WorldWideScience

Sample records for wire array stainless

  1. Wire Array Photovoltaics

    Science.gov (United States)

    Turner-Evans, Dan

    Over the past five years, the cost of solar panels has dropped drastically and, in concert, the number of installed modules has risen exponentially. However, solar electricity is still more than twice as expensive as electricity from a natural gas plant. Fortunately, wire array solar cells have emerged as a promising technology for further lowering the cost of solar. Si wire array solar cells are formed with a unique, low cost growth method and use 100 times less material than conventional Si cells. The wires can be embedded in a transparent, flexible polymer to create a free-standing array that can be rolled up for easy installation in a variety of form factors. Furthermore, by incorporating multijunctions into the wire morphology, higher efficiencies can be achieved while taking advantage of the unique defect relaxation pathways afforded by the 3D wire geometry. The work in this thesis shepherded Si wires from undoped arrays to flexible, functional large area devices and laid the groundwork for multijunction wire array cells. Fabrication techniques were developed to turn intrinsic Si wires into full p-n junctions and the wires were passivated with a-Si:H and a-SiNx:H. Single wire devices yielded open circuit voltages of 600 mV and efficiencies of 9%. The arrays were then embedded in a polymer and contacted with a transparent, flexible, Ni nanoparticle and Ag nanowire top contact. The contact connected >99% of the wires in parallel and yielded flexible, substrate free solar cells featuring hundreds of thousands of wires. Building on the success of the Si wire arrays, GaP was epitaxially grown on the material to create heterostructures for photoelectrochemistry. These cells were limited by low absorption in the GaP due to its indirect bandgap, and poor current collection due to a diffusion length of only 80 nm. However, GaAsP on SiGe offers a superior combination of materials, and wire architectures based on these semiconductors were investigated for multijunction

  2. Effect of wire shape on wire array discharge

    Energy Technology Data Exchange (ETDEWEB)

    Shimomura, N.; Tanaka, Y.; Yushita, Y.; Nagata, M. [University of Tokushima, Department of Electrical and Electronic Engineering, Tokushima (Japan); Teramoto, Y.; Katsuki, S.; Akiyama, H. [Kumamoto University, Department of Electrical and Computer Engineering, Kumamoto (Japan)

    2001-09-01

    Although considerable investigations have been reported on z-pinches to achieve nuclear fusion, little attention has been given from the point of view of how a wire array consisting of many parallel wires explodes. Instability existing in the wire array discharge has been shown. In this paper, the effect of wire shape in the wire array on unstable behavior of the wire array discharge is represented by numerical analysis. The claws on the wire formed in installation of wire may cause uniform current distribution on wire array. The effect of error of wire diameter in production is computed by Monte Carlo Method. (author)

  3. Effect of wire shape on wire array discharge

    International Nuclear Information System (INIS)

    Shimomura, N.; Tanaka, Y.; Yushita, Y.; Nagata, M.; Teramoto, Y.; Katsuki, S.; Akiyama, H.

    2001-01-01

    Although considerable investigations have been reported on z-pinches to achieve nuclear fusion, little attention has been given from the point of view of how a wire array consisting of many parallel wires explodes. Instability existing in the wire array discharge has been shown. In this paper, the effect of wire shape in the wire array on unstable behavior of the wire array discharge is represented by numerical analysis. The claws on the wire formed in installation of wire may cause uniform current distribution on wire array. The effect of error of wire diameter in production is computed by Monte Carlo Method. (author)

  4. All-solid, flexible solar textiles based on dye-sensitized solar cells with ZnO nanorod arrays on stainless steel wires

    Energy Technology Data Exchange (ETDEWEB)

    Chae, Youngjin [Department of Clothing and Textiles, Yonsei University, 262 Seongsanno, Seodaemun-gu, Seoul 120-749 (Korea, Republic of); Park, Jung Tae; Koh, Jong Kwan [Department of Chemical and Biomolecular Engineering, Yonsei University, 262 Seongsanno, Seodaemun-gu, Seoul 120-749 (Korea, Republic of); Kim, Jong Hak, E-mail: jonghak@yonsei.ac.kr [Department of Chemical and Biomolecular Engineering, Yonsei University, 262 Seongsanno, Seodaemun-gu, Seoul 120-749 (Korea, Republic of); Kim, Eunae, E-mail: eakim@yonsei.ac.kr [Department of Clothing and Textiles, Yonsei University, 262 Seongsanno, Seodaemun-gu, Seoul 120-749 (Korea, Republic of)

    2013-10-01

    Highlights: • All-solid, flexible solar textile fabricated with DSSCs is demonstrated. • DSSCs woven into a satin structure and transparent PET film are used. • Solar textile showed a high efficiency of 2.57%. -- Abstract: An all-solid, flexible solar textile fabricated with dye-sensitized solar cells (DSSCs) woven into a satin structure and transparent poly(ethylene terephthalate) (PET) film was demonstrated. A ZnO nanorod (NR) vertically grown from fiber-type conductive stainless steel (SS) wire was utilized as a photoelectrode, and a Pt-coated SS wire was used as a counter electrode. A graft copolymer, i.e. poly(vinyl chloride)-graft-poly(oxyethylene methacrylate) (PVC-g-POEM) was synthesized via atom transfer radical polymerization (ATRP) and used as a solid electrolyte. The conditions for the growth of ZnO NR and sufficient dye loading were investigated to improve cell performance. The adhesion of PET films to DSSCs resulted in physical stability improvements without cell performance loss. The solar textile with 10 × 10 wires exhibited an energy conversion efficiency of 2.57% with a short circuit current density of 20.2 mA/cm{sup 2} at 100 mW/cm{sup 2} illumination, which is the greatest account of an all-solid, ZnO-based flexible solar textile. DSSC textiles with woven structures are applicable to large-area, roll-to-roll processes.

  5. Electrodeposition of nickel nano wire arrays

    International Nuclear Information System (INIS)

    Nur Ubaidah Saidin; Kok Kuan Ying; Ng Inn Khuan; Nurazila Mat Zali; Siti Salwa Zainal Abidin

    2010-01-01

    Synthesis, characterization and assembly of one-dimensional nickel nano wires prepared by template directed electrodeposition are discussed in this paper. Parallel arrays of high aspect ratio nickel nano wires were electrodeposited using electrolytes with different cations and pH. The nano wires were characterized using X-ray diffractometry and scanning electron microscopy. It was found that the orientations of the electro deposited Ni nano wires were governed by the deposition current and the electrolyte conditions. Free standing nickel nano wires can be obtained by dissolving the template. Due to the magnetic nature of the nano wires, magnetic alignment was employed to assemble and position the free standing nano wires in the device structure. (author)

  6. Deformable wire array: fiber drawn tunable metamaterials

    DEFF Research Database (Denmark)

    Fleming, Simon; Stefani, Alessio; Tang, Xiaoli

    2017-01-01

    By fiber drawing we fabricate a wire array metamaterial, the structure of which can be actively modified. The plasma frequency can be tuned by 50% by compressing the metamaterial; recovers when released and the process can be repeated.......By fiber drawing we fabricate a wire array metamaterial, the structure of which can be actively modified. The plasma frequency can be tuned by 50% by compressing the metamaterial; recovers when released and the process can be repeated....

  7. Si Wire-Array Solar Cells

    Science.gov (United States)

    Boettcher, Shannon

    2010-03-01

    Micron-scale Si wire arrays are three-dimensional photovoltaic absorbers that enable orthogonalization of light absorption and carrier collection and hence allow for the utilization of relatively impure Si in efficient solar cell designs. The wire arrays are grown by a vapor-liquid-solid-catalyzed process on a crystalline (111) Si wafer lithographically patterned with an array of metal catalyst particles. Following growth, such arrays can be embedded in polymethyldisiloxane (PDMS) and then peeled from the template growth substrate. The result is an unusual photovoltaic material: a flexible, bendable, wafer-thickness crystalline Si absorber. In this paper I will describe: 1. the growth of high-quality Si wires with controllable doping and the evaluation of their photovoltaic energy-conversion performance using a test electrolyte that forms a rectifying conformal semiconductor-liquid contact 2. the observation of enhanced absorption in wire arrays exceeding the conventional light trapping limits for planar Si cells of equivalent material thickness and 3. single-wire and large-area solid-state Si wire-array solar cell results obtained to date with directions for future cell designs based on optical and device physics. In collaboration with Michael Kelzenberg, Morgan Putnam, Joshua Spurgeon, Daniel Turner-Evans, Emily Warren, Nathan Lewis, and Harry Atwater, California Institute of Technology.

  8. Resistance microwelding of 316L stainless steel wire to block

    DEFF Research Database (Denmark)

    Friis, Kasper Storgaard; Khan, M.I.; Bay, Niels

    2011-01-01

    The excellent corrosion resistance of low carbon vacuum melted 316 stainless steel coupled with its non-magnetic properties makes it ideal for biomedical applications. The typical joint geometry for microcomponents, such as medical implants, includes joining of fine wire to a larger block. However......, this type of joint has received little attention in the current literature. The present study was conducted to examine the microstructure and mechanical properties of low carbon vacuum melted 316 stainless steel wire welded to a larger block. Results revealed solid state bonding occurring at low currents......, while fusion bonding occurred at higher currents. This was due to the highly asymmetrical heat generation resulting in almost complete melting of the wire before the initiation of interfacial melting. This is a distinctly different bonding mechanism compared to previous studies on crossed wire joints....

  9. Structural and phase studies of stainless wire after electroplastic drawing

    International Nuclear Information System (INIS)

    Troitskij, O.A.; Baldokhin, Yu.V.; Kir'yanchev, N.E.; Ryzhkov, V.G.; Kalugin, V.D.; Sokolov, N.V.; Klekovkin, A.A.; Klevtsur, S.A.

    1983-01-01

    Structural and phase properties of the 12Kh18N10T steel wire are studied after usual and electroplastic drawing from 0.40 up to 0.11 mm with 18-22% reduction per pass with passing 250 A/mm 2 electric current. The earlier made observation on a sharp decrease in content of deformation-induced martensite of α-phase takes place in the wire from stainless metastable austenitic steel as a result of electroplastic drawing. Distribution of the remained α-phase by the wire cross section is established

  10. Static friction of stainless steel wire rope–rubber contacts.

    NARCIS (Netherlands)

    Loeve, A.J.; Krijger, T.; Mugge, W.; Breedveld, P.; Dodou, D.; Dankelman, J.

    2014-01-01

    Little is known about static friction of stainless-steel wire ropes ('cables') in contact with soft rubbers, an interface of potential importance for rigidifiable medical instruments. Although friction theories imply that the size and profile of the cables affect static friction, there are no

  11. Development of austenitic stainless steel PC wire and strand

    International Nuclear Information System (INIS)

    Tsubono, Hideyoshi; Kawabata, Yoshinori; Yamaoka, Yukio

    1986-01-01

    The effects of aging and stress-aging (called hot stretching) at the temperatures from 120 deg C to 700 deg C on the mechanical properties, relaxation values, Charpy impact values and SCC behavior of hard drawn SUS 304, SUS 316 stainless steel wires have been studied. The main results obtained are as follows: (1) Yield and tensile strength of the wires increased by aging at 230 deg C and 530 deg C as well as by hot stretching. The strengthening after 230 deg C treatment may be due to the strain aging by C and the increase of strength after 530 deg C treatment results from precipitation of Cr 23 C 6 on dislocations. (2) Stress relaxation values up to 250 deg C are low due to precipitation of Cr 23 C 6 . Almost no difference can be observed between aging and hot stretching. (3) Impact value at -196 deg C of SUS 304 stainless steel wire which was measured with 1 mm V-notched specimen was found to be about the same as that of 9 % Ni steel. (4) It is considered that in comparison with high carbon PC wire SUS 304 stainless steel showing high tensile strength is insensitive to SCC in NH 4 SCN and NH 4 NO 3 solutions. (5) In practice, tension member of the austenitic stainless steel wire and strand which were produced by aging at 500 deg C may be useful in special industrial field, for example, (a) SUS 304, in cryogenic field use (b) SUS 316, in intensive magnetic field use as a nonmagnetic material. (author)

  12. Investigation of method for Stainless Steel Welding Wire as a Replacement for Arc Wire Comsumables

    Directory of Open Access Journals (Sweden)

    Koiprasert, H.

    2005-01-01

    Full Text Available Arc spraying as a coating method is being employed in various industrial applications as a part of maintenance service, and also as a surface engineering technique for many machine parts and components. The major cost in producing the arc spray coating is, however, based on the cost of the arc wire comsumables. This project was carried out to investigate the use of the commercially-available gas metal arc welding wire (GMAW wire as a cheaper alternative to the special-purpose arc wire comsumables. The wire material chosen for this early study is the 316L stainless steel, due to its popularity in many applications as a built-up coating for worn parts. The physical properties of the coatings produced from the two sets of 316L stainless steel wire were determined to be different in the percentage of porosity and the oxide content. The mechanical properties, including the tensile bond strength and the wear rate of the coatings produced from the two types of sprayed wire, were also different. This will, in turn, result in a slight difference in the performance of thecoatings.

  13. Torque resistance of different stainless steel wires commonly used for fixed retainers in orthodontics

    DEFF Research Database (Denmark)

    Arnold, Dario; Dalstra, Michel; Verna, Carlalberta

    2016-01-01

    Objective: Movements of teeth splinted by fixed retention wires after orthodontic treatment have been observed. The aetiological factors for these movements are unknown. The aim of this in vitro study was to compare the resistance to torque of different stainless steel wires commonly used for fixed...... retainers in orthodontics. Materials and Methods: Torquing moments acting on a retainer wire were measured in a mechanical force testing system by applying buccal crown torque to an upper lateral incisor in both a 3-teeth and in a 2-teeth setup. Seven stainless steel wires with different shape, type (plain...... or a braided 0.016 × 0.022-inch stainless steel wire. A tooth attached by a retainer wire to only one neighbouring tooth is less resistant to torque than a tooth connected to two neighbouring teeth. Annealing a retainer wire with a flame reduces the stiffness of the wire markedly and can lead to a non...

  14. Signals analysis of fluxgate array for wire rope defaults

    International Nuclear Information System (INIS)

    Gu Wei; Chu Jianxin

    2005-01-01

    In order to detecting the magnetic leakage fields of the wire rope defaults, a transducer made up of the fluxgate array is designed, and a series of the characteristic values of wire rope defaults signals are defined. By processing the characteristic signals, the LF or LMA of wire rope are distinguished, and the default extent is estimated. The experiment results of the new method for detecting the wire rope faults are introduced

  15. Thermal poling of multi-wire array optical fiber

    DEFF Research Database (Denmark)

    Huang, Lin; An, Honglin; Hayashi, Juliano G.

    2018-01-01

    We demonstrate in this paper thermal poling of multi-wire array fibers, which extends poling of fibers with two anodes to similar to 50 and similar to 500 wire array anodes. The second harmonic microscopy observations show that second order nonlinearity (SON) layers are developed surrounding all...... the rings of wires in the similar to 50 anode array fiber with poling of 1.8kV, 250 degrees C and 30min duration, and the outer rings of the similar to 500 anode array fiber at lower poling temperature. Our simulations based on a two-dimensional charge dynamics model confirm this can be explained...

  16. Anodic Aluminum Oxide Templates for Nano wires Array Fabrication

    International Nuclear Information System (INIS)

    Nur Ubaidah Saidin; Kok, K.Y.; Ng, I.K.

    2011-01-01

    This paper reports on the process developed to fabricate anodic aluminium oxide (AAO) templates suitable for the fabrication of nano wire arrays. Anodization process has been used to fabricate the AAO templates with pore diameters ranging from 15 nm to 30 nm. Electrodeposition of parallel arrays of high aspect ratio nickel nano wires were demonstrated using these fabricated AAO templates. The nano wires produced were characterized using X-ray diffraction (XRD) and scanning electron microscopy (SEM). It was found that the orientations of the electrodeposited nickel nano wires were governed by the deposition current and electrolyte conditions. (author)

  17. Drug-eluting Ti wires with titania nanotube arrays for bone fixation and reduced bone infection

    Science.gov (United States)

    Gulati, Karan; Aw, Moom Sinn; Losic, Dusan

    2011-10-01

    Current bone fixation technology which uses stainless steel wires known as Kirschner wires for fracture fixing often causes infection and reduced skeletal load resulting in implant failure. Creating new wires with drug-eluting properties to locally deliver drugs is an appealing approach to address some of these problems. This study presents the use of titanium [Ti] wires with titania nanotube [TNT] arrays formed with a drug delivery capability to design alternative bone fixation tools for orthopaedic applications. A titania layer with an array of nanotube structures was synthesised on the surface of a Ti wire by electrochemical anodisation and loaded with antibiotic (gentamicin) used as a model of bone anti-bacterial drug. Successful fabrication of TNT structures with pore diameters of approximately 170 nm and length of 70 μm is demonstrated for the first time in the form of wires. The drug release characteristics of TNT-Ti wires were evaluated, showing a two-phase release, with a burst release (37%) and a slow release with zero-order kinetics over 11 days. These results confirmed our system's ability to be applied as a drug-eluting tool for orthopaedic applications. The established biocompatibility of TNT structures, closer modulus of elasticity to natural bones and possible inclusion of desired drugs, proteins or growth factors make this system a promising alternative to replace conventional bone implants to prevent bone infection and to be used for targeted treatment of bone cancer, osteomyelitis and other orthopaedic diseases.

  18. Wire Array Solar Cells: Fabrication and Photoelectrochemical Studies

    Science.gov (United States)

    Spurgeon, Joshua Michael

    Despite demand for clean energy to reduce our addiction to fossil fuels, the price of these technologies relative to oil and coal has prevented their widespread implementation. Solar energy has enormous potential as a carbon-free resource but is several times the cost of coal-produced electricity, largely because photovoltaics of practical efficiency require high-quality, pure semiconductor materials. To produce current in a planar junction solar cell, an electron or hole generated deep within the material must travel all the way to the junction without recombining. Radial junction, wire array solar cells, however, have the potential to decouple the directions of light absorption and charge-carrier collection so that a semiconductor with a minority-carrier diffusion length shorter than its absorption depth (i.e., a lower quality, potentially cheaper material) can effectively produce current. The axial dimension of the wires is long enough for sufficient optical absorption while the charge-carriers are collected along the shorter radial dimension in a massively parallel array. This thesis explores the wire array solar cell design by developing potentially low-cost fabrication methods and investigating the energy-conversion properties of the arrays in photoelectrochemical cells. The concept was initially investigated with Cd(Se, Te) rod arrays; however, Si was the primary focus of wire array research because its semiconductor properties make low-quality Si an ideal candidate for improvement in a radial geometry. Fabrication routes for Si wire arrays were explored, including the vapor-liquid-solid growth of wires using SiCl4. Uniform, vertically aligned Si wires were demonstrated in a process that permits control of the wire radius, length, and spacing. A technique was developed to transfer these wire arrays into a low-cost, flexible polymer film, and grow multiple subsequent arrays using a single Si(111) substrate. Photoelectrochemical measurements on Si wire array

  19. Effect of discrete wires on the implosion dynamics of wire array Z pinches

    International Nuclear Information System (INIS)

    Lebedev, S. V.; Beg, F. N.; Bland, S. N.; Chittenden, J. P.; Dangor, A. E.; Haines, M. G.; Kwek, K. H.; Pikuz, S. A.; Shelkovenko, T. A.

    2001-01-01

    A phenomenological model of wire array Z-pinch implosions, based on the analysis of experimental data obtained on the mega-ampere generator for plasma implosion experiments (MAGPIE) generator [I. H. Mitchell , Rev. Sci. Instrum. 67, 1533 (1996)], is described. The data show that during the first ∼80% of the implosion the wire cores remain stationary in their initial positions, while the coronal plasma is continuously jetting from the wire cores to the array axis. This phase ends by the formation of gaps in the wire cores, which occurs due to the nonuniformity of the ablation rate along the wires. The final phase of the implosion starting at this time occurs as a rapid snowplow-like implosion of the radially distributed precursor plasma, previously injected in the interior of the array. The density distribution of the precursor plasma, being peaked on the array axis, could be a key factor providing stability of the wire array implosions operating in the regime of discrete wires. The modified ''initial'' conditions for simulations of wire array Z-pinch implosions with one-dimension (1D) and two-dimensions (2D) in the r--z plane, radiation-magnetohydrodynamic (MHD) codes, and a possible scaling to a larger drive current are discussed

  20. Primarily Experimental Results for a W Wire Array Z Pinch

    International Nuclear Information System (INIS)

    Kuai Bin; Aici, Qiu; Wang Liangping; Zeng Zhengzhong; Wang Wensheng; Cong Peitian; Gai Tongyang; Wei Fuli; Guo Ning; Zhang Zhong

    2006-01-01

    Primarily experimental results are given for a W wire array Z pinch imploded with up to 2 MA in 100 ns on a Qiangguang-I pulsed power generator. The configuration and parameters of the generator, the W wire array load assembly and the diagnostic system for the experiment are described. The total X-ray energy has been obtained with a averaged power of X-ray radiation of 1.28 TW

  1. Theory of wire number scaling in wire-array Z pinches

    International Nuclear Information System (INIS)

    Desjarlais, M.P.; Marder, B.M.

    1999-01-01

    Pulsed-power-driven Z pinches, produced by imploding cylindrical arrays of many wires, have generated very high x-ray radiation powers (>200 TW) and energies (2 MJ). Experiments have revealed a steady improvement in Z-pinch performance with increasing wire number at fixed total mass and array radius. The dominant mechanism acting to limit the performance of these devices is believed to be the Rayleigh-Taylor instability which broadens the radially imploding plasma sheath and consequently reduces the peak radiation power. A model is presented which describes an amplification over the two-dimensional Rayleigh-Taylor growth rate brought about by kink-like forces on the individual wires. This amplification factor goes to zero as the number of wires approaches infinity. This model gives results which are in good agreement with the experimental data and provides a scaling for wire-array Z pinches. copyright 1999 American Institute of Physics

  2. Seeded perturbations in wire array Z-Pinches

    International Nuclear Information System (INIS)

    Robinson, Allen Conrad; Fedin, Dmitry; Kantsyrev, Victor Leonidovich; Wunsch, Scott Edward; Oliver, Bryan Velten; Lebedev, Sergey V.; Coverdale, Christine Anne; Ouart, Nicholas D.; LePell, Paul David; Safronova, Alla S.; Shrestha, I.; McKenney, John Lee; Ampleford, David J.; Rapley, J.; Bott, S.C.; Palmer, J.B.A.; Sotnikov, Vladimir Isaakovich; Bland, Simon Nicholas; Ivanov, Vladimir V.; Chittenden, Jeremy Paul; Jones, B.; Garasi, Christopher Joseph; Hall, Gareth Neville; Yilmaz, M. Faith; Mehlhorn, Thomas Alan; Deeney, Christopher; Pokala, S.; Nalajala, V.

    2005-01-01

    Controlled seeding of perturbations is employed to study the evolution of wire array z-pinch implosion instabilities which strongly impact x-ray production when the 3D plasma stagnates on axis. Wires modulated in radius exhibit locally enhanced magnetic field and imploding bubble formation at discontinuities in wire radius due to the perturbed current path. Wires coated with localized spectroscopic dopants are used to track turbulent material flow. Experiments and MHD modeling offer insight into the behavior of z-pinch instabilities.

  3. Josephson junction arrays and superconducting wire networks

    International Nuclear Information System (INIS)

    Lobb, C.J.

    1992-01-01

    Techniques used to fabricate integrated circuits make it possible to construct superconducting networks containing as many as 10 6 wires or Josephson junctions. Such networks undergo phase transitions from resistive high-temperature states to ordered low-resistance low-temperature states. The nature of the phase transition depends strongly on controllable parameters such as the strength of the superconductivity in each wire or junction and the external magnetic field. This paper will review the physics of these phase transitions, starting with the simplest zero-magnetic field case. This leads to a Kosterlitz-Thouless transition when the junctions or wires are weak, and a simple mean-field fransition when the junctions or wires are strong. Rich behavior, resulting from frustration, occurs in the presence of a magnetic field. (orig.)

  4. Plasma dynamics in aluminium wire array Z-pinch implosions

    International Nuclear Information System (INIS)

    Bland, S.N.

    2001-01-01

    The wire array Z-pinch is the world's most powerful laboratory X-ray source. An achieved power of ∼280TW has generated great interest in the use of these devices as a source of hohlraum heating for inertial confinement fusion experiments. However, the physics underlying how wire array Z-pinches implode is not well understood. This thesis presents the first detailed measurements of plasma dynamics in wire array experiments. The MAGPIE generator, with currents of up to 1.4MA, 150ns 10-90% rise-time, was used to implode arrays of 16mm diameter typically containing between 8 and 64 15μm aluminium wires. Diagnostics included: end and side-on laser probing with interferometry, schlieren and shadowgraphy channels; radial and axial streak photography; gated X-ray imaging; XUV and hard X-ray spectrometry; filtered XRDs and diamond PCDs; and a novel X-ray backlighting system to probe high density plasma. It was found that the plasma formed from the wires consisted of cold, dense cores, which ablated producing hot, low density coronal plasma. After an initial acceleration around the cores, coronal plasma streams flowed force-free towards the axis, with an instability wavelength determined by the core size. At ∼50% of the implosion time, the streams collided on axis forming a precursor plasma which appeared to be uniform, stable, and inertially confined. The existence of core-corona structure significantly affected implosion dynamics. For arrays with <64 wires, the wire cores remained in their original positions until ∼80% of the implosion time before accelerating rapidly. At 64 wires a transition in implosion trajectories to 0-D like occurred indicating a possible merger of current carrying plasma close to the cores - the cores themselves did not merge. During implosion, the cores initially developed uncorrelated instabilities that then transformed into a longer wavelength global mode of instability. The study of nested arrays (2 concentric arrays, one inside the other

  5. Mechanical evaluation of quad-helix appliance made of low-nickel stainless steel wire.

    Science.gov (United States)

    dos Santos, Rogério Lacerda; Pithon, Matheus Melo

    2013-01-01

    The objective of this study was to test the hypothesis that there is no difference between stainless steel and low-nickel stainless steel wires as regards mechanical behavior. Force, resilience, and elastic modulus produced by Quad-helix appliances made of 0.032-inch and 0.036-inch wires were evaluated. Sixty Quad-helix appliances were made, thirty for each type of alloy, being fifteen for each wire thickness, 0.032-in and 0.036-in. All the archwires were submitted to mechanical compression test using an EMIC DL-10000 machine simulating activations of 4, 6, 9, and 12 mm. Analysis of variance (ANOVA) with multiple comparisons and Tukey's test were used (p nickel stainless steel alloy had force, resilience, and elastic modulus similar to those made of stainless steel alloy.

  6. Torque resistance of different stainless steel wires commonly used for fixed retainers in orthodontics.

    Science.gov (United States)

    Arnold, Dario T; Dalstra, Michel; Verna, Carlalberta

    2016-06-01

    Movements of teeth splinted by fixed retention wires after orthodontic treatment have been observed. The aetiological factors for these movements are unknown. The aim of this in vitro study was to compare the resistance to torque of different stainless steel wires commonly used for fixed retainers in orthodontics. Torquing moments acting on a retainer wire were measured in a mechanical force testing system by applying buccal crown torque to an upper lateral incisor in both a 3-teeth and in a 2-teeth setup. Seven stainless steel wires with different shape, type (plain, braided, coaxial, or chain) and dimensions were selected for this study. For a torquing angle of 16.2° in the 3-teeth setup torsion moments can vary between 390 cNmm and 3299 cNmm depending on the retainer wire. For the 2-teeth setup the torsion moments are much smaller. Exposure to the flame of a butane-gas torch for 10 seconds to anneal the wire reduces the stiffness of the retainer wire. Clinicians must select wires for fixed retainers very carefully since the difference in resistance to torque is large. A high level of torque control can be achieved with a plain 0.016 × 0.016-inch or a braided 0.016 × 0.022-inch stainless steel wire. A tooth attached by a retainer wire to only one neighbouring tooth is less resistant to torque than a tooth connected to two neighbouring teeth. Annealing a retainer wire with a flame reduces the stiffness of the wire markedly and can lead to a non-uniform and non-reproducible effect.

  7. Radius scaling of titanium wire arrays on the Z accelerator

    International Nuclear Information System (INIS)

    Coverdale, C.A.; Denney, C.; Spielman, R.B.

    1999-01-01

    The 20 MA Z accelerator has made possible the generation of substantial radiation (> 100 kJ) at higher photon energies (4.8 keV) through the use of titanium wire arrays. In this paper, the results of experiments designed to study the effects of initial load radius variations of nickel-clad titanium wire arrays will be presented. The load radius was varied from 17.5 mm to 25 mm and titanium K-shell (4.8 keV) yields of greater than 100 kJ were measured. The inclusion of the nickel cladding on the titanium wires allows for higher wire number loads and increases the spectral broadness of the source; kilovolt emissions (nickel plus titanium L-shell) of 400 kJ were measured in these experiments. Comparisons of the data to calculations will be made to estimate pinched plasma parameters such as temperature and participating mass fraction. These results will also be compared with previous pure titanium wire array results

  8. Seeded perturbations in wire array z-pinches

    International Nuclear Information System (INIS)

    Robinson, Allen Conrad; Kantsyrev, Victor Leonidovich; Wunsch, Scott Edward; Oliver, Bryan Velten; Lebedev, Sergey V.; Safronova, Alla S.; Maxwell, J.; McKenney, John Lee; Ampleford, David J.; Rapley, J.; Bott, S.C.; Palmer, J.B.A.; Bland, Simon Nicholas; Jones, Brent Manley; Chittenden, Jeremy Paul; Garasi, Christopher Joseph; Hall, Gareth Neville; Mehlhorn, Thomas Alan; Deeney, Christopher

    2004-01-01

    The impact of 3D structure on wire array z-pinch dynamics is a topic of current interest, and has been studied by the controlled seeding of wire perturbations. First, Al wires were etched at Sandia, creating 20% radial perturbations with variable axial wavelength. Observations of magnetic bubble formation in the etched regions during experiments on the MAGPIE accelerator are discussed and compared to 3D MHD modeling. Second, thin NaF coatings of 1 mm axial extent were deposited on Al wires and fielded on the Zebra accelerator. Little or no axial transport of the NaF spectroscopic dopant was observed in spatially resolved K-shell spectra, which places constraints on particle diffusivity in dense z-pinch plasmas. Finally, technology development for seeding perturbations is discussed

  9. 75 FR 34424 - Stainless Steel Wire Rod from Italy, Japan, the Republic of Korea, Spain, and Taiwan...

    Science.gov (United States)

    2010-06-17

    ...-807, A-583-828] Stainless Steel Wire Rod from Italy, Japan, the Republic of Korea, Spain, and Taiwan... stainless steel wire rod (SSWR) from Italy, Japan, the Republic of Korea (Korea), Spain, and Taiwan would likely lead to a continuation or recurrence of dumping and material injury to an industry in the United...

  10. Corrosion resistance of premodeled wires made of stainless steel used for heart electrotherapy leaders

    International Nuclear Information System (INIS)

    Przondziono, J; Szatka, W; Walke, W; Młynarski, R

    2012-01-01

    The purpose of the study is to evaluate resistance to electrochemical corrosion of wire made of X10CrNi18-8 stainless steel designed for use in cardiology treatment. The influence of strain formed in the premodeling process and methods of wire surface preparation to corrosive resistance in artificial plasma solution were analysed. Wire corrosion tests were carried out in the solution of artificial plasma. Resistance to electrochemical corrosion was evaluated on the ground of recorded curves of anodic polarization by means of potentiodynamic method. Potentiodynamic tests carried out enabled to determine how the resistance to pitting corrosion of wire changes, depending on strain formed in the premodeling process as well as on the method of wire surface preparation. For evaluation of phenomena occurring on the surface of tested steel, electrochemical impedance spectroscopy (EIS) was applied. Deterioration of corrosive properties of wire along with the increase in the formed strain hardening was observed.

  11. Material and biofilm load of K wires in toe surgery: titanium versus stainless steel.

    Science.gov (United States)

    Clauss, Martin; Graf, Susanne; Gersbach, Silke; Hintermann, Beat; Ilchmann, Thomas; Knupp, Markus

    2013-07-01

    Recurrence rates for toe deformity correction are high and primarily are attributable to scar contractures. These contractures may result from subclinical infection. We hypothesized that (1) recurrence of toe deformities and residual pain are related to low-grade infections from biofilm formation on percutaneous K wires, (2) biofilm formation is lower on titanium (Ti) K wires compared with stainless steel (SS) K wires, and (3) clinical outcome is superior with the use of Ti K wires compared with SS K wires. In this prospective nonrandomized, comparative study, we investigated 135 lesser toe deformities (61 patients; 49 women; mean ± SD age, 60 ± 15 years) temporarily fixed with K wires between August 2010 and March 2011 (81 SS, 54 Ti). K wires were removed after 6 weeks. The presence of biofilm-related infections was analyzed by sonication. High bacterial loads (> 500 colony-forming units [CFU]/mL) were detected on all six toes requiring revision before 6 months. Increased bacterial load was associated with pain and swelling but not recurrence of the deformity. More SS K wires had greater than 100 CFU/mL bacteria than Ti K wires. For K wires with a bacterial count greater than 100 CFU/mL, toes with Ti K wires had a lower recurrence rate, less pain, and less swelling than toes with SS K wires. Ti K wires showed superior clinical outcomes to SS K wires. This appears to be attributable to reduced infection rates. Although additional study is needed, we currently recommend the use of Ti K wires for the transfixation of toe deformities. Level II, therapeutic study. See Guidelines for Authors for a complete description of levels of evidence.

  12. Compact wire array sources: power scaling and implosion physics.

    Energy Technology Data Exchange (ETDEWEB)

    Serrano, Jason Dimitri; Chuvatin, Alexander S. (Laboratoire du Centre National de la Recherche Scientifique Ecole Polytechnique, Palaiseau, France); Jones, M. C.; Vesey, Roger Alan; Waisman, Eduardo M.; Ivanov, V. V. (University of Nevada - Reno, Reno, NV); Esaulov, Andrey A. (University of Nevada - Reno, Reno, NV); Ampleford, David J.; Cuneo, Michael Edward; Kantsyrev, Victor Leonidovich (University of Nevada - Reno, Reno, NV); Coverdale, Christine Anne; Rudakov, L. I. (Icarus Research, Bethesda, MD); Jones, Brent Manley; Safronova, Alla S. (University of Nevada - Reno, Reno, NV); Vigil, Marcelino Patricio

    2008-09-01

    A series of ten shots were performed on the Saturn generator in short pulse mode in order to study planar and small-diameter cylindrical tungsten wire arrays at {approx}5 MA current levels and 50-60 ns implosion times as candidates for compact z-pinch radiation sources. A new vacuum hohlraum configuration has been proposed in which multiple z pinches are driven in parallel by a pulsed power generator. Each pinch resides in a separate return current cage, serving also as a primary hohlraum. A collection of such radiation sources surround a compact secondary hohlraum, which may potentially provide an attractive Planckian radiation source or house an inertial confinement fusion fuel capsule. Prior to studying this concept experimentally or numerically, advanced compact wire array loads must be developed and their scaling behavior understood. The 2008 Saturn planar array experiments extend the data set presented in Ref. [1], which studied planar arrays at {approx}3 MA, 100 ns in Saturn long pulse mode. Planar wire array power and yield scaling studies now include current levels directly applicable to multi-pinch experiments that could be performed on the 25 MA Z machine. A maximum total x-ray power of 15 TW (250 kJ in the main pulse, 330 kJ total yield) was observed with a 12-mm-wide planar array at 5.3 MA, 52 ns. The full data set indicates power scaling that is sub-quadratic with load current, while total and main pulse yields are closer to quadratic; these trends are similar to observations of compact cylindrical tungsten arrays on Z. We continue the investigation of energy coupling in these short pulse Saturn experiments using zero-dimensional-type implosion modeling and pinhole imaging, indicating 16 cm/?s implosion velocity in a 12-mm-wide array. The same phenomena of significant trailing mass and evidence for resistive heating are observed at 5 MA as at 3 MA. 17 kJ of Al K-shell radiation was obtained in one Al planar array fielded at 5.5 MA, 57 ns and we

  13. Analysis of X-ray iron and nickel radiation and jets from planar wire arrays and X-pinches

    International Nuclear Information System (INIS)

    Safronova, A S; Kantsyrev, V L; Esaulov, A A; Ouart, N D; Shlyaptseva, V; Williamson, K M; Shrestha, I; Osborne, G C; Weller, M E

    2010-01-01

    University-scale Z-pinch devices are able to produce plasmas with a broad range of sizes, temperatures, densities, their gradients, and opacity properties. Radiative properties of such plasmas depend on material, mass, and configuration of the wire array loads. Experiments with two different types of loads, double planar wire arrays (DPWA) and X-pinches, performed on the 1 MA Zebra generator at UNR are analyzed. X-pinches are made from Stainless Steel (69% Fe, 20% Cr, and 9% Ni) wires. Combined DPWAs consist of one plane from SS wires and another plane from Alumel (95% Ni, 2% Al, 2% Si) wires. The main focus of this work is on the analysis of plasma jets at the early phase of plasma formation and the K-and L-shell radiation generation at the implosion and stagnation phases in experiments with the two aforementioned wire loads. The relevant theoretical tools that guide the data analysis include non-LTE collisional-radiative and wire ablation dynamics models. The astrophysical relevance of the plasma jets as well as of spectroscopic and imaging studies are demonstrated.

  14. The control of stainless steel tubes and wires of small diameter by the Eddy current method

    International Nuclear Information System (INIS)

    Stossel, A.; Gallet, G.

    1978-01-01

    Stainless steel tubes and wires with an outer diameter greater than 1 mm were studied by Eddy currents. The sensor characteristics and the detection of defects in function of frequency are presented together with the results obtained in the detection of dimensional and metallurgical defects [fr

  15. Adhesive Properties of Bonded Orthodontic Retainers to Enamel : Stainless Steel Wire vs Fiber-reinforced Composites

    NARCIS (Netherlands)

    Foek, Dave Lie Sam; Krebs, Eliza; Sandham, John; Ozcan, Mutlu

    2009-01-01

    Purpose: The objectives of this study were to compare the bond strength of a stainless steel orthodontic wire vs various fiber-reinforced composites (FRC) used as orthodontic retainers on enamel, analyze the failure types after debonding, and investigate the influence of different application

  16. 75 FR 32503 - Stainless Steel Wire Rod From Italy, Japan, Korea, Spain, and Taiwan

    Science.gov (United States)

    2010-06-08

    ... Taiwan would be likely to lead to continuation or recurrence of material injury to an industry in the...)] Stainless Steel Wire Rod From Italy, Japan, Korea, Spain, and Taiwan Determinations On the basis of the..., and Taiwan: Investigation Nos. 731-TA-770-773 and 775 (Second Review). By order of the Commission...

  17. Electron beam freeforming of stainless steel using solid wire feed

    International Nuclear Information System (INIS)

    Wanjara, P.; Brochu, M.; Jahazi, M.

    2007-01-01

    The use of electron beam technology for freeforming build-ups on 321 stainless steel substrates was investigated in this work by using 347 stainless steel as a filler metal. The electron beam freeforming studies indicated that line build-ups could be deposited on the substrate material for optimized processing conditions and a slight linear thickening of the re-build occurred as a function of the deposited layer. The evolution in the formation of the Ti (C, N) (Nb, Ti) carbonitrides and Nb (C, N) precipitates was demonstrated to counteract the formation of detrimental Cr-carbides usually observed during welding stainless steels. The mechanical properties of the re-build were similar to the properties of the base metal, showing that homogeneous properties can be expected in the repaired components

  18. Gold Wire-networks: Particle Array Guided Evaporation Lithograpy

    KAUST Repository

    Lone, Saifullah

    2015-06-29

    We exploited the combination of dry deposition of monolayer of 2D (two dimensional) templates, lift-up transfer of 2D template onto flat surfaces and evaporation lithography [1] to fabricate gold micro- and submicron size wire networks. The approach relies upon the defect free dry deposition of 2D monolayer of latex particles [2] on patterned silicon template and flat PDMS-substrate to create square centered and honey-comb wire networks respectively. The process is followed by lift-up transfer of 2D latex crystal on glass substrate. Subsequently, a small amount of AuNP-suspension is doped on top of the transferred crystal; the suspension is allowed to spread instantaneously and dried at low temperature. The liquid evaporates uniformly to the direction perpendicular to glass substrate. During evaporation, AuNPs are de-wetted along with the movement of liquid to self-assemble in-between the inter-particle spaces and therefore, giving rise to liquid-bridge networks which upon delayed evaporation, transforms into wire networks. The approach is used to fabricate both micro- and submicron wire-networks by simply changing the template dimensions. One of the prime motives behind this study is to down-scale the existing particle array template-based evaporation lithography process to fabricate connected gold wire networks at both micro- and submicron scale. Secondly, the idea of combining the patterned silicon wafer with lifted latex particle template creates an opportunity to clean and res-use the patterned wafer more often and thereby, saving fabrication time and resources. Finally, we illustrated the validity of this approach by creating an easy and high-speed approach to develop gold wire networks on a flexible substrate with a thin deposited adhesive. These advances will not only serve as a platform to scale up the production, but also demonstrated that the fabrication method can produce metallic wire networks of different scale and onto a variety of substrates.

  19. Bioactivity and osteointegration of hydroxyapatite-coated stainless steel and titanium wires used for intramedullary osteosynthesis.

    Science.gov (United States)

    Popkov, Arnold V; Gorbach, Elena N; Kononovich, Natalia A; Popkov, Dmitry A; Tverdokhlebov, Sergey I; Shesterikov, Evgeniy V

    2017-08-01

    A lot of research was conducted on the use of various biomaterials in orthopedic surgery. Our study investigated the effects of nanostructured calcium-phosphate coating on metallic implants introduced into the bone marrow canal. Stainless steel or titanium 2-mm wires (groups 1 and 2, respectively), and hydroxyapatite-coated stainless steel or titanium wires of the same diameter (groups 3 and 4, respectively) were introduced into the tibial bone marrow canal of 20 dogs (each group = 5 dogs). Hydroxyapatite coating was deposited on the wires with the method of microarc oxidation. Light microscopy to study histological diaphyseal transverse sections, scanning electron microscopy to study the bone marrow area around the implant and an X-ray electron probe analyzer to study the content of calcium and phosphorus were used to investigate bioactivity and osteointegration after a four weeks period. Osteointegration was also assessed by measuring wires' pull-off strength with a sensor dynamometer. Bone formation was observed round the wires in the bone marrow canal in all the groups. Its intensity depended upon the features of wire surfaces and implant materials. Maximum percentage volume of trabecular bone was present in the bone marrow canals of group 4 dogs that corresponded to a mean of 27.1 ± 0.14%, while it was only 6.7% in group 1. The coating in groups 3 and 4 provided better bioactivity and osteointegration. Hydroxyapatite-coated titanium wires showed the highest degree of bone formation around them and greater pull-off strength. Nanostructured hydroxyapatite coating of metallic wires induces an expressed bone formation and provides osteointegration. Hydroxyapatite-coated wires could be used along with external fixation for bone repair enhancement in diaphyseal fractures, management of osteogenesis imperfecta and correction of bone deformities in phosphate diabetes.

  20. Mass accretion and nested array dynamics from Ni-Clad Ti-Al wire array Z pinches

    International Nuclear Information System (INIS)

    Jones, Brent Manley; Jennings, Christopher A.; Coverdale, Christine Anne; Cuneo, Michael Edward; Maron, Yitzhak; LePell, Paul David; Deeney, Christopher

    2010-01-01

    Analysis of 50 mm diameter wire arrays at the Z Accelerator has shown experimentally the accretion of mass in a stagnating z pinch and provided insight into details of the radiating plasma species and plasma conditions. This analysis focused on nested wire arrays with a 2:1 (outeninner) mass, radius, and wire number ratio where Al wires were fielded on the outer array and Ni-clad Ti wires were fielded on the inner array.In this presentation, we will present analysis of data from other mixed Al/Ni-clad Ti configurations to further evaluate nested wire array dynamics and mass accretion. These additional configurations include the opposite configuration to that described above (Ni-clad Ti wires on the outer array, with Al wires on the inner array) as well as higher wire number Al configurations fielded to vary the interaction of the two arrays. These same variations were also assessed for a smaller diameter nested array configuration (40 mm). Variations in the emitted radiation and plasma conditions will be presented, along with a discussion of what the results indicate about the nested array dynamics. Additional evidence for mass accretion will also be presented.

  1. Soft X-ray radiation parameters of nested tungsten wire array

    International Nuclear Information System (INIS)

    Ning Jiamin; Jiang Shilun; Xu Rongkun; Xu Zeping; Li Zhenghong; Yang Jianlun

    2011-01-01

    Implosions with nested tungsten wire array were performed at the Angara-5-1 facility in Russian Research Centre. The experimental results of nested tungsten wire array are compared with those of single array. Radiation parameters of nested array are discussed based on four different dynamic models. When the implosions of outer and inner wire arrays are synchronized,the relatively uniform distribution of inner layer plasma will improve the uniformity of outer layer plasma. As compared with single array, nested array has an increase of 32% in X-ray radiation power. (authors)

  2. Physical analysis for designing nested-wire arrays on Z-pinch implosion

    International Nuclear Information System (INIS)

    Yang Zhenhua; Liu Quan; Ding Ning; Ning Cheng

    2005-01-01

    Z-pinch experiments have demonstrated that the X-ray power increases 40% with a nested-wire array compared with that with a single-layered wire array. The design of the nested-wire array on Z accelerator is studied through the implosion dynamics and the growth of RT instabilities. The analysis shows that the nested-wire array does not produce more total X-ray radiation energy than the single-layered wire array, but it obviously increases the X-ray power. The radius of the outer array of the nested-wire array could be determined based on the radius of the optimized single-layered. The masses of the outer and inner arrays could be determined by the implosion time of the nested-wire array, which is roughly the same as that of the single-layered wire array. Some suggestions are put forward which may be helpful in the nested-wire array design for Z-pinch experiments. (authors)

  3. Pelepasan ion nikel dan kromium kawat Australia dan stainless steel dalam saliva buatan (The release of nickel and chromium ions from Australian wire and stainless steel in artificial saliva)

    OpenAIRE

    Nolista Indah Rasyid; Pinandi Sri Pudyani; JCP Heryumani

    2014-01-01

    Background: Fixed orthodontic treatment needs several types of wire to produce biomechanical force to move teeth. The use orthodontic wire within the mouth interacts with saliva, causing the release of nickel and chromium ions. Purpose: The study was aimed to examine the effect of immersion time in artificial saliva between special type of Australian wire and stainless steel on the release of nickel and chromium ions. Methods: Thirty special type Australian wires and 30 stainless steel wires ...

  4. Numerical simulation of wire array load implosion on Yang accelerator

    International Nuclear Information System (INIS)

    Zhao Hailong; Deng Jianjun; Wang Qiang; Zou Wenkang; Wang Ganghua

    2012-01-01

    Based on the ZORK model describing the Saturn facility, a zero dimensional load model of the wire array Z-pinch on Yang accelerator is designed using Pspice to simulate the implosion process. Comparisons between the calculated results and experimental data prove the load model to be correct. The applicability and shortcomings of the load model are presented. One-dimensional magnetohydrodynamic calculations are performed by using the current curve obtained from calculated results of experiment Yang 1050#. and the parameters such as implosion time and radiation X-ray power are obtained. (authors)

  5. Effect of surface treatment on mechanical properties of glass fiber/stainless steel wire mesh reinforced epoxy hybrid composites

    Energy Technology Data Exchange (ETDEWEB)

    N, Karunagaran [S.K.P Engineering College, Tiruvannamalai (India); A, Rajadurai [Anna University, Chennai (India)

    2016-06-15

    This paper investigates the effect of surface treatment for glass fiber, stainless steel wire mesh on tensile, flexural, inter-laminar shear and impact properties of glass fiber/stainless steel wire mesh reinforced epoxy hybrid composites. The glass fiber fabric is surface treated either by 1 N solution of sulfuric acid or 1 N solution of sodium hydroxide. The stainless steel wire mesh is also surface treated by either electro dissolution or sand blasting. The hybrid composites are fabricated using epoxy resin reinforced with glass fiber and fine stainless steel wire mesh by hand lay-up technique at room temperature. The hybrid composite consisting of acid treated glass fiber and sand blasted stainless steel wire mesh exhibits a good combination of tensile, flexural, inter-laminar shear and impact behavior in comparison with the composites made without any surface treatment. The fine morphological modifications made on the surface of the glass fiber and stainless steel wire mesh enhances the bonding between the resin and reinforcement which inturn improved the tensile, flexural, inter-laminar shear and impact properties.

  6. Symmetric aluminum-wire arrays generate high-quality Z pinches at large array radii

    International Nuclear Information System (INIS)

    Sanford, T.W.; Mock, R.C.; Spielman, R.B.; Peterson, D.L.; Mosher, D.; Roderick, N.F.

    1998-01-01

    A Saturn-accelerator study of annular, aluminum-wire array, Z-pinch implosions, in the calculated high-wire-number plasma-shell regime [Phys. Rev. Lett. 77, 5063 (1996)], shows that the radiated x-ray pulse width increases from about 4 nsec to about 7 nsec, when the radius of the array is increased from 8.75 to 20 mm at a fixed array mass of 0.6 mg. Eulerian radiation- magnetohydrodynamic code (E-RMHC) simulations in the r-z plane suggest that this pulse-width increase with radius is due to the faster growth of the shell thickness (that arises from a two-stage development in the magnetic Rayleigh - Taylor instability) relative to the increase in the shell implosion velocity. Over the array radii explored, the measured peak total x-ray power of ∼40 TW and energy of ∼325 kJ show little change outside of a ±15% shot-to-shot fluctuation and are consistent with the E-RMHC simulations. Similarly, the measured peak K-shell (lines plus continuum) power of ∼8 TW and energy of ∼70 kJ show little change with radius. The minimal change in K-shell yield is in agreement with simple K-shell radiation scaling models that assume a fixed radial compression for all initial array radii. These results suggest that the improved uniformity provided by the large number of wires in the initial array reduces the disruptive effects of the Rayleigh - Taylor instability observed in small-wire-number imploding loads. copyright 1998 American Institute of Physics

  7. Symmetric aluminum-wire arrays generate high-quality Z pinches at large array radii

    Energy Technology Data Exchange (ETDEWEB)

    Sanford, T.W.; Mock, R.C.; Spielman, R.B. [Sandia National Laboratories, P.O. Box 5800, Albuquerque, New Mexico 87185 (United States); Peterson, D.L. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545-0010 (United States); Mosher, D. [Naval Research Laboratory, Pulsed Power Physics Branch, Washington, DC 20375 (United States); Roderick, N.F. [University of New Mexico, Albuquerque, New Mexico 87131 (United States)

    1998-10-01

    A Saturn-accelerator study of annular, aluminum-wire array, Z-pinch implosions, in the calculated high-wire-number plasma-shell regime [Phys. Rev. Lett. {bold 77}, 5063 (1996)], shows that the radiated x-ray pulse width increases from about 4 nsec to about 7 nsec, when the radius of the array is increased from 8.75 to 20 mm at a fixed array mass of 0.6 mg. Eulerian radiation- magnetohydrodynamic code (E-RMHC) simulations in the r-z plane suggest that this pulse-width increase with radius is due to the faster growth of the shell thickness (that arises from a two-stage development in the magnetic Rayleigh{endash}Taylor instability) relative to the increase in the shell implosion velocity. Over the array radii explored, the measured peak total x-ray power of {approximately}40 TW and energy of {approximately}325 kJ show little change outside of a {plus_minus}15{percent} shot-to-shot fluctuation and are consistent with the E-RMHC simulations. Similarly, the measured peak {ital K}-shell (lines plus continuum) power of {approximately}8 TW and energy of {approximately}70 kJ show little change with radius. The minimal change in {ital K}-shell yield is in agreement with simple {ital K}-shell radiation scaling models that assume a fixed radial compression for all initial array radii. These results suggest that the improved uniformity provided by the large number of wires in the initial array reduces the disruptive effects of the Rayleigh{endash}Taylor instability observed in small-wire-number imploding loads. {copyright} {ital 1998 American Institute of Physics.}

  8. Symmetric aluminum-wire arrays generate high-quality Z pinches at large array radii

    Science.gov (United States)

    Sanford, T. W. L.; Mock, R. C.; Spielman, R. B.; Peterson, D. L.; Mosher, D.; Roderick, N. F.

    1998-10-01

    A Saturn-accelerator study of annular, aluminum-wire array, Z-pinch implosions, in the calculated high-wire-number plasma-shell regime [Phys. Rev. Lett. 77, 5063 (1996)], shows that the radiated x-ray pulse width increases from about 4 nsec to about 7 nsec, when the radius of the array is increased from 8.75 to 20 mm at a fixed array mass of 0.6 mg. Eulerian radiation- magnetohydrodynamic code (E-RMHC) simulations in the r-z plane suggest that this pulse-width increase with radius is due to the faster growth of the shell thickness (that arises from a two-stage development in the magnetic Rayleigh-Taylor instability) relative to the increase in the shell implosion velocity. Over the array radii explored, the measured peak total x-ray power of ˜40 TW and energy of ˜325 kJ show little change outside of a ±15% shot-to-shot fluctuation and are consistent with the E-RMHC simulations. Similarly, the measured peak K-shell (lines plus continuum) power of ˜8 TW and energy of ˜70 kJ show little change with radius. The minimal change in K-shell yield is in agreement with simple K-shell radiation scaling models that assume a fixed radial compression for all initial array radii. These results suggest that the improved uniformity provided by the large number of wires in the initial array reduces the disruptive effects of the Rayleigh-Taylor instability observed in small-wire-number imploding loads.

  9. Phase transformation of 316L stainless steel from wire to fiber

    International Nuclear Information System (INIS)

    Shyr, Tien-Wei; Shie, Jing-Wen; Huang, Shih-Ju; Yang, Shun-Tung; Hwang, Weng-Sing

    2010-01-01

    In this work, quantitative crystalline phase analysis of 316L stainless steel from wire to fiber using a multi-pass cold drawing process was studied using the Rietveld whole XRD profile fitting technique. The different diameters of the fibers: 179, 112, 75, 50, 34, 20, and 8 μm, were produced from an as-received wire with a diameter of 190 μm. The crystalline phases were identified using MDI Jade 5.0 software. The volume fractions of crystalline phases were estimated using a Materials Analysis Using Diffraction software. XRD analysis revealed that the crystal structure of as-received wire is essentially a γ-austenite crystalline phase. The phase transformation occurred during the 316L stainless steel from wire to fiber. Three crystalline phases such as γ-austenite, α'-martensite, and sigma phase of the fine fiber were observed. A cold drawing accelerates the sigma phase precipitates, particularly during the heat treatment of the fiber.

  10. Effects of nanostructured, diamondlike, carbon coating and nitrocarburizing on the frictional properties and biocompatibility of orthodontic stainless steel wires.

    Science.gov (United States)

    Zhang, Hao; Guo, Shuyu; Wang, Dongyue; Zhou, Tingting; Wang, Lin; Ma, Junqing

    2016-09-01

    To evaluate and compare the effects of nanostructured, diamondlike, carbon (DLC) coating and nitrocarburizing on the frictional properties and biocompatibility of orthodontic stainless steel archwires. Plasma-enhanced chemical vapor deposition technology was applied to coat DLC films onto the surface of austenitic stainless steel wires, and salt-bath nitrocarburizing technology was employed to achieve surface hardening of other wires. Surface and cross-sectional characteristics, microhardness, modulus of elasticity, friction resistance, corrosion resistance, and cell toxicity of the modified and control wires were analyzed. The surfaces of the DLC-coated and nitrocarburized wires were both smooth and even. Compared with the control, the DLC-coated wires were increased in surface hardness 1.46 times, decreased in elastic modulus, reduced in kinetic friction coefficient by 40.71%, and decreased in corrosion current density by two orders of magnitude. The nitrocarburized wire was increased in surface hardness 2.39 times, exhibited an unchanged elastic modulus, demonstrated a decrease in maximum static friction force of 22.2%, and rose in corrosion current density two orders of magnitude. Cytotoxicity tests revealed no significant toxicity associated with the modified wires. DLC coating and nitrocarburizing significantly improved the surface hardness of the wires, reduced friction, and exhibited good biocompatibility. The nanostructured DLC coating provided excellent corrosion resistance and good elasticity, and while the nitrocarburizing technique substantially improved frictional properties, it reduced the corrosion resistance of the stainless steel wires to a lesser extent.

  11. Wire number dependence of the implosion dynamics, stagnation, and radiation output of tungsten wire arrays at Z driver

    Energy Technology Data Exchange (ETDEWEB)

    Mazarakis, Michael G.; Stygar, William A.; Sinars, Daniel B.; Cuneo, Michael E.; Nash, Thomas J.; Chandler, Gordon A.; Keith Matzen, M.; Porter, John L.; Struve, Kenneth W.; McDaniel, Dillon H. [Sandia National Laboratories, P.O. Box 5800, Albuquerque, New Mexico 87185 (United States); Deeney, Christopher E. [National Nuclear Security Administration, Washington, D.C. 20585 (United States); Douglas, Melissa R. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Chittenden, Jerry [Imperial College, London, SW and 2BW (United Kingdom)

    2011-11-15

    We report results of the experimental campaign, which studied the initiation, implosion dynamics, and radiation yield of tungsten wire arrays as a function of the wire number. The wire array dimensions and mass were those of interest for the Z-pinch driven Inertial Confinement Fusion (ICF) program. An optimization study of the x-ray emitted peak power, rise time, and full width at half maximum was effectuated by varying the wire number while keeping the total array mass constant and equal to {approx}5.8 mg. The driver utilized was the {approx}20-MA Z accelerator before refurbishment in its usual short pulse mode of 100 ns. We studied single arrays of 20-mm diameter and 1-cm height. The smaller wire number studied was 30 and the largest 600. It appears that 600 is the highest achievable wire number with present day's technology. Radial and axial diagnostics were utilized including crystal monochromatic x-ray backlighter. An optimum wire number of {approx}375 was observed which was very close to the routinely utilized 300 for the ICF program in Sandia.

  12. Wire number dependence of the implosion dynamics, stagnation, and radiation output of tungsten wire arrays at Z driver

    International Nuclear Information System (INIS)

    Mazarakis, Michael G.; Stygar, William A.; Sinars, Daniel B.; Cuneo, Michael E.; Nash, Thomas J.; Chandler, Gordon A.; Keith Matzen, M.; Porter, John L.; Struve, Kenneth W.; McDaniel, Dillon H.; Deeney, Christopher E.; Douglas, Melissa R.; Chittenden, Jerry

    2011-01-01

    We report results of the experimental campaign, which studied the initiation, implosion dynamics, and radiation yield of tungsten wire arrays as a function of the wire number. The wire array dimensions and mass were those of interest for the Z-pinch driven Inertial Confinement Fusion (ICF) program. An optimization study of the x-ray emitted peak power, rise time, and full width at half maximum was effectuated by varying the wire number while keeping the total array mass constant and equal to ∼5.8 mg. The driver utilized was the ∼20-MA Z accelerator before refurbishment in its usual short pulse mode of 100 ns. We studied single arrays of 20-mm diameter and 1-cm height. The smaller wire number studied was 30 and the largest 600. It appears that 600 is the highest achievable wire number with present day's technology. Radial and axial diagnostics were utilized including crystal monochromatic x-ray backlighter. An optimum wire number of ∼375 was observed which was very close to the routinely utilized 300 for the ICF program in Sandia.

  13. Martensitic transformation of austenitic stainless steel orthodontic wires during intraoral exposure.

    Science.gov (United States)

    Izquierdo, Paula P; de Biasi, Ronaldo S; Elias, Carlos N; Nojima, Lincoln I

    2010-12-01

    Our purpose was to study the mechanical properties and phase transformations of orthodontic wires submitted to in-vivo exposure in the mouth for different periods of time. Stainless steel wires were tied to fixed orthodontic appliances of 30 patients from the orthodontics clinic of Universidade Federal do Rio de Janeiro School of Dentistry in Brazil. According to the duration of the clinical treatment, the patients were divided into 3 groups. After in-vivo exposure, the samples were studied by mechanical testing (torsion) and ferromagnetic resonance. Statistical analyses were carried out to evaluate the correlation between time of exposure, mechanical properties, and austenite-to-martensite transformation among the groups. The results were compared with as-received control samples. The torque values increased as time in the mouth increased. The increase in torque resistance showed high correlations with time of exposure (P = 0.005) and austenite-martensite phase transformation. The resistance of stainless steel orthodontic wires increases as the time in the mouth increases; this effect is attributed to the austenite-to-martensite transformation. Copyright © 2010 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.

  14. Dynamical analysis of surface-insulated planar wire array Z-pinches

    Science.gov (United States)

    Li, Yang; Sheng, Liang; Hei, Dongwei; Li, Xingwen; Zhang, Jinhai; Li, Mo; Qiu, Aici

    2018-05-01

    The ablation and implosion dynamics of planar wire array Z-pinches with and without surface insulation are compared and discussed in this paper. This paper first presents a phenomenological model named the ablation and cascade snowplow implosion (ACSI) model, which accounts for the ablation and implosion phases of a planar wire array Z-pinch in a single simulation. The comparison between experimental data and simulation results shows that the ACSI model could give a fairly good description about the dynamical characteristics of planar wire array Z-pinches. Surface insulation introduces notable differences in the ablation phase of planar wire array Z-pinches. The ablation phase is divided into two stages: insulation layer ablation and tungsten wire ablation. The two-stage ablation process of insulated wires is simulated in the ACSI model by updating the formulas describing the ablation process.

  15. Fast commutation of high current in double wire array Z-pinch loads

    International Nuclear Information System (INIS)

    Davis, J.; Gondarenko, N.A.; Velikovich, A.L.

    1997-01-01

    A dynamic model of multi-MA current commutation in a double wire array Z-pinch load is proposed and studied theoretically. Initially, the load is configured as nested concentric wire arrays, with the current driven through the outer array and imploding it. Once the outer array or the annular plasma shell formed from it approaches the inner array, the imploded plasma might penetrate through the gaps between the wires, but the azimuthal magnetic field is trapped due to both the high conductivity of the inner wires and the inductive coupling between the two parts of the array, causing a rapid switching of the total current to the inner part of the array. copyright 1997 American Institute of Physics

  16. Intraneural stimulation using wire-microelectrode arrays: analysis of force steps in recruitment curves

    NARCIS (Netherlands)

    Smit, J.P.A.; Rutten, Wim; Boom, H.B.K.

    1996-01-01

    In acute experiments on six Wistar rats, a wire-microelectrode array was inserted into the common peroneal nerve. A 5-channel array and a 24-channel array were available. Each electrode in the array was used to generate a twitch contraction force recruitment curve for the extensor digitorum longus

  17. Wire array z-pinch insights for high X-ray power generation

    International Nuclear Information System (INIS)

    Sanford, T.W.L.; Marder, B.M.; Desjarlais, M.P.

    1998-01-01

    The discovery that the use of very large numbers of wires enables high x-ray power to be generated from wire-array z-pinches represents a breakthrough in load design for large pulsed power generators, and has permitted high temperatures to be generated in radiation cavities on Saturn and Z. In this paper, changes in x-ray emission characteristics as a function of wire number, array mass, and load radius, for 20-mm-long aluminum arrays on Saturn that led to these breakthrough hohlraum results, are discussed and compared with a few related emission characteristics of high-wire-number aluminum and tungsten arrays on Z. X-ray measurement comparisons with analytic models and 2-D radiation-magnetohydrodynamic (RMHC) code simulations in the x-y and r-z planes provide confidence in the ability of the models and codes to predict future x-ray performance with very-large-number wire arrays

  18. Wire array z-pinch insights for high X-ray power generation

    Energy Technology Data Exchange (ETDEWEB)

    Sanford, T.W.L.; Marder, B.M.; Desjarlais, M.P. [and others

    1998-12-31

    The discovery that the use of very large numbers of wires enables high x-ray power to be generated from wire-array z-pinches represents a breakthrough in load design for large pulsed power generators, and has permitted high temperatures to be generated in radiation cavities on Saturn and Z. In this paper, changes in x-ray emission characteristics as a function of wire number, array mass, and load radius, for 20-mm-long aluminum arrays on Saturn that led to these breakthrough hohlraum results, are discussed and compared with a few related emission characteristics of high-wire-number aluminum and tungsten arrays on Z. X-ray measurement comparisons with analytic models and 2-D radiation-magnetohydrodynamic (RMHC) code simulations in the x-y and r-z planes provide confidence in the ability of the models and codes to predict future x-ray performance with very-large-number wire arrays.

  19. Wire array z-pinch insights for high x-ray power generation

    Energy Technology Data Exchange (ETDEWEB)

    Sanford, T.W.L.; Mock, R.C.; Marder, B.M. [and others

    1997-12-31

    The discovery that the use of very large numbers of wires enables high x-ray power to be generated from wire-array z-pinches represents a breakthrough in load design for large pulsed power generators, and has permitted high temperatures to be generated in radiation cavities on Saturn and Z. In this paper, changes in x-ray emission characteristics as a function of wire number, array mass, and load radius, for 20-mm-long aluminum arrays on Saturn that led to these breakthrough hohlraum results, are discussed and compared with a few related emission characteristics of high-wire-number aluminum and tungsten arrays on Z. X-ray measurement comparisons with analytic models and 2-D radiation-magnetohydrodynamic (RMHC) code simulations in the x-y and r-z planes provide confidence in the ability of the models and codes to predict future x-ray performance with very-large-number wire arrays.

  20. Wire array z-pinch insights for high x-ray power generation

    Energy Technology Data Exchange (ETDEWEB)

    Sanford, T.W.L.; Mock, R.C.; Nash, T.J. [and others

    1998-08-01

    The discovery that the use of very large numbers of wires enables high x-ray power to be generated from wire-array z-pinches represents a breakthrough in load design for large pulsed power generators, and has permitted high temperatures to be generated in radiation cavities on Saturn. In this paper, changes in x-ray emission characteristics as a function of wire number, array mass, and load radius, for 20-mm-long aluminum arrays on Saturn that led to these breakthrough hohlraum results, are discussed and compared with a few related emission characteristics of high-wire-number aluminum and tungsten arrays on Z. X=ray measurement comparisons with analytic models and 2-D radiation-magnetohydrodynamic (RMHC) code simulations in the x-y and r-z planes provide confidence in the ability of the models and codes to predict future x-ray performance with very-large-number wire arrays.

  1. Wire array z-pinch insights for high x-ray power generation

    International Nuclear Information System (INIS)

    Sanford, T.W.L.; Mock, R.C.; Marder, B.M.

    1998-08-01

    The discovery that the use of very large numbers of wires enables high x-ray power to be generated from wire-array z-pinches represents a breakthrough in load design for large pulsed power generators, and has permitted high temperatures to be generated in radiation cavities on Saturn and Z. In this paper, changes in x-ray emission characteristics as a function of wire number, array mass, and load radius, for 20-mm-long aluminum arrays on Saturn that led to these breakthrough hohlraum results, are discussed and compared with a few related emission characteristics of high-wire-number aluminum and tungsten arrays on Z. X=ray measurement comparisons with analytic models and 2-D radiation-magnetohydrodynamic (RMHC) code simulations in the x-y and r-z planes provide confidence in the ability of the models and codes to predict future x-ray performance with very-large-number wire arrays

  2. Electrochemically synthesized Si nano wire arrays and thermoelectric nano structures

    International Nuclear Information System (INIS)

    Khuan, N.I.; Ying, K.K.; Nur Ubaidah Saidin; Foo, C.T.

    2012-01-01

    Thermoelectric nano structures hold great promise for capturing and directly converting into electricity some vast amount of low-grade waste heats now being lost to the environment (for example from nuclear power plant, fossil fuel burning, automotive and household appliances). In this study, large-area vertically-aligned silicon nano wire (SiNW) arrays were synthesized in an aqueous solution containing AgNO 3 and HF on p-type Si (100) substrate by self-selective electroless etching process. The etching conditions were systematically varied in order to achieve different stages of nano wire formation. Diameters of the SiNWs obtained varied from approximately 50 to 200 nm and their lengths ranged from several to a few tens of μm. Te/ Bi 2 Te 3 -Si thermoelectric core-shell nano structures were subsequently obtained via galvanic displacement of SiNWs in acidic HF electrolytes containing HTeO 2 + and Bi 3+ / HTeO 2 + ions. The reactions were basically a nano-electrochemical process due to the difference in redox potentials between the materials. the surface-modified SiNWs of core-shell structures had roughened surface morphologies and therefore, higher surface-t-bulk ratios compared to unmodified SiNWs. They have potential applications in sensors, photovoltaic and thermoelectric nano devices. Growth study on the SiNWs and core-shell nano structures produced is presented using various microscopy, diffraction and probe-based techniques for microstructural, morphological and chemical characterizations. (Author)

  3. Wire array K-shell sources on the SPHINX generator

    Science.gov (United States)

    D'Almeida, Thierry; Lassalle, Francis; Grunenwald, Julien; Maury, Patrick; Zucchini, Frédéric; Niasse, Nicolas; Chittenden, Jeremy

    2014-10-01

    The SPHINX machine is a LTD based Z-pinch driver operated by the CEA Gramat (France) and primarily used for studying K-shell radiation effects. We present the results of experiments carried out with single and nested large diameter aluminium wire array loads driven by a current of ~5 MA in ~800 ns. The dynamic of the implosion is studied with filtered X-UV time-integrated pin-hole cameras. The plasma electron temperature and the characteristics of the sources are estimated with time and spatially dependent spectrographs and PCDs. It is shown that Al K-shell yields (>1 keV) up to 27 kJ are obtained for a total radiation of ~ 230 kJ. These results are compared with simulations performed using the latest implementation of the non-LTE DCA code Spk in the 3D Eulerian MHD framework Gorgon developed at Imperial College. Filtered synthetic bolometers and PCD signals, time-dependent spatially integrated spectra and X-UV images are produced and show a good agreement with the experimental data. The capabilities of a prospective SPHINX II machine (20 MA ~ 800 ns) are also assessed for a wider variety of sources (Ti, Cu and W).

