WorldWideScience

Sample records for wire flow visualization

  1. Creation of subsonic macro-and microjets facilities and automated measuring system (AMS-2) for the spatial - temporal hot - wire anemometric visualization of jet flow field

    Science.gov (United States)

    Sorokin, A. M.; Grek, G. R.; Gilev, V. M.; Zverkov, I. D.

    2017-10-01

    Macro-and microjets facilities for generation of the round and plane subsonic jets are designed and fabricated. Automated measuring system (AMS - 2) for the spatial - temporal hot - wire anemometric visualization of jet flow field is designed and fabricated. Coordinate device and unit of the measurement, collecting, storage and processing of hot - wire anemometric information were integrated in the AMS. Coordinate device is intended for precision movement of the hot - wire probe in jet flow field according to the computer program. At the same time accuracy of the hot - wire probe movement is 5 microns on all three coordinates (x, y, z). Unit of measurement, collecting, storage and processing of hot - wire anemometric information is intended for the hot - wire anemometric measurement of the jet flow field parameters (registration of the mean - U and fluctuation - u' characteristics of jet flow velocity), their accumulation and preservation in the computer memory, and also carries out their processing according to certain programms.

  2. Flow visualization

    CERN Document Server

    Merzkirch, Wolfgang

    1974-01-01

    Flow Visualization describes the most widely used methods for visualizing flows. Flow visualization evaluates certain properties of a flow field directly accessible to visual perception. Organized into five chapters, this book first presents the methods that create a visible flow pattern that could be investigated by visual inspection, such as simple dye and density-sensitive visualization methods. It then deals with the application of electron beams and streaming birefringence. Optical methods for compressible flows, hydraulic analogy, and high-speed photography are discussed in other cha

  3. Wiring visual systems: common and divergent mechanisms and principles.

    Science.gov (United States)

    Kolodkin, Alex L; Hiesinger, P Robin

    2017-02-01

    The study of visual systems has a rich history, leading to the discovery and understanding of basic principles underlying the elaboration of neuronal connectivity. Recent work in model organisms such as fly, fish and mouse has yielded a wealth of new insights into visual system wiring. Here, we consider how axonal and dendritic patterning in columns and laminae influence synaptic partner selection in these model organisms. We highlight similarities and differences among disparate visual systems with the goal of identifying common and divergent principles for visual system wiring. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  4. Flow visualization using bubbles

    International Nuclear Information System (INIS)

    Henry, J.P.

    1974-01-01

    Soap bubbles were used for visualizing flows. The tests effected allowed some characteristics of flows around models in blow tunnels to be precised at mean velocities V 0 5 . The velocity of a bubble is measured by chronophotography, the bulk envelope of the trajectories is also registered [fr

  5. Experimental Study on EHD Flow Transition in a Small Scale Wire-plate ESP

    Directory of Open Access Journals (Sweden)

    Wang Chuan

    2016-06-01

    Full Text Available The electrohydrodynamic (EHD flow induced by the corona discharge was experimentally investigated in an electrostatic precipitator (ESP. The ESP was a narrow horizontal Plexiglas box (1300 mm×60 mm×60 mm. The electrode set consisted of a single wire discharge electrode and two collecting aluminum plate electrodes. Particle Image Velocimetry (PIV method was used to visualize the EHD flow characteristics inside the ESP seeded with fine oil droplets. The influence of applied voltage (from 8 kV to 10 kV and primary gas flow (0.15 m/s, 0.2 m/s, 0.4 m/s on the EHD flow transition was elucidated through experimental analysis. The formation and transition of typical EHD flows from onset to the fully developed were described and explained. Experimental results showed that the EHD flow patterns change depends on the gas velocity and applied voltage. EHD flow starts with flow streamlines near collecting plates bending towards the wire electrode, forming two void regions. An oscillating jet forming the downstream appeared and moved towards the wire electrode as voltage increased. For higher velocities (≥0.2 m/s, the EHD transition became near wire phenomenon with a jet-like flow structure near the wire, forming a void region behind the wire and expanding as voltage increased. Fully developed EHD secondary flow in the form of counter-rotating vortices appeared upstream with high applied voltage.

  6. Wired Widgets: Agile Visualization for Space Situational Awareness

    Science.gov (United States)

    Gerschefske, K.; Witmer, J.

    2012-09-01

    Continued advancement in sensors and analysis techniques have resulted in a wealth of Space Situational Awareness (SSA) data, made available via tools and Service Oriented Architectures (SOA) such as those in the Joint Space Operations Center Mission Systems (JMS) environment. Current visualization software cannot quickly adapt to rapidly changing missions and data, preventing operators and analysts from performing their jobs effectively. The value of this wealth of SSA data is not fully realized, as the operators' existing software is not built with the flexibility to consume new or changing sources of data or to rapidly customize their visualization as the mission evolves. While tools like the JMS user-defined operational picture (UDOP) have begun to fill this gap, this paper presents a further evolution, leveraging Web 2.0 technologies for maximum agility. We demonstrate a flexible Web widget framework with inter-widget data sharing, publish-subscribe eventing, and an API providing the basis for consumption of new data sources and adaptable visualization. Wired Widgets offers cross-portal widgets along with a widget communication framework and development toolkit for rapid new widget development, giving operators the ability to answer relevant questions as the mission evolves. Wired Widgets has been applied in a number of dynamic mission domains including disaster response, combat operations, and noncombatant evacuation scenarios. The variety of applications demonstrate that Wired Widgets provides a flexible, data driven solution for visualization in changing environments. In this paper, we show how, deployed in the Ozone Widget Framework portal environment, Wired Widgets can provide an agile, web-based visualization to support the SSA mission. Furthermore, we discuss how the tenets of agile visualization can generally be applied to the SSA problem space to provide operators flexibility, potentially informing future acquisition and system development.

  7. Modeling and simulation of the fluid flow in wire electrochemical machining with rotating tool (wire ECM)

    Science.gov (United States)

    Klocke, F.; Herrig, T.; Zeis, M.; Klink, A.

    2017-10-01

    Combining the working principle of electrochemical machining (ECM) with a universal rotating tool, like a wire, could manage lots of challenges of the classical ECM sinking process. Such a wire-ECM process could be able to machine flexible and efficient 2.5-dimensional geometries like fir tree slots in turbine discs. Nowadays, established manufacturing technologies for slotting turbine discs are broaching and wire electrical discharge machining (wire EDM). Nevertheless, high requirements on surface integrity of turbine parts need cost intensive process development and - in case of wire-EDM - trim cuts to reduce the heat affected rim zone. Due to the process specific advantages, ECM is an attractive alternative manufacturing technology and is getting more and more relevant for sinking applications within the last few years. But ECM is also opposed with high costs for process development and complex electrolyte flow devices. In the past, few studies dealt with the development of a wire ECM process to meet these challenges. However, previous concepts of wire ECM were only suitable for micro machining applications. Due to insufficient flushing concepts the application of the process for machining macro geometries failed. Therefore, this paper presents the modeling and simulation of a new flushing approach for process assessment. The suitability of a rotating structured wire electrode in combination with an axial flushing for electrodes with high aspect ratios is investigated and discussed.

  8. Investigation on Characterizing Heated Pulsating Flows with Hot Wire Anemometers - A Hands-On Approach

    Directory of Open Access Journals (Sweden)

    Marius Alexandru PANAIT

    2014-06-01

    Full Text Available The pulsating heated flows are traditionally a difficult subject to treat with conventional hot wire or film methods. Special factors that complicate matters are flow reversal and non linear flow effects of vortices and wire probe wake disturbances on the heat transfer to the hot film or wire sensor in heated pulsating flows. The presence of these strongly nonlinear and unknown terms leads to great difficulties in calibration of hot film probes in this particular regime. The paper analyses the current state of matters in the field and reports a series of solutions that have been practically tested in a case of a high speed pulsated heated flow. Normally such measurements are made in a non-contact fashion using a LDV system or various visualization techniques but there have been recent attempts to use a constant temperature hot wire anemometer system (CTA.To obtain meaningful calibration for hot wire films in hot pulsating flows, a comparison system on other principles (LDV was used, as well as a specially designed nozzle to replace the calibrator unit that could not be operated with heated fluid due to structural integrity reasons. The method as described below works well for the expected speed range that could be generated using the special nozzle.

  9. Flow, affect and visual creativity.

    Science.gov (United States)

    Cseh, Genevieve M; Phillips, Louise H; Pearson, David G

    2015-01-01

    Flow (being in the zone) is purported to have positive consequences in terms of affect and performance; however, there is no empirical evidence about these links in visual creativity. Positive affect often--but inconsistently--facilitates creativity, and both may be linked to experiencing flow. This study aimed to determine relationships between these variables within visual creativity. Participants performed the creative mental synthesis task to simulate the creative process. Affect change (pre- vs. post-task) and flow were measured via questionnaires. The creativity of synthesis drawings was rated objectively and subjectively by judges. Findings empirically demonstrate that flow is related to affect improvement during visual creativity. Affect change was linked to productivity and self-rated creativity, but no other objective or subjective performance measures. Flow was unrelated to all external performance measures but was highly correlated with self-rated creativity; flow may therefore motivate perseverance towards eventual excellence rather than provide direct cognitive enhancement.

  10. High Speed Smoke Flow Visualization.

    Science.gov (United States)

    1981-03-01

    releasable to the National Technical Information Service (NTIS). At NTIS, it will be available to the general public, including foreign nations. This... information . 9 The initial work focused on the evaluation of the flow field within the high speed flow visualization tunnels and the optical and...with the high speed flow visuLl iza tion; it waIs used to take simul taneous smoke/Schlieren photographs. Siice it allowed for this unique method of

  11. NASA Dryden flow visualization facility

    Science.gov (United States)

    Delfrate, John H.

    1995-01-01

    This report describes the Flow Visualization Facility at NASA Dryden Flight Research Center, Edwards, California. This water tunnel facility is used primarily for visualizing and analyzing vortical flows on aircraft models and other shapes at high-incidence angles. The tunnel is used extensively as a low-cost, diagnostic tool to help engineers understand complex flows over aircraft and other full-scale vehicles. The facility consists primarily of a closed-circuit water tunnel with a 16- x 24-in. vertical test section. Velocity of the flow through the test section can be varied from 0 to 10 in/sec; however, 3 in/sec provides optimum velocity for the majority of flow visualization applications. This velocity corresponds to a unit Reynolds number of 23,000/ft and a turbulence level over the majority of the test section below 0.5 percent. Flow visualization techniques described here include the dye tracer, laser light sheet, and shadowgraph. Limited correlation to full-scale flight data is shown.

  12. Flow visualization of lateral jet injection into swirling crossflow

    Science.gov (United States)

    Ferrell, G. B.; Aoki, K.; Lilley, D. G.

    1985-01-01

    Flow visualization experiments have been conducted to characterize the time-mean flowfield of a deflected turbulent jet in a confining cylindrical crossflow. Jet-to-crossflow velocity ratios of 2, 4, and 6 were investigated, under crossflow inlet swirler vane angles of 0 (swirler removed), 45 and 70 degrees. Smoke, neutrally-buoyant helium-filled soap bubbles, and multi-spark flow visualization were employed to highlight interesting features of the deflected jet, as well as the trajectory and spread pattern of the jet. Gross flowfield characterization was obtained for a range of lateral jet-to-crossflow velocity ratios and a range of inlet swirl strengths in the main flow. The flow visualization results agree well with the measurements obtained elsewhere with the six-orientation single hot-wire method.

  13. Control of flow past a circular cylinder via a spanwise surface wire: effect of the wire scale

    Energy Technology Data Exchange (ETDEWEB)

    Ekmekci, Alis [University of Toronto Institute for Aerospace Studies, Toronto, ON (Canada); Rockwell, Donald [Lehigh University, Department of Mechanical Engineering, Bethlehem, PA (United States)

    2011-09-15

    Flow phenomena induced by a single spanwise wire on the surface of a circular cylinder are investigated via a cinema technique of particle image velocimetry (PIV). The primary aim of this investigation is to assess the effect of the wire scale. To this end, consideration is given to wires with different diameters that are 0.5, 1.2, and 2.9% of the cylinder diameter. The Reynolds number has a subcritical value of 10,000. Compared to the thickness of the unperturbed boundary layer developing around the cylinder between 5 and 75 from the forward stagnation point, the former two wires have smaller scales and the latter has a larger scale. Two angular locations of the wire, defined with respect to the forward stagnation point of the cylinder, are found to be critical. When the wire is located at these critical angles, either the most significant extension or the contraction of the time-mean separation bubble occurs in the near wake. These critical angles depend on the wire scale: the smaller the wire, the larger the critical angle. The small-scale and large-scale wires that have diameters of 1.2 and 2.9% of the cylinder diameter induce bistable shear-layer oscillations between different separation modes when placed at their respective critical angles corresponding to maximum extension of the near-wake bubble. These oscillations have irregular time intervals that are much longer than the time scale associated with the classical Karman instability. Moreover, the large-scale wire can either significantly attenuate or intensify the Karman mode of vortex shedding at the critical states; in contrast, the small-scale wires do not notably alter the strength of the Karman instability. (orig.)

  14. Numerical simulations on the rotating flow of wrapped wired HPLWR fuel assembly

    Energy Technology Data Exchange (ETDEWEB)

    Kissa, A., E-mail: kissa@reak.bme.hu [Budapest Univ. of Tech. and Economics, Inst. of Nuclear Tech. (NTI), Budapest (Hungary); Laurien, E., E-mail: Laurien@ike.uni-stuttgart.de [Univ. of Stuttgart, Inst. for Nuclear Tech. and Energy Systems (IKE), Stuttgart (Germany); Aszodia, A. [Budapest Univ. of Tech. and Economics, Inst. of Nuclear Tech. (NTI), Budapest (Hungary); Zhu, Y. [Univ. of Stuttgart, Inst. for Nuclear Tech. and Energy Systems (IKE), Stuttgart (Germany)

    2011-07-01

    Three dimensional computational-fluid-dynamics simulations are performed for the fluid flow within a 40 rod fuel bundle in a square arrangement with a central moderator channel. To ensure spacing between the rods the design of the bundle uses thin wires wrapped counter-clockwise around each rod. This geometry is presently investigated in the framework of the European High-Performance Light-Water Reactor (HPLWR), which operates at supercritical pressure of 25 MPa. A section with one revolution located in the evaporator region of the HPLWR core is investigated using hydraulic (to ensure fully developed flow inlet boundary conditions and reference for heated cases) and thermal-hydraulic boundary conditions. The geometry of wrapped wires gives rise to additional mixing and a circulating or 'sweeping' flow near the outer and inner regions of the fuel element next to the wall of the so called fuel assembly and moderator box. Some interesting flow features associated with the complex three-dimensional flow with significant transverse velocity components are visualized as the first evaluated result of this diversified investigation. (author)

  15. Numerical simulation on a HPLWR fuel assembly flow with one revolution of wrapped wire spacers

    Energy Technology Data Exchange (ETDEWEB)

    Kiss, Attila; Laurien, Eckart [Univ. of Technology and Economics, Budapest (Hungary). Inst. of Nuclear Techniques; Aszodi, Attila; Zhu, Yu [Stuttgart Univ. (Germany). Inst. fuer Kernenergetik und Energiesysteme

    2010-08-15

    Three dimensional computational-fluid-dynamics simulations are performed for the fluid flow within a 40 rod fuel bundle in a square arrangement with a central moderator channel. To ensure spacing between the rods, the design of the bundle uses thin wires wrapped counter-clockwise around each rod. This geometry is presently investigated in the framework of the European High-Performance Light-Water Reactor (HPLWR), which operates at supercritical pressure of 25 MPa. A section with one revolution located in the evaporator region of the HPLWR core is investigated using hydraulic (to ensure fully developed flow inlet boundary conditions and reference for heated cases) and thermal-hydraulic boundary conditions. The geometry of wrapped wires gives rise to additional mixing and a circulating or 'sweeping' flow near the outer and inner regions of the fuel element next to the wall of the so called fuel assembly and moderator box. Some interesting flow features associated with the complex three-dimensional flow with significant transverse velocity components are visualized as the first evaluated result of this diversified investigation. (orig.)

  16. Effect of Flow Direction on the Extinction Limit for Flame Spread over Wire Insulation in Microgravity

    DEFF Research Database (Denmark)

    Nagachi, Masashi; Mitsui, Fumiya; Citerne, Jean-Marie

    and polyethylene insulated Nickel-Chrome (NiCr) wires with inner core diameter of 0.50 mm and insulation thickness of 0.30 mm were examined with external flow velocities ranging from 50mm/s to 200mm/s. The results for the Copper wires show that with increasing external flow velocity, the LOC monotonically...

  17. Effect Of Low External Flow On Flame Spreading Over ETFE Insulated Wire Under Microgravity

    Science.gov (United States)

    Nishizawa, Katsuhiro; Fujita, Osamu; Ito, Kenichi; Kikuchi, Masao; Olson, Sandra L.; Kashiwagi, Takashi

    2003-01-01

    Fire safety is one of the most important issues for manned space missions. A likely cause of fires in spacecraft is wire insulation combustion in electrical system. Regarding the wire insulation combustion it important to know the effect of low external flow on the combustion because of the presence of ventilation flow in spacecraft. Although, there are many researches on flame spreading over solid material at low external flows under microgravity, research dealing with wire insulation is very limited. An example of wire insulation combustion in microgravity is the Space Shuttle experiments carried out by Greenberg et al. However, the number of experiments was very limited. Therefore, the effect of low flow velocity is still not clear. The authors have reported results on flame spreading over ETFE (ethylene - tetrafluoroetylene) insulated wire in a quiescent atmosphere in microgravity by 10 seconds drop tower. The authors also performed experiments of polyethylene insulated nichrom wire combustion in low flow velocity under microgravity. The results suggested that flame spread rate had maximum value in low flow velocity condition. Another interesting issue is the effect of dilution gas, especially CO2, which is used for fire extinguisher in ISS. There are some researches working on dilution gas effect on flame spreading over solid material in quiescent atmosphere in microgravity. However the research with low external flow is limited and, of course, the research discussing a relation of the appearance of maximum wire flammability in low flow velocity region with different dilution gas cannot be found yet. The present paper, therefore, investigates the effect of opposed flow with different dilution gas on flame spreading over ETFE insulated wire and change in the presence of the maximum flammability depending on the dilution gas type is discussed within the limit of microgravity time given by ground-based facility.

  18. Virtual rheoscopic fluids for flow visualization.

    Science.gov (United States)

    Barth, William; Burns, Christopher

    2007-01-01

    Physics-based flow visualization techniques seek to mimic laboratory flow visualization methods with virtual analogues. In this work we describe the rendering of a virtual rheoscopic fluid to produce images with results strikingly similar to laboratory experiments with real-world rheoscopic fluids using products such as Kalliroscope. These fluid additives consist of microscopic, anisotropic particles which, when suspended in the flow, align with both the flow velocity and the local shear to produce high-quality depictions of complex flow structures. Our virtual rheoscopic fluid is produced by defining a closed-form formula for the orientation of shear layers in the flow and using this orientation to volume render the flow as a material with anisotropic reflectance and transparency. Examples are presented for natural convection, thermocapillary convection, and Taylor-Couette flow simulations. The latter agree well with photographs of experimental results of Taylor-Couette flows from the literature.

  19. Visualization of numerically simulated aerodynamic flow fields

    International Nuclear Information System (INIS)

    Hian, Q.L.; Damodaran, M.

    1991-01-01

    The focus of this paper is to describe the development and the application of an interactive integrated software to visualize numerically simulated aerodynamic flow fields so as to enable the practitioner of computational fluid dynamics to diagnose the numerical simulation and to elucidate essential flow physics from the simulation. The input to the software is the numerical database crunched by a supercomputer and typically consists of flow variables and computational grid geometry. This flow visualization system (FVS), written in C language is targetted at the Personal IRIS Workstations. In order to demonstrate the various visualization modules, the paper also describes the application of this software to visualize two- and three-dimensional flow fields past aerodynamic configurations which have been numerically simulated on the NEC-SXIA Supercomputer. 6 refs

  20. Random Wiring, Ganglion Cell Mosaics, and the Functional Architecture of the Visual Cortex.

    Science.gov (United States)

    Schottdorf, Manuel; Keil, Wolfgang; Coppola, David; White, Leonard E; Wolf, Fred

    2015-11-01

    The architecture of iso-orientation domains in the primary visual cortex (V1) of placental carnivores and primates apparently follows species invariant quantitative laws. Dynamical optimization models assuming that neurons coordinate their stimulus preferences throughout cortical circuits linking millions of cells specifically predict these invariants. This might indicate that V1's intrinsic connectome and its functional architecture adhere to a single optimization principle with high precision and robustness. To validate this hypothesis, it is critical to closely examine the quantitative predictions of alternative candidate theories. Random feedforward wiring within the retino-cortical pathway represents a conceptually appealing alternative to dynamical circuit optimization because random dimension-expanding projections are believed to generically exhibit computationally favorable properties for stimulus representations. Here, we ask whether the quantitative invariants of V1 architecture can be explained as a generic emergent property of random wiring. We generalize and examine the stochastic wiring model proposed by Ringach and coworkers, in which iso-orientation domains in the visual cortex arise through random feedforward connections between semi-regular mosaics of retinal ganglion cells (RGCs) and visual cortical neurons. We derive closed-form expressions for cortical receptive fields and domain layouts predicted by the model for perfectly hexagonal RGC mosaics. Including spatial disorder in the RGC positions considerably changes the domain layout properties as a function of disorder parameters such as position scatter and its correlations across the retina. However, independent of parameter choice, we find that the model predictions substantially deviate from the layout laws of iso-orientation domains observed experimentally. Considering random wiring with the currently most realistic model of RGC mosaic layouts, a pairwise interacting point process, the

  1. Random Wiring, Ganglion Cell Mosaics, and the Functional Architecture of the Visual Cortex.

    Directory of Open Access Journals (Sweden)

    Manuel Schottdorf

    2015-11-01

    Full Text Available The architecture of iso-orientation domains in the primary visual cortex (V1 of placental carnivores and primates apparently follows species invariant quantitative laws. Dynamical optimization models assuming that neurons coordinate their stimulus preferences throughout cortical circuits linking millions of cells specifically predict these invariants. This might indicate that V1's intrinsic connectome and its functional architecture adhere to a single optimization principle with high precision and robustness. To validate this hypothesis, it is critical to closely examine the quantitative predictions of alternative candidate theories. Random feedforward wiring within the retino-cortical pathway represents a conceptually appealing alternative to dynamical circuit optimization because random dimension-expanding projections are believed to generically exhibit computationally favorable properties for stimulus representations. Here, we ask whether the quantitative invariants of V1 architecture can be explained as a generic emergent property of random wiring. We generalize and examine the stochastic wiring model proposed by Ringach and coworkers, in which iso-orientation domains in the visual cortex arise through random feedforward connections between semi-regular mosaics of retinal ganglion cells (RGCs and visual cortical neurons. We derive closed-form expressions for cortical receptive fields and domain layouts predicted by the model for perfectly hexagonal RGC mosaics. Including spatial disorder in the RGC positions considerably changes the domain layout properties as a function of disorder parameters such as position scatter and its correlations across the retina. However, independent of parameter choice, we find that the model predictions substantially deviate from the layout laws of iso-orientation domains observed experimentally. Considering random wiring with the currently most realistic model of RGC mosaic layouts, a pairwise interacting point

  2. Measurement of gas flow velocity: anemometer with a vibrating hot wire.

    Science.gov (United States)

    Kiełbasa, Jan

    2010-01-01

    I propose a new method to measure velocity of a gas flow, which utilizes the time derivative of the voltage observed on a vibrating hot-wire sensor. The wire vibrates with an amplitude a and a frequency f, and is kept perpendicular to the gas flow direction in the plane containing the flow velocity vector v(g). When the parameters of vibrations are tuned, the number of zeros per vibration period of the hot-wire voltage function changes. I demonstrate that at the point of change, the unknown gas velocity is directly expressed by the parameters of vibrations v(g)=2pifa. Therefore, the velocity can be measured without any prior calibration of the hot-wire speed-voltage curve and the method can be used for gases of slowly changing temperature or composition.

  3. Characterizing the correlations between local phase fractions of gas-liquid two-phase flow with wire-mesh sensor.

    Science.gov (United States)

    Tan, C; Liu, W L; Dong, F

    2016-06-28

    Understanding of flow patterns and their transitions is significant to uncover the flow mechanics of two-phase flow. The local phase distribution and its fluctuations contain rich information regarding the flow structures. A wire-mesh sensor (WMS) was used to study the local phase fluctuations of horizontal gas-liquid two-phase flow, which was verified through comparing the reconstructed three-dimensional flow structure with photographs taken during the experiments. Each crossing point of the WMS is treated as a node, so the measurement on each node is the phase fraction in this local area. An undirected and unweighted flow pattern network was established based on connections that are formed by cross-correlating the time series of each node under different flow patterns. The structure of the flow pattern network reveals the relationship of the phase fluctuations at each node during flow pattern transition, which is then quantified by introducing the topological index of the complex network. The proposed analysis method using the WMS not only provides three-dimensional visualizations of the gas-liquid two-phase flow, but is also a thorough analysis for the structure of flow patterns and the characteristics of flow pattern transition. This article is part of the themed issue 'Supersensing through industrial process tomography'. © 2016 The Author(s).

  4. Characterizing the correlations between local phase fractions of gas–liquid two-phase flow with wire-mesh sensor

    Science.gov (United States)

    Liu, W. L.; Dong, F.

    2016-01-01

    Understanding of flow patterns and their transitions is significant to uncover the flow mechanics of two-phase flow. The local phase distribution and its fluctuations contain rich information regarding the flow structures. A wire-mesh sensor (WMS) was used to study the local phase fluctuations of horizontal gas–liquid two-phase flow, which was verified through comparing the reconstructed three-dimensional flow structure with photographs taken during the experiments. Each crossing point of the WMS is treated as a node, so the measurement on each node is the phase fraction in this local area. An undirected and unweighted flow pattern network was established based on connections that are formed by cross-correlating the time series of each node under different flow patterns. The structure of the flow pattern network reveals the relationship of the phase fluctuations at each node during flow pattern transition, which is then quantified by introducing the topological index of the complex network. The proposed analysis method using the WMS not only provides three-dimensional visualizations of the gas–liquid two-phase flow, but is also a thorough analysis for the structure of flow patterns and the characteristics of flow pattern transition. This article is part of the themed issue ‘Supersensing through industrial process tomography’. PMID:27185959

  5. Reading wiring diagrams made easier for maintenance operators: contribution from research in visual attention and visual search

    International Nuclear Information System (INIS)

    Ponthieu, L.; Wolfe, J.M.

    1994-07-01

    This work has been carried out while the author was visiting the Visual Psychophysics lab at the Center for Ophthalmic Research, Harvard Medical School. The general framework is the design of a wiring diagrams visualization system for maintenance operators in electric plants. This study concentrates on how knowledge and experimental techniques from visual attention can help this goal. From this standpoint, the visualization system must best exploit the human visual system abilities. As electronic databases containing all the diagrams will soon be available, it is important to think in advance the display techniques. Presently, maintenance operators favor working with paper printouts even where such databases are already available. The study shows why such an approach is valuable for the design of a display that fits the operator's tasks. Beyond that, this work has been a mean to learn the experimental techniques of cognitive sciences in an applied frame. (authors). 9 figs., 5 annexes

  6. Making waves: visualizing fluid flows

    NARCIS (Netherlands)

    Zweers, Wout; Zwart, Valerie; Bokhove, Onno

    2013-01-01

    We explore the visualization of violent wave dynamics and erosion by waves and jets in laser-cut reliefs, laser engravings, and three-dimensional printing. For this purpose we built table-top experiments to cast breaking waves, and also explored the creation of extreme or rogue waves in larger wave

  7. Application of photogrammetry to surface flow visualization

    Energy Technology Data Exchange (ETDEWEB)

    Karthikeyan, N.; Venkatakrishnan, L. [Council of Scientific and Industrial Research, Experimental Aerodynamics Division, National Aerospace Laboratories, Delhi (India)

    2011-03-15

    The construction of three-dimensional surface flow fields is an extremely difficult task owing largely to the fragmented information available in the form of 2D images. Here, the method of photogrammetric resection based on a comprehensive camera model has been used to map oil flow visualization images on to the surface grid of the model. The data exported in the VRML format allow for user interaction in a manner not possible with 2D images. The technique is demonstrated here using the surface oil flow visualization images of a simplified landing gear model at low speed in a conventional wind tunnel without any specialized rigs for photogrammetry. The results are not limited to low-speed regimes and show that this technique can have significant impact on understanding the flow physics associated with the surface flow topology of highly three-dimensional separated flows on complex models. (orig.)

  8. Application of photogrammetry to surface flow visualization

    Science.gov (United States)

    Karthikeyan, N.; Venkatakrishnan, L.

    2011-03-01

    The construction of three-dimensional surface flow fields is an extremely difficult task owing largely to the fragmented information available in the form of 2D images. Here, the method of photogrammetric resection based on a comprehensive camera model has been used to map oil flow visualization images on to the surface grid of the model. The data exported in the VRML format allow for user interaction in a manner not possible with 2D images. The technique is demonstrated here using the surface oil flow visualization images of a simplified landing gear model at low speed in a conventional wind tunnel without any specialized rigs for photogrammetry. The results are not limited to low-speed regimes and show that this technique can have significant impact on understanding the flow physics associated with the surface flow topology of highly three-dimensional separated flows on complex models.

  9. Rotary slanted single wire CTA – a useful tool for 3D flows investigations

    Directory of Open Access Journals (Sweden)

    Jonáš P.

    2013-04-01

    Full Text Available The procedure is described of experimental investigation of a statistically stationary generally nonisothermal 3D flow by means of a constant temperature anemometer (CTA using single slanted heated wire, rotary round the fixed axis. The principle of this procedure is quite clear. The change of the heated wire temperature modifies ratio of CTA sensitivities to temperature and velocity fluctuations. Turning the heated wire through a proper angle changes the sensitivity to components of the instantaneous velocity vector. Some recommendations are presented based on long time experiences, e.g. on the choice of probe, on the probe calibration, to the measurement organization and to the evaluation of results.

  10. Traffic Flow Visualization and Control

    National Research Council Canada - National Science Library

    Larson, Robert

    1999-01-01

    .... Vehicle count, flow speed, headway, queue length and occupancy are some of the information that can be collected. The processed traffic data is then sent to a control center for further analysis and used by traffic operators attempting to analyze traffic on the highway.

  11. Visualization of multiphase flow by neutron radiography

    International Nuclear Information System (INIS)

    Mishima, Kaichiro; Takenaka, Nobuyuki.

    1991-01-01

    Neutron radiography (NRG) is a technique which produces images of the internal structure of a body, making use of the attenuation characteristics of neutrons in the materials being observed. Recently, attempts have been made to expand the application of this technique not only to non-destructive testing but also to a variety of industrial and basic research fields. The attenuation of neutrons is large in a light material like water and small in ordinary metals, which difference may make it possible to visualize a multiphase flow in a metallic container. Particularly, the neutron television, which is one of the applied techniques of NRG, is expected to be a useful tool for observing the behavior of two-phase flow, since it produces images in real time. In this paper the basic idea and the method of NRG are presented along with examples of visualization of multiphase flow by NRG. (author)

  12. Untangling the wiring of the Drosophila visual system: developmental principles and molecular strategies.

    Science.gov (United States)

    Plazaola-Sasieta, Haritz; Fernández-Pineda, Alejandra; Zhu, Qi; Morey, Marta

    2017-12-01

    The assembly of neural circuits relies on the accurate establishment of connections between synaptic partners. Precise wiring results from responses that neurons elicit to environmental cues and cell-cell contact events during development. A common design principle in both invertebrate and vertebrate adult nervous systems is the orderly array of columnar and layered synaptic units of certain neuropils. This similarity is particularly striking in the visual system, both at the structural and cell-type levels. Given the powerful genetic approaches and tools available in Drosophila, the fly visual system has been extensively used to probe how specific wiring patterns are achieved during development. In this review, we cover the developmental principles and molecular strategies that govern the assembly of columnar units (lamina cartridges and medulla columns), the formation of layers, afferent specific layer selection, and synaptogenesis in Drosophila. The mechanisms include: sequential developmental steps that ensure coordinated assembly of synaptic partners; anterograde and autocrine signaling; interactions between cell-surface molecules, or secreted molecules and their receptors that take place among neurons; and glia signaling to neurons.

  13. Study of Flow Deformation around Wind-Vane Mounted Three-Dimensional Hot-Wire Probes

    DEFF Research Database (Denmark)

    Rømer Rasmussen, K.; Larsen, Søren Ejling; Jørgensen, F. E.

    1981-01-01

    Open wind tunnel tests on several different sensor systems consisting of triaxial hot-wire probes mounted on wind vanes (DISA and Riso vanes) have shown that flow deformation around the hot-wire sensor introduces errors in the measured velocity components. Though changes in the horizontal...... components proved to be negligible, flow deformation resulted in an overestimation of the vertical component from 1.1 to 1.5, depending on the direction of the vertical component. Turbulence and mean value data were adjusted by use of a linear correction derived from the wind tunnel tests. Wind vane...... construction must strike a compromise between minor flow disturbance and sufficient probe support. The final version of the DISA vane resulted in an acceptable vertical correction of about 10%....

  14. Hot-Film and Hot-Wire Anemometry for a Boundary Layer Active Flow Control Test

    Science.gov (United States)

    Lenahan, Keven C.; Schatzman, David M.; Wilson, Jacob Samuel

    2013-01-01

    Unsteady active flow control (AFC) has been used experimentally for many years to minimize bluff-body drag. This technology could significantly improve performance of rotorcraft by cleaning up flow separation. It is important, then, that new actuator technologies be studied for application to future vehicles. A boundary layer wind tunnel was constructed with a 1ft-x-3ft test section and unsteady measurement instrumentation to study how AFC manipulates the boundary layer to overcome adverse pressure gradients and flow separation. This unsteady flow control research requires unsteady measurement methods. In order to measure the boundary layer characteristics, both hot-wire and hot-film Constant Temperature Anemometry is used. A hot-wire probe is mounted in the flow to measure velocity while a hot-film array lays on the test surface to measure skin friction. Hot-film sensors are connected to an anemometer, a Wheatstone bridge circuit with an output that corresponds to the dynamic flow response. From this output, the time varying flow field, turbulence, and flow reversal can be characterized. Tuning the anemometers requires a fan test on the hot-film sensors to adjust each output. This is a delicate process as several variables drastically affect the data, including control resistance, signal input, trim, and gain settings.

  15. Wire-mesh and ultrasound techniques applied for the characterization of gas-liquid slug flow

    Energy Technology Data Exchange (ETDEWEB)

    Ofuchi, Cesar Y.; Sieczkowski, Wytila Chagas; Neves Junior, Flavio; Arruda, Lucia V.R.; Morales, Rigoberto E.M.; Amaral, Carlos E.F.; Silva, Marco J. da [Federal University of Technology of Parana, Curitiba, PR (Brazil)], e-mails: ofuchi@utfpr.edu.br, wytila@utfpr.edu.br, neves@utfpr.edu.br, lvrarruda@utfpr.edu.br, rmorales@utfpr.edu.br, camaral@utfpr.edu.br, mdasilva@utfpr.edu.br

    2010-07-01

    Gas-liquid two-phase flows are found in a broad range of industrial applications, such as chemical, petrochemical and nuclear industries and quite often determine the efficiency and safety of process and plants. Several experimental techniques have been proposed and applied to measure and quantify two-phase flows so far. In this experimental study the wire-mesh sensor and an ultrasound technique are used and comparatively evaluated to study two-phase slug flows in horizontal pipes. The wire-mesh is an imaging technique and thus appropriated for scientific studies while ultrasound-based technique is robust and non-intrusive and hence well suited for industrial applications. Based on the measured raw data it is possible to extract some specific slug flow parameters of interest such as mean void fraction and characteristic frequency. The experiments were performed in the Thermal Sciences Laboratory (LACIT) at UTFPR, Brazil, in which an experimental two-phase flow loop is available. The experimental flow loop comprises a horizontal acrylic pipe of 26 mm diameter and 9 m length. Water and air were used to produce the two phase flow under controlled conditions. The results show good agreement between the techniques. (author)

  16. Heat transfer enhancement of flow insulator by combined stainless steel fibrous and wire net porous materials

    Science.gov (United States)

    Khantikomol, P.; Polsongkram, M.; Apisitpinyo, W.; Poowadin, T.

    2018-01-01

    The present research article aims to propose the heat transfer enhancement of the flow insulator using combined fibrous and wire net stainless steel porous material. The stainless fibrous plate with porosity of 0.9292 was combined to the stainless steel wire net having pore per inch (PPI) of 16 and total thickness of 30 mm. Two models of the arranging porous plates were prepared, which were model BA and model AB. Each porous plate segment had the same thickness. The examined porous plate model have porosities of 0.8452. The porous plate was placed normal to the flow direction. The air was used as working fluid heated by 5 kW electric heater, which was controlled by the automatic temperature control. Type-K thermocouples were employed to measure the air temperatures. The temperature at front of the porous plate was varied to be 350, 450, and 550°C. The air flow rate was varied in the range of 4-12 m3/hr. The experimental result showed that the temperature drop across the porous plate and the thermal efficiency increase with the inlet temperature. The air velocity slightly affects the temperature profile inside the test section at the upstream side of the porous plate but greatly affects temperature inside the porous plate. In consideration of the arranging porous plate, placing of the stainless steel wire net at the upstream side and placing the stainless steel fibrous at downstream side (model BA) results in the highest temperature drop and the highest thermal efficiency. At Re 733 and inlet temperature 550°C for model BA at 30 mm thickness, the thermal efficiency was 50%. It was shown that the combined stainless steel fibrous and stainless steel wire net porous material could be a good flow insulator.

  17. Characterization of the frictional losses and heat transfer of oscillatory viscous flow through wire-mesh regenerators

    Directory of Open Access Journals (Sweden)

    A.A. Boroujerdi

    2015-12-01

    Full Text Available In this paper, new relations for calculating heat transfer and pressure drop characteristics of oscillatory flow through wire-mesh screen regenerator such as Darcy permeability, Forchheimer’s inertial coefficient, and heat transfer area per unit volume, as a function of the wire diameter are presented. According to the derived relations, thinner wires have higher pressure drop and higher heat transfer rate. The relations are applicable for all regenerative cryocoolers. Embedding the new relations into a numerical model, three Stirling-type orifice pulse tube cryocoolers with three regenerators different in length and diameter but same volume in a variety of wire diameters, have been modeled. The results achieved by the model reveal that the local heat transfer coefficient decreases with increase of the wire diameter and the length-to-diameter ratio. In addition, it was shown that the mean absolute gas–solid wire temperature difference is a linear function of wire diameter in the range investigated. The results show that for larger length-to-diameter ratios, Forchheimer’s effect will dominate frictional losses, and the variations of the frictional losses are proportional to the inverse of the wire diameter. Wire diameter has been optimized to maximize the coefficient of performance of the cryocooler. Shorter regenerators have thinner optimum wires.

  18. Large Eddy Simulation of turbulent flow in wire wrapped fuel pin bundles cooled by sodium

    International Nuclear Information System (INIS)

    Saxena, Aakanksha; Cadiou, Thierry; Bieder, Ulrich; Viazzo, Stephane

    2013-06-01

    The objective of the study is to understand the thermal hydraulics in a core sub-assembly with liquid sodium as coolant by performing detailed numerical simulations. The passage for the coolant flow between the fuel rods is maintained by thin wires wrapped around the rods. The contact point between the fuel pin and the spacer wire is the region of creation of hot spots and a cyclic variation of temperature in hot spots can adversely affect the mechanical properties of the clad due to the phenomena like thermal stripping. The current status quo provides two different models to perform the numerical simulations, namely Reynolds Averaged Navier-Stokes (RANS) and Large Eddy Simulation (LES). The two models differ in the extent of modelling used to close the Navier-Stokes equations. LES is a filtered approach where the large scale of motions are explicitly resolved while the small scale motions are modelled whereas RANS is a time averaging approach where all scale of motions are modelled. Thus LES involves less modelling as compared to RANS and so the results are comparatively more accurate. An attempt has been made to use the LES model. The simulations have been performed using the code Trio-U (developed by CEA). The turbulent statistics of the flow and thermal quantities are calculated. Finally the goal is to obtain the frequency of temperature oscillations at the region of hot spots near the spacer wire. (authors)

  19. The wire-mesh sensor as a two-phase flow meter

    International Nuclear Information System (INIS)

    Shaban, H; Tavoularis, S

    2015-01-01

    A novel gas and liquid flow rate measurement method is proposed for use in vertical upward and downward gas–liquid pipe flows. This method is based on the analysis of the time history of area-averaged void fraction that is measured using a conductivity wire-mesh sensor (WMS). WMS measurements were collected in vertical upward and downward air–water flows in a pipe with an internal diameter of 32.5 mm at nearly atmospheric pressure. The relative frequencies and the power spectral density of area-averaged void fraction were calculated and used as representative properties. Independent features, extracted from these properties using Principal Component Analysis and Independent Component Analysis, were used as inputs to artificial neural networks, which were trained to give the gas and liquid flow rates as outputs. The present method was shown to be accurate for all four encountered flow regimes and for a wide range of flow conditions. Besides providing accurate predictions for steady flows, the method was also tested successfully in three flows with transient liquid flow rates. The method was augmented by the use of the cross-correlation function of area-averaged void fraction determined from the output of a dual WMS unit as an additional representative property, which was found to improve the accuracy of flow rate prediction. (paper)

  20. Solution of magnetohydrodynamic flow and heat transfer of radiative viscoelastic fluid with temperature dependent viscosity in wire coating analysis.

    Science.gov (United States)

    Khan, Zeeshan; Khan, Muhammad Altaf; Siddiqui, Nasir; Ullah, Murad; Shah, Qayyum

    2018-01-01

    Wire coating process is a continuous extrusion process for primary insulation of conducting wires with molten polymers for mechanical strength and protection in aggressive environments. In the present study, radiative melt polymer satisfying third grade fluid model is used for wire coating process. The effect of magnetic parameter, thermal radiation parameter and temperature dependent viscosity on wire coating analysis has been investigated. Reynolds model and Vogel's models have been incorporated for variable viscosity. The governing equations characterizing the flow and heat transfer phenomena are solved analytically by utilizing homotopy analysis method (HAM). The computed results are also verified by ND-Solve method (Numerical technique) and Adomian Decomposition Method (ADM). The effect of pertinent parameters is shown graphically. In addition, the instability of the flow in the flows of the wall of the extrusion die is well marked in the case of the Vogel model as pointed by Nhan-Phan-Thien.

  1. Control of flow structure in the wake region of circular cylinder with meshy wire in deep water

    Directory of Open Access Journals (Sweden)

    Burcu Oğuz

    2016-08-01

    Full Text Available In this study the aim is decreasing the effect and the intensity of the temporary loads resulted from vortex shedding that have an impact on the cylinder (chimneys, high buildings etc. located in deep water and the object or objects in the wake region and definition of the optimum values (wire thickness and porosity β With different thickness and different porosity ratios the effect of meshy wire that surrounded a circular cylinder of D=50 mm diameter was observed at Re_D=5000. The porosity ratios were four different values between a range of β=0.5-0.8 with an interval of 0.1. The thicknesses of wire were 1 mm, 2 mm, 3 mm and 4 mm. The flow structure in the wake region of circular cylinder was tried to be controlled by meshy wire that surrounded the cylinder. Experiments were carried out by using particle image velocimetry (PIV technique. Comparing with bare cylinder results, turbulence kinetic energy (TKE and Reynolds shear stress values increase with wire thicknesses of b=1 mm, 2 mm for all porosity ratios and decrease with b=3 mm, 4 mm. With porosity ratio of β=0.6 and wire thickness of b=4 mm TKE and Reynolds shear stress results show that meshy wire controls the flow in the wake region of the cylinder. Frequency value results also define that best flow control is obtained with β=0.6 and b=4 mm.

  2. Subsampling-based compression and flow visualization

    Energy Technology Data Exchange (ETDEWEB)

    Agranovsky, Alexy; Camp, David; Joy, I; Childs, Hank

    2016-01-19

    As computational capabilities increasingly outpace disk speeds on leading supercomputers, scientists will, in turn, be increasingly unable to save their simulation data at its native resolution. One solution to this problem is to compress these data sets as they are generated and visualize the compressed results afterwards. We explore this approach, specifically subsampling velocity data and the resulting errors for particle advection-based flow visualization. We compare three techniques: random selection of subsamples, selection at regular locations corresponding to multi-resolution reduction, and introduce a novel technique for informed selection of subsamples. Furthermore, we explore an adaptive system which exchanges the subsampling budget over parallel tasks, to ensure that subsampling occurs at the highest rate in the areas that need it most. We perform supercomputing runs to measure the effectiveness of the selection and adaptation techniques. Overall, we find that adaptation is very effective, and, among selection techniques, our informed selection provides the most accurate results, followed by the multi-resolution selection, and with the worst accuracy coming from random subsamples.

  3. 3D Flow visualization in virtual reality

    Science.gov (United States)

    Pietraszewski, Noah; Dhillon, Ranbir; Green, Melissa

    2017-11-01

    By viewing fluid dynamic isosurfaces in virtual reality (VR), many of the issues associated with the rendering of three-dimensional objects on a two-dimensional screen can be addressed. In addition, viewing a variety of unsteady 3D data sets in VR opens up novel opportunities for education and community outreach. In this work, the vortex wake of a bio-inspired pitching panel was visualized using a three-dimensional structural model of Q-criterion isosurfaces rendered in virtual reality using the HTC Vive. Utilizing the Unity cross-platform gaming engine, a program was developed to allow the user to control and change this model's position and orientation in three-dimensional space. In addition to controlling the model's position and orientation, the user can ``scroll'' forward and backward in time to analyze the formation and shedding of vortices in the wake. Finally, the user can toggle between different quantities, while keeping the time step constant, to analyze flow parameter relationships at specific times during flow development. The information, data, or work presented herein was funded in part by an award from NYS Department of Economic Development (DED) through the Syracuse Center of Excellence.

  4. Visualization of pre-set vortices in boundary layer flow over wavy surface in rectangular channel

    KAUST Repository

    Budiman, Alexander Christantho

    2014-12-04

    Abstract: Smoke-wire flow visualization is used to study the development of pre-set counter-rotating streamwise vortices in boundary layer flow over a wavy surface in a rectangular channel. The formation of the vortices is indicated by the vortical structures on the cross-sectional plane normal to the wavy surface. To obtain uniform spanwise vortex wavelength which will result in uniform vortex size, two types of spanwise disturbances were used: a series of perturbation wires placed prior and normal to the leading edge of the wavy surface, and a jagged pattern in the form of uniform triangles cut at the leading edge. These perturbation wires and jagged pattern induce low-velocity streaks that result in the formation of counter-rotating streamwise vortices that evolve downstream to form the mushroom-like structures on the cross-sectional plane of the flow. The evolution of the most amplified disturbances can be attributed to the formation of these mushroom-like structures. It is also shown that the size of the mushroom-like structures depends on the channel entrance geometry, Reynolds number, and the channel gap.Graphical Abstract: [Figure not available: see fulltext.

  5. Hot-wire measurement in turbulent flow behind a parallel-line heat source

    Czech Academy of Sciences Publication Activity Database

    Antoš, Pavel; Uruba, Václav

    2012-01-01

    Roč. 12, č. 1 (2012), s. 493-494 ISSN 1617-7061. [Annual Meeting of the International Association of Applied Mathematics and Mechanics /83./. Darmstadt, 26.03.2012-30.03.2012] R&D Projects: GA ČR GPP101/10/P556; GA ČR GAP101/12/1271 Institutional research plan: CEZ:AV0Z20760514 Keywords : nonisotermal flow * hot wire anemometry Subject RIV: BK - Fluid Dynamics http://onlinelibrary.wiley.com/doi/10.1002/pamm.201210235/abstract

  6. Flow Visualization of Forced and Natural Convection in Internal Cavities

    Energy Technology Data Exchange (ETDEWEB)

    John Crepeau; Hugh M. Mcllroy,Jr.; Donald M. McEligot; Keith G. Condie; Glenn McCreery; Randy Clarsean; Robert S. Brodkey; Yann G. Guezennec

    2002-01-31

    The report descries innovative flow visualization techniques, fluid mechanics measurements and computational models of flows in a spent nuclear fuel canister. The flow visualization methods used a fluid that reacted with a metal plate to show how a local reaction affects the surrounding flow. A matched index of refraction facility was used to take mean flow and turbulence measurements within a generic spent nuclear fuel canister. Computational models were also made of the flow in the canister. It was determined that the flow field in the canister was very complex, and modifications may need to be made to ensure that the spent fuel elements are completely passivated.

  7. Flow Visualization of Forced and Natural Convection in Internal Cavities

    International Nuclear Information System (INIS)

    Crepeau, John; Mcllroy, Hugh M. Jr.; McEligot, Donald M.; Condie, Keith G.; McCreery, Glenn; Clarsean, Randy; Brodkey, Robert S.; Guezennec, Yann G.

    2002-01-01

    The report describes innovative flow visualization techniques, fluid mechanics measurements and computational models of flows in a spent nuclear fuel canister. The flow visualization methods used a fluid that reacted with a metal plate to show how a local reaction affects the surrounding flow. A matched index of refraction facility was used to take mean flow and turbulence measurements within a generic spent nuclear fuel canister. Computational models were also made of the flow in the canister. It was determined that the flow field in the canister was very complex, and modifications may need to be made to ensure that the spent fuel elements are completely passivated

  8. Application of neutron radiography to visualization of multiphase flows

    International Nuclear Information System (INIS)

    Takenaka, N.; Fujii, T.; Nishizaki, K.; Asano, H.; Ono, A.; Sonoda, K.; Akagawa, K.

    1990-01-01

    Visualizations by real-time neutron radiography are demonstrated of various flow patterns of nitrogen gas-water two-phase flow in a stainless-steel tube, water inverted annular flow in a stainless-steel tube, flashing flow in an aluminium nozzle and fluidized bed in aluminium tube and vessels. Photographs every 1/60 s are presented by an image processing method to show the dynamic behaviours of the various flow patterns. It is shown that this visualization method can be applied efficiently to multiphase flow researches and will be applicable to multiphase flows in industrial machines. (author)

  9. A Comprehensive Wiring Diagram of the Protocerebral Bridge for Visual Information Processing in the Drosophila Brain

    Directory of Open Access Journals (Sweden)

    Chih-Yung Lin

    2013-05-01

    Full Text Available How the brain perceives sensory information and generates meaningful behavior depends critically on its underlying circuitry. The protocerebral bridge (PB is a major part of the insect central complex (CX, a premotor center that may be analogous to the human basal ganglia. Here, by deconstructing hundreds of PB single neurons and reconstructing them into a common three-dimensional framework, we have constructed a comprehensive map of PB circuits with labeled polarity and predicted directions of information flow. Our analysis reveals a highly ordered information processing system that involves directed information flow among CX subunits through 194 distinct PB neuron types. Circuitry properties such as mirroring, convergence, divergence, tiling, reverberation, and parallel signal propagation were observed; their functional and evolutional significance is discussed. This layout of PB neuronal circuitry may provide guidelines for further investigations on transformation of sensory (e.g., visual input into locomotor commands in fly brains.

  10. Visualization study of helium-air counter flow through a small opening

    International Nuclear Information System (INIS)

    Fumizawa, Motoo

    2007-01-01

    Buoyancy-driven counter flows of helium-air were investigated through horizontal and inclined small openings. Counter flows may occur following a window opening as ventilation, fire in the room as well as a pipe rupture accident in a high temperature gas-cooled nuclear reactor. The experiment has carried out by a test chamber filled with helium and flow was visualized by the smoke wire method. The flow behavior has recorded by a high-speed camera with a computer system. The image of the flow was transferred to the digital data, thus the flow velocity was measured by PTV software. The mass fraction in the test chamber was measured by electronic balance. The detected data was arranged by the densimetric Floude number of the counter flow rate that derived from the dimensional analysis. The method of mass increment was developed and applied to measure the counter flow rate. By removing the cover plate placed on the top of the opening, the counter flow initiated. Air enters the test chamber and the mass of the gas mixture in the test chamber increased. The volumetric counter flow rate was evaluated from the mass increment data. In the case of inclination openings, the results of both methods were compared. The inclination angle for maximum densimetric Floude number decreased with increasing length-to-diameter ratio of the opening. For a horizontal opening, the results from the method of mass increment agreed with those obtained by other authors for a water-brine system. (author)

  11. Flow: Statistics, visualization and informatics for flow cytometry

    Directory of Open Access Journals (Sweden)

    Kepler Thomas B

    2008-06-01

    Full Text Available Abstract Flow is an open source software application for clinical and experimental researchers to perform exploratory data analysis, clustering and annotation of flow cytometric data. Flow is an extensible system that offers the ease of use commonly found in commercial flow cytometry software packages and the statistical power of academic packages like the R BioConductor project.

  12. Flow boiling in microgap channels experiment, visualization and analysis

    CERN Document Server

    Alam, Tamanna; Jin, Li-Wen

    2013-01-01

    Flow Boiling in Microgap Channels: Experiment, Visualization and Analysis presents an up-to-date summary of the details of the confined to unconfined flow boiling transition criteria, flow boiling heat transfer and pressure drop characteristics, instability characteristics, two phase flow pattern and flow regime map and the parametric study of microgap dimension. Advantages of flow boiling in microgaps over microchannels are also highlighted. The objective of this Brief is to obtain a better fundamental understanding of the flow boiling processes, compare the performance between microgap and c

  13. Hot wire anemometer measurements in the unheated air flow tests of the SRB nozzle-to-case joint

    Science.gov (United States)

    Ramachandran, N.

    1988-01-01

    Hot-Wire Anemometer measurements made in the Solid Rocket Booster (SRB) nozzle-to-case joint are discussed. The study was undertaken to glean additional information on the circumferential flow induced in the SRB nozzle joint and the effect of this flow on the insulation bonding flaws. The tests were conducted on a full-scale, 2-D representation of a 65-in long segment of the SRB nozzle joint, with unheated air as the working fluid. Both the flight Mach number and Reynolds number were matched simultaneously and different pressure gradients imposed along the joint face were investigated. Hot-wire anemometers were used to obtain velocity data for different joint gaps and debond configurations. The procedure adopted for hot-wire calibration and use is outlined and the results from the tests summarized.

  14. New measurement technique for turbulent flow as a replacement for hot-wire anemometry

    Science.gov (United States)

    Puczylowski, Jaroslaw; Hölling, Michael; Peinke, Joachim

    2011-11-01

    We present latest developments of the 2d-Laser Cantilever Anemometer (2d-LCA), a sensor, which has been developed for highly resolved measurements of turbulent flows. Its measuring principle allows for high temporal resolutions of beyond 50kHz at spatial scales in sub millimeter range. This performance is achieved by measuring the deformation of a tiny cantilever via laser pointer, which experiences drag forces caused by the flow. The cantilever features two deformation modes, i.e. bending and twisting, whereas the latter occurs only for oblique inflow. Thus the sensor is capable of measuring two velocity components. Latest developments focus on the design of the cantilever. For example, an additional structure for a better sensitivity towards cross winds and an improved reflection pad were realized. Further improvements concern the laser beam guiding within the sensor. Beside this we are in the process of setting up advanced electronics and new types of PSD-elements with the goal of increasing the sensitivity. Comparison measurements between the re-designed 2d-LCA and older versions were performed and showed improvements relating signal quality and reliability. Further measurements in turbulent flow with an x-wire as a reference confirmed the ability of the new sensor to carry out measurements at comparable high resolutions.

  15. A graphic analysis package for 3-D flow visualization

    International Nuclear Information System (INIS)

    Yang, H.; Camarero, R.

    1986-01-01

    This paper describes a graphic package for three-dimensional flow visualization and analysis. It serves as the solution analysis module following the module of computational fluid dynamics (CFD) in an integrated CAD system for flow passage components. Through this visual analysis, the designer may modify his design and re-simulate the fluid flow in a shorter time period. In the package the solutions of CFD are first represented graphically to the designer, then a number of functions are available to help him assess the flow properties and patterns of interest. The package is based on a line drawing graphics system and can be executed interactively or by an instruction file

  16. Visual Analysis of Inclusion Dynamics in Two-Phase Flow.

    Science.gov (United States)

    Karch, Grzegorz Karol; Beck, Fabian; Ertl, Moritz; Meister, Christian; Schulte, Kathrin; Weigand, Bernhard; Ertl, Thomas; Sadlo, Filip

    2018-05-01

    In single-phase flow visualization, research focuses on the analysis of vector field properties. In two-phase flow, in contrast, analysis of the phase components is typically of major interest. So far, visualization research of two-phase flow concentrated on proper interface reconstruction and the analysis thereof. In this paper, we present a novel visualization technique that enables the investigation of complex two-phase flow phenomena with respect to the physics of breakup and coalescence of inclusions. On the one hand, we adapt dimensionless quantities for a localized analysis of phase instability and breakup, and provide detailed inspection of breakup dynamics with emphasis on oscillation and its interplay with rotational motion. On the other hand, we present a parametric tightly linked space-time visualization approach for an effective interactive representation of the overall dynamics. We demonstrate the utility of our approach using several two-phase CFD datasets.

  17. Effect of Slow External Flow on Flame Spreading over Solid Material: Opposed Spreading over Polyethylene Wire Insulation

    Science.gov (United States)

    Fujita, O.; Nishizawa, K.; Ito, K.; Olson, S. L.; Kashigawa, T.

    2001-01-01

    The effect of slow external flow on solid combustion is very important from the view of fire safety in space because the solid material in spacecraft is generally exposed to the low air flow for ventilation. Further, the effect of low external flow on fuel combustion is generally fundamental information for industrial combustion system, such as gas turbine, boiler incinerator and so on. However, it is difficult to study the effect of low external flow on solid combustion in normal gravity, because the buoyancy-induced flow strongly disturbs the flow field, especially for low flow velocity. In this research therefore, the effect of slow external flow on opposed flame spreading over polyethylene (PE) wire insulation have been investigated in microgravity. The microgravity environment was provided by Japan Microgravity Center (JAMIC) in Japan and KC-135 at NASA GRC. The tested flow velocity range is 0-30cm/s with different oxygen concentration and inert gas component.

  18. PIV Analysis of Ludwig Prandtl's Historic Flow Visualization Films

    OpenAIRE

    Willert, Christian; Kompenhans, Jürgen

    2010-01-01

    Around 1930 Ludwig Prandtl and his colleagues O. Tietjens and W. M\\"uller published two films with visualizations of flows around surface piercing obstacles to illustrate the unsteady process of flow separation. These visualizations were achieved by recording the motion of fine particles sprinkled onto the water surface in water channels. The resulting images meet the relevant criteria of properly seeded recordings for particle image velocimetry (PIV). Processing these image sequences with mo...

  19. Code Flows : Visualizing Structural Evolution of Source Code

    NARCIS (Netherlands)

    Telea, Alexandru; Auber, David

    2008-01-01

    Understanding detailed changes done to source code is of great importance in software maintenance. We present Code Flows, a method to visualize the evolution of source code geared to the understanding of fine and mid-level scale changes across several file versions. We enhance an existing visual

  20. Arterial secondary blood flow patterns visualized with vector flow ultrasound

    DEFF Research Database (Denmark)

    Pedersen, Mads Møller; Pihl, Michael Johannes; Hansen, Jens Munk

    2011-01-01

    and velocity magnitudes the blood flow patterns were visualised with streamlines in Matlab (Mathworks, Natick, MA, USA). The rotational flow was quantified by the angular frequency for each cardiac cycle, and the mean rotational frequencies and standard deviations were calculated for the abdominal aorta f-1......This study presents the first quantification and visualisation of secondary flow patterns with vector flow ultrasound. The first commercial implementation of the vector flow method Transverse Oscillation was used to obtain in-vivo, 2D vector fields in real-time. The hypothesis of this study...... was that the rotational direction is constant within each artery. Three data sets of 10 seconds were obtained from three main arteries in healthy volunteers. For each data set the rotational flow patterns were identified during the diastole. Each data set contains a 2D vector field over time and with the vector angles...

  1. Physically-based interactive Schlieren flow visualization

    Energy Technology Data Exchange (ETDEWEB)

    Mccormick, Patrick S [Los Alamos National Laboratory; Brownlee, Carson S [Los Alamos National Laboratory; Pegoraro, Vincent [UNIV OF UTAH; Shankar, Siddharth [UNIV OF UTAH; Hansen, Charles D [UNIV OF UTAH

    2009-01-01

    Understanding fluid flow is a difficult problem and of increasing importance as computational fluid dynamics produces an abundance of simulation data. Experimental flow analysis has employed techniques such as shadowgraph and schlieren imaging for centuries which allow empirical observation of inhomogeneous flows. Shadowgraphs provide an intuitive way of looking at small changes in flow dynamics through caustic effects while schlieren cutoffs introduce an intensity gradation for observing large scale directional changes in the flow. The combination of these shading effects provides an informative global analysis of overall fluid flow. Computational solutions for these methods have proven too complex until recently due to the fundamental physical interaction of light refracting through the flow field. In this paper, we introduce a novel method to simulate the refraction of light to generate synthetic shadowgraphs and schlieren images of time-varying scalar fields derived from computational fluid dynamics (CFD) data. Our method computes physically accurate schlieren and shadowgraph images at interactive rates by utilizing a combination of GPGPU programming, acceleration methods, and data-dependent probabilistic schlieren cutoffs. Results comparing this method to previous schlieren approximations are presented.

  2. Brief Communication: A low-cost Arduino®-based wire extensometer for earth flow monitoring

    Science.gov (United States)

    Guerriero, Luigi; Guerriero, Giovanni; Grelle, Gerardo; Guadagno, Francesco M.; Revellino, Paola

    2017-06-01

    Continuous monitoring of earth flow displacement is essential for the understanding of the dynamic of the process, its ongoing evolution and designing mitigation measures. Despite its importance, it is not always applied due to its expense and the need for integration with additional sensors to monitor factors controlling movement. To overcome these problems, we developed and tested a low-cost Arduino-based wire-rail extensometer integrating a data logger, a power system and multiple digital and analog inputs. The system is equipped with a high-precision position transducer that in the test configuration offers a measuring range of 1023 mm and an associated accuracy of ±1 mm, and integrates an operating temperature sensor that should allow potential thermal drift that typically affects this kind of systems to be identified and corrected. A field test, conducted at the Pietrafitta earth flow where additional monitoring systems had been installed, indicates a high reliability of the measurement and a high monitoring stability without visible thermal drift.

  3. Visualization and simulation of complex flows in biomedical engineering

    CERN Document Server

    Imai, Yohsuke; Ishikawa, Takuji; Oliveira, Mónica

    2014-01-01

    This book focuses on the most recent advances in the application of visualization and simulation methods to understand the flow behavior of complex fluids used in biomedical engineering and other related fields. It shows the physiological flow behavior in large arteries, microcirculation, respiratory systems and in biomedical microdevices.

  4. An information-theoretic framework for flow visualization.

    Science.gov (United States)

    Xu, Lijie; Lee, Teng-Yok; Shen, Han-Wei

    2010-01-01

    The process of visualization can be seen as a visual communication channel where the input to the channel is the raw data, and the output is the result of a visualization algorithm. From this point of view, we can evaluate the effectiveness of visualization by measuring how much information in the original data is being communicated through the visual communication channel. In this paper, we present an information-theoretic framework for flow visualization with a special focus on streamline generation. In our framework, a vector field is modeled as a distribution of directions from which Shannon's entropy is used to measure the information content in the field. The effectiveness of the streamlines displayed in visualization can be measured by first constructing a new distribution of vectors derived from the existing streamlines, and then comparing this distribution with that of the original data set using the conditional entropy. The conditional entropy between these two distributions indicates how much information in the original data remains hidden after the selected streamlines are displayed. The quality of the visualization can be improved by progressively introducing new streamlines until the conditional entropy converges to a small value. We describe the key components of our framework with detailed analysis, and show that the framework can effectively visualize 2D and 3D flow data.

