WorldWideScience

Sample records for wire anodes means

  1. Proportional counter with a wire-anode lying on the dielectric surface

    International Nuclear Information System (INIS)

    Strelkov, A.V.

    1983-01-01

    Proportional coUnter with wire-anode lying on the dielectric surface is described. The result of the accumulation of charges on the dielectric surface immediately near the wire-anode surface is that such a counter possesses electrostatic memory relative to distribution of the gas amplification coefficient along the anode. SUch a distribution can be received for example by means of irradiation by the neutrons or the γ-rays. The disposition of the wire-anode on the convex dielectric surface allows one to make the ring-shaped counters or the nonplane proportional chambers practically of any profile. However, the energy resolution of the counter with anode on the dielectric is worse than the resolution of counter with free anode particularly at the large gas amplification coefficient

  2. Anodic Aluminum Oxide Templates for Nano wires Array Fabrication

    International Nuclear Information System (INIS)

    Nur Ubaidah Saidin; Kok, K.Y.; Ng, I.K.

    2011-01-01

    This paper reports on the process developed to fabricate anodic aluminium oxide (AAO) templates suitable for the fabrication of nano wire arrays. Anodization process has been used to fabricate the AAO templates with pore diameters ranging from 15 nm to 30 nm. Electrodeposition of parallel arrays of high aspect ratio nickel nano wires were demonstrated using these fabricated AAO templates. The nano wires produced were characterized using X-ray diffraction (XRD) and scanning electron microscopy (SEM). It was found that the orientations of the electrodeposited nickel nano wires were governed by the deposition current and electrolyte conditions. (author)

  3. Multiwire proportional chamber with a supporting line on anode wires

    International Nuclear Information System (INIS)

    Viktorov, V.A.; Golovkin, S.V.

    1980-01-01

    Results are presented of experimental investigations on a supporting line (wire) used in large-sized proportional chambers to compensate for electrostatic forces. The length of anode wires (gilded tungsten of 0.02 mm in diameter) in the chamber constituted 600 mm, the pitch 2 mm, the total number of channels 192. High-voltage electrodes are made of Cu-Be wire of 0.1 mm in diameter, the pitch is 2 mm. The gap between anode and cathode plates is 6 mm. The supporting line is an enamelled nichrome wire of 0.2 mm in diameter enclosed in an additional fluoroplastic insulation. The outside diameter was equal to 0.4 mm. The supporting line was placed through the centre of the chamber at right angles and immediately adjacent to anode wires with the tension of 2000 g. A negative compensating potential was applied to it. The controllable parameter was the chamber efficiency at variable paAameters: (1) an operating voltage in the chamber; (2) Vsub(c) - a compensating potential of the supporting line, and (3) a beam axis relative coordinate. The performed investigations showed that the supporting line of this type is simple and reliable in operation (electric breakdown occurs at Vsub(c) > 3.5 kV). The noneffective zone in the supporting region can be reduced to approximately 2.4 mm which constitutes approximately 0.3% of the chamber total sensitive region

  4. Curved anode wire chambers for x-ray diffraction applications

    International Nuclear Information System (INIS)

    Perez-Mendez, V.; Wiedenbeck, P.; Wagner, C.N.J.; Woelfel, E.

    1983-01-01

    Curved position sensitive proportional detectors are described. The first has a radius of curvature of 135 mm and a 60 0 angular range. The second has a radius of curvature of 360 mm and a 45 0 angular range. For high quantum efficiency for x-ray energies up to 60 keV, a relatively large x-ray path and high gas pressure are required. The anode wires are suspended in circular arcs by the interaction of a current flowing through them and a magnetic field provided by two permanent magnets placed above and below the wire running parallel to it over the full length of the curved chambers. Anode wire stability under the combined action of the magnetic and electrostatic forces is discussed

  5. Wire anode for isotope separation apparatus

    International Nuclear Information System (INIS)

    Janes, G.S.; Dotson, J.P.

    1976-01-01

    In uranium enrichment, an electrode structure of thin, tensioned, parallel wires is claimed for use in applying an electric field to a region of a flowing uranium plasma including selectively ionized particles in order to accelerate the ionized particles for separate collection without interfering with the motion of neutral particles. 24 claims, 3 drawing figures

  6. Position-sensitive proportional counter with low-resistance metal-wire anode

    International Nuclear Information System (INIS)

    Kopp, M.K.

    1980-01-01

    A position-sensitive proportional counter circuit is provided which uses a conventional (low-resistance, metal-wire anode) proportional counter for spatial resolution of an ionizing event along the anode of the counther. A pair of specially designed activecapacitance preamplifiers terminate the anode ends wherein the anode is treated as an RC line. The preamplifiers act as stabilized active capacitance loads and each is composed of a series-feedback, lownoise amplifier, a unity-gain, shunt-feedback amplifier whose output is connected through a feedback capacitor to the series-feedback amplifier input. The stabilized capacitance loading of the anode allows distributed RC-line position encoding and subsequent time difference decoding by sensing the difference in rise times of pulses at te anode ends where the difference is primarily in response to the distributed capacitance along the anode. This allows the use of lower resistance wire anodes for spatial radiation detection which simplifies the counter construction and handling of the anodes, and stabilizes the anode resistivity at high count rates

  7. Copper Refinement from Anode to Cathode and then to Wire Rod: Effects of Impurities on Recrystallization Kinetics and Wire Ductility.

    Science.gov (United States)

    Helbert, Anne-Laure; Moya, Alice; Jil, Tomas; Andrieux, Michel; Ignat, Michel; Brisset, François; Baudin, Thierry

    2015-10-01

    In this paper, the traceability of copper from the anode to the cathode and then the wire rod has been studied in terms of impurity content, microstructure, texture, recrystallization kinetics, and ductility. These characterizations were obtained based on secondary ion mass spectrometry, differential scanning calorimetry (DSC), X-ray diffraction, HV hardness, and electron backscattered diffraction. It is shown that the recrystallization was delayed by the total amount of impurities. From tensile tests performed on cold drawn and subsequently annealed wires for a given time, a simplified model has been developed to link tensile elongation to the chemical composition. This model allowed quantification of the contribution of some additional elements, present in small quantity, on the recrystallization kinetics. The proposed model adjusted for the cold-drawn wires was also validated on both the cathode and wire rod used for the study of traceability.

  8. Etching of anode wire deposits with CF4/isobutane (80:20) avalanches

    International Nuclear Information System (INIS)

    Openshaw, R.; Henderson, R.S.; Faszer, W.; Salomon, M.

    1990-11-01

    An ionization exposure of 0.5 coulombs per cm of wire in a gas mixture of CF 4 /isobutane (80:20) is shown to reverse anode wire damage in single-wire chambers. Several chambers aged in argon/ethane (50:50) and argon/ethane/ethanol (50:50:0.2) and having pulse height reductions of 25-30% have recovered pulse heights and currents to greater than 98% of their initial values. Inspection of the anode wires indicates that the thick deposits caused by the exposure in argon/ethane have been removed. Auger electron spectroscopy reveals only a thin residual layer containing primarily carbon and oxygen. This etching ability of CF 4 /isobutane (80:20) avalanches may explain the extremely good ageing characteristics previously reported for this mixture. (Author) (13 refs., 3 tabs., 11 figs.)

  9. Etching of anode wire deposits with CF4/isobutane (80:20) avalanches

    International Nuclear Information System (INIS)

    Openshaw, R.; Henderson, R.S.; Faszer, W.; Salomon, M.

    1991-01-01

    An ionization exposure of 0.5 C per cm of wire in a gas mixture of CF 4 /isobutane (80:20) is shown to reverse anode wire damage in single-wire chambers. Several chambers aged in argon/ethane (50:50) and argon/ethane/ethanol (50:50:0.2) and having pulse height reduction of 25-30% have recovered pulse heights and currents to greater than 98% of their initial values. Inspection of the anode wires indicates that the thick deposits caused by the exposure in argon/ethane have been removed. Auger electron spectroscopy reveals only a thin residual layer containing primarily carbon and oxygen. This etching ability of CF 4 /isobutane (80:20) avalanches may explain the extremely good ageing characteristics previously reported for this mixture. (orig.)

  10. Second coordinate readout in drift chambers by timing of the electromagnetic wave propagating along the anode wire

    International Nuclear Information System (INIS)

    Boie, R.A.; Radeka, V.; Rehak, P.; Xi, D.M.

    1980-11-01

    The feasibility of using an anode wire and surrounding electrodes in drift chambers as a transmission line for second coordinate readout has been studied. The method is based on propagation of the electromagnetic wave along the anode wire is determined by measurement, in an optimized electronic readout system, of the time difference between the arrivals of the signal to the ends of the wire. The resolution obtained on long wires (approx. 2 meters) is about 2 cm FWHM for minimum ionizing particles at a gas gain of approx. = 10 5

  11. Investigations of X-ray response of single wire anode Ar-N2 flow type gas scintillation proportional counters

    International Nuclear Information System (INIS)

    Garg, S.P.; Sharma, R.C.

    1984-01-01

    The X-ray response of single wire anode gas scintillation proportional counters of two different geometries operated with argon+nitrogen gases in continuous flow has been investigated with wire anodes of diameters 25 μm to 1.7 mm. An energy resolution of 19% is obtained for 5.9 keV X-rays entering the counter perpendicular to the anode in pill-box geometry with 25 μm diameter anode. With cylindrical geometry counters energy obtained at 5.9 keV are 18%, 24% and 33% for 50 μm, 0.5 mm and 1.7 mm diameter anodes respectively. An analysis of the observed resolution shows that the contribution from photon counting statistics to the relative variance of scintillation pulses even for X-rays in Ar-N 2 single wire anode gas scintillation proportional counters is small and is not a limiting factor. The energy resolution with thicker anodes, where the contribution from the variance of the charge multiplication factor also has been minimised, is found to deteriorate mainly by the interaction in the scintillation production region. Comments are made on the possibility of improvement in energy resolution by suppression of pulses due to such interactions with the help of the pulse risetime discrimination technique. (orig.)

  12. Inspection of anode and field wires for the COMPASS drift chamber, DC5, with Environmental Scanning Electron Microscope

    Science.gov (United States)

    Cyuzuzo, Sonia

    2014-09-01

    The COMPASS experiment at CERN uses a secondary pion beam from the Super Proton Synchrotron (SPS) at CERN to explore the spin structure of nucleons. A new drift chamber, DC5, will be integrated into the COMPASS spectrometer to replace an aging straw tube detector. DC5 will detect muon pairs from Drell-Yan scattering of a pion-beam off a transversely polarized proton target. This data will be used to determine the correlation between transverse proton spin and the intrinsic transverse momentum of up-quarks inside the proton, the Sivers effect. DC5 is a large area planar drift chamber with 8 layers of anode-frames made of G10 fiberglass-epoxy. The G10 frames support printed circuit boards for soldering 20 μm diameter anode and 100 μm diameter field wires. The anode planes are sandwiched by 13 graphite coated Mylar cathode planes. To ensure a well-functioning of DC5, the wires were carefully tested. An optical inspection and a spectral analysis was performed with an Environmental Scanning Electron Microscope (ESEM) to verify the composition and dimensions and the integrity of the gold plating on the surface of these wires. The spectra of the wires were studied at 10 and 30 keV. The COMPASS experiment at CERN uses a secondary pion beam from the Super Proton Synchrotron (SPS) at CERN to explore the spin structure of nucleons. A new drift chamber, DC5, will be integrated into the COMPASS spectrometer to replace an aging straw tube detector. DC5 will detect muon pairs from Drell-Yan scattering of a pion-beam off a transversely polarized proton target. This data will be used to determine the correlation between transverse proton spin and the intrinsic transverse momentum of up-quarks inside the proton, the Sivers effect. DC5 is a large area planar drift chamber with 8 layers of anode-frames made of G10 fiberglass-epoxy. The G10 frames support printed circuit boards for soldering 20 μm diameter anode and 100 μm diameter field wires. The anode planes are sandwiched by 13

  13. UV laser beam profile measurement by means of the photoelectric effect on the wires of a proportional chamber

    International Nuclear Information System (INIS)

    Prokoviev, O.; Seiler, P.G.

    1989-01-01

    A simple technique to measure the profiles of pulsed UV laser beams is described. Irradiating a cathode wire of a proportional chamber with UV laser shots results in signals from the anode wire whose amplitudes are proportional to the UV light intensity. Profile scanning is performed by shifting the chamber across the beam. The chamber can also be used with reversed polarities. This leads to avalanches developing outwardly from the signal wire. In this case we observe a quadratic dependence of the pulse height on the UV light intensity. (orig.)

  14. Evaluation of surface roughness of orthodontic wires by means of atomic force microscopy.

    Science.gov (United States)

    D'Antò, Vincenzo; Rongo, Roberto; Ametrano, Gianluca; Spagnuolo, Gianrico; Manzo, Paolo; Martina, Roberto; Paduano, Sergio; Valletta, Rosa

    2012-09-01

    To compare the surface roughness of different orthodontic archwires. Four nickel-titanium wires (Sentalloy(®), Sentalloy(®) High Aesthetic, Titanium Memory ThermaTi Lite(®), and Titanium Memory Esthetic(®)), three β-titanium wires (TMA(®), Colored TMA(®), and Beta Titanium(®)), and one stainless-steel wire (Stainless Steel(®)) were considered for this study. Three samples for each wire were analyzed by atomic force microscopy (AFM). Three-dimensional images were processed using Gwiddion software, and the roughness average (Ra), the root mean square (Rms), and the maximum height (Mh) values of the scanned surface profile were recorded. Statistical analysis was performed by one-way analysis of variance (ANOVA) followed by Tukey's post hoc test (P Sentalloy High Aesthetic was the roughest (Ra  =  133.5 ± 10.8; Rms  =  165.8 ± 9.8; Mh  =  949.6 ± 192.1) of the archwires. The surface quality of the wires investigated differed significantly. Ion implantation effectively reduced the roughness of TMA. Moreover, Teflon(®)-coated Titanium Memory Esthetic was less rough than was ion-implanted Sentalloy High Aesthetic.

  15. Propagation velocity of an avalanche along the anode wire in a Geiger-Mueller counter filled with Q-gas at 1 ATM

    International Nuclear Information System (INIS)

    Matsuda, Kazunori; Sanada, Junpei

    1990-01-01

    Simple methods were applied to investigate the characteristics of a Geiger-Mueller counter with Q-gas flowing at 1 atm. The propagation velocity of the photon-aided avalanche along the anode wire depends linearly on the strength of the electric field in the counter. Its fluctuation (FWHM) as a function of distance between the source position and the end point is discussed. (orig.)

  16. Correction of high-voltage pulse front by means of exploding wires

    International Nuclear Information System (INIS)

    Azarkevich, E.I.; Zajtsev, N.I.; Kotov, Yu.A.

    1979-01-01

    A method of correcting the poWer pulse fronts shaped during the discharge of the Akradiev-Marx generator on active load has been suggested with a view to shaping power high-voltage pulses on the diode of a high-current electron accelerator. Thish correction is carried oUt by means of the current breaker on the base of electrically exploding wires. The breaker consists of four copper wires of 0.12 mm diameter, and 940 mm length. A current pulse of 32 kA amplitude, duration of 2.7 μs with a front of 100 ns was obtained by the use of the current breaker when forming the pulse in the electron accelerator power supply at load of 12 Ohm. The correction resulted in a nearly 20-fold reduction of the front duration

  17. Heat transfer monitoring by means of the hot wire technique and finite element analysis software.

    Science.gov (United States)

    Hernández Wong, J; Suarez, V; Guarachi, J; Calderón, A; Rojas-Trigos, J B; Juárez, A G; Marín, E

    2014-01-01

    It is reported the study of the radial heat transfer in a homogeneous and isotropic substance with a heat linear source in its axial axis. For this purpose, the hot wire characterization technique has been used, in order to obtain the temperature distribution as a function of radial distance from the axial axis and time exposure. Also, the solution of the transient heat transport equation for this problem was obtained under appropriate boundary conditions, by means of finite element technique. A comparison between experimental, conventional theoretical model and numerical simulated results is done to demonstrate the utility of the finite element analysis simulation methodology in the investigation of the thermal response of substances. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Numerical simulation of the throwing power of cathodic prevention applied to marine reinforced concrete piles by means of sacrificial anodes

    Energy Technology Data Exchange (ETDEWEB)

    Bertolini, Luca; Redaelli, Elena [Politecnico di Milano, Dipartimento di Chimica, Materiali e Ingegneria Chimica ' G. Natta' , Via Mancinelli, 7, 20131 Milan (Italy)

    2004-07-01

    The paper deals with the determination of current and potential distribution in reinforced concrete elements partially submerged in seawater aimed at predicting the throwing power of cathodic prevention applied by means of sacrificial anodes. Previous laboratory studies carried out on reinforced concrete columns 15 cm x 15 cm x 120 cm showed that the use of sacrificial anodes placed in the solution at the bottom of the column could provide protection of corroding steel bars in the emerged part of the pile up to about 60 cm from the water level. However, if sacrificial anodes were applied when the concrete was chloride free and steel bars were still passive, even the highest bar, placed at 1 m from the level of water, was protected. This is due to the higher polarizability of passive steel, that makes the throwing power of cathodic prevention higher compared to that of cathodic protection. In order to extend the results obtained on small-scale specimens to elements of higher dimensions, numerical simulations of current and potential distribution were carried out. Two-dimensional models were set up of reinforced concrete piles containing steel bars at different heights protected with sacrificial anodes placed in the water in which they were partially submerged. Boundary conditions describing the electrochemical behaviour of bars were obtained from polarisation curves measured on the previously mentioned columns. Values of concrete conductivity at different heights from the water level were also obtained from those tests. Several cases were considered, representative of conditions differing in electrochemical behaviour of steel bars, dimensions of element, position of sacrificial anodes. The paper discusses the results obtained from the models and compares them in terms of the throwing power that can be reached by using sacrificial anodes immersed in the seawater to protect reinforcing steel bars in the emerged part of a pile. (authors)

  19. Water Desalination with Wires

    NARCIS (Netherlands)

    Porada, S.; Sales, B.B.; Hamelers, H.V.M.; Biesheuvel, P.M.

    2012-01-01

    We show the significant potential of water desalination using a novel capacitive wire-based technology in which anode/cathode wire pairs are constructed from coating a thin porous carbon electrode layer on top of electrically conducting rods (or wires). By alternately dipping an array of electrode

  20. Layered double hydroxide films on nanoporous anodic aluminum oxide/aluminum wire: a new fiber for rapid analysis of Origanum vulgare essential oils.

    Science.gov (United States)

    Piryaei, Marzieh

    2018-01-01

    Zn/Al layered double hydroxide (LDH) films were fabricated in situ with anodic aluminium oxide aluminium as both the substrate and the sole aluminium source by means of urea hydrolysis. Headspace solid phase microextraction using LDH fibre in combination with capillary GC-MS was utilised as a monitoring technique for the collection and detection of the volatile compounds of Origanum vulgare. Experimental parameters, including the sample weight, microwave power, extraction time and humidity effect, were examined and optimised.

  1. Plasma synthesis of titanium nitride, carbide and carbonitride nanoparticles by means of reactive anodic arc evaporation from solid titanium

    International Nuclear Information System (INIS)

    Kiesler, D.; Bastuck, T.; Theissmann, R.; Kruis, F. E.

    2015-01-01

    Plasma methods using the direct evaporation of a transition metal are well suited for the cost-efficient production of ceramic nanoparticles. In this paper, we report on the development of a simple setup for the production of titanium-ceramics by reactive anodic arc evaporation and the characterization of the aerosol as well as the nanopowder. It is the first report on TiC X N 1 − X synthesis in a simple anodic arc plasma. By means of extensive variations of the gas composition, it is shown that the composition of the particles can be tuned from titanium nitride over a titanium carbonitride phase (TiC X N 1 − X ) to titanium carbide as proven by XRD data. The composition of the plasma gas especially a very low concentration of hydrocarbons around 0.2 % of the total plasma gas is crucial to tune the composition and to avoid the formation of free carbon. Examination of the particles by HR-TEM shows that the material consists mostly of cubic single crystalline particles with mean sizes between 8 and 27 nm

  2. Assessment of Mean Glandular Dose in Mammography System with Different Anode-Filter Combinations Using MCNP Code.

    Science.gov (United States)

    Gholamkar, Lida; Mowlavi, Ali Asghar; Sadeghi, Mahdi; Athari, Mitra

    2016-10-01

    X-ray mammography is one of the general methods for early detection of breast cancer. Since glandular tissue in the breast is sensitive to radiation and it increases the risk of cancer, the given dose to the patient is very important in mammography. The aim of this study was to determine the average absorbed dose of X-ray radiation in the glandular tissue of the breast during mammography examinations as well as investigating factors that influence the mean glandular dose (MGD). One of the precise methods for determination of MGD absorbed by the breast is Monte Carlo simulation method which is widely used to assess the dose. We studied some different X-ray sources and exposure factors that affect the MGD. "Midi-future" digital mammography system with amorphous-selenium detector was simulated using the Monte Carlo N-particle extended (MCNPX) code. Different anode/filter combinations such as tungsten/silver (W/Ag), tungsten/rhodium (W/Rh), and rhodium/aluminium (Rh/Al) were simulated in this study. The voltage of X-ray tube ranged from 24 kV to 32 kV with 2 kV intervals and the breast phantom thickness ranged from 3 to 8 cm, and glandular fraction g varied from 10% to 100%. MGD was measured for different anode/filter combinations and the effects of changing tube voltage, phantom thickness, combination and glandular breast tissue on MGD were studied. As glandular g and X-ray tube voltage increased, the breast dose increased too, and the increase of breast phantom thickness led to the decrease of MGD. The obtained results for MGD were consistent with the result of Boone et al. that was previously reported. By comparing the results, we saw that W/Rh anode/filter combination is the best choice in breast mammography imaging because of the lowest delivered dose in comparison with W/Ag and Rh/Al. Moreover, breast thickness and g value have significant effects on MGD.

  3. A STUDY ABOUT CELL ACTIVITY ON ANODIZED Ti-6Al-4V BY MEANS OF PULSED CURRENT

    Directory of Open Access Journals (Sweden)

    LUANA M. R. VASCONCELLOS

    2017-05-01

    Full Text Available Titanium and some of its alloys exhibit excellent anti-corrosive and biocompatibility properties due to rapid formation of a passive film on their surfaces when exposed to the atmosphere. However, such materials presentpoor osteoindutive properties. Surfaces modified via anodization are being proposed in this study to promote a chemical interaction between implants and bone cells. For this purpose, samples in Ti-6Al-4V alloy discs were anodized in a phosphoric acid solution using pulsed current for being applied in orthopaedic implants. The pulsed current is based on duty cycle (DC, which was supplied by a square wave pulse rectifier at 100 Hz and maximum tension of 30 V. A scanning electron microscope was used to obtain images of the anodized surfaces, thus revealing the presence of uniformly distributed pores over the entire surface, measuring approximately 2 m in diameter. Osteogenic cells grown on the surface of the control and anodized samples were assayed for cytotoxicity and mineralized matrix formation. The anodized surfaces presented a higher rate of viable cells after 10 days, as well as a higher amount of nodules (p = 0.05. In conclusion, these results suggest that the nanotopography promoted by anodization using pulsed current induces beneficial modulatory effects on osteoblastic cells.