  4. Evaluation of frictional resistance between monocrystalline (ICE brakcets and Stainless Steel, Beta TMA and NiTiarch wires

    Directory of Open Access Journals (Sweden)

    Meysam Mirzaie

    2013-09-01

    Full Text Available Introduction: When using sliding mechanics for space closure during orthodontic treatment, friction occurs at the bracket-wire interface. The aim of this study was to evaluate the frictional resistance between monocrystalline (ICE brackets and Stainless Steel, Beta TMA and NiTi wires. Methods: In this experimental study, we used 5 different types of orthodontic wires. Brackets and wires were divided in to 5 groups: 1-(monocrystalline+stainless steel 18 2–(monocrystalline+stainless steel 19×25 3-(monocrystalline+Beta-TMA 4–(monocrystalline+Beta TMA 19×25 5-(monocrystalline+NiTi 18. Instron Universal Testing Machine was used to investigate the static frictional resistance. The angulation between bracket and wire was 0 and the wires were pulled through the slots at a speed of 10 mm/min. Tests were performed 10 times for each group in artificial saliva. The average of 10 forces recorded was considered as static friction. One-way ANOVA and SPSS Version 18 and LSD post hoc test were used to evaluate the results of the study. Results: The mean static frictional force for each group was: group1: 0.82 ± 0.14, group 2: 1.09 ± 0.30, group 3: 0.87 ± 0.53, group 4: 1.9 ± 1.16, group 5: 1.42 ± 0.30. There was a significant difference when comparing the two groups of similar wires in terms of shape (round or rectangular cross-section as when comparing Beta TMA 18 and 19×25 arch wires with each other, the obtained p-value was 0.023, while the obtained p-value for the comparison of stainles steel arch wires was 0.034 . Conclusions: The result of this study shows that Stainless Steel 18 wires generate the least amount of friction and round wires produce less friction than the rectangular wires. Beta TMA wires generate the highest amount of friction.

  5. Evaluation of frictional resistance between monocrystalline (ICE brakcets and Stainless Steel, Beta TMA and NiTi arch wires

    Directory of Open Access Journals (Sweden)

    Meysam Mirzaie

    2013-09-01

    Full Text Available Introduction: When using sliding mechanics for space closure during orthodontic treatment, friction occurs at the bracket-wire interface. The aim of this study was to evaluate the frictional resistance between monocrystalline (ICE brackets and Stainless Steel, Beta TMA and NiTi wires. Methods: In this experimental study, we used 5 different types of orthodontic wires. Brackets and wires were divided in to 5 groups: 1-(monocrystalline+stainless steel 18 2–(monocrystalline+stainless steel 19×25 3-(monocrystalline+Beta-TMA 4–(monocrystalline+Beta TMA 19×25 5-(monocrystalline+NiTi 18. Instron Universal Testing Machine was used to investigate the static frictional resistance. The angulation between bracket and wire was 0 and the wires were pulled through the slots at a speed of 10 mm/min. Tests were performed 10 times for each group in artificial saliva. The average of 10 forces recorded was considered as static friction. One-way ANOVA and SPSS Version 18 and LSD post hoc test were used to evaluate the results of the study. Results: The mean static frictional force for each group was: group1: 0.82±0.14, group 2: 1.09±0.30, group 3: 0.87±0.53, group 4: 1.9±1.16, group 5: 1.42±0.30. There was a significant difference when comparing the two groups of similar wires in terms of shape (round or rectangular cross-section as when comparing Beta TMA 18 and 19×25 arch wires with each other, the obtained p-value was 0.023, while the obtained p-value for the comparison of stainles steel arch wires was 0.034. Conclusions: The result of this study shows that Stainless Steel 18 wires generate the least amount of friction and round wires produce less friction than the rectangular wires. Beta TMA wires generate the highest amount of friction.

  6. Studies of implosion processes of nested tungsten wire-array Z-pinch

    International Nuclear Information System (INIS)

    Ning Cheng; Ding Ning; Liu Quan; Yang Zhenhua

    2006-01-01

    Nested wire-array is a kind of promising structured-load because it can improve the quality of Z-pinch plasma and enhance the radiation power of X-ray source. Based on the zero-dimensional model, the assumption of wire-array collision, and the criterion of optimized load (maximal load kinetic energy), optimization of the typical nested wire-array as a load of Z machine at Sandia Laboratory was carried out. It was shown that the load has been basically optimized. The Z-pinch process of the typical load was numerically studied by means of one-dimensional three-temperature radiation magneto-hydrodynamics (RMHD) code. The obtained results reproduce the dynamic process of the Z-pinch and show the implosion trajectory of nested wire-array and the transfer process of drive current between the inner and outer array. The experimental and computational X-ray pulse was compared, and it was suggested that the assumption of wire-array collision was reasonable in nested wire-array Z-pinch at least for the current level of Z machine. (authors)

  7. Soft X-ray radiation power characteristics of tungsten wire arrays on Yang accelerator

    International Nuclear Information System (INIS)

    Zhang Siqun; Ouyang Kai; Huang Xianbin; Dan Jiakun; Zhou Rongguo; Yang Liang

    2013-01-01

    A series of experiments were carried out to research the X-ray radiation characteristics of tungsten wire arrays on Yang accelerator. In those experiments, we charged the Marx generator of 60 kV, and the load current of 0.85-1.00 MA, the rise time of 75-90 ns (10%-90%). A soft X-ray scintillator powermeter which responded flatly to 50-1800 eV X-rays was used to measure the power of soft X-ray emitted from implosion plasma. In this paper, we present the measuring results of time-resolved soft X-ray radiation power, and discuss the radiation characteristics of implosion plasma by analyzing the correlations of soft X-ray radiant power and the diameter, length, wire number of the tungsten wire arrays. The optimizing wire array configuration parameters on Yang are as follows: 8 mm array diameter, 15 mm wire length, and 24 wire number. We also present the radiant power difference in radial and axial directions of the wire arrays. (authors)

  8. Single and nested tungsten-wire-array dynamics and applications to inertial confinement fusion

    Science.gov (United States)

    Cuneo, Michael

    2005-10-01

    Wire array z-pinches show great promise as x-ray sources for indirect-drive inertial confinement fusion (ICF). The double z-pinch hohlraum, for example, has produced capsule radiation drive symmetric to within 3%. This ICF concept will require that each of two 20-mm-diam arrays scale to x-ray powers ˜1 PW, to drive high-yield (>0.2 GJ) capsules to ignition. High-yield fusion will also require a temporally shaped radiation pulse to drive a low-entropy capsule implosion. Recently, improved understanding of high current (11-19 MA) single and nested wire-array dynamics has enabled significant progress towards these goals. As at lower currents, a single wire array (and both the outer and inner arrays of a nested system) shows a wire ablation phase, axial modulation of the ablation rate, a larger ablation rate for larger diameter wires, trailing mass and trailing current. These processes and others produce a broad mass profile that may impact the optimization of x-ray output for single and nested arrays. Our new insights into wire array physics have led to 20-mm-diam single and nested arrays with peak powers of 150-190 TW at implosion times of 55-90 ns, increased from 60-120 TW at 95-110 ns, improving power scaling. Radiation pulse shapes required for 3-shock isentropic compression of high-yield ICF capsules have also been demonstrated with nested wire arrays operating in current-transfer mode. In collaboration with: D.B. Sinars, R.A. Vesey, E.M. Waisman, W.A. Stygar, D.E. Bliss, S.V. Lebedev, J.P. Chittenden, P.V. Sasorov, R.W. Lemke, E.P. Yu, B.B. Afeyan, G.R. Bennett, M.G. Mazarakis, M.R. Lopez, M.E. Savage, J.L. Porter, T.A. Mehlhorn.

  9. Mechanical and microstructural integrity of nickel-titanium and stainless steel laser joined wires

    International Nuclear Information System (INIS)

    Vannod, J.; Bornert, M.; Bidaux, J.-E.; Bataillard, L.; Karimi, A.; Drezet, J.-M.; Rappaz, M.; Hessler-Wyser, A.

    2011-01-01

    The biomedical industry shows increasing interest in the joining of dissimilar metals, especially with the aim of developing devices that combine different mechanical and corrosive properties. As an example, nickel-titanium shape memory alloys joined to stainless steel are very promising for new invasive surgery devices, such as guidewires. A fracture mechanics study of such joined wires was carried out using in situ tensile testing and scanning electron microscopy imaging combined with chemical analysis, and revealed an unusual fracture behaviour at superelastic stress. Nanoindentation was performed to determine the mechanical properties of the welded area, which were used as an input for mechanical computation in order to understand this unexpected behaviour. Automated image correlation allowed verification of the mechanical modelling and a reduced stress-strain model is proposed to explain the special fracture mechanism. This study reveals the fact that tremendous property changes at the interface between the NiTi base wire and the weld area have more impact on the ultimate tensile strength than the chemical composition variation across the welded area.

  10. Non-destructive evaluation of welding part of stainless steels by phased array system

    International Nuclear Information System (INIS)

    Tatematsu, Nobuhiro; Matsumoto, Eiji

    2009-01-01

    Recently, more accurate and convenient Non-Destructive Evaluation techniques are required for flaw inspection of structural materials. Phased array ultrasonic transducers are expected as such as NDE technique but there are many subjects to be solved. Furthermore, commercial phased array systems with conventional scanning and imaging techniques have not fulfilled their maximum potential. The purpose of this paper is to improve the phased array system to be applicable to the inhomogeneity evaluation of welding part of stainless steels. (author)

  11. 3D MHD Simulations of Radial Wire Array Z-pinches

    International Nuclear Information System (INIS)

    Niasse, N.; Chittenden, J. P.; Bland, S. N.; Suzuki-Vidal, F. A.; Hall, G. N.; Lebedev, S. V.; Calamy, H.; Zucchini, F.; Lassalle, F.; Bedoch, J. P.

    2009-01-01

    Recent experiments carried out on the MAGPIE (1 MA, 250 ns), OEDIPE (730 kA, 1.5 μs) and SPHINX (4 MA, 700 ns)[1] facilities have shown the relatively high level of scalability of the Radial Wire Array Z-pinches. These configurations where the wires stretch radially outwards from a central cathode offer numerous advantages over standard cylindrical arrays. In particular, imploding in a very stable and compact way, they seem suitable for coupling to small scale hohlraums. Making use of the 3D resistive magneto-hydrodynamic code GORGON[2] developed at Imperial College, the dynamic of the radial wire arrays is investigated. Influence of the cathode hotspots and wires angle on the x-ray emissions is also discussed. Comparison with experiments is offered to validate the numerical studies.

  12. Experimental studies of Z-pinches of mixed wire array with aluminum and tungsten

    International Nuclear Information System (INIS)

    Ning Cheng; Li Zhenghong; Hua Xinsheng; Xu Rongkun; Peng Xianjue; Xu Zeping; Yang Jianlun; Guo Cun; Jiang Shilun; Feng Shuping; Yang Libing; Yan Chengli; Song Fengjun; Smirnov, V.P.; Kalinin, Yu.G.; Kingsep, A.S.; Chernenko, A.S.; Grabovsky, E.V.

    2004-01-01

    In the form of joint experiment between China and Russia, the experimental studies of Z-pinches of mixed wire array of aluminum (A1) and tungsten (W) were carried out on S-300 generator, which was located on Kurchatov Institute of Russia. The experimental results were compared with those of single A1 array and single W array, respectively. There are obvious difference between mixed one and single one in their photon spectral distributions. The intensity of K-series emission lines from the mixed wire array Z-pinch is lower than that from single A1 array. The radiated lines with wavelengths less than 1.6 nm were not found in single W array Z-pinches. In the Z-pinch processes, the area radiating x-rays in mixed wire array is smaller than that of single A1 array, but is slightly lower than that from single W array. The FWHM of x-ray pulse with a maximal power 0.3-0.5 TW and total energy 10-20 kJ is about 25 ns, which radiated from Z-pinches with a radial convergence of 4-5 on S-300 generator. The shadow photograph of the mixed wire-array Z-pinch plasma by laser probe shows that the core-corona configuration was formed and the corona was moving toward the center axis during the wire-array plasma formation, that the interface of the plasma is not clear, and that there are a number structures inside. They also suggests that there was an obvious development of Magneto Rayleigh-Taylor instability in the Z-pinch process as well

  13. The fabrication techniques of Z-pinch targets. Techniques of fabricating self-adapted Z-pinch wire-arrays

    International Nuclear Information System (INIS)

    Qiu Longhui; Wei Yun; Liu Debin; Sun Zuoke; Yuan Yuping

    2002-01-01

    In order to fabricate wire arrays for use in the Z-pinch physical experiments, the fabrication techniques are investigated as follow: Thickness of about 1-1.5 μm of gold is electroplated on the surface of ultra-fine tungsten wires. Fibers of deuterated-polystyrene (DPS) with diameters from 30 to 100 microns are made from molten DPS. And two kinds of planar wire-arrays and four types of annular wire-arrays are designed, which are able to adapt to the variation of the distance between the cathode and anode inside the target chamber. Furthermore, wire-arrays with diameters form 5-24 μm are fabricated with tungsten wires, respectively. The on-site test shows that the wire-arrays can self-adapt to the distance changes perfectly

  14. Soldered Contact and Current Risetime Effects on Negative Polarity Wire Array Z-pinches

    International Nuclear Information System (INIS)

    Chalenski, D. A.; Kusse, B. R.; Greenly, J. B.; Blesener, I. C.; McBride, R. D.; Hammer, D. A.; Knapp, P. F.

    2009-01-01

    The Cornell University COBRA pulser is a nominal 1 MA machine, capable of driving up to 32 wire cylindrical Z-pinch arrays. COBRA can operate with variable current risetimes ranging from 100 ns to 200 ns (short and long pulse, respectively). Wires are typically strung with a ''press'' contact to the electrode hardware, where the wire is loosely pulled against the hardware and held there to establish electrical contact. The machine is normally negative, but a bolt-on convolute can be used to modify the current path and effectively produce positive polarity operation at the load.Previous research with single wires on a 1-5 kA pulser has shown that soldering the wire, thereby improving the wire/electrode contact, and operating in positive polarity can improve the energy deposition into the wire and enhance wire core expansion. Negative polarity showed no difference. Previous experiments on the negative polarity, 20 MA, 100 ns Z accelerator have shown that improving the contact improved the x-ray yield.Cornell data were collected on 16-wire Aluminum Z-pinch arrays in negative polarity. Experiments were conducted with both short and long current pulses with soldered and no-soldered wire/electrode contacts. The initiation, ablation, implosion and stagnation phases were compared for these four conditions. Time dependent x-ray signals were measured using diodes and diamond detectors. An inductive voltage monitor was used to infer minimum current radius achieved, as defined by a uniform shell of current moving radially inward, producing a time dependent inductance. Total energy data were collected with a metal-strip bolometer. Self-emission data were collected by an XUV 4-frame camera and an optical streak camera.In negative polarity and with short pulses, soldering appeared to produce a smaller radius pinch and decrease variations in the x-ray pulse shape. The bolometer, laser backlighter, 4-frame and streak cameras showed negligible differences in the initiation ablation

  15. Plastohydrodynamic drawing and coating of stainless steel wire using a tapered bore die of no metal to metal contact

    Science.gov (United States)

    Hasan, S.; Basmage, O.; Stokes, J. T.; Hashmi, M. S. J.

    2018-05-01

    A review of wire coating studies using plasto-hydrodynamic pressure shows that most of the works were carried out by conducting experiments simultaneously with simulation analysis based upon Bernoulli's principle and Euler and Navier-Stokes (N-S) equations. These characteristics relate to the domain of Computational Fluid Dynamics (CFD) which is an interdisciplinary topic (Fluid Mechanics, Numerical Analysis of Fluid flow and Computer Science). This research investigates two aspects: (i) simulation work and (ii) experimentation. A mathematical model was developed to investigate the flow pattern of the molten polymer and pressure distribution within the wire-drawing dies, assessment of polymer coating thickness on the coated wires and speed of coating on the wires at the outlet of the drawing dies, without deploying any pressurizing pump. In addition to a physical model which was developed within ANSYS™ environment through the simulation design of ANSYS™ Workbench. The design was customized to simulate the process of wire-coating on the fine stainless-steel wires using drawing dies having different bore geometries such as: stepped parallel bore, tapered bore and combined parallel and tapered bore. The convergence of the designed CFD model and numerical and physical solution parameters for simulation were dynamically monitored for the viscous flow of the polypropylene (PP) polymer. Simulation results were validated against experimental results and used to predict the ideal bore shape to produce a thin coating on stainless wires with different diameter. Simulation studies confirmed that a specific speed should be attained by the stainless-steel wires while passing through the drawing dies. It has been observed that all the speed values within specific speed range did not produce a coating thickness having the desired coating characteristic features. Therefore, some optimization of the experimental set up through design of experiments (Stat-Ease) was applied to

  16. Swelling behaviors in a fuel assembly for the wrapping wire and duct made of modified 316 austenitic stainless steel

    International Nuclear Information System (INIS)

    Yamagata, Ichiro; Akasaka, Naoaki

    2010-01-01

    Swelling behaviors in the wrapping wire and duct made of modified type 316 austenitic stainless steel were investigated in a fuel assembly irradiated in a fast breeder reactor. The temperature dependence of volumetric swelling was measured in the wrapping wire and the duct, and the peak temperatures of swelling were evaluated. The void distribution in the material was measured by microstructure observation with electron microscopy, and it was found that the voids prefentially grew near the surface. This phenomenon seemed to be caused by a surface effect on the neutron-irradiated materials. (author)

  17. A heuristic model of the wire array z-pinch

    International Nuclear Information System (INIS)

    Haines, M.G.

    1998-01-01

    Recent experimental results at the Sandia National Laboratory have shown that the X-ray power increases as the number of wires n employed is increased, with a sharper increase in power when the wire gap is below a critical value. This paper proposes a model that can not only explain these phenomena, but also shows how the initial perturbations that lead to the Rayleigh-Taylor instability scale as n -1/2 . The model predicts the shell thickness at merger of the expanding separate wires which will mainly determine the final pinch radius. The largest amplitude Rayleigh-Taylor mode at the pinch time is also found, in reasonable agreement with experiment

  18. The effects of insulating coatings and current prepulse on tungsten planar wire array Z-pinches

    Energy Technology Data Exchange (ETDEWEB)

    Li, M., E-mail: limo@nint.ac.cn; Li, Y. [State Key Laboratory of Electrical Insulation and Power Equipment, Xi' an Jiaotong University, Shaanxi 710049 (China); State Key Laboratory of Intense Pulsed Radiation Simulation and Effect, Northwest Institute of Nuclear Technology, Xi' an 710024 (China); Sheng, L.; Wang, L. P.; Zhao, C.; Yuan, Y.; Zhang, X. J.; Zhang, M.; Peng, B. D.; Zhang, J. H.; Zhang, S. G.; Qiu, M. T. [State Key Laboratory of Intense Pulsed Radiation Simulation and Effect, Northwest Institute of Nuclear Technology, Xi' an 710024 (China); Li, X. W. [State Key Laboratory of Electrical Insulation and Power Equipment, Xi' an Jiaotong University, Shaanxi 710049 (China)

    2015-12-15

    This paper presents experimental results on the effects of insulating coatings and current prepulse on tungsten planar wire array Z-pinches on ∼100 ns main current facility. Optical framing images indicated that without a current prepulse the wire ablation process was asymmetrical and the implosion was zippered. The x-ray peak power was ∼320 GW. By using insulating coatings on the wire surface the asymmetry remained, and the processes of ablation and implosion were delayed by ∼30 ns. The x-ray burst was narrow and decreased to ∼200 GW. When current prepulses were used on both standard and insulated wire arrays, implosion symmetry was improved and the x-ray burst was improved (to ∼520 GW peak power). In addition, there was a strong emitting precursor column for insulated loads with the current prepulse.

  19. Cryogenic deuterium Z-pinch and wire array Z-pinch studies at Imperial College

    International Nuclear Information System (INIS)

    Haines, M.G.; Aliaga-Rossel, R.; Beg, N.F.

    2001-01-01

    Z-pinch experiments using cryogenic deuterium fibre loads have been carried out on the MAGPIE generator at currents up to 1.4MA. M=0 instabilities in the corona caused plasma expansion and disruption before the plasma could enter the collisionless Large ion Larmor radius regime. For the last 12 months we have studied Aluminium wire array implosions using laser probing, optical streaks and gated X-ray images. Plasma from the wires in accelerated to the axis as radial plasma streams with uncorrelated m=0 instabilities superimposed. Later in the discharge a global Rayleigh-Taylor (R-T) instability develops. Single and double aluminium and tungsten wire shots were conducted at 150kA. 2-D and 3-D simulations and a heuristic model of wire arrays will be presented along with theories on the combined MHD/R-T instability and sheared axial flow generation by large ion Larmor radius effects. (author)

  20. Cryogenic deuterium Z-pinch and wire array Z-pinch studies at imperial college

    International Nuclear Information System (INIS)

    Haines, M.G.; Aliaga-Rossel, R.; Beg, F.N.

    1999-01-01

    Z-pinch experiments using cryogenic deuterium fibre loads have been carried out on the MAGPIE generator at currents up to 1.4MA. M=0 instabilities in the corona caused plasma expansion and disruption before the plasma could enter the collisionless Large ion Larmor radius regime. For the last 12 months we have studied Aluminium wire array implosions using laser probing, optical streaks and gated X-ray images. Plasma from the wires in accelerated to the axis as radial plasma streams with uncorrelated m=0 instabilities superimposed. Later in the discharge a global Rayleigh-Taylor (R-T) instability develops. Single and double aluminium and tungsten wire shots were conducted at 150kA. 2-D and 3-D simulations and a heuristic model of wire arrays will be presented along with theories on the combined MHD/R-T instability and sheared axial flow generation by large ion Larmor radius effects. (author)

  1. Gold Wire-networks: Particle Array Guided Evaporation Lithograpy

    KAUST Repository

    Lone, Saifullah; Zhang, Jiaming; Vakarelski, Ivan Uriev; Thoroddsen, Sigurdur T

    2015-01-01

    relies upon the defect free dry deposition of 2D monolayer of latex particles [2] on patterned silicon template and flat PDMS-substrate to create square centered and honey-comb wire networks respectively. The process is followed by lift-up transfer of 2D

  2. Decompression Device Using a Stainless Steel Tube and Wire for Treatment of Odontogenic Cystic Lesions: A Technical Report.

    Science.gov (United States)

    Jung, Eun-Joo; Baek, Jin-A; Leem, Dae-Ho

    2014-11-01

    Decompression is considered an effective treatment for odontogenic cystic lesions in the jaw. A variety of decompression devices are successfully used for the treatment of keratocystic odontogenic tumors, radicular cysts, dentigerous cysts, and ameloblastoma. The purpose of these devices is to keep an opening between the cystic lesion and the oral environment during treatment. The aim of this report is to describe an effective decompression tube using a stainless steel tube and wire for treatment of jaw cystic lesions.

  3. Variation of high-power aluminum-wire array z-pinch dynamics with wire number, load mass, and array radius

    Energy Technology Data Exchange (ETDEWEB)

    Sanford, T.W.L.; Mock, R.C.; Marder, B.M. [and others

    1997-12-01

    A systematic study of annular aluminum-wire z-pinches on the Saturn accelerator shows that the quality of the implosion, (as measured by the radial convergence, the radiated energy, pulse width, and power), increases with wire number. Radiation magnetohydrodynamic (RMHC) xy simulations suggest that the implosion transitions from that of individual wire plasmas to that of a continuous plasma shell when the interwire spacing is reduced below {approximately} 1.4 mm. In this plasma-shell regime, many of the global radiation and plasma characteristics are in agreement with those simulated by 2D-RMHC rz simulations. In this regime, measured changes in the radiation pulse width with variations in load mass and array radius are consistent with the simulations and are explained by the development of 2D fluid motion in the rz plane. Associated variations in the K-shell yield are qualitatively explained by simple radiation-scaling models.

  4. Variation of high-power aluminum-wire array z-pinch dynamics with wire number, load mass, and array radius

    International Nuclear Information System (INIS)

    Sanford, T.W.L.; Mock, R.C.; Marder, B.M.

    1997-01-01

    A systematic study of annular aluminum-wire z-pinches on the Saturn accelerator shows that the quality of the implosion, (as measured by the radial convergence, the radiated energy, pulse width, and power), increases with wire number. Radiation magnetohydrodynamic (RMHC) xy simulations suggest that the implosion transitions from that of individual wire plasmas to that of a continuous plasma shell when the interwire spacing is reduced below ∼ 1.4 mm. In this plasma-shell regime, many of the global radiation and plasma characteristics are in agreement with those simulated by 2D-RMHC rz simulations. In this regime, measured changes in the radiation pulse width with variations in load mass and array radius are consistent with the simulations and are explained by the development of 2D fluid motion in the rz plane. Associated variations in the K-shell yield are qualitatively explained by simple radiation-scaling models

  5. Variation of high-power aluminum-wire array Z-pinch dynamics with wire number, load mass, and array radius

    Science.gov (United States)

    Sanford, T. W. L.; Mock, R. C.; Marder, B. M.; Nash, T. J.; Spielman, R. B.; Peterson, D. L.; Roderick, N. F.; Hammer, J. H.; De Groot, J. S.; Mosher, D.; Whitney, K. G.; Apruzese, J. P.

    1997-05-01

    A systematic study of annular aluminum-wire z-pinches on the Saturn accelerator shows that the quality of the implosion, (as measured by the radial convergence, the radiated energy, pulse width, and power), increases with wire number. Radiation magnetohydrodynamic (RMHC) xy simulations suggest that the implosion transitions from that of individual wire plasmas to that of a continuous plasma shell when the interwire spacing is reduced below ˜1.4 mm. In this "plasma-shell regime," many of the global radiation and plasma characteristics are in agreement with those simulated by 2D-RMHC rz simulations. In this regime, measured changes in the radiation pulse width with variations in load mass and array radius are consistent with the simulations and are explained by the development of 2D fluid motion in the rz plane. Associated variations in the K-shell yield are qualitatively explained by simple radiation-scaling models.

  6. Variation of high-power aluminum-wire array Z-pinch dynamics with wire number, load mass, and array radius

    International Nuclear Information System (INIS)

    Sanford, T. W. L.; Mock, R. C.; Marder, B. M.; Nash, T. J.; Spielman, R. B.; Peterson, D. L.; Roderick, N. F.; Hammer, J. H.; De Groot, J. S.; Mosher, D.; Whitney, K. G.; Apruzese, J. P.

    1997-01-01

    A systematic study of annular aluminum-wire z-pinches on the Saturn accelerator shows that the quality of the implosion, (as measured by the radial convergence, the radiated energy, pulse width, and power), increases with wire number. Radiation magnetohydrodynamic (RMHC) xy simulations suggest that the implosion transitions from that of individual wire plasmas to that of a continuous plasma shell when the interwire spacing is reduced below ∼1.4 mm. In this ''plasma-shell regime,'' many of the global radiation and plasma characteristics are in agreement with those simulated by 2D-RMHC rz simulations. In this regime, measured changes in the radiation pulse width with variations in load mass and array radius are consistent with the simulations and are explained by the development of 2D fluid motion in the rz plane. Associated variations in the K-shell yield are qualitatively explained by simple radiation-scaling models

  7. Preliminary study of Rayleigh-Taylor instability in wire-array Z-pinch

    International Nuclear Information System (INIS)

    He Kaihui; Feng Kaiming; Li Qiang; Gao Chunming

    2000-01-01

    It is important to research into the MHD Rayleigh-Taylor instability developed in Z-pinch implosion. A snowplough model of the single wire Z-pinch is presented. The perturbation amplitude of Rayleigh-Taylor instability in the wire-array Z-pinch is analyzed quantitatively. Sheared axial flow is put forward to mitigate and reduce the Rayleigh-Taylor instability. And other approaches used to mitigate MHD instability in such a super-fast process are explored

  8. X-ray power increase from symmetrized wire-array Z-pinch implosions

    International Nuclear Information System (INIS)

    Sanford, T.W.L.; Allshouse, G.O.; Marder, B.M.

    1996-01-01

    A systematic experimental study of annular aluminum-wire z-pinches on the Saturn accelerator shows that, for the first time, the measured spatial characteristics and x-ray powers can approach those of two-dimensional, radiation-magneto-hydrodynamic simulations when large numbers of wires are used. Calculations show that the implosion begins to transition from that of individual plasma wires to that of a continuous plasma shell, when the circumferential gap between wires in the array is reduced below 1.4 +1.3/-0.7 mm. This calculated gap coincides with the measured transition of 1.4 ± 0.4 mm between the observed regimes of slow and rapid improvement in power output with decreasing gap. In the plasma-shell regime, x-ray powers in excess of a factor of three over that generated in the plasma-wire region are measured. (author). 5 figs., 16 refs

  9. X-ray power increase from symmetrized wire-array z-pinch implosions

    Energy Technology Data Exchange (ETDEWEB)

    Sanford, T.W.L.; Allshouse, G.O.; Marder, B.M. [and others

    1996-08-01

    A systematic experimental study of annular aluminum-wire z-pinches on the Saturn accelerator shows that, for the first time, the measured spatial characteristics and x-ray powers can approach those of two-dimensional, radiation-magneto-hydrodynamic simulations when large numbers of wires are used. Calculations show that the implosion begins to transition from that of individual plasma wires to that of a continuous plasma shell, when the circumferential gap between wires in the array is reduced below 1.4+1.3/-0.7 mm. This calculated gap coincides with the measured transition of 1.4 {+-}0.4 mm between the observed regimes of slow and rapid improvement in power output with decreasing gap. In the plasma shell regime, x-ray powers in excess of a factor of three over that generated in the plasma-wire region are measured.

  10. X-ray power increase from symmetrized wire-array z-pinch implosions

    International Nuclear Information System (INIS)

    Sanford, T.W.L.; Allshouse, G.O.; Marder, B.M.

    1996-08-01

    A systematic experimental study of annular aluminum-wire z-pinches on the Saturn accelerator shows that, for the first time, the measured spatial characteristics and x-ray powers can approach those of two-dimensional, radiation-magneto-hydrodynamic simulations when large numbers of wires are used. Calculations show that the implosion begins to transition from that of individual plasma wires to that of a continuous plasma shell, when the circumferential gap between wires in the array is reduced below 1.4+1.3/-0.7 mm. This calculated gap coincides with the measured transition of 1.4 ±0.4 mm between the observed regimes of slow and rapid improvement in power output with decreasing gap. In the plasma shell regime, x-ray powers in excess of a factor of three over that generated in the plasma-wire region are measured

  11. X-ray power increase from symmetrized wire-array Z-pinch implosions

    Energy Technology Data Exchange (ETDEWEB)

    Sanford, T W.L.; Allshouse, G O; Marder, B M [Sandia Labs., Albuquerque, NM (United States); and others

    1997-12-31

    A systematic experimental study of annular aluminum-wire z-pinches on the Saturn accelerator shows that, for the first time, the measured spatial characteristics and x-ray powers can approach those of two-dimensional, radiation-magneto-hydrodynamic simulations when large numbers of wires are used. Calculations show that the implosion begins to transition from that of individual plasma wires to that of a continuous plasma shell, when the circumferential gap between wires in the array is reduced below 1.4 +1.3/-0.7 mm. This calculated gap coincides with the measured transition of 1.4 {+-} 0.4 mm between the observed regimes of slow and rapid improvement in power output with decreasing gap. In the plasma-shell regime, x-ray powers in excess of a factor of three over that generated in the plasma-wire region are measured. (author). 5 figs., 16 refs.

  12. Pelepasan ion nikel dan kromium kawat Australia dan stainless steel dalam saliva buatan (The release of nickel and chromium ions from Australian wire and stainless steel in artificial saliva

    Directory of Open Access Journals (Sweden)

    Nolista Indah Rasyid

    2014-09-01

    Full Text Available Background: Fixed orthodontic treatment needs several types of wire to produce biomechanical force to move teeth. The use orthodontic wire within the mouth interacts with saliva, causing the release of nickel and chromium ions. Purpose: The study was aimed to examine the effect of immersion time in artificial saliva between special type of Australian wire and stainless steel on the release of nickel and chromium ions. Methods: Thirty special type Australian wires and 30 stainless steel wires were used in this study, each of which weighed 0.12 grams. The wires were immersed for 1, 7, 28, 35, 42, and 49 days in artificial saliva with a normal pH. The release of ions in saliva was examined using Atomic Absorption spectrophotometry. Results: The result indicated that the release of nickel ions on special type of Australian wire was larger than that on stainless steel wire (p<0.005, there were differences in the release of the amount of nickel ions on special type of Australia in different immersion time, and there was a correlation between the types of wire and immersion time. Nickel ions released from the special type of Australian wire detected on the 7th day of immersion and reached its peak on the 35th day, while from stainless steel wire were detected on the 49th day of immersion. The released of chromium ions from the special type of Australian wire and stainless steel wire were not detected until the 49th day of immersion. Conclusion: The release of nickel ions were highest on the 35th day of immersion in special type of Australian wire and they were detected on the 49th day in stainless steel wire. The release of chromium ions were not detected until 49th day of immersion in special type of Australian and stainless steel wire.Latar belakang: Perawatan ortodonti cekat memerlukan beberapa macam kawat untuk menghasilkan kekuatan biomekanika yang sesuai dalam menggerakkan gigi. Pemakaian kawat ortodonti di dalam mulut dapat bereaksi dengan

  13. Effect of Different Types of Toothpaste on the Frictional Resistance Between Orthodontic Stainless Steel Brackets and Wires.

    Science.gov (United States)

    Hosseinzadeh Nik, Tahereh; Hooshmand, Tabassom; Farhadifard, Homa

    2017-09-01

    The purpose of this study was to investigate the effect of different types of toothpaste on the frictional resistance between stainless steel brackets and archwires. Ninety stainless steel orthodontic brackets with stainless steel wires were bonded to bovine teeth and were divided into 6 groups for application of the following toothpastes: Colgate® Total® Advanced Whitening, Colgate® Total® Pro Gum Health, Colgate® Anticavity, Ortho.Kin®, and Sunstar GUM® Ortho toothpastes. No toothpaste was applied in the control group. Each group was brushed by a brushing machine with the use of the designated solution for 4.5 minutes. The frictional force was measured in a universal testing machine with a crosshead speed of 10 mm/minute over a 5-mm archwire. Data were analyzed using one-way analysis of variance (ANOVA) at the 0.05 significance level. The frictional resistance values of Ortho.Kin® and GUM® Ortho toothpastes and the control group were not significantly different (P>0.05). However, there were significant differences between the frictional resistance values of Colgate® Total® Pro Gum Health and Colgate® Anticavity toothpastes with that of the control group (Porthodontic toothpastes did not increase the frictional resistance between the orthodontic stainless steel brackets and wires.

  14. Laser-Arc Hybrid Welding of Dissimilar Titanium Alloy and Stainless Steel Using Copper Wire

    Science.gov (United States)

    Gao, Ming; Chen, Cong; Wang, Lei; Wang, Zemin; Zeng, Xiaoyan

    2015-05-01

    Laser-arc hybrid welding with Cu3Si filler wire was employed to join dissimilar Ti6Al4V titanium alloy and AISI316 stainless steel (316SS). The effects of welding parameters on bead shape, microstructure, mechanical properties, and fracture behavior were investigated in detail. The results show that cross-weld tensile strength of the joints is up to 212 MPa. In the joint, obvious nonuniformity of the microstructure is found in the fusion zone (FZ) and at the interfaces from the top to the bottom, which could be improved by increasing heat input. For the homogeneous joint, the FZ is characterized by Fe67- x Si x Ti33 dendrites spreading on α-Cu matrix, and the two interfaces of 316SS/FZ and FZ/Ti6Al4V are characterized by a bamboo-like 316SS layer and a CuTi2 layer, respectively. All the tensile samples fractured in the hardest CuTi2 layer at Ti6Al4V side of the joints. The fracture surface is characterized by river pattern revealing brittle cleavage fracture. The bead formation mechanisms were discussed according to the melt flow and the thermodynamic calculation.

  15. Biofilm formation on stainless steel and gold wires for bonded retainers in vitro and in vivo and their susceptibility to oral antimicrobials.

    Science.gov (United States)

    Jongsma, Marije A; Pelser, Floris D H; van der Mei, Henny C; Atema-Smit, Jelly; van de Belt-Gritter, Betsy; Busscher, Henk J; Ren, Yijin

    2013-05-01

    Bonded retainers are used in orthodontics to maintain treatment result. Retention wires are prone to biofilm formation and cause gingival recession, bleeding on probing and increased pocket depths near bonded retainers. In this study, we compare in vitro and in vivo biofilm formation on different wires used for bonded retainers and the susceptibility of in vitro biofilms to oral antimicrobials. Orthodontic wires were exposed to saliva, and in vitro biofilm formation was evaluated using plate counting and live/dead staining, together with effects of exposure to toothpaste slurry alone or followed by antimicrobial mouthrinse application. Wires were also placed intra-orally for 72 h in human volunteers and undisturbed biofilm formation was compared by plate counting and live/dead staining, as well as by denaturing gradient gel electrophoresis for compositional differences in biofilms. Single-strand wires attracted only slightly less biofilm in vitro than multi-strand wires. Biofilms on stainless steel single-strand wires however, were much more susceptible to antimicrobials from toothpaste slurries and mouthrinses than on single-strand gold wires and biofilms on multi-strand wires. Also, in vivo significantly less biofilm was found on single-strand than on multi-strand wires. Microbial composition of biofilms was more dependent on the volunteer involved than on wire type. Biofilms on single-strand stainless steel wires attract less biofilm in vitro and are more susceptible to antimicrobials than on multi-strand wires. Also in vivo, single-strand wires attract less biofilm than multi-strand ones. Use of single-strand wires is preferred over multi-strand wires, not because they attract less biofilm, but because biofilms on single-strand wires are not protected against antimicrobials as in crevices and niches as on multi-strand wires.

  16. A preliminary study of laser cladding of AISI 316 stainless steel using preplaced NiTi wire

    International Nuclear Information System (INIS)

    Cheng, F.T.; Lo, K.H.; Man, H.C.

    2004-01-01

    NiTi wire of diameter 1 mm was preplaced on AISI 316 stainless steel samples by using a binder. Melting of the NiTi wire to form a clad track on the steel substrate was achieved by means of a high-power CW Nd:YAG laser using different processing parameters. The geometry and microstructure of the clad deposit were studied by optical microscopy and scanning electron microscopy (SEM), respectively. The hardness and compositional profiles along the depth of the deposit were acquired by microhardness testing and energy-dispersive spectroscopy (EDS), respectively. The elastic behavior of the deposit was analyzed using nanoindentation, and compared with that of the NiTi wire. The dilution of the NiTi clad by the substrate material beneath was substantial in single clad tracks, but could be successively reduced in multiple clad layers. A strong fusion bonding with tough interface could be obtained as evidenced by the integrity of Vickers indentations in the interfacial region. In comparison with the NiTi cladding on AISI 316 using the tungsten inert gas (TIG) process, the laser process was capable of producing a much less defective cladding with a more homogeneous microstructure, which is an essential cladding quality with respect to cavitation erosion and corrosion resistance. Thus, the present preliminary study shows that laser cladding using preplaced wire is a feasible method to obtain a thick and homogeneous NiTi-based alloy layer on AISI 316 stainless steel substrate

  17. Preliminary experimental results of tungsten wire-array Z-pinches on primary test stand

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Xian-Bin; Zhou, Shao-Tong; Dan, Jia-Kun; Ren, Xiao-Dong, E-mail: amosrxd@163.com; Wang, Kun-Lun; Zhang, Si-Qun; Li, Jing; Xu, Qiang; Cai, Hong-Chun; Duan, Shu-Chao; Ouyang, Kai; Chen, Guang-Hua; Ji, Ce; Wei, Bing; Feng, Shu-Ping; Wang, Meng; Xie, Wei-Ping; Deng, Jian-Jun [Key Laboratory of Pulsed Power, Institute of Fluid Physics, China Academy of Engineering Physics, P.O. Box 919-108, Mianyang, Sichuan 621999 (China); Zhou, Xiu-Wen; Yang, Yi [Research Center of Laser Fusion, China Academy of Engineering Physics, P.O. Box 919-987, Mianyang, Sichuan 621999 (China)

    2015-07-15

    The Primary Test Stand (PTS) developed at the China Academy of Engineering Physics is a 20 TW pulsed power driver, which can deliver a ∼10 MA, 70 ns rise-time (10%–90%) current to a short-circuit load and has important applications in Z-pinch driven inertial confinement fusion and high energy density physics. Preliminary results of tungsten wire-array Z-pinch experiments on PTS are presented. The load geometries investigated include 15-mm-tall cylindrical single and nested arrays with diameter ranging from 13 mm to 30 mm, consisting of 132–300 tungsten wires with 5–10 μm in diameter. Multiple diagnostics were fielded to characterize the x-ray radiation from wire-array Z pinches. The x-ray peak power (∼50 TW) and total radiated energy (∼500 kJ) were obtained from a single 20-mm-diam array with 80-ns stagnation time. The highest x-ray peak power up to 80 TW with 2.4 ns FWHM was achieved by using a nested array with 20-mm outer diameter, and the total x-ray energy from the nested array is comparable to that of single array. Implosion velocity estimated from the time-resolved image measurement exceeds 30 cm/μs. The detailed experimental results and other findings are presented and discussed.

  18. Wire array Z-pinch insights for enhanced x-ray production

    Energy Technology Data Exchange (ETDEWEB)

    Sanford, T.W.; Mock, R.C.; Spielman, R.B. [Sandia National Laboratories, Albuquerque, New Mexico 87185-1196 (United States); Haines, M.G.; Chittenden, J.P. [The Blackett Laboratory, Imperial College, London, SW7 2BZ (United Kingdom); Whitney, K.G.; Apruzese, J.P. [Naval Research Laboratory, Radiation Hydrodynamics Branch, Washington, D.C. 20375 (United States); Peterson, D.L. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Greenly, J.B.; Sinars, D.B. [Laboratory of Plasma Studies, Cornell University, Ithaca, New York 14853 (United States); Reisman, D.B. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Mosher, D. [Naval Research Laboratory, Pulsed Power Physics Branch, Washington, D.C. 20375 (United States)

    1999-05-01

    Comparisons of measured total radiated x-ray power from annular wire-array {ital z}-pinches with a variety of models as a function of wire number, array mass, and load radius are reviewed. The data, which are comprehensive, have provided important insights into the features of wire-array dynamics that are critical for high x-ray power generation. Collectively, the comparisons of the data with the model calculations suggest that a number of underlying dynamical mechanisms involving cylindrical asymmetries and plasma instabilities contribute to the measured characteristics. For example, under the general assumption that the measured risetime of the total-radiated-power pulse is related to the thickness of the plasma shell formed on axis, the Heuristic Model [IEEE Trans. Plasma Sci. {bold 26}, 1275 (1998)] agrees with the measured risetime under a number of specific assumptions about the way the breakdown of the wires, the wire-plasma expansion, and the Rayleigh{endash}Taylor instability in the r{endash}z plane, develop. Likewise, in the high wire-number regime (where the wires are calculated to form a plasma shell prior to significant radial motion of the shell) the comparisons show that the variation in the power of the radiation generated as a function of load mass and array radius can be simulated by the two-dimensional Eulerian-radiation- magnetohydrodynamics code (E-RMHC) [Phys. Plasmas {bold 3}, 368 (1996)], using a single random-density perturbation that seeds the Rayleigh{endash}Taylor instability in the r{endash}z plane. For a given pulse-power generator, the comparisons suggest that (1) the smallest interwire gaps compatible with practical load construction and (2) the minimum implosion time consistent with the optimum required energy coupling of the generator to the load should produce the highest total-radiated-power levels. {copyright} {ital 1999 American Institute of Physics.}

  19. Wire array Z-pinch insights for enhanced x-ray production

    Science.gov (United States)

    Sanford, T. W. L.; Mock, R. C.; Spielman, R. B.; Haines, M. G.; Chittenden, J. P.; Whitney, K. G.; Apruzese, J. P.; Peterson, D. L.; Greenly, J. B.; Sinars, D. B.; Reisman, D. B.; Mosher, D.

    1999-05-01

    Comparisons of measured total radiated x-ray power from annular wire-array z-pinches with a variety of models as a function of wire number, array mass, and load radius are reviewed. The data, which are comprehensive, have provided important insights into the features of wire-array dynamics that are critical for high x-ray power generation. Collectively, the comparisons of the data with the model calculations suggest that a number of underlying dynamical mechanisms involving cylindrical asymmetries and plasma instabilities contribute to the measured characteristics. For example, under the general assumption that the measured risetime of the total-radiated-power pulse is related to the thickness of the plasma shell formed on axis, the Heuristic Model [IEEE Trans. Plasma Sci. 26, 1275 (1998)] agrees with the measured risetime under a number of specific assumptions about the way the breakdown of the wires, the wire-plasma expansion, and the Rayleigh-Taylor instability in the r-z plane, develop. Likewise, in the high wire-number regime (where the wires are calculated to form a plasma shell prior to significant radial motion of the shell) the comparisons show that the variation in the power of the radiation generated as a function of load mass and array radius can be simulated by the two-dimensional Eulerian-radiation- magnetohydrodynamics code (E-RMHC) [Phys. Plasmas 3, 368 (1996)], using a single random-density perturbation that seeds the Rayleigh-Taylor instability in the r-z plane. For a given pulse-power generator, the comparisons suggest that (1) the smallest interwire gaps compatible with practical load construction and (2) the minimum implosion time consistent with the optimum required energy coupling of the generator to the load should produce the highest total-radiated-power levels.

  20. Wire Array Z-Pinch Insights for Enhanced X-Ray Production

    Energy Technology Data Exchange (ETDEWEB)

    Apruzese, J.P.; Chittenden, J.P.; Greenly, J.B.; Haines, M.G.; Mock, R.C.; Mosher, D.; Peterson, D.L.; Reisman, D.B.; Sanford, T.W.L.; Sinars, D.B.; Spielman, R.B.; Whitnery, K.G.

    1999-01-04

    Comparisons of measured total radiated x-ray power from annular wire-array z-pinches with a variety of models as a function of wire number, array mass, and load radius are reviewed. The data, which are comprehensive, have provided important insights into the features of wire-array dynamics that are critical for high x-ray power generation. Collectively, the comparisons of the data with the model calculations suggest that a number of underlying dynamical mechanisms involving cylindrical asymmetries and plasma instabilities contribute to the measured characteristics. For example, under the general assumption that the measured risetime of the total-radiated-power pulse is related to the thickness of the plasma shell formed on axis, the Heuristic Model [IEEE Trans. Plasma Sci., 26, 1275 (1998)] agrees with the measured risetime under a number of specific assumptions about the way the breakdown of the wires, the wire-plasma expansion, and the Rayleigh-Taylor instability in the r-z plane, interact. Likewise, in the high wire-number regime (where the wires are calculated to form a plasma shell prior to significant radial motion of the shell) the comparisons show that the variation in the power of the radiation generated as a function of load mass and array radius can be simulated by the 2-D Eulerian-radiation-magnetohydrodynamics code (E-RMHC) [Phys. Plasmas 3, 368 (1996)], using a single random-density perturbation that seeds the Rayleigh-Taylor instability in the r-z plane. For a given pulse-power generator, the comparisons suggest that (1) the smallest interwire gaps compatible with practical load construction and (2) the minimum implosion time consistent with the optimum required energy coupling of the generator to the load should produce the highest total-radiated-power levels.

  1. Wire array Z-pinch insights for enhanced x-ray production

    International Nuclear Information System (INIS)

    Sanford, T.W.; Mock, R.C.; Spielman, R.B.; Haines, M.G.; Chittenden, J.P.; Whitney, K.G.; Apruzese, J.P.; Peterson, D.L.; Greenly, J.B.; Sinars, D.B.; Reisman, D.B.; Mosher, D.

    1999-01-01

    Comparisons of measured total radiated x-ray power from annular wire-array z-pinches with a variety of models as a function of wire number, array mass, and load radius are reviewed. The data, which are comprehensive, have provided important insights into the features of wire-array dynamics that are critical for high x-ray power generation. Collectively, the comparisons of the data with the model calculations suggest that a number of underlying dynamical mechanisms involving cylindrical asymmetries and plasma instabilities contribute to the measured characteristics. For example, under the general assumption that the measured risetime of the total-radiated-power pulse is related to the thickness of the plasma shell formed on axis, the Heuristic Model [IEEE Trans. Plasma Sci. 26, 1275 (1998)] agrees with the measured risetime under a number of specific assumptions about the way the breakdown of the wires, the wire-plasma expansion, and the Rayleigh - Taylor instability in the r - z plane, develop. Likewise, in the high wire-number regime (where the wires are calculated to form a plasma shell prior to significant radial motion of the shell) the comparisons show that the variation in the power of the radiation generated as a function of load mass and array radius can be simulated by the two-dimensional Eulerian-radiation- magnetohydrodynamics code (E-RMHC) [Phys. Plasmas 3, 368 (1996)], using a single random-density perturbation that seeds the Rayleigh - Taylor instability in the r - z plane. For a given pulse-power generator, the comparisons suggest that (1) the smallest interwire gaps compatible with practical load construction and (2) the minimum implosion time consistent with the optimum required energy coupling of the generator to the load should produce the highest total-radiated-power levels. copyright 1999 American Institute of Physics

  2. Wire Array Z-Pinch Insights for Enhanced X-Ray Production

    International Nuclear Information System (INIS)

    Apruzese, J.P.; Chittenden, J.P.; Greenly, J.B.; Haines, M.G.; Mock, R.C.; Mosher, D.; Peterson, D.L.; Reisman, D.B.; Sanford, T.W.L.; Sinars, D.B.; Spielman, R.B.; Whitnery, K.G.

    1999-01-01

    Comparisons of measured total radiated x-ray power from annular wire-array z-pinches with a variety of models as a function of wire number, array mass, and load radius are reviewed. The data, which are comprehensive, have provided important insights into the features of wire-array dynamics that are critical for high x-ray power generation. Collectively, the comparisons of the data with the model calculations suggest that a number of underlying dynamical mechanisms involving cylindrical asymmetries and plasma instabilities contribute to the measured characteristics. For example, under the general assumption that the measured risetime of the total-radiated-power pulse is related to the thickness of the plasma shell formed on axis, the Heuristic Model [IEEE Trans. Plasma Sci., 26, 1275 (1998)] agrees with the measured risetime under a number of specific assumptions about the way the breakdown of the wires, the wire-plasma expansion, and the Rayleigh-Taylor instability in the r-z plane, interact. Likewise, in the high wire-number regime (where the wires are calculated to form a plasma shell prior to significant radial motion of the shell) the comparisons show that the variation in the power of the radiation generated as a function of load mass and array radius can be simulated by the 2-D Eulerian-radiation-magnetohydrodynamics code (E-RMHC) [Phys. Plasmas 3, 368 (1996)], using a single random-density perturbation that seeds the Rayleigh-Taylor instability in the r-z plane. For a given pulse-power generator, the comparisons suggest that (1) the smallest interwire gaps compatible with practical load construction and (2) the minimum implosion time consistent with the optimum required energy coupling of the generator to the load should produce the highest total-radiated-power levels

  3. Astrophysically relevant radiatively cooled hypersonic bow shocks in nested wire arrays

    Science.gov (United States)

    Ampleford, David

    2009-11-01

    We have performed laboratory experiments which introduce obstructions into hypersonic plasma flows to study the formation of shocks. Astrophysical observations have demonstrated many examples of equivalent radiatively cooled bow shocks, for example the head of protostellar jets or supernova remnants passing through the interstellar medium or between discrete clumps in jets. Wire array z-pinches allow us to study quasi-planar radiatively cooled flows in the laboratory. The early stage of a wire array z-pinch implosion consists of a steady flow of the wire material towards the axis. Given a high rate of radiative cooling, these flows reach high sonic- Mach numbers, typically up to 5. The 2D nature of this configuration allows the insertion of obstacles into the flow, such as a concentric ``inner'' wire array, as has previously been studied for ICF research. Here we study the application of such a nested array to laboratory astrophysics where the inner wires act as obstructions perpendicular to the flow, and induce bow shocks. By varying the wire array material (W/Al), the significance of radiative cooling on these shocks can be controlled, and is shown to change the shock opening angle. As multiple obstructions are present, the experiments show the interaction of multiple bow shocks. It is also possible to introduce a magnetic field around the static object, increasing the opening angle of the shocks. Further experiments can be designed to control the flow density, magnetic field structure and obstruction locations. In collaboration with: S.V. Lebedev, M.E. Cuneo, C.A. Jennings, S.N. Bland, J.P. Chittenden, A. Ciardi, G.N. Hall, S.C. Bott, M. Sherlock, A. Frank, E. Blackman

  4. Compression dynamics of quasi-spherical wire arrays with different linear mass profiles

    International Nuclear Information System (INIS)

    Mitrofanov, K. N.; Aleksandrov, V. V.; Gritsuk, A. N.; Grabovski, E. V.; Frolov, I. N.; Laukhin, Ya. N.; Oleinik, G. M.; Ol’khovskaya, O. G.

    2016-01-01

    Results of experimental studies of the implosion of quasi-spherical wire (or metalized fiber) arrays are presented. The goal of the experiments was to achieve synchronous three-dimensional compression of the plasma produced in different regions of a quasi-spherical array into its geometrical center. To search for optimal synchronization conditions, quasi-spherical arrays with different initial profiles of the linear mass were used. The following dependences of the linear mass on the poloidal angle were used: m_l(θ) ∝ sin"–"1θ and m_l(θ) ∝ sin"–"2θ. The compression dynamics of such arrays was compared with that of quasi-spherical arrays without linear mass profiling, m_l(θ) = const. To verify the experimental data, the spatiotemporal dynamics of plasma compression in quasi-spherical arrays was studied using various diagnostics. The experiments on three-dimensional implosion of quasi-spherical arrays made it possible to study how the frozen-in magnetic field of the discharge current penetrates into the array. By measuring the magnetic field in the plasma of a quasi-spherical array, information is obtained on the processes of plasma production and formation of plasma flows from the wire/fiber regions with and without an additionally deposited mass. It is found that penetration of the magnetic flux depends on the initial linear mass profile m_l(θ) of the quasi-spherical array. From space-resolved spectral measurements and frame imaging of plasma X-ray emission, information is obtained on the dimensions and shape of the X-ray source formed during the implosion of a quasi-spherical array. The intensity of this source is estimated and compared with that of the Z-pinch formed during the implosion of a cylindrical array.

  5. A hollow stainless steel microneedle array to deliver insulin to a diabetic rat

    International Nuclear Information System (INIS)

    Vinayakumar, K B; Rajanna, K; Kulkarni, Prachit G; Ramachandra, S G; Nayak, M M; Hegde, Gopalkrishna M; Dinesh, N S

    2016-01-01

    A novel fabrication process has been described for the development of a hollow stainless steel microneedle array using femto second laser micromachining. Using this method, a complicated microstructure can be fabricated in a single process step without using masks. The mechanical stability of the fabricated microneedle array was measured for axial and transverse loading. Skin histology was carried out to study the microneedle penetration into the rat skin. Fluid flow through the microneedle array was studied for different inlet pressures. The packaging of the microneedle array, to protect the microneedle bore blockage from dust and other atmospheric contaminations, was also considered. Finally, the microneedle array was tested and studied in vivo for insulin delivery to a diabetic rat. The results obtained were compared with the standard subcutaneous delivery with the same dose rate and were found to be in good agreement. (paper)

  6. A hollow stainless steel microneedle array to deliver insulin to a diabetic rat

    Science.gov (United States)

    Vinayakumar, K. B.; Kulkarni, Prachit G.; Nayak, M. M.; Dinesh, N. S.; Hegde, Gopalkrishna M.; Ramachandra, S. G.; Rajanna, K.

    2016-06-01

    A novel fabrication process has been described for the development of a hollow stainless steel microneedle array using femto second laser micromachining. Using this method, a complicated microstructure can be fabricated in a single process step without using masks. The mechanical stability of the fabricated microneedle array was measured for axial and transverse loading. Skin histology was carried out to study the microneedle penetration into the rat skin. Fluid flow through the microneedle array was studied for different inlet pressures. The packaging of the microneedle array, to protect the microneedle bore blockage from dust and other atmospheric contaminations, was also considered. Finally, the microneedle array was tested and studied in vivo for insulin delivery to a diabetic rat. The results obtained were compared with the standard subcutaneous delivery with the same dose rate and were found to be in good agreement.

  7. Studies of Hot Spots in Imploding Wire Arrays at 1 MA on COBRA

    International Nuclear Information System (INIS)

    Pikuz, Sergey A.; Shelkovenko, Tatiana A.; McBride, Ryan D.; Hammer, David A.

    2009-01-01

    We present recent results from hot spot investigations in imploding Al wire array z-pinches on the COBRA generator at Cornell University using x-ray diagnostics. Measurements of the temporal and spatial distribution of hot spots in stagnating plasmas by an x-ray streak-camera are included. Experiments show that hot spots have nanosecond lifetime and appear randomly along the array axis after plasma stagnation in secondary pinches in 8 mm diameter and during plasma stagnation in the arrays with 4 mm diameter.

  8. A Novel Two-Wire Fast Readout Approach for Suppressing Cable Crosstalk in a Tactile Resistive Sensor Array

    Directory of Open Access Journals (Sweden)

    Jianfeng Wu

    2016-05-01

    Full Text Available For suppressing the crosstalk problem due to wire resistances and contacted resistances of the long flexible cables in tactile sensing systems, we present a novel two-wire fast readout approach for the two-dimensional resistive sensor array in shared row-column fashion. In the approach, two wires are used for every driving electrode and every sampling electrode in the resistive sensor array. The approach with a high readout rate, though it requires a large number of wires and many sampling channels, solves the cable crosstalk problem. We also verified the approach’s performance with Multisim simulations and actual experiments.

  9. A Novel Two-Wire Fast Readout Approach for Suppressing Cable Crosstalk in a Tactile Resistive Sensor Array.

    Science.gov (United States)

    Wu, Jianfeng; Wang, Yu; Li, Jianqing; Song, Aiguo

    2016-05-18

    For suppressing the crosstalk problem due to wire resistances and contacted resistances of the long flexible cables in tactile sensing systems, we present a novel two-wire fast readout approach for the two-dimensional resistive sensor array in shared row-column fashion. In the approach, two wires are used for every driving electrode and every sampling electrode in the resistive sensor array. The approach with a high readout rate, though it requires a large number of wires and many sampling channels, solves the cable crosstalk problem. We also verified the approach's performance with Multisim simulations and actual experiments.

  10. Variation of high-power aluminum-wire array Z-pinch dynamics with wire number, load mass, and array radius

    Energy Technology Data Exchange (ETDEWEB)

    Sanford, T.W.; Mock, R.C.; Marder, B.M.; Nash, T.J.; Spielman, R.B. [Sandia National Laboratories, Albuquerque, New Mexico87185 (United States); Peterson, D.L.; Roderick, N.F. [Los Alamos National Laboratory, Los Alamos, New Mexico87545 (United States); Hammer, J.H.; De Groot, J.S. [Lawrence Livermore National Laboratory, Livermore, California94550 (United States); Mosher, D. [Naval Research Laboratory, Pulsed Power Physics Branch, Washington, District of Columbia20375 (United States); Whitney, K.G.; Apruzese, J.P. [Naval Research Laboratory, Radiation Hydrodynamics Branch, Washington, District of Columbia20375 (United States)

    1997-05-01

    A systematic study of annular aluminum-wire z-pinches on the Saturn accelerator shows that the quality of the implosion, (as measured by the radial convergence, the radiated energy, pulse width, and power), increases with wire number. Radiation magnetohydrodynamic (RMHC) xy simulations suggest that the implosion transitions from that of individual wire plasmas to that of a continuous plasma shell when the interwire spacing is reduced below {approximately}1.4mm. In this {open_quotes}plasma-shell regime,{close_quotes} many of the global radiation and plasma characteristics are in agreement with those simulated by 2D-RMHC rz simulations. In this regime, measured changes in the radiation pulse width with variations in load mass and array radius are consistent with the simulations and are explained by the development of 2D fluid motion in the rz plane. Associated variations in the K-shell yield are qualitatively explained by simple radiation-scaling models. {copyright} {ital 1997 American Institute of Physics.}

  11. Variation of high-power aluminum-wire array Z-pinch dynamics with wire number, array radius, and load mass

    Energy Technology Data Exchange (ETDEWEB)

    Sanford, T.W.L.; Mock, R.C.; Marder, B.M. [and others

    1997-06-01

    A systematic study of annular aluminum-wire z-pinches on the Saturn accelerator shows that the quality of the implosion, including the radiated power, increases with wire number. Radiation magnetohydrodynamic (RMEC) xy simulations suggest that the implosion transitions from that of individual wire plasmas to that of a continuous plasma shell when the interwire spacing is reduced below {approximately} 1.4 mm. In the plasma-shell regime, the experimental implosions exhibit 1D- and 2D-code characteristics as evidenced by the presence of a strong first and a weak second radiation pulse that correlates with a strong and weak radial convergence. In this regime, many of the radiation and plasma characteristics are in agreement with those simulated by 2D-RMHC rz simulations. Moreover, measured changes in the radiation pulse width with variations in array mass and radius are consistent with the simulations and are explained by the development of 2D fluid motion in the rz plane. Associated variations in the K-shell yield are qualitatively explained by simple K-shell radiation scaling models.

  12. Variation of high-power aluminum-wire array Z-pinch dynamics with wire number, load mass, and array radius

    International Nuclear Information System (INIS)

    Sanford, T.W.; Mock, R.C.; Marder, B.M.; Nash, T.J.; Spielman, R.B.; Peterson, D.L.; Roderick, N.F.; Hammer, J.H.; De Groot, J.S.; Mosher, D.; Whitney, K.G.; Apruzese, J.P.

    1997-01-01

    A systematic study of annular aluminum-wire z-pinches on the Saturn accelerator shows that the quality of the implosion, (as measured by the radial convergence, the radiated energy, pulse width, and power), increases with wire number. Radiation magnetohydrodynamic (RMHC) xy simulations suggest that the implosion transitions from that of individual wire plasmas to that of a continuous plasma shell when the interwire spacing is reduced below ∼1.4mm. In this open-quotes plasma-shell regime,close quotes many of the global radiation and plasma characteristics are in agreement with those simulated by 2D-RMHC rz simulations. In this regime, measured changes in the radiation pulse width with variations in load mass and array radius are consistent with the simulations and are explained by the development of 2D fluid motion in the rz plane. Associated variations in the K-shell yield are qualitatively explained by simple radiation-scaling models. copyright 1997 American Institute of Physics

  13. A comparison of torque expression between stainless steel, titanium molybdenum alloy, and copper nickel titanium wires in metallic self-ligating brackets.

    Science.gov (United States)

    Archambault, Amy; Major, Thomas W; Carey, Jason P; Heo, Giseon; Badawi, Hisham; Major, Paul W

    2010-09-01

    The force moment providing rotation of the tooth around the x-axis (buccal-lingual) is referred to as torque expression in orthodontic literature. Many factors affect torque expression, including the wire material characteristics. This investigation aims to provide an experimental study into and comparison of the torque expression between wire types. With a worm-gear-driven torquing apparatus, wire was torqued while a bracket mounted on a six-axis load cell was engaged. Three 0.019 x 0.0195 inch wire (stainless steel, titanium molybdenum alloy [TMA], copper nickel titanium [CuNiTi]), and three 0.022 inch slot bracket combinations (Damon 3MX, In-Ovation-R, SPEED) were compared. At low twist angles (wires were not statistically significant. At twist angles over 24 degrees, stainless steel wire yielded 1.5 to 2 times the torque expression of TMA and 2.5 to 3 times that of nickel titanium (NiTi). At high angles of torsion (over 40 degrees) with a stiff wire material, loss of linear torque expression sometimes occurred. Stainless steel has the largest torque expression, followed by TMA and then NiTi.

  14. Synergistic effect of wire bending and salivary pH on surface properties and mechanical properties of orthodontic stainless steel archwires.

    Science.gov (United States)

    Hobbelink, Marieke G; He, Yan; Xu, Jia; Xie, Huixu; Stoll, Richard; Ye, Qingsong

    2015-01-01

    The aim of this study was to investigate the corrosive behaviour of stainless steel archwires in a more clinically relevant way by bending and exposing to various pH. One hundred and twenty pieces of rectangular stainless steel wires (0.43 × 0.64 mm) were randomly assigned into four groups. In each group, there were 15 pieces of bent wires and 15 straight ones. Prior to measurements of the wires, as individual experimental groups (group 1, 2, and 3), the wires were exposed to artificial saliva for 4 weeks at pH 5.6, 6.6, and 7.6, respectively. A control group of wires (group 4) remained in air for the same period of time before sent for measurements. Surface roughness (Ra-value) was measured by a profilometer. Young's modulus and maximum force were determined by a four-point flexural test apparatus. Scanning electron microscopy was used to observe the surface morphology of straight wire. Differences between groups were examined using a two-way analysis of variance (ANOVA). Mean surface roughness values, flexural Young's moduli, and maximum force values of bent wires are significantly different from those of the straight wires, which was the main effect of wire bending, ignoring the influence of pH. A significant effect was found between Ra-values regarding the main effect of pH, ignoring the influence of shape. There was a significant interaction effect of bending and pH on flexural Young's moduli of stainless steel archwires, while pH did not show much impact on the maximum force values of those stainless steel wires. Bigger surface irregularities were seen on SEM images of straight wires immersed in artificial saliva at pH 5.6 compared to artificial saliva at other pH values. Surface depth (Rz) was more sensitive than Ra in revealing surface roughness, both measured from 3D reconstructed SEM images. Ra showed a comparable result of surface roughness to Ra-value measured by the profilometer. Bending has a significant influence on surface roughness and mechanical

  15. Effects of Mass Ablation on the Scaling of X-Ray Power with Current in Wire-Array Z Pinches

    International Nuclear Information System (INIS)

    Lemke, R. W.; Sinars, D. B.; Waisman, E. M.; Cuneo, M. E.; Yu, E. P.; Haill, T. A.; Hanshaw, H. L.; Brunner, T. A.; Jennings, C. A.; Stygar, W. A.; Desjarlais, M. P.; Mehlhorn, T. A.; Porter, J. L.

    2009-01-01

    X-ray production by imploding wire-array Z pinches is studied using radiation magnetohydrodynamics simulation. It is found that the density distribution created by ablating wire material influences both x-ray power production, and how the peak power scales with applied current. For a given array there is an optimum ablation rate that maximizes the peak x-ray power, and produces the strongest scaling of peak power with peak current. This work is consistent with trends in wire-array Z pinch x-ray power scaling experiments on the Z accelerator

  16. Separation of Electrolytic Reduction Product from Stainless Steel Wire Mesh Cathode Basket via Salt Draining and Reuse of the Cathode Basket

    OpenAIRE

    Choi, Eun-Young; Lee, Jeong; Heo, Dong Hyun; Hur, Jin-Mok

    2017-01-01

    We demonstrated that the metallic product obtained after electrolytic reduction (also called oxide reduction (OR)) can be simply separated from a stainless steel wire mesh cathode basket only by using a salt drain. First, the OR run of a simulated oxide fuel (0.6 kg/batch) was conducted in a molten Li2O–LiCl salt electrolyte at 650°C. The simulated oxide fuel of the porous cylindrical pellets was used as a cathode by loading a stainless steel wire mesh cathode basket. Platinum was employed as...

  17. Transverse vorticity measurements using an array of four hot-wire probes

    Science.gov (United States)

    Foss, J. F.; Klewickc, C. L.; Disimile, P. J.

    1986-01-01

    A comprehensive description of the technique used to obtain a time series of the quasi-instantaneous transverse vorticity from a four wire array of probes is presented. The algorithmic structure which supports the technique is described in detail and demonstration data, from a large plane shear layer, are presented to provide a specific utilization of the technique. Sensitivity calculations are provided which allow one contribution to the inherent uncertainty of the technique to be evaluated.

  18. X-ray Power Increase from Symmetrized Wire-Array z-Pinch Implosions on Saturn.*

    Science.gov (United States)

    Sanford, T. W. L.; Allshouse, G. O.; Marder, B. M.; Nash, T. J.; Mock, R. C.; Douglas, M. R.; Spielman, R. B.; Seaman, J. F.; McGurn, J. S.; Jobe, D.; Gilliland, T. L.; Vargas, M.; Struve, K. W.; Stygar, W. A.; Hammer, J. H.; Degroot, J. S.; Eddleman, J. L.; Peterson, D. L.; Whitney, K. G.; Thornhill, J. W.; Pulsifer, P. E.; Apruzese, J. P.; Mosher, D.; Maron, Y.