  5. Flow visualization of a low density hypersonic flow field

    International Nuclear Information System (INIS)

    Masson, B.S.; Jumper, E.J.; Walters, E.; Segalman, T.Y.; Founds, N.D.

    1989-01-01

    Characteristics of laser induced iodine fluorescence (LIIF) in low density hypersonic flows are being investigated for use as a diagnostic technique. At low pressures, doppler broadening dominates the iodine absorption profile producing a fluorescence signal that is primarily temperature and velocity dependent. From this dependency, a low pressure flow field has the potential to be mapped for its velocity and temperature fields. The theory for relating iodine emission to the velocity and temperature fields of a hypersonic flow is discussed in this paper. Experimental observations are made of a fluorescencing free expansion and qualitatively related to the theory. 7 refs

  6. System for flow visualization in swimming

    NARCIS (Netherlands)

    van Houwelingen, J.; van de Water, W.; Kunnen, R.P.J.; van Heijst, GJF; Clerx, H.J.H.; Jansen, A.J.

    2016-01-01

    Understanding the power balance of a swimmer, who needs to overcome power losses to drag and to water set in motion, requires detailed insight into the hydrodynamics of the flow around the swimmer. This will be done from a hydrodynamic point of view with techniques familiar from fluid mechanics.

  7. Flow visualization analysis of two-phase flow through contraction using shadow-image and PIV

    International Nuclear Information System (INIS)

    Watanabe, Satoshi; Morimoto, Yuichiro; Ishikawa, Masaaki; Okamoto, Koji; Madarame, Haruki

    2004-01-01

    Gas-liquid two-phase flow through contraction was visualized and analyzed using shadow-image and PIV. The flow channel has reducer, where the width was contracted from 50mm to 20mm. Bubble deformation and concurrent velocity fluctuation was investigated varying superficial liquid flow rate from 0.4m/s to 8.0m/s. (author)

  8. Description of the NASA Dryden Flow Visualization Facility

    Science.gov (United States)

    DelFrate, John H.; Deets, Dwain A. (Technical Monitor)

    1994-01-01

    A water tunnel facility at the NASA Dryden Flight Research Facility is described. This water tunnel facility, the Flow Visualization Facility, is used primarily for visualizing and analyzing vortical flows on aircraft models and other shapes at high incidence angles. The tunnel is used extensively as a low cost diagnostic tool to help understand complex flows over aircraft and other full scale vehicles. The facility consists primarily of a closed circuit water tunnel with a 16 in by 24 in vertical test section. The velocity of the flow through the test section can be varied from 0 to 10 in/sec, however 3 in/sec has been found to be optimum for flow visualization. This corresponds to a unit Reynolds number of 23,000 per foot and a turbulence level over the majority of the test section below .05%. Flow visualization techniques described include the dye tracer, laser light sheet and the shadowgraph techniques. Limited correlation to full-scale flight data is shown.

  9. Analysis and visualization of complex unsteady three-dimensional flows

    Science.gov (United States)

    Van Dalsem, William R.; Buning, Pieter G.; Dougherty, F. Carroll; Smith, Merritt H.

    1989-01-01

    Flow field animation is the natural choice as a tool in the analysis of the numerical simulations of complex unsteady three-dimensional flows. The PLOT4D extension of the widely used PLOT3D code to allow the interactive animation of a broad range of flow variables was developed and is presented. To allow direct comparison with unsteady experimental smoke and dye flow visualization, the code STREAKER was developed to produce time accurate streaklines. Considerations regarding the development of PLOT4D and STREAKER, and example results are presented.

  10. Disentangling How the Brain is "Wired" in Cortical (Cerebral) Visual Impairment.

    Science.gov (United States)

    Merabet, Lotfi B; Mayer, D Luisa; Bauer, Corinna M; Wright, Darick; Kran, Barry S

    2017-05-01

    Cortical (cerebral) visual impairment (CVI) results from perinatal injury to visual processing structures and pathways of the brain and is the most common cause of severe visual impairment or blindness in children in developed countries. Children with CVI display a wide range of visual deficits including decreased visual acuity, impaired visual field function, as well as impairments in higher-order visual processing and attention. Together, these visual impairments can dramatically influence a child's development and well-being. Given the complex neurologic underpinnings of this condition, CVI is often undiagnosed by eye care practitioners. Furthermore, the neurophysiological basis of CVI in relation to observed visual processing deficits remains poorly understood. Here, we present some of the challenges associated with the clinical assessment and management of individuals with CVI. We discuss how advances in brain imaging are likely to help uncover the underlying neurophysiology of this condition. In particular, we demonstrate how structural and functional neuroimaging approaches can help gain insight into abnormalities of white matter connectivity and cortical activation patterns, respectively. Establishing a connection between how changes within the brain relate to visual impairments in CVI will be important for developing effective rehabilitative and education strategies for individuals living with this condition. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. A planar Mie scattering technique for visualizing supersonic mixing flows

    Science.gov (United States)

    Clemens, N. T.; Mungal, M. G.

    1991-01-01

    A planar Mie scattering technique is described which allows for the direct visualization of fluid mixing in supersonic flows. The mixed fluid is visualized by laser light sheet scattering from small alcohol droplets which condense as a result of the mixing of a vapor laden subsonic stream with a cold supersonic stream. Issues related to the formation, growth and size of the droplets are addressed. The technique reveals details of the turbulent structure which are masked by the spatial integration of schlieren and shadowgraph methods. Comparative visualizations using the vapor screen method to uniformly mark the high-speed fluid are also shown.

  12. Visual Modelling of Data Warehousing Flows with UML Profiles

    Science.gov (United States)

    Pardillo, Jesús; Golfarelli, Matteo; Rizzi, Stefano; Trujillo, Juan

    Data warehousing involves complex processes that transform source data through several stages to deliver suitable information ready to be analysed. Though many techniques for visual modelling of data warehouses from the static point of view have been devised, only few attempts have been made to model the data flows involved in a data warehousing process. Besides, each attempt was mainly aimed at a specific application, such as ETL, OLAP, what-if analysis, data mining. Data flows are typically very complex in this domain; for this reason, we argue, designers would greatly benefit from a technique for uniformly modelling data warehousing flows for all applications. In this paper, we propose an integrated visual modelling technique for data cubes and data flows. This technique is based on UML profiling; its feasibility is evaluated by means of a prototype implementation.

  13. Special purpose computer system for flow visualization using holography technology.

    Science.gov (United States)

    Abe, Yukio; Masuda, Nobuyuki; Wakabayashi, Hideaki; Kazo, Yuta; Ito, Tomoyoshi; Satake, Shin-ichi; Kunugi, Tomoaki; Sato, Kazuho

    2008-05-26

    We have designed a special purpose computer system for visualizing fluid flow using digital holographic particle tracking velocimetry (DHPTV). This computer contains an Field Programmble Gate Array (FPGA) chip in which a pipeline for calculating the intensity of an object from a hologram by fast Fourier transform is installed. This system can produce 100 reconstructed images from a 1024 x 1024-grid hologram in 3.3 sec. It is expected that this system will contribute to fluid flow analysis.

  14. Engine flow visualization using a copper vapor laser

    Science.gov (United States)

    Regan, Carolyn A.; Chun, Kue S.; Schock, Harold J., Jr.

    1987-01-01

    A flow visualization system has been developed to determine the air flow within the combustion chamber of a motored, axisymmetric engine. The engine has been equipped with a transparent quartz cylinder, allowing complete optical access to the chamber. A 40-Watt copper vapor laser is used as the light source. Its beam is focused down to a sheet approximately 1 mm thick. The light plane is passed through the combustion chamber, and illuminates oil particles which were entrained in the intake air. The light scattered off of the particles is recorded by a high speed rotating prism movie camera. A movie is then made showing the air flow within the combustion chamber for an entire four-stroke engine cycle. The system is synchronized so that a pulse generated by the camera triggers the laser's thyratron. The camera is run at 5,000 frames per second; the trigger drives one laser pulse per frame. This paper describes the optics used in the flow visualization system, the synchronization circuit, and presents results obtained from the movie. This is believed to be the first published study showing a planar observation of airflow in a four-stroke piston-cylinder assembly. These flow visualization results have been used to interpret flow velocity measurements previously obtained with a laser Doppler velocimetry system.

  15. Numerical simulation of effect of catalyst wire-mesh pressure drop characteristics on flow distribution in catalytic parallel plate steam reformer

    DEFF Research Database (Denmark)

    Sigurdsson, Haftor Örn; Kær, Søren Knudsen

    2012-01-01

    Steam reforming of hydrocarbons using a catalytic plate-type-heat-exchanger (CPHE) reformer is an attractive method of producing hydrogen for a fuel cell-based micro combined-heat-and-power system. In this study the flow distribution in a CPHE reformer, which uses a coated wire-mesh catalyst......, is considered to investigate the effect of catalyst wire-mesh pressure drop characteristics on flow distribution in the CPHE reformer. Flow distribution in a CPHE reformer is rarely uniform due to inlet and exhaust manifold design. Poorly-designed manifolds may lead to severe flow maldistribution, flow reversal...... in some of the CPHE reformer channels and increased overall pressure drop. Excessive flow maldistribution can significantly reduce the CPHE reformer performance. Detailed three-dimensional models are used to investigate the flow distribution at three different catalyst wire-mesh pressure drop coefficients...

  16. Visualization periodic flows in a continuously stratified fluid.

    Science.gov (United States)

    Bardakov, R.; Vasiliev, A.

    2012-04-01

    To visualize the flow pattern of viscous continuously stratified fluid both experimental and computational methods were developed. Computational procedures were based on exact solutions of set of the fundamental equations. Solutions of the problems of flows producing by periodically oscillating disk (linear and torsion oscillations) were visualized with a high resolutions to distinguish small-scale the singular components on the background of strong internal waves. Numerical algorithm of visualization allows to represent both the scalar and vector fields, such as velocity, density, pressure, vorticity, stream function. The size of the source, buoyancy and oscillation frequency, kinematic viscosity of the medium effects were traced in 2D an 3D posing problems. Precision schlieren instrument was used to visualize the flow pattern produced by linear and torsion oscillations of strip and disk in a continuously stratified fluid. Uniform stratification was created by the continuous displacement method. The buoyancy period ranged from 7.5 to 14 s. In the experiments disks with diameters from 9 to 30 cm and a thickness of 1 mm to 10 mm were used. Different schlieren methods that are conventional vertical slit - Foucault knife, vertical slit - filament (Maksoutov's method) and horizontal slit - horizontal grating (natural "rainbow" schlieren method) help to produce supplementing flow patterns. Both internal wave beams and fine flow components were visualized in vicinity and far from the source. Intensity of high gradient envelopes increased proportionally the amplitude of the source. In domains of envelopes convergence isolated small scale vortices and extended mushroom like jets were formed. Experiments have shown that in the case of torsion oscillations pattern of currents is more complicated than in case of forced linear oscillations. Comparison with known theoretical model shows that nonlinear interactions between the regular and singular flow components must be taken

  17. Calibration and Optimization of Constant Voltage Hot-Wire Anemometer in Hypersonic Flows

    National Research Council Canada - National Science Library

    Chokani, Ndaona

    2003-01-01

    ...) and constant voltage (CVA) anemometry. The performance of both anemometers is systematically made by operating the same hot-wire under identical conditions and applying post-test software corrections to the fluctuating measurements...

  18. Investigation of air-water flow in a horizontal pipe with 90 degree bends using wire mesh sensors

    Energy Technology Data Exchange (ETDEWEB)

    Bowden, R.C.; Yang, S.K., E-mail: robert.bowden@cnl.ca, E-mail: sun-kyu.yang@cnl.ca [Canadian Nuclear Laboratories, Chalk River, ON (Canada)

    2015-07-01

    Wire mesh sensors were used to investigate the void fraction distribution along a 9 meter long, 50.8 mm diameter, horizontal test section that contained two 90 degree bends. Deionised water and compressed air were used as the working fluids, with the bubbly flow regime achieved at a superficial liquid velocity of 3.5 m/s and superficial gas velocities that varied between 0.1 and 1.2 m/s. The effects of superficial gas velocity and axial location on the void fraction distribution were investigated. Bubble and slug flow patterns were identified using a probability density function analysis based on a Gaussian mixture model. (author)

  19. Semi-empirical model for the calculation of flow friction factors in wire-wrapped rod bundles

    International Nuclear Information System (INIS)

    Carajilescov, P.; Fernandez y Fernandez, E.

    1981-08-01

    LMFBR fuel elements consist of wire-wrapped rod bundles, with triangular array, with the fluid flowing parallel to the rods. A semi-empirical model is developed in order to obtain the average bundle friction factor, as well as the friction factor for each subchannel. The model also calculates the flow distribution factors. The results are compared to experimental data for geometrical parameters in the range: P(div)D = 1.063 - 1.417, H(div)D = 4 - 50, and are considered satisfactory. (Author) [pt

  20. Subchannel and bundle friction factors and flow split parameters for laminar transition and turbulent longitudinal flows in wire wrap spaced hexagonal arrays

    International Nuclear Information System (INIS)

    Hawley, J.T.; Chiu, C.; Todreas, N.E.; Rohsenow, W.M.

    1980-01-01

    Correlations are presented for subchannel and bundle friction factors and flowsplit parameters for laminar, transition and turbulent longitudinal flows in wire wrap spaced hexagonal arrays. These results are obtained from pressure drop models of flow in individual subchannels. For turbulent flow, an existing pressure drop model for flow in edge subchannels is extended, and the resulting edge subchannel friction factor is identified. Using the expressions for flowsplit parameters and the equal pressure drops assumption, the interior subchannel and bundle friction factors are obtained. For laminar flow, models are developed for pressure drops of individual subchannels. From these models, expressions for the subchannel friction factors are identified and expressions for the flowsplit parameters are derived

  1. Visualization and analysis of inertial flow in porous media

    Science.gov (United States)

    Wood, B. D.; Liburdy, J. A.; Apte, S. V.; Patil, V. A.; Finn, J.

    2011-12-01

    Inertial flows in porous media occur in both natural (e.g., at stream bed interfaces with the hyporheic zone) and engineered (e.g., near well bores or in packed-bed reactors) systems. There are a number of approaches for representing the inertial effects of flow in a porous medium, and most commonly these laws relate the pressure gradient to the square of the velocity (e.g., the Forchheimer-Ergun equation). Despite the success of these kinds of model relationships, the mechanisms by which momentum is transferred within a bed at high Reynolds numbers (NR above, approximately, NR=10) is not well understood. We have initiated work in which we are combining experimental visualization of fluid flows in a porous medium with the development of explanatory theory for the net momentum transfer process within the medium. In particular, we are interested in how certain kinds of inertial flow structures and processes (e.g., vortexes and vortex shedding, jet flow) might influence the pressure gradient-velocity relationship in porous media. We have developed a set of protocols that allow us to use particle imaging velocimetry (PIV) in fluid-solid index-matched porous media at very high levels of accuracy and resolution. These experimental results are providing direct measurement of the momentum transfer process within the porous media, and are also providing a data set to validate a numerical representation of the flow fields via high-performance computing. Ultimately, our goal is to use these experimental and numerical methods to directly compute the relationship between the pressure gradient and average velocity in the porous medium. This latter goal will be achieved by first developing the appropriate upscaled theory for the flow in the context of volume averaging. We will present a summary of our results to date, including visualization of inertial flow fields in our experimental system, numerical simulations of the flow field on boundary-fitted grids representing the

  2. Flow pattern visualization in a mimic anaerobic digester using CFD.

    Science.gov (United States)

    Vesvikar, Mehul S; Al-Dahhan, Muthanna

    2005-03-20

    Three-dimensional steady-state computational fluid dynamics (CFD) simulations were performed in mimic anaerobic digesters to visualize their flow pattern and obtain hydrodynamic parameters. The mixing in the digester was provided by sparging gas at three different flow rates. The gas phase was simulated with air and the liquid phase with water. The CFD results were first evaluated using experimental data obtained by computer automated radioactive particle tracking (CARPT). The simulation results in terms of overall flow pattern, location of circulation cells and stagnant regions, trends of liquid velocity profiles, and volume of dead zones agree reasonably well with the experimental data. CFD simulations were also performed on different digester configurations. The effects of changing draft tube size, clearance, and shape of the tank bottoms were calculated to evaluate the effect of digester design on its flow pattern. Changing the draft tube clearance and height had no influence on the flow pattern or dead regions volume. However, increasing the draft tube diameter or incorporating a conical bottom design helped in reducing the volume of the dead zones as compared to a flat-bottom digester. The simulations showed that the gas flow rate sparged by a single point (0.5 cm diameter) sparger does not have an appreciable effect on the flow pattern of the digesters at the range of gas flow rates used.

  3. Flow visualization in heat-generating porous media

    International Nuclear Information System (INIS)

    Lee, D.O.; Nilson, R.H.

    1977-11-01

    The work reported is in support of the Sandia Post-Accident Heat Removal Program, in which simulated LMFBR beds will be subjected to in-pile heating in the ACPR (Annular Core Pulsed Reactor). Flow visualization experiments were performed to gain some insight into the flow patterns and temperature distributions in a fluid-saturated heat-generating porous medium. Although much of the information presented is of a qualitative nature, it is useful in the recognition of the controlling transport process and in the formulation of analytic and numerical models

  4. Flow visualization in models of high speed centrifugal separators

    International Nuclear Information System (INIS)

    Lagerstedt, T.; Nabo, O.

    1987-01-01

    The modern centrifugal separator is a fluid machine where the high ''G'' forces set up by rotation are utilized to separate phases of different densities. The fluid dynamics of the separator is complex and poorly known. Hundred years of (practical) experience has, however, turned the separator into an efficient machine. The present report shows how straight forward visualization experiments in model rigs provide valuable information on the flow inside the separator. The report concentrates on describing the flow between the closely spaced discs in a separator disc stack

  5. Spatiotemporal features of retinal waves instruct the wiring of the visual circuitry

    Directory of Open Access Journals (Sweden)

    Marla B Feller

    2016-07-01

    Full Text Available Coordinated spontaneous activity is present in different sensory systems during early stages of development. This activity is thought to play a critical role in the development of sensory representations before the maturation of sensory experience. In the visual system, the mechanisms by which spatiotemporal properties of retinal spontaneous activity, called retinal waves, drive developmental events has been well studied. Recent advancements in pharmacological, genetic, and optogenetic manipulations have provided further understanding of the contribution of specific spatiotemporal properties of retinal waves to eye-specific segregation and retinotopic refinement of retinofugal projections. Here we review some of the recent progress in understanding the role of retinal waves in the early stages of visual system development, prior to the maturation of vision.

  6. Wiring a periscope--ocelli, retinula axons, visual neuropils and the ancestrality of sea spiders.

    Science.gov (United States)

    Lehmann, Tobias; Hess, Martin; Melzer, Roland R

    2012-01-01

    The Pycnogonida or sea spiders are cryptic, eight-legged arthropods with four median ocelli in a 'periscope' or eye tubercle. In older attempts at reconstructing phylogeny they were Arthropoda incertae sedis, but recent molecular trees placed them as the sister group either to all other euchelicerates or even to all euarthropods. Thus, pycnogonids are among the oldest extant arthropods and hold a key position for the understanding of arthropod evolution. This has stimulated studies of new sets of characters conductive to cladistic analyses, e.g. of the chelifores and of the hox gene expression pattern. In contrast knowledge of the architecture of the visual system is cursory. A few studies have analysed the ocelli and the uncommon "pseudoinverted" retinula cells. Moreover, analyses of visual neuropils are still at the stage of Hanström's early comprehensive works. We have therefore used various techniques to analyse the visual fibre pathways and the structure of their interrelated neuropils in several species. We found that pycnogonid ocelli are innervated to first and second visual neuropils in close vicinity to an unpaired midline neuropil, i.e. possibly the arcuate body, in a way very similar to ancestral euarthropods like Euperipatoides rowelli (Onychophora) and Limulus polyphemus (Xiphosura). This supports the ancestrality of pycnogonids and sheds light on what eyes in the pycnogonid ground plan might have 'looked' like. Recently it was suggested that arthropod eyes originated from simple ocelli similar to larval eyes. Hence, pycnogonid eyes would be one of the early offshoots among the wealth of more sophisticated arthropod eyes.

  7. Wiring a periscope--ocelli, retinula axons, visual neuropils and the ancestrality of sea spiders.

    Directory of Open Access Journals (Sweden)

    Tobias Lehmann

    Full Text Available The Pycnogonida or sea spiders are cryptic, eight-legged arthropods with four median ocelli in a 'periscope' or eye tubercle. In older attempts at reconstructing phylogeny they were Arthropoda incertae sedis, but recent molecular trees placed them as the sister group either to all other euchelicerates or even to all euarthropods. Thus, pycnogonids are among the oldest extant arthropods and hold a key position for the understanding of arthropod evolution. This has stimulated studies of new sets of characters conductive to cladistic analyses, e.g. of the chelifores and of the hox gene expression pattern. In contrast knowledge of the architecture of the visual system is cursory. A few studies have analysed the ocelli and the uncommon "pseudoinverted" retinula cells. Moreover, analyses of visual neuropils are still at the stage of Hanström's early comprehensive works. We have therefore used various techniques to analyse the visual fibre pathways and the structure of their interrelated neuropils in several species. We found that pycnogonid ocelli are innervated to first and second visual neuropils in close vicinity to an unpaired midline neuropil, i.e. possibly the arcuate body, in a way very similar to ancestral euarthropods like Euperipatoides rowelli (Onychophora and Limulus polyphemus (Xiphosura. This supports the ancestrality of pycnogonids and sheds light on what eyes in the pycnogonid ground plan might have 'looked' like. Recently it was suggested that arthropod eyes originated from simple ocelli similar to larval eyes. Hence, pycnogonid eyes would be one of the early offshoots among the wealth of more sophisticated arthropod eyes.

  8. Wiring a Periscope – Ocelli, Retinula Axons, Visual Neuropils and the Ancestrality of Sea Spiders

    Science.gov (United States)

    Lehmann, Tobias; Heß, Martin; Melzer, Roland R.

    2012-01-01

    The Pycnogonida or sea spiders are cryptic, eight-legged arthropods with four median ocelli in a ‘periscope’ or eye tubercle. In older attempts at reconstructing phylogeny they were Arthropoda incertae sedis, but recent molecular trees placed them as the sister group either to all other euchelicerates or even to all euarthropods. Thus, pycnogonids are among the oldest extant arthropods and hold a key position for the understanding of arthropod evolution. This has stimulated studies of new sets of characters conductive to cladistic analyses, e.g. of the chelifores and of the hox gene expression pattern. In contrast knowledge of the architecture of the visual system is cursory. A few studies have analysed the ocelli and the uncommon “pseudoinverted” retinula cells. Moreover, analyses of visual neuropils are still at the stage of Hanström's early comprehensive works. We have therefore used various techniques to analyse the visual fibre pathways and the structure of their interrelated neuropils in several species. We found that pycnogonid ocelli are innervated to first and second visual neuropils in close vicinity to an unpaired midline neuropil, i.e. possibly the arcuate body, in a way very similar to ancestral euarthropods like Euperipatoides rowelli (Onychophora) and Limulus polyphemus (Xiphosura). This supports the ancestrality of pycnogonids and sheds light on what eyes in the pycnogonid ground plan might have ‘looked’ like. Recently it was suggested that arthropod eyes originated from simple ocelli similar to larval eyes. Hence, pycnogonid eyes would be one of the early offshoots among the wealth of more sophisticated arthropod eyes. PMID:22279594

  9. Realizing compact system for Schlieren visualization of transonic flows

    International Nuclear Information System (INIS)

    Bassi, F.; Osnaghi, C.; Savini, M.

    1992-01-01

    This paper describes a Schlieren system for flow visualization thought to overcome most of the drawbacks connected with the Z-configuration usually adopted: lack of transportability, wide overall dimensions, long and difficult alignment of the components, restricted sensitivity. The system, originally designed and realized, is of the double-pass type with all the emitting and receiving components mounted on an optical table and aligned during the initial assembly. The paper shows both monochromatic (Helium-Neon laser) and white-light (Mercury or Xenon arc lamps) visualizations of flames and transonic flows in calibrating nozzles and in turbine cascades in a wind tunnel. The accuracy and versatility displayed make this Schlieren system easily usable in fluid dynamics researches

  10. Decoding complex flow-field patterns in visual working memory.

    Science.gov (United States)

    Christophel, Thomas B; Haynes, John-Dylan

    2014-05-01

    There has been a long history of research on visual working memory. Whereas early studies have focused on the role of lateral prefrontal cortex in the storage of sensory information, this has been challenged by research in humans that has directly assessed the encoding of perceptual contents, pointing towards a role of visual and parietal regions during storage. In a previous study we used pattern classification to investigate the storage of complex visual color patterns across delay periods. This revealed coding of such contents in early visual and parietal brain regions. Here we aim to investigate whether the involvement of visual and parietal cortex is also observable for other types of complex, visuo-spatial pattern stimuli. Specifically, we used a combination of fMRI and multivariate classification to investigate the retention of complex flow-field stimuli defined by the spatial patterning of motion trajectories of random dots. Subjects were trained to memorize the precise spatial layout of these stimuli and to retain this information during an extended delay. We used a multivariate decoding approach to identify brain regions where spatial patterns of activity encoded the memorized stimuli. Content-specific memory signals were observable in motion sensitive visual area MT+ and in posterior parietal cortex that might encode spatial information in a modality independent manner. Interestingly, we also found information about the memorized visual stimulus in somatosensory cortex, suggesting a potential crossmodal contribution to memory. Our findings thus indicate that working memory storage of visual percepts might be distributed across unimodal, multimodal and even crossmodal brain regions. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. The art and science of flow control - case studies using flow visualization methods

    Science.gov (United States)

    Alvi, F. S.; Cattafesta, L. N., III

    2010-04-01

    Active flow control (AFC) has been the focus of significant research in the last decade. This is mainly due to the potentially substantial benefits it affords. AFC applications range from the subsonic to the supersonic (and beyond) regime for both internal and external flows. These applications are wide and varied, such as controlling flow transition and separation over various external components of the aircraft to active management of separation and flow distortion in engine components and over turbine and compressor blades. High-speed AFC applications include control of flow oscillations in cavity flows, supersonic jet screech, impinging jets, and jet-noise control. In this paper we review some of our recent applications of AFC through a number of case studies that illustrate the typical benefits as well as limitations of present AFC methods. The case studies include subsonic and supersonic canonical flowfields such as separation control over airfoils, control of supersonic cavity flows and impinging jets. In addition, properties of zero-net mass-flux (ZNMF) actuators are also discussed as they represent one of the most widely studied actuators used for AFC. In keeping with the theme of this special issue, the flowfield properties and their response to actuation are examined through the use of various qualitative and quantitative flow visualization methods, such as smoke, shadowgraph, schlieren, planar-laser scattering, and Particle image velocimetry (PIV). The results presented here clearly illustrate the merits of using flow visualization to gain significant insight into the flow and its response to AFC.

  12. Experimental Research of Dynamic Instabilities in the Presence of Coiled Wire Inserts on Two-Phase Flow

    Science.gov (United States)

    Omeroglu, Gokhan; Comakli, Omer; Karagoz, Sendogan; Sahin, Bayram

    2013-01-01

    The aim of this study is to experimentally investigate the effect of the coiled wire insertions on dynamic instabilities and to compare the results with the smooth tube for forced convection boiling. The experiments were conducted in a circular tube, and water was used as the working fluid. Two different pitch ratios (H/D = 2.77 and 5.55) of coiled wire with circular cross-sections were utilised. The constant heat flux boundary condition was applied to the outer side of the test tube, and the constant exit restriction was used at the tube outlet. The mass flow rate changed from 110 to 20 g/s in order to obtain a detailed idea about the density wave and pressure drop oscillations, and the range of the inlet temperature was 15–35°C. The changes in pressure drop, inlet temperature, amplitude, and the period with mass flow rate are presented. For each configuration, it is seen that density wave and pressure drop oscillations occur at all inlet temperatures. Analyses show that the decrease in the mass flow rate and inlet temperature causes the amplitude and the period of the density wave and the pressure drop oscillations to decrease separately. PMID:23365547

  13. Flow instability and turbulence - ONERA water tunnel visualizations

    Science.gov (United States)

    Werle, H.

    The experimental technique used for visualizing laminar-turbulent transition phenomena, developed in previous tests in ONERA's small TH1 water tunnel, has been successfully applied in the new TH2 tunnel. With its very extensive Reynold's number domain (10 to the 4th - 10 to the 6th), this tunnel has shown itself to be well adapted to the study of turbulence and of the flow instabilities related to its appearance.

  14. Visualization of bubble behaviors in forced convective subcooled flow boiling

    International Nuclear Information System (INIS)

    Inaba, Noriaki; Matsuzaki, Mitsuo; Kikura, Hiroshige; Aritomi, Masanori; Komeno, Toshihiro

    2007-01-01

    Condensation characteristics of vapor bubble after the departure from a heated section in forced convective subcooled flow boiling were studied visually by using a high speed camera. The purpose of the present study was to measure two-phase flow parameters in subcooled flow boiling. These two-phase flow parameters are void fraction, interfacial area concentration and Sauter mean diameter, which express bubble interface behaviors. The experimental set-up was designed to measure the two-phase flow parameters necessary for developing composite equations for the two fluid models in subcooled flow boiling. In the present experiments, the mass flux, liquid subcooling and the heater were varied within 100-1000kg/m 2 s, 2-10K and 100-300kW/m 2 respectively. Under these experimental conditions, the bubble images were obtained by a high-speed camera, and analyzed paying attention to the condensation of vapor bubbles. These two-phase parameters were obtained by the experimental data, such as the bubble parameter, the bubble volume and the bubble surface. In the calculation process of the two phase flow parameters, it was confirmed that these parameters are related to the void fraction. (author)

  15. Qualitative and quantitative flow visualization technique using ozone

    Science.gov (United States)

    Dickerson, R. R.; Stedman, D. H.

    1979-01-01

    The paper describes a new flow-visualization technique based on the absorption of ultraviolet light by ozone. Ozone is an excellent tracer, because as a gas it has the same effective physical properties as air. Ozone strongly absorbs the principal line (253.7 nm) of a mercury lamp, so that when an ozone-traced flow passes between a mercury lamp and a fluorescent screen, a sharp, shadow-like image of the ozone tracer is cast on the screen. Quantitative photometry can be carried out by replacing the screen with ultraviolet detectors that yield the path-integrated column density of ozone in the flow. High-speed quantitative point monitoring (10 Hz at 10 ppb O3) is possible with capillary probes and chemiluminescent analysis.

  16. Flow Injection Analysis of Mercury Using 4-(Dimethylamino Benzaldehyde-4-Ethylthiosemicarbazone as the Ionophore of a Coated Wire Electrode

    Directory of Open Access Journals (Sweden)

    Sulaiman Ab Ghani

    2012-11-01

    Full Text Available A flow injection analysis (FIA incorporating a thiosemicarbazone-based coated wire electrode (CWE was developed method for the determination of mercury(II. A 0.1 M KNO3 carrier stream with pH between 1 and 5 and flow rate of 1 mL·min−1 were used as optimum parameters. A linear plot within the concentration range of 5 × 10−6–0.1 M Hg(II, slope of 27.8 ± 1 mV per decade and correlation coefficient (R2 of 0.984 were obtained. The system was successfully applied for the determination of mercury(II in dental amalgam solutions and spiked environmental water samples. Highly reproducible measurements with relative standard deviation (RSD < 1% (n = 3 were obtained, giving a typical throughput of 30 samples·h−1.

  17. Two-Phase Flow in Wire Coating with Heat Transfer Analysis of an Elastic-Viscous Fluid

    Directory of Open Access Journals (Sweden)

    Zeeshan Khan

    2016-01-01

    Full Text Available This work considers two-phase flow of an elastic-viscous fluid for double-layer coating of wire. The wet-on-wet (WOW coating process is used in this study. The analytical solution of the theoretical model is obtained by Optimal Homotopy Asymptotic Method (OHAM. The expression for the velocity field and temperature distribution for both layers is obtained. The convergence of the obtained series solution is established. The analytical results are verified by Adomian Decomposition Method (ADM. The obtained velocity field is compared with the existing exact solution of the same flow problem of second-grade fluid and with analytical solution of a third-grade fluid. Also, emerging parameters on the solutions are discussed and appropriate conclusions are drawn.

  18. Flow Visualization of Low Prandtl Number Fluids using Electrochemical Measurements

    Science.gov (United States)

    Crunkleton, D.; Anderson, T.; Narayanan, R.; Labrosse, G.

    2003-01-01

    It is well established that residual flows exist in contained liquid metal processes. In 1-g processing, buoyancy forces often drive these flows and their magnitudes can be substantial. It is also known that residual flows can exist during microgravity processing, and although greatly reduced in magnitude, they can influence the properties of the processed materials. Unfortunately, there are very few techniques to visualize flows in opaque, high temperature liquid metals, and those available are not easily adapted to flight investigation. In this study, a novel technique is developed that uses liquid tin as the model fluid and solid-state electrochemical cells constructed from Yttria-Stabilized Zirconia (YSZ) to establish and measure dissolved oxygen boundary conditions. The melt serves as a common electrode for each of the electrochemical cells in this design, while independent reference electrodes are maintained at the outside surfaces of the electrolyte. By constructing isolated electrochemical cells at various locations along the container walls, oxygen is introduced or extracted by imposing a known electrical potential or passing a given current between the melt and the reference electrode. This programmed titration then establishes a known oxygen concentration boundary condition at the selected electrolyte-melt interface. Using the other cells, the concentration of oxygen at the electrolyte-melt interface is also monitored by measuring the open-circuit potentials developed between the melt and reference electrodes. Thus the electrochemical cells serve to both establish boundary conditions for the passive tracer and sense its path. Rayleigh-Benard convection was used to validate the electrochemical approach to flow visualization. Thus, a numerical characterization of the second critical Rayleigh numbers in liquid tin was conducted for a variety of Cartesian aspect ratios. The extremely low Prandtl number of tin represents the lowest value studied numerically

  19. Experimental investigation of the mutual interference flow of two circular cylinders by flow visualization

    Science.gov (United States)

    Yokoi, Yoshifumi; Vitkovičová, Rut

    In order to understand the aspect of the mutual interference flow from two circular cylinders, the visual observation experiment was performed by use a water flow apparatus. The purpose of this study is accumulation of the basic image data for comparing with numerical computation or previous experimental results. In this report, the intervals of two circular cylinders were varied, the visualization experiment was performed, and the vortex shedding characteristics and the flow pattern in each case were investigated. The cylinder setting conditions were seven kinds (the position of the rear-side circular cylinder is changed). The cylinder diameter ratios were four kinds (D/d=1.0, 1.67, 2.5 and 5.0). The variation of Reynolds number was three kinds (Re=548.7, 1200 and 2500). The dye oozing streak method was used in this visualization experiment. Although the previous PIV experimental result and present result obtained the same flow feature, the aspect of an interference flow became clear by changing the color of tracer ink.

  20. Experimental investigation of the mutual interference flow of two circular cylinders by flow visualization

    Directory of Open Access Journals (Sweden)

    Yokoi Yoshifumi

    2017-01-01

    Full Text Available In order to understand the aspect of the mutual interference flow from two circular cylinders, the visual observation experiment was performed by use a water flow apparatus. The purpose of this study is accumulation of the basic image data for comparing with numerical computation or previous experimental results. In this report, the intervals of two circular cylinders were varied, the visualization experiment was performed, and the vortex shedding characteristics and the flow pattern in each case were investigated. The cylinder setting conditions were seven kinds (the position of the rear-side circular cylinder is changed. The cylinder diameter ratios were four kinds (D/d=1.0, 1.67, 2.5 and 5.0. The variation of Reynolds number was three kinds (Re=548.7, 1200 and 2500. The dye oozing streak method was used in this visualization experiment. Although the previous PIV experimental result and present result obtained the same flow feature, the aspect of an interference flow became clear by changing the color of tracer ink.

  1. Efficient Unsteady Flow Visualization with High-Order Access Dependencies

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jiang; Guo, Hanqi; Yuan, Xiaoru

    2016-04-19

    We present a novel high-order access dependencies based model for efficient pathline computation in unsteady flow visualization. By taking longer access sequences into account to model more sophisticated data access patterns in particle tracing, our method greatly improves the accuracy and reliability in data access prediction. In our work, high-order access dependencies are calculated by tracing uniformly-seeded pathlines in both forward and backward directions in a preprocessing stage. The effectiveness of our proposed approach is demonstrated through a parallel particle tracing framework with high-order data prefetching. Results show that our method achieves higher data locality and hence improves the efficiency of pathline computation.

  2. Enhanced flow field visualization using a flexible animation procedure

    International Nuclear Information System (INIS)

    Marconi, F.; Moretti, G.; Englund, D.C.

    1989-01-01

    A flexible and powerful procedure for transposing computer-generated images onto video tape is used in flowfield visualization. The result is animated sequences which can be used very effectively in the study of both steady and unsteady flows. The key to the procedure is the fact that the images (i.e., frames) of the animated sequence are recorded on the video tapes one at a time after they are created. Thus, the need for a mass storage system is eliminated because after a frame is recorded it is discarded. 7 references

  3. Visualization of gas flow and diffusion in porous media

    Science.gov (United States)

    Kaiser, Lana G.; Meersmann, Thomas; Logan, John W.; Pines, Alexander

    2000-01-01

    The transport of gases in porous materials is a crucial component of many important processes in science and technology. In the present work, we demonstrate how magnetic resonance microscopy with continuous flow laser-polarized noble gases makes it possible to “light up” and thereby visualize, with unprecedented sensitivity and resolution, the dynamics of gases in samples of silica aerogels and zeolite molecular sieve particles. The “polarization-weighted” images of gas transport in aerogel fragments are correlated to the diffusion coefficient of xenon obtained from NMR pulsed-field gradient experiments. The technique provides a unique means of studying the combined effects of flow and diffusion in systems with macroscopic dimensions and microscopic internal pore structure. PMID:10706617

  4. Visualization of turbulent reacting flow in a microscale nanoprecipitation reactor

    Science.gov (United States)

    Shi, Yanxiang; Vishwanat, Somashekar; Olsen, Michael; Fox, Rodney

    2009-11-01

    A flow visualization technique using the pH sensitive dye phenolphthalein was used to visualize and quantify turbulent reacting mixing in a microscale nanoprecipitation reactor. Phenolphthalein is colorless at pH lower than 8, but turns pink at higher pH, making it useful for visualizing acid-base reactions. Using this dye, turbulent reactive mixing in a confined impinging jets reactor (CIJR) was investigated. The reactor has two inlet streams, one at a pH of 3, and the other at a pH of 11. Phenolphthalein is also dissolved in both streams. A flash lamp with a extremely short pulse duration is used to freeze the turbulent motion of the fluids, and images are captured using a video camera. Quantitative mixing data are obtained by using a thresholding technique where local image intensities are transformed to binary signals which represent the local pH: 0 stands for pH lower than 8 and 1 for pH higher than 8. For each Reynolds number under consideration, thousands of realizations are acquired. Using this thresholding technique, probability density functions are obtained, allowing comparison to numerical simulations.

  5. Caída de presión de un flujo turbulento en un espacio anular con hélices insertadas//The pressure drop of turbulent flow in an annular space with wire coil inserts

    Directory of Open Access Journals (Sweden)

    Josué Imbert González

    2015-05-01

    Full Text Available El trabajo presentado evaluó el comportamiento experimental de la caída de presión en un espacio anular con alambres enrollados insertados para números de Reynolds entre 1500 y 5000. La zona de prueba se seleccionó alejada de la influencia de los efectos de entrada. Anteriormente se realizaron pruebas de visualización del flujo para verificar la presencia de un flujo turbulento en esta gama del número de Reynolds. A partir de los datos experimentales se obtuvieron ecuaciones de correlación del factor de fricción para el flujo turbulento. Las ecuaciones obtenidas se compararon con los datos experimentales. Los resultados indican hasta qué punto las hélices inducen la aparición de turbulencias en un espacio anularPalabras claves: caída de presión, flujo anular, análisis hidrodinámico, visualización de flujo, hélices insertadas.______________________________________________________________________________AbstractThe work presented evaluates the experimental behavior of the pressure drop in an annular space with coiled wires inserted forReynolds numbers between 1500 and 5000. The test zone was selected away from the influence of entrance effects. Previously flow visualization tests were performed to verify the presence of a turbulent flow in this range of Reynolds number. From the experimental data were obtained correlation equations of the friction factor for turbulent flow. The equations obtained were compared with experimental data. The results indicate to what extent the helices induce the occurrence of turbulence in an annular space.Key words: drop pressure, annular flow, hydrodynamic analysis, visualization flow, wire coil inserts.

  6. HAM on MHD Convective Flow of a Third grade Fluid through Porous Medium during Wire Coating Analysis with Hall effects

    Science.gov (United States)

    Reddy, B. Siva Kumar; Surya Narayana Rao, K. V.; Bhuvana Vijaya, R.

    2017-08-01

    In this study, wire coating is performed using MHD convective flow of third grade fluid through porous medium taking Hall current into account. The governing equations are first modelled and then solved analytically by utilizing the Homotopy analysis method (HAM). The convergence of the series solution is established. The effect of pertinent parameters on the velocity field and temperature profile is shown with the help of graphs. It is observed that the velocity profiles increase as the value of visco-elastic third grade fluid parameter β increase and decrease as the Hartmann number M and permeability parameter K increase. It is also observed that the temperature profiles increases as the Brinkman number Br, permeability parameter K, magnetic parameter M and third grade fluid parameter β increase.

  7. Flow visualization study of inverted U-bend two-phase flow

    International Nuclear Information System (INIS)

    Ishii, M.; Kim, S.B.; Lee, R.

    1986-12-01

    A hot-leg U-bend experiment was performed. The experimental condition simulated the two-phase flow in a B and W primary loop during a small break loss of coolant accident or during some other abnormal transients. The loop design was based on the scaling criteria developed previously and the loop was operated either in a natural circulation mode or in a forced circulation mode using nitrogen gas and water. The two-phase flow regimes at the hot-leg were identified on the basis of visual observation. The phase separation at the top of the inverted U-bend was observed at low gas flow rate. The void fractions were measured using differential pressure transducers and compared with the prediction from the drift-flux model. The natural circulation flow interruption occurred in two different modes, namely, quasi-periodic and semi-permanent modes. This phenomenon is mainly dependent on the difference in the hydrostatic head in the riser and downcomer, and the flow regime at hot-leg. Besides this flow interruption phenomenon, dynamic flow instabilities of considerable amplitudes have been observed

  8. A micro-scale hot wire anemometer based on low stress (Ni/W) multi-layers deposited on nano-crystalline diamond for air flow sensing

    Czech Academy of Sciences Publication Activity Database

    Talbi, A.; Gimeno, L.; Gerbedoen, J.-C.; Viard, R.; Soltani, A.; Mortet, Vincent; Preobrazhensky, V.; Merlen, A.; Pernod, P.

    2015-01-01

    Roč. 25, č. 2 (2015), s. 1-8, č. článku 125029. ISSN 0960-1317 Institutional support: RVO:68378271 Keywords : hot wire * nano-crystalline diamond * active flow control * anemometry Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 1.768, year: 2015

  9. Local flow blockage analysis with checkerboard configuration in a wire wrapped fuel subassembly using the ASFRE code

    International Nuclear Information System (INIS)

    Nishimura, Masahiro; Fukano, Yoshitaka

    2014-01-01

    Local fault (LF) has been historically considered as one of the possible causes of severe accidents in sodium-cooled fast reactors because fuel pins are generally densely arranged in the fuel subassemblies (FSAs) in this type of reactors. Local flow blockage (LB) has been one of the dominant initiators of LFs. Therefore evaluations were performed on LBs in the past safety licensing assuming a planar and impermeable blockage of 66% of the total flow area at an FSA for the Japanese prototype fast breeder reactor. A conservative evaluation revealed that fuel pin damage propagation would be limited within a restricted area of the reactor core, even assuming such a hypothetical initiating event. In the newly formulated regulatory requirements, however, after the accident at the Fukushima Dai-ichi nuclear power plant, best estimate (BE) safety analyses on the basis of state-of-the-art knowledge are being required for beyond design basis accidents. A deterministic and BE evaluation therefore based on the most-recent knowledge was newly performed in this study for revalidation of the above-mentioned historical background using the ASFRE code, whereas the LF accidents would not be identified as a representative accident sequence from a viewpoint of both its frequencies and consequences. Nominal power and flow rate without safety margins were assumed for the analyses in order to make the accidental conditions to be realistic. A most likely and realistic blockage configuration was newly proposed and employed based on the existing experimental data in accordance with the BE concept mentioned above. The aforementioned blockage configuration was excessively conservative on a state-of-the-art knowledge basis. The most-recent experimental studies clarified that LBs due to foreign substances would be formed by accumulating the steel fragments of certain sizes trapped along the wrapping wires. This leads to an LB in a checkerboard configuration for an FSA of wire spacer type, which

  10. Introduction to flow visualization system in SPARC test facility

    International Nuclear Information System (INIS)

    Lee, Wooyoung; Song, Simon; Na, Young Su; Hong, Seong Wan

    2016-01-01

    The released hydrogen can be accumulated and mixed by steam and air depending on containment conditions under severe accident, which generates flammable mixture. Hydrogen explosion induced by ignition source cause severe damage to a structure or facility. Hydrogen risk regarding mixing, distribution, and combustion has been identified by several expert groups and studied actively since TMI accident. A large-scale thermal-hydraulic experimental facility is required to simulate the complex severe accident phenomena in the containment building. We have prepared the test facility, called the SPARC (Spray, Aerosol, Recombiner, Combustion), to resolve the international open issues regarding hydrogen risk. Gas mixing and stratification test using helium instead of hydrogen and estimation of a stratification surface erosion of helium owing to the vertical jet flow will be performed in SPARC. The measurement system is need to observe the gas flow in the large scale test facility such as SPARC. The PIV (particle image velocimetry) system have been installed to visualize gas flow. We are preparing the test facility, called the SPARC, for estimation the thermal-hydraulic process of hydrogen in a closed containment building and the PIV system for quantitative assessment of gas flow. In particular, we will perform gas mixing and erosion of stratification surface test using helium which is the replacement of hydrogen. It will be evaluated by measuring 2D velocity field using the PIV system. The PIV system mainly consists of camera, laser and tracer particle. Expected maximum size of FOV is 750 x 750 mm 2 limited by focal length of lens and high power laser corresponding to 425mJ/pulse at 532 wavelength is required due to large FOV

  11. Introduction to flow visualization system in SPARC test facility

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Wooyoung; Song, Simon [Hanyang University, Seoul (Korea, Republic of); Na, Young Su; Hong, Seong Wan [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    The released hydrogen can be accumulated and mixed by steam and air depending on containment conditions under severe accident, which generates flammable mixture. Hydrogen explosion induced by ignition source cause severe damage to a structure or facility. Hydrogen risk regarding mixing, distribution, and combustion has been identified by several expert groups and studied actively since TMI accident. A large-scale thermal-hydraulic experimental facility is required to simulate the complex severe accident phenomena in the containment building. We have prepared the test facility, called the SPARC (Spray, Aerosol, Recombiner, Combustion), to resolve the international open issues regarding hydrogen risk. Gas mixing and stratification test using helium instead of hydrogen and estimation of a stratification surface erosion of helium owing to the vertical jet flow will be performed in SPARC. The measurement system is need to observe the gas flow in the large scale test facility such as SPARC. The PIV (particle image velocimetry) system have been installed to visualize gas flow. We are preparing the test facility, called the SPARC, for estimation the thermal-hydraulic process of hydrogen in a closed containment building and the PIV system for quantitative assessment of gas flow. In particular, we will perform gas mixing and erosion of stratification surface test using helium which is the replacement of hydrogen. It will be evaluated by measuring 2D velocity field using the PIV system. The PIV system mainly consists of camera, laser and tracer particle. Expected maximum size of FOV is 750 x 750 mm{sup 2} limited by focal length of lens and high power laser corresponding to 425mJ/pulse at 532 wavelength is required due to large FOV.

  12. Flow visualization around an apple with and without bagging

    Science.gov (United States)

    Matsumoto, H.; Kubota, Y.; Ohishi, M.; Mochizuki, O.

    2017-04-01

    The typhoon often causes the vast damage to drop the apple before harvest. Many apples fall from trees by the strong wind. These apples are usually bagged to protect them from insects and control sun light for the apples colouring while they are ripening on the tree. We directly measured the drag force acting on an apple with and without bagging experimentally to bare the influence of the bagging on the dropping mechanism. There are two interesting results through the experiment: the drag coefficient of a naked apple is smaller than a sphere, and the bagging is a cause of increasing drag coefficient. To know the reason of these results, we visualized flow around the apple with and without bagging by using the hydrogen bubbles method in an open water channel in this study. We found two facts as follows: the hollow on the top of an apple plays reduction of width of the wake of an apple and reason of increasing the wake width is the flow separation from peripheral edge of the bagging.

  13. The quantification of hemodynamic parameters downstream of a Gianturco Zenith stent wire using newtonian and non-newtonian analog fluids in a pulsatile flow environment.

    Science.gov (United States)

    Walker, Andrew M; Johnston, Clifton R; Rival, David E

    2012-11-01

    Although deployed in the vasculature to expand vessel diameter and improve blood flow, protruding stent struts can create complex flow environments associated with flow separation and oscillating shear gradients. Given the association between magnitude and direction of wall shear stress (WSS) and endothelial phenotype expression, accurate representation of stent-induced flow patterns is critical if we are to predict sites susceptible to intimal hyperplasia. Despite the number of stents approved for clinical use, quantification on the alteration of hemodynamic flow parameters associated with the Gianturco Z-stent is limited in the literature. In using experimental and computational models to quantify strut-induced flow, the majority of past work has assumed blood or representative analogs to behave as Newtonian fluids. However, recent studies have challenged the validity of this assumption. We present here the experimental quantification of flow through a Gianturco Z-stent wire in representative Newtonian and non-Newtonian blood analog environments using particle image velocimetry (PIV). Fluid analogs were circulated through a closed flow loop at physiologically appropriate flow rates whereupon PIV snapshots were acquired downstream of the wire housed in an acrylic tube with a diameter characteristic of the carotid artery. Hemodynamic parameters including WSS, oscillatory shear index (OSI), and Reynolds shear stresses (RSS) were measured. Our findings show that the introduction of the stent wire altered downstream hemodynamic parameters through a reduction in WSS and increases in OSI and RSS from nonstented flow. The Newtonian analog solution of glycerol and water underestimated WSS while increasing the spatial coverage of flow reversal and oscillatory shear compared to a non-Newtonian fluid of glycerol, water, and xanthan gum. Peak RSS were increased with the Newtonian fluid, although peak values were similar upon a doubling of flow rate. The introduction of the

  14. Basic Wiring.

    Science.gov (United States)

    Kaltwasser, Stan; And Others

    This module is the first in a series of three wiring publications; it serves as the foundation for students enrolled in a wiring program. It is a prerequisite to either "Residential Wiring" or "Commercial and Industrial Wiring." The module contains 16 instructional units that cover the following topics: occupational…

  15. Investigation of flow stabilization in a compact reactor vessel of a FBR. Flow visualization in a reactor vessel

    International Nuclear Information System (INIS)

    Sato, Hiroyuki; Igarashi, Minoru; Kimura, Nobuyuki; Kamide, Hideki

    2002-01-01

    In the feasibility studies of Commercialized Fast Breeder Reactor Cycle System, a compact reactor vessel is considered from economical improvement point of a sodium cooled loop type fast reactor. The flow field was visualized by water experiment for a reactor vessel with 'a column type UIS (Upper Internal Structure)', which has a slit for fuel handling mechanism and is useful for a compact fast reactor. In this research, the 1/20 scale test equipment using water was made to understand coolant flow through a slit of a column type UIS' and fundamental behavior of reactor upper plenum flow. In the flow visualization tests, tracer particles were added in the water, and illuminated by the slit-shaped pulse laser. The flow visualization image was taken with a CCD camera. We obtained fluid velocity vectors from the visualization image using the Particle Imaging Velocimetry (PIV). The results are as follows. 1. Most of coolant flow through a slit of 'column type UIS' arrived the dip plate directly. In the opposite side of a slit, most of coolant flowed toward reactor vessel wall before it arrived the dip plate. 2. The PIV was useful to measure the flow field in the reactor vessel. The obtained velocity field was consistent with the flow visualization result. 3. The jet through the UIS slit was dependent on the UIS geometry. There is a possibility to control the jet by the UIS geometry. (author)

  16. Electrophysiological measurement of information flow during visual search.

    Science.gov (United States)

    Cosman, Joshua D; Arita, Jason T; Ianni, Julianna D; Woodman, Geoffrey F

    2016-04-01

    The temporal relationship between different stages of cognitive processing is long debated. This debate is ongoing, primarily because it is often difficult to measure the time course of multiple cognitive processes simultaneously. We employed a manipulation that allowed us to isolate ERP components related to perceptual processing, working memory, and response preparation, and then examined the temporal relationship between these components while observers performed a visual search task. We found that, when response speed and accuracy were equally stressed, our index of perceptual processing ended before both the transfer of information into working memory and response preparation began. However, when we stressed speed over accuracy, response preparation began before the completion of perceptual processing or transfer of information into working memory on trials with the fastest reaction times. These findings show that individuals can control the flow of information transmission between stages, either waiting for perceptual processing to be completed before preparing a response or configuring these stages to overlap in time. © 2015 Society for Psychophysiological Research.

  17. Object oriented programming for computer graphics and flow visualization

    Science.gov (United States)

    Vucinic, Dean

    If OOP (Object Oriented Programming) is to be effective, a language and the library of software components (class library) have to be available. A language which is progressively and consistently gaining approval is the C++ because of its efficiency and support for OOP. A survey of C++ main features is presented along with some short examples showing how to use these featres effectively. OOP concepts implemented through C++ simplify the code structure and make it easier to debug and understand. More detailed examples related to computer graphics and flow visualization class implementations are given to explain the fundamentals of OOP and its advantages, based on the development of the object oriented model of PHIGS (Progammer's Hierarchical Interactive Graphics Standard) graphics library and the application of InterViews (an object oriented toolkit running on top of X Window System) for the implementation of Graphical User Interaces (GUI). The productivity gain obtained by using OOP in the software development process is starting to be recognized and its economic impact is becomming a major factor in software engineering.

  18. Ga N nano wires and nano tubes growth by chemical vapor deposition method at different NH{sub 3} flow rate

    Energy Technology Data Exchange (ETDEWEB)

    Li, P.; Liu, Y.; Meng, X. [Wuhan University, School of Physics and Technology, Key Laboratory of Artificial Micro and Nanostructures of Ministry of Education, Wuhan 430072 (China)

    2016-11-01

    Ga N nano wires and nano tubes have been successfully synthesized via the simple chemical vapor deposition method. NH{sub 3} flow rate was found to be a crucial factor in the synthesis of different type of Ga N which affects the shape and the diameter of generated Ga N nano structures. X-ray diffraction confirms that Ga N nano wires grown on Si(111) substrate under 900 degrees Celsius and with NH{sub 3} flow rate of 50 sc cm presents the preferred orientation growth in the (002) direction. It is beneficial to the growth of nano structure through catalyst annealing. Transmission electron microscopy and scanning electron microscopy were used to measure the size and structures of the samples. (Author)

  19. A Course in Flow Visualization: the Art and Physics of Fluid Flow

    Science.gov (United States)

    Hertzberg, Jean; Sweetman, Alex

    2003-11-01

    In Spring 2003, a new experimental course titled as above was offered to a mixed class of Fine Arts Photography and Engineering students. Course content included fluid flow physics, history of photography with respect to the relationship of science and art, as well as flow visualization and photography techniques. Issues such as "What makes an image art? What makes an image scientific?" were addressed. The class focused on studio/laboratory experiences for mixed teams of students. A range of fluids apparatus were made available, and students also created novel flows. Writeups were required for each image (to the art students' shock). Student work was evaluated for both artistic and scientific merit. This course represents a radical departure from normal engineering curricula; typically all fine arts studio courses are specifically excluded. However, the course proved to be very successful in attracting both graduate and undergraduate students, engineering women in particular. One outcome of the course is the recognition by students of the beauty of fluid physics that surrounds us each day, leading to motivation for life-long learning.

  20. Effects of thrombosed vena cava filters on blood flow: flow visualization and numerical modeling.

    Science.gov (United States)

    Stewart, Sandy F C; Robinson, Ronald A; Nelson, Robert A; Malinauskas, Richard A

    2008-11-01

    Inferior vena cava (IVC) filters are used to prevent pulmonary embolism (PE) in patients with deep vein thrombosis for whom anticoagulation is contraindicated. IVC filters have been shown to be effective in trapping embolized clots and preventing PE; however, among the commercially available designs, the optimal balance of clot capture efficiency, clot dissolution, and prevention of to vena cava occlusion is unknown. Clot capture efficiency has been quantified in numerous in vitro studies, in which model clots are released into a mock circulation system, with the relative capture efficiency of various IVC filters analyzed statistically. In general, two-stage filters have been found to be more efficient than one-stage filters. However, other factors may play a role in the ultimate dissolution of clots and in the overall effect of the resulting blood flow on caval vasculature. Clot dissolution has been shown to increase with increasing wall shear stress, while low and oscillating wall shear stresses are known to have a deleterious effect on vessel walls, causing intimal hyperplasia. This paper describes the effect of IVC filters on blood flow, velocity patterns, and wall shear stress by flow visualization and computational fluid dynamics.

  1. Limiting oxygen concentration for extinction of upward spreading flames over inclined thin polyethylene-insulated NiCr electrical wires with opposed-flow under normal- and micro-gravity

    KAUST Repository

    Hu, Longhua

    2016-10-02

    Materials, such as electrical wire, used in spacecraft must pass stringent fire safety standards. Tests for such standards are typically performed under normal gravity conditions and then extended to applications under microgravity conditions. The experiments reported here used polyethylene (PE)-insulated (thickness of 0.15 mm) Nichrome (NiCr)-core (diameter of 0.5 mm) electrical wires. Limiting oxygen concentrations (LOC) at extinction were measured for upward spreading flame at various forced opposed-flow (downward) speeds (0−25 cm/s) at several inclination angles (0−75°) under normal gravity conditions. The differences from those previously obtained under microgravity conditions were quantified and correlated to provide a reference for the development of fire safety test standards for electrical wires to be used in space exploration. It was found that as the opposed-flow speed increased for a specified inclination angle (except the horizontal case), LOC first increased, then decreased and finally increased again. The first local maximum of this LOC variation corresponded to a critical forced flow speed resulted from the change in flame spread pattern from concurrent to counter-current type. This critical forced flow speed correlated well with the buoyancy-induced flow speed component in the wire\\'s direction when the flame base width along the wire was used as a characteristic length scale. LOC was generally higher under the normal gravity than under the microgravity and the difference between the two decreased as the opposed-flow speed increases, following a reasonably linear trend at relatively higher flow speeds (over 10 cm/s). The decrease in the difference in LOC under normal- and microgravity conditions as the opposed-flow speed increases correlated well with the gravity acceleration component in the wire\\'s direction, providing a measure to extend LOC determined by the tests under normal gravity conditions (at various inclination angles and opposed-flow

  2. Visualization and analysis of flow patterns of human carotid bifurcation by computational fluid dynamics

    International Nuclear Information System (INIS)

    Xue Yunjing; Gao Peiyi; Lin Yan

    2007-01-01

    Objective: To investigate flow patterns at carotid bifurcation in vivo by combining computational fluid dynamics (CFD)and MR angiography imaging. Methods: Seven subjects underwent contrast-enhanced MR angiography of carotid artery in Siemens 3.0 T MR. Flow patterns of the carotid artery bifurcation were calculated and visualized by combining MR vascular imaging post-processing and CFD. Results: The flow patterns of the carotid bifurcations in 7 subjects were varied with different phases of a cardiac cycle. The turbulent flow and back flow occurred at bifurcation and proximal of internal carotid artery (ICA) and external carotid artery (ECA), their occurrence and conformation were varied with different phase of a cardiac cycle. The turbulent flow and back flow faded out quickly when the blood flow to the distal of ICA and ECA. Conclusion: CFD combined with MR angiography can be utilized to visualize the cyclical change of flow patterns of carotid bifurcation with different phases of a cardiac cycle. (authors)

  3. Visualization techniques for studying high angle of attack separated vortical flows

    Science.gov (United States)

    Nelson, Robert C.

    1988-01-01

    Flow visualization techniques can provide information on high angle of attack separated flows around slender aircraft configurations that may be unobtainable otherwise. At large angles of attack the flow field is dominated by vortical structures originating on the forebody wing extension, wing and forward control surfaces. Several techniques that are suitable for tracking vortices in subsonic wind tunnels are introduced. A discussion of visualization photographs and quantitative data obtained from visualization studies on vortex trajectory and breakdown position on both static and dynamic wind tunnel models is presented.

  4. Wire Chamber

    CERN Multimedia

    Magnetoscriptive readout wire chamber. Multi-wire detectors contain layers of positively and negatively charged wires enclosed in a chamber full of gas. A charged particle passing through the chamber knocks negatively charged electrons out of atoms in the gas, leaving behind positive ions. The electrons are pulled towards the positively charged wires. They collide with other atoms on the way, producing an avalanche of electrons and ions. The movement of these electrons and ions induces an electric pulse in the wires which is collected by fast electronics. The size of the pulse is proportional to the energy loss of the original particle.

  5. Wire chamber

    CERN Multimedia

    1967-01-01

    Magnetoscriptive readout wire chamber.Multi-wire detectors contain layers of positively and negatively charged wires enclosed in a chamber full of gas. A charged particle passing through the chamber knocks negatively charged electrons out of atoms in the gas, leaving behind positive ions. The electrons are pulled towards the positively charged wires. They collide with other atoms on the way, producing an avalanche of electrons and ions. The movement of these electrons and ions induces an electric pulse in the wires which is collected by fast electronics. The size of the pulse is proportional to the energy loss of the original particle.

  6. Shaded computer graphic techniques for visualizing and interpreting analytic fluid flow models

    Science.gov (United States)

    Parke, F. I.

    1981-01-01

    Mathematical models which predict the behavior of fluid flow in different experiments are simulated using digital computers. The simulations predict values of parameters of the fluid flow (pressure, temperature and velocity vector) at many points in the fluid. Visualization of the spatial variation in the value of these parameters is important to comprehend and check the data generated, to identify the regions of interest in the flow, and for effectively communicating information about the flow to others. The state of the art imaging techniques developed in the field of three dimensional shaded computer graphics is applied to visualization of fluid flow. Use of an imaging technique known as 'SCAN' for visualizing fluid flow, is studied and the results are presented.

  7. wire chamber

    CERN Multimedia

    Proportional multi-wire chamber. Multi-wire detectors contain layers of positively and negatively charged wires enclosed in a chamber full of gas. A charged particle passing through the chamber knocks negatively charged electrons out of atoms in the gas, leaving behind positive ions. The electrons are pulled towards the positively charged wires. They collide with other atoms on the way, producing an avalanche of electrons and ions. The movement of these electrons and ions induces an electric pulse in the wires which is collected by fast electronics. The size of the pulse is proportional to the energy loss of the original particle. Proportional wire chambers allow a much quicker reading than the optical or magnetoscriptive readout wire chambers.

