium wire in thermosonic wire bonding of CMOS and bipolar devices are studied in terms of the manufacturability, physical, electrical and assembly performance. The results that palladium wire is a viable option for bonding the bipolar devices but not the CMOS devices

  1. Visual Observations of Bubbly Flow in a Subchannel by using Optical Measurement Methods

    International Nuclear Information System (INIS)

    Chang, Seok Kyu; Choo, Yeon Jun; Kim, B. D.; Song, Chul Hwa

    2008-01-01

    PIV (Particle Image Velocimetry) measurement technique is widely used in the experimental study on the fluid flow in many industrial fields. In the study of the subchannel mixing in a nuclear reactor, there have been many works by using optical measurement techniques and almost of these were limited to the single phase flow. But many occasions of safety issues in a nuclear power plant are in a condition of two phase flow. In an application of two phase flow in subchannels, intrusive probes i.e., a conductivity sensor or an optical sensor were generally used. But these probes cause breaks or distortions of bubbles when contact. PIV technique is one of the non-intrusive measurement methods which can avoid the problem of intrusive probes. This study presents an applicability of the PIV technique on an experimental study of a bubbly flow in the subchannel geometry. The bubble peaking in a subchannel according to the bubble sizes was demonstrated. The HSC (high speed camera) was also used to confirm the PIV measurement results

  2. Analysis of electrical explosion of wire systems for the production of ...

    Indian Academy of Sciences (India)

    Abstract. Nanoscience and nanotechnology continue to grow as fields of scien- ... material in large quantities, and development of nanoparticles characterization meth- ods. Exploding wire method is one such method for the production of metal and metal ... the voltage across the wire and the current flowing through the wire.

  3. A Fresh Look at Spatio-Temporal Remote Sensing Data: Data Formats, Processing Flow, and Visualization

    Science.gov (United States)

    Gens, R.

    2017-12-01

    With increasing number of experimental and operational satellites in orbit, remote sensing based mapping and monitoring of the dynamic Earth has entered into the realm of `big data'. Just the Landsat series of satellites provide a near continuous archive of 45 years of data. The availability of such spatio-temporal datasets has created opportunities for long-term monitoring diverse features and processes operating on the Earth's terrestrial and aquatic systems. Processes such as erosion, deposition, subsidence, uplift, evapotranspiration, urbanization, land-cover regime shifts can not only be monitored and change can be quantified using time-series data analysis. This unique opportunity comes with new challenges in management, analysis, and visualization of spatio-temporal datasets. Data need to be stored in a user-friendly format, and relevant metadata needs to be recorded, to allow maximum flexibility for data exchange and use. Specific data processing workflows need to be defined to support time-series analysis for specific applications. Value-added data products need to be generated keeping in mind the needs of the end-users, and using best practices in complex data visualization. This presentation systematically highlights the various steps for preparing spatio-temporal remote sensing data for time series analysis. It showcases a prototype workflow for remote sensing based change detection that can be generically applied while preserving the application-specific fidelity of the datasets. The prototype includes strategies for visualizing change over time. This has been exemplified using a time-series of optical and SAR images for visualizing the changing glacial, coastal, and wetland landscapes in parts of Alaska.

  4. Fluorescence Imaging and Streamline Visualization of Hypersonic Flow over Rapid Prototype Wind-Tunnel Models

    Science.gov (United States)

    Danehy, Paul M.; Alderfer, David W.; Inman, Jennifer A.; Berger, Karen T.; Buck, Gregory M.; Schwartz, Richard J.

    2008-01-01

    Reentry models for use in hypersonic wind tunnel tests were fabricated using a stereolithography apparatus. These models were produced in one day or less, which is a significant time savings compared to the manufacture of ceramic or metal models. The models were tested in the NASA Langley Research Center 31-Inch Mach 10 Air Tunnel. Only a few of the models survived repeated tests in the tunnel, and several failure modes of the models were identified. Planar laser-induced fluorescence (PLIF) of nitric oxide (NO) was used to visualize the flowfields in the wakes of these models. Pure NO was either seeded through tubes plumbed into the model or via a tube attached to the strut holding the model, which provided localized addition of NO into the model s wake through a porous metal cylinder attached to the end of the tube. Models included several 2- inch diameter Inflatable Reentry Vehicle Experiment (IRVE) models and 5-inch diameter Crew Exploration Vehicle (CEV) models. Various model configurations and NO seeding methods were used, including a new streamwise visualization method based on PLIF. Virtual Diagnostics Interface (ViDI) technology, developed at NASA Langley Research Center, was used to visualize the data sets in post processing. The use of calibration "dotcards" was investigated to correct for camera perspective and lens distortions in the PLIF images.

  5. Multi-Scale Visualization Analysis of Bus Flow Average Travel Speed in Qingdao

    Science.gov (United States)

    Yong, HAN; Man, GAO; Xiao-Lei, ZHANG; Jie, LI; Ge, CHEN

    2016-11-01

    Public transportation is a kind of complex spatiotemporal behaviour. The traffic congestion and environmental pollution caused by the increase in private cars is becoming more and more serious in our city. Spatiotemporal data visualization is an effective tool for studying traffic, transforming non-visual data into recognizable images, which can reveal where/when congestion is formed, developed and disappeared in space and time simultaneously. This paper develops a multi-scale visualization of average travel speed derived from floating bus data, to enable congestion on urban bus networks to be shown and analyzed. The techniques of R language, Echarts, WebGL are used to draw statistical pictures and 3D wall map, which show the congestion in Qingdao from the view of space and time. The results are as follows:(1) There is a more severely delay in Shibei and Shinan areas than Licun and Laoshan areas; (2) The high congestion usually occurs on Hong Kong Middle Road, Shandong Road, Nanjing Road, Liaoyang West Road and Taiping Road;(3) There is a similar law from Monday to Sunday that the congestion is severer in the morning and evening rush hours than other hours; (4) On Monday morning the severity of congestion is higher than on Friday morning, and on Friday evening the severity is higher than on Monday evening. The research results will help to improve the public transportation of Qingdao.

  6. FLOW VISUALIZATION OF RECTANGULAR SLOT AIR JET IMPINGEMENT ON FLAT SURFACES

    OpenAIRE

    Satheesha V *1, B. K. Muralidhra2, Abhilash N3, C. K. Umesh4

    2018-01-01

    Jet impingement near the mid-chord of the gas turbine blade is treated as a flat plate. Experimental and numerical investigations are carried out for a single slot air jet impinging on flat surface for two different rectangular slots of dimension (3mm x 65 mm) and (5mm x 65 mm). Experimentation is done to study the flow pattern topography on the flat target plate, with varying the flow rate from 20 LPM to 50 LPM by varying the nozzle to plate distance from 9 mm to 24 mm for slot jet of 3mm an...

  7. Cold atoms near surfaces: designing potentials by sculpturing wires

    International Nuclear Information System (INIS)

    Della Pietra, Leonardo; Aigner, Simon; Hagen, Christoph vom; Lezec, Henri J; Schmiedmayer, Joerg

    2005-01-01

    The magnetic trapping potentials for atoms on atom chips are determined by the current flow pattern in the chip wires. By modifying the wire shape using focused ion beam nano-machining we can design specialized current flow patterns and therefore micro-design the magnetic trapping potentials. We give designs for a barrier, a quantum dot, and a double well or double barrier and show preliminary experiments with ultra cold atoms in these designed potentials

  8. Wire-mesh sensors: an experimental tool for two-phase CDF model development and code validation

    Energy Technology Data Exchange (ETDEWEB)

    Prasser, H.M. [Forschungszentrum Rossendorf e.V., Dresden (Germany)

    2004-07-01

    frequency is 2.5 kHz. In the meanwhile, a sensor of this kind has been constructed and successfully used in a hot steam-water flow at 70 bar and 286 deg. C. Experiments were carried out at a vertical test channel of 195 mm inner diameter, in which the distance between gas/steam injection and sensor can be varied in a wide range. Results will be presented. Some other prominent examples of the application of wire-mesh sensors will be given, like (1) the use of two wire-mesh sensors at the CIRCUS test facility of the University of Delft in the Netherlands for boiling water reactor stability studies, (2) the visualization of cavitation at fast-acting cut-off valves at the Pilot Plant Pipework test facility of Fraunhofer UMSICHT, Oberhausen, (3) the visualization of the flow structure behind a closing globe valve at TU Munich, and finally (4) mixing studies in single-phase flow at the ROCOM test facility in Rossendorf, which are aimed at the mixing of de-borated slugs during boron dilution transients. Results will be discussed on basis of animated data visualizations for all examples. The accuracy and the effect of the wire grids to the flow were investigated using a sensor built into a transparent channel. The comparison with the frames of a high-speed video camera have shown that the sensor acts as a bubble fragmenting obstacle. Nevertheless it was be proved, that the sensor signal represents the bubble geometry present in the upstream flow. (author)

  9. Wire-mesh sensors: an experimental tool for two-phase CDF model development and code validation

    International Nuclear Information System (INIS)

    Prasser, H.M.

    2004-01-01

    frequency is 2.5 kHz. In the meanwhile, a sensor of this kind has been constructed and successfully used in a hot steam-water flow at 70 bar and 286 deg. C. Experiments were carried out at a vertical test channel of 195 mm inner diameter, in which the distance between gas/steam injection and sensor can be varied in a wide range. Results will be presented. Some other prominent examples of the application of wire-mesh sensors will be given, like (1) the use of two wire-mesh sensors at the CIRCUS test facility of the University of Delft in the Netherlands for boiling water reactor stability studies, (2) the visualization of cavitation at fast-acting cut-off valves at the Pilot Plant Pipework test facility of Fraunhofer UMSICHT, Oberhausen, (3) the visualization of the flow structure behind a closing globe valve at TU Munich, and finally (4) mixing studies in single-phase flow at the ROCOM test facility in Rossendorf, which are aimed at the mixing of de-borated slugs during boron dilution transients. Results will be discussed on basis of animated data visualizations for all examples. The accuracy and the effect of the wire grids to the flow were investigated using a sensor built into a transparent channel. The comparison with the frames of a high-speed video camera have shown that the sensor acts as a bubble fragmenting obstacle. Nevertheless it was be proved, that the sensor signal represents the bubble geometry present in the upstream flow. (author)

  10. Wire chambers: Trends and alternatives

    Energy Technology Data Exchange (ETDEWEB)

    Regler, Meinhard

    1992-05-15

    The subtitle of this year's Vienna Wire Chamber Conference - 'Recent Trends and Alternative Techniques' - signalled that it covered a wide range of science and technology. While an opening Vienna talk by wire chamber pioneer Georges Charpak many years ago began 'Les funerailles des chambres a fils (the burial of wire chambers)', the contrary feeling this year was that wire chambers are very much alive!.

  11. A Flow Visualization Study of Laminar/Turbulent Transition in a Curved Channel

    Science.gov (United States)

    1987-03-01

    convected down- stream, to deform as shown in Figure 16. One possible arrangement of velocity vectors in the radial plane which could cause such a...Re 2231 KODAK RECORDING FEILD ASA 1,000 (f2.8, B) 10 ....... .... . . . . . . .. Figure C.33 IV-4 2100-2330 15 FEB 1987 8.0 % FLOW (rotameter) MEAN

  12. Making Data Flow Diagrams Accessible for Visually Impaired Students Using Excel Tables

    Science.gov (United States)

    Sauter, Vicki L.