    1996-11-01

    A systematic experimental study of annular aluminum wire z-pinches on the Saturn accelerator at Sandia National Laboratories shows that, for the first time, many of the measured spatial characteristics and x-ray powers can be correlated to 1D and 2D, radiation-magneto-hydrodynamic code (RMHC) simulations when large numbers of wires are used. Calculations show that the implosion begins to transition from that of individual wire plasmas to that of a continuous plasma shell when the circumferential gap between wires in the array is reduced below 1.4 +1.3/-0.7 mm. This calculated gap coincides with the measured transition of 1.4±0.4 mm between the observed regimes of slow and rapid improvement in power output with decreasing gap. In the plasma-shell regime, x-ray power has been more than tripled over that generated in the wire-plasma regime. In the full paper, measured characteristics in the plasma-shell regime are compared with 2D, 1- and 20-mm axial length simulations of the implosion using a multi-photon-group Lagrangian RMHC^1 and a three-temperature Eulerian RMHC,^2 respectively. ^1J.H. Hammer, et al., Phys. Plasmas 3, 2063 (1996). ^2D.L. Peterson, et al., Phys. Plasmas 3, 368 (1996). Work supported by U.S. DOE Contract No. DE-AC04-94AL85000.

  19. Transparent, double-sided, ITO-free, flexible dye-sensitized solar cells based on metal wire/ZnO nanowire arrays

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Wei; Zhao, Qing; Li, Heng; Yu, Dapeng [State Key Laboratory for Mesoscopic Physics and Electron Microscopy Laboratory, School of Physics, Peking University, Beijing 100871 (China); Wu, Hongwei; Zou, Dechun [Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871 (China)

    2012-07-10

    Transparent, double-sided, flexible, ITO-free dye-sensitized solar cells (DSSCs) are fabricated in a simple, facile, and controllable way. Highly ordered, high-crystal-quality, high-density ZnO nanowire arrays are radially grown on stainless steel, Au, Ag, and Cu microwires, which serve as working electrodes. Pt wires serve as the counter electrodes. Two metal wires are encased in electrolyte between two poly(ethylene terephthalate) (PET) films (or polydimethylsiloxane (PDMS) films) to render the device both flexible and highly transparent. The effect of the dye thickness on the photovoltaic performance of the DSSCs as a function of dye-loading time is investigated systematically. Shorter dye-loading times lead to thinner dye layers and better device performance. A dye-loading time of 20 min results in the best device performance. An oxidation treatment of the metal wires is developed effectively to avoid the galvanic-battery effect found in the experiment, which is crucial for real applications of double-metal-wire DSSC configurations. The device shows very good transparency and can increase sunlight use efficiency through two-sided illumination. The double-wire DSSCs remain stable for a long period of time and can be bent at large angles, up to 107 , reversibly, without any loss of performance. The double-wire-PET, planar solar-cell configuration can be used as window stickers and can be readily realized for large-area-weave roll-to-roll processing. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  20. Primary experimental results of wire-array Z-pinches on PTS

    Energy Technology Data Exchange (ETDEWEB)

    Huang, X. B., E-mail: caephxb2003@aliyun.com; Zhou, S. T., E-mail: caephxb2003@aliyun.com; Ren, X. D., E-mail: caephxb2003@aliyun.com; Dan, J. K., E-mail: caephxb2003@aliyun.com; Wang, K. L., E-mail: caephxb2003@aliyun.com; Zhang, S. Q., E-mail: caephxb2003@aliyun.com; Li, J., E-mail: caephxb2003@aliyun.com; Xu, Q., E-mail: caephxb2003@aliyun.com; Cai, H. C., E-mail: caephxb2003@aliyun.com; Duan, S. C., E-mail: caephxb2003@aliyun.com; Ouyang, K., E-mail: caephxb2003@aliyun.com; Chen, G. H., E-mail: caephxb2003@aliyun.com; Ji, C., E-mail: caephxb2003@aliyun.com; Wang, M., E-mail: caephxb2003@aliyun.com; Feng, S. P., E-mail: caephxb2003@aliyun.com; Yang, L. B., E-mail: caephxb2003@aliyun.com; Xie, W. P., E-mail: caephxb2003@aliyun.com; Deng, J. J., E-mail: caephxb2003@aliyun.com [Key Lab of Pulsed Power, Institute of Fluid Physics, CAEP, P.O. Box 919-108, Mianyang, Sichuan 621999 (China)

    2014-12-15

    The Primary Test Stand (PTS) developed at the China Academy of Engineering Physics is a multiterawatt pulsed power driver, which can deliver a ∼10 MA, 70 ns rise-time (10%-90%) current to a short circuit load and has important applications in Z-pinch driven inertial confinement fusion and high energy density physics. In this paper, primary results of tungsten wire-array Z-pinch experiments on PTS are presented. The load geometries investigated include 15-mm-tall cylindrical single and nested arrays with diameter ranging from 14.4-26.4 mm, and consisting of 132∼276 tungsten wires with 5∼10 μm in diameter. Multiple diagnostics were fielded to determine the characteristics of x-ray radiations and to obtain self-emitting images of imploding plasmas. X-ray power up to 80 TW with ∼3 ns FWMH is achieved by using nested wire arrays. The total x-ray energy exceeds 500 kJ and the peak radiation temperature is about 150 eV. Typical velocity of imploding plasmas goes around 3∼5×10{sup 7} cm/s and the radial convergence ratio is between 10 and 20.

  1. Comparative short-term in vitro analysis of mutans streptococci adhesion on esthetic, nickel-titanium, and stainless-steel arch wires.

    Science.gov (United States)

    Kim, In-Hye; Park, Hyo-Sang; Kim, Young Kyung; Kim, Kyo-Han; Kwon, Tae-Yub

    2014-07-01

    To test the hypothesis that there are no differences in mutans streptococci (MS) adhesion between esthetic and metallic orthodontic arch wires based on their surface characteristics. Surface roughness (Ra) and apparent surface free energy (SFE) were measured for six wires-four esthetic, one nickel-titanium (NiTi), and one stainless-steel (SS)-using profilometry and dynamic contact angle analysis, respectively. The amount of MS (Streptococcus mutans and Streptococcus sobrinus) adhering to the wires was quantified using the colony-counting method. The surfaces, coating layers, and MS adhesion were also observed by scanning electron microscopy. Statistical significance was set at P wires were significantly different from one another depending on the coating method (P wire showed the highest SFE, followed by the SS wire and then the four esthetic wires. The NiTi wires produced a significantly higher MS adhesion than did the SS wires (P wires showed significantly lower MS adhesions than did the NiTi wire (P < .05). Pearson correlation analyses found moderate significant positive correlations between the SFE and the S mutans and S sobrinus adhesions (r  =  .636/.427, P < .001/P  =  .001, respectively). The hypothesis is rejected. This study indicates that some esthetic coatings on NiTi alloy might reduce MS adhesion in vitro in the short term.

  2. Left-handed compact MIMO antenna array based on wire spiral resonator for 5-GHz wireless applications

    Science.gov (United States)

    Alqadami, Abdulrahman Shueai Mohsen; Jamlos, Mohd Faizal; Soh, Ping Jack; Rahim, Sharul Kamal Abdul; Narbudowicz, Adam

    2017-01-01

    A compact coplanar waveguide-fed multiple-input multiple-output antenna array based on the left-handed wire loaded spiral resonators (SR) is presented. The proposed antenna consists of a 2 × 2 wire SR with two symmetrical microstrip feed lines, each line exciting a 1 × 2 wire SR. Left-handed metamaterial unit cells are placed on its reverse side and arranged in a 2 × 3 array. A reflection coefficient of less than -16 dB and mutual coupling of less than -28 dB are achieved at 5.15 GHz WLAN band.

  3. Multi-Dimensional Radiation Transport in Dense Z-pinch Wire Array Plasmas

    Science.gov (United States)

    Jennings, C. A.; Chittenden, J. P.; Ciardi, A.; Sherlock, M.; Lebedev, S. V.

    2004-11-01

    Z-pinch wire arrays have proven to be an extremely efficient high yield, short pulse x-ray source with potential application to ICF. The characteristics of the x-ray pulse produced have been shown to be largely determined by non-uniform break up of the wires leading to a highly irregular distribution of mass which implodes towards the axis. Modelling the inherent 3D nature of these plasmas is already computationally very expensive, and so energy exchange through radiation is frequently neglected, assuming instead an optically thin radiation loss model. With a significant fraction of the total energy at late stages being radiated through a dense, optically thick plasma this approach is potentially inadequate in fully describing the implosion. We analyse the effects of radiative cooling and radiation transport on stagnation and precursor development in wire array z-pinch implosions. A three temperature multidimensional MHD code using a single group radiation diffusion model is used to study radiation trapping in the precursor, and the effects of preheating on the implosion dynamics. Energy exchange in the final stagnated plasma and its effects on the x-ray pulse shape is also discussed. This work was partially supported by the SSAA program of the NNSA through DoE cooperative agreement DE-F03-02NA00057.

  4. Fatigue resistance, debonding force, and failure type of fiber-reinforced composite, polyethylene ribbon-reinforced, and braided stainless steel wire lingual retainers in vitro

    NARCIS (Netherlands)

    Foek, Dave Lie Sam; Yetkiner, Enver; Ozcan, Mutlu

    Objective: To analyze the fatigue resistance, debonding force, and failure type of fiber-reinforced composite, polyethylene ribbon-reinforced, and braided stainless steel wire lingual retainers in vitro. Methods: Roots of human mandibular central incisors were covered with silicone, mimicking the

  5. Characterization of Gas Metal Arc Welding welds obtained with new high Cr–Mo ferritic stainless steel filler wires

    International Nuclear Information System (INIS)

    Villaret, V.; Deschaux-Beaume, F.; Bordreuil, C.; Fras, G.; Chovet, C.; Petit, B.; Faivre, L.

    2013-01-01

    Highlights: • New metal cored filler wires for welding 444 grade stainless steel are manufactured. • The effect of Nb and Ti minor elements on the fusion zone properties is investigated. • The relation between composition of fusion zone and grain structure is investigated. • Oxidation rates of fusion zones and base metal are compared. • High temperature behavior of the welded samples are studied. - Abstract: Several compositions of metal cored filler wire were manufactured to define the best welding conditions for homogeneous welding, by Gas Metal Arc Welding (GMAW) process, of a modified AISI 444 ferritic stainless steel dedicated to automotive exhaust manifold applications. The patented grade is know under APERAM trade name K44X and has been developed to present improved high temperature fatigue properties. All filler wires investigated contained 19% Cr and 1.8% Mo, equivalent to the base metal K44X chemistry, but various titanium and niobium contents. Chemical analyses and microstructural observations of fusion zones revealed the need of a minimum Ti content of 0.15% to obtain a completely equiaxed grain structure. This structure conferred on the fusion zone a good ductility even in the as-welded state at room temperature. Unfortunately, titanium additions decreased the oxidation resistance at 950 °C if no significant Nb complementary alloying was made. The combined high Ti and Nb additions made it possible to obtain for the welded structure, after optimized heat treatment, high temperature tensile strengths and ductility for the fusion zones and assemblies, rather close to those of the base metal. 950 °C aging heat treatment was necessary to restore significantly the ductility of the as welded structure. Both fusion zone and base metal presented rather homogenized properties. Finally, with the optimized composition of the cored filler wire – 0.3 Ti minimum (i.e. 0.15% in the fusion zone) and high Nb complementary additions, the properties

  6. Design of Tunnel Magnetoresistive-Based Circular MFL Sensor Array for the Detection of Flaws in Steel Wire Rope

    Directory of Open Access Journals (Sweden)

    Liu Xiucheng

    2016-01-01

    Full Text Available Tunnel magnetoresistive (TMR devices have superior performances in weak magnetic field detection. In this study, TMR devices were first employed to form a circular magnetic flux leakage (MFL sensor for slight wire rope flaw detection. Two versions of this tailor-made circular TMR-based sensor array were presented for the inspection of wire ropes with the diameters of 14 mm and 40 mm, respectively. Helmholtz-like coils or a ferrite magnet-based magnetizer was selected to provide the proper magnetic field, in order to meet the technical requirements of the TMR devices. The coefficient of variance in the flaw detection performance of the sensor array elements was experimentally estimated at 4.05%. Both versions of the MFL sensor array were able to detect multiple single-broken wire flaws in the wire ropes. The accurate axial and circumferential positions of these broken wire flaws were estimated from the MFL scanning image results. In addition, the proposed TMR-based sensor array was applied to detect the MFL signal induced by slight surface wear defects. A mutual correlation analysis method was used to distinguish the signals caused by the lift-off fluctuation from the MFL scanning image results. The MFL sensor arrays presented in this study provide inspiration for the designing of tailor-made TMR-based circular sensor arrays for cylindrical ferromagnetic structural inspections.

  7. Hybrid simulations of Z-Pinches in support of wire array implosion experiments at NTF

    International Nuclear Information System (INIS)

    Sotnikov, Vladimir Isaakovich; Oliver, Bryan Velten; Ivanov, Vladimir V.; LePell, Paul David; Fedin, Dmitry; Kantsyrev, Victor Leonidovich; Coverdale, Christine Anne; Travnicek, P.; Deeney, Christopher; Hellinger, P.; Jones, B.; Leboeuf, J.N.; Cowan, Thomas E.; Safronova, Alla S.

    2005-01-01

    Three-dimensional hybrid simulation of a plasma current-carrying column reveal two different regimes of sausage and kink instability development. In the first regime, with small Hall parameter, development of instabilities leads to the appearance of large-scale axial perturbations and eventually to bending of the plasma column. In the second regime, with a four-times-larger Hall parameter, small-scale perturbations dominate and no bending of the plasma column is observed. Simulation results are compared with laser probing experimental data obtained during wire array implosions on the Zebra pulse power generator at the Nevada Terawatt Facility.

  8. Microstructure and mechanical properties of hot wire laser clad layers for repairing precipitation hardening martensitic stainless steel

    Science.gov (United States)

    Wen, Peng; Cai, Zhipeng; Feng, Zhenhua; Wang, Gang

    2015-12-01

    Precipitation hardening martensitic stainless steel (PH-MSS) is widely used as load-bearing parts because of its excellent overall properties. It is economical and flexible to repair the failure parts instead of changing new ones. However, it is difficult to keep properties of repaired part as good as those of the substrate. With preheating wire by resistance heat, hot wire laser cladding owns both merits of low heat input and high deposition efficiency, thus is regarded as an advantaged repairing technology for damaged parts of high value. Multi-pass layers were cladded on the surface of FV520B by hot wire laser cladding. The microstructure and mechanical properties were compared and analyzed for the substrate and the clad layer. For the as-cladded layer, microstructure was found non-uniform and divided into quenched and tempered regions. Tensile strength was almost equivalent to that of the substrate, while ductility and impact toughness deteriorated much. With using laser scanning layer by layer during laser cladding, microstructure of the clad layers was tempered to fine martensite uniformly. The ductility and toughness of the clad layer were improved to be equivalent to those of the substrate, while the tensile strength was a little lower than that of the substrate. By adding TiC nanoparticles as well as laser scanning, the precipitation strengthening effect was improved and the structure was refined in the clad layer. The strength, ductility and toughness were all improved further. Finally, high quality clad layers were obtained with equivalent or even superior mechanical properties to the substrate, offering a valuable technique to repair PH-MSS.

  9. Allergic reaction to stainless steel sternotomy wires requiring removal: A case report and literature review.

    Science.gov (United States)

    Lopez, J; Sachithanandan, A; Leow, M

    2016-06-01

    Hypersensitivity to stainless steel sternal sutures are an uncommon occurrence. We present a case of such a patient who developed chronic tissue overgranulation over a sternotomy wound eight weeks post-operatively. Primary suspicion was infection, a more common complication however radiological and laboratory investigation showed otherwise. Conservative management provided limited ephemeral success. After ensuring adequate sternal bone healing, the sutures and granulation tissue were eventually surgically removed without complication and the reoperated wound healed well.

  10. Novel micromachined on-chip 10-elements wire-grid array operating at 60 GHz

    KAUST Repository

    Sallam, Mai O.

    2017-06-07

    This paper presents a new topology for a wire-grid antenna array which operates at 60 GHz. The array consists of ten λ/2 dipole radiators connected via non-radiating connectors. Both radiators and connectors are placed on top of narrow silicon walls. The antenna is fed with a coplanar microstrip lines placed at the other side of the wafer and is connected with its feeding transmission lines using through-silicon-vias. The antenna is optimized for two cases: using high- and low-resistivity silicon substrates. The former has better radiation characteristics while the later is more compatible with the driving electronic circuits. The antenna has high directivity, reasonable bandwidth and high polarization purity.

  11. Experimental study on imploding characteristics of wire-array Z pinches on Qiangguang-1 facility

    Institute of Scientific and Technical Information of China (English)

    Wang Zhen; Xu Rong-Kun; Yang Jian-Lun; Hua Xin-Sheng; Li Lin-Bo; Xu Ze-Ping; Ning Jia-Min; Song Feng-Jun

    2007-01-01

    To investigate the imploding characteristics of cylindrical wire array,experiments with load current varying from 1.5MA to 1.7MA were carried out on the Qiangguang-1 facility.The complicated temporal-spatial distribution of x-ray radiation was measured by the one-dimensional (1D) x-ray imaging system.Other diagnostic equipments including the x-ray power meter(XRPM) and the time-integrated pinhole camera were used to record time-resolved x-ray power pulse and pinhole x-ray images.Analysis shows that the fast leading edge of the local x-ray radiation pulse is of primary importance in sharpening x-ray power pulse rather than the temporal synchrony and the spatial uniformity of implosion.Experimental results indicated that the better axial imploding synchrony,the faster the increase of X-ray power for an array consisting of 32 tungsten wires of 5μm diameter than for the others,and the higher the x-ray radiation power with maximal convergence ratio (r0/r1) of 10.5.A 'zipper-like' effect of x-ray radiation extending from the cathode Was also observed.

  12. Spatially resolved single crystal x-ray spectropolarimetry of wire array z-pinch plasmas.

    Science.gov (United States)

    Wallace, M S; Haque, S; Neill, P; Pereira, N R; Presura, R

    2018-01-01

    A recently developed single-crystal x-ray spectropolarimeter has been used to record paired sets of polarization-dependent and axially resolved x-ray spectra emitted by wire array z-pinches. In this measurement, two internal planes inside a suitable crystal diffract the x-rays into two perpendicular directions that are normal to each other, thereby separating incident x-rays into their linearly polarized components. This paper gives considerations for fielding the instrument on extended sources. Results from extended sources are difficult to interpret because generally the incident x-rays are not separated properly by the crystal. This difficulty is mitigated by using a series of collimating slits to select incident x-rays that propagate in a plane of symmetry between the polarization-splitting planes. The resulting instrument and some of the spatially resolved polarized x-ray spectra recorded for a 1-MA aluminum wire array z-pinch at the Nevada Terawatt Facility at the University of Nevada, Reno will be presented.

  13. Use of microsecond current prepulse for dramatic improvements of wire array Z-pinch implosion

    International Nuclear Information System (INIS)

    Calamy, H.; Lassalle, F.; Loyen, A.; Zucchini, F.; Chittenden, J. P.; Hamann, F.; Maury, P.; Georges, A.; Bedoch, J. P.; Morell, A.

    2008-01-01

    The Sphinx machine [F. Lassalle et al., 'Status on the SPHINX machine based on the 1microsecond LTD technology'] based on microsecond linear transformer driver (LTD) technology is used to implode an aluminium wire array with an outer diameter up to 140 mm and maximum current from 3.5 to 5 MA. 700 to 800 ns implosion Z-pinch experiments are performed on this driver essentially with aluminium. Best results obtained before the improvement described in this paper were 1-3 TW radial total power, 100-300 kJ total yield, and 20-30 kJ energy above 1 keV. An auxiliary generator was added to the Sphinx machine in order to allow a multi microsecond current to be injected through the wire array load before the start of the main current. Amplitude and duration of this current prepulse are adjustable, with maxima ∼10 kA and 50 μs. This prepulse dramatically changes the ablation phase leading to an improvement of the axial homogeneity of both the implosion and the final radiating column. Total power was multiplied by a factor of 6, total yield by a factor of 2.5 with a reproducible behavior. This paper presents experimental results, magnetohydrodynamic simulations, and analysis of the effect of such a long current prepulse

  14. Analysis of Precursor Properties of mixed Al/Alumel Cylindrical Wire Arrays*

    Science.gov (United States)

    Stafford, A.; Safronova, A. S.; Kantsyrev, V. L.; Esaulov, A. A.; Weller, M. E.; Shrestha, I.; Osborne, G. C.; Shlyaptseva, V. V.; Keim, S. F.; Coverdale, C. A.; Chuvatin, A. S.

    2012-10-01

    Previous studies of mid-Z (Cu and Ni) cylindrical wire arrays (CWAs) on Zebra have found precursors with high electron temperatures of >300 eV. However, past experiments with Al CWAs did not find the same high temperature precursors. New precursor experiments using mixed Al/Alumel (Ni 95%, Si 2%, and Al 2%) cylindrical wire arrays have been performed to understand how the properties of L-shell Ni precursor will change and whether Al precursor will be observed. Time gated spectra and pinholes are used to determine precursor plasma conditions for comparison with previous Alumel precursor experiments. A full diagnostic set which included more than ten different beam-lines was implemented. Future work in this direction is discussed. [4pt] *This work was supported by NNSA under DOE Cooperative Agreements DE-FC52-06NA27588, and in part by DE-FC52-06NA27586, and DE-FC52-06NA27616. Sandia is a multi-program laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under Contract DE-AC04-94AL85000.

  15. The Corrosion Resistance of Composite Arch Wire Laser-Welded By NiTi Shape Memory Alloy and Stainless Steel Wires with Cu Interlayer in Artificial Saliva with Protein

    Science.gov (United States)

    Zhang, Chao; Sun, Xinhua; Hou, Xu; Li, Hongmei; Sun, Daqian

    2013-01-01

    In this paper, the corrosion resistance of laser-welded composite arch wire (CoAW) with Cu interlayer between NiTi shape memory alloy and stainless steel wire in artificial saliva with different concentrations of protein was studied. It was found that protein addition had a significant influence on the corrosion behavior of CoAW. Low concentration of protein caused the corrosion resistance of CoAW decrease in electrochemical corrosion and immersion corrosion tests. High concentration of protein could reduce this effect. PMID:23801895

  16. Comparative Evaluation of Friction Resistance of Titanium, Stainless Steel, Ceramic and Ceramic with Metal Insert Brackets with Varying Dimensions of Stainless Steel Wire: An In vitro Multi-center Study.

    Science.gov (United States)

    Kumar, B Sunil; Miryala, Suresh; Kumar, K Kiran; Shameem, K; Regalla, Ravindra Reddy

    2014-09-01

    The orthodontist seeks an archwire-bracket combination that has both good biocompatibility and low friction. Hence, the aim of this multicenter in vitro study was to evaluate and compare the frictional resistance generated between titanium (Ti), stainless steel (SS), ceramic and ceramic with metal insert (CMI) brackets with SS wires of varying dimensions in a specially designed apparatus. The material used in this study were Ti, SS, Ceramic and CMI with 0.018″ slot manufactured with zero degree tip and -7° torque premolar brackets (3M, Unitek) and SS wires of varying dimensions (0.016″ round, 0.016 × 0.016″ square, 0.016 × 0.022″ rectangular and 0.017 × 0.025″ rectangular) used. The frictional resistance was measured using Instron Universal testing machine (Model no. 4301). The specimen population in each center composed each of 160 brackets and wires. Differences among the all bracket/wire combinations were tested using (one-way) ANOVA, followed by the student Newman Keuls multiple comparisons of means ranking (at P bracket in combination with 0.017 × 0.025″ SS rectangular wire produced significant force levels for an optimum orthodontic movement with least frictional resistance. Ti brackets have least resistance and rectangular wires produced significant force. These can be used to avoid hazards of Nickel. SS brackets revealed higher static frictional force values as the wire dimension increased and showed lower static friction than Ti brackets for all wires except the thicker wire. Our study recommends the preclusion of brackets with rough surface texture (Ti brackets) with SS ligature wire for ligating bracket and archwire are better to reduce friction.

  17. Planar wire array dynamics and radiation scaling at multi-MA levels on the Saturn pulsed power generator

    International Nuclear Information System (INIS)

    Chuvatin, Alexander S.; Vesey, Roger Alan; Waisman, Eduardo Mario; Esaulov, Andrey A.; Ampleford, David J.; Kantsyrev, Victor Leonidovich; Cuneo, Michael Edward; Rudakov, Leonid I.; Coverdale, Christine Anne; Jones, Brent Manley; Safronova, Alla S.; Jones, Michael C.

    2008-01-01

    Planar wire arrays are studied at 3-6 MA on the Saturn pulsed power generator as potential drivers of compact hohlraums for inertial confinement fusion studies. Comparison with zero-dimensional modeling suggests that there is significant trailing mass. The modeled energy coupled from the generator cannot generally explain the energy in the main x-ray pulse. Preliminary comparison at 1-6 MA indicates sub-quadratic scaling of x-ray power in a manner similar to compact cylindrical wire arrays. Time-resolved pinhole images are used to study the implosion dynamics

  18. Demonstration of radiation pulse shaping with nested-tungsten-wire-array pinches for high-yield inertial confinement fusion.

    Science.gov (United States)

    Cuneo, M E; Vesey, R A; Sinars, D B; Chittenden, J P; Waisman, E M; Lemke, R W; Lebedev, S V; Bliss, D E; Stygar, W A; Porter, J L; Schroen, D G; Mazarakis, M G; Chandler, G A; Mehlhorn, T A

    2005-10-28

    Nested wire-array pinches are shown to generate soft x-ray radiation pulse shapes required for three-shock isentropic compression and hot-spot ignition of high-yield inertial confinement fusion capsules. We demonstrate a reproducible and tunable foot pulse (first shock) produced by interaction of the outer and inner arrays. A first-step pulse (second shock) is produced by inner array collision with a central CH2 foam target. Stagnation of the inner array at the axis produces the third shock. Capsules optimized for several of these shapes produce 290-900 MJ fusion yields in 1D simulations.

  19. Slot deformation of various stainless steel bracket due to the torque force of the beta-titanium wire

    Science.gov (United States)

    Huda, M. M.; Siregar, E.; Ismah, N.

    2017-08-01

    Stainless steel bracket slot deformation ffects the force applied to teeth and it can impede tooth movement and prolong orthodontic treatment time. The aim of this study is to determine the slot deformation due to torque of a 0.021 × 0.025 inch Beta Titanium wire with a torsional angle of 30° and 45° for five different bracket brands: y, 3M, Biom, Versadent, Ormco, and Shinye. The research also aims to compare the deformation and amount of torque among all five bracket brands at torsional angles of 30° and 45°. Fifty stainless steel edgewise brackets from the five bracket group brands (n=10) were attached to acrylic plates. The bracket slot measurements were carried out in two stages. In the first stage, the, deformation was measured by calculating the average bracket slot height using a stereoscopy microscope before and after application of torque. In the second stage, the torque was measured using a torque measurement apparatus. The statistical analysis shows that slot deformations were found on all five bracket brands with a clinical permanent deformation on the Biom (2.79 μm) and Shinye (2.29 μm) brackets. The most torque was observed on the 3M bracket, followed by the Ormco, Versadent, Shinye, and Biom brackets. When the brands were compared, a correlation between bracket slot deformation and the amount of torque was found, but the correlation was not statistically significant for the 3M and Ormco brackets and the Biom and Shinye brackets. There is a difference in the amount of torque between the five brands with a torsional angle of 30° (except the 3M and Ormco brackets) and those with a torsional angle of 45°. The composition of the metal and the manufacturing process are the factors that influence the occurrence of bracket slot deformation and the amount of torque. A manufacturing process using metal injection molding (MIM) and metal compositions of AISI 303 and 17-4 PH stainless steel reduce the risk of deformation.

  20. Nickel cobaltite nanograss grown around porous carbon nanotube-wrapped stainless steel wire mesh as a flexible electrode for high-performance supercapacitor application

    International Nuclear Information System (INIS)

    Wu, Mao-Sung; Zheng, Zhi-Bin; Lai, Yu-Sheng; Jow, Jiin-Jiang

    2015-01-01

    Graphical abstract: Nickel cobaltite nanograss with bimodal pore size distribution is grown around the carbon nanotube-wrapped stainless steel wire mesh as a high capacitance and stable electrode for high-performance and flexible supercapacitors. - Highlights: • NiCo 2 O 4 nanograss with bimodal pore size distribution is hydrothermally prepared. • Carbon nanotubes (CNTs) wrap around stainless steel (SS) wire mesh as a scaffold. • NiCo 2 O 4 grown on CNT-wrapped SS mesh shows excellent capacitive performance. • Porous CNT layer allows for rapid transport of electron and electrolyte. - Abstract: Nickel cobaltite nanograss with bimodal pore size distribution (small and large mesopores) is grown on various electrode substrates by one-pot hydrothermal synthesis. The small pores (<5 nm) in the nanograss of individual nanorods contribute to large surface area, while the large pore channels (>20 nm) between nanorods offer fast transport paths for electrolyte. Carbon nanotubes (CNTs) with high electrical conductivity wrap around stainless steel (SS) wire mesh by electrophoresis as an electrode scaffold for supporting the nickel cobaltite nanograss. This unique electrode configuration turns out to have great benefits for the development of supercapacitors. The specific capacitance of nickel cobaltite grown around CNT-wrapped SS wire mesh reaches 1223 and 1070 F g −1 at current densities of 1 and 50 A g −1 , respectively. CNT-wrapped SS wire mesh affords porous and conductive networks underneath the nanograss for rapid transport of electron and electrolyte. Flexible CNTs connect the nanorods to mitigate the contact resistance and the volume expansion during cycling test. Thus, this tailored electrode can significantly reduce the ohmic resistance, charge-transfer resistance, and diffusive impedance, leading to high specific capacitance, prominent rate performance, and good cycle-life stability.

  1. High Resolution Eddy-Current Wire Testing Based on a Gmr Sensor-Array

    Science.gov (United States)

    Kreutzbruck, Marc; Allweins, Kai; Strackbein, Chris; Bernau, Hendrick

    2009-03-01

    Increasing demands in materials quality and cost effectiveness have led to advanced standards in manufacturing technology. Especially when dealing with high quality standards in conjunction with high throughput quantitative NDE techniques are vital to provide reliable and fast quality control systems. In this work we illuminate a modern electromagnetic NDE approach using a small GMR sensor array for testing superconducting wires. Four GMR sensors are positioned around the wire. Each GMR sensor provides a field sensitivity of 200 pT/√Hz and a spatial resolution of about 100 μm. This enables us to detect under surface defects of 100 μm in size in a depth of 200 μm with a signal-to-noise ratio of better than 400. Surface defects could be detected with a SNR of up to 10,000. Besides this remarkably SNR the small extent of GMR sensors results in a spatial resolution which offers new visualisation techniques for defect localisation, defect characterization and tomography-like mapping techniques. We also report on inverse algorithms based on either a Finite Element Method or an analytical approach. These allow for accurate defect localization on the urn scale and an estimation of the defect size.

  2. Effects of thermal aging and neutron irradiation on the mechanical properties of three-wire stainless steel weld overlay cladding

    International Nuclear Information System (INIS)

    Haggag, F.M.; Nanstad, R.K.

    1997-05-01

    Thermal aging of three-wire series-arc stainless steel weld overlay cladding at 288 degrees C for 1605 h resulted in an appreciable decrease (16%) in the Charpy V-notch (CVN) upper-shelf energy (USE), but the effect on the 41-J transition temperature shift was very small (3 degrees C). The combined effect of aging and neutron irradiation at 288 degrees C to a fluence of 5 x 10 19 neutrons/cm 2 (> 1 MeV) was a 22% reduction in the USE and a 29 degrees C shift in the 41-J transition temperature. The effect of thermal aging on tensile properties was very small. However, the combined effect of irradiation and aging was an increase in the yield strength (6 to 34% at test temperatures from 288 to -125 degrees C) but no apparent change in ultimate tensile strength or total elongation. Neutron irradiation reduced the initiation fracture toughness (J Ic ) much more than did thermal aging alone. Irradiation slightly decreased the tearing modulus, but no reduction was caused by thermal aging alone. Other results from tensile, CVN, and fracture toughness specimens showed that the effects of thermal aging at 288 or 343 degrees C for 20,000 h each were very small and similar to those at 288 degrees C for 1605 h. The effects of long-term thermal exposure time (50,000 h and greater) at 288 degrees C will be investigated as the specimens become available in 1996 and beyond

  3. Iridium Oxide pH Sensor Based on Stainless Steel Wire for pH Mapping on Metal Surface

    Science.gov (United States)

    Shahrestani, S.; Ismail, M. C.; Kakooei, S.; Beheshti, M.; Zabihiazadboni, M.; Zavareh, M. A.

    2018-03-01

    A simple technique to fabricate the iridium oxide pH sensor is useful in several applications such as medical, food processing and engineering material where it is able to detect the changes of pH. Generally, the fabrication technique can be classified into three types: electro-deposition iridium oxide film (EIrOF), activated iridium oxide film (AIROF) and sputtering iridium oxide film (SIROF). This study focuses on fabricating electrode, calibration and test. Electro-deposition iridium oxide film is a simple and effective method of fabricating this kind of sensor via cyclic voltammetry process. The iridium oxide thick film was successfully electrodeposited on the surface of stainless steel wire with 500 cycles of sweep potential. A further analysis under FESEM shows detailed image of iridium oxide film which has cauliflower-liked microstructure. EDX analysis shows the highest element present are iridium and oxygen which concluded that the process is successful. The iridium oxide based pH sensor has shown a good performance in comparison to conventional glass pH sensor when it is being calibrated in buffer solutions with 2, 4, 7 and 9 pH values. The iridium oxide pH sensor is specifically designed to measure the pH on the surface of metal plate.

  4. In-situ preparation of Fe2O3 hierarchical arrays on stainless steel substrate for high efficient catalysis

    International Nuclear Information System (INIS)

    Yang, Zeheng; Wang, Kun; Shao, Zongming; Tian, Yuan; Chen, Gongde; Wang, Kai; Chen, Zhangxian; Dou, Yan; Zhang, Weixin

    2017-01-01

    Hierarchical array catalysts with micro/nano structures on substrates not only possess high reactivity from large surface area and suitable interface, but intensify mass transfer through shortening the diffusion paths of both reactants and products for high catalytic efficiency. Herein, we first demonstrate fabrication of Fe 2 O 3 hierarchical arrays grown on stainless-steel substrates via in-situ hydrothermal chemical oxidation followed by heat treatment in N 2 atmosphere. As a Fenton-like catalyst, Fe 2 O 3 hierarchical arrays exhibit excellent catalytic activity and life cycle performance for methylene blue (MB) dye degradation in aqueous solution in the presence of H 2 O 2 . The Fe 2 O 3 catalyst with unique hierarchical structures and efficient transport channels, effectively activates H 2 O 2 to generate large quantity of • OH radicals and highly promotes reaction kinetics between MB and • OH radicals. Immobilization of hierarchical array catalysts on stainless-steel can prevent particles agglomeration, facilitate the recovery and reuse of the catalysts, which is expected promising applications in wastewater remediation. - Graphical abstract: The in-situ synthesis of Fe 2 O 3 hierarchical arrays on stainless-steel substrates was reported for the first time, which exhibit excellent catalytic activity performance for methylene blue (MB) dye degradation in aqueous solution in the presence of H 2 O 2 . - Highlights: • Fe 2 O 3 hierarchical arrays was prepared by in-situ hydrothermal chemical oxidation. • F − ions play an important role in the formation of the Fe 2 O 3 hierarchical arrays. • Fe 2 O 3 hierarchical arrays show high catalytic activity to methylene blue degradation.

  5. Comparison of nickel and chromium ions released from stainless steel and NiTi wires after immersion in Oral B®, Orthokin® and artificial saliva.

    Science.gov (United States)

    Jamilian, Abdolreza; Moghaddas, Omid; Toopchi, Shabnam; Perillo, Letizia

    2014-07-01

    Oral environment of the mouth is a suitable place for biodegradation of alloys used in orthodontic wires. The toxicity of these alloys namely nickel and chromium has concerned the researchers about the release of these ions from orthodontic wires and brackets. The aim of this study was to measure the levels of nickel and chromium ions released from 0.018" stainless steel (SS) and NiTi wires after immersion in three solutions. One hundred and forty-four round NiTi and 144 round SS archwires with the diameters of 0.018" were immersed in Oral B®, Orthokin® and artificial saliva. The amounts of nickel and chromium ions released were measured after 1, 6, 24 hours and 7 days. Two way repeated ANOVA showed that the amount of chromium and nickel significantly increased in all solutions during all time intervals (p nickel ions were released more in NiTi wire in all solutions compared with SS wire. The lowest increase rate was also seen in artificial saliva. There is general consensus in literature that even very little amounts of nickel and chromium are dangerous for human body specially when absorbed orally; therefore, knowing the precise amount of these ions released from different wires when immersed in different mouthwashes is of high priority.

  6. Experimental Evaluation of a New Single Wire Stainless Steel Fishscale Coronary Stent (Freedomª).

    Science.gov (United States)

    Wang; Verbeken; Mukherjee; Zhou; De Scheerder IK

    1996-10-01

    Recent randomized clinical trials revealed a significant reduction in angiographic restenosis rates when adjunctive stenting was performed after conventional coronary balloon angioplasty. Current approved coronary stents are however hampered by their rigidity, limiting their trackability in tortuous vessels and furthermore, needing high pressure deployment for optimal vessel apposition. New coronary stents are currently under development, using more biocompatible metal alloys and/or designs which better align to the vessel wall at moderate deployment pressures. We evaluated the safety, efficacy, angiographic and histological effect of a new stainless steel fishscale designed stent (Freedomª, Global Therapeutics, Co., USA) in a porcine coronary and peripheral artery model. Implantation in the right coronary artery was successful in all 20 pigs. Control angiograms at 6 weeks follow-up demonstrated patent vessels and morphologic evaluation showed only a mild fibromuscular neointimal response resulting in an area stenosis of 28.7 +/- 0.18% and a mean neointimal hyperplasia of 0.18 +/- 0.25 mm. Comparison with the Palmaz-Schatzª coronary stent in a porcine peripheral artery model demonstrated similar quantitative angiographic and morphologic vessel analysis results. Also the morphometric data were comparable. Area stenosis: Palmaz-Schatz: 37 +/- 0.24%, Freedom: 21 +/- 0.14%, p = 0.07. Mean neointimal hyperplasia: Palmaz-Schatz: 0.33 +/- 0.24 mm, Freedom: 0.18 +/- 0.08 mm, p = 0.08. CONCLUSION: Freedom coronary stent implantation in a porcine model resulted in a high procedural success without subacute thrombotic occlusions, despite no further anticoagulation nor antiplatelet therapy. Six weeks histopathological and morphometric evaluation demonstrated only a mild fibromuscular neointimal hyperplasia.

  7. Current scaling of radiated power for 40-mm diameter single wire arrays on Z

    Science.gov (United States)

    Nash, T. J.; Cuneo, M. E.; Spielman, R. B.; Chandler, G. A.; Leeper, R. J.; Seaman, J. F.; McGurn, J.; Lazier, S.; Torres, J.; Jobe, D.; Gilliland, T.; Nielsen, D.; Hawn, R.; Bailey, J. E.; Lake, P.; Carlson, A. L.; Seamen, H.; Moore, T.; Smelser, R.; Pyle, J.; Wagoner, T. C.; LePell, P. D.; Deeney, C.; Douglas, M. R.; McDaniel, D.; Struve, K.; Mazarakis, M.; Stygar, W. A.

    2004-11-01

    In order to estimate the radiated power that can be expected from the next-generation Z-pinch driver such as ZR at 28 MA, current-scaling experiments have been conducted on the 20 MA driver Z. We report on the current scaling of single 40 mm diameter tungsten 240 wire arrays with a fixed 110 ns implosion time. The wire diameter is decreased in proportion to the load current. Reducing the charge voltage on the Marx banks reduces the load current. On one shot, firing only three of the four levels of the Z machine further reduced the load current. The radiated energy scaled as the current squared as expected but the radiated power scaled as the current to the 3.52±0.42 power due to increased x-ray pulse width at lower current. As the current is reduced, the rise time of the x-ray pulse increases and at the lowest current value of 10.4 MA, a shoulder appears on the leading edge of the x-ray pulse. In order to determine the nature of the plasma producing the leading edge of the x-ray pulse at low currents further shots were taken with an on-axis aperture to view on-axis precursor plasma. This aperture appeared to perturb the pinch in a favorable manner such that with the aperture in place there was no leading edge to the x-ray pulses at lower currents and the radiated power scaled as the current squared ±0.75. For a full-current shot we will present x-ray images that show precursor plasma emitting on-axis 77 ns before the main x-ray burst.

  8. High-resolution two-dimensional and three-dimensional modeling of wire grid polarizers and micropolarizer arrays

    Science.gov (United States)

    Vorobiev, Dmitry; Ninkov, Zoran

    2017-11-01

    Recent advances in photolithography allowed the fabrication of high-quality wire grid polarizers for the visible and near-infrared regimes. In turn, micropolarizer arrays (MPAs) based on wire grid polarizers have been developed and used to construct compact, versatile imaging polarimeters. However, the contrast and throughput of these polarimeters are significantly worse than one might expect based on the performance of large area wire grid polarizers or MPAs, alone. We investigate the parameters that affect the performance of wire grid polarizers and MPAs, using high-resolution two-dimensional and three-dimensional (3-D) finite-difference time-domain simulations. We pay special attention to numerical errors and other challenges that arise in models of these and other subwavelength optical devices. Our tests show that simulations of these structures in the visible and near-IR begin to converge numerically when the mesh size is smaller than ˜4 nm. The performance of wire grid polarizers is very sensitive to the shape, spacing, and conductivity of the metal wires. Using 3-D simulations of micropolarizer "superpixels," we directly study the cross talk due to diffraction at the edges of each micropolarizer, which decreases the contrast of MPAs to ˜200∶1.

  9. Estimation of changes in nickel and chromium content in nickel-titanium and stainless steel orthodontic wires used during orthodontic treatment: An analytical and scanning electron microscopic study

    Directory of Open Access Journals (Sweden)

    Vandana Kararia

    2015-01-01

    Full Text Available Introduction: The biocompatibility of orthodontic dental alloys has been investigated over the past 20 years, but the results have been inconclusive. The study compares standard 3 M Unitek nickel-titanium (NiTi and stainless steel archwires with locally available JJ orthodontics wires. Scanning electron microscope (SEM study of surface changes and complexometric titration to study compositional change was performed. Materials and Methods: Ten archwires each of group 1-3 M 0.016" NiTi, group 2-JJ 0.016" NiTi, group 3-3 M 0.019" FNx010.025" SS and group 4-JJ SS contributed a 10 mm piece of wire for analysis prior to insertion in the patient and 6 weeks post insertion. SEM images were recorded at Χ2000, Χ4000 and Χ6000 magnification. The same samples were subjected to complexiometric titration using ethylenediaminetetraacetic acid to gauge the actual change in the composition. Observations and Results: The SEM images of all the archwires showed marked changes with deep scratches and grooves and dark pitting corrosion areas post intraoral use. 3M wires showed an uniform criss-cross pattern in as received wires indicating a coating which was absent after intraoral use. There was a significant release of Nickel and Chromium from both group 3 and 4. Group 2 wires released ions significantly more than group 1 (P = 0.0. Conclusion: Extensive and stringent trials are required before certifying any product to be used in Orthodontics.

  10. Comparing the Knotless Tension Band and the Traditional Stainless Steel Wire Tension Band Fixation for Medial Malleolus Fractures: A Retrospective Clinical Study

    Directory of Open Access Journals (Sweden)

    Michael W. Downey

    2016-01-01

    Full Text Available The traditional stainless steel wire tension band (WTB has been popularized for small avulsion fractures at the medial malleolus. Despite the tension band principle creating a stable construct, complications continue to arise utilizing the traditional stainless steel WTB with patients experiencing hardware irritation at the tension band site and subsequent hardware removal. Coupled with hardware irritation is fatigue failure with the wire. The goal of this investigation was to retrospectively compare this traditional wire technique to an innovative knotless tension band (KTB technique in order to decrease costly complications. A total of 107 patients were reviewed with a minimum follow-up of 1 year. Outcome measures include descriptive data, fracture classification, results through economic costs, and fixation results (including hardware status, healing status, pain status, and time to healing. The KTB group had a 13% lower true cost as compared to the WTB group while the fixation results were equivocal for the measured outcomes. Our results demonstrate that the innovative KTB is comparable to the traditional WTB while offering a lower true cost, an irritation free reduction all without the frustration of returning to the operating room for additional hardware removal, which averages approximately to $8,288.

  11. Wire Array Z-pinches on Sphinx Machine: Experimental Results and Relevant Points of Microsecond Implosion Physics

    Science.gov (United States)

    Calamy, H.; Hamann, F.; Lassalle, F.; Bayol, F.; Mangeant, C.; Morell, A.; Huet, D.; Bedoch, J. P.; Chittenden, J. P.; Lebedev, S. V.; Jennings, C. A.; Bland, S. N.

    2006-01-01

    Centre d'Etudes de Gramat (France) has developed an efficient long implosion time (800 ns) Aluminum plasma radiation source (PRS). Based on the LTD technology, the SPHINX facility is developed as a 1-3MJ, 1μs rise time, 4-10 MA current driver. In this paper, it was used in 1MJ, 4MA configuration to drive Aluminum nested wire arrays Z-pinches with K-shell yield up to 20 kJ and a FWHM of the x-ray pulse of about 50 ns. We present latest SPHINX experiments and some of the main physic issues of the microsecond regime. Experimental setup and results are described with the aim of giving trends that have been obtained. The main features of microsecond implosion of wire arrays can be analyzed thanks to same methods and theories as used for faster Z-pinches. The effect of load polarity was examined. The stability of the implosion , one of the critical point of microsecond wire arrays due to the load dimensions imposed by the time scale, is tackled. A simple scaling from 100 ns Z-pinch results to 800 ns ones gives good results and the use of nested arrays improves dramatically the implosion quality and the Kshell yield of the load. However, additional effects such as the impact of the return current can geometry on the implosion have to be taken into account on our loads. Axial inhomogeneity of the implosion the origin of which is not yet well understood occurs in some shots and impacts the radiation output. The shape of the radiative pulse is discussed and compared with the homogeneity of the implosion. Numerical 2D R-Z and R-θ simulations are used to highlight some experimental results and understand the plasma conditions during these microsecond wire arrays implosions.

  12. Experimental study of implosion dynamics of multi-material nested wire-arrays on S-300 pulsed power generator

    International Nuclear Information System (INIS)

    Chernenko, A.S.; Smirnov, V.P.; Kingsep, A.S.

    2004-01-01

    On 'S-300' generator (700 kV, 4 MA, 70 ns) at the Kurchatov Institute, the experimental studies with multi-material wire array units are carried on aimed at creating the powerful X-ray source. The development of new diagnostic methods would definitely contribute to attain new data, which could help in explanation of X-ray emission mechanism of imploding multi-wire arrays that has not well understood yet. The experimental study of soft X-ray emission of different wire sets, different in both mass and composition, has been carried on in the same geometry. One of the purposes of these experiments was investigation of the wire array chemical composition influence on the implosion dynamics and stability. Study of the nested (cascade) liner dynamics shows that the minimal liner radius at the stagnation moment of time (2r ∼ 3 - 3.5 mm) recorded in the visible range by the streak camera fairly coincides with the outer diameter of the inner tungsten array of 4 mm. The same size is shown by the integral pinhole pictures obtained in the SXR range, without a filter. Unlike all these pictures, images obtained in the range E > 2 keV demonstrate the resulting state of Z-pinch in the form of a thin (∼ 0.2 mm) twisting filament. In addition, small space scales are typical of the liner pictures taken in the range of He- and H-like aluminum ions by means of a spectrograph. Thus, one may conclude that Al plasma of the outer liner passes into the inner space of the almost immovable W array where becomes trapped and compressed by the magnetic field. (author)

  13. Wire Array Z-pinches on Sphinx Machine: Experimental Results and Relevant Points of Microsecond Implosion Physics

    International Nuclear Information System (INIS)

    Calamy, H.; Hamann, F.; Lassalle, F.; Bayol, F.; Mangeant, C.; Morell, A.; Huet, D.; Bedoch, J.P.; Chittenden, J.P.; Lebedev, S.V.; Jennings, C.A.; Bland, S.N.

    2006-01-01

    Centre d'Etudes de Gramat (France) has developed an efficient long implosion time (800 ns) Aluminum plasma radiation source (PRS). Based on the LTD technology, the SPHINX facility is developed as a 1-3MJ, 1μs rise time, 4-10 MA current driver. In this paper, it was used in 1MJ, 4MA configuration to drive Aluminum nested wire arrays Z-pinches with K-shell yield up to 20 kJ and a FWHM of the x-ray pulse of about 50 ns. We present latest SPHINX experiments and some of the main physic issues of the microsecond regime. Experimental setup and results are described with the aim of giving trends that have been obtained. The main features of microsecond implosion of wire arrays can be analyzed thanks to same methods and theories as used for faster Z-pinches. The effect of load polarity was examined. The stability of the implosion , one of the critical point of microsecond wire arrays due to the load dimensions imposed by the time scale, is tackled. A simple scaling from 100 ns Z-pinch results to 800 ns ones gives good results and the use of nested arrays improves dramatically the implosion quality and the Kshell yield of the load. However, additional effects such as the impact of the return current can geometry on the implosion have to be taken into account on our loads. Axial inhomogeneity of the implosion the origin of which is not yet well understood occurs in some shots and impacts the radiation output. The shape of the radiative pulse is discussed and compared with the homogeneity of the implosion. Numerical 2D R-Z and R-θ simulations are used to highlight some experimental results and understand the plasma conditions during these microsecond wire arrays implosions

  14. Generation of ultra-fast cumulative water jets by sub-microsecond underwater electrical explosion of conical wire arrays

    Energy Technology Data Exchange (ETDEWEB)

    Shafer, D.; Gurovich, V. Tz.; Gleizer, S.; Gruzinsky, K.; Krasik, Ya. E. [Physics Department, Technion, Haifa 32000 (Israel)

    2015-12-15

    The results of experiments with underwater electrical explosion of modified conical arrays of copper and aluminum wires are presented. A pulsed generator producing a 550 kA-amplitude current with a 400 ns rise time was used in the explosion of the arrays. The array explosion generates water flows converging at the axis of the cone. This flow generates a fast-moving water jet with a velocity exceeding 1.8 × 10{sup 5 }cm/s, which was observed being ejected from the surface of the water covering the array. The positions of the water jet were measured by multiple-exposure fast framing imaging. In experiments, the apex angle of the array, the thickness of the water layer above the arrays, or the material of the wires was altered, which changed the resulting velocities and shapes of the emitted jets. A model that considers the converging stationary flow of a slightly compressible fluid is suggested. The velocities and shapes of the jets obtained by this model agree well with the experimentally measured jet velocities.

  15. Experimental investigations of ablation stream interaction dynamics in tungsten wire arrays: Interpenetration, magnetic field advection, and ion deflection

    Energy Technology Data Exchange (ETDEWEB)

    Swadling, G. F.; Lebedev, S. V.; Hall, G. N.; Suzuki-Vidal, F.; Burdiak, G. C.; Pickworth, L.; De Grouchy, P.; Skidmore, J.; Khoory, E.; Suttle, L.; Bennett, M.; Hare, J. D.; Clayson, T.; Bland, S. N.; Smith, R. A.; Stuart, N. H.; Patankar, S.; Robinson, T. S. [Blackett Laboratory, Imperial College, London SW7 2BW (United Kingdom); Harvey-Thompson, A. J. [Sandia National Laboratories, PO Box 5800, Albuquerque, New Mexico 87185-1193 (United States); Rozmus, W. [Department of Physics, University of Alberta, Edmonton, Alberta T6G 2J1 (Canada); and others

    2016-05-15

    Experiments have been carried out to investigate the collisional dynamics of ablation streams produced by cylindrical wire array z-pinches. A combination of laser interferometric imaging, Thomson scattering, and Faraday rotation imaging has been used to make a range of measurements of the temporal evolution of various plasma and flow parameters. This paper presents a summary of previously published data, drawing together a range of different measurements in order to give an overview of the key results. The paper focuses mainly on the results of experiments with tungsten wire arrays. Early interferometric imaging measurements are reviewed, then more recent Thomson scattering measurements are discussed; these measurements provided the first direct evidence of ablation stream interpenetration in a wire array experiment. Combining the data from these experiments gives a view of the temporal evolution of the tungsten stream collisional dynamics. In the final part of the paper, we present new experimental measurements made using an imaging Faraday rotation diagnostic. These experiments investigated the structure of magnetic fields near the array axis directly; the presence of a magnetic field has previously been inferred based on Thomson scattering measurements of ion deflection near the array axis. Although the Thomson and Faraday measurements are not in full quantitative agreement, the Faraday data do qualitatively supports the conjecture that the observed deflections are induced by a static toroidal magnetic field, which has been advected to the array axis by the ablation streams. It is likely that detailed modeling will be needed in order to fully understand the dynamics observed in the experiment.

  16. Study of ablation and implosion stages in wire arrays using coupled ultraviolet and X-ray probing diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, A. A.; Ivanov, V. V.; Astanovitskiy, A. L.; Wiewior, P. P.; Chalyy, O. [University of Nevada Reno, Reno, Nevada 89557 (United States); Papp, D. [University of Nevada Reno, Reno, Nevada 89557 (United States); ELI-ALPS, ELI-Hu Nkft., H-6720 Szeged (Hungary)

    2015-11-15

    Star and cylindrical wire arrays were studied using laser probing and X-ray radiography at the 1-MA Zebra pulse power generator at the University of Nevada, Reno. The Leopard laser provided backlighting, producing a laser plasma from a Si target which emitted an X-ray probing pulse at the wavelength of 6.65 Å. A spherically bent quartz crystal imaged the backlit wires onto X-ray film. Laser probing diagnostics at the wavelength of 266 nm included a 3-channel polarimeter for Faraday rotation diagnostic and two-frame laser interferometry with two shearing interferometers to study the evolution of the plasma electron density at the ablation and implosion stages. Dynamics of the plasma density profile in Al wire arrays at the ablation stage were directly studied with interferometry, and expansion of wire cores was measured with X-ray radiography. The magnetic field in the imploding plasma was measured with the Faraday rotation diagnostic, and current was reconstructed.

  17. Further contribution to the study of buffer layer on austenitic stainless stell overlays obtained by means of automatic submerged arc welding with electrode-wire

    International Nuclear Information System (INIS)

    Colla, G.

    1988-01-01

    The influence of several buffer layer types on a 308 type austenitic stainless steel surface overlay having a 19-21% chromium and 10-12% nikel content have been analysed. Cladding passes have been deposited on carbon steel test samples by using automatic submerged arc welding process with electrode-wire. The experimental tests have involved buffer layers having seven different chemical compositions and the obtained results are reported and discussed in the paper. The achieved experimetal results allow selecting the most suitable buffer layer to be deposited in order to reach the required cladding performance in service

  18. Investigation of the fabrication process of hot-worked stainless-steel and Mo sheathed PbMo6 S8 wires

    International Nuclear Information System (INIS)

    Yamasaki, H.; Kimura, Y.

    1988-01-01

    Stainless-steel and Mo sheathed PbMo 6 S 8 wires have been fabricated by hot working from modified PbS, Mo, and MoS 2 mixed powders which were prepared by reacting Pb, Mo, and S at 530 0 C. Critical current densities were investigated for different preparation conditions, and it is revealed that obtaining continuous current path between PbMo 6 S 8 grains is the most important factor to achieve high critical current density. The J/sub c/ value of 2.8 x 10 4 Acm 2 (8 T), 7.8 x 10 3 Acm 2 (15 T), and 1.3 x 10 3 Acm 2 (23 T) was observed for the PbMo 6 S/sub 7.0/ wire heat treated at 700 0 C.copic

  19. Numerical and experimental investigations on the interaction of light wire-array Z-pinches with embedded heavy foam converters

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Delong; Ding, Ning; Sun, Shunkai [Institute of Applied Physics and Computational Mathematics, Beijing 100088 (China); Ye, Fan; Ning, Jiamin; Hu, Qingyuan; Chen, Faxin; Qin, Yi; Xu, Rongkun; Li, Zhenghong [Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900 (China)

    2014-04-15

    The interaction of a light tungsten wire-array Z-pinch with an embedded heavy foam converter, whose mass ratio is typically less than 0.16, is numerically analyzed and experimentally investigated on the 1.3 MA “QiangGuang I” facility. Computational results show that this implosion process can be divided into three stages: acceleration of the tungsten wire-array plasma, collision, and stagnation. The tungsten plasma is accelerated to a high speed by the J × B force and interacts weakly with the foam plasma in the first stage. Strong energy conversions take place in the second collision stage. When the high speed tungsten plasma impacts on the foam converter, the plasma is thermalized and a radial radiation peak is produced. Meanwhile, a shock wave is generated due to the collision. After the shock rebounds from the axis and meets the W/Foam boundary, the plasma stagnates and the second radial radiation peak appears. The collision and stagnation processes were observed and the two-peak radial radiation pulse was produced in experiments. Increasing the wire-array radius from 4 mm to 6 mm, the kinetic energy of the tungsten plasma is increased, causing a stronger thermalization and generating a higher first radiation peak. Experimental results also showed a higher ratio of the first peak to the second peak in the case of larger wire-array radius. If we add a thin CH film cover onto the surface of the embedded foam converter, the first radiation peak will be hardly changed, because the acceleration of the tungsten plasma is not evidently affected by the film cover. However, the second radiation peak decreases remarkably due to the large load mass and the corresponding weak compression.

  20. Wire-array initiation and interwire-plasma merger concerns in PBFA-Z tungsten z-pinch implosions

    Energy Technology Data Exchange (ETDEWEB)

    Sanford, T.W.L.; Spielman, R.B.; Allshouse, G.O. [Sandia National Labs., Albuquerque, NM (United States)] [and others

    1997-12-31

    Experiments with annular wire-array loads to generate high quality, high-power, z-pinch implosions on Saturn have shown the importance of maintaining azimuthal symmetry and how the individual wire plasmas merge to form a plasma shell. Here the authors discuss the impact of current symmetry, current prepulse, interwire spacing, and wire size on generating high-quality, high-power, z-pinch implosions on PBFA-Z, with annular tungsten wire loads. B-dot monitors measured the current as a function of azimuth in the MITLs and 4.5 cm upstream of the load. Bolometers and filtered XRDs and PCDs, spanning the energy range {approximately} 0 eV to 6 keV, monitored the temporal characteristics of the radiation. Time-integrated and time-resolved, filtered, fast-framing, x-ray pinhole cameras, and a crystal spectrometer monitored the spatial and spectral structure of the radiation. The radial dynamics of single-wire plasmas from the solid-state, using the measured current, was calculated by 1D radiation magnetohydrodynamics code (RMHC) and used as input to an xy RMHC. These calculations together with 2D RMHC simulations in the rz plane are discussed and correlated with the measurements.

  1. Wire-array initiation and interwire-plasma merger concerns in PBFA-Z tungsten z-pinch implosions

    International Nuclear Information System (INIS)

    Sanford, T.W.L.; Spielman, R.B.; Allshouse, G.O.

    1997-01-01

    Experiments with annular wire-array loads to generate high quality, high-power, z-pinch implosions on Saturn have shown the importance of maintaining azimuthal symmetry and how the individual wire plasmas merge to form a plasma shell. Here the authors discuss the impact of current symmetry, current prepulse, interwire spacing, and wire size on generating high-quality, high-power, z-pinch implosions on PBFA-Z, with annular tungsten wire loads. B-dot monitors measured the current as a function of azimuth in the MITLs and 4.5 cm upstream of the load. Bolometers and filtered XRDs and PCDs, spanning the energy range ∼ 0 eV to 6 keV, monitored the temporal characteristics of the radiation. Time-integrated and time-resolved, filtered, fast-framing, x-ray pinhole cameras, and a crystal spectrometer monitored the spatial and spectral structure of the radiation. The radial dynamics of single-wire plasmas from the solid-state, using the measured current, was calculated by 1D radiation magnetohydrodynamics code (RMHC) and used as input to an xy RMHC. These calculations together with 2D RMHC simulations in the rz plane are discussed and correlated with the measurements

  2. Conversion of electromagnetic energy in Z-pinch process of single planar wire arrays at 1.5 MA

    International Nuclear Information System (INIS)

    Liangping, Wang; Mo, Li; Juanjuan, Han; Ning, Guo; Jian, Wu; Aici, Qiu

    2014-01-01

    The electromagnetic energy conversion in the Z-pinch process of single planar wire arrays was studied on Qiangguang generator (1.5 MA, 100 ns). Electrical diagnostics were established to monitor the voltage of the cathode-anode gap and the load current for calculating the electromagnetic energy. Lumped-element circuit model of wire arrays was employed to analyze the electromagnetic energy conversion. Inductance as well as resistance of a wire array during the Z-pinch process was also investigated. Experimental data indicate that the electromagnetic energy is mainly converted to magnetic energy and kinetic energy and ohmic heating energy can be neglected before the final stagnation. The kinetic energy can be responsible for the x-ray radiation before the peak power. After the stagnation, the electromagnetic energy coupled by the load continues increasing and the resistance of the load achieves its maximum of 0.6–1.0 Ω in about 10–20 ns

  3. Poly(ionic liquids)-coated stainless-steel wires packed into a polyether ether ketone tube for in-tube solid-phase microextraction.

    Science.gov (United States)

    Feng, Juanjuan; Wang, Xiuqin; Tian, Yu; Luo, Chuannan; Sun, Min

    2017-12-01

    An in-tube solid-phase microextraction device was developed by packing poly(ionic liquids)-coated stainless-steel wires into a polyether ether ketone tube. An anion-exchange process was performed to enhance the extraction performance. Surface properties of poly(ionic liquids)-coated stainless-steel wires were characterized by scanning electron microscopy and energy dispersive X-ray spectrometry. The extraction device was connected to high-performance liquid chromatography equipment to build an online enrichment and analysis system. Ten polycyclic aromatic hydrocarbons were used as model analytes, and important conditions including extraction time and desorption time were optimized. The enrichment factors from 268 to 2497, linear range of 0.03-20 μg/L, detection limits of 0.010-0.020 μg/L, extraction and preparation repeatability with relative standard deviation less than 1.8 and 19%, respectively were given by the established online analysis method. It has been used to detect polycyclic aromatic hydrocarbons in environmental samples, with the relative recovery (5, 10 μg/L) in the range of 85.1-118.9%. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Separation of Electrolytic Reduction Product from Stainless Steel Wire Mesh Cathode Basket via Salt Draining and Reuse of the Cathode Basket

    Directory of Open Access Journals (Sweden)

    Eun-Young Choi

    2017-01-01

    Full Text Available We demonstrated that the metallic product obtained after electrolytic reduction (also called oxide reduction (OR can be simply separated from a stainless steel wire mesh cathode basket only by using a salt drain. First, the OR run of a simulated oxide fuel (0.6 kg/batch was conducted in a molten Li2O–LiCl salt electrolyte at 650°C. The simulated oxide fuel of the porous cylindrical pellets was used as a cathode by loading a stainless steel wire mesh cathode basket. Platinum was employed as an anode. After the electrolysis, the residual salt of the cathode basket containing the reduction product was drained by placing it at gas phase above the molten salt using a holder. Then, at a room temperature, the complete separation of the reduction product from the cathode basket was achieved by inverting it without damaging or deforming the basket. Finally, the emptied cathode basket obtained after the separation was reused for the second OR run by loading a fresh simulated oxide fuel. We also succeeded in the separation of the metallic product from the reused cathode basket for the second OR run.

  5. Fast fabrication of long TiO2 nanotube array with high photoelectrochemical property on flexible stainless steel.

    Science.gov (United States)

    Tao, Jie; Wu, Tao; Gao, Peng

    2012-03-01

    Oriented highly ordered long TiO2 nanotube array films with nanopore structure and high photoelectrochemical property were fabricated on flexible stainless steel substrate (50 microm) by anodization treatment of titanium thin films in a short time. The samples were characterized by means of field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD) and photoelectrochemical methods, respectively. The results showed that Ti films deposited at the condition of 0.7 Pa Ar pressure and 96 W sputtering power at room temperature was uniform and dense with good homogeneity and high crystallinity. The voltage and the anodization time both played significant roles in the formation of TiO2 nanopore-nanotube array film. The optimal voltage was 60 V and the anodization time is less than 30 min by anodizing Ti films in ethylene glycerol containing 0.5% (w) NH4F and 3% (w) H2O. The growth rate of TiO2 nanotube array was as high as 340 nm/min. Moreover, the photocurrent-potential curves, photocurrent response curves and electrochemical impedance spectra results indicated that the TiO2 nanotube array film with the nanoporous structure exhibited a better photo-response ability and photoelectrochemical performance than the ordinary TiO2 nanotube array film. The reason is that the nanoporous structure on the surface of the nanotube array can separate the photo electron-hole pairs more efficiently and completely than the tubular structure.

  6. The influence of local glucose oxidase activity on the potential/current distribution on stainless steel: A study by the wire beam electrode method

    Energy Technology Data Exchange (ETDEWEB)

    Wang Wei [Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, College of Chemistry and Chemical Engineering, Qingdao, 266100 (China)], E-mail: wwei@ouc.edu.cn; Zhang Xia [Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, College of Chemistry and Chemical Engineering, Qingdao, 266100 (China); Wang Jia [Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, College of Chemistry and Chemical Engineering, Qingdao, 266100 (China); State Key Laboratory for Corrosion and Protection, Shenyang, 110016 (China)

    2009-09-30

    The wire beam electrode (WBE) method was first used to study the activity of local glucose oxidase (GOD) on stainless steel surface in seawater. Glucose oxidase was immobilized in calcium alginate gel capsules, which were embedded in a layer of artificial biofilm (calcium alginate gel) on the WBE surface. The potential/current distributions on the WBE surface were mapped using a newly developed device for the WBE method in our lab. The results demonstrated that the catalysis of H{sub 2}O{sub 2} formation by GOD can produce local noble potential peaks and cathodic current zones on the stainless steel surface. An interesting fluctuant current distribution around cathodic zones was observed the first time. The potential and current maps showed that the enzyme heterogeneity of the artificial biofilm caused a corresponding electrochemical heterogeneity at the biofilm/metal interface. The application of the WBE method to ennoblement study enables us to observe the heterogeneous electrochemistry at biofilm/stainless steel interface directly, providing us with a powerful tool to investigate other biofilm-related processes such as microbially influenced corrosion (MIC)

  7. The influence of local glucose oxidase activity on the potential/current distribution on stainless steel: A study by the wire beam electrode method

    International Nuclear Information System (INIS)

    Wang Wei; Zhang Xia; Wang Jia

    2009-01-01

    The wire beam electrode (WBE) method was first used to study the activity of local glucose oxidase (GOD) on stainless steel surface in seawater. Glucose oxidase was immobilized in calcium alginate gel capsules, which were embedded in a layer of artificial biofilm (calcium alginate gel) on the WBE surface. The potential/current distributions on the WBE surface were mapped using a newly developed device for the WBE method in our lab. The results demonstrated that the catalysis of H 2 O 2 formation by GOD can produce local noble potential peaks and cathodic current zones on the stainless steel surface. An interesting fluctuant current distribution around cathodic zones was observed the first time. The potential and current maps showed that the enzyme heterogeneity of the artificial biofilm caused a corresponding electrochemical heterogeneity at the biofilm/metal interface. The application of the WBE method to ennoblement study enables us to observe the heterogeneous electrochemistry at biofilm/stainless steel interface directly, providing us with a powerful tool to investigate other biofilm-related processes such as microbially influenced corrosion (MIC).

  8. Fabrication and characterization of gold nano-wires templated on virus-like arrays of tobacco mosaic virus coat proteins

    International Nuclear Information System (INIS)

    Wnęk, M; Stockley, P G; Górzny, M Ł; Evans, S D; Ward, M B; Brydson, R; Wälti, C; Davies, A G

    2013-01-01

    The rod-shaped plant virus tobacco mosaic virus (TMV) is widely used as a nano-fabrication template, and chimeric peptide expression on its major coat protein has extended its potential applications. Here we describe a simple bacterial expression system for production and rapid purification of recombinant chimeric TMV coat protein carrying C-terminal peptide tags. These proteins do not bind TMV RNA or form disks at pH 7. However, they retain the ability to self-assemble into virus-like arrays at acidic pH. C-terminal peptide tags in such arrays are exposed on the protein surface, allowing interaction with target species. We have utilized a C-terminal His-tag to create virus coat protein-templated nano-rods able to bind gold nanoparticles uniformly. These can be transformed into gold nano-wires by deposition of additional gold atoms from solution, followed by thermal annealing. The resistivity of a typical annealed wire created by this approach is significantly less than values reported for other nano-wires made using different bio-templates. This expression construct is therefore a useful additional tool for the creation of chimeric TMV-like nano-rods for bio-templating. (paper)

  9. Fabrication and characterization of gold nano-wires templated on virus-like arrays of tobacco mosaic virus coat proteins

    Science.gov (United States)

    Wnęk, M.; Górzny, M. Ł.; Ward, M. B.; Wälti, C.; Davies, A. G.; Brydson, R.; Evans, S. D.; Stockley, P. G.