  8. Measurements of the effects of a wire-wrap spacer on the thermalhydraulics of heated annular upward flow of supercritical R134a in steady and transient conditions

    Energy Technology Data Exchange (ETDEWEB)

    Reinink, S.; Copping, A.; Kedare, S.; Hovell, K.; Yaras, M.I. [Carleton University, Ottawa (Canada)

    2014-07-01

    Experiments were conducted at supercritical pressures and temperatures on a vertically-oriented annular heating rod with a wire-wrap spacer using upward-flowing R134a to determine the effect of a wire-wrap spacer on heat transfer in proximity of the pseudocritical point. Measurements were taken at quasi-steady-state and pressure-transient conditions. During each instance of deteriorated heat transfer, the Nusselt number is greater than values predicted by the Dittus-Boelter correlation. Heat transfer during the pressure transients is observed to be insensitive to the time rate of change of the fluid pressure, which implies that the transience does not affect the instantaneous state of the heat-transfer process. (author)

  9. Visualization and Theoretical Analysis for Instabilities of Viscoelastic Flow

    Science.gov (United States)

    Kometani, Hideo; Kitajima, Hidetoshi; Matsumura, Takumi; Suga, Takanori; Kanai, Toshitaka

    The flow instabilities of polymer melts known as viscoelastic fluid were discussed in this report. Especially the occurrence mechanisms of two typical flow instabilities of “Shark Skin” and “Melt Fracture” were experimentally analyzed and the occurrence criteria for the flow instabilities were clarified with the viscoelastic flow simulation. As for “Shark Skin” region, the surface roughness at the die exit was observed without the pressure fluctuation and the flow pattern fluctuation at the wall vicinity in the die land. This result indicates that “Shark Skin” occurs at the die exit. As for “Melt Fracture” region, the periodical oscillation of the flow pattern and the periodical pressure fluctuation corresponding to the periodical distortion of the extrudate were recognized in the die land without the periodical oscillation of the flow pattern and the periodical pressure fluctuation in the reservoir (entry region of the die land). This result indicates that “Melt Fracture” is initiated at the die entry and occurs in the die land. Furthermore with the viscoelastic flow simulation, it was confirmed that the occurrence of “Shark Skin” depends on the wall shear stress and the occurrence of “Melt Fracture” depends on the maximum normal stress of flow direction.

  10. Flutter and Thermal Buckling Analysis for Composite Laminated Panel Embedded with Shape Memory Alloy Wires in Supersonic Flow

    Directory of Open Access Journals (Sweden)

    Chonghui Shao

    2016-01-01

    Full Text Available The flutter and thermal buckling behavior of laminated composite panels embedded with shape memory alloy (SMA wires are studied in this research. The classical plate theory and nonlinear von-Karman strain-displacement relation are employed to investigate the aeroelastic behavior of the smart laminated panel. The thermodynamic behaviors of SMA wires are simulated based on one-dimensional Brinson SMA model. The aerodynamic pressure on the panel is described by the nonlinear piston theory. Nonlinear governing partial differential equations of motion are derived for the panel via the Hamilton principle. The effects of ply angle of the composite panel, SMA layer location and orientation, SMA wires temperature, volume fraction and prestrain on the buckling, flutter boundary, and amplitude of limit cycle oscillation of the panel are analyzed in detail.

  11. Flow Visualization of a Scramjet Inlet - Isolator Model in Supersonic Flow

    Science.gov (United States)

    Seckin, S.; Yuceil, K. B.

    2013-04-01

    Understanding the physical mechanisms and having insight to the complex flowfield involving unstart phenomena in supersonic inlets has gained considerable attention especially in the area of scramjet inlet/isolator aerothermodynamics. In this study, Schlieren visualization and computational analysis of shock wave structures in ramjet/scramjet inlet/isolator models in supersonic flow have been performed. Experiments were performed in the supersonic wind tunnel at the Trisonic Research Laboratory in Istanbul Technical University. The test section floor and the existing mechanism underneath have been modified to be able to mount the designed inlet/isolator model on the floor of the test section. The inlet/isolator model with a 12- degree compression ramp is investigated at Mach 2 both computationally and experimentally. Computations were performed using Star-CCM+ software to investigate shock wave structures in and around the three dimensional inlet/isolator model as mounted on the test section floor as a guide for designing the experimental model. In the results, the effects of shock wave - boundary layer interactions with flow separations with were observed. Ensemble average of the density distributions on a series of planes from one side wall to the other from the CFD results agreed well with the Schlieren images obtained experimentally. The structure of the shock waves and angles obtained from the Schlieren images agree quite well with those obtained from the CFD results. The effects of lambda-shock formations which indicate possible boundary layer separations, reflections of shock waves, and shock wave - boundary layer interactions on inlet unstart phenomena have been discussed. In order to investigate inlet unstart mechanism further, different experimental setups have been suggested for future work.

  12. Flow Visualization of a Scramjet Inlet – Isolator Model in Supersonic Flow

    Directory of Open Access Journals (Sweden)

    Yuceil K.B.

    2013-04-01

    Full Text Available Understanding the physical mechanisms and having insight to the complex flowfield involving unstart phenomena in supersonic inlets has gained considerable attention especially in the area of scramjet inlet/isolator aerothermodynamics. In this study, Schlieren visualization and computational analysis of shock wave structures in ramjet/scramjet inlet/isolator models in supersonic flow have been performed. Experiments were performed in the supersonic wind tunnel at the Trisonic Research Laboratory in Istanbul Technical University. The test section floor and the existing mechanism underneath have been modified to be able to mount the designed inlet/isolator model on the floor of the test section. The inlet/isolator model with a 12- degree compression ramp is investigated at Mach 2 both computationally and experimentally. Computations were performed using Star-CCM+ software to investigate shock wave structures in and around the three dimensional inlet/isolator model as mounted on the test section floor as a guide for designing the experimental model. In the results, the effects of shock wave – boundary layer interactions with flow separations with were observed. Ensemble average of the density distributions on a series of planes from one side wall to the other from the CFD results agreed well with the Schlieren images obtained experimentally. The structure of the shock waves and angles obtained from the Schlieren images agree quite well with those obtained from the CFD results. The effects of lambda-shock formations which indicate possible boundary layer separations, reflections of shock waves, and shock wave – boundary layer interactions on inlet unstart phenomena have been discussed. In order to investigate inlet unstart mechanism further, different experimental setups have been suggested for future work.

  13. VISUALIZATION METHODS OF VORTICAL FLOWS IN COMPUTATIONAL FLUID DYNAMICS AND THEIR APPLICATIONS

    Directory of Open Access Journals (Sweden)

    K. N. Volkov

    2014-05-01

    Full Text Available The paper deals with conceptions and methods for visual representation of research numerical results in the problems of fluid mechanics and gas. The three-dimensional nature of unsteady flow being simulated creates significant difficulties for the visual representation of results. It complicates control and understanding of numerical data, and exchange and processing of obtained information about the flow field. Approaches to vortical flows visualization with the usage of gradients of primary and secondary scalar and vector fields are discussed. An overview of visualization techniques for vortical flows using different definitions of the vortex and its identification criteria is given. Visualization examples for some solutions of gas dynamics problems related to calculations of jets and cavity flows are presented. Ideas of the vortical structure of the free non-isothermal jet and the formation of coherent vortex structures in the mixing layer are developed. Analysis of formation patterns for spatial flows inside large-scale vortical structures within the enclosed space of the cubic lid-driven cavity is performed. The singular points of the vortex flow in a cubic lid-driven cavity are found based on the results of numerical simulation; their type and location are identified depending on the Reynolds number. Calculations are performed with fine meshes and modern approaches to the simulation of vortical flows (direct numerical simulation and large-eddy simulation. Paradigm of graphical programming and COVISE virtual environment are used for the visual representation of computational results. Application that implements the visualization of the problem is represented as a network which links are modules and each of them is designed to solve a case-specific problem. Interaction between modules is carried out by the input and output ports (data receipt and data transfer giving the possibility to use various input and output devices.

  14. Visual Inspection of the Flow Distribution Plate Bolts of a Nuclear Steam Generator

    International Nuclear Information System (INIS)

    Jeong, Woo Tae; Kim, Suk Tae; Sohn, Wook; Kang, Duk Won; Kang, Seok Chul

    2007-01-01

    To develop a system for visually inspecting the flow distribution plate (FDP) bolts of a nuclear steam generator, we reviewed several types of similar inspection equipment. The equipment which are currently available are mostly for inspecting lower part of a steam generator such as tube sheets and annulus except ELVS (Eggcrate Visual Inspection System). However, the design concept of ELVS could not be used for developing a device which enables the visual inspection of flow distribution plate bolts. Therefore, based on the current state of the art technology on the similar equipment, we conceptually designed a new inspection system for checking the FDP bolts

  15. wire chamber

    CERN Multimedia

    Was used in ISR (Intersecting Storage Ring) split field magnet experiment. Multi-wire detectors contain layers of positively and negatively charged wires enclosed in a chamber full of gas. A charged particle passing through the chamber knocks negatively charged electrons out of atoms in the gas, leaving behind positive ions. The electrons are pulled towards the positively charged wires. They collide with other atoms on the way, producing an avalanche of electrons and ions. The movement of these electrons and ions induces an electric pulse in the wires which is collected by fast electronics. The size of the pulse is proportional to the energy loss of the original particle.

  16. Wire chamber

    CERN Multimedia

    Multi-wire detectors contain layers of positively and negatively charged wires enclosed in a chamber full of gas. A charged particle passing through the chamber knocks negatively charged electrons out of atoms in the gas, leaving behind positive ions. The electrons are pulled towards the positively charged wires. They collide with other atoms on the way, producing an avalanche of electrons and ions. The movement of these electrons and ions induces an electric pulse in the wires which is collected by fast electronics. The size of the pulse is proportional to the energy loss of the original particle.

  17. wire chamber

    CERN Multimedia

    Multi-wire detectors contain layers of positively and negatively charged wires enclosed in a chamber full of gas. A charged particle passing through the chamber knocks negatively charged electrons out of atoms in the gas, leaving behind positive ions. The electrons are pulled towards the positively charged wires. They collide with other atoms on the way, producing an avalanche of electrons and ions. The movement of these electrons and ions induces an electric pulse in the wires which is collected by fast electronics. The size of the pulse is proportional to the energy loss of the original particle.

  18. wire chamber

    CERN Multimedia

    1985-01-01

    Multi-wire detectors contain layers of positively and negatively charged wires enclosed in a chamber full of gas. A charged particle passing through the chamber knocks negatively charged electrons out of atoms in the gas, leaving behind positive ions. The electrons are pulled towards the positively charged wires. They collide with other atoms on the way, producing an avalanche of electrons and ions. The movement of these electrons and ions induces an electric pulse in the wires which is collected by fast electronics. The size of the pulse is proportional to the energy loss of the original particle.

  19. Visualize This The FlowingData Guide to Design, Visualization, and Statistics

    CERN Document Server

    Yau, Nathan

    2011-01-01

    Practical data design tips from a data visualization expert of the modern age Data doesn?t decrease; it is ever-increasing and can be overwhelming to organize in a way that makes sense to its intended audience. Wouldn?t it be wonderful if we could actually visualize data in such a way that we could maximize its potential and tell a story in a clear, concise manner? Thanks to the creative genius of Nathan Yau, we can. With this full-color book, data visualization guru and author Nathan Yau uses step-by-step tutorials to show you how to visualize and tell stories with data. He explains how to ga

  20. Visualization of Concrete Slump Flow Using the Kinect Sensor.

    Science.gov (United States)

    Kim, Jung-Hoon; Park, Minbeom

    2018-03-03

    Workability is regarded as one of the important parameters of high-performance concrete and monitoring it is essential in concrete quality management at construction sites. The conventional workability test methods are basically based on length and time measured by a ruler and a stopwatch and, as such, inevitably involves human error. In this paper, we propose a 4D slump test method based on digital measurement and data processing as a novel concrete workability test. After acquiring the dynamically changing 3D surface of fresh concrete using a 3D depth sensor during the slump flow test, the stream images are processed with the proposed 4D slump processing algorithm and the results are compressed into a single 4D slump image. This image basically represents the dynamically spreading cross-section of fresh concrete along the time axis. From the 4D slump image, it is possible to determine the slump flow diameter, slump flow time, and slump height at any location simultaneously. The proposed 4D slump test will be able to activate research related to concrete flow simulation and concrete rheology by providing spatiotemporal measurement data of concrete flow.

  1. Visualization of bacterial flagella dynamics in a viscous shear flow

    Science.gov (United States)

    Ali, Jamel; Kim, Minjun

    2016-11-01

    We report on the dynamics of tethered bacterial flagella in an applied viscous shear flow and analyze their behavior using image processing. Flagellin proteins were repolymerized into flagellar filaments functionalized with biotin at their proximal end, and allowed to self-assemble within a micro channel coated with streptavidin. It was observed that all attached flagellar filaments aligned with the steady shear flow of various polymeric solutions. Furthermore it was observed that many of the filaments were stretched, and at elevated flow rates began to undergo polymorphic transformations, which were initiated at one end of the flagellum. When undergoing a change to a different helical form the flagellum was observed to transform to an oppositely handed helix, as to counteract the viscous torque imparted by the shear flow. It was also observed that some flagellar filaments did not undergo polymorphic transformations, but rotated about their helical axis. The rate of this rotation appears to be a function of the applied flow rate. These results expand on previous experimental work and aid in the development of a novel platform that harnesses the autonomic response of a 'forest' of bacterial flagella for engineering applications. This work was funded by NSF Grant CMMI-1000255, KEIT MOTIE Grant No. 10052980, and with Government support under and awarded by DoD, Air Force Office of Scientific Research, National Defense Science and Engineering Graduate (NDSEG) Fellowship, 32 CFR 168a.

  2. Visual bridging of empty gaps in the optic flow.

    Science.gov (United States)

    Johansson, G; Ahlström, U

    1998-08-01

    This is a study of perception of bending motion and jointed rigid motions over large invisible segments of a bending line. In this project, we investigated the visual perception of changing form of lines, built up by a series of dots and presented under highly reduced pictorial conditions. The changing form was indicated by one or two moving and continuously changing visible fragments of the line. The most extreme condition studied was the perception of the bending of an initially vertical 24-dot line, visually represented only by the stationary base dot and the two moving dots at its top. In this experiment, nearly all subjects reported experiencing a smooth bending connection over the 21-dot empty gap. Three experiments are described and analyzed. The results suggest that the human visual system is astonishingly well adapted for derivation of relevant figural information from such severely reduced, continuously changing optical presentation. An explanation in terms of automatic sensory mechanisms related to the physiological receptive field effect is proposed.

  3. Evaluation of Coronary Artery Stenosis by Quantitative Flow Ratio During Invasive Coronary Angiography: The WIFI II Study (Wire-Free Functional Imaging II).

    Science.gov (United States)

    Westra, Jelmer; Tu, Shengxian; Winther, Simon; Nissen, Louise; Vestergaard, Mai-Britt; Andersen, Birgitte Krogsgaard; Holck, Emil Nielsen; Fox Maule, Camilla; Johansen, Jane Kirk; Andreasen, Lene Nyhus; Simonsen, Jo Krogsgaard; Zhang, Yimin; Kristensen, Steen Dalby; Maeng, Michael; Kaltoft, Anne; Terkelsen, Christian Juhl; Krusell, Lars Romer; Jakobsen, Lars; Reiber, Johan H C; Lassen, Jens Flensted; Bøttcher, Morten; Bøtker, Hans Erik; Christiansen, Evald Høj; Holm, Niels Ramsing

    2018-03-01

    Quantitative flow ratio (QFR) is a novel diagnostic modality for functional testing of coronary artery stenosis without the use of pressure wires and induction of hyperemia. QFR is based on computation of standard invasive coronary angiographic imaging. The purpose of WIFI II (Wire-Free Functional Imaging II) was to evaluate the feasibility and diagnostic performance of QFR in unselected consecutive patients. WIFI II was a predefined substudy to the Dan-NICAD study (Danish Study of Non-Invasive Diagnostic Testing in Coronary Artery Disease), referring 362 consecutive patients with suspected coronary artery disease on coronary computed tomographic angiography for diagnostic invasive coronary angiography. Fractional flow reserve (FFR) was measured in all segments with 30% to 90% diameter stenosis. Blinded observers calculated QFR (Medis Medical Imaging bv, The Netherlands) for comparison with FFR. FFR was measured in 292 lesions from 191 patients. Ten (5%) and 9 patients (5%) were excluded because of FFR and angiographic core laboratory criteria, respectively. QFR was successfully computed in 240 out of 255 lesions (94%) with a mean diameter stenosis of 50±12%. Mean difference between FFR and QFR was 0.01±0.08. QFR correctly classified 83% of the lesions using FFR with cutoff at 0.80 as reference standard. The area under the receiver operating characteristic curve was 0.86 (95% confidence interval, 0.81-0.91) with a sensitivity, specificity, negative predictive value, and positive predictive value of 77%, 86%, 75%, and 87%, respectively. A QFR-FFR hybrid approach based on the present results enables wire-free and adenosine-free procedures in 68% of cases. Functional lesion evaluation by QFR assessment showed good agreement and diagnostic accuracy compared with FFR. Studies comparing clinical outcome after QFR- and FFR-based diagnostic strategies are required. URL: https://www.clinicaltrials.gov. Unique identifier: NCT02264717. © 2018 The Authors.

  4. Direct visualization of hemolymph flow in the heart of a grasshopper (Schistocerca americana

    Directory of Open Access Journals (Sweden)

    Socha John J

    2009-03-01

    Full Text Available Abstract Background Hemolymph flow patterns in opaque insects have never been directly visualized due to the lack of an appropriate imaging technique. The required spatial and temporal resolutions, together with the lack of contrast between the hemolymph and the surrounding soft tissue, are major challenges. Previously, indirect techniques have been used to infer insect heart motion and hemolymph flow, but such methods fail to reveal fine-scale kinematics of heartbeat and details of intra-heart flow patterns. Results With the use of microbubbles as high contrast tracer particles, we directly visualized hemolymph flow in a grasshopper (Schistocerca americana using synchrotron x-ray phase-contrast imaging. In-vivo intra-heart flow patterns and the relationship between respiratory (tracheae and air sacs and circulatory (heart systems were directly observed for the first time. Conclusion Synchrotron x-ray phase contrast imaging is the only generally applicable technique that has the necessary spatial, temporal resolutions and sensitivity to directly visualize heart dynamics and flow patterns inside opaque animals. This technique has the potential to illuminate many long-standing questions regarding small animal circulation, encompassing topics such as retrograde heart flow in some insects and the development of flow in embryonic vertebrates.

  5. Data Flow Analysis and Visualization for Spatiotemporal Statistical Data without Trajectory Information.

    Science.gov (United States)

    Kim, Seokyeon; Jeong, Seongmin; Woo, Insoo; Jang, Yun; Maciejewski, Ross; Ebert, David S

    2018-03-01

    Geographic visualization research has focused on a variety of techniques to represent and explore spatiotemporal data. The goal of those techniques is to enable users to explore events and interactions over space and time in order to facilitate the discovery of patterns, anomalies and relationships within the data. However, it is difficult to extract and visualize data flow patterns over time for non-directional statistical data without trajectory information. In this work, we develop a novel flow analysis technique to extract, represent, and analyze flow maps of non-directional spatiotemporal data unaccompanied by trajectory information. We estimate a continuous distribution of these events over space and time, and extract flow fields for spatial and temporal changes utilizing a gravity model. Then, we visualize the spatiotemporal patterns in the data by employing flow visualization techniques. The user is presented with temporal trends of geo-referenced discrete events on a map. As such, overall spatiotemporal data flow patterns help users analyze geo-referenced temporal events, such as disease outbreaks, crime patterns, etc. To validate our model, we discard the trajectory information in an origin-destination dataset and apply our technique to the data and compare the derived trajectories and the original. Finally, we present spatiotemporal trend analysis for statistical datasets including twitter data, maritime search and rescue events, and syndromic surveillance.

  6. Visualizing Dataflow Graphs of Deep Learning Models in TensorFlow.

    Science.gov (United States)

    Wongsuphasawat, Kanit; Smilkov, Daniel; Wexler, James; Wilson, Jimbo; Mane, Dandelion; Fritz, Doug; Krishnan, Dilip; Viegas, Fernanda B; Wattenberg, Martin

    2018-01-01

    We present a design study of the TensorFlow Graph Visualizer, part of the TensorFlow machine intelligence platform. This tool helps users understand complex machine learning architectures by visualizing their underlying dataflow graphs. The tool works by applying a series of graph transformations that enable standard layout techniques to produce a legible interactive diagram. To declutter the graph, we decouple non-critical nodes from the layout. To provide an overview, we build a clustered graph using the hierarchical structure annotated in the source code. To support exploration of nested structure on demand, we perform edge bundling to enable stable and responsive cluster expansion. Finally, we detect and highlight repeated structures to emphasize a model's modular composition. To demonstrate the utility of the visualizer, we describe example usage scenarios and report user feedback. Overall, users find the visualizer useful for understanding, debugging, and sharing the structures of their models.

  7. Visualizing and simulating flow conditions in concrete form filling using pigments

    DEFF Research Database (Denmark)

    Jacobsen, Stefan; Cepuritis, Rolands; Peng, Ya

    2013-01-01

    Flow variation at surfaces and reinforcement during form filling was visualized with grey and black SCC. The border between grey and black (pigmented) SCC was captured as frozen images on hardened sawn- and formwork surfaces in a flow box experiment. Maximum velocity occurred at the centre...... of the closed box, and lowest velocity near the formwork, particularly with reinforcement parallel to formwork. Smooth formwork gave shorter flow profiles (higher surface velocity) than rough formwork. The pigmented mixes had similar workability though somewhat increased yield stress. Flow pattern depended...

  8. Visualization and measurement of refrigerant flow in compression-type refrigerator by neutron radiography

    International Nuclear Information System (INIS)

    Asano, H.; Takenaka, N.; Fujii, T.; Shibata, Y.; Ebisu, T.; Matsubayashi, M.

    1999-01-01

    The refrigerant two-phase flows in a capillary tube and a distributor used in a compression-type refrigerator were visualized by real-time neutron radiography. The thermal neutron radiography system of JRR-3M at the Japan Atomic Energy Research Institute was used. In the visualization experiments of the two-phase flow in the capillary tube of 2 mm I.D., a cooled CCD camera was used, and the axial one-dimensional distributions of void fraction were measured. For the distributor, a high sensitivity video camera with a silicone intensified target tube was used. From the visualized images, the refrigerant behaviors in the distributor were clearly shown, and the liquid fraction in each tube was measured. As a result, it was shown that the refrigerant behaviors in the distributor effected the distributing performance of the refrigerant flow

  9. Visualization and measurement of pressurized multiphase flow using neutron radiography of JRR-3M system

    Energy Technology Data Exchange (ETDEWEB)

    Katoh, Yasuo [Yamaguchi Univ. (Japan); Matsubayasi, Masahito

    1998-01-01

    Concerning the transient phenomenon of solid-gas two-phase flow, an attempt was made to visualize and measure a flow phenomenon in which three-dimensional bubbles occurred, grew and collapsed in the vicinity of a gas injection nozzle while solid particles were circulating. Such a phenomenon could not or hardly be visualized and measured by conventional methods. Such two-phase flow was visualized using neutron radiography, its characteristics measured and the usefulness of the visualization by neutron radiography confirmed. For this purpose, three-dimensional fluidized bed vessels, rectangular or cylindrical-shaped, made of steel or aluminum sheet, were prepared. Polyethylene or glass beads were used as solid particles and activated carbon particles as the tracer. In the experiment, nitrogen gas was blown into the vessel from one nozzle and distributors provided at the bottom of the vessel and exhausted from the top via the exhaust valve, by which the pressure in the vessel was controlled. The imaging was done in the following way: A test chamber was provided beside the vessel to receive neutron beams from the JRR-3M system, the intensity of transmitted neutrons was converted to visible light by scintillator and the images were videotaped. The initial objectives of visualizing and measuring bubbles occurring, growing and collapsing and solid particles circulating in the solid-gas two-phase flow have been achieved by means of neutron radiography. (N.H.)

  10. Three-dimensional visualization of myocardial motion and blood flow with cine-MR images

    International Nuclear Information System (INIS)

    Oshiro, Osamu; Matani, Ayumu; Chihara, Kunihiro; Mikami, Taisei; Kitabatake, Akira.

    1997-01-01

    This paper describes a three-dimensional (3D) reconstruction and presentation method to visualize myocardial motion and blood flow in a heart using cine-MR (magnetic resonance) images. Firstly, the region of myocardium and blood were segmented with certain threshold gray values. Secondly, some slices were interpolated linearly to reconstruct a 3D static image. Finally, a 3D dynamic image was presented with displaying the 3D static images sequentially. The experimental results indicate that this method enables to visualize not only normal but also abnormal blood flow in cine-mode. (author)

  11. Flow visualization of bubble behavior under two-phase natural circulation flow conditions using high speed digital camera

    Energy Technology Data Exchange (ETDEWEB)

    Lemos, Wanderley F.; Su, Jian, E-mail: wlemos@con.ufrj.br, E-mail: sujian@lasme.coppe.ufrj.br [Coordenacao dos Programas de Pos-Graduacao em Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Nuclear; Faccini, Jose L.H., E-mail: faccini@ien.gov.br [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil). Lab. de Termo-Hidraulica Experimental

    2013-07-01

    The The present work aims at identifying flow patterns and measuring interfacial parameters in two-phase natural circulation by using visualization technique with high-speed digital camera. The experiments were conducted in the Natural Circulation Circuit (CCN), installed at Nuclear Engineering Institute/CNEN. The thermo-hydraulic circuit comprises heater, heat exchanger, expansion tank, the pressure relief valve and pipes to interconnect the components. A glass tube is installed at the midpoint of the riser connected to the heater outlet. The natural circulation circuit is complemented by acquisition system of values of temperatures, flow and graphic interface. The instrumentation has thermocouples, volumetric flow meter, rotameter and high-speed digital camera. The experimental study is performed through analysis of information from measurements of temperatures at strategic points along the hydraulic circuit, besides natural circulation flow rates. The comparisons between analytical and experimental values are validated by viewing, recording and processing of the images for the flows patterns. Variables involved in the process of identification of flow regimes, dimensionless parameters, the phase velocity of the flow, initial boiling point, the phenomenon of 'flashing' pre-slug flow type were obtained experimentally. (author)

  12. Flow visualization system for wind turbines without blades applied to micro reactors

    International Nuclear Information System (INIS)

    Santos, G.S.B.; Guimarães, L.N.F.; Placco, G.M.

    2017-01-01

    Flow visualization systems is a tool used in science and industry for characterization of projects that operate with drainage. This work presents the design and construction of a flow visualization system for passive turbines used in advanced fast micro reactors. In the system were generated images where it is possible to see the supersonic and transonic flow through the turbine disks. A test bench was assembled to generate images of the interior of the turbine where the flow is supersonic, allowing the study of the behavior of the boundary layer between disks. It is necessary to characterize the boundary layer of this type of turbine because its operation occurs in the transfer of kinetic energy between the fluid and the disks. The images generated, as well as their analyzes are presented as a result of this work

  13. Connectivity Reveals Sources of Predictive Coding Signals in Early Visual Cortex During Processing of Visual Optic Flow.

    Science.gov (United States)

    Schindler, Andreas; Bartels, Andreas

    2017-05-01

    Superimposed on the visual feed-forward pathway, feedback connections convey higher level information to cortical areas lower in the hierarchy. A prominent framework for these connections is the theory of predictive coding where high-level areas send stimulus interpretations to lower level areas that compare them with sensory input. Along these lines, a growing body of neuroimaging studies shows that predictable stimuli lead to reduced blood oxygen level-dependent (BOLD) responses compared with matched nonpredictable counterparts, especially in early visual cortex (EVC) including areas V1-V3. The sources of these modulatory feedback signals are largely unknown. Here, we re-examined the robust finding of relative BOLD suppression in EVC evident during processing of coherent compared with random motion. Using functional connectivity analysis, we show an optic flow-dependent increase of functional connectivity between BOLD suppressed EVC and a network of visual motion areas including MST, V3A, V6, the cingulate sulcus visual area (CSv), and precuneus (Pc). Connectivity decreased between EVC and 2 areas known to encode heading direction: entorhinal cortex (EC) and retrosplenial cortex (RSC). Our results provide first evidence that BOLD suppression in EVC for predictable stimuli is indeed mediated by specific high-level areas, in accord with the theory of predictive coding. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  14. Wire chamber gases

    International Nuclear Information System (INIS)

    Va'vra, J.

    1992-04-01

    In this paper, we describe new developments in gas mixtures which have occurred during the last 3--4 years. In particular, we discuss new results on the measurement and modeling of electron drift parameters, the modeling of drift chamber resolution, measurements of primary ionization and the choice of gas for applications such as tracking, single electron detection, X-ray detection and visual imaging. In addition, new results are presented on photon feedback, breakdown and wire aging

  15. Determination of phosphate in hydroponic nutrient solutions using flow injection potentiometry and a cobalt-wire phosphate ion-selective electrode.

    Science.gov (United States)

    De Marco, Roland; Phan, Cam

    2003-08-29

    The direct flow injection potentiometric (FIP) analysis of phosphate in hydroponic nutrient solution has been carried out using a cobalt-wire ion-selective electrode (ISE). Synthetic hydroponic nutrient solution, commercial hydroponic nutrient solution and working hydroponic farm nutrient solution were analysed for phosphate using the FIP technique. It is shown that FIP results compare favourably to standard methods of analysis such as spectrophotometry and indirect photometric ion-pair chromatography. Reproducible FIP response curves with a slope of -(47.57+/-0.03) mV per decade and intercept of -(169.7+/-0.1) mV were obtained for four separate calibrations in the concentration range 5.0 x 10(-4)-1.0 x 10(-2) M H(2)PO(4)(-). Anion corrections for interferences by Cl(-), NO(3)(-) and SO(4)(2-) were applied to all samples using the selectivity coefficients determined independently using a fixed interference method. Nevertheless, it was found that anion corrections were not necessary, as the deviations fell within the bounds of experimental error for the cobalt-wire ISE technique (i.e.+/-2-5% R.S.D.). The proposed FIP method enables the direct determination of phosphate in hydroponic nutrient solutions.

  16. Spatio-temporal flow maps for visualizing movement and contact patterns

    Directory of Open Access Journals (Sweden)

    Bing Ni

    2017-03-01

    Full Text Available The advanced telecom technologies and massive volumes of intelligent mobile phone users have yielded a huge amount of real-time data of people’s all-in-one telecommunication records, which we call telco big data. With telco data and the domain knowledge of an urban city, we are now able to analyze the movement and contact patterns of humans in an unprecedented scale. Flow map is widely used to display the movements of humans from one single source to multiple destinations by representing locations as nodes and movements as edges. However, it fails the task of visualizing both movement and contact data. In addition, analysts often need to compare and examine the patterns side by side, and do various quantitative analysis. In this work, we propose a novel spatio-temporal flow map layout to visualize when and where people from different locations move into the same places and make contact. We also propose integrating the spatiotemporal flow maps into existing spatiotemporal visualization techniques to form a suite of techniques for visualizing the movement and contact patterns. We report a potential application the proposed techniques can be applied to. The results show that our design and techniques properly unveil hidden information, while analysis can be achieved efficiently. Keywords: Spatio-temporal data, Flow map, Urban mobility

  17. Visualization of boundary layer separation and passive flow control on airfoils and bodies in wind-tunnel and in-flight experiments

    Directory of Open Access Journals (Sweden)

    Matejka Milan

    2012-04-01

    Full Text Available Infrared camera, Particle Image Velocimetry, smoke-wire, tuft filaments and oil-flow visualization techniques were used for wind-tunnel and in-flight investigation of boundary layer separation, both stall and separation bubbles, related to the low-Reynolds numbers transition mechanism. Airfoils of Wortmann FX66 series and FX66 series wing-fuselage interaction, as well as modern airfoils and their wing-fuselage geometry were subject to study. The presence of previously identified structures in the CFD modelling, such as horse-shoe vortices, was confirmed in the flow. Wind-tunnels and in-flight measurements on sailplanes were carried out and effect of passive flow control devices - vortex generators - was surveyed; namely counter-rotating vortex generators and Zig-zag type turbulators were applied. Separation suppression and consequent drag coefficient reduction of test aircrafts was reached. PIV investigation was further extended by Time-Resolved techniques. An important study on structure of the turbulent flow in the lower atmosphere, creating an environment of the soaring flight, was presented.

  18. Visualization of boundary layer separation and passive flow control on airfoils and bodies in wind-tunnel and in-flight experiments

    Science.gov (United States)

    Popelka, Lukas; Kuklova, Jana; Simurda, David; Souckova, Natalie; Matejka, Milan; Uruba, Vaclav

    2012-04-01

    Infrared camera, Particle Image Velocimetry, smoke-wire, tuft filaments and oil-flow visualization techniques were used for wind-tunnel and in-flight investigation of boundary layer separation, both stall and separation bubbles, related to the low-Reynolds numbers transition mechanism. Airfoils of Wortmann FX66 series and FX66 series wing-fuselage interaction, as well as modern airfoils and their wing-fuselage geometry were subject to study. The presence of previously identified structures in the CFD modelling, such as horse-shoe vortices, was confirmed in the flow. Wind-tunnels and in-flight measurements on sailplanes were carried out and effect of passive flow control devices - vortex generators - was surveyed; namely counter-rotating vortex generators and Zig-zag type turbulators were applied. Separation suppression and consequent drag coefficient reduction of test aircrafts was reached. PIV investigation was further extended by Time-Resolved techniques. An important study on structure of the turbulent flow in the lower atmosphere, creating an environment of the soaring flight, was presented.

  19. Visualization investigation on flowing condensation in horizontal small channels with liquid separator

    Science.gov (United States)

    Zhang, Xuan; Jia, Li; Dang, Chao; Peng, Qi

    2018-02-01

    A simultaneous visualization and measurement experiment was carried out to investigate condensation flow patterns and condensing heat transfer characteristics of refrigerant R141b in parallel horizontal multi-channels with liquid-vapor separator. The hydraulic diameter of each channel was 1.5 mm and the channel length was 100 mm. The refrigerant vapor flowing in the small channels was cooled by cooling water. The parallel horizontal multi- channels were covered with a transparent silica glass for visualization of flow patterns. Experiments were performed at different inlet superheat temperatures (ranging from 3°C to 7°C). Mass velocity was in the range of 82.37 kg m-2s-1 to 35.56 kg m-2s-1. It was found that there were three different flow patterns through the multi- channels with the increase of mass velocity. The flow patterns in each channel pass almost tended to be same and all of them were annular flows. The efficiency of the liquid-vapor separator with U-type was related to vapor mass velocity and the pressure in the small channels. It was also found that the heat transfer coefficient increased with the increase of the mass velocity while the cooling water mass flow rate increased. It increased to a top point and then decreased. It increased with the increase of superheat in the low superheat temperature region.

  20. An enzyme-amplified lateral flow strip biosensor for visual detection of microRNA-224.

    Science.gov (United States)

    Gao, Xuefei; Xu, Li-Ping; Wu, Tingting; Wen, Yongqiang; Ma, Xinlei; Zhang, Xueji

    2016-01-01

    An enzyme-based dual-labeled nanoprobe is designed to fabricate a sensitive enzyme-amplified lateral flow biosensor for visual detection of mircoRNA-224 (miRNA-224). The recognition DNA probe (detection probe) and signal amplification enzyme (Horseradish peroxidase, HRP) are immobilized on gold nanoparticle (GNPs) surface, simultaneously. The capture DNA probes are immobilized on the test zone of the lateral flow biosensor. When miRNA-224 is present, the enzyme-based dual-labeled nanoprobes will be captured by forming the "sandwich structure" on the test zone of the lateral flow biosensor, enabling the visual detection for miRNA-224. Sensitivity is amplified by applying the 3,3,5,5-tetramethylbenzidine enzymatic substrate (TMB/H2O2 enzymatic substrate) onto the test zone. The enzymatic reactions between the HRP and the TMB/H2O2 enzymatic substrate will produce blue products, which deposit on the nanoprobe surface to enhance the visual effect and the corresponding response intensities of the test zone. This enzyme-amplified lateral flow biosensor shows a low limit of detection (LOD) (7.5 pM) toward miRNA-224 in the buffer solution, which is improved by 10-fold than that of the single-labeled lateral flow biosensor. This biosensor has been successfully used for the detection of the target miRNA-224 detection in A549 cell lysate. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. DecisionFlow: Visual Analytics for High-Dimensional Temporal Event Sequence Data.

    Science.gov (United States)

    Gotz, David; Stavropoulos, Harry

    2014-12-01

    Temporal event sequence data is increasingly commonplace, with applications ranging from electronic medical records to financial transactions to social media activity. Previously developed techniques have focused on low-dimensional datasets (e.g., with less than 20 distinct event types). Real-world datasets are often far more complex. This paper describes DecisionFlow, a visual analysis technique designed to support the analysis of high-dimensional temporal event sequence data (e.g., thousands of event types). DecisionFlow combines a scalable and dynamic temporal event data structure with interactive multi-view visualizations and ad hoc statistical analytics. We provide a detailed review of our methods, and present the results from a 12-person user study. The study results demonstrate that DecisionFlow enables the quick and accurate completion of a range of sequence analysis tasks for datasets containing thousands of event types and millions of individual events.

  2. Flow Visualization at Cryogenic Conditions Using a Modified Pressure Sensitive Paint Approach

    Science.gov (United States)

    Watkins, A. Neal; Goad, William K.; Obara, Clifford J.; Sprinkle, Danny R.; Campbell, Richard L.; Carter, Melissa B.; Pendergraft, Odis C., Jr.; Bell, James H.; Ingram, JoAnne L.; Oglesby, Donald M.

    2005-01-01

    A modification to the Pressure Sensitive Paint (PSP) method was used to visualize streamlines on a Blended Wing Body (BWB) model at full-scale flight Reynolds numbers. In order to achieve these conditions, the tests were carried out in the National Transonic Facility operating under cryogenic conditions in a nitrogen environment. Oxygen is required for conventional PSP measurements, and several tests have been successfully completed in nitrogen environments by injecting small amounts (typically < 3000 ppm) of oxygen into the flow. A similar technique was employed here, except that air was purged through pressure tap orifices already existent on the model surface, resulting in changes in the PSP wherever oxygen was present. The results agree quite well with predicted results obtained through computational fluid dynamics analysis (CFD), which show this to be a viable technique for visualizing flows without resorting to more invasive procedures such as oil flow or minitufts.

  3. Visualizations of the disturbed-laminar wave-induced flow above a rippled bed

    Science.gov (United States)

    Ourmières, Y.; Chaplin, J. R.

    This paper discusses visualizations of wave-induced flow over a rippled bed. Experiments were conducted in a wave tank fitted with a rigid rippled bed, and flow visualizations were carried out using a fluorescent dye filmed by a digital high speed video camera. Secondary flow regimes are classified in terms of key parameters such as the ripple slope, the ratio of the amplitude of the external flow to the ripple wavelength, and a Taylor number. For weak oscillations over gentle ripples, two-dimensional structures develop in the form of large recirculation cells, while for stronger flows over medium to steep ripples these are modified by the onset of separation and vortex shedding. Three-dimensional instabilities lead to disturbed-laminar flow structures of two different forms. The most common and stable form is a structure of rings that has a well-defined transverse wavelength that is found to be inversely proportional to a Taylor number. The other form, a brick pattern, is more transient in nature but is probably also related to the development of three-dimensional ripple shapes.

  4. Flow visualization and aero-optics in simulated environments; Proceedings of the Meeting, Orlando, FL, May 21, 22, 1987

    International Nuclear Information System (INIS)

    Bentley, H.T. III.

    1987-01-01

    The present conference on high speed aerooptics facilities, aerodynamic holography, and photooptical techniques gives attention to the prediction of image degradation through a turbulent medium, wind tunnel studies of optical beam degradation through heterogeneous aerodynamic flows, wavelength effects on images formed through turbulence, holographic visualizations of hypersonic flow viscous interactions, holographic interferometry for gas flow pattern studies, and a holographic flow field analysis of Spacelab-3 crystal growth experiments. Also discussed are the interferometric reconstruction of continuous flow fields, the flow visualization of turbine film cooling flows, the use of the phosphor technique for remote thermometry in a combustor, pulsed laser cinematography of deflagration, and a digital image sequence analysis for optical flow computation in flame propagation visualization

  5. Hot-wire anemometer for spirography.

    Science.gov (United States)

    Plakk, P; Liik, P; Kingisepp, P H

    1998-01-01

    The use of a constant temperature hot-wire anemometer flow sensor for spirography is reported. The construction, operating principles and calibration procedure of the apparatus are described, and temperature compensation method is discussed. Frequency response is studied. It is shown that this hot-wire flow transducer satisfies common demands with respect to accuracy, response time and temperature variations.

  6. Visualization of boiling two-phase flow in a small diameter tube using neutron radiography

    International Nuclear Information System (INIS)

    Hibiki, Takashi; Mishima, Kaichiro; Yoneda, Kenji; Fujine, Shigenori; Kanda, Keiji; Nishihara, Hideaki

    1991-01-01

    The characteristics of boiling two-phase flow in a small diameter tube are very important for cooling the blanket in a nuclear fusion reactor or a high performance electronic device. For all these subjects, it is necessary to visualize the flow in a tube as a starting point of the study. However, when an optical method cannot be used for the visualization, it is expected that neutron radiography is useful. In this study, the feasibility of visualization of boiling two-phase flow in a small diameter tube was investigated by using various facilities of neutron radiography as the first step. The basic concept of neutron radiography and the block diagram of a neutron television system are shown. The neutron beam attenuated by water in the test section makes a scintillator emit visible light, and produces an image of two-phase flow, which is taken with a TV camera. Thus the image can be observed at real time. Three kinds of the experiments were performed with the facilities of KUR, NSRR and JRR-3. The experimental methods and the results are reported. The images obtained were sufficiently clear. (K.I.)

  7. Flow visualization and characteristics of vertical gas-liquid bubbly flow around a rectangular cylinder (bubble size effect)

    International Nuclear Information System (INIS)

    Voutsinas, A; Shakouchi, T; Tsujimoto, K; Ando, T

    2009-01-01

    The present study deals with the effect of the bubble size, from small bubble scale to normal scale (d b =0.25∼2.6 mm), on the flow passing through a rectangular cylinder in an upward gas-liquid bubbly flow. Extensive visualization experiments are conducted and a digital camera and a high-speed camera analyzed the flow, while PIV analysis by the volume cross-correlation method is conducted to observe the differences in the flow pattern. In order to further understand the effect of bubble size, the pressure distribution along the pipe and the cylinder surface are measured. From the results taken, the drag force is calculated and compared to the case of single phase-flow. Furthermore, the fluctuation phenomena generating from the Karman vortex street downstream the cylinder are investigated, and how the intensity and frequency are affected by the bubble size and gas fraction is presented. The experiments are conducted under two different Reynolds number Re, and volumetric gas fraction ranging from α v =0∼5%, giving valuable information regarding the changes that occur due to bubble size differences and the relation it has with volumetric gas fraction.

  8. Hot-wire air flow meter for gasoline fuel-injection system. Calculation of air mass in cylinder during transient condition; Gasoline funsha system yo no netsusenshiki kuki ryuryokei. Kato untenji no cylinder juten kukiryo no keisan

    Energy Technology Data Exchange (ETDEWEB)

    Oyama, Y. [Hitachi Car Engineering, Ltd., Tokyo (Japan); Nishimura, Y.; Osuga, M.; Yamauchi, T. [Hitachi, Ltd., Tokyo (Japan)

    1997-10-01

    Air flow characteristics of hot-wire air flow meters for gasoline fuel-injection systems with supercharging and exhaust gas recycle during transient conditions were investigated to analyze a simple method for calculating air mass in cylinder. It was clarified that the air mass in cylinder could be calculated by compensating for the change of air mass in intake system by using aerodynamic models of intake system. 3 refs., 6 figs., 1 tab.

  9. Flow visualization of forced and natural convection in internal cavities. 1998 annual progress report

    International Nuclear Information System (INIS)

    Brodkey, R.S.; Clarksean, R.; Crepeau, J.C.; Guezennec, Y.G.; McEligot, D.M.

    1998-01-01

    'The objective of this research program is to understand the fluid physics when corroded spent nuclear fuel (SNF) elements are passivated by injecting treatment gases into a storage canister. By developing a reliable predictive technique for the energy, mass, and momentum transfer in the presence of surface reactions, transfer and storage systems can be efficiently and safely designed. The objective will be reached by using innovative flow visualization techniques and experimental measurements of the flow field to support computational models. This report summarizes work completed after eight months of a three-year, collaborative project. A generic idealization of a combined drying and passivation approach has been defined, which represents a section of a vertical canister with baskets of SNF elements. This simulation includes flow phenomena that occur in canisters for high- and/or low-enrichment fuels. A steady flow of the passivation fluid is introduced at the bottom of the canister via a central tube from the top. Fluid flows through an array of holes in the perforated basket support plate then around the simulated elements and out the top. Dimensions and flow rates for the idealized situation correspond to those for typical drying canisters. Approximate calculations have identified the ranges of values of flow parameters needed to determine the flow regimes occurring in practice.'

  10. Verbal or Visual Memory Score and Regional Cerebral Blood Flow in Alzheimer Disease

    Directory of Open Access Journals (Sweden)

    Satoshi Hayashi

    2018-01-01

    Full Text Available Objective: Among many cognitive function deficits, memory impairment is an initial and cardinal symptom in Alzheimer disease (AD. In most cases, verbal and visual memory scores correlate highly, but in some cases the deficit of verbal or visual memory is very different from that of the other memory. In this study, we examined the neural substrates of verbal and visual memory in patients with AD. Methods: One hundred eighty-eight consecutive patients with AD were recruited from outpatient units. Verbal and visual memory scores were evaluated using the Wechsler Memory Scale – revised. The patients underwent brain SPECT with 99mTc-ethylcysteinate dimer. Results: After removing the effects of age, sex, education, and Mini-Mental State Examination scores, correlation analysis showed a significant correlation of verbal memory scores to regional cerebral blood flow (rCBF in the bilateral cingulate gyrus and left precuneus. Similarly, a significant correlation of visual memory scores to rCBF was found in the right precuneus and right cingulate gyrus. Conclusion: The posterior medial cortices (PMC are very important areas in episodic memory among patients with mild AD. Verbal memory is more closely related to the both sides of the PMC, while visual memory is more closely related to the right PMC.

  11. Verbal or Visual Memory Score and Regional Cerebral Blood Flow in Alzheimer Disease.

    Science.gov (United States)

    Hayashi, Satoshi; Terada, Seishi; Oshima, Etsuko; Sato, Shuhei; Kurisu, Kairi; Takenoshita, Shintaro; Yokota, Osamu; Yamada, Norihito

    2018-01-01

    Among many cognitive function deficits, memory impairment is an initial and cardinal symptom in Alzheimer disease (AD). In most cases, verbal and visual memory scores correlate highly, but in some cases the deficit of verbal or visual memory is very different from that of the other memory. In this study, we examined the neural substrates of verbal and visual memory in patients with AD. One hundred eighty-eight consecutive patients with AD were recruited from outpatient units. Verbal and visual memory scores were evaluated using the Wechsler Memory Scale - revised. The patients underwent brain SPECT with 99m Tc-ethylcysteinate dimer. After removing the effects of age, sex, education, and Mini-Mental State Examination scores, correlation analysis showed a significant correlation of verbal memory scores to regional cerebral blood flow (rCBF) in the bilateral cingulate gyrus and left precuneus. Similarly, a significant correlation of visual memory scores to rCBF was found in the right precuneus and right cingulate gyrus. The posterior medial cortices (PMC) are very important areas in episodic memory among patients with mild AD. Verbal memory is more closely related to the both sides of the PMC, while visual memory is more closely related to the right PMC.

  12. Visualization of diffusion mixing in a micro-mixer with flow paths fabricated by photolithography

    Science.gov (United States)

    Horiuchi, Toshiyuki; Morizane, Yuta

    2017-09-01

    Mixing processes of two liquids were investigated by visualizing the mixing when they were simultaneously injected in a micro-mixer with lithographically fabricated Y-shape flow paths, and the mixing phenomena was analyzed in detail. To visualize the mixing, flows were observed by an optical microscope, and a clearly detectable chemical reaction was utilized. As the two liquids, a transparent aqueous solution of a strong alkali and a phenolphthalein ethanol solution were used. When they were simultaneously injected in Y-shape flow paths of a micro-mixer, they flowed at first in parallel along the joined path as laminar flows. This is because the Reynolds' number became very small caused by the narrow flow-path widths of 50-100 μm. However, because two liquids were always contacted at the boundary, they were gradually mixed by diffusion, and the color of the mixed parts changed to vivid red. For this reason, it was able to measure the diffusion distance from the flow path center. Because the flow speeds were much faster than the diffusion speeds, the area colored in red did not depend on the time but depended on the distance from the joint point. It was known that the distance from the joint point corresponded to the time for mixing the liquids by the diffusion. It was clarified that the diffusion distance x was proportional to the square root of the diffusion time t or the distance from the joint point. The calculated diffusion coefficient D was (0.87-1.00)×10-9 m2/s.

  13. A high-speed photographic system for flow visualization in a steam turbine

    Science.gov (United States)

    Barna, G. J.

    1973-01-01

    A photographic system was designed to visualize the moisture flow in a steam turbine. Good performance of the system was verified using dry turbine mockups in which an aerosol spray simulated, in a rough way, the moisture flow in the turbine. Borescopes and fiber-optic light tubes were selected as the general instrumentation approach. High speed motion-picture photographs of the liquid flow over the stator blade surfaces were taken using stroboscopic lighting. Good visualization of the liquid flow was obtained. Still photographs of drops in flight were made using short duration flash sources. Drops with diameters as small as 30 micrometers (0.0012 in.) could be resolved. In addition, motion pictures of a spray of water simulating the spray off the rotor blades and shrouds were taken at normal framing rates. Specially constructed light tubes containing small tungsten-halogen lamps were used. Sixteen millimeter photography was used in all cases. Two potential problems resulting from the two-phase turbine flow (attenuation and scattering of light by the fog present and liquid accumulation on the borescope mirrors) were taken into account in the photographic system design but not evaluated experimentally.

  14. Background Oriented Schlieren (BOS) and other Flow Visualization Developments and Applications at GRC

    Science.gov (United States)

    Clem, Michelle; Woike, Mark

    2013-01-01

    This is a presentation to be given at an internal NASA Advanced Schlieren Working Group Meeting. The presentation will cover the recent developments and applications of flow visualization methods at GRC. The topics being discussed will include the use of Background Oriented Schlieren (BOS) in the study of screech and its associated shock spacing as well as in the investigation of broadband shock noise reduction in the Jet-Surface Interaction Tests. In addition, other flow visualiztion methods will be discussed in an on-going study comparing schlieren, shadowgraph, BOS, and focusing schlieren.

  15. Flow visualizing study of fluidized bed for incineration and/or coal combustion technology

    Energy Technology Data Exchange (ETDEWEB)

    Ozawa, Mamoru [Kansai Univ., Suita, Osaka (Japan). Faculty of Engineering

    1997-02-01

    A simulated fluidized-bed heat exchanger was visualized using a neutron radiography system. The void fraction distribution and its fluctuation were obtained by means of an image processing technique. On the basis of the processed image, the mechanism of a large particle movement and the flow pattern in the tube bank immersed in the bed were investigated. Observed flow pattern in the tube bank indicated an importance of the tube arrangement on the void fraction fluctuation and thus the heat transfer around tubes. (author)

  16. Virtual reality aided visualization of fluid flow simulations with application in medical education and diagnostics.

    Science.gov (United States)

    Djukic, Tijana; Mandic, Vesna; Filipovic, Nenad

    2013-12-01

    Medical education, training and preoperative diagnostics can be drastically improved with advanced technologies, such as virtual reality. The method proposed in this paper enables medical doctors and students to visualize and manipulate three-dimensional models created from CT or MRI scans, and also to analyze the results of fluid flow simulations. Simulation of fluid flow using the finite element method is performed, in order to compute the shear stress on the artery walls. The simulation of motion through the artery is also enabled. The virtual reality system proposed here could shorten the length of training programs and make the education process more effective. © 2013 Published by Elsevier Ltd.

  17. Visualization of velocity field and phase distribution in gas-liquid two-phase flow by NMR imaging

    International Nuclear Information System (INIS)

    Matsui, G.; Monji, H.; Obata, J.

    2004-01-01

    NMR imaging has been applied in the field of fluid mechanics, mainly single phase flow, to visualize the instantaneous flow velocity field. In the present study, NMR imaging was used to visualize simultaneously both the instantaneous phase structure and velocity field of gas-liquid two-phase flow. Two methods of NMR imaging were applied. One is useful to visualize both the one component of liquid velocity and the phase distribution. This method was applied to horizontal two-phase flow and a bubble rising in stagnant oil. It was successful in obtaining some pictures of velocity field and phase distribution on the cross section of the pipe. The other is used to visualize a two-dimensional velocity field. This method was applied to a bubble rising in a stagnant water. The velocity field was visualized after and before the passage of a bubble at the measuring cross section. Furthermore, the distribution of liquid velocity was obtained. (author)

  18. Flow visualization around cylinders in a channel flow using particle image velocimetry

    International Nuclear Information System (INIS)

    Hassan, Y.A.; Martinez, R.S.; Schmidl, W.D.; Philip, O.G.

    2004-01-01

    One of the major concerns with power plant steam generators is tube vibration caused by turbulent flow buffeting. The vibration can cause wear of the tubes at the tube supports and at tube joints that eventually leads to leaks and rupture. When the cumulative leaks affect the steam generator performance, the plant is shut down and the leaking tubes are either repaired or plugged. Not only is the repair procedure very costly in terms of the repair costs themselves and loss of income due to the plant outage, but it is also costly in the sense that the steam generator design has been altered or has been totally replaced. This normally leads to more repairs in the future. To better understand this behavior of turbulent flow buffeting (the cause of many tube problems), it was felt that quantitative experimental data is needed to test the empirical correlations that predict the behavior of turbulent flow around cylinders. Perhaps this quantitative data could lead to a better understanding of this particular fluid behavior and motion and this understanding would hopefully then lead to design solutions that can be implemented to avoid the problem. (author)

  19. A tool for visualization of two-phase flow simulations related to nuclear safety

    International Nuclear Information System (INIS)

    Hyvaerinen, J.

    1991-01-01

    This paper describes a new tool, BOXER, that has been developed to produce animated visualization of data from computer simulations of two-phase (multi-component) flow phenomena in nuclear reactor systems. In the first part of the paper, background information regarding the type and the scope of the simulations is presented. The second part describes the tool, giving an example of its usage. BOXER has been developed at the Finnish Centre for Radiation and Nuclear Safety. (author)

  20. Visualizing flow fields using acoustic Doppler current profilers and the Velocity Mapping Toolbox

    Science.gov (United States)

    Jackson, P. Ryan

    2013-01-01

    The purpose of this fact sheet is to provide examples of how the U.S. Geological Survey is using acoustic Doppler current profilers for much more than routine discharge measurements. These instruments are capable of mapping complex three-dimensional flow fields within rivers, lakes, and estuaries. Using the Velocity Mapping Toolbox to process the ADCP data allows detailed visualization of the data, providing valuable information for a range of studies and applications.

  1. Geometric Optimization for Non-Thrombogenicity of a Centrifugal Blood Pump through Flow Visualization

    Science.gov (United States)

    Toyoda, Masahiro; Nishida, Masahiro; Maruyama, Osamu; Yamane, Takashi; Tsutsui, Tatsuo; Sankai, Yoshiyuki

    A monopivot centrifugal blood pump, whose impeller is supported with a pivot bearing and a passive magnetic bearing, is under development for implantable artificial heart. The hemolysis level is less than that of commercial centrifugal pumps and the pump size is as small as 160 mL in volume. To solve a problem of thrombus caused by fluid dynamics, flow visualization experiments and animal experiments have been undertaken. For flow visualization a three-fold scale-up model, high-speed video system, and particle tracking velocimetry software were used. To verify non-thrombogenicity one-week animal experiments were conducted with sheep. The initially observed thrombus around the pivot was removed through unifying the separate washout holes to a small centered hole to induce high shear around the pivot. It was found that the thrombus contours corresponded to the shear rate of 300s-1 for red thrombus and 1300-1700s-1 for white thrombus, respectively. Thus flow visualization technique was found to be a useful tool to predict thrombus location.

  2. #FluxFlow: Visual Analysis of Anomalous Information Spreading on Social Media.

    Science.gov (United States)

    Zhao, Jian; Cao, Nan; Wen, Zhen; Song, Yale; Lin, Yu-Ru; Collins, Christopher

    2014-12-01

    We present FluxFlow, an interactive visual analysis system for revealing and analyzing anomalous information spreading in social media. Everyday, millions of messages are created, commented, and shared by people on social media websites, such as Twitter and Facebook. This provides valuable data for researchers and practitioners in many application domains, such as marketing, to inform decision-making. Distilling valuable social signals from the huge crowd's messages, however, is challenging, due to the heterogeneous and dynamic crowd behaviors. The challenge is rooted in data analysts' capability of discerning the anomalous information behaviors, such as the spreading of rumors or misinformation, from the rest that are more conventional patterns, such as popular topics and newsworthy events, in a timely fashion. FluxFlow incorporates advanced machine learning algorithms to detect anomalies, and offers a set of novel visualization designs for presenting the detected threads for deeper analysis. We evaluated FluxFlow with real datasets containing the Twitter feeds captured during significant events such as Hurricane Sandy. Through quantitative measurements of the algorithmic performance and qualitative interviews with domain experts, the results show that the back-end anomaly detection model is effective in identifying anomalous retweeting threads, and its front-end interactive visualizations are intuitive and useful for analysts to discover insights in data and comprehend the underlying analytical model.

  3. Flow pattern visualization in a mimic anaerobic digester: experimental and computational studies.

    Science.gov (United States)

    Vesvikar, M S; Varma, R; Karim, K; Al-Dahhan, M

    2005-01-01

    Advanced non-invasive experiments like computer automated radioactive particle tracking and computed tomography along with computational fluid dynamics (CFD) simulations were performed in mimic anaerobic digesters to visualize their flow pattern and obtain hydrodynamic parameters. The mixing in the digester was provided by sparging gas at three different flow rates. The simulation results in terms of overall flow pattern, location of circulation cells and stagnant regions, trends of liquid velocity profiles, and volume of dead zones agree reasonably well with the experimental data. CFD simulations were also performed on different digester configurations. The effects of changing draft tube size, clearance, and shape of the tank bottoms were calculated to evaluate the effect of digester design on its flow pattern. Changing the draft tube clearance and height had no influence on the flow pattern or dead regions volume. However increasing the draft tube diameter or incorporating a conical bottom design helped in reducing the volume of the dead zones as compared to a flat bottom digester. The simulations showed that the gas flow rate sparged by a single point (0.5 cm diameter) sparger does not have appreciable effect on the flow pattern of the digesters.

  4. A visualization study of flow-induced acoustic resonance in a branched pipe

    International Nuclear Information System (INIS)

    Li, Yanrong; Someya, Satoshi; Okamoto, Koji

    2008-01-01

    Systems with closed side-branches are liable to an excitation of sound, as called cavity tones. It may occur in pipe branches leading to safety valves or to boiler relief valves. The outbreak mechanism of the cavity tone has been known by phase-averaged measurement in previous researches, while the relation between sound propagation and flow field is still unclear due to the difficulty of detecting instantaneous pressure field. High time-resolved PIV has a possibility to analyze the pressure field and the relation mentioned above. In this report, flow-induced acoustic resonances of piping system containing closed side-branches were investigated experimentally. A High-Time-Resolved PIV technique was applied to measure a gas-flow in a cavity-tone. Air flow containing an oil mist as tracer particles was measured using a high frequency pulse laser and a high-speed camera. The present investigation on the coaxial closed side-branches is the first rudimentary study to measure the flow field two-dimensionally and simultaneously with the pressure measurement at multi-points and to visualize the fluid flow in the cross-section by using PIV. The fluid flows at different points in the cavity interact with some phase differences and the relation should be clarified. (author)

  5. Visual-Functional Mismatch Between Coronary Angiography, Fractional Flow Reserve, and Quantitative Coronary Angiography.

    Science.gov (United States)

    Safi, Morteza; Eslami, Vahid; Namazi, Mohammad Hasan; Vakili, Hossain; Saadat, Habib; Alipourparsa, Saeid; Adibi, Ali; Movahed, Mohammad Reza

    2016-12-01

    Anatomical and functional mismatches are not uncommon in the assessment of coronary lesions. The aim of this study was to identify clinical and lesion-specific factors affecting angiographic, anatomical, and functional mismatch in intermediate coronary lesions. In patients who underwent coronary angiography for clinical reasons, fractional flow reserve (FFR), and quantitative coronary angiography (QCA) analyses for intermediate stenotic lesions were performed simultaneously. Mismatches between the measured values were analyzed. A total of 95 intermediate lesions were assessed simultaneously by visual angiography, FFR, and QCA. The visual-FFR mismatch was found in 40% of the lesions while reverse visual-FFR mismatch was determined in nearly 14% of the lesions. Mismatch and reverse mismatch between FFR and QCA parameters were observed in 10 and 23% of the lesions. FFR value was significant in 32% of the lesions while visually significant stenosis was shown in 61% of the lesions. Among the visual-FFR reverse mismatch group, the prevalence of culprit lesions within the left anterior descending (LAD) was significantly higher than other vessels ( p value mismatches in analyses of intermediate coronary lesions. LAD lesions showed the highest mismatch. Angiographic or QCA estimation of lesion severity has consistently resulted in inappropriate stenting of functionally nonsignificant lesions or undertreatment of significant lesions based on FFR.

  6. Investigation and visualization of internal flow through particle aggregates and microbial flocs using particle image velocimetry.

    Science.gov (United States)

    Xiao, Feng; Lam, Kit Ming; Li, Xiao-yan

    2013-05-01

    An advanced particle-tracking and flow-visualization technology, particle image velocimetry (PIV), was utilized to investigate the hydrodynamic properties of large aggregates in water. The laser-based PIV system was used together with a settling column to capture the streamlines around two types of aggregates: latex particle aggregates and activated sludge (AS) flocs. Both types of the aggregates were highly porous and fractal with fractal dimensions of 2.13±0.31 for the latex particle aggregates (1210-2144 μm) and 1.78±0.24 for the AS flocs (1265-3737 μm). The results show that PIV is a powerful flow visualization technique capable of determining flow field details at the micrometer scale around and through settling aggregates and flocs. The PIV streamlines provided direct experimental proof of internal flow through the aggregate interiors. According to the PIV images, fluid collection efficiency ranged from 0.052 to 0.174 for the latex particle aggregates and from 0.008 to 0.126 for AS flocs. AS flocs are apparently less permeable than the particle aggregates, probably due to the extracellular polymeric substances (EPSs) produced by bacteria clogging the pores within the flocs. The internal permeation of fractal aggregates and bio-flocs would enhance flocculation between particles and material transport into the aggregates. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. Visualization of two-phase flow in metallic pipes using neutron radiographic technique

    International Nuclear Information System (INIS)

    Luiz, L.C.; Crispim, V.R.