  4. Radiological assessment of the position of the tibial tuberosity by means of a marking wire in knees with patellofemoral arthritis

    Energy Technology Data Exchange (ETDEWEB)

    Nagamine, R.; Miura, H.; Urabe, K.; Matsuda, S.; Chen, W.J.; Matsunobu, T.; Iwamoto, Y. [Department of Orthopaedic Surgery, Faculty of Medicine, Kyushu University, Fukuoka (Japan)

    1999-01-01

    Objective. To assess the usefulness of a new axial radiographic technique in knees with patellofemoral arthritis (PF-OA). Design and patients. After a marking wire had been attached to the skin on the tibial tuberosity so that the wire matched the width of the patellar tendon, an axial radiograph was taken at 30 of flexion in 16 normal knees and 14 PF-OA knees in which computed tomographic analysis had revealed a laterally positioned tibial tuberosity at 30 of flexion. The distance of the marking wire from the lateral condyle and from the patellar groove was compared between the two groups. Results. The marking wire was located significantly laterally in PF-OA knees compared with normal knees. Conclusion. An axial radiograph with a marking wire on the tibial tuberosity is useful for assessing the position of the tibial tuberosity in PF-OA knees. (orig.) With 8 figs., 1 tab., 6 refs.

  5. Radiological assessment of the position of the tibial tuberosity by means of a marking wire in knees with patellofemoral arthritis

    International Nuclear Information System (INIS)

    Nagamine, R.; Miura, H.; Urabe, K.; Matsuda, S.; Chen, W.J.; Matsunobu, T.; Iwamoto, Y.

    1999-01-01

    Objective. To assess the usefulness of a new axial radiographic technique in knees with patellofemoral arthritis (PF-OA). Design and patients. After a marking wire had been attached to the skin on the tibial tuberosity so that the wire matched the width of the patellar tendon, an axial radiograph was taken at 30 of flexion in 16 normal knees and 14 PF-OA knees in which computed tomographic analysis had revealed a laterally positioned tibial tuberosity at 30 of flexion. The distance of the marking wire from the lateral condyle and from the patellar groove was compared between the two groups. Results. The marking wire was located significantly laterally in PF-OA knees compared with normal knees. Conclusion. An axial radiograph with a marking wire on the tibial tuberosity is useful for assessing the position of the tibial tuberosity in PF-OA knees. (orig.)

  6. The Micro Wire Detector

    International Nuclear Information System (INIS)

    Adeva, B.; Gomez, F.; Pazos, A.; Pfau, R.; Plo, M.; Rodriguez, J.M.; Vazquez, P.; Labbe, J.C.

    1999-01-01

    We present the performance of a new proportional gas detector. Its geometry consists of a cathode plane with 70x70 μm 2 apertures, crossed by 25 μm anode strips to which it is attached by 50 μm kapton spacers. In the region where the avalanche takes place, the anode strips are suspended in the gas mixture as in a standard wire chamber. This detector exhibits high rate capability and large gains, introducing very little material. (author)

  7. Engineering of the energetic structure of the anode of organic photovoltaic devices utilizing hot-wire deposited transition metal oxide layers

    Energy Technology Data Exchange (ETDEWEB)

    Vasilopoulou, M., E-mail: mariva@imel.demokritos.gr [Institute of Nanoscience and Nanotechnology, Department of Microelectronics, National Center for Scientific Research Demokritos, POB 60228, 15310 Agia Paraskevi, Attiki (Greece); Stathopoulos, N.A.; Savaidis, S.A. [Department of Electronics, Technological and Educational Institute (TEI) of Piraeus, Petrou Ralli & Thivon, 12244 Aegaleo (Greece); Kostis, I. [Institute of Nanoscience and Nanotechnology, Department of Microelectronics, National Center for Scientific Research Demokritos, POB 60228, 15310 Agia Paraskevi, Attiki (Greece); Department of Electronics, Technological and Educational Institute (TEI) of Piraeus, Petrou Ralli & Thivon, 12244 Aegaleo (Greece); Papadimitropoulos, G. [Institute of Nanoscience and Nanotechnology, Department of Microelectronics, National Center for Scientific Research Demokritos, POB 60228, 15310 Agia Paraskevi, Attiki (Greece); Davazoglou, D., E-mail: d.davazoglou@imel.demokritos.gr [Institute of Nanoscience and Nanotechnology, Department of Microelectronics, National Center for Scientific Research Demokritos, POB 60228, 15310 Agia Paraskevi, Attiki (Greece)

    2015-09-30

    Graphical abstract: In this work we perform successful engineering of the anode of organic photovoltaics based on poly(3-hexylthiophene):[6,6]-phenyl butyric acid methyl ester blends by using metal oxide transport layers exhibiting shallow gap states which act as a barrier-free path for hole transport toward the anode. - Highlights: • Interface engineering of the anode. • Organic photovoltaics (OPVs). • Shallow gap states. • Barrier-free hole transport. • Design rules for interface engineering in OPVs. - Abstract: In this work we use hydrogen deposited molybdenum and tungsten oxides (chemically described as H:MO{sub x}x ≤ 3 where M = Mo or W) to control the energetics at the anode of bulk heterojunction (BHJ) organic photovoltaics (OPVs) based on poly(3-hexylthiophene):[6,6]-phenyl butyric acid methyl ester (P3HT:PC{sub 71}BM) blends. Significantly improved current densities and open circuit voltages were achieved as a result of improved hole transport from the P3HT highest occupied molecular orbital (HOMO) toward indium tin oxide (ITO) anode. This was attributed to the formation of shallow gap states in these oxides which are located just below the Fermi level and above the polymer HOMO and thus may act as a barrier-free path for the extraction of holes. Consequently, these states can be used for controlling the energetic structure of the anode of OPVs. By using ultraviolet photoelectron spectroscopy it was found that dependent on the deposition conditions these gap states and work function of the metal oxides may be tailored to contribute to the precise alignment of the HOMO of the organic semiconductor (OSC) with the Fermi level of the anode electrode resulting in further enhancement of the device performance.

  8. Corrosion resistance of premodeled wires made of stainless steel used for heart electrotherapy leaders

    International Nuclear Information System (INIS)

    Przondziono, J; Szatka, W; Walke, W; Młynarski, R

    2012-01-01

    The purpose of the study is to evaluate resistance to electrochemical corrosion of wire made of X10CrNi18-8 stainless steel designed for use in cardiology treatment. The influence of strain formed in the premodeling process and methods of wire surface preparation to corrosive resistance in artificial plasma solution were analysed. Wire corrosion tests were carried out in the solution of artificial plasma. Resistance to electrochemical corrosion was evaluated on the ground of recorded curves of anodic polarization by means of potentiodynamic method. Potentiodynamic tests carried out enabled to determine how the resistance to pitting corrosion of wire changes, depending on strain formed in the premodeling process as well as on the method of wire surface preparation. For evaluation of phenomena occurring on the surface of tested steel, electrochemical impedance spectroscopy (EIS) was applied. Deterioration of corrosive properties of wire along with the increase in the formed strain hardening was observed.

  9. Post-heat treatment of arc-sprayed coating prepared by the wires combination of Mg-cathode and Al-anode to form protective intermetallic layers

    International Nuclear Information System (INIS)

    Xu Rongzheng; Song Gang

    2011-01-01

    A Mg-Al intermetallic compounds coating was prepared on the surface of Mg-steel lap joint by arc-sprayed Al-Mg composite coating (Mg-cathode and Al-anode) and its post-heat treatment (PHT). The effect of PHT temperature on the phase transition, microstructure and mechanical properties of the coating was investigated by X-ray diffraction, scanning electron microscope, energy dispersive X-ray spectroscopy, optical microscope and microhardness test. The result shows that the intermetallic compounds layer that is mainly composed of Al 3 Mg 2 and Mg 17 Al 12 is formed by the self-diffusion reaction of Mg and Al splats in the coating after PHT for 4 h at 430 deg. C.

  10. The Micro Wire Detector

    Energy Technology Data Exchange (ETDEWEB)

    Adeva, B.; Gomez, F.; Pazos, A.; Pfau, R.; Plo, M. E-mail: maximo.plo@cern.ch; Rodriguez, J.M.; Vazquez, P.; Labbe, J.C

    1999-10-11

    We present the performance of a new proportional gas detector. Its geometry consists of a cathode plane with 70x70 {mu}m{sup 2} apertures, crossed by 25 {mu}m anode strips to which it is attached by 50 {mu}m kapton spacers. In the region where the avalanche takes place, the anode strips are suspended in the gas mixture as in a standard wire chamber. This detector exhibits high rate capability and large gains, introducing very little material. (author)

  11. Thermal poling of multi-wire array optical fiber

    DEFF Research Database (Denmark)

    Huang, Lin; An, Honglin; Hayashi, Juliano G.

    2018-01-01

    We demonstrate in this paper thermal poling of multi-wire array fibers, which extends poling of fibers with two anodes to similar to 50 and similar to 500 wire array anodes. The second harmonic microscopy observations show that second order nonlinearity (SON) layers are developed surrounding all...... the rings of wires in the similar to 50 anode array fiber with poling of 1.8kV, 250 degrees C and 30min duration, and the outer rings of the similar to 500 anode array fiber at lower poling temperature. Our simulations based on a two-dimensional charge dynamics model confirm this can be explained...

  12. Multi-anode deep well radiation detector

    International Nuclear Information System (INIS)

    Rogers, A.H.; Sullivan, K.J.; Mansfield, G.R.

    1984-01-01

    An inner cylindrical cathode and outer cylindrical cathode are concentrically positioned about a vertical center axis. Vertical anode electrodes extend parallel to the center axis and are symmetrically arranged around the inter-cylinder space between the cathodes. The ends of the anode wires are supported by a pair of insulator rings and mounted near the top and bottom of the cathode cylinders. A collection voltage applied to each anode wire for establishing an inward radial E field to the inner cathode cylinder and an outward radial E field to the outer cathode cylinder. The anode-cathode assembly is mounted within a housing containing a conversion gas. A radioactive sample is inserted into the inner cathode which functions as a tubular, deep well radiation window between the sample environment and the conversion gas environment. A portion of the gamma radiations passing through the inter-cylinder region interact with the conversion gas to produce free electrons which are accelerated by the E fields and collected on the anode wires. The extremely small diameter of the anode wires intensifies the electric fields proximate each wire causing avalanche multiplication of the free electrons resulting in a detectable charge pulse. (author)

  13. Electron interaction and spin effects in quantum wires, quantum dots and quantum point contacts: a first-principles mean-field approach

    International Nuclear Information System (INIS)

    Zozoulenko, I V; Ihnatsenka, S

    2008-01-01

    We have developed a mean-field first-principles approach for studying electronic and transport properties of low dimensional lateral structures in the integer quantum Hall regime. The electron interactions and spin effects are included within the spin density functional theory in the local density approximation where the conductance, the density, the effective potentials and the band structure are calculated on the basis of the Green's function technique. In this paper we present a systematic review of the major results obtained on the energetics, spin polarization, effective g factor, magnetosubband and edge state structure of split-gate and cleaved-edge overgrown quantum wires as well as on the conductance of quantum point contacts (QPCs) and open quantum dots. In particular, we discuss how the spin-resolved subband structure, the current densities, the confining potentials, as well as the spin polarization of the electron and current densities in quantum wires and antidots evolve when an applied magnetic field varies. We also discuss the role of the electron interaction and spin effects in the conductance of open systems focusing our attention on the 0.7 conductance anomaly in the QPCs. Special emphasis is given to the effect of the electron interaction on the conductance oscillations and their statistics in open quantum dots as well as to interpretation of the related experiments on the ultralow temperature saturation of the coherence time in open dots

  14. Validation of a non-uniform meshing algorithm for the 3D-FDTD method by means of a two-wire crosstalk experimental set-up

    Directory of Open Access Journals (Sweden)

    Raúl Esteban Jiménez-Mejía

    2015-06-01

    Full Text Available This paper presents an algorithm used to automatically mesh a 3D computational domain in order to solve electromagnetic interaction scenarios by means of the Finite-Difference Time-Domain -FDTD-  Method. The proposed algorithm has been formulated in a general mathematical form, where convenient spacing functions can be defined for the problem space discretization, allowing the inclusion of small sized objects in the FDTD method and the calculation of detailed variations of the electromagnetic field at specified regions of the computation domain. The results obtained by using the FDTD method with the proposed algorithm have been contrasted not only with a typical uniform mesh algorithm, but also with experimental measurements for a two-wire crosstalk set-up, leading to excellent agreement between theoretical and experimental waveforms. A discussion about the advantages of the non-uniform mesh over the uniform one is also presented.

  15. Corrosion fatigue behaviors of steel wires used in coalmine

    International Nuclear Information System (INIS)

    Wang, Songquan; Zhang, Dekun; Chen, Kai; Xu, Linmin; Ge, Shirong

    2014-01-01

    Highlights: • The CF life of steel wire in acid solution is the shortest. • The fatigue source zone showed dimple morphology when coupled with anode potential. • The area of dimple increases with the increase of the applied anode potential. • The strong cathode potential cannot reduce the CF life of the smooth steel wire. • The hydrogen impacted mainly on the plastic deformation of the wire surface. - Abstract: The corrosion fatigue (CF) behaviors of the mining steel wire in different solutions at different applied polarization potentials were investigated in this paper. The surfaces and fracture morphologies of the steel wire at different applied potentials were observed by scanning electron microscope (SEM). The results showed that the CF life of steel wire in acid solution is the shortest. Moreover, the strong anodic polarization potential greatly reduced the CF life of steel wire, while the strong cathode potential did not reduce the CF life. For the smooth steel wire, the hydrogen impacted mainly on the plastic deformation of the wire surface. There was obvious dimple in the fatigue source zone of the wire when coupled with anode potential, and the area of the dimple increased with the increase of the applied anode potential. Conversely, the fatigue source zone of the fracture was relatively smooth at cathode polarization potential, which indicated that the crack propagation followed the mechanism of hydrogen induced cracking

  16. Wire Chamber

    CERN Multimedia

    Magnetoscriptive readout wire chamber. Multi-wire detectors contain layers of positively and negatively charged wires enclosed in a chamber full of gas. A charged particle passing through the chamber knocks negatively charged electrons out of atoms in the gas, leaving behind positive ions. The electrons are pulled towards the positively charged wires. They collide with other atoms on the way, producing an avalanche of electrons and ions. The movement of these electrons and ions induces an electric pulse in the wires which is collected by fast electronics. The size of the pulse is proportional to the energy loss of the original particle.

  17. Wire chamber

    CERN Multimedia

    1967-01-01

    Magnetoscriptive readout wire chamber.Multi-wire detectors contain layers of positively and negatively charged wires enclosed in a chamber full of gas. A charged particle passing through the chamber knocks negatively charged electrons out of atoms in the gas, leaving behind positive ions. The electrons are pulled towards the positively charged wires. They collide with other atoms on the way, producing an avalanche of electrons and ions. The movement of these electrons and ions induces an electric pulse in the wires which is collected by fast electronics. The size of the pulse is proportional to the energy loss of the original particle.

  18. wire chamber

    CERN Multimedia

    Proportional multi-wire chamber. Multi-wire detectors contain layers of positively and negatively charged wires enclosed in a chamber full of gas. A charged particle passing through the chamber knocks negatively charged electrons out of atoms in the gas, leaving behind positive ions. The electrons are pulled towards the positively charged wires. They collide with other atoms on the way, producing an avalanche of electrons and ions. The movement of these electrons and ions induces an electric pulse in the wires which is collected by fast electronics. The size of the pulse is proportional to the energy loss of the original particle. Proportional wire chambers allow a much quicker reading than the optical or magnetoscriptive readout wire chambers.

  19. Anodic oxidation

    CERN Document Server

    Ross, Sidney D; Rudd, Eric J; Blomquist, Alfred T; Wasserman, Harry H

    2013-01-01

    Anodic Oxidation covers the application of the concept, principles, and methods of electrochemistry to organic reactions. This book is composed of two parts encompassing 12 chapters that consider the mechanism of anodic oxidation. Part I surveys the theory and methods of electrochemistry as applied to organic reactions. These parts also present the mathematical equations to describe the kinetics of electrode reactions using both polarographic and steady-state conditions. Part II examines the anodic oxidation of organic substrates by the functional group initially attacked. This part particular

  20. Determination of trace amounts of indium in some sediments by means of coprecipitation with zirconium hydroxide and differential pulse anodic stripping voltammetry

    International Nuclear Information System (INIS)

    Yoshimura, Wataru; Uzawa, Atushi; Hong Luxin.

    1994-01-01

    Indium in some sediments was determined by means of coprecipitation and differential pulse anodic stripping voltammetry. The analytical procedure was as follows. Fifty milliliters of distilled water is added to 10 ml of sample solution containing 0.04 g of sediment. Then, constant amounts of indium standard solution and 1 ml of zirconium oxychloride solution are added and the pH adjusted to 8.8 with ammonia water (1:2). The precipitate is separated by filtration and then dissolved in 25 ml of 4 M hydrochloric acid. After 1 ml of 5% KCNS solution is added, this solution is diluted to 50 ml with distilled water. A portion of this solution is employed for the determination of indium. After bubbling nitrogen gas through the sample solution for 100 s it was pre-electrolyzed for 100 s. The potential was scanned from -0.9 V to -0.3 Vυs. SCE for dissolution of indium ion. Indium ion was determined from the peak current of the voltammogram. The results are as follows: (1) Zirconium hydroxide was the most effective collector of indium when the pH was adjusted to 8.8 with ammonia water (1:2). (2) Iron (III) and cadmium ions were found to interfere with the determination of indium. (3) The analytical procedure took about 90 min and 0.01 ppm of indium in sample solution could be determined. (4) This method is applicable to the determination of indium in river bottom and sea floor sediment. (author)

  1. Fabrication of mesoscopic floating Si wires by introducing dislocations

    International Nuclear Information System (INIS)

    Motohashi, Mitsuya; Shimizu, Kazuya; Niwa, Masaaki; Suzuki, Toshiaki

    2014-01-01

    We fabricated a mesoscopic Si wire by introducing dislocations in a silicon wafer before HF anodization. The dislocations formed along the (111) crystal plane. The outline of the dislocation line was an inverted triangle. The resulting wire floated on a bridge girder and had a hybrid structure consisting of a porous layer and crystalline Si. The cross section of the wire had an inverted triangle shape. The wire formation mechanism is discussed in terms of carrier transport, crystal structure, and dislocation formation during anodization. (paper)

  2. Fabrication of mesoscopic floating Si wires by introducing dislocations

    Science.gov (United States)

    Motohashi, Mitsuya; Shimizu, Kazuya; Suzuki, Toshiaki; Niwa, Masaaki

    2014-12-01

    We fabricated a mesoscopic Si wire by introducing dislocations in a silicon wafer before HF anodization. The dislocations formed along the (111) crystal plane. The outline of the dislocation line was an inverted triangle. The resulting wire floated on a bridge girder and had a hybrid structure consisting of a porous layer and crystalline Si. The cross section of the wire had an inverted triangle shape. The wire formation mechanism is discussed in terms of carrier transport, crystal structure, and dislocation formation during anodization.

  3. wire chamber

    CERN Multimedia

    1985-01-01

    Multi-wire detectors contain layers of positively and negatively charged wires enclosed in a chamber full of gas. A charged particle passing through the chamber knocks negatively charged electrons out of atoms in the gas, leaving behind positive ions. The electrons are pulled towards the positively charged wires. They collide with other atoms on the way, producing an avalanche of electrons and ions. The movement of these electrons and ions induces an electric pulse in the wires which is collected by fast electronics. The size of the pulse is proportional to the energy loss of the original particle.

  4. Wire chamber

    CERN Multimedia

    Multi-wire detectors contain layers of positively and negatively charged wires enclosed in a chamber full of gas. A charged particle passing through the chamber knocks negatively charged electrons out of atoms in the gas, leaving behind positive ions. The electrons are pulled towards the positively charged wires. They collide with other atoms on the way, producing an avalanche of electrons and ions. The movement of these electrons and ions induces an electric pulse in the wires which is collected by fast electronics. The size of the pulse is proportional to the energy loss of the original particle.

  5. wire chamber

    CERN Multimedia

    Multi-wire detectors contain layers of positively and negatively charged wires enclosed in a chamber full of gas. A charged particle passing through the chamber knocks negatively charged electrons out of atoms in the gas, leaving behind positive ions. The electrons are pulled towards the positively charged wires. They collide with other atoms on the way, producing an avalanche of electrons and ions. The movement of these electrons and ions induces an electric pulse in the wires which is collected by fast electronics. The size of the pulse is proportional to the energy loss of the original particle.

  6. wire chamber

    CERN Multimedia

    Was used in ISR (Intersecting Storage Ring) split field magnet experiment. Multi-wire detectors contain layers of positively and negatively charged wires enclosed in a chamber full of gas. A charged particle passing through the chamber knocks negatively charged electrons out of atoms in the gas, leaving behind positive ions. The electrons are pulled towards the positively charged wires. They collide with other atoms on the way, producing an avalanche of electrons and ions. The movement of these electrons and ions induces an electric pulse in the wires which is collected by fast electronics. The size of the pulse is proportional to the energy loss of the original particle.

  7. RATIONALIZATION OF THE SCHEMA OF SACRIFICIAL ANODES USING FROM THE STANDPOINT OF MATERIAL AND POWER RESOURCES ECONOMY

    Directory of Open Access Journals (Sweden)

    S. E. Chikilev

    2008-01-01

    Full Text Available The calculations, allowing to optimize using of sacrificial copper anodes in the process of wire brassing, and also the results of experimental matching of material for insoluble anodes are given.

  8. 80 kV electrostatic wire septum for AmPS

    International Nuclear Information System (INIS)

    Linden, A. van der; Bijleveld, J.H.M.; Rookhuizen, H.B.; Bruinsma, P.J.T.; Heine, E.; Lassing, P.; Prins, E.

    1992-01-01

    The Amsterdam Pulse Stretcher (AmPS) ring aims at a 100% duty cycle operation by means of slow extraction of injected electron beam pulses of 2.1 μs. In the extraction process of the AmPS, the extracted beam is intercepted from the circulating beam by the 1 m long electrostatic wire septum. For a bending angle of 4.4 mrad the maximum anode voltage is 80 kV. Care has been given to the electric field distribution at the entrance and exit of the septum and to the insulators, required to support the anode. Prototype tests have been successful up to an anode voltage of 120 kV. (R.P.) 9 refs.; 5 figs

  9. Meaning

    Science.gov (United States)

    Harteveld, Casper

    The second world to be considered concerns Meaning. In contrast to Reality and Play, this world relates to the people, disciplines, and domains that are focused on creating a certain value. For example, if this value is about providing students knowledge about physics, it involves teachers, the learning sciences, and the domains education and physics. This level goes into the aspects and criteria that designers need to take into account from this perspective. The first aspect seems obvious when we talk of “games with a serious purpose.” They have a purpose and this needs to be elaborated on, for example in terms of what “learning objectives” it attempts to achieve. The subsequent aspect is not about what is being pursued but how. To attain a value, designers have to think about a strategy that they employ. In my case this concerned looking at the learning paradigms that have come into existence in the past century and see what they have to tell us about learning. This way, their principles can be translated into a game environment. This translation involves making the strategy concrete. Or, in other words, operationalizing the plan. This is the third aspect. In this level, I will further specifically explain how I derived requirements from each of the learning paradigms, like reflection and exploration, and how they can possibly be related to games. The fourth and final aspect is the context in which the game is going to be used. It matters who uses the game and when, where, and how the game is going to be used. When designers have looked at these aspects, they have developed a “value proposal” and the worth of it may be judged by criteria, like motivation, relevance, and transfer. But before I get to this, I first go into how we human beings are meaning creators and what role assumptions, knowledge, and ambiguity have in this. I will illustrate this with some silly jokes about doctors and Mickey Mouse, and with an illusion.

  10. PRODUCTION OF ELECTROTECHNICAL WIRE OF SCRAP AND COPPER WASTES

    Directory of Open Access Journals (Sweden)

    I. P. Volchok

    2006-01-01

    Full Text Available Chemical composition, structure and properties of copper upon base steps of wire production technology (melting of anode copper with using of scrap and waste, electrolitical refining, producing of rod by continuous casting, manufacture of electrotechnical wire and fibres is described.