    2013-01-01

    The rod-shaped plant virus tobacco mosaic virus (TMV) is widely used as a nano-fabrication template, and chimeric peptide expression on its major coat protein has extended its potential applications. Here we describe a simple bacterial expression system for production and rapid purification of recombinant chimeric TMV coat protein carrying C-terminal peptide tags. These proteins do not bind TMV RNA or form disks at pH 7. However, they retain the ability to self-assemble into virus-like arrays at acidic pH. C-terminal peptide tags in such arrays are exposed on the protein surface, allowing interaction with target species. We have utilized a C-terminal His-tag to create virus coat protein-templated nano-rods able to bind gold nanoparticles uniformly. These can be transformed into gold nano-wires by deposition of additional gold atoms from solution, followed by thermal annealing. The resistivity of a typical annealed wire created by this approach is significantly less than values reported for other nano-wires made using different bio-templates. This expression construct is therefore a useful additional tool for the creation of chimeric TMV-like nano-rods for bio-templating.

  10. Development of measurement technique for crack depth in weld zone of thick stainless steel pipe with ultrasonic phased array TOFD

    International Nuclear Information System (INIS)

    Ishida, Hitoshi

    2006-01-01

    Phased array TOFD (time of flight diffraction) method which makes possible to detect tip diffraction echoes and measure crack depth in an austenitic stainless steel weld zone with a thickness of more than 25 mm to which region it was difficult to apply ultrasonic test due to scattering of ultrasonic waves has been developed. The developed method uses a single array transducer to have a short distance between incident points of transmitter and receiver in order to propagate waves in shorter pass in the weld region. Transmitting and receiving ultrasonic beams from a single array probe can be set a crossing point and a focal point at desired depth. This method makes possible to scan with 16 kinds of combination of crossing points and focal pints of ultrasonic beam at a time. We have examined fundamental characteristics of depth measurement with electric discharge machining slits on base metal of a stainless steel with a thickness of 35 mm. As the results: (1) We could measure the slit depth with 0.2mm error from the slit depth with a estimating method of a lateral wave propagation time with back wall echo. (2) The largest error of the depth measurement from the slit depth with the ultrasonic beam crossing point set at the 4mm different point from the tip of the slit was 0.3 mm. (3) The largest error of the depth measurements due to the difference of focal point depth of ultrasonic beam was 0.2 mm. (4) The highest tip diffraction echo could be observed with the ultrasonic beam cross point set at the tip of the slit. The difference of 4 mm between the cross point and the tip of the slit caused attenuation of tip diffraction echo height in -6.8 dB. Furthermore we have measured a depth of electric discharge machining slits, fatigue cracks and stress corrosion cracking (SCC) on stainless steel welded pipe specimens with a thickness of 35 mm. As the results: (1) We could detect the tip diffraction echoes which have a signal noise ratio with more than 2.4 from the fatigue

  11. Improved Symmetry Greatly Increases X-Ray Power from Wire-Array Z-Pinches

    International Nuclear Information System (INIS)

    Sanford, T.W.; Allshouse, G.O.; Marder, B.M.; Nash, T.J.; Mock, R.C.; Spielman, R.B.; Seamen, J.F.; McGurn, J.S.; Jobe, D.; Gilliland, T.L.; Vargas, M.; Struve, K.W.; Stygar, W.A.; Douglas, M.R.; Matzen, M.K.; Hammer, J.H.; De Groot, J.S.; Eddleman, J.L.; Peterson, D.L.; Mosher, D.; Whitney, K.G.; Thornhill, J.W.; Pulsifer, P.E.; Apruzese, J.P.; Maron, Y.

    1996-01-01

    A systematic experimental study of annular aluminum-wire Z-pinches on a 20-TW electrical generator shows that the measured spatial characteristics and emitted x-ray power agree more closely with rad-hydro simulations when large numbers of wires are used. The measured x-ray power increases first slowly and then rapidly with decreasing interwire gap spacing. Simulations suggested that this increase reflects the transition from implosion of individual wire plasmas to one of an azimuthally symmetric plasma shell. In the plasma-shell regime, x-ray powers of 40TW are achieved. copyright 1996 The American Physical Society

  12. Temperature-controlled transfer and self-wiring for multi-color light-emitting diode arrays

    International Nuclear Information System (INIS)

    Onoe, Hiroaki; Nakai, Akihito; Iwase, Eiji; Matsumoto, Kiyoshi; Shimoyama, Isao

    2009-01-01

    We propose an integration method for arranging light-emitting diode (LED) bare chips on a flexible substrate for multi-color inorganic LED displays. The LED bare chips (240 µm × 240 µm × 75 µm), which were diced on an adhesive sheet by the manufacturer, were transferred to a flexible polyimide substrate by our temperature-controlled transfer (TCT) and self-wiring (SW) processes. In these processes, low-melting point solder (LMPS) and poly-(ethylene glycol) (PEG) worked as adhesive layers for the LED chips during the TCT processes, and the adhesion force of the LMPS and PEG layers was controlled by changing the temperature to melt and solidify the layers. After the TCT processes, electrical connection between the transferred LED chips and the flexible substrate was automatically established via the SW process, by using the surface tension of the melted LMPS. This TCT/SW method enabled us to (i) handle arrays of commercially available bare chips, (ii) arrange multiple types of chips on the circuit substrate by simply repeating the TCT processes and (iii) establish electrical connection between the chips and the substrate automatically. Applying this transfer printing and wiring method, we experimentally demonstrated a 5-by-5 flexible LED array and a two-color (blue and green) LED array

  13. Electrodeposition of hierarchical ZnO nanorod arrays on flexible stainless steel mesh for dye-sensitized solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Hui; Zhai, Xiangyang; Liu, Wenwu; Zhang, Mei; Guo, Min, E-mail: guomin@ustb.edu.cn

    2015-07-01

    Hierarchical ZnO nanorod arrays (ZNRAs) were synthesized on flexible stainless steel mesh (SSM) in large scale by a two-step facile electrodeposition method. The structure and morphology of the as-prepared samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and high-resolution transmission electron microscopy (HRTEM). The growth mechanism of the ZnO hierarchical nanostructures was also discussed. Moreover, the effect of ZnO morphology on the photovoltaic performance of the flexible DSSCs based on SSM supported ZnO nanostructures was investigated in detail. It is shown that the flexible DSSCs exhibited a relatively higher power conversion efficiency of 1.11% compared with that based on primary ZNRAs. - Highlights: • Hierarchical ZnO nanorod arrays (ZNRAs) were prepared by electrodeposition method. • Flexible stainless steel mesh (SSM) supported with hierarchical ZNRAs was first used for DSSCs. • The effect of ZnO morphology on the photovoltaic performance of flexible DSSCs was investigated. • The DSSC based on 3-Hierarchical ZNRAs/ZNPs showed a relatively efficiency of 1.11%.

  14. Field emission study from an array of hierarchical micro protrusions on stainless steel surface generated by femtosecond pulsed laser irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Singh, A.K., E-mail: anilks@barc.gov.in [Laser & Plasma Technology Division, BARC, Mumbai, 400085 (India); Suryawanshi, Sachin R.; More, M.A. [Department of Physics, Savitribai Phule Pune University, Pune, 411007 (India); Basu, S. [Solid State Physics Division, BARC, Mumbai, 40085 (India); Sinha, Sucharita [Laser & Plasma Technology Division, BARC, Mumbai, 400085 (India)

    2017-02-28

    Highlights: • Array of self assembled micro-protrusions have been generated on stainless steel surfaces by femtosecond pulsed laser irradiation. • Density of the formed micro-protrusions is ∼5.6 × 105 protrusions/cm{sup 2}. • Laser treated surface is mainly composed of iron oxide and cementite phases. • Micro-structured sample has shown good field emission properties – low turn on field, high field enhancement factor and stable emission current. - Abstract: This paper reports our results on femtosecond (fs) pulsed laser induced surface micro/nano structuring of stainless steel 304 (SS 304) samples and their characterization in terms of surface morphology, formed material phases on laser irradiation and field emission studies. Our investigations reveal that nearly uniform and dense array of hierarchical micro-protrusions (density: ∼5.6 × 10{sup 5} protrusions/cm{sup 2}) is formed upon laser treatment. Typical tip diameters of the generated protrusions are in the range of 2–5 μm and these protrusions are covered with submicron sized features. Grazing incidence X-ray diffraction (GIXRD) analysis of the laser irradiated sample surface has shown formation mainly of iron oxides and cementite (Fe{sub 3}C) phases in the treated region. These laser micro-structured samples have shown good field emission properties such as low turn on field (∼4.1 V/μm), high macroscopic field enhancement factor (1830) and stable field emission current under ultra high vacuum conditions.

  15. Anisotropy of energy losses in high-current Z-pinches produced by the implosion of cylindrical tungsten wire arrays

    Science.gov (United States)

    Aleksandrov, V. V.; Volkov, G. S.; Grabovski, E. V.; Gritsuk, A. N.; Lakhtyushko, N. I.; Medovshchikov, S. F.; Oleinik, G. M.; Svetlov, E. V.

    2014-02-01

    Results are presented from measurements of the anisotropy of energy losses in high-current Z-pinches produced by the implosion of wire arrays at the ANGARA-5-1 facility at load currents of up to 4MA. The energy losses were measured in the radial direction and along the pinch axis from the anode side. The main diagnostics were time-integrated thermocouple calorimeters, nanosecond X-ray diodes (XRDs) with different filters, and a foil radiation calorimeter with a time resolution of 2 μs. The azimuthal anisotropy of energy losses was measured for different wire array configurations and different shapes of the high-voltage electrode. The presence of strong initial azimuthal inhomogeneity of the wire mass distribution (sectioned arrays), as well as the use of conical electrodes instead of plane ones, does not increase the azimuthal inhomogeneity of the total energy losses. For cylindrical wire arrays, energy losses in the radial direction are compared with those along the pinch axis. According to XRD and calorimetric measurements, the radiation yield per unit solid angle along the pinch axis is two to three times lower than that in the radial direction. In the axial direction, the energy flux density of the expanding plasma is two to three times lower than the radiation intensity. The measured radiation yield across the pinch is 2.5-5 kJ/sr, while that along the pinch axis is 1-2 kJ/sr. The results obtained by means of XRDs agree to within measurement errors with those obtained using the radiation calorimeter. It is found that the energy per unit solid angle carried by the expanding plasma in the radial direction does not exceed 10% of the soft X-ray yield. Analysis of the structure of time-integrated pinhole images and signals from the radial and axial XRDs shows that radiation emitted in the radial direction from the hot central region of the pinch is partially screened by the less dense surrounding plasma halo, whereas radiation emitted in the axial direction is a

  16. Neutron and soft X-ray emission from wire array Z-pinch imploding onto deuterated fiber

    International Nuclear Information System (INIS)

    Klir, D.; Kravarik, J.; Kubes, P.

    2005-01-01

    The implosion of a wire array Z-pinch onto a deuterated fiber was studied. The peak power of soft X-rays exceeded 200 GW and the total emitted energy was 2-8 kJ. The radiation was close to the radiation of the blackbody with the temperature of 40 eV. The neutron yield from the D-D reaction reached 2x10 8 per shot. The mean energy of neutrons determined in the axial direction was shifted from 2.45 MeV towards higher energies [ru

  17. Experimental study of surface insulated-standard hybrid tungsten planar wire array Z-pinches at “QiangGuang-I” facility

    Energy Technology Data Exchange (ETDEWEB)

    Sheng, Liang; Peng, Bodong; Yuan, Yuan; Zhang, Mei; Zhao, Chen; Zhao, Jizhen; Wang, Liangping [State Key Laboratory of Intense Pulsed Radiation Simulation and Effect (Northwest Institute of Nuclear Technology), Xi' an 710024 (China); Li, Yang, E-mail: liyang@nint.ac.cn; Li, Mo [State Key Laboratory of Intense Pulsed Radiation Simulation and Effect (Northwest Institute of Nuclear Technology), Xi' an 710024 (China); Xi' an Jiaotong University, Xi' an 710049 (China)

    2016-01-15

    The experimental results of the insulated-standard hybrid wire array Z pinches carried out on “QiangGuang-I” facility at Northwest Institute of Nuclear Technology were presented and discussed. The surface insulating can impose a significant influence on the dynamics and radiation characteristics of the hybrid wire array Z pinches, especially on the early stage (t/t{sub imp} < 0.6). The expansion of insulated wires at the ablation stage is suppressed, while the streams stripped from the insulated wires move faster than that from the standard wires. The foot radiation of X-ray is enhanced by increment of the number of insulated wires, 19.6 GW, 33.6 GW, and 68.6 GW for shots 14037S, 14028H, and 14039I, respectively. The surface insulation also introduces nonhomogeneity along the single wire—the streams move much faster near the electrodes. The colliding boundary of the hybrid wire array Z pinches is bias to the insulated side approximately 0.6 mm.

  18. Wafer-scale high-throughput ordered arrays of Si and coaxial Si/Si(1-x)Ge(x) wires: fabrication, characterization, and photovoltaic application.

    Science.gov (United States)

    Pan, Caofeng; Luo, Zhixiang; Xu, Chen; Luo, Jun; Liang, Renrong; Zhu, Guang; Wu, Wenzhuo; Guo, Wenxi; Yan, Xingxu; Xu, Jun; Wang, Zhong Lin; Zhu, Jing

    2011-08-23

    We have developed a method combining lithography and catalytic etching to fabricate large-area (uniform coverage over an entire 5-in. wafer) arrays of vertically aligned single-crystal Si nanowires with high throughput. Coaxial n-Si/p-SiGe wire arrays are also fabricated by further coating single-crystal epitaxial SiGe layers on the Si wires using ultrahigh vacuum chemical vapor deposition (UHVCVD). This method allows precise control over the diameter, length, density, spacing, orientation, shape, pattern and location of the Si and Si/SiGe nanowire arrays, making it possible to fabricate an array of devices based on rationally designed nanowire arrays. A proposed fabrication mechanism of the etching process is presented. Inspired by the excellent antireflection properties of the Si/SiGe wire arrays, we built solar cells based on the arrays of these wires containing radial junctions, an example of which exhibits an open circuit voltage (V(oc)) of 650 mV, a short-circuit current density (J(sc)) of 8.38 mA/cm(2), a fill factor of 0.60, and an energy conversion efficiency (η) of 3.26%. Such a p-n radial structure will have a great potential application for cost-efficient photovoltaic (PV) solar energy conversion. © 2011 American Chemical Society

  19. Effects of filler wire on residual stress in electron beam welded QCr0.8 copper alloy to 304 stainless steel joints

    International Nuclear Information System (INIS)

    Zhang, Bing-Gang; Zhao, Jian; Li, Xiao-Peng; Chen, Guo-Qing

    2015-01-01

    The electron beam welding (EBW) of 304 stainless steel to QCr0.8 copper alloy with or without copper filler wire was studied in detail. The temperature fields and magnitude and distribution of stress fields in the joints during the welding process were numerically simulated using finite element method. The temperature cycles and residual stresses were also experimentally measured by thermometric and hole-drilling methods, respectively. The accuracy of the modeling procedure was verified by the good agreement between the calculated results and experimental data. The temperature distribution in the joint was found to be asymmetric along the center of weld. In particular, the temperature in the copper alloy plate is much higher than that in the 304 SS plate owing to the great difference in thermal conductivity between the two materials. The peak three-dimensional residual stresses all appeared at the interface between the copper and steel in the two different joints. Furthermore, the weld was subjected to tensile stress. The longitudinal residual stress, generally the most harmful to the integrity of the structure among the stress components in EBW with filler wire (EBFW), was 53 MPa lower than that of autogenous EBW (AEBW), and the through-thickness residual stress was 12 MPa lower. The transverse residual stress of EBFW was 44 MPa higher than that of AEBW. However, analysis of the von Mises stress showed that the EBFW process effectively reduced the extent of the high residual stress region in the weld location and the magnitude of the residual stresses in the copper side compared with those of the AEBW joint. - Highlights: • Copper and steel was welded by electron beam welding with copper filler wire. • The copper wire fed into gap can reduce the peak value of residual stress. • The peak value of longitudinal stress can be reduced 53 MPa by the filler wire. • The range of nov Mises stress in the weld could be reduced by the wire

  20. Titanium K-Shell X-Ray Production from High Velocity Wire Arrays Implosions on the 20-MA Z Accelerator

    International Nuclear Information System (INIS)

    Apruzese, J.P.; Beg, F.N.; Clark, R.C.; Coverdale, C.A.; Davis, J.; Deeney, C.; Douglas, M.R.; Nash, T.J.; Ruiz-Comacho, J.; Spielman, R.B.; Struve, K.W.; Thornhill, J.W.; Whitney, K.G.

    1999-01-01

    The advent of the 20-MA Z accelerator [R.B. Spielman, C. Deeney, G.A. Chandler, et al., Phys. Plasmas 5, 2105, (1997)] has enabled implosions of large diameter, high-wire-number arrays of titanium to begin testing Z-pinch K-shell scaling theories. The 2-cm long titanium arrays, which were mounted on a 40-mm diameter, produced between 75±15 to 125±20 kJ of K-shell x-rays. Mass scans indicate that, as predicted, higher velocity implosions in the series produced higher x-ray yields. Spectroscopic analyses indicate that these high velocity implosions achieved peak electron temperatures from 2.7±0.1 to 3.2±0.2 keV and obtained a K-shell emission mass participation of up to 12%

  1. Three-dimensional chemical analysis of laser-welded NiTi–stainless steel wires using a dual-beam FIB

    International Nuclear Information System (INIS)

    Burdet, P.; Vannod, J.; Hessler-Wyser, A.; Rappaz, M.; Cantoni, M.

    2013-01-01

    The biomedical industry has an increasing demand for processes to join dissimilar metals, such as laser welding of NiTi and stainless steel wires. A region of the weld close to the NiTi interface, which previously was shown to be prone to cracking, was further analyzed by energy dispersive spectrometry (EDS) extended in the third dimension using a focused ion beam. As the spatial resolution of EDS analysis is not precise enough to resolve the finest parts of the microstructure, a new segmentation method that uses in addition secondary-electron images of higher spatial resolution was developed. Applying these tools, it is shown that this region of the weld close to the NiTi interface does not comprise a homogeneous intermetallic layer, but is rather constituted by a succession of different intermetallics, the composition of which can be directly correlated with the solidification path in the ternary Fe–Ni–Ti Gibbs simplex

  2. X-ray emission from a high-atomic-number z-pinch plasma created from compact wire arrays

    International Nuclear Information System (INIS)

    Sanford, T.W.L.; Mosher, D.; De Groot, J.S.

    1996-01-01

    Thermal and nonthermal x-ray emission from the implosion of compact tungsten wire arrays in 5-MA Saturn discharges is reported. The timing of multiple implosions and the thermal x-ray spectra (1 to 10 keV) agree with 2D radiation-hydrocode simulations. Nonthermal x-ray emission (10 to 100 keV) correlates with pinch spots distributed along the z-axis. The similarities of the measured nonthermal spectrum, yield, and pinch-spot emission with those of 0.8-MA, single-exploded-wire discharges on Gamble-II suggest a common nonthermal-production mechanism. Nonthermal x-ray yields are lower than expected from current scaling of Gamble II results, suggesting that implosion geometries are not as efficient as single-wire geometries for nonthermal x-ray production. The instabilities, azimuthal asymmetries, and inferred multiple implosions that accompany the implosion geometry lead to larger, more irregular pinch spots, a likely reason for reduced nonthermal efficiency. A model for nonthermal-electron acceleration across magnetic fields in highly-collisional, high-atomic-number plasmas combined with 1D hydrocode simulations of Saturn compact loads predicts weak nonthermal x-ray emission. (author). 3 figs., 10 refs

  3. X-ray emission from a high-atomic-number z-pinch plasma created from compact wire arrays

    International Nuclear Information System (INIS)

    Sanford, T.W.L.; Mosher, D.; De Groot, J.S.

    1996-01-01

    Thermal and nonthermal x-ray emission from the implosion of compact tungsten wire arrays in 5-MA Saturn discharges is reported. The timing of multiple implosions and the thermal x-ray spectra (1 to 10 keV) agree with 2D radiation-hydrocode simulations. Nonthermal x-ray emission (10 to 100 keV) correlates with pinch spots distributed along the z-axis. The similarities of the measured nonthermal spectrum, yield, and pinch-spot emission with those of 0.8-MA, single- exploded-wire discharges on Gamble-II suggest a common nonthermal- production mechanism. Nonthermal x-ray yields are lower than expected from current scaling of Gamble II results, suggesting that implosion geometries are not as efficient as single-wire geometries for nonthermal x-ray production. The instabilities, azimuthal asymmetries, and inferred multiple implosions that accompany the implosion geometry lead to larger, more irregular pinch spots, a likely reason for reduced nonthermal efficiency. A model for nonthermal-electron acceleration across magnetic fields in highly- collisional, high-atomic-number plasmas combined with 1D hydrocode simulations of Saturn compact loads predicts weak nonthermal x-ray emission

  4. Synthesis of vertical MnO_2 wire arrays on hemp-derived carbon for efficient and robust green catalysts

    International Nuclear Information System (INIS)

    Yang, MinHo; Kim, Dong Seok; Sim, Jae-Wook; Jeong, Jae-Min; Kim, Do Hyun; Choi, Jae Hyung; Kim, Jinsoo; Kim, Seung-Soo; Choi, Bong Gill

    2017-01-01

    Highlights: • The three-dimensional nanocomposites based on vertical MnO_2 array on hemp-derived carbon (HDC) were prepared by hydrothermal method. • The 3D v-MnO_2/HDC nanocomposites showed well-defined porous nature with a high specific surface area of 382.3 m"2 g"−"1. • PET glycolysis was performed using the 3D v-MnO_2/HDC nanocomposites as a catalyst, leading to efficient catalytic performance. - Abstract: Three-dimensional (3D) carbon materials derived from waste biomass have been attracted increasing attention in catalysis and materials science because of their great potential of catalyst supports with respect to multi-functionality, unique structures, high surface area, and low cost. Here, we present a facile and efficient way for preparing 3D heterogeneous catalysts based on vertical MnO_2 wires deposited on hemp-derived 3D porous carbon. The 3D porous carbon materials are fabricated by carbonization and activation processes using hemp (Cannabis Sttiva L.). These 3D porous carbon materials are employed as catalyst supports for direct deposition of vertical MnO_2 wires using a one-step hydrothermal method. The XRD and XPS results reveal the crystalline structure of α-MnO_2 wires. The resultant composites are further employed as a catalyst for glycolysis of poly(ethylene terephthalate) (PET) with high conversion yield of 98%, which is expected to be expressly profitable for plastics recycling industry.

  5. Investigation of the effects of metal-wire resonators in sub-wavelength array based on time-reversal technique

    International Nuclear Information System (INIS)

    Tu, Hui-Lin; Xiao, Shao-Qiu

    2016-01-01

    The resonant metalens consisting of metal-wire resonators with equally finite length can break the diffraction barrier well suited for super-resolution imaging. In this study, a basic combination constructed by two metal-wire resonators with different lengths is proposed, and its resonant characteristics is analyzed using the method of moments (MoM). Based on the time reversal (TR) technique, this kind of combination can be applied to a sub-wavelength two-element antenna array with a 1/40-wavelength interval to make the elements work simultaneously with little interference in the frequency band of 1.0-1.5 GHz and 1.5-2.0 GHz, respectively. The simulations and experiments show that analysis of MoM and the application of the resonators can be used to design multi-frequency sub-wavelength antenna arrays efficiently. This general design method is convenient and can be used for many applications, such as weakening jamming effectiveness in communication systems, and sub-wavelength imaging in a broad frequency band.

  6. The wire array Z-pinch: an efficient x-ray source for ICF and a new ion heating mechanism

    Science.gov (United States)

    Haines, M. G.

    2008-10-01

    The Z-pinch provides an efficient x-ray source for driving a hohlraum for inertial confinement fusion. The basic physics of wire-array implosions is reviewed. It can be understood in several sequential stages. Firstly, the wires heat and form a surrounding vapour which ionizes, causing the current to transfer to this lower resistance. The J×B global force leads to ejection of this plasma towards the axis to form a precursor plasma. The wire cores continue to ablate due to the heat flux from the Joule-heated nearby plasma. The cooling of this plasma by the wire-cores leads to a low magnetic Reynolds number so that the precursor plasma carries little or no current. When gaps appear in the liquid/vapour cores the plasma temperature and Reynolds number rise and this plasma accelerates in towards the axis carrying the current. This is the main implosion, and it sweeps up earlier ablated plasma, which acts to reduce Rayleigh-Taylor growth. At stagnation, the ion kinetic energy is thermalized and equipartition heats the electrons, which then radiate in a 5 ns pulse. In some conditions the energy radiated by soft x-rays exceeds the ion kinetic energy by a factor of 3 or 4. A theory has been developed to explain this in which fine-scale, fast growing m= 0 MHD instabilities grow to saturation, viscous dissipation of which leads to ion heating, followed by equipartition. World record ion temperatures of 2-3 billion Kelvin were predicted, and measured at Sandia National Laboratory. Lastly, progress in capsule implosions and in application to inertial fusion energy is reported.

  7. Transmission of light through periodic arrays of square holes : from a metallic wire mesh to an array of tiny holes

    NARCIS (Netherlands)

    Bravo-Abad, J.; Martin-Moreno, L.; Garcia-Vidal, F.J.; Hendry, E.; Gómez Rivas, J.

    2007-01-01

    A complete landscape is presented of the electromagnetic coupling between square holes forming a two-dimensional periodic array in a metallic film. By combining both experimental and theoretical results along with a first-principles Fano model, we study the crossover between the physics of metallic

  8. In situ measurement of corrosion of type 316L stainless steel in 553 K pure water via the electrical resistance of a thin wire

    International Nuclear Information System (INIS)

    Ishida, Kazushige; Lister, Derek

    2012-01-01

    A system for the in situ monitoring of corrosion depth via electrical resistance measurements was applied to study the corrosion rate of type 316L stainless steel at 553 K in pure water. Corrosion depth was measured using a 50 μm diameter wire probe mounted axially in the tube. Measurements were in good agreement with literature data for both the hydrogen water chemistry (HWC) condition and the normal water chemistry (NWC) condition. Oxide film analyses by scanning electron microscopy and laser Raman spectroscopy on the wire probe and the tube showed no effects from shape of the test specimens or the application of electric current. Corrosion kinetics was evaluated by fitting equations to the measurements. Data for the HWC condition could be fitted by a two-step logarithmic-parabolic law. A single-step logarithmic law fitted data for the NWC condition. Changes in corrosion rate by the water chemistry changes were readily detected with the technique. Corrosion depth change could be observed for the water chemistry change from the NWC condition to the HWC condition with electrochemical corrosion potential (ECP) of -0.56 V vs. standard hydrogen electrode, which is lower than the ECP that the phase of iron oxide changes from α-Fe 2 O 3 to Fe 3 O 4 . (author)

  9. Life Cycle Assessment of Wire + Arc Additive Manufacturing compared to green sand casting and CNC milling in stainless steel

    NARCIS (Netherlands)

    Bekker, A.C.M.; Verlinden, J.C.

    2018-01-01

    Wire and Arc Additive Manufacturing (WAAM) is a metal 3D printing technique based on robotic welding. This technique yields potential in decreasing material consumption due to its high material efficiency and freedom of shape. Empirical measurements of WAAM, using a deposition rate of 1 kg/h, were

  10. Experiments with a Gas-Puff-On-Wire-Array Load on the GIT-12 Generator for Al K-shell Radiation Production at Microsecond Implosion Times

    International Nuclear Information System (INIS)

    Shishlov, Alexander V.; Baksht, Rina B.; Chaikovsky, Stanislav A.; Fedunin, Anatoly V.; Fursov, Fedor I.; Kovalchuk, Boris M.; Kokshenev, Vladimir A.; Kurmaev, Nikolai E.; Labetsky, Aleksey Yu.; Oreshkin, Vladimir I.; Rousskikh, Alexander G.; Lassalle, Francis; Bayol, Frederic

    2006-01-01

    Results of the experiments carried out on the GIT-12 generator at the current level of 3.5 MA and the Z-pinch implosion times from 700 ns to 1.1 μs are presented. A multi-shell (triple-shell) load configuration with the outer gas puffs (neon) and the inner wire array (aluminum) was used in the experiments. In the course of the research, implosion dynamics of the triple-shell z-pinch was studied, and the radiation yield in the spectral range of neon and aluminum K-lines have been measured. Optimization of the inner wire array parameters aimed at obtaining the maximum aluminum K-shell radiation yield has been carried out. As a result of optimization of the gas-puff-on-wire-array Z-pinch load, the aluminum K-shell radiation yield (hv> 1.55 keV) up to 4 kJ/cm in the radiation pulse with FWHM less than 30 ns has been obtained. Comparison of the experimental results with the results of preliminary 1D RMHD simulations allows a conclusion that at least 2/3 of the generator current is switched from a gas puff to an aluminum wire array. The radiation yield in the spectral range of neon K-lines (0.92-1.55 keV) increases considerably in the shots with the inner wire array in comparison with the shots carried out with the outer gas puffs only. The radiation yield in the spectral range above 1 keV registered in the experiments reached 10 kJ/cm. The presence of a high portion of the neon plasma inside an inner wire array can limit the radiation yield in the spectral range above 1.55 keV

  11. Observation of >400-eV precursor plasmas from low-wire-number copper arrays at the 1-MA zebra facility.

    Science.gov (United States)

    Coverdale, C A; Safronova, A S; Kantsyrev, V L; Ouart, N D; Esaulov, A A; Deeney, C; Williamson, K M; Osborne, G C; Shrestha, I; Ampleford, D J; Jones, B

    2009-04-17

    Experiments with cylindrical copper wire arrays at the 1-MA Zebra facility show that high temperatures exist in the precursor plasmas formed when ablated wire array material accretes on the axis prior to the stagnation of a z pinch. In these experiments, the precursor radiated approximately 20% of the >1000 eV x-ray output, and time-resolved spectra show substantial emission from Cu L-shell lines. Modeling of the spectra shows an increase in temperature as the precursor forms, up to approximately 450 eV, after which the temperature decreases to approximately 220-320 eV until the main implosion.

  12. Status On Multi-microsecond Prepulse Technique On Sphinx Machine Going From Nested To Single Wire Array For 800 ns Implosion Time Z-pinch

    Science.gov (United States)

    Maury, P.; Calamy, H.; Grunenwald, J.; Lassalle, F.; Zucchini, F.; Loyen, A.; Georges, A.; Morell, A.; Bedoch, J. P.

    2009-01-01

    The Sphinx machine[1] is a 6 MA, 1 μS driver based on the LTD technology, used for Z-pinch experiments. Important improvements of Sphinx radiation output were recently obtained using a multi-microsecond current prepulse[2]. Total power per unit of length is multiplied by a factor of 6 and FWHM divided by a factor of 2.5. Early breakdown of the wires during the prepulse phase dramatically changes the ablation phase leading to an improvement of axial homogeneity of both the implosion and the final radiating column. As a consequence, the cathode bubble observed on classical shots is definitively removed. The implosion is then centered and zippering effect is reduced, leading to simultaneous x-ray emission of the whole length. A great reproducibility is obtained. Nested arrays were used before to mitigate the Rayleigh-Taylor instabilities during the implosion phase. Further experiments with pre-pulse technique are described here were inner array was removed. The goal of these experiments was to see if long prepulse could give stable enough implosion with single array and at the same time increase the η parameter by reducing the mass of the load. Experimental results of single wire array loads of typical dimension 5 cm in height with implosion time between 700 and 900 ns and diameter varying between 80 and 140 mm are given. Parameters of the loads were varying in term of radius and number of wires. Comparisons with nested wire array loads are done and trends are proposed. Characteristics of both the implosion and the final radiating column are shown. 2D MHD numerical simulations of single wire array become easier as there is no interaction between outer and inner array anymore. A systematic study was done using injection mass model to benchmark simulation with experiments.

  13. Status On Multi-microsecond Prepulse Technique On Sphinx Machine Going From Nested To Single Wire Array For 800 ns Implosion Time Z-pinch

    International Nuclear Information System (INIS)

    Maury, P.; Calamy, H.; Grunenwald, J.; Lassalle, F.; Zucchini, F.; Loyen, A.; Georges, A.; Morell, A.; Bedoch, J. P.

    2009-01-01

    The Sphinx machine [1] is a 6 MA, 1 μS driver based on the LTD technology, used for Z-pinch experiments. Important improvements of Sphinx radiation output were recently obtained using a multi-microsecond current prepulse [2] . Total power per unit of length is multiplied by a factor of 6 and FWHM divided by a factor of 2.5. Early breakdown of the wires during the prepulse phase dramatically changes the ablation phase leading to an improvement of axial homogeneity of both the implosion and the final radiating column. As a consequence, the cathode bubble observed on classical shots is definitively removed. The implosion is then centered and zippering effect is reduced, leading to simultaneous x-ray emission of the whole length. A great reproducibility is obtained. Nested arrays were used before to mitigate the Rayleigh-Taylor instabilities during the implosion phase. Further experiments with pre-pulse technique are described here were inner array was removed. The goal of these experiments was to see if long prepulse could give stable enough implosion with single array and at the same time increase the η parameter by reducing the mass of the load. Experimental results of single wire array loads of typical dimension 5 cm in height with implosion time between 700 and 900 ns and diameter varying between 80 and 140 mm are given. Parameters of the loads were varying in term of radius and number of wires. Comparisons with nested wire array loads are done and trends are proposed. Characteristics of both the implosion and the final radiating column are shown. 2D MHD numerical simulations of single wire array become easier as there is no interaction between outer and inner array anymore. A systematic study was done using injection mass model to benchmark simulation with experiments.

  14. Semiconductor wire array structures, and solar cells and photodetectors based on such structures

    Science.gov (United States)

    Kelzenberg, Michael D.; Atwater, Harry A.; Briggs, Ryan M.; Boettcher, Shannon W.; Lewis, Nathan S.; Petykiewicz, Jan A.

    2014-08-19

    A structure comprising an array of semiconductor structures, an infill material between the semiconductor materials, and one or more light-trapping elements is described. Photoconverters and photoelectrochemical devices based on such structure also described.

  15. X-ray emission from a high-atomic-number z-pinch plasma created from compact wire arrays

    International Nuclear Information System (INIS)

    Sanford, T.W.L.; Nash, T.J.; Marder, B.M.

    1996-03-01

    Thermal and nonthermal x-ray emission from the implosion of compact tungsten wire arrays, driven by 5 MA from the Saturn accelerator, are measured and compared with LLNL Radiation-Hydro-Code (RHC) and SNL Hydro-Code (HC) numerical models. Multiple implosions, due to sequential compressions and expansions of the plasma, are inferred from the measured multiple x-radiation bursts. Timing of the multiple implosions and the thermal x-ray spectra measured between 1 and 10 keV are consistent with the RHC simulations. The magnitude of the nonthermal x-ray emission measured from 10 to 100 keV ranges from 0.02 to 0.08% of the total energy radiated and is correlated with bright-spot emission along the z-axis, as observed in earlier Gamble-11 single exploding-wire experiments. The similarities of the measured nonthermal spectrum and bright-spot emission with those measured at 0.8 MA on Gamble-II suggest a common production mechanism for this process. A model of electron acceleration across magnetic fields in highly-collisional, high-atomic-number plasmas is developed, which shows the existence of a critical electric field, E c , below which strong nonthermal electron creation (and the associated nonthermal x rays) do not occur. HC simulations show that significant nonthermal electrons are not expected in this experiment (as observed) because the calculated electric fields are at least one to two orders-of-magnitude below E c . These negative nonthermal results are confirmed by RHC simulations using a nonthermal model based on a Fokker-Plank analysis. Lastly, the lower production efficiency and the larger, more irregular pinch spots formed in this experiment relative to those measured on Gamble II suggest that implosion geometries are not as efficient as single exploding-wire geometries for warm x-ray production

  16. Quasi-isentropic compression using compressed water flow generated by underwater electrical explosion of a wire array

    Science.gov (United States)

    Gurovich, V.; Virozub, A.; Rososhek, A.; Bland, S.; Spielman, R. B.; Krasik, Ya. E.

    2018-05-01

    A major experimental research area in material equation-of-state today involves the use of off-Hugoniot measurements rather than shock experiments that give only Hugoniot data. There is a wide range of applications using quasi-isentropic compression of matter including the direct measurement of the complete isentrope of materials in a single experiment and minimizing the heating of flyer plates for high-velocity shock measurements. We propose a novel approach to generating quasi-isentropic compression of matter. Using analytical modeling and hydrodynamic simulations, we show that a working fluid composed of compressed water, generated by an underwater electrical explosion of a planar wire array, might be used to efficiently drive the quasi-isentropic compression of a copper target to pressures ˜2 × 1011 Pa without any complex target designs.

  17. Opacity and gradients in aluminum wire array z-pinch implosions on the Z pulsed power facility

    Energy Technology Data Exchange (ETDEWEB)

    Ampleford, D. J., E-mail: damplef@sandia.gov; Hansen, S. B.; Jennings, C. A.; Jones, B.; Coverdale, C. A.; Harvey-Thompson, A. J.; Rochau, G. A.; Dunham, G.; Moore, N. W.; Harding, E. C.; Cuneo, M. E. [Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States); Chong, Y.-K.; Clark, R. W.; Ouart, N.; Thornhill, J. W.; Giuliani, J.; Apruzese, J. P. [Naval Research Laboratory, Washington, DC 20375 (United States)

    2014-03-15

    Aluminum wire array z pinches imploded on the Z generator are an extremely bright source of 1–2 keV radiation, with close to 400 kJ radiated at photon energies >1 keV and more than 50 kJ radiated in a single line (Al Ly-α). Opacity plays a critical role in the dynamics and K-shell radiation efficiency of these pinches. Where significant structure is present in the stagnated pinch this acts to reduce the effective opacity of the system as demonstrated by direct analysis of spectra. Analysis of time-integrated broadband spectra (0.8–25 keV) indicates electron temperatures ranging from a few 100 eV to a few keV are present, indicative of substantial temperature gradients.

  18. X-ray absorption spectroscopy of aluminum z-pinch plasma with tungsten backlighter planar wire array source

    Energy Technology Data Exchange (ETDEWEB)

    Osborne, G. C.; Kantsyrev, V. L.; Safronova, A. S.; Esaulov, A. A.; Weller, M. E.; Shrestha, I.; Shlyaptseva, V. V. [Physics Department, University of Nevada, Reno, Reno, Nevada 89557 (United States); Ouart, N. D. [Naval Research Laboratory, Washington, D.C. 20375 (United States)

    2012-10-15

    Absorption features from K-shell aluminum z-pinch plasmas have recently been studied on Zebra, the 1.7 MA pulse power generator at the Nevada Terawatt Facility. In particular, tungsten plasma has been used as a semi-backlighter source in the generation of aluminum K-shell absorption spectra by placing a single Al wire at or near the end of a single planar W array. All spectroscopic experimental results were recorded using a time-integrated, spatially resolved convex potassium hydrogen phthalate (KAP) crystal spectrometer. Other diagnostics used to study these plasmas included x-ray detectors, optical imaging, laser shadowgraphy, and time-gated and time-integrated x-ray pinhole imagers. Through comparisons with previous publications, Al K-shell absorption lines are shown to be from much lower electron temperature ({approx}10-40 eV) plasmas than emission spectra ({approx}350-500 eV).

  19. New Regimes of Implosions of Larger Sized Wire Arrays With and Without Modified Central Plane at 1.5-1.7 MA Zebra

    Science.gov (United States)

    Safronova, A. S.; Kantsyrev, V. L.; Esaulov, A. A.; Weller, M. E.; Shrestha, I.; Shlyaptseva, V. V.; Stafford, A.; Keim, S. F.; Petkov, E. E.; Lorance, M.; Chuvatin, A. S.; Coverdale, C. A.; Jones, B.

    2013-10-01

    The recent experiments at 1.5-1.7 MA on Zebra at UNR with larger sized planar wires arrays (compared to the wire loads at 1 MA current) have demonstrated higher linear radiation yield and electron temperatures as well as advantages of better diagnostics access to observable plasma regions. Such multi-planar wire arrays had two outer wire planes from mid-Z material to create a global magnetic field (gmf) and mid-Z plasma flow between them. Also, they included a modified central plane with a few Al wires at the edges to influence gmf and to create Al plasma flow in the perpendicular direction. The stationary shock waves which existed over tens of ns on shadow images and the early x-ray emissions before the PCD peak on time-gated spectra were observed. The most recent experiments with similar loads but without the central wires demonstrated a very different regime of implosion with asymmetrical jets and no precursor formation. This work was supported by NNSA under DOE Cooperative Agreement DE-NA0001984 and in part by DE-FC52-06NA27616. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Company, for the U.S. Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000.

  20. Design of a 5-MA 100-ns linear-transformer-driver accelerator for wire array Z-pinch experiments

    Science.gov (United States)

    Zhou, Lin; Li, Zhenghong; Wang, Zhen; Liang, Chuan; Li, Mingjia; Qi, Jianmin; Chu, Yanyun

    2016-03-01

    The linear-transformer-driver (LTD) is a recently developed pulsed-power technology that shows great promise for a number of applications. These include a Z -pinch-driven fission-fusion-hybrid reactor that is being developed by the Chinese Academy of Engineering Physics. In support of the reactor development effort, we are planning to build an LTD-based accelerator that is optimized for driving wire-array Z -pinch loads. The accelerator comprises six modules in parallel, each of which has eight series 0.8-MA LTD cavities in a voltage-adder configuration. Vacuum transmission lines are used from the interior of the adder to the central vacuum chamber where the load is placed. Thus the traditional stack-flashover problem is eliminated. The machine is 3.2 m tall and 12 m in outer diameter including supports. A prototype cavity was built and tested for more than 6000 shots intermittently at a repetition rate of 0.1 Hz. A novel trigger, in which only one input trigger pulse is needed by utilizing an internal trigger brick, was developed and successfully verified in these shots. A full circuit modeling was conducted for the accelerator. The simulation result shows that a current pulse rising to 5.2 MA in 91 ns (10%-90%) can be delivered to the wire-array load, which is 1.5 cm in height, 1.2 cm in initial radius, and 1 mg in mass. The maximum implosion velocity of the load is 32 cm /μ s when compressed to 0.1 of the initial radius. The maximum kinetic energy is 78 kJ, which is 11.7% of the electric energy stored in the capacitors. This accelerator is supposed to enable a radiation energy efficiency of 20%-30%, providing a high efficient facility for research on the fast Z pinch and technologies for repetition-rate-operated accelerators.

  1. In-situ preparation of Fe{sub 2}O{sub 3} hierarchical arrays on stainless steel substrate for high efficient catalysis

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Zeheng, E-mail: zehengyang@hfut.edu.cn [School of Chemistry and Chemical Engineering, Anhui Key Laboratory of Controllable Chemical Reaction & Material Chemical Engineering, Hefei University of Technology, Hefei, Anhui 230009 (China); Wang, Kun; Shao, Zongming; Tian, Yuan [School of Chemistry and Chemical Engineering, Anhui Key Laboratory of Controllable Chemical Reaction & Material Chemical Engineering, Hefei University of Technology, Hefei, Anhui 230009 (China); Chen, Gongde [Department of Chemical and Environmental Engineering, University of California at Riverside, Riverside, CA 92521 (United States); Wang, Kai; Chen, Zhangxian; Dou, Yan [School of Chemistry and Chemical Engineering, Anhui Key Laboratory of Controllable Chemical Reaction & Material Chemical Engineering, Hefei University of Technology, Hefei, Anhui 230009 (China); Zhang, Weixin, E-mail: wxzhang@hfut.edu.cn [School of Chemistry and Chemical Engineering, Anhui Key Laboratory of Controllable Chemical Reaction & Material Chemical Engineering, Hefei University of Technology, Hefei, Anhui 230009 (China)

    2017-02-15

    Hierarchical array catalysts with micro/nano structures on substrates not only possess high reactivity from large surface area and suitable interface, but intensify mass transfer through shortening the diffusion paths of both reactants and products for high catalytic efficiency. Herein, we first demonstrate fabrication of Fe{sub 2}O{sub 3} hierarchical arrays grown on stainless-steel substrates via in-situ hydrothermal chemical oxidation followed by heat treatment in N{sub 2} atmosphere. As a Fenton-like catalyst, Fe{sub 2}O{sub 3} hierarchical arrays exhibit excellent catalytic activity and life cycle performance for methylene blue (MB) dye degradation in aqueous solution in the presence of H{sub 2}O{sub 2}. The Fe{sub 2}O{sub 3} catalyst with unique hierarchical structures and efficient transport channels, effectively activates H{sub 2}O{sub 2} to generate large quantity of • OH radicals and highly promotes reaction kinetics between MB and • OH radicals. Immobilization of hierarchical array catalysts on stainless-steel can prevent particles agglomeration, facilitate the recovery and reuse of the catalysts, which is expected promising applications in wastewater remediation. - Graphical abstract: The in-situ synthesis of Fe{sub 2}O{sub 3} hierarchical arrays on stainless-steel substrates was reported for the first time, which exhibit excellent catalytic activity performance for methylene blue (MB) dye degradation in aqueous solution in the presence of H{sub 2}O{sub 2}. - Highlights: • Fe{sub 2}O{sub 3} hierarchical arrays was prepared by in-situ hydrothermal chemical oxidation. • F{sup −} ions play an important role in the formation of the Fe{sub 2}O{sub 3} hierarchical arrays. • Fe{sub 2}O{sub 3} hierarchical arrays show high catalytic activity to methylene blue degradation.

  2. Investigation of dynamics of soft X-ray radiation of mixed-material wire-arrays on S-300 pulsed power generator

    NARCIS (Netherlands)

    Cai, HC; Chernenko, AC; Korolev, VD; Ustroev, GI; Ivanov, MI

    2004-01-01

    The dynamics of radiation spectra of fast Z-pinch plasmas was studied. The experiments were carried out on the S-300 pulsed power machine (4 MA, 0.15 Omega, 100 ns). By means of the polychromator, X-ray spectra of imploding wire arrays were measured in the range of 60 divided by 1500 eV, where the

  3. Effect of the plasma production rate on the implosion dynamics of cylindrical wire/fiber arrays with a profiled linear mass

    International Nuclear Information System (INIS)

    Aleksandrov, V. V.; Mitrofanov, K. N.; Gritsuk, A. N.; Frolov, I. N.; Grabovski, E. V.; Laukhin, Ya. N.

    2013-01-01

    Results are presented from experimental studies on the implosion of arrays made of wires and metalized fibers under the action of current pulses with an amplitude of up to 3.5 MA at the Angara-5-1 facility. The effect of the parameters of an additional linear mass of bismuth and gold deposited on the wires/fibers is investigated. It is examined how the material of the wires/fibers and the metal coating deposited on them affect the penetration of the plasma with the frozen-in magnetic field into a cylindrical array. Information on the plasma production rate for different metals is obtained by analyzing optical streak images of imploding arrays. The plasma production rate m-dot m for cylindrical arrays made of the kapron fibers coated with bismuth is determined. For the initial array radius of R 0 = 1 cm and discharge current of I = 1 MA, the plasma production rate is found to be m-dot m approx. 0.095 ± 0.015 μg/(cm 2 ns)

  4. Amorphous Ni(Fe)OxHy-coated nanocone arrays self-supported on stainless steel mesh as a promising oxygen-evolving anode for large scale water splitting

    Science.gov (United States)

    Shen, Junyu; Wang, Mei; Zhao, Liang; Zhang, Peili; Jiang, Jian; Liu, Jinxuan

    2018-06-01

    The development of highly efficient, robust, and cheap water oxidation electrodes is a major challenge in constructing industrially applicable electrolyzers for large-scale production of hydrogen from water. Herein we report a hierarchical stainless steel mesh electrode which features Ni(Fe)OxHy-coated self-supported nanocone arrays. Through a facile, mild, low-cost and readily scalable two-step fabrication procedure, the electrochemically active area of the optimized electrode is enlarged by a factor of 3.1 and the specific activity is enhanced by a factor of 250 at 265 mV overpotential compared with that of a corresponding pristine stainless steel mesh electrode. Moreover, the charge-transfer resistance is reduced from 4.47 Ω for the stainless steel mesh electrode to 0.13 Ω for the Ni(Fe)OxHy-coated nanocone array stainless steel mesh electrode. As a result, the cheap and easily fabricated electrode displays 280 and 303 mV low overpotentials to achieve high current densities of 500 and 1000 mA cmgeo-2, respectively, for oxygen evolution reaction in 1 M KOH. More importantly, the electrode exhibits a good stability over 340 h of chronopotentiometric test at 50 mA cmgeo-2 and only a slight attenuation (4.2%, ∼15 mV) in catalytic activity over 82 h electrolysis at a constant current density of 500 mA cmgeo-2.

  5. Morphologies, microstructures, and mechanical properties of samples produced using laser metal deposition with 316 L stainless steel wire

    Science.gov (United States)

    Xu, Xiang; Mi, Gaoyang; Luo, Yuanqing; Jiang, Ping; Shao, Xinyu; Wang, Chunming

    2017-07-01

    Laser metal deposition (LMD) with a filler has been demonstrated to be an effective method for additive manufacturing because of its high material deposition efficiency, improved surface quality, reduced material wastage, and cleaner process environment without metal dust pollution. In this study, single beads and samples with ten layers were successfully deposited on a 316 L stainless steel surface under optimized conditions using a 4000 W continuous wave fibre laser and an arc welding machine. The results showed that satisfactory layered samples with a large deposition height and smooth side surface could be achieved under appropriate parameters. The uniform structures had fine cellular and network austenite grains with good metallurgical bonding between layers, showing an austenite solidification mode. Precipitated ferrite at the grain boundaries showed a subgrain structure with fine uniform grain size. A higher microhardness (205-226 HV) was detected in the middle of the deposition area, while the tensile strength of the 50 layer sample reached 669 MPa. In addition, ductile fracturing was proven by the emergence of obvious dimples at the fracture surface.

  6. Influence of heat input on weld bead geometry using duplex stainless steel wire electrode on low alloy steel specimens

    Directory of Open Access Journals (Sweden)

    Ajit Mondal

    2016-12-01

    Full Text Available Gas metal arc welding cladding becomes a popular surfacing technique in many modern industries as it enhances effectively corrosion resistance property and wear resistance property of structural members. Quality of weld cladding may be enhanced by controlling process parameters. If bead formation is found acceptable, cladding is also expected to be good. Weld bead characteristics are often assessed by bead geometry, and it is mainly influenced by heat input. In this paper, duplex stainless steel E2209 T01 is deposited on E250 low alloy steel specimens with 100% CO2 gas as shielding medium with different heats. Weld bead width, height of reinforcement and depth of penetration are measured. Regression analysis is done on the basis of experimental data. Results reveal that within the range of bead-on-plate welding experiments done, parameters of welding geometry are on the whole linearly related with heat input. A condition corresponding to 0.744 kJ/mm heat input is recommended to be used for weld cladding in practice.

  7. Automated flaw detection scheme for cast austenitic stainless steel weld specimens using Hilbert-Huang transform of ultrasonic phased array data

    International Nuclear Information System (INIS)

    Khan, Tariq; Majumdar, Shantanu; Udpa, Lalita; Ramuhalli, Pradeep; Crawford, Susan; Diaz, Aaron; Anderson, Michael T.

    2012-01-01

    The objective of this work is to develop processing algorithms to detect and localize flaws using ultrasonic phased-array data. Data was collected on cast austenitic stainless stell (CASS) weld specimens onloan from the U.S. nuclear power industry' Pressurized Walter Reactor Owners Group (PWROG) traveling specimen set. Each specimen consists of a centrifugally cast stainless stell (CCSS) pipe section welded to a statically cst(SCSS) or wrought (WRSS) section. The paper presents a novel automated flaw detection and localization scheme using low frequency ultrasonic phased array inspection singals from the weld and heat affected zone of the based materials. The major steps of the overall scheme are preprocessing and region of interest (ROI) detection followed by the Hilbert-Huang transform (HHT) of A-scans in the detected ROIs. HHT offers time-frequency-energy distribution for each ROI. The Accumulation of energy in a particular frequency band is used as a classification feature for the particular ROI

  8. Right wire in orthodontics: a review

    OpenAIRE

    Ali, Hashim

    2015-01-01

    Quality of orthodontic wire such as stiffness, hardness, resiliency, elasticity and working range are important determinants of the effectivenes of tooth movement. Commonly used types of orthodontic arch wire:1) stainless steel(ss) wire, 2) conventional nickel- titanium (NiTi)alloy wire,3) improved super elastic NiTi- alloy wire( also called low hysteresis(LH)wire), and titanium molybdenum alloy(TMA) wire.

  9. Wire-Array Precursor Plasma Interactions With On-Axis Foam Targets

    Science.gov (United States)

    Palmer, J. B. A.; Bland, S. N.

    2005-10-01

    The Dynamic Hohlraum (DH) Z-pinch on Z at Sandia National Laboratory (SNL) has been used to drive Inertial Confinement Fusion (ICF) and High Energy Density Physics (HEDP) relevant experiments. The power pulse from the DH cannot yet be reproduced using codes that can reproduce the performance of a Vacuum Hohlraum (VH) configuration on Z. Unlike the VH the DH has a low-density CH foam cylinder placed on the array axis. Production of precursor plasma, prior to the main implosion, is not included in the codes. This plasma is accelerated towards the array axis by the global J x B force and impacts onto the on-axis target. This bombardment alters the foam in various ways. Experiments have been performed on the 1 MA MAGPIE generator at Imperial College, London, to investigate the effect of this precursor bombardment. Diagnostics used were point-projection radiography with x-pinches, x-ray emission framing cameras, shadowgraphy and photoconduction diodes. Results show ablation of low-density plasma from the foam surface and compression of the foam by precursor pressure. Research sponsored by AWE, SNL, the SSAA program of NNSA under DOE Cooperative Agreement DE-FC03-02NA00057.

  10. Numerical simulations of annular wire-array z-pinches in (x,y), (r,θ), and (r,z) geometries

    International Nuclear Information System (INIS)

    Marder, B.M.; Sanford, T.W.L.; Allshouse, G.O.

    1997-12-01

    The Total Immersion PIC (TIP) code has been used in several two-dimensional geometries to understand better the measured dynamics of annular, aluminum wire-array z-pinches. The areas investigated include the formation of the plasma sheath from current-induced individual wire explosions, the effects of wire number and symmetry on the implosion dynamics, and the dependence of the Rayleigh-Taylor instability growth on initial sheath thickness. A qualitative change in the dynamics with increasing wire number was observed, corresponding to a transition between a z-pinch composed of non-merging, self-pinching individual wires, and one characterized by the rapid formation and subsequent implosion of a continuous plasma sheath. A sharp increase in radiated power with increasing wire number has been observed experimentally near this calculated transition. Although two-dimensional codes have correctly simulated observed power pulse durations, there are indications that three dimensional effects are important in understanding the actual mechanism by which these pulse lengths are produced

  11. Design of a 5-MA 100-ns linear-transformer-driver accelerator for wire array Z-pinch experiments

    Directory of Open Access Journals (Sweden)

    Zhou Lin

    2016-03-01

    Full Text Available The linear-transformer-driver (LTD is a recently developed pulsed-power technology that shows great promise for a number of applications. These include a Z-pinch-driven fission-fusion-hybrid reactor that is being developed by the Chinese Academy of Engineering Physics. In support of the reactor development effort, we are planning to build an LTD-based accelerator that is optimized for driving wire-array Z-pinch loads. The accelerator comprises six modules in parallel, each of which has eight series 0.8-MA LTD cavities in a voltage-adder configuration. Vacuum transmission lines are used from the interior of the adder to the central vacuum chamber where the load is placed. Thus the traditional stack-flashover problem is eliminated. The machine is 3.2 m tall and 12 m in outer diameter including supports. A prototype cavity was built and tested for more than 6000 shots intermittently at a repetition rate of 0.1 Hz. A novel trigger, in which only one input trigger pulse is needed by utilizing an internal trigger brick, was developed and successfully verified in these shots. A full circuit modeling was conducted for the accelerator. The simulation result shows that a current pulse rising to 5.2 MA in 91 ns (10%–90% can be delivered to the wire-array load, which is 1.5 cm in height, 1.2 cm in initial radius, and 1 mg in mass. The maximum implosion velocity of the load is 32  cm/μs when compressed to 0.1 of the initial radius. The maximum kinetic energy is 78 kJ, which is 11.7% of the electric energy stored in the capacitors. This accelerator is supposed to enable a radiation energy efficiency of 20%–30%, providing a high efficient facility for research on the fast Z pinch and technologies for repetition-rate-operated accelerators.

  12. Implosion dynamics of a megampere wire-array Z-pinch with an inner low-density foam shell at the Angara-5-1 facility

    International Nuclear Information System (INIS)

    Aleksandrov, V. V.; Bolkhovitinov, E. A.; Volkov, G. S.; Grabovski, E. V.; Gritsuk, A. N.; Medovshchikov, S. F.; Oleinik, G. M.; Rupasov, A. A.; Frolov, I. N.

    2016-01-01

    The implosion dynamics of a pinch with a highly inhomogeneous initial axial distribution of the load mass was studied experimentally. A cascade array consisting of a double nested tungsten wire array and a coaxial inner cylindrical shell located symmetrically with respect to the high-voltage electrodes was used as a load of the Angara-5-1 high-current generator. The cylindrical foam shell was half as long as the cathode− anode gap, and its diameter was equal to the diameter of the inner wire array. It is shown experimentally that two stages are typical of the implosion dynamics of such a load: the formation of two separate pinches formed as a result of implosion of the wire array near the cathode and anode and the subsequent implosion of the central part of the load containing the cylindrical foam shell. The conditions are determined at which the implosion of the central part of the pinch with the foam cylinder is preceded by intense irradiation of the foam with the soft X-ray (SXR) emission generated by the near-electrode pinches and converting it into the plasma state. Using such a load, which models the main elements of the scheme of a dynamic hohlraum for inertial confinement fusion, it is possible to increase the efficiency of interaction between the outer accelerated plasma sheath and the inner foam shell by preionizing the foam with the SXR emission of the near-electrode pinches.

  13. Monitoring of chromium and nickel in biological fluids of stainless steel welders using the flux-cored-wire (FCW) welding method.

    Science.gov (United States)

    Stridsklev, Inger Cecilie; Schaller, Karl-Heinz; Langård, Sverre

    2004-11-01

    This study was undertaken to investigate the exposure to chromium (Cr) and nickel (Ni) in flux-cored wire (FCW) welders welding on stainless steel (SS). Seven FCW welders were monitored for 3 days to 1 workweek, measuring Cr and Ni in air, blood, and urine. The welders were questioned about exposure to Cr and Ni during their whole working careers, with emphasis on the week of monitoring, about the use of personal protective equipment and their smoking habits. The air concentrations were mean 200 microg/m(3) (range 2.4-2,744) for total Cr, 11.3 microg/m(3) (416.7) for Ni during the workdays for the five welders who were monitored with air measurements. The levels of Cr and Ni in biological fluids varied between different workplaces. For Cr in whole blood, plasma, and erythrocytes, the mean levels after work were 1.25 (<0.4-8.3) and 1.68 (<0.2-8.0) and 0.9 (<0.4-7.2) microg/l, respectively. For Ni most of the measurements in whole blood and plasma were below the detection limits, the mean levels after work being 0.84 (<0.8-3.3) and 0.57 microg/l (<0.4-1.7), respectively. Mean levels for Cr and Ni in the urine after work were 3.96 (0.34-40.7) and 2.50 (0.56-5.0) microg/g creatinine, respectively. Correlations between the Cr(VI) levels measured in air and the levels of total Cr in the measured biological fluids were found. The results seem to support the view that monitoring of Cr in the urine may be versatile for indirect monitoring of the Cr(VI) air level in FCW welders. The results seem to suggest that external and internal exposure to Cr and Ni in FCW welders welding SS is low in general.

  14. Vortex pinning vs superconducting wire network: origin of periodic oscillations induced by applied magnetic fields in superconducting films with arrays of nanomagnets

    International Nuclear Information System (INIS)

    Gomez, A; Del Valle, J; Gonzalez, E M; Vicent, J L; Chiliotte, C E; Carreira, S J; Bekeris, V; Prieto, J L; Schuller, Ivan K

    2014-01-01

    Hybrid magnetic arrays embedded in superconducting films are ideal systems to study the competition between different physical (such as the coherence length) and structural length scales such as are available in artificially produced structures. This interplay leads to oscillation in many magnetically dependent superconducting properties such as the critical currents, resistivity and magnetization. These effects are generally analyzed using two distinct models based on vortex pinning or wire network. In this work, we show that for magnetic dot arrays, as opposed to antidot (i.e. holes) arrays, vortex pinning is the main mechanism for field induced oscillations in resistance R(H), critical current I c (H), magnetization M(H) and ac-susceptibility χ ac (H) in a broad temperature range. Due to the coherence length divergence at T c , a crossover to wire network behaviour is experimentally found. While pinning occurs in a wide temperature range up to T c , wire network behaviour is only present in a very narrow temperature window close to T c . In this temperature interval, contributions from both mechanisms are operational but can be experimentally distinguished. (papers)

  15. Water Desalination with Wires

    NARCIS (Netherlands)

    Porada, S.; Sales, B.B.; Hamelers, H.V.M.; Biesheuvel, P.M.

    2012-01-01

    We show the significant potential of water desalination using a novel capacitive wire-based technology in which anode/cathode wire pairs are constructed from coating a thin porous carbon electrode layer on top of electrically conducting rods (or wires). By alternately dipping an array of electrode

  16. 3D ZnIn2S4 nanosheet/TiO2 nanowire arrays and their efficient photocathodic protection for 304 stainless steel

    Science.gov (United States)

    Sun, Wenxia; Wei, Na; Cui, Hongzhi; Lin, Yuan; Wang, Xinzhen; Tian, Jian; Li, Jian; Wen, Jing

    2018-03-01

    A well-designed heterostructure engineered ZnIn2S4 nanosheet/TiO2 nanowire arrays photoanode is investigated for photocathodic protection. The ZnIn2S4 nanosheets are distributed uniformly on the surface of the TiO2 nanowire by a hydrothermal method. The stem-and-leaf-like ZnIn2S4 nanosheet/TiO2 nanowire arrays exhibit excellent photoelectrochemical properties, owing to the energy band structure and large surface area. A maximum photocurrent density of 2 mA cm-2 is achieved for the ZnIn2S4 nanosheet/TiO2 nanowire composite film for a 6 h reaction time under white illumination. Moreover, the potential of the 304 stainless steel coupled with the composite film immediately shifts negatively to -1.17 V (vs. SCE), which is significantly lower than the corrosion potential (-0.201 V vs. SCE). Thus, the composite film offers a superior photocathodic protection for stainless steel against corrosion by a NaCl solution. This study provides a promising approach for the design and synthesis of composite films with enhanced photoelectrochemical performance.

  17. Ideal and non-ideal MHD regimes of wire array implosion obtained in 3D hybrid simulations and observed during experiments at NTF (Nevada Terawatt Facility)

    International Nuclear Information System (INIS)

    Sotnikov, Vladimir Isaakovich; Fiala, V.; Oliver, Bryan Velten; Ivanov, Vladimir V.; LePell, Paul David; Fedin, Dmitry; Mehlhorn, Thomas Alan; Kantsyrev, Victor Leonidovich; Coverdale, Christine Anne; Travnicek, P.; Hellinger, P.; Deeney, Christopher; Jones, Brent Manley; Safronova, Alla S.; Leboeuf, J.N.; Cowan, Thomas E.

    2004-01-01

    Recent 3D hybrid simulation of a plasma current-carrying column revealed two regimes of sausage and kink instability development. In the first regime, with small Hall parameter, development of instabilities leads to appearance of large-scale axial perturbations and eventually to the bending of the plasma column. In the second regime, with five times larger Hall parameter, small-scale perturbations dominated and no bending of the plasma column was observed. Simulation results are compared to recent experimental data, including laser probing, x-ray spectroscopy and time-gated x-ray imaging during wire array implosions at NTF

  18. Aluminium K-shell radiation from 800 ns implosion time nested wire arrays. First results on the 1 MJ SPHINX generator

    International Nuclear Information System (INIS)

    Bayol, F.; Lassalle, F.; Mangeant, C.

    2005-01-01

    This paper discusses experiments to analyze the performances of plasma radiation sources for K-shell production with long implosion time increased up to 800 ns. SPHINX generator is used to implode single and nested aluminium wire arrays Z-pinches with maximum current 3.4 MA to 3.8 MA. Results show more than 10 kJ of energy radiated above 1 keV, with pulse widths of 30-50 ns for a total radiation yield around 100 kJ [ru

  19. Um novo fio de aço inoxidável para aplicações ortodônticas A new stainless steel wire for orthodontic purposes

    Directory of Open Access Journals (Sweden)

    André Itman Filho

    2011-08-01

    Full Text Available OBJETIVO: desenvolver uma metodologia para fabricação de fios ortodônticos de aço inoxidável austeno-ferrítico SEW 410 Nr. 14517 por meio dos processos convencionais de laminação e trefilação. MÉTODOS: o aço austeno-ferrítico foi elaborado em um forno elétrico de indução. A qualidade dos fios foi avaliada por ensaios de tração e medidas de microdureza. A ductilidade e a manuseabilidade foram analisadas por meio da confecção de componentes ortodônticos. RESULTADOS E CONCLUSÕES: os valores encontrados mostraram que os fios de aço inoxidável austeno-ferrítico atenderam às normas BS 3507:1976 e ISO 5832-1, e apresentaram ótima ductilidade para confecção de componentes ortodônticos com dobras complexas.OBJECTIVE: To develop a method to manufacture austenitic-ferritic stainless steel orthodontic wires (SEW 410 Nr. 14517 using conventional rolling and wiredrawing processes. METHODS: Austenitic-ferritic steel was produced in an induction furnace. Traction trials and microhardness measurements were used to evaluate wire quality. Orthodontic parts were fabricated to assess ductility and malleability. RESULTS AND CONCLUSIONS: Austenitic-ferritic stainless steel wires meet the BS 3507:1976 and ISO 5832-1 norms and have excellent ductility for the fabrication of orthodontic parts with complex folds.

  20. Fricção em braquetes gerada por fios de aço inoxidável, superelásticos com IonGuard e sem IonGuard Friction force on brackets generated by stainless steel wire and superelastic wires with and without IonGuard

    Directory of Open Access Journals (Sweden)

    Luiz Carlos Campos Braga

    2011-08-01

    Full Text Available OBJETIVO: o objetivo deste estudo foi verificar a fricção no braquete (Roth, Composite, 10.17.005, 3,2mm, largura 0,022" x 0,030", Torque -2° e angulação +13°, Morelli®, Brasil, utilizando fios ortodônticos retangulares de 0,019" x 0,025" de aço inoxidável (Morelli®, Brasil e de níquel-titânio superelásticos Bioforce com IonGuard e sem IonGuard (Bioforce, GAC®, EUA. MÉTODOS: foram utilizados 24 conjuntos braquetes/segmento de fio, divididos em 3 grupos de acordo com o fio. Cada conjunto braquete/segmento de fio foi testado 3 vezes e obtida uma média. Os ensaios foram realizados em máquina universal de ensaios EMIC DL2000®. Os dados foram submetidos à Análise de Variância com significância de 95%. RESULTADOS: o fio retangular Bioforce com IonGuard apresentou fricção significativamente menor que o Bioforce sem IonGuard, porém sem diferença do fio de aço inoxidável. Entretanto, o coeficiente de variação dos fios Bioforce com e sem IonGuard foi menor que o do fio de aço inoxidável. CONCLUSÃO: os fios retangulares de 0,019" x 0,025" Bioforce com IonGuard apresentam menor fricção que o fio Bioforce sem IonGuard, sem diferença para o fio de aço inoxidável.OBJECTIVE: The aim of this study was to evaluate the friction forces on brackets (Roth, Composite, 10.17.005, 3.2 mm, width 0.022" x 0.030 ", Torque -2° and angulation +13°, Morelli®, Brazil, with stainless steel orthodontic rectangular wire (Morelli®, Brazil and nickel titanium superelastic Bioforce wires with and without IonGuard (Bioforce, GAC®, USA. MATERIAL AND METHODS: Twenty-four brackets/wire segment combinations were used, distributed into three groups according to the orthodontic wire. Each bracket/wire segment combination was tested three times. The tests were performed in a universal testing machine Emic DL2000®. The data was submitted to ANOVA one way followed by Tukey's post hoc test (p<0.05. RESULTS: The rectangular orthodontic Bioforce wire

  1. Progress in symmetric ICF capsule implosions and wire-array z-pinch source physics for double z-pinch driven hohlraums

    International Nuclear Information System (INIS)

    Bliss, David Emery; Vesey, Roger Alan; Rambo, Patrick K.; Lebedev, Sergey V.; Hanson, David L.; Nash, Thomas J.; Yu, Edmund P.; Matzen, Maurice Keith; Afeyan, Bedros B.; Smith, Ian Craig; Stygar, William A.; Porter, John Larry Jr.; Cuneo, Michael Edward; Bennett, Guy R.; Campbell, Robert B.; Sinars, Daniel Brian; Chittenden, Jeremy Paul; Waisman, Eduardo Mario; Mehlhorn, Thomas Alan

    2005-01-01

    Over the last several years, rapid progress has been made evaluating the double-z-pinch indirect-drive, inertial confinement fusion (ICF) high-yield target concept (Hammer et al 1999 Phys. Plasmas 6 2129). We have demonstrated efficient coupling of radiation from two wire-array-driven primary hohlraums to a secondary hohlraum that is large enough to drive a high yield ICF capsule. The secondary hohlraum is irradiated from two sides by z-pinches to produce low odd-mode radiation asymmetry. This double-pinch source is driven from a single electrical power feed (Cuneo et al 2002 Phys. Rev. Lett. 88 215004) on the 20 MA Z accelerator. The double z-pinch has imploded ICF capsules with even-mode radiation symmetry of 3.1 ± 1.4% and to high capsule radial convergence ratios of 14-21 (Bennett et al 2002 Phys. Rev. Lett. 89 245002; Bennett et al 2003 Phys. Plasmas 10 3717; Vesey et al 2003 Phys. Plasmas 10 1854). Advances in wire-array physics at 20 MA are improving our understanding of z-pinch power scaling with increasing drive current. Techniques for shaping the z-pinch radiation pulse necessary for low adiabat capsule compression have also been demonstrated.