    2007-01-01

    The study of two-phase flow is a matter of great interest both for the engineering and oil industries. The production of oil and natural gas involves the transportation of fluids in their liquid and gaseous states, respectively, to the processing plant for refinement. The forecasting of two-phase flow in oil pipes is of the utmost important yet an extremely difficult task. With the development of the electronic imaging system, installed in J-9 irradiation channel of the IEN/CNEN Argonauta Reactor, it is possible to visualize the different types of two phase air-water flows in small-diameter metallic pipes. After developing the captured image the liquid-gas drift flux correlation as well as the void fraction in relation to the injected air outflow for a fixed water outflow can be obtained. (author)

  8. Visualization of flow during cleaning process on a liquid nanofibrous filter

    Science.gov (United States)

    Bílek, P.

    2017-10-01

    This paper deals with visualization of flow during cleaning process on a nanofibrous filter. Cleaning of a filter is very important part of the filtration process which extends lifetime of the filter and improve filtration properties. Cleaning is carried out on flat-sheet filters, where particles are deposited on the filter surface and form a filtration cake. The cleaning process dislodges the deposited filtration cake, which is loose from the membrane surface to the retentate flow. The blocked pores in the filter are opened again and hydrodynamic properties are restored. The presented optical method enables to see flow behaviour in a thin laser sheet on the inlet side of a tested filter during the cleaning process. The local concentration of solid particles is possible to estimate and achieve new information about the cleaning process. In the article is described the cleaning process on nanofibrous membranes for waste water treatment. The hydrodynamic data were compared to the images of the cleaning process.

  9. Advanced Supersonic Nozzle Concepts: Experimental Flow Visualization Results Paired With LES

    Science.gov (United States)

    Berry, Matthew; Magstadt, Andrew; Stack, Cory; Gaitonde, Datta; Glauser, Mark; Syracuse University Team; The Ohio State University Team

    2015-11-01

    Advanced supersonic nozzle concepts are currently under investigation, utilizing multiple bypass streams and airframe integration to bolster performance and efficiency. This work focuses on the parametric study of a supersonic, multi-stream jet with aft deck. The single plane of symmetry, rectangular nozzle, displays very complex and unique flow characteristics. Flow visualization techniques in the form of PIV and schlieren capture flow features at various deck lengths and Mach numbers. LES is compared to the experimental results to both validate the computational model and identify limitations of the simulation. By comparing experimental results to LES, this study will help create a foundation of knowledge for advanced nozzle designs in future aircraft. SBIR Phase II with Spectral Energies, LLC under direction of Barry Kiel.

  10. On the quantification and visualization of transient periodic instabilities in pulsatile flows.

    Science.gov (United States)

    Khan, Muhammad Owais; Chnafa, Christophe; Gallo, Diego; Molinari, Filippo; Morbiducci, Umberto; Steinman, David A; Valen-Sendstad, Kristian

    2017-02-08

    Turbulent-like flows without cycle-to-cycle variations are more frequently being reported in studies of cardiovascular flows. The associated stimuli might be of mechanobiological relevance, but how to quantify them objectively is not obvious. Classical Reynolds decomposition, where the flow is separated into mean and fluctuating velocity components, is not applicable as the phase-average is zero. We therefore expanded on established techniques and present the idea, analogous to Reynolds decomposition, to decompose a flow with transient instabilities into low- versus high frequency components, respectively, to discriminate flow instabilities from the underlying cardiac pulsatility. Transient wall shear stress and velocity signals derived from computational fluid dynamic simulations were transferred to the frequency domain. A high-pass filter was applied to subtract the 99% most-energy-containing frequencies, which gave a cut-off frequency of 25Hz. We introduce here the spectral power index, and compute the fluctuating kinetic energy, based on the high-pass filtered velocity components, both being frequency-based operators. The efficacy was evaluated in an aneurysm model for multiple flow rates demonstrating transition to turbulent-like flows. The frequency-based operators were found to better correlate with the qualitatively observed flow instabilities compared to conventional descriptors, like time-averaged wall shear stress or oscillatory shear index. We demonstrate how the high frequencies beyond the physiological range could be analyzed and/or transferred back to the time domain for quantification and visualization purposes. We have introduced general frequency-based operators, easily extendable to other cardiovascular territories based on a posteriori heuristic filtering that allows for separation, isolation, and quantification of cycle-invariant turbulent-like flows. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Quantitative evaluation of regional cerebral blood flow by visual stimulation in 99mTc-HMPAO brain SPECT

    International Nuclear Information System (INIS)

    Juh, R. H.; Suh, T. S.; Chung, Y. A.

    2002-01-01

    The purpose of this study is to investigate the effects of visual activation and quantitative analysis of regional cerebral blood flow. Visual activation was known to increase regional cerebral blood flow in the visual cortex in occipital lobe. We evaluated that change in the distribution of 99mTc-HMPAO (Hexamethyl propylene amine oxime) to reflect in regional cerebral blood flow. The six volunteers were injected with 925 MBq (mean ages: 26.75 years, n=6, 3men, 3women) underwent MRI and 99mTc- HMPAO SPECT during a rest state with closed eyes and visual stimulated with 8 Hz LED. We delineate the region of interest and calculated the mean count per voxel in each of the fifteen slices to quantitative analysis. The ROI to whole brain ratio and regional index was calculated pixel to pixel subtraction visual non-activation image from visual activation image and constructed brain map using a statistical parameter map (SPM99). The mean regional cerebral blood flow was increased due to visual stimulation. The increase rate of the mean regional cerebral blood flow which of the activation region in primary visual cortex of occipital lobe was 32.50±5.67%. The significant activation sites using a statistical parameter of brain constructed a rendering image and image fusion with SPECT and MRI. Visual activation was revealed significant increase through quantitative analysis in visual cortex. Activation region was certified in Talairach coordinate and primary visual cortex (Ba17),visual association area (Ba18,19) of Brodmann

  12. Visualization analysis of tiger-striped flow mark generation phenomena in injection molding

    Science.gov (United States)

    Owada, Shigeru; Yokoi, Hidetoshi

    2016-03-01

    The generation mechanism of tiger-striped flow marks of polypropylene (PP)/rubber/talc blends in injection molding was investigated by dynamic visualization analysis in a glass-inserted mold. The analysis revealed that the behavior of the melt flow front correlates with the flow mark generation. The cloudy part in the tiger-striped flow marks corresponded to the low transcription rate area of the melt diverging near the cavity wall, while the glossy part corresponded to the high transcription rate area of the melt converging toward the cavity wall side. The melt temperature at the high transcription rate area was slightly lower than that at the low transcription rate area. These phenomena resulted due to the difference in the temperature of the melt front that was caused by the asymmetric fountain flow. These results suggest the followings; At the moment when the melt is broken near the one side of cavity wall due to piling the extensional strains up to a certain level, the melt spurts out near the broken side. It results in generating asymmetric fountain flow temporarily to relax the extensional front surface, which moves toward the opposite side to form the high transcription area.

  13. Visualization Measurement of Streaming Flows Associated with a Single-Acoustic Levitator

    Science.gov (United States)

    Hasegawa, Koji; Abe, Yutaka; Kaneko, Akiko; Yamamoto, Yuji; Aoki, Kazuyoshi

    2009-08-01

    The purpose of the study is to experimentally investigate flow fields generated by an acoustic levitator. This flow field has been observed using flow visualization, PIV method. In the absent of a drop, the flow field was strongly influenced by sound pressure level (SPL). In light of the interfacial stability of a levitated drop, SPL was set at 161-163 [dB] in our experiments. In the case of any levitated drop at a pressure node of a standing wave, the toroidal vortices were appeared around a drop and clearly observed the flow fields around the drop by PIV measurement. It is found that the toroidal vortices around a levitated drop were strongly affected by the viscosity of a drop. For more detailed research, experiments in the reduced gravity were conducted with aircraft parabolic flights. By comparison with experimental results in the earth and reduced gravity, it is also indicated that the configuration of the external flow field around a drop is most likely to be affected by a position of a drop as well.

  14. Modernized Approach for Generating Reproducible Heterogeneity Using Transmitted-Light for Flow Visualization Experiments

    Science.gov (United States)

    Jones, A. A.; Holt, R. M.

    2017-12-01

    Image capturing in flow experiments has been used for fluid mechanics research since the early 1970s. Interactions of fluid flow between the vadose zone and permanent water table are of great interest because this zone is responsible for all recharge waters, pollutant transport and irrigation efficiency for agriculture. Griffith, et al. (2011) developed an approach where constructed reproducible "geologically realistic" sand configurations are deposited in sandfilled experimental chambers for light-transmitted flow visualization experiments. This method creates reproducible, reverse graded, layered (stratified) thin-slab sand chambers for point source experiments visualizing multiphase flow through porous media. Reverse-graded stratification of sand chambers mimic many naturally occurring sedimentary deposits. Sandfilled chambers use light as nonintrusive tools for measuring water saturation in two-dimensions (2-D). Homogeneous and heterogeneous sand configurations can be produced to visualize the complex physics of the unsaturated zone. The experimental procedure developed by Griffith, et al. (2011) was designed using now outdated and obsolete equipment. We have modernized this approach with new Parker Deadel linear actuator and programed projects/code for multiple configurations. We have also updated the Roper CCD software and image processing software with the latest in industry standards. Modernization of transmitted-light source, robotic equipment, redesigned experimental chambers, and newly developed analytical procedures have greatly reduced time and cost per experiment. We have verified the ability of the new equipment to generate reproducible heterogeneous sand-filled chambers and demonstrated the functionality of the new equipment and procedures by reproducing several gravity-driven fingering experiments conducted by Griffith (2008).

  15. Real-Time Visual Feedback of Airflow in Voice Training: Aerodynamic Properties of Two Flow Ball Devices.

    Science.gov (United States)

    Lã, Filipa M B; Wistbacka, Greta; Andrade, Pedro Amarante; Granqvist, Svante

    2017-05-01

    Flow ball devices have been used as teaching tools to provide visual real-time feedback of airflow during singing. This study aims at exploring static back pressure and ball height as function of flow for two devices, marketed as flow ball and floating ball game. This is a comparative descriptive study. A flow-driven vocal tract simulator was used to investigate the aerodynamic properties of these two devices, testing them for four different ball sizes. The flow range investigated was between 0 and 0.5 L/s. Audio, flow, pressure, and ball height were recorded. The flow pressure profiles for both tested devices were similar to those observed in previous studies on narrow tubes. For lifting the ball, both devices had a flow and a pressure threshold. The tested floating ball game required considerably higher back pressure for a given flow as compared with the flow ball. Both tested devices have similar effects on back pressure as straws of 3.7 and 3.0 mm in diameter for the flow ball and the floating ball game, respectively. One might argue that both devices could be used as tools for practicing semi-occluded vocal tract exercises, with the additional benefit of providing real-time visual feedback of airflow during phonation. The flow threshold, combined with the flow feedback, would increase awareness of flow, rather than of pressure, during exercises using a flow ball device. Published by Elsevier Inc.

  16. Application of fast neutron radiography to three-dimensional visualization of steady two-phase flow in a rod bundle

    CERN Document Server

    Takenaka, N; Fujii, T; Mizubata, M; Yoshii, K

    1999-01-01

    Three-dimensional void fraction distribution of air-water two-phase flow in a 4x4 rod-bundle near a spacer was visualized by fast neutron radiography using a CT method. One-dimensional cross sectional averaged void fraction distribution was also calculated. The behaviors of low void fraction (thick water) two-phase flow in the rod bundle around the spacer were clearly visualized. It was shown that the void fraction distributions were visualized with a quality similar to those by thermal neutron radiography for low void fraction two-phase flow which is difficult to visualize by thermal neutron radiography. It is concluded that the fast neutron radiography is efficiently applicable to two-phase flow studies.

  17. Quantification of the Effect of Pressure Wire Drift on the Diagnostic Performance of Fractional Flow Reserve, Instantaneous Wave-Free Ratio, and Whole-Cycle Pd/Pa.

    Science.gov (United States)

    Cook, Christopher M; Ahmad, Yousif; Shun-Shin, Matthew J; Nijjer, Sukhjinder; Petraco, Ricardo; Al-Lamee, Rasha; Mayet, Jamil; Francis, Darrel P; Sen, Sayan; Davies, Justin E

    2016-04-01

    Small drifts in intracoronary pressure measurements (±2 mm Hg) can affect stenosis categorization using pressure indices. This has not previously been assessed for fractional flow reserve (FFR), instantaneous wave-free ratio (iFR), and whole-cycle distal pressure/proximal pressure (Pd/Pa) indices. Four hundred forty-seven stenoses were assessed with FFR, iFR, and whole-cycle Pd/Pa. Cut point values for significance were predefined as ≤0.8, Pa indices were recalculated and stenosis misclassification quantified. Median (±median absolute deviation) values for FFR, iFR, and whole-cycle Pd/Pa were 0.81 (±0.11), 0.90 (±0.07), and 0.93 (±0.06), respectively. For the cut point of FFR, iFR, and whole-cycle Pd/Pa, 34.6% (155), 50.1% (224), and 62.2% (278) of values, respectively, lay within ±0.05 U. With ±2 mm Hg pressure wire drift, 21% (94), 25% (110), and 33% (148) of the study population were misclassified with FFR, iFR, and whole-cycle Pd/Pa, respectively. Both FFR and iFR had significantly lower misclassification than whole-cycle Pd/Pa (PPa is more vulnerable to such reclassification than FFR and iFR. © 2016 The Authors.

  18. A novel five-wire micro anemometer with 3D directionality for low speed air flow detection and acoustic particle velocity detecting capability

    Science.gov (United States)

    Li, Zhe; Chang, Wenhan; Gao, Chengchen; Hao, Yilong

    2018-04-01

    In this paper, a novel five-wire micro-fabricated anemometer with 3D directionality based on calorimetric principle is proposed, which is capable of measuring low speed airflow. This structure is realized by vertically bonding two different dies, which can be fabricated on the same wafer resulting in a simple fabrication process. Experiments on speed lower than 200 mm s‑1 are conducted, showing good repeatability and directionality. The speed of airflow is controlled by the volumetric flow rate. The measured velocity sensitivity is 9.4 mV · s m‑1, with relative direction sensitivity of 37.1 dB. The deviation between the expected and the measured directivity is analyzed by both theories and simulations. A correction procedure is proposed and turns out to be useful to eliminate this deviation. To further explore the potential of our device, we expose it to acoustic plane waves in a standing wave tube, showing consistent planar directivity of figure of eight. The measured velocity sensitivity at 1 kHz and 120 dBC is 4.4 mV · s m‑1, with relative direction sensitivity of 27.0 dB. By using the correction method proposed above, the maximum angle error is about  ±2°, showing its good directionality accuracy.

  19. Visualization and evaluation of flow during water filtration: Parameterization and sensitivity analysis

    Directory of Open Access Journals (Sweden)

    Bílek Petr

    2016-01-01

    Full Text Available This paper deals with visualization and evaluation of flow during filtration of water seeded by artificial microscopic particles. Planar laser induced fluorescence (PLIF is a wide spread method for visualization and non-invasive characterization of flow. However the method uses fluorescent dyes or fluorescent particles in special cases. In this article the flow is seeded by non-fluorescent monodisperse polystyrene particles with the diameter smaller than one micrometer. The monodisperse sub-micron particles are very suitable for testing of textile filtration materials. Nevertheless non-fluorescent particles are not useful for PLIF method. A water filtration setup with an optical access to the place, were a tested filter is mounted, was built and used for the experiments. Concentration of particles in front of and behind the tested filter in a laser light sheet measured is and the local filtration efficiency expressed is. The article describes further progress in the measurement. It was carried out sensitivity analysis, parameterization and performance of the method during several simulations and experiments.

  20. Visualization of Flow Field of Weis-Fogh Type Water Turbine Using the PIV

    Energy Technology Data Exchange (ETDEWEB)

    Ro, Ki Deok [Gyeongsang Nat’l Univ., Jinju (Korea, Republic of)

    2017-03-15

    In this study, the visualization of the unsteady flow field of a Weis-Fogh-type water turbine was investigated using particle-image velocimetry. The visualization experiments were performed in a parameter range that provided relatively high-efficiency wing conditions, that is, at a wing opening angle α= 40 .deg. and at a velocity ratio of the uniform flow to the moving wing U/V = 1.5~2.5. The flow fields at the opening, translational, and closing stages were investigated for each experimental parameter. In the opening stage, the fluid was drawn in between the wing and wall at a velocity that increased with an increase in the opening angle and velocity ratio. In the translational stage, the fluid on the pressure face of the wing moved in the direction of the wing motion, and the boundary layer at the back face of the wing was the thinnest and had a velocity ratio of 2.0. In the closing stage, the fluid between the wing and wall was jetted at a velocity that increased as the opening angle decreased; however, the velocity was independent of the velocity ratio.

  1. Google-Earth Based Visualizations for Environmental Flows and Pollutant Dispersion in Urban Areas

    Directory of Open Access Journals (Sweden)

    Daoming Liu

    2017-03-01

    Full Text Available In the present study, we address the development and application of an efficient tool for conversion of results obtained by an integrated computational fluid dynamics (CFD and computational reaction dynamics (CRD approach and their visualization in the Google Earth. We focus on results typical for environmental fluid mechanics studies at a city scale that include characteristic wind flow patterns and dispersion of reactive scalars. This is achieved by developing a code based on the Java language, which converts the typical four-dimensional structure (spatial and temporal dependency of data results in the Keyhole Markup Language (KML format. The visualization techniques most often used are revisited and implemented into the conversion tool. The potential of the tool is demonstrated in a case study of smog formation due to an intense traffic emission in Rotterdam (The Netherlands. It is shown that the Google Earth can provide a computationally efficient and user-friendly means of data representation. This feature can be very useful for visualization of pollution at street levels, which is of great importance for the city residents. Various meteorological and traffic emissions can be easily visualized and analyzed, providing a powerful, user-friendly tool for traffic regulations and urban climate adaptations.

  2. Flow Visualization with Quantified Spatial and Temporal Errors Using Edge Maps

    KAUST Repository

    Bhatia, H.

    2012-09-01

    Robust analysis of vector fields has been established as an important tool for deriving insights from the complex systems these fields model. Traditional analysis and visualization techniques rely primarily on computing streamlines through numerical integration. The inherent numerical errors of such approaches are usually ignored, leading to inconsistencies that cause unreliable visualizations and can ultimately prevent in-depth analysis. We propose a new representation for vector fields on surfaces that replaces numerical integration through triangles with maps from the triangle boundaries to themselves. This representation, called edge maps, permits a concise description of flow behaviors and is equivalent to computing all possible streamlines at a user defined error threshold. Independent of this error streamlines computed using edge maps are guaranteed to be consistent up to floating point precision, enabling the stable extraction of features such as the topological skeleton. Furthermore, our representation explicitly stores spatial and temporal errors which we use to produce more informative visualizations. This work describes the construction of edge maps, the error quantification, and a refinement procedure to adhere to a user defined error bound. Finally, we introduce new visualizations using the additional information provided by edge maps to indicate the uncertainty involved in computing streamlines and topological structures. © 2012 IEEE.

  3. Visualizing request-flow comparison to aid performance diagnosis in distributed systems.

    Science.gov (United States)

    Sambasivan, Raja R; Shafer, Ilari; Mazurek, Michelle L; Ganger, Gregory R

    2013-12-01

    Distributed systems are complex to develop and administer, and performance problem diagnosis is particularly challenging. When performance degrades, the problem might be in any of the system's many components or could be a result of poor interactions among them. Recent research efforts have created tools that automatically localize the problem to a small number of potential culprits, but research is needed to understand what visualization techniques work best for helping distributed systems developers understand and explore their results. This paper compares the relative merits of three well-known visualization approaches (side-by-side, diff, and animation) in the context of presenting the results of one proven automated localization technique called request-flow comparison. Via a 26-person user study, which included real distributed systems developers, we identify the unique benefits that each approach provides for different problem types and usage modes.

  4. A study of natural circulation cooling using a flow visualization rig

    International Nuclear Information System (INIS)

    Bowman, W.C.; Ferch, R.L.; Omar, A.M.

    1985-01-01

    A flow visualization rig has been built at Monserco Limited to provide visual insight into the thermalhydraulic phenomena which occur during single phase and two phase thermosyphoning in a figure-of-eight heat transport loop. Tests performed with the rig have provided design information for the scaling and instrumentation of a high pressure rig being investigated for simulating CANDU reactor conditions during natural circulation cooling. A videotape was produced, for viewing at this presentation, to show important thermalhydraulic features of the thermosyphoning process. The rig is a standard figure-of-eight loop with two steam generators and three heated channels per pass. An elevated surge tank open to atmosphere was used for pressure control. Two variable speed pumps provided forced circulation for warming up the rig, and for establishing the desired initial conditions for testing. Test rig power could be varied between 0 and 15 kW

  5. Visualized Evaluation of Blood Flow to the Gastric Conduit and Complications in Esophageal Reconstruction.

    Science.gov (United States)

    Noma, Kazuhiro; Shirakawa, Yasuhiro; Kanaya, Nobuhiko; Okada, Tsuyoshi; Maeda, Naoaki; Ninomiya, Takayuki; Tanabe, Shunsuke; Sakurama, Kazufumi; Fujiwara, Toshiyoshi

    2018-03-01

    Evaluation of the blood supply to gastric conduits is critically important to avoid complications after esophagectomy. We began visual evaluation of blood flow using indocyanine green (ICG) fluorescent imaging in July 2015, to reduce reconstructive complications. In this study, we aimed to statistically verify the efficacy of blood flow evaluation using our simplified ICG method. A total of 285 consecutive patients who underwent esophagectomy and gastric conduit reconstruction were reviewed and divided into 2 groups: before and after introduction of ICG evaluation. The entire cohort and 68 patient pairs after propensity score matching (PS-M) were evaluated for clinical outcomes and the effect of visualized evaluation on reducing the risk of complication. The leakage rate in the ICG group was significantly lower than in the non-ICG group for each severity grade, both in the entire cohort (285 subjects) and after PS-M; the rates of other major complications, including recurrent laryngeal nerve palsy and pneumonia, were not different. The duration of postoperative ICU stay was approximately 1 day shorter in the ICG group than in the non-ICG group in the entire cohort, and approximately 2 days shorter after PS-M. Visualized evaluation of blood flow with ICG methods significantly reduced the rate of anastomotic complications of all Clavien-Dindo (CD) grades. Odds ratios for ICG evaluation decreased with CD grade (0.3419 for CD ≥ 1; 0.241 for CD ≥ 2; and 0.2153 for CD ≥ 3). Objective evaluation of blood supply to the reconstructed conduit using ICG fluorescent imaging reduces the risk and degree of anastomotic complication. Copyright © 2017 American College of Surgeons. Published by Elsevier Inc. All rights reserved.

  6. Visualization of Atomization Gas Flow and Melt Break-up Effects in Response to Nozzle Design

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Iver; Rieken, Joel; Meyer, John; Byrd, David; Heidloff, Andy

    2011-04-01

    Both powder particle size control and efficient use of gas flow energy are highly prized goals for gas atomization of metal and alloy powder to minimize off-size powder inventory (or 'reverb') and excessive gas consumption. Recent progress in the design of close-coupled gas atomization nozzles and the water model simulation of melt feed tubes were coupled with previous results from several types of gas flow characterization methods, e.g., aspiration measurements and gas flow visualization, to make progress toward these goals. Size distribution analysis and high speed video recordings of gas atomization reaction synthesis (GARS) experiments on special ferritic stainless steel alloy powders with an Ar+O{sub 2} gas mixture were performed to investigate the operating mechanisms and possible advantages of several melt flow tube modifications with one specific gas atomization nozzle. In this study, close-coupled gas atomization under closed wake gas flow conditions was demonstrated to produce large yields of ultrafine (dia.<20 {mu}m) powders (up to 32%) with moderate standard deviations (1.62 to 1.99). The increased yield of fine powders is consistent with the dual atomization mechanisms of closed wake gas flow patterns in the near-field of the melt orifice. Enhanced size control by stabilized pre-filming of the melt with a slotted trumpet bell pour tube was not clearly demonstrated in the current experiments, perhaps confounded by the influence of the melt oxidation reaction that occurred simultaneously with the atomization process. For this GARS variation of close-coupled gas atomization, it may be best to utilize the straight cylindrical pour tube and closed wake operation of an atomization nozzle with higher gas mass flow to promote the maximum yields of ultrafine powders that are preferred for the oxide dispersion strengthened alloys made from these powders.

  7. A qualitative and quantitative laser-based computer-aided flow visualization method. M.S. Thesis, 1992 Final Report

    Science.gov (United States)

    Canacci, Victor A.; Braun, M. Jack

    1994-01-01

    The experimental approach presented here offers a nonintrusive, qualitative and quantitative evaluation of full field flow patterns applicable in various geometries in a variety of fluids. This Full Flow Field Tracking (FFFT) Particle Image Velocimetry (PIV) technique, by means of particle tracers illuminated by a laser light sheet, offers an alternative to Laser Doppler Velocimetry (LDV), and intrusive systems such as Hot Wire/Film Anemometry. The method makes obtainable the flow patterns, and allows quantitative determination of the velocities, accelerations, and mass flows of an entire flow field. The method uses a computer based digitizing system attached through an imaging board to a low luminosity camera. A customized optical train allows the system to become a long distance microscope (LDM), allowing magnifications of areas of interest ranging up to 100 times. Presented in addition to the method itself, are studies in which the flow patterns and velocities were observed and evaluated in three distinct geometries, with three different working fluids. The first study involved pressure and flow analysis of a brush seal in oil. The next application involved studying the velocity and flow patterns in a cowl lip cooling passage of an air breathing aircraft engine using water as the working fluid. Finally, the method was extended to a study in air to examine the flows in a staggered pin arrangement located on one side of a branched duct.

  8. Experimental study on two-phase flow in horizontal duct using a visualization technique

    International Nuclear Information System (INIS)

    Oliveira, Livia A.; Tomas, Bruno T.; Cunha Filho, Jurandyr S.; Su, Jian

    2009-01-01

    In this paper an experimental study is performed for visualization of water-air two phase flow, stratified and intermittent, in a 51 mm internal diameter circular section horizontal tube. The study consists in filming a water-air mixture passin by a transparent interval of the tube, using a high speed camera. After that, the obtained images are analysed frame after frame and then, data are extracted of weight of gas-liquid interfaces, length and gas bubbles speeds. Then, these data are verified with experimental and theoretical correlations available in the literature

  9. Cartography of high-dimensional flows: a visual guide to sections and slices.

    Science.gov (United States)

    Cvitanović, Predrag; Borrero-Echeverry, Daniel; Carroll, Keith M; Robbins, Bryce; Siminos, Evangelos

    2012-12-01

    Symmetry reduction by the method of slices quotients the continuous symmetries of chaotic flows by replacing the original state space by a set of charts, each covering a neighborhood of a dynamically important class of solutions, qualitatively captured by a "template." Together these charts provide an atlas of the symmetry-reduced "slice" of state space, charting the regions of the manifold explored by the trajectories of interest. Within the slice, relative equilibria reduce to equilibria and relative periodic orbits reduce to periodic orbits. Visualizations of these solutions and their unstable manifolds reveal their interrelations and the role they play in organizing turbulence/chaos.

  10. Hummingbirds generate bilateral vortex loops during hovering: evidence from flow visualization

    Science.gov (United States)

    Pournazeri, Sam; Segre, Paolo S.; Princevac, Marko; Altshuler, Douglas L.

    2013-01-01

    Visualization of the vortex wake of a flying animal provides understanding of how wingbeat kinematics are translated into the aerodynamic forces for powering and controlling flight. Two general vortex flow patterns have been proposed for the wake of hovering hummingbirds: (1) The two wings form a single, merged vortex ring during each wing stroke; and (2) the two wings form bilateral vortex loops during each wing stroke. The second pattern was proposed after a study with particle image velocimetry that demonstrated bilateral source flows in a horizontal measurement plane underneath hovering Anna's hummingbirds ( Calypte anna). Proof of this hypothesis requires a clear perspective of bilateral pairs of vortices. Here, we used high-speed image sequences (500 frames per second) of C. anna hover feeding within a white plume to visualize the vortex wake from multiple perspectives. The films revealed two key structural features: (1) Two distinct jets of downwards airflow are present under each wing; and (2) vortex loops around each jet are shed during each upstroke and downstroke. To aid in the interpretation of the flow visualization data, we analyzed high-speed kinematic data (1,000 frames per second) of wing tips and wing roots as C. anna hovered in normal air. These data were used to refine several simplified models of vortex topology. The observed flow patterns can be explained by either a single loop model with an hourglass shape or a bilateral model, with the latter being more likely. When hovering in normal air, hummingbirds used an average stroke amplitude of 153.6° (range 148.9°-164.4°) and a wingbeat frequency of 38.5 Hz (range 38.1-39.1 Hz). When hovering in the white plume, hummingbirds used shallower stroke amplitudes ( bar{x} = 129.8°, range 116.3°-154.1°) and faster wingbeat frequencies ( bar{x} = 41.1 Hz, range 38.5-44.7 Hz), although the bilateral jets and associated vortices were observed across the full kinematic range. The plume did not

  11. Application of TensorFlow to recognition of visualized results of fragment molecular orbital (FMO) calculations

    OpenAIRE

    Saitou, Sona; Iijima, Jun; Fujimoto, Mayu; Mochizuki, Yuji; Okuwaki, Koji; Doi, Hideo; Komeiji, Yuto

    2018-01-01

    We have applied Google's TensorFlow deep learning toolkit to recognize the visualized results of the fragment molecular orbital (FMO) calculations. Typical protein structures of alpha-helix and beta-sheet provide some characteristic patterns in the two-dimensional map of inter-fragment interaction energy termed as IFIE-map (Kurisaki et al., Biophys. Chem. 130 (2007) 1). A thousand of IFIE-map images with labels depending on the existences of alpha-helix and beta-sheet were prepared by employi...

  12. A methodology for online visualization of the energy flow in a machine tool

    DEFF Research Database (Denmark)

    Mohammadi, Ali; Züst, Simon; Mayr, Josef

    2017-01-01

    the machine into subsystems and measurements of the consumers (pump, motors, . . . ) power, temperature at the inlet and outlet of the pumps and current as well as the speed of the motors. The visualization is carried out by a 2D Sankey diagram, which makes it easy to understand the energetic flows......The demand of energy efficient machine tools has increased recently due to the awareness for energyefficient production in precision manufacturing. A portion of the energy supplied to machine tools istransferred to thermal losses which influence also the thermal behavior of the precision related...... machine tools components. Machine cooling and process cooling can prevent thermal machine tool errors. However this further requires considerable amounts of energy. Hence there is a demand to monitor the electric, thermal, fluidic and mechanical energy flows in the machine tool in order to optimize...

  13. Experimental study of natural two-phase flow circulation using a visualization technique

    International Nuclear Information System (INIS)

    Vinhas, Pedro A.M.; Su, Jian

    2013-01-01

    This paper presents an experimental study of natural two-phase flow in a circuit that simulates, on a smaller scale, a typical residual heat removal system of passive reactors APWR (Advanced Pressurized Water Reactor). The circuit was formed by a heater, a heat exchanger and piping. The experimental study was the application of a visualization technique, using a high speed camera, for measuring the size and speed of vapor bubbles generated in the heater with different power heating. The camera was positioned in the central region of the pipe connecting the heater to the heat exchanger, where there is a clear passage. The flow of images were processed and analyzed using commercial software that allowed the determination of the length and velocity of the bubbles. The results were then compared with correlations available in literature

  14. Ground evaluation of seeding an in-flight wingtip vortex using infrared imaging flow visualization technique

    Science.gov (United States)

    Akinyanju, Ted

    1989-01-01

    An experimental simulation of an in-flight wingtip vortical flow visualization technique uses infrared imaging to observe strong and concentrated vortices. This experiment is phase 1 of a two-phase infrared evaluation program. The system includes a vortex generator (model 320 Vortec Vortex Tube) which generates the required vortex. The mouth of the unit is mounted close to the free end of a half-inch diameter, sixteen and a half foot long stainless steel tubing (sized after tubing currently installed in the wings of an experimental Beechcraft Sundowner 180 aircraft). Dichloro difluoromethane (Freon-12) is entrained into the generated vortex. A breakdown of the vortices is indicated by the rapid diffusion and the resulting pattern is tracked using the infrared imager and video systems. Flow rates (volume and mass) are estimated at the laboratory and proposed flight conditions. The nominal flight altitude is expected to be 2500 feet.

  15. Flow Visualization Studies in the Novacor Left Ventricular Assist System CRADA PC91-002, Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Borovetz, H.S.; Shaffer, F.; Schaub, R.; Lund, L.; Woodard, J.

    1999-01-01

    This paper discusses a series of experiments to visualize and measure flow fields in the Novacor left ventricular assist system (LVAS). The experiments utilize a multiple exposure, optical imaging technique called fluorescent image tracking velocimetry (FITV) to hack the motion of small, neutrally-buoyant particles in a flowing fluid.

  16. Noncontextual Wirings

    Science.gov (United States)

    Amaral, Barbara; Cabello, Adán; Cunha, Marcelo Terra; Aolita, Leandro

    2018-03-01

    Contextuality is a fundamental feature of quantum theory necessary for certain models of quantum computation and communication. Serious steps have therefore been taken towards a formal framework for contextuality as an operational resource. However, the main ingredient of a resource theory—a concrete, explicit form of free operations of contextuality—was still missing. Here we provide such a component by introducing noncontextual wirings: a class of contextuality-free operations with a clear operational interpretation and a friendly parametrization. We characterize them completely for general black-box measurement devices with arbitrarily many inputs and outputs. As applications, we show that the relative entropy of contextuality is a contextuality monotone and that maximally contextual boxes that serve as contextuality bits exist for a broad class of scenarios. Our results complete a unified resource-theoretic framework for contextuality and Bell nonlocality.

  17. Visualization of Colloid Deposition and Mobilization During Unsteady and Steady Porewater Flow Through Unsaturated Porous Media.

    Science.gov (United States)

    Saiers, J. E.; Gao, B.; Ryan, J. N.

    2004-12-01

    Mineral colloids that are mobilized from near-surface soils during infiltration events may carry sorptive contaminants through the vadose zone and into drinking-water aquifers. The vadose-zone flux of colloid-associated contaminants depends, in part, on the difference between colloid mobilization rates and deposition rates. Our research is aimed at improving current understanding of colloid effects on subsurface-contaminant transport by identifying the mechanisms that govern colloid mobilization and deposition in unsaturated porous media. We present pore-scale observations of the transport of fluorescent microspheres through transparent flow cells packed with a thin layer of partially saturated sand. These visualization experiments were conducted under steady-flow and transient-flow conditions. In experiments in which the air phase was discontinuous and occurred as insular air bubbles, the negatively charged microspheres accumulated at the air-bubble surface and moved freely about this air-water interface. A fraction of these colloids eventually migrated from the air-water interface to the air-water-solid interface, whereupon their motion stopped. Destruction of the air bubbles during imbibition led to the release of colloids retained previously by the air-water interface, but not to the release of colloids held at the air-water-solid interface. Colloids were also trapped upon entry into dead-end water conduits that split from the primary flow channels. The exchange of colloids and water between a dead zone and primary flow channel was slow under steady flow; however, the reconnection of dead-end zones as moisture content increased during imbibition resulted in the mobilization of large concentrations of colloids. Our findings show that multiple mechanisms govern the deposition and mobilization of colloids in unsaturated porous media and provide direction for refining mathematical models for colloid and colloid-facilitated contaminant transport within the vadose

  18. A static air flow visualization method to obtain a time history of the lift-induced vortex and circulation

    Science.gov (United States)

    Patterson, J. C., Jr.; Jordan, F. L., Jr.

    1975-01-01

    A recently proposed method of flow visualization was investigated at the National Aeronautics and Space Administration's Langley Research Center. This method of flow visualization is particularly applicable to the study of lift-induced wing tip vortices through which it is possible to record the entire life span of the vortex. To accomplish this, a vertical screen of smoke was produced perpendicular to the flight path and allowed to become stationary. A model was then driven through the screen of smoke producing the circular vortex motion made visible as the smoke was induced along the path taken by the flow and was recorded by highspeed motion pictures.

  19. Visual detection of microRNA with lateral flow nucleic acid biosensor.

    Science.gov (United States)

    Gao, Xuefei; Xu, Hui; Baloda, Meenu; Gurung, Anant S; Xu, Li-Ping; Wang, Tao; Zhang, Xueji; Liu, Guodong

    2014-04-15

    We report a DNA-gold nanoparticle (DNA-GNP) based lateral flow nucleic acid biosensor for visual detection of microRNA (miRNA)-215 in aqueous solutions and biological samples with low-cost and short analysis time. Sandwich-type hybridization reactions among GNP-labeled DNA probe, miRNA-215 and biotin-modified DNA probes were performed on the lateral flow device. The accumulation of GNPs on the test zone of the biosensor enables the visual detection of miRNA-215. After systematic optimization, the biosensor was able to detect a minimum concentration of 60 pM miRNA-215. The biosensor was applied to detect miRNA-215 from A549 cell lysate directly without complex sample treatment, and the detection limit of 0.148 million cells was obtained. This study provides a simple, rapid, specific and low-cost approach for miRNA detection in aqueous solutions and biological samples, showing great promise for clinical application and biomedical diagnosis in some malignant diseases. © 2013 Published by Elsevier B.V.

  20. Improving the visualization of electron-microscopy data through optical flow interpolation

    KAUST Repository

    Carata, Lucian

    2013-01-01

    Technical developments in neurobiology have reached a point where the acquisition of high resolution images representing individual neurons and synapses becomes possible. For this, the brain tissue samples are sliced using a diamond knife and imaged with electron-microscopy (EM). However, the technique achieves a low resolution in the cutting direction, due to limitations of the mechanical process, making a direct visualization of a dataset difficult. We aim to increase the depth resolution of the volume by adding new image slices interpolated from the existing ones, without requiring modifications to the EM image-capturing method. As classical interpolation methods do not provide satisfactory results on this type of data, the current paper proposes a re-framing of the problem in terms of motion volumes, considering the depth axis as a temporal axis. An optical flow method is adapted to estimate the motion vectors of pixels in the EM images, and this information is used to compute and insert multiple new images at certain depths in the volume. We evaluate the visualization results in comparison with interpolation methods currently used on EM data, transforming the highly anisotropic original dataset into a dataset with a larger depth resolution. The interpolation based on optical flow better reveals neurite structures with realistic undistorted shapes, and helps to easier map neuronal connections. © 2011 ACM.

  1. UNCERT: geostatistics, uncertainty analysis and visualization software applied to groundwater flow and contaminant transport modeling

    International Nuclear Information System (INIS)

    Wingle, W.L.; Poeter, E.P.; McKenna, S.A.

    1999-01-01

    UNCERT is a 2D and 3D geostatistics, uncertainty analysis and visualization software package applied to ground water flow and contaminant transport modeling. It is a collection of modules that provides tools for linear regression, univariate statistics, semivariogram analysis, inverse-distance gridding, trend-surface analysis, simple and ordinary kriging and discrete conditional indicator simulation. Graphical user interfaces for MODFLOW and MT3D, ground water flow and contaminant transport models, are provided for streamlined data input and result analysis. Visualization tools are included for displaying data input and output. These include, but are not limited to, 2D and 3D scatter plots, histograms, box and whisker plots, 2D contour maps, surface renderings of 2D gridded data and 3D views of gridded data. By design, UNCERT's graphical user interface and visualization tools facilitate model design and analysis. There are few built in restrictions on data set sizes and each module (with two exceptions) can be run in either graphical or batch mode. UNCERT is in the public domain and is available from the World Wide Web with complete on-line and printable (PDF) documentation. UNCERT is written in ANSI-C with a small amount of FORTRAN77, for UNIX workstations running X-Windows and Motif (or Lesstif). This article discusses the features of each module and demonstrates how they can be used individually and in combination. The tools are applicable to a wide range of fields and are currently used by researchers in the ground water, mining, mathematics, chemistry and geophysics, to name a few disciplines. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  2. Visual detection of nucleic acids based on lateral flow biosensor and hybridization chain reaction amplification.

    Science.gov (United States)

    Ying, Na; Ju, Chuanjing; Li, Zhongyi; Liu, Wensen; Wan, Jiayu

    2017-03-01

    In this study, a new lateral flow nucleic acid biosensor (LFNAB) using hybridization chain reaction (HCR) for signal amplification was developed for visual detection of nucleic acids with high sensitivity and low cost. A "sandwich-type" detection strategy was employed in our design. The sandwich system of capture probe (CP)/target DNA/reporter probe (RP)-HCR complexes was fabricated as the sensing platform. As the initiator strand, reporter probe propagated a chain reaction of hybridization events between the two hairpin probes modified with biotin, and determined whether long nicked DNA polymers were formed. The biotin-labeled double-strand DNA polymers then introduced numerous Streptavidin (SA)-labeled gold nanoparticles (AuNPs) on the lateral flow device. The CP/target DNA/RP-HCR complexes were captured on the test zone by the specific reaction between anti-Fam monoclonal antibody (anti-Fam mAb) on the test zone and Fam of the complexes. The accumulation of AuNPs on the test zone of the biosensor enabled the visual detection of specific sequences. The detection limit of specific DNA was as low as 1.76pM, which was about 2 orders lower than that of the LFNAB without HCR amplification. And the detection limit of Salmonella was 3×10 3 cfumL -1 . In conclusion, this visual detection system, HCR-LFNAB, is suitable for non-specialist personnel and point-of-care (POC) diagnosis in low-resource settings. Copyright © 2016. Published by Elsevier B.V.

  3. Modeling, simulation and parametric optimization of wire EDM ...

    African Journals Online (AJOL)

    In the present work, quadratic mathematical models have been derived to represent the process behavior of wire electrical discharge machining (WEDM) operation. Experiments have been conducted with six process parameters: discharge current, pulse duration, pulse frequency, wire speed, wire tension and dielectric flow ...

  4. Interpolation Algorithm for Fast Evaluation of EM Coupling between Wires

    NARCIS (Netherlands)

    Marasini, C.; Lepelaars, E.S.A.M.; Zwamborn, A.P.M.

    2009-01-01

    Efficient and accurate evaluation of the EM field radiated by a current flowing along a wire is essential to solve the electromagnetic coupling between arbitrary oriented wires. In this paper, a numerically efficient algorithm for the evaluation of coupling is presented. The currents along the wires

  5. An X-ray scanner for wire chambers

    Science.gov (United States)

    Akesson, T.; Arik, E.; Assamagan, K.; Baker, K.; Benjamin, D.; Bertelsen, H.; Bytchkov, V.; Callahan, J.; Capeans-Garrido, M.; Catinaccio, A.; Cetin, A.; Cwetanski, P.; Danielsson, H.; Dittus, F.; Dolgoshein, B.; Dressnandt, N.; Ebenstein, W. L.; Eerola, P.; Farthouat, P.; Froidevaux, D.; Grichkevitch, Y.; Hajduk, Z.; Hansen, J. R.; Keener, P. K.; Kekelidze, G.; Konovalov, S.; Kowalski, T.; Kramarenko, V. A.; Kruger, K.; Lundberg, B.; Luehring, F.; Manara, A.; McFarlane, K.; Mitsou, V. A.; Morozov, S.; Muraviev, S.; Nadtochy, A.; Newcomer, F. M.; Olszowska, J.; Ogren, H.; Oh, S. H.; Peshekhonov, V.; Price, M.; Rembser, C.; Romaniouk, A.; Rust, D. R.; Schegelsky, V.; Sapinski, M.; Shmeleva, A.; Smirnov, S.; Smirnova, L. N.; Sosnovtsev, V.; Soutchkov, S.; Spiridenkov, E.; Tikhomirov, V.; VanBerg, R.; Vassilakopoulos, V.; Wang, C.; Williams, H. H.

    2003-07-01

    The techniques to measure the position of sense wires and field wires, the gas gain and the gas flow rate inside wire chambers using a collimated and filtered X-ray beam are reported. Specific examples are given using barrel modules of the Transition Radiation Tracker of the ATLAS experiment.

  6. Flow Visualization and Heat Transfer Characteristics of Oscillating Fluid through Pin-Fin Array in a Rectangular Channel

    Directory of Open Access Journals (Sweden)

    Tzer-Ming Jeng

    2013-01-01

    Full Text Available This work experimentally investigated the fluid flow and heat transfer characteristics of the pin-fin heat sink with the oscillating air flow. The oscillating air flow would be unstable in the passages among the fins due to the periodical change of flow rate. It might enhance the overall heat-transfer performance. At the present study, the pin-fin heat sinks with various fin heights were installed in the rectangular channel, resulting in different bypass clearances between the pin fins and the shroud of the test channel. The smoke flow visualizations for the oscillating-flow system were completed. The heat-transfer tests under the asymmetrically heated condition were performed to obtain the average Nusselt numbers. The smoke lines with obvious waves in the transverse direction were found in the results of the flow visualizations. By comparing to the steady flow system, there was about 20∼34% increment in the overall heat-transfer performance at the operating state without bypass clearance. However, if the bypass clearance was too big, the heat-exchange capacity of the oscillating flow was less than that of the steady flow. It demonstrates that the oscillating flow promotes the cooling performance of pin-fin heat sink at the non-bypass and specified bypass conditions.

  7. A flow visualization study of single-arm sculling movement emulating cephalopod thrust generation

    Science.gov (United States)

    Kazakidi, Asimina; Gnanamanickam, Ebenezer P.; Tsakiris, Dimitris P.; Ekaterinaris, John A.

    2014-11-01

    In addition to jet propulsion, octopuses use arm-swimming motion as an effective means of generating bursts of thrust, for hunting, defense, or escape. The individual role of their arms, acting as thrust generators during this motion, is still under investigation, in view of an increasing robotic interest for alternative modes of propulsion, inspired by the octopus. Computational studies have revealed that thrust generation is associated with complex vortical flow patterns in the wake of the moving arm, however further experimental validation is required. Using the hydrogen bubble technique, we studied the flow disturbance around a single octopus-like robotic arm, undergoing two-stroke sculling movements in quiescent fluid. Although simplified, sculling profiles have been found to adequately capture the fundamental kinematics of the octopus arm-swimming behavior. In fact, variation of the sculling parameters alters considerably the generation of forward thrust. Flow visualization revealed the generation of complex vortical structures around both rigid and compliant arms. Increased disturbance was evident near the tip, particularly at the transitional phase between recovery and power strokes. These results are in good qualitative agreement with computational and robotic studies. Work funded by the ESF-GSRT HYDRO-ROB Project PE7(281).

  8. Optical Flow Visualization Using the Modular Background-Oriented Full-Scale Schlieren Technique

    Directory of Open Access Journals (Sweden)

    Chung-Hwei Su

    2014-07-01

    Full Text Available Background-oriented full-scale schlieren (BOFSS with large test sections is a famous technique, specially developed for optical flow visualization. This article presents the technique using a modular background-oriented light source instead of the retroreflective method. The modular background- oriented light source is convenient to enlarge the area of the light source and providing a larger testing section, thus the test sections become flexible. Moreover, the article also focuses on investigating the BOFSS sensitivity with different percentages of cutoff grid. The setting composed of fluorescent lamp Philips-865, atomizing films, and linear grating mask. The linear grating mask is alternated with black lines with width of 6 mm. The area of light source and test section are 2 × 2 and 1 × 1 m2, respectively. The present study applies different percentages of cutoff grid to block light source, and 50, 60, 70, 80, and 90% percentages of cutoff grid are been tested. The test subjects are heat flux from burning candles and Bunsen burner, acetone gas flow, LPG flow and compressed butane gas. The results show that a cutoff grid with 90% of light blockage presented the best result for conventional Z-arrangement schlieren technique. Whereas, cutoff 60 percent light shows the best results for full-scale schilieren technique.

  9. Two-dimensional intraventricular flow pattern visualization using the image-based computational fluid dynamics.

    Science.gov (United States)

    Doost, Siamak N; Zhong, Liang; Su, Boyang; Morsi, Yosry S

    2017-04-01

    The image-based computational fluid dynamics (IB-CFD) technique, as the combination of medical images and the CFD method, is utilized in this research to analyze the left ventricle (LV) hemodynamics. The research primarily aims to propose a semi-automated technique utilizing some freely available and commercial software packages in order to simulate the LV hemodynamics using the IB-CFD technique. In this research, moreover, two different physiological time-resolved 2D models of a patient-specific LV with two different types of aortic and mitral valves, including the orifice-type valves and integrated with rigid leaflets, are adopted to visualize the process of developing intraventricular vortex formation and propagation. The blood flow pattern over the whole cardiac cycle of two models is also compared to investigate the effect of utilizing different valve types in the process of the intraventricular vortex formation. Numerical findings indicate that the model with integrated valves can predict more complex intraventricular flow that can match better the physiological flow pattern in comparison to the orifice-type model.

  10. Visualization of Biosurfactant Film Flow in a Bacillus subtilis Swarm Colony on an Agar Plate.

    Science.gov (United States)

    Kim, Kyunghoon; Kim, Jung Kyung

    2015-08-26

    Collective bacterial dynamics plays a crucial role in colony development. Although many research groups have studied the behavior of fluidic swarm colonies, the detailed mechanics of its motion remains elusive. Here, we developed a visualization method using submicron fluorescent beads for investigating the flow field in a thin layer of fluid that covers a Bacillus subtilis swarm colony growing on an agar plate. The beads were initially embedded in the agar plate and subsequently distributed spontaneously at the upper surface of the expanding colony. We conducted long-term live cell imaging of the B. subtilis colony using the fluorescent tracers, and obtained high-resolution velocity maps of microscale vortices in the swarm colony using particle image velocimetry. A distinct periodic fluctuation in the average speed and vorticity of flow in swarm colony was observed at the inner region of the colony, and correlated with the switch between bacterial swarming and growth phases. At the advancing edge of the colony, both the magnitudes of velocity and vorticity of flow in swarm colony were inversely correlated with the spreading speed of the swarm edge. The advanced imaging tool developed in this study would facilitate further understanding of the effect of micro vortices in swarm colony on the collective dynamics of bacteria.

  11. Visualization of Biosurfactant Film Flow in a Bacillus subtilis Swarm Colony on an Agar Plate

    Directory of Open Access Journals (Sweden)

    Kyunghoon Kim

    2015-08-01

    Full Text Available Collective bacterial dynamics plays a crucial role in colony development. Although many research groups have studied the behavior of fluidic swarm colonies, the detailed mechanics of its motion remains elusive. Here, we developed a visualization method using submicron fluorescent beads for investigating the flow field in a thin layer of fluid that covers a Bacillus subtilis swarm colony growing on an agar plate. The beads were initially embedded in the agar plate and subsequently distributed spontaneously at the upper surface of the expanding colony. We conducted long-term live cell imaging of the B. subtilis colony using the fluorescent tracers, and obtained high-resolution velocity maps of microscale vortices in the swarm colony using particle image velocimetry. A distinct periodic fluctuation in the average speed and vorticity of flow in swarm colony was observed at the inner region of the colony, and correlated with the switch between bacterial swarming and growth phases. At the advancing edge of the colony, both the magnitudes of velocity and vorticity of flow in swarm colony were inversely correlated with the spreading speed of the swarm edge. The advanced imaging tool developed in this study would facilitate further understanding of the effect of micro vortices in swarm colony on the collective dynamics of bacteria.

  12. Stretched Wire Mechanics

    Energy Technology Data Exchange (ETDEWEB)

    Bowden, Gordon; /SLAC

    2005-09-06

    Stretched wires are beginning to play an important role in the alignment of accelerators and synchrotron light sources. Stretched wires are proposed for the alignment of the 130 meter long LCLS undulator. Wire position technology has reached sub-micron resolution yet analyses of perturbations to wire straightness are hard to find. This paper considers possible deviations of stretched wire from the simple 2-dimensional catenary form.

  13. Visualization of ex vivo human ciliated epithelium and induced flow using optical coherence tomography (Conference Presentation)

    Science.gov (United States)

    Ling, Yuye; Gamm, Uta A.; Yao, Xinwen; Arteaga-Solis, Emilio; Emala, Charles W.; Choma, Michael A.; Hendon, Christine P.

    2017-04-01

    The ciliated epithelium is important to the human respiratory system because it clears mucus that contains harmful microorganisms and particulate matter. We report the ex vivo visualization of human trachea/bronchi ciliated epithelium and induced flow characterized by using spectral-domain optical coherence tomography (SD-OCT). A total number of 17 samples from 7 patients were imaged. Samples were obtained from Columbia University Department of Anesthesiology's tissue bank. After excision, the samples were placed in Gibco Medium 199 solution with oxygen at 4°C until imaging. The samples were maintained at 36.7°C throughout the experiment. The imaging protocol included obtaining 3D volumes and 200 consecutive B-scans parallel to the head-to-feet direction (superior-inferior axis) of the airway, using Thorlabs Telesto system at 1300 nm at 28 kHz A-line rate and a custom built high resolution SDOCT system at 800nm at 32 kHz A-line rate. After imaging, samples were processed with H and E histology. Speckle variance of the time resolved datasets demonstrate significant contrast at the ciliated epithelium sites. Flow images were also obtained after injecting 10μm polyester beads into the solution, which shows beads traveling trajectories near the ciliated epithelium areas. In contrary, flow images taken in the orthogonal plane show no beads traveling trajectories. This observation is in line with our expectation that cilia drive flow predominantly along the superior-inferior axis. We also observed the protective function of the mucus, shielding the epithelium from the invasion of foreign objects such as microspheres. Further studies will be focused on the cilia's physiological response to environmental changes such as drug administration and physical injury.

  14. Study of visualized analysis platform for nuclear fuel cycle system based on multilevel flow model

    International Nuclear Information System (INIS)

    Liu Jingquan

    2005-01-01

    Complex Nuclear Fuel Cycle (NFC) system faces many socio-technical issues that need to obtain the consensus between stake holders of different knowledge background. In this paper, a visualized analysis platform based on graphical functional modeling method, Multilevel Flow Model (MFM), was proposed to help those stake holders to recognize and analyze various socio-technical issues in NFC system. There are some new functions, such as 'Reaction Function', 'Switch Function' and 'Conversion Function', introduced to adapt new simulation tasks for NFC system. Based upon this methodology, a micro-process and a macro-process of NFC system were simulated and meanwhile some key analysis variables required by some analysis methods were deducted and displayed in the platform. And finally a simple simulation analysis was conducted based on the proposed MFM application. (author)

  15. Quantitative flow visualization of fluidized-bed heat exchanger by neutron radiography

    International Nuclear Information System (INIS)

    Ozawa, M.; Umekawa, H.; Furui, S.; Hayashi, K.; Takenaka, N.

    2004-01-01

    Quantitative flow visualization of a gas-solid fluidized-bed installed vertical tube-bank has been successfully conducted using neutron radiography and image processing technique. The quantitative data of void fraction distribution as well as the fluctuation data are presented. The time-averaged void fraction is well correlated by the drift-flux model. The bubbles formed in the bed, rise along the vertical tubes and the observed bubble size is smaller than that in a free bubbling bed without tube-banks. The bubble diameter is well correlated by the modified Mori and Wen's correlation taking into account the pitch of tube arrangement. The bubble rise velocity is also well correlated by applying the drift-flux model. These results are consistent for both bed materials of Geldart's B- and A-particles, while the bubble size is significantly different between two kinds of particles

  16. Flow Visualization in Evaporating Liquid Drops and Measurement of Dynamic Contact Angles and Spreading Rate

    Science.gov (United States)

    Zhang, Neng-Li; Chao, David F.

    2001-01-01

    A new hybrid optical system, consisting of reflection-refracted shadowgraphy and top-view photography, is used to visualize flow phenomena and simultaneously measure the spreading and instant dynamic contact angle in a volatile-liquid drop on a nontransparent substrate. Thermocapillary convection in the drop, induced by evaporation, and the drop real-time profile data are synchronously recorded by video recording systems. Experimental results obtained from this unique technique clearly reveal that thermocapillary convection strongly affects the spreading process and the characteristics of dynamic contact angle of the drop. Comprehensive information of a sessile drop, including the local contact angle along the periphery, the instability of the three-phase contact line, and the deformation of the drop shape is obtained and analyzed.

  17. Signal-Amplified Lateral Flow Test Strip for Visual Detection of Cu2.

    Directory of Open Access Journals (Sweden)

    Yulong Wang

    Full Text Available A signal-amplified lateral flow test strip (SA-LFTS for the detection of Cu2+ in aqueous solution was constructed based on Cu+-catalyzed click chemistry and hybridization of single-stranded DNA (ssDNA. Alkyne and azide modified ssDNA acted as specific elements for Cu2+ recognition, and a chemical ligation product formed through Cu+-catalyzed alkyne-azide cycloaddition. Hybridization of ssDNA-labeled gold nanoparticles resulted in high sensitivity, and the output signal could be observed directly by the naked eye. Using the developed SA-LFTS under optimal conditions, Cu2+ could be detected rapidly with limit of detections of 5 nM and 4.2 nM by visual observation and quantitative analysis, respectively. The sensitivity (i.e. the visual limit of detection of the SA-LFTS was 80-times higher than that of traditional LFTS. The SA-LFTS was applied to the determination of Cu2+ in municipal water and river water samples with the results showing good recovery and accuracy. The developed test strip is promising for point-of-care applications and detection of Cu2+ in the field.

  18. Study on tip leakage vortex cavitating flows using a visualization method

    Science.gov (United States)

    Zhao, Yu; Jiang, Yutong; Cao, Xiaolong; Wang, Guoyu

    2018-01-01

    Experimental investigations of unsteady cavitating flows in a hydrofoil tip leakage region with different gap sizes are conducted to highlight the development of gap cavitation. The experiments were taken in a closed cavitation tunnel, during which high-speed camera had been used to capture the cavitation patterns. A new visualization method based on image processing was developed to capture time-dependent cavitation patterns. The results show that the visualization method can effectively capture the cavitation patterns in the tip region, including both the attached cavity in the gap and the tip leakage vortex (TLV) cavity near the trailing edge. Moreover, with the decrease of cavitation number, the TLV cavity develops from a rapid onset-growth-collapse process to a continuous process, and extends both upstream and downstream. The attached cavity in the gap develops gradually stretching beyond the gap and combines with the vortex cavity to form the triangle cavitating region. Furthermore, the influences of gap size on the cavitation are also discussed. The gap size has a great influence on the loss across the gap, and hence the locations of the inception attached cavity. Besides, inception locations and extending direction of the TLV cavity with different gap sizes also differ. The TLV in the case with τ = 0.061 is more likely to be jet-like compared with that in the case with τ = 0.024, and the gap size has a great influence on the TLV strength.

  19. Signal-Amplified Lateral Flow Test Strip for Visual Detection of Cu2+

    Science.gov (United States)

    Xue, Juanjuan; Dong, Jinbo; Cai, Jia; Hua, Xiude; Wang, Minghua; Zhang, Cunzheng; Liu, Fengquan

    2017-01-01

    A signal-amplified lateral flow test strip (SA-LFTS) for the detection of Cu2+ in aqueous solution was constructed based on Cu+-catalyzed click chemistry and hybridization of single-stranded DNA (ssDNA). Alkyne and azide modified ssDNA acted as specific elements for Cu2+ recognition, and a chemical ligation product formed through Cu+-catalyzed alkyne–azide cycloaddition. Hybridization of ssDNA-labeled gold nanoparticles resulted in high sensitivity, and the output signal could be observed directly by the naked eye. Using the developed SA-LFTS under optimal conditions, Cu2+ could be detected rapidly with limit of detections of 5 nM and 4.2 nM by visual observation and quantitative analysis, respectively. The sensitivity (i.e. the visual limit of detection) of the SA-LFTS was 80-times higher than that of traditional LFTS. The SA-LFTS was applied to the determination of Cu2+ in municipal water and river water samples with the results showing good recovery and accuracy. The developed test strip is promising for point-of-care applications and detection of Cu2+ in the field. PMID:28072878

  20. Visualization of space competition and plume formation with complex potentials for multiple source flows : Some examples and novel application to Chao lava flow (Chile)

    NARCIS (Netherlands)

    Weijermars, R.

    2014-01-01

    Fluid displacement in a continuum pressured by a variable constellation of source flows can be visualized as solutions of line integrals. The algorithms are based on complex potentials that provide exact solutions of the Navier-Stokes equation and allow users to specify both the location and flux

  1. Experimental analysis and flow visualization of a thin liquid film on a stationary and rotating disk

    Science.gov (United States)

    Thomas, S.; Faghri, A.; Hankey, W.

    1991-01-01

    The mean thickness of a thin liquid film of deionized water with a free surface on a stationary and rotating horizontal disk has been measured with a nonobtrusive capacitance technique. The measurements were taken when the rotational speed ranged from 0-300 rpm and the flow rate varied from 7.0-15.0 lpm. A flow visualization study of the thin film was also performed to determine the characteristics of the waves on the free surface. When the disk was stationary, a circular hydraulic jump was present on the disk. Upstream from the jump, the film thickness was determined by the inertial and frictional forces on the fluid, and the radial spreading of the film. The surface tension at the edge of the disk affected the film thickness downstream from the jump. For the rotating disk, the film thickness was dependent upon the inertial and frictional forces near the center of the disk and the centrifugal forces near the edge of the disk.

  2. Development of a low-cost multiple diode PIV laser for high-speed flow visualization

    Science.gov (United States)

    Bhakta, Raj; Hargather, Michael

    2017-11-01

    Particle imaging velocimetry (PIV) is an optical visualization technique that typically incorporates a single high-powered laser to illuminate seeded particles in a fluid flow. Standard PIV lasers are extremely costly and have low frequencies that severely limit its capability in high speed, time-resolved imaging. The development of a multiple diode laser system consisting of continuous lasers allows for flexible high-speed imaging with a wider range of test parameters. The developed laser system was fabricated with off-the-shelf parts for approximately 500. A series of experimental tests were conducted to compare the laser apparatus to a standard Nd:YAG double-pulsed PIV laser. Steady and unsteady flows were processed to compare the two systems and validate the accuracy of the multiple laser design. PIV results indicate good correlation between the two laser systems and verifies the construction of a precise laser instrument. The key technical obstacle to this approach was laser calibration and positioning which will be discussed. HDTRA1-14-1-0070.

  3. Visualization of Surface Flow on a Prolate Spheroid Model Suspended by Magnetic Suspension and Balance System

    Science.gov (United States)

    Ambo, Takumi; Nakamura, Yuki; Ochiai, Taku; Nonomura, Taku; Asai, Keisuke

    2017-11-01

    In this study, the surface flow on a 6:1 prolate spheroid model was visualized by oil flow method in the magnetic suspension and balance system (MSBS). The MSBS is a support-free system for wind-tunnel test in that a model is levitated by magnetic force. In this experiment, the 0.3-m MSBS was installed in the low-speed wind tunnel. The Reynolds number was 0.5 million and the angle of attack was set 0 and 5 degrees. In addition to free-levitation tests, a thin rod simulating disturbance of a support system was placed on the model surface and the influence of support interference was evaluated. The obtained results indicate that complicated separation patterns are present even at zero angle of attack. At α = 5°, separation pattern becomes more complicated than that at α = 0° and the streamlines form a highly three-dimensional structure. A characteristic pattern of open separation is observed and a focal point is formed at the end of the separation line. In evaluation of the support interference, the separation is delayed in the downstream of the rod, suggesting that the change of separation pattern is caused by the transition of laminar boundary layer behind the rod. These results indicate that one must take particular care to the support interference in studying three-dimensional separation on a prolate spheroid.

  4. Measurement and flow visualization research of thermal hydraulic characteristics for the SFR reactor Vessel

    International Nuclear Information System (INIS)

    Cha, J. E.; Kim, S. O.; Choi, H. L.; Kim, H. B.; Kim, H. W.; Lee, S. H.