  11. Physical-mechanical and electrical properties of aluminium anodic films

    Energy Technology Data Exchange (ETDEWEB)

    Dima, L. [Research and Design Inst. for Electr. Eng., Bucharest (Romania); Anicai, L. [Research and Design Inst. for Electr. Eng., Bucharest (Romania)

    1995-11-01

    Mechanical, thermal and electrical properties of aluminium anodic films obtained by continuously anodization of Al wires of 4.5 mm diameter and Al sheets of 40 x 0.2 mm (Al min.99.5% purity), using an electrolyte based on oxalic acid, citric acid, boric acid, isopropilic alcohol, were investigated. The thickness of Al anodic oxide layers was 5 {+-} 1{mu}, 10 {+-} 1{mu}, for Al sheet, respectively 5 {+-} 1{mu}, 10 {+-} 1{mu}, 15 {+-} 1{mu}, for Al wire. To establish the influence of anodic film formation on mechanical parameters, measurements of breaking strength and relative elongation at break for anodized and non-anodized Al conductors, were made. In order to electrically characterize the anodic films, the breakdown voltage for different curvature radii of the conductor, between 50 - 12.5 mm, were measured. The influence of the layer thickness, as well as of the cracking during its bending, was established, too. To test the thermal resistance of the insulating anodic films, the Al conductors were subjected to 1 - 5 cyclic thermal shocks at 500 C. After the experimentals were done, it was found that Al anodic films of 5 {+-} 1{mu} may assure a breakdown voltage of minimum 200 V, for coils having a curvature radius greater than 12.5 mm and operating temperatures up to 500 C. From mechanical point of view, anodic oxide film determines a relatively reinforcing of Al conductor, but it doesn`t influence its functional properties. (orig.)

  12. Electroplated superconducting wire

    International Nuclear Information System (INIS)

    Peger, C.H.

    1991-01-01

    A hard chromium solution has been considered the least efficient of all plating solutions. This is not exactly true if the correct plating conditions are used. The accepted efficiency is only 12% but that is only true for the parameters that were used long ago to make the determination. At 12% efficiency it would be impossible to plate Superconductor wire. The world's chromium plating shops have been plating at a .001 (.025u) per hour rate since the turn of the century. Shops in the Cleveland, Ohio area have been limiting their plating rate to .006 (152u) since 1935. A few have used .012 (304u) to .030 (762u) per hour for specialized jobs. These figures would indicate the apparent efficiency of the old 100 to 1 chromium, sulfate solution can be higher than 60%. The industry uses a 3 bus bar tank with wide spacing between anode and cathode. This results in high solution resistance and high heat generation and consequently slow plating rates. The Reversible Rack 2 Bus Bar System uses very close anode to cathode spacings. This results in the high plating rates with improved quality deposits. When first asked to chromium plate pure nickel wire reel to reel in long lengths, companies making reel to reel machines were asked if chromium plating was practical. In every case, the answer was it couldn't be done. Gold, tin and zinc plating was being done reel to reel. Using the same parameters that were used to determine a chromium solution efficiency was only 12%, these other metal solutions check out close to 100%

  13. Pacemaker wires

    International Nuclear Information System (INIS)

    Fransson, S.G.

    1993-01-01

    Evaluation of pacemaker wires were performed by comparing Advanced Multiple Beam Equalization Radiography (AMBER) with conventional chest radiography. The scanning equalization technique of the AMBER unit makes it superior to conventional technique in the depiction of different structures in the mediastinum or in the pleural sinuses. So far motion artifacts have not been considered clinically important. The longer exposure time, however, may impair the assessment of pacemaker wires. The motion artifact described may not only make adequate evaluation impossible but may even give a false impression of a lead fracture. The difference between the two systems was significant. (orig.)

  14. Further contribution to the study of buffer layer on austenitic stainless stell overlays obtained by means of automatic submerged arc welding with electrode-wire

    International Nuclear Information System (INIS)

    Colla, G.

    1988-01-01

    The influence of several buffer layer types on a 308 type austenitic stainless steel surface overlay having a 19-21% chromium and 10-12% nikel content have been analysed. Cladding passes have been deposited on carbon steel test samples by using automatic submerged arc welding process with electrode-wire. The experimental tests have involved buffer layers having seven different chemical compositions and the obtained results are reported and discussed in the paper. The achieved experimetal results allow selecting the most suitable buffer layer to be deposited in order to reach the required cladding performance in service

  15. Experimental investigations on bubble turbulent diffusion in a vertical large diameter pipe by means of wire-mesh sensors and correlation techniques

    International Nuclear Information System (INIS)

    Annalisa Manera; Horst-Michael Prasser; Dirk Lucas

    2005-01-01

    Full text of publication follows: A large number of experiments for water-air vertical flows in a large-diameter pipe has been carried out at the TOPFLOW facility (Forschunszentrum Rossendorf). The experiments cover a wide range of liquid and superficial gas velocity. The test section consists of a vertical pipe of ∼194 mm and 8.5 m long. At a distance of 7.6 m from the air injection, two wire-mesh sensors are installed. The two sensors are mounted at a distance of 63.3 mm from each other. The wire-mesh sensors measure sequences of instantaneous two-dimensional gas-fraction distributions in the cross-section in which they are mounted with a spatial resolution of 3 mm and a frequency of 2500 Hz. The total dimension of the matrix of measuring points for each mesh sensor is 64 x 64. In a central region of the measuring plane, where the void-fraction gradients are small, points of the first wire-mesh sensor are individually cross-correlated in time domain with measuring points belonging to the second wire-mesh sensor. The cross-correlation functions were calculated for pairs of points that are located accurately above each other as well as for points with a lateral distance. The lateral distance was varied from 0 to 48 mm (16 points), which is still within 50% of the pipe radius, i.e. in the region of small void-fraction gradients. The maximum of each of the 17 correlations is selected in order to derive a spatial correlation in the radial direction. The obtained spatial cross-correlations shows a maximum at zero lateral distance and decrease with growing lateral shift. In a region without gradients, the lateral displacement of bubbles is dominated by turbulent diffusion. This gives the opportunity to derive bubble turbulent diffusion coefficients from the spreading of the spatial correlations. At this aim, the spatial correlations have been first corrected to take into account the finite spatial resolution of the sensor and the finite dimension of the bubbles. The

  16. Electrically Conductive Anodized Aluminum Surfaces

    Science.gov (United States)

    Nguyen, Trung Hung

    2006-01-01

    Anodized aluminum components can be treated to make them sufficiently electrically conductive to suppress discharges of static electricity. The treatment was conceived as a means of preventing static electric discharges on exterior satin-anodized aluminum (SAA) surfaces of spacecraft without adversely affecting the thermal-control/optical properties of the SAA and without need to apply electrically conductive paints, which eventually peel off in the harsh environment of outer space. The treatment can also be used to impart electrical conductivity to anodized housings of computers, medical electronic instruments, telephoneexchange equipment, and other terrestrial electronic equipment vulnerable to electrostatic discharge. The electrical resistivity of a typical anodized aluminum surface layer lies between 10(exp 11) and 10(exp 13) Omega-cm. To suppress electrostatic discharge, it is necessary to reduce the electrical resistivity significantly - preferably to anodized surface becomes covered and the pores in the surface filled with a transparent, electrically conductive metal oxide nanocomposite. Filling the pores with the nanocomposite reduces the transverse electrical resistivity and, in the original intended outer-space application, the exterior covering portion of the nanocomposite would afford the requisite electrical contact with the outer-space plasma. The electrical resistivity of the nanocomposite can be tailored to a value between 10(exp 7) and 10(exp 12) Omega-cm. Unlike electrically conductive paint, the nanocomposite becomes an integral part of the anodized aluminum substrate, without need for adhesive bonding material and without risk of subsequent peeling. The electrodeposition process is compatible with commercial anodizing production lines. At present, the electronics industry uses expensive, exotic, electrostaticdischarge- suppressing finishes: examples include silver impregnated anodized, black electroless nickel, black chrome, and black copper. In

  17. Vacuum arc anode phenomena

    International Nuclear Information System (INIS)

    Miller, H.C.

    1976-01-01

    A brief review of anode phenomena in vacuum arcs is presented. Discussed in succession are: the transition of the arc into the anode spot mode; the temperature of the anode before, during and after the anode spot forms; and anode ions. Characteristically the anode spot has a temperature of the order of the atmospheric boiling point of the anode material and is a copious source of vapor and energetic ions. The dominant mechanism controlling the transition of the vacuum arc into the anode spot mode appears to depend upon the electrode geometry, the electrode material, and the current waveform of the particular vacuum arc being considered. Either magnetic constriction in the gap plasma or gross anode melting can trigger the transition; indeed, a combination of the two is a common cause of anode spot formation

  18. The micro gap wire chambers and their electronics

    Energy Technology Data Exchange (ETDEWEB)

    Christophel, E.; Dracos, M. E-mail: marcos.dracos@cern.ch; Strub, R

    2000-11-01

    The Micro Gap Wire Chambers (MGWC) proposed as tracking detectors are very compact wire chambers. They provide a 2D readout by reading the anode wires and the cathode strips. A very important parameter is the anode-cathode coupling which must be as high as possible to have comparable efficiency in both coordinate reconstructions. Using a 50 {mu}m kapton substrate, an anode-cathode coupling higher than 95% was obtained. Short-signal rise time (<2 ns) and width (<20 ns) were also observed. To take advantage of these parameters a fast transimpedance amplifier (F-TRIA99) has been constructed. The first results obtained using this amplifier are also presented.

  19. The micro gap wire chambers and their electronics

    International Nuclear Information System (INIS)

    Christophel, E.; Dracos, M.; Strub, R.

    2000-01-01

    The Micro Gap Wire Chambers (MGWC) proposed as tracking detectors are very compact wire chambers. They provide a 2D readout by reading the anode wires and the cathode strips. A very important parameter is the anode-cathode coupling which must be as high as possible to have comparable efficiency in both coordinate reconstructions. Using a 50 μm kapton substrate, an anode-cathode coupling higher than 95% was obtained. Short-signal rise time (<2 ns) and width (<20 ns) were also observed. To take advantage of these parameters a fast transimpedance amplifier (F-TRIA99) has been constructed. The first results obtained using this amplifier are also presented

  20. Application of irradiated wire

    International Nuclear Information System (INIS)

    Uda, I.; Kozima, K.; Suzuki, S.; Tada, S.; Torisu, S.; Veno, K.

    1984-01-01

    Rubber insulated wires are still useful for internal wiring in motor vehicles and electrical equipment because of flexibility and toughness. Irradiated cross-linked rubber materials have been successfully introduced for use with fusible link wire and helically coiled cord

  1. Noncontextual Wirings

    Science.gov (United States)

    Amaral, Barbara; Cabello, Adán; Cunha, Marcelo Terra; Aolita, Leandro

    2018-03-01

    Contextuality is a fundamental feature of quantum theory necessary for certain models of quantum computation and communication. Serious steps have therefore been taken towards a formal framework for contextuality as an operational resource. However, the main ingredient of a resource theory—a concrete, explicit form of free operations of contextuality—was still missing. Here we provide such a component by introducing noncontextual wirings: a class of contextuality-free operations with a clear operational interpretation and a friendly parametrization. We characterize them completely for general black-box measurement devices with arbitrarily many inputs and outputs. As applications, we show that the relative entropy of contextuality is a contextuality monotone and that maximally contextual boxes that serve as contextuality bits exist for a broad class of scenarios. Our results complete a unified resource-theoretic framework for contextuality and Bell nonlocality.

  2. Advances in aluminum anodizing

    Science.gov (United States)

    Dale, K. H.

    1969-01-01

    White anodize is applied to aluminum alloy surfaces by specific surface preparation, anodizing, pigmentation, and sealing techniques. The development techniques resulted in alloys, which are used in space vehicles, with good reflectance values and excellent corrosive resistance.

  3. Chemistry of radiation damage to wire chambers

    International Nuclear Information System (INIS)

    Wise, J.

    1992-08-01

    Proportional counters are used to study aspects of radiation damage to wire chambers (wire aging). Principles of low-pressure, rf plasma chemistry are used to predict the plasma chemistry in electron avalanches (1 atm, dc). (1) Aging is studied in CF 4 /iC 4 H 10 gas mixtures. Wire deposits are analyzed by Auger electron spectroscopy. An apparent cathode aging process resulting in loss of gain rather than in a self-sustained current is observed in CF 4 -rich gases. A four-part model considering plasma polymerization of the hydrocarbon, etching of wire deposits by CF 4 , acceleration of deposition processes in strongly etching environments, and reactivity of the wire surface is developed to understand anode wire aging in CF 4 /iC 4 H 10 gases. Practical guidelines suggested by the model are discussed. (2) Data are presented to suggest that trace amounts of Freons do not affect aging rates in either dimethyl ether or Ar/C 2 H 6 . Apparent loss of gain is explained by attachment of primary electrons to a continuously increasing concentration of Freon 11 (CCl 3 F) in the counter gas. An increase in the concentration of Freon 11 in dimethyl ether is caused by a distillation process in the gas supply bottle and is a natural consequence of the unequal volatilities of the two compounds

  4. Approval of multiple unit trains by means of the simulation of contact wire/pantograph; Triebfahrzeugzulassung mithilfe der Simulation Fahrdraht/Stromabnehmer

    Energy Technology Data Exchange (ETDEWEB)

    Reichmann, Thomas; Raubold, Johannes [Siemens AG, Erlangen (Germany). Industry Sector, Mobility Div.

    2011-04-15

    The simulation program employed at Siemens adopting the finite element method delivers reliable findings about the dynamic interaction between pantographs and overhead contact lines and was verified by a validation according to EN 50318. In particular, a considerable reduction of measurement expenses for approval procedures of multiple unit trains with a lot of combination options for pantograph arrangements can be achieved by means of these simulations. (orig.)

  5. Field ion emission from tungsten wires covered with organic micro needles of benzyl nitrile

    International Nuclear Information System (INIS)

    Helal, A.I.; Zahran, N.F.

    1986-01-01

    Benzyl nitrile micro needles are grown on the surface of a 10 um tungsten wire. The activated wires are used as field anodes in field ionization source. The activation time using benzyl nitrile as an activator is much shorter than the corresponding time required for benzo nitrile activation. Field ionization mass spectra of benzo- and benzyl-nitriles are measured by the new emitters

  6. Stabilized superconductive wires

    International Nuclear Information System (INIS)

    Randall, R.N.; Wong, J.

    1976-01-01

    A stable, high field, high current conductor is produced by packing multiple, multi-layer rods of a bronze core and niobium or vanadium inner jacket and copper outer jacket into a pure copper tube or other means for forming a pure copper matrix, sealing, working the packed tube to a wire, and by diffusion, heat treating to form a type II superconducting, Beta-Wolfram structure, intermetallic compound as a layer within each of several filaments derived from the rods. The layer of Beta-Wolfram structure compound may be formed in less than 2 h of diffusion heat treatment in a thickness of 0.5--2μ

  7. Time characteristics of a multi-wire 4πβ-counter

    International Nuclear Information System (INIS)

    Miyahara, Hiroshi; Watanabe, Tamaki

    1981-01-01

    In order to examine the time characteristics of a multi-wire 4πβ-counter for the 4πβ-γ coincidence system, measurement was made on the time distributions of the pulses from the individual anodes. The time distribution obtained by each anode was explained mainly by the distribution of primary ionizing position. A similar time distribution was obtained in the case that the alternating wires cathodes, when the individual anodes had the same effective detection region. Spurious pulses were observed in 90% argon plus 10% methane mixture at the end voltage of the plateau region and not methane gas. (author)

  8. Wire breakage in SLC wire profile monitors

    International Nuclear Information System (INIS)

    Field, C.; McCormick, D.; Raimondi, P.; Ross, M.

    1998-05-01

    Wire scanning beam profile monitors are used at the Stanford Linear Collider (SLC) for emittance preservation control and beam optics optimization. Twenty such scanners have proven most useful for this purpose and have performed a total of 1.5 million scans in the 4 to 6 years since their installation. Most of the essential scanners are equipped with 20 to 40 microm tungsten wires. SLC bunch intensities and sizes often exceed 2 x 10 7 particles/microm 2 (3C/m 2 ). The authors believe that this has caused a number of tungsten wire failures that appear at the ends of the wire, near the wire support points, after a few hundred scans are accumulated. Carbon fibers, also widely used at SLAC, have been substituted in several scanners and have performed well. In this paper, the authors present theories for the wire failure mechanism and techniques learned in reducing the failures

  9. Breakdown dynamics of electrically exploding thin metal wires in vacuum

    Science.gov (United States)

    Sarkisov, G. S.; Caplinger, J.; Parada, F.; Sotnikov, V. I.

    2016-10-01

    Using a two-frame intensified charge coupled device (iCCD) imaging system with a 2 ns exposure time, we observed the dynamics of voltage breakdown and corona generation in experiments of fast ns-time exploding fine Ni and stainless-steel (SS) wires in a vacuum. These experiments show that corona generation along the wire surface is subjected to temporal-spatial inhomogeneity. For both metal wires, we observed an initial generation of a bright cathode spot before the ionization of the entire wire length. This cathode spot does not expand with time. For 25.4 μm diameter Ni and SS wire explosions with positive polarity, breakdown starts from the ground anode and propagates to the high voltage cathode with speeds approaching 3500 km/s or approximately one percent of light speed.

  10. One-dimensional curved wire chamber for powder x-ray crystallography

    International Nuclear Information System (INIS)

    Ortendahl, D.; Perez-Mendez, V.; Stoker, J.; Beyermann, W.

    1978-01-01

    A xenon filled single anode wire chamber with delay line readout has been constructed for use in powder x-ray crystallography using 8 to 20 keV x-rays. The entire chamber including the anode wire and the delay line which forms part of the cathode plane is a section of a circular arc whose center is the powder specimen. The anode wire--38 μm gold-plated tungsten--is suspended in a circular arc by the interaction of a current flowing through it and magnetic field provided by two permanent magnets, above and below the wire, extending along the active length of the chamber. When filled with xenon to 3 atmospheres the chamber has uniform sensitivity in excess of 80% at 8 keV and a spatial resolution better than 0.3 mm

  11. Base Information Transport Infrastructure Wired (BITI Wired)

    Science.gov (United States)

    2016-03-01

    2016 Major Automated Information System Annual Report Base Information Transport Infrastructure Wired (BITI Wired) Defense Acquisition Management...Combat Information Transport System program was restructured into two pre-Major Automated Information System (pre-MAIS) components: Information...Major Automated Information System MAIS OE - MAIS Original Estimate MAR – MAIS Annual Report MDA - Milestone Decision Authority MDD - Materiel

  12. 77 FR 28404 - Galvanized Steel Wire From China and Mexico

    Science.gov (United States)

    2012-05-14

    ...)] Galvanized Steel Wire From China and Mexico Determinations On the basis of the record \\1\\ developed in the... reason of imports from Mexico of galvanized steel wire, provided for in subheadings 7217.20.30, 7217.20... galvanized steel wire from China and Mexico were sold at LTFV within the meaning of 733(b) of the Act (19 U.S...

  13. Wire bonding in microelectronics

    CERN Document Server

    Harman, George G

    2010-01-01

    Wire Bonding in Microelectronics, Third Edition, has been thoroughly revised to help you meet the challenges of today's small-scale and fine-pitch microelectronics. This authoritative guide covers every aspect of designing, manufacturing, and evaluating wire bonds engineered with cutting-edge techniques. In addition to gaining a full grasp of bonding technology, you'll learn how to create reliable bonds at exceedingly high yields, test wire bonds, solve common bonding problems, implement molecular cleaning methods, and much more. Coverage includes: Ultrasonic bonding systems and technologies, including high-frequency systems Bonding wire metallurgy and characteristics, including copper wire Wire bond testing Gold-aluminum intermetallic compounds and other interface reactions Gold and nickel-based bond pad plating materials and problems Cleaning to improve bondability and reliability Mechanical problems in wire bonding High-yield, fine-pitch, specialized-looping, soft-substrate, and extreme-temperature wire bo...

  14. Carbonate fuel cell anodes

    Science.gov (United States)

    Donado, Rafael A.; Hrdina, Kenneth E.; Remick, Robert J.

    1993-01-01

    A molten alkali metal carbonates fuel cell porous anode of lithium ferrite and a metal or metal alloy of nickel, cobalt, nickel/iron, cobalt/iron, nickel/iron/aluminum, cobalt/iron/aluminum and mixtures thereof wherein the total iron content including ferrite and iron of the composite is about 25 to about 80 percent, based upon the total anode, provided aluminum when present is less than about 5 weight percent of the anode. A process for production of the lithium ferrite containing anode by slipcasting.

  15. Time resolved investigations on flow field and quasi wall shear stress of an impingement configuration with pulsating jets by means of high speed PIV and a surface hot wire array

    International Nuclear Information System (INIS)

    Janetzke, Timm; Nitsche, Wolfgang

    2009-01-01

    The effects of jet pulsation on flow field and quasi wall shear stress of an impingement configuration were investigated experimentally. The excitation Strouhal number and amplitude were varied as the most influential parameters. A line-array with three submerged air jets, and a confining plate were used. The flow field analysis by means of time resolved particle image velocimetry shows that the controlled excitation can considerably affect the near-field flow of an impinging jet array. These effects are visualized as organization of the coherent flow structures. Augmentation of the Kelvin-Helmholtz vortices in the jet shear layer depends on the Strouhal number and pulsation magnitude and can be associated with pairing of small scale vortices in the jet. A total maximum of vortex strength was observed when exciting with Sr = 0.82 and coincident high amplitudes. Time resolved interaction between impinging vortices and impingement plate boundary layer due to jet excitation was verified by using an array of 5 μm surface hot wires. Corresponding to the global flow field modification due to periodic jet pulsation, the impact of the vortex rings on the wall boundary layer is highly influenced by the above mentioned excitation parameters and reaches a maximum at Sr = 0.82.

  16. PS wire chamber

    CERN Multimedia

    1970-01-01

    A wire chamber used at CERN's Proton Synchrotron accelerator in the 1970s. Multi-wire detectors contain layers of positively and negatively charged wires enclosed in a chamber full of gas. A charged particle passing through the chamber knocks negatively charged electrons out of atoms in the gas, leaving behind positive ions. The electrons are pulled towards the positively charged wires. They collide with other atoms on the way, producing an avalanche of electrons and ions. The movement of these electrons and ions induces an electric pulse in the wires which is collected by fast electronics. The size of the pulse is proportional to the energy loss of the original particle.

  17. Anodized dental implant surface

    Directory of Open Access Journals (Sweden)

    Sunil Kumar Mishra

    2017-01-01

    Full Text Available Purpose: Anodized implants with moderately rough surface were introduced around 2000. Whether these implants enhanced biologic effect to improve the environment for better osseointegration was unclear. The purpose of this article was to review the literature available on anodized surface in terms of their clinical success rate and bone response in patients till now. Materials and Methods: A broad electronic search of MEDLINE and PubMed databases was performed. A focus was made on peer-reviewed dental journals. Only articles related to anodized implants were included. Both animal and human studies were included. Results: The initial search of articles resulted in 581 articles on anodized implants. The initial screening of titles and abstracts resulted in 112 full-text papers; 40 animal studies, 16 studies on cell adhesion and bacterial adhesion onto anodized surfaced implants, and 47 human studies were included. Nine studies, which do not fulfill the inclusion criteria, were excluded. Conclusions: The long-term studies on anodized surface implants do favor the surface, but in most of the studies, anodized surface is compared with that of machined surface, but not with other surfaces commercially available. Anodized surface in terms of clinical success rate in cases of compromised bone and immediately extracted sockets has shown favorable success.

  18. Anodizing Aluminum with Frills.

    Science.gov (United States)

    Doeltz, Anne E.; And Others

    1983-01-01

    "Anodizing Aluminum" (previously reported in this journal) describes a vivid/relevant laboratory experience for general chemistry students explaining the anodizing of aluminum in sulfuric acid and constrasting it to electroplating. Additions to this procedure and the experiment in which they are used are discussed. Reactions involved are…

  19. Anodized aluminum on LDEF

    Science.gov (United States)

    Golden, Johnny L.