  2. Synthesis of vertical MnO2 wire arrays on hemp-derived carbon for efficient and robust green catalysts

    Science.gov (United States)

    Yang, MinHo; Kim, Dong Seok; Sim, Jae-Wook; Jeong, Jae-Min; Kim, Do Hyun; Choi, Jae Hyung; Kim, Jinsoo; Kim, Seung-Soo; Choi, Bong Gill

    2017-06-01

    Three-dimensional (3D) carbon materials derived from waste biomass have been attracted increasing attention in catalysis and materials science because of their great potential of catalyst supports with respect to multi-functionality, unique structures, high surface area, and low cost. Here, we present a facile and efficient way for preparing 3D heterogeneous catalysts based on vertical MnO2 wires deposited on hemp-derived 3D porous carbon. The 3D porous carbon materials are fabricated by carbonization and activation processes using hemp (Cannabis Sttiva L.). These 3D porous carbon materials are employed as catalyst supports for direct deposition of vertical MnO2 wires using a one-step hydrothermal method. The XRD and XPS results reveal the crystalline structure of α-MnO2 wires. The resultant composites are further employed as a catalyst for glycolysis of poly(ethylene terephthalate) (PET) with high conversion yield of 98%, which is expected to be expressly profitable for plastics recycling industry.

  3. Application of Piezocomposite Twin, Side by Side, Phased Array UT Probes for the Inspection of Stainless Steel

    International Nuclear Information System (INIS)

    Delaide, M.; Dumas, Ph

    2005-01-01

    UT probes to be used for the examination of coarse-grain structure must allow to detect and size cracks, with a high reliability level. The combination of TRL probes, with phased array and piezocomposite technologies allows to improve probes performances and inspection speed. Single element crystals are replaced by matrix arrays, allowing to deflect and skew the beams, to change the inspection depth. This paper describes the designing, the manufacturing and the characterisation of several probes

  4. Synthesis of vertical MnO{sub 2} wire arrays on hemp-derived carbon for efficient and robust green catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Yang, MinHo [Department of Materials Science and Engineering and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana–Champaign, Urbana, IL 61801 (United States); Kim, Dong Seok; Sim, Jae-Wook [Department of Chemical Engineering, Kangwon National University, 346 Joongang-ro, Samcheok, Gangwon-do 25913 (Korea, Republic of); Jeong, Jae-Min; Kim, Do Hyun [Department of Chemical & Biomolecular Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141 (Korea, Republic of); Choi, Jae Hyung [Department of Chemical Engineering, Kangwon National University, 346 Joongang-ro, Samcheok, Gangwon-do 25913 (Korea, Republic of); Department of Chemical Engineering, Pukyong National University, 365 Sinseon-ro, Nam-gu, Busan 48513 (Korea, Republic of); Kim, Jinsoo [Department of Chemical Engineering, Kyung Hee University, 1732, Daogyong-daero, Giheung-gu, Yongin, Gyeonggi-do 17104 (Korea, Republic of); Kim, Seung-Soo, E-mail: sskim2008@kangwon.ac.kr [Department of Chemical Engineering, Kangwon National University, 346 Joongang-ro, Samcheok, Gangwon-do 25913 (Korea, Republic of); Choi, Bong Gill, E-mail: bgchoi@kangwon.ac.kr [Department of Chemical Engineering, Kangwon National University, 346 Joongang-ro, Samcheok, Gangwon-do 25913 (Korea, Republic of)

    2017-06-15

    Highlights: • The three-dimensional nanocomposites based on vertical MnO{sub 2} array on hemp-derived carbon (HDC) were prepared by hydrothermal method. • The 3D v-MnO{sub 2}/HDC nanocomposites showed well-defined porous nature with a high specific surface area of 382.3 m{sup 2} g{sup −1}. • PET glycolysis was performed using the 3D v-MnO{sub 2}/HDC nanocomposites as a catalyst, leading to efficient catalytic performance. - Abstract: Three-dimensional (3D) carbon materials derived from waste biomass have been attracted increasing attention in catalysis and materials science because of their great potential of catalyst supports with respect to multi-functionality, unique structures, high surface area, and low cost. Here, we present a facile and efficient way for preparing 3D heterogeneous catalysts based on vertical MnO{sub 2} wires deposited on hemp-derived 3D porous carbon. The 3D porous carbon materials are fabricated by carbonization and activation processes using hemp (Cannabis Sttiva L.). These 3D porous carbon materials are employed as catalyst supports for direct deposition of vertical MnO{sub 2} wires using a one-step hydrothermal method. The XRD and XPS results reveal the crystalline structure of α-MnO{sub 2} wires. The resultant composites are further employed as a catalyst for glycolysis of poly(ethylene terephthalate) (PET) with high conversion yield of 98%, which is expected to be expressly profitable for plastics recycling industry.

  5. Biofilm formation on stainless steel and gold wires for bonded retainers in vitro and in vivo and their susceptibility to oral antimicrobials

    NARCIS (Netherlands)

    Jongsma, Marije A.; Pelser, Floris D. H.; van der Mei, Henny C.; Atema-Smit, Jelly; van de Belt-Gritter, Betsy; Busscher, Henk J.; Ren, Yijin

    OBJECTIVE: Bonded retainers are used in orthodontics to maintain treatment result. Retention wires are prone to biofilm formation and cause gingival recession, bleeding on probing and increased pocket depths near bonded retainers. In this study, we compare in vitro and in vivo biofilm formation on

  6. Subchannel and bundle friction factors and flow split parameters for laminar transition and turbulent longitudinal flows in wire wrap spaced hexagonal arrays

    International Nuclear Information System (INIS)

    Hawley, J.T.; Chiu, C.; Todreas, N.E.; Rohsenow, W.M.

    1980-01-01

    Correlations are presented for subchannel and bundle friction factors and flowsplit parameters for laminar, transition and turbulent longitudinal flows in wire wrap spaced hexagonal arrays. These results are obtained from pressure drop models of flow in individual subchannels. For turbulent flow, an existing pressure drop model for flow in edge subchannels is extended, and the resulting edge subchannel friction factor is identified. Using the expressions for flowsplit parameters and the equal pressure drops assumption, the interior subchannel and bundle friction factors are obtained. For laminar flow, models are developed for pressure drops of individual subchannels. From these models, expressions for the subchannel friction factors are identified and expressions for the flowsplit parameters are derived

  7. 1- to 10-keV x-ray backlighting of annular wire arrays on the Sandia Z-machine using bent-crystal imaging techniques

    International Nuclear Information System (INIS)

    Rambo, Patrick K.; Wenger, David Franklin; Bennett, Guy R.; Sinars, Daniel Brian; Smith, Ian Craig; Porter, John Larry Jr.; Cuneo, Michael Edward; Rovang, Dean Curtis; Anderson, Jessica E.

    2003-01-01

    Annular wire array implosions on the Sandia Z-machine can produce >200 TW and 1-2 MJ of soft x rays in the 0.1-10 keV range. The x-ray flux and debris in this environment present significant challenges for radiographic diagnostics. X-ray backlighting diagnostics at 1865 and 6181 eV using spherically-bent crystals have been fielded on the Z-machine, each with a ∼0.6 eVspectral bandpass, 10 (micro)m spatial resolution, and a 4 mm by 20mm field of view. The Z-Beamlet laser, a 2-TW, 2-kJ Nd:glass laser(λ = 527 nm), is used to produce 0.1-1 J x-ray sources for radiography. The design, calibration, and performance of these diagnostics is presented.

  8. Subchannel and bundle friction factors and flowsplit parameters for laminar, transition, and turbulent longitudinal flows in wire-wrap spaced hexagonal arrays. [LMFBR

    Energy Technology Data Exchange (ETDEWEB)

    Hawley, J.T.; Chiu, C.; Rohsenow, W.M.; Todreas, N.E.

    1980-08-01

    Correlations are presented for subchannel and bundle friction factors and flowsplit parameters for laminar, transition and turbulent longitudinal flows in wire wrap spaced hexagonal arrays. These results are obtained from pressure drop models of flow in individual subchannels. For turbulent flow, an existing pressure drop model for flow in edge subchannels is extended, and the resulting edge subchannel friction factor is identified. Using the expressions for flowsplit parameters and the equal pressured drop assumption, the interior subchannel and bundle friction factors are obtained. For laminar flow, models are developed for pressure drops of individual subchannels. From these models, expressions for the subchannel friction factors are identified and expressions for the flowsplit parameters are derived.

  9. Corrosion behavior of 2205 duplex stainless steel.

    Science.gov (United States)

    Platt, J A; Guzman, A; Zuccari, A; Thornburg, D W; Rhodes, B F; Oshida, Y; Moore, B K

    1997-07-01

    The corrosion of 2205 duplex stainless steel was compared with that of AISI type 316L stainless steel. The 2205 stainless steel is a potential orthodontic bracket material with low nickel content (4 to 6 wt%), whereas the 316L stainless steel (nickel content: 10 to 14 wt%) is a currently used bracket material. Both stainless steels were subjected to electrochemical and immersion (crevice) corrosion tests in 37 degrees C, 0.9 wt% sodium chloride solution. Electrochemical testing indicates that 2205 has a longer passivation range than 316L. The corrosion rate of 2205 was 0.416 MPY (milli-inch per year), whereas 316L exhibited 0.647 MPY. When 2205 was coupled to 316L with equal surface area ratio, the corrosion rate of 2205 reduced to 0.260 MPY, indicating that 316L stainless steel behaved like a sacrificial anode. When 316L is coupled with NiTi, TMA, or stainless steel arch wire and was subjected to the immersion corrosion test, it was found that 316L suffered from crevice corrosion. On the other hand, 2205 stainless steel did not show any localized crevice corrosion, although the surface of 2205 was covered with corrosion products, formed when coupled to NiTi and stainless steel wires. This study indicates that considering corrosion resistance, 2205 duplex stainless steel is an improved alternative to 316L for orthodontic bracket fabrication when used in conjunction with titanium, its alloys, or stainless steel arch wires.

  10. Vertically p-n-junctioned GaN nano-wire array diode fabricated on Si(111) using MOCVD.

    Science.gov (United States)

    Park, Ji-Hyeon; Kim, Min-Hee; Kissinger, Suthan; Lee, Cheul-Ro

    2013-04-07

    We demonstrate the fabrication of n-GaN:Si/p-GaN:Mg nanowire arrays on (111) silicon substrate by metal organic chemical vapor deposition (MOCVD) method .The nanowires were grown by a newly developed two-step growth process. The diameter of as-grown nanowires ranges from 300-400 nm with a density of 6-7 × 10(7) cm(-2). The p- and n-type doping of the nanowires is achieved with Mg and Si dopant species. Structural characterization by X-ray diffraction (XRD) and high-resolution transmission electron microscopy (HRTEM) indicates that the nanowires are relatively defect-free. The room-temperature photoluminescence emission with a strong peak at 370 nm indicates that the n-GaN:Si/p-GaN:Mg nanowire arrays have potential application in light-emitting nanodevices. The cathodoluminscence (CL) spectrum clearly shows a distinct optical transition of GaN nanodiodes. The nano-n-GaN:Si/p-GaN:Mg diodes were further completed using a sputter coating approach to deposit Au/Ni metal contacts. The polysilazane filler has been etched by a wet chemical etching process. The n-GaN:Si/p-GaN:Mg nanowire diode was fabricated for different Mg source flow rates. The current-voltage (I-V) measurements reveal excellent rectifying properties with an obvious turn-on voltage at 1.6 V for a Mg flow rate of 5 sccm (standard cubic centimeters per minute).

  11. A photoelectrochemical study of CdS modified TiO2 nanotube arrays as photoanodes for cathodic protection of stainless steel

    International Nuclear Information System (INIS)

    L, Jing; Lin Changjian; Li Juntao; Lin Zequan

    2011-01-01

    An electrodeposited CdS nanoparticles-modified highly-ordered TiO 2 nanotube arrays (CdS-TNs) photoelectrode and its performance of photocathodic protection are reported. The self-organized TiO 2 nanotube arrays are fabricated by electrochemical anodization in an organic-inorganic mixed electrolyte and sensitized with CdS nanoparticles by electrodeposition via a single-step direct current. The morphology, crystalline phase, and composition of the CdS-TNs films were characterized systematically by scanning electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and ultraviolet-visible (UV-Vis) spectroscopy, respectively. The photoelectrochemical performances of the CdS-TNs film under illumination and dark conditions in 0.5 M NaCl solution were evaluated through the electrochemical measurements. It is indicated that the TNs incorporated by CdS effectively harvest solar light in the UV as well as the visible light (up to 480 nm) region. It is supposed that the high photoelectro-response activity of the CdS-TNs is attributed to the increased efficiency of charge separation and transport of electrons. The electrode potentials of 304 stainless steel coupled with the CdS-TNs is found to be negatively shifted for about 246 mV and 215 mV under UV and white light irradiation, respectively, which can be remained for 24 h even in darkness. It is implied that the CdS-TNs are able to effectively function a photogenerated cathodic protection for metals both under the UV and visible light illumination.

  12. A photoelectrochemical study of CdS modified TiO{sub 2} nanotube arrays as photoanodes for cathodic protection of stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    L, Jing; Lin Changjian, E-mail: cjlin@xmu.edu.cn; Li Juntao; Lin Zequan

    2011-06-01

    An electrodeposited CdS nanoparticles-modified highly-ordered TiO{sub 2} nanotube arrays (CdS-TNs) photoelectrode and its performance of photocathodic protection are reported. The self-organized TiO{sub 2} nanotube arrays are fabricated by electrochemical anodization in an organic-inorganic mixed electrolyte and sensitized with CdS nanoparticles by electrodeposition via a single-step direct current. The morphology, crystalline phase, and composition of the CdS-TNs films were characterized systematically by scanning electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and ultraviolet-visible (UV-Vis) spectroscopy, respectively. The photoelectrochemical performances of the CdS-TNs film under illumination and dark conditions in 0.5 M NaCl solution were evaluated through the electrochemical measurements. It is indicated that the TNs incorporated by CdS effectively harvest solar light in the UV as well as the visible light (up to 480 nm) region. It is supposed that the high photoelectro-response activity of the CdS-TNs is attributed to the increased efficiency of charge separation and transport of electrons. The electrode potentials of 304 stainless steel coupled with the CdS-TNs is found to be negatively shifted for about 246 mV and 215 mV under UV and white light irradiation, respectively, which can be remained for 24 h even in darkness. It is implied that the CdS-TNs are able to effectively function a photogenerated cathodic protection for metals both under the UV and visible light illumination.

  13. Vertically building Zn2SnO4 nanowire arrays on stainless steel mesh toward fabrication of large-area, flexible dye-sensitized solar cells.

    Science.gov (United States)

    Li, Zhengdao; Zhou, Yong; Bao, Chunxiong; Xue, Guogang; Zhang, Jiyuan; Liu, Jianguo; Yu, Tao; Zou, Zhigang

    2012-06-07

    Zn(2)SnO(4) nanowire arrays were for the first time grown onto a stainless steel mesh (SSM) in a binary ethylenediamine (En)/water solvent system using a solvothermal route. The morphology evolution following this reaction was carefully followed to understand the formation mechanism. The SSM-supported Zn(2)SnO(4) nanowire was utilized as a photoanode for fabrication of large-area (10 cm × 5 cm size as a typical sample), flexible dye-sensitized solar cells (DSSCs). The synthesized Zn(2)SnO(4) nanowires exhibit great bendability and flexibility, proving potential advantage over other metal oxide nanowires such as TiO(2), ZnO, and SnO(2) for application in flexible solar cells. Relative to the analogous Zn(2)SnO(4) nanoparticle-based flexible DSSCs, the nanowire geometry proves to enhance solar energy conversion efficiency through enhancement of electron transport. The bendable nature of the DSSCs without obvious degradation of efficiency and facile scale up gives the as-made flexible solar cell device potential for practical application.

  14. Measurements for the radiation spectra of fast Z-pinches produced at compression of multi-wire arrays on the 'Angara-5-1' facility

    International Nuclear Information System (INIS)

    Bolkhovitinov, E.A.; Rupasov, A.A.; Shikanov, A.S.; Fedulov, M.V.; Grabovsky, E.V.; Gritsuk, A.N.; Oleinik, G.M.; Volkov, G.S.

    2010-01-01

    Complete text of publication follows. The measurements results on the radiation spectra of fast z-pinches produced at compression of cylindrical multi-wire tungsten and aluminum arrays in the experiments on a high-current 'Angara-5-1' facility are presented. Cylindrical multi-wire arrays has linear mass 200-400 μg/cm and the initial diameter 12-20 mm. The pinch current was about 3 MA with pulse duration of 140 ns and peak power 3 TW. The radiation spectra are measured within the range of 50-900 eV quanta by a spectrometer with transmission diffraction grating, where the radiation is recorded on the UF-4 X-ray film. An electromagnetic curtain shutter was used to protect the transmission grating from fast microparticles produced by the erosion of high-voltage electrodes. The radiation spectrum of 1-3 keV quanta was recorded by a convex crystal wide-range spectrometer. Total yield of the radiation was measured by a thermocouple calorimeter. The main part of the tungsten plasma radiative energy proves to correspond to the quasi-continuous spectrum within the range of 80-300 eV quanta. Measurements of the tungsten plasma radiation spectrum with spatial resolution by a pinch radius have shown that the effective transversal size (diameter) of the pinch as not higher than 1 mm. In the case of aluminum plasma an intensive linear radiation of the [H]- and [He]-like ions have been recorded along with a continuous and linear radiation of the [Li]- and [Be]-like ions with the range of 100-300 eV quanta. Spectral measurements of the aluminum plasma radiation with spatial resolution by the pinch radius have shown that the effective transversal size (diameter) of the pinch is around the value of 1.5 mm. Within the framework of the stationary collisional-radiative model, in respect of the [H]- and [He]-like ion spectral lines relative intensities, the parameters of the aluminum plasma pinch, namely, the electron temperature T e ∼ 550 eV and electron density n e ∼ 3 x 10 20 cm

  15. Evaluation of existing correlations for the prediction of pressure drop in wire-wrapped hexagonal array pin bundles

    International Nuclear Information System (INIS)

    Chen, S.K.; Todreas, N.E.; Nguyen, N.T.

    2014-01-01

    Highlights: • Wire-wrapped bundle friction factor data and correlations thoroughly collected. • Three methodologies proposed for identifying the best fit correlation. • 80 out of 141 bundles selected as database for evaluation. • The detailed Cheng and Todreas correlation identified to fit the data best. - Abstract: Existing wire-wrapped fuel bundle friction factor correlations were evaluated to identify their comparative fit to the available pressure drop experimental data. Five published correlations, those of Rehme (REH), Baxi and Dalle Donne (BDD, which used the correlations of Novendstern in the turbulent regime and Engel et al. in the laminar and transition regimes), detailed Cheng and Todreas (CTD), simplified Cheng and Todreas (CTS), and Kirillov (KIR, developed by Russian scientists) were studied. Other correlations applicable to a specific case were also evaluated but only for that case. Among all 132 available bundle data, an 80 bundle data set was judged to be appropriate for this evaluation. Three methodologies, i.e., the Prediction Error Distribution, Agreement Index and Credit Score were principally used for investigating the goodness of each correlation in fitting the data. Evaluations have been performed in two categories: 4 cases of general user interest and 3 cases of designer specific interest. The four general user interest cases analyzed bundle data sets in four flow regimes – i.e., all regimes, the transition and/or turbulent regimes, the turbulent regime, and the laminar regime. The three designer interest cases analyzed bundles in the fuel group, the blanket and control group and those with P/D > 1.06, for the transition/turbulent regimes. For all these cases, the detailed Cheng and Todreas correlation is identified as yielding the best fit. Specifically for the all flow regimes evaluation, the best fit correlation in descending order is CTD, BDD/CTS (tie), REH and KIR. For the combined transition/turbulent regime, the order is

  16. DT fusion neutron irradiation of BPNL niobium nickel and 316 stainless steel at 1750C

    International Nuclear Information System (INIS)

    MacLean, S.C.

    1977-01-01

    The DT fusion neutron irradiation at 175 0 C of 17 niobium wires, one niobium foil, 14 316 stainless steel wires, one 316 stainless steel foil, nine nickel wires, and two nickel foils from BPNL is described. The sample position, beam-on time, neutron dose record, and neutron fluence are given

  17. Qualification of phased array ultrasonic examination on T-joint weld of austenitic stainless steel for ITER vacuum vessel

    Energy Technology Data Exchange (ETDEWEB)

    Kim, G.H. [ITER Korea, National Fusion Research Institute, Daejeon 305-333 (Korea, Republic of); Park, C.K., E-mail: love879@hanmail.net [ITER Korea, National Fusion Research Institute, Daejeon 305-333 (Korea, Republic of); Jin, S.W.; Kim, H.S.; Hong, K.H.; Lee, Y.J.; Ahn, H.J.; Chung, W. [ITER Korea, National Fusion Research Institute, Daejeon 305-333 (Korea, Republic of); Jung, Y.H.; Roh, B.R. [Hyundai Heavy Industries Co. Ltd., Ulsan 682-792 (Korea, Republic of); Sa, J.W.; Choi, C.H. [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St. Paul Lez Durance Cedex (France)

    2016-11-01

    Highlights: • PAUT techniques has been developed by Hyundai Heavy Industries Co., LTD (HHI) and Korea Domestic Agency (KODA) to verify and settle down instrument calibration, test procedures, image processing, and so on. As the first step of development for PAUT technique, Several dozens of qualification blocks with artificial defects, which are parallel side drilled hole, embedded lack of fusion, embedded repair weld notch, and so on, have been designed and fabricated to simulate all potential defects during welding process. Real UT qualification group-1 for T-joint weld was successfully conducted in front of ANB inspector. • In this paper, remarkable progresses of UT qualification are presented for ITER vacuum vessel. - Abstract: Full penetration welding and 100% volumetric examination are required for all welds of pressure retaining parts of the ITER Vacuum Vessel (VV) according to RCC-MR Code and French Order of Nuclear Pressure Equipment (ESPN). The NDE requirement is one of important technical issues because radiographic examination (RT) is not applicable to many welding joints. Therefore the ultrasonic examination (UT) has been selected as an alternative method. Generally the UT on the austenitic welds is regarded as a great challenge due to the high attenuation and dispersion of the ultrasonic signal. In this paper, Phased array ultrasonic examination (PAUT) has been introduced on double sided T-shape austenitic welds of the ITER VV as a major NDE method as well as RT. Several dozens of qualification blocks with artificial defects, which are parallel side drilled hole, embedded lack of fusion, embedded repair weld notch, embedded parallel vertical notch, and so on, have been designed and fabricated to simulate all potential defects during welding process. PAUT techniques on the thick austenitic welds have been developed taking into account the acceptance criteria. Test procedure including calibration of equipment is derived and qualified through

  18. Diagnosing x-ray power and energy of tungsten wire array z-pinch with a flat spectral response x-ray diode

    International Nuclear Information System (INIS)

    Wang, Kun-lun; Ren, Xiao-dong; Huang, Xian-bin; Zhang, Si-qun; Zhou, Shao-tong; Dan, Jia-kun; Li, Jing; Xu, Qiang; Ouyang, Kai; Cai, Hong-chun; Wei, Bing; Ji, Ce; Feng, Shu-ping; Wang, Meng; Xie, Wei-ping; Deng, Jian-jun

    2015-01-01

    Fast z-pinch is a very efficient way of converting electromagnetic energy to radiation. With an 8-10 MA current on primary test stand facility, about 1 MJ electromagnetic energy is delivered to vacuum chamber, which heats z-pinch plasma to radiate soft x-ray. To develop a pulsed high power x-ray source, we studied the applicability of diagnosing x-ray power from tungsten wire array z-pinch with a flat spectral response x-ray diode (FSR-XRD). The detector was originally developed to diagnose radiation of a hohlraum in SG-III prototype laser facility. It utilized a gold cathode XRD and a specially configured compound gold filter to yield a nearly flat spectral response in photon energy range of 0.1-4 keV. In practice, it was critical to avoid surface contamination of gold cathode. It is illustrated that an exposure of an XRD to multiple shots caused a significant change of response. Thus, in diagnosing x-ray power and energy, we used each XRD in only one shot after calibration. In a shot serial, output of FSR-XRD was compared with output of a nickel bolometer. In these shots, the outputs agreed with each other within their uncertainties which were about 12% for FSR-XRD and about 15% for bolometer. Moreover, the ratios between the FSR-XRD and the bolometer among different shots were explored. In 8 shots, the standard deviation of the ratio was 6%. It is comparable to XRD response change of 7%

  19. Electrodeposition of self-assembled poly(3,4-ethylenedioxythiophene) @gold nanoparticles on stainless steel wires for the headspace solid-phase microextraction and gas chromatographic determination of several polycyclic aromatic hydrocarbons.

    Science.gov (United States)

    Yang, Liu; Zhang, Jie; Zhao, Faqiong; Zeng, Baizhao

    2016-11-04

    In this work, a novel poly(3,4-ethylenedioxythiophene)@Au nanoparticles (PEDOT@AuNPs) hybrid coating was prepared and characterized. Firstly, the monomer 3,4-ethylenedioxythiophene was self-assembled on AuNPs, and then electropolymerization was performed on a stainless steel wire by cyclic voltammetry. The obtained PEDOT@AuNPs coating was rough and showed cauliflower-like micro-structure with thickness of ∼40μm. It displayed high thermal stability (up to 330°C) and mechanical stability and could be used for at least 160 times of solid phase microextraction (SPME) without decrease of extraction performance. The coating exhibited high extraction capacity for some environmental pollutants (e.g. naphthalene, 2-methylnaphthalene, acenaphthene, fluorene and phenathrene) due to the hydrophobic interaction between the analytes and PEDOT and the additional physicochemical affinity between polycyclic aromatic hydrocarbons and AuNPs. Through coupling with GC detection, good linearity (correlation coefficients higher than 0.9894), wide linear range (0.01-100μgL -1 ), low limits of detection (2.5-25ngL -1 ) were achieved for these analytes. The reproducibility (defined as RSD) was 1.1-4.0% and 5.8-9.9% for single fiber (n=5) and fiber-to-fiber (n=5), respectively. The SPME-GC method was successfully applied for the determination of three real samples, and the recoveries for standards added were 89.9-106% for lake water, 95.7-112% for rain water and 93.2-109% for soil saturated water, respectively. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Evaluation of the fit of preformed nickel titanium arch wires on normal occlusion dental arches

    Directory of Open Access Journals (Sweden)

    Rakhn G. Al-Barakati

    2016-01-01

    Conclusions: Using an archwire form with the best fit to the dental arch should produce minimal changes in the dental arch form when NiTi wires are used and require less customization when stainless-steel wires are used.

  1. Wire Chamber

    CERN Multimedia

    Magnetoscriptive readout wire chamber. Multi-wire detectors contain layers of positively and negatively charged wires enclosed in a chamber full of gas. A charged particle passing through the chamber knocks negatively charged electrons out of atoms in the gas, leaving behind positive ions. The electrons are pulled towards the positively charged wires. They collide with other atoms on the way, producing an avalanche of electrons and ions. The movement of these electrons and ions induces an electric pulse in the wires which is collected by fast electronics. The size of the pulse is proportional to the energy loss of the original particle.

  2. Wire chamber

    CERN Multimedia

    1967-01-01

    Magnetoscriptive readout wire chamber.Multi-wire detectors contain layers of positively and negatively charged wires enclosed in a chamber full of gas. A charged particle passing through the chamber knocks negatively charged electrons out of atoms in the gas, leaving behind positive ions. The electrons are pulled towards the positively charged wires. They collide with other atoms on the way, producing an avalanche of electrons and ions. The movement of these electrons and ions induces an electric pulse in the wires which is collected by fast electronics. The size of the pulse is proportional to the energy loss of the original particle.

  3. Using 1D theory to understand 3D stagnation of a wire-array Z pinch in the absence of radiation

    Science.gov (United States)

    Yu, Edmund

    2015-11-01

    Many high-energy-density systems implode towards the axis of symmetry, where it collides on itself, forming a hot plasma. However, experiments show these imploding plasmas develop three-dimensional (3D) structures. As a result, the plasma cannot completely dissipate its kinetic energy at stagnation, instead retaining significant 3D flow. A useful tool for understanding the effects of this residual flow is 3D simulation, but the amount and complexity of information can be daunting. To address this problem, we explore the connection between 3D simulation and one-dimensional (1D) theory. Such a connection, if it exists, is mutually beneficial: 1D theory can provide a clear picture of the underlying dynamics of 3D stagnation. On the other hand, deviations between theory and simulation suggest how 1D theory must be modified to account for 3D effects. In this work, we focus on a 3D, magnetohydrodynamic simulation of a compact wire-array Z pinch. To provide a simpler background against which to test our ideas, we artificially turn off radiation during the stagnation phase. Examination of the initial accumulation of mass on axis reveals oblique collision between jets, shock accretion, and vortex formation. Despite evidence for shock-dominated stagnation, a 1D shockless stagnation solution is more appropriate for describing the global dynamics, in that it reproduces the increase of on-axis density with time. However, the 1D solution must be modified to account for 3D effects: the flows suggest enhanced thermal transport as well as centrifugal force. Upon reaching peak compression, the stagnation transitions to a second phase, in which the high-pressure core on axis expands outward into the remaining imploding plasma. During this phase, a 1D shock solution describes the growth of the shock accretion region, as well as the decrease of on-axis density with time. However, the effect of 3D flows is still present: the on-axis temperature does not cool during expansion, which

  4. wire chamber

    CERN Multimedia

    Proportional multi-wire chamber. Multi-wire detectors contain layers of positively and negatively charged wires enclosed in a chamber full of gas. A charged particle passing through the chamber knocks negatively charged electrons out of atoms in the gas, leaving behind positive ions. The electrons are pulled towards the positively charged wires. They collide with other atoms on the way, producing an avalanche of electrons and ions. The movement of these electrons and ions induces an electric pulse in the wires which is collected by fast electronics. The size of the pulse is proportional to the energy loss of the original particle. Proportional wire chambers allow a much quicker reading than the optical or magnetoscriptive readout wire chambers.

  5. wire chamber

    CERN Multimedia

    1985-01-01

    Multi-wire detectors contain layers of positively and negatively charged wires enclosed in a chamber full of gas. A charged particle passing through the chamber knocks negatively charged electrons out of atoms in the gas, leaving behind positive ions. The electrons are pulled towards the positively charged wires. They collide with other atoms on the way, producing an avalanche of electrons and ions. The movement of these electrons and ions induces an electric pulse in the wires which is collected by fast electronics. The size of the pulse is proportional to the energy loss of the original particle.

  6. Wire chamber

    CERN Multimedia

    Multi-wire detectors contain layers of positively and negatively charged wires enclosed in a chamber full of gas. A charged particle passing through the chamber knocks negatively charged electrons out of atoms in the gas, leaving behind positive ions. The electrons are pulled towards the positively charged wires. They collide with other atoms on the way, producing an avalanche of electrons and ions. The movement of these electrons and ions induces an electric pulse in the wires which is collected by fast electronics. The size of the pulse is proportional to the energy loss of the original particle.

  7. wire chamber

    CERN Multimedia

    Multi-wire detectors contain layers of positively and negatively charged wires enclosed in a chamber full of gas. A charged particle passing through the chamber knocks negatively charged electrons out of atoms in the gas, leaving behind positive ions. The electrons are pulled towards the positively charged wires. They collide with other atoms on the way, producing an avalanche of electrons and ions. The movement of these electrons and ions induces an electric pulse in the wires which is collected by fast electronics. The size of the pulse is proportional to the energy loss of the original particle.

  8. wire chamber

    CERN Multimedia

    Was used in ISR (Intersecting Storage Ring) split field magnet experiment. Multi-wire detectors contain layers of positively and negatively charged wires enclosed in a chamber full of gas. A charged particle passing through the chamber knocks negatively charged electrons out of atoms in the gas, leaving behind positive ions. The electrons are pulled towards the positively charged wires. They collide with other atoms on the way, producing an avalanche of electrons and ions. The movement of these electrons and ions induces an electric pulse in the wires which is collected by fast electronics. The size of the pulse is proportional to the energy loss of the original particle.

  9. Mapping the Galvanic Corrosion of Three Coupled Metal Alloys Using Coupled Multielectrode Array: Influence of Chloride Ion Concentration

    Directory of Open Access Journals (Sweden)

    Hong Ju

    2018-04-01

    Full Text Available The galvanic corrosion behavior of three metal alloys commonly used in water desalination plants was investigated using coupled multielectrode arrays consisting of aluminum-brass (HAl77-2, titanium alloy (TA2, and 316L stainless steel (316L SS. The three electrode types were coupled galvanically and arranged in different geometric configurations. Their corrosion behavior was characterized as a function of the chloride concentration. The potential and current distributions of the three-electrode coupling systems display electrochemical inhomogeneity. Generally, the aluminum-brass wires are anodic versus the titanium alloy and stainless steel. The titanium alloy acts as a primary cathode, and the 316L SS acts as a secondary cathode. The corrosion rate of aluminum-brass depends on the concentration of chloride ion, with a maximum corrosion rate at a chloride concentration of 2.3 wt %. In terms of geometrical arrangements, when the anodic HAl77-2 wires are located on the edge and are connected to the 316L SS wires in the coupling system, the main anodic area enlarges, especially in the area adjacent to the 316L SS wires. When the HAl77-2 wires are located between (in the middle of the two other types of wires, the corrosion rates are higher than the corrosion rates observed from the other two geometrical arrangements.

  10. Mapping the Galvanic Corrosion of Three Coupled Metal Alloys Using Coupled Multielectrode Array: Influence of Chloride Ion Concentration.

    Science.gov (United States)

    Ju, Hong; Duan, JinZhuo; Yang, Yuanfeng; Cao, Ning; Li, Yan

    2018-04-20

    The galvanic corrosion behavior of three metal alloys commonly used in water desalination plants was investigated using coupled multielectrode arrays consisting of aluminum-brass (HAl77-2), titanium alloy (TA2), and 316L stainless steel (316L SS). The three electrode types were coupled galvanically and arranged in different geometric configurations. Their corrosion behavior was characterized as a function of the chloride concentration. The potential and current distributions of the three-electrode coupling systems display electrochemical inhomogeneity. Generally, the aluminum-brass wires are anodic versus the titanium alloy and stainless steel. The titanium alloy acts as a primary cathode, and the 316L SS acts as a secondary cathode. The corrosion rate of aluminum-brass depends on the concentration of chloride ion, with a maximum corrosion rate at a chloride concentration of 2.3 wt %. In terms of geometrical arrangements, when the anodic HAl77-2 wires are located on the edge and are connected to the 316L SS wires in the coupling system, the main anodic area enlarges, especially in the area adjacent to the 316L SS wires. When the HAl77-2 wires are located between (in the middle of) the two other types of wires, the corrosion rates are higher than the corrosion rates observed from the other two geometrical arrangements.

  11. Evaluation of Effects of Sterilization on Mechanical Properties of Orthodontic Wires

    Directory of Open Access Journals (Sweden)

    Sridhar Kannan

    2012-01-01

    Results: Dry heat sterilization, autoclave, 2% glutaraldehyde solution had no effect on ultimate tensile strength, 0.1% yield strength, modulus of elasticity and percentage elongation of stainless steel and elgiloy wires. Tensile strength and yield strength of Nitinol and b-titanium wires together with percentage elongation of b-titanium wires significantly increased following dry heat sterilization and autoclave. No detrimental effects on properties of wires were observed. These sterilization procedures could be safely recommended for sterilization of orthodontic wires.

  12. Avaliação do coeficiente de atrito de braquetes metálicos e estéticos com fios de aço inoxidável e beta-titânio Evaluation of the friction coefficient of metal and esthetic brackets with stainless steel and beta-titanium wires

    Directory of Open Access Journals (Sweden)

    Cristine Pritsch Braga

    2004-12-01

    Full Text Available Um fator importante que define a eficácia dos aparelhos ortodônticos fixos é o atrito existente entre as superfícies de fios e braquetes. Assim, este estudo teve como objetivo investigar o coeficiente de atrito estático entre fios de aço inoxidável e beta-titânio (TP Orthodontics e braquetes de aço inoxidável (Dynalock® - Unitek, braquetes estéticos com slot de aço inoxidável (Clarity® - Unitek e estéticos convencionais (Allure® - GAC. Para tanto, construiu-se um equipamento no Departamento de Engenharia Mecânica e Mecatrônica da PUCRS. Antes de serem iniciados os testes, foi quantificado o erro de método e constatou-se que não houve interferência significante (p>0,05 do fator operador nas medições. Então, pôde-se calcular o valor do coeficiente de atrito, obtido pela divisão da força de atrito pela carga normal. O método estatístico utilizado neste estudo foi Análise de Variância (ANOVA e teste de Comparações Múltiplas (Tukey. Constatou-se que: 1 a combinação com menor coeficiente de atrito foi composta pelo fio de aço inoxidável e braquete Dynalock® e a que apresentou maior coeficiente foi a do braquete Allure® com o fio de beta-titânio; 2 o fio de beta-titânio apresentou coeficiente de atrito significativamente maior do que o fio de aço inoxidável; 3 o braquete Dynalock® não apresentou diferenças significativas em relação ao coeficiente de atrito do braquete Clarity® quando o fio utilizado foi de beta-titânio. No entanto, quando o fio testado foi de aço inoxidável, apresentou coeficiente de atrito significativamente menor. O braquete Clarity® apresentou coeficiente de atrito significativamente menor do que o braquete Allure®.An important factor that defines the effectiveness of the appliances is the friction between the surfaces of wires and brackets. Thus, that study was developed in order to investigate the static friction coefficient between stainless steel and beta-titanium wires (TP

  13. Fabrication of FFTF fuel pin wire wrap

    International Nuclear Information System (INIS)

    Epperson, E.M.

    1980-06-01

    Lateral spacing between FFTF fuel pins is required to provide a passageway for the sodium coolant to flow over each pin to remove heat generated by the fission process. This spacing is provided by wrapping each fuel pin with type 316 stainless steel wire. This wire has a 1.435mm (0.0565 in.) to 1.448mm (0.0570 in.) diameter, contains 17 +- 2% cold work and was fabricated and tested to exacting RDT Standards. About 500 kg (1100 lbs) or 39 Km (24 miles) of fuel pin wrap wire is used in each core loading. Fabrication procedures and quality assurance tests are described

  14. Laparoscopic extraction of fractured Kirschner wire from the pelvis

    Directory of Open Access Journals (Sweden)

    Vinaykumar N Thati

    2014-01-01

    Full Text Available Kirschner wire is a sharp stainless steel guide wire commonly used in fixation of fractured bone segments. There are case reports of migrated K wire from the upper limb into the spine and chest, and from the lower limb in to the abdomen and pelvis. Here, we present a case report of accidental intra-operative fracture of K wire during percutaneous femoral nailing for sub-trochanteric fracture of right femur, which migrated in to the pelvis when the orthopaedician tried to retrieve the broken segment of the K wire. This case highlights the use of laparoscopy as minimally invasive surgical option.

  15. Time resolved investigations on flow field and quasi wall shear stress of an impingement configuration with pulsating jets by means of high speed PIV and a surface hot wire array

    International Nuclear Information System (INIS)

    Janetzke, Timm; Nitsche, Wolfgang

    2009-01-01

    The effects of jet pulsation on flow field and quasi wall shear stress of an impingement configuration were investigated experimentally. The excitation Strouhal number and amplitude were varied as the most influential parameters. A line-array with three submerged air jets, and a confining plate were used. The flow field analysis by means of time resolved particle image velocimetry shows that the controlled excitation can considerably affect the near-field flow of an impinging jet array. These effects are visualized as organization of the coherent flow structures. Augmentation of the Kelvin-Helmholtz vortices in the jet shear layer depends on the Strouhal number and pulsation magnitude and can be associated with pairing of small scale vortices in the jet. A total maximum of vortex strength was observed when exciting with Sr = 0.82 and coincident high amplitudes. Time resolved interaction between impinging vortices and impingement plate boundary layer due to jet excitation was verified by using an array of 5 μm surface hot wires. Corresponding to the global flow field modification due to periodic jet pulsation, the impact of the vortex rings on the wall boundary layer is highly influenced by the above mentioned excitation parameters and reaches a maximum at Sr = 0.82.

  16. A tentative opinion of modeling plasma formation in metallic wire Z pinch

    International Nuclear Information System (INIS)

    Ding Ning

    2002-01-01

    Numerous experiments in both single wire and in wire arrays have attracted much attention. For the wire array Z-pinch implosions the plasma formation in the metallic wire Z pinches is a key question. By means of analyzing a number of single-wire and multi-wire experiments, two models to describe the behavior of a wire array Z-pinch in initial phase are suggested. In this phase each wire carries a rising current and behaves independently in a way similar to that found in single wire Z-pinch experiments in which a comparable current in one wire is employed. Based on one- or/and two-dimensional magnetohydrodynamics (MHD) theory, one model is used to simulate the electrical explosion stage of the metallic wire, another is used to simulate the wire-plasma formation stage

  17. Pacemaker wires

    International Nuclear Information System (INIS)

    Fransson, S.G.

    1993-01-01

    Evaluation of pacemaker wires were performed by comparing Advanced Multiple Beam Equalization Radiography (AMBER) with conventional chest radiography. The scanning equalization technique of the AMBER unit makes it superior to conventional technique in the depiction of different structures in the mediastinum or in the pleural sinuses. So far motion artifacts have not been considered clinically important. The longer exposure time, however, may impair the assessment of pacemaker wires. The motion artifact described may not only make adequate evaluation impossible but may even give a false impression of a lead fracture. The difference between the two systems was significant. (orig.)

  18. The role of step-flow dynamics in interface roughening and in the spontaneous formation of InGaAs/InP wire-like arrays

    International Nuclear Information System (INIS)

    Cox, H.M.; Aspnes, D.E.; Allen, S.J.; Bastos, P.; Hwang, D.M.; Mahajan, S.; Shahid, M.A.; Morais, P.C.

    1990-06-01

    We investigate a morphological instability that causes an InGaAs/InP multiquantum well structure grown on a vicinal (001)InP surface to spontaneously evolve into an array of InGaAs quasi-one-dimensional filaments buried in an InP matrix. To explain this behavior, we propose a step-flow growth model involving different lateral growth velocities for heteroepitaxy and homoepitaxy. A computer simulation based on the model agrees closely with experiment. (author)

  19. Test plan for Enraf Series 854 level gauge wire testing

    International Nuclear Information System (INIS)

    Barnes, G.A.

    1994-01-01

    An Enraf Series 854 level gauge was installed on tank 241-S-106 during the first week of June 1994. On August 11, 1994, the gauge's stainless steel measuring wire broke. After examination and laboratory analysis, it was determined that the wire broke due to severe chloride ion corrosion. It is suspected that the chloride ion contamination came from the radiation induced breakdown of the polyvinyl chloride (PVC) riser liner. It is well documented that the breakdown of PVC due to radiation produces chloride containing compounds. This document provides a qualification test plan to remove and have analyzed the wire in all of the Enraf Series 854 that have been installed to date. These tests will confirm the presence or absence of chloride ions in the PVC liners and/or on the Enraf measuring wires installed in the tanks. This test will involve removing the 316 stainless steel wire drums from all of the existing Enraf Series 854 level gauges that have been installed. New 316 stainless steel wire drums shall be installed into the gauges and the gauges will be placed back into service. The wire that is removed from the gauges shall be sent to the 222-S Lab or the Pacific Northwest Laboratory (PNL) for analysis. Additional wire replacements will occur at intervals as determined necessary by the results of the laboratory analyses

  20. Monitoring and evaluation of wire mesh forming life

    Science.gov (United States)

    Enemuoh, Emmanuel U.; Zhao, Ping; Kadlec, Alec

    2018-03-01

    Forming tables are used with stainless steel wire mesh conveyor belts to produce variety of products. The forming tables will typically run continuously for several days, with some hours of scheduled downtime for maintenance, cleaning and part replacement after several weeks of operation. The wire mesh conveyor belts show large variation in their remaining life due to associated variations in their nominal thicknesses. Currently the industry is dependent on seasoned operators to determine the replacement time for the wire mesh formers. The drawback of this approach is inconsistency in judgements made by different operators and lack of data knowledge that can be used to develop decision making system that will be more consistent with wire mesh life prediction and replacement time. In this study, diagnostic measurements about the health of wire mesh former is investigated and developed. The wire mesh quality characteristics considered are thermal measurement, tension property, gage thickness, and wire mesh wear. The results show that real time thermal sensor and wear measurements would provide suitable data for the estimation of wire mesh failure, therefore, can be used as a diagnostic parameter for developing structural health monitoring (SHM) system for stainless steel wire mesh formers.

  1. Effects of a diamond-like carbon coating on the frictional properties of orthodontic wires.

    Science.gov (United States)

    Muguruma, Takeshi; Iijima, Masahiro; Brantley, William A; Mizoguchi, Itaru

    2011-01-01

    To test the hypothesis that a diamond-like carbon coating does not affect the frictional properties of orthodontic wires. Two types of wires (nickel-titanium and stainless steel) were used, and diamond-like carbon (DLC) films were deposited on the wires. Three types of brackets, a conventional stainless steel bracket and two self-ligating brackets, were used for measuring static friction. DLC layers were observed by three-dimensional scanning electron microscopy (3D-SEM), and the surface roughness was measured. Hardness and elastic modulus were obtained by nanoindentation testing. Frictional forces and surface roughness were compared by the Kruskal-Wallis and Mann-Whitney U-tests. The hardness and elastic modulus of the wires were compared using Student's t-test. When angulation was increased, the DLC-coated wires showed significantly less frictional force than the as-received wires, except for some wire/bracket combinations. Thin DLC layers were observed on the wire surfaces by SEM. As-received and DLC-coated wires had similar surface morphologies, and the DLC-coating process did not affect the surface roughness. The hardness of the surface layer of the DLC-coated wires was much higher than for the as-received wires. The elastic modulus of the surface layer of the DLC-coated stainless steel wire was less than that of the as-received stainless steel wire, whereas similar values were found for the nickel-titanium wires. The hypothesis is rejected. A DLC-coating process does reduce the frictional force.

  2. Effects of irradiation on the fracture properties of stainless steel weld overlay cladding

    International Nuclear Information System (INIS)

    Haggag, F.M.; Corwin, W.R.; Nanstad, R.K.

    1989-01-01

    Stainless steel weld overlay cladding was fabricated using the submerged arc, single-wire, oscillating-electrode, and the three-wire, series-arc methods. Three layers of cladding were applied to a pressure vessel plate to provide adequate thickness for fabrication of test specimens, and irradiations were conducted at temperatures and to fluences relevant to power reactor operation. For the first single-wire method, the first layer was type 309, and the upper two layers were type 308 stainless steel. The type 309 was diluted considerably by excessive melting of the base plate. The three-wire method used various combinations of types 308, 309, and 304 stainless steel weld wires, and produced a highly controlled weld chemistry, microstructure, and fracture properties in all three layers of the weld. 14 refs., 15 figs., 4 tabs

  3. Application of irradiated wire

    International Nuclear Information System (INIS)

    Uda, I.; Kozima, K.; Suzuki, S.; Tada, S.; Torisu, S.; Veno, K.

    1984-01-01

    Rubber insulated wires are still useful for internal wiring in motor vehicles and electrical equipment because of flexibility and toughness. Irradiated cross-linked rubber materials have been successfully introduced for use with fusible link wire and helically coiled cord

  4. Improvement of cold wire drawing process by electropulsing

    OpenAIRE

    Sánchez Egea, Antonio José; González Rojas, Hernan Alberto; Jorba Peiró, Jordi

    2015-01-01

    The electroplastic effects on wire drawing process assisted with different short time current pulses configurations are investigated experimentally. The current pulses were induced to a specimen during the drawing process. The studied material is the 308L stainless steel. Current densities of 185 A/mm2, frequencies range from 140 to 350 Hz and pulse duration range from 100 to 250 μs were used in the electrically‐assisted wire drawing process. Frequency and pulse duration are...

  5. Noncontextual Wirings

    Science.gov (United States)

    Amaral, Barbara; Cabello, Adán; Cunha, Marcelo Terra; Aolita, Leandro

    2018-03-01

    Contextuality is a fundamental feature of quantum theory necessary for certain models of quantum computation and communication. Serious steps have therefore been taken towards a formal framework for contextuality as an operational resource. However, the main ingredient of a resource theory—a concrete, explicit form of free operations of contextuality—was still missing. Here we provide such a component by introducing noncontextual wirings: a class of contextuality-free operations with a clear operational interpretation and a friendly parametrization. We characterize them completely for general black-box measurement devices with arbitrarily many inputs and outputs. As applications, we show that the relative entropy of contextuality is a contextuality monotone and that maximally contextual boxes that serve as contextuality bits exist for a broad class of scenarios. Our results complete a unified resource-theoretic framework for contextuality and Bell nonlocality.

  6. Evaluation of mechanical properties in metal wire mesh supported selective catalytic reduction (SCR) catalyst structures

    Science.gov (United States)

    Rajath, S.; Siddaraju, C.; Nandakishora, Y.; Roy, Sukumar

    2018-04-01

    The objective of this research is to evaluate certain specific mechanical properties of certain stainless steel wire mesh supported Selective catalytic reduction catalysts structures wherein the physical properties of the metal wire mesh and also its surface treatments played vital role thereby influencing the mechanical properties. As the adhesion between the stainless steel wire mesh and the catalyst material determines the bond strength and the erosion resistance of catalyst structures, surface modifications of the metal- wire mesh structure in order to facilitate the interface bonding is therefore very important to realize enhanced level of mechanical properties. One way to enhance such adhesion properties, the stainless steel wire mesh is treated with the various acids, i.e., chromic acid, phosphoric acid including certain mineral acids and combination of all those in various molar ratios that could generate surface active groups on metal surface that promotes good interface structure between the metal- wire mesh and metal oxide-based catalyst material and then the stainless steel wire mesh is dipped in the glass powder slurry containing some amount of organic binder. As a result of which the said catalyst material adheres to the metal-wire mesh surface more effectively that improves the erosion profile of supported catalysts structure including bond strength.

  7. Gamma spectrometry on MANITU 271-01 gamma scan wires

    International Nuclear Information System (INIS)

    Dassel, G.; Buurveld, H.A.; Minkema, J.

    1994-08-01

    A series of irradiation experiments (271-series) is being performed of the sustain programme for material development and characterization of the NET (Next European Torus). In the framework of the first irradiation experiment 271-01, with irradiation up to 0.2 dpa, four gamma scan wires have been examined by gamma scanning. The purpose of the gamma scan wires (GSW) is to get information about the neutron fluence distribution in the capsules during irradiation. In the stainless steel wires the nuclides Co-58, Mu-54, Fe-59 and Co-60 are produced, are characteristic for fast and thermal neutron reactions. (orig./HP)

  8. Preparation, characterization, and applications of a novel solid-phase microextraction fiber by sol-gel technology on the surface of stainless steel wire for determination of poly cyclic aromatic hydrocarbons in aquatic environmental samples

    International Nuclear Information System (INIS)

    Es-haghi, Ali; Hosseininasab, Valiallah; Bagheri, Habib

    2014-01-01

    Graphical abstract: - Highlights: • A novel solid-phase microextraction (SPME) fiber was prepared using sol–gel technology. • Sol–gel coating was performed on stainless steel substrate. • The new fibers are robust and unbreakable with temperature stability. • The fibers were used for extraction of PAHs from aqueous samples. - Abstract: A novel solid-phase microextraction(SPME) fiber was prepared using sol–gel technology with ethoxylated nonylphenol as a fiber coating material. The fiber was employed to develop a headspace SPME–GC–MS method suitable for quantification of 13 polycyclic aromatic hydrocarbons (PAHs) in water samples. Surface characteristics of the fibers were inspected by energy dispersive X-ray (EDX) spectroscopy as well as by scanning electron microscopy (SEM). The SEM measurements showed the presence of highly porous nano-sized particles in the coating. Important parameters affecting the extraction efficiency such as extraction temperature and time, desorption conditions as well as ionic strength have been evaluated and optimized. In the next step, the validation of the new method have been performed, finding it to be specific in the trace analysis of PAHs, with the limit of detection (LOD) ranging from 0.01 to 0.5 μg L −1 and the linear range from the respective LOD to 200 μg L −1 with RSD amounting to less than 8%. The thermal stability of the fibers was investigated as well and they were found to be durable at 280 °C for 345 min. Furthermore, the proposed method was successfully applied for quantification of PAHs in real water samples

  9. Preparation, characterization, and applications of a novel solid-phase microextraction fiber by sol-gel technology on the surface of stainless steel wire for determination of poly cyclic aromatic hydrocarbons in aquatic environmental samples

    Energy Technology Data Exchange (ETDEWEB)

    Es-haghi, Ali, E-mail: a.eshaghi@rvsri.ac.ir [Department of Physico Chemistry, Razi Vaccine and Serum Research Institute, PO Box 31975/148, Karaj (Iran, Islamic Republic of); Hosseininasab, Valiallah; Bagheri, Habib [Environmental and Bio-Analytical Laboratories, Department of Chemistry, Sharif University of Technology, PO Box 11365-9516, Tehran (Iran, Islamic Republic of)

    2014-02-01

    Highlights: • A novel solid-phase microextraction (SPME) fiber was prepared using sol–gel technology. • Sol–gel coating was performed on stainless steel substrate. • The new fibers are robust and unbreakable with temperature stability. • The fibers were used for extraction of PAHs from aqueous samples. Abstract: A novel solid-phase microextraction(SPME) fiber was prepared using sol–gel technology with ethoxylated nonylphenol as a fiber coating material. The fiber was employed to develop a headspace SPME–GC–MS method suitable for quantification of 13 polycyclic aromatic hydrocarbons (PAHs) in water samples. Surface characteristics of the fibers were inspected by energy dispersive X-ray (EDX) spectroscopy as well as by scanning electron microscopy (SEM). The SEM measurements showed the presence of highly porous nano-sized particles in the coating. Important parameters affecting the extraction efficiency such as extraction temperature and time, desorption conditions as well as ionic strength have been evaluated and optimized. In the next step, the validation of the new method have been performed, finding it to be specific in the trace analysis of PAHs, with the limit of detection (LOD) ranging from 0.01 to 0.5 μg L⁻¹ and the linear range from the respective LOD to 200 μg L⁻¹with RSD amounting to less than 8%. The thermal stability of the fibers was investigated as well and they were found to be durable at 280 °C for 345 min. Furthermore, the proposed method was successfully applied for quantification of PAHs in real water samples.

  10. Mechanical and metallurgical changes on 308L wires drawn by electropulses

    OpenAIRE

    Sánchez Egea, Antonio José; González Rojas, Hernan Alberto; Celentano, Diego Javier; Jorba Peiró, Jordi

    2015-01-01

    The electroplastic effects resulting from different electropulses configurations on a wire drawing process are investigated experimentally and numerically. Electropulses are induced into 308L stainless steel while it is simultaneously wire drawn. A current density of 185 A/mm2, a frequency range from 140 to 355 Hz and a pulse duration range from 100 to 250 µs are combined to electrically assist the wire drawing process. The electropulsing influence is studied in several mechanical parameters,...

  11. Wire-number effects on high-power annular z-pinches and some characteristics at high wire number

    Energy Technology Data Exchange (ETDEWEB)

    SANFORD,THOMAS W. L.

    2000-05-23

    Characteristics of annular wire-array z-pinches as a function of wire number and at high wire number are reviewed. The data, taken primarily using aluminum wires on Saturn are comprehensive. The experiments have provided important insights into the features of wire-array dynamics critical for high x-ray power generation, and have initiated a renaissance in z-pinches when high numbers of wires are used. In this regime, for example, radiation environments characteristic of those encountered during the early pulses required for indirect-drive ICF ignition on the NIF have been produced in hohlraums driven by x-rays from a z-pinch, and are commented on here.

  12. Wire-number effects on high-power annular z-pinches and some characteristics at high wire number

    International Nuclear Information System (INIS)

    SANFORD, THOMAS W. L.

    2000-01-01

    Characteristics of annular wire-array z-pinches as a function of wire number and at high wire number are reviewed. The data, taken primarily using aluminum wires on Saturn are comprehensive. The experiments have provided important insights into the features of wire-array dynamics critical for high x-ray power generation, and have initiated a renaissance in z-pinches when high numbers of wires are used. In this regime, for example, radiation environments characteristic of those encountered during the early pulses required for indirect-drive ICF ignition on the NIF have been produced in hohlraums driven by x-rays from a z-pinch, and are commented on here

  13. Breakdown dynamics of electrically exploding thin metal wires in vacuum

    Science.gov (United States)

    Sarkisov, G. S.; Caplinger, J.; Parada, F.; Sotnikov, V. I.

    2016-10-01

    Using a two-frame intensified charge coupled device (iCCD) imaging system with a 2 ns exposure time, we observed the dynamics of voltage breakdown and corona generation in experiments of fast ns-time exploding fine Ni and stainless-steel (SS) wires in a vacuum. These experiments show that corona generation along the wire surface is subjected to temporal-spatial inhomogeneity. For both metal wires, we observed an initial generation of a bright cathode spot before the ionization of the entire wire length. This cathode spot does not expand with time. For 25.4 μm diameter Ni and SS wire explosions with positive polarity, breakdown starts from the ground anode and propagates to the high voltage cathode with speeds approaching 3500 km/s or approximately one percent of light speed.

  14. Wire breakage in SLC wire profile monitors

    International Nuclear Information System (INIS)

    Field, C.; McCormick, D.; Raimondi, P.; Ross, M.

    1998-05-01

    Wire scanning beam profile monitors are used at the Stanford Linear Collider (SLC) for emittance preservation control and beam optics optimization. Twenty such scanners have proven most useful for this purpose and have performed a total of 1.5 million scans in the 4 to 6 years since their installation. Most of the essential scanners are equipped with 20 to 40 microm tungsten wires. SLC bunch intensities and sizes often exceed 2 x 10 7 particles/microm 2 (3C/m 2 ). The authors believe that this has caused a number of tungsten wire failures that appear at the ends of the wire, near the wire support points, after a few hundred scans are accumulated. Carbon fibers, also widely used at SLAC, have been substituted in several scanners and have performed well. In this paper, the authors present theories for the wire failure mechanism and techniques learned in reducing the failures

  15. A força de atrito em braquetes plásticos e de aço inoxidável com a utilização de quatro diferentes tipos de amarração Frictional forces in stainless steel and plastic brackets using four types of wire ligation

    Directory of Open Access Journals (Sweden)

    Vanessa Nínia Correia Lima

    2010-04-01

    Full Text Available OBJETIVO: a finalidade deste estudo in vitro foi avaliar e comparar a resistência friccional em braquetes de aço inoxidável e de policarbonato compósito amarrados com fio metálico e elastômeros. MÉTODOS: foram utilizados quatro braquetes de aço inoxidável e quatro de policarbonato compósito (PC para pré-molares levados à máquina universal de ensaio mecânico para a tração de um segmento de fio de aço inoxidável 0,019" x 0,025" na velocidade de 0,5mm/min, com 8mm de deslocamento total. A forma de amarração variou entre as seguintes possibilidades: amarração metálica com pinça de Steiner, metálica com pinça Mathieu, elastômero da marca Morelli e elastômero da marca TP Orthodontics. RESULTADOS E CONCLUSÕES: os módulos elastoméricos geraram mais atrito do que os metálicos e a amarração com pinça Mathieu provocou menor atrito quando comparada a todas as situações avaliadas. Os braquetes de PC geraram menor atrito do que os metálicos, porém, na escolha do material a ser utilizado na clínica, outras variáveis - tais como a resistência ao cisalhamento e à fratura, a estabilidade de cor e a aderência por microrganismos - devem ser consideradas.OBJECTIVE: This in vitro study evaluated and compared the frictional resistance of stainless steel and polycarbonate (PC composite brackets tied with metal wire and elastomeric ligation. METHODS: Four stainless steel and four polycarbonate composite brackets for premolars were placed in a universal testing machine for the traction of a piece of 0.019 x 0.025-in wire at 0.5 mm/min and total displacement of 8 mm. Ligations were performed according to the following alternatives: metal ligation with Steiner tying pliers; metal ligation using Mathieu tying pliers; Morelli™ elastomeric ligation; and TP Orthodontics™ elastomeric ligation. RESULTS AND CONCLUSIONS: Elastomeric modules generated more friction than the metal ligations, and the ligation with the Mathieu tying

  16. Weldability of Stainless Steels

    International Nuclear Information System (INIS)

    Saida, Kazuyoshi

    2010-01-01

    It gives an outline of metallographic properties of welding zone of stainless steels, generation and mechanisms of welding crack and decreasing of corrosion resistance of welding zone. It consists of seven chapters such as introduction, some kinds of stainless steels and properties, metallographic properties of welding zone, weld crack, toughness of welding zone, corrosion resistance and summary. The solidification modes of stainless steels, each solidification mode on the cross section of Fe-Cr-Ni alloy phase diagram, each solidification mode of weld stainless steels metal by electron beam welding, segregation state of alloy elements at each solidification mode, Schaeffler diagram, Delong diagram, effects of (P + S) mass content in % and Cr/Ni equivalent on solidification cracking of weld stainless steels metal, solidification crack susceptibility of weld high purity stainless steels metal, effects of trace impurity elements on solidification crack susceptibility of weld high purity stainless steels metal, ductile fracture susceptibility of weld austenitic stainless steels metal, effects of H2 and ferrite content on generation of crack of weld 25Cr-5N duplex stainless steels, effects of O and N content on toughness of weld SUS 447J1 metals, effect of ferrite content on aging toughness of weld austenitic stainless steel metal, corrosion morphology of welding zone of stainless steels, generation mechanism of knife line attack phenomenon, and corrosion potential of some kinds of metals in seawater at room temperature are illustrated. (S.Y.)

  17. Carbon nanotube nanoelectrode arrays

    Science.gov (United States)

    Ren, Zhifeng; Lin, Yuehe; Yantasee, Wassana; Liu, Guodong; Lu, Fang; Tu, Yi

    2008-11-18

    The present invention relates to microelectode arrays (MEAs), and more particularly to carbon nanotube nanoelectrode arrays (CNT-NEAs) for chemical and biological sensing, and methods of use. A nanoelectrode array includes a carbon nanotube material comprising an array of substantially linear carbon nanotubes each having a proximal end and a distal end, the proximal end of the carbon nanotubes are attached to a catalyst substrate material so as to form the array with a pre-determined site density, wherein the carbon nanotubes are aligned with respect to one another within the array; an electrically insulating layer on the surface of the carbon nanotube material, whereby the distal end of the carbon nanotubes extend beyond the electrically insulating layer; a second adhesive electrically insulating layer on the surface of the electrically insulating layer, whereby the distal end of the carbon nanotubes extend beyond the second adhesive electrically insulating layer; and a metal wire attached to the catalyst substrate material.

  18. Multifilament Cable Wire versus Conventional Wire for Sternal Closure in Patients Undergoing Major Cardiac Surgery

    Directory of Open Access Journals (Sweden)

    You Na Oh

    2015-08-01

    Full Text Available Background: Stainless steel wiring remains the most popular technique for primary sternal closure. Recently, a multifilament cable wiring system (Pioneer Surgical Technology Inc., Marquette, MI, USA was introduced for sternal closure and has gained wide acceptance due to its superior resistance to tension. We aimed to compare conventional steel wiring to multifilament cable fixation for sternal closure in patients undergoing major cardiac surgery. Methods: Data were collected retrospectively on 1,354 patients who underwent sternal closure after major cardiac surgery, using either the multifilament cable wiring system or conventional steel wires between January 2009 and October 2010. The surgical outcomes of these two groups of patients were compared using propensity score matching based on 18 baseline patient characteristics. Results: Propensity score matching yielded 392 pairs of patients in the two groups whose baseline profiles showed no significant differences. No significant differences between the two groups were observed in the rates of early mortality (2.0% vs. 1.3%, p=0.578, major wound complications requiring reconstruction (1.3% vs. 1.3%, p>0.99, minor wound complications (3.6% vs. 2.0%, p=0.279, or mediastinitis (0.8% vs. 1.0%, p=1.00. Patients in the multifilament cable group had fewer sternal bleeding events than those in the conventional wire group, but this tendency was not statistically significant (4.3% vs. 7.4%, p=0.068. Conclusion: The surgical outcomes of sternal closure using multifilament cable wires were comparable to those observed when conventional steel wires were used. Therefore, the multifilament cable wiring system may be considered a viable option for sternal closure in patients undergoing major cardiac surgery.

  19. Multifilament Cable Wire versus Conventional Wire for Sternal Closure in Patients Undergoing Major Cardiac Surgery.

    Science.gov (United States)

    Oh, You Na; Ha, Keong Jun; Kim, Joon Bum; Jung, Sung-Ho; Choo, Suk Jung; Chung, Cheol Hyun; Lee, Jae Won

    2015-08-01

    Stainless steel wiring remains the most popular technique for primary sternal closure. Recently, a multifilament cable wiring system (Pioneer Surgical Technology Inc., Marquette, MI, USA) was introduced for sternal closure and has gained wide acceptance due to its superior resistance to tension. We aimed to compare conventional steel wiring to multifilament cable fixation for sternal closure in patients undergoing major cardiac surgery. Data were collected retrospectively on 1,354 patients who underwent sternal closure after major cardiac surgery, using either the multifilament cable wiring system or conventional steel wires between January 2009 and October 2010. The surgical outcomes of these two groups of patients were compared using propensity score matching based on 18 baseline patient characteristics. Propensity score matching yielded 392 pairs of patients in the two groups whose baseline profiles showed no significant differences. No significant differences between the two groups were observed in the rates of early mortality (2.0% vs. 1.3%, p=0.578), major wound complications requiring reconstruction (1.3% vs. 1.3%, p>0.99), minor wound complications (3.6% vs. 2.0%, p=0.279), or mediastinitis (0.8% vs. 1.0%, p=1.00). Patients in the multifilament cable group had fewer sternal bleeding events than those in the conventional wire group, but this tendency was not statistically significant (4.3% vs. 7.4%, p=0.068). The surgical outcomes of sternal closure using multifilament cable wires were comparable to those observed when conventional steel wires were used. Therefore, the multifilament cable wiring system may be considered a viable option for sternal closure in patients undergoing major cardiac surgery.

  20. Base Information Transport Infrastructure Wired (BITI Wired)

    Science.gov (United States)

    2016-03-01

    2016 Major Automated Information System Annual Report Base Information Transport Infrastructure Wired (BITI Wired) Defense Acquisition Management...Combat Information Transport System program was restructured into two pre-Major Automated Information System (pre-MAIS) components: Information...Major Automated Information System MAIS OE - MAIS Original Estimate MAR – MAIS Annual Report MDA - Milestone Decision Authority MDD - Materiel

  1. Review of effects of dielectric coatings on electrical exploding wires and Z pinches

    Science.gov (United States)

    Wu, Jian; Li, Xingwen; Li, Mo; Li, Yang; Qiu, Aici

    2017-10-01

    As the most powerful x-ray source in the laboratories, the wire array Z pinches have been of great relevance to inertial confinement fusions, laboratory astrophysics, and other high-energy density applications. In order to produce x-ray with greater power and higher efficiency, the dynamics of wire array has been investigated extensively, and various methods have been proposed to improve the implosion quality of the wire array. This review focuses on the experimental and theoretical investigations regarding the effects of the dielectric coatings on electrical exploding wires and Z pinches. Since the early 2000, the electrical wire explosion related to the first stage of the wire array Z pinches has been studied extensively, and the results indicated that the dielectric coatings can significantly increase the joule energy deposition into a wire in the initial stage, and even the corona free explosion of tungsten wires can be achieved. Recently, there is an increasing interest in the dynamics of insulated wire array Z pinches. By applying dielectric coatings, the ablation process is suppressed, the x-ray start time is delayed, and the possibility of multi-peak radiation is decreased. This review is organized by the evolution dynamics of wire array Z pinches, and a broad introduction to relevant scientific concepts and various other applications are presented. According to the current research status, the challenges, opportunities and further developments of Z pinch loads using dielectric coatings are proposed to further promote the researches and their applications.