    2012-01-01

    In this report, the thermal hydraulic and flow visualization experiment was described for the KALIMER-600 water-scaled model. In order to investigate a thermal hydraulic characteristics for the SFR KALIMER-600, which has been conceptually designed in the KAERI, a water-scaled 1/10 reactor vessel model was designed and prepared through the scaling analysis during three-years research. In this research, SFR Photos system, which has inherently very complicated the internal structures, was fabricated with a transparent vessel. It was shown that a serious of thermal hydraulic test was conducted within a short period if modeled with water than sodium. Natural circulation test was successfully performed with the modeled heater assembly and heat exchanger system coupled with cooling system. The water-scaled RSV experimental facility made in this research could be used to study the USA development for the future SFR system and utilized to analyze the flow characteristics before changing a main internal part of Photos system. It could also be used to test a pool-inspection study and a sensor selection study before large scale sodium experiment. The PCV system prepared in this research could be utilized to test other TSH experiment and temperature field measurement

  5. Gold Nanoparticle Coated Silica Nanorods for Sensitive Visual Detection of microRNA on a Lateral Flow Strip Biosensor.

    Science.gov (United States)

    Takalkar, Sunitha; Xu, Hui; Chen, Jiao; Baryeh, Kwaku; Qiu, Wanwei; Zhao, Julia X; Liu, And Guodong

    2016-01-01

    We present a rapid and highly sensitive approach for visual detection of microRNA (miRNA) using a gold nanoparticles coated silica nanorod label and lateral flow strip biosensor. Gold nanoparticles were decorated on the silica nanorod surface by a seeding and growth procedure. A single strand DNA probe was immobilized on the gold nanoparticles-silica nanorod surface by a self-assembling process, and the formed DNA-gold nanoparticles-silica nanorod conjugate was used to construct the lateral flow nucleic acid biosensor for detecting miRNA. The captured gold nanoparticles-silica nanorods by sandwich-type hybridization reactions (DNA-RNA-DNA) on the test zone of the lateral flow nucleic acid biosensor produced the characteristic color bands, enabling visual detection of miRNA. After systematic optimization, the new lateral flow nucleic acid biosensor was capable of detecting 10 pM of the miRNA target without instrumentation, which is six times lower than that obtained with the gold nanoparticle-based lateral flow nucleic acid biosensor. The gold nanoparticles coated silica nanorod thus provides a new and sensitive nanolabel for visual detection of biological molecules on the lateral flow biosensor.

  6. Visualization of Flow in Pressurizer Spray Line Piping and Estimation of Thermal Stress Fluctuation Caused by Swaying of Water Surface

    Science.gov (United States)

    Oumaya, Toru; Nakamura, Akira; Onojima, Daisuke; Takenaka, Nobuyuki

    The pressurizer spray line of PWR plants cools reactor coolant by injecting water into pressurizer. Since the continuous spray flow rate during commercial operation of the plant is considered insufficient to fill the pipe completely, there is a concern that a water surface exists in the pipe and may periodically sway. In order to identify the flow regimes in spray line piping and assess their impact on pipe structure, a flow visualization experiment was conducted. In the experiment, air was used substituted for steam to simulate the gas phase of the pressurizer, and the flow instability causing swaying without condensation was investigated. With a full-scale mock-up made of acrylic, flow under room temperature and atmospheric pressure conditions was visualized, and possible flow regimes were identified based on the results of the experiment. Three representative patterns of swaying of water surface were assumed, and the range of thermal stress fluctuation, when the surface swayed instantaneously, was calculated. With the three patterns of swaying assumed based on the visualization experiment, it was confirmed that the thermal stress amplitude would not exceed the fatigue endurance limit prescribed in the Japanese Design and Construction Code.

  7. Visualization of synthetic jet formation in air

    Czech Academy of Sciences Publication Activity Database

    Trávníček, Zdeněk; Broučková, Zuzana; Kordík, Jozef; Vít, T.

    2015-01-01

    Roč. 18, č. 4 (2015), s. 595-609 ISSN 1343-8875 R&D Projects: GA ČR GA14-08888S Institutional support: RVO:61388998 Keywords : synthetic jet * flow visualization * hot-wire anemometry Subject RIV: JU - Aeronautics, Aerodynamics, Aircrafts Impact factor: 0.720, year: 2015 http://link.springer.com/article/10.1007/s12650-015-0273-2

  8. Experiments and correlations of pressure loss coefficients for hexagonal arranged rod bundles (P/D > 1.02) with helical wire spacers in laminar and turbulent flows

    International Nuclear Information System (INIS)

    Marten, K.; Yonekawa, S.; Hoffmann, H.

    1987-05-01

    Advanced pressurized water reactors as well as sodium cooled fast reactors, in their breeding and absorber elements, use tightly packed rod bundles with hexagonally arranged rods. Helical wires or helical fins serve as spacers. The pressure loss coefficients of twelve bundles with helical wires were determined systematically in water experiments. High measuring accuracy was achieved by very precise fabrication of the bundles and the shroud as well as by investigations of the proper measuring techniques. The results show a dependency of the loss coefficients on the Reynolds number and on the P/D and H/D ratios of the bundles. These results together with available systematic experimental results of investigations at P/D > 1.1 were used to develop a correlation to determine the pressure loss coefficients of tightly and widely packed hexagonally arranged rod bundles with helical wire spacers. These correlations were used to recalculate and compare results of pressure loss investigations found in the literature; good agreement was demonstrated. Hence, calculation methods exist for a broad range of applications to determine the pressure loss coefficients of hexagonally arranged rod bundles with helical wires for spacers. (orig./HP) [de

  9. Visualization of cross-sectional flow structure during condensation of steam in a slightly inclined horizontal tube

    Energy Technology Data Exchange (ETDEWEB)

    Puseya, Andree; Kim, H. [Kyung Hee University, Yongin (Korea, Republic of); Kwon, T. S. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    These flow characteristics called flow patterns still depend on a proper visualization technique in order to identify such local distribution. These proper distributions will have a dependence on the inclination of the tube as well, as it was demonstrated by Lips and Mayer. This work is focused on presenting an experimental investigation to visualize the cross sectional two-phase flow structure for condensation of steam in a horizontal tube and identify the liquid-gas interface using the axial-viewing technique. This innovative technique developed by Hewitt and more recently used in visualization works by Badie, permits the achievement to identify those systems in the area of interest by looking directly into the two-phase flow system during condensation of steam inside a pipe with technology such a high speed camera. An experimental work to visualize and locate the liquid-gas interface for steam condensation in horizontal tubes with slightly inclination was developed on this research The experimental results shows that the axial viewing technique works well with condensation phenomena and can be used for further developments in the field such as determination of liquid film geometry and calculation of void fraction.

  10. Three-dimensional visualization of material flow during friction stir welding by two pairs of X-ray transmission systems

    International Nuclear Information System (INIS)

    Morisada, Y.; Fujii, H.; Kawahito, Y.; Nakata, K.; Tanaka, M.

    2011-01-01

    Material flow during friction stir welding is crucial to obtaining sound joints. However, this phenomenon is still not fully understood despite many investigations and numerous models. In this study, the material flow is three-dimensionally visualized by X-ray radiography using a tiny spherical tungsten tracer. The movement of the tracer during the friction stir welding is observed by two pairs of X-ray transmission real-time imaging systems. The three-dimensional material flow is obtained by following the locus of the tracer.

  11. Wire bonding in microelectronics

    CERN Document Server

    Harman, George G

    2010-01-01

    Wire Bonding in Microelectronics, Third Edition, has been thoroughly revised to help you meet the challenges of today's small-scale and fine-pitch microelectronics. This authoritative guide covers every aspect of designing, manufacturing, and evaluating wire bonds engineered with cutting-edge techniques. In addition to gaining a full grasp of bonding technology, you'll learn how to create reliable bonds at exceedingly high yields, test wire bonds, solve common bonding problems, implement molecular cleaning methods, and much more. Coverage includes: Ultrasonic bonding systems and technologies, including high-frequency systems Bonding wire metallurgy and characteristics, including copper wire Wire bond testing Gold-aluminum intermetallic compounds and other interface reactions Gold and nickel-based bond pad plating materials and problems Cleaning to improve bondability and reliability Mechanical problems in wire bonding High-yield, fine-pitch, specialized-looping, soft-substrate, and extreme-temperature wire bo...

  12. Significance of Microvascular Function in Visual-Functional Mismatch Between Invasive Coronary Angiography and Fractional Flow Reserve.

    Science.gov (United States)

    Yonetsu, Taishi; Murai, Tadashi; Kanaji, Yoshihisa; Lee, Tetsumin; Matsuda, Junji; Usui, Eisuke; Hoshino, Masahiro; Araki, Makoto; Niida, Takayuki; Hada, Masahiro; Ichijo, Sadamitsu; Hamaya, Rikuta; Kanno, Yoshinori; Kakuta, Tsunekazu

    2017-05-31

    Despite a moderate correlation between angiographical stenosis and physiological significance, the mechanism of discordance has not been fully elucidated, particularly regarding the significance of microvascular function. This study sought to clarify whether microvascular function affects visual-functional mismatch between quantitative coronary angiography (QCA) and fractional flow reserve (FFR). We assessed QCA, FFR, coronary flow reserve, and the index of microcirculatory resistance in 849 non-left-main coronary lesions with visually estimated intermediate stenoses from 532 patients. Clinical and lesion-specific characteristics and physiological parameters associated with mismatch and reverse mismatch were studied. Coronary flow reserve and index of microcirculatory resistance showed a weak, but significant, correlation with FFR (R=0.306, P 50%). Among visually nonsignificant lesions, FFR ≤0.80 (reverse mismatch) was observed in 129 lesions (30.6%). Among visually significant lesions, FFR >0.80 (mismatch) were observed in 179 lesions (41.9%). The significant predictors of reverse mismatch were male sex, nonculprit lesions of acute coronary syndrome, left anterior descending artery location, smaller QCA reference diameter, greater QCA-DS, lower coronary flow reserve, and lower index of microcirculatory resistance. Mismatch was associated with right coronary artery location, greater QCA reference diameter, smaller QCA-DS, lesion length, higher coronary flow reserve, and higher index of microcirculatory resistance. There was a high prevalence of visual-functional mismatches between QCA and FFR. The discrepancy was related to clinical characteristics, lesion-specific factors, and microvascular resistance that was undistinguishable by coronary angiography, thus suggesting the importance of physiological lesion assessment. © 2017 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.

  13. Lateral flow strip for visual detection of K-ras mutations based on allele-specific PCR.

    Science.gov (United States)

    Wang, Cong; Chen, Xiaomin; Wu, Yuying; Li, Hao; Wang, Yu; Pan, Xiaofu; Tang, Tingting; Liu, Ziying; Li, Xiaokun

    2016-10-01

    To develop a convenient and sensitive point-of-care test for detecting gene mutations based on allele-specific PCR. To develop a lateral flow strip for visual detection of K-ras mutations based on a modified PCR, a specific DNA tag was covalently linked to the 5'-end of each primer by a nine-carbon linker to produce a sticky end. One of the sticky ends of the PCR products bound to gold nano-particles, while the other sticky end was captured onto a nitrocellulose membrane of lateral flow strips. The lateral flow strip showed a great sensitivity, which detected mutations in as low as 10 tumor cells. The positive rate and accuracy of the lateral flow strip for blood samples were over 92 and 96 %, respectively. The lateral flow strip provides an easy method for sensitive detection of gene mutations based on allele specific-PCR.

  14. Water Desalination with Wires

    NARCIS (Netherlands)

    Porada, S.; Sales, B.B.; Hamelers, H.V.M.; Biesheuvel, P.M.

    2012-01-01

    We show the significant potential of water desalination using a novel capacitive wire-based technology in which anode/cathode wire pairs are constructed from coating a thin porous carbon electrode layer on top of electrically conducting rods (or wires). By alternately dipping an array of electrode

  15. Enhanced THz guiding properties of curved two-wire lines.

    Science.gov (United States)

    Zha, Jingshu; Kim, Geun Ju; Jeon, Tae-In

    2016-03-21

    We present experimental and simulation studies of enhanced terahertz (THz) guiding properties of curved two-wire lines for several surface conditions. When a THz-wave propagates through curved two-wire lines, a rough wire surface with dielectric coating contributes to a lower bending loss compared to a smooth or rough wire surface without coating. Dielectric coating and rough surface confine the THz field to the wire surface making the bending loss low. The guiding property at a curve depth of 30 mm of a rough wire surface with 25-μm-thick coating is improved by 34% compared to that of a smooth wire without coating. Furthermore, computer simulation technology (CST) software visually shows the bending loss as same as the experimental studies.

  16. Note: Improved wire-wound heater.

    Science.gov (United States)

    Steinmann, Ricardo G; Vitoux, Hugo

    2015-01-01

    The authors have measured, at cryogenic temperature, the upper limit of the heat transfer in different configurations of a wire-wound heater. We found that the heat transferred has an upper limit of about 15 W/cm(2) and is dependent on the diameter of the wire. In this paper, we present three ways of increasing the heat transferred by this type of heater and its application in different continuous flow cryostats.

  17. Rapid detection of Haemophilus parasuis using cross-priming amplification and vertical flow visualization.

    Science.gov (United States)

    Gou, Hongchao; Li, Juan; Cai, Rujian; Song, Shuai; Li, Miao; Yang, Dongxia; Jiang, Zhiyong; Li, Yan; Chu, Pinpin; Li, Chunling

    2018-01-01

    Haemophilus parasuis infection is of considerable economic importance in the swine industry due to high morbidity and mortality in naive swine populations. Accurate detection and identification of the causative agent are difficult, yet necessary, for disease control. In this study, a simple and rapid method of cross-priming amplification (CPA) with a vertical flow (VF) visualization strip was established to detect H. parasuis. The reaction can specifically identify 15 serovar reference strains and 57 clinically isolated strains of H. parasuis, with a detection limit of 14CFU. The performance of the CPA-VF assay was evaluated and compared with that of species-specific PCR by testing 62 clinical culture-positive specimens of H. parasuis. The entire process, from specimen processing to analysis of the results, can be completed in 2h without a complicated apparatus. The convenience and speed of the CPA-VF assay in this study make it a suitable choice for epidemiological investigation and point-of-care testing (POCT) for H. parasuis infection. Copyright © 2017. Published by Elsevier B.V.

  18. PLIF Flow Visualization of the Richtmyer-Meshkov Instability of Two Incompressible Fluids

    Science.gov (United States)

    Niederhaus, C. E.; Jacobs, J. W.

    1998-11-01

    The Richtmyer-Meshkov instability of a two-liquid system having a small Atwood number is investigated experimentally. A Plexiglas tank contains the two liquids and is oscillated horizontally to produce a controlled initial fluid interface shape. Both single- and multi-mode sine wave initial interfaces are studied. The tank is mounted to a sled on a high speed, low friction linear rail system, constraining the motion to the vertical direction. The sled is released from an initial height and falls vertically until it bounces off a movable spring, imparting an impulsive acceleration in the upward direction. The spring then retracts out of the way, and the instability evolves as the sled travels along the rails in freefall until it hits a shock absorber at the end of the rails. The impulsive acceleration provided to the system is measured by a piezoelectric accelerometer mounted on the tank, and a capacitive accelerometer measures the low-level drag of the bearings. Planar Laser-Induced Fluorescence is used for flow visualization, with a CCD camera mounted to the sled obtaining images of the interface.

  19. Flow visualization of the wake of a transport aircraft model with lateral-control oscillations

    Science.gov (United States)

    Jordan, F. L., Jr.

    1983-01-01

    An exploratory flow visualization study conducted in the Langley Vortex Research Facility to investigate the effectiveness of lateral control surface oscillations as a potential method for wake vortex attenuation on a 0.03 scale model of a wide body jet transport aircraft is described. Effects of both asymmetric surface oscillation (control surfaces move as with normal lateral control inputs) and symmetric surface oscillation (control surfaces move in phase) are presented. The asymmetric case simulated a flight maneuver which was previously investigated on the transport aircraft during NASA/FAA flight tests and which resulted in substantial wake vortex attenuation. Effects on the model wake vortex systems were observed by propelling the model through a two dimensional smoke screen perpendicular to the model flight path. Results are presented as photographic time histories of the wake characteristics recorded with high speed still cameras. Effects of oscillation on the wake roll up are described in some detail, and the amount of vortex attenuation observed is discussed in comparative terms. Findings were consistent with flight test results in that only a small amount of rotation was observed in the wake for the asymmetric case. A possible aerodynamic mechanism contributing to this attenuation is suggested.

  20. 3D flow visualization and tomographic particle image velocimetry for vortex breakdown over a non-slender delta wing

    Science.gov (United States)

    Wang, ChengYue; Gao, Qi; Wei, RunJie; Li, Tian; Wang, JinJun

    2016-06-01

    Volumetric measurement for the leading-edge vortex (LEV) breakdown of a delta wing has been conducted by three-dimensional (3D) flow visualization and tomographic particle image velocimetry (TPIV). The 3D flow visualization is employed to show the vortex structures, which was recorded by four cameras with high resolution. 3D dye streaklines of the visualization are reconstructed using a similar way of particle reconstruction in TPIV. Tomographic PIV is carried out at the same time using same cameras with the dye visualization. Q criterion is employed to identify the LEV. Results of tomographic PIV agree well with the reconstructed 3D dye streaklines, which proves the validity of the measurements. The time-averaged flow field based on TPIV is shown and described by sections of velocity and streamwise vorticity. Combining the two measurement methods sheds light on the complex structures of both bubble type and spiral type of breakdown. The breakdown position is recognized by investigating both the streaklines and TPIV velocity fields. Proper orthogonal decomposition is applied to extract a pair of conjugated helical instability modes from TPIV data. Therefore, the dominant frequency of the instability modes is obtained from the corresponding POD coefficients of the modes based on wavelet transform analysis.

  1. A single photon emission computed tomograph based on a limited dumber of detectors for fluid flow visualization

    International Nuclear Information System (INIS)

    Legoupil, S.

    1999-01-01

    We present in this work a method for fluid flow visualization in a system using radioactive tracers. The method is based on single photon emission computed tomography techniques, applied to a limited number of discrete detectors. We propose in this work a method for the estimation of the transport matrix of photons, associated to the acquisition system. This method is based on the modelization of profiles acquired for a set of point sources located in the imaged volume. Monte Carlo simulations allow to separate scattered photons from those directly collected by the system. The influence of the energy tracer is exposed. The reconstruction method is based on the maximum likelihood - expectation maximization algorithm. An experimental device, based on 36 detectors was realised for the visualization of water circulation in a vessel. A video monitoring allows to visualize the dye water tracer. Dye and radioactive tracers are injected simultaneously in a water flow circulating in the vessel. Reconstructed and video images are compared. Quantitative and qualitative analysis show that fluid flow visualization is feasible with a limited number of detectors. This method can be applied for system involving circulations of fluids. (author)

  2. PS wire chamber

    CERN Document Server

    1970-01-01

    A wire chamber used at CERN's Proton Synchrotron accelerator in the 1970s. Multi-wire detectors contain layers of positively and negatively charged wires enclosed in a chamber full of gas. A charged particle passing through the chamber knocks negatively charged electrons out of atoms in the gas, leaving behind positive ions. The electrons are pulled towards the positively charged wires. They collide with other atoms on the way, producing an avalanche of electrons and ions. The movement of these electrons and ions induces an electric pulse in the wires which is collected by fast electronics. The size of the pulse is proportional to the energy loss of the original particle.

  3. Thermofluid experiments for Fusion Reactor Safety. Visualization of exchange flows through breaches of a vacuum vessel in a fusion reactor under the LOVA condition

    International Nuclear Information System (INIS)

    Fujii, Sadao; Shibazaki, Hiroaki; Takase, Kazuyuki; Kunugi, Tomoaki.

    1997-01-01

    Exchange flow rates through breaches of a vacuum vessel in a fusion reactor under the LOVA (Loss of VAcuum event) conditions were measured quantitatively by using a preliminary LOVA apparatus and exchange flow patterns over the breach were visualized qualitatively by smoke. Velocity distributions in the exchange flows were predicted from the observed flow patterns by using the correlation method in the flow visualization procedures. Mean velocities calculated from the predicted velocity distributions at the outside of the breach were in good agreement with the LOVA experimental results when the exchange flow velocities were low. It was found that the present flow visualization and the image processing system might be an useful procedure to evaluate the exchange flow rates. (author)

  4. Volume Tracking: A new method for quantitative assessment and visualization of intracardiac blood flow from three-dimensional, time-resolved, three-component magnetic resonance velocity mapping

    International Nuclear Information System (INIS)

    Töger, Johannes; Carlsson, Marcus; Söderlind, Gustaf; Arheden, Håkan; Heiberg, Einar

    2011-01-01

    Functional and morphological changes of the heart influence blood flow patterns. Therefore, flow patterns may carry diagnostic and prognostic information. Three-dimensional, time-resolved, three-directional phase contrast cardiovascular magnetic resonance (4D PC-CMR) can image flow patterns with unique detail, and using new flow visualization methods may lead to new insights. The aim of this study is to present and validate a novel visualization method with a quantitative potential for blood flow from 4D PC-CMR, called Volume Tracking, and investigate if Volume Tracking complements particle tracing, the most common visualization method used today. Eight healthy volunteers and one patient with a large apical left ventricular aneurysm underwent 4D PC-CMR flow imaging of the whole heart. Volume Tracking and particle tracing visualizations were compared visually side-by-side in a visualization software package. To validate Volume Tracking, the number of particle traces that agreed with the Volume Tracking visualizations was counted and expressed as a percentage of total released particles in mid-diastole and end-diastole respectively. Two independent observers described blood flow patterns in the left ventricle using Volume Tracking visualizations. Volume Tracking was feasible in all eight healthy volunteers and in the patient. Visually, Volume Tracking and particle tracing are complementary methods, showing different aspects of the flow. When validated against particle tracing, on average 90.5% and 87.8% of the particles agreed with the Volume Tracking surface in mid-diastole and end-diastole respectively. Inflow patterns in the left ventricle varied between the subjects, with excellent agreement between observers. The left ventricular inflow pattern in the patient differed from the healthy subjects. Volume Tracking is a new visualization method for blood flow measured by 4D PC-CMR. Volume Tracking complements and provides incremental information compared to particle

  5. 3D visualization of two-phase flow in the micro-tube by a simple but effective method

    International Nuclear Information System (INIS)

    Fu, X; Zhang, P; Hu, H; Huang, C J; Huang, Y; Wang, R Z

    2009-01-01

    The present study provides a simple but effective method for 3D visualization of the two-phase flow in the micro-tube. An isosceles right-angle prism combined with a mirror located 45° bevel to the prism is employed to synchronously obtain the front and side views of the flow patterns with a single camera, where the locations of the prism and the micro-tube for clear imaging should satisfy a fixed relationship which is specified in the present study. The optical design is proven successfully by the tough visualization work at the cryogenic temperature range. The image deformation due to the refraction and geometrical configuration of the test section is quantitatively investigated. It is calculated that the image is enlarged by about 20% in inner diameter compared to the real object, which is validated by the experimental results. Meanwhile, the image deformation by adding a rectangular optical correction box outside the circular tube is comparatively investigated. It is calculated that the image is reduced by about 20% in inner diameter with a rectangular optical correction box compared to the real object. The 3D re-construction process based on the two views is conducted through three steps, which shows that the 3D visualization method can easily be applied for two-phase flow research in micro-scale channels and improves the measurement accuracy of some important parameters of the two-phase flow such as void fraction, spatial distribution of bubbles, etc

  6. COPASutils: an R package for reading, processing, and visualizing data from COPAS large-particle flow cytometers.

    Directory of Open Access Journals (Sweden)

    Tyler C Shimko

    Full Text Available The R package COPASutils provides a logical workflow for the reading, processing, and visualization of data obtained from the Union Biometrica Complex Object Parametric Analyzer and Sorter (COPAS or the BioSorter large-particle flow cytometers. Data obtained from these powerful experimental platforms can be unwieldy, leading to difficulties in the ability to process and visualize the data using existing tools. Researchers studying small organisms, such as Caenorhabditis elegans, Anopheles gambiae, and Danio rerio, and using these devices will benefit from this streamlined and extensible R package. COPASutils offers a powerful suite of functions for the rapid processing and analysis of large high-throughput screening data sets.

  7. Flow visualization on a natural circulation inter-wrapper flow. Experimental and numerical results under a geometric condition of button type spacer pads

    Energy Technology Data Exchange (ETDEWEB)

    Yasuda, A.; Miyakoshi, H.; Hayashi, K.; Nishimura, M.; Kamide, H.; Hishida, K. [Japan Nuclear Cycle Development Inst., Oarai, Ibaraki (Japan). Oarai Engineering Center

    1999-04-01

    Investigations on the inter-wrapper flow (IWF) in a liquid metal cooled fast breeder reactor core have been carried out. The IWF is a natural circulation flow between wrapper tubes in the core barrel where cold fluid is coming from a direct heat exchanger (DHX) in the upper plenum. It was shown by the sodium experiment using 7-subassembly core model that the IWF can cool the subassemblies. To clarify thermal-hydraulic characteristics of the IWF in the core, the water experiment was performed using the flow visualization technique. The test rig for IWF (TRIF) has the core simulating the fuel subassemblies and radial reflectors. The subassemblies are constructed featuring transparent heater to enable both Joule heating and flow visualization. The transparent heater was made of glass with thin conductor film coating of tin oxide, and the glass heater was embedded on the wall of modeled wrapper tube made of acrylic plexiglass. In the present experiment, influences of peripheral geometric parameters such as flow holes of core formers on the thermal-hydraulic field were investigated with the button type spacer pads of the wrapper tube. Through the water tests, flow patterns of the IWF were revealed and velocity fields were quantitatively measured with a particle image velocimetry (PIV). Also, no substantial influence of peripheral geometry was found on the temperature field of the IWF, as far as the button type spacer pad was applied. Numerical simulation was applied to the experimental analysis of IWF by using multidimensional code with porous body model. The numerical results reproduced the flow patterns within TRIF and agreed well to experimental temperature distributions, showing capability of predicting IWF with porous body model. (author)

  8. Flat Plate Boundary Layer Stimulation Using Trip Wires and Hama Strips

    Science.gov (United States)

    Peguero, Charles; Henoch, Charles; Hrubes, James; Fredette, Albert; Roberts, Raymond; Huyer, Stephen

    2017-11-01

    Water tunnel experiments on a flat plate at zero angle of attack were performed to investigate the effect of single roughness elements, i.e., trip wires and Hama strips, on the transition to turbulence. Boundary layer trips are traditionally used in scale model testing to force a boundary layer to transition from laminar to turbulent flow at a single location to aid in scaling of flow characteristics. Several investigations of trip wire effects exist in the literature, but there is a dearth of information regarding the influence of Hama strips on the flat plate boundary layer. The intent of this investigation is to better understand the effects of boundary layer trips, particularly Hama strips, and to investigate the pressure-induced drag of both styles of boundary layer trips. Untripped and tripped boundary layers along a flat plate at a range of flow speeds were characterized with multiple diagnostic measurements in the NUWC/Newport 12-inch water tunnel. A wide range of Hama strip and wire trip thicknesses were used. Measurements included dye flow visualization, direct skin friction and parasitic drag force, boundary layer profiles using LDV, wall shear stress fluctuations using hot film anemometry, and streamwise pressure gradients. Test results will be compared to the CFD and boundary layer model results as well as the existing body of work. Conclusions, resulting in guidance for application of Hama strips in model scale experiments and non-dimensional predictions of pressure drag will be presented.

  9. An investigation of flow and resistance characteristics of heat exchanger with the 2-D LDV system and visualization technique

    International Nuclear Information System (INIS)

    Wang Zongsen; Shen Xiong; Xu Yuanhui; Bi Shuxun

    1987-12-01

    An experimental study of the heat exchanger which would be used in a nuclear reactor for low temperature heat-supplying is presented. A 2-D Laser Doppler Velocimeter was used as a unique technique to measure the mean velocity and turbulence intensity distributions in different sections of the model. The relationship between the resistance coefficient and Reynolds number also obtained in terms of the total pressure rakes covered by the casings and the wall static pressure pick-up holes. The flow visualization has realized by using a piece of light source with an Argon-Ion laser. It is apparent that the polystyrene particles seeded in the flow can trace the mean flow. The results showed that the self-similar phenomenon exists in the tube bundle flow system. There are some secondary vortices in the cross sections between two passages of the model

  10. Visualization of the structure of vortex breakdown in free swirling jet flow

    NARCIS (Netherlands)

    Vanierschot, M.; Perçin, M.; van Oudheusden, B.W.

    2016-01-01

    In this paper we investigate the three dimensional flow structures in a free annular swirling jet flow undergoing vortex breakdown. The flow field is analyzed by means of time-resolved Tomographic Particle Image Velocimetry measurements. Both time-averaged and instantaneous flow structures are

  11. Continuous versus pulsating flow boiling. Experimental comparison, visualization, and statistical analysis

    DEFF Research Database (Denmark)

    Kærn, Martin Ryhl; Elmegaard, Brian; Meyer, Knud Erik

    2017-01-01

    This experimental study investigates an active method for flow boiling heat transfer enhancement by means of fluid flow pulsation. The hypothesis is that pulsations increase the flow boiling heat transfer by means of better bulk fluid mixing, increased wall wetting, and flow-regime destabilization...

  12. Continuous vs. pulsating flow boiling. Part 1: Experimental comparison and visualization

    DEFF Research Database (Denmark)

    Kærn, Martin Ryhl; Elmegaard, Brian; Meyer, Knud Erik

    2016-01-01

    This experimental study investigates an active method for flow boiling heat transfer enhancement by means of fluid flow pulsation. The hypothesis is that pulsations increase the flow boiling heat transfer by means of better bulk fluid mixing, increased wall wetting and flow-regime destabilization...

  13. Shear Evaluation by Quantitative Flow Visualization Near the Casing Surface of a Centrifugal Blood Pump

    Science.gov (United States)

    Nishida, Masahiro; Yamane, Takashi; Tsukamoto, Yuki; Ito, Kazuyuki; Konishi, Yoshiaki; Masuzawa, Toru; Tsukiya, Tomonori; Endo, Seiko; Taenaka, Yoshiyuki

    To clarify the correlation between high-shear flow and hemolysis in blood pumps, detail shear velocity distribution was quantified by an experimental method with a model centrifugal blood pump that has a series data of hemolysis tests and computational fluid dynamic analyses. Particular attention was paid to the shear velocity near the casing surface in the volute where the high shear causes in circumferentially wide region that is considerable to cause high hemolysis. Three pump models were compared concern with the radial gap width between the impeller and casing (the radial volute width) also with the outlet position whereas the impeller geometry was identical. These casing geometries were as follows: model 1-the gap width is standard 3mm and the outlet locates to make a smooth geometrical connection with the volute, model 2-the gap width is small 0.5mm and the outlet locates to make the smooth geometrical connection with the volute, and model 3-the gap width is small 0.5mm and the outlet locates to hardly make the smooth geometrical connection with the volute but be similar radial position with that of model 1. Velocity was quantified with a particle tracking velocimetry that is one of the quantitative flow visualization techniques, and the shear velocity was calculated. Results showed that all large shear velocity existed within the layers of about 0.1mm from the casing surface and that those layers were hardly affected by a vane passage even if the gap width is 0.5mm. They also showed that the maximum shear velocity appeared on the casing surface, and the shear velocities of models 2 and 3 were almost twice as large as that of model 1. This finding is in full corresponding with the results of hemolysis tests which showed that the hemolysis levels of both models 2 and 3 were 1.5 times higher than that of model 1. These results suggest that detailed high-shear evaluation near the casing surface in the volute is one of the most important keys in estimating the

  14. Experimental Approach to Visualize Flow in a Stacked Hollow Fiber Bundle of an Artificial Lung With Particle Image Velocimetry.

    Science.gov (United States)

    Kaesler, Andreas; Schlanstein, Peter C; Hesselmann, Felix; Büsen, Martin; Klaas, Michael; Roggenkamp, Dorothee; Schmitz-Rode, Thomas; Steinseifer, Ulrich; Arens, Jutta

    2017-06-01

    Flow distribution is key in artificial lungs, as it directly influences gas exchange performance as well as clot forming and blood damaging potential. The current state of computational fluid dynamics (CFD) in artificial lungs can only give insight on a macroscopic level due to model simplification applied to the fiber bundle. Based on our recent work on wound fiber bundles, we applied particle image velocimetry (PIV) to the model of an artificial lung prototype intended for neonatal use to visualize flow distribution in a stacked fiber bundle configuration to (i) evaluate the feasibility of PIV for artificial lungs, (ii) validate CFD in the fiber bundle of artificial lungs, and (iii) give a suggestion how to incorporate microscopic aspects into mainly macroscopic CFD studies. To this end, we built a fully transparent model of an artificial lung prototype. To increase spatial resolution, we scaled up the model by a factor of 5.8 compared with the original size. Similitude theory was applied to ensure comparability of the flow distribution between the device of original size and the scaled-up model. We focused our flow investigation on an area (20 × 70 × 43 mm) in a corner of the model with a Stereo-PIV setup. PIV data was compared to CFD data of the original sized artificial lung. From experimental PIV data, we were able to show local flow acceleration and declaration in the fiber bundle and meandering flow around individual fibers, which is not possible using state-of-the-art macroscopic CFD simulations. Our findings are applicable to clinically used artificial lungs with a similar stacked fiber arrangement (e.g., Novalung iLa and Maquet QUADROX-I). With respect to some limitations, we found PIV to be a feasible experimental flow visualization technique to investigate blood-sided flow in the stacked fiber arrangement of artificial lungs. © 2016 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  15. Visualizing the spatiotemporal map of Rac activation in bovine aortic endothelial cells under laminar and disturbed flows.

    Directory of Open Access Journals (Sweden)

    Shuai Shao

    Full Text Available Disturbed flow can eliminate the alignment of endothelial cells in the direction of laminar flow, and significantly impacts on atherosclerosis in collateral arteries near the bifurcation and high curvature regions. While shear stress induced Rac polarity has been shown to play crucial roles in cell polarity and migration, little is known about the spatiotemporal map of Rac under disturbed flow, and the mechanism of flow-induced cell polarity still needs to be elucidated. In this paper, disturbed flow or laminar flow with 15 dyn/cm2 of average shear stress was applied on bovine aortic endothelial cells (BAECs for 30 minutes. A genetically-encoded PAK-PBD-GFP reporter was transfected into BAECs to visualize the real-time activation of Rac in living cell under fluorescence microscope. The imaging of the fluorescence intensity was analyzed by Matlab and the normalized data was converted into 3D spatiotemporal map. Then the changes of data upon chemical interference were fitted with logistic curve to explore the rule and mechanism of Rac polarity under laminar or disturbed flow. A polarized Rac activation was observed at the downstream edge along the laminar flow, which was enhanced by benzol alcohol-enhanced membrane fluidity but inhibited by nocodazole-disrupted microtubules or cholesterol-inhibited membrane fluidity, while no obvious polarized Rac activation could be found upon disturbed flow application. It is concluded that disturbed flow inhibits the flow-induced Rac polarized activation, which is related to the interaction of cell membrane and cytoskeleton, especially the microtubules.

  16. High-Speed Visual Analysis of Fluid Flow and Heat Transfer in Oscillating Heat Pipes with Different Diameters

    Directory of Open Access Journals (Sweden)

    Xiangdong Liu

    2016-10-01

    Full Text Available The oscillating heat pipe (OHP is a new member in the family of heat pipes, and it has great potential applications in energy conservation. However, the fluid flow and heat transfer in the OHP as well as the fundamental effects of inner diameter on them have not been fully understood, which are essential to the design and optimization of the OHP in real applications. Therefore, by combining the high-speed visualization method and infrared thermal imaging technique, the fluid flow and thermal performance in the OHPs with inner diameters of 1, 2 and 3 mm are presented and analyzed. The results indicate that three fluid flow motions, including small oscillation, bulk oscillation and circulation, coexist or, respectively, exist alone with the increasing heating load under different inner diameters, with three flow patterns occurring in the OHPs, viz. bubbly flow, slug flow and annular flow. These fluid flow motions are closely correlated with the heat and mass transfer performance in the OHPs, which can be reflected by the characteristics of infrared thermal images of condensers. The decrease in the inner diameter increases the frictional flow resistance and capillary instability while restricting the nucleate boiling in OHPs, which leads to a smaller proportion of bubbly flow, a larger proportion of short slug flow, a poorer thermal performance, and easier dry-out of working fluid. In addition, when compared with the 2 mm OHP, the increasing role of gravity induces the thermosyphon effect and weakens the ‘bubble pumping’ action, which results in a little smaller and bigger thermal resistances of 3 mm OHP under small and bulk oscillation of working fluid, respectively.

  17. Subchannel Analysis of Wire Wrapped SCWR Assembly

    Directory of Open Access Journals (Sweden)

    Jianqiang Shan

    2014-01-01

    Full Text Available Application of wire wrap spacers in SCWR can reduce pressure drop and obtain better mixing capability. As a consequence, the required coolant pumping power is decreased and the coolant temperature profile inside the fuel bundle is flattened which will obviously decrease the peak cladding temperature. The distributed resistance model for wire wrap was developed and implemented in ATHAS subchannel analysis code. The HPLWR wire wrapped assembly was analyzed. The results show that: (1 the assembly with wire wrap can obtain a more uniform coolant temperature profile than the grid spaced assembly, which will result in a lower peak cladding temperature; (2 the pressure drop in a wire wrapped assembly is less than that in a grid spaced assembly, which can reduce the operating power of pump effectively; (3 the wire wrap pitch has significant effect on the flow in the assembly. Smaller Hwire/Drod will result in stronger cross flow a more uniform coolant temperature profile, and also a higher pressure drop.

  18. Slice of LHC dipole wiring

    CERN Multimedia

    Dipole model slice made in 1994 by Ansaldo. The high magnetic fields needed for guiding particles around the Large Hadron Collider (LHC) ring are created by passing 12’500 amps of current through coils of superconducting wiring. At very low temperatures, superconductors have no electrical resistance and therefore no power loss. The LHC is the largest superconducting installation ever built. The magnetic field must also be extremely uniform. This means the current flowing in the coils has to be very precisely controlled. Indeed, nowhere before has such precision been achieved at such high currents. 50’000 tonnes of steel sheets are used to make the magnet yokes that keep the wiring firmly in place. The yokes constitute approximately 80% of the accelerator's weight and, placed side by side, stretch over 20 km!

  19. Experimental visualization of temperature fields and study of heat transfer enhancement in oscillatory flow in a grooved channel

    Energy Technology Data Exchange (ETDEWEB)

    Herman, C.; Kang, E. [Dept. of Mechanical Engineering, Johns Hopkins Univ., Baltimore, MD (United States)

    2001-01-01

    An experimental study was conducted of incompressible, moderate Reynolds number flow of air over heated rectangular blocks in a two-dimensional, horizontal channel. Holographic interferometry combined with high-speed cinematography was used to visualize the unsteady temperature fields in self- sustained oscillatory flow. Experiments were conducted in the laminar, transitional and turbulent flow regimes for Reynolds numbers in the range from Re = 520 to Re = 6600. Interferometric measurements were obtained in the thermally and fluiddynamically periodically fully developed flow region on the ninth heated block. Flow oscillations were first observed between Re = 1054 and Re = 1318. The period of oscillations, wavelength and propagation speed of the Tollmien-Schlichting waves in the main channel were measured at two characteristic flow velocities, Re = 1580 and Re = 2370. For these Reynolds numbers it was observed that two to three waves span one geometric periodicity length. At Re = 1580 the dominant oscillation frequency was found to be around 26 Hz and at Re = 2370 the frequency distribution formed a band around 125 Hz. Results regarding heat transfer and pressure drop are presented as a function of the Reynolds number, in terms of the block-average Nusselt number and the local Nusselt number as well as the friction factor. Measurements of the local Nusselt number together with visual observations indicate that the lateral mixing caused by flow instabilities is most pronounced along the upstream vertical wall of the heated block in the groove region, and it is accompanied by high heat transfer coefficients. At Reynolds numbers beyond the onset of oscillations the heat transfer in the grooved channel exceeds the performance of the reference geometry, the asymmetrically heated parallel plate channel. (orig.)

  20. Towards plant wires

    OpenAIRE

    Adamatzky, Andrew

    2014-01-01

    In experimental laboratory studies we evaluate a possibility of making electrical wires from living plants. In scoping experiments we use lettuce seedlings as a prototype model of a plant wire. We approximate an electrical potential transfer function by applying direct current voltage to the lettuce seedlings and recording output voltage. We analyse oscillation frequencies of the output potential and assess noise immunity of the plant wires. Our findings will be used in future designs of self...

  1. Analysis of Limit Cycle Oscillation/Transonic High Alpha Flow Visualization. Part 1: Discussion

    National Research Council Canada - National Science Library

    Cunningham, Atlee M

    1998-01-01

    ...) at low alpha conditions typical of transonic LCO flows with and without tip stores. Laser light sheet/water vapor techniques were used to illuminate the flows, and video recording was used to obtain the data...

  2. Analysis of Limit Cycle Oscillation/Transonic High ALPHA Flow Visualization. Part 2 Stationary Model Data

    National Research Council Canada - National Science Library

    Cunningham, Atlee M

    1998-01-01

    ...) at low alpha conditions typical of transonic LCO flows with and without tip stores. Laser light sheet/water vapor techniques were used to illuminate the flows, and video recording was used to obtain the data...

  3. Analysis of Limit Cycle Oscillation/Transonic High Alpha Flow Visualization

    National Research Council Canada - National Science Library

    Cunningham, Atlee M

    1997-01-01

    ...) at low alpha condition typical of transonic LCO flows with and without tip stores. Laser light sheet/water vapor techniques were used to illuminate the flows, and video recording was used to obtain the data...

  4. Analysis of Limit Cycle Oscillation/Transonic High ALPHA Flow Visualization. Part 3 Oscillating Model Data

    National Research Council Canada - National Science Library

    Cunningham, Atlee M

    1998-01-01

    ...) at low alpha conditions typical of transonic LCO flows with and without tip stores. Laser light sheet/water vapor techniques were used to illuminate the flows, and video recording was used to obtain the data...

  5. Photovoltaic Wire, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This Small Business Innovation Research Phase I project will investigate a new architecture for photovoltaic devices based on nanotechnology: photovoltaic wire. The...

  6. Photovoltaic Wire Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This Small Business Innovation Research Phase I project will investigate a new architecture for photovoltaic devices based on nanotechnology: photovoltaic wire. The...

  7. Charpak hemispherical wire chamber

    CERN Document Server

    1970-01-01

    pieces. Mesures are of the largest one. Multi-wire detectors contain layers of positively and negatively charged wires enclosed in a chamber full of gas. A charged particle passing through the chamber knocks negatively charged electrons out of atoms in the gas, leaving behind positive ions. The electrons are pulled towards the positively charged wires. They collide with other atoms on the way, producing an avalanche of electrons and ions. The movement of these electrons and ions induces an electric pulse in the wires which is collected by fast electronics. The size of the pulse is proportional to the energy loss of the original particle.

  8. 1998 wire development workshop proceedings

    International Nuclear Information System (INIS)

    1998-04-01

    This report consists of vugraphs of the presentations at the conference. The conference was divided into the following sessions: (1) First Generation Wire Development: Status and Issues; (2) First Generation Wire in Pre-Commercial Prototypes; (3) Second Generation Wire Development: Private Sector Progress and Issues; (4) Second Generation Wire Development: Federal Laboratories; and (5) Fundamental Research Issues for HTS Wire Development

  9. Interplay of Natural Organic Matter with Flow Rate and Particle Size on Colloid Transport: Experimentation, Visualization, and Modeling.

    Science.gov (United States)

    Yang, Xinyao; Zhang, Yimeng; Chen, Fangmin; Yang, Yuesuo

    2015-11-17

    The investigation on factors that affect the impact of natural organic matter (NOM) on colloid transport in complex hydraulic flow systems remains incomplete. Using our previously established approach, the interplay of flow rate and particle size on the NOM effect was quantified, using flow rates of 1 and 2 mL/min and particle sizes of 50 and 200 nm to represent small nanoparticles (1-100 nm) and large non-nano-microspheres (100-1000 nm) in the low-flow groundwater environment. Latex particles, Suwannee River humic acid (SRHA), and iron oxide-coated sand were used as model particles, NOM, and the aquifer medium, respectively. The quantitative results show NOM blocked more sites for large particles at a high flow rate: 1 μg of SRHA blocked 5.95 × 10(9) microsphere deposition sites at 2 mL/min but only 7.38 × 10(8) nanoparticle deposition sites at 1 mL/min. The particle size effect dominated over the flow rate, and the overall effect of the two is antagonistic. Granule-scale visualization of the particle packing on the NOM-presented sand surface corroborates the quantification results, revealing a more dispersed status of large particles at a high flow rate. We interpret this phenomenon as a polydispersivity effect resulting from the differential size of the particles and NOM: high flow and a high particle size enlarge the ratio of particle-blocked to NOM-blocked areas and thus the NOM blockage. To our knowledge, this is the first model-assisted quantification on the interplay of NOM, flow rate, and particle size on colloid transport. These findings are significant for nanorisk assessment and nanoremediation practices.

  10. Rotation symmetric inside flow with diametric expansion resolution

    Science.gov (United States)

    Weiser, N.; Nitsche, W.

    1988-03-01

    Flow physical relations between inlet conditions and the resulting flow profiles behind the diffusor surface are investigated on a test installation with laser light flow visualization. Reynolds numbers are varied between 5000 and 70,000, diffusor diameters between 50 to 80 mm by angles comprised between 6 and 90 deg. Velocity and pressure distributions are obtained by hot-wire and laser Doppler measurements. Mathematical models are presented for the two-dimensional axisymmetric stationary incompressible flow and the turbulent flow. Nonstationary measurements indicate time dependent relations for velocity, pressure, and temperature.

  11. Computational modeling of unsteady third-grade fluid flow over a vertical cylinder: A study of heat transfer visualization

    Science.gov (United States)

    Reddy, G. Janardhana; Hiremath, Ashwini; Kumar, Mahesh

    2018-03-01

    The present paper aims to investigate the effect of Prandtl number for unsteady third-grade fluid flow over a uniformly heated vertical cylinder using Bejan's heat function concept. The mathematical model of this problem is given by highly time-dependent non-linear coupled equations and are resolved by an efficient unconditionally stable implicit scheme. The time histories of average values of momentum and heat transport coefficients as well as the steady-state flow variables are displayed graphically for distinct values of non-dimensional control parameters arising in the system. As the non-dimensional parameter value gets amplified, the time taken for the fluid flow variables to attain the time-independent state is decreasing. The dimensionless heat function values are closely associated with an overall rate of heat transfer. Thermal energy transfer visualization implies that the heat function contours are compact in the neighborhood of the leading edge of the hot cylindrical wall. It is noticed that the deviations of flow-field variables from the hot wall for a non-Newtonian third-grade fluid flow are significant compared to the usual Newtonian fluid flow.

  12. DEVELOPMENT OF AN EXPERIMENTAL TEST BED DESIGNATED FOR MODEL STUDIES OF AERODYNAMICS OF PREMISES USING METHOD OF DIGITAL FLOW VISUALIZATION

    Directory of Open Access Journals (Sweden)

    Varapaev Vladimir Nikolaevich

    2012-12-01

    Full Text Available In the article, the authors present their findings generated at the laboratory of aerodynamic and aero-acoustic testing of structural units of MGSU. The authors provide information about the principle of operation and a brief description of the experimental test bed designated for the physical research of patterns of air flows arising inside building premises of various geometric shapes. The authors also demonstrate the basic parameters of the test bed, the principle of operation of its recording devices and some of its characteristics. The test bed is designated for the identification of characteristics of three-dimensional flows of models under research and for the verification of results of numerical studies. The measurement bed has advanced measurement and registration units. The management principle is based on the method of digital flow visualization, PIV method and Doppler flow meter implemented in the LDA anemometer. The test stand generates two or three component vector fields of turbulent gas flow velocities. It may be applicable to the study of liquids in case of research of hydraulics-related problems. Some results of the flow study are provided in the article, as well.

  13. Wire Array Photovoltaics

    Science.gov (United States)

    Turner-Evans, Dan

    Over the past five years, the cost of solar panels has dropped drastically and, in concert, the number of installed modules has risen exponentially. However, solar electricity is still more than twice as expensive as electricity from a natural gas plant. Fortunately, wire array solar cells have emerged as a promising technology for further lowering the cost of solar. Si wire array solar cells are formed with a unique, low cost growth method and use 100 times less material than conventional Si cells. The wires can be embedded in a transparent, flexible polymer to create a free-standing array that can be rolled up for easy installation in a variety of form factors. Furthermore, by incorporating multijunctions into the wire morphology, higher efficiencies can be achieved while taking advantage of the unique defect relaxation pathways afforded by the 3D wire geometry. The work in this thesis shepherded Si wires from undoped arrays to flexible, functional large area devices and laid the groundwork for multijunction wire array cells. Fabrication techniques were developed to turn intrinsic Si wires into full p-n junctions and the wires were passivated with a-Si:H and a-SiNx:H. Single wire devices yielded open circuit voltages of 600 mV and efficiencies of 9%. The arrays were then embedded in a polymer and contacted with a transparent, flexible, Ni nanoparticle and Ag nanowire top contact. The contact connected >99% of the wires in parallel and yielded flexible, substrate free solar cells featuring hundreds of thousands of wires. Building on the success of the Si wire arrays, GaP was epitaxially grown on the material to create heterostructures for photoelectrochemistry. These cells were limited by low absorption in the GaP due to its indirect bandgap, and poor current collection due to a diffusion length of only 80 nm. However, GaAsP on SiGe offers a superior combination of materials, and wire architectures based on these semiconductors were investigated for multijunction

  14. Effects of duct configuration on flow and temperature structure in sodium-cooled 19-rod simulated LMFBR fuel bundles with helical wire-wrap spacers

    International Nuclear Information System (INIS)

    Wantland, J.L.; Fontana, M.H.; Gnadt, P.A.; Hanus, N.; MacPherson, R.E.; Smith, C.M.

    1976-01-01

    Thermal-hydrodynamic testing of sodium-cooled 19-rod simulated LMFBR fuel bundles is being conducted at the O ak Ridge National Laboratory in the Fuel Failure Mockup (FFM), an engineering-scale high-temperature sodium facility which provides prototypic flows, temperatures and power densities. Electrically heated bundles have been tested with two scalloped and two hexagonal duct configurations. Peripheral helical flows, attributed to the spacers, have been observed with strengths dependent upon the evenness and relative sizes of the peripheral flow areas. Diametral sodium temperature profiles are more uniform with smaller peripheral flow areas

  15. Visualization of boiling flow structure in a natural circulation boiling loop

    Energy Technology Data Exchange (ETDEWEB)

    Karmakar, Arnab; Paruya, Swapan, E-mail: swapanparuya@gmail.com

    2015-04-15

    Highlights: • Vapor–liquid jet flows in natural circulation boiling loop. • Flow patterns and their transitions during geysering instability in the loop. • Evaluation of the efficiency of the needle probe in detecting the vapor–liquid and boiling flow structure. - Abstract: The present study reports vapor–liquid jet flows, flow patterns and their transitions during geysering instability in a natural circulation boiling loop under varied inlet subcooling ΔT{sub sub} (30–50 °C) and heater power Q (4–5 kW). Video imaging, voltage measurement using impedance needle probe, measurement of local pressure and loop flow rate have been carried out in this study. Power spectra of the voltage, the pressure and the flow rate reveal that at a high ΔT{sub sub} the jet flows have long period (21.36–86.95 s) and they are very irregular with a number of harmonics. The period decreases and becomes regular with a decrease of ΔT{sub sub}. The periods of the jet flows at ΔT{sub sub} = 30–50 °C and Q = 4 kW are in close agreement with those obtained from the video imaging. The probe was found to be more efficient than the pressure sensor in detecting the jet flows within an uncertainty of 9.5% and in detecting a variety of bubble classes. Both the imaging and the probe consistently identify the bubbly flow/vapor-mushrooms transition or the bubbly flow/slug flow transition on decreasing ΔT{sub sub} or on increasing Q.

  16. Neutron radiography for visualization of liquid metal processes: bubbly flow for CO2 free production of Hydrogen and solidification processes in EM field

    Science.gov (United States)

    Baake, E.; Fehling, T.; Musaeva, D.; Steinberg, T.

    2017-07-01

    The paper describes the results of two experimental investigations aimed to extend the abilities of a neutron radiography to visualize two-phase processes in the electromagnetically (EM) driven melt flow. In the first experiment the Argon bubbly flow in the molten Gallium - a simulation of the CO2 free production of Hydrogen process - was investigated and visualized. Abilities of EM stirring for control on the bubbles residence time in the melt were tested. The second experiment was directed to visualization of a solidification front formation under the influence of EM field. On the basis of the neutron shadow pictures the form of growing ingot, influenced by turbulent flows, was considered. In the both cases rotating permanent magnets were agitating the melt flow. The experimental results have shown that the neutron radiography can be successfully employed for obtaining the visual information about the described processes.

  17. Low temperature annealing of cold-drawn pearlitic steel wire

    DEFF Research Database (Denmark)

    Zhang, Xiaodan; Bech, Jakob Ilsted; Hansen, Niels

    2015-01-01

    Cold-drawn pearlitic steel wires are nanostructured and the flow stress at room temperature can reach values above 6 GPa. A typical characteristic of the nanostructured metals, is the low ductility and thermal stability. In order to optimize both the processing and application of the wires, the t...

  18. Automating wiring formboard design

    NARCIS (Netherlands)

    Van den Berg, T.

    2013-01-01

    Increase in aircraft wiring complexity call for manufacturing design improvements to reduce cost and lead-time. To achieve such improvements, a joint research project was performed by the Flight Performance and Propulsion (FPP) group and Fokker Elmo BV, the second largest aircraft wiring harness

  19. Heat Transfer Analysis in Wire Bundles for Aerospace Vehicles

    Science.gov (United States)

    Rickman, S. L.; Iamello, C. J.

    2016-01-01

    Design of wiring for aerospace vehicles relies on an understanding of "ampacity" which refers to the current carrying capacity of wires, either, individually or in wire bundles. Designers rely on standards to derate allowable current flow to prevent exceedance of wire temperature limits due to resistive heat dissipation within the wires or wire bundles. These standards often add considerable margin and are based on empirical data. Commercial providers are taking an aggressive approach to wire sizing which challenges the conventional wisdom of the established standards. Thermal modelling of wire bundles may offer significant mass reduction in a system if the technique can be generalized to produce reliable temperature predictions for arbitrary bundle configurations. Thermal analysis has been applied to the problem of wire bundles wherein any or all of the wires within the bundle may carry current. Wire bundles present analytical challenges because the heat transfer path from conductors internal to the bundle is tortuous, relying on internal radiation and thermal interface conductance to move the heat from within the bundle to the external jacket where it can be carried away by convective and radiative heat transfer. The problem is further complicated by the dependence of wire electrical resistivity on temperature. Reduced heat transfer out of the bundle leads to higher conductor temperatures and, hence, increased resistive heat dissipation. Development of a generalized wire bundle thermal model is presented and compared with test data. The steady state heat balance for a single wire is derived and extended to the bundle configuration. The generalized model includes the effects of temperature varying resistance, internal radiation and thermal interface conductance, external radiation and temperature varying convective relief from the free surface. The sensitivity of the response to uncertainties in key model parameters is explored using Monte Carlo analysis.

  20. Using active power filter to compensate the current component of asymmetrical non-linear load in the four wire network

    Directory of Open Access Journals (Sweden)

    Руслан Володимирович Власенко

    2016-07-01

    Full Text Available Electricity quality improving is extremely relevant nowadays. With such industrial loads as induction motors, induction furnaces, welding machines, controlled or uncontrolled rectifiers, frequency converters and others reactive power, harmonics and unbalance are generated in power grid. Reactive power, higher harmonic currents and asymmetry loads influence the functioning of electric devices and electrical mains. An effective technical solution is the use of new compensating devices, that is active power filters. The emergence of consumers with a unit capacity of four wire networks requires a new approach to building system control active power filter. When designing the active power filter control system the current flowing in the neutral wire must be taken into account. To assess the power balance in the four wire active power filter, scientists have proposed to apply pqr theory of power based on the Clarke transformation. There are different topologies of three-phase four wire active power filters. A visual simulation of Matlab / Simulink model with an active power filter based on pqr theory of power has been created. A method of pulse width modulation with four control channels was used as pulses forming systems with transistor keys. Operating conditions of three-phase four wire active power filter with asymmetry, non-sinosoidal voltage source and asymmetric load have been studied. The correction taking into account the means improving the active power filter has been offered as pqr theory of power does not take into account non-sinosoidal voltage

  1. Seeded perturbations in wire array Z-Pinches

    International Nuclear Information System (INIS)

    Robinson, Allen Conrad; Fedin, Dmitry; Kantsyrev, Victor Leonidovich; Wunsch, Scott Edward; Oliver, Bryan Velten; Lebedev, Sergey V.; Coverdale, Christine Anne; Ouart, Nicholas D.; LePell, Paul David; Safronova, Alla S.; Shrestha, I.; McKenney, John Lee; Ampleford, David J.; Rapley, J.; Bott, S.C.; Palmer, J.B.A.; Sotnikov, Vladimir Isaakovich; Bland, Simon Nicholas; Ivanov, Vladimir V.; Chittenden, Jeremy Paul; Jones, B.; Garasi, Christopher Joseph; Hall, Gareth Neville; Yilmaz, M. Faith; Mehlhorn, Thomas Alan; Deeney, Christopher; Pokala, S.; Nalajala, V.

    2005-01-01

    Controlled seeding of perturbations is employed to study the evolution of wire array z-pinch implosion instabilities which strongly impact x-ray production when the 3D plasma stagnates on axis. Wires modulated in radius exhibit locally enhanced magnetic field and imploding bubble formation at discontinuities in wire radius due to the perturbed current path. Wires coated with localized spectroscopic dopants are used to track turbulent material flow. Experiments and MHD modeling offer insight into the behavior of z-pinch instabilities.

  2. Flow visualization of three-dimensionality inside the 12 cc Penn State pulsatile pediatric ventricular assist device.

    Science.gov (United States)

    Roszelle, Breigh N; Deutsch, Steven; Manning, Keefe B

    2010-02-01

    In order to aid the ongoing concern of limited organ availability for pediatric heart transplants, Penn State has continued development of a pulsatile Pediatric Ventricular Assist Device (PVAD). Initial studies of the PVAD observed an increase in thrombus formation due to differences in flow field physics when compared to adult sized devices, which included a higher degree of three-dimensionality. This unique flow field brings into question the use of 2D planar particle image velocimetry (PIV) as a flow visualization technique, however the small size and high curvature of the PVAD make other tools such as stereoscopic PIV impractical. In order to test the reliability of the 2D results, we perform a pseudo-3D PIV study using planes both parallel and normal to the diaphragm employing a mock circulatory loop containing a viscoelastic fluid that mimics 40% hematocrit blood. We find that while the third component of velocity is extremely helpful to a physical understanding of the flow, particularly of the diastolic jet and the development of a desired rotational pattern, the flow data taken parallel to the diaphragm is sufficient to describe the wall shear rates, a critical aspect to the study of thrombosis and design of such pumps.

  3. Needleless electrospinning with twisted wire spinneret

    International Nuclear Information System (INIS)

    Holopainen, Jani; Penttinen, Toni; Santala, Eero; Ritala, Mikko

    2015-01-01

    A needleless electrospinning setup named ‘Needleless Twisted Wire Electrospinning’ was developed. The polymer solution is electrospun from the surface of a twisted wire set to a high voltage and collected on a cylindrical collector around the wire. Multiple Taylor cones are simultaneously self-formed on the downward flowing solution. The system is robust and simple with no moving parts aside from the syringe pump used to transport the solution to the top of the wire. The structure and process parameters of the setup and the results on the preparation of polyvinyl pyrrolidone (PVP), hydroxyapatite (HA) and bioglass fibers with the setup are presented. PVP fiber sheets with areas of 40 × 120 cm 2 and masses up to 1.15 g were prepared. High production rates of 5.23 g h −1 and 1.40 g h −1 were achieved for PVP and HA respectively. The major limiting factor of the setup is drying of the polymer solution on the wire during the electrospinning process which will eventually force to interrupt the process for cleaning of the wire. Possible solutions to this problem and other ways to develop the setup are discussed. The presented system provides a simple way to increase the production rate and area of fiber sheet as compared with the conventional needle electrospinning. (paper)

  4. Visual detection of West Nile virus using reverse transcription loop-mediated isothermal amplification combined with a vertical flow visualization strip

    Directory of Open Access Journals (Sweden)

    Zengguo eCao

    2016-04-01

    Full Text Available West Nile virus (WNV causes a severe zoonosis, which can lead to a large number of casualties and considerable economic losses. A rapid and accurate identification methodfor WNV for use in field laboratories is urgently needed. Here, a method utilizing reverse transcription loop-mediated isothermal amplification combined with a vertical flow visualization strip (RT-LAMP-VF was developed to detect the envelope (E gene of WNV. The RT-LAMP-VF assay could detect 102 copies/μl ofan WNV RNA standard using a 40 min amplification reaction followed by a 2 min incubationof the amplification product on the visualization strip, and no cross-reaction with other closely related members of theFlavivirus genus was observed. The assay was further evaluated using cells and mouse brain tissues infected with a recombinant rabies virus expressing the E protein of WNV.The assay produced sensitivities of 101.5TCID50/ml and 101.33 TCID50/ml for detection of the recombinant virus in the cells and brain tissues, respectively. Overall, the RT-LAMP-VF assay developed in this study is rapid, simple and effective, and it is therefore suitable for clinical application in the field.

  5. Linking Material Flow Analysis with Resilience Using Rice: A Case Study in Global, Visual MFA of a Key Food Product

    Directory of Open Access Journals (Sweden)

    Michal Monit

    2016-01-01

    Full Text Available This article uses the rice price crisis of 2007–2008 to show how material flow analysis (MFA can be combined with resilience research. After presentation of fundamental information and methods, resilience-related concepts are illustrated using graphical methods and MFA data. Herfindahl-Hirschman Index (HHI and node-link diagrams are used to highlight potential vulnerability hotspots and show response to, recovery from disturbance and adaptation following a disruption of the global rice market. The methods presented are especially useful in rapid screening for potential impact of supply-side disruptions, such as export restrictions or poor harvests. The article concludes by discussing other potential applications of the chosen approach and stressing the importance of visual communication in dissemination of results and cross-pollination between disciplines. All the data used in this study is available online, as interactive visualizations, at: http://ricestudyvis.weebly.com.

  6. Burnout in subcooled flow boiling of water. A visual experimental study

    International Nuclear Information System (INIS)

    Celata, G.P.; Mariani, A.; Zummo, G.; Cumo, M.