    2015-01-01

    This paper addresses the use of Excel tables to convey information to blind students that would otherwise be presented using graphical tools, such as Data Flow Diagrams. These tables can supplement diagrams in the classroom when introducing their use to understand the scope of a system and its main sub-processes, on exams when answering questions…

  13. Using Dye Tracer for Visualization of Preferential Flow at Macro- and Microscales

    Czech Academy of Sciences Publication Activity Database

    Kodešová, R.; Němeček, K.; Kodeš, V.; Žigová, Anna

    2012-01-01

    Roč. 11, č. 1 (2012), s. 287-295 ISSN 1539-1663 R&D Projects: GA ČR GA526/08/0434 Institutional research plan: CEZ:AV0Z30130516 Keywords : dye tracer * preferential flow * soil types * macro- and microsccale Subject RIV: DF - Soil Science Impact factor: 2.200, year: 2012

  14. Visualization of an air-water interface on superhydrophobic surfaces in turbulent channel flows

    Science.gov (United States)

    Kim, Hyunseok; Park, Hyungmin

    2017-11-01

    In the present study, three-dimensional deformation of air-water interface on superhydrophobic surfaces in turbulent channel flows at the Reynolds numbers of Re = 3000 and 10000 is measured with RICM (Reflection Interference Contrast Microscopy) technique. Two different types of roughness feature of circular hole and rectangular grate are considered, whose depth is 20 μm and diameter (or width) is varied between 20-200 μm. Since the air-water interface is always at de-pinned state at the considered condition, air-water interface shape and its sagging velocity is maintained to be almost constant as time goes one. In comparison with the previous results under the laminar flow, due to turbulent characteristics of the flow, sagging velocity is much faster. Based on the measured sagging profiles, a modified model to describe the air-water interface dynamics under turbulent flows is suggested. Supported by City of Seoul through Seoul Urban Data Science Laboratory Project (Grant No 0660-20170004) administered by SNU Big Data Institute.

  15. An alternating direction algorithm for two-phase flow visualization using gamma computed tomography.

    Science.gov (United States)

    Xue, Qian; Wang, Huaxiang; Cui, Ziqiang; Yang, Chengyi

    2012-12-01

    In order to build high-speed imaging systems with low cost and low radiation leakage, the number of radioactive sources and detectors in the multiphase flow computed tomography (CT) system has to be limited. Moreover, systematic and random errors are inevitable in practical applications. The limited and corrupted measurement data have made the tomographic inversion process the most critical part in multiphase flow CT. Although various iterative reconstruction algorithms have been developed based on least squares minimization, the imaging quality is still inadequate for the reconstruction of relatively complicated bubble flow. This paper extends an alternating direction method (ADM), which is originally proposed in compressed sensing, to image two-phase flow using a low-energy γ-CT system. An l(1) norm-based regularization technique is utilized to treat the ill-posedness of the inverse problem, and the image reconstruction model is reformulated into one having partially separable objective functions, thereafter a dual-based ADM is adopted to solve the resulting problem. The feasibility is demonstrated in prototype experiments. Comparisons between the ADM and the conventional iterative algorithms show that the former has obviously improved the space resolution in reasonable time.

  16. Using the dye tracer for visualization of preferential flow in macro and micro-scale

    Czech Academy of Sciences Publication Activity Database

    Kodešová, R.; Němeček, K.; Kodeš, V.; Fér, M.; Jirků, V.; Nikodem, A.; Žigová, Anna; Jakšík, O.; Kočárek, M.

    2010-01-01

    Roč. 12, - (2010) ISSN 1029-7006. [European Geosciences Union General Assembly 2010. 02.05.2010-07.05.2010, Wienna] R&D Projects: GA ČR GA526/08/0434 Institutional research plan: CEZ:AV0Z30130516 Keywords : dye tracer * preferential flow * micromorphology Subject RIV: DF - Soil Science

  17. A quantitative flow visualization technique for on-site sport aerodynamics optimization

    NARCIS (Netherlands)

    Sciacchitano, A.; Caridi, G.; Scarano, F.

    2015-01-01

    Aerodynamics plays a crucial role in many speed sports, where races are often won by fractions of a second. A thorough understanding of the flow field around an athlete is of paramount importance to optimize the athletes’ posture, garment roughness and equipment shape to achieve the minimum

  18. A methodology for online visualization of the energy flow in a machine tool

    DEFF Research Database (Denmark)

    Mohammadi, Ali; Züst, Simon; Mayr, Josef

    2017-01-01

    the machining process and by this increasing its energy efficiency. This study intents to propose a method which has the capability of real-time monitoring of the entire energetic flows in a CNC machine tool including motors, pumps and cooling fluid. The structure of this approach is based on categorizing...

  19. Copper wire bonding

    CERN Document Server

    Chauhan, Preeti S; Zhong, ZhaoWei; Pecht, Michael G

    2014-01-01

    This critical volume provides an in-depth presentation of copper wire bonding technologies, processes and equipment, along with the economic benefits and risks.  Due to the increasing cost of materials used to make electronic components, the electronics industry has been rapidly moving from high cost gold to significantly lower cost copper as a wire bonding material.  However, copper wire bonding has several process and reliability concerns due to its material properties.  Copper Wire Bonding book lays out the challenges involved in replacing gold with copper as a wire bond material, and includes the bonding process changes—bond force, electric flame off, current and ultrasonic energy optimization, and bonding tools and equipment changes for first and second bond formation.  In addition, the bond–pad metallurgies and the use of bare and palladium-coated copper wires on aluminum are presented, and gold, nickel and palladium surface finishes are discussed.  The book also discusses best practices and re...

  20. Characterization and optimization of the visualization performance of continuous flow overhauser DNP hyperpolarized water MRI: Inversion recovery approach.

    Science.gov (United States)

    Terekhov, Maxim; Krummenacker, Jan; Denysenkov, Vasyl; Gerz, Kathrin; Prisner, Thomas; Schreiber, Laura Maria

    2016-03-01

    Overhauser dynamic nuclear polarization (DNP) allows the production of liquid hyperpolarized substrate inside the MRI magnet bore as well as its administration in continuous flow mode to acquire MR images with enhanced signal-to-noise ratio. We implemented inversion recovery preparation in order to improve contrast-to-noise ratio and to quantify the overall imaging performance of Overhauser DNP-enhanced MRI. The negative enhancement created by DNP in combination with inversion recovery (IR) preparation allows canceling selectively the signal originated from Boltzmann magnetization and visualizing only hyperpolarized fluid. The theoretical model describing gain of MR image intensity produced by steady-state continuous flow DNP hyperpolarized magnetization was established and proved experimentally. A precise quantification of signal originated purely from DNP hyperpolarization was achieved. A temperature effect on longitudinal relaxation had to be taken into account to fit experimental results with numerical prediction. Using properly adjusted IR preparation, the complete zeroing of thermal background magnetization was achieved, providing an essential increase of contrast-to-noise ratio of DNP-hyperpolarized water images. To quantify and optimize the steady-state conditions for MRI with continuous flow DNP, an approach similar to that incorporating transient-state thermal magnetization equilibrium in spoiled fast field echo imaging sequences can be used. © 2015 Wiley Periodicals, Inc.

  1. The Visualization of the flow field Using Lidar's Range Detection and Digital Image Correlation

    International Nuclear Information System (INIS)

    Park, Nak-Gyu; Baik, Seung-Hoon; Park, Seung-Kyu; Kim, Dong-lyul; Ahn, Yong-Jin

    2015-01-01

    In this paper however we focused on flow velocity, visualization measurement. Using cameras one is able to collect large amount of spatial flow structure data in a very short time. Image data is further processed to determine velocity fields and other flow properties. Therefore, we tried to find a way to measure change of image and to apply it to the lidar technique, which is a powerful technique in the field of climate study and we have an interest in the digital image correlation (DIC). Among the DIC algorithms, the sum of squared differences (SSD) method is a way to track the sub-set image in different images. We used this algorithm for tracking the same point in different moving smoke images. For the lidar system, we used an injection seeded pulsed Nd:YAG laser as the transmitter and an photon multiplier tube (PMT) as the laser light sensor to measure the distance to the target clouds. We used the DIC system to track the smoke image and calculate the actual displacement per unit time. The configured lidar system acquired the lidar signal of smoke at a distance of about 150m. The developed fast correlation algorithm of the DIC, which is used to track the fast moving smoke relatively, was efficient to measure the smoke velocity in real time

  2. Flow visualization of a monoleaflet and bileaflet mechanical heart valve in a pneumatic ventricular assist device using a PIV system.

    Science.gov (United States)

    Lee, Hwansung; Tatsumi, Eisuke; Taenaka, Yoshiyuki

    2010-01-01

    Our group is developing a new type of pulsatile pneumatic ventricular assist device (PVAD) that uses the Medtronic Hall tilting disc valve (M-H valve). Although tilting disc valves have good washout effect inside the blood pump, they are no longer in common clinical use and may be difficult to obtain in the future. To investigate the stability of the Sorin Bicarbon valve (S-B valve) in our PVAD, we constructed a model pump made of an acrylic resin with the same configuration as our PVAD and attempted to compare the flow visualization upstream and downstream of the outlet position valve between the M-H valve and the S-B valve using a particle image velocimetry (PIV) method. The outlet S-B valve had faster closure than the M-H valve. The maximum flow velocity was greater than with the M-H valve. The maximum Reynolds shear stress (RSS) of the M-H valve reached 150 N/m(2) and that of the S-B valve reached 300 N/m(2) upstream during the end-systolic and early-diastolic phases. In both valves, the maximum RSS upstream of the valve was higher than downstream of the valve because of the regurgitation flow during valve closure. In addition, the maximum viscous shear stress reached above 2 N/m(2), which occupied only about 1%-1.5% of the maximum RSS.

  3. Real-time coloured visualization of phase flows by the schlieren method

    Science.gov (United States)

    Arbuzov, V. A.; Dubnistchev, Yu. N.

    1991-04-01

    A coloured real-time visualizer of optical inhomogeneities comprising a bichromatic schlieren system, video camera and colour monitor has been developed. The schlieren system represents a function Foucault-Hilbert transformation provided with an amplitude spatial frequency filter, or a quadrant Foucault knife edge. Two colour-coded complementary Toepler-grams are obtained in the exit plane of this schlieren system. Their summed image is then recorded by the video camera and displayed on the screen of the colour monitor. The schlieren photograph of internal gravity waves, generated by the cylindrical body motion in the reservoir filled with the stratified liquid, is presented.

  4. The role of step-flow dynamics in interface roughening and in the spontaneous formation of InGaAs/InP wire-like arrays

    International Nuclear Information System (INIS)

    Cox, H.M.; Aspnes, D.E.; Allen, S.J.; Bastos, P.; Hwang, D.M.; Mahajan, S.; Shahid, M.A.; Morais, P.C.