    1993-01-01

    A compilation of reported analyses and results obtained for anodized aluminum flown on the Long Duration Exposure Facility (LDEF) was prepared. Chromic acid, sulfuric acid, and dyed sulfuric acid anodized surfaces were exposed to the space environment. The vast majority of the anodized surface on LDEF was chromic acid anodize because of its selection as a thermal control coating for use on the spacecraft primary structure, trays, tray clamps, and space end thermal covers. Reports indicate that the chromic acid anodize was stable in solar absorptance and thermal emittance, but that contamination effects caused increases in absorptance on surfaces exposed to low atomic oxygen fluences. There were some discrepancies, however, in that some chromic acid anodized specimens exhibited significant increases in absorptance. Sulfuric acid anodized surfaces also appeared stable, although very little surface area was available for evaluation. One type of dyed sulfuric acid anodize was assessed as an optical baffle coating and was observed to have improved infrared absorptance characteristics with exposure on LDEF.

  20. Effect of wire shape on wire array discharge

    Energy Technology Data Exchange (ETDEWEB)

    Shimomura, N.; Tanaka, Y.; Yushita, Y.; Nagata, M. [University of Tokushima, Department of Electrical and Electronic Engineering, Tokushima (Japan); Teramoto, Y.; Katsuki, S.; Akiyama, H. [Kumamoto University, Department of Electrical and Computer Engineering, Kumamoto (Japan)

    2001-09-01

    Although considerable investigations have been reported on z-pinches to achieve nuclear fusion, little attention has been given from the point of view of how a wire array consisting of many parallel wires explodes. Instability existing in the wire array discharge has been shown. In this paper, the effect of wire shape in the wire array on unstable behavior of the wire array discharge is represented by numerical analysis. The claws on the wire formed in installation of wire may cause uniform current distribution on wire array. The effect of error of wire diameter in production is computed by Monte Carlo Method. (author)

  1. Effect of wire shape on wire array discharge

    International Nuclear Information System (INIS)

    Shimomura, N.; Tanaka, Y.; Yushita, Y.; Nagata, M.; Teramoto, Y.; Katsuki, S.; Akiyama, H.

    2001-01-01

    Although considerable investigations have been reported on z-pinches to achieve nuclear fusion, little attention has been given from the point of view of how a wire array consisting of many parallel wires explodes. Instability existing in the wire array discharge has been shown. In this paper, the effect of wire shape in the wire array on unstable behavior of the wire array discharge is represented by numerical analysis. The claws on the wire formed in installation of wire may cause uniform current distribution on wire array. The effect of error of wire diameter in production is computed by Monte Carlo Method. (author)

  2. A tentative opinion of modeling plasma formation in metallic wire Z pinch

    International Nuclear Information System (INIS)

    Ding Ning

    2002-01-01

    Numerous experiments in both single wire and in wire arrays have attracted much attention. For the wire array Z-pinch implosions the plasma formation in the metallic wire Z pinches is a key question. By means of analyzing a number of single-wire and multi-wire experiments, two models to describe the behavior of a wire array Z-pinch in initial phase are suggested. In this phase each wire carries a rising current and behaves independently in a way similar to that found in single wire Z-pinch experiments in which a comparable current in one wire is employed. Based on one- or/and two-dimensional magnetohydrodynamics (MHD) theory, one model is used to simulate the electrical explosion stage of the metallic wire, another is used to simulate the wire-plasma formation stage

  3. Magnetic anisotropy and anisotropic ballistic conductance of thin magnetic wires

    International Nuclear Information System (INIS)

    Sabirianov, R.

    2006-01-01

    The magnetocrystalline anisotropy of thin magnetic wires of iron and cobalt is quite different from the bulk phases. The spin moment of monatomic Fe wire may be as high as 3.4 μ B , while the orbital moment as high as 0.5 μ B . The magnetocrystalline anisotropy energy (MAE) was calculated for wires up to 0.6 nm in diameter starting from monatomic wire and adding consecutive shells for thicker wires. I observe that Fe wires exhibit the change sign with the stress applied along the wire. It means that easy axis may change from the direction along the wire to perpendicular to the wire. We find that ballistic conductance of the wire depends on the direction of the applied magnetic field, i.e. shows anisotropic ballistic magnetoresistance. This effect occurs due to the symmetry dependence of the splitting of degenerate bands in the applied field which changes the number of bands crossing the Fermi level. We find that the ballistic conductance changes with applied stress. Even for thicker wires the ballistic conductance changes by factor 2 on moderate tensile stain in our 5x4 model wire. Thus, the ballistic conductance of magnetic wires changes in the applied field due to the magnetostriction. This effect can be observed as large anisotropic BMR in the experiment

  4. Cylindrical Three-Dimensional Porous Anodic Alumina Networks

    Directory of Open Access Journals (Sweden)

    Pedro M. Resende

    2016-11-01

    Full Text Available The synthesis of a conformal three-dimensional nanostructure based on porous anodic alumina with transversal nanopores on wires is herein presented. The resulting three-dimensional network exhibits the same nanostructure as that obtained on planar geometries, but with a macroscopic cylindrical geometry. The morphological analysis of the nanostructure revealed the effects of the initial defects on the aluminum surface and the mechanical strains on the integrity of the three-dimensional network. The results evidence the feasibility of obtaining 3D porous anodic alumina on non-planar aluminum substrates.

  5. Anode wire in cylindrical cathode tube : destabilizing electrostatic force

    CERN Document Server

    Wertelaers, P

    2017-01-01

    A two-dimensional -- cross-sectional -- discussion suffices. The tube is offset, and the electrostatic potential is found analytically with perturbative methods. Then, the force is established with the Maxwell stress tensor. Alternatively, trying to find the force with energy methods, fails. Finally, finite element tests are performed in order to report on the degree of non-linearity for large offsets.

  6. Study and full simulation of ten different gases on sealed Multi-Wire Proportional Counter (MWPC) by using Garfield and Maxwell codes

    International Nuclear Information System (INIS)

    Shohani, M. Ebrahimi; Golgoun, S.M.; Aminipour, M.; Shabani, A.; Mazoochi, A.R.; Akbari, R. Maghsoudi; Mohammadzadeh, M.; Davarpanah, M.R.; Sardari, D.; Sadeghi, M.; Mofrad, F. Babapour; Jafari, A.

    2016-01-01

    In this research gas sealed Multi-Wire Proportional Counter (MWPC) including blades between anode wires and beta particles of "9"0Sr with 196 keV mean energy were considered. Ten different gases such as Noble gases mixtures with methane and several other pure gases were studied. In this type of detector, by using Garfield and Maxwell codes and for each of the gases, variation of different parameters such as first Townsend, electron attachment coefficients with variable electric field and their effects on pulse height or collected charge and in turn on Signal to Noise Ratio (SNR) were studied. Also the effect of anode voltage and its diameter and the pressure of gas on the pulse height were studied. Results show that Garfield and Maxwell codes can be used to study and improve the design of other gaseous detectors. - Highlights: • Simulation of different gases that is applicable for various gas detectors. • Two simulation codes were used and analyzed their results for beta particle. • Different detector parameters were studied (SNR, first Townsend, electron attachment coefficients, anode voltage and etc.). • The effect of blade in the detector were assessed. • The codes are useful for design and improvement of detector.

  7. Electrically conductive anodized aluminum coatings

    Science.gov (United States)

    Alwitt, Robert S. (Inventor); Liu, Yanming (Inventor)

    2001-01-01

    A process for producing anodized aluminum with enhanced electrical conductivity, comprising anodic oxidation of aluminum alloy substrate, electrolytic deposition of a small amount of metal into the pores of the anodized aluminum, and electrolytic anodic deposition of an electrically conductive oxide, including manganese dioxide, into the pores containing the metal deposit; and the product produced by the process.

  8. Transparency in nanophotonic quantum wires

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Mahi R [Department of Physics and Astronomy, University of Western Ontario, London N6A 3K7 (Canada)

    2009-03-28

    We have studied the quantum optics of a photonic quantum nanowire doped with an ensemble of three-level nanoparticles. The wire is made from two photonic crystals A and B. Crystal A is embedded within crystal B and acts as a photonic nanowire. It is considered that the conduction band of crystal A lies below that of crystal B. As a result, photons are confined in crystal A and are reflected from crystal B. The bound states of the confined photons are calculated using the transfer matrix method. It is found that the number of bound states in the wire depends on the size of the wire and the energy difference between the conduction band extrema of crystals A and B. The absorption coefficient of the system has also been calculated using the Schroedinger equation method. It is considered that the nanoparticles interact with the photonic bound states. Numerical simulations show that when one of the resonance energies lies near the bound state, the system becomes transparent. However, when the resonance energy lies away from the bound state the crystal reverts to an absorbing state. Similarly, when the radius of the dielectric spheres is changed the location of the transparency peak is shifted. This means that the present system can be switched between two states by changing the size of the wire and the transition energy. These findings can be used to make new types of optical devices.

  9. Transparency in nanophotonic quantum wires

    International Nuclear Information System (INIS)

    Singh, Mahi R

    2009-01-01

    We have studied the quantum optics of a photonic quantum nanowire doped with an ensemble of three-level nanoparticles. The wire is made from two photonic crystals A and B. Crystal A is embedded within crystal B and acts as a photonic nanowire. It is considered that the conduction band of crystal A lies below that of crystal B. As a result, photons are confined in crystal A and are reflected from crystal B. The bound states of the confined photons are calculated using the transfer matrix method. It is found that the number of bound states in the wire depends on the size of the wire and the energy difference between the conduction band extrema of crystals A and B. The absorption coefficient of the system has also been calculated using the Schroedinger equation method. It is considered that the nanoparticles interact with the photonic bound states. Numerical simulations show that when one of the resonance energies lies near the bound state, the system becomes transparent. However, when the resonance energy lies away from the bound state the crystal reverts to an absorbing state. Similarly, when the radius of the dielectric spheres is changed the location of the transparency peak is shifted. This means that the present system can be switched between two states by changing the size of the wire and the transition energy. These findings can be used to make new types of optical devices.

  10. Vacuum spark breakdown model based on exploding metal wire phenomena

    International Nuclear Information System (INIS)

    Haaland, J.

    1984-06-01

    Spark source mass spectra (SSMS) indicates that ions are extracted from an expanding and decaying plasma. The intensity distribution shows no dependance on vaporization properties of individual elements which indicates explosive vapour formation. This seems further to be a requirement for bridging a vacuum gap. A model including plasma ejection from a superheated anode spot by a process similar to that of an exploding metal wire is proposed. The appearance of hot plasma points in low inductance vacuum sparks can then be explained as exploding micro particles ejected from a final central anode spot. The phenomenological model is compared with available experimental results from literature, but no extensive quantification is attempted

  11. Evaluation of multi-brush anode systems in microbial fuel cells

    KAUST Repository

    Lanas, Vanessa

    2013-11-01

    The packing density of anodes in microbial fuel cells (MFCs) was examined here using four different graphite fiber brush anode configurations. The impact of anodes on performance was studied in terms of carbon fiber length (brush diameter), the number of brushes connected in parallel, and the wire current collector gage. MFCs with different numbers of brushes (one, three or six) set perpendicular to the cathode all produced similar power densities (1200±40mW/m2) and coulombic efficiencies (60%±5%). Reducing the number of brushes by either disconnecting or removing them reduced power, demonstrating the importance of anode projected area covering the cathode, and therefore the need to match electrode projected areas to maintain high performance. Multi-brush reactors had the same COD removal as single-brush systems (90%). The use of smaller Ti wire gages did not affect power generation, which will enable the use of less metal, reducing material costs. © 2013 Elsevier Ltd.

  12. Welding wires for high-tensile steels

    International Nuclear Information System (INIS)

    Laz'ko, V.E.; Starova, L.L.; Koval'chuk, V.G.; Maksimovich, T.L.; Labzina, I.E.; Yadrov, V.M.

    1993-01-01

    Strength of welded joints in arc welding of high-tensile steels of mean and high thickness by welding wires is equal to approximately 1300 MPa in thermohardened state and approximately 600 MPa without heat treatment. Sv-15Kh2NMTsRA-VI (EhK44-VI) -Sv-30Kh2NMTsRA-VI (EkK47-VI) welding wires are suggested for welding of medium-carbon alloyed steels. These wires provide monotonous growth of ultimate strength of weld metal in 1250-1900 MPa range with increase of C content in heat-treated state

  13. Towards plant wires

    OpenAIRE

    Adamatzky, Andrew

    2014-01-01

    In experimental laboratory studies we evaluate a possibility of making electrical wires from living plants. In scoping experiments we use lettuce seedlings as a prototype model of a plant wire. We approximate an electrical potential transfer function by applying direct current voltage to the lettuce seedlings and recording output voltage. We analyse oscillation frequencies of the output potential and assess noise immunity of the plant wires. Our findings will be used in future designs of self...

  14. Photovoltaic Wire, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This Small Business Innovation Research Phase I project will investigate a new architecture for photovoltaic devices based on nanotechnology: photovoltaic wire. The...

  15. Charpak hemispherical wire chamber

    CERN Multimedia

    1970-01-01

    pieces. Mesures are of the largest one. Multi-wire detectors contain layers of positively and negatively charged wires enclosed in a chamber full of gas. A charged particle passing through the chamber knocks negatively charged electrons out of atoms in the gas, leaving behind positive ions. The electrons are pulled towards the positively charged wires. They collide with other atoms on the way, producing an avalanche of electrons and ions. The movement of these electrons and ions induces an electric pulse in the wires which is collected by fast electronics. The size of the pulse is proportional to the energy loss of the original particle.

  16. Anode Support Creep

    DEFF Research Database (Denmark)

    2015-01-01

    Initial reduction temperature of an SOC is kept higher than the highest intended operation temperature of the SOC to keep the electrolyte under compression by the Anode Support at all temperatures equal to and below the maximum intended operation temperature....

  17. 1998 wire development workshop proceedings

    International Nuclear Information System (INIS)

    1998-04-01

    This report consists of vugraphs of the presentations at the conference. The conference was divided into the following sessions: (1) First Generation Wire Development: Status and Issues; (2) First Generation Wire in Pre-Commercial Prototypes; (3) Second Generation Wire Development: Private Sector Progress and Issues; (4) Second Generation Wire Development: Federal Laboratories; and (5) Fundamental Research Issues for HTS Wire Development

  18. 1998 wire development workshop proceedings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-04-01

    This report consists of vugraphs of the presentations at the conference. The conference was divided into the following sessions: (1) First Generation Wire Development: Status and Issues; (2) First Generation Wire in Pre-Commercial Prototypes; (3) Second Generation Wire Development: Private Sector Progress and Issues; (4) Second Generation Wire Development: Federal Laboratories; and (5) Fundamental Research Issues for HTS Wire Development.

  19. Anodic oxidation of benzoquinone using diamond anode.

    Science.gov (United States)

    Panizza, Marco

    2014-01-01

    The anodic degradation of 1,4-benzoquinone (BQ), one of the most toxic xenobiotic, was investigated by electrochemical oxidation at boron-doped diamond anode. The electrolyses have been performed in a single-compartment flow cell in galvanostatic conditions. The influence of applied current (0.5-2 A), BQ concentration (1-2 g dm(-3)), temperature (20-45 °C) and flow rate (100-300 dm(3) h(-1)) has been studied. BQ decay kinetic, the evolution of its oxidation intermediates and the mineralization of the aqueous solutions were monitored during the electrolysis by high-performance liquid chromatograph (HPLC) and chemical oxygen demand (COD) measurements. The results obtained show that the use of diamond anode leads to total mineralization of BQ in any experimental conditions due to the production of oxidant hydroxyl radicals electrogenerated from water discharge. The decay kinetics of BQ removal follows a pseudo-first-order reaction, and the rate constant increases with rising current density. The COD removal rate was favoured by increasing of applied current, recirculating flow rate and it is almost unaffected by solution temperature.

  20. Wire Array Photovoltaics

    Science.gov (United States)

    Turner-Evans, Dan

    Over the past five years, the cost of solar panels has dropped drastically and, in concert, the number of installed modules has risen exponentially. However, solar electricity is still more than twice as expensive as electricity from a natural gas plant. Fortunately, wire array solar cells have emerged as a promising technology for further lowering the cost of solar. Si wire array solar cells are formed with a unique, low cost growth method and use 100 times less material than conventional Si cells. The wires can be embedded in a transparent, flexible polymer to create a free-standing array that can be rolled up for easy installation in a variety of form factors. Furthermore, by incorporating multijunctions into the wire morphology, higher efficiencies can be achieved while taking advantage of the unique defect relaxation pathways afforded by the 3D wire geometry. The work in this thesis shepherded Si wires from undoped arrays to flexible, functional large area devices and laid the groundwork for multijunction wire array cells. Fabrication techniques were developed to turn intrinsic Si wires into full p-n junctions and the wires were passivated with a-Si:H and a-SiNx:H. Single wire devices yielded open circuit voltages of 600 mV and efficiencies of 9%. The arrays were then embedded in a polymer and contacted with a transparent, flexible, Ni nanoparticle and Ag nanowire top contact. The contact connected >99% of the wires in parallel and yielded flexible, substrate free solar cells featuring hundreds of thousands of wires. Building on the success of the Si wire arrays, GaP was epitaxially grown on the material to create heterostructures for photoelectrochemistry. These cells were limited by low absorption in the GaP due to its indirect bandgap, and poor current collection due to a diffusion length of only 80 nm. However, GaAsP on SiGe offers a superior combination of materials, and wire architectures based on these semiconductors were investigated for multijunction

  1. A comparative study of the corrosion of wire used in urological treatment under sterilization

    Directory of Open Access Journals (Sweden)

    W. Walke

    2012-04-01

    Full Text Available The purpose of the tests was to determine whether and how sterilization process of samples made of AISI 316L stainless steel with different strain impacts their corrosion resistance. Tests were made on steel samples that had been electrochemically polished in order to assure proper surface roughness. In order to evaluate the influence of sterilization on physical and chemical properties of steel surface, tests of corrosion resistance were made by means of potentiodynamical method. The tests were made in alternative solution simulating human urine. Recorded anodic polarization curves created the ground for determination of typical parameters describing pitting corrosion resistance, that enabled to evaluate steel wire corrosion behavior under sterilization conditions.

  2. Commercial and Industrial Wiring.

    Science.gov (United States)

    Kaltwasser, Stan; Flowers, Gary

    This module is the third in a series of three wiring publications, includes additional technical knowledge and applications required for job entry in the commercial and industrial wiring trade. The module contains 15 instructional units that cover the following topics: blueprint reading and load calculations; tools and equipment; service;…

  3. Output pulse-shapes of position-sensitive proportional counters using high resistance single wire

    International Nuclear Information System (INIS)

    Iwatani, Kazuo; Nishiyama, Fumitaka; Hasai, Hiromi

    1980-01-01

    The measurements and model analysis of the output pulse-shapes from a single wire proportional counter (SWPC) which has a high resistance anode are described. The characteristics of the observed pulse-shapes are determined by only one parameter which is a function of anode resistance and load resistance and they are reproduced by a simple model. Using this model, the methods for position read-out are discussed in a systematical way. (author)

  4. Applying hot-wire anemometry to directly measure the water balance in a proton exchange membrane fuel cell for a pre-humidified hydrogen stream

    DEFF Research Database (Denmark)

    Berning, Torsten; Shakhshir, Saher Al

    2016-01-01

    In a recent publication it has been shown how the water balance in a proton exchange membrane fuel cell can be determined employing hot wire anemometry. The hot wire sensor has to be placed into the anode outlet pipe of the operating fuel cell, and the voltage signal E that is read from the senso....... Finally, it will be shown how previously developed dew point diagrams for the anode side in a fuel cell can be corrected for a humidified hydrogen inlet stream....

  5. Slice of LHC dipole wiring

    CERN Multimedia

    Dipole model slice made in 1994 by Ansaldo. The high magnetic fields needed for guiding particles around the Large Hadron Collider (LHC) ring are created by passing 12’500 amps of current through coils of superconducting wiring. At very low temperatures, superconductors have no electrical resistance and therefore no power loss. The LHC is the largest superconducting installation ever built. The magnetic field must also be extremely uniform. This means the current flowing in the coils has to be very precisely controlled. Indeed, nowhere before has such precision been achieved at such high currents. 50’000 tonnes of steel sheets are used to make the magnet yokes that keep the wiring firmly in place. The yokes constitute approximately 80% of the accelerator's weight and, placed side by side, stretch over 20 km!

  6. Josephson junction arrays and superconducting wire networks

    International Nuclear Information System (INIS)

    Lobb, C.J.

    1992-01-01

    Techniques used to fabricate integrated circuits make it possible to construct superconducting networks containing as many as 10 6 wires or Josephson junctions. Such networks undergo phase transitions from resistive high-temperature states to ordered low-resistance low-temperature states. The nature of the phase transition depends strongly on controllable parameters such as the strength of the superconductivity in each wire or junction and the external magnetic field. This paper will review the physics of these phase transitions, starting with the simplest zero-magnetic field case. This leads to a Kosterlitz-Thouless transition when the junctions or wires are weak, and a simple mean-field fransition when the junctions or wires are strong. Rich behavior, resulting from frustration, occurs in the presence of a magnetic field. (orig.)

  7. Lithium batteries, anodes, and methods of anode fabrication

    KAUST Repository

    Li, Lain-Jong; Wu, Feng-Yu; Kumar, Pushpendra; Ming, Jun

    2016-01-01

    Prelithiation of a battery anode carried out using controlled lithium metal vapor deposition. Lithium metal can be avoided in the final battery. This prelithiated electrode is used as potential anode for Li- ion or high energy Li-S battery

  8. The effect of electrostatic and gravity force on offset wire inside tube

    Science.gov (United States)

    Oh, S. H.; Hazineh, D.; Wang, C.

    2018-04-01

    In a straw-tube detector, a wire that is offset with respect to the tube axis experiences a Coulomb force when high voltage is applied between the anode wire and the tube. This force results in a shifting of the wire and straw, in addition to the gravitational sag, and is a function of the tube and wire radius, initial offset, high voltage, tension and length. The presence of such effects is well known, but the precise magnitude of the shift for the anode wires under conditions of detector operation have not been previously documented with measurable confidence. In this work, we provide the first systematic measurements for the wire shift in straw-tube detectors due to gravity and the electrostatic force using an x-ray scanner developed for the Mu2e experiment. The data are compared to the solutions of the differential equations governing the system, and we find a good match between the two. The solutions can predict the final wire and straw positions from the initial positions measured without the high voltage, and the final wire and straw positions can then be used as an input to the track reconstruction software to improve the track position resolution.

  9. Rotating anode X-ray tubes

    International Nuclear Information System (INIS)

    Webley, R.S.

    1981-01-01

    In a rotating anode x-ray tube it is proposed to mount the rotating anode, or means such as a shaft affixed to it, to rotate on bearings in a race the seating for which is cooled by a suitable coolant flow. A suitable bellows arrangement allows the coolant pressure to determine the contact pressure of the seating on the bearings. This allows the thermal impedance to be varied and the bearing wear to be optimised therewith as well as allowing adjustment for wear. The use of two bellows allows the seating section therebetween to move towards the other section as the rollers wear. (author)

  10. Lithium batteries, anodes, and methods of anode fabrication

    KAUST Repository

    Li, Lain-Jong

    2016-12-29

    Prelithiation of a battery anode carried out using controlled lithium metal vapor deposition. Lithium metal can be avoided in the final battery. This prelithiated electrode is used as potential anode for Li- ion or high energy Li-S battery. The prelithiation of lithium metal onto or into the anode reduces hazardous risk, is cost effective, and improves the overall capacity. The battery containing such an anode exhibits remarkably high specific capacity and a long cycle life with excellent reversibility.