    2000-01-01

    The objective of the present work is to perform a photographic study of the burnout in highly subcooled flow boiling, in order to provide a qualitative description of the flow pattern under different conditions of boiling regime: ONB (onset of nucleate boiling), subcooled flow boiling and thermal crisis. In particular, the flow visualisation is focused on the phenomena occurring on the heated wall during the thermal crisis up to the physical burnout of the heater. Vapour bubble parameters are measured from flow images recorded, while the wall temperature is measured with an indirect method, by recording the heater elongation during all flow regimes studied. The combination of bubble parameters and wall temperature measurements as well as direct observations of the flow pattern, for all flow regimes, are collected in graphs which provide a useful global point of view of boiling phenomena, especially during boiling crisis. Under these conditions, a detailed analysis of the mechanisms leading to the critical heat flux is reported, and the so called events sequence, from thermal crisis occurrence up to heater burnout, is illustrated. (authors)

  7. Flow visualization through particle image velocimetry in realistic model of rhesus monkey's upper airway.

    Science.gov (United States)

    Kim, Ji-Woong; Phuong, Nguyen Lu; Aramaki, Shin-Ichiro; Ito, Kazuhide

    2018-05-01

    Studies concerning inhalation toxicology and respiratory drug-delivery systems require biological testing involving experiments performed on animals. Particle image velocimetry (PIV) is an effective in vitro technique that reveals detailed inhalation flow patterns, thereby assisting analyses of inhalation exposure to various substances. A realistic model of a rhesus-monkey upper airway was developed to investigate flow patterns in its oral and nasal cavities through PIV experiments performed under steady-state constant inhalation conditions at various flow rates-4, 10, and 20 L/min. Flow rate of the fluid passing through the inlet into the trachea was measured to obtain characteristic flow mechanisms, and flow phenomena in the model were confirmed via characterized flow fields. It was observed that increase in flow rate leads to constant velocity profiles in upper and lower trachea regions. It is expected that the results of this study would contribute to future validation of studies aimed at developing in silico models, especially those involving computational fluid dynamic (CFD) analysis. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. New theoretical model to measure pressure produced during impression procedure for complete dentures-Visual inspection of impression material flow.

    Science.gov (United States)

    Nishigawa, G; Maruo, Y; Irie, M; Oka, M; Tamada, Y; Minagi, S

    2013-05-01

    A theoretical model, based on fluid dynamics, was developed to measure impression pressure. The purpose of this study was to evaluate the validity of this theoretical model by comparing its theoretical analysis against actual pressure measurements conducted using an impression tray and edentulous oral mucosa analog embedded with pressure sensors. In the theoretical model, a hollow tube was mounted onto an impression tray by penetrating through the tray. When force was applied to the tray, pressure was produced which then caused the impression material to flow into the hollow tube. Length of impression material which flowed into tube was denoted as l. In the calculation formula for theoretical model, pressure impulse I was expressed as a function of impression flow length l. For actual pressure measurements, four electric pressure sensors were embedded in an experimental edentulous arch. To visually observe and measure length of impression material flow, four transparent silicon tubes were mounted vertically at different positions on tray. During tray seating, impression material flowed into tubes and pressure which caused material flow movement was measured by the embedded sensor at each tube's position. Based on actual pressure measurements under one experimental condition, regression analysis of pressure data acquired from electric sensors yielded the formula, Y=0.056X²+0.124X. Based on theoretical analysis using a particular viscosity value, the numerical formula yielded was Y=0.057X², which resembled that of the regression formula. Theoretical model presented in this paper augured well for clinical application as an easy and economical means to examine magnitude and distribution of impression pressure by measuring lengths of impression material flow in tubes fixed to impression tray. Copyright © 2013 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  9. EVALUATION OF INDUCTANCE WITH ELECTRICAL WIRES

    Directory of Open Access Journals (Sweden)

    V. Kudry

    2016-08-01

    Full Text Available In this paper proved the possibility of developing passive electronic inductive elements based replace metal wire that is wound inductor, the wire is made of electret. The relative permeability of the electret S  10 000, several orders of magnitude greater than the permeability of conventional insulation materials, i < 10, resulting current in the wire acquires properties bias current. The essence of innovation is to replace the source of of magnetic induction flow that pervades the core of the coil. According to the theory of electrodynamics, current bias, in contrast to conduction current, generated no movement of charge along the wire, but the change of the charge in the local volume.Equivalence bias current and conduction current is manifested in the possibility of forming a magnetic field. The flow through magnetic induction coil core regardless of the current it generates, creates voltage at its ends.The paper also shows the numeric characteristics that determine the effective frequency range, specified the reason why electric a wire with і < 10 can not generate magnetic flux through the core and serve as a passive reactive component.

  10. Flow visualization techniques, new developments and modernization of the existing Schlieren system in the Trisonic Wind Tunnel

    Directory of Open Access Journals (Sweden)

    Marius PANAIT

    2011-06-01

    Full Text Available Schlieren flow visualization methods are an important part of high speed wind tunnel testing, being a fast and reliable method of graphically presenting complex dynamic phenomena that occur in high subsonic, transonic and supersonic regimes. Images can be processed and effects of configuration changes can be understood faster. Quantitative variations of the Schlieren method enable CFD simulations to use real data, resulting in greater precision and thus help improve efficiency of the re-design phase for the aerodynamic object. A modification of the classic Schlieren system is proposed, that would enable extraction of such data with minimal costs

  11. Physically-Based Interactive Flow Visualization Based on Schlieren and Interferometry Experimental Techniques

    KAUST Repository

    Brownlee, C.

    2011-11-01

    Understanding fluid flow is a difficult problem and of increasing importance as computational fluid dynamics (CFD) produces an abundance of simulation data. Experimental flow analysis has employed techniques such as shadowgraph, interferometry, and schlieren imaging for centuries, which allow empirical observation of inhomogeneous flows. Shadowgraphs provide an intuitive way of looking at small changes in flow dynamics through caustic effects while schlieren cutoffs introduce an intensity gradation for observing large scale directional changes in the flow. Interferometry tracks changes in phase-shift resulting in bands appearing. The combination of these shading effects provides an informative global analysis of overall fluid flow. Computational solutions for these methods have proven too complex until recently due to the fundamental physical interaction of light refracting through the flow field. In this paper, we introduce a novel method to simulate the refraction of light to generate synthetic shadowgraph, schlieren and interferometry images of time-varying scalar fields derived from computational fluid dynamics data. Our method computes physically accurate schlieren and shadowgraph images at interactive rates by utilizing a combination of GPGPU programming, acceleration methods, and data-dependent probabilistic schlieren cutoffs. Applications of our method to multifield data and custom application-dependent color filter creation are explored. Results comparing this method to previous schlieren approximations are finally presented. © 2011 IEEE.

  12. Thermosonic wire bonding of IC devices using palladium wire

    International Nuclear Information System (INIS)

    Shze, J.H.; Poh, M.T.; Tan, R.M.

    1996-01-01

    The feasibility of replacing gold wire by palladium wire in thermosonic wire bonding of CMOS and bipolar devices are studied in terms of the manufacturability, physical, electrical and assembly performance. The results that palladium wire is a viable option for bonding the bipolar devices but not the CMOS devices

  13. Comparison between visual half-field performance and cerebral blood flow changes as indicators of language dominance.

    Science.gov (United States)

    Krach, S; Chen, L M; Hartje, W

    2006-03-01

    The determination of hemispheric language dominance (HLD) can be accomplished in two ways. One approach relies on hemispheric differences in cerebral blood flow velocity (CBFV) changes during language activity, while the other approach makes use of performance differences between the left and right visual field when verbal stimuli are presented in a tachistoscopic visual field paradigm. Since both methodologically different approaches claim to assess functional HLD, it seems plausible to expect that the respective laterality indices (LI) would correspond. To test this expectation we measured language lateralisation in 58 healthy right-handed, left-handed, and ambidextrous subjects with both approaches. CBFV changes were recorded with functional transcranial Doppler sonography (fTCD). We applied a lexical decision task with bilateral visual field presentation of abstract nouns and, in addition, a task of mental word generation. In the lexical decision task, a highly significant right visual field advantage was observed for number of correct responses and reaction times, while at the same time and contrary to expectation the increase of CBFV was significantly higher in the right than left hemisphere. During mental word generation, the acceleration of CBF was significantly higher in the left hemisphere. A comparison between individual LI derived from CBF measurement during mental word generation and from visual field performances in the lexical decision task showed a moderate correspondence in classifying the subjects' HLD. However, the correlation between the corresponding individual LI was surprisingly low and not significant. The results are discussed with regard to the issue of a limited reliability of behavioural LI on the one hand and the possibility of a fundamental difference between the behavioural and the physiological indicators of laterality on the other hand.

  14. The wire array Z pinch programme at Imperial College

    International Nuclear Information System (INIS)

    Haines, M.G.; Lebedev, S.V.; Chittenden, J.P.; Bland, S.N.; Beg, F.N.; Dangor, A.E.; Pikuz, S.A.; Shelkovenko, T.A.

    2001-01-01

    Plasma formation and implosion dynamics of wire array z-pinches have been studied experimentally using the MAGPIE generator (1.4MA, 240ns) at Imperial College. Simulations and theory verify much of the data. Both laser probing and x-ray radiography show after an initial volumetric heating of the wires the presence of dense wire cores surrounded by low density coronal plasma. Radiography shows development of perturbations on the dense core of each wire, while laser probing shows inward jetting of the coronal plasma caused by the global JxB force, and these plasma streams are axially non-uniform on the same spatial scale as later seen in the wire cores. The spatial scale of these perturbations (∼0.5mm for Al, ∼0.25mm for W) increases with the size of the wire cores (∼0.25mm for Al, ∼0.1mm for W). The inward flow of the coronal plasma is usually field free and leads to formation on the array axis of a straight plasma column, the dynamics of which is strongly affected by radiation cooling. Images obtained by optical streak camera show that the wire cores start their inward motion late and the implosion trajectory deviates significantly from the expected from 0-D analysis. An increase of the number of wires (decrease of inter-wire gap) resulted in a transition to 0-D trajectory for aluminium wire arrays, but not for tungsten. In experiments with nested wire arrays two modes of behaviour are observed; in the first the inner array is transparent to the imploding outer array, but the current transfers to it, leading to a fast implosion. The second mode occurs when a significant fraction of current is flowing in the inner array and the two arrays apparently implode simultaneously. In both modes the x-ray pulse is significantly sharpened in comparison with that generated in implosion of a single wire array. (author)

  15. Towards plant wires.

    Science.gov (United States)

    Adamatzky, Andrew

    2014-08-01

    In experimental laboratory studies we evaluate a possibility of making electrical wires from living plants. In scoping experiments we use lettuce seedlings as a prototype model of a plant wire. We approximate an electrical potential transfer function by applying direct current voltage to the lettuce seedlings and recording output voltage. We analyse oscillation frequencies of the output potential and assess noise immunity of the plant wires. Our findings will be used in future designs of self-growing wetware circuits and devices, and integration of plant-based electronic components into future and emergent bio-hybrid systems. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  16. Volume Tracking: A new method for quantitative assessment and visualization of intracardiac blood flow from three-dimensional, time-resolved, three-component magnetic resonance velocity mapping

    Directory of Open Access Journals (Sweden)

    Arheden Håkan

    2011-04-01

    Full Text Available Abstract Background Functional and morphological changes of the heart influence blood flow patterns. Therefore, flow patterns may carry diagnostic and prognostic information. Three-dimensional, time-resolved, three-directional phase contrast cardiovascular magnetic resonance (4D PC-CMR can image flow patterns with unique detail, and using new flow visualization methods may lead to new insights. The aim of this study is to present and validate a novel visualization method with a quantitative potential for blood flow from 4D PC-CMR, called Volume Tracking, and investigate if Volume Tracking complements particle tracing, the most common visualization method used today. Methods Eight healthy volunteers and one patient with a large apical left ventricular aneurysm underwent 4D PC-CMR flow imaging of the whole heart. Volume Tracking and particle tracing visualizations were compared visually side-by-side in a visualization software package. To validate Volume Tracking, the number of particle traces that agreed with the Volume Tracking visualizations was counted and expressed as a percentage of total released particles in mid-diastole and end-diastole respectively. Two independent observers described blood flow patterns in the left ventricle using Volume Tracking visualizations. Results Volume Tracking was feasible in all eight healthy volunteers and in the patient. Visually, Volume Tracking and particle tracing are complementary methods, showing different aspects of the flow. When validated against particle tracing, on average 90.5% and 87.8% of the particles agreed with the Volume Tracking surface in mid-diastole and end-diastole respectively. Inflow patterns in the left ventricle varied between the subjects, with excellent agreement between observers. The left ventricular inflow pattern in the patient differed from the healthy subjects. Conclusion Volume Tracking is a new visualization method for blood flow measured by 4D PC-CMR. Volume Tracking

  17. Investigation of influence of the wavelength of probing optical emission on the conditions of visualization of the flow's phase structures in the energy-technique elements

    International Nuclear Information System (INIS)

    Volevatyj, A.A.; Tolkach, A.V.; Bykovskij, Yu.M.

    2002-01-01

    Certain problems of objective visualization of two-phases flows in the energy-technique elements at the investigations by means of photo-, cinema- and video-registration are considered. It is shown an advisability of using of the more long-wave illumination of the medium at the high steam-content values in the flow

  18. Visualization of microscale phase displacement proceses in retention and outflow experiments: nonuniquensess of unsaturated flow properties

    DEFF Research Database (Denmark)

    Mortensen, Annette Pia; Glass, R.J.; Hollenbeck, K.J.

    2001-01-01

    -scale heterogeneities. Because the mixture of these microscale processes yields macroscale effective behavior, measured unsaturated flow properties are also a function of these controls. Such results suggest limitations on the current definitions and uniqueness of unsaturated hydraulic properties....

  19. Laser-activated irrigation within root canals: cleaning efficacy and flow visualization

    NARCIS (Netherlands)

    de Groot, S.D.; Verhaagen, B.; Versluis, M.; Wu, M.K.; Wesselink, P.R.; van der Sluis, L.W.M.

    2009-01-01

    Aim  To test ex vivo the efficiency of laser-activated irrigation in removing dentine debris from the apical part of the root canal and to visualize in vitro the fluid dynamics during the activation of the irrigant by laser, using high-speed imaging at a relevant timescale. Methodology  Root canals

  20. Laser-activated irrigation within root canals: cleaning efficacy and flow visualization.

    NARCIS (Netherlands)

    de Groot, S.D.; Verhaagen, B.; Versluis, Michel; Wu, M.K.; Wesselink, P.R.; van der Sluis, L.W.M.

    2009-01-01

    Aim: To test ex vivo the efficiency of laser-activated irrigation in removing dentine debris from the apical part of the root canal and to visualize in vitro the fluid dynamics during the activation of the irrigant by laser, using high-speed imaging at a relevant timescale. - Methodology: Root

  1. Three-dimensional visualization of preferential flow patterns in two soils

    NARCIS (Netherlands)

    Heijs, A.W.J.; Ritsema, C.J.; Dekker, L.W.

    1996-01-01

    Visualization techniques were used to examine the basis of moisture distribution patterns in a clay soil and a water-repellent sandy soil. In the clay soil, spatial distributions of moisture contents and macropore networks were investigated with computed tomography (CT) images. The macropore

  2. A visual description of the convective flow field around the heat of a human

    DEFF Research Database (Denmark)

    Özcan, Oktay; Meyer, Knud Erik; Melikov, Arsen Krikor

    2005-01-01

    Mean velocity data obtained by PIV (Particle Image Velocimetry) around the head of a real-life size breathing thermal manikin are presented for two cases of `no breathing' and `continuous exhalation through nose'. Experiments were conducted in a special chamber which provided stationary convectiv...... flows around the seated manikin. Results are limited to the plane of symmetry. The paper aims to describe the physical structure of the turbulent flow field by presenting velocity and vorticity data in color graphics....

  3. Study of visualized simulation and analysis of nuclear fuel cycle system based on multilevel flow model

    International Nuclear Information System (INIS)

    Liu Jingquan; Yoshikawa, H.; Zhou Yangping

    2005-01-01

    Complex energy and environment system, especially nuclear fuel cycle system recently raised social concerns about the issues of economic competitiveness, environmental effect and nuclear proliferation. Only under the condition that those conflicting issues are gotten a consensus between stakeholders with different knowledge background, can nuclear power industry be continuingly developed. In this paper, a new analysis platform has been developed to help stakeholders to recognize and analyze various socio-technical issues in the nuclear fuel cycle sys- tem based on the functional modeling method named Multilevel Flow Models (MFM) according to the cognition theory of human being, Its character is that MFM models define a set of mass, energy and information flow structures on multiple levels of abstraction to describe the functional structure of a process system and its graphical symbol representation and the means-end and part-whole hierarchical flow structure to make the represented process easy to be understood. Based upon this methodology, a micro-process and a macro-process of nuclear fuel cycle system were selected to be simulated and some analysis processes such as economics analysis, environmental analysis and energy balance analysis related to those flows were also integrated to help stakeholders to understand the process of decision-making with the introduction of some new functions for the improved Multilevel Flow Models Studio, and finally the simple simulation such as spent fuel management process simulation and money flow of nuclear fuel cycle and its levelised cost analysis will be represented as feasible examples. (authors)

  4. Dynamics of fluid mixing in separated flows

    Science.gov (United States)

    Leder, A.

    1991-05-01

    Separated flows at high Re (>103) are highly turbulent. In some situations the turbulence generation and mixing processes associated with flow separation are desirable, e.g., in heat exchangers or in many chemical engineering applications. In others, e.g., stalled airfoils, separation must be avoided as it causes loss in pressure and kinetic energy. To control the phenomenon effectively, physical mechanisms of flow separation and related aspects, such as the growth of flow instabilities in shear layers, the process of vortex formation, and the dynamics of fluid mixing in recirculating flow regions, must be understood. In many cases numerical procedures, e.g., Navier-Stokes calculations including k-ɛ turbulence modeling, fail to predict real physical mechanisms in separated flows.1,2 Separated flows in the lee of bluff bodies have been studied for many years.3,4 However, accurate measurements of the magnitude and direction of velocities and the magnitude of the terms of the Reynolds stress tensor have been restricted by the unsuitability of the hot-wire anemometer in recirculating flows. The development of the pulsed-wire anemometer, flying hot-wire anemometer, and laser-Doppler anemometry (LDA) allows more reliable measurements also in turbulent separated flows.5-8 The aim of this paper is to investigate the dynamics of undisturbed fluid mixing in separated regions of 2-D, incompressible flows with visualization techniques and LDA. Measurements were performed with a vertical flat plate model, mounted in a closed-circuit wind tunnel at low blockage ratio. Because of the noninvasive character, optical techniques like LDA are more suitable to analyze complex fluid motions than pulsed-wire and flying-wire anemometry. The LDA system used to investigate turbulent flow structures consists of a two-channel version operating in backscatter mode and a specifically developed phase detector to extract phase-averaged information from recorded measurement ensembles.9 Endplates

  5. Experimental and visual study on flow patterns and pressure drops in U-tubes

    International Nuclear Information System (INIS)

    Da Silva Lima, J. R.

    2011-01-01

    In single- and two-phase flow heat exchangers (in particular 'coils'), besides the straight tubes there are also many singularities, in particular the 180° return bends (also called return bends or U-bends). However, contrary to the literature concerning pressure drops and heat transfer in straight tubes, where many experimental data and predicting methods are available, only a limited number of studies concerning U-bends can be found. Neither reliable experimental data nor proven prediction methods are available. Indeed, flow structure, pressure drop and heat transfer in U-bends are an old unresolved design problem in the heat transfer industry. Thus, the present study aims at providing further insight on two-phase pressure drops and flows patterns in U-bends. Based on a new type of U-bend test section, an extensive experimental study was conducted. The experimental campaign covered five test sections with three internal diameters (7.8, 10.8 and 13.4 mm), five bend diameters (24.8, 31.7, 38.1, 54.8 and 66.1 mm), tested for three orientations (horizontal, vertical upflow and vertical downflow), two fluids (R134a and R410A), two saturation temperatures (5 and 10 °C) and mass velocities ranging from 150 to 1000 kg s -1 m -2 . The flow pattern observations identified were stratified-wavy, slug-stratified-wavy, intermittent, annular, dryout and mist flows. The effects of the U-bend on the flow patterns were also observed. A total of 5655 pressure drop data were measured at seven different locations in the test section ( straight tubes and U-bend) providing a total of almost 40,000 data points. The straight tube data were first used to improve the actual two-phase straight tube model of Moreno-Quibén and Thome. This updated model was then used to developed a two-phase U-bend pressure drop model. Based on a comparison between experimental and predicted values, it is concluded that the new two-phase frictional pressure drop model for U-bends successfully

  6. Efficient in-situ visualization of unsteady flows in climate simulation

    Science.gov (United States)

    Vetter, Michael; Olbrich, Stephan

    2017-04-01

    The simulation of climate data tends to produce very large data sets, which hardly can be processed in classical post-processing visualization applications. Typically, the visualization pipeline consisting of the processes data generation, visualization mapping and rendering is distributed into two parts over the network or separated via file transfer. Within most traditional post-processing scenarios the simulation is done on a supercomputer whereas the data analysis and visualization is done on a graphics workstation. That way temporary data sets with huge volume have to be transferred over the network, which leads to bandwidth bottlenecks and volume limitations. The solution to this issue is the avoidance of temporary storage, or at least significant reduction of data complexity. Within the Climate Visualization Lab - as part of the Cluster of Excellence "Integrated Climate System Analysis and Prediction" (CliSAP) at the University of Hamburg, in cooperation with the German Climate Computing Center (DKRZ) - we develop and integrate an in-situ approach. Our software framework DSVR is based on the separation of the process chain between the mapping and the rendering processes. It couples the mapping process directly to the simulation by calling methods of a parallelized data extraction library, which create a time-based sequence of geometric 3D scenes. This sequence is stored on a special streaming server with an interactive post-filtering option and then played-out asynchronously in a separate 3D viewer application. Since the rendering is part of this viewer application, the scenes can be navigated interactively. In contrast to other in-situ approaches where 2D images are created as part of the simulation or synchronous co-visualization takes place, our method supports interaction in 3D space and in time, as well as fixed frame rates. To integrate in-situ processing based on our DSVR framework and methods in the ICON climate model, we are continuously evolving

  7. Cryogenic Pressure Seal for Wires

    Science.gov (United States)

    Ciana, J. J.

    1984-01-01

    High-pressure-seal formed by forcing polyurethane into space surrounding wire or cable in special fitting. Wire or cable routed through fitting then through a tightly fitting cap. Wire insulation left intact. Cap filled with sealant and forced onto the fitting: this pushes sealant into fitting so it seals wire or cable in fitting as well as in cap.

  8. Slow flow across macroscopically rectangular fiber lattices and an open region: Visualization by magnetic resonance imaging

    International Nuclear Information System (INIS)

    Bijeljic, B.; Mantle, M.D.; Sederman, A.J.; Gladden, L.F.; Papathanasiou, T.D.

    2001-01-01

    Creeping flow of a Newtonian fluid across aligned and staggered rows of cylinders (fiber lattices) bounded by an open region is studied experimentally by magnetic resonance imaging (MRI) velocimetry. The model systems are formed by circular cylindrical rods, macroscopically arranged in rectangular fashion and confined inside a Hele-Shaw cell. The thus formed fiber arrays are bounded by the open region from one side and the wall of the cell on the other side, thus forming a heterogeneous fibrous medium of dual porosity. The influence of the fiber lattice volume fraction and lattice unit-cell geometry on the local aspects of the flow in the interior of and exterior to the fiber arrays are investigated. The steady-state velocity maps of the longitudinal and, in particular, transverse velocity components are shown to be advantageous in studying the local aspects of the flow field in such a heterogeneous porous medium. The most important feature of local velocity distributions in the regions ahead of and behind the lattice-channel arrangements is evidenced as substantial transverse velocities. This local flow aspect is termed edge effect and found to be dependent on lattice porosity. Local flow disturbances are present on either side of the open channel-fiber lattice interfaces, at the length-scale corresponding to the size of unit cells of the fiber lattices. Regions with regular patterns of very low fluid velocities are identified throughout the fiber lattices. The local values for the velocity vector at the entrance/exit of the fiber lattices are considerably higher than the average values within the fiber arrangements. These local flow enhancements, which are caused by the proximity of velocity gradients in the adjoining free flow region, are termed entrance/exit effects

  9. Approximate analytic solutions for steady MHD flow and heat transfer of a third grade fluid in wire coating process with constant viscosity

    Science.gov (United States)

    Marinca, Vasile; Herisanu, Nicolae

    2017-07-01

    In the present paper, the Optimal Homotopy Asymptotic Method (OHAM) is applied to determine approximate analytic solutions of steady MHD flow and heat transfer of a third grade fluid analysis, considering constant viscosity. The effect of the magnetic parameter is shown. Some examples are given and the results obtained reveal that the proposed method is effective and easy to use.

  10. Influence of lateral discomfort on the stability of traffic flow based on visual angle car-following model

    Science.gov (United States)

    Zheng, Liang; Zhong, Shiquan; Jin, Peter J.; Ma, Shoufeng

    2012-12-01

    Due to the poor road markings and irregular driving behaviors, not every vehicle is positioned in the center of the lane. The deviation from the center can cause discomfort to drivers in the neighboring lane, which is referred to as lateral discomfort (or lateral friction). Such lateral discomfort can be incorporated into the driver stimulus-response framework by considering the visual angle and its changing rate from the psychological viewpoint. In this study, a two-lane visual angle based car-following model is proposed and its stability condition is obtained through linear stability theory. Further derivations indicate that the neutral stability line of the model is asymmetry and four factors including the vehicle width and length, the lateral separation and the sensitivity regarding the changing rate of visual angle have large impacts on the stability of traffic flow. Numerical simulations further verify these theoretical results, and demonstrate that the behaviors of diverging, merging and lane changing can break the original steady state and cause traffic fluctuations. However, these fluctuations may be alleviated to some extent by reducing the lateral discomfort.

  11. Visual Observations of Bubbly Flow in a Subchannel by using Optical Measurement Methods

    International Nuclear Information System (INIS)

    Chang, Seok Kyu; Choo, Yeon Jun; Kim, B. D.; Song, Chul Hwa

    2008-01-01

    PIV (Particle Image Velocimetry) measurement technique is widely used in the experimental study on the fluid flow in many industrial fields. In the study of the subchannel mixing in a nuclear reactor, there have been many works by using optical measurement techniques and almost of these were limited to the single phase flow. But many occasions of safety issues in a nuclear power plant are in a condition of two phase flow. In an application of two phase flow in subchannels, intrusive probes i.e., a conductivity sensor or an optical sensor were generally used. But these probes cause breaks or distortions of bubbles when contact. PIV technique is one of the non-intrusive measurement methods which can avoid the problem of intrusive probes. This study presents an applicability of the PIV technique on an experimental study of a bubbly flow in the subchannel geometry. The bubble peaking in a subchannel according to the bubble sizes was demonstrated. The HSC (high speed camera) was also used to confirm the PIV measurement results

  12. Musical Interfaces: Visualization and Reconstruction of Music with a Microfluidic Two-Phase Flow

    Science.gov (United States)

    Mak, Sze Yi; Li, Zida; Frere, Arnaud; Chan, Tat Chuen; Shum, Ho Cheung

    2014-10-01

    Detection of sound wave in fluids can hardly be realized because of the lack of approaches to visualize the very minute sound-induced fluid motion. In this paper, we demonstrate the first direct visualization of music in the form of ripples at a microfluidic aqueous-aqueous interface with an ultra-low interfacial tension. The interfaces respond to sound of different frequency and amplitude robustly with sufficiently precise time resolution for the recording of musical notes and even subsequent reconstruction with high fidelity. Our work shows the possibility of sensing and transmitting vibrations as tiny as those induced by sound. This robust control of the interfacial dynamics enables a platform for investigating the mechanical properties of microstructures and for studying frequency-dependent phenomena, for example, in biological systems.

  13. Copper wire bonding

    CERN Document Server

    Chauhan, Preeti S; Zhong, ZhaoWei; Pecht, Michael G

    2014-01-01

    This critical volume provides an in-depth presentation of copper wire bonding technologies, processes and equipment, along with the economic benefits and risks.  Due to the increasing cost of materials used to make electronic components, the electronics industry has been rapidly moving from high cost gold to significantly lower cost copper as a wire bonding material.  However, copper wire bonding has several process and reliability concerns due to its material properties.  Copper Wire Bonding book lays out the challenges involved in replacing gold with copper as a wire bond material, and includes the bonding process changes—bond force, electric flame off, current and ultrasonic energy optimization, and bonding tools and equipment changes for first and second bond formation.  In addition, the bond–pad metallurgies and the use of bare and palladium-coated copper wires on aluminum are presented, and gold, nickel and palladium surface finishes are discussed.  The book also discusses best practices and re...

  14. Multi-Scale Visualization Analysis of Bus Flow Average Travel Speed in Qingdao

    Science.gov (United States)

    Yong, HAN; Man, GAO; Xiao-Lei, ZHANG; Jie, LI; Ge, CHEN

    2016-11-01

    Public transportation is a kind of complex spatiotemporal behaviour. The traffic congestion and environmental pollution caused by the increase in private cars is becoming more and more serious in our city. Spatiotemporal data visualization is an effective tool for studying traffic, transforming non-visual data into recognizable images, which can reveal where/when congestion is formed, developed and disappeared in space and time simultaneously. This paper develops a multi-scale visualization of average travel speed derived from floating bus data, to enable congestion on urban bus networks to be shown and analyzed. The techniques of R language, Echarts, WebGL are used to draw statistical pictures and 3D wall map, which show the congestion in Qingdao from the view of space and time. The results are as follows:(1) There is a more severely delay in Shibei and Shinan areas than Licun and Laoshan areas; (2) The high congestion usually occurs on Hong Kong Middle Road, Shandong Road, Nanjing Road, Liaoyang West Road and Taiping Road;(3) There is a similar law from Monday to Sunday that the congestion is severer in the morning and evening rush hours than other hours; (4) On Monday morning the severity of congestion is higher than on Friday morning, and on Friday evening the severity is higher than on Monday evening. The research results will help to improve the public transportation of Qingdao.

  15. Ex vivo visualization of human ciliated epithelium and quantitative analysis of induced flow dynamics by using optical coherence tomography.

    Science.gov (United States)

    Ling, Yuye; Yao, Xinwen; Gamm, Ute A; Arteaga-Solis, Emilio; Emala, Charles W; Choma, Michael A; Hendon, Christine P

    2017-03-01

    Cilia-driven mucociliary clearance is an important self-defense mechanism of great clinical importance in pulmonary research. Conventional light microscopy possesses the capability to visualize individual cilia and its beating pattern but lacks the throughput to assess the global ciliary activities and flow dynamics. Optical coherence tomography (OCT), which provides depth-resolved cross-sectional images, was recently introduced to this area. Fourteen de-identified human tracheobronchial tissues are directly imaged by two OCT systems: one system centered at 1,300 nm with 6.5 μm axial resolution and 15 μm lateral resolution, and the other centered at 800 nm with 2.72 μm axial resolution and 5.52 μm lateral resolution. Speckle variance images are obtained in both cross-sectional and volumetric modes. After imaging, sample blocks are sliced along the registered OCT imaging plane and processed with hematoxylin and eosin (H&E) stain for comparison. Quantitative flow analysis is performed by tracking the path-lines of microspheres in a fixed cross-section. Both the flow rate and flow direction are characterized. The speckle variance images successfully segment the ciliated epithelial tissue from its cilia-denuded counterpart, and the results are validated by corresponding H&E stained sections. A further temporal frequency analysis is performed to extract the ciliary beat frequency (CBF) at cilia cites. By adding polyester microspheres as contrast agents, we demonstrate ex vivo imaging of the flow induced by cilia activities of human tracheobronchial samples. This manuscript presents an ex vivo study on human tracheobronchial ciliated epithelium and its induced mucous flow by using OCT. Within OCT images, intact ciliated epithelium is effectively distinguished from cilia-denuded counterpart, which serves as a negative control, by examining the speckle variance images. The cilia beat frequency is extracted by temporal frequency analysis. The flow rate, flow

  16. Investigation of Constant Temperature Hot-wire System Response using Laser Pulse

    Science.gov (United States)

    Jaffa, Nicholas; Morris, Scott; Cameron, Joshua

    2016-11-01

    Constant temperature hot-wire systems use a Wheatstone bridge and feedback amplifier circuit to maintain a constant average temperature across the wire yielding frequency responses of order 100 kHz. This high frequency response allows hot-wires to be used extensively for aerodynamic measurements in high speed flows and uncertainty at these high frequencies can be difficult to diagnose. The standard frequency response check for constant temperature hot-wires uses an electronic pulse across the circuit to check the electronic feedback circuit response time, but does not account for the impact of the heat transfer along the wire. In order to investigate the frequency response of the entire constant temperature hot-wire system, including the heat transfer along the wire, a novel method was developed using a pulsed PIV laser focused to illuminate only the hot-wire. The laser pulse duration was effectively an instantaneous change in wire surface temperature through radiation. A hot-wire was placed in a uniform open calibration jet for a range of flow conditions. The response of the entire hot-wire system was observed across a range of conditions including changes in flow, wire temperature, and thermal boundary conditions and compared with the electronic pulse test.

  17. An alternating direction algorithm for two-phase flow visualization using gamma computed tomography.

    Science.gov (United States)

    Xue, Qian; Wang, Huaxiang; Cui, Ziqiang; Yang, Chengyi

    2012-12-01

    In order to build high-speed imaging systems with low cost and low radiation leakage, the number of radioactive sources and detectors in the multiphase flow computed tomography (CT) system has to be limited. Moreover, systematic and random errors are inevitable in practical applications. The limited and corrupted measurement data have made the tomographic inversion process the most critical part in multiphase flow CT. Although various iterative reconstruction algorithms have been developed based on least squares minimization, the imaging quality is still inadequate for the reconstruction of relatively complicated bubble flow. This paper extends an alternating direction method (ADM), which is originally proposed in compressed sensing, to image two-phase flow using a low-energy γ-CT system. An l(1) norm-based regularization technique is utilized to treat the ill-posedness of the inverse problem, and the image reconstruction model is reformulated into one having partially separable objective functions, thereafter a dual-based ADM is adopted to solve the resulting problem. The feasibility is demonstrated in prototype experiments. Comparisons between the ADM and the conventional iterative algorithms show that the former has obviously improved the space resolution in reasonable time.

  18. Evanescent-Wave Visualizations of the Viscous Sublayer in Turbulent Channel Flow

    Science.gov (United States)

    2015-09-02

    fluorescent a = 0.25 µm polystyrene (PS) particles (Life Technologies F8812 with excitation and emission peaks at wavelengths λ = 580 nm and 605 nm...particle images separated by ∆t = 5 µs so that each laser illuminates exactly the same location in the flow;  Expand the laser beams to illuminate

  19. Visualization of an air-water interface on superhydrophobic surfaces in turbulent channel flows

    Science.gov (United States)

    Kim, Hyunseok; Park, Hyungmin

    2017-11-01

    In the present study, three-dimensional deformation of air-water interface on superhydrophobic surfaces in turbulent channel flows at the Reynolds numbers of Re = 3000 and 10000 is measured with RICM (Reflection Interference Contrast Microscopy) technique. Two different types of roughness feature of circular hole and rectangular grate are considered, whose depth is 20 μm and diameter (or width) is varied between 20-200 μm. Since the air-water interface is always at de-pinned state at the considered condition, air-water interface shape and its sagging velocity is maintained to be almost constant as time goes one. In comparison with the previous results under the laminar flow, due to turbulent characteristics of the flow, sagging velocity is much faster. Based on the measured sagging profiles, a modified model to describe the air-water interface dynamics under turbulent flows is suggested. Supported by City of Seoul through Seoul Urban Data Science Laboratory Project (Grant No 0660-20170004) administered by SNU Big Data Institute.

  20. Using the dye tracer for visualization of preferential flow in macro and micro-scale

    Czech Academy of Sciences Publication Activity Database

    Kodešová, R.; Němeček, K.; Kodeš, V.; Fér, M.; Jirků, V.; Nikodem, A.; Žigová, Anna; Jakšík, O.; Kočárek, M.

    2010-01-01

    Roč. 12, - (2010) ISSN 1029-7006. [European Geosciences Union General Assembly 2010. 02.05.2010-07.05.2010, Wienna] R&D Projects: GA ČR GA526/08/0434 Institutional research plan: CEZ:AV0Z30130516 Keywords : dye tracer * preferential flow * micromorphology Subject RIV: DF - Soil Science

  1. Making Data Flow Diagrams Accessible for Visually Impaired Students Using Excel Tables

    Science.gov (United States)

    Sauter, Vicki L.

    2015-01-01

    This paper addresses the use of Excel tables to convey information to blind students that would otherwise be presented using graphical tools, such as Data Flow Diagrams. These tables can supplement diagrams in the classroom when introducing their use to understand the scope of a system and its main sub-processes, on exams when answering questions…

  2. A quantitative flow visualization technique for on-site sport aerodynamics optimization

    NARCIS (Netherlands)

    Sciacchitano, A.; Caridi, G.; Scarano, F.

    2015-01-01

    Aerodynamics plays a crucial role in many speed sports, where races are often won by fractions of a second. A thorough understanding of the flow field around an athlete is of paramount importance to optimize the athletes’ posture, garment roughness and equipment shape to achieve the minimum

  3. Using Dye Tracer for Visualization of Preferential Flow at Macro- and Microscales

    Czech Academy of Sciences Publication Activity Database

    Kodešová, R.; Němeček, K.; Kodeš, V.; Žigová, Anna

    2012-01-01

    Roč. 11, č. 1 (2012), s. 287-295 ISSN 1539-1663 R&D Projects: GA ČR GA526/08/0434 Institutional research plan: CEZ:AV0Z30130516 Keywords : dye tracer * preferential flow * soil types * macro- and microsccale Subject RIV: DF - Soil Science Impact factor: 2.200, year: 2012

  4. In-line holography for flow and cavitation visualization on hydrofoils and for nuclei measurements

    NARCIS (Netherlands)

    Renesse, R.L. van; Meulen, J.H.J. van der

    1980-01-01

    The boundary layer flow about two hydrofoils and the appearance of cavitation are investigated by means of in-line holography. Practical details on the hologram resolution and data collection time for nuclei size analysis are given. It is shown that the appearance of cavitation on the hydrofoils is

  5. Visualization of the unburned gas flow field ahead of an accelerating flame in an obstructed square channel

    Energy Technology Data Exchange (ETDEWEB)

    Johansen, Craig T.; Ciccarelli, Gaby [Mechanical and Materials Engineering, Queen' s University, McLaughlin Hall, 130 Stuart Street, Kingston, ON K7L 3N6 (Canada)

    2009-02-15

    The effect of blockage ratio on the early phase of the flame acceleration process was investigated in an obstructed square cross-section channel. Flame acceleration was promoted by an array of top-and bottom-surface mounted obstacles that were distributed along the entire channel length at an equal spacing corresponding to one channel height. It was determined that flame acceleration is more pronounced for higher blockage obstacles during the initial stage of flame acceleration up to a flame velocity below the speed of sound of the reactants. The progression of the flame shape and flame area was determined by constructing a series of three-dimensional flame surface models using synchronized orthogonal schlieren images. A novel schlieren based photographic technique was used to visualize the unburned gas flow field ahead of the flame front. A small amount of helium gas is injected into the channel before ignition, and the evolution of the helium diluted unburned gas pocket is tracked simultaneously with the flame front. Using this technique the formation of a vortex downstream of each obstacle was observed. The size of the vortex increases with time until it reaches the channel wall and completely spans the distance between adjacent obstacles. A shear layer develops separating the core flow from the recirculation zone between the obstacles. The evolution of oscillations in centerline flame velocity is discussed in the context of the development of these flow structures in the unburned gas. (author)

  6. Flow visualization of a monoleaflet and bileaflet mechanical heart valve in a pneumatic ventricular assist device using a PIV system.

    Science.gov (United States)

    Lee, Hwansung; Tatsumi, Eisuke; Taenaka, Yoshiyuki

    2010-01-01

    Our group is developing a new type of pulsatile pneumatic ventricular assist device (PVAD) that uses the Medtronic Hall tilting disc valve (M-H valve). Although tilting disc valves have good washout effect inside the blood pump, they are no longer in common clinical use and may be difficult to obtain in the future. To investigate the stability of the Sorin Bicarbon valve (S-B valve) in our PVAD, we constructed a model pump made of an acrylic resin with the same configuration as our PVAD and attempted to compare the flow visualization upstream and downstream of the outlet position valve between the M-H valve and the S-B valve using a particle image velocimetry (PIV) method. The outlet S-B valve had faster closure than the M-H valve. The maximum flow velocity was greater than with the M-H valve. The maximum Reynolds shear stress (RSS) of the M-H valve reached 150 N/m(2) and that of the S-B valve reached 300 N/m(2) upstream during the end-systolic and early-diastolic phases. In both valves, the maximum RSS upstream of the valve was higher than downstream of the valve because of the regurgitation flow during valve closure. In addition, the maximum viscous shear stress reached above 2 N/m(2), which occupied only about 1%-1.5% of the maximum RSS.

  7. Integrated Electrical Wire Insulation Repair System

    Science.gov (United States)

    Williams, Martha; Jolley, Scott; Gibson, Tracy; Parks, Steven

    2013-01-01

    An integrated system tool will allow a technician to easily and quickly repair damaged high-performance electrical wire insulation in the field. Low-melt polyimides have been developed that can be processed into thin films that work well in the repair of damaged polyimide or fluoropolymer insulated electrical wiring. Such thin films can be used in wire insulation repairs by affixing a film of this low-melt polyimide to the damaged wire, and heating the film to effect melting, flow, and cure of the film. The resulting repair is robust, lightweight, and small in volume. The heating of this repair film is accomplished with the use of a common electrical soldering tool that has been modified with a special head or tip that can accommodate the size of wire being repaired. This repair method can furthermore be simplified for the repair technician by providing replaceable or disposable soldering tool heads that have repair film already "loaded" and ready for use. The soldering tool heating device can also be equipped with a battery power supply that will allow its use in areas where plug-in current is not available

  8. Technique for velocity vector field dynamics measurement on the basis of smoke visualization of flow

    Science.gov (United States)

    Mikheev, N. I.; Dushin, N. S.; Saushin, I. I.

    2017-09-01

    The main difference between Smoke Image Velocimetry (SIV) technique and traditional PIV is that the smoke with continuous intensity in the image is seeded into the flow instead of separate particles. Owing to better smoke reflectivity, relatively primitive equipment is enough to measure the dynamics of velocity vector fields with the frequency of 25 kHz and higher. The image processing algorithm is adapted to high tracer concentration and relatively large displacement of smoke patches between two consecutive frames. The results of SIV testing are presented, including the estimations of the most measurement noise sensitive characteristics of turbulence calculated from spatial derivatives of fluctuations of small-scale turbulence. The measurement results have been shown to agree well with the data obtained by other methods. Application of SIV technique opens new possibilities in the research of flow pattern and turbulence in unsteady and fast processes.

  9. Laser-activated irrigation within root canals: cleaning efficacy and flow visualization.

    Science.gov (United States)

    de Groot, S D; Verhaagen, B; Versluis, M; Wu, M-K; Wesselink, P R; van der Sluis, L W M

    2009-12-01

    To test ex vivo the efficiency of laser-activated irrigation in removing dentine debris from the apical part of the root canal and to visualize in vitro the fluid dynamics during the activation of the irrigant by laser, using high-speed imaging at a relevant timescale. Root canals with a standardized groove in one canal wall filled with dentine debris were irrigated with syringe irrigation, ultrasonically or laser-activated irrigation (LAI) using 2% sodium hypochlorite as irrigant. The quantity of dentine debris after irrigation was determined. Visualization of the fluid dynamics during activation was achieved using a high-speed camera and a glass model. Laser-activated irrigation was significantly more effective in removing dentine debris from the apical part of the root canal than passive ultrasonic irrigation or hand irrigation when the irrigant was activated for 20 s. The in vitro recordings suggest that streaming, caused by the collapse of the laser-induced bubble, is the main cleaning mechanism of LAI.

  10. Functional Virtual Flow Cytometry: A Visual Analytic Approach for Characterizing Single-Cell Gene Expression Patterns

    Directory of Open Access Journals (Sweden)

    Zhi Han

    2017-01-01

    Full Text Available We presented a novel workflow for detecting distribution patterns in cell populations based on single-cell transcriptome study. With the fast adoption of single-cell analysis, a challenge to researchers is how to effectively extract gene features to meaningfully separate the cell population. Considering that coexpressed genes are often functionally or structurally related and the number of coexpressed modules is much smaller than the number of genes, our workflow uses gene coexpression modules as features instead of individual genes. Thus, when the coexpressed modules are summarized into eigengenes, not only can we interactively explore the distribution of cells but also we can promptly interpret the gene features. The interactive visualization is aided by a novel application of spatial statistical analysis to the scatter plots using a clustering index parameter. This parameter helps to highlight interesting 2D patterns in the scatter plot matrix (SPLOM. We demonstrated the effectiveness of the workflow using two large single-cell studies. In the Allen Brain scRNA-seq dataset, the visual analytics suggested a new hypothesis such as the involvement of glutamate metabolism in the separation of the brain cells. In a large glioblastoma study, a sample with a unique cell migration related signature was identified.

  11. An experimental study of fluidization behavior using flow visualization and image processing

    International Nuclear Information System (INIS)

    Laan, Flavio T. van der; Sefidvash, Farhang; Cornelius, Vanderli

    2000-01-01

    A program of experimental study of fluidization of heavy spherical pellets with water using image processing technique has been started in the Nuclear Engineering Department of the Federal University of Rio Grande do Sul. Fluidization for application in nuclear reactors requires very detailed knowledge of its behavior as the reactivity is closely dependent on the porosity of the fluidized bed. A small modular nuclear reactor concept with suspended core is under study. A modified version of the reactor involves the choice of is to make conical the shape of the reactor core to produce a non-fluctuating bed and consequently guarantee the dynamic stability of the reactor. A 5 mm diameter steel ball are fluidized with water in a conical Plexiglass tube. A pump circulate the water in a loop feeding the room temperature water from the tank into the fluidization system and returning it back to the tank. A controllable valve controls the flow velocity. A high velocity digital CCD camera captures the images of the pellets moving in the fluidized tube. At different flow velocities, the individual pellets can be tracked by processing the sequential frames. A DVT digital tape record stores the images and by acquisition through interface board into a microcomputer. A special program process the data later on. Different algorithm of image treatment determines the velocity fields of the pellets. The behavior of the pellets under different flow velocity and porosity are carefully studied. (author)

  12. Ground-based PIV and numerical flow visualization results from the Surface Tension Driven Convection Experiment

    Science.gov (United States)

    Pline, Alexander D.; Werner, Mark P.; Hsieh, Kwang-Chung

    1991-01-01

    The Surface Tension Driven Convection Experiment (STDCE) is a Space Transportation System flight experiment to study both transient and steady thermocapillary fluid flows aboard the United States Microgravity Laboratory-1 (USML-1) Spacelab mission planned for June, 1992. One of the components of data collected during the experiment is a video record of the flow field. This qualitative data is then quantified using an all electric, two dimensional Particle Image Velocimetry (PIV) technique called Particle Displacement Tracking (PDT), which uses a simple space domain particle tracking algorithm. Results using the ground based STDCE hardware, with a radiant flux heating mode, and the PDT system are compared to numerical solutions obtained by solving the axisymmetric Navier Stokes equations with a deformable free surface. The PDT technique is successful in producing a velocity vector field and corresponding stream function from the raw video data which satisfactorily represents the physical flow. A numerical program is used to compute the velocity field and corresponding stream function under identical conditions. Both the PDT system and numerical results were compared to a streak photograph, used as a benchmark, with good correlation.

  13. Visualization study of bubble behavior in a subcooled flow boiling channel under rolling motion

    International Nuclear Information System (INIS)

    Li, Shaodan; Tan, Sichao; Xu, Chao; Gao, Puzhen

    2015-01-01

    Highlights: • Bubble behavior under rolling motion is studied. • Bubble parameters oscillates appears even no flow fluctuations. • Effects of the rolling motion on bubbles are analyzed. - Abstract: Boiling heat transfer equipment in a vessel can be affected by the additional force which is generated by the rolling, swing and heaving motion of the vessel. Bubble behavior is very important for the research of boiling phenomenon. Bubble behavior under rolling motion condition is experimentally studied by using a high speed camera. The experiment is conducted in a subcooled flow boiling rectangular channel, and the cross section size of the channel is 2 mm × 40 mm. Two types of bubbles with large discrepancies in sliding and condensation behaviors can be observed in the captured images. The first type bubbles disappear quickly after generation and the slide distance is only a few times of bubble maximum diameter, while the second type bubbles can survive a longer time after leaving the nucleation site and slide for a long distance with the flowing fluid. Bubble characteristics under rolling motion are separately studied for different type bubbles based on the above reasons. The results show that the lifetime, maximum diameter, nucleation frequency and sliding velocity of the first type bubble are periodically fluctuated and the period is same with the rolling motion. The fluctuation intensity of the bubble lifetime and maximum diameter can be enhanced by the increase of the rolling amplitude. The peak value of bubble lifetime, maximum diameter, and nucleation frequency appears when the rolling platform plate rolls to the maximum positive angle, while opposite trend can be observed in the variation of bubble sliding velocity. In view of the characteristics of the second type bubbles, lifetime and maximum diameter are not measured. And the variation of nucleation frequency and sliding velocity of the second type bubbles under the effect of rolling motion is same

  14. The gelatinous extracellular matrix facilitates transport studies in kelp: visualization of pressure-induced flow reversal across sieve plates.

    Science.gov (United States)

    Knoblauch, Jan; Peters, Winfried S; Knoblauch, Michael

    2016-04-01

    In vascular plants, important questions regarding phloem function remain unanswered due to problems with invasive experimental procedures in this highly sensitive tissue. Certain brown algae (kelps; Laminariales) also possess sieve tubes for photoassimilate transport, but these are embedded in large volumes of a gelatinous extracellular matrix which isolates them from neighbouring cells. Therefore, we hypothesized that kelp sieve tubes might tolerate invasive experimentation better than their analogues in higher plants, and sought to establish Nereocystis luetkeana as an experimental system. The predominant localization of cellulose and the gelatinous extracellular matrix in N. luetkeana was verified using specific fluorescent markers and confocal laser scanning microscopy. Sieve tubes in intact specimens were loaded with fluorescent dyes, either passively (carboxyfluorescein diacetate; CFDA) or by microinjection (rhodamine B), and the movement of the dyes was monitored by fluorescence microscopy. Application of CFDA demonstrated source to sink bulk flow in N. luetkeana sieve tubes, and revealed the complexity of sieve tube structure, with branches, junctions and lateral connections. Microinjection into sieve elements proved comparatively easy. Pulsed rhodamine B injection enabled the determination of flow velocity in individual sieve elements, and the direct visualization of pressure-induced reversals of flow direction across sieve plates. The reversal of flow direction across sieve plates by pressurizing the downstream sieve element conclusively demonstrates that a critical requirement of the Münch theory is satisfied in kelp; no such evidence exists for tracheophytes. Because of the high tolerance of its sieve elements to experimental manipulation, N. luetkeana is a promising alternative to vascular plants for studying the fluid mechanics of sieve tube networks. © The Author 2016. Published by Oxford University Press on behalf of the Annals of Botany Company

  15. Internal structure visualization of flow and flame by process tomography and PLIF data fusion

    Science.gov (United States)

    Liu, J.; Liu, Shi; Sun, S.; Pan, X.; Schlaberg, I. H. I.

    2018-02-01

    To address the increasing demands on pollution control and energy saving, the study of low-emission and high-efficiency burners has been emphasized worldwide. Swirl-induced environmental burners (EV-burners), have notable features aligned with these requirements. In this study, an EV burner is investigated by both an ECT system and an OH-PLIF system. The aim is to detect the structure of a flame and obtain more information about the combustion process in an EV burner. 3D ECT sensitivity maps are generated for the measurement and OH-PLIF images are acquired in the same combustion zone as for the ECT measurements. The experimental images of a flame by ECT are in good agreement with the OH radical distribution pictures captured by OH-PLIF, which provide a mutual verification of the visualization method.

  16. Visualization of irrigant flow and cavitation induced by Er:YAG laser within a root canal model.

    Science.gov (United States)

    Matsumoto, Himeka; Yoshimine, Yoshito; Akamine, Akifumi

    2011-06-01

    Laser-activated irrigation (LAI) has recently been introduced as an innovative method for root canal irrigation. However, there is limited information about the cleaning mechanism of an Er:YAG laser. In this study, we visualized the action of laser-induced bubbles and fluid flow in vitro to better understand the physical mechanisms underlying LAI. An Er:YAG laser was equipped with a novel cone-shaped tip with a lateral emission rate of approximately 80%. Laser light was emitted at a pulse energy of 30, 50, or 70 mJ (output energy: 11, 18, or 26 mJ) and a repetition rate of 1 or 20 pulses per second, without air or water spray. Fluid flow dynamics in a root canal model were observed by using glass-bead tracers under a high-speed camera. Moreover, laser-induced bubble patterns were visualized in both free water and the root canal model. Tracers revealed high-speed motion of the fluid. A full cycle of expansion and implosion of vapor and secondary cavitation bubbles were clearly observed. In free water, the vapor bubble expanded for 220 microseconds, and its shape resembled that of an apple. In the root canal model, the vapor bubble expanded in a vertical direction along the canal wall, and bubble expansion continued for ≥700 microseconds. Furthermore, cavitation bubbles were created much more frequently in the canal model than in free water. These results suggest that the cleaning mechanism of an Er:YAG laser within the root canal might depend on rapid fluid motion caused by expansion and implosion of laser-induced bubbles. Copyright © 2011 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  17. Does manipulating the speed of visual flow in virtual reality change distance estimation while walking in Parkinson's disease?

    Science.gov (United States)

    Ehgoetz Martens, Kaylena A; Ellard, Colin G; Almeida, Quincy J

    2015-03-01

    Although dopaminergic replacement therapy is believed to improve sensory processing in PD, while delayed perceptual speed is thought to be caused by a predominantly cholinergic deficit, it is unclear whether sensory-perceptual deficits are a result of corrupt sensory processing, or a delay in updating perceived feedback during movement. The current study aimed to examine these two hypotheses by manipulating visual flow speed and dopaminergic medication to examine which influenced distance estimation in PD. Fourteen PD and sixteen HC participants were instructed to estimate the distance of a remembered target by walking to the position the target formerly occupied. This task was completed in virtual reality in order to manipulate the visual flow (VF) speed in real time. Three conditions were carried out: (1) BASELINE: VF speed was equal to participants' real-time movement speed; (2) SLOW: VF speed was reduced by 50 %; (2) FAST: VF speed was increased by 30 %. Individuals with PD performed the experiment in their ON and OFF state. PD demonstrated significantly greater judgement error during BASELINE and FAST conditions compared to HC, although PD did not improve their judgement error during the SLOW condition. Additionally, PD had greater variable error during baseline compared to HC; however, during the SLOW conditions, PD had significantly less variable error compared to baseline and similar variable error to HC participants. Overall, dopaminergic medication did not significantly influence judgement error. Therefore, these results suggest that corrupt processing of sensory information is the main contributor to sensory-perceptual deficits during movement in PD rather than delayed updating of sensory feedback.

  18. A high speed X-ray computed tomography scanner for multipurpose flow visualization and measurement

    International Nuclear Information System (INIS)

    Hori, K.; Kawanishi, K.; Hamamura, H.; Ochi, M.; Akai, M.

    2004-01-01

    The development of a high-speed X-ray computed tomography (CT) scanner has been performed in this study. The object of interest is in a transient or unsettled state, which makes the conventional CT scanner inappropriate. This X-ray CT system uses the concept of electronic switching of electron beams for X-ray generation to increase scanning speed. A continuous operation X-ray CT scanner sampling at about 4 milliseconds scanning rate has already been developed and applied for air-water two-phase flow measurement. The feasibility and the excellent performance of this CT scanner system are demonstrated and confirmed. (author)

  19. Visualization of the flow in a cylindrical container with a rotating disk

    Science.gov (United States)

    Imahoko, Ryoki; Kurakata, Hiroki; Sakakibara, Jun

    2017-11-01

    We studied a behavior of the flow in a cylindrical container with a rotating disk. The apparatus consists of a fixed cylindrical container of the inner diameter of 140 mm and height H, and a coaxial rotating disc with a diameter of 140 mm connected with a cylindrical shaft driven by an electrical motor. The radial gap between rotating disk and side wall is very slight distance. The height H is variable up to 100 mm. The velocity distribution in the container was measured by means of particle image velocimetry (PIV). The results of this experiments will be discussed at the conference.

  20. Visualizing the flow of evidence in network meta-analysis and characterizing mixed treatment comparisons.

    Science.gov (United States)

    König, Jochem; Krahn, Ulrike; Binder, Harald

    2013-12-30

    Network meta-analysis techniques allow for pooling evidence from different studies with only partially overlapping designs for getting a broader basis for decision support. The results are network-based effect estimates that take indirect evidence into account for all pairs of treatments. The results critically depend on homogeneity and consistency assumptions, which are sometimes difficult to investigate. To support such evaluation, we propose a display of the flow of evidence and introduce new measures that characterize the structure of a mixed treatment comparison. Specifically, a linear fixed effects model for network meta-analysis is considered, where the network estimates for two treatments are linear combinations of direct effect estimates comparing these or other treatments. The linear coefficients can be seen as the generalization of weights known from classical meta-analysis. We summarize properties of these coefficients and display them as a weighted directed acyclic graph, representing the flow of evidence. Furthermore, measures are introduced that quantify the direct evidence proportion, the mean path length, and the minimal parallelism of mixed treatment comparisons. The graphical display and the measures are illustrated for two published network meta-analyses. In these applications, the proposed methods are seen to render transparent the process of data pooling in mixed treatment comparisons. They can be expected to be more generally useful for guiding and facilitating the validity assessment in network meta-analysis. Copyright © 2013 John Wiley & Sons, Ltd.

  1. Schlieren Visualization of the Energy Addition by Multi Laser Pulse in Hypersonic Flow

    International Nuclear Information System (INIS)

    Oliveira, A. C.; Minucci, M. A. S.; Toro, P. G. P.; Chanes, J. B. Jr; Myrabo, L. N.

    2008-01-01

    The experimental results of the energy addition by multi laser pulse in Mach 7 hypersonic flow are presented. Two high power pulsed CO 2 TEA lasers (TEA1 5.5 J, TEA2 3.9 J) were assembled sharing the same optical cavity to generate the plasma upstream of a hemispherical model installed in the tunnel test section. The lasers can be triggered with a selectable time delay and in the present report the results obtained with delay between 30 μs and 80 μs are shown. The schlieren technique associated with a high speed camera was used to accomplish the influence of the energy addition in the mitigation of the shock wave formed on the model surface by the hypersonic flow. A piezoelectric pressure transducer was used to obtain the time history of the impact pressure at stagnation point of the model and the pressure reduction could be measured. The total recovery of the shock wave between pulses as well as the prolonged effect of the mitigation without recovery was observed by changing the delay

  2. Simulation and Visualization of Flows Laden with Cylindrical Nanoparticles in a Mixing Layer

    Directory of Open Access Journals (Sweden)

    Wenqian Lin

    2018-01-01

    Full Text Available The motion of cylindrical particles in a mixing layer is studied using the pseudospectral method and discrete particle model. The effect of the Stokes number and particle aspect ratio on the mixing and orientation distribution of cylindrical particles is analyzed. The results show that the rollup of mixing layer drives the particles to the edge of the vortex by centrifugal force. The cylindrical particles with the small Stokes number almost follow fluid streamlines and are mixed thoroughly, while those with the large Stokes number, centrifugalized and accumulated at the edge of the vortex, are poorly mixed. The mixing degree of particles becomes worse as the particle aspect ratio increases. The cylindrical particles would change their orientation under two torques and rotate around their axis of revolution aligned to the vorticity direction when the shear rate is low, while aligning on the flow-gradient plane beyond a critical shear rate value. More particles are oriented with the flow direction, and this phenomenon becomes more obvious with the decrease of the Stokes number and particle aspect ratio.

  3. Wired to freedom

    DEFF Research Database (Denmark)

    Jepsen, Kim Sune Karrasch; Bertilsson, Margareta

    2017-01-01

    dimension of life science through a notion of public politics adopted from the political theory of John Dewey. We show how cochlear implantation engages different social imaginaries on the collective and individual levels and we suggest that users share an imaginary of being “wired to freedom” that involves...... new access to social life, continuous communicative challenges, common practices, and experiences. In looking at their lives as “wired to freedom,” we hope to promote a wider spectrum of civic participation in the benefit of future life science developments within and beyond the field of Cochlear...

  4. Wiring and lighting

    CERN Document Server

    Kitcher, Chris

    2013-01-01

    Wiring and Lighting provides a comprehensive guide to DIY wiring around the home. It sets out the regulations and legal requirements surrounding electrical installation work, giving clear guidelines that will enable the reader to understand what electrical work they are able to carry out, and what the testing and certification requirements are once the work is completed. Topics covered include: Different types of circuits; Types of cables and cable installation under floors and through joists; Isolating, earthing and bonding; Accessory boxes and fixings; Voltage bands; Detailed advice on safe

  5. Electric wiring domestic

    CERN Document Server

    Coker, A J

    1992-01-01

    Electric Wiring: Domestic, Tenth Edition, is a clear and reliable guide to the practical aspects of domestic electric wiring. Intended for electrical contractors, installation engineers, wiremen and students, its aim is to provide essential up to date information on modern methods and materials in a simple, clear, and concise manner. The main changes in this edition are those necessary to bring the work into line with the 16th Edition of the Regulations for Electrical Installations issued by the Institution of Electrical Engineers. The book begins by introducing the basic features of domestic

  6. Modern wiring practice

    CERN Document Server

    Steward, W E

    2012-01-01

    Continuously in print since 1952, Modern Wiring Practice has now been fully revised to provide an up-to-date source of reference to building services design and installation in the 21st century. This compact and practical guide addresses wiring systems design and electrical installation together in one volume, creating a comprehensive overview of the whole process for contractors and architects, as well as electricians and other installation engineers. Best practice is incorporated throughout, combining theory and practice with clear and accessible explanation, all

  7. Gold nanoparticle-based lateral flow biosensor for rapid visual detection of Leishmania-specific DNA amplification products.

    Science.gov (United States)

    Toubanaki, Dimitra K; Athanasiou, Evita; Karagouni, Evdokia

    2016-08-01

    Leishmaniasis is a disease, caused by Leishmania parasites, which infect humans and animals, posing a major social and economic burden worldwide. The need for accurate and sensitive disease diagnosis led to the widespread adoption of PCR amplification. Detection of the amplification products (i.e. gel electrophoresis) require time-consuming protocols performed by trained personnel, with high cost. Aim of the present study was the simplification of PCR product detection, using a nucleic acid lateral flow, combined with functionalized gold nanoparticles. Amplification reactions targeting kinetoplastid DNA of Leishmania spp were performed on canine blood samples and a positive signal was formed as a red test zone. The visual detection was completed in 20min. Extensive optimization enabled the detection of 100fmol of target DNA. Clinical samples of infected dog blood were analyzed with high specificity. Overall, the proposed lateral flow biosensor can be considered an appealing alternative platform for Leishmania-specific amplification products detection with low cost and attractive simplicity. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Flow visualization and simulation of the filling process during injection molding

    DEFF Research Database (Denmark)

    Guerrier, Patrick; Tosello, Guido; Hattel, Jesper Henri

    2017-01-01

    To directly compare experimental moldings from an injection molding machine with simulations, a special mold has been produced with a glass window. The injection plane is perpendicular to the opening and closing planes, in order for the 55. mm thick glass window to be easily visible from the side....... These two had significant effects on the filling times and injection pressure calculated by the simulations. Other effects investigated included transient thermal management of the mold, pressure dependent viscosity and wall slip, but their effect were not remarkably large in this work. The obtained....... A high speed camera recording 500 frames per second was employed, and the mold had three thermocouples and two pressure sensors installed. The molded part is a 2. mm thick plate with a 0.5. mm thin section, which creates a characteristic V-shaped flow pattern. Two different materials were employed...