    1990-06-01

    We investigate a morphological instability that causes an InGaAs/InP multiquantum well structure grown on a vicinal (001)InP surface to spontaneously evolve into an array of InGaAs quasi-one-dimensional filaments buried in an InP matrix. To explain this behavior, we propose a step-flow growth model involving different lateral growth velocities for heteroepitaxy and homoepitaxy. A computer simulation based on the model agrees closely with experiment. (author)

  5. Laser sheet light flow visualization for evaluating room air flowsfrom Registers

    Energy Technology Data Exchange (ETDEWEB)

    Walker, Iain S.; Claret, Valerie; Smith, Brian

    2006-04-01

    Forced air heating and cooling systems and whole house ventilation systems deliver air to individual rooms in a house via supply registers located on walls ceilings or floors; and occasionally less straightforward locations like toe-kicks below cabinets. Ideally, the air velocity out of the registers combined with the turbulence of the flow, vectoring of air by register vanes and geometry of register placement combine to mix the supply air within the room. A particular issue that has been raised recently is the performance of multiple capacity and air flow HVAC systems. These systems vary the air flow rate through the distribution system depending on the system load, or if operating in a ventilation rather than a space conditioning mode. These systems have been developed to maximize equipment efficiency, however, the high efficiency ratings do not include any room mixing effects. At lower air flow rates, there is the possibility that room air will be poorly mixed, leading to thermal stratification and reduced comfort for occupants. This can lead to increased energy use as the occupants adjust the thermostat settings to compensate and parts of the conditioned space have higher envelope temperature differences than for the well mixed case. In addition, lack of comfort can be a barrier to market acceptance of these higher efficiency systems To investigate the effect on room mixing of reduced air flow rates requires the measurement of mixing of supply air with room air throughout the space to be conditioned. This is a particularly difficult exercise if we want to determine the transient performance of the space conditioning system. Full scale experiments can be done in special test chambers, but the spatial resolution required to fully examine the mixing problem is usually limited by the sheer number of thermal sensors required. Current full-scale laboratory testing is therefore severely limited in its resolution. As an alternative, we used a water-filled scale model

  6. Evanescent-Wave Visualizations of the Viscous Sublayer in Turbulent Channel Flow

    Science.gov (United States)

    2015-09-02

    SECURITY CLASSIFICATION OF: The study of wall turbulence dates back more than a century. Recently, however, a number of studies suggest that the flow...in the inner region (i.e., the viscous sublayer and buffer layer) is not “universal”—and actually depends upon the specific type of wall turbulence ...Many of these new insights on wall turbulence are recent because we have only recently developed the experimental techniques, such as volumetric

  7. An experimental study of fluidization behavior using flow visualization and image processing

    International Nuclear Information System (INIS)

    Laan, Flavio T. van der; Sefidvash, Farhang; Cornelius, Vanderli

    2000-01-01

    A program of experimental study of fluidization of heavy spherical pellets with water using image processing technique has been started in the Nuclear Engineering Department of the Federal University of Rio Grande do Sul. Fluidization for application in nuclear reactors requires very detailed knowledge of its behavior as the reactivity is closely dependent on the porosity of the fluidized bed. A small modular nuclear reactor concept with suspended core is under study. A modified version of the reactor involves the choice of is to make conical the shape of the reactor core to produce a non-fluctuating bed and consequently guarantee the dynamic stability of the reactor. A 5 mm diameter steel ball are fluidized with water in a conical Plexiglass tube. A pump circulate the water in a loop feeding the room temperature water from the tank into the fluidization system and returning it back to the tank. A controllable valve controls the flow velocity. A high velocity digital CCD camera captures the images of the pellets moving in the fluidized tube. At different flow velocities, the individual pellets can be tracked by processing the sequential frames. A DVT digital tape record stores the images and by acquisition through interface board into a microcomputer. A special program process the data later on. Different algorithm of image treatment determines the velocity fields of the pellets. The behavior of the pellets under different flow velocity and porosity are carefully studied. (author)

  8. A fluorometric lateral flow assay for visual detection of nucleic acids using a digital camera readout.

    Science.gov (United States)

    Magiati, Maria; Sevastou, Areti; Kalogianni, Despina P

    2018-06-04

    A fluorometric lateral flow assay has been developed for the detection of nucleic acids. The fluorophores phycoerythrin (PE) and fluorescein isothiocyanate (FITC) were used as labels, while a common digital camera and a colored vinyl-sheet, acting as a cut-off optical filter, are used for fluorescence imaging. After DNA amplification by polymerase chain reaction (PCR), the biotinylated PCR product is hybridized to its complementary probe that carries a poly(dA) tail at 3΄ edge and then applied to the lateral flow strip. The hybrids are captured to the test zone of the strip by immobilized poly(dT) sequences and detected by streptavidin-fluorescein and streptavidin-phycoerythrin conjugates, through streptavidin-biotin interaction. The assay is widely applicable, simple, cost-effective, and offers a large multiplexing potential. Its performance is comparable to assays based on the use of streptavidin-gold nanoparticles conjugates. As low as 7.8 fmol of a ssDNA and 12.5 fmol of an amplified dsDNA target were detectable. Graphical abstract Schematic presentation of a fluorometric lateral flow assay based on fluorescein and phycoerythrin fluorescent labels for the detection of single-stranded (ssDNA) and double-stranded DNA (dsDNA) sequences and using a digital camera readout. SA: streptavidin, BSA: Bovine Serum Albumin, B: biotin, FITC: fluorescein isothiocyanate, PE: phycoerythrin, TZ: test zone, CZ: control zone.

  9. Ground-based PIV and numerical flow visualization results from the Surface Tension Driven Convection Experiment

    Science.gov (United States)

    Pline, Alexander D.; Werner, Mark P.; Hsieh, Kwang-Chung

    1991-01-01

    The Surface Tension Driven Convection Experiment (STDCE) is a Space Transportation System flight experiment to study both transient and steady thermocapillary fluid flows aboard the United States Microgravity Laboratory-1 (USML-1) Spacelab mission planned for June, 1992. One of the components of data collected during the experiment is a video record of the flow field. This qualitative data is then quantified using an all electric, two dimensional Particle Image Velocimetry (PIV) technique called Particle Displacement Tracking (PDT), which uses a simple space domain particle tracking algorithm. Results using the ground based STDCE hardware, with a radiant flux heating mode, and the PDT system are compared to numerical solutions obtained by solving the axisymmetric Navier Stokes equations with a deformable free surface. The PDT technique is successful in producing a velocity vector field and corresponding stream function from the raw video data which satisfactorily represents the physical flow. A numerical program is used to compute the velocity field and corresponding stream function under identical conditions. Both the PDT system and numerical results were compared to a streak photograph, used as a benchmark, with good correlation.

  10. Perceived change in orientation from optic flow in the central visual field

    Science.gov (United States)

    Dyre, Brian P.; Andersen, George J.

    1988-01-01

    The effects of internal depth within a simulation display on perceived changes in orientation have been studied. Subjects monocularly viewed displays simulating observer motion within a volume of randomly positioned points through a window which limited the field of view to 15 deg. Changes in perceived spatial orientation were measured by changes in posture. The extent of internal depth within the display, the presence or absence of visual information specifying change in orientation, and the frequency of motion supplied by the display were examined. It was found that increased sway occurred at frequencies equal to or below 0.375 Hz when motion at these frequencies was displayed. The extent of internal depth had no effect on the perception of changing orientation.

  11. Visualization of Two Phase Natural Convection Flow in a Vertical Pipe using the Sulfuric Acid - Copper Sulfate Electroplating System

    Energy Technology Data Exchange (ETDEWEB)

    Ohk, Seung-Min; Chae, Myeong-Seon; Chung, Bum-Jin [Kyung Hee Univ., Yongin (Korea, Republic of)

    2014-10-15

    The passive containment cooling system (PCCS) driven by natural forces convection gain draws research interests after Fukushima NPP accident. The PCCS was classified into three categories: Containment pressure suppression, Containment passive heat removal/pressure suppression systems and Passive containment spray. Among the types of containment passive heat removal/pressure suppression systems, the system composed of an internal heat exchanger and an external coolant tank is considered. In a severe accident condition, the heat from the containment atmosphere is transferred to the outer surface of the heat exchanger by the convection and condensation of the mixture of steam and gases. On the other hand, the heat is transferred to external pool by single phase or two phase natural convection inside of heat exchanger pipes. The study aimed at investigating the influence of the diameter (D) and height (H) of the heat exchanger pipes on the single phase and two phase natural convection heat transfer. As the initial stage of the study, the two phase natural convection flow inside a vertical pipe is visualized. In order to achieve the aim with ample test rig, a sulfuric acid - cooper sulfate electroplating system was employed based on the analogy between heat and mass transfer. The reduction of hydrogen ion at the cathode surface at high potential was used to simulate the boiling phenomena. This study tried to visualize the boiling heat transfer inside a vertical pipe using a cupric acid-copper sulfate (H{sub 2}SO{sub 4}-CuSO{sub 4}) electroplating system. This seems to be successful so far. However further study has to be done to compare the result with real two phase flow situation. The surface tension and surface characteristics are to be tuned to simulate the real situation.

  12. Does manipulating the speed of visual flow in virtual reality change distance estimation while walking in Parkinson's disease?

    Science.gov (United States)

    Ehgoetz Martens, Kaylena A; Ellard, Colin G; Almeida, Quincy J

    2015-03-01

    Although dopaminergic replacement therapy is believed to improve sensory processing in PD, while delayed perceptual speed is thought to be caused by a predominantly cholinergic deficit, it is unclear whether sensory-perceptual deficits are a result of corrupt sensory processing, or a delay in updating perceived feedback during movement. The current study aimed to examine these two hypotheses by manipulating visual flow speed and dopaminergic medication to examine which influenced distance estimation in PD. Fourteen PD and sixteen HC participants were instructed to estimate the distance of a remembered target by walking to the position the target formerly occupied. This task was completed in virtual reality in order to manipulate the visual flow (VF) speed in real time. Three conditions were carried out: (1) BASELINE: VF speed was equal to participants' real-time movement speed; (2) SLOW: VF speed was reduced by 50 %; (2) FAST: VF speed was increased by 30 %. Individuals with PD performed the experiment in their ON and OFF state. PD demonstrated significantly greater judgement error during BASELINE and FAST conditions compared to HC, although PD did not improve their judgement error during the SLOW condition. Additionally, PD had greater variable error during baseline compared to HC; however, during the SLOW conditions, PD had significantly less variable error compared to baseline and similar variable error to HC participants. Overall, dopaminergic medication did not significantly influence judgement error. Therefore, these results suggest that corrupt processing of sensory information is the main contributor to sensory-perceptual deficits during movement in PD rather than delayed updating of sensory feedback.

  13. Experimental Visualizations of a Generic Launch Vehicle Flow Field: Time-Resolved Shadowgraph and Infrared Imaging

    Science.gov (United States)

    Garbeff, Theodore J., II; Panda, Jayanta; Ross, James C.

    2017-01-01

    Time-Resolved shadowgraph and infrared (IR) imaging were performed to investigate off-body and on-body flow features of a generic, 'hammer-head' launch vehicle geometry previously tested by Coe and Nute (1962). The measurements discussed here were one part of a large range of wind tunnel test techniques that included steady-state pressure sensitive paint (PSP), dynamic PSP, unsteady surface pressures, and unsteady force measurements. Image data was captured over a Mach number range of 0.6 less than or equal to M less than or equal to 1.2 at a Reynolds number of 3 million per foot. Both shadowgraph and IR imagery were captured in conjunction with unsteady pressures and forces and correlated with IRIG-B timing. High-speed shadowgraph imagery was used to identify wake structure and reattachment behind the payload fairing of the vehicle. Various data processing strategies were employed and ultimately these results correlated well with the location and magnitude of unsteady surface pressure measurements. Two research grade IR cameras were positioned to image boundary layer transition at the vehicle nose and flow reattachment behind the payload fairing. The poor emissivity of the model surface treatment (fast PSP) proved to be challenging for the infrared measurement. Reference image subtraction and contrast limited adaptive histogram equalization (CLAHE) were used to analyze this dataset. Ultimately turbulent boundary layer transition was observed and located forward of the trip dot line at the model sphere-cone junction. Flow reattachment location was identified behind the payload fairing in both steady and unsteady thermal data. As demonstrated in this effort, recent advances in high-speed and thermal imaging technology have modernized classical techniques providing a new viewpoint for the modern researcher

  14. Visualization of the flow in a cylindrical container with a rotating disk

    Science.gov (United States)

    Imahoko, Ryoki; Kurakata, Hiroki; Sakakibara, Jun

    2017-11-01

    We studied a behavior of the flow in a cylindrical container with a rotating disk. The apparatus consists of a fixed cylindrical container of the inner diameter of 140 mm and height H, and a coaxial rotating disc with a diameter of 140 mm connected with a cylindrical shaft driven by an electrical motor. The radial gap between rotating disk and side wall is very slight distance. The height H is variable up to 100 mm. The velocity distribution in the container was measured by means of particle image velocimetry (PIV). The results of this experiments will be discussed at the conference.

  15. Drag Reduction CFD Simulations and Flow Visualization of Light Vehicle-Trailer Systems

    Science.gov (United States)

    Sigurdson, Lorenz; Boyer, Henry; Lange, Carlos F.