  11. Explosion symmetry improvement of polyimide-coated tungsten wire in vacuum on negative discharge facility

    Science.gov (United States)

    Li, Mo; Wu, Jian; Lu, Yihan; Li, Xingwen; Li, Yang; Qiu, Mengtong

    2018-01-01

    Tungsten wire explosion is very asymmetric when fast current rate and insulated coatings are both applied on negative discharge facility using a 24-mm-diameter cathode geometry, which is commonly used on mega-ampere facilities. It is inferred, based on an analytical treatment of the guiding center drift and COMSOL simulations, that the large negative radial electric field causes early voltage breakdown and terminates energy deposition into the wire core on the anode side of the wire. After the anode side is short circuited, the radial electric field along the wire surface on the cathode side will change its polarity and thus leading to additional energy deposition into the wire core. This change causes ˜10 times larger energy deposition and ˜14 times faster explosion velocity in the cathode side than the anode side. In order to reduce this asymmetry, a hollow cylindrical cathode geometry was used to reverse the polarity of radial electric field and was optimized to use on multi-MA facilities. In this case, fully vaporized polyimide-coated tungsten wire with great symmetry improvement was achieved with energy deposition of ˜8.8 eV/atom. The atomic and electronic density distributions for the two different load geometries were obtained by the double-wavelength measurement.

  12. Towards plant wires.

    Science.gov (United States)

    Adamatzky, Andrew

    2014-08-01

    In experimental laboratory studies we evaluate a possibility of making electrical wires from living plants. In scoping experiments we use lettuce seedlings as a prototype model of a plant wire. We approximate an electrical potential transfer function by applying direct current voltage to the lettuce seedlings and recording output voltage. We analyse oscillation frequencies of the output potential and assess noise immunity of the plant wires. Our findings will be used in future designs of self-growing wetware circuits and devices, and integration of plant-based electronic components into future and emergent bio-hybrid systems. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  13. Thermosonic wire bonding of IC devices using palladium wire

    International Nuclear Information System (INIS)

    Shze, J.H.; Poh, M.T.; Tan, R.M.

    1996-01-01

    The feasibility of replacing gold wire by palladium wire in thermosonic wire bonding of CMOS and bipolar devices are studied in terms of the manufacturability, physical, electrical and assembly performance. The results that palladium wire is a viable option for bonding the bipolar devices but not the CMOS devices

  14. The fabrication techniques of Z-pinch targets. Techniques of fabricating self-adapted Z-pinch wire-arrays

    International Nuclear Information System (INIS)

    Qiu Longhui; Wei Yun; Liu Debin; Sun Zuoke; Yuan Yuping

    2002-01-01

    In order to fabricate wire arrays for use in the Z-pinch physical experiments, the fabrication techniques are investigated as follow: Thickness of about 1-1.5 μm of gold is electroplated on the surface of ultra-fine tungsten wires. Fibers of deuterated-polystyrene (DPS) with diameters from 30 to 100 microns are made from molten DPS. And two kinds of planar wire-arrays and four types of annular wire-arrays are designed, which are able to adapt to the variation of the distance between the cathode and anode inside the target chamber. Furthermore, wire-arrays with diameters form 5-24 μm are fabricated with tungsten wires, respectively. The on-site test shows that the wire-arrays can self-adapt to the distance changes perfectly

  15. Wire chambers: Trends and alternatives

    Energy Technology Data Exchange (ETDEWEB)

    Regler, Meinhard

    1992-05-15

    The subtitle of this year's Vienna Wire Chamber Conference - 'Recent Trends and Alternative Techniques' - signalled that it covered a wide range of science and technology. While an opening Vienna talk by wire chamber pioneer Georges Charpak many years ago began 'Les funerailles des chambres a fils (the burial of wire chambers)', the contrary feeling this year was that wire chambers are very much alive!.

  16. Fabrication of Anodic Porous Alumina by Squaric Acid Anodizing

    OpenAIRE

    Kikuchi, Tatsuya; Yamamoto, Tsuyoshi; Natsui, Shungo; Suzuki, Ryosuke O.

    2014-01-01

    The growth behavior of anodic porous alumina formed via anodizing in a new electrolyte, squaric acid (3,4-dihydroxy-3-cyclobutene-1,2-dione), is reported for the first time. A high-purity aluminum foil was anodized in a 0.1 M squaric acid solution at 293 K and a constant applied potential of 100-150 V. Anodic oxides grew on the aluminum foil at applied potentials of 100-120 V, but a burned oxide film was formed at higher voltage. Anodic porous alumina with a cell size of approximately 200-400...

  17. Inert Anode Report

    Energy Technology Data Exchange (ETDEWEB)

    none,

    1999-07-01

    This ASME report provides a broad assessment of open literature and patents that exist in the area of inert anodes and their related cathode systems and cell designs, technologies that are relevant for the advanced smelting of aluminum. The report also discusses the opportunities, barriers, and issues associated with these technologies from a technical, environmental, and economic viewpoint.

  18. Copper wire bonding

    CERN Document Server

    Chauhan, Preeti S; Zhong, ZhaoWei; Pecht, Michael G

    2014-01-01

    This critical volume provides an in-depth presentation of copper wire bonding technologies, processes and equipment, along with the economic benefits and risks.  Due to the increasing cost of materials used to make electronic components, the electronics industry has been rapidly moving from high cost gold to significantly lower cost copper as a wire bonding material.  However, copper wire bonding has several process and reliability concerns due to its material properties.  Copper Wire Bonding book lays out the challenges involved in replacing gold with copper as a wire bond material, and includes the bonding process changes—bond force, electric flame off, current and ultrasonic energy optimization, and bonding tools and equipment changes for first and second bond formation.  In addition, the bond–pad metallurgies and the use of bare and palladium-coated copper wires on aluminum are presented, and gold, nickel and palladium surface finishes are discussed.  The book also discusses best practices and re...

  19. Optimization of the Single Staggered Wire and Tube Heat Exchanger

    Directory of Open Access Journals (Sweden)

    Arsana I Made

    2016-01-01

    Full Text Available Wire and tube heat exchanger consists of a coiled tube, and wire is welded on the two sides of it in normal direction of the tube. Generally,wire and tube heat exchanger uses inline wire arrangement between the two sides, whereas in this study, it used staggered wire arrangement that reduces the restriction of convection heat transfer. This study performed the optimization of single staggered wire and tube heat exchanger to increase the capacity and reduce the mass of the heat exchanger. Optimization was conducted with the Hooke-Jeeves method, which aims to optimize the geometry of the heat exchanger, especially on the diameter (dw and the distance between wires (pw. The model developed to present heat transfer correlations on single staggered wire and tube heat exchanger was valid. The maximum optimization factor obtained when the diameter wire was 0.9 mm and the distance between wires (pw was 11 mm with the fref value = 1.5837. It means that the optimized design only using mass of 59,10 % and could transfer heat about 98,5 % from the basis design.

  20. Electrostatic influence in a wire chamber. Choice of geometric parameters of a chamber

    International Nuclear Information System (INIS)

    Comparat, V.; Ovazza, D.

    1979-01-01

    The MWPC electrostatic properties are studied: a positive ponctual charge is put near an anode wire and induced charges on all electrodes of MWPC and their variations with the position of the positive charge are determined. So the best choice for geometrical parameters of a PWPC is given [fr

  1. Design and performance of a 2-D multi-wire position sensitive X-ray ...

    Indian Academy of Sciences (India)

    of an anode plane with 10 µm SS wires at 3 mm spacing and a pair of orthogonal cathode read- out planes with 25 µm SS .... The electron multiplication process in high electric field is one of the prominent char- acteristics of .... be tested by irradiating the detector with a beam of X-rays of uniform intensity per unit area, and ...

  2. Fabrication of porous anodic alumina using normal anodization and pulse anodization

    Science.gov (United States)

    Chin, I. K.; Yam, F. K.; Hassan, Z.

    2015-05-01

    This article reports on the fabrication of porous anodic alumina (PAA) by two-step anodizing the low purity commercial aluminum sheets at room temperature. Different variations of the second-step anodization were conducted: normal anodization (NA) with direct current potential difference; pulse anodization (PA) alternate between potential differences of 10 V and 0 V; hybrid pulse anodization (HPA) alternate between potential differences of 10 V and -2 V. The method influenced the film homogeneity of the PAA and the most homogeneous structure was obtained via PA. The morphological properties are further elucidated using measured current-transient profiles. The absent of current rise profile in PA indicates the anodization temperature and dissolution of the PAA structure were greatly reduced by alternating potential differences.

  3. Process for anodizing a robotic device

    Science.gov (United States)

    Townsend, William T [Weston, MA

    2011-11-08

    A robotic device has a base and at least one finger having at least two links that are connected in series on rotary joints with at least two degrees of freedom. A brushless motor and an associated controller are located at each joint to produce a rotational movement of a link. Wires for electrical power and communication serially connect the controllers in a distributed control network. A network operating controller coordinates the operation of the network, including power distribution. At least one, but more typically two to five, wires interconnect all the controllers through one or more joints. Motor sensors and external world sensors monitor operating parameters of the robotic hand. The electrical signal output of the sensors can be input anywhere on the distributed control network. V-grooves on the robotic hand locate objects precisely and assist in gripping. The hand is sealed, immersible and has electrical connections through the rotary joints for anodizing in a single dunk without masking. In various forms, this intelligent, self-contained, dexterous hand, or combinations of such hands, can perform a wide variety of object gripping and manipulating tasks, as well as locomotion and combinations of locomotion and gripping.

  4. Liquid Silicon Pouch Anode

    Science.gov (United States)

    2017-09-06

    Number 15/696,426 Filing Date 6 September 2017 Inventor Charles J. Patrissi et al Address any questions concerning this matter to the...silicon-based anodes during cycling, lithium insertion and deinsertion. Mitigation of this problem has long been sought and will result in improved...design shown. [0032] It will be understood that many additional changes in the details, materials, steps and arrangement of parts, which have been

  5. Model-Based Testability Assessment and Directed Troubleshooting of Shuttle Wiring Systems

    Science.gov (United States)

    Deb, Somnath; Domagala, Chuck; Shrestha, Roshan; Malepati, Venkatesh; Cavanaugh, Kevin; Patterson-Hine, Ann; Sanderfer, Dwight; Cockrell, Jim; Norvig, Peter (Technical Monitor)

    2000-01-01

    We have recently completed a pilot study on the Space shuttle wiring system commissioned by the Wiring Integrity Research (WIRe) team at NASA Ames Research Center, As the space shuttle ages, it is experiencing wiring degradation problems including arcing, chaffing insulation breakdown and broken conductors. A systematic and comprehensive test process is required to thoroughly test and quality assure (QA) the wiring systems. The NASA WIRe team recognized the value of a formal model based analysis for risk-assessment and fault coverage analysis. However. wiring systems are complex and involve over 50,000 wire segments. Therefore, NASA commissioned this pilot study with Qualtech Systems. Inc. (QSI) to explore means of automatically extracting high fidelity multi-signal models from wiring information database for use with QSI's Testability Engineering and Maintenance System (TEAMS) tool.

  6. Wire core reactor for NTP

    International Nuclear Information System (INIS)

    Harty, R.B.

    1991-01-01

    The development of the wire core system for Nuclear Thermal Propulsion (NTP) that took place from 1963 to 1965 is discussed. A wire core consists of a fuel wire with spacer wires. It's an annular flow core having a central control rod. There are actually four of these, with beryllium solid reflectors on both ends and all the way around. Much of the information on the concept is given in viewgraph form. Viewgraphs are presented on design details of the wire core, the engine design, engine weight vs. thrust, a technique used to fabricate the wire fuel element, and axial temperature distribution

  7. Wired to freedom

    DEFF Research Database (Denmark)

    Jepsen, Kim Sune Karrasch; Bertilsson, Margareta

    2017-01-01

    dimension of life science through a notion of public politics adopted from the political theory of John Dewey. We show how cochlear implantation engages different social imaginaries on the collective and individual levels and we suggest that users share an imaginary of being “wired to freedom” that involves...... new access to social life, continuous communicative challenges, common practices, and experiences. In looking at their lives as “wired to freedom,” we hope to promote a wider spectrum of civic participation in the benefit of future life science developments within and beyond the field of Cochlear...

  8. Electric wiring domestic

    CERN Document Server

    Coker, A J

    1992-01-01

    Electric Wiring: Domestic, Tenth Edition, is a clear and reliable guide to the practical aspects of domestic electric wiring. Intended for electrical contractors, installation engineers, wiremen and students, its aim is to provide essential up to date information on modern methods and materials in a simple, clear, and concise manner. The main changes in this edition are those necessary to bring the work into line with the 16th Edition of the Regulations for Electrical Installations issued by the Institution of Electrical Engineers. The book begins by introducing the basic features of domestic

  9. Modern wiring practice

    CERN Document Server

    Steward, W E

    2012-01-01

    Continuously in print since 1952, Modern Wiring Practice has now been fully revised to provide an up-to-date source of reference to building services design and installation in the 21st century. This compact and practical guide addresses wiring systems design and electrical installation together in one volume, creating a comprehensive overview of the whole process for contractors and architects, as well as electricians and other installation engineers. Best practice is incorporated throughout, combining theory and practice with clear and accessible explanation, all

  10. A Flying Wire System in the AGS

    International Nuclear Information System (INIS)

    Huang, H.; Buxton, W.; Mahler, G.; Marusic, A.; Roser, T.; Smith, G.; Syphers, M.; Williams, N.; Witkover, R.

    1999-01-01

    As the AGS prepares to serve as the injector for RHIC, monitoring and control of the beam transverse emittance become a major and important topic. Before the installation of the flying wire system, the emittance was measured with ionization profile monitors in the AGS, which require correction for space charge effects. It is desirable to have a second means of measuring profile that is less dependent on intensity. A flying wire system has been installed in the AGS recently to perform this task. This paper discusses the hardware and software setup and the capabilities of the system

  11. Process for anodizing aluminum foil

    International Nuclear Information System (INIS)

    Ball, J.A.; Scott, J.W.

    1984-01-01

    In an integrated process for the anodization of aluminum foil for electrolytic capacitors including the formation of a hydrous oxide layer on the foil prior to anodization and stabilization of the foil in alkaline borax baths during anodization, the foil is electrochemically anodized in an aqueous solution of boric acid and 2 to 50 ppm phosphate having a pH of 4.0 to 6.0. The anodization is interrupted for stabilization by passing the foil through a bath containing the borax solution having a pH of 8.5 to 9.5 and a temperature above 80 0 C. and then reanodizing the foil. The process is useful in anodizing foil to a voltage of up to 760 V

  12. Effect of vibrating drawing on the mechanical properties of tungsten wire

    International Nuclear Information System (INIS)

    Shapoval, A.N.; Izotov, V.M.; Mosolev, V.D.

    1986-01-01

    Mechanical properties of tungsten wire produced according to different versions of drawing are investigated. It is established that a wire produced by means of drawing through two draw plates vibrating in contrast phases possesses a lower (by 90 %) ultimate strength and a higher (by 10 %) ductility characteristic as compared with a wire produced without vibration

  13. Applying hot-wire anemometry to directly measure the water balance in a proton exchange membrane fuel cell

    DEFF Research Database (Denmark)

    Al Shakhshir, Saher; Andreasen, Søren Juhl; Berning, Torsten

    2016-01-01

    In order to better understand and more accurately measure the water balance in a proton exchange membrane fuel cell, our group has recently proposed to apply hot wire anemometry in the fuel cell's anode outlet. It was theoretically shown that the electrical signal obtained from the hot wire sensor...... can be directly converted into the fuel cell water balance. In this work an ex-situ experimental investigation is performed to examine the effect of the wire diameter and the outlet pipe diameter on the voltage signal. For a laboratory fuel cell where the mass flow rate the anode outlet is small...... number Nu range between m = 0.137 and m = 0.246. In general, it is shown that applying hot wire anemometry yields in fact very clear voltage readings with high frequency, and it can be used as a diagnosis tool in various fuel cell applications....

  14. Anode sheath in Hall thrusters

    International Nuclear Information System (INIS)

    Dorf, L.; Semenov, V.; Raitses, Y.

    2003-01-01

    A set of hydrodynamic equations is used to describe quasineutral plasma in ionization and acceleration regions of a Hall thruster. The electron distribution function and Poisson equation are invoked for description of a near-anode region. Numerical solutions suggest that steady-state operation of a Hall thruster can be achieved at different anode sheath regimes. It is shown that the anode sheath depends on the thruster operating conditions, namely the discharge voltage and the mass flow rate

  15. Note: Anodic bonding with cooling of heat-sensitive areas

    DEFF Research Database (Denmark)

    Vesborg, Peter Christian Kjærgaard; Olsen, Jakob Lind; Henriksen, Toke Riishøj

    2010-01-01

    Anodic bonding of silicon to glass always involves heating the glass and device to high temperatures so that cations become mobile in the electric field. We present a simple way of bonding thin silicon samples to borosilicate glass by means of heating from the glass side while locally cooling hea......-sensitive areas from the silicon side. Despite the high thermal conductivity of silicon, this method allows a strong anodic bond to form just millimeters away from areas essentially at room temperature....

  16. Wired vs. Wireless.

    Science.gov (United States)

    Fielding, Randall

    2000-01-01

    Presents a debate on which technology will be in tomorrow's classrooms and the pros and cons of wiring classrooms and using a wireless network. Concluding comments address the likelihood, and desirability, of placing computers throughout the entire educational process and what types of computers and capabilities are needed. (GR)

  17. A World without Wires

    Science.gov (United States)

    Panettieri, Joseph C.

    2006-01-01

    The wireless bandwagon is rolling across Mississippi, picking up a fresh load of converts and turning calamity into opportunity. Traditional wired school networks, many of which unraveled during Hurricane Katrina, are giving way to advanced wireless mesh networks that frequently include voice-over-IP (VoIP) capabilities. Vendor funding is helping…

  18. 3D Wire 2015

    DEFF Research Database (Denmark)

    Jordi, Moréton; F, Escribano; J. L., Farias

    This document is a general report on the implementation of gamification in 3D Wire 2015 event. As the second gamification experience in this event, we have delved deeply in the previous objectives (attracting public areas less frequented exhibition in previous years and enhance networking) and have...

  19. Wire chamber conference

    International Nuclear Information System (INIS)

    Bartl, W.; Neuhofer, G.; Regler, M.

    1986-02-01

    This booklet contains program and the abstracts of the papers presented at the conference, most of them dealing with performance testing of various types of wire chambers. The publication of proceedings is planned as a special issue of 'Nuclear instruments and methods' later on. All abstracts are in English. An author index for the book of abstracts is given. (A.N.)

  20. An extended parametrization of gas amplification in proportional wire chambers

    International Nuclear Information System (INIS)

    Beingessner, S.P.; Carnegie, R.K.; Hargrove, C.K.

    1987-01-01

    It is normally assumed that the gas amplification in proportional chambers is a function of Townsend's first ionization coefficient, α, and that α is a function of the anode surface electric field only. Experimental measurements are presented demonstrating the breakdown of the latter assumption for electric fields, X, greater than about 150 V/cm/Torr on the anode wire surface for a gas mixture of 80/20 argon/methane. For larger values of X, the parametrization of the proportional gas gain data requires an additional term related to the gradient of the electric field near the wire. This extended gain parametrization remains valid until the onset of nonproportional contributions such as positive ion space charge saturation effects. Furthermore, deviations of the data from this parametrization are used to measure the onset of these space charge effects. A simple scaling dependence of the gain data on the product of pressure and wire radius over the whole proportional range is also demonstrated. (orig.)

  1. Wire EDM for Refractory Materials

    Science.gov (United States)

    Zellars, G. R.; Harris, F. E.; Lowell, C. E.; Pollman, W. M.; Rys, V. J.; Wills, R. J.

    1982-01-01

    In an attempt to reduce fabrication time and costs, Wire Electrical Discharge Machine (Wire EDM) method was investigated as tool for fabricating matched blade roots and disk slots. Eight high-strength nickel-base superalloys were used. Computer-controlled Wire EDM technique provided high quality surfaces with excellent dimensional tolerances. Wire EDM method offers potential for substantial reductions in fabrication costs for "hard to machine" alloys and electrically conductive materials in specific high-precision applications.

  2. Practical wiring in SI units

    CERN Document Server

    Miller, Henry A

    2013-01-01

    Practical Wiring, Volume 1 is a 13-chapter book that first describes some of the common hand tools used in connection with sheathed wiring. Subsequent chapters discuss the safety in wiring, cables, conductor terminations, insulating sheathed wiring, conductor sizes, and consumer's control equipments. Other chapters center on socket outlets, plugs, lighting subcircuits, lighting accessories, bells, and primary and secondary cells. This book will be very valuable to students involved in this field of interest.

  3. Wire chambers: Trends and alternatives

    International Nuclear Information System (INIS)

    Regler, Meinhard

    1992-01-01

    The subtitle of this year's Vienna Wire Chamber Conference - 'Recent Trends and Alternative Techniques' - signalled that it covered a wide range of science and technology. While an opening Vienna talk by wire chamber pioneer Georges Charpak many years ago began 'Les funerailles des chambres a fils (the burial of wire chambers)', the contrary feeling this year was that wire chambers are very much alive!

  4. Feasibility studies on the direct wire readout on wire scanners in electron accelerators

    International Nuclear Information System (INIS)

    Markert, Michael

    2010-10-01

    This bachelor thesis deals essentially with the signal processing of a so-called wire scanner, a special monitor, which comes to application in the beam diagnostics of particle accelerators. In this direct wire readout the voltage signal, which is induced by the particle beam in the measurement wire of the wire scanner, shall be directly read out. The aim of this thesis is to show fundamental considerations and perform studies, which study, whether and how in the future by means of a suited data transmission as well as readout electronics conclusion on the most important parameters of the beam, like position and profile, are possible. The measurement system presented here is divided in three main components: Signal measurement, signal preparation, and signal stretching. A suited test facility was developed and is presented in detail, in which then all components, like for instance the transmission cables, the wire-scanner fork, and the developed measurement circuit, are studied, which are of importance for a faultless signal transmission and presentation. Extensive measurements on the single components, as well as calculations for the signal transmission on and in the wire scanner were performed, whereby a good agreement could be found. Thereafter a comparison and a selection of the component used in this project were made. Furthermore improvement proposals, new constructions, and outlooks are presented, which could be of importance in further works.

  5. K-wire and tension band wire fixation in treating sternoclavicular joint dislocation.

    Science.gov (United States)

    Chen, Qing-yu; Cheng, Shao-wen; Wang, Wei; Lin, Zhong-qin; Zhang, Wei; Kou, Dong-quan; Shen, Yue; Ying, Xiao-zhou; Cheng, Xiao-jie; Lv, Chuan-zhu; Peng, Lei

    2011-02-01

    To evaluate the feasibility and therapeutic effect of treating sternoclavicular joint dislocation by K-wire and tension band wire fixation, and to improve the safety and stability of this technique. This study consisted of 9 cases, 6 males and 3 females with the mean age of 25 years (range, 9-62 years). The causes were traffic accident in 7 cases, falling in 1 case and fight in 1 case. The duration from injury to operation was 2 hours to 7 days. There were 5 left dislocations and 4 right dislocations; 8 anterior dislocations and 1 posterior dislocation, including one combined with left scapular fracture and one with left olecranon fracture. Open reduction and internal fixation using K-wires and tension band wires were performed to treat dislocations. All patients were followed up for 6 to 24 months, 10 months on average. According to Rockwood's rating scale on postoperative sternoclavicular joint, 8 cases achieved excellent outcomes with an average score of 13.88, and the rest case achieved a good outcome with the score of 12. Anatomical reduction was obtained in all cases. There were no such postoperative complications as severe infection, injury to blood vessel and nerve, failure of fixation, etc. Patients were all satisfied with the anatomical reduction and functional recovery. The technique of K-wire and tension band wire fixation is safe, simple, effective, less invasive and has been successfully used in orthopedic surgery. It is effective in treating sternoclavicular joint dislocation though it has some disadvantages.