  2. Review of effects of dielectric coatings on electrical exploding wires and Z pinches

    International Nuclear Information System (INIS)

    Wu, Jian; Li, Mo; Li, Yang; Li, Xingwen; Qiu, Aici

    2017-01-01

    As the most powerful x-ray source in the laboratories, the wire array Z pinches have been of great relevance to inertial confinement fusions, laboratory astrophysics, and other high-energy density applications. In order to produce x-ray with greater power and higher efficiency, the dynamics of wire array has been investigated extensively, and various methods have been proposed to improve the implosion quality of the wire array. This review focuses on the experimental and theoretical investigations regarding the effects of the dielectric coatings on electrical exploding wires and Z pinches. Since the early 2000, the electrical wire explosion related to the first stage of the wire array Z pinches has been studied extensively, and the results indicated that the dielectric coatings can significantly increase the joule energy deposition into a wire in the initial stage, and even the corona free explosion of tungsten wires can be achieved. Recently, there is an increasing interest in the dynamics of insulated wire array Z pinches. By applying dielectric coatings, the ablation process is suppressed, the x-ray start time is delayed, and the possibility of multi-peak radiation is decreased. This review is organized by the evolution dynamics of wire array Z pinches, and a broad introduction to relevant scientific concepts and various other applications are presented. According to the current research status, the challenges, opportunities and further developments of Z pinch loads using dielectric coatings are proposed to further promote the researches and their applications. (topical review)

  3. Wire bonding in microelectronics

    CERN Document Server

    Harman, George G

    2010-01-01

    Wire Bonding in Microelectronics, Third Edition, has been thoroughly revised to help you meet the challenges of today's small-scale and fine-pitch microelectronics. This authoritative guide covers every aspect of designing, manufacturing, and evaluating wire bonds engineered with cutting-edge techniques. In addition to gaining a full grasp of bonding technology, you'll learn how to create reliable bonds at exceedingly high yields, test wire bonds, solve common bonding problems, implement molecular cleaning methods, and much more. Coverage includes: Ultrasonic bonding systems and technologies, including high-frequency systems Bonding wire metallurgy and characteristics, including copper wire Wire bond testing Gold-aluminum intermetallic compounds and other interface reactions Gold and nickel-based bond pad plating materials and problems Cleaning to improve bondability and reliability Mechanical problems in wire bonding High-yield, fine-pitch, specialized-looping, soft-substrate, and extreme-temperature wire bo...

  4. Interchip link system using an optical wiring method.

    Science.gov (United States)

    Cho, In-Kui; Ryu, Jin-Hwa; Jeong, Myung-Yung

    2008-08-15

    A chip-scale optical link system is presented with a transmitter/receiver and optical wire link. The interchip link system consists of a metal optical bench, a printed circuit board module, a driver/receiver integrated circuit, a vertical cavity surface-emitting laser/photodiode array, and an optical wire link composed of plastic optical fibers (POFs). We have developed a downsized POF and an optical wiring method that allows on-site installation with a simple annealing as optical wiring technologies for achieving high-density optical interchip interconnection within such devices. Successful data transfer measurements are presented.

  5. PS wire chamber

    CERN Multimedia

    1970-01-01

    A wire chamber used at CERN's Proton Synchrotron accelerator in the 1970s. Multi-wire detectors contain layers of positively and negatively charged wires enclosed in a chamber full of gas. A charged particle passing through the chamber knocks negatively charged electrons out of atoms in the gas, leaving behind positive ions. The electrons are pulled towards the positively charged wires. They collide with other atoms on the way, producing an avalanche of electrons and ions. The movement of these electrons and ions induces an electric pulse in the wires which is collected by fast electronics. The size of the pulse is proportional to the energy loss of the original particle.

  6. Self-protective powder wire for semiautomatic welding of corrosion resistant chromium-nickel type 18-10 steels

    International Nuclear Information System (INIS)

    Lipodaev, V.N.; Kakhovskij, N.I.; Fadeeva, G.V.

    1977-01-01

    Self-protecting NP-ANV1 powder wire has been developed for welding 18-10 type stainless steels. The use of the wire provides for the same running properties of the welds as the TsL-11 electrodes, the welding being 3-5 times more efficient

  7. Engineering task plan and status of 241-S-106 Enraf level gauge wire break

    International Nuclear Information System (INIS)

    Moore, T.L.

    1994-09-01

    This report discusses the findings of a task team which was formed which identified the need for short-term actions to re-establish tank waste level monitoring and to permanently address wire failure. The failed wire was removed and sent to Pacific Northwest Laboratory (PNL) for analysis. It was determined that the cause of the wire failure was due to chloride ion stress corrosion cracking (SCC) of the 316 stainless steel (SS) wire. Radiation induced breakdown of the polyvinyl chloride (PVC) riser liners is suspected to be the source of the chloride ions

  8. Velocity distribution measurement in wire-spaced fuel pin bundle

    International Nuclear Information System (INIS)

    Mizuta, Hiroshi; Ohtake, Toshihide; Uruwashi, Shinichi; Takahashi, Keiichi

    1974-01-01

    Flow distribution measurement was made in the subchannels of a pin bundle in air flow. The present paper is interim because the target of this work is the decision of temperature of the pin surface in contact with wire spacers. The wire-spaced fuel pin bundle used for the experiment consists of 37 simulated fuel pins of stainless steel tubes, 3000 mm in length and 31.6 mm in diameter, which are wound spirally with 6 mm stainless steel wire. The bundle is wrapped with a hexagonal tube, 3500 mm in length and 293 mm in flat-to-flat distance. The bundle is fixed with knock-bar at the entrance of air flow in the hexagonal tube. The pitch of pins in the bundle is 37.6 mm (P/D=1.19) and the wrapping pitch of wire is 1100 mm (H/D=34.8). A pair of arrow-type 5-hole Pitot tubes are used to measure the flow velocity and the direction of air flow in the pin bundle. The measurement of flow distribution was made with the conditions of air flow rate of 0.33 m 3 /sec, air temperature of 45 0 C, and average Reynolds number of 15100 (average air velocity of 20.6 m/sec.). It was found that circular flow existed in the down stream of wire spacers, that axial flow velocity was slower in the subchannels, which contained wire spacers, than in those not affected by the wire, and that the flow angle to the axial velocity at the boundary of subchannels was two thirds smaller than wire wrapping angle. (Tai, I.)

  9. Perbedaan Pelepasan Ion Nikel Dan Kromium Pada Beberapa Merek Kawat Stainless Steel Yang Direndam Dalam Asam Cuka

    OpenAIRE

    Situmeang, Meri Angelia

    2016-01-01

    PERBEDAAN PELEPASAN ION NIKEL DAN KROMIUM PADA BEBERAPA MEREK KAWAT STAINLESS STEEL YANG DIRENDAM DALAM ASAM CUKA Meri Angelia Situmeang1), P. S. Anindita 1), Juliatri1) 1)Program Studi Pendidikan Dokter Gigi Fakultas Kedokteran UNSRAT Manado, 95115 ABSTRACT Wire is one of the important components in the orthodontic treatment. Orthodontic wire inside the oral cavity can trigger the release of metal ions when contact with an environment that has an acidic pH. One type of wire used in ortho...

  10. The effects of sterilization on the tensile strength of orthodontic wires.

    Science.gov (United States)

    Staggers, J A; Margeson, D

    1993-01-01

    The purpose of this study was to evaluate the effect of sterilization on the tensile strength of 0.016" beta-titanium, nickel titanium and stainless steel wires. Three common methods of sterilization--autoclaving, dry heat and ethylene oxide--were evaluated in three test trials involving zero, one and five sterilization cycles. For each of the test trials, five pieces each of 0.016" TMA, 0.016" Sentalloy and 0.016" Tru-chrome stainless steel wires were sterilized using a standard autoclave. Five other pieces of each of the same wires were sterilized in a dryclave, while an additional five pieces of each of the three wire types were sterilized using ethylene oxide. The ultimate tensile strengths of the wires were then determined using an Instron Universal Testing Machine. The data were compared for statistical differences using analysis of variance. The results showed that dry heat sterilization significantly increased the tensile strength of TMA wires after one cycle, but not after five cycles. Autoclaving and ethylene oxide sterilization did not significantly alter the tensile strength of TMA wires. Dry heat and autoclave sterilization also significantly increased the tensile strength of Sentalloy wires, but the mean strength after five sterilization cycles was not significantly different than after one cycle. Ethylene oxide sterilization of Sentalloy wires did not significantly alter the tensile strengths of that wire. There were no significant differences in the tensile strengths of the stainless steel wires following zero, one or five cycles for any of the sterilization methods.

  11. Magnetic behavior of arrays of nickel nanowires

    International Nuclear Information System (INIS)

    Karim, S.; Maaz, K.; Ahmed, M.; Nisar, A.

    2012-01-01

    Recently, there is an increasing interest in magnetic nano wires because of their unusual properties compared to the bulk materials. To understand the complexity of nano wire arrays and to improve their potential in various applications more studies are still needed, for example, to understand completely the effect of geometrical factors, i.e. aspect ratio, areal density etc., on magnetic properties of these arrays. In this work, arrays of nickel nano wires with aspect ratio is proportional to 1200 and diameter ranging between 25-100 nm were fabricated by electrodeposition in etched ion track templates. Samples with areal density from 1 X 10/sup 6/ cm/sup -2/ to 1 X 10/ sup 8/ cm/sup -2/ were prepared. Measurements of magnetic hysteresis loops were performed at room temperature with SQUID magnetometer and magnetic properties of arrays of different diameters and aspect ratios were compared. Coercivity of the wires showed strong dependence on aspect ratio, diameter and microstructure. Room temperature coercivity of the wires showed a maximum at is proportional to 40 nm diameter and arrays with high density of nano wires showed lower coercivity. The results were discussed by taking into account anisotropies originating from the shape, crystalline structure and magnetostatic interactions among the wires and by previous experimental observations in literature. (Orig./A.B.)

  12. Towards plant wires

    OpenAIRE

    Adamatzky, Andrew

    2014-01-01

    In experimental laboratory studies we evaluate a possibility of making electrical wires from living plants. In scoping experiments we use lettuce seedlings as a prototype model of a plant wire. We approximate an electrical potential transfer function by applying direct current voltage to the lettuce seedlings and recording output voltage. We analyse oscillation frequencies of the output potential and assess noise immunity of the plant wires. Our findings will be used in future designs of self...

  13. Photovoltaic Wire, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This Small Business Innovation Research Phase I project will investigate a new architecture for photovoltaic devices based on nanotechnology: photovoltaic wire. The...

  14. Charpak hemispherical wire chamber

    CERN Multimedia

    1970-01-01

    pieces. Mesures are of the largest one. Multi-wire detectors contain layers of positively and negatively charged wires enclosed in a chamber full of gas. A charged particle passing through the chamber knocks negatively charged electrons out of atoms in the gas, leaving behind positive ions. The electrons are pulled towards the positively charged wires. They collide with other atoms on the way, producing an avalanche of electrons and ions. The movement of these electrons and ions induces an electric pulse in the wires which is collected by fast electronics. The size of the pulse is proportional to the energy loss of the original particle.

  15. Strain sensing systems tailored for tensile measurement of fragile wires

    Science.gov (United States)

    Nyilas, Arman

    2005-12-01

    Fundamental stress versus strain measurements were completed on superconducting Nb3Sn wires within the framework of IEC/TC90 and VAMAS/TWA16. A key task was the assessment of sensing systems regarding resolution, accuracy, and precision when measuring Young's modulus. Prior to actual Nb3Sn wire measurements metallic wires, consisting of copper and stainless steel having diameters similar to the Nb3Sn wire, were extensively investigated with respect to their elastic line properties using different types of extensometers. After these calibration tests Nb3Sn wire measurements of different companies resulted in several important facts with respect to total size and weight of the used extensometers. The size could be correlated to the initial stage of stress versus strain behaviour. In fact, the effect of wire curls resulting from the production line had a profound effect on Young's modulus measurements. Within this context, the possibility of determining Young's modulus from unloading compliance lines in the plastic regime of the stress-strain curve was considered. The data obtained using this test methodology were discussed under consideration of the composite nature of Nb3Sn wire. In addition, a non-contacting sensing system based on a double-beam laser extensometer was used to investigate the potential of this new sensing system.

  16. Strain sensing systems tailored for tensile measurement of fragile wires

    International Nuclear Information System (INIS)

    Nyilas, Arman

    2005-01-01

    Fundamental stress versus strain measurements were completed on superconducting Nb 3 Sn wires within the framework of IEC/TC90 and VAMAS/TWA16. A key task was the assessment of sensing systems regarding resolution, accuracy, and precision when measuring Young's modulus. Prior to actual Nb 3 Sn wire measurements metallic wires, consisting of copper and stainless steel having diameters similar to the Nb 3 Sn wire, were extensively investigated with respect to their elastic line properties using different types of extensometers. After these calibration tests Nb 3 Sn wire measurements of different companies resulted in several important facts with respect to total size and weight of the used extensometers. The size could be correlated to the initial stage of stress versus strain behaviour. In fact, the effect of wire curls resulting from the production line had a profound effect on Young's modulus measurements. Within this context, the possibility of determining Young's modulus from unloading compliance lines in the plastic regime of the stress-strain curve was considered. The data obtained using this test methodology were discussed under consideration of the composite nature of Nb 3 Sn wire. In addition, a non-contacting sensing system based on a double-beam laser extensometer was used to investigate the potential of this new sensing system

  17. Development of cutting techniques of steel pipe by wire sawing

    International Nuclear Information System (INIS)

    Kamiyama, Yoshinori; Inai, Shinsuke

    2004-01-01

    A cutting method has a high cutting efficiency and enable cutting in safe. A wire saw cutting method is used for dismantling of massive concrete structures such as nuclear power plants with an effective and safe mean. In the case of dismantling of structures with multiple pipes installed at these facilities, an effective method is also demanded. If a wire saw method to remotely cut target objects in a large block in bulk is applicable, it will be expected an effective dismantling work under severe conditions with radioactivity. Although the wire saw method has adaptability for any shapes of cutting target objects and is widely adopted in dismantling of concrete constructs, it has few actual achievements in dismantling of steel structures such as steel pipe bundle. This study aims to verify its cutting characteristics and adaptability as a cutting method by conducting a cutting basic test to develop a diamond wire saw method to efficiently cut constructs with multiple pipes in a bundle. The test proved that a wire saw cutting method apply to dismantle structures with steel pipe bundle. A wire saw for metal cutting is adaptable in dismantling of bundle of thick carbon steel and stainless steel pipes. And also a wire saw for concrete cutting is adaptable in dismantling of pipe bundle structure with a mortar. (author)

  18. 1998 wire development workshop proceedings

    International Nuclear Information System (INIS)

    1998-04-01

    This report consists of vugraphs of the presentations at the conference. The conference was divided into the following sessions: (1) First Generation Wire Development: Status and Issues; (2) First Generation Wire in Pre-Commercial Prototypes; (3) Second Generation Wire Development: Private Sector Progress and Issues; (4) Second Generation Wire Development: Federal Laboratories; and (5) Fundamental Research Issues for HTS Wire Development

  19. 1998 wire development workshop proceedings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-04-01

    This report consists of vugraphs of the presentations at the conference. The conference was divided into the following sessions: (1) First Generation Wire Development: Status and Issues; (2) First Generation Wire in Pre-Commercial Prototypes; (3) Second Generation Wire Development: Private Sector Progress and Issues; (4) Second Generation Wire Development: Federal Laboratories; and (5) Fundamental Research Issues for HTS Wire Development.

  20. Influence of Wire Electrical Discharge Machining (WEDM) process parameters on surface roughness

    Science.gov (United States)

    Yeakub Ali, Mohammad; Banu, Asfana; Abu Bakar, Mazilah

    2018-01-01

    In obtaining the best quality of engineering components, the quality of machined parts surface plays an important role. It improves the fatigue strength, wear resistance, and corrosion of workpiece. This paper investigates the effects of wire electrical discharge machining (WEDM) process parameters on surface roughness of stainless steel using distilled water as dielectric fluid and brass wire as tool electrode. The parameters selected are voltage open, wire speed, wire tension, voltage gap, and off time. Empirical model was developed for the estimation of surface roughness. The analysis revealed that off time has a major influence on surface roughness. The optimum machining parameters for minimum surface roughness were found to be at a 10 V open voltage, 2.84 μs off time, 12 m/min wire speed, 6.3 N wire tension, and 54.91 V voltage gap.

  1. Commercial and Industrial Wiring.

    Science.gov (United States)

    Kaltwasser, Stan; Flowers, Gary

    This module is the third in a series of three wiring publications, includes additional technical knowledge and applications required for job entry in the commercial and industrial wiring trade. The module contains 15 instructional units that cover the following topics: blueprint reading and load calculations; tools and equipment; service;…

  2. Rectangle Surface Coil Array in a Grid Arrangement for Resonance Imaging

    Science.gov (United States)

    2016-02-13

    magnet wires with insulating coating for rectangular surface coils. The wires are formed into four one turn 145mm x 32mm rectangular coils...switchable array, RF magnetic field, NQR, MRI, NMR, tuning, decoupling I. INTRODUCTION ESONANCE imaging can be accomplished using Nuclear Magnetic ...grid array. This achieves the switchable array configuration. Later, investigations will have circuit controlled multiplexer for switching to

  3. Thermal analysis methods for LMFBR wire wrapped bundles

    International Nuclear Information System (INIS)

    Todreas, N.E.

    1976-11-01

    A note is presented which was written to stimulate an awareness and discussion of the fundamental differences in the formulation of certain existing analysis codes for LMFBR wire wrap bundles. The contention of the note is that for those array types where data exists (one wire per pin, equal start angles), the ENERGY method results for coolant temperature under forced convection conditions provide benchmarks of reliability equal to the results of codes COBRA and TH1-3D

  4. Initial arch wires for alignment of crooked teeth with fixed orthodontic braces.

    Science.gov (United States)

    Wang, Yan; Jian, Fan; Lai, Wenli; Zhao, Zhihe; Yang, Zhi; Liao, Zhengyu; Shi, Zongdao; Wu, Taixiang; Millett, Declan T; McIntyre, Grant T; Hickman, Joy

    2010-04-14

    The initial arch wire is the first arch wire to be inserted into the fixed appliance at the beginning of orthodontic treatment and is used mainly for correcting crowding and rotations of teeth. With a number of orthodontic arch wires available for initial tooth alignment, it is important to understand which wire is most efficient, as well as which wires cause the least amount of root resorption and pain during the initial aligning stage of treatment. To identify and assess the evidence for the effects of initial arch wires for alignment of teeth with fixed orthodontic braces in relation to alignment speed, root resorption and pain intensity. We searched the following electronic databases: the Cochrane Oral Health Group's Trials Register (30th November 2009), CENTRAL (The Cochrane Library 2009, Issue 4), MEDLINE (1950 to 30th November 2009) and EMBASE (1980 to 30th November 2009). Reference lists of articles were also searched. There was no restriction with regard to publication status or language of publication. We contacted all authors of included studies to identify additional studies. Randomised controlled trials (RCTs) of initial arch wires to align crooked teeth with fixed orthodontic braces were selected. Only studies involving patients with upper and/or lower full arch fixed orthodontic appliances were included. Two review authors were responsible for study selection, validity assessment and data extraction. All disagreements were resolved by discussion amongst the review team. Corresponding authors of included studies were contacted to obtain missing information. Seven RCTs, with 517 participants, provided data for this review. Among them, five trials investigated the speed of initial tooth alignment comparing: 0.016 inch ion-implanted A-NiTi wire versus 0.016 inch A-NiTi versus 0.0175 multistrand stainless steel wire; 0.016x0.022 inch medium force active M-NiTi wire versus 0.016x0.022 inch graded force active M-NiTi wire versus 0.0155 inch multistrand

  5. Silicon Ingot Casting - Heat Exchanger Method Multi-wire Slicing - Fixed Abrasive Slicing Technique. Phase 3 Silicon Sheet Growth Development for the Large Area Sheet Task of the Low-cost Solar Array Project

    Science.gov (United States)

    Schmid, F.; Khattak, C. P.

    1979-01-01

    Several 20 cm diameter silicon ingots, up to 6.3 kg. were cast with good crystallinity. The graphite heat zone can be purified by heating it to high temperatures in vacuum. This is important in reducing costs and purification of large parts. Electroplated wires with 45 um synthetic diamonds and 30 um natural diamonds showed good cutting efficiency and lifetime. During slicing of a 10 cm x 10 cm workpiece, jerky motion occurred in the feed and rocking mechanisms. This problem is corrected and modifications were made to reduce the weight of the bladeheat by 50%.

  6. Numerical Investigation of Corrugated Wire Mesh Laminate

    Directory of Open Access Journals (Sweden)

    Jeongho Choi

    2013-01-01

    Full Text Available The aim of this work is to develop a numerical model of Corrugated Wire Mesh Laminate (CWML capturing all its complexities such as nonlinear material properties, nonlinear geometry and large deformation behaviour, and frictional behaviour. Development of such a model will facilitate numerical simulation of the mechanical behaviour of the wire mesh structure under various types of loading as well as the variation of the CWML configuration parameters to tailor its mechanical properties to suit the intended application. Starting with a single strand truss model consisting of four waves with a bilinear stress-strain model to represent the plastic behaviour of stainless steel, the finite element model is gradually built up to study single-layer structures with 18 strands of corrugated wire meshes consistency and double- and quadruple-layered laminates with alternating crossply orientations. The compressive behaviour of the CWML model is simulated using contact elements to model friction and is compared to the load-deflection behaviour determined experimentally in uniaxial compression tests. The numerical model of the CWML is then employed to conduct the aim of establishing the upper and lower bounds of stiffness and load capacity achievable by such structures.

  7. A simple homogeneous model for regular and irregular metallic wire media samples

    Science.gov (United States)

    Kosulnikov, S. Y.; Mirmoosa, M. S.; Simovski, C. R.

    2018-02-01

    To simplify the solution of electromagnetic problems with wire media samples, it is reasonable to treat them as the samples of a homogeneous material without spatial dispersion. The account of spatial dispersion implies additional boundary conditions and makes the solution of boundary problems difficult especially if the sample is not an infinitely extended layer. Moreover, for a novel type of wire media - arrays of randomly tilted wires - a spatially dispersive model has not been developed. Here, we introduce a simplistic heuristic model of wire media samples shaped as bricks. Our model covers WM of both regularly and irregularly stretched wires.

  8. Determination of separation efficiency in wire mesh mist eliminator by CFD

    International Nuclear Information System (INIS)

    Shen Shengqiang; Zhen Ni; Mu Xingsen

    2014-01-01

    On the assumption of the staggered array model, a numerical simulation of the vapor flow field in wire mesh mist eliminator along with the mechanism for droplet capture due to inertial impaction is presented in this paper. The efficiency of a single wire in the eliminator is computed in order that the efficiency of wire mesh mist eliminator can be calculated. The obtained efficiency is found to be within a reasonable agreement with the published literature data. The effect of wire diameter, pad thickness, packing fraction on the separation efficiency and the relation between Stk and the efficiency of a single wire is investigated. (authors)

  9. Wire number doubling in plasma-shell regime increases z-accelerator x-ray power

    Energy Technology Data Exchange (ETDEWEB)

    Sanford, T.W.L.; Spielman, R.B.; Chandler, G.A. [and others

    1997-11-01

    Doubling the number of tungsten wires from 120 to 240, keeping the mass fixed, increased the radiated x-ray power relative to the electrical power at the insulator stack of the z accelerator by (40{+-}20)% for 8.75- and 20-mm-radii z-pinch wire arrays. Radiation-magneto-hydrodynamic calculations suggest that the arrays were operating in the {open_quotes}plasma shell{close_quotes} regime, where the plasmas generated by the individual wires merge prior to the inward implosion of the entire array.

  10. Wire number doubling in plasma-shell regime increases z-accelerator x-ray power

    International Nuclear Information System (INIS)

    Sanford, T.W.L.; Spielman, R.B.; Chandler, G.A.

    1997-11-01

    Doubling the number of tungsten wires from 120 to 240, keeping the mass fixed, increased the radiated x-ray power relative to the electrical power at the insulator stack of the z accelerator by (40±20)% for 8.75- and 20-mm-radii z-pinch wire arrays. Radiation-magneto-hydrodynamic calculations suggest that the arrays were operating in the 'plasma shell' regime, where the plasmas generated by the individual wires merge prior to the inward implosion of the entire array

  11. Wire number doubling in plasma-shell regime increases Z-accelerator X-ray power

    International Nuclear Information System (INIS)

    Sanford, T.W.L.; Spielman, R.B.; Chandler, G.A.

    1997-01-01

    Doubling the number of tungsten wires from 120 to 240, keeping the mass fixed, increased the radiated x-ray power relative to the electrical power at the insulator stack of the z accelerator by (40 ± 20)% for 8.75- and 20-mm-radii z-pinch wire arrays. Radiation-magneto-hydrodynamic calculations suggest that the arrays were operating in the plasma shell regime, where the plasma generated by the individual wires merge prior to the inward implosion of the entire array

  12. Wire number doubling in plasma-shell regime increases Z-accelerator X-ray power

    Energy Technology Data Exchange (ETDEWEB)

    Sanford, T.W.L.; Spielman, R.B.; Chandler, G.A. [and others

    1997-12-01

    Doubling the number of tungsten wires from 120 to 240, keeping the mass fixed, increased the radiated x-ray power relative to the electrical power at the insulator stack of the z accelerator by (40 {+-} 20)% for 8.75- and 20-mm-radii z-pinch wire arrays. Radiation-magneto-hydrodynamic calculations suggest that the arrays were operating in the plasma shell regime, where the plasma generated by the individual wires merge prior to the inward implosion of the entire array.

  13. Electron beam additive manufacturing with wire - Analysis of the process

    Science.gov (United States)

    Weglowski, Marek St.; Błacha, Sylwester; Pilarczyk, Jan; Dutkiewicz, Jan; Rogal, Łukasz

    2018-05-01

    The electron beam additive manufacturing process with wire is a part of global trend to find fast and efficient methods for producing complex shapes elements from costly metal alloys such as stainless steels, nickel alloys, titanium alloys etc. whose production by other conventional technologies is unprofitable or technically impossible. Demand for additive manufacturing is linked to the development of new technologies in the automotive, aerospace and machinery industries. The aim of the presented work was to carried out research on electron beam additive manufacturing with a wire as a deposited (filler) material. The scope of the work was to investigate the influence of selected technological parameters such as: wire feed rate, beam current, travelling speed, acceleration voltage on stability of the deposition process and geometric dimensions of the padding welds. The research revealed that, at low beam currents, the deposition process is unstable. The padding weld reinforcement is non-uniform. Irregularity of the width, height and straightness of the padding welds can be observed. At too high acceleration voltage and beam current, burn-through of plate and excess penetration weld can be revealed. The achieved results and gained knowledge allowed to produce, based on EBAM with wire process, whole structure from stainless steel.

  14. Rapid in situ growth of oriented titanium-nickel oxide composite nanotubes arrays coated on a nitinol wire as a solid-phase microextraction fiber coupled to HPLC-UV.

    Science.gov (United States)

    Zhen, Qi; Zhang, Min; Song, Wenlan; Wang, Huiju; Wang, Xuemei; Du, Xinzhen

    2016-10-01

    An oriented titanium-nickel oxide composite nanotubes coating was in situ grown on a nitinol wire by direct electrochemical anodization in ethylene glycol with ammonium fluoride and water for the first time. The morphology and composition of the resulting coating showed that the anodized nitinol wire provided a titania-rich coating. The titanium-nickel oxide composite nanotubes coated fiber was used for solid-phase microextraction of different aromatic compounds coupled to high-performance liquid chromatography with UV detection. The titanium-nickel oxide composite nanotubes coating exhibited high extraction capability, good selectivity, and rapid mass transfer for weakly polar UV filters. Thereafter the important parameters affecting extraction efficiency were investigated for solid-phase microextraction of UV filters. Under the optimized conditions, the calibration curves were linear in the range of 0.1-300 μg/L for target UV filters with limits of detection of 0.019-0.082 μg/L. The intraday and interday precision of the proposed method with the single fiber were 5.3-7.2 and 5.9-7.9%, respectively, and the fiber-to-fiber reproducibility ranged from 6.3 to 8.9% for four fibers fabricated in different batches. Finally, its applicability was evaluated by the extraction and determination of target UV filters in environmental water samples. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Towards plant wires.

    Science.gov (United States)

    Adamatzky, Andrew

    2014-08-01

    In experimental laboratory studies we evaluate a possibility of making electrical wires from living plants. In scoping experiments we use lettuce seedlings as a prototype model of a plant wire. We approximate an electrical potential transfer function by applying direct current voltage to the lettuce seedlings and recording output voltage. We analyse oscillation frequencies of the output potential and assess noise immunity of the plant wires. Our findings will be used in future designs of self-growing wetware circuits and devices, and integration of plant-based electronic components into future and emergent bio-hybrid systems. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  16. Thermosonic wire bonding of IC devices using palladium wire

    International Nuclear Information System (INIS)

    Shze, J.H.; Poh, M.T.; Tan, R.M.

    1996-01-01

    The feasibility of replacing gold wire by palladium wire in thermosonic wire bonding of CMOS and bipolar devices are studied in terms of the manufacturability, physical, electrical and assembly performance. The results that palladium wire is a viable option for bonding the bipolar devices but not the CMOS devices

  17. Wire chambers: Trends and alternatives

    Energy Technology Data Exchange (ETDEWEB)

    Regler, Meinhard

    1992-05-15

    The subtitle of this year's Vienna Wire Chamber Conference - 'Recent Trends and Alternative Techniques' - signalled that it covered a wide range of science and technology. While an opening Vienna talk by wire chamber pioneer Georges Charpak many years ago began 'Les funerailles des chambres a fils (the burial of wire chambers)', the contrary feeling this year was that wire chambers are very much alive!.

  18. Copper wire bonding

    CERN Document Server

    Chauhan, Preeti S; Zhong, ZhaoWei; Pecht, Michael G

    2014-01-01

    This critical volume provides an in-depth presentation of copper wire bonding technologies, processes and equipment, along with the economic benefits and risks.  Due to the increasing cost of materials used to make electronic components, the electronics industry has been rapidly moving from high cost gold to significantly lower cost copper as a wire bonding material.  However, copper wire bonding has several process and reliability concerns due to its material properties.  Copper Wire Bonding book lays out the challenges involved in replacing gold with copper as a wire bond material, and includes the bonding process changes—bond force, electric flame off, current and ultrasonic energy optimization, and bonding tools and equipment changes for first and second bond formation.  In addition, the bond–pad metallurgies and the use of bare and palladium-coated copper wires on aluminum are presented, and gold, nickel and palladium surface finishes are discussed.  The book also discusses best practices and re...

  19. Silicon Ingot Casting - Heat Exchanger Method (HEM). Multi-Wire Slicing - Fixed Abrasive Slicing Technique (Fast). Phase 4 Silicon Sheet Growth Development for the Large Area Sheet Task of the Low-Cost Solar Array Project

    Science.gov (United States)

    Schmid, F.

    1981-01-01

    The crystallinity of large HEM silicon ingots as a function of heat flow conditions is investigated. A balanced heat flow at the bottom of the ingot restricts spurious nucleation to the edge of the melted-back seed in contact with the crucible. Homogeneous resistivity distribution over all the ingot has been achieved. The positioning of diamonds electroplated on wirepacks used to slice silicon crystals is considered. The electroplating of diamonds on only the cutting edge is described and the improved slicing performance of these wires evaluated. An economic analysis of value added costs of HEM ingot casting and band saw sectioning indicates the projected add on cost of HEM is well below the 1986 allocation.

  20. Silicon Sheet Growth Development for the Large Area Sheet Task of the Low Cost Solar Array Project. Heat Exchanger Method - Ingot Casting Fixed Abrasive Method - Multi-Wire Slicing

    Science.gov (United States)

    Schmid, F.; Khattak, C. P.

    1978-01-01

    Solar cells fabricated from HEM cast silicon yielded up to 15% conversion efficiencies. This was achieved in spite of using unpurified graphite parts in the HEM furnace and without optimization of material or cell processing parameters. Molybdenum retainers prevented SiC formation and reduced carbon content by 50%. The oxygen content of vacuum cast HEM silicon is lower than typical Czochralski grown silicon. Impregnation of 45 micrometers diamonds into 7.5 micrometers copper sheath showed distortion of the copper layer. However, 12.5 micrometers and 15 micrometers copper sheath can be impregnated with 45 micrometers diamonds to a high concentration. Electroless nickel plating of wires impregnated only in the cutting edge showed nickel concentration around the diamonds. This has the possibility of reducing kerf. The high speed slicer fabricated can achieve higher speed and longer stroke with vibration isolation.

  1. A biomechanical evaluation of magnetic resonance imaging-compatible wire in cervical spine fixation.

    Science.gov (United States)

    Scuderi, G J; Greenberg, S S; Cohen, D S; Latta, L L; Eismont, F J

    1993-10-15

    In a bovine cervical spine model, the ultimate and fatigue strengths as well as relative magnetic resonance imaging artifact produced by titanium, cobalt chrome, and stainless-steel wires in various gauges were assessed. Single-cycle and fatigue strength of wire constructs were measured. Although larger wires generally had greater static strength, fatigue strength was mixed. Sixteen-gauge titanium, and all stainless-steel models (22-gauge braided, 18-gauge, and Songer cable) withstood 10,000 cycles without failure, whereas all other constructs rarely could withstand a similar 10,000 cycles. Magnetic resonance imaging was performed on calf cervical spines instrumented with the various materials. Titanium exhibited the least artifact, stainless-steel showed the greatest artifact, and cobalt chrome an intermediate amount. Although titanium wire produces the least amount of magnetic resonance imaging artifact, it remains a poor choice for implant fixation because its notch sensitivity reduces its fatigue resistance compared with stainless steel, which remains the more dependable choice.

  2. Adverse effects of nickel in transosseous wires and surgical implants: literature review.

    Science.gov (United States)

    Nwashindi, A; Dim, E M

    2014-01-01

    Transosseous wires used in the management of fractures are stainless steel alloys which contain nickel 14.5%, chromium 17.6%, iron 62.5% and molybdenum 2.8%. Gradual disintegration of the transosseous wires release nickel into the blood leading to increase nickel concentration in the blood. Nickel has been found to have some adverse systemic effects on the body. The aim of this paper is to discuss the sources of Nickel in the body as well as the systemic adverse effects of Nickel as a degradation product of stainless steel surgical implants. A study of pertinent literature on nickel as a content of stainless steel alloy used in implant surgery was done, taking note also of other sources of nickel in the body, the toxicokinetics of nickel and the related adverse effects of this metal and its compound in humans. As outcome,the sources of human exposure to nickel,distribution and metabolism of nickel in the body, host responseto stainless steel wires and the adverse effects of nickel in the body are presented. It may be necessary to discourage the use of wires or implants containing nickel in the management of fractures.The need for removal of these implants after they have served their purposes is emphasized.

  3. Flat ended steel wires, backscattering targets for calibrating over a large dynamic range

    NARCIS (Netherlands)

    Lubbers, Jaap; Graaff, Reindert

    2006-01-01

    A series of flat ended stainless steel wires was constructed and experimentally evaluated as point targets giving a calibrated backscattering over a large range (up to 72 dB) for ultrasound frequencies in the range 2 to 10 MHz. Over a range of 36 dB, theory was strictly followed (within 1 dB),

  4. Chromium-Makes stainless steel stainless

    Science.gov (United States)

    Kropschot, S.J.; Doebrich, Jeff

    2010-01-01

    Chromium, a steely-gray, lustrous, hard metal that takes a high polish and has a high melting point, is a silvery white, hard, and bright metal plating on steel and other material. Commonly known as chrome, it is one of the most important and indispensable industrial metals because of its hardness and resistance to corrosion. But it is used for more than the production of stainless steel and nonferrous alloys; it is also used to create pigments and chemicals used to process leather.

  5. Fluid-elastic instability in tube arrays subjected to air-water and steam-water cross-flow

    Science.gov (United States)

    Mitra, D.; Dhir, V. K.; Catton, I.

    2009-10-01

    Flow induced vibrations in heat exchanger tubes have led to numerous accidents and economic losses in the past. Efforts have been made to systematically study the cause of these vibrations and develop remedial design criteria for their avoidance. In this research, experiments were systematically carried out with air-water and steam-water cross-flow over horizontal tubes. A normal square tube array of pitch-to-diameter ratio of 1.4 was used in the experiments. The tubes were suspended from piano wires and strain gauges were used to measure the vibrations. Tubes made of aluminum; stainless steel and brass were systematically tested by maintaining approximately the same stiffness in the tube-wire systems. Instability was clearly seen in single phase and two-phase flow and the critical flow velocity was found to be proportional to tube mass. The present study shows that fully flexible arrays become unstable at a lower flow velocity when compared to a single flexible tube surrounded by rigid tubes. It is also found that tubes are more stable in steam-water flow as compared to air-water flow. Nucleate boiling on the tube surface is also found to have a stabilizing effect on fluid-elastic instability.

  6. Studies on microstructure, mechanical and pitting corrosion behaviour of similar and dissimilar stainless steel gas tungsten arc welds

    Science.gov (United States)

    Mohammed, Raffi; Dilkush; Srinivasa Rao, K.; Madhusudhan Reddy, G.

    2018-03-01

    In the present study, an attempt has been made to weld dissimilar alloys of 5mm thick plates i.e., austenitic stainless steel (316L) and duplex stainless steel (2205) and compared with that of similar welds. Welds are made with conventional gas tungsten arc welding (GTAW) process with two different filler wires namely i.e., 309L and 2209. Welds were characterized using optical microscopy to observe the microstructural changes and correlate with mechanical properties using hardness, tensile and impact testing. Potentio-dynamic polarization studies were carried out to observe the pitting corrosion behaviour in different regions of the welds. Results of the present study established that change in filler wire composition resulted in microstructural variation in all the welds with different morphology of ferrite and austenite. Welds made with 2209 filler showed plate like widmanstatten austenite (WA) nucleated at grain boundaries. Compared to similar stainless steel welds inferior mechanical properties was observed in dissimilar stainless steel welds. Pitting corrosion resistance is observed to be low for dissimilar stainless steel welds when compared to similar stainless steel welds. Overall study showed that similar duplex stainless steel welds having favorable microstructure and resulted in better mechanical properties and corrosion resistance. Relatively dissimilar stainless steel welds made with 309L filler obtained optimum combination of mechanical properties and pitting corrosion resistance when compared to 2209 filler and is recommended for industrial practice.

  7. Structural Investigations of GaAs/AIAs quantum wires and quantum dots

    NARCIS (Netherlands)

    Darhuber, A.A.; Bauer, G.; Wang, P.D.; Song, Y.P.; Sotomayor Torres, C.M.; Holland, M.C.

    1995-01-01

    We have investigated periodic arrays of dry etched 150 nm and 175 nm wide, (110) oriented GaAs/AlAs quantum wires and quantum dots by means of reciprocal-space mapping using triple-axis X-ray diffractometry. From the X-ray data the lateral periodicity of wires and dots, the etch depth and the angle

  8. AC application of second generation HTS wire

    Science.gov (United States)

    Thieme, C. L. H.; Gagnon, K.; Voccio, J.; Aized, D.; Claassen, J.

    2008-02-01

    For the production of Second Generation (2G) YBCO High Temperature Superconductor wire American Superconductor uses a wide-strip MOD-YBCO/RABiTSTM process, a low-cost approach for commercial manufacturing. It can be engineered with a high degree of flexibility to manufacture practical 2G conductors with architectures and properties tailored for specific applications and operating conditions. For ac applications conductor and coil design can be geared towards low hysteretic losses. For applications which experience high frequency ac fields, the stabilizer needs to be adjusted for low eddy current losses. For these applications a stainless-steel laminate is used. An example is a Low Pass Filter Inductor which was developed and built in this work.

  9. Mechanical properties of orthodontic wires on ceramic brackets associated with low friction ligatures

    Directory of Open Access Journals (Sweden)

    Fernando KOIKE

    2017-03-01

    Full Text Available Abstract Introduction Few studies investigated the mechanical properties of orthodontic wires on ceramic brackets associated the ligatures. Objective This study aimed to compare the load-deflection of orthodontic wires with round section of 0.016” made of stainless steel (SS, nickel-titanium (NiTi and glass fiber-reinforced polymer composite (GFRPC. Material and method Sixty specimens obtained from 10 sectioned pre-contoured arches (TP Orthodontics, were divided into 3 groups of 20 according to each type of material (1 esthetic-type wire and 2 not esthetic and length of 50 mm. The methodology consisted of a 3-point bending test using esthetic ceramic brackets (INVU, TP Orthodontics, Edgewise, 0.022”x 0.025” as points of support. The tensile tests were performed on a mechanical test machine, at a speed of 10 mm/min, deflection of 1 mm, 2 mm and 3 mm. Friedman’s Non Parametric Multiple comparisons test was used (P<0.05. Result The nickel-titanium wire presented smaller load/ deflection compared with stainless steel. GFRPC wires had lower strength values among all groups evaluated (P<.05. The steel wire showed permanent deformation after 3 mm deflection, NiTi wire demonstrated memory effect and the esthetic type had fractures with loss of strength. Conclusion It can be concluded that steel wires have high strength values, requiring the incorporation of loops and folds to reduce the load / deflection. NiTi and GFRPC wires produced low levels of force, however the esthetic wire was shown to fracture and break.

  10. X-ray backlighting of two-wire Z-pinch plasma using X-pinch

    International Nuclear Information System (INIS)

    Tong, Zhao; Xiao-Bing, Zou; Ran, Zhang; Xin-Xin, Wang

    2010-01-01

    Two 50-μm Mo wires in parallel used as a Z-pinch load are electrically exploded with a pulsed current rising to 275 kA in 125 ns and their explosion processes are backlighted using an X-pinch as an x-ray source. The backlighting images show clearly the processes similar to those occurring in the initial stages of a cylindrical wire-array Z-pinch, including the electric explosion of single wires characterised by the dense wire cores surrounded by a low-density coronal plasma, the expansion of the exploding wire, the sausage instability (m = 0) in the coronal plasma around each wire, the motion of the coronal plasma as well as the wire core toward the current centroid, the formation of the precursor plasma column with a twist structure something like that of higher mode instability, especially the kink instability (m = 1). (fluids, plasmas and electric discharges)

  11. A 4 probe array

    Energy Technology Data Exchange (ETDEWEB)

    Fernando, C E [CEGB, Marchwood Engineering Laboratories, Marchwood, Southampton, Hampshire (United Kingdom)

    1980-11-01

    A NDT system is described which moves away from the present manual method using a single send/receive transducer combination and uses instead an array of four transducers. Four transducers are shown sufficient to define a point reflector with a resolution of m{lambda}z/R where m{lambda} is the minimum detectable path difference in the system (corresponding to a m cycle time resolution), z the range and R the radius of the array. Signal averaging with an input ADC rate of 100 MHz is used with voice output for the range data. Typical resolution measurements in a water tank are presented. We expect a resolution of the order of mm in steel at a range of 80 mm. The system is expected to have applications in automated, high resolution, sizing of defects and in the inspection of austenitic stainless steel welds. (author)

  12. Galvanic coupling of steel and gold alloy lingual brackets with orthodontic wires.

    Science.gov (United States)

    Polychronis, Georgios; Al Jabbari, Youssef S; Eliades, Theodore; Zinelis, Spiros

    2018-03-06

    The aim of this research was to assess galvanic behavior of lingual orthodontic brackets coupled with representative types of orthodontic wires. Three types of lingual brackets: Incognito (INC), In-Ovation L (IOV), and STb (STB) were combined with a stainless steel (SS) and a nickel-titanium (NiTi) orthodontic archwire. All materials were initially investigated by scanning electron microscopy / x-ray energy dispersive spectroscopy (SEM/EDX) while wires were also tested by x-ray diffraction spectroscopy (XRD). All bracket-wire combinations were immersed in acidic 0.1M NaCl 0.1M lactic acid and neutral NaF 0.3% (wt) electrolyte, and the potential differences were continuously recorded for 48 hours. The SEM/EDX analysis revealed that INC is a single-unit bracket made of a high gold (Au) alloy while IOV and STB are two-piece appliances in which the base and wing are made of SS alloys. The SS wire demonstrated austenite and martensite iron phase, while NiTi wire illustrated an intense austenite crystallographic structure with limited martensite. All bracket wire combinations showed potential differences below the threshold of galvanic corrosion (200 mV) except for INC and STB coupled with NiTi wire in NaF media. The electrochemical results indicate that all brackets tested demonstrated galvanic compatibility with SS wire, but fluoride treatment should be used cautiously with NiTi wires coupled with Au and SS brackets.

  13. Wire core reactor for NTP

    International Nuclear Information System (INIS)

    Harty, R.B.

    1991-01-01

    The development of the wire core system for Nuclear Thermal Propulsion (NTP) that took place from 1963 to 1965 is discussed. A wire core consists of a fuel wire with spacer wires. It's an annular flow core having a central control rod. There are actually four of these, with beryllium solid reflectors on both ends and all the way around. Much of the information on the concept is given in viewgraph form. Viewgraphs are presented on design details of the wire core, the engine design, engine weight vs. thrust, a technique used to fabricate the wire fuel element, and axial temperature distribution

  14. Wired to freedom

    DEFF Research Database (Denmark)

    Jepsen, Kim Sune Karrasch; Bertilsson, Margareta

    2017-01-01

    dimension of life science through a notion of public politics adopted from the political theory of John Dewey. We show how cochlear implantation engages different social imaginaries on the collective and individual levels and we suggest that users share an imaginary of being “wired to freedom” that involves...... new access to social life, continuous communicative challenges, common practices, and experiences. In looking at their lives as “wired to freedom,” we hope to promote a wider spectrum of civic participation in the benefit of future life science developments within and beyond the field of Cochlear...

  15. Electric wiring domestic

    CERN Document Server

    Coker, A J

    1992-01-01

    Electric Wiring: Domestic, Tenth Edition, is a clear and reliable guide to the practical aspects of domestic electric wiring. Intended for electrical contractors, installation engineers, wiremen and students, its aim is to provide essential up to date information on modern methods and materials in a simple, clear, and concise manner. The main changes in this edition are those necessary to bring the work into line with the 16th Edition of the Regulations for Electrical Installations issued by the Institution of Electrical Engineers. The book begins by introducing the basic features of domestic

  16. Modern wiring practice

    CERN Document Server

    Steward, W E

    2012-01-01

    Continuously in print since 1952, Modern Wiring Practice has now been fully revised to provide an up-to-date source of reference to building services design and installation in the 21st century. This compact and practical guide addresses wiring systems design and electrical installation together in one volume, creating a comprehensive overview of the whole process for contractors and architects, as well as electricians and other installation engineers. Best practice is incorporated throughout, combining theory and practice with clear and accessible explanation, all

  17. Angular dependence of the coercivity in arrays of ferromagnetic nanowires

    International Nuclear Information System (INIS)

    Holanda, J.; Silva, D.B.O.; Padrón-Hernández, E.

    2015-01-01

    We present a new magnetic model for polycrystalline nanowires arrays in porous anodic aluminum oxide. The principal consideration here is the crystalline structure and the morphology of the wires and them the dipolar interactions between the crystals into the wire. Other aspect here is the direct calculation of the dipolar energy for the interaction of one wire with the others in the array. The free energy density was formulated for polycrystalline nanowires arrays in order to determinate the anisotropy effective field. It was using the microstructure study by scanning and transmission electron microscopy for the estimation of the real structure of the wires. After the structural analysis we used the angular dependences for the coercivity field and for the remnant magnetization to determine the properties of the wires. All analysis were made by the theory treatment proposed by Stoner and Wohlfarth

  18. Angular dependence of the coercivity in arrays of ferromagnetic nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Holanda, J. [Departamento de Física, Universidade Federal de Pernambuco, Recife 50670-901, PE (Brazil); Silva, D.B.O. [Pós-Graduação em Ciência de Materiais, Universidade Federal de Pernambuco, Recife 50670-901, PE (Brazil); Padrón-Hernández, E., E-mail: padron@df.ufpe.br [Departamento de Física, Universidade Federal de Pernambuco, Recife 50670-901, PE (Brazil); Pós-Graduação em Ciência de Materiais, Universidade Federal de Pernambuco, Recife 50670-901, PE (Brazil)

    2015-03-15

    We present a new magnetic model for polycrystalline nanowires arrays in porous anodic aluminum oxide. The principal consideration here is the crystalline structure and the morphology of the wires and them the dipolar interactions between the crystals into the wire. Other aspect here is the direct calculation of the dipolar energy for the interaction of one wire with the others in the array. The free energy density was formulated for polycrystalline nanowires arrays in order to determinate the anisotropy effective field. It was using the microstructure study by scanning and transmission electron microscopy for the estimation of the real structure of the wires. After the structural analysis we used the angular dependences for the coercivity field and for the remnant magnetization to determine the properties of the wires. All analysis were made by the theory treatment proposed by Stoner and Wohlfarth.

  19. Fatigue of orthodontic nickel-titanium (NiTi) wires in different fluids under constant mechanical stress

    International Nuclear Information System (INIS)

    Prymak, O.; Klocke, A.; Kahl-Nieke, B.; Epple, M.

    2003-01-01

    The aim of this study was to analyze in vitro the fatigue resistance of nickel-titanium (NiTi) and CuNiTi orthodontic wires when subjected to forces and fluids which are present intraorally. The wires were subjected to dynamic mechanical analysis (DMA) while they were immersed into different fluids with mechanical loading parameters similar to those that are subjected in the mouth. The characteristic temperatures of transitions and a rough surface structure on the perimeter of the wires were determined by differential scanning calorimetry (DSC) and scanning electron microscopy (SEM), respectively, before and after the DMA experiments. Stainless steel wires were used for comparison. In general, NiTi wires fractured earlier than the stainless steel specimens. Survival times were lower for the NiTi wires when immersed in fluids (water, citric acid, NaCl solution, artificial saliva, and fluoridated artificial saliva) than in air. SEM surface analysis showed that the NiTi and CuNiTi wires had a rougher surface than steel wires. The fracture occurred within a short number of loading cycles. Until fracture occurred, the mechanical properties remained mostly constant

  20. Fatigue of orthodontic nickel-titanium (NiTi) wires in different fluids under constant mechanical stress

    Energy Technology Data Exchange (ETDEWEB)

    Prymak, O.; Klocke, A.; Kahl-Nieke, B.; Epple, M

    2003-07-25

    The aim of this study was to analyze in vitro the fatigue resistance of nickel-titanium (NiTi) and CuNiTi orthodontic wires when subjected to forces and fluids which are present intraorally. The wires were subjected to dynamic mechanical analysis (DMA) while they were immersed into different fluids with mechanical loading parameters similar to those that are subjected in the mouth. The characteristic temperatures of transitions and a rough surface structure on the perimeter of the wires were determined by differential scanning calorimetry (DSC) and scanning electron microscopy (SEM), respectively, before and after the DMA experiments. Stainless steel wires were used for comparison. In general, NiTi wires fractured earlier than the stainless steel specimens. Survival times were lower for the NiTi wires when immersed in fluids (water, citric acid, NaCl solution, artificial saliva, and fluoridated artificial saliva) than in air. SEM surface analysis showed that the NiTi and CuNiTi wires had a rougher surface than steel wires. The fracture occurred within a short number of loading cycles. Until fracture occurred, the mechanical properties remained mostly constant.

  1. Wired vs. Wireless.

    Science.gov (United States)

    Fielding, Randall

    2000-01-01

    Presents a debate on which technology will be in tomorrow's classrooms and the pros and cons of wiring classrooms and using a wireless network. Concluding comments address the likelihood, and desirability, of placing computers throughout the entire educational process and what types of computers and capabilities are needed. (GR)

  2. A World without Wires

    Science.gov (United States)

    Panettieri, Joseph C.

    2006-01-01

    The wireless bandwagon is rolling across Mississippi, picking up a fresh load of converts and turning calamity into opportunity. Traditional wired school networks, many of which unraveled during Hurricane Katrina, are giving way to advanced wireless mesh networks that frequently include voice-over-IP (VoIP) capabilities. Vendor funding is helping…

  3. 3D Wire 2015

    DEFF Research Database (Denmark)

    Jordi, Moréton; F, Escribano; J. L., Farias

    This document is a general report on the implementation of gamification in 3D Wire 2015 event. As the second gamification experience in this event, we have delved deeply in the previous objectives (attracting public areas less frequented exhibition in previous years and enhance networking) and have...

  4. Wire chamber conference

    International Nuclear Information System (INIS)

    Bartl, W.; Neuhofer, G.; Regler, M.

    1986-02-01

    This booklet contains program and the abstracts of the papers presented at the conference, most of them dealing with performance testing of various types of wire chambers. The publication of proceedings is planned as a special issue of 'Nuclear instruments and methods' later on. All abstracts are in English. An author index for the book of abstracts is given. (A.N.)

  5. Wire EDM for Refractory Materials

    Science.gov (United States)

    Zellars, G. R.; Harris, F. E.; Lowell, C. E.; Pollman, W. M.; Rys, V. J.; Wills, R. J.

    1982-01-01

    In an attempt to reduce fabrication time and costs, Wire Electrical Discharge Machine (Wire EDM) method was investigated as tool for fabricating matched blade roots and disk slots. Eight high-strength nickel-base superalloys were used. Computer-controlled Wire EDM technique provided high quality surfaces with excellent dimensional tolerances. Wire EDM method offers potential for substantial reductions in fabrication costs for "hard to machine" alloys and electrically conductive materials in specific high-precision applications.

  6. Practical wiring in SI units

    CERN Document Server

    Miller, Henry A

    2013-01-01

    Practical Wiring, Volume 1 is a 13-chapter book that first describes some of the common hand tools used in connection with sheathed wiring. Subsequent chapters discuss the safety in wiring, cables, conductor terminations, insulating sheathed wiring, conductor sizes, and consumer's control equipments. Other chapters center on socket outlets, plugs, lighting subcircuits, lighting accessories, bells, and primary and secondary cells. This book will be very valuable to students involved in this field of interest.

  7. Wire chambers: Trends and alternatives

    International Nuclear Information System (INIS)

    Regler, Meinhard

    1992-01-01

    The subtitle of this year's Vienna Wire Chamber Conference - 'Recent Trends and Alternative Techniques' - signalled that it covered a wide range of science and technology. While an opening Vienna talk by wire chamber pioneer Georges Charpak many years ago began 'Les funerailles des chambres a fils (the burial of wire chambers)', the contrary feeling this year was that wire chambers are very much alive!

  8. The effect of surface treatment and clinical use on friction in NiTi orthodontic wires.

    Science.gov (United States)

    Wichelhaus, Andrea; Geserick, Marc; Hibst, Raimund; Sander, Franz G

    2005-10-01

    Since the low friction of NiTi wires allows a rapid and efficient orthodontic tooth movement, the aim of this research was to investigate the friction and surface roughness of different commercially available superelastic NiTi wires before and after clinical use. The surface of all of the wires had been pre-treated by the manufacturer. Forty superelastic wires (Titanol Low Force, Titanol Low Force River Finish Gold, Neo Sentalloy, Neo Sentalloy Ionguard) of diameter 0.016 x 0.022 in. were tested. The friction for each type of NiTi archwire ligated into a commercial stainless steel bracket was determined with a universal testing machine. Having ligated the wire into the bracket, it could then be moved forward and backwards along a fixed archwire whilst a torquing moment was applied. The surface roughness was investigated using a profilometric measuring device on defined areas of the wire. Statistical data analysis was conducted by means of the Wilcoxon test. The results showed that initially, the surface treated wires demonstrated significantly (p < 0.01) less friction than the non-treated wires. The surface roughness showed no significant difference between the treated and the non-treated surfaces of the wires. All 40 wires however showed a significant increase in friction and surface roughness during clinical use. Whilst the Titanol Low Force River Finish Gold (Forestadent, Pforzheim, Germany) wires showed the least friction of all the samples and consequently should be more conservative on anchorage, the increase in friction of all the surface treated wires during orthodontic treatment almost cancels out this initial effect on friction. It is therefore recommended that surface treated NiTi orthodontic archwires should only be used once.

  9. Advances in stainless steels

    International Nuclear Information System (INIS)

    Baldev Raj; Jayakumar, T.; Saibaba, Saroja; Sivaprasad, P.V.; Shankar, P.

    2010-01-01

    This book covers a broad spectrum of topics spanning the entire life cycle of stainless steel-from alloy design and characterization to engineering design, fabrication, mechanical properties, corrosion, quality assurance of components, in-service performance assessment, life prediction and finally failure analysis of materials and components. The contents provide useful feedback for further developments aimed at effective utilization of this class of materials. The book comprises articles that bring out contemporary developments in stainless steels and is thematically classified into the following sections. 1. Component design, modelling and structural integrity, 2. Manufacturing technology, 3. Property evaluation, 4. Alloy development and applications, 5. NDE methods, 6. Corrosion and surface modification. The book commences with articles on component design and structural integrity, thus opening up the areas of challenge for researchers and academia. The articles in the book relevant to INIS are indexed separately

  10. Filler metal selection for welding a high nitrogen stainless steel

    Science.gov (United States)

    Du Toit, Madeleine

    2002-06-01

    Cromanite is a high-strength austenitic stainless steel that contains approximately 19% chromium, 10% manganese, and 0.5% nitrogen. It can be welded successfully, but due to the high nitrogen content of the base metal, precautions have to be taken to ensure sound welds with the desired combination of properties. Although no matching filler metals are currently available, Cromanite can be welded using a range of commercially available stainless steel welding consumables. E307 stainless steel, the filler metal currently recommended for joining Cromanite, produces welds with mechanical properties that are generally inferior to those of the base metal. In wear applications, these lower strength welds would probably be acceptable, but in applications where full use is made of the high strength of Cromanite, welds with matching strength levels would be required. In this investigation, two welding consumables, ER2209 (a duplex austenitic-ferritic stainless steel) and 15CrMn (an austenitic-manganese hardfacing wire), were evaluated as substitutes for E307. When used to join Cromanite, 15CrMn produced welds displaying severe nitrogen-induced porosity, and this consumable is therefore not recommended. ER2209, however, outperformed E307, producing sound porosity-free welds with excellent mechanical properties, including high ductility and strength levels exceeding the minimum limits specified for Cromanite.

  11. Hydrogen effects in stainless steel

    International Nuclear Information System (INIS)

    Caskey, G.R. Jr.

    1983-01-01

    The effects of hydrogen on stainless steels have been reviewed and are summarized in this paper. Discussion covers hydrogen solution and transport in stainless steels as well as the effects of hydrogen on deformation and fracture under various loading conditions. Damage is caused also by helium that arises from decay of the hydrogen isotope tritium. Austenitic, ferritic, martensite, and precipitation-hardenable stainless steels are included in the discussion. 200 references

  12. Sliding mechanics of coated composite wires and the development of an engineering model for binding.

    Science.gov (United States)

    Zufall, S W; Kusy, R P

    2000-02-01

    A tribological (friction and wear) study, which was designed to simulate clinical sliding mechanics, was conducted as part of an effort to determine the suitability of poly(chloro-p-xylylene) coatings for composite orthodontic archwires. Prototype composite wires, having stiffnesses similar to those of current initial and intermediate alignment wires, were tested against stainless steel and ceramic brackets in the passive and active configurations (with and without angulation). Kinetic coefficient of friction values, which were determined to quantify sliding resistances as functions of the normal forces of ligation, had a mean that was 72% greater than uncoated wire couples at 0.43. To improve analysis of the active configuration, a mathematical model was developed that related bracket angulation, bracket width, interbracket distance, wire geometry, and wire elastic modulus to sliding resistance. From this model, kinetic coefficients of binding were determined to quantify sliding resistances as functions of the normal forces of binding. The mean binding coefficient was the same as that of uncoated wire couples at 0.42. Although penetrations through the coating were observed on many specimens, the glass-fiber reinforcement within the composite wires was undamaged for all conditions tested. This finding implies that the risk of glass fiber release during clinical use would be eliminated by the coating. In addition, the frictional and binding coefficients were still within the limits outlined by conventional orthodontic wire-bracket couples. Consequently, the coatings were regarded as an improvement to the clinical acceptability of composite orthodontic archwires.

  13. AC losses of single-core MgB{sub 2} wires with different metallic sheaths

    Energy Technology Data Exchange (ETDEWEB)

    Kováč, J., E-mail: elekjkov@savba.sk; Šouc, J.; Kováč, P.; Hušek, I.

    2015-12-15

    Highlights: • AC losses in single-core MgB{sub 2} wires with different metallic sheaths have been measured. • It has been shown that metallic sheath can affect the measured AC loss considerably. • GlidCop and Stainless Steel have negligible effect to the overall loss. • Strong contribution of eddy currents has been found in the wire with well conductive copper sheath. • Due to Monel sheath AC loss of MgB{sub 2} core is not visible. - Abstract: AC losses of single-core MgB{sub 2} superconductors with different metallic sheaths (Cu, GlidCop, stainless steel and Monel) have been measured and analyzed. These wires were exposed to external magnetic field with frequencies 72 and 144 Hz and amplitudes up to 0.1 T at temperatures ranged from 18 to 40 K. The obtained results have shown that applied metallic sheath can affect the measured AC loss considerably. In the case of GlidCop and Stainless Steel a negligible small effect of metallic sheath was observed. Strong contribution of eddy currents has been found in the wire with well conductive copper sheath. In the case of Monel sheath, the hysteresis loss of magnetic sheath is dominated and AC loss of MgB{sub 2} core is practically not visible.

  14. Vienna Wire Chamber Conference

    International Nuclear Information System (INIS)

    Anon.

    1983-01-01

    After those of 1978 and 1980, a third Wire Chamber Conference was held from 15-18 February in the Technical University of Vienna. Eight invited speakers covered the field from sophisticated applications in biology and medicine, via software, to the state of the art of gaseous detectors. In some forty other talks the speakers tackled in more detail the topics of gaseous detectors, calorimetry and associated electronics and software

  15. The Micro Wire Detector

    International Nuclear Information System (INIS)

    Adeva, B.; Gomez, F.; Pazos, A.; Pfau, R.; Plo, M.; Rodriguez, J.M.; Vazquez, P.; Labbe, J.C.

    1999-01-01

    We present the performance of a new proportional gas detector. Its geometry consists of a cathode plane with 70x70 μm 2 apertures, crossed by 25 μm anode strips to which it is attached by 50 μm kapton spacers. In the region where the avalanche takes place, the anode strips are suspended in the gas mixture as in a standard wire chamber. This detector exhibits high rate capability and large gains, introducing very little material. (author)

  16. Superconducting magnet wire

    Science.gov (United States)

    Schuller, Ivan K.; Ketterson, John B.; Banerjee, Indrajit

    1986-01-01

    A superconducting tape or wire with an improved critical field is formed of alternating layers of a niobium-containing superconductor such as Nb, NbTi, Nb.sub.3 Sn or Nb.sub.3 Ge with a thickness in the range of about 0.5-1.5 times its coherence length, supported and separated by layers of copper with each copper layer having a thickness in the range of about 170-600 .ANG..

  17. Twisting wire scanner

    Energy Technology Data Exchange (ETDEWEB)

    Gharibyan, V.; Delfs, A.; Koruptchenkov, I.; Noelle, D.; Tiessen, H.; Werner, M.; Wittenburg, K.

    2012-11-15

    A new type of 'two-in-one' wire scanner is proposed. Recent advances in linear motors' technology make it possible to combine translational and rotational movements. This will allow to scan the beam in two perpendicular directions using a single driving motor and a special fork attached to it. Vertical or horizontal mounting will help to escape problems associated with the 45 deg scanners. Test results of the translational part with linear motors is presented.

  18. Twisting wire scanner

    International Nuclear Information System (INIS)

    Gharibyan, V.; Delfs, A.; Koruptchenkov, I.; Noelle, D.; Tiessen, H.; Werner, M.; Wittenburg, K.

    2012-11-01

    A new type of 'two-in-one' wire scanner is proposed. Recent advances in linear motors' technology make it possible to combine translational and rotational movements. This will allow to scan the beam in two perpendicular directions using a single driving motor and a special fork attached to it. Vertical or horizontal mounting will help to escape problems associated with the 45 deg scanners. Test results of the translational part with linear motors is presented.

  19. Wire chamber gases

    International Nuclear Information System (INIS)

    Va'vra, J.

    1992-04-01

    In this paper, we describe new developments in gas mixtures which have occurred during the last 3--4 years. In particular, we discuss new results on the measurement and modeling of electron drift parameters, the modeling of drift chamber resolution, measurements of primary ionization and the choice of gas for applications such as tracking, single electron detection, X-ray detection and visual imaging. In addition, new results are presented on photon feedback, breakdown and wire aging

  20. Selection of replacement material for the failed surface level gauge wire in Hanford waste tanks

    International Nuclear Information System (INIS)

    Anantatmula, R.P.; Pitman, S.G.; Lund, A.L.

    1995-10-01

    Surface level gauges fabricated from AISI Type 316 stainless steel (316) wire failed after only a few weeks of operation in underground storage tanks at the Hanford Site. The wire failure was determined to be due to chloride ion assisted corrosion of the 316 wire. Radiation-induced breakdown of the polyvinyl chloride (PVC) riser liners is suspected to be the primary source of the chloride ions. An extensive literature search followed by expert concurrence was undertaken to select a replacement material for the wire. Platinum (Pt)-20 % Iridium (Ir) alloy was selected as the replacement material from tile candidate materials, P-20% Ir, Pt-1O% Rhodium (Rh), Pt-20%Rh and Hastelloy C-22. The selection was made on the basis of the alloy's immunity towards acidic and basic environments as well as its adequate tensile properties in the fully annealed state

  1. Design of a wire imaging synchrotron radiation detector

    International Nuclear Information System (INIS)

    Kent, J.; Gomez-Cadenas, J.J.; Hogan, A.; King, M.; Rowe, W.; Watson, S.; Von Zanthier, C.; Briggs, D.D.; Levi, M.

    1990-01-01

    This paper documents the design of a detector invented to measure the positions of synchrotron radiation beams for the precision energy spectrometers of the Stanford Linear Collider (SLC). The energy measurements involve the determination, on a pulse-by-pulse basis, of the separation of pairs of intense beams of synchrotron photons in the MeV energy range. The detector intercepts the beams with arrays of fine wires. The ejection of Compton recoil electrons results in charges being developed in the wires, thus enabling a determination of beam positions. 10 refs., 4 figs

  2. Observation of fast expansion velocity with insulating tungsten wires on ∼80 kA facility

    Energy Technology Data Exchange (ETDEWEB)

    Li, M.; Li, Y. [State Key Laboratory of Electrical Insulation and Power Equipment, Xi' an Jiaotong University, Xi' an 710049 (China); State Key Laboratory of Intense Pulsed Radiation Simulation and Effect, Northwest Institute of Nuclear Technology, Xi' an 710024 (China); Zhang, J. H.; Sun, T. P.; Wang, L. P.; Sheng, L.; Qiu, M. T.; Mao, W. T. [State Key Laboratory of Intense Pulsed Radiation Simulation and Effect, Northwest Institute of Nuclear Technology, Xi' an 710024 (China); Wu, J., E-mail: jxjawj@mail.xjtu.edu.cn; Li, X. W. [State Key Laboratory of Electrical Insulation and Power Equipment, Xi' an Jiaotong University, Xi' an 710049 (China)

    2016-07-15

    This paper presents experimental results on the effects of insulating coatings on tungsten planar wire array Z-pinches on an 80 kA, 100 ns current facility. Expansion velocity is obviously increased from ∼0.25 km/s to ∼3.5 km/s by using the insulating coatings. It can be inferred that the wire cores are in gaseous state with this fast expansion velocity. An optical framing camera and laser probing images show that the standard wire arrays have typical ablation process which is similar to their behaviors on mega-ampere facilities. The ablation process and precursor plasma are suppressed for dielectric tungsten wires. The wire array implosion might be improved if these phenomena can be reproduced on Mega-ampere facilities.

  3. Dual wire welding torch and method

    Science.gov (United States)

    Diez, Fernando Martinez; Stump, Kevin S.; Ludewig, Howard W.; Kilty, Alan L.; Robinson, Matthew M.; Egland, Keith M.

    2009-04-28

    A welding torch includes a nozzle with a first welding wire guide configured to orient a first welding wire in a first welding wire orientation, and a second welding wire guide configured to orient a second welding wire in a second welding wire orientation that is non-coplanar and divergent with respect to the first welding wire orientation. A method of welding includes moving a welding torch with respect to a workpiece joint to be welded. During moving the welding torch, a first welding wire is fed through a first welding wire guide defining a first welding wire orientation and a second welding wire is fed through a second welding wire guide defining a second welding wire orientation that is divergent and non-coplanar with respect to the first welding wire orientation.