    2016-11-01

    Experiments and CFD were performed to study the effect a deflector had on the flow and drag force associated with a 2010 F-150 truck and cargo trailer Light Vehicle-Trailer System (LVTS). Image Correlation Velocimetry (ICV) on smokewire streaklines measured the velocity field on the model mid-plane. CFD estimated the drag reduction as 13% at a Re of 14,900 with a moving ground-plane, and 17% without. Experiments suggested that the low Re does not diminish the full-scale relevance of the drag reduction results. One low Re effect was the presence of a separation bubble on the hood of the tow vehicle whose size reduced with an increase in Re. Three other characteristic flow patterns were identified: separation off the lead vehicle cab, stagnation of the free-stream on the trailer face for the no-deflector case, and subsequent separation at the trailer front corner. Comparisons of the ICV and CFD results with no deflector indicated good agreement in the direction of the velocity vectors, and the smoke streaklines and CFD streamlines also agreed well. However, for the deflector case, the CFD found an entirely different topological solution absent in the experiment. A pair of vertically-oriented mid-plane vortices were wrapped around the front of the trailer. Support from the Canadian Natural Sciences and Engineering Research Council Grant 41747 is gratefully acknowledged.

  16. Visualizing the flow of evidence in network meta-analysis and characterizing mixed treatment comparisons.

    Science.gov (United States)

    König, Jochem; Krahn, Ulrike; Binder, Harald

    2013-12-30

    Network meta-analysis techniques allow for pooling evidence from different studies with only partially overlapping designs for getting a broader basis for decision support. The results are network-based effect estimates that take indirect evidence into account for all pairs of treatments. The results critically depend on homogeneity and consistency assumptions, which are sometimes difficult to investigate. To support such evaluation, we propose a display of the flow of evidence and introduce new measures that characterize the structure of a mixed treatment comparison. Specifically, a linear fixed effects model for network meta-analysis is considered, where the network estimates for two treatments are linear combinations of direct effect estimates comparing these or other treatments. The linear coefficients can be seen as the generalization of weights known from classical meta-analysis. We summarize properties of these coefficients and display them as a weighted directed acyclic graph, representing the flow of evidence. Furthermore, measures are introduced that quantify the direct evidence proportion, the mean path length, and the minimal parallelism of mixed treatment comparisons. The graphical display and the measures are illustrated for two published network meta-analyses. In these applications, the proposed methods are seen to render transparent the process of data pooling in mixed treatment comparisons. They can be expected to be more generally useful for guiding and facilitating the validity assessment in network meta-analysis. Copyright © 2013 John Wiley & Sons, Ltd.

  17. Schlieren Visualization of the Energy Addition by Multi Laser Pulse in Hypersonic Flow

    International Nuclear Information System (INIS)

    Oliveira, A. C.; Minucci, M. A. S.; Toro, P. G. P.; Chanes, J. B. Jr; Myrabo, L. N.

    2008-01-01

    The experimental results of the energy addition by multi laser pulse in Mach 7 hypersonic flow are presented. Two high power pulsed CO 2 TEA lasers (TEA1 5.5 J, TEA2 3.9 J) were assembled sharing the same optical cavity to generate the plasma upstream of a hemispherical model installed in the tunnel test section. The lasers can be triggered with a selectable time delay and in the present report the results obtained with delay between 30 μs and 80 μs are shown. The schlieren technique associated with a high speed camera was used to accomplish the influence of the energy addition in the mitigation of the shock wave formed on the model surface by the hypersonic flow. A piezoelectric pressure transducer was used to obtain the time history of the impact pressure at stagnation point of the model and the pressure reduction could be measured. The total recovery of the shock wave between pulses as well as the prolonged effect of the mitigation without recovery was observed by changing the delay

  18. Simulation and Visualization of Flows Laden with Cylindrical Nanoparticles in a Mixing Layer

    Directory of Open Access Journals (Sweden)

    Wenqian Lin

    2018-01-01

    Full Text Available The motion of cylindrical particles in a mixing layer is studied using the pseudospectral method and discrete particle model. The effect of the Stokes number and particle aspect ratio on the mixing and orientation distribution of cylindrical particles is analyzed. The results show that the rollup of mixing layer drives the particles to the edge of the vortex by centrifugal force. The cylindrical particles with the small Stokes number almost follow fluid streamlines and are mixed thoroughly, while those with the large Stokes number, centrifugalized and accumulated at the edge of the vortex, are poorly mixed. The mixing degree of particles becomes worse as the particle aspect ratio increases. The cylindrical particles would change their orientation under two torques and rotate around their axis of revolution aligned to the vorticity direction when the shear rate is low, while aligning on the flow-gradient plane beyond a critical shear rate value. More particles are oriented with the flow direction, and this phenomenon becomes more obvious with the decrease of the Stokes number and particle aspect ratio.

  19. Visual attention.

    Science.gov (United States)

    Evans, Karla K; Horowitz, Todd S; Howe, Piers; Pedersini, Roccardo; Reijnen, Ester; Pinto, Yair; Kuzmova, Yoana; Wolfe, Jeremy M

    2011-09-01

    A typical visual scene we encounter in everyday life is complex and filled with a huge amount of perceptual information. The term, 'visual attention' describes a set of mechanisms that limit some processing to a subset of incoming stimuli. Attentional mechanisms shape what we see and what we can act upon. They allow for concurrent selection of some (preferably, relevant) information and inhibition of other information. This selection permits the reduction of complexity and informational overload. Selection can be determined both by the 'bottom-up' saliency of information from the environment and by the 'top-down' state and goals of the perceiver. Attentional effects can take the form of modulating or enhancing the selected information. A central role for selective attention is to enable the 'binding' of selected information into unified and coherent representations of objects in the outside world. In the overview on visual attention presented here we review the mechanisms and consequences of selection and inhibition over space and time. We examine theoretical, behavioral and neurophysiologic work done on visual attention. We also discuss the relations between attention and other cognitive processes such as automaticity and awareness. WIREs Cogni Sci 2011 2 503-514 DOI: 10.1002/wcs.127 For further resources related to this article, please visit the WIREs website. Copyright © 2011 John Wiley & Sons, Ltd.

  20. Visualizing Current Flow at the Mesoscale in Disordered Assemblies of Touching Semiconductor Nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Qinyi; Guest, Jeffrey R. [Center; Thimsen, Elijah

    2017-07-12

    The transport of electrons through assemblies of nanocrystals is important to performance in optoelectronic applications for these materials. Previous work has primarily focused on single nanocrystals or transitions between pairs of nanocrystals. There is a gap in knowledge of how large numbers of nanocrystals in an assembly behave collectively, and how this collective behavior manifests at the mesoscale. In this work, the variable range hopping (VRH) transport of electrons in disordered assemblies of touching, heavily doped ZnO nanocrystals was visualized at the mesoscale as a function of temperature both theoretically, using the model of Skinner, Chen and Shklovskii (SCS), and experimentally, with conductive atomic force microscopy on ultrathin films only a few particle layers thick. Agreement was obtained between the model and experiments, with a few notable exceptions. The SCS model predicts that a single network within the nanocrystal assembly, comprised of sites connected by small resistances, dominates conduction - namely the optimum band from variable range hopping theory. However, our experiments revealed that in addition to the optimum band, there are subnetworks that appear as additional peaks in the resistance histogram of conductive atomic force microscopy (CAFM) maps. Furthermore, the connections of these subnetworks to the optimum band change in time, such that some subnetworks become connected to the optimum band while others become disconnected and isolated from the optimum band; this observation appears to be an experimental manifestation of the ‘blinking’ phenomenon in our images of mesoscale transport.

  1. Robust Detection and Visualization of Jet-Stream Core Lines in Atmospheric Flow.

    Science.gov (United States)

    Kern, Michael; Hewson, Tim; Sadlo, Filip; Westermann, Rudiger; Rautenhaus, Marc

    2018-01-01

    Jet-streams, their core lines and their role in atmospheric dynamics have been subject to considerable meteorological research since the first half of the twentieth century. Yet, until today no consistent automated feature detection approach has been proposed to identify jet-stream core lines from 3D wind fields. Such 3D core lines can facilitate meteorological analyses previously not possible. Although jet-stream cores can be manually analyzed by meteorologists in 2D as height ridges in the wind speed field, to the best of our knowledge no automated ridge detection approach has been applied to jet-stream core detection. In this work, we -a team of visualization scientists and meteorologists-propose a method that exploits directional information in the wind field to extract core lines in a robust and numerically less involved manner than traditional 3D ridge detection. For the first time, we apply the extracted 3D core lines to meteorological analysis, considering real-world case studies and demonstrating our method's benefits for weather forecasting and meteorological research.

  2. Deflection tomography of a complex flow field based on the visualization of projection array

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Bin; Miao Zhanli, E-mail: zb-sh@163.com [College of Electromechanical Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266061 (China)

    2011-02-01

    Tomographic techniques are used for the investigation of complex flow fields by means of deflectometric methods. A new deflection tomographic setup for obtaining an array of multidirectional deflectograms is presented. Deflection projections in different angles of view can be captured synchronously in same optical path condition and arranged on the camera in two rows with three views in each row. Tikhonov regularization method is used to reconstruct temperature distribution from deflectometric projection data. The conjugate gradient method is used to compute the regularized solution for the least-square equations. The asymmetric flame temperature distribution in the horizontal section was reconstructed from limited view angle projections. The experimental results of reconstruction from real projection data were satisfactory when compared with the direct thermocouple measurements.

  3. Flow visualization and simulation of the filling process during injection molding

    DEFF Research Database (Denmark)

    Guerrier, Patrick; Tosello, Guido; Hattel, Jesper Henri

    2017-01-01

    To directly compare experimental moldings from an injection molding machine with simulations, a special mold has been produced with a glass window. The injection plane is perpendicular to the opening and closing planes, in order for the 55. mm thick glass window to be easily visible from the side....... These two had significant effects on the filling times and injection pressure calculated by the simulations. Other effects investigated included transient thermal management of the mold, pressure dependent viscosity and wall slip, but their effect were not remarkably large in this work. The obtained....... A high speed camera recording 500 frames per second was employed, and the mold had three thermocouples and two pressure sensors installed. The molded part is a 2. mm thick plate with a 0.5. mm thin section, which creates a characteristic V-shaped flow pattern. Two different materials were employed...

  4. Preliminary Single-Phase Mixing Test using Wire Mesh System in a wire-wrapped 37-rod Bundle

    International Nuclear Information System (INIS)

    Bae, Hwang; Kim, Hyungmo; Lee, Dong Won; Choi, Hae Seob; Choi, Sun Rock; Chang, Seokkyu; Kim, Seok; Euh, Dongjin; Lee, Hyeongyeon

    2014-01-01

    In this paper, preliminary tests of the wire-mesh sensor are introduced before measuring of mixing coefficient in the wire-wrapped 37-pin fuel assembly for a sodium-cooled fast reactor. Through this preliminary test, it was confirmed that city water can be used as a tracer for demineralized water as a base. A simple test was performed to evaluate the characteristics of a wire mesh with of a short pipe shape. The conductivity of de-mineralized water and city water is linearly increased for the limited temperature ranges as the temperature is increased. The reliability of the wire mesh sensor was estimated based on the averages and standard deviations of the plane image using the cross points. A wire mesh sensor is suitable to apply to a single-phase flow measurement for a mixture with de-mineralized water and city water. A wire mesh sensor and system have been traditionally used to measure the void fraction of a two-phase flow field with gas and liquid. Recently, Ylonen et al. successfully designed and commissioned a measurement system for a single-phase flow using a wire mesh sensor

  5. Post-explant visualization of thrombi in outflow grafts and their junction to a continuous-flow total artificial heart using a high-definition miniaturized camera.

    Science.gov (United States)

    Karimov, Jamshid H; Horvath, David; Sunagawa, Gengo; Byram, Nicole; Moazami, Nader; Golding, Leonard A R; Fukamachi, Kiyotaka

    2015-12-01

    Post-explant evaluation of the continuous-flow total artificial heart in preclinical studies can be extremely challenging because of the device's unique architecture. Determining the exact location of tissue regeneration, neointima formation, and thrombus is particularly important. In this report, we describe our first successful experience with visualizing the Cleveland Clinic continuous-flow total artificial heart using a custom-made high-definition miniature camera.