  6. Experience of precision measuring distances by invar wires at accelerators

    International Nuclear Information System (INIS)

    Porubaj, N.I.

    1977-01-01

    With a view to determining the deformations and displacements of the ring foundation of the ITEP accelerator, the method of very accurate distance measurements by means of invar wires and strips is described. Measurement errors are analyzed. This method has allowed to measure distances up to 40 m with a mean-square error of less than 40 μm. The calibration accuracy of 3 and 25-m measuring wires has been determined to be +- 27 μm. Time instability of the wires is +- 16 μm. It is shown that strips are more stable in time than wires. Elongation of 6, 19, 25 and 38 m invar wires has been measured as function of the tension time. The error due to tension of a 38-m wire may be tangible. Data on thermal coefficient variation in time has been obtained for invar wires and strips. The multiannual measurements of the ring foundation deformations show that variations of the mean radius are caused by increases of concrete temperature. Temperature increase by only 1 deg caused mean radius increase of 0.3 mm

  7. Synthesis of chemical vapor deposition graphene on tantalum wire for supercapacitor applications

    Energy Technology Data Exchange (ETDEWEB)

    Li, Mingji, E-mail: limingji@163.com [Tianjin Key Laboratory of Film Electronic and Communicate Devices, School of Electronics Information Engineering, Tianjin University of Technology, Tianjin 300384 (China); Guo, Wenlong [Tianjin Key Laboratory of Film Electronic and Communicate Devices, School of Electronics Information Engineering, Tianjin University of Technology, Tianjin 300384 (China); Li, Hongji, E-mail: hongjili@yeah.net [Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384 (China); Xu, Sheng [School of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin 300072 (China); Qu, Changqing; Yang, Baohe [Tianjin Key Laboratory of Film Electronic and Communicate Devices, School of Electronics Information Engineering, Tianjin University of Technology, Tianjin 300384 (China)

    2014-10-30

    Highlights: • The capacitance of graphene/tantalum (Ta) wire electrodes is firstly reported. • Graphene was grown on the Ta surface by hot-filament chemical vapor deposition. • Graphene/Ta wire structure is favorable for fast ion and electron transfer. • The graphene/Ta wire electrode shows high capacitive properties. - Abstract: This paper studies the synthesis and electrochemical characterization of graphene/tantalum (Ta) wires as high-performance electrode material for supercapacitors. Graphene on Ta wires is prepared by the thermal decomposition of methane under various conditions. The graphene nanosheets on the Ta wire surface have an average thickness of 1.3–3.4 nm and consist typically of a few graphene monolayers, and TaC buffer layers form between the graphene and Ta wire. A capacitor structure is fabricated using graphene/Ta wire with a length of 10 mm and a diameter of 0.6 mm as the anode and Pt wire of the same size as the cathode. The electrochemical behavior of the graphene/Ta wires as supercapacitor electrodes is characterized by cyclic voltammetry, galvanostatic charge/discharge, and electrochemical impedance spectroscopy in 1 M Na{sub 2}SO{sub 4} aqueous electrolyte. The as-prepared graphene/Ta electrode has highest capacitance of 345.5 F g{sup −1} at current density of 0.5 A g{sup −1}. The capacitance remains at about 84% after 1000 cycles at 10 A g{sup −1}. The good electrochemical performance of the graphene/Ta wire electrode is attributed to the unique nanostructural configuration, high electrical conductivity, and large specific surface area of the graphene layer. This suggests that graphene/Ta wire electrode materials have potential applications in high-performance energy storage devices.

  8. Synthesis of chemical vapor deposition graphene on tantalum wire for supercapacitor applications

    International Nuclear Information System (INIS)

    Li, Mingji; Guo, Wenlong; Li, Hongji; Xu, Sheng; Qu, Changqing; Yang, Baohe

    2014-01-01

    Highlights: • The capacitance of graphene/tantalum (Ta) wire electrodes is firstly reported. • Graphene was grown on the Ta surface by hot-filament chemical vapor deposition. • Graphene/Ta wire structure is favorable for fast ion and electron transfer. • The graphene/Ta wire electrode shows high capacitive properties. - Abstract: This paper studies the synthesis and electrochemical characterization of graphene/tantalum (Ta) wires as high-performance electrode material for supercapacitors. Graphene on Ta wires is prepared by the thermal decomposition of methane under various conditions. The graphene nanosheets on the Ta wire surface have an average thickness of 1.3–3.4 nm and consist typically of a few graphene monolayers, and TaC buffer layers form between the graphene and Ta wire. A capacitor structure is fabricated using graphene/Ta wire with a length of 10 mm and a diameter of 0.6 mm as the anode and Pt wire of the same size as the cathode. The electrochemical behavior of the graphene/Ta wires as supercapacitor electrodes is characterized by cyclic voltammetry, galvanostatic charge/discharge, and electrochemical impedance spectroscopy in 1 M Na 2 SO 4 aqueous electrolyte. The as-prepared graphene/Ta electrode has highest capacitance of 345.5 F g −1 at current density of 0.5 A g −1 . The capacitance remains at about 84% after 1000 cycles at 10 A g −1 . The good electrochemical performance of the graphene/Ta wire electrode is attributed to the unique nanostructural configuration, high electrical conductivity, and large specific surface area of the graphene layer. This suggests that graphene/Ta wire electrode materials have potential applications in high-performance energy storage devices

  9. Solvent anode for plutonium purification

    International Nuclear Information System (INIS)

    Bowersox, D.F.; Fife, K.W.; Christensen, D.C.

    1986-01-01

    The purpose of this study is to develop a technique to allow complete oxidation of plutonium from the anode during plutonium electrorefining. This will eliminate the generation of a ''spent'' anode heel which requires further treatment for recovery. Our approach is to employ a solvent metal in the anode to provide a liquid anode pool throughout electrorefining. We use molten salts and metals in ceramic crucibles at 700 0 C. Our goal is to produce plutonium metal at 99.9% purity with oxidation and transfer of more than 98% of the impure plutonium feed metal from the anode into the salt and product phases. We have met these criteria in experiments on the 100 to 1000 g scale. We plan to scale our operations to 4 kg of feed plutonium and to optimize the process parameters

  10. Vienna Wire Chamber Conference

    International Nuclear Information System (INIS)

    Anon.

    1983-01-01

    After those of 1978 and 1980, a third Wire Chamber Conference was held from 15-18 February in the Technical University of Vienna. Eight invited speakers covered the field from sophisticated applications in biology and medicine, via software, to the state of the art of gaseous detectors. In some forty other talks the speakers tackled in more detail the topics of gaseous detectors, calorimetry and associated electronics and software

  11. Superconducting magnet wire

    Science.gov (United States)

    Schuller, Ivan K.; Ketterson, John B.; Banerjee, Indrajit

    1986-01-01

    A superconducting tape or wire with an improved critical field is formed of alternating layers of a niobium-containing superconductor such as Nb, NbTi, Nb.sub.3 Sn or Nb.sub.3 Ge with a thickness in the range of about 0.5-1.5 times its coherence length, supported and separated by layers of copper with each copper layer having a thickness in the range of about 170-600 .ANG..

  12. Twisting wire scanner

    Energy Technology Data Exchange (ETDEWEB)

    Gharibyan, V.; Delfs, A.; Koruptchenkov, I.; Noelle, D.; Tiessen, H.; Werner, M.; Wittenburg, K.

    2012-11-15

    A new type of 'two-in-one' wire scanner is proposed. Recent advances in linear motors' technology make it possible to combine translational and rotational movements. This will allow to scan the beam in two perpendicular directions using a single driving motor and a special fork attached to it. Vertical or horizontal mounting will help to escape problems associated with the 45 deg scanners. Test results of the translational part with linear motors is presented.

  13. Twisting wire scanner

    International Nuclear Information System (INIS)

    Gharibyan, V.; Delfs, A.; Koruptchenkov, I.; Noelle, D.; Tiessen, H.; Werner, M.; Wittenburg, K.

    2012-11-01

    A new type of 'two-in-one' wire scanner is proposed. Recent advances in linear motors' technology make it possible to combine translational and rotational movements. This will allow to scan the beam in two perpendicular directions using a single driving motor and a special fork attached to it. Vertical or horizontal mounting will help to escape problems associated with the 45 deg scanners. Test results of the translational part with linear motors is presented.

  14. Wire chamber gases

    International Nuclear Information System (INIS)

    Va'vra, J.

    1992-04-01

    In this paper, we describe new developments in gas mixtures which have occurred during the last 3--4 years. In particular, we discuss new results on the measurement and modeling of electron drift parameters, the modeling of drift chamber resolution, measurements of primary ionization and the choice of gas for applications such as tracking, single electron detection, X-ray detection and visual imaging. In addition, new results are presented on photon feedback, breakdown and wire aging

  15. Pool boiling of water on nano-structured micro wires at sub-atmospheric conditions

    Science.gov (United States)

    Arya, Mahendra; Khandekar, Sameer; Pratap, Dheeraj; Ramakrishna, S. Anantha

    2016-09-01

    Past decades have seen active research in enhancement of boiling heat transfer by surface modifications. Favorable surface modifications are expected to enhance boiling efficiency. Several interrelated mechanisms such as capillarity, surface energy alteration, wettability, cavity geometry, wetting transitions, geometrical features of surface morphology, etc., are responsible for change in the boiling behavior of modified surfaces. Not much work is available on pool boiling at low pressures on microscale/nanoscale geometries; low pressure boiling is attractive in many applications wherein low operating temperatures are desired for a particular working fluid. In this background, an experimental setup was designed and developed to investigate the pool boiling performance of water on (a) plain aluminum micro wire (99.999 % pure) and, (b) nano-porous alumina structured aluminum micro wire, both having diameter of 250 µm, under sub-atmospheric pressure. Nano-structuring on the plain wire surface was achieved via anodization. Two samples, A and B of anodized wires, differing by the degree of anodization were tested. The heater length scale (wire diameter) was much smaller than the capillary length scale. Pool boiling characteristics of water were investigated at three different sub-atmospheric pressures of 73, 123 and 199 mbar (corresponding to T sat = 40, 50 and 60 °C). First, the boiling characteristics of plain wire were measured. It was noticed that at sub-atmospheric pressures, boiling heat transfer performance for plain wire was quite low due to the increased bubble sizes and low nucleation site density. Subsequently, boiling performance of nano-structured wires (both Sample A and Sample B) was compared with plain wire and it was noted that boiling heat transfer for the former was considerably enhanced as compared to the plain wire. This enhancement is attributed to increased nucleation site density, change in wettability and possibly due to enhanced pore scale

  16. Breakdown processes in wire chambers, prevention and rate capability

    International Nuclear Information System (INIS)

    Atac, M.

    1983-01-01

    Breakdowns were optically and electronically observed in drift tubes and drift chambers. They occur at a critical gain for given intensity in a gas mixture when ultraviolet photons are not completely quenched. It was observed that the breakdowns depended critically on average current for a given gas mixture independent of the size of the drift tubes used. Using 4.6% ethyl alcohol vapor mixed into 50/50 argon ethane gas, breakdown are eliminated up to 7 /sub μ/A average current drawn by pulses on a 1 cm section of an anode wire under an intense source. Pulses with an avalanche size of 10 6 electron rates above 10 6 pulses per centimeter per wire may be obtained with the elimination of breakdowns

  17. Breakdown processes in wire chambers, prevention and rate capability

    International Nuclear Information System (INIS)

    Atac, M.

    1982-01-01

    Breakdowns were optically and electronically observed in drift tubes and drift chambers. They occur at a critical gain for given intensity in a gas mixture when ultraviolet photons are not completely quenched. It was observed that the breakdowns depended critically on average current for a given gas mixture independent of the size of the drift tubes used. Using 4.6% ethyl alcohol vapor mixed into 50/50 argon ethane gas, breakdowns are eliminated up to 7 μA average current drawn by pulses on a 1 cm section of an anode wire under an intense source. Pulses with an avalanche size of 10 6 electron rates above 10 6 pulses per centimeter per wire may be obtained with the elimination of breakdowns

  18. Control of flow past a circular cylinder via a spanwise surface wire: effect of the wire scale

    Energy Technology Data Exchange (ETDEWEB)

    Ekmekci, Alis [University of Toronto Institute for Aerospace Studies, Toronto, ON (Canada); Rockwell, Donald [Lehigh University, Department of Mechanical Engineering, Bethlehem, PA (United States)

    2011-09-15

    Flow phenomena induced by a single spanwise wire on the surface of a circular cylinder are investigated via a cinema technique of particle image velocimetry (PIV). The primary aim of this investigation is to assess the effect of the wire scale. To this end, consideration is given to wires with different diameters that are 0.5, 1.2, and 2.9% of the cylinder diameter. The Reynolds number has a subcritical value of 10,000. Compared to the thickness of the unperturbed boundary layer developing around the cylinder between 5 and 75 from the forward stagnation point, the former two wires have smaller scales and the latter has a larger scale. Two angular locations of the wire, defined with respect to the forward stagnation point of the cylinder, are found to be critical. When the wire is located at these critical angles, either the most significant extension or the contraction of the time-mean separation bubble occurs in the near wake. These critical angles depend on the wire scale: the smaller the wire, the larger the critical angle. The small-scale and large-scale wires that have diameters of 1.2 and 2.9% of the cylinder diameter induce bistable shear-layer oscillations between different separation modes when placed at their respective critical angles corresponding to maximum extension of the near-wake bubble. These oscillations have irregular time intervals that are much longer than the time scale associated with the classical Karman instability. Moreover, the large-scale wire can either significantly attenuate or intensify the Karman mode of vortex shedding at the critical states; in contrast, the small-scale wires do not notably alter the strength of the Karman instability. (orig.)

  19. Influence of defects on the ordering degree of nanopores made from anodic aluminum oxide

    International Nuclear Information System (INIS)

    Yu Wenhui; Fei Guangtao; Chen Xiaomeng; Xue Fanghong; Xu Xijin

    2006-01-01

    Anodic aluminum oxide (AAO) templates with highly ordered nanoporous structure were fabricated by means of the electrochemical anodization under the constant anodic voltage and electrolyte temperature. The dependence of the ordering degree of nanopores on the point defects, dislocation configuration and grain boundary of aluminum is qualitatively analyzed. Experiment results show that the size of the ordered region of nanopores depends strongly on the point defects, dislocation cell configuration

  20. Improvements in or relating to methods of and apparatus for coating wire, rod or strip material by sputtering

    International Nuclear Information System (INIS)

    Wareing, J.B.

    1976-01-01

    A method and apparatus are described for coating wire, rod or strip material comprising first subjecting the material to electron bombardment in a glow discharge to heat and activate the surface and then subjecting it to sputtering by use of a soft cathode discharge. The apparatus comprises a low pressure gas chamber through which the material is passed, and containing a glow discharge electron gun having a tubular cathode shaped so that the material can be passed axially through it, and an anode surrounding the cathode. The cathode is formed in two parts, the first part at one end, being made of material of low sputtering yield, and the second part being formed at least partially of the required coating material. The first part of the cathode may be of stainless steel or Al. The two parts of the cathode are electrically isolated with means provided for applying a lower negative potential, with respect to the anode, to the second part compared with the first part. The voltage applied to the second part may be controlled so as to control the sputtering rate. The gas pressure in the chamber is also controllable. The coating material may be arranged as inserts in the fixed cathode structure or as segments around the surface to be coated, and may be composed of Pb, Zn or Cu. (U.K.)

  1. Dual wire welding torch and method

    Science.gov (United States)

    Diez, Fernando Martinez; Stump, Kevin S.; Ludewig, Howard W.; Kilty, Alan L.; Robinson, Matthew M.; Egland, Keith M.

    2009-04-28

    A welding torch includes a nozzle with a first welding wire guide configured to orient a first welding wire in a first welding wire orientation, and a second welding wire guide configured to orient a second welding wire in a second welding wire orientation that is non-coplanar and divergent with respect to the first welding wire orientation. A method of welding includes moving a welding torch with respect to a workpiece joint to be welded. During moving the welding torch, a first welding wire is fed through a first welding wire guide defining a first welding wire orientation and a second welding wire is fed through a second welding wire guide defining a second welding wire orientation that is divergent and non-coplanar with respect to the first welding wire orientation.

  2. Modeling of the anode surface deformation in high-current vacuum arcs with AMF contacts

    International Nuclear Information System (INIS)

    Huang, Xiaolong; Wang, Lijun; Deng, Jie; Jia, Shenli; Qin, Kang; Shi, Zongqian

    2016-01-01

    azimuthal velocity of the anode melting pool for arc current 12.5 kA root-mean-square (rms) is larger than that for 17.5 kA (rms), which is likely to be caused by the thinner liquid layer, and also a smaller melting pool mass of 12.5 kA. (paper)

  3. Right wire in orthodontics: a review

    OpenAIRE

    Ali, Hashim

    2015-01-01

    Quality of orthodontic wire such as stiffness, hardness, resiliency, elasticity and working range are important determinants of the effectivenes of tooth movement. Commonly used types of orthodontic arch wire:1) stainless steel(ss) wire, 2) conventional nickel- titanium (NiTi)alloy wire,3) improved super elastic NiTi- alloy wire( also called low hysteresis(LH)wire), and titanium molybdenum alloy(TMA) wire.

  4. K-wire and tension band wire fixation in treating sternoclavicular joint dislocation

    Directory of Open Access Journals (Sweden)

    CHEN Qing-yu

    2011-02-01

    Full Text Available 【Abstract】Objective: To evaluate the feasibility and therapeutic effect of treating sternoclavicular joint dislocation by K-wire and tension band wire fixation, and to improve the safety and stability of this technique. Methods: This study consisted of 9 cases, 6 males and 3 females with the mean age of 25 years (range, 9-62 years. The causes were traffic accident in 7 cases, falling in 1 case and fight in 1 case. The duration from injury to operation was 2 hours to 7 days. There were 5 left dislocations and 4 right dislocations; 8 anterior dislocations and 1 posterior dislocation, including one combined with left scapular fracture and one with left olecranon fracture. Open reduction and internal fixation using K-wires and tension band wires were performed to treat dislocations. Results: All patients were followed up for 6 to 24 months, 10 months on average. According to Rockwood’s rating scale on postoperative sternoclavicular joint, 8 cases achieved excellent outcomes with an average score of 13.88, and the rest case achieved a good outcome with the score of 12. Anatomical reduction was obtained in all cases. There were no such postoperative complications as severe infection, injury to blood vessel and nerve, failure of fixation, etc. Patients were all satisfied with the anatomical reduction and functional recovery. Conclusions: The technique of K-wire and tension band wire fixation is safe, simple, effective, less invasive and has been successfully used in orthopedic surgery. It is effective in treating sternoclavicular joint dislocation though it has some disadvantages. Key words: Sternoclavicular joint; Dislocations; Bone wires; Fracture fixation, internal

  5. Niobium Titanium and Copper wire samples

    CERN Multimedia

    2009-01-01

    Two wire samples, both for carrying 13'000Amperes. I sample is copper. The other is the Niobium Titanium wiring used in the LHC magnets. The high magnetic fields needed for guiding particles around the Large Hadron Collider (LHC) ring are created by passing 12’500 amps of current through coils of superconducting wiring. At very low temperatures, superconductors have no electrical resistance and therefore no power loss. The LHC is the largest superconducting installation ever built. The magnetic field must also be extremely uniform. This means the current flowing in the coils has to be very precisely controlled. Indeed, nowhere before has such precision been achieved at such high currents. Magnet coils are made of copper-clad niobium–titanium cables — each wire in the cable consists of 9’000 niobium–titanium filaments ten times finer than a hair. The cables carry up to 12’500 amps and must withstand enormous electromagnetic forces. At full field, the force on one metre of magnet is comparable ...

  6. Review of wire chamber aging

    International Nuclear Information System (INIS)

    Va'Vra, J.

    1986-02-01

    This paper makes an overview of the wire chamber aging problems as a function of various chamber design parameters. It emphasizes the chemistry point of view and many examples are drawn from the plasma chemistry field as a guidance for a possible effort in the wire chamber field. The paper emphasizes the necessity of variable tuning, the importance of purity of the wire chamber environment, as well as it provides a practical list of presently known recommendations. In addition, several models of the wire chamber aging are qualitatively discussed. The paper is based on a summary talk given at the Wire Chamber Aging Workshop held at LBL, Berkeley on January 16-17, 1986. Presented also at Wire Chamber Conference, Vienna, February 25-28, 1986. 74 refs., 18 figs., 11 tabs

  7. Measurement of the saturation magnetostriction constant of amorphous wire

    International Nuclear Information System (INIS)

    Mitra, A.; Vazquez, M.

    1990-01-01

    Measurement of the magnetostriction constant of amorphous wire by conventional techniques is very difficult because of its small diameter. However, accurate determination of the magnetostriction constant is important in the study of amorphous wires. Here the saturation magnetostriction constant (λ s ) for a low-magnetostriction amorphous wire of nominal composition (Fe 6.3 Co 92.7 Nb 1 ) 77.5 Si 7.5 B 15 has been determined by means of the small-angle magnetization-rotation method. λ s has been evaluated to be 2.1x10 -7 for its as-received state. The dependence of thermal treatment is also reported

  8. Wire communication engineering

    International Nuclear Information System (INIS)

    Son, Byeong Tae

    1997-02-01

    This book describes wire telecommunication engineering/ It is divided into eleven chapter, which deal with Introduction with development of telecommunication, voice and sound wave and communication network, Telegraphy with summary of telegraphy, code of telegraphy, communication speed, morse and telex, Telephone on structure, circuit and image telephone, Traffic on telecommunication traffic, transmission of line about theory, cable line and loaded cable, carrier communication with carrier telegraphy and carrier telephone, optical communication with types, structure, specialty, laser and equipment, DATA, Mobile telecommunication on summary, mobile telephone, radio paging and digital mobile telecommunication, ISDN with channel of ISDN, and service of ISDN, and design of telecommunication.

  9. Wiring regulations in brief

    CERN Document Server

    Tricker, Ray

    2012-01-01

    Tired of trawling through the Wiring Regs?Perplexed by Part P?Confused by cables, conductors and circuits?Then look no further! This handy guide provides an on-the-job reference source for Electricians, Designers, Service Engineers, Inspectors, Builders, Students, DIY enthusiastsTopic-based chapters link areas of working practice - such as cables, installations, testing and inspection, special locations - with the specifics of the Regulations themselves. This allows quick and easy identification of the official requirements relating to the situati

  10. Diagnostics for exploding wires (abstract)

    International Nuclear Information System (INIS)

    Moosman, B.; Bystritskii, V.; Wessel, F.J.; Van Drie, A.