  9. Visualizing Current Flow at the Mesoscale in Disordered Assemblies of Touching Semiconductor Nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Qinyi; Guest, Jeffrey R. [Center; Thimsen, Elijah

    2017-07-12

    The transport of electrons through assemblies of nanocrystals is important to performance in optoelectronic applications for these materials. Previous work has primarily focused on single nanocrystals or transitions between pairs of nanocrystals. There is a gap in knowledge of how large numbers of nanocrystals in an assembly behave collectively, and how this collective behavior manifests at the mesoscale. In this work, the variable range hopping (VRH) transport of electrons in disordered assemblies of touching, heavily doped ZnO nanocrystals was visualized at the mesoscale as a function of temperature both theoretically, using the model of Skinner, Chen and Shklovskii (SCS), and experimentally, with conductive atomic force microscopy on ultrathin films only a few particle layers thick. Agreement was obtained between the model and experiments, with a few notable exceptions. The SCS model predicts that a single network within the nanocrystal assembly, comprised of sites connected by small resistances, dominates conduction - namely the optimum band from variable range hopping theory. However, our experiments revealed that in addition to the optimum band, there are subnetworks that appear as additional peaks in the resistance histogram of conductive atomic force microscopy (CAFM) maps. Furthermore, the connections of these subnetworks to the optimum band change in time, such that some subnetworks become connected to the optimum band while others become disconnected and isolated from the optimum band; this observation appears to be an experimental manifestation of the ‘blinking’ phenomenon in our images of mesoscale transport.

  10. Practical wiring in SI units

    CERN Document Server

    Miller, Henry A

    2013-01-01

    Practical Wiring, Volume 1 is a 13-chapter book that first describes some of the common hand tools used in connection with sheathed wiring. Subsequent chapters discuss the safety in wiring, cables, conductor terminations, insulating sheathed wiring, conductor sizes, and consumer's control equipments. Other chapters center on socket outlets, plugs, lighting subcircuits, lighting accessories, bells, and primary and secondary cells. This book will be very valuable to students involved in this field of interest.

  11. Wire EDM for Refractory Materials

    Science.gov (United States)

    Zellars, G. R.; Harris, F. E.; Lowell, C. E.; Pollman, W. M.; Rys, V. J.; Wills, R. J.

    1982-01-01

    In an attempt to reduce fabrication time and costs, Wire Electrical Discharge Machine (Wire EDM) method was investigated as tool for fabricating matched blade roots and disk slots. Eight high-strength nickel-base superalloys were used. Computer-controlled Wire EDM technique provided high quality surfaces with excellent dimensional tolerances. Wire EDM method offers potential for substantial reductions in fabrication costs for "hard to machine" alloys and electrically conductive materials in specific high-precision applications.

  12. Wire chambers: Trends and alternatives

    International Nuclear Information System (INIS)

    Regler, Meinhard

    1992-01-01

    The subtitle of this year's Vienna Wire Chamber Conference - 'Recent Trends and Alternative Techniques' - signalled that it covered a wide range of science and technology. While an opening Vienna talk by wire chamber pioneer Georges Charpak many years ago began 'Les funerailles des chambres a fils (the burial of wire chambers)', the contrary feeling this year was that wire chambers are very much alive!

  13. Visualization and measurement of gas-liquid metal two-phase flow with large density difference using thermal neutrons as microscopic probes

    International Nuclear Information System (INIS)

    Saito, Y.; Hibiki, T.; Mishima, K.; Nishihara, H.; Yamamoto, A.; Kanda, K.; Tobita, Y.; Konishi, K.; Matsubayashi, M.

    1998-01-01

    In a core melt accident of a fast breeder reactor there is a possibility of boiling of fuel-steel mixture in the containment pool. In relation to safety evaluation on severe accident, it is indispensable to evaluate the recriticality of melted core. Gas-liquid two-phase flow with a large density difference is formed due to the boiling of fuel-steel mixture. Although the large density difference may affect the basic characteristics of two-phase flow, little work has been performed so far on two-phase flow with large density difference has not been performed well. In this study, visualization and void fraction measurement of gas-liquid metal two-phase flow were performed by using neutron radiography. The effect of the large density difference between gas and liquid phases on the basic flow characteristics of two-phase flow was clarified. (author)

  14. Command Wire Sensor Measurements

    Science.gov (United States)

    2012-09-01

    CFAR Constant False Alarm Rate CWIE Command Wire-Improvised Explosive Device EMI Electromagnetic Induction GPR Ground Penetrating Radar...this, some type of constant false alarm rate ( CFAR ) receiver is required. CFAR automatically raises the threshold level to keep clutter echoes and

  15. Transport in quantum wires

    Indian Academy of Sciences (India)

    Transport in quantum wires. SIDDHARTHA LAL, SUMATHI RAO£ and DIPTIMAN SEN. Centre for Theoretical Studies, Indian Institute of Science, Bangalore 560 012, India. £ Harish-chandra Research Institute, Chhatnag Road, Jhusi, Allahabad 211 019, India. Abstract. With a brief introduction to one-dimensional channels ...

  16. Wire chamber conference

    International Nuclear Information System (INIS)

    Bartl, W.; Neuhofer, G.; Regler, M.

    1986-02-01

    This booklet contains program and the abstracts of the papers presented at the conference, most of them dealing with performance testing of various types of wire chambers. The publication of proceedings is planned as a special issue of 'Nuclear instruments and methods' later on. All abstracts are in English. An author index for the book of abstracts is given. (A.N.)

  17. Thermal performance in circular tube fitted with coiled square wires

    International Nuclear Information System (INIS)

    Promvonge, Pongjet

    2008-01-01

    The effects of wires with square cross section forming a coil used as a turbulator on the heat transfer and turbulent flow friction characteristics in a uniform heat flux, circular tube are experimentally investigated in the present work. The experiments are performed for flows with Reynolds numbers ranging from 5000 to 25,000. Two different spring coiled wire pitches are introduced. The results are also compared with those obtained from using a typical coiled circular wire, apart from the smooth tube. The experimental results reveal that the use of coiled square wire turbulators leads to a considerable increase in heat transfer and friction loss over those of a smooth wall tube. The Nusselt number increases with the rise of Reynolds number and the reduction of pitch for both circular and square wire coils. The coiled square wire provides higher heat transfer than the circular one under the same conditions. Also, performance evaluation criteria to assess the real benefits in using both coil wires of the enhanced tube are determined

  18. Flow characteristics over NACA4412 airfoil at low Reynolds number

    Directory of Open Access Journals (Sweden)

    Genç Mustafa Serdar

    2016-01-01

    Full Text Available In this study, the flow phenomena over NACA4412 were experimentally observed at various angle of attack and Reynolds number of 25000, 50000 and 75000, respectively. NACA4412 airfoil was manufactured at 3D printer and each tips of the wing were closed by using plexiglas to obtain two-dimensional airfoil. The experiments were conducted at low speed wind tunnel. The force measurement and hot-wire experiments were conducted to obtain data so that the flow phenomenon at the both top and bottom of the airfoil such as the flow separation and vortex shedding were observed. Also, smoke-wire experiment was carried out to visualize the surface flow pattern. After obtaining graphics from both force measurement experiment and hot-wire experiment compared with smoke wire experiment, it was noticed that there is a good coherence among the experiments. It was concluded that as Re number increased, the stall angle increased. And the separation bubble moved towards leading edge over the airfoil as the angle of attack increased.

  19. Radioactive Particle Tracking (RPT): The Powerful Industrial Radiotracer Techniques for Hydrodynamics and Flow Visualization Studies

    International Nuclear Information System (INIS)

    Mohd Amirul Syafiq Mohd Yunos

    2016-01-01

    Full text: Radioactive particle tracking (RPT) techniques have been widely applied in the field of chemical engineering, especially in hydrodynamics in multiphase reactors. This technique is widely used to monitor the motion of the flow inside a reactor by using a single radioactive particle tracer that is neutrally buoyant with respect to the phase is used as a tracker. The particle moves inside the volume of interest and its positions are determined by an array of scintillation detectors counting in coming photons. Particle position reconstruction algorithms have been traditionally used to map measured counts rate into the coordinates by solving a minimization problem between measured events and calibration data. RPT have been used to validate respective-scale CFD models to partial success. This presentation described an introduction to radioactive particle tracking and summarizing a history of such developments and the current state of this method in Malaysian Nuclear Agency, with a perspective towards the future and how these investigations may help scale-up developments. (author)

  20. Preliminary review of mass transfer and flow visualization studies and techniques relevant to the study of erosion-corrosion of reactor piping systems

    Energy Technology Data Exchange (ETDEWEB)

    Kuzay, T.M.; Halle, H.J.; Kasza, K.E.

    1988-06-01

    This report provides some background information on the failed piping at the Surry-2 reactor; a summary of pertinent literature on mass transfer in related geometries; and a description of methodologies for visualization and erosion rate measurements in laboratory model studies that can provide greater insight into the role of flow geometry in erosion-corrosion. 18 refs., 9 figs., 1 tab.

  1. Preliminary review of mass transfer and flow visualization studies and techniques relevant to the study of erosion-corrosion of reactor piping systems

    International Nuclear Information System (INIS)

    Kuzay, T.M.; Halle, H.J.; Kasza, K.E.

    1988-06-01

    This report provides some background information on the failed piping at the Surry-2 reactor; a summary of pertinent literature on mass transfer in related geometries; and a description of methodologies for visualization and erosion rate measurements in laboratory model studies that can provide greater insight into the role of flow geometry in erosion-corrosion. 18 refs., 9 figs., 1 tab

  2. Determination of temperature fluctuations at high temperature by hot-wire anemometry

    International Nuclear Information System (INIS)

    Gokalp, Iskender; Bisch, Christian

    1978-01-01

    Thermal sensibility coefficients of a hot-wire are experimentally obtained for flow temperatures attaining 400 0 C. The linear evolution of the voltage signal of the hot-wire with temperature, observed earlier for flow temperatures not surpassing 60 0 C, is confirmed up to 400 0 C. The coefficients are then used for determining, in a hot turbulent flow, the temperature fluctuation evolution with flow mean temperature [fr

  3. Visualization of the intracavitary blood flow in systemic ventricles of Fontan patients by contrast echocardiography using particle image velocimetry

    Directory of Open Access Journals (Sweden)

    Lampropoulos Konstantinos

    2012-02-01

    Full Text Available Abstract Background Flow patterns in univentricular hearts may have clinical value. Therefore, it is our objective to asses and characterize vortex flow patterns with Fontan circulation in comparison with healthy controls. Methods Twenty-three patients (8 Fontan and 15 normal patients underwent echocardiography with intravenous contrast agent (Sonovue® administration. Dedicated software was used to perform particle image velocimetry (PIV and to visualize intracavitary flow in the systemic ventricles of the patients. Vortex parameters including vortex depth, length, width, and sphericity index were measured. Vortex pulsatility parameters including relative strength, vortex relative strength, and vortex pulsation correlation were also measured. Results The data from this study show that it is feasible to perform particle velocimetry in Fontan patients. Vortex length (VL was significantly lower (0.51 ± 0.09 vs 0.65 ± 0.12, P = 0.010 and vortex width (VW (0.32 ± 0.06 vs 0.27 ± 0.04, p = 0.014, vortex pulsation correlation (VPC (0.26 ± 0.25 vs -0.22 ± 0.87, p = 0.05 were significantly higher in Fontan patients. Sphericity index (SI (1.66 ± 0.48 vs 2.42 ± 0.62, p = 0.005, relative strength (RS (0.77 ± 0.33 vs 1.90 ± 0.47, p = 0.0001, vortex relative strength (VRS (0.18 ± 0.13 vs 0.43 ± 0.14, p = 0.0001 were significantly lower in the Fontan patients group. Conclusions PIV using contrast echocardiography is feasible in Fontan patients. Fontan patients had aberrant flow patterns as compared to normal hearts in terms of position, shape and sphericity of the main vortices. The vortex from the Fontan group was consistently shorter, wider and rounder than in controls. Whether vortex characteristics are related with clinical outcome is subject to further investigation.

  4. Visual and Quantitative Assessment of Coronary Stenoses at Angiography Versus Fractional Flow Reserve: The Impact of Risk Factors.

    Science.gov (United States)

    Adjedj, Julien; Xaplanteris, Panagiotis; Toth, Gabor; Ferrara, Angela; Pellicano, Mariano; Ciccarelli, Giovanni; Floré, Vincent; Barbato, Emanuele; De Bruyne, Bernard

    2017-07-01

    The correlation between angiographic assessment of coronary stenoses and fractional flow reserve (FFR) is weak. Whether and how risk factors impact the diagnostic accuracy of angiography is unknown. We sought to evaluate the diagnostic accuracy of angiography by visual estimate and by quantitative coronary angiography when compared with FFR and evaluate the influence of risk factors (RF) on this accuracy. In 1382 coronary stenoses (1104 patients), percent diameter stenosis by visual estimation (DS VE ) and by quantitative coronary angiography (DS QCA ) was compared with FFR. Patients were divided into 4 subgroups, according to the presence of RFs, and the relationship between DS VE , DS QCA , and FFR was analyzed. Overall, DS VE was significantly higher than DS QCA ( P <0.0001); nonetheless, when examined by strata of DS, DS VE was significantly smaller than DS QCA in mild stenoses, although the reverse held true for severe stenoses. Compared with FFR, a large scatter was observed for both DS VE and DS QCA . When using a dichotomous FFR value of 0.80, C statistic was significantly higher for DS VE than for DS QCA (0.712 versus 0.640, respectively; P <0.001). C statistics for DS VE decreased progressively as RFs accumulated (0.776 for ≤1 RF, 0.750 for 2 RFs, 0.713 for 3 RFs and 0.627 for ≥4 RFs; P =0.0053). In addition, in diabetics, the relationship between FFR and angiographic indices was particularly weak (C statistics: 0.524 for DS VE and 0.511 for DS QCA ). Overall, DS VE has a better diagnostic accuracy than DS QCA to predict the functional significance of coronary stenosis. The predictive accuracy of angiography is moderate in patients with ≤1 RFs, but weakens as RFs accumulate, especially in diabetics. © 2017 American Heart Association, Inc.

  5. Niobium Titanium and Copper wire samples

    CERN Multimedia

    2009-01-01

    Two wire samples, both for carrying 13'000Amperes. I sample is copper. The other is the Niobium Titanium wiring used in the LHC magnets. The high magnetic fields needed for guiding particles around the Large Hadron Collider (LHC) ring are created by passing 12’500 amps of current through coils of superconducting wiring. At very low temperatures, superconductors have no electrical resistance and therefore no power loss. The LHC is the largest superconducting installation ever built. The magnetic field must also be extremely uniform. This means the current flowing in the coils has to be very precisely controlled. Indeed, nowhere before has such precision been achieved at such high currents. Magnet coils are made of copper-clad niobium–titanium cables — each wire in the cable consists of 9’000 niobium–titanium filaments ten times finer than a hair. The cables carry up to 12’500 amps and must withstand enormous electromagnetic forces. At full field, the force on one metre of magnet is comparable ...

  6. Can visual assessment of blood flow patterns by dynamic contrast-enhanced computed tomography distinguish between malignant and benign lung tumors?

    DEFF Research Database (Denmark)

    Harders, Stefan Walbom; Madsen, Hans Henrik; Nellemann, Hanne Marie

    2017-01-01

    with suspected lung cancer and a lung tumor on their chest radiograph were included for DCE-CT. The tumors were categorized using structured qualitative analysis of tumor blood flow patterns. Histopathology was used as reference standard. RESULTS: Using structured qualitative analysis of tumor blood flow...... using structured qualitative analysis of tumor blood flow patterns is accurate as well as somewhat reproducible. However, there are significant limitations to DCE-CT.......BACKGROUND: Dynamic contrast-enhanced computed tomography (DCE-CT) is a tool, which, in theory, can quantify the blood flow and blood volume of tissues. In structured qualitative analysis, parametric color maps yield a visual impression of the blood flow and blood volume within the tissue being...

  7. Dental Arch Wire

    Science.gov (United States)

    1979-01-01

    Straightening teeth is an arduous process requiring months, often years, of applying corrective pressure by means of arch wires-better known as brace-which may have to be changed several times in the course of treatment. A new method has been developed by Dr. George Andreasen, orthodontist and dental scientist at the University of Iowa. The key is a new type of arch wire material, called Nitinol, with exceptional elasticity which helps reduce the required number of brace changes. An alloy of nickel and titanium, Nitinol was originally developed for aerospace applications by the Naval Ordnance Laboratory, now the Naval Surface Weapons Laboratory, White Oaks, Maryland. NASA subsequently conducted additional research on the properties of Nitinol and on procedures for processing the metal.

  8. Quantification and visualization of injury and regeneration to the ciliated epithelium using quantitative flow imaging and speckle variance optical coherence tomography (Conference Presentation)

    Science.gov (United States)

    Gamm, Ute A.; Huang, Brendan K.; Mis, Emily K.; Khokha, Mustafa K.; Choma, Michael A.

    2017-04-01

    Mucociliary flow is an important defense mechanism in the lung to remove inhaled pathogens and pollutants. A disruption of ciliary flow can lead to respiratory infections. Even though patients in the intensive care unit (ICU) either have or are very susceptible to respiratory infections, mucociliary flow is not well understood in the ICU setting. We recently demonstrated that hyperoxia, a consequence of administering supplemental oxygen to a patient in respiratory failure, can lead to a significant reduction of cilia-driven fluid flow in mouse trachea. There are other factors that are relevant to ICU medicine that can damage the ciliated tracheal epithelium, including inhalation injury and endotracheal tube placement. In this study we use two animal models, Xenopus embryo and ex vivo mouse trachea, to analyze flow defects in the injured ciliated epithelium. Injury is generated either mechanically with a scalpel or chemically by calcium chloride (CaCl2) shock, which efficiently but reversibly deciliates the embryo skin. In this study we used optical coherence tomography (OCT) and particle tracking velocimetry (PTV) to quantify cilia driven fluid flow over the surface of the Xenopus embryo. We additionally visualized damage to the ciliated epithelium by capturing 3D speckle variance images that highlight beating cilia. Mechanical injury disrupted cilia-driven fluid flow over the injured site, which led to a reduction in cilia-driven fluid flow over the whole surface of the embryo (n=7). The calcium chloride shock protocol proved to be highly effective in deciliating embryos (n=6). 3D speckle variance images visualized a loss of cilia and cilia-driven flow was halted immediately after application. We also applied CaCl2-shock to cultured ex vivo mouse trachea (n=8) and found, similarly to effects in Xenopus embryo, an extensive loss of cilia with resulting cessation of flow. We investigated the regeneration of the ciliated epithelium after an 8 day incubation period

  9. Flow evolution of a turbulent submerged two-dimensional rectangular free jet of air. Average Particle Image Velocimetry (PIV) visualizations and measurements

    International Nuclear Information System (INIS)

    Gori, Fabio; Petracci, Ivano; Angelino, Matteo

    2013-01-01

    Highlights: • Zone of flow establishment contains a newly identified undisturbed region of flow. • In the undisturbed region of flow the velocity profile is similar to the exit one. • In undisturbed region of flow the height of average PIV visualizations is constant. • In the undisturbed region of flow the turbulence on the centerline is equal to exit. • Length of undisturbed region of flow decreases with Reynolds number increase. -- Abstract: The paper presents average flow visualizations and measurements, obtained with the Particle Image Velocimetry (PIV) technique, of a submerged rectangular free jet of air in the range of Reynolds numbers from Re = 35,300 to Re = 2200, where the Reynolds number is defined according to the hydraulic diameter of a rectangular slot of height H. According to the literature, just after the exit of the jet there is a zone of flow, called zone of flow establishment, containing the region of mixing fluid, at the border with the stagnant fluid, and the potential core, where velocity on the centerline maintains a value almost equal to the exit one. After this zone is present the zone of established flow or fully developed region. The goal of the paper is to show, with average PIV visualizations and measurements, that, before the zone of flow establishment is present a region of flow, never mentioned by the literature and called undisturbed region of flow, with a length, L U , which decreases with the increase of the Reynolds number. The main characteristics of the undisturbed region is the fact that the velocity profile maintains almost equal to the exit one, and can also be identified by a constant height of the average PIV visualizations, with length, L CH , or by a constant turbulence on the centerline, with length L CT . The average PIV velocity and turbulence measurements are compared to those performed with the Hot Film Anemometry (HFA) technique. The average PIV visualizations show that the region of constant height has

  10. Vienna Wire Chamber Conference

    International Nuclear Information System (INIS)

    Anon.

    1983-01-01

    After those of 1978 and 1980, a third Wire Chamber Conference was held from 15-18 February in the Technical University of Vienna. Eight invited speakers covered the field from sophisticated applications in biology and medicine, via software, to the state of the art of gaseous detectors. In some forty other talks the speakers tackled in more detail the topics of gaseous detectors, calorimetry and associated electronics and software

  11. Acoustic, Visual and Spatial Indicators for the Description of the Soundscape of Waterfront Areas with and without Road Traffic Flow

    Directory of Open Access Journals (Sweden)

    Virginia Puyana Romero

    2016-09-01

    Full Text Available High flows of road traffic noise in urban agglomerations can negatively affect the livability of squares and parks located at the neighborhood, district and city levels, therefore pushing anyone who wants to enjoy calmer, quieter areas to move to non-urban parks. Due to the distances between these areas, it is not possible to go as regularly as would be necessary to satisfy any needs. Even if cities are densely populated, the presence of a sea or riverfront offers the possibility of large restorative places, or at least with potential features for being the natural core of an urban nucleus after a renewal intervention. This study evaluates the soundscape of the Naples waterfront, presenting an overview of the most significant visual, acoustic and spatial factors related to the pedestrian areas, as well as areas open to road traffic and others where the road traffic is limited. The factors were chosen with feature selection methods and artificial neural networks. The results show how certain factors, such as the perimeter between the water and promenade, the visibility of the sea or the density of green areas, can affect the perception of the soundscape quality in the areas with road traffic. In the pedestrian areas, acoustic factors, such as loudness or the A-weighted sound level exceeded for 10% of the measurement duration (LA10, influence the perceived quality of the soundscape.

  12. Acoustic, Visual and Spatial Indicators for the Description of the Soundscape of Waterfront Areas with and without Road Traffic Flow.

    Science.gov (United States)

    Puyana Romero, Virginia; Maffei, Luigi; Brambilla, Giovanni; Ciaburro, Giuseppe

    2016-09-21

    High flows of road traffic noise in urban agglomerations can negatively affect the livability of squares and parks located at the neighborhood, district and city levels, therefore pushing anyone who wants to enjoy calmer, quieter areas to move to non-urban parks. Due to the distances between these areas, it is not possible to go as regularly as would be necessary to satisfy any needs. Even if cities are densely populated, the presence of a sea or riverfront offers the possibility of large restorative places, or at least with potential features for being the natural core of an urban nucleus after a renewal intervention. This study evaluates the soundscape of the Naples waterfront, presenting an overview of the most significant visual, acoustic and spatial factors related to the pedestrian areas, as well as areas open to road traffic and others where the road traffic is limited. The factors were chosen with feature selection methods and artificial neural networks. The results show how certain factors, such as the perimeter between the water and promenade, the visibility of the sea or the density of green areas, can affect the perception of the soundscape quality in the areas with road traffic. In the pedestrian areas, acoustic factors, such as loudness or the A-weighted sound level exceeded for 10% of the measurement duration (LA10), influence the perceived quality of the soundscape.

  13. Rapid and visual detection ofMycobacterium aviumsubsp.paratuberculosisby recombinase polymerase amplification combined with a lateral flow dipstick.

    Science.gov (United States)

    Guimin, Zhao; Hongmei, Wang; Peili, Hou; Chengqiang, He; Hongbin, He

    2017-12-28

    Paratuberculosis (Johne's disease) is a chronic debilitating disease of domestic and wild ruminants. Quick diagnosis could facilitate control; however widespread point-of-care testing is infrequently done due to the lack of robust method. Isothermal recombinase polymerase amplification (RPA) technique has emerged as a novel DNA amplify assay for use in rapid diagnosis. Here, an RPA combined with lateral flow dipstick (LFD) assay was developed to estimate DNA from M.paratuberculosis . First, the specificity and sensitivity of RPA-nfo primer and probe sets were assessed. The assay successfully detected M.paratuberculosis DNA in 30 minutes at 39°C, limit of detection up to eight copies per reaction, which was equivalent with the real-time quantitative PCR (qPCR) assay. The assay was specific, as it did not amplify genomes from five other Mycobacterium and five pathogenic enteric bacteria. Then, 612 clinical samples (320 fecal and 292 serum) were assessed by RPA-LFD, qPCR and ELISA assays respectively, also the established RPA-LFD assay yielded 100% sensitivity, 97.63% specificity, and 98.44% concordance rate with the qPCR. This is the first report utilizing an RPA-LFD assay to visual and rapid detect M.paratuberculosis . Our results show this assay should be a useful method for the diagnosis of paratuberculosis in resource constrained setting.

  14. Rapid and visual detection of Mycobacterium tuberculosis complex using recombinase polymerase amplification combined with lateral flow strips.

    Science.gov (United States)

    Ma, Qinglin; Liu, Houming; Ye, Feidi; Xiang, Guangxin; Shan, Wanshui; Xing, Wanli

    2017-12-01

    To definitively diagnose active pulmonary Tuberculosis (TB), Mycobacterium tuberculosis complex (MTBC) bacilli must be identified within clinical specimens from patients. In this study, we introduced a rapid and visual detection method of MTBC using recombinase polymerase amplification (RPA) combined with lateral flow (LF) strips. The LF-RPA assay, read results with naked eyes, could detect as few as 5 genome copies of M. tuberculosis H37Rv (ATCC 27294) per reaction and had no cross-reactions with other control bacteria even using excessive amount of template DNA. The system could work well at a broad range of temperature 25-45 °C and reach detectable level even within 5 min. When testing a total of 137 clinical specimens, the sensitivity and specificity of the LF-RPA assay were 100% (95% CI: 95.94%-100%) and 97.92% (95% CI: 88.93%-99.95%), respectively, compared to culture identification method. Therefore, the LF-RPA system we have demonstrated is a rapid, simple, robust method for MTBC detection which, subject to the availability of a suitable sample extraction method, has the potentiality to diagnose TB at the point-of-care testing. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Dual wire welding torch and method

    Science.gov (United States)

    Diez, Fernando Martinez; Stump, Kevin S.; Ludewig, Howard W.; Kilty, Alan L.; Robinson, Matthew M.; Egland, Keith M.

    2009-04-28

    A welding torch includes a nozzle with a first welding wire guide configured to orient a first welding wire in a first welding wire orientation, and a second welding wire guide configured to orient a second welding wire in a second welding wire orientation that is non-coplanar and divergent with respect to the first welding wire orientation. A method of welding includes moving a welding torch with respect to a workpiece joint to be welded. During moving the welding torch, a first welding wire is fed through a first welding wire guide defining a first welding wire orientation and a second welding wire is fed through a second welding wire guide defining a second welding wire orientation that is divergent and non-coplanar with respect to the first welding wire orientation.

  16. The enhanced information flow from visual cortex to frontal area facilitates SSVEP response: evidence from model-driven and data-driven causality analysis

    Science.gov (United States)

    Li, Fali; Tian, Yin; Zhang, Yangsong; Qiu, Kan; Tian, Chunyang; Jing, Wei; Liu, Tiejun; Xia, Yang; Guo, Daqing; Yao, Dezhong; Xu, Peng

    2015-10-01

    The neural mechanism of steady-state visual evoked potentials (SSVEP) is still not clearly understood. Especially, only certain frequency stimuli can evoke SSVEP. Our previous network study reveals that 8 Hz stimulus that can evoke strong SSVEP response shows the enhanced linkage strength between frontal and visual cortex. To further probe the directed information flow between the two cortex areas for various frequency stimuli, this paper develops a causality analysis based on the inversion of double columns model using particle swarm optimization (PSO) to characterize the directed information flow between visual and frontal cortices with the intracranial rat electroencephalograph (EEG). The estimated model parameters demonstrate that the 8 Hz stimulus shows the enhanced directional information flow from visual cortex to frontal lobe facilitates SSVEP response, which may account for the strong SSVEP response for 8 Hz stimulus. Furthermore, the similar finding is replicated by data-driven causality analysis. The inversion of neural mass model proposed in this study may be helpful to provide the new causality analysis to link the physiological model and the observed datasets in neuroscience and clinical researches.

  17. Retrobulbar blood flow and visual organ function disturbance in the course of giant cell arteritis coexisting with optic disc drusen – a case repor

    Directory of Open Access Journals (Sweden)

    Monika Modrzejewska

    2013-09-01

    Full Text Available The review presented ophthalmologic syndrome connected with visual organ function disorder in giant cell arteritis patient concomitant with optic nerve disc drusen. Diagnostic difficulties were shown in relation to incidence of both similar ophthalmic symptoms as well as interpretation of specialists examinations results (pattern visual evoked potential test, scanning laser polarimetry, and perimetric tests – kinetic and static. Apart from ophthalmic investigations, significant role of radiological examinations was considered, especially color Doppler ultrasonography of retrobulbar circulation – optic artery, central retinal artery, long posterior ciliary arteries. Adequate interpretation of results seems to be crucial to establish scheme and timing of treatment in case of co-occurrence of the abovementioned disorders. In the presented case early implementation of steroid therapy resulted in improvement of blood flow parameters and the regression of ophthalmological complaints. Visual field deficiency in kinetic perimetry, reduced wave amplitude p100 in visual evoked potential test as well as decrease in number of optic nerve fibers in optic nerve disc region in scanning laser polarimetry exam can be diagnostic features in diagnosis of visual impairment in the course of giant cell arteritis and optic nerve disc drusen. Evaluation of blood flow velocity parameters in retrobulbar arteries in color Doppler ultrasonography is the most valuable screening in monitoring ophthalmic dysregulation in presented disorders.

  18. Communication and wiring in the cortical connectome.

    Science.gov (United States)

    Budd, Julian M L; Kisvárday, Zoltán F

    2012-01-01

    In cerebral cortex, the huge mass of axonal wiring that carries information between near and distant neurons is thought to provide the neural substrate for cognitive and perceptual function. The goal of mapping the connectivity of cortical axons at different spatial scales, the cortical connectome, is to trace the paths of information flow in cerebral cortex. To appreciate the relationship between the connectome and cortical function, we need to discover the nature and purpose of the wiring principles underlying cortical connectivity. A popular explanation has been that axonal length is strictly minimized both within and between cortical regions. In contrast, we have hypothesized the existence of a multi-scale principle of cortical wiring where to optimize communication there is a trade-off between spatial (construction) and temporal (routing) costs. Here, using recent evidence concerning cortical spatial networks we critically evaluate this hypothesis at neuron, local circuit, and pathway scales. We report three main conclusions. First, the axonal and dendritic arbor morphology of single neocortical neurons may be governed by a similar wiring principle, one that balances the conservation of cellular material and conduction delay. Second, the same principle may be observed for fiber tracts connecting cortical regions. Third, the absence of sufficient local circuit data currently prohibits any meaningful assessment of the hypothesis at this scale of cortical organization. To avoid neglecting neuron and microcircuit levels of cortical organization, the connectome framework should incorporate more morphological description. In addition, structural analyses of temporal cost for cortical circuits should take account of both axonal conduction and neuronal integration delays, which appear mostly of the same order of magnitude. We conclude the hypothesized trade-off between spatial and temporal costs may potentially offer a powerful explanation for cortical wiring patterns.

  19. Skin-friction measurements with hot-wire gages

    Science.gov (United States)

    Houdeville, R.; Juillen, J. C.; Cousteix, J.

    1983-11-01

    The development of two hot-wire gauges for implantation in wind-tunnel models and their application to the measurement of skin-friction phenomena are reported. The measurement principle is explained; the design and calibration of a single-wire gage containing a thermocouple for temperature determination (Cousteix and Juillen, 1982-1983) are summarized; and sample results for 2D and 3D flows with positive pressure gradients are shown. An advanced design employing a thin hot film deposited on an 80-micron-diameter quartz fiber extending into a 1-mm-sq 0.8-mm-deep cavity is characterized and demonstrated on a pulsed flow on a flat plate, Tollmien-Schlichting waves, and a turbulent boundary layer. Two cold-wire temperature sensors are added to this gage to permit detection of the skin of the skin friction in the separated flow over a cylinder.

  20. Organization Of The Drosophila Larval Visual Circuit

    OpenAIRE

    Fritsch, Pauline; Gendre, Nanae; Maier, Larisa; Fetter, Rick; Schneider-Mizell, Casey; Truman, James; Zlatic, Marta; Cardona, Albert; Larderet, Ivan; Sprecher, Simon

    2017-01-01

    Visual systems transduce, process and transmit light-dependent environmental cues. Computation of visual features depends on the types of photoreceptor neurons (PR) present, the organization of the eye and the wiring of the underlying neural circuit. Here, we describe the circuit architecture of the visual system of Drosophila larvae by mapping the synaptic wiring diagram and neurotransmitters. By contacting different targets, the two larval PR-subtypes create parallel circuits potentially un...

  1. Two-light circuit continuously monitors ac ground, phase, and neutral wires

    Science.gov (United States)

    Mee, R. W.

    1966-01-01

    Two-transformer, two-lamp circuit monitors the continuity of ac ground, neutral, and phase wires. The circuit gives different visual indications if any one of the three lines should become open circuited.

  2. Metering Wheel-Wire Track Wire Boom Deployment Mechanism

    Science.gov (United States)

    Granoff, Mark S.

    2014-01-01

    The NASA MMS Spin Plane Double Probe (SDP) Deployer utilizes a helical path, rotating Metering Wheel and a spring loaded Wire "Holding" Track to pay out a "fixed end" 57 meter x 1.5 mm diameter Wire Boom stored between concentric storage cylinders. Unlike rotating spool type storage devices, the storage cylinders remain stationary, and the boom wire is uncoiled along the length of the cylinder via the rotation of the Metering Wheel. This uncoiling action avoids the need for slip-ring contacts since the ends of the wire can remain stationary. Conventional fixed electrical connectors (Micro-D type) are used to terminate to operational electronics.

  3. Recombinase polymerase amplification combined with a lateral flow dipstick for rapid and visual detection of Schistosoma japonicum.

    Science.gov (United States)

    Sun, Kui; Xing, Weiwei; Yu, Xinling; Fu, Wenliang; Wang, Yuanyuan; Zou, Minji; Luo, Zhihong; Xu, Donggang

    2016-08-31

    With the continuous decline in prevalence and intensity of Schistosoma japonicum infection in China, more accurate and sensitive methods suitable for field detection become much needed for schistosomiasis control. Here, a novel rapid and visual detection method based on the combination of recombinase polymerase amplification (RPA) and lateral flow dipstick (LFD) was developed to detect S. japonicum DNA in fecal samples. The LFD-RPA assay targeting SjR2 could detect 5 fg S. japonicum DNA, which was identical to qPCR and real-time RPA assay, and showed no cross-reaction with other parasites. The detection could be finished within 15-20 min at a wide temperature range (25-45 °C), and the results could be visualized by naked eye. The diagnostic validity of LFD-RPA assay was further assessed with 14 fecal samples of infected patients diagnosed by Kato-Katz method and 31 fecal samples of healthy persons, and compared with that of Enzyme-linked immunosorbent assay (ELSIA) and Indirect Hemagglutination Assay (IHA). The LFD-RPA assay showed 92.68 % sensitivity, 100 % specificity and excellent diagnostic agreement with the gold standard Kato-Katz test (k = 0.947, Z = 6.36, P < 0.001), whereas ELISA showed 85.71 % sensitivity, 93.55 % specificity, and substantial diagnostic agreement (k = 0.793, Z = 5.31, P < 0.001), and IHA showed 78.57 % sensitivity, 83.87 % specificity, and moderate diagnostic agreement (k = 0.600, Z = 4.05, P < 0.001), indicating that the LFD-RPA was much better than the traditional methods. The LFD-RPA assay established by us is a sensitive, specific, rapid and convenient method for the diagnosis of schistosomiasis, and shows a great potency in field application.

  4. The role of temperature in copper wire drawing

    Science.gov (United States)

    Noseda, Corrado

    Wire is produced by drawing, which consists of pulling a rod of the material to be processed through a series of funnel-shaped holes, or dies, of decreasing size. Drawing involves plastic deformation and friction within the contact zone between the wire and the die. These occurrences contribute to the generation of heat in the wire, which may affect its final properties. High drawing speeds and the use of several dies in one production line---to improve productivity---may accentuate heating to a point where recrystallization of the wire material sets in and its properties are affected. Also, excessive temperatures may lead to an accelerated deterioration of the lubricants used, to the point that the optimum lubrication mechanism is no longer prevailing, with consequent negative effects on the surface quality of the processed wire. A number of analytical models estimating the temperature increase in drawn wires, due to the dissipation of plastic deformation energy and to the friction between wire and die, were reviewed. While all models agree on the contribution of plastic deformation to heating, some discrepancies exist as to the effect of friction. The original treatment, developed in Germany in 1943, provided slightly higher peak temperature values than other models for the parameters used in the calculations, which are simulative of commercial practice on copper wire. A finite element study conducted in the framework of this research showed that the axial heat flow within the wire, which was assumed to be negligible in the reviewed analytical theories, could, in fact, not be disregarded. It also showed that a purely isothermal process cannot be obtained in practice, whatever adjustment of the process parameters is undertaken. In order to unequivocally correlate the effects of heating on the properties of wire and the temperature it experiences during commercial drawing, electrolytic tough pitch copper wire was drawn under independently controlled, quasi

  5. Wire communication engineering

    International Nuclear Information System (INIS)

    Son, Byeong Tae

    1997-02-01

    This book describes wire telecommunication engineering/ It is divided into eleven chapter, which deal with Introduction with development of telecommunication, voice and sound wave and communication network, Telegraphy with summary of telegraphy, code of telegraphy, communication speed, morse and telex, Telephone on structure, circuit and image telephone, Traffic on telecommunication traffic, transmission of line about theory, cable line and loaded cable, carrier communication with carrier telegraphy and carrier telephone, optical communication with types, structure, specialty, laser and equipment, DATA, Mobile telecommunication on summary, mobile telephone, radio paging and digital mobile telecommunication, ISDN with channel of ISDN, and service of ISDN, and design of telecommunication.

  6. Wiring regulations in brief

    CERN Document Server

    Tricker, Ray

    2012-01-01

    Tired of trawling through the Wiring Regs?Perplexed by Part P?Confused by cables, conductors and circuits?Then look no further! This handy guide provides an on-the-job reference source for Electricians, Designers, Service Engineers, Inspectors, Builders, Students, DIY enthusiastsTopic-based chapters link areas of working practice - such as cables, installations, testing and inspection, special locations - with the specifics of the Regulations themselves. This allows quick and easy identification of the official requirements relating to the situati

  7. The Micro Wire Detector

    Energy Technology Data Exchange (ETDEWEB)

    Adeva, B.; Gomez, F.; Pazos, A.; Pfau, R.; Plo, M. E-mail: maximo.plo@cern.ch; Rodriguez, J.M.; Vazquez, P.; Labbe, J.C

    1999-10-11

    We present the performance of a new proportional gas detector. Its geometry consists of a cathode plane with 70x70 {mu}m{sup 2} apertures, crossed by 25 {mu}m anode strips to which it is attached by 50 {mu}m kapton spacers. In the region where the avalanche takes place, the anode strips are suspended in the gas mixture as in a standard wire chamber. This detector exhibits high rate capability and large gains, introducing very little material. (author)

  8. Epitaxial semiconductor quantum wires.

    Science.gov (United States)

    Wu, J; Chen, Y H; Wang, Z G

    2008-07-01

    The investigation on the direct epitaxial quantum wires (QWR) using MBE or MOCVD has been persuited for more than two decades, more lengthy in history as compared with its quantum dot counterpart. Up to now, QWRs with various structural configurations have been produced with different growth methods. This is a reviewing article consisting mainly of two parts. The first part discusses QWRs of various configurations, together with laser devices based on them, in terms of the two growth mechanisms, self-ordering and self-assembling. The second part gives a brief review of the electrical and optical properties of QWRs.

  9. Relationship between visual prostate score (VPSS and maximum flow rate (Qmax in men with urinary tract symptoms

    Directory of Open Access Journals (Sweden)

    Mazhar A. Memon

    2016-04-01

    Full Text Available ABSTRACT Objective: To evaluate correlation between visual prostate score (VPSS and maximum flow rate (Qmax in men with lower urinary tract symptoms. Material and Methods: This is a cross sectional study conducted at a university Hospital. Sixty-seven adult male patients>50 years of age were enrolled in the study after signing an informed consent. Qmax and voided volume recorded at uroflowmetry graph and at the same time VPSS were assessed. The education level was assessed in various defined groups. Pearson correlation coefficient was computed for VPSS and Qmax. Results: Mean age was 66.1±10.1 years (median 68. The mean voided volume on uroflowmetry was 268±160mL (median 208 and the mean Qmax was 9.6±4.96mLs/sec (median 9.0. The mean VPSS score was 11.4±2.72 (11.0. In the univariate linear regression analysis there was strong negative (Pearson's correlation between VPSS and Qmax (r=848, p<0.001. In the multiple linear regression analyses there was a significant correlation between VPSS and Qmax (β-http://www.blogapaixonadosporviagens.com.br/p/caribe.html after adjusting the effect of age, voided volume (V.V and level of education. Multiple linear regression analysis done for independent variables and results showed that there was no significant correlation between the VPSS and independent factors including age (p=0.27, LOE (p=0.941 and V.V (p=0.082. Conclusion: There is a significant negative correlation between VPSS and Qmax. The VPSS can be used in lieu of IPSS score. Men even with limited educational background can complete VPSS without assistance.

  10. Correlation Between the Peak Nasal Inspiratory Flow and the Visual Analogue Scale Before and After Using a Nasal Decongestant

    Directory of Open Access Journals (Sweden)

    Costa, Everardo Andrade da

    2011-04-01

    Full Text Available Introduction: The measurement of the peak nasal inspiratory flow (PNIF is easily and swiftly obtained, but hardly spread in Brazil though. On the other hand, the visual analogue scale (VAS for nasal obstruction is a subjective measurement that can also be used. Objective: To evaluate the correlation between PNIF and VAS for nasal obstruction before and after occurring a change in the nasal patency caused by the topic vasoconstriction. Study outline: Non-randomized clinical and experimental study. Method: 60 volunteers, including patients, doctors, nurses and administrative assistants of the institution were submitted to PNIF and VAS examinations before and after the nasal vasoconstriction with oxymetazoline chloride at 0.05%. Results: The average value found for pre-vasoconstriction VAS was 4.1 and, for post-vasoconstriction, it was 2. This represented a 44% range between the measurements. With regard to PNIF values, the average found when measuring the vasoconstriction was 151 l/min and 178 l/min after vasoconstriction, showing a 20% increase. At the pre-vasoconstrictor moment, increasing a point in average VAS value corresponds to a 3.8% decrease in average PNIF value. In the post-vasoconstriction, each increase of a point in average VAS value corresponds to a 4.5% decrease in average PNIF value. Conclusion: There was an important correlation between the objective measurement of the nasal obstruction through PNIF and the subjective measurement provided by VAS before nasal vasoconstriction. A similar correlation could also be observed after using the decongestant.

  11. 46 CFR 111.60-11 - Wire.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Wire. 111.60-11 Section 111.60-11 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Wiring Materials and Methods § 111.60-11 Wire. (a) Wire must be in an enclosure. (b) Wire must be...

  12. Four-Dimensional Visualization of Thoracic Blood Flow by Magnetic Resonance Imaging in a Patient Following Correction of Transposition of the Great Arteries (d-TGA) and Uncorrected Aortic Coarctation

    Energy Technology Data Exchange (ETDEWEB)

    Ley-Zaporozhan, J.; Rengier, F.; Tengg-Kobligk, H. von (German Cancer Research Center (DKFZ) Heidelberg, Radiology, Heidelberg (Germany)); Ley, S.; Unterhinninghofen, R. (Univ. of Karlsruhe, Inst. of Computer Science and Engineering, Karlsruhe (Germany)); Markl, M. (Dept. of Diagnostic Radiology, Medical Physics, Univ. Hospital Freiburg, Freiburg (Germany)); Eichhorn, J. (Univ. Hospital, Pediatric Cardiology, Heidelberg (Germany))

    2009-10-15

    Recent advances in flow-sensitive magnetic resonance imaging (MRI) and data analysis allow for comprehensive noninvasive three-dimensional (3D) visualization of complex blood flow. Electrocardiogram (ECG)-gated three-directional (3dir) flow measurements were employed to assess and visualize time-resolved 3D blood flow in the pulmonary arteries (PA) and thoracic aorta. We present findings in a juvenile patient with surgically corrected transposition of the great arteries (d-TGA) and aortic coarctation. For the first time, the complex flow patterns in the PA following d-TGA were visualized. Morphologically, a slight asymmetry of the PA was found, with considerable impact on vascular hemodynamics, resulting in diastolic retrograde flow in the larger vessel and diastolic filling of the smaller PA. Additionally, increased flow to the supraaortic vessels was found due to aortic coarctation.

  13. Flow

    DEFF Research Database (Denmark)

    Knoop, Hans Henrik

    2006-01-01

    FLOW. Orden i hovedet på den fede måde Oplevelsesmæssigt er flow-tilstanden kendetegnet ved at man er fuldstændig involveret, fokuseret og koncentreret; at man oplever stor indre klarhed ved at vide hvad der skal gøres, og i hvilket omfang det lykkes; at man ved at det er muligt at løse opgaven...

  14. Corrosion of Wires on Wooden Wire-Bound Packaging Crates

    Science.gov (United States)

    Samuel L. Zelinka; Stan Lebow

    2015-01-01

    Wire-bound packaging crates are used by the US Army to transport materials. Because these crates may be exposed to harsh environments, they are dip-treated with a wood preservative (biocide treatment). For many years, zinc-naphthenate was the most commonly used preservative for these packaging crates and few corrosion problems with the wires were observed. Recently,...

  15. Improved superconducting magnet wire

    Science.gov (United States)

    Schuller, I.K.; Ketterson, J.B.

    1983-08-16

    This invention is directed to a superconducting tape or wire composed of alternating layers of copper and a niobium-containing superconductor such as niobium of NbTi, Nb/sub 3/Sn or Nb/sub 3/Ge. In general, each layer of the niobium-containing superconductor has a thickness in the range of about 0.05 to 1.5 times its coherence length (which for Nb/sub 3/Si is 41 A) with each copper layer having a thickness in the range of about 170 to 600 A. With the use of very thin layers of the niobium composition having a thickness within the desired range, the critical field (H/sub c/) may be increased by factors of 2 to 4. Also, the thin layers of the superconductor permit the resulting tape or wire to exhibit suitable ductility for winding on a magnet core. These compositions are also characterized by relatively high values of critical temperature and therefore will exhibit a combination of useful properties as superconductors.

  16. Differential processing of the direction and focus of expansion of optic flow stimuli in areas MST and V3A of the human visual cortex.

    Science.gov (United States)

    Strong, Samantha L; Silson, Edward H; Gouws, André D; Morland, Antony B; McKeefry, Declan J

    2017-06-01

    Human neuropsychological and neuroimaging studies have raised the possibility that different attributes of optic flow stimuli, namely radial direction and the position of the focus of expansion (FOE), are processed within separate cortical areas. In the human brain, visual areas V5/MT+ and V3A have been proposed as integral to the analysis of these different attributes of optic flow stimuli. To establish direct causal relationships between neural activity in human (h)V5/MT+ and V3A and the perception of radial motion direction and FOE position, we used transcranial magnetic stimulation (TMS) to disrupt cortical activity in these areas while participants performed behavioral tasks dependent on these different aspects of optic flow stimuli. The cortical regions of interest were identified in seven human participants using standard functional MRI retinotopic mapping techniques and functional localizers. TMS to area V3A was found to disrupt FOE positional judgments but not radial direction discrimination, whereas the application of TMS to an anterior subdivision of hV5/MT+, MST/TO-2 produced the reverse effects, disrupting radial direction discrimination but eliciting no effect on the FOE positional judgment task. This double dissociation demonstrates that FOE position and radial direction of optic flow stimuli are signaled independently by neural activity in areas hV5/MT+ and V3A. NEW & NOTEWORTHY Optic flow constitutes a biologically relevant visual cue as we move through any environment. With the use of neuroimaging and brain-stimulation techniques, this study demonstrates that separate human brain areas are involved in the analysis of the direction of radial motion and the focus of expansion in optic flow. This dissociation reveals the existence of separate processing pathways for the analysis of different attributes of optic flow that are important for the guidance of self-locomotion and object avoidance. Copyright © 2017 the American Physiological Society.

  17. Direct correlation between strengthening mechanisms and electrical noise in strained copper wires

    OpenAIRE

    Bellido, Natalia; Pautrat, Alain; Keller, Clement; Hug, Eric

    2011-01-01

    We have measured the resistance noise of copper metallic wires during a tensile stress. The time variation of the main resistance is continuous up to the wire breakdown, but its fluctuations reveal the intermittent and heterogeneous character of plastic flow. We show in particular direct correlations between strengthening mechanisms and noise spectra characteristics.

  18. Numerical modelling of ozone production in a wire-cylinder corona discharge and comparison with a wire-plate corona discharge

    International Nuclear Information System (INIS)

    Wang Pengxiang; Chen Junhong

    2009-01-01

    The effect of electrode configuration on ozone production in the direct-current corona discharge of dry and humid air is studied by a numerical model that combines the electron distribution in the corona plasma, plasma chemistry and transport phenomena. Two electrode configurations are considered: wire-cylinder discharge with air flowing along the wire axis and wire-plate discharge with air flowing transverse to the wire. The ozone distributions in both types of discharges are compared. For both electrode configurations, the ozone production rate is higher in the negative corona than in the positive corona and it decreases with an increase in relative humidity. More importantly, the detailed ozone distribution in the neighbourhood of the discharge wire, together with the ozone kinetics, reveals the possible difference in the ozone production from the two discharges. With the same operating conditions and sufficiently short flow residence time, the ozone production rate is nearly the same for both electrode configurations. When the flow residence time is longer than the characteristic time for homogeneous ozone destruction, the net ozone production is higher in the wire-cylinder discharge than in the wire-plate discharge due to relatively less ozone destruction.

  19. Numerical modelling of ozone production in a wire-cylinder corona discharge and comparison with a wire-plate corona discharge

    Science.gov (United States)

    Wang, Pengxiang; Chen, Junhong

    2009-02-01

    The effect of electrode configuration on ozone production in the direct-current corona discharge of dry and humid air is studied by a numerical model that combines the electron distribution in the corona plasma, plasma chemistry and transport phenomena. Two electrode configurations are considered: wire-cylinder discharge with air flowing along the wire axis and wire-plate discharge with air flowing transverse to the wire. The ozone distributions in both types of discharges are compared. For both electrode configurations, the ozone production rate is higher in the negative corona than in the positive corona and it decreases with an increase in relative humidity. More importantly, the detailed ozone distribution in the neighbourhood of the discharge wire, together with the ozone kinetics, reveals the possible difference in the ozone production from the two discharges. With the same operating conditions and sufficiently short flow residence time, the ozone production rate is nearly the same for both electrode configurations. When the flow residence time is longer than the characteristic time for homogeneous ozone destruction, the net ozone production is higher in the wire-cylinder discharge than in the wire-plate discharge due to relatively less ozone destruction.

  20. Wire and Packing Tape Sandwiches

    Science.gov (United States)

    Rabinowitz, Sandy

    2009-01-01

    In this article, the author describes how students can combine craft wire with clear packing tape to create a two-dimensional design that can be bent and twisted to create a three-dimensional form. Students sandwich wire designs between two layers of tape. (Contains 1 online resource.)

  1. Wire metamaterials: physics and applications.

    Science.gov (United States)

    Simovski, Constantin R; Belov, Pavel A; Atrashchenko, Alexander V; Kivshar, Yuri S

    2012-08-16

    The physics and applications of a broad class of artificial electromagnetic materials composed of lattices of aligned metal rods embedded in a dielectric matrix are reviewed. Such structures are here termed wire metamaterials. They appear in various settings and can operate from microwaves to THz and optical frequencies. An important group of these metamaterials is a wire medium possessing extreme optical anisotropy. The study of wire metamaterials has a long history, however, most of their important and useful properties have been revealed and understood only recently, especially in the THz and optical frequency ranges where the wire media correspond to the lattices of microwires and nanowires, respectively. Another group of wire metamaterials are arrays and lattices of nanorods of noble metals whose unusual properties are driven by plasmonic resonances. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Characterization of extracellular vesicles in whole blood: Influence of pre-analytical parameters and visualization of vesicle-cell interactions using imaging flow cytometry.

    Science.gov (United States)

    Fendl, Birgit; Weiss, René; Fischer, Michael B; Spittler, Andreas; Weber, Viktoria

    2016-09-09

    Extracellular vesicles are central players in intercellular communication and are released from the plasma membrane under tightly regulated conditions, depending on the physiological and pathophysiological state of the producing cell. Their heterogeneity requires a spectrum of methods for isolation and characterization, where pre-analytical parameters have profound impact on vesicle analysis, particularly in blood, since sampling, addition of anticoagulants, as well as post-sampling vesicle generation may influence the outcome. Here, we characterized microvesicles directly in whole blood using a combination of flow cytometry and imaging flow cytometry. We assessed the influence of sample agitation, anticoagulation, and temperature on post-sampling vesicle generation, and show that vesicle counts remained stable over time in samples stored without agitation. Storage with gentle rolling mimicking agitation, in contrast, resulted in strong release of platelet-derived vesicles in blood anticoagulated with citrate or heparin, whereas vesicle counts remained stable upon anticoagulation with EDTA. Using imaging flow cytometry, we could visualize microvesicles adhering to blood cells and revealed an anticoagulant-dependent increase in vesicle-cell aggregates over time. We demonstrate that vesicles adhere preferentially to monocytes and granulocytes in whole blood, while no microvesicles could be visualized on lymphocytes. Our data underscore the relevance of pre-analytical parameters in vesicle analysis and demonstrate that imaging flow cytometry is a suitable tool to study the interaction of extracellular vesicles with their target cells. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. 3D Wire 2015

    DEFF Research Database (Denmark)

    Jordi, Moréton; F, Escribano; J. L., Farias

    , therefore, we’ve drawn conclusions and recommendations for future editions of the event, also generalizable to other experiences of gamification especially in events. This report details the methodology and working elements from the design phase, human resources and organization of production......This document is a general report on the implementation of gamification in 3D Wire 2015 event. As the second gamification experience in this event, we have delved deeply in the previous objectives (attracting public areas less frequented exhibition in previous years and enhance networking) and have...... proposed new ones (viralization of the event on social networks and improvement of the integration of international attendees). On the other hand we defined a set of research objectives related to the study of gamification in an eminently social place like an event. Most of the goals have been met and...

  4. Visualization and measurement of gas-liquid metal two-phase flow with large density difference using thermal neutrons as microscopic probes

    International Nuclear Information System (INIS)

    Mishima, K.; Hibiki, T.; Saito, Y.; Nishihara, H.; Tobita, Y.; Konishi, K.; Matsubayashi, M.

    1999-01-01

    In a core melt accident of a fast breeder reactor, there is a possibility of boiling of the fuel-steel mixture in the containment pool. In relation to safety evaluation on severe accident, it is indispensable to evaluate the possibility of re-criticality of melted core. Gas-liquid two-phase flow with a large liquid-to-gas density ratio is formed due to the boiling of fuel-steel mixture. Although it is anticipated that the large density ratio may affect the basic characteristics of two-phase flow, little work has been performed so far on two-phase flow with a large liquid-to-gas density ratio. In this study, visualization and void fraction measurement of gas-liquid metal two-phase flow were performed by using neutron radiography and image processing techniques. Then, the effect of large density difference between gas and liquid phases on the basic flow characteristics of two-phase flow was clarified

  5. Can visual assessment of blood flow patterns by dynamic contrast-enhanced computed tomography distinguish between malignant and benign lung tumors?

    Science.gov (United States)

    Harders, Stefan Walbom; Madsen, Hans Henrik; Nellemann, Hanne Marie; Rasmussen, Torben Riis; Thygesen, Jesper; Hager, Henrik; Andersen, Niels Trolle; Rasmussen, Finn

    2017-05-01

    Dynamic contrast-enhanced computed tomography (DCE-CT) is a tool, which, in theory, can quantify the blood flow and blood volume of tissues. In structured qualitative analysis, parametric color maps yield a visual impression of the blood flow and blood volume within the tissue being studied, allowing for quick identification of the areas with the highest or lowest blood flow and blood volume. To examine whether DCE-CT could be used to distinguish between malignant and benign lung tumors in patients with suspected lung cancer. Fifty-nine patients with suspected lung cancer and a lung tumor on their chest radiograph were included for DCE-CT. The tumors were categorized using structured qualitative analysis of tumor blood flow patterns. Histopathology was used as reference standard. Using structured qualitative analysis of tumor blood flow patterns, it was possible to distinguish between malignant and benign lung tumors (Fisher-Freeman-Halton exact test, P  = 0.022). The inter-reader agreement of this method of analysis was slight to moderate (kappa = 0.30; 95% confidence interval [CI] = 0.13-0.46). DCE-CT in suspected lung cancer using structured qualitative analysis of tumor blood flow patterns is accurate as well as somewhat reproducible. However, there are significant limitations to DCE-CT.

  6. Visualization investigation of acoustic and flow-induced vibration in main stream lines using a high-time-resolved PIV technique

    International Nuclear Information System (INIS)

    Li, Yanrong; Someya, Satoshi; Okamoto, Koji

    2009-01-01

    Systems with closed side-branches are liable to an excitation of sound, as called cavity tone. It may occur in pipe branches leading to safety valves or to boiler relief valves. The outbreak mechanism of the cavity tone has been known by phase-averaged measurement in previous researches, while the relation between sound propagation and flow field is still unclear due to the difficulty of detecting instantaneous velocity field. High-time-resolved PIV has a possibility to analyze the velocity field and the relation mentioned above. In this study, flow-induced acoustic resonance of piping system containing closed side-branches was investigated experimentally. A high-time-resolved PIV technique was applied to measure a gas-flow in a cavity. Air flow containing oil mist as tracer particles was measured using a high frequency pulse laser and a high speed camera. The present investigation on the coaxial closed side-branches is the first rudimentary study to visualize the fluid flow two-dimensionally in the cross-section by using PIV and to measure the pressure at the downstream side opening of the cavity by microphone. The fluid flows at different points in the cavity interact with some phase differences and the relation was clarified. (author)

  7. Three-Dimensional Unsteady Flow Elicited by Finite Wings and Complex Configurations.

    Science.gov (United States)

    1987-01-01

    flow. Anemometric measurements added quantitative magnitudes and spatial verification to the visualized flow structures. The experiments were designed... anemometric measurements were taken at each span location and chordwise at 0.00c(leading edge), 0.17c, 0.33c, 0.50c, 0.67c, 0.83c and 1.00c. " An X...The hot wire recorded the absolute velocity of the flow field during the cyclic motion history of the three wings. The anemometric measurements were

  8. Three-dimensional fluid flow phenomena in the blade end wall corner region

    Science.gov (United States)

    Hazarika, B. K.; Raj, R.; Boldman, D. R.

    1986-01-01

    Flow visualization, static and total pressure measurements, and mean velocity profile measurements with a single-sensor inclined hot wire probe, are used in a study of three-dimensional flow at a turbine blade end wall corner region for six critical axial stations along the blade chord. Three vortices are identified: (1) a horseshoe vortex near the leading edge; (2) a corner eddy between the horseshoe vortex and the corner; and (3) a vortex at the rear portion of the corner due to the corner eddy's secondary flow. Attention is given to the relative size and rate-of-spread of the vortices in the streamwise direction.

  9. Fabrication details for wire wrapped fuel assembly components

    International Nuclear Information System (INIS)

    Bosy, B.J.

    1978-09-01

    Extensive hydraulic testing of simulated LMFBR blanket and fuel assemblies is being carried out under this MIT program. The fabrication of these test assemblies has involved development of manufacturing procedures involving the wire wrapped pins and the flow housing. The procedures are described in detail in the report

  10. Feasibility demonstration of using wire electrical-discharge machining, abrasive flow honing, and laser spot welding to manufacture high-precision triangular-pitch Zircaloy-4 fuel-rod-support grids

    International Nuclear Information System (INIS)

    Horwood, W.A.

    1982-05-01

    Results are reported supporting the feasibility of manufacturing high precision machined triangular pitch Zircaloy-4 fuel rod support grids for application in water cooled nuclear power reactors. The manufacturing processes investigated included wire electrical discharge machining of the fuel rod and guide tube cells in Zircaloy plate stock to provide the grid body, multistep pickling of the machined grid to provide smooth and corrosion resistant surfaces, and laser welding of thin Zircaloy cover plates to both sides of the grid body to capture separate AM-350 stainless steel insert springs in the grid body. Results indicated that dimensional accuracy better than +- 0.001 and +- 0.002 inch could be obtained on cell shape and position respectively after wire EDM and surface pickling. Results on strength, corrosion resistance, and internal quality of laser spot welds are provided

  11. Plasma chemistry in wire chambers

    International Nuclear Information System (INIS)

    Wise, J.

    1990-05-01

    The phenomenology of wire chamber aging is discussed and fundamentals of proportional counters are presented. Free-radical polymerization and plasma polymerization are discussed. The chemistry of wire aging is reviewed. Similarities between wire chamber plasma (>1 atm dc-discharge) and low-pressure rf-discharge plasmas, which have been more widely studied, are suggested. Construction and use of a system to allow study of the plasma reactions occurring in wire chambers is reported. A proportional tube irradiated by an 55 Fe source is used as a model wire chamber. Condensable species in the proportional tube effluent are concentrated in a cryotrap and analyzed by gas chromatography/mass spectrometry. Several different wire chamber gases (methane, argon/methane, ethane, argon/ethane, propane, argon/isobutane) are tested and their reaction products qualitatively identified. For all gases tested except those containing methane, use of hygroscopic filters to remove trace water and oxygen contaminants from the gas resulted in an increase in the average molecular weight of the products, consistent with results from low-pressure rf-discharge plasmas. It is suggested that because water and oxygen inhibit polymer growth in the gas phase that they may also reduce polymer deposition in proportional tubes and therefore retard wire aging processes. Mechanistic implications of the plasma reactions of hydrocarbons with oxygen are suggested. Unresolved issues in this work and proposals for further study are discussed

  12. A study on MFL based wire rope damage detection

    Science.gov (United States)

    Park, J.; Kim, J.-W.; Kim, J.; Park, S.

    2017-04-01

    Non-destructive testing on wire rope is in great demand to prevent safety accidents at sites where many heavy equipment using ropes are installed. In this paper, a research on quantification of magnetic flux leakage (MFL) signals were carried out to detect damages on wire rope. First, a simulation study was performed with a steel rod model using a finite element analysis (FEA) program. The leakage signals from the simulation study were obtained and it was compared for parameter: depth of defect. Then, an experiment on same conditions was conducted to verify the results of the simulation. Throughout the results, the MFL signal was quantified and a wire rope damage detection was then confirmed to be feasible. In further study, it is expected that the damage characterization of an entire specimen will be visualized as well.

  13. Wired World-Wide Web Interactive Remote Event Display

    Energy Technology Data Exchange (ETDEWEB)

    De Groot, Nicolo

    2003-05-07

    WIRED (World-Wide Web Interactive Remote Event Display) is a framework, written in the Java{trademark} language, for building High Energy Physics event displays. An event display based on the WIRED framework enables users of a HEP collaboration to visualize and analyze events remotely using ordinary WWW browsers, on any type of machine. In addition, event displays using WIRED may provide the general public with access to the research of high energy physics. The recent introduction of the object-oriented Java{trademark} language enables the transfer of machine independent code across the Internet, to be safely executed by a Java enhanced WWW browser. We have employed this technology to create a remote event display in WWW. The combined Java-WWW technology hence assures a world wide availability of such an event display, an always up-to-date program and a platform independent implementation, which is easy to use and to install.