  6. Wired to freedom

    DEFF Research Database (Denmark)

    Jepsen, Kim Sune Karrasch; Bertilsson, Margareta

    2017-01-01

    dimension of life science through a notion of public politics adopted from the political theory of John Dewey. We show how cochlear implantation engages different social imaginaries on the collective and individual levels and we suggest that users share an imaginary of being “wired to freedom” that involves...... new access to social life, continuous communicative challenges, common practices, and experiences. In looking at their lives as “wired to freedom,” we hope to promote a wider spectrum of civic participation in the benefit of future life science developments within and beyond the field of Cochlear...

  7. Electric wiring domestic

    CERN Document Server

    Coker, A J

    1992-01-01

    Electric Wiring: Domestic, Tenth Edition, is a clear and reliable guide to the practical aspects of domestic electric wiring. Intended for electrical contractors, installation engineers, wiremen and students, its aim is to provide essential up to date information on modern methods and materials in a simple, clear, and concise manner. The main changes in this edition are those necessary to bring the work into line with the 16th Edition of the Regulations for Electrical Installations issued by the Institution of Electrical Engineers. The book begins by introducing the basic features of domestic

  8. Modern wiring practice

    CERN Document Server

    Steward, W E

    2012-01-01

    Continuously in print since 1952, Modern Wiring Practice has now been fully revised to provide an up-to-date source of reference to building services design and installation in the 21st century. This compact and practical guide addresses wiring systems design and electrical installation together in one volume, creating a comprehensive overview of the whole process for contractors and architects, as well as electricians and other installation engineers. Best practice is incorporated throughout, combining theory and practice with clear and accessible explanation, all

  9. Visualization and measurement of gas-liquid metal two-phase flow with large density difference using thermal neutrons as microscopic probes

    International Nuclear Information System (INIS)

    Saito, Y.; Hibiki, T.; Mishima, K.; Nishihara, H.; Yamamoto, A.; Kanda, K.; Tobita, Y.; Konishi, K.; Matsubayashi, M.

    1998-01-01

    In a core melt accident of a fast breeder reactor there is a possibility of boiling of fuel-steel mixture in the containment pool. In relation to safety evaluation on severe accident, it is indispensable to evaluate the recriticality of melted core. Gas-liquid two-phase flow with a large density difference is formed due to the boiling of fuel-steel mixture. Although the large density difference may affect the basic characteristics of two-phase flow, little work has been performed so far on two-phase flow with large density difference has not been performed well. In this study, visualization and void fraction measurement of gas-liquid metal two-phase flow were performed by using neutron radiography. The effect of the large density difference between gas and liquid phases on the basic flow characteristics of two-phase flow was clarified. (author)

  10. Flow visualization and critical heat flux measurement of a boundary layer pool boiling process

    International Nuclear Information System (INIS)

    Cheung, F.B.; Haddad, K.H.; Liu, Y.C.; Shiah, S.W.

    1998-01-01

    As part of the effort to evaluate the concept of external passive cooling of core melt by cavity flooding under severe accident conditions, a subscale boundary layer boiling (SBLB) facility, consisting of a pressurized water tank with a condenser unit, a heated hemispherical test vessel, and a data acquisition/photographic system, was developed to simulate the boiling process on the external bottom surface of a fully submerged reactor vessel. Transient quenching and steady-state boiling experiments were conducted in the facility to measure the local critical heat flux (CHF) and observe the underlying mechanisms under well controlled saturated and subcooled conditions. Large elongated vapor slugs were observed in the bottom region of the vessel which gave rise to strong upstream influences in the resulting two-phase liquid-vapor boundary layer flow along the vessel outer surface. The local CHF values deduced from the transient quenching data appeared to be very close to those obtained in the steady-state boiling experiments. Comparison of the SBLB data was made with available 2-D full-scale data and the differences were found to be rather small except in a region near the bottom center of the vessel. The angular position of the vessel outer surface and the degree of subcooling of water had dominant effects on the local critical heat flux. They totally dwarfed the effect of the physical dimensions of the test vessels. (author)

  11. Radioactive Particle Tracking (RPT): The Powerful Industrial Radiotracer Techniques for Hydrodynamics and Flow Visualization Studies

    International Nuclear Information System (INIS)

    Mohd Amirul Syafiq Mohd Yunos

    2016-01-01

    Full text: Radioactive particle tracking (RPT) techniques have been widely applied in the field of chemical engineering, especially in hydrodynamics in multiphase reactors. This technique is widely used to monitor the motion of the flow inside a reactor by using a single radioactive particle tracer that is neutrally buoyant with respect to the phase is used as a tracker. The particle moves inside the volume of interest and its positions are determined by an array of scintillation detectors counting in coming photons. Particle position reconstruction algorithms have been traditionally used to map measured counts rate into the coordinates by solving a minimization problem between measured events and calibration data. RPT have been used to validate respective-scale CFD models to partial success. This presentation described an introduction to radioactive particle tracking and summarizing a history of such developments and the current state of this method in Malaysian Nuclear Agency, with a perspective towards the future and how these investigations may help scale-up developments. (author)

  12. Wired vs. Wireless.

    Science.gov (United States)

    Fielding, Randall

    2000-01-01

    Presents a debate on which technology will be in tomorrow's classrooms and the pros and cons of wiring classrooms and using a wireless network. Concluding comments address the likelihood, and desirability, of placing computers throughout the entire educational process and what types of computers and capabilities are needed. (GR)

  13. A World without Wires

    Science.gov (United States)

    Panettieri, Joseph C.

    2006-01-01

    The wireless bandwagon is rolling across Mississippi, picking up a fresh load of converts and turning calamity into opportunity. Traditional wired school networks, many of which unraveled during Hurricane Katrina, are giving way to advanced wireless mesh networks that frequently include voice-over-IP (VoIP) capabilities. Vendor funding is helping…

  14. 3D Wire 2015

    DEFF Research Database (Denmark)

    Jordi, Moréton; F, Escribano; J. L., Farias

    This document is a general report on the implementation of gamification in 3D Wire 2015 event. As the second gamification experience in this event, we have delved deeply in the previous objectives (attracting public areas less frequented exhibition in previous years and enhance networking) and have...

  15. Wire chamber conference

    International Nuclear Information System (INIS)

    Bartl, W.; Neuhofer, G.; Regler, M.

    1986-02-01

    This booklet contains program and the abstracts of the papers presented at the conference, most of them dealing with performance testing of various types of wire chambers. The publication of proceedings is planned as a special issue of 'Nuclear instruments and methods' later on. All abstracts are in English. An author index for the book of abstracts is given. (A.N.)

  16. Preliminary review of mass transfer and flow visualization studies and techniques relevant to the study of erosion-corrosion of reactor piping systems

    International Nuclear Information System (INIS)

    Kuzay, T.M.; Halle, H.J.; Kasza, K.E.

    1988-06-01

    This report provides some background information on the failed piping at the Surry-2 reactor; a summary of pertinent literature on mass transfer in related geometries; and a description of methodologies for visualization and erosion rate measurements in laboratory model studies that can provide greater insight into the role of flow geometry in erosion-corrosion. 18 refs., 9 figs., 1 tab

  17. Preliminary review of mass transfer and flow visualization studies and techniques relevant to the study of erosion-corrosion of reactor piping systems

    Energy Technology Data Exchange (ETDEWEB)

    Kuzay, T.M.; Halle, H.J.; Kasza, K.E.

    1988-06-01

    This report provides some background information on the failed piping at the Surry-2 reactor; a summary of pertinent literature on mass transfer in related geometries; and a description of methodologies for visualization and erosion rate measurements in laboratory model studies that can provide greater insight into the role of flow geometry in erosion-corrosion. 18 refs., 9 figs., 1 tab.

  18. Using UML and Petri nets for visualization of business document flow

    Directory of Open Access Journals (Sweden)

    Ivana Rábová

    2012-01-01

    Full Text Available The article deals with two principles of business workflow modeling, Petri nets and UML notation, that are the acceptable approaches to business modeling and can be used also for business documents workflow. The special type of Petri nets, WF-nets and UML activity diagrams are used in this article and both modeling ways are presented on the concrete business workflow and then there are presented and specified their advantage and disadvantage for business documents flows. At beginning it is explained the word workflow in context business documents, its features, principles and using in business environment. After that it is clarified that the UML is OMG’s most-used specification, and the way the world models not only application structure, behavior, and architecture, but also business process, workflows and data structure. Activity diagram UML is good way to show how different workflows in the business are managed, how they start, go and stop. Diagrams also show many different decision paths that can be taken from start to finish. State charts can be used as a detail the transitions or changes of states when documents can go through in the business. They show how a documents moves from one state to another and the rules that govern that change. Petri-nets offer a graphical notation for stepwise processes that include choice, iteration, and concurrent execution. Unlike UML Petri nets have an exact mathematical definition of their execution semantics, with a well-developed mathematical theory for process analysis. In the article there are modeled a special type of Petri nets, the WF-nets. The practical part of article incorporates two models of concrete business documents workflows presented in these notations, their comparison and recommendation for using these diagrams in business process management.

  19. Wire EDM for Refractory Materials

    Science.gov (United States)

    Zellars, G. R.; Harris, F. E.; Lowell, C. E.; Pollman, W. M.; Rys, V. J.; Wills, R. J.

    1982-01-01

    In an attempt to reduce fabrication time and costs, Wire Electrical Discharge Machine (Wire EDM) method was investigated as tool for fabricating matched blade roots and disk slots. Eight high-strength nickel-base superalloys were used. Computer-controlled Wire EDM technique provided high quality surfaces with excellent dimensional tolerances. Wire EDM method offers potential for substantial reductions in fabrication costs for "hard to machine" alloys and electrically conductive materials in specific high-precision applications.

  20. Practical wiring in SI units

    CERN Document Server

    Miller, Henry A

    2013-01-01

    Practical Wiring, Volume 1 is a 13-chapter book that first describes some of the common hand tools used in connection with sheathed wiring. Subsequent chapters discuss the safety in wiring, cables, conductor terminations, insulating sheathed wiring, conductor sizes, and consumer's control equipments. Other chapters center on socket outlets, plugs, lighting subcircuits, lighting accessories, bells, and primary and secondary cells. This book will be very valuable to students involved in this field of interest.

  1. Wire chambers: Trends and alternatives

    International Nuclear Information System (INIS)

    Regler, Meinhard

    1992-01-01

    The subtitle of this year's Vienna Wire Chamber Conference - 'Recent Trends and Alternative Techniques' - signalled that it covered a wide range of science and technology. While an opening Vienna talk by wire chamber pioneer Georges Charpak many years ago began 'Les funerailles des chambres a fils (the burial of wire chambers)', the contrary feeling this year was that wire chambers are very much alive!

  2. A study of high alpha dynamics and flow visualization for a 2.5-percent model of the F-18 HARV undergoing wing rock

    Science.gov (United States)

    Quast, Thomas; Nelson, Robert C.; Fisher, David F.

    1991-01-01

    Free-to-roll experiments and flow visualization studies have been conducted for a 2.5-percent model of the F-18 undergoing unsteady wing rock oscillations. Data have been acquired in the form of roll angle time histories as well as video recordings and 35 mm photography of the forebody and leading edge extension vortices. The time histories were differentiated to produce angular velocity and angular acceleration. From this the roll moment as a function of time and/or roll angle could be estimated. A thorough analysis of the data has revealed a genuine wing-rock phenomenon. Off-surface flow visualization was used to identiify the forebody and LEX vortex core positions and their interaction in both static and dynamic configurations. A direct correlation between the dynamic data and visualized vortex activity during the wing-rock motion has been made.