    1999-01-01

    Two diagnostics, capable of imaging fast, high temperature, plasmas were used on exploding wire experiments at UC Irvine. An atmospheric pressure nitrogen laser (λ=337.1 nm) was used to generate simultaneous shadow and shearing interferogram images with a temporal resolution of ∼1 ns and a spatial resolution of 10 μm. An x-ray backlighter imaged the exploding wire 90 degree with respect to the laser and at approximately the same instant in time. The backlighter spatial resolution as determined by geometry and film resolution was 25 μm. Copper wires of diameters (25, 50, and 100 μm) and steel wire d=25 μm were exploded in vacuum (10 -5 Torr) at a maximum current level of 12 kA, by a rectified marx bank at a voltage of 50 kV and a current rise time (quarter period) of 900 ns. Copper wires which were cleaned and then resistively heated under vacuum to incandescence for several hours prior to high current initiation, exhibited greater expansion velocities at peak current than wires which had not been heated prior to discharge. Axial variations on the surface of the wire observed with the laser were found to correlate with bulk axial mass differences from x-ray backlighting. High electron density, measured near the opaque surface of the exploding wire, suggests that much of the current is shunted outward away from the bulk of the wire. copyright 1999 American Institute of Physics

  11. High performance anode for advanced Li batteries

    Energy Technology Data Exchange (ETDEWEB)

    Lake, Carla [Applied Sciences, Inc., Cedarville, OH (United States)

    2015-11-02

    The overall objective of this Phase I SBIR effort was to advance the manufacturing technology for ASI’s Si-CNF high-performance anode by creating a framework for large volume production and utilization of low-cost Si-coated carbon nanofibers (Si-CNF) for the battery industry. This project explores the use of nano-structured silicon which is deposited on a nano-scale carbon filament to achieve the benefits of high cycle life and high charge capacity without the consequent fading of, or failure in the capacity resulting from stress-induced fracturing of the Si particles and de-coupling from the electrode. ASI’s patented coating process distinguishes itself from others, in that it is highly reproducible, readily scalable and results in a Si-CNF composite structure containing 25-30% silicon, with a compositionally graded interface at the Si-CNF interface that significantly improve cycling stability and enhances adhesion of silicon to the carbon fiber support. In Phase I, the team demonstrated the production of the Si-CNF anode material can successfully be transitioned from a static bench-scale reactor into a fluidized bed reactor. In addition, ASI made significant progress in the development of low cost, quick testing methods which can be performed on silicon coated CNFs as a means of quality control. To date, weight change, density, and cycling performance were the key metrics used to validate the high performance anode material. Under this effort, ASI made strides to establish a quality control protocol for the large volume production of Si-CNFs and has identified several key technical thrusts for future work. Using the results of this Phase I effort as a foundation, ASI has defined a path forward to commercialize and deliver high volume and low-cost production of SI-CNF material for anodes in Li-ion batteries.

  12. Reliability Criteria for Thick Bonding Wire.

    Science.gov (United States)

    Dagdelen, Turker; Abdel-Rahman, Eihab; Yavuz, Mustafa

    2018-04-17

    Bonding wire is one of the main interconnection techniques. Thick bonding wire is widely used in power modules and other high power applications. This study examined the case for extending the use of traditional thin wire reliability criteria, namely wire flexure and aspect ratio, to thick wires. Eleven aluminum (Al) and aluminum coated copper (CucorAl) wire samples with diameter 300 μm were tested experimentally. The wire response was measured using a novel non-contact method. High fidelity FEM models of the wire were developed and validated. We found that wire flexure is not correlated to its stress state or fatigue life. On the other hand, aspect ratio is a consistent criterion of thick wire fatigue life. Increasing the wire aspect ratio lowers its critical stress and increases its fatigue life. Moreover, we found that CucorAl wire has superior performance and longer fatigue life than Al wire.

  13. Reliability Criteria for Thick Bonding Wire

    Directory of Open Access Journals (Sweden)

    Turker Dagdelen

    2018-04-01

    Full Text Available Bonding wire is one of the main interconnection techniques. Thick bonding wire is widely used in power modules and other high power applications. This study examined the case for extending the use of traditional thin wire reliability criteria, namely wire flexure and aspect ratio, to thick wires. Eleven aluminum (Al and aluminum coated copper (CucorAl wire samples with diameter 300 μm were tested experimentally. The wire response was measured using a novel non-contact method. High fidelity FEM models of the wire were developed and validated. We found that wire flexure is not correlated to its stress state or fatigue life. On the other hand, aspect ratio is a consistent criterion of thick wire fatigue life. Increasing the wire aspect ratio lowers its critical stress and increases its fatigue life. Moreover, we found that CucorAl wire has superior performance and longer fatigue life than Al wire.

  14. Reliability Criteria for Thick Bonding Wire

    Science.gov (United States)

    Yavuz, Mustafa

    2018-01-01

    Bonding wire is one of the main interconnection techniques. Thick bonding wire is widely used in power modules and other high power applications. This study examined the case for extending the use of traditional thin wire reliability criteria, namely wire flexure and aspect ratio, to thick wires. Eleven aluminum (Al) and aluminum coated copper (CucorAl) wire samples with diameter 300 μm were tested experimentally. The wire response was measured using a novel non-contact method. High fidelity FEM models of the wire were developed and validated. We found that wire flexure is not correlated to its stress state or fatigue life. On the other hand, aspect ratio is a consistent criterion of thick wire fatigue life. Increasing the wire aspect ratio lowers its critical stress and increases its fatigue life. Moreover, we found that CucorAl wire has superior performance and longer fatigue life than Al wire. PMID:29673194

  15. Design and numerical simulation of the electromagnetic field of linear anode layer ion source

    International Nuclear Information System (INIS)

    Wang Lisheng; Tang Deli; Cheng Changming

    2006-01-01

    The principle of anode layer ion source for etching, pre-cleaning and ion beam assisted deposition was described. The influence of the magnetic field on the performance of anode layer ion source was analyzed. Design of the magnetic loop for the linear anode layer ion source was given. The electromagnetic field distribution of the ion source was simulated by means of ANSYS code and the simulation results were in agreement with experimental ones. The numerical simulation results of the electromagnetic field are useful for improving the anode layer ion source. (authors)

  16. Characteristics from Recycled of Zinc Anode used as a Corrosion Preventing Material on Board Ship

    Science.gov (United States)

    Barokah, B.; Semin, S.; Kaligis, D. D.; Huwae, J.; Fanani, M. Z.; Rompas, P. T. D.

    2018-02-01

    The objective of this research is to obtain the values of chemical composition, electrochemical potential and electrochemical efficiency. Methods used were experiment with physical tests conducted in metallurgical laboratory and DNV-RP-B401 cathode protection design DNV (Det Norske Veritas) standard. The results showed that the composition of chemical as Zinc (Zn), Aluminium, Cadmium, Plumbumb, Copper and Indium is suitable of standard. The values of electrochemical potential and electrochemical efficiency were respectively. However it can be concluded that the normal meaning of recycled zinc anode with increasing melting temperature can produce zinc anode better than original zinc anode and can be used as cathode protection on board ships. This research can assist in the management of used zinc anode waste, the supply of zinc anodes for consumers at relatively low prices, and recommendations of using zinc anodes for the prevention of corrosion on board ship.

  17. Forming lead-based anodes

    Energy Technology Data Exchange (ETDEWEB)

    Ogorodnichuk, V I; Voitsekhovich, R I

    1972-01-01

    Lead-based anodes can be produced by forming a layer of lead dioxide by chemical treatment in a solution of sulfuric acid in potassium permanganate at 80 to 100/sup 0/. The solution is mixed by compressed air. (RWR)

  18. Nano structural anodes for radiation detectors

    Science.gov (United States)

    Cordaro, Joseph V.; Serkiz, Steven M.; McWhorter, Christopher S.; Sexton, Lindsay T.; Retterer, Scott T.

    2015-07-07

    Anodes for proportional radiation counters and a process of making the anodes is provided. The nano-sized anodes when present within an anode array provide: significantly higher detection efficiencies due to the inherently higher electric field, are amenable to miniaturization, have low power requirements, and exhibit a small electromagnetic field signal. The nano-sized anodes with the incorporation of neutron absorbing elements (e.g., .sup.10B) allow the use of neutron detectors that do not use .sup.3He.

  19. Vibration of signal wires in wire detectors under irradiation

    International Nuclear Information System (INIS)

    Bojko, I.R.; Shelkov, G.A.; Dodonov, V.I.; Ignatenko, M.A.; Nikolenko, M.Yu.

    1995-01-01

    Radiation-induced vibration of signal wires in wire detectors is found and explained. The phenomenon is based on repulsion of a signal wire with a positive potential and a cloud of positive ions that remains after neutralization of the electron part of the avalanche formed in the course of gas amplification. Vibration with a noticeable amplitude may arise from fluctuations of repulsive forces, which act on the wire and whose sources are numerous ion clusters. A formula is obtained which allows wire oscillations to be estimated for all types of wire detectors. Calculation shows that oscillations of signal wires can be substantial for the coordinate accuracy of a detector working in the limited streamer mode at fluxes over 10 5 particles per second per wire. In the proportional mode an average oscillation amplitude can be as large as 20-30 μm at some detector parameters and external radiation fluxes over 10 5 . The experimental investigations show that the proposed model well describes the main features of the phenomenon. 6 refs., 8 figs

  20. Corrosion of Wires on Wooden Wire-Bound Packaging Crates

    Science.gov (United States)

    Samuel L. Zelinka; Stan Lebow

    2015-01-01

    Wire-bound packaging crates are used by the US Army to transport materials. Because these crates may be exposed to harsh environments, they are dip-treated with a wood preservative (biocide treatment). For many years, zinc-naphthenate was the most commonly used preservative for these packaging crates and few corrosion problems with the wires were observed. Recently,...

  1. Employing Hot Wire Anemometry to Directly Measure the Water Balance in a Proton Exchange membrane Fuel Cell

    DEFF Research Database (Denmark)

    Shakhshir, Saher Al; Hussain, Nabeel; Berning, Torsten

    2015-01-01

    Water management in proton exchange membrane fuel cells (PEMFC’s) remains a critical problem for their durability, cost, and performance. Because the anode side of this fuel cell has the tendency to become dehydrated, measuring the water balance can be an important diagnosis tool during fuel cell...... operation. The water balance indicates how much of the product water leaves at the anode side versus the cathode side. Previous methods of determining the fuel cell water balance often relied on condensing the water in the exhaust gas streams and weighing the accumulated mass which is a time consuming...... process that has limited accuracy. Currently, our group is developing a novel method to accurately determine the water balance in a PEMFC in real time by employing hot-wire anemometry. The amount of heat transferred from the wire to the anode exhaust stream can be translated into a voltage signal which...

  2. Improved superconducting magnet wire

    Science.gov (United States)

    Schuller, I.K.; Ketterson, J.B.

    1983-08-16

    This invention is directed to a superconducting tape or wire composed of alternating layers of copper and a niobium-containing superconductor such as niobium of NbTi, Nb/sub 3/Sn or Nb/sub 3/Ge. In general, each layer of the niobium-containing superconductor has a thickness in the range of about 0.05 to 1.5 times its coherence length (which for Nb/sub 3/Si is 41 A) with each copper layer having a thickness in the range of about 170 to 600 A. With the use of very thin layers of the niobium composition having a thickness within the desired range, the critical field (H/sub c/) may be increased by factors of 2 to 4. Also, the thin layers of the superconductor permit the resulting tape or wire to exhibit suitable ductility for winding on a magnet core. These compositions are also characterized by relatively high values of critical temperature and therefore will exhibit a combination of useful properties as superconductors.

  3. PAT and SEM study of porous silicon formed by anodization methods

    International Nuclear Information System (INIS)

    Liu Jian; Wei Long; Wang Huiyao; Ma Chuangxin; Wang Baoyi

    2000-01-01

    The porous silicon formed by anodization of crystal silicon was studied by positron annihilation technique (PAT) and scanning electron microscopy (SEM). The PAT experiments showed that the mean life and vacancy defects increased with the increasing anodization time. While the intensities of the longest lifetime, several ns-tens ns (ortho-positronium) dropped down. Small single-crystal Si spheres with mean radius of a few μm were observed by SEM after anodization. Pits with mean radius of a few μm from the divorcement of single-crystal spheres were also observed after further anodization. The increases of vacancy defects might be that the extension of structures of porous silicon towards inner layer with anodization time and caused more vacancy defects in inner layer. The SEM observation presented another possibility of the increase of density of vacancy defects in surface layer induced by the change of structures

  4. Anodized Steel Electrodes for Supercapacitors.

    Science.gov (United States)

    Sagu, Jagdeep S; Wijayantha, K G Upul; Bohm, Mallika; Bohm, Siva; Kumar Rout, Tapan

    2016-03-09

    Steel was anodized in 10 M NaOH to enhance its surface texture and internal surface area for application as an electrode in supercapacitors. A mechanism was proposed for the anodization process. Field-emission gun scanning electron microscopy (FEGSEM) studies of anodized steel revealed that it contains a highly porous sponge like structure ideal for supercapacitor electrodes. X-ray photoelectron spectroscopy (XPS) measurements showed that the surface of the anodized steel was Fe2O3, whereas X-ray diffraction (XRD) measurements indicated that the bulk remained as metallic Fe. The supercapacitor performance of the anodized steel was tested in 1 M NaOH and a capacitance of 18 mF cm(-2) was obtained. Cyclic voltammetry measurements showed that there was a large psueudocapacitive contribution which was due to oxidation of Fe to Fe(OH)2 and then further oxidation to FeOOH, and the respective reduction of these species back to metallic Fe. These redox processes were found to be remarkably reversible as the electrode showed no loss in capacitance after 10000 cycles. The results demonstrate that anodization of steel is a suitable method to produce high-surface-area electrodes for supercapacitors with excellent cycling lifetime.

  5. Protection of Steel Corrosion in Concrete Members by the Combination of Galvanic Anode and Nitrite Penetration

    Directory of Open Access Journals (Sweden)

    Minobu Aoyama

    2014-01-01

    Full Text Available Chloride induced-corrosion of steel bars in concrete can make cracks and exfoliation in near-surface regions in reinforced concrete structures. In this paper, we described the basic concept and practice of steel bars corrosion protection method by the combination of galvanic anode (zinc wire and the penetration of nitrite ions from mortar layers containing a large amount of lithium nitrite.

  6. Development of cutting techniques of steel pipe by wire sawing

    International Nuclear Information System (INIS)

    Kamiyama, Yoshinori; Inai, Shinsuke

    2004-01-01

    A cutting method has a high cutting efficiency and enable cutting in safe. A wire saw cutting method is used for dismantling of massive concrete structures such as nuclear power plants with an effective and safe mean. In the case of dismantling of structures with multiple pipes installed at these facilities, an effective method is also demanded. If a wire saw method to remotely cut target objects in a large block in bulk is applicable, it will be expected an effective dismantling work under severe conditions with radioactivity. Although the wire saw method has adaptability for any shapes of cutting target objects and is widely adopted in dismantling of concrete constructs, it has few actual achievements in dismantling of steel structures such as steel pipe bundle. This study aims to verify its cutting characteristics and adaptability as a cutting method by conducting a cutting basic test to develop a diamond wire saw method to efficiently cut constructs with multiple pipes in a bundle. The test proved that a wire saw cutting method apply to dismantle structures with steel pipe bundle. A wire saw for metal cutting is adaptable in dismantling of bundle of thick carbon steel and stainless steel pipes. And also a wire saw for concrete cutting is adaptable in dismantling of pipe bundle structure with a mortar. (author)

  7. Stretchable glucose biofuel cell with wirings made of multiwall carbon nanotubes

    International Nuclear Information System (INIS)

    Fujimagari, Yusuke; Nishioka, Yasushiro

    2015-01-01

    In this study, we fabricated a flexible and stretchable glucose-biofuel cell with wirings made of multi wall carbon nanotube (MWCNTs) on a polydimethylsiloxane substrate. The biofuel cell investigated consists of a porous carbon anode (area of 30 mm 2 ) modified by glucose oxidase and ferrocene, and a cathode (area of 30 mm 2 ) modified by bilirubin oxidase. The anode and the cathode were connected with the MWCNT wirings. The maximum power of 0.31 μW at 76.6 mV, which corresponds to a power density of 1.04 μW/cm 2 , was realized by immersing the biofuel cell in a phosphate buffer solution with a glucose concentration of 100 mM, at room temperature. (paper)

  8. Welding wire pressure sensor assembly

    Science.gov (United States)

    Morris, Timothy B. (Inventor); Milly, Peter F., Sr. (Inventor); White, J. Kevin (Inventor)

    1994-01-01

    The present invention relates to a device which is used to monitor the position of a filler wire relative to a base material being welded as the filler wire is added to a welding pool. The device is applicable to automated welding systems wherein nonconsumable electrode arc welding processes are utilized in conjunction with a filler wire which is added to a weld pool created by the electrode arc. The invention senses pressure deviations from a predetermined pressure between the filler wire and the base material, and provides electrical signals responsive to the deviations for actuating control mechanisms in an automatic welding apparatus so as to minimize the pressure deviation and to prevent disengagement of the contact between the filler wire and the base material.

  9. Percutaneous Kirschner wire (K-wire) fixation for humerus shaft fractures in children: A treatment concept.

    Science.gov (United States)

    Sahu, Ramji Lal

    2013-09-01

    Fractures of the humeral shaft are uncommon, representing less than 10 percent of all fractures in children. Humeral shaft fractures in children can be treated by immobilisation alone. A small number of fractures are unable to be reduced adequately or maintained in adequate alignment, and these should be treated surgically. In the present study, Kirschner wires (K-wire) were used to achieve a closed intramedullary fixation of humeral shaft fractures. The objective of this study was to evaluate the efficacy of intramedullary K-wires for the treatment of humeral shaft fracture in children. This prospective study was conducted in the Department of Orthopaedic surgery in M. M. Medical College from June 2005 to June 2010. Sixty-eight children with a mean age of 7.7 years (range, 2-14 years) were recruited from Emergency and out patient department having closed fracture of humerus shaft. All patients were operated under general anaesthesia. All patients were followed for 12 months. Out of 68 patients, 64 patients underwent union in 42-70 days with a mean of 56 days. Complications found in four patients who had insignificant delayed union which were united next 3 weeks. Intramedullary K-wires were removed after an average of 5 months without any complications. The results were excellent in 94.11% and good in 5% children. This technique is simple, quick to perform, safe and reliable and avoids prolonged hospitalization with good results and is economical.

  10. Forming Refractory Insulation On Copper Wire

    Science.gov (United States)

    Setlock, J.; Roberts, G.

    1995-01-01

    Alternative insulating process forms flexible coat of uncured refractory insulating material on copper wire. Coated wire formed into coil or other complex shape. Wire-coating apparatus forms "green" coat on copper wire. After wire coiled, heating converts "green" coat to refractory electrical insulator. When cured to final brittle form, insulating material withstands temperatures above melting temperature of wire. Process used to make coils for motors, solenoids, and other electrical devices to be operated at high temperatures.

  11. Control wiring diagrams

    International Nuclear Information System (INIS)

    McCauley, T.M.; Eskinazi, M.; Henson, L.L.

    1989-01-01

    This paper discusses the changes in electrical document requirements that occur when construction is complete and a generating station starts commercial operation. The needs of operations and maintenance (O and M) personnel are analyzed and contrasted with those of construction to illustrate areas in which the construction documents (drawings, diagrams, and databases) are difficult to use for work at an operating station. The paper discusses the O and M electrical documents that the Arizona Nuclear Power Project (ANPP) believes are most beneficial for the three operating units at Palo Verde; these are control wiring diagrams and an associated document cross-reference list. The benefits offered by these new, station O and M-oriented documents are weighted against the cost of their creation and their impact on drawing maintenance

  12. Material and biofilm load of K wires in toe surgery: titanium versus stainless steel.

    Science.gov (United States)

    Clauss, Martin; Graf, Susanne; Gersbach, Silke; Hintermann, Beat; Ilchmann, Thomas; Knupp, Markus

    2013-07-01

    Recurrence rates for toe deformity correction are high and primarily are attributable to scar contractures. These contractures may result from subclinical infection. We hypothesized that (1) recurrence of toe deformities and residual pain are related to low-grade infections from biofilm formation on percutaneous K wires, (2) biofilm formation is lower on titanium (Ti) K wires compared with stainless steel (SS) K wires, and (3) clinical outcome is superior with the use of Ti K wires compared with SS K wires. In this prospective nonrandomized, comparative study, we investigated 135 lesser toe deformities (61 patients; 49 women; mean ± SD age, 60 ± 15 years) temporarily fixed with K wires between August 2010 and March 2011 (81 SS, 54 Ti). K wires were removed after 6 weeks. The presence of biofilm-related infections was analyzed by sonication. High bacterial loads (> 500 colony-forming units [CFU]/mL) were detected on all six toes requiring revision before 6 months. Increased bacterial load was associated with pain and swelling but not recurrence of the deformity. More SS K wires had greater than 100 CFU/mL bacteria than Ti K wires. For K wires with a bacterial count greater than 100 CFU/mL, toes with Ti K wires had a lower recurrence rate, less pain, and less swelling than toes with SS K wires. Ti K wires showed superior clinical outcomes to SS K wires. This appears to be attributable to reduced infection rates. Although additional study is needed, we currently recommend the use of Ti K wires for the transfixation of toe deformities. Level II, therapeutic study. See Guidelines for Authors for a complete description of levels of evidence.

  13. Carbon Anode Materials

    Science.gov (United States)

    Ogumi, Zempachi; Wang, Hongyu

    Accompanying the impressive progress of human society, energy storage technologies become evermore urgent. Among the broad categories of energy sources, batteries or cells are the devices that successfully convert chemical energy into electrical energy. Lithium-based batteries stand out in the big family of batteries mainly because of their high-energy density, which comes from the fact that lithium is the most electropositive as well as the lightest metal. However, lithium dendrite growth after repeated charge-discharge cycles easily will lead to short-circuit of the cells and an explosion hazard. Substituting lithium metal for alloys with aluminum, silicon, zinc, and so forth could solve the dendrite growth problem.1 Nevertheless, the lithium storage capacity of alloys drops down quickly after merely several charge-discharge cycles because the big volume change causes great stress in alloy crystal lattice, and thus gives rise to cracking and crumbling of the alloy particles. Alternatively, Sony Corporation succeeded in discovering the highly reversible, low-voltage anode, carbonaceous material and commercialized the C/LiCoO2 rocking chair cells in the early 1990s.2 Figure 3.1 schematically shows the charge-discharge process for reversible lithium storage in carbon. By the application of a lithiated carbon in place of a lithium metal electrode, any lithium metal plating process and the conditions for the growth of irregular dendritic lithium could be considerably eliminated, which shows promise for reducing the chances of shorting and overheating of the batteries. This kind of lithium-ion battery, which possessed a working voltage as high as 3.6 V and gravimetric energy densities between 120 and 150 Wh/kg, rapidly found applications in high-performance portable electronic devices. Thus the research on reversible lithium storage in carbonaceous materials became very popular in the battery community worldwide.

  14. Development of Nb3Sn AC superconducting wire. Pt. 2

    International Nuclear Information System (INIS)

    Kasahara, Hobun; Torii, Shinji; Akita, Shirabe; Ueda, Kiyotaka; Kubota, Yoji; Yasohama, Kazuhiko; Kobayashi, Hisayasu; Ogasawara, Takeshi.

    1993-01-01

    For the realization of superconducting power apparatus, it is important that the development of highly stable superconducting cables. Nb 3 Sn wire has higher critical temperature than NbTi wire. Therefore, it is possible to make highly stable superconducting wires. In this report, we examine a manufacturing process of Ac Nb 3 Sn wire. This manufacturing process has four times higher critical current density than conventional processes. We have made a 400 kVA class AC coil with React and Wind method. The loss density of this coil was 20MW/m 3 at just before the quench. In this case, the temperature of cable increased about 3.8 K. This means that the Nb 3 Sn coil has a very high stability. (author)

  15. Electromagnetic characteristic of twin-wire indirect arc welding

    Science.gov (United States)

    Shi, Chuanwei; Zou, Yong; Zou, Zengda; Wu, Dongting

    2015-01-01

    Traditional welding methods are limited in low heat input to workpiece and high welding wire melting rate. Twin-wire indirect arc(TWIA) welding is a new welding method characterized by high melting rate and low heat input. This method uses two wires: one connected to the negative electrode and another to the positive electrode of a direct-current(DC) power source. The workpiece is an independent, non-connected unit. A three dimensional finite element model of TWIA is devised. Electric and magnetic fields are calculated and their influence upon TWIA behavior and the welding process is discussed. The results show that with a 100 A welding current, the maximum temperature reached is 17 758 K, arc voltage is 14.646 V while maximum current density was 61 A/mm2 with a maximum Lorene force of 84.5 μN. The above mentioned arc parameters near the cathode and anode regions are far higher than those in the arc column region. The Lorene force is the key reason for plasma velocity direction deviated and charged particles flowed in the channel formed by the cathode, anode and upper part of arc column regions. This led to most of the energy being supplied to the polar and upper part of arc column regions. The interaction between electric and magnetic fields is a major determinant in shaping TWIA as well as heat input on the workpiece. This is a first study of electromagnetic characteristics and their influences in the TWIA welding process, and it is significant in both a theoretical and practical sense.