  4. Stainless steels low temperature nitriding

    International Nuclear Information System (INIS)

    Roux, T.; Darbeida, A.; Von Stebut, J.; Michel, H.; Lebrun, J.P.; Hertz, D.

    1995-01-01

    Nitrogen ions implantation of 316L stainless steel leads to monophasic diffusion layers, which are constituted of a solid solution (γ N ) fcc, metastable, nitrogen sur-saturated, and without order. This article shows that for 316L stainless steels,these layers improve the tribological properties without degradation of the corrosion resistance. (A.B.). 13 refs. 6 figs

  5. Evaluation of force released by deflection of orthodontic wires in conventional and self-ligating brackets.

    Science.gov (United States)

    Higa, Rodrigo Hitoshi; Semenara, Nayara Thiago; Henriques, José Fernando Castanha; Janson, Guilherme; Sathler, Renata; Fernandes, Thais Maria Freire

    2016-01-01

    The aim of the study was to evaluate deflection forces of rectangular orthodontic wires in conventional (MorelliTM), active (In-Ovation RTM) and passive (Damon 3MXTM) self-ligating brackets. Two brands of stainless steel and nickel-titanium (NiTi) wires (MorelliTM and GACTM), in addition to OrmcoTM copper-nickel-titanium wires were used. Specimens were assembled in a clinical simulation device especially designed for this study and tested in an Instron universal testing machine. For the testing procedures, an acrylic structure representative of the maxillary right central incisor was lingually moved in activations of 0 to 1 mm, with readings of the force released by deflection in unloading of 0.5, 0.8 and 1 mm at a constant speed of 2 mm/min. Inter-bracket forces with stainless steel, NiTi and CuNiTi were individually compared by two-way ANOVA, followed by Tukey's tests. Results showed that there were lower forces in conventional brackets, followed by active and passive self-ligating brackets. Within the brands, only for NiTi wires, the MorelliTM brand presented higher forces than GACTM wires. Bracket systems provide different degrees of deflection force, with self-ligating brackets showing the highest forces.

  6. Evaluation of surface roughness of orthodontic wires by means of atomic force microscopy.

    Science.gov (United States)

    D'Antò, Vincenzo; Rongo, Roberto; Ametrano, Gianluca; Spagnuolo, Gianrico; Manzo, Paolo; Martina, Roberto; Paduano, Sergio; Valletta, Rosa

    2012-09-01

    To compare the surface roughness of different orthodontic archwires. Four nickel-titanium wires (Sentalloy(®), Sentalloy(®) High Aesthetic, Titanium Memory ThermaTi Lite(®), and Titanium Memory Esthetic(®)), three β-titanium wires (TMA(®), Colored TMA(®), and Beta Titanium(®)), and one stainless-steel wire (Stainless Steel(®)) were considered for this study. Three samples for each wire were analyzed by atomic force microscopy (AFM). Three-dimensional images were processed using Gwiddion software, and the roughness average (Ra), the root mean square (Rms), and the maximum height (Mh) values of the scanned surface profile were recorded. Statistical analysis was performed by one-way analysis of variance (ANOVA) followed by Tukey's post hoc test (P Sentalloy High Aesthetic was the roughest (Ra  =  133.5 ± 10.8; Rms  =  165.8 ± 9.8; Mh  =  949.6 ± 192.1) of the archwires. The surface quality of the wires investigated differed significantly. Ion implantation effectively reduced the roughness of TMA. Moreover, Teflon(®)-coated Titanium Memory Esthetic was less rough than was ion-implanted Sentalloy High Aesthetic.

  7. Review of wire chamber aging

    International Nuclear Information System (INIS)

    Va'Vra, J.

    1986-02-01

    This paper makes an overview of the wire chamber aging problems as a function of various chamber design parameters. It emphasizes the chemistry point of view and many examples are drawn from the plasma chemistry field as a guidance for a possible effort in the wire chamber field. The paper emphasizes the necessity of variable tuning, the importance of purity of the wire chamber environment, as well as it provides a practical list of presently known recommendations. In addition, several models of the wire chamber aging are qualitatively discussed. The paper is based on a summary talk given at the Wire Chamber Aging Workshop held at LBL, Berkeley on January 16-17, 1986. Presented also at Wire Chamber Conference, Vienna, February 25-28, 1986. 74 refs., 18 figs., 11 tabs

  8. Wire communication engineering

    International Nuclear Information System (INIS)

    Son, Byeong Tae

    1997-02-01

    This book describes wire telecommunication engineering/ It is divided into eleven chapter, which deal with Introduction with development of telecommunication, voice and sound wave and communication network, Telegraphy with summary of telegraphy, code of telegraphy, communication speed, morse and telex, Telephone on structure, circuit and image telephone, Traffic on telecommunication traffic, transmission of line about theory, cable line and loaded cable, carrier communication with carrier telegraphy and carrier telephone, optical communication with types, structure, specialty, laser and equipment, DATA, Mobile telecommunication on summary, mobile telephone, radio paging and digital mobile telecommunication, ISDN with channel of ISDN, and service of ISDN, and design of telecommunication.

  9. The Micro Wire Detector

    Energy Technology Data Exchange (ETDEWEB)

    Adeva, B.; Gomez, F.; Pazos, A.; Pfau, R.; Plo, M. E-mail: maximo.plo@cern.ch; Rodriguez, J.M.; Vazquez, P.; Labbe, J.C

    1999-10-11

    We present the performance of a new proportional gas detector. Its geometry consists of a cathode plane with 70x70 {mu}m{sup 2} apertures, crossed by 25 {mu}m anode strips to which it is attached by 50 {mu}m kapton spacers. In the region where the avalanche takes place, the anode strips are suspended in the gas mixture as in a standard wire chamber. This detector exhibits high rate capability and large gains, introducing very little material. (author)

  10. Wiring regulations in brief

    CERN Document Server

    Tricker, Ray

    2012-01-01

    Tired of trawling through the Wiring Regs?Perplexed by Part P?Confused by cables, conductors and circuits?Then look no further! This handy guide provides an on-the-job reference source for Electricians, Designers, Service Engineers, Inspectors, Builders, Students, DIY enthusiastsTopic-based chapters link areas of working practice - such as cables, installations, testing and inspection, special locations - with the specifics of the Regulations themselves. This allows quick and easy identification of the official requirements relating to the situati

  11. Stabilized superconductive wires

    International Nuclear Information System (INIS)

    Randall, R.N.; Wong, J.

    1976-01-01

    A stable, high field, high current conductor is produced by packing multiple, multi-layer rods of a bronze core and niobium or vanadium inner jacket and copper outer jacket into a pure copper tube or other means for forming a pure copper matrix, sealing, working the packed tube to a wire, and by diffusion, heat treating to form a type II superconducting, Beta-Wolfram structure, intermetallic compound as a layer within each of several filaments derived from the rods. The layer of Beta-Wolfram structure compound may be formed in less than 2 h of diffusion heat treatment in a thickness of 0.5--2μ

  12. Improved field emission properties of carbon nanotubes grown on stainless steel substrate and its application in ionization gauge

    Energy Technology Data Exchange (ETDEWEB)

    Li, Detian; Cheng, Yongjun [Science and Technology on Vacuum Technology and Physics Laboratory, Lanzhou Institute of Physics, Lanzhou 730000 (China); Wang, Yongjun, E-mail: wyjlxlz@163.com [Science and Technology on Vacuum Technology and Physics Laboratory, Lanzhou Institute of Physics, Lanzhou 730000 (China); Zhang, Huzhong [Science and Technology on Vacuum Technology and Physics Laboratory, Lanzhou Institute of Physics, Lanzhou 730000 (China); Dong, Changkun [Institute of Micro-Nano Structures and Optoelectronics, Wenzhou University, Wenzhou 325035 (China); Li, Da [Division of Advanced Nanomaterials, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215125 (China)

    2016-03-01

    Graphical abstract: - Highlights: • The high quality CNT arrays were successfully grown on conductive stainless steel substrates. • The CNT array grown on stainless steel substrate exhibited superior field emission properties. • A high vacuum level about 10–8 Pa was measured by resultant CNT-based ionization gauge. • The ionization gauge with CNT cathode demonstrated a high stability. - Abstract: Vertically aligned carbon nanotube (CNT) arrays were fabricated by chemical vapor deposition (CVD) technique on different substrates. Microstructures and field emission characteristics of the as-grown CNT arrays were investigated systematically, and its application in ionization gauge was also evaluated preliminarily. The results indicate that the as-grown CNT arrays are vertically well-aligned relating to the substrate surfaces, but the CNTs grown on stainless steel substrate are longer and more crystalline than the ones grown on silicon wafer substrate. The field emission behaviors of the as-grown CNT arrays are strongly dependent upon substrate properties. Namely, the CNT array grown on stainless steel substrate has better field emission properties, including lower turn on and threshold fields, better emission stability and repeatability, compared with the one grown on silicon wafer substrate. The superior field emission properties of the CNT array grown on stainless steel substrate are mainly attributed to low contact resistance, high thermal conductivity, good adhesion strength, etc. In addition, the metrological behaviors of ionization gauge with the CNT array grown on stainless steel substrate as an electron source were investigated, and this novel cathode ionization gauge extends the lower limit of linear pressure measurement to 10{sup −8} Pa, which is one order of magnitude lower than the result reported for the same of gauge with CNT cathode.

  13. Diagnostics for exploding wires (abstract)

    International Nuclear Information System (INIS)

    Moosman, B.; Bystritskii, V.; Wessel, F.J.; Van Drie, A.

    1999-01-01

    Two diagnostics, capable of imaging fast, high temperature, plasmas were used on exploding wire experiments at UC Irvine. An atmospheric pressure nitrogen laser (λ=337.1 nm) was used to generate simultaneous shadow and shearing interferogram images with a temporal resolution of ∼1 ns and a spatial resolution of 10 μm. An x-ray backlighter imaged the exploding wire 90 degree with respect to the laser and at approximately the same instant in time. The backlighter spatial resolution as determined by geometry and film resolution was 25 μm. Copper wires of diameters (25, 50, and 100 μm) and steel wire d=25 μm were exploded in vacuum (10 -5 Torr) at a maximum current level of 12 kA, by a rectified marx bank at a voltage of 50 kV and a current rise time (quarter period) of 900 ns. Copper wires which were cleaned and then resistively heated under vacuum to incandescence for several hours prior to high current initiation, exhibited greater expansion velocities at peak current than wires which had not been heated prior to discharge. Axial variations on the surface of the wire observed with the laser were found to correlate with bulk axial mass differences from x-ray backlighting. High electron density, measured near the opaque surface of the exploding wire, suggests that much of the current is shunted outward away from the bulk of the wire. copyright 1999 American Institute of Physics

  14. Reliability Criteria for Thick Bonding Wire.

    Science.gov (United States)

    Dagdelen, Turker; Abdel-Rahman, Eihab; Yavuz, Mustafa

    2018-04-17

    Bonding wire is one of the main interconnection techniques. Thick bonding wire is widely used in power modules and other high power applications. This study examined the case for extending the use of traditional thin wire reliability criteria, namely wire flexure and aspect ratio, to thick wires. Eleven aluminum (Al) and aluminum coated copper (CucorAl) wire samples with diameter 300 μm were tested experimentally. The wire response was measured using a novel non-contact method. High fidelity FEM models of the wire were developed and validated. We found that wire flexure is not correlated to its stress state or fatigue life. On the other hand, aspect ratio is a consistent criterion of thick wire fatigue life. Increasing the wire aspect ratio lowers its critical stress and increases its fatigue life. Moreover, we found that CucorAl wire has superior performance and longer fatigue life than Al wire.

  15. Reliability Criteria for Thick Bonding Wire

    Directory of Open Access Journals (Sweden)

    Turker Dagdelen

    2018-04-01

    Full Text Available Bonding wire is one of the main interconnection techniques. Thick bonding wire is widely used in power modules and other high power applications. This study examined the case for extending the use of traditional thin wire reliability criteria, namely wire flexure and aspect ratio, to thick wires. Eleven aluminum (Al and aluminum coated copper (CucorAl wire samples with diameter 300 μm were tested experimentally. The wire response was measured using a novel non-contact method. High fidelity FEM models of the wire were developed and validated. We found that wire flexure is not correlated to its stress state or fatigue life. On the other hand, aspect ratio is a consistent criterion of thick wire fatigue life. Increasing the wire aspect ratio lowers its critical stress and increases its fatigue life. Moreover, we found that CucorAl wire has superior performance and longer fatigue life than Al wire.

  16. Reliability Criteria for Thick Bonding Wire

    Science.gov (United States)

    Yavuz, Mustafa

    2018-01-01

    Bonding wire is one of the main interconnection techniques. Thick bonding wire is widely used in power modules and other high power applications. This study examined the case for extending the use of traditional thin wire reliability criteria, namely wire flexure and aspect ratio, to thick wires. Eleven aluminum (Al) and aluminum coated copper (CucorAl) wire samples with diameter 300 μm were tested experimentally. The wire response was measured using a novel non-contact method. High fidelity FEM models of the wire were developed and validated. We found that wire flexure is not correlated to its stress state or fatigue life. On the other hand, aspect ratio is a consistent criterion of thick wire fatigue life. Increasing the wire aspect ratio lowers its critical stress and increases its fatigue life. Moreover, we found that CucorAl wire has superior performance and longer fatigue life than Al wire. PMID:29673194

  17. Effect of Sodium Fluoride Mouthwash on the Frictional Resistance of Orthodontic Wires

    Directory of Open Access Journals (Sweden)

    Allahyar Geramy

    2017-12-01

    Full Text Available Objectives: The friction between the brackets and orthodontic wire during sliding mechanics inflicts difficulties such as decreasing the applied force and tooth movement and also the loss of anchorage. Therefore, many studies have focused on the factors that affect the friction. The purpose of this study was to assess the effect of 0.05% sodium fluoride mouthwash on the friction between orthodontic brackets and wire.Materials and Methods: Four types of orthodontic wires including rectangular standard stainless steel (SS, titanium molybdenum alloy (TMA, nickel-titanium (NiTi and copper-nickel-titanium (Cu-NiTi were selected. In each group, half of the samples were immersed in 0.05% sodium fluoride mouthwash and the others were immersed in artificial saliva for 10 hours. An elastomeric ligature was used for ligating the wires to brackets. The frictional test was performed in a universal testing machine at the speed of 10 mm/minute. Two-way ANOVA was used for statistical analysis of the friction rate.Results: The friction rate was significantly higher after immersion in 0.05% sodium fluoride mouthwash in comparison with artificial saliva (P=0.00. Cu-NiTi wire showed the highest friction value followed by TMA, NiTi and SS wires.  Conclusions: According to the results of the current study, 0.05% sodium fluoride mouthwash increased the frictional characteristics of all the evaluated orthodontic wires.

  18. Genetic algorithm based optimization of the process parameters for gas metal arc welding of AISI 904 L stainless steel

    International Nuclear Information System (INIS)

    Sathiya, P.; Ajith, P. M.; Soundararajan, R.

    2013-01-01

    The present study is focused on welding of super austenitic stainless steel sheet using gas metal arc welding process with AISI 904 L super austenitic stainless steel with solid wire of 1.2 mm diameter. Based on the Box - Behnken design technique, the experiments are carried out. The input parameters (gas flow rate, voltage, travel speed and wire feed rate) ranges are selected based on the filler wire thickness and base material thickness and the corresponding output variables such as bead width (BW), bead height (BH) and depth of penetration (DP) are measured using optical microscopy. Based on the experimental data, the mathematical models are developed as per regression analysis using Design Expert 7.1 software. An attempt is made to minimize the bead width and bead height and maximize the depth of penetration using genetic algorithm.

  19. Genetic algorithm based optimization of the process parameters for gas metal arc welding of AISI 904 L stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Sathiya, P. [National Institute of Technology Tiruchirappalli (India); Ajith, P. M. [Department of Mechanical Engineering Rajiv Gandhi Institute of Technology, Kottayam (India); Soundararajan, R. [Sri Krishna College of Engineering and Technology, Coimbatore (India)

    2013-08-15

    The present study is focused on welding of super austenitic stainless steel sheet using gas metal arc welding process with AISI 904 L super austenitic stainless steel with solid wire of 1.2 mm diameter. Based on the Box - Behnken design technique, the experiments are carried out. The input parameters (gas flow rate, voltage, travel speed and wire feed rate) ranges are selected based on the filler wire thickness and base material thickness and the corresponding output variables such as bead width (BW), bead height (BH) and depth of penetration (DP) are measured using optical microscopy. Based on the experimental data, the mathematical models are developed as per regression analysis using Design Expert 7.1 software. An attempt is made to minimize the bead width and bead height and maximize the depth of penetration using genetic algorithm.

  20. Effect of wire size on maxillary arch force/couple systems for a simulated high canine malocclusion.

    Science.gov (United States)

    Major, Paul W; Toogood, Roger W; Badawi, Hisham M; Carey, Jason P; Seru, Surbhi

    2014-12-01

    To better understand the effects of copper nickel titanium (CuNiTi) archwire size on bracket-archwire mechanics through the analysis of force/couple distributions along the maxillary arch. The hypothesis is that wire size is linearly related to the forces and moments produced along the arch. An Orthodontic Simulator was utilized to study a simplified high canine malocclusion. Force/couple distributions produced by passive and elastic ligation using two wire sizes (Damon 0.014 and 0.018 inch) measured with a sample size of 144. The distribution and variation in force/couple loading around the arch is a complicated function of wire size. The use of a thicker wire increases the force/couple magnitudes regardless of ligation method. Owing to the non-linear material behaviour of CuNiTi, this increase is less than would occur based on linear theory as would apply for stainless steel wires. The results demonstrate that an increase in wire size does not result in a proportional increase of applied force/moment. This discrepancy is explained in terms of the non-linear properties of CuNiTi wires. This non-proportional force response in relation to increased wire size warrants careful consideration when selecting wires in a clinical setting. © 2014 British Orthodontic Society.

  1. Vibration of signal wires in wire detectors under irradiation

    International Nuclear Information System (INIS)

    Bojko, I.R.; Shelkov, G.A.; Dodonov, V.I.; Ignatenko, M.A.; Nikolenko, M.Yu.

    1995-01-01

    Radiation-induced vibration of signal wires in wire detectors is found and explained. The phenomenon is based on repulsion of a signal wire with a positive potential and a cloud of positive ions that remains after neutralization of the electron part of the avalanche formed in the course of gas amplification. Vibration with a noticeable amplitude may arise from fluctuations of repulsive forces, which act on the wire and whose sources are numerous ion clusters. A formula is obtained which allows wire oscillations to be estimated for all types of wire detectors. Calculation shows that oscillations of signal wires can be substantial for the coordinate accuracy of a detector working in the limited streamer mode at fluxes over 10 5 particles per second per wire. In the proportional mode an average oscillation amplitude can be as large as 20-30 μm at some detector parameters and external radiation fluxes over 10 5 . The experimental investigations show that the proposed model well describes the main features of the phenomenon. 6 refs., 8 figs

  2. Corrosion of Wires on Wooden Wire-Bound Packaging Crates

    Science.gov (United States)

    Samuel L. Zelinka; Stan Lebow

    2015-01-01

    Wire-bound packaging crates are used by the US Army to transport materials. Because these crates may be exposed to harsh environments, they are dip-treated with a wood preservative (biocide treatment). For many years, zinc-naphthenate was the most commonly used preservative for these packaging crates and few corrosion problems with the wires were observed. Recently,...

  3. Improved superconducting magnet wire

    Science.gov (United States)

    Schuller, I.K.; Ketterson, J.B.

    1983-08-16

    This invention is directed to a superconducting tape or wire composed of alternating layers of copper and a niobium-containing superconductor such as niobium of NbTi, Nb/sub 3/Sn or Nb/sub 3/Ge. In general, each layer of the niobium-containing superconductor has a thickness in the range of about 0.05 to 1.5 times its coherence length (which for Nb/sub 3/Si is 41 A) with each copper layer having a thickness in the range of about 170 to 600 A. With the use of very thin layers of the niobium composition having a thickness within the desired range, the critical field (H/sub c/) may be increased by factors of 2 to 4. Also, the thin layers of the superconductor permit the resulting tape or wire to exhibit suitable ductility for winding on a magnet core. These compositions are also characterized by relatively high values of critical temperature and therefore will exhibit a combination of useful properties as superconductors.

  4. Stainless steel decontamination manipulators

    International Nuclear Information System (INIS)

    Sullivan, R.J.

    1986-01-01

    Three, large-volume coverage manipulator systems were designed and built for the Defense Water Processing Facility at the Savannah River Laboratory. These stainless steel systems will be used for high-pressure spray decontamination of waste containers and large process equipment modules. Each system has a manipulator arm, folding boom, and vertical drive and guide structure. Handling capacity is 45 kg, horizontal reach is 4.6 m with a 180-deg swing motion, and the vertical travel is 6 m. The system is remotely removable and replaceable in modules using an overhead crane and an impact wrench. The manipulator arm has seven motions: Shoulder rotation and pivot, elbow pivot, wrist pivot and rotation, and grip open-close. All motions are variable speed and are slip-clutch protected to prevent overloading from external forces (collisions)

  5. The Quantum Socket: Wiring for Superconducting Qubits - Part 2

    Science.gov (United States)

    Bejanin, J. H.; McConkey, T. G.; Rinehart, J. R.; Bateman, J. D.; Earnest, C. T.; McRae, C. H.; Rohanizadegan, Y.; Shiri, D.; Mariantoni, M.; Penava, B.; Breul, P.; Royak, S.; Zapatka, M.; Fowler, A. G.

    Quantum computing research has reached a level of maturity where quantum error correction (QEC) codes can be executed on linear arrays of superconducting quantum bits (qubits). A truly scalable quantum computing architecture, however, based on practical QEC algorithms, requires nearest neighbor interaction between qubits on a two-dimensional array. Such an arrangement is not possible with techniques that rely on wire bonding. To address this issue, we have developed the quantum socket, a device based on three-dimensional wires that enables the control of superconducting qubits on a two-dimensional grid. In this talk, we present experimental results characterizing this type of wiring. We will show that the quantum socket performs exceptionally well for the transmission and reflection of microwave signals up to 10 GHz, while minimizing crosstalk between adjacent wires. Under realistic conditions, we measured an S21 of -5 dB at 6 GHz and an average crosstalk of -60 dB. We also describe time domain reflectometry results and arbitrary pulse transmission tests, showing that the quantum socket can be used to control superconducting qubits.

  6. Designing of CK45 carbon steel and AISI 304 stainless steel dissimilar welds

    OpenAIRE

    Pouraliakbar,Hesam; Hamedi,Mohsen; Kokabi,Amir Hossein; Nazari,Ali

    2014-01-01

    Gas tungsten arc welding of CK45 and AISI304 stainless steel was performed through preparation of different types of samples using ER308L and ERNi-1 wires. Welded samples were studied by different techniques including optical metallography, scanning electron microscopy equipped with energy dispersive X-ray spectroscopy (SEM-EDS), X-ray diffraction, hardness measurements and impact test. It was observed that in the buttered specimen, the structure of the weld metal was completely austenitic wh...

  7. Energy transformation in Z-pinch and plasma focus discharges with wire and wire-in-liner loads

    International Nuclear Information System (INIS)

    Kubes, Pavel; Kravarik, Jozef; Klir, Daniel; Scholz, Marek; Paduch, Marian; Tomaszewski, Krzysztof; Karpinski, Leslaw; Bakshaev, Yury L.; Blinov, Peter I.; Chernenko, Andrey S.; Dan'ko, Sergey A.; Korolev, Valery D.; Shashkov, Andrey Y.; Tumanov, Victor I.

    2002-01-01

    The results of the study of the Z-pinch and plasma-focus plasmas at presence of the axial C, Al, or Cu wires of sufficient high diameter are discussed in this paper. The wire was positioned on the top of the inner electrode of the PF 1000 plasma focus (1.8 MA, IPPLM Warsaw), or at the axis with or without the tungsten or alumine wire array load at the S-300 facility (3 MA, RRC Kurchatov Institute, Moscow), and at the axis of the small Z-pinch Z-150 (50 kA, CTU Prague). The plasma corona around the wire was generated both by the current going through the wires and by the implosion of the wire array or of the current sheath. The experiments showed interesting results often observed in some shots of Z-pinch type discharges - existence of helical structures, two relatively long and stable pinch phases, oscillation of pinch diameter, and back return of the plasma exploding from the pinch. All these observed phenomena can be evolved by spontaneous self-generation and transformation of the axial magnetic field in the pinch during the plasma implosion and explosion. A configuration of axial and azimuthal magnetic field confines the plasma and later transforms or dissipates during a few tens or hundreds ns. A fast transformation of internal magnetic fields can induce a sufficiently high electric field for generation of keV particles and radiation. Study and usage of Z-pinch discharges is connected with solving of two principal problems, limitation of instability development and a way of generation of high energy particles and radiation. The first problem is partially solved by the faster increase of the current, by better cylindrical symmetry of the load and plasma, by higher density of the plasma or by the presence of a stronger magnetized plasma

  8. Localized corrosion of high alloyed austenitic stainless steels

    International Nuclear Information System (INIS)

    Morach, R.; Schmuki, P.; Boehni, H.

    1992-01-01

    The susceptibility of several high alloyed stainless steels against localized corrosion was investigated by traditional potentiostatic and -kinetic methods and the current transient technique. Different test cells, proposed in literature, were evaluated for use in testing of plate materials. The AVESTA-cell showed to be not useful for potentiokinetic current density potential curves, but useable for pitting experiments. After pickling and prepassivation epoxy embedded materials proved to be resistant to crevice corrosion at the metal-resin interface. The electrode in form of a wire was the most reliable crevice free cell design. The grinding of the samples in the pretreatment procedure was found to have a large effect on the pitting corrosion behaviour. Using different paper types with varying grit, a drop in pitting potential for rougher surfaces and an increase in metastable pitting activity was found. Increasing surface roughness led also to changes in the electronic structure of the passive film reflected by a lower bandgap energy. High alloyed stainless steels showed no breakdown potential within the examined potential range. Compared to 18/8 type stainless steels significantly less transients were found. The number of transients decreases with increasing molybdenum and chromium content

  9. Welding wire pressure sensor assembly

    Science.gov (United States)

    Morris, Timothy B. (Inventor); Milly, Peter F., Sr. (Inventor); White, J. Kevin (Inventor)

    1994-01-01

    The present invention relates to a device which is used to monitor the position of a filler wire relative to a base material being welded as the filler wire is added to a welding pool. The device is applicable to automated welding systems wherein nonconsumable electrode arc welding processes are utilized in conjunction with a filler wire which is added to a weld pool created by the electrode arc. The invention senses pressure deviations from a predetermined pressure between the filler wire and the base material, and provides electrical signals responsive to the deviations for actuating control mechanisms in an automatic welding apparatus so as to minimize the pressure deviation and to prevent disengagement of the contact between the filler wire and the base material.

  10. Developing and Testing SpaceWire Devices and Networks

    Science.gov (United States)

    Parkes, Steve; Mills, Stuart

    2014-08-01

    SpaceWire is a data-handling network for use on-board spacecraft, which connects together instruments, mass- memory, processors, downlink telemetry, and other on- board sub-systems [1]. SpaceWire is simple to implement and has some specific characteristics that help it support data-handling applications in space: high-speed, low-power, simplicity, relatively low implementation cost, and architectural flexibility making it ideal for many space missions. SpaceWire provides high-speed (2 Mbits/s to 200 Mbits/s), bi- directional, full-duplex data-links, which connect together SpaceWire enabled equipment. Data-handling networks can be built to suit particular applications using point-to-point data-links and routing switches.Since the SpaceWire standard was published in January 2003, it has been adopted by ESA, NASA, JAXA and RosCosmos for many missions and is being widely used on scientific, Earth observation, commercial and other spacecraft. High-profile missions using SpaceWire include: Gaia, ExoMars rover, Bepi- Colombo, James Webb Space Telescope, GOES-R, Lunar Reconnaissance Orbiter and Astro-H.The development and testing of the SpaceWire links and networks used on these and many other spacecraft currently under development, requires a comprehensive array of test equipment. In this paper the requirements for test equipment fulfilling key test functions are outlined and then equipment that meets these requirements is described. Finally the all-important software that operates with the test equipment is introduced.

  11. Forming Refractory Insulation On Copper Wire

    Science.gov (United States)

    Setlock, J.; Roberts, G.

    1995-01-01

    Alternative insulating process forms flexible coat of uncured refractory insulating material on copper wire. Coated wire formed into coil or other complex shape. Wire-coating apparatus forms "green" coat on copper wire. After wire coiled, heating converts "green" coat to refractory electrical insulator. When cured to final brittle form, insulating material withstands temperatures above melting temperature of wire. Process used to make coils for motors, solenoids, and other electrical devices to be operated at high temperatures.

  12. Array capabilities and future arrays

    International Nuclear Information System (INIS)

    Radford, D.

    1993-01-01

    Early results from the new third-generation instruments GAMMASPHERE and EUROGAM are confirming the expectation that such arrays will have a revolutionary effect on the field of high-spin nuclear structure. When completed, GAMMASHPERE will have a resolving power am order of magnitude greater that of the best second-generation arrays. When combined with other instruments such as particle-detector arrays and fragment mass analysers, the capabilites of the arrays for the study of more exotic nuclei will be further enhanced. In order to better understand the limitations of these instruments, and to design improved future detector systems, it is important to have some intelligible and reliable calculation for the relative resolving power of different instrument designs. The derivation of such a figure of merit will be briefly presented, and the relative sensitivities of arrays currently proposed or under construction presented. The design of TRIGAM, a new third-generation array proposed for Chalk River, will also be discussed. It is instructive to consider how far arrays of Compton-suppressed Ge detectors could be taken. For example, it will be shown that an idealised open-quote perfectclose quotes third-generation array of 1000 detectors has a sensitivity an order of magnitude higher again than that of GAMMASPHERE. Less conventional options for new arrays will also be explored

  13. Control wiring diagrams

    International Nuclear Information System (INIS)

    McCauley, T.M.; Eskinazi, M.; Henson, L.L.

    1989-01-01

    This paper discusses the changes in electrical document requirements that occur when construction is complete and a generating station starts commercial operation. The needs of operations and maintenance (O and M) personnel are analyzed and contrasted with those of construction to illustrate areas in which the construction documents (drawings, diagrams, and databases) are difficult to use for work at an operating station. The paper discusses the O and M electrical documents that the Arizona Nuclear Power Project (ANPP) believes are most beneficial for the three operating units at Palo Verde; these are control wiring diagrams and an associated document cross-reference list. The benefits offered by these new, station O and M-oriented documents are weighted against the cost of their creation and their impact on drawing maintenance

  14. Efficient production of hot plasmas through multiple-wire implosion in transmission line generators

    International Nuclear Information System (INIS)

    Bloomberg, H.W.

    1980-01-01

    Model equations for the implosion of multiple-wire arrays mounted across the electrodes of a transmission line generator are used to obtain an expression for the energy-coupling efficiency. For a useful class of imploding loads, the efficiency is shown to depend on a single dimensionless parameter. Furthermore, the efficiency curve has a maximum, and this permits an explicit optimization of the wire load parameters in terms of the machine parameters

  15. An in vitro Evaluation of Friction Characteristics of Conventional Stainless Steel and Self-ligating Stainless Steel Brackets with different Dimensions of Archwires in Various Bracket-archwire Combination.

    Science.gov (United States)

    Sridharan, K; Sandbhor, Shailesh; Rajasekaran, U B; Sam, George; Ramees, M Mohamed; Abraham, Esther A

    2017-08-01

    The purpose of this research is to compare the frictional attributes of stainless steel conventional brackets and self-ligating stainless steel brackets with different dimensions of archwires. The test was carried with two sets of maxillary brackets: (1) Conventional stainless steel (Victory Series), (2) stainless steel self-ligating (SmartClip) without first premolar brackets. Stainless steel, nickel-titanium (NiTi), and beta-Ti which are the types of orthodontic wire alloys were tested in this study. To monitor the frictional force, a universal testing machine (Instron 33R 4467) that comprises 10 kg tension load cell was assigned on a range of 1 kg and determined from 0 to 2 kg, which allows moving of an archwire along the brackets. One-way analysis of variance was used to test the difference between groups. To analyze the statistical difference between the two groups, Student's t-test was used. For Victory Series in static friction, p-value was 0.946 and for kinetic friction it was 0.944; at the same time for SmartClip, the p value for static and kinetic frictional resistance was 0.497 and 0.518 respectively. Hence, there was no statistically significant difference between the NiTi and stainless steel archwires. It is concluded that when compared with conventional brackets with stainless steel ligatures, self-ligating brackets can produce significantly less friction during sliding. Beta-Ti archwires expressed high amount of frictional resistance and the stainless steel archwires comprise low frictional resistance among all the archwire materials. In orthodontics, frictional resistance has always had a major role. Its ability to impair tooth movement leads to the need for higher forces to move the teeth and it extends the treatment time which results in loss of posterior anchorage. Friction in orthodontics is related with sliding mechanics when a wire is moving through one or a series of bracket slots.

  16. Austenitic stainless steel weld inspection

    International Nuclear Information System (INIS)

    Mech, S.J.; Emmons, J.S.; Michaels, T.E.

    1978-01-01

    Analytical techniques applied to ultrasonic waveforms obtained from inspection of austenitic stainless steel welds are described. Experimental results obtained from a variety of geometric and defect reflectors are presented. Specifically, frequency analyses parameters, such as simple moments of the power spectrum, cross-correlation techniques, and adaptive learning network analysis, all represent improvements over conventional time domain analysis of ultrasonic waveforms. Results for each of these methods are presented, and the overall inspection difficulties of austenitic stainless steel welds are discussed

  17. Electroplated superconducting wire

    International Nuclear Information System (INIS)

    Peger, C.H.

    1991-01-01

    A hard chromium solution has been considered the least efficient of all plating solutions. This is not exactly true if the correct plating conditions are used. The accepted efficiency is only 12% but that is only true for the parameters that were used long ago to make the determination. At 12% efficiency it would be impossible to plate Superconductor wire. The world's chromium plating shops have been plating at a .001 (.025u) per hour rate since the turn of the century. Shops in the Cleveland, Ohio area have been limiting their plating rate to .006 (152u) since 1935. A few have used .012 (304u) to .030 (762u) per hour for specialized jobs. These figures would indicate the apparent efficiency of the old 100 to 1 chromium, sulfate solution can be higher than 60%. The industry uses a 3 bus bar tank with wide spacing between anode and cathode. This results in high solution resistance and high heat generation and consequently slow plating rates. The Reversible Rack 2 Bus Bar System uses very close anode to cathode spacings. This results in the high plating rates with improved quality deposits. When first asked to chromium plate pure nickel wire reel to reel in long lengths, companies making reel to reel machines were asked if chromium plating was practical. In every case, the answer was it couldn't be done. Gold, tin and zinc plating was being done reel to reel. Using the same parameters that were used to determine a chromium solution efficiency was only 12%, these other metal solutions check out close to 100%

  18. The Effect of Annealing on the Elastic Modulus of Orthodontic Wires

    Science.gov (United States)

    Higginbottom, Kyle

    Introduction: Nickel Titanium orthodontic wires are currently used in orthodontic treatment due to their heat activated properties and their delivery of constant force. The objective of this study was to determine the effect of annealing on the elastic modulus of Nickel Titanium, Stainless Steel and Beta-titanium (TMA) wires. Different points along the wire were tested in order to determine how far from the annealed ends the elastic modulus of the wires was affected. Methods: Eighty (80) orthodontic wires consisting of 4 equal groups (SS/TMA/Classic NitinolRTM/Super Elastic NitinolRTM) were used as the specimens for this study. All wires were measured and marked at 5mm measurements, and cut into 33.00mm sections. The wires were heated with a butane torch until the first 13.00mm of the wires were red hot. Load deflection tests using an InstronRTM universal testing machine were run at 5mm distances from the end of the wire that had been annealed. The change in elastic modulus was then determined. Results: There was a significant difference (F = 533.001, p = 0.0005) in the change in elastic modulus for the four distances. There was also a significant difference (F = 57.571, p = 0.0005) in the change in elastic modulus for the four wire types. There was a significant interaction (F = 19.601, p = 0.005) between wire type and distance, however this interaction negated the differences between the wires. Conclusion: 1) There are significant differences in the changes in elastic modulus between the areas of the wires within the annealed section and those areas 5mm and 10mm away from the annealed section. The change in elastic modulus within the annealed section was significantly greater at 8 mm than it was at 13mm, and this was significantly greater than 18mm and 23mm (5mm and 10mm beyond the annealed section). However, there was no statistical difference in the change in elastic modulus between 5mm and 10mm away from the annealed section (18mm and 23mm respectively). 2

  19. Study of Plasma Flow Modes in Imploding Nested Arrays

    Science.gov (United States)

    Mitrofanov, K. N.; Aleksandrov, V. V.; Gritsuk, A. N.; Branitsky, A. V.; Frolov, I. N.; Grabovski, E. V.; Sasorov, P. V.; Ol'khovskaya, O. G.; Zaitsev, V. I.

    2018-02-01

    Results from experimental studies of implosion of nested wire and fiber arrays at currents of up to 4 MA at the Angara-5-1 facility are presented. Depending on the ratio between the radii of the inner and outer arrays, different modes of the plasma flow in the space between the inner and outer arrays were implemented: the sub-Alfvénic ( V r V A ) modes and a mode with the formation of the transition shock wave (SW) region between the cascades. By varying the material of the outer array (tungsten wires or kapron fibers), it is shown that the plasma flow mode between the inner and outer arrays depends on the ratio between the plasma production rates ṁ in / ṁ out in the inner and outer arrays. The obtained experimental results are compared with the results of one-dimensional MHD simulation of the plasma flow between the arrays. Stable implosion of the inner array plasma was observed in experiments with combined nested arrays consisting of a fiber outer array and a tungsten inner array. The growth rates of magnetic Rayleigh-Taylor (MRT) instability in the inner array plasma at different numbers of fibers in the outer array and different ratios between the radii of the inner and outer arrays are compared. Suppression of MRT instability during the implosion of the inner array plasma results in the formation of a stable compact Z-pinch and generation of a soft X-ray pulse. A possible scenario of interaction between the plasmas of the inner and outer arrays is offered. The stability of the inner array plasma in the stage of final compression depends on the character of interaction of plasma jets from the outer array with the magnetic field of the inner array.

  20. Microneedle arrays for biosensing and drug delivery

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Joseph; Windmiller, Joshua Ray; Narayan, Roger; Miller, Philip

    2017-08-29

    Methods, structures, and systems are disclosed for biosensing and drug delivery techniques. In one aspect, a device for detecting an analyte and/or releasing a biochemical into a biological fluid can include an array of hollowed needles, in which each needle includes a protruded needle structure including an exterior wall forming a hollow interior and an opening at a terminal end of the protruded needle structure that exposes the hollow interior, and a probe inside the exterior wall to interact with one or more chemical or biological substances that come in contact with the probe via the opening to produce a probe sensing signal, and an array of wires that are coupled to probes of the array of hollowed needles, respectively, each wire being electrically conductive to transmit the probe sensing signal produced by a respective probe.

  1. Microneedle arrays for biosensing and drug delivery

    Science.gov (United States)

    Wang, Joseph; Windmiller, Joshua Ray; Narayan, Roger; Miller, Philip; Polsky, Ronen; Edwards, Thayne L.

    2017-08-22

    Methods, structures, and systems are disclosed for biosensing and drug delivery techniques. In one aspect, a^ device for detecting an analyte and/or releasing a biochemical into a biological fluid can include an array of hollowed needles, in which each needle includes a protruded needle structure including an exterior wall forming a hollow interior and an opening at a terminal end of the protruded needle structure that exposes the hollow interior, and a probe inside the exterior wall to interact with one or more chemical or biological substances that come in contact with the probe via the opening to produce a probe sensing signal, and an array of wires that are coupled to probes of the array of hollowed needles, respectively, each wire being electrically conductive to transmit the probe sensing signal produced by a respective probe.

  2. Processing, Structural Characterization and Comparative Studies on Uniaxial Tensile Properties of a New Type of Porous Twisted Wire Material

    Directory of Open Access Journals (Sweden)

    Fei Wu

    2015-08-01

    Full Text Available A self-developed rotary multi-cutter device cuts stainless steel wire ropes into segments to fabricate twisted wires. Stainless steel porous twisted wire materials (PTWMs with a spatial composite intertexture structure are produced by the compaction and subsequent vacuum solid-phase sintering of twisted wires. The stainless steel PTWMs show two types of typical uniaxial tensile failure modes, i.e., a 45° angle fracture mode and an auxetic failure mode (the PTWMs expand along the direction perpendicular to the tension. The effects of the sintering parameters, porosities, wire diameters, and sampling direction on the tensile properties of the PTWMs are carefully investigated. By increasing the sintering temperature from 1130 °C to 1330 °C, the tensile strength of the PTWMs with 70% target porosity increased from 7.7 MPa to 28.6 MPa and the total failure goes down to 50%. When increasing the sintering time from 90 min to 150 min, the tensile strength increases from 12.4 MPa to 19.1 MPa and the total failure elongation drops to 78.6%. The tensile strength of the PTWMs increases from 28.9 MPa to 112.7 MPa with decreasing porosity from 69.5% to 46.0%, and the total failure elongation also increases from 14.8% to 40.7%. The tensile strength and the failure strain of the PTWMs with fine wires are higher than those of the PTWMs with coarse wires under the same porosity. Sampling direction has a small influence on the tensile properties of the PTWMs.

  3. Improved field emission properties of carbon nanotubes grown on stainless steel substrate and its application in ionization gauge

    Science.gov (United States)

    Li, Detian; Cheng, Yongjun; Wang, Yongjun; Zhang, Huzhong; Dong, Changkun; Li, Da

    2016-03-01

    Vertically aligned carbon nanotube (CNT) arrays were fabricated by chemical vapor deposition (CVD) technique on different substrates. Microstructures and field emission characteristics of the as-grown CNT arrays were investigated systematically, and its application in ionization gauge was also evaluated preliminarily. The results indicate that the as-grown CNT arrays are vertically well-aligned relating to the substrate surfaces, but the CNTs grown on stainless steel substrate are longer and more crystalline than the ones grown on silicon wafer substrate. The field emission behaviors of the as-grown CNT arrays are strongly dependent upon substrate properties. Namely, the CNT array grown on stainless steel substrate has better field emission properties, including lower turn on and threshold fields, better emission stability and repeatability, compared with the one grown on silicon wafer substrate. The superior field emission properties of the CNT array grown on stainless steel substrate are mainly attributed to low contact resistance, high thermal conductivity, good adhesion strength, etc. In addition, the metrological behaviors of ionization gauge with the CNT array grown on stainless steel substrate as an electron source were investigated, and this novel cathode ionization gauge extends the lower limit of linear pressure measurement to 10-8 Pa, which is one order of magnitude lower than the result reported for the same of gauge with CNT cathode.

  4. Wire chamber radiation detector with discharge control

    International Nuclear Information System (INIS)

    Perez-Mendez, V.; Mulera, T.A.

    1984-01-01

    A wire chamber radiation detector has spaced apart parallel electrodes and grids defining an ignition region in which charged particles or other ionizing radiations initiate brief localized avalanche discharges and defining an adjacent memory region in which sustained glow discharges are initiated by the primary discharges. Conductors of the grids at each side of the memory section extend in orthogonal directions enabling readout of the X-Y coordinates of locations at which charged particles were detected by sequentially transmitting pulses to the conductors of one grid while detecting transmissions of the pulses to the orthogonal conductors of the other grid through glow discharges. One of the grids bounding the memory region is defined by an array of conductive elements each of which is connected to the associated readout conductor through a separate resistance. The wire chamber avoids ambiguities and imprecisions in the readout of coordinates when large numbers of simultaneous or near simultaneous charged particles have been detected. Down time between detection periods and the generation of radio frequency noise are also reduced

  5. Plasma chemistry in wire chambers

    International Nuclear Information System (INIS)

    Wise, J.

    1990-05-01

    The phenomenology of wire chamber aging is discussed and fundamentals of proportional counters are presented. Free-radical polymerization and plasma polymerization are discussed. The chemistry of wire aging is reviewed. Similarities between wire chamber plasma (>1 atm dc-discharge) and low-pressure rf-discharge plasmas, which have been more widely studied, are suggested. Construction and use of a system to allow study of the plasma reactions occurring in wire chambers is reported. A proportional tube irradiated by an 55 Fe source is used as a model wire chamber. Condensable species in the proportional tube effluent are concentrated in a cryotrap and analyzed by gas chromatography/mass spectrometry. Several different wire chamber gases (methane, argon/methane, ethane, argon/ethane, propane, argon/isobutane) are tested and their reaction products qualitatively identified. For all gases tested except those containing methane, use of hygroscopic filters to remove trace water and oxygen contaminants from the gas resulted in an increase in the average molecular weight of the products, consistent with results from low-pressure rf-discharge plasmas. It is suggested that because water and oxygen inhibit polymer growth in the gas phase that they may also reduce polymer deposition in proportional tubes and therefore retard wire aging processes. Mechanistic implications of the plasma reactions of hydrocarbons with oxygen are suggested. Unresolved issues in this work and proposals for further study are discussed

  6. SNP Arrays

    Directory of Open Access Journals (Sweden)

    Jari Louhelainen

    2016-10-01

    Full Text Available The papers published in this Special Issue “SNP arrays” (Single Nucleotide Polymorphism Arrays focus on several perspectives associated with arrays of this type. The range of papers vary from a case report to reviews, thereby targeting wider audiences working in this field. The research focus of SNP arrays is often human cancers but this Issue expands that focus to include areas such as rare conditions, animal breeding and bioinformatics tools. Given the limited scope, the spectrum of papers is nothing short of remarkable and even from a technical point of view these papers will contribute to the field at a general level. Three of the papers published in this Special Issue focus on the use of various SNP array approaches in the analysis of three different cancer types. Two of the papers concentrate on two very different rare conditions, applying the SNP arrays slightly differently. Finally, two other papers evaluate the use of the SNP arrays in the context of genetic analysis of livestock. The findings reported in these papers help to close gaps in the current literature and also to give guidelines for future applications of SNP arrays.

  7. Prospective, randomized, controlled trial of polymer cable ties versus standard wire closure of midline sternotomy.

    Science.gov (United States)

    Marasco, Silvana F; Fuller, Louise; Zimmet, Adam; McGiffin, David; Seitz, Michael; Ch'ng, Stephanie; Gangahanumaiah, Shivanand; Bailey, Michael

    2018-04-16

    Midline sternotomy remains the most common access incision for cardiac operations. Traditionally, the sternum is closed with stainless steel wires. Wires are well known to stretch and break, however, leading to pain, nonunion, and potential deep sternal wound infection. We hypothesized that biocompatible plastic cable ties would achieve a more rigid sternal fixation, reducing postoperative pain and analgesia requirements. A prospective, randomized study compared the ZIPFIX (De Puy Synthes, West Chester, Pa) sternal closure system (n = 58) with standard stainless steel wires (n = 60). Primary outcomes were pain and analgesia requirements in the early postoperative period. Secondary outcome was sternal movement, as assessed by ultrasound at the postoperative follow-up visit. Groups were well matched in demographic and operative variables. There were no significant differences between groups in postoperative pain, analgesia, or early ventilatory requirements. Patients in the ZIPFIX group had significantly more movement in the sternum and manubrium on ultrasound at 4 weeks. ZIPFIX sternal cable ties provide reliable closure but no demonstrable benefit in this study in pain or analgesic requirements relative to standard wire closure after median sternotomy. Crown Copyright © 2018. Published by Elsevier Inc. All rights reserved.

  8. Characterization of the thrombogenic potential of surface oxides on stainless steel for implant purposes

    International Nuclear Information System (INIS)

    Shih, C.-C.; Shih, C.-M.; Su, Y.-Y.; Chang, M.-S.; Lin, S.-J.

    2003-01-01

    Marketed stents are manufactured from various metals and passivated with different degrees of surface oxidation. The functional surface oxides on the degree of antithrombotic potential were explored through a canine femoral extracorporeal circuit model. Related properties of these oxide films were studied by open-circuit potential, current density detected at open-circuit potential, the electrochemical impedance spectroscopy, transmission electron microscopy, Auger spectroscopy (AES), X-ray photoelectron spectroscopy (XPS), and scanning electron microscopy. Experimental evidences showed that blood clot weight after a 30-min follow-up was significantly lower for the stainless steel wire passivated with amorphous oxide (AO) compared to the wire passivated with polycrystalline oxide (PO) or commercial as-received wire coils (AS). Surface characterizations showed that a stable negative current density at open-circuit potential and a significant lower potential were found for the wire surface passivated with AO than for the surface passivated with PO. Time constant of AO is about 25 times larger than that of polycrystalline oxide. Significant difference in oxide grain sizes was found between PO and AO. Surface chemistries revealed by the AES and XPS spectra indicated the presence of a Cr- and oxygen-rich surface oxide for AO, and a Fe-rich and oxygen-lean surface oxide for PO. These remarkable characteristics of AO surface film might have a potential to provide for excellent antithrombotic characteristics for the 316L stainless steel stents

  9. High voltage load resistor array

    Science.gov (United States)

    Lehmann, Monty Ray [Smithfield, VA

    2005-01-18

    A high voltage resistor comprising an array of a plurality of parallel electrically connected resistor elements each containing a resistive solution, attached at each end thereof to an end plate, and about the circumference of each of the end plates, a corona reduction ring. Each of the resistor elements comprises an insulating tube having an electrode inserted into each end thereof and held in position by one or more hose clamps about the outer periphery of the insulating tube. According to a preferred embodiment, the electrode is fabricated from stainless steel and has a mushroom shape at one end, that inserted into the tube, and a flat end for engagement with the end plates that provides connection of the resistor array and with a load.

  10. Electroplastic drawing of stainless steels

    International Nuclear Information System (INIS)

    Troitskij, O.A.; Spitsyn, V.I.; Sokolov, N.V.; Ryzhkov, V.G.

    1977-01-01

    Effect of electroplastic drawing on mechanical, magnetic and electrical properties of wire of 12Kh18N10T and Kh13N13M2 steels was studied. Pulse, direct and alternating currents were used. Direct and alternating current densities were 400 A/mm 2 , mean density of pulse current was 200 A/mm 2 . The investigations have shown that the current density increase results in decreasing the wire strengthening intensity though in increasing plastic properties. As a result of electroplastic drawing the growth of magnetic characteristics of wire occurs

  11. PROJECT, MANUFACTURING AND QUALIFICATION OF MACHINE TO ROTARY BENDING OF NITI SUPERELASTIC WIRES IN FATIGUE TESTS

    Directory of Open Access Journals (Sweden)

    William Marcos Muniz Menezes

    2014-03-01

    Full Text Available In this work it was developed a rotating bending apparatus for fatigue tests of superelastic NiTi wires, and other materials with high elasticity. It was evaluated the performance, robustness, operability, and reliability through testing of 1 mm thick stainless steel wires. This device is mounted on a steel frame and features semiautomatic rotation speed control, time and testing bath temperature for sample immersion. The equipment qualification tests were performed controlling the following parameters: deformation of the wire, power level and ambient temperature. The results indicated lower discrepancies for the following parameters evaluated: number of cycles in fatigue life, rotation speed, the bath temperature and arc angle of rupture. Besides the reliability, the robustness and operability of the equipment also meet the purpose of the research as evidenced by the small number of failures in the qualification tests and calibration.

  12. A simple aluminum gasket for use with both stainless steel and aluminum flanges

    Energy Technology Data Exchange (ETDEWEB)

    Langley, R.A.

    1991-01-01

    A technique has been developed for making aluminum wire seal gaskets of various sizes and shapes for use with both stainless steel and aluminum alloy flanges. The gasket material used is 0.9999 pure aluminum, drawn to a diameter of 3 mm. This material can be easily welded and formed into various shapes. A single gasket has been successfully used up to five times without baking. The largest gasket tested to date is 3.5 m long and was used in the shape of a parallelogram. Previous use of aluminum wire gaskets, including results for bakeout at temperatures from 20 to 660{degree}C, is reviewed. A search of the literature indicates that this is the first reported use of aluminum wire gaskets for aluminum alloy flanges. The technique is described in detail, and the results are summarized. 11 refs., 4 figs.

  13. electrode array

    African Journals Online (AJOL)

    PROF EKWUEME

    A geoelectric investigation employing vertical electrical soundings (VES) using the Ajayi - Makinde Two-Electrode array and the ... arrangements used in electrical D.C. resistivity survey. These include ..... Refraction Tomography to Study the.

  14. Modeling birds on wires.

    Science.gov (United States)

    Aydoğdu, A; Frasca, P; D'Apice, C; Manzo, R; Thornton, J M; Gachomo, B; Wilson, T; Cheung, B; Tariq, U; Saidel, W; Piccoli, B

    2017-02-21

    In this paper we introduce a mathematical model to study the group dynamics of birds resting on wires. The model is agent-based and postulates attraction-repulsion forces between the interacting birds: the interactions are "topological", in the sense that they involve a given number of neighbors irrespective of their distance. The model is first mathematically analyzed and then simulated to study its main properties: we observe that the model predicts birds to be more widely spaced near the borders of each group. We compare the results from the model with experimental data, derived from the analysis of pictures of pigeons and starlings taken in New Jersey: two different image elaboration protocols allow us to establish a good agreement with the model and to quantify its main parameters. We also discuss the potential handedness of the birds, by analyzing the group organization features and the group dynamics at the arrival of new birds. Finally, we propose a more refined mathematical model that describes landing and departing birds by suitable stochastic processes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Inhomogeneous wire explosion in water

    International Nuclear Information System (INIS)

    Hwangbo, C.K.; Kong, H.J.; Lee, S.S.

    1980-01-01

    Inhomogeneous processes are observed in underwater copper wire explosion induced by a condensed capacitor discharge. The wire used is 0.1 mm in diameter and 10 mm long, and the capacitor of 2 μF is charged to 5 KV. A N 2 laser is used for the diagnostic of spatial extension of exploding copper vapour. The photographs obtained in this experiment show unambiguously the inhomogeneous explosion along the exploding wire. The quenching of plasma by the surrounding water inhibits the expansion of the vapour. It is believed the observed inhomogeneous explosion along the wire is located and localized around Goronkin's striae, which was first reported by Goronkin and discussed by Froengel as a pre-breakdown phenomenon. (author)

  16. Topology Optimized Photonic Wire Splitters

    DEFF Research Database (Denmark)

    Frandsen, Lars Hagedorn; Borel, Peter Ingo; Jensen, Jakob Søndergaard

    2006-01-01

    Photonic wire splitters have been designed using topology optimization. The splitters have been fabricated in silicon-on-insulator material and display broadband low-loss 3dB splitting in a bandwidth larger than 100 nm.......Photonic wire splitters have been designed using topology optimization. The splitters have been fabricated in silicon-on-insulator material and display broadband low-loss 3dB splitting in a bandwidth larger than 100 nm....

  17. Composite conductor containing superconductive wires

    Energy Technology Data Exchange (ETDEWEB)

    Larson, W.L.; Wong, J.

    1974-03-26

    A superconductor cable substitute made by coworking multiple rods of superconductive niobium--titanium or niobium--zirconium alloy with a common copper matrix to extend the copper and rods to form a final elongated product which has superconductive wires distributed in a reduced cross-section copper conductor with a complete metallurgical bond between the normal-conductive copper and the superconductor wires contained therein is described. The superconductor cable can be in the form of a tube.

  18. Efeitos dos fios de nivelamento de níquel-titânio e de aço inoxidável na posição dos incisivos inferiores Effects of nickel-titanium and stainless steel leveling wires on the position of mandibular incisors

    Directory of Open Access Journals (Sweden)

    Ricardo Moresca

    2011-10-01

    Full Text Available OBJETIVO: estudar os efeitos do nivelamento realizado com fios de NiTi termoativado e de aço inoxidável, avaliando-se as possíveis alterações na posição dos incisivos inferiores, em casos com extrações, correlacionando com o tempo de tratamento. MÉTODOS: a amostra foi composta de 36 indivíduos, de ambos os sexos, leucodermas brasileiros, com idade média inicial de 15 anos e 5 meses, portadores de más oclusões de Classes I e II, distribuídos em dois grupos. No Grupo 1 (n=17, o nivelamento foi realizado com a sequência 1, utilizando-se três fios - 0,016" e 0,019"x0,025" de NiTi termoativado, e 0,019"x0,025" de aço inoxidável. No Grupo 2 (n=19, foi testada a sequência 2, na qual foram utilizados apenas fios de aço inoxidável (0,014"; 0,016"; 0,018"; 0,020" e 0,019"x0,025" com torque passivo nos incisivos inferiores. Os dados foram coletados utilizando-se o método cefalométrico computadorizado e comparados pelo teste t de Student com o nível de significância de 5%. RESULTADOS: no Grupo 1, os incisivos inferiores inclinaram-se para lingual, com movimento significativo apenas da coroa (1,6mm. No Grupo 2, os incisivos inferiores permaneceram estáveis. Não houve alteração vertical em nenhum dos grupos. CONCLUSÕES: a sequência 2 proporcionou um melhor controle dos incisivos inferiores, não alterando suas posições iniciais, enquanto a sequência 1 permitiu a expressão do torque da prescrição utilizada, levando a uma inclinação lingual desses dentes. O tempo de tratamento foi menor utilizando-se a sequência 1. As variações biomecânicas estudadas apresentaram vantagens e desvantagens que devem ser conhecidas e ponderadas pelo ortodontista no planejamento do caso.OBJECTIVE: To study the effects of the leveling phase performed with heat activated NiTi and stainless steel archwires evaluating the possible changes in lower incisors position in extraction cases, as well as its correlation with treatment time. METHODS

  19. HTS Wire Development Workshop: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    1994-07-01

    The 1994 High-Temperature Superconducting Wire Development Workshop was held on February 16--17 at the St. Petersburg Hilton and Towers in St. Petersburg, Florida. The meeting was hosted by Florida Power Corporation and sponsored by the US Department of Energy`s Superconductivity Program for Electric Power Systems. The meeting focused on recent high-temperature superconducting wire development activities in the Department of Energy`s Superconductivity Systems program. The meeting opened with a general discussion on the needs and benefits of superconductivity from a utility perspective, the US global competitiveness position, and an outlook on the overall prospects of wire development. The meeting then focused on four important technology areas: Wire characterization: issues and needs; technology for overcoming barriers: weak links and flux pinning; manufacturing issues for long wire lengths; and physical properties of HTS coils. Following in-depth presentations, working groups were formed in each technology area to discuss the most important current research and development issues. The working groups identified research areas that have the potential for greatly enhancing the wire development effort. These areas are discussed in the summary reports from each of the working groups. This document is a compilation of the workshop proceedings including all general session presentations and summary reports from the working groups.

  20. Wire Scanner Motion Control Card

    CERN Document Server

    Forde, S E

    2006-01-01

    Scientists require a certain beam quality produced by the accelerator rings at CERN. The discovery potential of LHC is given by the reachable luminosity at its interaction points. The luminosity is maximized by minimizing the beam size. Therefore an accurate beam size measurement is required for optimizing the luminosity. The wire scanner performs very accurate profile measurements, but as it can not be used at full intensity in the LHC ring, it is used for calibrating other profile monitors. As the current wire scanner system, which is used in the present CERN accelerators, has not been made for the required specification of the LHC, a new design of a wire scanner motion control card is part of the LHC wire scanner project. The main functions of this card are to control the wire scanner motion and to acquire the position of the wire. In case of further upgrades at a later stage, it is required to allow an easy update of the firmware, hence the programmable features of FPGAs will be used for this purpose. The...

  1. 1 mil gold bond wire study.

    Energy Technology Data Exchange (ETDEWEB)

    Huff, Johnathon; McLean, Michael B.; Jenkins, Mark W.; Rutherford, Brian Milne

    2013-05-01

    In microcircuit fabrication, the diameter and length of a bond wire have been shown to both affect the current versus fusing time ratio of a bond wire as well as the gap length of the fused wire. This study investigated the impact of current level on the time-to-open and gap length of 1 mil by 60 mil gold bond wires. During the experiments, constant current was provided for a control set of bond wires for 250ms, 410ms and until the wire fused; non-destructively pull-tested wires for 250ms; and notched wires. The key findings were that as the current increases, the gap length increases and 73% of the bond wires will fuse at 1.8A, and 100% of the wires fuse at 1.9A within 60ms. Due to the limited scope of experiments and limited data analyzed, further investigation is encouraged to confirm these observations.

  2. Galvanic Corrosion of and Ion Release from Various Orthodontic Brackets and Wires in a Fluoride-containing Mouthwash

    Directory of Open Access Journals (Sweden)

    Soodeh Tahmasbi

    2015-09-01

    Full Text Available Background and aims. This study compared the galvanic corrosion of orthodontic wires and brackets from various man-ufacturers following exposure to a fluoride mouthwash. Materials and methods. This study was conducted on 24 lower central incisor 0.022” Roth brackets of four different commercially available brands (Dentaurum, American Orthodontics, ORJ, Shinye. These brackets along with stainless steel (SS or nickel-titanium (NiTi orthodontic wires (0.016", round were immersed in Oral-B mouthwash containing 0.05% sodium fluoride for 28 days. The electric potential (EP difference of each bracket-wire couple was measured with a Satu-rated Calomel Reference Electrode (Ag/AgCl saturated with KCl via a voltmeter. The ions released in the electrolyte weremeasured with an atomic absorption spectrometer. All the specimens were assessed under a stereomicroscope and speci-mens with corrosion were analyzed with scanning electron microscopy (SEM. Data were analyzed using ANOVA. Results. The copper ions released from specimens with NiTi wire were greater than those of samples containing SS wire. ORJ brackets released more Cu ions than other samples. The Ni ions released from Shinye brackets were significantly more than those of other specimens (P < 0.05. Corrosion rate of brackets coupled with NiTi wires was higher than that of brack-ets coupled with SS wires. Light and electron microscopic observations showed greater corrosion of ORJ brackets. Conclusion. In fluoride mouthwash, Shinye and ORJ brackets exhibited greater corrosion than Dentaurum and American Orthodontics brackets. Stainless steel brackets used with NiTi wires showed greater corrosion and thus caution is recom-mended when using them.

  3. Galvanic Corrosion of and Ion Release from Various Orthodontic Brackets and Wires in a Fluoride-containing Mouthwash.

    Science.gov (United States)

    Tahmasbi, Soodeh; Ghorbani, Mohammad; Masudrad, Mahdis

    2015-01-01

    Background and aims. This study compared the galvanic corrosion of orthodontic wires and brackets from various manufacturers following exposure to a fluoride mouthwash. Materials and methods. This study was conducted on 24 lower central incisor 0.022" Roth brackets of four different commercially available brands (Dentaurum, American Orthodontics, ORJ, Shinye). These brackets along with stainless steel (SS) or nickel-titanium (NiTi) orthodontic wires (0.016", round) were immersed in Oral-B mouthwash containing 0.05% sodium fluoride for 28 days. The electric potential (EP) difference of each bracket-wire couple was measured with a Saturated Calomel Reference Electrode (Ag/AgCl saturated with KCl) via a voltmeter. The ions released in the electrolyte weremeasured with an atomic absorption spectrometer. All the specimens were assessed under a stereomicroscope and specimens with corrosion were analyzed with scanning electron microscopy (SEM). Data were analyzed using ANOVA. Results. The copper ions released from specimens with NiTi wire were greater than those of samples containing SS wire. ORJ brackets released more Cu ions than other samples. The Ni ions released from Shinye brackets were significantly more than those of other specimens (P brackets coupled with NiTi wires was higher than that of brackets coupled with SS wires. Light and electron microscopic observations showed greater corrosion of ORJ brackets. Conclusion. In fluoride mouthwash, Shinye and ORJ brackets exhibited greater corrosion than Dentaurum and American Orthodontics brackets. Stainless steel brackets used with NiTi wires showed greater corrosion and thus caution is recommended when using them.

  4. Peculiarities of welding procedure for the 05Kh12K14N5M5T-VD maraging stainless steel with strength higher 1500 MPa

    International Nuclear Information System (INIS)

    Pustovit, A.I.

    1980-01-01

    The effect of welding procedure of 05Kh12K14N5M5T-VD stainless steel on the properties of its welded joints is investigated. A new procedure of welding for pressure vessels made of this steel using Sv-03Kh15K14N5M3T-EL welding wire is suggested [ru

  5. Chemical decontamination of stainless steel

    International Nuclear Information System (INIS)

    Onuma, Tsutomu; Akimoto, Hidetoshi

    1991-01-01

    The present invention concerns a method for chemical decontamination of radioactive metal waste materials contaminated with radioactive materials on the surface, generated in radioactive materials-handling facilities. The invention is comprised of a method of chemical decontamination of stainless steel, characterized by comprising a first process of immersing a stainless steel-based metal waste material contaminated by radioactive materials on the surface in a sulfuric acid solution and second process of immersing in an aqueous solution of sulfuric acid and oxidizing metal salt, in which a portion of the surface of the stainless steel to be decontaminated is polished mechanically to expose a portion of the base material before the above first and second processes. 1 figs., 2 tabs

  6. Ignition and spread of electrical wire fires

    OpenAIRE

    Huang, Xinyan

    2012-01-01

    Ignition of electrical wires by external heating is investigated in order to gain a better understanding of the initiation of electrical-wire fires. An ignition-to- spread model is developed to systematically explain ignition and the following transition to spread. The model predicts that for a higher-conductance wire it is more difficult to achieve ignition and the weak flame may extinguish during the transition phase because of a large conductive heat loss along the wire core. Wires with tw...

  7. Differences in the Microbial Colonization Among Arch Wire Types, Gauges and Cross Sections

    Directory of Open Access Journals (Sweden)

    Reem A. Rafeeq

    2018-02-01

    Full Text Available Background: The presence of orthodontic materials in the oral cavity represent a unique surface that can interact with bacteria, leading to pathogenic plaque formation and subsequent enamel demineralization, Streptococcus mutans play an important role in the initiation and progression of dental caries and they are considered the primary cause of bacteriological caries. The objective of this study was to investigate the effect of multiple factors including the type of arch wire, salivary coating, cross section, and wire thickness on the levels of mutans streptococci adherence. Materials and Methods: Two types of arch wire stainless steel and nickel titanium were selected using the following criteria: round and rectangular with gauges 0.014, 0.018, 0.016 × 0.022 and 0.019 × 0.0 25 inches which were subdivided into eight groups. Bacterial adhesion was quantified by a microbial culture technique and the number of adhesive bacteria were analyzed and counted after growth in culture for each group with and without saliva coating at 15 and 60 minutes. Detection of mutans streptococci by saliva-check Mutans test. Results: There was a significant difference between arch wire types in each time interval and the highest bacterial adhesion on the NiTi arch wires with rectangular cross section in the absence of saliva with extended incubation time. Conclusions: The adherence of mutans streptococci in saliva coated wires seems to be low. At increased incubation time, rectangular cross section arch wire showed an increased number of adhering bacteria with less effect on different gauges of the arch wire.

  8. Plating on stainless steel alloys

    International Nuclear Information System (INIS)

    Dini, J.W.; Johnson, H.R.

    1981-01-01

    Quantitative adhesion data are presented for a variety of electroplated stainless steel type alloys. Results show that excellent adhesion can be obtained by using a Wood's nickel strike or a sulfamate nickel strike prior to final plating. Specimens plated after Wood's nickel striking failed in the deposit rather than at the interface between the substrate and the coating. Flyer plate quantitative tests showed that use of anodic treatment in sulfuric acid prior to Wood's nickel striking even further improved adhesion. In contrast activation of stainless steels by immersion or cathodic treatment in hydrochloric acid resulted in very reduced bond strengths with failure always occurring at the interface between the coating and substrate

  9. Filter arrays

    Science.gov (United States)

    Page, Ralph H.; Doty, Patrick F.

    2017-08-01

    The various technologies presented herein relate to a tiled filter array that can be used in connection with performance of spatial sampling of optical signals. The filter array comprises filter tiles, wherein a first plurality of filter tiles are formed from a first material, the first material being configured such that only photons having wavelengths in a first wavelength band pass therethrough. A second plurality of filter tiles is formed from a second material, the second material being configured such that only photons having wavelengths in a second wavelength band pass therethrough. The first plurality of filter tiles and the second plurality of filter tiles can be interspersed to form the filter array comprising an alternating arrangement of first filter tiles and second filter tiles.

  10. Compressive behavior of wire reinforced bulk metallic glass matrix composites

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seung-Yub [Department of Materials Science, M/C 138-78, California Institute of Technology, Pasadena, CA 91125 (United States); Clausen, Bjorn [Lujan Neutron Science Center, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Uestuendag, Ersan [Department of Materials Science and Engineering, Iowa State University, Ames, IA 50011 (United States)]. E-mail: ustundag@iastate.edu; Choi-Yim, Haein [Department of Materials Science, M/C 138-78, California Institute of Technology, Pasadena, CA 91125 (United States); Aydiner, C. Can [Department of Materials Science and Engineering, Iowa State University, Ames, IA 50011 (United States); Bourke, Mark A.M. [Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    2005-06-15

    Bulk metallic glasses (BMGs) possess a unique set of mechanical properties that make them attractive structural materials. However, when loaded without constraint, BMGs fracture catastrophically due to formation of macroscopic shear bands and this behavior reduces their reliability. To address this issue, BMG matrix composites have been developed. In this investigation, neutron diffraction was used during uniaxial compressive loading to measure the internal strains in the second phases of various BMG composites reinforced with Ta, Mo, or stainless steel wires. The diffraction data were then employed to develop a finite element model that deduced the in situ constitutive behavior of each phase. It was found that the reinforcements yielded first and started transferring load to the matrix, which remained elastic during the whole experiment. While the present composites exhibited enhanced ductility, largely due to their ductile reinforcements, they yielded at applied stresses lower than those found in W reinforced composites.