  14. Losses of new type HTS wires with transposed Bi-2223 filaments; Fuiramento ten'igata Bi-2223 tashin senzai no sonshitsu tokusei

    Energy Technology Data Exchange (ETDEWEB)

    Watabe, K.; Yamashita, K.; Sumiyoshi, F. [Kagoshima Univ., Kagoshima (Japan); Hayashi, H.; Irie, F. [Kyushu Electric Power Co. Inc., Fukuoka (Japan)

    2000-05-29

    In Bi-2223 multifilamentary wire, large hysteresis loss occurs by 'self-magnetic field effect' where transport current flows on the surface. To prevent from this, uniformity of transport current distribution by filament transposition is effective. Round wire with two layers of helical coil around Ag core material by four Bi-2223 multifilamentary wires was fabricated as trial. Uniform condition of current distribution was explored and twist angle was found to be an important parameter. Hysteresis loss of wound wire in a reverse direction was reduced by 1/3 compared with one of wound wire in a same direction and known wire. (NEDO)

  15. Flow morphing by coaxial type plasma actuator

    Science.gov (United States)

    Toyoizumi, S.; Aono, H.; Ishikawa, H.

    2017-04-01

    The purpose of study is to achieve the fluid drag reduction of a circular disk by Dielectric Barrier Discharge Plasma Actuator (DBD-PA). We here introduced “Flow Morphing” concept that flow around the body was changed by DBD-PA jet, such as the body shape morphing. Coaxial type DBD-PA injected axisymmetric jet, generating the vortex region on the pressure side of the circular disk. The vortex generated by axisymmetric plasma jet and flow around circular disk were visualized by tracer particles method. The fluid drag was measured by compression type load cell. In addition streamwise velocity was measured by an X-type hot wire probe. The extent of fluid drag reduction by coaxial type DBD-PA jet was influenced by the volume of vortex region and the diameter of plasma electrode.

  16. Two-phase flow visualization under reservoir conditions for highly heterogeneous conglomerate rock: A core-scale study for geologic carbon storage.

    Science.gov (United States)

    Kim, Kue-Young; Oh, Junho; Han, Weon Shik; Park, Kwon Gyu; Shinn, Young Jae; Park, Eungyu

    2018-03-20

    Geologic storage of carbon dioxide (CO 2 ) is considered a viable strategy for significantly reducing anthropogenic CO 2 emissions into the atmosphere; however, understanding the flow mechanisms in various geological formations is essential for safe storage using this technique. This study presents, for the first time, a two-phase (CO 2 and brine) flow visualization under reservoir conditions (10 MPa, 50 °C) for a highly heterogeneous conglomerate core obtained from a real CO 2 storage site. Rock heterogeneity and the porosity variation characteristics were evaluated using X-ray computed tomography (CT). Multiphase flow tests with an in-situ imaging technology revealed three distinct CO 2 saturation distributions (from homogeneous to non-uniform) dependent on compositional complexity. Dense discontinuity networks within clasts provided well-connected pathways for CO 2 flow, potentially helping to reduce overpressure. Two flow tests, one under capillary-dominated conditions and the other in a transition regime between the capillary and viscous limits, indicated that greater injection rates (potential causes of reservoir overpressure) could be significantly reduced without substantially altering the total stored CO 2 mass. Finally, the capillary storage capacity of the reservoir was calculated. Capacity ranged between 0.5 and 4.5%, depending on the initial CO 2 saturation.

  17. 3D real-time visualization of blood flow in cerebral aneurysms by light field particle image velocimetry

    Science.gov (United States)

    Carlsohn, Matthias F.; Kemmling, André; Petersen, Arne; Wietzke, Lennart

    2016-04-01

    Cerebral aneurysms require endovascular treatment to eliminate potentially lethal hemorrhagic rupture by hemostasis of blood flow within the aneurysm. Devices (e.g. coils and flow diverters) promote homeostasis, however, measurement of blood flow within an aneurysm or cerebral vessel before and after device placement on a microscopic level has not been possible so far. This would allow better individualized treatment planning and improve manufacture design of devices. For experimental analysis, direct measurement of real-time microscopic cerebrovascular flow in micro-structures may be an alternative to computed flow simulations. An application of microscopic aneurysm flow measurement on a regular basis to empirically assess a high number of different anatomic shapes and the corresponding effect of different devices would require a fast and reliable method at low cost with high throughout assessment. Transparent three dimensional 3D models of brain vessels and aneurysms may be used for microscopic flow measurements by particle image velocimetry (PIV), however, up to now the size of structures has set the limits for conventional 3D-imaging camera set-ups. On line flow assessment requires additional computational power to cope with the processing large amounts of data generated by sequences of multi-view stereo images, e.g. generated by a light field camera capturing the 3D information by plenoptic imaging of complex flow processes. Recently, a fast and low cost workflow for producing patient specific three dimensional models of cerebral arteries has been established by stereo-lithographic (SLA) 3D printing. These 3D arterial models are transparent an exhibit a replication precision within a submillimeter range required for accurate flow measurements under physiological conditions. We therefore test the feasibility of microscopic flow measurements by PIV analysis using a plenoptic camera system capturing light field image sequences. Averaging across a sequence of

  18. Organization of the Drosophila larval visual circuit

    Science.gov (United States)

    Gendre, Nanae; Neagu-Maier, G Larisa; Fetter, Richard D; Schneider-Mizell, Casey M; Truman, James W; Zlatic, Marta; Cardona, Albert

    2017-01-01

    Visual systems transduce, process and transmit light-dependent environmental cues. Computation of visual features depends on photoreceptor neuron types (PR) present, organization of the eye and wiring of the underlying neural circuit. Here, we describe the circuit architecture of the visual system of Drosophila larvae by mapping the synaptic wiring diagram and neurotransmitters. By contacting different targets, the two larval PR-subtypes create two converging pathways potentially underlying the computation of ambient light intensity and temporal light changes already within this first visual processing center. Locally processed visual information then signals via dedicated projection interneurons to higher brain areas including the lateral horn and mushroom body. The stratified structure of the larval optic neuropil (LON) suggests common organizational principles with the adult fly and vertebrate visual systems. The complete synaptic wiring diagram of the LON paves the way to understanding how circuits with reduced numerical complexity control wide ranges of behaviors.

  19. Aerodynamic Characterization of ‘DelFly Micro’ in Forward Flight Configuration by Force Measurements and Flow Field Visualization

    OpenAIRE

    Deng, Shuanghou; Percin, Mustafa; van Oudheusden, Bas

    2015-01-01

    This study explores the flow structures and unsteady force generation mechanisms of a flapping-wing micro air vehicle ‘DelFly Micro’ in forward flight configuration. Stereoscopic Particle Image Velocimetry (Stereo-PIV) measurements were performed to acquire three dimensional flow fields in the wake. Six components of forces and moments were captured simultaneously by use of a miniature force sensor.

  20. Aerodynamic Characterization of ‘DelFly Micro’ in Forward Flight Configuration by Force Measurements and Flow Field Visualization

    NARCIS (Netherlands)

    Deng, S.; Percin, M.; Van Oudheusden, B.

    2015-01-01

    This study explores the flow structures and unsteady force generation mechanisms of a flapping-wing micro air vehicle ‘DelFly Micro’ in forward flight configuration. Stereoscopic Particle Image Velocimetry (Stereo-PIV) measurements were performed to acquire three dimensional flow fields in the wake.

  1. 49 CFR 393.28 - Wiring systems.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 5 2010-10-01 2010-10-01 false Wiring systems. 393.28 Section 393.28... NECESSARY FOR SAFE OPERATION Lamps, Reflective Devices, and Electrical Wiring § 393.28 Wiring systems. Electrical wiring shall be installed and maintained to conform to SAE J1292—Automobile, Truck, Truck-Tractor...

  2. Hierarchical Structure and Strengthening Mechanisms in Pearlitic Steel Wire

    DEFF Research Database (Denmark)

    Zhang, Xiaodan; Hansen, Niels; Huang, Xiaoxu

    Microstructure evolution and strengthening mechanisms have been analyzed in a cold-drawn pearlitic steel wire (the strongest engineering materials in the world) with a nanostructure down to 10 nm and a flow stress up to 5.4 GPa. The interlamellar spacing and the cementite lamellae thickness...... are reduced during drawing in accordance with the change in wire diameter up to a strain of 2.5. At a higher strain enhanced thinning of cementite lamellae points to decomposition and carbon enrichment of the ferrite lamellae. Dislocations are stored as individual dislocations and in low angle boundaries...

  3. Modeling birds on wires.

    Science.gov (United States)

    Aydoğdu, A; Frasca, P; D'Apice, C; Manzo, R; Thornton, J M; Gachomo, B; Wilson, T; Cheung, B; Tariq, U; Saidel, W; Piccoli, B

    2017-02-21

    In this paper we introduce a mathematical model to study the group dynamics of birds resting on wires. The model is agent-based and postulates attraction-repulsion forces between the interacting birds: the interactions are "topological", in the sense that they involve a given number of neighbors irrespective of their distance. The model is first mathematically analyzed and then simulated to study its main properties: we observe that the model predicts birds to be more widely spaced near the borders of each group. We compare the results from the model with experimental data, derived from the analysis of pictures of pigeons and starlings taken in New Jersey: two different image elaboration protocols allow us to establish a good agreement with the model and to quantify its main parameters. We also discuss the potential handedness of the birds, by analyzing the group organization features and the group dynamics at the arrival of new birds. Finally, we propose a more refined mathematical model that describes landing and departing birds by suitable stochastic processes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Topology Optimized Photonic Wire Splitters

    DEFF Research Database (Denmark)

    Frandsen, Lars Hagedorn; Borel, Peter Ingo; Jensen, Jakob Søndergaard

    2006-01-01

    Photonic wire splitters have been designed using topology optimization. The splitters have been fabricated in silicon-on-insulator material and display broadband low-loss 3dB splitting in a bandwidth larger than 100 nm.......Photonic wire splitters have been designed using topology optimization. The splitters have been fabricated in silicon-on-insulator material and display broadband low-loss 3dB splitting in a bandwidth larger than 100 nm....

  5. Composite conductor containing superconductive wires

    Energy Technology Data Exchange (ETDEWEB)

    Larson, W.L.; Wong, J.

    1974-03-26

    A superconductor cable substitute made by coworking multiple rods of superconductive niobium--titanium or niobium--zirconium alloy with a common copper matrix to extend the copper and rods to form a final elongated product which has superconductive wires distributed in a reduced cross-section copper conductor with a complete metallurgical bond between the normal-conductive copper and the superconductor wires contained therein is described. The superconductor cable can be in the form of a tube.

  6. 30 CFR 75.701-4 - Grounding wires; capacity of wires.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Grounding wires; capacity of wires. 75.701-4... SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Grounding § 75.701-4 Grounding wires; capacity of wires. Where grounding wires are used to ground metallic sheaths, armors, conduits, frames...

  7. Study on the inside gas flow visualization of oxygen sensor cover; Kashika ni yoru O2 sensor cover nai no gas nagare hyoka

    Energy Technology Data Exchange (ETDEWEB)

    Hocho, S.; Mitsuishi, Y.; Inagaki, M. [Nippon Soken, Inc., Tokyo (Japan); Hamaguchi, S.; Mizusawa, K. [Toyota Motor Corp., Aichi (Japan)

    1997-10-01

    In order to make clear the difference of the response time between the oxygen sensors with different protection covers, we visualized gas flow inside of sensor covers by means of two experimental methods: One is `Smoke Suspension Method` using liquid paraffin vapor as the smoke. With smoke suspension method, we detected the streamlines inside of the covers. The other is `Color Reaction Method` using the reaction of phenolphthalein and NH3 gas. With color reaction method, we confirmed the streamline inside of the cover and furthermore detected the difference of the response time of each sensor. 3 refs., 7 figs., 1 tab.

  8. 1 mil gold bond wire study.

    Energy Technology Data Exchange (ETDEWEB)

    Huff, Johnathon; McLean, Michael B.; Jenkins, Mark W.; Rutherford, Brian Milne

    2013-05-01

    In microcircuit fabrication, the diameter and length of a bond wire have been shown to both affect the current versus fusing time ratio of a bond wire as well as the gap length of the fused wire. This study investigated the impact of current level on the time-to-open and gap length of 1 mil by 60 mil gold bond wires. During the experiments, constant current was provided for a control set of bond wires for 250ms, 410ms and until the wire fused; non-destructively pull-tested wires for 250ms; and notched wires. The key findings were that as the current increases, the gap length increases and 73% of the bond wires will fuse at 1.8A, and 100% of the wires fuse at 1.9A within 60ms. Due to the limited scope of experiments and limited data analyzed, further investigation is encouraged to confirm these observations.

  9. HTS Wire Development Workshop: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    1994-07-01

    The 1994 High-Temperature Superconducting Wire Development Workshop was held on February 16--17 at the St. Petersburg Hilton and Towers in St. Petersburg, Florida. The meeting was hosted by Florida Power Corporation and sponsored by the US Department of Energy`s Superconductivity Program for Electric Power Systems. The meeting focused on recent high-temperature superconducting wire development activities in the Department of Energy`s Superconductivity Systems program. The meeting opened with a general discussion on the needs and benefits of superconductivity from a utility perspective, the US global competitiveness position, and an outlook on the overall prospects of wire development. The meeting then focused on four important technology areas: Wire characterization: issues and needs; technology for overcoming barriers: weak links and flux pinning; manufacturing issues for long wire lengths; and physical properties of HTS coils. Following in-depth presentations, working groups were formed in each technology area to discuss the most important current research and development issues. The working groups identified research areas that have the potential for greatly enhancing the wire development effort. These areas are discussed in the summary reports from each of the working groups. This document is a compilation of the workshop proceedings including all general session presentations and summary reports from the working groups.

  10. Visual study of the effect of viscosity ratio, flow rate and porous medium topology on two-phase relative permeabilities

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz-Arango, J.D.; Kantzas, A. [Calgary Univ., AB (Canada)

    2009-07-01

    Relative permeability is one of the most important properties for understanding the dynamic behaviour of multiphase flow in porous media. The relative permeability to a given phase in two-phase flow is normally assumed to be only a function of the saturation of that phase, independent of the properties of fluids involved and/or flow conditions and ranging in value from zero to one. This paper presented several experiments in order to determine the effect of viscosity ratio, flow rate and porous medium topology on two-phase relative permeabilities. Two different etched-glass micromodels and acrylic-made triangular capillary tubes were used as porous media. Three different pairs of fluids with viscosity ratios ranging from 0.005 to 202.3 were also used. Primary drainage and secondary imbibition displacements were performed at different injection flow rates and unsteady-state relative permeability curves were constructed. The paper first provided background information on multiphase flow and Darcy's law. The materials for the experiments were also described, with particular reference to the apparatus such as etched-glass micromodels, equilateral triangular channels, and fluids. The experimental procedure and results of the experiments were then outlined in detail. It was concluded that relative permeabilities do not only depend on fluid saturations but also on the viscosity ratio of the phases flowing, the displacement rate and the topology of the porous medium. 8 refs., 8 tabs., 25 figs.

  11. Experimental study of natural two-phase flow circulation using a visualization technique; Estudo experimental da circulacao natural bifasica utilizando uma tecnica de visualizacao

    Energy Technology Data Exchange (ETDEWEB)

    Vinhas, Pedro A.M., E-mail: Pedro_mvinhas@poli.ufrj.br [Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ (Brazil). Dept. de Engenharia Nuclear; Faccini, Jose L.H., E-mail: faccini@ien.gov.br [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil); Su, Jian, E-mail: sujian@lasme.coppe.ufrj.br [Coordenacao dos Programas de Pos-Graduacao em Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Nuclear

    2013-07-01

    This paper presents an experimental study of natural two-phase flow in a circuit that simulates, on a smaller scale, a typical residual heat removal system of passive reactors APWR (Advanced Pressurized Water Reactor). The circuit was formed by a heater, a heat exchanger and piping. The experimental study was the application of a visualization technique, using a high speed camera, for measuring the size and speed of vapor bubbles generated in the heater with different power heating. The camera was positioned in the central region of the pipe connecting the heater to the heat exchanger, where there is a clear passage. The flow of images were processed and analyzed using commercial software that allowed the determination of the length and velocity of the bubbles. The results were then compared with correlations available in literature.

  12. The use of visualization as a guide in the numerical determination of the flow around an abruptly accelerated elliptic cylinder or airfoil

    Science.gov (United States)

    Monnet, P.; Coutanceau, M.; Daube, O.; Ta Phuoc Loc

    The time formation of the two-dimensional wake induced by an impulsively started thin profile is investigated both experimentally and numerically. The experimental technique is based on a precise visualization of the flow pattern with solid tracers from which quantitative data as well as qualitative information are deduced and used to improve the numerical simulation. This simulation is made by treating the Navier-Stokes equations with a high order compact finite difference scheme. The very good agreement exhibited by the results provided by the two methods makes it possible to give an accurate and detailed description of the evolution of the flow structure for both an elliptic cylinder and a NACA 0012 airfoil. These results are given for angles of attack ranging from 0 to 90 deg and for Reynolds numbers of 500, 1000, and 3000.

  13. Stress Myocardial Perfusion CT in Patients Suspected of Having Coronary Artery Disease: Visual and Quantitative Analysis-Validation by Using Fractional Flow Reserve.

    Science.gov (United States)

    Yang, Dong Hyun; Kim, Young-Hak; Roh, Jae-Hyung; Kang, Joon-Won; Han, Dongjin; Jung, Joonho; Kim, Namkug; Lee, Jung Bok; Ahn, Jung-Min; Lee, Jong-Young; Park, Duk-Woo; Kang, Soo-Jin; Lee, Seung-Whan; Lee, Cheol Whan; Park, Seong-Wook; Park, Seung-Jung; Lim, Tae-Hwan

    2015-09-01

    To assess the diagnostic accuracy of stress myocardial perfusion computed tomography (CT) by using visual and quantitative analytic methods in patients with coronary artery disease, with fractional flow reserve (FFR) as a reference standard. The institutional review board approved the study, and written informed consent was obtained from all patients. The diagnostic accuracy of myocardial perfusion CT was assessed for 75 patients who underwent myocardial perfusion CT and conventional coronary angiography with reference to hemodynamically significant stenosis, defined as the presence of an FFR of 0.8 or less or an angiographically severe (≥90%) stenosis. Results of quantitative analysis of myocardial perfusion CT data were compared with those of visual analysis by using areas under the receiver operating characteristic curve (AUCs). Among the 75 patients and 210 epicardial arteries, 61 patients (81%) with 86 arteries (41%) had hemodynamically significant stenosis. The per-patient sensitivity and specificity of the visual assessment of myocardial perfusion CT data for all patients were 89% and 86%, respectively. At per-vessel analysis, the sensitivities and specificities, respectively, of myocardial perfusion CT were 80% and 95% for all vessels, 85% and 100% for 63 vessels with severe coronary calcification (defined as an Agatston score > 400), and 76% and 91% for 56 vessels in patients with multivessel disease. In severely calcified vessels, visual assessment of myocardial perfusion CT data in combination with CT angiography provided incremental value over CT angiography alone for the detection of myocardial ischemia (integrated discrimination improvement index, 0.38; P perfusion ratio had a lower AUC than visual analysis of myocardial perfusion CT (0.759 vs 0.877, P = .002). Stress myocardial perfusion CT provides incremental value over CT angiography in patients with a high calcium score for the detection of myocardial ischemia as defined by FFR.

  14. Flow Visualization of Three-Dimensionality Inside the 12 cc Penn State Pulsatile Pediatric Ventricular Assist Device

    OpenAIRE

    Roszelle, Breigh N.; Deutsch, Steven; Manning, Keefe B.

    2010-01-01

    In order to aid the ongoing concern of limited organ availability for pediatric heart transplants, Penn State has continued development of a pulsatile Pediatric Ventricular Assist Device (PVAD). Initial studies of the PVAD observed an increase in thrombus formation due to differences in flow field physics when compared to adult sized devices, which included a higher degree of three-dimensionality. This unique flow field brings into question the use of 2D planar particle image velocimetry (PIV...

  15. Relativistic electron transport in wire and foil targets driven by intense short pulse lasers

    Science.gov (United States)

    Mason, R. J.; Stephens, R. B.; Wei, M.; Freeman, R. R.; Hill, J.; van Woerkom, L. D.

    2006-10-01

    We model intense laser driven electron transport in wires and foils with the new implicit hybrid code e-PLAS. We focus on background plasma heating for Fast Ignitor applications. The model tracks collisional relativistic PIC electrons undergoing scatter and drag in a background plasma of colliding cold electron and ion Eulerian fluids. Application to 10 μm diameter, 250 μm long, fully ionized carbon wires with an attached cone [Kodama et al. Nature 432 1005 (2004)], exposed to 1 ps, 10^19 W/cm^2 pulses in a 30 μm centered spot, directly calculates resistive Joule heating of the background electrons in the wire to 1.7 KeV. 150 MG magnetic fields arise at the wire surfaces corresponding to hot electron flow outside the wire and a return electron flow just within it. Shorter wires (25 μm) exhibit hot electron recycling. Preliminary simulations indicate that reduction of the cone to a 30 μm diameter nail head produces little change in these results. We also report on tapered wires, wires attached to foils, and the modifying effects of pre-plasma on electron transport into the foils.

  16. In-situ transmission electron microscopy observation of electromigration in Au thin wires.

    Science.gov (United States)

    Murakami, Yosuke; Arita, Masashi; Hamada, Kouichi; Takahashi, Yasuo

    2012-11-01

    Electromigration of thin Au wire is studied by the use of in-situ transmission electron microscopy (TEM) techniques from the viewpoint of nanogap formation. We use a relatively wide Au wire as a starting material because the position-dependent structure change in the wire provides information of the thermal effect caused by the current flow. In-situ TEM observation, in which current measurements of the Au wire are simultaneously performed, reveals the process of the growth of voids and grains. Finally the formation of a nanogap by electromigration is observed doing with current measurements. All the results observed by in-situ TEM indicate the fact that the thermal effects or temperature increase in the wire region take an important role for the structure change caused by electromigration of Au in the wire. It is suggested that the position of the nanogap can roughly be arranged by setting the wire structure and current direction even though a relatively wide wire was used. The detailed observation by in-situ TEM also suggests that the control of heat generation in the wire makes the nanogap sharp because of the well-controlled recrystallization of Au nanowires.

  17. High speed photographic study of hot wire dynamic behavior

    Science.gov (United States)

    Sernas, V.; Murphy, A. J.

    1974-01-01

    Investigation of hot wire dynamic behavior under high-current heating aimed at a better understanding of the ignition process, using high-speed photographic techniques for visual observation of the bridgewire itself during high current heating. Tests were conducted with Tophet A bridgewires in an air environment, as well as in a cell of distilled water at room temperature, and with a boron-potassium perchlorate-Viton pyrotechnic against the bridgewire behind a Plexiglas window.

  18. Optimization of Single-Sensor Two-State Hot-Wire Anemometer Transmission Bandwidth.

    Science.gov (United States)

    Ligęza, Paweł

    2008-10-28

    Hot-wire anemometric measurements of non-isothermal flows require the use of thermal compensation or correction circuitry. One possible solution is a two-state hot-wire anemometer that uses the cyclically changing heating level of a single sensor. The area in which flow velocity and fluid temperature can be measured is limited by the dimensions of the sensor's active element. The system is designed to measure flows characterized by high velocity and temperature gradients, although its transmission bandwidth is very limited. In this study, we propose a method to optimize the two-state hot-wire anemometer transmission bandwidth. The method is based on the use of a specialized constanttemperature system together with variable dynamic parameters. It is also based on a suitable measurement cycle paradigm. Analysis of the method was undertaken using model testing. Our results reveal a possible significant broadening of the two-state hot-wire anemometer's transmission bandwidth.

  19. Numerical Prediction of a Bi-Directional Micro Thermal Flow Sensors

    Directory of Open Access Journals (Sweden)

    M. Al-Amayrah

    2011-09-01

    Full Text Available Thermal flow sensors such as hot-wire anemometer (HWA can be used to measure the flow velocity with certain accuracy. However, HWA can measure the flow velocity without determining the flow direction. Pulsed-Wire Anemometer (PWA with 3 wires can be used to measure flow velocity and flow directions. The present study aims to develop a numerical analysis of unsteady flow around a pulsed hot-wire anemometer using three parallel wires. The pulsed wire which is called the heated wire is located in the middle and the two sensor wires are installed upstream and downstream of the pulsed wire. 2-D numerical models were built and simulated using different wires arrangements. The ratio of the separation distance between the heated wire and sensor wire (x to the diameter of the heated wire (D ratios (x/D was varied between 3.33 and 183.33. The output results are plotted as a function of Peclet number (convection time / diffusion time. It was found that as the ratio of x/D increases, the sensitivity of PWA device to the time of flight decreases. But at the same the reading of the time of flight becomes more accurate, because the effects of the diffusion and wake after the heated wire decrease. Also, a very good agreement has been obtained between the present numerical simulation and the previous experimental data.

  20. Three-dimensional measurement and visualization of internal flow of a moving droplet using confocal micro-PIV.

    Science.gov (United States)

    Kinoshita, Haruyuki; Kaneda, Shohei; Fujii, Teruo; Oshima, Marie

    2007-03-01

    This paper presents a micro-flow diagnostic technique, 'high-speed confocal micro-particle image velocimetry (PIV)', and its application to the internal flow measurement of a droplet passing through a microchannel. A confocal micro-PIV system has been successfully constructed wherein a high-speed confocal scanner is combined with the conventional micro-PIV technique. The confocal micro-PIV system enables us to obtain a sequence of sharp and high-contrast cross-sectional particle images at 2000 frames s(-1). This study investigates the confocal depth, which is a significant parameter to determine the out-of-plane measurement resolution in confocal micro-PIV. Using the present confocal micro-PIV system, we can measure velocity distributions of micro-flows in a 228 microm x 171 microm region with a confocal depth of 1.88 microm. We also propose a three-dimensional velocity measurement method based on the confocal micro-PIV and the equation of continuity. This method enables us to measure three velocity components in a three-dimensional domain of micro flows. The confocal micro-PIV system is applied to the internal flow measurement of a droplet. We have measured three-dimensional distributions of three-component velocities of a droplet traveling in a 100 microm (width) x 58 microm (depth) channel. A volumetric velocity distribution inside a droplet is obtained by the confocal micro-PIV and the three-dimensional flow structure inside the droplet is investigated. The measurement results suggest that a three-dimensional and complex circulating flow is formed inside the droplet.

  1. Finite mixture model applied in the analysis of a turbulent bistable flow on two parallel circular cylinders

    Energy Technology Data Exchange (ETDEWEB)

    Paula, A.V. de, E-mail: vagtinski@mecanica.ufrgs.br [PROMEC – Programa de Pós Graduação em Engenharia Mecânica, UFRGS – Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil); Möller, S.V., E-mail: svmoller@ufrgs.br [PROMEC – Programa de Pós Graduação em Engenharia Mecânica, UFRGS – Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil)

    2013-11-15

    This paper presents a study of the bistable phenomenon which occurs in the turbulent flow impinging on circular cylinders placed side-by-side. Time series of axial and transversal velocity obtained with the constant temperature hot wire anemometry technique in an aerodynamic channel are used as input data in a finite mixture model, to classify the observed data according to a family of probability density functions. Wavelet transforms are applied to analyze the unsteady turbulent signals. Results of flow visualization show that the flow is predominantly two-dimensional. A double-well energy model is suggested to describe the behavior of the bistable phenomenon in this case. -- Highlights: ► Bistable flow on two parallel cylinders is studied with hot wire anemometry as a first step for the application on the analysis to tube bank flow. ► The method of maximum likelihood estimation is applied to hot wire experimental series to classify the data according to PDF functions in a mixture model approach. ► Results show no evident correlation between the changes of flow modes with time. ► An energy model suggests the presence of more than two flow modes.

  2. A Physically Based Correction for Hot Wires in Wall Proximity

    Science.gov (United States)

    Durst, F.; Zanoun, E.-S.; Gad-El-Hak, M.

    2003-11-01

    It is common practice to calibrate hot wires in a freestream of constant and known velocity. When wires of this kind are utilized for near-wall measurements, the additional heat losses to the wall and other factors that have not been accounted for in the calibration have the potential for introducing significant errors. It is, therefore, highly desirable to find a generally applicable correction to thermal-probe measurements near walls. Following on our presentation at a previous meeting (Bul. Am. Phys. Soc. 45, no. 9, p. 141, 2000), we present herein a physically based correction for hot wires in wall proximity. As a standard, a laser Doppler velocimeter is used to provide accurate near-wall measurements of the mean velocity profile. Here the error due to the finite measuring volume of the laser is proportional to the curvature of the velocity profile, and hence is negligible in the linear and quasi-linear regions of that profile. For the flow around a hot wire near highly and moderately conducting walls, we show that the Grashof number is at least one order of magnitude less than the cube of the Reynolds number, and thus that diffusion not convection dominates the heat transfer to the wall. The universal correction curve we derive takes into account the effect of wire diameter, overheat ratio, wall thermal conductivity, wall distance, and wall thickness. In the experiments we conducted with a horizontal flat plate centrally mounted in a wind tunnel, perceptible heat loss was observed due to the shear flow on the other side of the working surface. The resulting error is caused by the change of the thermal boundary condition, and helps explain the wide scatter observed between channel flow and boundary layer experiments, particularly when using walls of poorly conducting materials.

  3. An Educational Device for a Hands-on Activity to Visualize the Effect of Atherosclerosis on Blood Flow

    Science.gov (United States)

    de Almeida, J. P. P. G. L.; de Lima, J. L. M. P.

    2013-01-01

    An educational device was created to develop a hands-on activity to illustrate how atherosclerosis can dramatically reduce blood flow in human vessels. The device was conceived, designed, and built at the University of Coimbra, in response to a request from the Exploratorio Infante D. Henrique Science Centre Museum, where it is presently…

  4. Using color intensity projections to visualize air flow in operating theaters with the goal of reducing infections

    NARCIS (Netherlands)

    Cover, K.S.; van Asperen, N.; de Jong, J.; Verdaasdonk, R.M.

    2013-01-01

    Infection following neurosurgery is all too common. One possible source of infection is the transportation of dust and other contaminates into the open wound by airflow within the operating theatre. While many modern operating theatres have a filtered, uniform and gentle flow of air cascading down

  5. Sample of superconducting wiring from the LHC

    CERN Multimedia

    The high magnetic fields needed for guiding particles around the Large Hadron Collider (LHC) ring are created by passing 12’500 amps of current through coils of superconducting wiring. At very low temperatures, superconductors have no electrical resistance and therefore no power loss. The LHC is the largest superconducting installation ever built. The magnetic field must also be extremely uniform. This means the current flowing in the coils has to be very precisely controlled. Indeed, nowhere before has such precision been achieved at such high currents. Magnet coils are made of copper-clad niobium–titanium cables — each wire in the cable consists of 9’000 niobium–titanium filaments ten times finer than a hair. The cables carry up to 12’500 amps and must withstand enormous electromagnetic forces. At full field, the force on one metre of magnet is comparable to the weight of a jumbo jet. Coil winding requires great care to prevent movements as the field changes. Friction can create hot spots wh...

  6. Development of a novel once-through flow visualization technique for kinetic study of bulk and surface scaling

    Science.gov (United States)

    Sanni, O.; Bukuaghangin, O.; Huggan, M.; Kapur, N.; Charpentier, T.; Neville, A.

    2017-10-01

    There is a considerable interest to investigate surface crystallization in order to have a full mechanistic understanding of how layers of sparingly soluble salts (scale) build on component surfaces. Despite much recent attention, a suitable methodology to improve on the understanding of the precipitation/deposition systems to enable the construction of an accurate surface deposition kinetic model is still needed. In this work, an experimental flow rig and associated methodology to study mineral scale deposition is developed. The once-through flow rig allows us to follow mineral scale precipitation and surface deposition in situ and in real time. The rig enables us to assess the effects of various parameters such as brine chemistry and scaling indices, temperature, flow rates, and scale inhibitor concentrations on scaling kinetics. Calcium carbonate (CaCO3) scaling at different values of the saturation ratio (SR) is evaluated using image analysis procedures that enable the assessment of surface coverage, nucleation, and growth of the particles with time. The result for turbidity values measured in the flow cell is zero for all the SR considered. The residence time from the mixing point to the sample is shorter than the induction time for bulk precipitation; therefore, there are no crystals in the bulk solution as the flow passes through the sample. The study shows that surface scaling is not always a result of pre-precipitated crystals in the bulk solution. The technique enables both precipitation and surface deposition of scale to be decoupled and for the surface deposition process to be studied in real time and assessed under constant condition.

  7. AIR FLOW AND ENVIRONMENTAL WIND VISUALIZATION USING A CW DIODE PUMPED FREQUENCY DOUBLED Nd:YAG Laser

    Directory of Open Access Journals (Sweden)

    Mircea UDREA

    2009-09-01

    Full Text Available Preliminary results obtained in developing a visualisation technique for non-invasive analysis of air flow inside INCAS subsonic wind tunnel and its appendages are presented. The visualisation technique is based on using a green light sheet generated by a continuous wave (cw longitudinally diode pumped and frequency doubled Nd:YAG laser. The output laser beam is expanded on one direction and collimated on rectangular direction. The system is tailored to the requirements of qualitative analysis and vortex tracking requirements inside the INCAS 2.5m x 2.0m subsonic wind tunnel test section, for measurements performed on aircraft models. Also the developed laser techniques is used for non-invasive air flow field analysis into environmental facilities settling room (air flow calming area. Quantitative analysis is enabled using special image processing tools upon movies and pictures obtained during the experiments. The basic experimental layout in the wind tunnel takes advantage of information obtained from the investigation of various aircraft models using the developed visualisation technique. These results are further developed using a Particle Imaging Velocimetry (PIV experimental technique.The focus is on visualisation techniques to be used for wind flow characterization at different altitudes in indus-trial and civil buildings areas using a light sheet generated by a Nd:YAG cw pumped and doubled laser at 532 nm wave-length. The results are important for prevention of biological/chemical disasters such as spreading of extremely toxic pol-lutants due to wind. Numerical simulations of wind flow and experimental visualisation results are compared. A good agreement between these results is observed.

  8. Bistable features of the turbulent flow in tube banks of triangular arrangement

    International Nuclear Information System (INIS)

    Paula, A.V. de; Endres, L.A.M.; Möller, S.V.

    2012-01-01

    Highlights: ► Hot wires and flow visualizations are used for the study of the turbulent flow in tube banks of triangular arrangement. ► The experimental data are analyzed through statistical, spectral and wavelet tools. ► The results show stable wake patterns after the first row of tubes. ► After the second row, a bistable behavior with the presence of a transverse vertical component is observed. ► After the third row the gap flow presents a fast swapping, from one side to another (flip-flop). - Abstract: In the present work, some features of the turbulent flow in tube banks of triangular arrangement are discussed. The experimental study is performed by means of hot-wire measurements in an aerodynamic channel, and flow visualizations in a water channel. The tube banks had pitch-to-diameter ratio 1.26 and 1.6, and the Reynolds numbers are in the range from 7.5 × 10 3 to 4.4 × 10 4 , computed with the diameter of the tubes and the percolation velocity. The experimental data are analyzed through statistical, spectral and wavelet tools. The results show stable wake patterns after the first row of tubes. Visualizations show that the flow which arises from the gap between the tubes form coalescent jets. In some cases, a changing flow direction occurs. This phenomenon is called in the literature as “metastable”. After two rows of tubes, the flows present a transverse vertical component. For P/D = 1.26, the flow direction changes at irregular time intervals, called “bistable flow”. For P/D = 1.6, the wake pattern is stable. The features of turbulent flow through three, four and five rows of tubes seems to be similar, where the gap flop presents a fast swapping, from one side to another (flip-flop).

  9. Controlled-Growth of ZnO Nano wires with Different Processing Temperature

    International Nuclear Information System (INIS)

    Yap Chi Chin; Muhammad Yahaya; Muhamad Mat Salleh; Dee Chang Fu

    2008-01-01

    ZnO nano wires have been synthesized using a catalyst-free carbothermal reduction approach on SiO 2 -coated Si substrates in a flowing nitrogen atmosphere with a mixture of ZnO and graphite as reactants. The collected ZnO nano wires have been characterized by X-ray diffraction, scanning electron microscopy, energy dispersive spectroscopy and photoluminescence spectroscopy. Controlled growth of the ZnO nano wires was achieved by manipulating the reactants heating temperature from 700 to 1000 degree Celsius. It was found that the optimum temperature to synthesize high density and long ZnO nano wires was about 800 degree Celsius. The possible growth mechanism of ZnO nano wires is also proposed. (author)

  10. The Strengthening Effect of Phase Boundaries in a Severely Plastically Deformed Ti-Al Composite Wire

    Directory of Open Access Journals (Sweden)

    Tom Marr

    2014-02-01

    Full Text Available An accumulative swaging and bundling technique is used to prepare composite wires made of Ti and an Al alloy. These wires show reasonable higher yield stresses than expected from the pure material flow curves. The additional strengthening in the composite is analyzed using nanoindentation measurements, tensile testings and investigations of the microstructure. In addition, these properties are analyzed in relation to the fracture surface of the mechanically tested wires. Additional strengthening due to the presence of phase boundaries could be verified. Indications for residual stresses are found that cause a global hardness gradient from the center to the wire rim. Finally, the yield stress of the wires are calculated based on local hardness measurements.

  11. Wire Rupture Optimization in Wire Electrical Discharge Machining using Taguchi Approach

    Directory of Open Access Journals (Sweden)

    Maher Ibrahem

    2017-01-01

    Full Text Available Wire electrical discharge machining (WEDM is one of the most important nontraditional machining process that is well-known for cutting difficult to machine materials. The wire electrode along with machining parameters control the WEDM process. This research work focuses on optimizing WEDM parameters using Taguchi technique to minimize wire rupture. Experiments have been done using the L18 orthogonal array. Each experiment is repeated three times to ensure accurate readings of the wire rupture. The statistical methods of signal to noise ratio (S/N ratio is applied to study effects of peak current, pulse width, charging time, wire speed, and wire tension on wire rupture. As a results, the peak current, pulse width, and wire tension have the most significant effect on wire rupture followed by charging time and wire speed. The developed analysis can be used in the metal cutting field to identify the optimum machining parameters for less wire rupture.

  12. Plasma dynamics in aluminium wire array Z-pinch implosions

    International Nuclear Information System (INIS)

    Bland, S.N.

    2001-01-01

    The wire array Z-pinch is the world's most powerful laboratory X-ray source. An achieved power of ∼280TW has generated great interest in the use of these devices as a source of hohlraum heating for inertial confinement fusion experiments. However, the physics underlying how wire array Z-pinches implode is not well understood. This thesis presents the first detailed measurements of plasma dynamics in wire array experiments. The MAGPIE generator, with currents of up to 1.4MA, 150ns 10-90% rise-time, was used to implode arrays of 16mm diameter typically containing between 8 and 64 15μm aluminium wires. Diagnostics included: end and side-on laser probing with interferometry, schlieren and shadowgraphy channels; radial and axial streak photography; gated X-ray imaging; XUV and hard X-ray spectrometry; filtered XRDs and diamond PCDs; and a novel X-ray backlighting system to probe high density plasma. It was found that the plasma formed from the wires consisted of cold, dense cores, which ablated producing hot, low density coronal plasma. After an initial acceleration around the cores, coronal plasma streams flowed force-free towards the axis, with an instability wavelength determined by the core size. At ∼50% of the implosion time, the streams collided on axis forming a precursor plasma which appeared to be uniform, stable, and inertially confined. The existence of core-corona structure significantly affected implosion dynamics. For arrays with <64 wires, the wire cores remained in their original positions until ∼80% of the implosion time before accelerating rapidly. At 64 wires a transition in implosion trajectories to 0-D like occurred indicating a possible merger of current carrying plasma close to the cores - the cores themselves did not merge. During implosion, the cores initially developed uncorrelated instabilities that then transformed into a longer wavelength global mode of instability. The study of nested arrays (2 concentric arrays, one inside the other

  13. Enhancing wire-composite bond strength of bonded retainers with wire surface treatment.

    Science.gov (United States)

    Oesterle, L J; Shellhart, W C; Henderson, S

    2001-06-01

    Bonded orthodontic retainers with wires embedded in composite resin are commonly used for orthodontic retention. The purpose of this study was to test, in vitro, various wire surface treatments to determine the optimal method of enhancing the wire-composite bond strength. Coaxial wires and stainless steel wires with different surface treatments were bonded to bovine enamel and then pulled along their long axes with an Instron universal testing machine. Wire surface treatments included placing a right-angle bend in the wire, microetching the wire, and treating the wire with adhesion promoters; combinations of treatments were also examined. The results demonstrated a 24-fold increase in the wire-composite bond strength of wire that was microetched (sandblasted), compared with that of untreated straight wire. The difference between the amount of force required to break the bond produced by microetching alone (246.1 +/- 46.0 MPa) and that required for the bonds produced by the retentive bend (87.8 +/- 16.3 MPa), the adhesion promoters (silane, 11.0 +/- 3.1 MPa; Metal Primer, 28.5 +/- 15.8 MPa), or for any combination of surface treatments, was statistically significant. Microetching a stainless steel wire produced a higher wire-composite bond strength than that obtained from a coaxial wire (113.5 +/- 27.5 MPa). The results of this study indicate that microetching or sandblasting a stainless steel wire significantly increases the strength of the wire-composite bond.

  14. Experimental Study of Tip Vortex Flow from a Periodically Pitched Airfoil Section

    Science.gov (United States)

    Zaman, Khairul; Fagan, Amy; Mankbadi, Mina

    2016-01-01

    An experimental investigation of tip vortex flow from a NACA0012 airfoil, pitched periodically at various frequencies, is conducted in a low-speed wind tunnel. Initially, data for stationary airfoil held fixed at various angles-of-attack are gathered. Flow visualization pictures as well as detailed cross-sectional properties areobtained at various streamwise locations using hot-wire anemometry. Data include mean velocity, streamwise vorticity as well as various turbulent stresses. Preliminary data are also acquired for periodically pitched airfoil. These results are briefly presented in this extended abstract.

  15. Visualizing the transient electroosmotic flow and measuring the zeta potential of microchannels with a micro-PIV technique.

    Science.gov (United States)

    Yan, Deguang; Nguyen, Nam-Trung; Yang, Chun; Huang, Xiaoyang

    2006-01-14

    We have demonstrated a transient micro particle image velocimetry (micro-PIV) technique to measure the temporal development of electroosmotic flow in microchannels. Synchronization of different trigger signals for the laser, the CCD camera, and the high-voltage switch makes this measurement possible with a conventional micro-PIV setup. Using the transient micro-PIV technique, we have further proposed a method on the basis of inertial decoupling between the particle electrophoretic motion and the fluid electroosmotic flow to determine the electrophoretic component in the particle velocity and the zeta potential of the channel wall. It is shown that using the measured zeta potentials, the theoretical predictions agree well with the transient response of the electroosmotic velocities measured in this work.

  16. Visualizing Patterns of Drug Prescriptions with EventFlow: A Pilot Study of Asthma Medications in the Military Health System

    Science.gov (United States)

    2013-06-01

    administration of radiographic contrast materials” (in an effort to find patients who experienced reduced renal function after infusion of contrast materials... patients who bounce back to the ICU within 24 hours of leaving the ICU ”, or “find patients with high creatinine readings within 14 days of the... renal failure - or that they needed to remove patients without normal readings before the contrast). Our more recent project, LifeFlow5, expands on

  17. CRT--Cascade Routing Tool to define and visualize flow paths for grid-based watershed models

    Science.gov (United States)

    Henson, Wesley R.; Medina, Rose L.; Mayers, C. Justin; Niswonger, Richard G.; Regan, R.S.

    2013-01-01

    The U.S. Geological Survey Cascade Routing Tool (CRT) is a computer application for watershed models that include the coupled Groundwater and Surface-water FLOW model, GSFLOW, and the Precipitation-Runoff Modeling System (PRMS). CRT generates output to define cascading surface and shallow subsurface flow paths for grid-based model domains. CRT requires a land-surface elevation for each hydrologic response unit (HRU) of the model grid; these elevations can be derived from a Digital Elevation Model raster data set of the area containing the model domain. Additionally, a list is required of the HRUs containing streams, swales, lakes, and other cascade termination features along with indices that uniquely define these features. Cascade flow paths are determined from the altitudes of each HRU. Cascade paths can cross any of the four faces of an HRU to a stream or to a lake within or adjacent to an HRU. Cascades can terminate at a stream, lake, or HRU that has been designated as a watershed outflow location.

  18. A visual study of forced convection boiling. Part 2: Flow patterns and burnout for a round test section

    International Nuclear Information System (INIS)

    Kirby, G.J.; Staniforth, R.; Kinneir, J.H.

    1967-03-01

    The studies of boiling water at 25 p.s.i.a. reported here show the same flow patterns as in earlier tests in that the bubbles formed on the heater regained close to the heated surface to coalesce into large bubbles which eventually spanned the flow channel. Burnout tests were made and it was found there was a change of slope of the heat flux-subcooling curve. Further tests showed that this effect was due to a change in flow regime between burnout with much vapour present and burnout with just nucleate bubbles present. In the latter regime it was found that burnout is dependent only on the conditions local to the burnout point. Photography of the burnout region was practicable only when few bubbles were present but although pictures of the bubble over the burnout point were taken, no clear evidence on the mechanism of formation of the bubble could be gleaned. Some speculation on the cause of burnout in this regime is made in the light of these experiments. (author)

  19. Put Your Cable Wiring to the Test.

    Science.gov (United States)

    Day, C. William

    2001-01-01

    Discusses why schools and universities should use testing procedures in any wire bid specification for cable wiring and also know how experienced the installers are in testing and installing structured cabling systems. Key cabling terms are included. (GR)

  20. Application of hot-wire technique at unconventional conditions

    Science.gov (United States)

    Lebiga, V. A.; Pak, A. Yu.; Zinoviev, V. N.; Mironov, D. S.

    2017-10-01

    The problems of using the hot-wire method for studying fluctuations in flows are considered when standard approaches and conventional modes cannot be used due to constraints caused either by the flow parameters or by the characteristics and conditions of the experiments. Examples of measurements under conditions of extremely low pressures and beyond the limits of the continuity of the medium in the CO2-laser are given; The use of data of hot-wire measurements for the determination of sources of disturbances in test sections of high-speed wind tunnels is shown; the design of a probe for measurement of concentration of components of the binary gas mixture is described, etc.

  1. Novel Wiring Technologies for Aerospace Applications

    Science.gov (United States)

    Gibson, Tracy L.; Parrish, Lewis M.

    2014-01-01

    Because wire failure in aerospace vehicles could be catastrophic, smart wiring capabilities have been critical for NASA. Through the years, researchers at Kennedy Space Center (KSC) have developed technologies, expertise, and research facilities to meet this need. In addition to aerospace applications, NASA has applied its knowledge of smart wiring, including self-healing materials, to serve the aviation industry. This webinar will discuss the development efforts of several wiring technologies at KSC and provide insight into both current and future research objectives.

  2. Clinical bending of nickel titanium wires

    OpenAIRE

    Stephen Chain; Priyank Seth; Namrata Rastogi; Kenneth Tan; Mayank Gupta; Richa Singh

    2015-01-01

    Since the evolution and the involvement of Nickel Titanium wires in the field of Orthodontics. The treatment plan has evolved with the use of low force Nickel Titanium wires. Because of their high springback, low stiffness, they are the key initial wires in leveling and alignment but have poor formability. Since poor formability limits its ability to create variable arch forms thus; limits the form of treatment. We have devised a method to bend the Nickel Titanium wires to help in our invento...

  3. Towards Unconventional Applications of Wire Bonding

    OpenAIRE

    Schröder, Stephan

    2018-01-01

    This thesis presents novel heterogeneous integration approaches of wire materials to fabricated and package MEMS devices by exploring unconventional applications of wire bonding technology. Wire bonding, traditionally endemic in the realm of device packaging to establish electrical die-to-package interconnections, is an attractive back-end technology, offering promising features, such as high throughput, flexibility and placement accuracy. Exploiting the advantages of state-of-the-art wire bo...

  4. Different mechanical properties in Seldinger guide wires

    Directory of Open Access Journals (Sweden)

    Wolfram Schummer

    2015-01-01

    Full Text Available Background and Aims: Most central venous catheters are placed using Seldinger guide wires. EN ISO 11070 is the guideline for testing guide wire flexing performance and tensile strength, and we can safely assume that guide wires in use meet these requirements. Unfortunately, EN ISO 11070 guidelines do not reflect the clinical requirements and we continue to see mechanical failures and their associated complications. Material and Methods: This in vitro study was performed in an accredited laboratory. With regard to flexing, we: (1 Established the minimum flexing performance needed to meet clinical requirements, (2 developed flexing performance tests which mimic clinical requirement, and (3 evaluated the mechanical properties of various guide wires relative to these requirements. With regard to tensile strength, we used the testing method prescribed in ISO 11070, but did not end the test at 5 Newton (N. We continued until the guide wire was damaged, or we reached maximum tractive force. We then did a wire-to-wire comparison. We examined two basic wire constructions, monofil and core and coil. Results: Tensile strength: All wires tested, except one, met EN ISO 11070 requirements for 5 N tensile strength. The mean of the wire types tested ranged from 15.06 N to 257.76 N. Flexing performance: None of the wires kinked. The monofil had no evidence of bending. Two core/coil wires displayed minor bending (angle 1.5°. All other wires displayed bending angles between 22.5° and 43.0°. Conclusion: We recommend that: (1 Clinicians use guide wires with high-end mechanical properties, (2 EN ISO 11070 incorporate our flexing test into their testing method, raise the flexing requirement to kink-proof, (3 and raise the tensile strength requirement to a minimum of 30 N, and (3 all manufacturers and suppliers be required to display mechanical properties of all guide wire, and guide wire kits sold.

  5. Transient Analysis of Lumped Circuit Networks Loaded Thin Wires By DGTD Method

    KAUST Repository

    Li, Ping

    2016-03-31

    With the purpose of avoiding very fine mesh cells in the proximity of a thin wire, the modified telegrapher’s equations (MTEs) are employed to describe the thin wire voltage and current distributions, which consequently results in reduced number of unknowns and augmented Courant-Friedrichs-Lewy (CFL) number. As hyperbolic systems, both the MTEs and the Maxwell’s equations are solved by the discontinuous Galerkin time-domain (DGTD) method. In realistic situations, the thin wires could be either driven or loaded by circuit networks. The thin wire-circuit interface performs as a boundary condition for the thin wire solver, where the thin wire voltage and current used for the incoming flux evaluation involved in the DGTD analyzed MTEs are not available. To obtain this voltage and current, an auxiliary current flowing through the thin wire-circuit interface is introduced at each interface. Corresponding auxiliary equations derived from the invariable property of characteristic variable for hyperbolic systems are developed and solved together with the circuit equations established by the modified nodal analysis (MNA) modality. Furthermore, in order to characterize the field and thin wire interactions, a weighted electric field and a volume current density are added into the MTEs and Maxwell-Ampere’s law equation, respectively. To validate the proposed algorithm, three representative examples are presented.

  6. Vocational Preparation Curriculum: Electrical Wiring.

    Science.gov (United States)

    Usoro, Hogan

    This document is a curriculum guide for instructors teaching vocational preparation for electrical wiring to special needs students. The purpose of the curriculum guide is to provide minimum skills for disadvantaged and handicapped students entering the mainstream; to supplement vocational skills of those students already in a regular training…

  7. Transparency in nanophotonic quantum wires

    International Nuclear Information System (INIS)

    Singh, Mahi R

    2009-01-01

    We have studied the quantum optics of a photonic quantum nanowire doped with an ensemble of three-level nanoparticles. The wire is made from two photonic crystals A and B. Crystal A is embedded within crystal B and acts as a photonic nanowire. It is considered that the conduction band of crystal A lies below that of crystal B. As a result, photons are confined in crystal A and are reflected from crystal B. The bound states of the confined photons are calculated using the transfer matrix method. It is found that the number of bound states in the wire depends on the size of the wire and the energy difference between the conduction band extrema of crystals A and B. The absorption coefficient of the system has also been calculated using the Schroedinger equation method. It is considered that the nanoparticles interact with the photonic bound states. Numerical simulations show that when one of the resonance energies lies near the bound state, the system becomes transparent. However, when the resonance energy lies away from the bound state the crystal reverts to an absorbing state. Similarly, when the radius of the dielectric spheres is changed the location of the transparency peak is shifted. This means that the present system can be switched between two states by changing the size of the wire and the transition energy. These findings can be used to make new types of optical devices.

  8. Health care's 100 most wired.

    Science.gov (United States)

    Solovy, A; Serb, C

    1999-02-01

    They're wired all right, and America's 100 most techno-savvy hospitals and health systems share one more thing: a commitment to using technology to link with employees, patients, suppliers, and insurers. "We want to be a health care travel agency for our community," says one chief information officer. "And we see Internet technology as a key."

  9. Synchrotron x-ray imaging visualization study of capillary-induced flow and critical heat flux on surfaces with engineered micropillars

    Science.gov (United States)

    Yu, Dong In; Kwak, Ho Jae; Noh, Hyunwoo; Park, Hyun Sun; Fezzaa, Kamel; Kim, Moo Hwan

    2018-01-01

    Over the last several decades, phenomena related to critical heat flux (CHF) on structured surfaces have received a large amount of attention from the research community. The purpose of such research has been to enhance the safety and efficiency of a variety of thermal systems. A number of theories have been put forward to explain the key CHF enhancement mechanisms on structured surfaces. However, these theories have not been confirmed experimentally because of limitations in the available visualization techniques and the complexity of the phenomena. To overcome these limitations and elucidate the CHF enhancement mechanism on the structured surfaces, we introduce synchrotron x-ray imaging with high spatial (~2 μm) and temporal (~20,000 Hz) resolutions. This technique has enabled us to confirm that capillary-induced flow is the key CHF enhancement mechanism on structured surfaces. PMID:29492453

  10. Multi-anode wire straw tube tracker

    International Nuclear Information System (INIS)

    Oh, S.H.; Ebenstein, W.L.; Wang, C.W.

    2011-01-01

    We report on a test of a straw tube detector design having several anode (sense) wires inside a straw tube. The anode wires form a circle inside the tube and are read out independently. This design could solve several shortcomings of the traditional single wire straw tube design such as double hit capability and stereo configuration.

  11. Home and School Technology: Wired versus Wireless.

    Science.gov (United States)

    Van Horn, Royal

    2001-01-01

    Presents results of informal research on smart homes and appliances, structured home wiring, whole-house audio/video distribution, hybrid cable, and wireless networks. Computer network wiring is tricky to install unless all-in-one jacketed cable is used. Wireless phones help installers avoid pre-wiring problems in homes and schools. (MLH)

  12. On the preparation of superconducting wires

    International Nuclear Information System (INIS)

    Topare, R.J.; Chinchure, A.D.; Shah, S.S.; Hadole, G.B.

    1993-01-01

    The different methods of preparation of superconducting wires have been discussed. The powder-in-tube technique is followed for the preparation of YBCO and BISCCO superconducting wires. The results are discussed. The present status of the industries in preparing the superconducting wires having the maximum J c values is discussed. (author). 30 refs., 6 figs., 2 tabs

  13. Pre-wired systems prove their worth.

    Science.gov (United States)

    2012-03-01

    The 'new generation' of modular wiring systems from Apex Wiring Solutions have been specified for two of the world's foremost teaching hospitals - the Royal London and St Bartholomew's Hospital, as part of a pounds sterling 1 billion redevelopment project, to cut electrical installation times, reduce on-site waste, and provide a pre-wired, factory-tested, power and lighting system. HEJ reports.

  14. 75 FR 4584 - Wire Decking From China

    Science.gov (United States)

    2010-01-28

    ... COMMISSION Wire Decking From China AGENCY: United States International Trade Commission. ACTION: Scheduling... retarded, by reason of subsidized and less-than-fair-value imports from China of wire decking, provided for..., producers, or exporters in China of wire decking, and that such ] products are being sold in the United...

  15. Left Gastric Vein Visualization with Hepatopetal Flow Information in Healthy Subjects Using Non-Contrast-Enhanced Magnetic Resonance Angiography with Balanced Steady-State Free-Precession Sequence and Time-Spatial Labeling Inversion Pulse.

    Science.gov (United States)

    Furuta, Akihiro; Isoda, Hiroyoshi; Ohno, Tsuyoshi; Ono, Ayako; Yamashita, Rikiya; Arizono, Shigeki; Kido, Aki; Sakashita, Naotaka; Togashi, Kaori

    2018-01-01

    To selectively visualize the left gastric vein (LGV) with hepatopetal flow information by non-contrast-enhanced magnetic resonance angiography under a hypothesis that change in the LGV flow direction can predict the development of esophageal varices; and to optimize the acquisition protocol in healthy subjects. Respiratory-gated three-dimensional balanced steady-state free-precession scans were conducted on 31 healthy subjects using two methods (A and B) for visualizing the LGV with hepatopetal flow. In method A, two time-spatial labeling inversion pulses (Time-SLIP) were placed on the whole abdomen and the area from the gastric fornix to the upper body, excluding the LGV area. In method B, nonselective inversion recovery pulse was used and one Time-SLIP was placed on the esophagogastric junction. The detectability and consistency of LGV were evaluated using the two methods and ultrasonography (US). Left gastric veins by method A, B, and US were detected in 30 (97%), 24 (77%), and 23 (74%) subjects, respectively. LGV flow by US was hepatopetal in 22 subjects and stagnant in one subject. All hepatopetal LGVs by US coincided with the visualized vessels in both methods. One subject with non-visualized LGV in method A showed stagnant LGV by US. Hepatopetal LGV could be selectively visualized by method A in healthy subjects.

  16. Advanced high speed X-ray CT scanner for measurement and visualization of multi-phase flow

    International Nuclear Information System (INIS)

    Hori, Keiichi; Fujimoto, Tetsuro; Kawanishi, Kohei; Nishikawa, Hideo

    1998-01-01

    The development of an ultra-fast X-ray computed tomography (CT) scanner has been performed. The object of interest is in a transient or unsettled state, which makes the conventional CT scanner inappropriate. A concept of electrical switching of electron beam of X-ray generation unit is adopted to reduce the scanning time instead of a mechanical motion adopted by a conventional CT scanner. The mechanical motion is a major obstacle to improve the scanning speed. A prototype system with a scanning time of 3.6 milliseconds was developed at first. And, the feasibility was confirmed to measure the dynamic events of two-phase flow. However, faster scanning speed is generally required for the practical use in the thermalhydraulics research field. Therefore, the development of advanced type has been performed. This advanced type can operate under the scanning time of 0.5 milliseconds and is applicable for the measurement of the multi-phase flow with velocity up to 4-5 m/s. (author)

  17. Flow visualization over a thick blunt trailing-edge airfoil with base cavity at low Reynolds numbers using PIV technique.

    Science.gov (United States)

    Taherian, Gholamhossein; Nili-Ahmadabadi, Mahdi; Karimi, Mohammad Hassan; Tavakoli, Mohammad Reza

    2017-01-01

    In this study, the effect of cutting the end of a thick airfoil and adding a cavity on its flow pattern is studied experimentally using PIV technique. First, by cutting 30% chord length of the Riso airfoil, a thick blunt trialing-edge airfoil is generated. The velocity field around the original airfoil and the new airfoil is measured by PIV technique and compared with each other. Then, adding two parallel plates to the end of the new airfoil forms the desired cavity. Continuous measurement of unsteady flow velocity over the Riso airfoil with thick blunt trailing edge and base cavity is the most important innovation of this research. The results show that cutting off the end of the airfoil decreases the wake region behind the airfoil, when separation occurs. Moreover, adding a cavity to the end of the thickened airfoil causes an increase in momentum and a further decrease in the wake behind the trailing edge that leads to a drag reduction in comparison with the thickened airfoil without cavity. Furthermore, using cavity decreases the Strouhal number and vortex shedding frequency.

  18. Preliminary study of Rayleigh-Taylor instability in wire-array Z-pinch

    International Nuclear Information System (INIS)

    He Kaihui; Feng Kaiming; Li Qiang; Gao Chunming

    2000-01-01

    It is important to research into the MHD Rayleigh-Taylor instability developed in Z-pinch implosion. A snowplough model of the single wire Z-pinch is presented. The perturbation amplitude of Rayleigh-Taylor instability in the wire-array Z-pinch is analyzed quantitatively. Sheared axial flow is put forward to mitigate and reduce the Rayleigh-Taylor instability. And other approaches used to mitigate MHD instability in such a super-fast process are explored

  19. A New Approach to Measure Contact Angle and Evaporation Rate with Flow Visualization in a Sessile Drop

    Science.gov (United States)

    Zhang, Nengli; Chao, David F.

    1999-01-01

    The contact angle and the spreading process of sessile droplet are very crucial in many technological processes, such as painting and coating, material processing, film-cooling applications, lubrication, and boiling. Additionally, as it is well known that the surface free energy of polymers cannot be directly, measured for their elastic and viscous restraints. The measurements of liquid contact angle on the polymer surfaces become extremely important to evaluate the surface free energy of polymers through indirect methods linked with the contact angle data. Due to the occurrence of liquid evaporation is inevitable, the effects of evaporation on the contact angle and the spreading become very important for more complete understanding of these processes. It is of interest to note that evaporation can induce Marangoni-Benard convection in sessile drops. However, the impacts of the inside convection on the wetting and spreading processes are not clear. The experimental methods used by previous investigators cannot simultaneously measure the spreading process and visualize the convection inside. Based on the laser shadowgraphic system used by the present author, a very simple optical procedure has been developed to measure the contact angle, the spreading speed, the evaporation rate, and to visualize inside convection of a sessile drop simultaneously. Two CCD cameras were used to synchronously record the real-time diameter of the sessile drop, which is essential for determination of both spreading speed and evaporation rate, and the shadowgraphic image magnified by the sessile drop acting as a thin plano-convex lens. From the shadowgraph, the inside convection of the drop can be observed if any and the image outer diameter, which linked to the drop profile, can be measured. Simple equations have been derived to calculate the drop profile, including the instantaneous contact angle, height, and volume of the sessile drop, as well as the evaporation rate. The influence of

  20. Flow visualization system for wind turbines without blades applied to micro reactors; Sistema de visualização de escoamento para turbinas sem lâminas aplicada a microrreatores

    Energy Technology Data Exchange (ETDEWEB)

    Santos, G.S.B., E-mail: siqueira.gsb@gmail.com [Universidade Estadual Paulista Julio de Mesquita Filho (UNESP), São José dos Campos, SP (Brazil); Guimarães, L.N.F. [Instituto de Estudos Avançados (IEAv), São José dos Campos, SP (Brazil). Departamento de Ciência e Tecnologia Aeroespacial; Placco, G.M. [Instituto Tecnológico de Aeronáutica (PG/CTE/ITA), São José dos Campos, SP (Brazil). Departamento de Ciência e Tecnologia Aeroespacial

    2017-07-01

    Flow visualization systems is a tool used in science and industry for characterization of projects that operate with drainage. This work presents the design and construction of a flow visualization system for passive turbines used in advanced fast micro reactors. In the system were generated images where it is possible to see the supersonic and transonic flow through the turbine disks. A test bench was assembled to generate images of the interior of the turbine where the flow is supersonic, allowing the study of the behavior of the boundary layer between disks. It is necessary to characterize the boundary layer of this type of turbine because its operation occurs in the transfer of kinetic energy between the fluid and the disks. The images generated, as well as their analyzes are presented as a result of this work.