  3. Thermal performance in circular tube fitted with coiled square wires

    International Nuclear Information System (INIS)

    Promvonge, Pongjet

    2008-01-01

    The effects of wires with square cross section forming a coil used as a turbulator on the heat transfer and turbulent flow friction characteristics in a uniform heat flux, circular tube are experimentally investigated in the present work. The experiments are performed for flows with Reynolds numbers ranging from 5000 to 25,000. Two different spring coiled wire pitches are introduced. The results are also compared with those obtained from using a typical coiled circular wire, apart from the smooth tube. The experimental results reveal that the use of coiled square wire turbulators leads to a considerable increase in heat transfer and friction loss over those of a smooth wall tube. The Nusselt number increases with the rise of Reynolds number and the reduction of pitch for both circular and square wire coils. The coiled square wire provides higher heat transfer than the circular one under the same conditions. Also, performance evaluation criteria to assess the real benefits in using both coil wires of the enhanced tube are determined

  4. Determination of separation efficiency in wire mesh mist eliminator by CFD

    International Nuclear Information System (INIS)

    Shen Shengqiang; Zhen Ni; Mu Xingsen

    2014-01-01

    On the assumption of the staggered array model, a numerical simulation of the vapor flow field in wire mesh mist eliminator along with the mechanism for droplet capture due to inertial impaction is presented in this paper. The efficiency of a single wire in the eliminator is computed in order that the efficiency of wire mesh mist eliminator can be calculated. The obtained efficiency is found to be within a reasonable agreement with the published literature data. The effect of wire diameter, pad thickness, packing fraction on the separation efficiency and the relation between Stk and the efficiency of a single wire is investigated. (authors)

  5. The coupling of cerebral blood flow and oxygen metabolism with brain activation is similar for simple and complex stimuli in human primary visual cortex.

    Science.gov (United States)

    Griffeth, Valerie E M; Simon, Aaron B; Buxton, Richard B

    2015-01-01

    Quantitative functional MRI (fMRI) experiments to measure blood flow and oxygen metabolism coupling in the brain typically rely on simple repetitive stimuli. Here we compared such stimuli with a more naturalistic stimulus. Previous work on the primary visual cortex showed that direct attentional modulation evokes a blood flow (CBF) response with a relatively large oxygen metabolism (CMRO2) response in comparison to an unattended stimulus, which evokes a much smaller metabolic response relative to the flow response. We hypothesized that a similar effect would be associated with a more engaging stimulus, and tested this by measuring the primary human visual cortex response to two contrast levels of a radial flickering checkerboard in comparison to the response to free viewing of brief movie clips. We did not find a significant difference in the blood flow-metabolism coupling (n=%ΔCBF/%ΔCMRO2) between the movie stimulus and the flickering checkerboards employing two different analysis methods: a standard analysis using the Davis model and a new analysis using a heuristic model dependent only on measured quantities. This finding suggests that in the primary visual cortex a naturalistic stimulus (in comparison to a simple repetitive stimulus) is either not sufficient to provoke a change in flow-metabolism coupling by attentional modulation as hypothesized, that the experimental design disrupted the cognitive processes underlying the response to a more natural stimulus, or that the technique used is not sensitive enough to detect a small difference. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Can visual assessment of blood flow patterns by dynamic contrast-enhanced computed tomography distinguish between malignant and benign lung tumors?

    DEFF Research Database (Denmark)

    Harders, Stefan Walbom; Madsen, Hans Henrik; Nellemann, Hanne Marie

    2017-01-01

    with suspected lung cancer and a lung tumor on their chest radiograph were included for DCE-CT. The tumors were categorized using structured qualitative analysis of tumor blood flow patterns. Histopathology was used as reference standard. RESULTS: Using structured qualitative analysis of tumor blood flow...... using structured qualitative analysis of tumor blood flow patterns is accurate as well as somewhat reproducible. However, there are significant limitations to DCE-CT.......BACKGROUND: Dynamic contrast-enhanced computed tomography (DCE-CT) is a tool, which, in theory, can quantify the blood flow and blood volume of tissues. In structured qualitative analysis, parametric color maps yield a visual impression of the blood flow and blood volume within the tissue being...

  7. Liquid-Metal/Water Direct Contact Heat Exchange: Flow Visualization, Flow Stability, and Heat Transfer Using Real-Time X-Ray Imaging

    International Nuclear Information System (INIS)

    Abdulla, Sherif H.; Liu Xin; Anderson, Mark H.; Bonazza, Riccardo; Corradini, Michael L.; Cho, Dae; Page, Richard

    2005-01-01

    Advanced reactor system designs are being considered with liquid-metal cooling connected to a steam power cycle. In addition, current reactor safety systems are considering auxiliary cooling schemes that assure ex-vessel debris coolability utilizing direct water injection into molten material pools to achieve core quenching and eventual coolability. The phenomenon common in both applications is direct contact heat exchange. The current study focuses on detailed measurements of liquid-metal/water direct contact heat exchange that is directly applicable to improvements in effective heat transfer in devices that are being considered for both of these purposes.In this study, a test facility was designed at the University of Wisconsin-Madison to map the operating range of liquid-metal/water direct contact heat exchange. The test section (184-cm height, 45.75-cm width, and 10-cm depth) is a rectangular slice of a larger heat exchange device. This apparatus was used not only to provide measurements of integral thermal performance (i.e., volumetric heat transfer coefficient), but also local heat transfer coefficients in a bubbly flow regime with X-ray imaging based on measured parameters such as bubble formation time, bubble rise velocity, and bubble diameters.To determine these local heat transfer coefficients, a complete methodology of the X-ray radiography for two-phase flow measurement has been developed. With this methodology, a high-energy X-ray imaging system is optimized for our heat exchange experiments. With this real-time, large-area, high-energy X-ray imaging system, the two-phase flow was quantitatively visualized. An efficient image processing strategy was developed by combining several optimal digital image-processing algorithms into a software computational tool written in MATLAB called T-XIP. Time-dependent heat transfer-related variables such as bubble volumes and velocities, were determined. Finally, an error analysis associated with these measurements

  8. Flow evolution of a turbulent submerged two-dimensional rectangular free jet of air. Average Particle Image Velocimetry (PIV) visualizations and measurements

    International Nuclear Information System (INIS)

    Gori, Fabio; Petracci, Ivano; Angelino, Matteo

    2013-01-01

    Highlights: • Zone of flow establishment contains a newly identified undisturbed region of flow. • In the undisturbed region of flow the velocity profile is similar to the exit one. • In undisturbed region of flow the height of average PIV visualizations is constant. • In the undisturbed region of flow the turbulence on the centerline is equal to exit. • Length of undisturbed region of flow decreases with Reynolds number increase. -- Abstract: The paper presents average flow visualizations and measurements, obtained with the Particle Image Velocimetry (PIV) technique, of a submerged rectangular free jet of air in the range of Reynolds numbers from Re = 35,300 to Re = 2200, where the Reynolds number is defined according to the hydraulic diameter of a rectangular slot of height H. According to the literature, just after the exit of the jet there is a zone of flow, called zone of flow establishment, containing the region of mixing fluid, at the border with the stagnant fluid, and the potential core, where velocity on the centerline maintains a value almost equal to the exit one. After this zone is present the zone of established flow or fully developed region. The goal of the paper is to show, with average PIV visualizations and measurements, that, before the zone of flow establishment is present a region of flow, never mentioned by the literature and called undisturbed region of flow, with a length, L U , which decreases with the increase of the Reynolds number. The main characteristics of the undisturbed region is the fact that the velocity profile maintains almost equal to the exit one, and can also be identified by a constant height of the average PIV visualizations, with length, L CH , or by a constant turbulence on the centerline, with length L CT . The average PIV velocity and turbulence measurements are compared to those performed with the Hot Film Anemometry (HFA) technique. The average PIV visualizations show that the region of constant height has

  9. Niobium Titanium and Copper wire samples

    CERN Multimedia

    2009-01-01

    Two wire samples, both for carrying 13'000Amperes. I sample is copper. The other is the Niobium Titanium wiring used in the LHC magnets. The high magnetic fields needed for guiding particles around the Large Hadron Collider (LHC) ring are created by passing 12’500 amps of current through coils of superconducting wiring. At very low temperatures, superconductors have no electrical resistance and therefore no power loss. The LHC is the largest superconducting installation ever built. The magnetic field must also be extremely uniform. This means the current flowing in the coils has to be very precisely controlled. Indeed, nowhere before has such precision been achieved at such high currents. Magnet coils are made of copper-clad niobium–titanium cables — each wire in the cable consists of 9’000 niobium–titanium filaments ten times finer than a hair. The cables carry up to 12’500 amps and must withstand enormous electromagnetic forces. At full field, the force on one metre of magnet is comparable ...

  10. Visualization and measurement of liquid velocity field of gas-liquid metal two-phase flow using neutron radiography

    International Nuclear Information System (INIS)

    Saito, Yasushi; Suzuki, Tohru; Matsubayashi, Masahito

    2000-01-01

    In a core melt accident of a fast breeder reactor, a possibility of re-criticality is anticipated in the molten fuel-steel mixture pool. One of the mechanisms to suppress the re-criticality is the boiling of steel in the molten fuel-steel mixture pool because of the negative void reactivity effect. To evaluate the reactivity change due to boiling, it is necessary to know the characteristics of gas-liquid two-phase flow in the molten fuel-steel mixture pool. For this purpose, boiling bubbles in a molten fuel-steel mixture pool were simulated by adiabatic gas bubbles in a liquid metal pool to study the basic characteristics of gas-liquid metal two-phase mixture. Visualization of the two-phase mixture and measurements of liquid phase velocity and void fraction were conducted by using neutron radiography and image processing techniques. From these measurements, the basic characteristics of gas-liquid metal two-phase mixture were clarified. (author)

  11. Acoustic, Visual and Spatial Indicators for the Description of the Soundscape of Waterfront Areas with and without Road Traffic Flow

    Directory of Open Access Journals (Sweden)

    Virginia Puyana Romero

    2016-09-01

    Full Text Available High flows of road traffic noise in urban agglomerations can negatively affect the livability of squares and parks located at the neighborhood, district and city levels, therefore pushing anyone who wants to enjoy calmer, quieter areas to move to non-urban parks. Due to the distances between these areas, it is not possible to go as regularly as would be necessary to satisfy any needs. Even if cities are densely populated, the presence of a sea or riverfront offers the possibility of large restorative places, or at least with potential features for being the natural core of an urban nucleus after a renewal intervention. This study evaluates the soundscape of the Naples waterfront, presenting an overview of the most significant visual, acoustic and spatial factors related to the pedestrian areas, as well as areas open to road traffic and others where the road traffic is limited. The factors were chosen with feature selection methods and artificial neural networks. The results show how certain factors, such as the perimeter between the water and promenade, the visibility of the sea or the density of green areas, can affect the perception of the soundscape quality in the areas with road traffic. In the pedestrian areas, acoustic factors, such as loudness or the A-weighted sound level exceeded for 10% of the measurement duration (LA10, influence the perceived quality of the soundscape.

  12. Instantaneous three-dimensional visualization of concentration distributions in turbulent flows with crossed-plane laser-induced fluorescence imaging

    Science.gov (United States)

    Hoffmann, A.; Zimmermann, F.; Scharr, H.; Krömker, S.; Schulz, C.

    2005-01-01

    A laser-based technique for measuring instantaneous three-dimensional species concentration distributions in turbulent flows is presented. The laser beam from a single laser is formed into two crossed light sheets that illuminate the area of interest. The laser-induced fluorescence (LIF) signal emitted from excited species within both planes is detected with a single camera via a mirror arrangement. Image processing enables the reconstruction of the three-dimensional data set in close proximity to the cutting line of the two light sheets. Three-dimensional intensity gradients are computed and compared to the two-dimensional projections obtained from the two directly observed planes. Volume visualization by digital image processing gives unique insight into the three-dimensional structures within the turbulent processes. We apply this technique to measurements of toluene-LIF in a turbulent, non-reactive mixing process of toluene and air and to hydroxyl (OH) LIF in a turbulent methane-air flame upon excitation at 248 nm with a tunable KrF excimer laser.

  13. Noninvasive MRI measurement of the absolute cerebral blood volume-cerebral blood flow relationship during visual stimulation in healthy humans.