  11. Evaluation of welding by MIG in martensitic stainless steel

    International Nuclear Information System (INIS)

    Fernandes, M.A.; Mariano, N.A.; Marinho, D.H.C. Marinho

    2010-01-01

    This work evaluated structure's characterization and mechanical properties after the welding process of the stainless steel CA6NM. The employed welding process was the metal active gas with tubular wire. The control of the thermal cycle in the welding process has fundamental importance regarding the properties of the welded joint, particularly in the thermally affected zone. The mechanical properties were appraised through impact resistance tests and the hardness and microstructure through metallographic characterization and Ray-X diffraction. The parameters and the process of welding used promoted the hardness and toughness appropriate to the applications of the steel. Welding energy's control becomes an essential factor that can affect the temperature of carbide precipitation and the nucleation of the retained austenite in the in the region of the in the thermally affected zone. (author)

  12. Corrosion behaviour of stainless steels by internal friction method

    International Nuclear Information System (INIS)

    Postnikov, V.S.; Kovalevskij, V.I.

    1987-01-01

    Corrosion of austenite chromium-nickel stainless steels 12 Kh18N9, 12Kh18N9T, 12Kh18N10 and 12Kh18N10T is investigated. Wire samples 0.7...0.8 mm in diameter before tests were subjected to quenching in water from the temperature of 1050...1100 deg C and part of them - to tempering at 650 deg C for 2 h. Pitting corrosion was brought about by different concentration of iron chloride solutions (C FeCl 3 ). Total corrosion has a slight effect on the character of IF (internal friction) variation that increases without the whole test period up to the moment when mechanical strength of the sample

  13. Technical innovation: Wire guided ductography

    International Nuclear Information System (INIS)

    Aslam, Muhammad Ovais; Ramadan, Salwa; Al-Adwani, Muneera

    2012-01-01

    To introduce an easy and improved technique for performing ductography using inexpensive easily available intravenous cannula. Guide wire: Prolene/Surgipro 3-0 (Polypropylene mono filament non-absorbable surgical suture). A plastic 26 G intravenous cannula. Disposable syringe 2 ml. Non-ionic contrast (low density like Omnipaque 240 mg I/I). The guide wire (Prolene 3-0) is introduced into the orifice of the duct heaving discharge and 26 G intravenous plastic cannula is then passed over the guide wire. The cannula is advanced in the duct over guide wire by spinning around it. When the cannula is in place the guide wire is removed. Any air bubbles present in the hub of the cannula can be displaced by filling the hub from bottom upwards with needle attached to contrast filled syringe. 0.2–0.4 ml non-ionic contrast is gently injected. Injection is stopped if the patient has pain or burning. Magnified cranio-caudal view is obtained with cannula tapped in place and gentle compression is applied with the patient sitting. If duct filling is satisfactory a 90* lateral view is obtained. A successful adaptation of the technique for performing ductography is presented. The materials required for the technique are easily available in most radiology departments and are inexpensive, thus making the procedure comfortable for the patient and radiologist with considerable cost effectiveness.

  14. Californium Recovery from Palladium Wire

    Energy Technology Data Exchange (ETDEWEB)

    Burns, Jon D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2014-08-01

    The recovery of 252Cf from palladium-252Cf cermet wires was investigated to determine the feasibility of implementing it into the cermet wire production operation at Oak Ridge National Laboratory’s Radiochemical Engineering Development Center. The dissolution of Pd wire in 8 M HNO3 and trace amounts of HCl was studied at both ambient and elevated temperatures. These studies showed that it took days to dissolve the wire at ambient temperature and only 2 hours at 60°C. Adjusting the ratio of the volume of solvent to the mass of the wire segment showed little change in the kinetics of dissolution, which ranged from 0.176 mL/mg down to 0.019 mL/mg. A successful chromatographic separation of 153Gd, a surrogate for 252Cf, from Pd was demonstrated using AG 50x8 cation exchange resin with a bed volume of 0.5 mL and an internal diameter of 0.8 cm.

  15. Corrosion of austenitic stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Silva, M C.M. [Instituto Nacional de Tecnologia, Rio de Janeiro (Brazil)

    1977-01-01

    Types of corrosion observed in a heat exchanger pipe and on a support of still of molasses fermented wort, both in austenitic stainless steel, are focused. Not only are the causes which might have had any kind of influence on them examined, but also the measures adopted in order to avoid and lessen its occurence.

  16. The effect of ZnO nanoparticle coating on the frictional resistance between orthodontic wires and ceramic brackets

    Directory of Open Access Journals (Sweden)

    Ahmad

    2016-06-01

    Full Text Available Background. Any decrease in friction between orthodontic wire and bracket can accelerate tooth movement in the sliding technique and result in better control of anchorage. This study was carried out to evaluate frictional forces by coating orthodontic wires and porcelain brackets with zinc oxide nanoparticles (ZnO. Methods. In this in vitro study, we evaluated a combination of 120 samples of 0.019×0.025 stainless steel (SS orthodontic wires and 22 mil system edgewise porcelain brackets with and without spherical zinc oxide nanoparticles. Spherical ZnO nanoparticles were deposited on wires and brackets by immersing them in ethanol solution and SEM (scanning electron microscope evaluation confirmed the presence of the ZnO coating. The frictional forces were calculated between the wires and brackets in four groups: group ZZ (coated wire and bracket, group OO (uncoated wire and bracket, group ZO (coated wire and uncoated bracket and group OZ (uncoated wire and coated bracket. Kolmogorov-Smirnov, Mann-Whitney and Kruskal-Wallis tests were used for data analysis. Results. The frictional force in ZZ (3.07±0.4 N was the highest (P <0.05, and OZ (2.18±0.5 N had the lowest amount of friction (P <0.05 among the groups. There was no significant difference in frictional forces between the ZO and OO groups (2.65±0.2 and 2.70±0.2 N, respectively. Conclusion. Coating of porcelain bracket surfaces with ZnO nanoparticles can decrease friction in the sliding technique, and wire coating combined with bracket coating is not recommended due to its effect on friction.

  17. Kinetics of manganese in MAG/MIG welding with a 18/8/6 wire

    International Nuclear Information System (INIS)

    Tusek, J.

    2001-01-01

    The paper deals with a study of MAG/MIG welding of low-alloy ferritic steel and high-alloy austenitic steel with a 18/8/6 wire. Manganese burn-off from the wire in welding a single-V butt weld was studied. It was found that manganese burns off in the arc during melting of a droplet at the wire end, and from the weld pool during weld formation. The range of manganese burn-of-depends mainly on the type of shielding gas used and the arc length,i. e., from the arc voltage. The manganese burn-off increases with an increase of the content of active gases, i.e., CO 2 and O 2 in the neutral gas i. e., argon. It also increases with an increase in arc voltage. The longer the welding arc, the longer exposition of the filler materials to the welding arc and the wider the penetration, Which allows manganese vapours to evaporate from the weld pool. The most important finding is that manganese burn-off from the 18/8/6 wire during welding of austenitic stainless steel with low-alloy ferritic steel is considerably strong, i.e., from 20% to 30%; nevertheless the wire concerned is perfectly suitable for welding of different types of steel. (Author) 23 refs

  18. The effect of ligation on the load deflection characteristics of nickel titanium orthodontic wire.

    Science.gov (United States)

    Kasuya, Shugo; Nagasaka, Satoshi; Hanyuda, Ai; Ishimura, Sadao; Hirashita, Ayao

    2007-12-01

    This study examined the effect of ligation on the load-deflection characteristics of nickel-titanium (NiTi) orthodontic wire. A modified three-point bending system was used for bending the NiTi round wire, which was inserted and ligated in the slots of three brackets, one of which was bonded to each of the three bender rods. Three different ligation methods, stainless steel ligature (SSL), slot lid (SL), and elastomeric ligature (EL), were employed, as well as a control with neither bracket nor ligation (NBL). The tests were repeated five times under each condition. Comparisons were made of load-deflection curve, load at maximum deflection of 2,000 microm, and load at a deflection of 1,500 microm during unloading. Analysis of Variance (ANOVA) and Dunnett's test were conducted to determine method difference (alpha = 0.05). The interaction between deflection and ligation was tested, using repeated-measures ANOVA (alpha = 0.05). The load values of the ligation groups were two to three times greater than the NBL group at a deflection of 1,500 microm during unloading: 4.37 N for EL, 3.90 N for SSL, 3.02 N for SL, and 1.49 N for NBL (P wire may make NiTi wire exhibit a significantly heavier load than that traditionally expected. NiTi wire exhibited the majority of its true superelasticity with SL, whereas EL may act as a restraint on its superelasticity.

  19. Double-sided coaxial circuit QED with out-of-plane wiring

    Science.gov (United States)

    Rahamim, J.; Behrle, T.; Peterer, M. J.; Patterson, A.; Spring, P. A.; Tsunoda, T.; Manenti, R.; Tancredi, G.; Leek, P. J.

    2017-05-01

    Superconducting circuits are well established as a strong candidate platform for the development of quantum computing. In order to advance to a practically useful level, architectures are needed which combine arrays of many qubits with selective qubit control and readout, without compromising on coherence. Here, we present a coaxial circuit quantum electrodynamics architecture in which qubit and resonator are fabricated on opposing sides of a single chip, and control and readout wiring are provided by coaxial wiring running perpendicular to the chip plane. We present characterization measurements of a fabricated device in good agreement with simulated parameters and demonstrating energy relaxation and dephasing times of T1 = 4.1 μs and T2 = 5.7 μs, respectively. The architecture allows for scaling to large arrays of selectively controlled and measured qubits with the advantage of all wiring being out of the plane.

  20. Repair welding of cracked steam turbine blades using austenitic and martensitic stainless-steel consumables

    International Nuclear Information System (INIS)

    Bhaduri, A.K.; Gill, T.P.S.; Albert, S.K.; Shanmugam, K.; Iyer, D.R.

    2001-01-01

    The procedure for repair welding of cracked steam turbine blades made of martensitic stainless steels has been developed using the gas tungsten arc welding process. Weld repair procedures were developed using both ER 316L austenitic and ER 410 martensitic stainless-steel filler wire. The overall development of the repair welding procedure included selection of welding consumables (for austenitic filler metal), optimisation of post-weld heat treatment parameters, selection of suitable method for local pre-heating and post-weld heat treatment (PWHT) of the blades, determination of mechanical properties of weldments in as-welded and PWHT conditions, and microsturctural examination. After various trials using different procedures, the procedure of local PWHT (and preheating when using martensitic stainless-steel filler wire) using electrical resistance heating on the top surface of the weldment and monitoring the temperature by placing a thermocouple at the bottom of the weld was found to give the most satisfactory results. These procedures have been developed and/or applied for repair welding of cracked blades in steam turbines

  1. X-ray reciprocal space mapping of GaAs.AIAs quantum wires and quantum dots

    NARCIS (Netherlands)

    Darhuber, A.A.; Koppensteiner, E.; Bauer, G.; Wang, P.D.; Song, Y.P.; Sotomayor Torres, C.M.; Holland, M.C.

    1995-01-01

    Periodic arrays of 150 and 175 nm-wide GaAs–AlAs quantum wires and quantum dots were investigated, fabricated by electron beam lithography, and SiCl4/O2 reactive ion etching, by means of reciprocal space mapping using triple axis x-ray diffractometry. From the x-ray data the lateral periodicity of

  2. Determination of the strain status of GaAs/AlAs quantum wires and quantum dots

    NARCIS (Netherlands)

    Darhuber, A.A.; Bauer, G.; Wang, P.D.; Song, Y.P.; Sotomayor Torres, C.M.; Holland, M.C.

    1995-01-01

    We have investigated periodic arrays of 150 and 175 nm wide GaAs-AlAs quantum wires and quantum dots, fabricated by electron beam lithography and SiCI4/O2 reactive ion etching, by means of reciprocal space mapping using triple axis x-ray diffractometry (TAD). The reciprocal space maps reveal that

  3. Transition edge sensor series array bolometer

    Energy Technology Data Exchange (ETDEWEB)

    Beyer, J, E-mail: joern.beyer@ptb.d [Physikalisch-Technische Bundesanstalt (PTB), Abbestrasse 2-12, D-10587 Berlin (Germany)

    2010-10-15

    A transition edge sensor series array (TES-SA) is an array of identical TESs that are connected in series by low-inductance superconducting wiring. The array elements are equally and well thermally coupled to the absorber and respond to changes in the absorber temperature in synchronization. The TES-SA total resistance increases compared to a single TES while the shape of the superconducting transition is preserved. We are developing a TES-SA with a large number, hundreds to thousands, of array elements with the goal of enabling the readout of a TES-based bolometer operated at 4.2 K with a semiconductor-based amplifier located at room temperature. The noise and dynamic performance of a TES-SA bolometer based on a niobium/aluminum bilayer is analyzed. It is shown that stable readout of the bolometer with a low-noise transimpedance amplifier is feasible.

  4. Transition edge sensor series array bolometer

    International Nuclear Information System (INIS)

    Beyer, J

    2010-01-01

    A transition edge sensor series array (TES-SA) is an array of identical TESs that are connected in series by low-inductance superconducting wiring. The array elements are equally and well thermally coupled to the absorber and respond to changes in the absorber temperature in synchronization. The TES-SA total resistance increases compared to a single TES while the shape of the superconducting transition is preserved. We are developing a TES-SA with a large number, hundreds to thousands, of array elements with the goal of enabling the readout of a TES-based bolometer operated at 4.2 K with a semiconductor-based amplifier located at room temperature. The noise and dynamic performance of a TES-SA bolometer based on a niobium/aluminum bilayer is analyzed. It is shown that stable readout of the bolometer with a low-noise transimpedance amplifier is feasible.

  5. Minimisation of Power loss from partially shaded solar cell arrays

    Energy Technology Data Exchange (ETDEWEB)

    Maine, Tony; Bell, John [Queensland University of Technology, Brisbane (Australia). Built Environment Engineering; Martin, Stewart [University of South Australia, Mawson Lakes Campus, SA (Australia). School of Electrical and Information Engineering

    2008-07-01

    In conventional wiring schemes the output from a partially shaded solar cell array drops rapidly to that of the fully shaded array even when only a small fraction is shaded. In this paper circuit simulation has been used to show that by dynamically reconfiguring the array, the power losses due to shading can be significantly reduced. Reconfiguration is achieved by using switching microcircuits with on-chip photo detectors to determine which parts of the array are in shade. The currents from the shaded and unshaded sections of the array are separated and then connected in parallel to a maximum power point tracker. It is shown that by using this reconfiguration that the power output from a partially shaded array can be increased by at least 100% compared with that from a conventional series connected array over a range of shading conditions. (orig.)

  6. Thermal-hydraulic analysis for wire-wrapped PWR cores

    Energy Technology Data Exchange (ETDEWEB)

    Diller, P. [General Electric Company, 3901 Castle Hayne Rd., Wilmington, NC 28401 (United States)], E-mail: pdiller@gmail.com; Todreas, N. [Massachusetts Institute of Technology, Cambridge, MA 02139 (United States)], E-mail: todreas@mit.edu; Hejzlar, P. [Massachusetts Institute of Technology, Cambridge, MA 02139 (United States)

    2009-08-15

    This work focuses on the steady-state and transient thermal-hydraulic analyses for PWR cores using wire wraps in a hexagonal array with either U (45% w/o)-ZrH{sub 1.6} (referred to as U-ZrH{sub 1.6}) or UO{sub 2} fuels. Equivalences (thermal-hydraulic and neutronic) were created between grid spacer and wire wrap designs, and were used to apply results calculated for grid spacers to wire wrap designs. Design limits were placed on the pressure drop, critical heat flux (CHF), fuel and cladding temperature and vibrations. The vibrations limits were imposed for flow-induced vibrations (FIV) and thermal-hydraulic vibrations (THV). The transient analysis examined an overpower accident, loss of coolant accident (LOCA) and loss of flow accident (LOFA). The thermal-hydraulic performance of U-ZrH{sub 1.6} and UO{sub 2} were found very similar. Relative to grid spacer designs, wire wrap designs were found to have smaller fretting wear, substantially lower pressure drop and higher CHF. As a result, wire wrap cores were found to offer substantially higher maximum powers than grid spacer cores, allowing for a 25% power increase relative to the grid spacer uprate [Shuffler, C.A., Malen, J.A., Trant, J.M., Todreas, N.E., 2009a. Thermal-hydraulic analysis for grid supported and inverted fueled PWR cores. Nuclear Technology (this special issue devoted to hydride fuel in LWRs)] and a 58% power increase relative to the reference core.

  7. Measurements of Flow Mixing at Subchannels in a Wire-Wrapped 61-Rod Bundle for a Sodium Cooled Fast Reactor

    International Nuclear Information System (INIS)

    Lee, Dong Won; Kim, Hyungmo; Ko, Yung Joo; Choi, Hae Seob; Euh, Dong-Jin; Jeong, Ji-Young; Lee, Hyeong-Yeon

    2015-01-01

    For a safety analysis in a core thermal design of a sodium-cooled fast reactor (SFR), flow mixing characteristics at subchannels in a wire-wrapped rod bundle are crucial factor for the design code verification and validation. Wrapped wires make a cross flow in a circumference of the fuel rod, and this effect lets flow be mixed. Therefore the sub-channel analysis method is commonly used for thermal hydraulic analysis of a SFR, a wire wrapped sub-channel type. To measure flow mixing characteristics, a wire mesh sensing technique can be useful method. A wire mesh sensor has been traditionally used to measure the void fraction of a two-phase flow field, i.e. gas and liquid. However, the recent reports that the wire mesh sensor can be used successfully to recognize the flow field in liquid phase by injecting a tracing liquid with a different level of electric conductivity. The subchannel flow characteristics analysis method is commonly used for the thermal hydraulic analysis of a SFR, a wire wrapped subchannel type. In this study, mixing experiments were conducted successfully at a hexagonally arrayed 61-pin wire-wrapped fuel rod bundle test section. Wire mesh sensor was used to measure flow mixing characteristics. The developed post-processing method has its own merits, and flow mixing results were reasonable

  8. Ion Release and Galvanic Corrosion of Different Orthodontic Brackets and Wires in Artificial Saliva.

    Science.gov (United States)

    Tahmasbi, Soodeh; Sheikh, Tahereh; Hemmati, Yasamin B

    2017-03-01

    To investigate the galvanic corrosion of brackets manufactured by four different companies coupled with stainless steel (SS) or nickel-titanium (NiTi) wires in an artificial saliva solution. A total of 24 mandibular central incisor Roth brackets of four different manufacturers (American Orthodontics, Dentaurum, Shinye, ORJ) were used in this experimental study. These brackets were immersed in artificial saliva along with SS or NiTi orthodontic wires (0.016'', round) for 28 days. The electric potential difference of each bracket/ wire coupled with a saturated calomel reference electrode was measured via a voltmeter and recorded constantly. Corrosion rate (CR) was calculated, and release of ions was measured with an atomic absorption spectrometer. Stereomicroscope was used to evaluate all samples. Then, samples with corrosion were further assessed by scanning electron microscope and energy-dispersive X-ray spectroscopy. Two-way analysis of variance was used to analyze data. Among ions evaluated, release of nickel ions from Shinye brackets was significantly higher than that of other brackets. The mean potential difference was significantly lower in specimens containing a couple of Shinye brackets and SS wire compared with other specimens. No significant difference was observed in the mean CR of various groups (p > 0.05). Microscopic evaluation showed corrosion in two samples only: Shinye bracket coupled with SS wire and American Orthodontics bracket coupled with NiTi wire. Shinye brackets coupled with SS wire showed more susceptibility to galvanic corrosion. There were no significant differences among specimens in terms of the CR or released ions except the release of Ni ions, which was higher in Shinye brackets.

  9. Tomographic array

    International Nuclear Information System (INIS)

    1976-01-01

    The configuration of a tomographic array in which the object can rotate about its axis is described. The X-ray detector is a cylindrical screen perpendicular to the axis of rotation. The X-ray source has a line-shaped focus coinciding with the axis of rotation. The beam is fan-shaped with one side of this fan lying along the axis of rotation. The detector screen is placed inside an X-ray image multiplier tube

  10. Tomographic array

    International Nuclear Information System (INIS)

    1976-01-01

    A tomographic array with the following characteristics is described. An X-ray screen serving as detector is placed before a photomultiplier tube which itself is placed in front of a television camera connected to a set of image processors. The detector is concave towards the source and is replacable. Different images of the object are obtained simultaneously. Optical fibers and lenses are used for transmission within the system

  11. Magnetic anisotropy of ultrafine 316L stainless steel fibers

    Energy Technology Data Exchange (ETDEWEB)

    Shyr, Tien-Wei, E-mail: twshyr@fcu.edu.tw [Department of Fiber and Composite Materials, Feng Chia University, No. 100, Wenhwa Road, Seatwen, Taichung 40724, Taiwan, ROC (China); Huang, Shih-Ju [Department of Fiber and Composite Materials, Feng Chia University, No. 100, Wenhwa Road, Seatwen, Taichung 40724, Taiwan, ROC (China); Wur, Ching-Shuei [Department of Physics, National Cheng Kung University, No. 1, University Road, Tainan 70101, Taiwan, ROC (China)

    2016-12-01

    An as-received 316L stainless steel fiber with a diameter of 20 μm was drawn using a bundle drawing process at room temperature to form ultrafine stainless steel fibers with diameters of 12, 8, and 6 μm. The crystalline phases of the fibers were analyzed using the X-ray diffraction (XRD) profile fitting technique. The grain sizes of γ-austenite and α′-martensite were reduced to nanoscale sizes after the drawing process. XRD analysis and focused ion beam-scanning electron microscope observations showed that the newly formed α′-martensitic grains were closely arrayed in the drawing direction. The magnetic property was measured using a superconducting quantum interference device vibrating sample magnetometer. The magnetic anisotropy of the fibers was observed by applying a magnetic field parallel and perpendicular to the fiber axis. The results showed that the microstructure anisotropy including the shape anisotropy, magnetocrystalline anisotropy, and the orientation of the crystalline phases strongly contributed to the magnetic anisotropy. - Highlights: • The martensitic transformation of the 316L SS fiber occurred during the cold drawn. • The grain sizes of γ-austenite and α′-martensite were reduced to the nanoscale. • The newly formed martensitic grains were closely arrayed in the drawing direction. • The drawing process caused the magnetic easy axis to be aligned with the fiber axis. • The microstructure anisotropy strongly contributed to the magnetic anisotropy.

  12. Assessment of the hardness of different orthodontic wires and brackets produced by metal injection molding and conventional methods.

    Science.gov (United States)

    Alavi, Shiva; Kachuie, Marzie

    2017-01-01

    This study was conducted to assess the hardness of orthodontic brackets produced by metal injection molding (MIM) and conventional methods and different orthodontic wires (stainless steel, nickel-titanium [Ni-Ti], and beta-titanium alloys) for better clinical results. A total of 15 specimens from each brand of orthodontic brackets and wires were examined. The brackets (Elite Opti-Mim which is produced by MIM process and Ultratrimm which is produced by conventional brazing method) and the wires (stainless steel, Ni-Ti, and beta-titanium) were embedded in epoxy resin, followed by grinding, polishing, and coating. Then, X-ray energy dispersive spectroscopy (EDS) microanalysis was applied to assess their elemental composition. The same specimen surfaces were repolished and used for Vickers microhardness assessment. Hardness was statistically analyzed with Kruskal-Wallis test, followed by Mann-Whitney test at the 0.05 level of significance. The X-ray EDS analysis revealed different ferrous or co-based alloys in each bracket. The maximum mean hardness values of the wires were achieved for stainless steel (SS) (529.85 Vickers hardness [VHN]) versus the minimum values for beta-titanium (334.65 VHN). Among the brackets, Elite Opti-Mim exhibited significantly higher VHN values (262.66 VHN) compared to Ultratrimm (206.59 VHN). VHN values of wire alloys were significantly higher than those of the brackets. MIM orthodontic brackets exhibited hardness values much lower than those of SS orthodontic archwires and were more compatible with NiTi and beta-titanium archwires. A wide range of microhardness values has been reported for conventional orthodontic brackets and it should be considered that the manufacturing method might be only one of the factors affecting the mechanical properties of orthodontic brackets including hardness.

  13. Transparency in nanophotonic quantum wires

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Mahi R [Department of Physics and Astronomy, University of Western Ontario, London N6A 3K7 (Canada)

    2009-03-28

    We have studied the quantum optics of a photonic quantum nanowire doped with an ensemble of three-level nanoparticles. The wire is made from two photonic crystals A and B. Crystal A is embedded within crystal B and acts as a photonic nanowire. It is considered that the conduction band of crystal A lies below that of crystal B. As a result, photons are confined in crystal A and are reflected from crystal B. The bound states of the confined photons are calculated using the transfer matrix method. It is found that the number of bound states in the wire depends on the size of the wire and the energy difference between the conduction band extrema of crystals A and B. The absorption coefficient of the system has also been calculated using the Schroedinger equation method. It is considered that the nanoparticles interact with the photonic bound states. Numerical simulations show that when one of the resonance energies lies near the bound state, the system becomes transparent. However, when the resonance energy lies away from the bound state the crystal reverts to an absorbing state. Similarly, when the radius of the dielectric spheres is changed the location of the transparency peak is shifted. This means that the present system can be switched between two states by changing the size of the wire and the transition energy. These findings can be used to make new types of optical devices.

  14. Transparency in nanophotonic quantum wires

    International Nuclear Information System (INIS)

    Singh, Mahi R

    2009-01-01

    We have studied the quantum optics of a photonic quantum nanowire doped with an ensemble of three-level nanoparticles. The wire is made from two photonic crystals A and B. Crystal A is embedded within crystal B and acts as a photonic nanowire. It is considered that the conduction band of crystal A lies below that of crystal B. As a result, photons are confined in crystal A and are reflected from crystal B. The bound states of the confined photons are calculated using the transfer matrix method. It is found that the number of bound states in the wire depends on the size of the wire and the energy difference between the conduction band extrema of crystals A and B. The absorption coefficient of the system has also been calculated using the Schroedinger equation method. It is considered that the nanoparticles interact with the photonic bound states. Numerical simulations show that when one of the resonance energies lies near the bound state, the system becomes transparent. However, when the resonance energy lies away from the bound state the crystal reverts to an absorbing state. Similarly, when the radius of the dielectric spheres is changed the location of the transparency peak is shifted. This means that the present system can be switched between two states by changing the size of the wire and the transition energy. These findings can be used to make new types of optical devices.

  15. Fabrication of tungsten wire needles

    International Nuclear Information System (INIS)

    Roder, A.

    1983-02-01

    Fine point needles for field emissoin are conventionally produced by electrolytically or chemically etching tungsten wire. Points formed in this manner have a typical tip radius of about 0.5 microns and a cone angle of some 30 degrees. The construction of needle matrix detector chambers has created a need for tungsten needles whose specifications are: 20 mil tungsten wire, 1.5 inch total length, 3 mm-long taper (resulting in a cone angle of about 5 degrees), and 25 micron-radius point (similar to that found on sewing needles). In the process described here for producing such needles, tungsten wire, immersed in a NaOH solution and in the presence of an electrode, is connected first to an ac voltage and then to a dc supply, to form a taper and a point on the end of the wire immersed in the solution. The process parameters described here are for needles that will meet the above specifications. Possible variations will be discussed under each approprite heading

  16. Networked Sensor Arrays

    International Nuclear Information System (INIS)

    Tighe, R. J.

    2002-01-01

    A set of independent radiation sensors, coupled with real-time data telemetry, offers the opportunity to run correlation algorithms for the sensor array as well as to incorporate non-radiological data into the system. This may enhance the overall sensitivity of the sensors and provide an opportunity to project the location of a source within the array. In collaboration with Lawrence Livermore National Laboratory (LLNL) and Sandia National Laboratories (SNL), we have conducted field experiments to test a prototype system. Combining the outputs of a set of distributed sensors permits the correlation that the independent sensor outputs. Combined with additional information such as traffic patterns and velocities, this can reduce random/false detections and enhance detection capability. The principle components of such a system include: (1) A set of radiation sensors. These may be of varying type and complexity, including gamma and/or neutron detectors, gross count and spectral-capable sensors, and low to high energy-resolution sensors. (2) A set of non-radiation sensors. These may include sensors such as vehicle presence and imaging sensors. (3) A communications architecture for near real-time telemetry. Depending upon existing infrastructure and bandwidth requirements, this may be a radio or hard-wire based system. (4) A central command console to pole the sensors, correlate their output, and display the data in a meaningful form to the system operator. Both sensitivity and selectivity are important considerations when evaluating the performance of a detection system. Depending on the application, the optimization of sensitivity as well as the rejection of ''nuisance'' radioactive sources may or may not be critical

  17. [Mechanics analysis of fracture of orthodontic wires].

    Science.gov (United States)

    Wang, Yeping; Sun, Xiaoye; Zhang, Longqi

    2003-03-01

    Fracture problem of orthodontic wires was discussed in this paper. The calculation formulae of bending stress and tensile stress were obtained. All main factors that affect bending stress and tensile stress of orthodontic wires were analyzed and discussed. It was concluded that the main causes of fracture of orthodontic wires were fatigue and static disruption. Some improving proposals for preventing fracture of orthodontic wires were put forward.

  18. 49 CFR 236.74 - Protection of insulated wire; splice in underground wire.

    Science.gov (United States)

    2010-10-01

    ... underground wire. 236.74 Section 236.74 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RULES, STANDARDS, AND INSTRUCTIONS GOVERNING... wire; splice in underground wire. Insulated wire shall be protected from mechanical injury. The...

  19. 49 CFR 234.241 - Protection of insulated wire; splice in underground wire.

    Science.gov (United States)

    2010-10-01

    ... underground wire. 234.241 Section 234.241 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION GRADE CROSSING SIGNAL SYSTEM SAFETY... of insulated wire; splice in underground wire. Insulated wire shall be protected from mechanical...

  20. Detection of a buried wire with two resistively loaded wire antennas

    NARCIS (Netherlands)

    Vossen, S.H.J.A.; Tijhuis, A.G.; Lepelaars, E.S.A.M.; Zwamborn, A.P.M.

    2002-01-01

    The use of two identical straight thin-wire antennas for the detection of a buried wire is analyzed with the aid of numerical calculations. The buried wire is located below an interface between two homogeneous half-spaces. The detection setup, which is formed by a transmitting and a receiving wire,

  1. One century of Kirschner wires and Kirschner wire insertion techniques : A historical review

    NARCIS (Netherlands)

    Franssen, Bas B. G. M.; Schuurman, Arnold H.; Van der Molen, Aebele Mink; Kon, Moshe

    A century ago, in 1909, Martin Kirschner (1879-942) introduced a smooth pin, presently known as the Kirschner wire (K-wire). The K-wire was initiallly used for skeletal traction and is now currently used for many different goals. The development of the K-wire and its insertion devices were mainly

  2. Pre-wired systems prove their worth.

    Science.gov (United States)

    2012-03-01

    The 'new generation' of modular wiring systems from Apex Wiring Solutions have been specified for two of the world's foremost teaching hospitals - the Royal London and St Bartholomew's Hospital, as part of a pounds sterling 1 billion redevelopment project, to cut electrical installation times, reduce on-site waste, and provide a pre-wired, factory-tested, power and lighting system. HEJ reports.

  3. 49 CFR 393.28 - Wiring systems.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 5 2010-10-01 2010-10-01 false Wiring systems. 393.28 Section 393.28 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL MOTOR CARRIER SAFETY... NECESSARY FOR SAFE OPERATION Lamps, Reflective Devices, and Electrical Wiring § 393.28 Wiring systems...

  4. Getting "Wired" for McLuhan's Cyberculture.

    Science.gov (United States)

    McMurdo, George

    1995-01-01

    Examines the introduction of the computing magazine, "Wired", into the United Kingdom's (UK) market. Presents conversations with the founder and editorial staff of the UK edition, and discusses the accessibility of "Wired" via the World Wide Web. Describes 10 articles from United States "Wired" back-issues and…

  5. Nano-composite stainless steel

    Science.gov (United States)

    Dehoff, Ryan R.; Blue, Craig A.; Peter, William H.; Chen, Wei; Aprigliano, Louis F.

    2015-07-14

    A composite stainless steel composition is composed essentially of, in terms of wt. % ranges: 25 to 28 Cr; 11 to 13 Ni; 7 to 8 W; 3.5 to 4 Mo; 3 to 3.5 B; 2 to 2.5 Mn; 1 to 1.5 Si; 0.3 to 1.7 C; up to 2 O; balance Fe. The composition has an austenitic matrix phase and a particulate, crystalline dispersed phase.

  6. Thermophysical properties of stainless steels

    International Nuclear Information System (INIS)

    Kim, C.S.

    1975-09-01

    Recommended values of the thermodynamic and transport properties of stainless steels Type 304L and Type 316L are given for temperatures from 300 to 3000 0 K. The properties in the solid region were obtained by extrapolating available experimental data to the melting range, while appropriate correlations were used to estimate the properties in the liquid region. The properties evaluated include the enthalpy, entropy, specific heat, vapor pressure, density, thermal expansion coefficient, thermal conductivity, thermal diffusivity, and viscosity. (9 fig, 11 tables)

  7. Nickel: makes stainless steel strong

    Science.gov (United States)

    Boland, Maeve A.

    2012-01-01

    Nickel is a silvery-white metal that is used mainly to make stainless steel and other alloys stronger and better able to withstand extreme temperatures and corrosive environments. Nickel was first identified as a unique element in 1751 by Baron Axel Fredrik Cronstedt, a Swedish mineralogist and chemist. He originally called the element kupfernickel because it was found in rock that looked like copper (kupfer) ore and because miners thought that "bad spirits" (nickel) in the rock were making it difficult for them to extract copper from it. Approximately 80 percent of the primary (not recycled) nickel consumed in the United States in 2011 was used in alloys, such as stainless steel and superalloys. Because nickel increases an alloy's resistance to corrosion and its ability to withstand extreme temperatures, equipment and parts made of nickel-bearing alloys are often used in harsh environments, such as those in chemical plants, petroleum refineries, jet engines, power generation facilities, and offshore installations. Medical equipment, cookware, and cutlery are often made of stainless steel because it is easy to clean and sterilize. All U.S. circulating coins except the penny are made of alloys that contain nickel. Nickel alloys are increasingly being used in making rechargeable batteries for portable computers, power tools, and hybrid and electric vehicles. Nickel is also plated onto such items as bathroom fixtures to reduce corrosion and provide an attractive finish.

  8. Conformable eddy current array delivery

    Science.gov (United States)

    Summan, Rahul; Pierce, Gareth; Macleod, Charles; Mineo, Carmelo; Riise, Jonathan; Morozov, Maxim; Dobie, Gordon; Bolton, Gary; Raude, Angélique; Dalpé, Colombe; Braumann, Johannes

    2016-02-01

    The external surface of stainless steel containers used for the interim storage of nuclear material may be subject to Atmospherically Induced Stress Corrosion Cracking (AISCC). The inspection of such containers poses a significant challenge due to the large quantities involved; therefore, automating the inspection process is of considerable interest. This paper reports upon a proof-of-concept project concerning the automated NDT of a set of test containers containing artificially generated AISCCs. An Eddy current array probe with a conformable padded surface from Eddyfi was used as the NDT sensor and end effector on a KUKA KR5 arc HW robot. A kinematically valid cylindrical raster scan path was designed using the KUKA|PRC path planning software. Custom software was then written to interface measurement acquisition from the Eddyfi hardware with the motion control of the robot. Preliminary results and analysis are presented from scanning two canisters.

  9. 76 FR 87 - Grant of Authority for Subzone Status; ThyssenKrupp Steel and Stainless USA, LLC; (Stainless and...

    Science.gov (United States)

    2011-01-03

    ... at the stainless and carbon steel products manufacturing facility of ThyssenKrupp Steel and Stainless... to the manufacturing of stainless and carbon steel products at the facility of ThyssenKrupp Steel and... Status; ThyssenKrupp Steel and Stainless USA, LLC; (Stainless and Carbon Steel Products) Calvert, AL...

  10. Corrosion behaviour of laser clad stainless steels

    International Nuclear Information System (INIS)

    Damborenea, J.J. de; Weerasinghe, V.M.; West, D.R.F.

    1993-01-01

    The present paper is focussed in the study of the properties of a clad layer of stainless steel on a mild steel. By blowing powder of the alloy into a melt pool generated by a laser of 2 KW, an homogeneous layer of 316 stainless steel can be obtained. Structure, composition and corrosion behaviour are similar to those of a stainless steel in as-received condition. (Author)

  11. Clinical bending of nickel titanium wires

    Directory of Open Access Journals (Sweden)

    Stephen Chain

    2015-01-01

    Full Text Available Since the evolution and the involvement of Nickel Titanium wires in the field of Orthodontics. The treatment plan has evolved with the use of low force Nickel Titanium wires. Because of their high springback, low stiffness, they are the key initial wires in leveling and alignment but have poor formability. Since poor formability limits its ability to create variable arch forms thus; limits the form of treatment. We have devised a method to bend the Nickel Titanium wires to help in our inventory but also customized the wire according to the treatment.

  12. Energy Deposition in a Septum Wire

    CERN Document Server

    Ferioli, G; Knaus, P; Koopman, J; CERN. Geneva. SPS and LHC Division

    2001-01-01

    The present note describes a machine development (MD) aimed to confirm experimentally the need for protection of the extraction wire septum ZS in SPS long straight section LSS6 during LHC operation. Single wires identical to the ones mounted on the extraction septum were fixed on a fast wire scanner and put into the beam path. The beam heated the wire until it broke after a measured number of turns. The maximum single shot intensity the septum wires could withstand was thus calculated and compared with simulation results.

  13. Study of Implosion of Twisted Nested Arrays at the Angara-5-1 Facility

    Science.gov (United States)

    Mitrofanov, K. N.; Zukakishvili, G. G.; Aleksandrov, V. V.; Grabovski, E. V.; Frolov, I. N.; Gribov, A. N.

    2018-01-01

    Results are presented from experimental studies of the implosion of twisted nested arrays in which the wires of the outer and inner arrays are twisted about the array axis in opposite directions (clockwise and counterclockwise). Experiments with twisted arrays were carried out at the Angara-5-1 facility at currents of up to 4 MA. The currents through the arrays were switched either simultaneously or the current pulse through the outer array was delayed by 10-15 ns with the help of an anode spark gap. It is shown that, in such arrays, the currents flow along the inclined wires and, accordingly, there are both the azimuthal and axial components of the discharge current. The process of plasma implosion in twisted arrays depends substantially on the value of the axial (longitudinal) magnetic field generated inside the array by the azimuthal currents. Two-dimensional simulations of the magnetic field in twisted nested arrays were performed in the ( r, z) geometry with allowance for the skin effect in the discharge electrodes. It is shown that, depending on the geometry of the discharge electrodes, different configurations of the magnetic field can be implemented inside twisted nested arrays. The calculated magnetic configurations are compared with the results of measurements of the magnetic field inside such arrays. It is shown that the configuration of the axial magnetic field inside a twisted nested array depends substantially on the distribution of the azimuthal currents between the inner and outer arrays.

  14. Photoelastic analysis of stress generated by wires when conventional and self-ligating brackets are used: A pilot study

    Directory of Open Access Journals (Sweden)

    Guilherme Caiado Sobral

    2014-10-01

    Full Text Available OBJECTIVE: By means of a photoelastic model, this study analyzed the stress caused on conventional and self-ligating brackets with expanded arch wires. METHOD: Standard brackets were adhered to artificial teeth and a photoelastic model was prepared using the Interlandi 19/12 diagram as base. Successive activations were made with 0.014-in and 0.018-in rounded cross section Nickel-Titanium wires (NiTi and 0.019 x 0.025-in rectangular stainless steel wires all of which made on 22/14 Interlandi diagram. The model was observed on a plane polariscope - in a dark field microscope configuration - and photographed at each exchange of wire. Then, they were replaced by self-ligating brackets and the process was repeated. Analysis was qualitative and observed stress location and pattern on both models analyzed. CONCLUSIONS: Results identified greater stress on the region of the apex of premolars in both analyzed models. Upon comparing the stress between models, a greater amount of stress was found in the model with conventional brackets in all of its wires. Therefore, the present pilot study revealed that alignment of wires in self-ligating brackets produced lower stress in periodontal tissues in expansive mechanics.

  15. Expansion of plasma of electrically exploding single copper wire under 4.5 kA-9.5 kA/wire

    International Nuclear Information System (INIS)

    Li Yexun; Yang Libing; Sun Chengwei

    2003-01-01

    The experimental system for electrically exploding single metal wire has been designed and manufactured. Expansion of the dense plasma column formed from an electrically exploding Cu wire of diameter 30 μm has been studied with a high-speed photographer to obtain the time-dependent radius (R-t) curve. The experimental results demonstrate that the mean expansion rate of the dense plasma column is 1.94 μm/ns, 2.6 μm/ns and 3.75 μm/ns according to the peak pulse current 4.5 kA, 7 kA and 9.5 kA respectively. The results can be beneficial to giving a profound understanding of the early stage of wire-array Z-pinch physics and to improvement on their design

  16. Welding Metallurgy and Weldability of Stainless Steels

    Science.gov (United States)

    Lippold, John C.; Kotecki, Damian J.

    2005-03-01

    Welding Metallurgy and Weldability of Stainless Steels, the first book in over twenty years to address welding metallurgy and weldability issues associated with stainless steel, offers the most up-to-date and comprehensive treatment of these topics currently available. The authors emphasize fundamental metallurgical principles governing microstructure evolution and property development of stainless steels, including martensistic, ferric, austenitic, duplex, and precipitation hardening grades. They present a logical and well-organized look at the history, evolution, and primary uses of each stainless steel, including detailed descriptions of the associated weldability issues.

  17. Nano-pyramid arrays for nano-particle trapping

    NARCIS (Netherlands)

    Sun, Xingwu; Veltkamp, Henk-Willem; Berenschot, Johan W.; Gardeniers, Johannes G.E.; Tas, Niels Roelof

    2016-01-01

    Abstract In this paper we present the drastic miniaturization of nano-wire pyramids fabricated by corner lithography. A particle trapping device was fabricated in a well-defined and symmetrical array. The entrance and exit hole-size can be tuned by adjusting fabrication parameters. We describe here

  18. Biomedical Applications of Antibacterial Nanofiber Mats Made of Electrospinning with Wire Electrodes

    Directory of Open Access Journals (Sweden)

    Yi-Jun Pan

    2016-02-01

    Full Text Available Twisted stainless steel wires are used as wire electrodes for electrospinning the polyvinyl alcohol (PVA/zinc citrate nanofiber mats. The morphology and diameter of the nanofibers in PVA/zinc citrate nanofiber mats are evaluated. We measured the antibacterial efficacy against Staphylococcus aureus (S. aureus and Escherichia coli (E. coli of the nanofiber mats. We also examined the cell adhesion affinity of mammalian tissue culture cells on these nanofiber mats. Our results indicate that an increase in zinc citrate increases the viscosity and electrical conductivity of PVA solution. In addition, increasing zinc citrate results in a smaller diameter of nanofibers that reaches below 100 nm. According to the antibacterial test results, increasing zinc citrate enlarges the inhibition zone of S. aureus but only has a bacteriostatic effect against E. coli. Finally, cell adhesion test results indicate that all nanofiber mats have satisfactory cell attachment regardless of the content of zinc citrate.

  19. The Quantum Socket: Wiring for Superconducting Qubits - Part 1

    Science.gov (United States)

    McConkey, T. G.; Bejanin, J. H.; Rinehart, J. R.; Bateman, J. D.; Earnest, C. T.; McRae, C. H.; Rohanizadegan, Y.; Shiri, D.; Mariantoni, M.; Penava, B.; Breul, P.; Royak, S.; Zapatka, M.; Fowler, A. G.

    Quantum systems with ten superconducting quantum bits (qubits) have been realized, making it possible to show basic quantum error correction (QEC) algorithms. However, a truly scalable architecture has not been developed yet. QEC requires a two-dimensional array of qubits, restricting any interconnection to external classical systems to the third axis. In this talk, we introduce an interconnect solution for solid-state qubits: The quantum socket. The quantum socket employs three-dimensional wires and makes it possible to connect classical electronics with quantum circuits more densely and accurately than methods based on wire bonding. The three-dimensional wires are based on spring-loaded pins engineered to insure compatibility with quantum computing applications. Extensive design work and machining was required, with focus on material quality to prevent magnetic impurities. Microwave simulations were undertaken to optimize the design, focusing on the interface between the micro-connector and an on-chip coplanar waveguide pad. Simulations revealed good performance from DC to 10 GHz and were later confirmed against experimental measurements.

  20. EDITORIAL More than a wire More than a wire

    Science.gov (United States)

    Demming, Anna

    2010-10-01

    Nanowires are the natural evolution of the connections in circuits when scaled down to nanometre sizes. On closer inspection, of course, the role of nanowires in developing new technologies is much more than just a current-bearing medium. By sizing the diameters of these objects down to the nanoscale, their properties become increasingly sensitive to factors such as the gas composition, temperature and incident light of their surrounding environment, as well as defects and variations in diameter. What becomes important in modern electronics innovations is not just what is connected, but how. Nanowires had already begun to attract the attention of researchers in the early 1990s as advances in imaging and measurement devices invited researchers to investigate the properties of these one-dimensional structures [1, 2]. This interest has sparked ingenious ways of fabricating nanowires such as the use of a DNA template. A collaboration of researchers at Louisiana Tech University in the US hs provided an overview of various methods to assemble conductive nanowires on a DNA template, including a summary of different approaches to stretching and positioning the templates [3]. Work in this area demonstrates a neat parallel for the role of DNA molecules as the building blocks of life and the foundations of nanoscale device architectures. Scientists at HP Labs in California are using nanowires to shrink the size of logic arrays [4]. One aspect of electronic interconnects that requires particular attention at nanoscale sizes is the effect of defects. The researchers at HP Labs demonstrate that their approach, which they name FPNI (field-programmable nanowire interconnect), is extremely tolerant of the high defect rates likely to be found in these nanoscale structures, and allows reduction in size and power without significantly sacrificing the clock rate. Another issue in scaling down electronics is the trend for an increasing resistivity with decreasing wire width. Researchers

  1. Slice of LHC dipole wiring

    CERN Multimedia

    Dipole model slice made in 1994 by Ansaldo. The high magnetic fields needed for guiding particles around the Large Hadron Collider (LHC) ring are created by passing 12’500 amps of current through coils of superconducting wiring. At very low temperatures, superconductors have no electrical resistance and therefore no power loss. The LHC is the largest superconducting installation ever built. The magnetic field must also be extremely uniform. This means the current flowing in the coils has to be very precisely controlled. Indeed, nowhere before has such precision been achieved at such high currents. 50’000 tonnes of steel sheets are used to make the magnet yokes that keep the wiring firmly in place. The yokes constitute approximately 80% of the accelerator's weight and, placed side by side, stretch over 20 km!

  2. Modifications in straight wire treatment.

    Science.gov (United States)

    Cardona, Alvin

    2010-01-01

    Orthodontic treatments have been modified with each new generation of clinicians. Today the emphasis is on facial esthetics and healthy temporomandibular joints. With orthopedic treatment, we can develop dental arches to get the necessary space to align the teeth and we can reach adequate function and esthetics, all within relatively good stability. By combining two-phase treatment with low friction fixed orthodontics and super elastic wires we produce light but continuous forces and we can provide better treatment than before. These types of forces cause physiological and functional orthopedic orthodontic reactions. The purpose of this article is to demonstrate our fixed orthopedic and orthodontic approach called "Modified Straight Wire" or "Physiologic Arch Technique." This technique is very successful with our patients because it can exert slow and continuous forces with minimal patient cooperation.

  3. Vibrating wire for beam profile scanning

    Directory of Open Access Journals (Sweden)

    S. G. Arutunian

    1999-12-01

    Full Text Available A method that measures the transverse profile (emittance of the bunch by detecting radiation arising at the scattering of the bunch on scanning wire is widely used. In this work information about bunch scattering is obtained by measuring the oscillation frequency of the tightened scanning wire. In such a way, the system of radiation (or secondary particles extraction and measurement can be removed. The entire unit consists of a compact fork with tightened wire and a scanning system. Normal oscillation frequency of a wire depends on wire tension, its geometric parameters, and, in a second approximation, its elastic characteristics. Normal oscillations are generated by interaction of an alternating current through the wire with magnetic field of a permanent magnet. In this case, it is suggested that the magnetic field of the accelerator (field of dipole magnets or quadrupole magnets be used for excitation of oscillations. The dependence of oscillation frequency on beam scattering is determined by several factors, including changes of wire tension caused by transverse force of the beam and influence of beam self-field. Preliminary calculations show that the influence of wire heating will dominate. We have studied strain gauges on the basis of vibrating wire from various materials (tungsten, beryl bronze, and niobium zirconium alloys. A scheme of normal oscillation generation by alternating current in autogeneration circuit with automatic frequency adjustment was selected. A special method of wire fixation and elimination of transverse degrees of freedom allows us to achieve relative stability better than 10^{-5} during several days at a relative resolution of 10^{-6}. Experimental results and estimates of wire heating of existing scanners show that the wire heats up to a few hundred grades, which is enough for measurements. The usage of wire of micrometer thickness diminishes the problem of wire thermalization speed during the scanning of the bunch.

  4. Pin Wire Coating Trip Report

    International Nuclear Information System (INIS)

    Spellman, G P

    2004-01-01

    A meeting to discuss the current pin wire coating problems was held at the Reynolds plant in Los Angeles on 2MAR04. The attendance list for Reynolds personnel is attached. there was an initial presentation which gave a brief history and the current status of pin wire coating at Reynolds. There was a presentation by Lori Primus on the requirements and issues for the coating. There was a presentation by Jim Smith of LANL on the chemistry and to some extent process development done to date. There was a long session covering what steps should be taken in the short term and, to a lesser extent, the long term. The coating currently being used is a blend of two polymers, polyethersulfone and polyparabanic acid (PPA) and some TiO2 filler. This system was accepted and put into production when the pin wire coating was outsourced to another company in 1974. When that company no longer was interested, the wire coating was brought in-house to Reynolds. At that time polyparabanic acid was actually a commercial product available from Exxon under the trade name Tradlon. However, it appears that the material used at Reynolds was synthesized locally. Also, it appears that a single large batch was synthesized in that time period and used up to 1997 when the supply ran out. The reason for the inclusion of TiO2 is not known although it does act as a rheological thickener. However, a more controlled thickening can be obtained with materials such as fumed silica. This material would have less likelihood of causing point imperfections in the coatings. Also, the mixing technique being used for all stages of the process is a relatively low shear ball mill process and the author recommends a high shear process such as a three roll paint mill, at least for the final mixing. Since solvent is added to the powder at Reynolds, it may be that they need to have the paint mill there

  5. Investigation of material removal rate and surface roughness during wire electrical discharge machining (WEDM of Inconel 625 super alloy by cryogenic treated tool electrode

    Directory of Open Access Journals (Sweden)

    Ashish Goyal

    2017-10-01

    Full Text Available The present investigation focuses the effect of process parameters on material removal rate (MRR and surface roughness (Ra in wire electric discharge machining of Inconel 625. Machining was done by using a normal zinc coated wire and cryogenic treated zinc coated wire. The experiments were performed by considering different process parameters viz. tool electrode, current intensity, pulse on time, pulse off time, wire feed and wire tension. The thickness of work material and dia. of wire are kept constant. Taguchi L18 (21 * 35 orthogonal array of experimental design is used to perform the experiments. Analysis of variance (ANOVA is employed to optimize the material removal rate and surface roughness. Based on analysis it is found that pulse on time, tool electrode and current intensity are the significant parameters that affect the material removal rate and surface roughness. The scanning electron microscopy (SEM are used to identify the microstructure of the machined work piece.

  6. Optically pumped ultraviolet and infrared lasers driven by exploding metal films and wires

    International Nuclear Information System (INIS)

    Jones, C.R.; Ware, K.D.

    1983-01-01

    The 342-nm molecular iodine and 1315-nm atomic iodine lasers have been optically pumped by intense light from exploding-metal-film and exploding-wire discharges. Brightness temperatures for the exploding-film discharges were approx. 25,000 K and for the wire discharges were approx. 30,000 K. For the I 2 laser the 3.5-cm-diameter by 40-cm-long pumped volume lies adjacent to the wire or film of the same length. Pressures of 1 to 6 torr I 2 and 1 to 3 atm SF, CF 4 , or Ar were used in the stainless-steel cell. Using 20-μF capacitance charged to 40 kV, a 0.25-mm tungsten wire, 3-torr I 2 , and a 2-atm SF 6 , an energy of 2 J was obtained from the laser in a pulse of 8-μs duration. The specific output energy was 7 J/l. Substitution of a cylindrical Al film for the wire, under otherwise similar conditions, led to a X10 output energies and efficiencies were obtained with similar input energy. An output pulse of 12 J and 12-μs duration was measured for a specific output energy of 18 J/l. A laser energy of 110 J in a 20-us-long pulse has been measured from atomic iodine using a wire discharge along the axis of a larger cell. The active volume available was 20 cm in diameter and 80 cm in length. Input energy was 32 kJ. In similar measurements using a cylindrical Al film for discharge initiation, the measured output energy was 40 J

  7. Release of nickel and chromium ions from orthodontic wires following the use of teeth whitening mouthwashes

    Directory of Open Access Journals (Sweden)

    AmirHossein Mirhashemi

    2018-02-01

    Full Text Available Abstract Background Corrosion resistance is an important requirement for orthodontic appliances. Nickel and chromium may be released from orthodontic wires and can cause allergic reactions and cytotoxicity when patients use various mouthwashes to whiten their teeth. Our study aimed to assess the release of nickel and chromium ions from nickel titanium (NiTi and stainless steel (SS orthodontic wires following the use of four common mouthwashes available on the market. Methods This in vitro, experimental study was conducted on 120 orthodontic appliances for one maxillary quadrant including five brackets, one band and half of the required length of SS, and NiTi wires. The samples were immersed in Oral B, Oral B 3D White Luxe, Listerine, and Listerine Advance White for 1, 6, 24, and 168 h. The samples immersed in distilled water served as the control group. Atomic absorption spectroscopy served to quantify the amount of released ions. Results Nickel ions were released from both wires at all time-points; the highest amount was in Listerine and the lowest in Oral B mouthwashes. The remaining two solutions were in-between this range. The process of release of chromium from the SS wire was the same as that of nickel. However, the release trend in NiTi wires was not uniform. Conclusions Listerine caused the highest release of ions. Listerine Advance White, Oral B 3D White Luxe, and distilled water were the same in terms of ion release. Oral B showed the lowest amount of ion release.

  8. Evaluation of deflection forces of orthodontic wires with different ligation types

    Directory of Open Access Journals (Sweden)

    José Fernando Castanha HENRIQUES

    2017-07-01

    Full Text Available Abstract The aim of this study was to evaluate deflection forces of orthodontic wires of different alloys engaged into conventional brackets using several ligation types. Stainless steel, conventional superelastic nickel-titanium and thermally activated nickel-titanium archwires tied into conventional brackets by a ring-shaped elastomeric ligature (RSEL, a 8-shaped elastomeric ligature (8SEL and a metal ligature (ML were tested. A clinical simulation device was created especially for this study and forces were measured with an Instron Universal Testing Machine. For the testing procedure, the block representing the maxillary right central incisor was moved 0.5 and 1 mm bucco-lingually at a constant speed of 2 mm/min, and the forces released by the wires were recorded, in accordance with the ISO 15841 guidelines. In general, the RSEL showed lighter forces, while 8SEL and ML showed higher values. At the 0.5 mm deflection, the 8SEL presented the greatest force, but at the 1.0 mm deflection the ML had a statistically similar force. Based on our evaluations, to obtain lighter forces, the thermally activated nickel-titanium wire with the RSEL are recommended, while the steel wire with the 8SEL or the ML are recommended when larger forces are desired. The ML exhibited the highest force increase with increased deflections, compared with the elastomeric ligatures.

  9. Automated installation methods for photovoltaic arrays

    Science.gov (United States)

    Briggs, R.; Daniels, A.; Greenaway, R.; Oster, J., Jr.; Racki, D.; Stoeltzing, R.

    1982-11-01

    Since installation expenses constitute a substantial portion of the cost of a large photovoltaic power system, methods for reduction of these costs were investigated. The installation of the photovoltaic arrays includes all areas, starting with site preparation (i.e., trenching, wiring, drainage, foundation installation, lightning protection, grounding and installation of the panel) and concluding with the termination of the bus at the power conditioner building. To identify the optimum combination of standard installation procedures and automated/mechanized techniques, the installation process was investigated including the equipment and hardware available, the photovoltaic array structure systems and interfaces, and the array field and site characteristics. Preliminary designs of hardware for both the standard installation method, the automated/mechanized method, and a mix of standard installation procedures and mechanized procedures were identified to determine which process effectively reduced installation costs. In addition, costs associated with each type of installation method and with the design, development and fabrication of new installation hardware were generated.

  10. Spectrographic analysis of stainless steels

    International Nuclear Information System (INIS)

    Sabato, S.F.; Lordello, A.R.

    1984-01-01

    Two spectrogaphyic solution techniques, 'Porous Cup' and 'Vacuum Cup', were investigated in order to determine the minor constituents (Cr, Ni, Mo, Mn, Cu and V) of stainless steels. Iron and cobalt were experimented as internal standards. The precision varied from 4 to 11% for both spectrographic techniques, in which cobalt was used as international standard. Certified standards from National Bureau of Standards and Instituto de Pesquisas Tecnologicas were analysed to verify the accuracy of both techniques. The best accuracy was obtained with the Vacuum Cup techniques. (Author) [pt

  11. Failures on stainless steel components

    International Nuclear Information System (INIS)

    Haenninen, H.

    1994-01-01

    Economic losses due to failure mainly by corrosion in process and nuclear industries are considered. In these industries the characteristics of different forms of corrosion and their economic effects are fairly well known and, especially, in nuclear industry the assessment of corrosion related costs has been comprehensive. In both industries the economic losses resulting from environmentally enhanced cracking of stainless steel components and the accompanying failures and outages have been considerable, owing as much to the frequency as the unpredictability of such occurrences. (orig.)

  12. Following the Money: The Wire and Distant American Studies

    Directory of Open Access Journals (Sweden)

    Sven Cvek

    2014-06-01

    Full Text Available In this essay, I argue that the pedagogical, or, more generally, heuristic potential of HBO’s crime drama The Wire (2002/2008 is related to the specific institutional developments in post-network television, the show’s didactic intention, and its focus on the delineation of the economic process, or what has been called its “openly class-based” politics. I will dedicate most time to the latter, as it represents a particularly welcome intervention for American Studies, a discipline in which the problem of class has usually been either marginalized, or articulated in terms of the historically hegemonic disciplinary paradigm, that of identityKeywords: The Wire, American studies, cognitive mapping, capitalism, TV, HBOIn this essay, I would like to approach HBO’s crime drama The Wire (2002-2008 based on my experience of teaching the show in an American Studies class in Croatia. The course in which I try to work with it, Cultural Aspects of American Neoliberalism, deals with the gradual departure in the US from the legacy of the New Deal, with a special focus on the cultural articulations of economic inequality from the 1970s onwards. Using The Wire in the classroom is nothing new. It has been taught for years now in different courses, mostly in the US. A quick web search will show that it has appeared in curricula in film studies, media studies, urban studies, ethics, communication, criminal justice, sociology, social anthropology, and social work. The inclusion of the series in these various academic fields seems to confirm what I have learned from experience: the show offers plenty of teachable material. Moreover, the variety of pedagogical uses of The Wire speaks to the series’ ability to serve many different disciplinary interests, both in the US and abroad. Here, I would like to make a point precisely out of the apparent potential of The Wire to provide a common ground for the recognition of a diverse array of particular social

  13. Mesenteric artery contraction and relaxation studies using automated wire myography.

    Science.gov (United States)

    Bridges, Lakeesha E; Williams, Cicely L; Pointer, Mildred A; Awumey, Emmanuel M

    2011-09-22

    Proximal resistance vessels, such as the mesenteric arteries, contribute substantially to the peripheral resistance. These small vessels of between 100-400 μm in diameter function primarily in directing blood flow to various organs according to the overall requirements of the body. The rat mesenteric artery has a diameter greater than 100 μm. The myography technique, first described by Mulvay and Halpern(1), was based on the method proposed by Bevan and Osher(2). The technique provides information about small vessels under isometric conditions, where substantial shortening of the muscle preparation is prevented. Since force production and sensitivity of vessels to different agonists is dependent on the extent of stretch, according to active tension-length relation, it is essential to conduct contraction studies under isometric conditions to prevent compliance of the mounting wires. Stainless steel wires are preferred to tungsten wires because of oxidation of the latter, which affects recorded responses(3).The technique allows for the comparison of agonist-induced contractions of mounted vessels to obtain evidence for normal function of vascular smooth muscle cell receptors. We have shown in several studies that isolated mesenteric arteries that are contracted with phenylyephrine relax upon addition of cumulative concentrations of extracellular calcium (Ca(2+)(e;)). The findings led us to conclude that perivascular sensory nerves, which express the G protein-coupled Ca(2+)-sensing receptor (CaR), mediate this vasorelaxation response. Using an automated wire myography method, we show here that mesenteric arteries from Wistar, Dahl salt-sensitive(DS) and Dahl salt-resistant (DR) rats respond differently to Ca(2+)(e;). Tissues from Wistar rats showed higher Ca(2+)-sensitivity compared to those from DR and DS. Reduced CaR expression in mesenteric arteries from DS rats correlates with reduced Ca(2+)(e;)-induced relaxation of isolated, pre-contracted arteries. The data

  14. Solving process industry problems with specialty stainlesses

    International Nuclear Information System (INIS)

    Montrone, E.D.

    1977-01-01

    Substantial steel industry efforts have been devoted to improving the properties of stainless steels by changing the level of alloying elements. Rapid progress has produced materials to meet many of the diversified service conditions existing in process plants. The performance characteristics of seven stainless steels are compared. The emphasis is on steels which avoid the effects of corrosion. 4 figures, 3 tables

  15. Stainless steel fabrications: past and present

    International Nuclear Information System (INIS)

    Daniels, R.

    1986-01-01

    The paper deals with stainless steel fabrications of Fairey Engineering Company for the nuclear industry. The manufacture of stainless steel containers for Magnox and Advanced Gas Cooled Reactors, flexible fabrication facility, and welding development, are all briefly described. (U.K.)

  16. Evaluation of tensile strength and surface topography of orthodontic wires after infection control procedures: An in vitro study.

    Science.gov (United States)

    Brindha, M; Kumaran, N Kurunji; Rajasigamani, K

    2014-07-01

    The aim of this study is to evaluate, the influence of four types of sterilization/disinfection procedures (autoclave, hot air oven, glutaraldehyde, and ultraviolet [UV] light) on the tensile strength and surface topography of three orthodontic wires (stainless steel (SS), titanium - molybdenum alloy [TMA], and cobalt chromium (CoCr)). Sample comprised of three types of 8 inches straight length segments of orthodontic wires. They were divided into three groups according to wire composition comprising of 50 samples each. Totally 50 samples of each group were then equally divided into five subgroups according to sterilization method. After sterilization and disinfection of the experimental group, surface topography was examined with scanning electron microscope (SEM) and tensile strength was tested using universal testing machine. The results of this study show that the mean ultimate tensile strength (UTS) of SS wire after four sterilization procedures were similar to the control group (1845.815 ± 142.29 MPa). The mean UTS of TMA wire increases after four sterilization procedures when compared with the control group (874.107 ± 275.939 MPa). The mean UTS of CoCr wire remains same after UV light disinfection, but increases after other three sterilization procedures when compared with the control group (1449.759 ± 156.586 MPa). SEM photographs of the present study shows gross increase in pitting roughness of the surface topography of all the three types of wires after four types of sterilization. Orthodontists who want to offer maximum safety for their patients can sterilize orthodontic wires before placement, as it does not deteriorate the tensile strength and surface roughness of the alloys.

  17. Force sensitive carbon nanotube arrays for biologically inspired airflow sensing

    Science.gov (United States)

    Maschmann, Matthew R.; Dickinson, Ben; Ehlert, Gregory J.; Baur, Jeffery W.

    2012-09-01

    The compressive electromechanical response of aligned carbon nanotube (CNT) arrays is evaluated for use as an artificial hair sensor (AHS) transduction element. CNT arrays with heights of 12, 75, and 225 µm are examined. The quasi-static and dynamic sensitivity to force, response time, and signal drift are examined within the range of applied stresses predicted by a mechanical model applicable to the conceptual CNT array-based AHS (0-1 kPa). Each array is highly sensitive to compressive loading, with a maximum observed gauge factor of 114. The arrays demonstrate a repeatable response to dynamic cycling after a break-in period of approximately 50 cycles. Utilizing a four-wire measurement electrode configuration, the change in contact resistance between the array and the electrodes is observed to dominate the electromechanical response of the arrays. The response time of the CNT arrays is of the order of 10 ms. When the arrays are subjected to constant stress, mechanical creep is observed that results in a signal drift that generally diminishes the responsiveness of the arrays, particularly at stress approaching 1 kPa. The results of this study serve as a preliminary proof of concept for utilizing CNT arrays as a transduction mechanism for a proposed artificial hair sensor. Such a low profile and light-weight flow sensor is expected to have application in a number of applications including navigation and state awareness of small air vehicles, similar in function to natural hair cell receptors utilized by insects and bats.

  18. Induced magnetic moment in stainless steel components of orthodontic appliances in 1.5 T MRI scanners

    Science.gov (United States)

    Rollins, Nancy K.; Liang, Hui; Park, Yong Jong

    2015-01-01

    Purpose: Most orthodontic appliances are made of stainless steel materials and induce severe magnetic susceptibility artifacts in brain MRI. In an effort for correcting these artifacts, it is important to know the value of induced magnetic moments in all parts of orthodontic appliances. In this study, the induced magnetic moment of stainless steel orthodontic brackets, molar bands, and arch-wires from several vendors is measured. Methods: Individual stainless steel brackets, molar bands, and short segments of arch-wire were positioned in the center of spherical flask filled with water through a thin plastic rod. The induced magnetic moment at 1.5 T was determined by fitting the B0 map to the z-component of the magnetic dipole field using a computer routine. Results: The induced magnetic moment at 1.5 T was dominated by the longitudinal component mz, with a small contribution from the transverse components. The mz was insensitive to the orientation of the metal parts. The orthodontic brackets collectively dominated the magnetic dipole moment in orthodontic appliances. In brackets from six vendors, the total induced mz from 20 brackets for nonmolar teeth ranged from 0.108 to 0.158 (median 0.122) A ⋅ m2. The mz in eight molar bands with bracket attachment from two vendors ranged from 0.0004 to 0.0166 (median 0.0035) A ⋅ m2. Several full length arch wires had induced magnetic moment in the range of 0.006–0.025 (median 0.015) A ⋅ m2. Conclusions: Orthodontic brackets collectively contributed most to the total magnetic moment. Different types of brackets, molar bands, and arch wires all exhibit substantial variability in the induced magnetic moment. PMID:26429261

  19. Virtual electrodes for high-density electrode arrays

    Science.gov (United States)

    Cela, Carlos J.; Lazzi, Gianluca

    2015-10-13

    The present embodiments are directed to implantable electrode arrays having virtual electrodes. The virtual electrodes may improve the resolution of the implantable electrode array without the burden of corresponding complexity of electronic circuitry and wiring. In a particular embodiment, a virtual electrode may include one or more passive elements to help steer current to a specific location between the active electrodes. For example, a passive element may be a metalized layer on a substrate that is adjacent to, but not directly connected to an active electrode. In certain embodiments, an active electrode may be directly coupled to a power source via a conductive connection. Beneficially, the passive elements may help to increase the overall resolution of the implantable array by providing additional stimulation points without requiring additional wiring or driver circuitry for the passive elements.

  20. Niobium stainless steel for implants

    International Nuclear Information System (INIS)

    Rollo, J.M.D.A.

    1983-01-01

    The materials that have often been used, during the last two or three decades, to carry out materials for implants are made according to the specifications: a)A.S.T.M. (F.55-76, F.56-76, F.138-76, F.139-76) stainless steel b)A.S.T.M. (F.75-76), cobalt-chromium-molybdenum alloys. c)A.S.T.M. (F.90-76), cobalt-chromium-tungsten-nickel alloys. d)A.S.T.M. (F.67-77), unalloyed titanium. e)A.S.T.M. (F.136-70), titanium alloys. It was the purpose of retaking them, toverify the niobium influence as alloy element in ANSI/ASTM F.55-76 classification stainless steels, usually for these materials elaboration. The problem by substituting molybdenum total or partially for niobium, by comparing the mechanical and corrosion properties, and biocompatibility is presented, by pointing out the variables of these substitutions, when we employ this new material to perform materials for implants. (Author) [pt