    Science.gov (United States)

    Ciris, Pelin Aksit; Qiu, Maolin; Constable, R Todd

    2014-09-01

    The relationship between cerebral blood volume (CBV) and cerebral blood flow (CBF) underlies blood oxygenation level-dependent functional MRI signal. This study investigates the potential for improved characterization of the CBV-CBF relationship in humans, and examines sex effects as well as spatial variations in the CBV-CBF relationship. Healthy subjects were imaged noninvasively at rest and during visual stimulation, constituting the first MRI measurement of the absolute CBV-CBF relationship in humans with complete coverage of the functional areas of interest. CBV and CBF estimates were consistent with the literature, and their relationship varied both spatially and with sex. In a region of interest with stimulus-induced activation in CBV and CBF at a significance level of the P < 0.05, a power function fit resulted in CBV = 2.1 CBF(0.32) across all subjects, CBV = 0.8 CBF(0.51) in females and CBV = 4.4 CBF(0.15) in males. Exponents decreased in both sexes as ROIs were expanded to include less significantly activated regions. Consideration for potential sex-related differences, as well as regional variations under a range of physiological states, may reconcile some of the variation across literature and advance our understanding of the underlying cerebrovascular physiology. Copyright © 2013 Wiley Periodicals, Inc.

  14. Retrobulbar blood flow and visual organ function disturbance in the course of giant cell arteritis coexisting with optic disc drusen – a case repor

    Directory of Open Access Journals (Sweden)

    Monika Modrzejewska

    2013-09-01

    Full Text Available The review presented ophthalmologic syndrome connected with visual organ function disorder in giant cell arteritis patient concomitant with optic nerve disc drusen. Diagnostic difficulties were shown in relation to incidence of both similar ophthalmic symptoms as well as interpretation of specialists examinations results (pattern visual evoked potential test, scanning laser polarimetry, and perimetric tests – kinetic and static. Apart from ophthalmic investigations, significant role of radiological examinations was considered, especially color Doppler ultrasonography of retrobulbar circulation – optic artery, central retinal artery, long posterior ciliary arteries. Adequate interpretation of results seems to be crucial to establish scheme and timing of treatment in case of co-occurrence of the abovementioned disorders. In the presented case early implementation of steroid therapy resulted in improvement of blood flow parameters and the regression of ophthalmological complaints. Visual field deficiency in kinetic perimetry, reduced wave amplitude p100 in visual evoked potential test as well as decrease in number of optic nerve fibers in optic nerve disc region in scanning laser polarimetry exam can be diagnostic features in diagnosis of visual impairment in the course of giant cell arteritis and optic nerve disc drusen. Evaluation of blood flow velocity parameters in retrobulbar arteries in color Doppler ultrasonography is the most valuable screening in monitoring ophthalmic dysregulation in presented disorders.

  15. Vienna Wire Chamber Conference

    International Nuclear Information System (INIS)

    Anon.

    1983-01-01

    After those of 1978 and 1980, a third Wire Chamber Conference was held from 15-18 February in the Technical University of Vienna. Eight invited speakers covered the field from sophisticated applications in biology and medicine, via software, to the state of the art of gaseous detectors. In some forty other talks the speakers tackled in more detail the topics of gaseous detectors, calorimetry and associated electronics and software

  16. The Micro Wire Detector

    International Nuclear Information System (INIS)

    Adeva, B.; Gomez, F.; Pazos, A.; Pfau, R.; Plo, M.; Rodriguez, J.M.; Vazquez, P.; Labbe, J.C.

    1999-01-01

    We present the performance of a new proportional gas detector. Its geometry consists of a cathode plane with 70x70 μm 2 apertures, crossed by 25 μm anode strips to which it is attached by 50 μm kapton spacers. In the region where the avalanche takes place, the anode strips are suspended in the gas mixture as in a standard wire chamber. This detector exhibits high rate capability and large gains, introducing very little material. (author)

  17. Superconducting magnet wire

    Science.gov (United States)

    Schuller, Ivan K.; Ketterson, John B.; Banerjee, Indrajit

    1986-01-01

    A superconducting tape or wire with an improved critical field is formed of alternating layers of a niobium-containing superconductor such as Nb, NbTi, Nb.sub.3 Sn or Nb.sub.3 Ge with a thickness in the range of about 0.5-1.5 times its coherence length, supported and separated by layers of copper with each copper layer having a thickness in the range of about 170-600 .ANG..

  18. Twisting wire scanner

    Energy Technology Data Exchange (ETDEWEB)

    Gharibyan, V.; Delfs, A.; Koruptchenkov, I.; Noelle, D.; Tiessen, H.; Werner, M.; Wittenburg, K.

    2012-11-15

    A new type of 'two-in-one' wire scanner is proposed. Recent advances in linear motors' technology make it possible to combine translational and rotational movements. This will allow to scan the beam in two perpendicular directions using a single driving motor and a special fork attached to it. Vertical or horizontal mounting will help to escape problems associated with the 45 deg scanners. Test results of the translational part with linear motors is presented.

  19. Twisting wire scanner

    International Nuclear Information System (INIS)

    Gharibyan, V.; Delfs, A.; Koruptchenkov, I.; Noelle, D.; Tiessen, H.; Werner, M.; Wittenburg, K.

    2012-11-01

    A new type of 'two-in-one' wire scanner is proposed. Recent advances in linear motors' technology make it possible to combine translational and rotational movements. This will allow to scan the beam in two perpendicular directions using a single driving motor and a special fork attached to it. Vertical or horizontal mounting will help to escape problems associated with the 45 deg scanners. Test results of the translational part with linear motors is presented.

  20. Three-dimensional vortex flow near the endwall of a short cylinder in crossflow: Uniform-diameter circular cylinder

    International Nuclear Information System (INIS)

    Chen, S.B.; Sanitjai, S.; Ghosh, K.; Goldstein, R.J.

    2012-01-01

    Flow characteristics, around a short uniform-diameter circular cylinder in crossflow, are investigated experimentally. Extensive flow visualization using oil-lampblack and smoke-wire methods have been performed. Near-wake velocity measurements have been performed using a hotwire anemometer. Complex secondary flows are observed on and around the cylinder in crossflow. Multiple vortices are observed in the horseshoe vortex system near the cylinder–endwall junction. Based on this flow visualization and local mass transfer measurement results, a six-vortex secondary flow model has been proposed. - Highlights: ► Flow visualizations and velocity measurements for a short circular cylinder. ► Six vortices in the horseshoe vortex system upstream of the base of the cylinder. ► Cross-stream turbulence intensity profiles show a similarity in their shape.

  1. Dual wire welding torch and method

    Science.gov (United States)

    Diez, Fernando Martinez; Stump, Kevin S.; Ludewig, Howard W.; Kilty, Alan L.; Robinson, Matthew M.; Egland, Keith M.

    2009-04-28

    A welding torch includes a nozzle with a first welding wire guide configured to orient a first welding wire in a first welding wire orientation, and a second welding wire guide configured to orient a second welding wire in a second welding wire orientation that is non-coplanar and divergent with respect to the first welding wire orientation. A method of welding includes moving a welding torch with respect to a workpiece joint to be welded. During moving the welding torch, a first welding wire is fed through a first welding wire guide defining a first welding wire orientation and a second welding wire is fed through a second welding wire guide defining a second welding wire orientation that is divergent and non-coplanar with respect to the first welding wire orientation.

  2. Communication and Wiring in the Cortical Connectome

    Directory of Open Access Journals (Sweden)

    Julian eBudd

    2012-10-01

    Full Text Available In cerebral cortex, the huge mass of axonal wiring that carries information between near and distant neurons is thought to provide the neural substrate for cognitive and perceptual function. The goal of mapping the connectivity of cortical axons at different spatial scales, the cortical connectome, is to trace the paths of information flow in cerebral cortex. To appreciate the relationship between the connectome and cortical function, we need to discover the nature and purpose of the wiring principles underlying cortical connectivity. A popular explanation has been that axonal length is strictly minimized both within and between cortical regions. In contrast, we have hypothesized the existence of a multi-scale principle of cortical wiring where to optimise communication there is a trade-off between spatial (construction and temporal (routing costs. Here, using recent evidence concerning cortical spatial networks we critically evaluate this hypothesis at neuron, local circuit, and pathway scales. We report three main conclusions. First, the axonal and dendritic arbor morphology of single neocortical neurons may be governed by a similar wiring principle, one that balances the conservation of cellular material and conduction delay. Second, the same principle may be observed for fibre tracts connecting cortical regions. Third, the absence of sufficient local circuit data currently prohibits any meaningful assessment of the hypothesis at this scale of cortical organization. To avoid neglecting neuron and microcircuit levels of cortical organization, the connectome framework should incorporate more morphological description. In addition, structural analyses of temporal cost for cortical circuits should take account of both axonal conduction and neuronal integration delays, which appear mostly of the same order of magnitude. We conclude the hypothesized trade-off between spatial and temporal costs may potentially offer a powerful explanation for

  3. Skin-friction measurements with hot-wire gages

    Science.gov (United States)

    Houdeville, R.; Juillen, J. C.; Cousteix, J.

    1983-11-01

    The development of two hot-wire gauges for implantation in wind-tunnel models and their application to the measurement of skin-friction phenomena are reported. The measurement principle is explained; the design and calibration of a single-wire gage containing a thermocouple for temperature determination (Cousteix and Juillen, 1982-1983) are summarized; and sample results for 2D and 3D flows with positive pressure gradients are shown. An advanced design employing a thin hot film deposited on an 80-micron-diameter quartz fiber extending into a 1-mm-sq 0.8-mm-deep cavity is characterized and demonstrated on a pulsed flow on a flat plate, Tollmien-Schlichting waves, and a turbulent boundary layer. Two cold-wire temperature sensors are added to this gage to permit detection of the skin of the skin friction in the separated flow over a cylinder.

  4. The National Shipbuilding Research Program, Proceedings of the REAPS Technical Symposium Paper No. 16: The Navy's Cabling and Wiring Computer Program

    National Research Council Canada - National Science Library

    Mellis, James

    1976-01-01

    ... of the naval shipbuilding process. After the aerospace industry's success in developing a productive wiring data system and an in-depth NAVSEC sponsored study at three designated naval shipyards of the cabling/wiring flow process...

  5. Right wire in orthodontics: a review

    OpenAIRE

    Ali, Hashim

    2015-01-01

    Quality of orthodontic wire such as stiffness, hardness, resiliency, elasticity and working range are important determinants of the effectivenes of tooth movement. Commonly used types of orthodontic arch wire:1) stainless steel(ss) wire, 2) conventional nickel- titanium (NiTi)alloy wire,3) improved super elastic NiTi- alloy wire( also called low hysteresis(LH)wire), and titanium molybdenum alloy(TMA) wire.

  6. Relationship between visual prostate score (VPSS and maximum flow rate (Qmax in men with urinary tract symptoms

    Directory of Open Access Journals (Sweden)

    Mazhar A. Memon

    2016-04-01

    Full Text Available ABSTRACT Objective: To evaluate correlation between visual prostate score (VPSS and maximum flow rate (Qmax in men with lower urinary tract symptoms. Material and Methods: This is a cross sectional study conducted at a university Hospital. Sixty-seven adult male patients>50 years of age were enrolled in the study after signing an informed consent. Qmax and voided volume recorded at uroflowmetry graph and at the same time VPSS were assessed. The education level was assessed in various defined groups. Pearson correlation coefficient was computed for VPSS and Qmax. Results: Mean age was 66.1±10.1 years (median 68. The mean voided volume on uroflowmetry was 268±160mL (median 208 and the mean Qmax was 9.6±4.96mLs/sec (median 9.0. The mean VPSS score was 11.4±2.72 (11.0. In the univariate linear regression analysis there was strong negative (Pearson's correlation between VPSS and Qmax (r=848, p<0.001. In the multiple linear regression analyses there was a significant correlation between VPSS and Qmax (β-http://www.blogapaixonadosporviagens.com.br/p/caribe.html after adjusting the effect of age, voided volume (V.V and level of education. Multiple linear regression analysis done for independent variables and results showed that there was no significant correlation between the VPSS and independent factors including age (p=0.27, LOE (p=0.941 and V.V (p=0.082. Conclusion: There is a significant negative correlation between VPSS and Qmax. The VPSS can be used in lieu of IPSS score. Men even with limited educational background can complete VPSS without assistance.

  7. Determination of strain rate in Friction Stir Welding by three-dimensional visualization of material flow using X-ray radiography

    International Nuclear Information System (INIS)

    Morisada, Y.; Imaizumi, T.; Fujii, H.

    2015-01-01

    Recrystallization, which is mainly caused by the induced strain, is one of the most important factors of Friction Stir Welding. In this study, strain and strain rate are directly obtained by the change in the material flow velocity which is observed by three-dimensional visualization of the material flow. The grain size of the pure aluminum in the stir zone estimated by the Zener–Hollomon parameter using the obtained strain rate shows good agreement with that observed by Electron Back-Scatter Diffraction mapping

  8. Review of wire chamber aging

    International Nuclear Information System (INIS)

    Va'Vra, J.

    1986-02-01

    This paper makes an overview of the wire chamber aging problems as a function of various chamber design parameters. It emphasizes the chemistry point of view and many examples are drawn from the plasma chemistry field as a guidance for a possible effort in the wire chamber field. The paper emphasizes the necessity of variable tuning, the importance of purity of the wire chamber environment, as well as it provides a practical list of presently known recommendations. In addition, several models of the wire chamber aging are qualitatively discussed. The paper is based on a summary talk given at the Wire Chamber Aging Workshop held at LBL, Berkeley on January 16-17, 1986. Presented also at Wire Chamber Conference, Vienna, February 25-28, 1986. 74 refs., 18 figs., 11 tabs

  9. Low temperature annealing of cold-drawn pearlitic steel wire

    DEFF Research Database (Denmark)

    Zhang, Xiaodan; Bech, Jakob Ilsted; Hansen, Niels

    2015-01-01

    Cold-drawn pearlitic steel wires are nanostructured and the flow stress at room temperature can reach values above 6 GPa. A typical characteristic of the nanostructured metals, is the low ductility and thermal stability. In order to optimize both the processing and application of the wires......, the thermal behaviour is of interest. This has been studied by annealing the wires for 1h at temperatures from ambient temperature to 300 ℃ (573 K). It is expected that a raising temperature may lead to structural changes and a reduction in strength. The change in strength is however not expected to be large....... For this reason we have applied a very precise technique to measure the tensile properties of the wires from a strain of 10-4 to the maximum strain of about 1-2%. The structural changes have also been followed to estimate and relate strength changes to changes in structural parameters and morphology....

  10. Wire communication engineering

    International Nuclear Information System (INIS)

    Son, Byeong Tae

    1997-02-01

    This book describes wire telecommunication engineering/ It is divided into eleven chapter, which deal with Introduction with development of telecommunication, voice and sound wave and communication network, Telegraphy with summary of telegraphy, code of telegraphy, communication speed, morse and telex, Telephone on structure, circuit and image telephone, Traffic on telecommunication traffic, transmission of line about theory, cable line and loaded cable, carrier communication with carrier telegraphy and carrier telephone, optical communication with types, structure, specialty, laser and equipment, DATA, Mobile telecommunication on summary, mobile telephone, radio paging and digital mobile telecommunication, ISDN with channel of ISDN, and service of ISDN, and design of telecommunication.

  11. The Micro Wire Detector

    Energy Technology Data Exchange (ETDEWEB)

    Adeva, B.; Gomez, F.; Pazos, A.; Pfau, R.; Plo, M. E-mail: maximo.plo@cern.ch; Rodriguez, J.M.; Vazquez, P.; Labbe, J.C

    1999-10-11

    We present the performance of a new proportional gas detector. Its geometry consists of a cathode plane with 70x70 {mu}m{sup 2} apertures, crossed by 25 {mu}m anode strips to which it is attached by 50 {mu}m kapton spacers. In the region where the avalanche takes place, the anode strips are suspended in the gas mixture as in a standard wire chamber. This detector exhibits high rate capability and large gains, introducing very little material. (author)

  12. Wiring regulations in brief

    CERN Document Server

    Tricker, Ray

    2012-01-01

    Tired of trawling through the Wiring Regs?Perplexed by Part P?Confused by cables, conductors and circuits?Then look no further! This handy guide provides an on-the-job reference source for Electricians, Designers, Service Engineers, Inspectors, Builders, Students, DIY enthusiastsTopic-based chapters link areas of working practice - such as cables, installations, testing and inspection, special locations - with the specifics of the Regulations themselves. This allows quick and easy identification of the official requirements relating to the situati

  13. Stabilized superconductive wires

    International Nuclear Information System (INIS)

    Randall, R.N.; Wong, J.

    1976-01-01

    A stable, high field, high current conductor is produced by packing multiple, multi-layer rods of a bronze core and niobium or vanadium inner jacket and copper outer jacket into a pure copper tube or other means for forming a pure copper matrix, sealing, working the packed tube to a wire, and by diffusion, heat treating to form a type II superconducting, Beta-Wolfram structure, intermetallic compound as a layer within each of several filaments derived from the rods. The layer of Beta-Wolfram structure compound may be formed in less than 2 h of diffusion heat treatment in a thickness of 0.5--2μ

  14. Diagnostics for exploding wires (abstract)

    International Nuclear Information System (INIS)

    Moosman, B.; Bystritskii, V.; Wessel, F.J.; Van Drie, A.

    1999-01-01

    Two diagnostics, capable of imaging fast, high temperature, plasmas were used on exploding wire experiments at UC Irvine. An atmospheric pressure nitrogen laser (λ=337.1 nm) was used to generate simultaneous shadow and shearing interferogram images with a temporal resolution of ∼1 ns and a spatial resolution of 10 μm. An x-ray backlighter imaged the exploding wire 90 degree with respect to the laser and at approximately the same instant in time. The backlighter spatial resolution as determined by geometry and film resolution was 25 μm. Copper wires of diameters (25, 50, and 100 μm) and steel wire d=25 μm were exploded in vacuum (10 -5 Torr) at a maximum current level of 12 kA, by a rectified marx bank at a voltage of 50 kV and a current rise time (quarter period) of 900 ns. Copper wires which were cleaned and then resistively heated under vacuum to incandescence for several hours prior to high current initiation, exhibited greater expansion velocities at peak current than wires which had not been heated prior to discharge. Axial variations on the surface of the wire observed with the laser were found to correlate with bulk axial mass differences from x-ray backlighting. High electron density, measured near the opaque surface of the exploding wire, suggests that much of the current is shunted outward away from the bulk of the wire. copyright 1999 American Institute of Physics

  15. Reliability Criteria for Thick Bonding Wire.

    Science.gov (United States)

    Dagdelen, Turker; Abdel-Rahman, Eihab; Yavuz, Mustafa

    2018-04-17

    Bonding wire is one of the main interconnection techniques. Thick bonding wire is widely used in power modules and other high power applications. This study examined the case for extending the use of traditional thin wire reliability criteria, namely wire flexure and aspect ratio, to thick wires. Eleven aluminum (Al) and aluminum coated copper (CucorAl) wire samples with diameter 300 μm were tested experimentally. The wire response was measured using a novel non-contact method. High fidelity FEM models of the wire were developed and validated. We found that wire flexure is not correlated to its stress state or fatigue life. On the other hand, aspect ratio is a consistent criterion of thick wire fatigue life. Increasing the wire aspect ratio lowers its critical stress and increases its fatigue life. Moreover, we found that CucorAl wire has superior performance and longer fatigue life than Al wire.

  16. Reliability Criteria for Thick Bonding Wire

    Directory of Open Access Journals (Sweden)

    Turker Dagdelen

    2018-04-01

    Full Text Available Bonding wire is one of the main interconnection techniques. Thick bonding wire is widely used in power modules and other high power applications. This study examined the case for extending the use of traditional thin wire reliability criteria, namely wire flexure and aspect ratio, to thick wires. Eleven aluminum (Al and aluminum coated copper (CucorAl wire samples with diameter 300 μm were tested experimentally. The wire response was measured using a novel non-contact method. High fidelity FEM models of the wire were developed and validated. We found that wire flexure is not correlated to its stress state or fatigue life. On the other hand, aspect ratio is a consistent criterion of thick wire fatigue life. Increasing the wire aspect ratio lowers its critical stress and increases its fatigue life. Moreover, we found that CucorAl wire has superior performance and longer fatigue life than Al wire.

  17. Reliability Criteria for Thick Bonding Wire

    Science.gov (United States)

    Yavuz, Mustafa

    2018-01-01

    Bonding wire is one of the main interconnection techniques. Thick bonding wire is widely used in power modules and other high power applications. This study examined the case for extending the use of traditional thin wire reliability criteria, namely wire flexure and aspect ratio, to thick wires. Eleven aluminum (Al) and aluminum coated copper (CucorAl) wire samples with diameter 300 μm were tested experimentally. The wire response was measured using a novel non-contact method. High fidelity FEM models of the wire were developed and validated. We found that wire flexure is not correlated to its stress state or fatigue life. On the other hand, aspect ratio is a consistent criterion of thick wire fatigue life. Increasing the wire aspect ratio lowers its critical stress and increases its fatigue life. Moreover, we found that CucorAl wire has superior performance and longer fatigue life than Al wire. PMID:29673194

  18. Vibration of signal wires in wire detectors under irradiation

    International Nuclear Information System (INIS)

    Bojko, I.R.; Shelkov, G.A.; Dodonov, V.I.; Ignatenko, M.A.; Nikolenko, M.Yu.

    1995-01-01

    Radiation-induced vibration of signal wires in wire detectors is found and explained. The phenomenon is based on repulsion of a signal wire with a positive potential and a cloud of positive ions that remains after neutralization of the electron part of the avalanche formed in the course of gas amplification. Vibration with a noticeable amplitude may arise from fluctuations of repulsive forces, which act on the wire and whose sources are numerous ion clusters. A formula is obtained which allows wire oscillations to be estimated for all types of wire detectors. Calculation shows that oscillations of signal wires can be substantial for the coordinate accuracy of a detector working in the limited streamer mode at fluxes over 10 5 particles per second per wire. In the proportional mode an average oscillation amplitude can be as large as 20-30 μm at some detector parameters and external radiation fluxes over 10 5 . The experimental investigations show that the proposed model well describes the main features of the phenomenon. 6 refs., 8 figs

  19. Corrosion of Wires on Wooden Wire-Bound Packaging Crates

    Science.gov (United States)

    Samuel L. Zelinka; Stan Lebow

    2015-01-01

    Wire-bound packaging crates are used by the US Army to transport materials. Because these crates may be exposed to harsh environments, they are dip-treated with a wood preservative (biocide treatment). For many years, zinc-naphthenate was the most commonly used preservative for these packaging crates and few corrosion problems with the wires were observed. Recently,...

  20. Improved superconducting magnet wire

    Science.gov (United States)

    Schuller, I.K.; Ketterson, J.B.

    1983-08-16

    This invention is directed to a superconducting tape or wire composed of alternating layers of copper and a niobium-containing superconductor such as niobium of NbTi, Nb/sub 3/Sn or Nb/sub 3/Ge. In general, each layer of the niobium-containing superconductor has a thickness in the range of about 0.05 to 1.5 times its coherence length (which for Nb/sub 3/Si is 41 A) with each copper layer having a thickness in the range of about 170 to 600 A. With the use of very thin layers of the niobium composition having a thickness within the desired range, the critical field (H/sub c/) may be increased by factors of 2 to 4. Also, the thin layers of the superconductor permit the resulting tape or wire to exhibit suitable ductility for winding on a magnet core. These compositions are also characterized by relatively high values of critical temperature and therefore will exhibit a combination of useful properties as superconductors.