  16. Identification of relativistic charged particles by means of ionisation energy loss in proportional counters

    International Nuclear Information System (INIS)

    Bateman, J.E.

    1978-12-01

    A method is described of obtaining a useful degree of improvement in the particle discrimination capability of multiwire proportional counters. The normal multiple sampling technique using a suitable bias to combat the small magnitude of the relativistic rise in the ionization energy loss and the wide pulse height distributions obtained in thin gas counters requires a large number of samples for useful discrimination. In the method reported, this number is reduced by suppressing the delta ray contribution to the total charge pulse from the anode wire. A monte carlo model convoluting the 'delta ray suppressed' data from a one sample detector shows that when it is required to separate pions and electrons at 1 GeV/C with a detection efficiency for the electron of 90%, a 'suppressor' circuit can achieve a pion rejection ratio of 250:1 with 82 samples, whereas the truncated mean approach (lowest 70% of samples) requires 100 samples. (UK)

  17. Electrochemical Thinning for Anodic Aluminum Oxide and Anodic Titanium Oxide

    Energy Technology Data Exchange (ETDEWEB)

    Lee, In Hae; Jo, Yun Kyoung; Kim, Yong Tae; Tak, Yong Sug; Choi, Jin Sub [Inha University, Incheon (Korea, Republic of)

    2012-05-15

    For given electrolytes, different behaviors of anodic aluminum oxide (AAO) and anodic titanium oxide (ATO) during electrochemical thinning are explained by ionic and electronic current modes. Branched structures are unavoidably created in AAO since the switch of ionic to electronic current is slow, whereas the barrier oxide in ATO is thinned without formation of the branched structures. In addition, pore opening can be possible in ATO if chemical etching is performed after the thinning process. The thinning was optimized for complete pore opening in ATO and potential-current behavior is interpreted in terms of ionic current-electronic current switching.

  18. Plasma chemistry in wire chambers

    International Nuclear Information System (INIS)

    Wise, J.

    1990-05-01

    The phenomenology of wire chamber aging is discussed and fundamentals of proportional counters are presented. Free-radical polymerization and plasma polymerization are discussed. The chemistry of wire aging is reviewed. Similarities between wire chamber plasma (>1 atm dc-discharge) and low-pressure rf-discharge plasmas, which have been more widely studied, are suggested. Construction and use of a system to allow study of the plasma reactions occurring in wire chambers is reported. A proportional tube irradiated by an 55 Fe source is used as a model wire chamber. Condensable species in the proportional tube effluent are concentrated in a cryotrap and analyzed by gas chromatography/mass spectrometry. Several different wire chamber gases (methane, argon/methane, ethane, argon/ethane, propane, argon/isobutane) are tested and their reaction products qualitatively identified. For all gases tested except those containing methane, use of hygroscopic filters to remove trace water and oxygen contaminants from the gas resulted in an increase in the average molecular weight of the products, consistent with results from low-pressure rf-discharge plasmas. It is suggested that because water and oxygen inhibit polymer growth in the gas phase that they may also reduce polymer deposition in proportional tubes and therefore retard wire aging processes. Mechanistic implications of the plasma reactions of hydrocarbons with oxygen are suggested. Unresolved issues in this work and proposals for further study are discussed

  19. High-current magnetron discharge with magnetic insulation of anode

    International Nuclear Information System (INIS)

    Bizyukov, A.A.; Sereda, K.N.; Sleptsov, V.V.

    2008-01-01

    In magnetron discharge at currents higher then critical which magnitude is in the range of 15...30 A the transition from glow discharge in transverse magnetic field to arc discharge occurs. In the present time the problem of arc blowout is solved at the expense of pulse and HF power supply applying. In this paper the alternative method of limiting current of magnetron discharge increasing at the expense of increasing of discharge gap resistance by means of additional anode layer transverse magnetic field and arc current interruption by sectioning of current collector of anode surface is carrying out

  20. Titanium nitride stamps replicating nanoporous anodic alumina films

    International Nuclear Information System (INIS)

    Navas, D; Sanchez, O; Asenjo, A; Jaafar, M; Baldonedo, J L; Vazquez, M; Hernandez-Velez, M

    2007-01-01

    Fabrication of nanostructured TiN films by magnetron sputtering using nanoporous anodic alumina films (NAAF) as substrates is reported. These hard nanostructured films could be used for pre-patterning aluminium foils and to obtain nanoporous films replicating the starting NAAF over a wide range of pore diameters and spacings. Pre-patterned Al foils are obtained by compression with pressures lower than those previously reported, then a new NAAF can be fabricated by means of only one anodization process. As an example, one of the TiN stamps was used for pre-patterning an Al foil at a pressure of 200 kg cm -2 and then it was anodized in oxalic acid solution obtaining the corresponding replica of the starting NAAF

  1. Anodic selective functionalization of cyclic amine derivatives

    OpenAIRE

    Onomura, Osamu

    2012-01-01

    Anodic reactions are desirable methods from the viewpoint of Green Chemistry, since no toxic oxidants are necessary for the oxidation of organic molecules. This review introduces usefulness of anodic oxidation and successive reaction for selective functionalization of cyclic amine derivatives.

  2. Timing characteristics of a two-dimensional multi-wire cathode strip detector for fission fragments

    International Nuclear Information System (INIS)

    Vind, R.P.; Joshi, B.N.; Jangale, R.V.; Inkar, A.L.; Prajapati, G.K.; John, B.V.; Biswas, D.C.

    2014-01-01

    In the recent past, a gas filled two-dimensional multi-wire cathode strip detector (MCSD) was developed for the detection of fission fragments (FFs). The position resolution was found to be about 1.0 and 1.5 mm in X and Y directions respectively. The detector has three electrode planes consisting of cathode strip (X-plane), anode wires and split-cathode wires (Y-plane). Each thin wire of the anode plane placed between the two cathode planes is essentially independent and behaves like a proportional counter. The construction of the detector in detail has been given in our earlier paper. The position information has been obtained by employing high impedance discrete delay line read out method for extracting position information in X and Y-directions. In this work, the timing characteristics of MCSD detector are reported to explore the possible use of this detector for the measurement of the mass of the fission fragments produced in heavy ion induced fission reactions

  3. Modeling birds on wires.

    Science.gov (United States)

    Aydoğdu, A; Frasca, P; D'Apice, C; Manzo, R; Thornton, J M; Gachomo, B; Wilson, T; Cheung, B; Tariq, U; Saidel, W; Piccoli, B

    2017-02-21

    In this paper we introduce a mathematical model to study the group dynamics of birds resting on wires. The model is agent-based and postulates attraction-repulsion forces between the interacting birds: the interactions are "topological", in the sense that they involve a given number of neighbors irrespective of their distance. The model is first mathematically analyzed and then simulated to study its main properties: we observe that the model predicts birds to be more widely spaced near the borders of each group. We compare the results from the model with experimental data, derived from the analysis of pictures of pigeons and starlings taken in New Jersey: two different image elaboration protocols allow us to establish a good agreement with the model and to quantify its main parameters. We also discuss the potential handedness of the birds, by analyzing the group organization features and the group dynamics at the arrival of new birds. Finally, we propose a more refined mathematical model that describes landing and departing birds by suitable stochastic processes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Corrosion behavior of ion implanted nickel-titanium orthodontic wire in fluoride mouth rinse solutions.

    Science.gov (United States)

    Iijima, Masahiro; Yuasa, Toshihiro; Endo, Kazuhiko; Muguruma, Takeshi; Ohno, Hiroki; Mizoguchi, Itaru

    2010-01-01

    This study investigated the corrosion properties of ion implanted nickel-titanium wire (Neo Sentalloy Ionguard) in artificial saliva and fluoride mouth rinse solutions (Butler F Mouthrinse, Ora-Bliss). Non ion implanted nickel-titanium wire (Neo Sentalloy) was used as control. The anodic corrosion behavior was examined by potentiodynamic polarization measurement. The surfaces of the specimens were examined with SEM. The elemental depth profiles were characterized by XPS. Neo Sentalloy Ionguard in artificial saliva and Butler F Mouthrinse (500 ppm) had a lower current density than Neo Sentalloy. In addition, breakdown potential of Neo Sentalloy Ionguard in Ora-Bliss (900 ppm) was much higher than that of Neo Sentalloy although both wires had similar corrosion potential in Ora-Bliss (450 and 900 ppm). The XPS results for Neo Sentalloy Ionguard suggested that the layers consisted of TiO(2) and TiN were present on the surface and the layers may improve the corrosion properties.

  5. Inhomogeneous wire explosion in water

    International Nuclear Information System (INIS)

    Hwangbo, C.K.; Kong, H.J.; Lee, S.S.

    1980-01-01

    Inhomogeneous processes are observed in underwater copper wire explosion induced by a condensed capacitor discharge. The wire used is 0.1 mm in diameter and 10 mm long, and the capacitor of 2 μF is charged to 5 KV. A N 2 laser is used for the diagnostic of spatial extension of exploding copper vapour. The photographs obtained in this experiment show unambiguously the inhomogeneous explosion along the exploding wire. The quenching of plasma by the surrounding water inhibits the expansion of the vapour. It is believed the observed inhomogeneous explosion along the wire is located and localized around Goronkin's striae, which was first reported by Goronkin and discussed by Froengel as a pre-breakdown phenomenon. (author)

  6. Topology Optimized Photonic Wire Splitters

    DEFF Research Database (Denmark)

    Frandsen, Lars Hagedorn; Borel, Peter Ingo; Jensen, Jakob Søndergaard

    2006-01-01

    Photonic wire splitters have been designed using topology optimization. The splitters have been fabricated in silicon-on-insulator material and display broadband low-loss 3dB splitting in a bandwidth larger than 100 nm.......Photonic wire splitters have been designed using topology optimization. The splitters have been fabricated in silicon-on-insulator material and display broadband low-loss 3dB splitting in a bandwidth larger than 100 nm....

  7. Composite conductor containing superconductive wires

    Energy Technology Data Exchange (ETDEWEB)

    Larson, W.L.; Wong, J.

    1974-03-26

    A superconductor cable substitute made by coworking multiple rods of superconductive niobium--titanium or niobium--zirconium alloy with a common copper matrix to extend the copper and rods to form a final elongated product which has superconductive wires distributed in a reduced cross-section copper conductor with a complete metallurgical bond between the normal-conductive copper and the superconductor wires contained therein is described. The superconductor cable can be in the form of a tube.

  8. Anode Fall Formation in a Hall Thruster

    International Nuclear Information System (INIS)

    Dorf, Leonid A.; Raitses, Yevgeny F.; Smirnov, Artem N.; Fisch, Nathaniel J.

    2004-01-01

    As was reported in our previous work, accurate, nondisturbing near-anode measurements of the plasma density, electron temperature, and plasma potential performed with biased and emissive probes allowed the first experimental identification of both electron-repelling (negative anode fall) and electron-attracting (positive anode fall) anode sheaths in Hall thrusters. An interesting new phenomenon revealed by the probe measurements is that the anode fall changes from positive to negative upon removal of the dielectric coating, which appears on the anode surface during the course of Hall thruster operation. As reported in the present work, energy dispersion spectroscopy analysis of the chemical composition of the anode dielectric coating indicates that the coating layer consists essentially of an oxide of the anode material (stainless steel). However, it is still unclear how oxygen gets into the thruster channel. Most importantly, possible mechanisms of anode fall formation in a Hall thruster with a clean and a coated anodes are analyzed in this work; practical implication of understanding the general structure of the electron-attracting anode sheath in the case of a coated anode is also discussed

  9. Rotating anode X-ray source

    International Nuclear Information System (INIS)

    Wittry, D.B.

    1979-01-01

    A rotating anode x-ray source is described which consists of a rotary anode disc including a target ring and a chamber within the anode disc. Liquid is evaporated into the chamber from the target ring to cool the target and a method is provided of removing the latent heat of the vapor. (U.K.)

  10. HTS Wire Development Workshop: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    1994-07-01

    The 1994 High-Temperature Superconducting Wire Development Workshop was held on February 16--17 at the St. Petersburg Hilton and Towers in St. Petersburg, Florida. The meeting was hosted by Florida Power Corporation and sponsored by the US Department of Energy`s Superconductivity Program for Electric Power Systems. The meeting focused on recent high-temperature superconducting wire development activities in the Department of Energy`s Superconductivity Systems program. The meeting opened with a general discussion on the needs and benefits of superconductivity from a utility perspective, the US global competitiveness position, and an outlook on the overall prospects of wire development. The meeting then focused on four important technology areas: Wire characterization: issues and needs; technology for overcoming barriers: weak links and flux pinning; manufacturing issues for long wire lengths; and physical properties of HTS coils. Following in-depth presentations, working groups were formed in each technology area to discuss the most important current research and development issues. The working groups identified research areas that have the potential for greatly enhancing the wire development effort. These areas are discussed in the summary reports from each of the working groups. This document is a compilation of the workshop proceedings including all general session presentations and summary reports from the working groups.

  11. Wire Scanner Motion Control Card

    CERN Document Server

    Forde, S E

    2006-01-01

    Scientists require a certain beam quality produced by the accelerator rings at CERN. The discovery potential of LHC is given by the reachable luminosity at its interaction points. The luminosity is maximized by minimizing the beam size. Therefore an accurate beam size measurement is required for optimizing the luminosity. The wire scanner performs very accurate profile measurements, but as it can not be used at full intensity in the LHC ring, it is used for calibrating other profile monitors. As the current wire scanner system, which is used in the present CERN accelerators, has not been made for the required specification of the LHC, a new design of a wire scanner motion control card is part of the LHC wire scanner project. The main functions of this card are to control the wire scanner motion and to acquire the position of the wire. In case of further upgrades at a later stage, it is required to allow an easy update of the firmware, hence the programmable features of FPGAs will be used for this purpose. The...

  12. 1 mil gold bond wire study.

    Energy Technology Data Exchange (ETDEWEB)

    Huff, Johnathon; McLean, Michael B.; Jenkins, Mark W.; Rutherford, Brian Milne

    2013-05-01

    In microcircuit fabrication, the diameter and length of a bond wire have been shown to both affect the current versus fusing time ratio of a bond wire as well as the gap length of the fused wire. This study investigated the impact of current level on the time-to-open and gap length of 1 mil by 60 mil gold bond wires. During the experiments, constant current was provided for a control set of bond wires for 250ms, 410ms and until the wire fused; non-destructively pull-tested wires for 250ms; and notched wires. The key findings were that as the current increases, the gap length increases and 73% of the bond wires will fuse at 1.8A, and 100% of the wires fuse at 1.9A within 60ms. Due to the limited scope of experiments and limited data analyzed, further investigation is encouraged to confirm these observations.

  13. Tungsten behaviour under anodic polarization

    International Nuclear Information System (INIS)

    Vas'ko, A.T.; Patsyuk, F.N.

    1980-01-01

    Electrochemical investigations have been carried out to identify the state of elements of the tungsten galvanic coating. Active zones on anode polarization curves in the hydrogen region of galvanic tungsten are established. The difference in the behaviour of monocrystal and galvanic tungsten electrodes is shown to be connected with the oxidation of hydrogen in the galvanic sediment

  14. ORDERED POROUS ANODIC ALUMINUM OXIDE FILMS MADE BY TWO-STEP ANODIZATION

    OpenAIRE

    HANSONG XUE; HUAJI LI; YU YI; HUIFANG HU

    2007-01-01

    Porous Anodic Aluminum Oxide (AAO) films were prepared by two-step anodizing in sulfuric and oxalic acid solutions and observed by transmission electron microscope (TEM) and X-ray diffraction. The results show that the form of AAO film is affected by the varieties and concentrations of electrolyte, anodizing voltage, and the anodizing time; the formation and evolution processes of the AAO film are relative with the anodizing voltage severely, and the appropriate voltage is helpful to the orde...

  15. Ignition and spread of electrical wire fires

    OpenAIRE

    Huang, Xinyan

    2012-01-01

    Ignition of electrical wires by external heating is investigated in order to gain a better understanding of the initiation of electrical-wire fires. An ignition-to- spread model is developed to systematically explain ignition and the following transition to spread. The model predicts that for a higher-conductance wire it is more difficult to achieve ignition and the weak flame may extinguish during the transition phase because of a large conductive heat loss along the wire core. Wires with tw...

  16. Ellipsometry of anodic film growth

    Energy Technology Data Exchange (ETDEWEB)

    Smith, C.G.

    1978-08-01

    An automated computer interpretation of ellisometer measurements of anodic film growth was developed. Continuous mass and charge balances were used to utilize more fully the time dependence of the ellipsometer data and the current and potential measurements. A multiple-film model was used to characterize the growth of films which proceeds via a dissolution--precipitation mechanism; the model also applies to film growth by adsorption and nucleation mechanisms. The characteristic parameters for film growth describe homogeneous and heterogeneous crystallization rates, film porosities and degree of hydration, and the supersaturation of ionic species in the electrolyte. Additional descriptions which may be chosen are patchwise film formation, nonstoichiometry of the anodic film, and statistical variations in the size and orientation of secondary crystals. Theories were developed to describe the optical effects of these processes. An automatic, self-compensating ellipsometer was used to study the growth in alkaline solution of anodic films on silver, cadmium, and zinc. Mass-transport conditions included stagnant electrolyte and forced convection in a flow channel. Multiple films were needed to characterize the optical properties of these films. Anodic films grew from an electrolyte supersatuated in the solution-phase dissolution product. The degree of supersaturation depended on transport conditions and had a major effect on the structure of the film. Anodic reaction rates were limited by the transport of charge carriers through a primary surface layer. The primary layers on silver, zinc, and cadmium all appeared to be nonstoichiometric, containing excess metal. Diffusion coefficients, transference numbers, and the free energy of adsorption of zinc oxide were derived from ellipsometer measurements. 97 figures, 13 tables, 198 references.

  17. Anode sheath transition in an anodic arc for synthesis of nanomaterials

    Science.gov (United States)

    Nemchinsky, V. A.; Raitses, Y.

    2016-06-01

    The arc discharge with ablating anode or so-called anodic arc is widely used for synthesis of nanomaterials, including carbon nanotubes and fullerens, metal nanoparticles etc. We present the model of this arc, which confirms the existence of the two different modes of the arc operation with two different anode sheath regimes, namely, with negative anode sheath and with positive anode sheath. It was previously suggested that these regimes are associated with two different anode ablating modes—low ablation mode with constant ablation rate and the enhanced ablation mode (Fetterman et al 2008 Carbon 46 1322). The transition of the arc operation from low ablation mode to high ablation mode is determined by the current density at the anode. The model can be used to self-consistently determine the distribution of the electric field, electron density and electron temperature in the near-anode region of the arc discharge. Simulations of the carbon arc predict that for low arc ablating modes, the current is driven mainly by the electron diffusion to the anode. For positive anode sheath, the anode voltage is close to the ionization potential of anode material, while for negative anode sheath, the anode voltage is an order of magnitude smaller. It is also shown that the near-anode plasma, is far from the ionization equilibrium.

  18. Anode sheath transition in an anodic arc for synthesis of nanomaterials

    International Nuclear Information System (INIS)

    Nemchinsky, V A; Raitses, Y

    2016-01-01

    The arc discharge with ablating anode or so-called anodic arc is widely used for synthesis of nanomaterials, including carbon nanotubes and fullerens, metal nanoparticles etc. We present the model of this arc, which confirms the existence of the two different modes of the arc operation with two different anode sheath regimes, namely, with negative anode sheath and with positive anode sheath. It was previously suggested that these regimes are associated with two different anode ablating modes—low ablation mode with constant ablation rate and the enhanced ablation mode (Fetterman et al 2008 Carbon 46 1322). The transition of the arc operation from low ablation mode to high ablation mode is determined by the current density at the anode. The model can be used to self-consistently determine the distribution of the electric field, electron density and electron temperature in the near-anode region of the arc discharge. Simulations of the carbon arc predict that for low arc ablating modes, the current is driven mainly by the electron diffusion to the anode. For positive anode sheath, the anode voltage is close to the ionization potential of anode material, while for negative anode sheath, the anode voltage is an order of magnitude smaller. It is also shown that the near-anode plasma, is far from the ionization equilibrium. (paper)

  19. Experimental study of parallel multi-tungsten wire Z-pinch

    International Nuclear Information System (INIS)

    Huang Xianbin; China Academy of Engineering Physics, Mianyang; Lin Libin; Yang Libing; Deng Jianjun; Gu Yuanchao; Ye Shican; Yue Zhengpu; Zhou Shaotong; Li Fengping; Zhang Siqun

    2005-01-01

    The study of three parallel tungsten wire loads and five parallel tungsten wire loads implosion experiment on accelerator 'Yang' are reported. Tungsten wires (φ17 μm) with separation of 1 mm were used. The pinch was driven by a 350 kA peak current, 80 ns 10%-90% rise time. By means of pinhole camera and X-ray diagnostics technology, a non-uniform plasma column is formed among the wires and soft X-ray pulse are observed. the change of load current are analyzed, the development of sausage instability and kink instability, 'hot spot' effect and dispersion spot for plasma column are also discussed. (authors)

  20. An overview of NASA's digital fly-by-wire technology development program

    Science.gov (United States)

    Jarvis, C. R.

    1976-01-01

    The feasibility of using digital fly by wire systems to control aircraft was demonstrated by developing and flight testing a single channel system, which used Apollo hardware, in an F-8C test airplane. This is the first airplane to fly with a digital fly by wire system as its primary means of control and with no mechanical reversion capability. The development and flight test of a triplex digital fly by wire system, which will serve as an experimental prototype for future operational digital fly by wire systems, are underway.

  1. A digital fly-by-wire technology development program using an F-8C test aircraft

    Science.gov (United States)

    Jarvis, C. R.

    1974-01-01

    A digital fly-by-wire flight control system has been installed in an F-8C test airplane and has undergone extensive ground and flight testing as part of an overall program to develop digital fly-by-wire technology. This is the first airplane to fly with a digital fly-by-wire system as its primary means of control and with no mechanical reversion capability. Forty-two test flights were made for a total flight time of 57 hours. Six pilots participated in the evaluation. This paper presents an overview of the digital fly-by-wire program and discusses some of the flight-test results.

  2. The influence of drawing speed on surface topography of high carbon steel wires

    Directory of Open Access Journals (Sweden)

    M. Suliga

    2017-01-01

    Full Text Available In this work the influence of the drawing speed on surface topography of high carbon steel wires has been assessed. The drawing process of f 5,5 mm wire rod to the final wire of f 1,7 mm was conducted in 12 passes by means of a modern Koch multi-die drawing machine. The drawing speeds in the last passes were: 5, 10, 15, 20 and 25 m/s. For final wires f 1,7 mm the three-dimensional analysis of the wire surface topography investigation was determined. It has been proved that the wire topography in the drawing process is characterized by a random anisotropy and the amount of directing the geometrical structure of the surface depends on the drawing speed.

  3. Anisotropy of energy losses in high-current Z-pinches produced by the implosion of cylindrical tungsten wire arrays

    Science.gov (United States)

    Aleksandrov, V. V.; Volkov, G. S.; Grabovski, E. V.; Gritsuk, A. N.; Lakhtyushko, N. I.; Medovshchikov, S. F.; Oleinik, G. M.; Svetlov, E. V.

    2014-02-01

    Results are presented from measurements of the anisotropy of energy losses in high-current Z-pinches produced by the implosion of wire arrays at the ANGARA-5-1 facility at load currents of up to 4MA. The energy losses were measured in the radial direction and along the pinch axis from the anode side. The main diagnostics were time-integrated thermocouple calorimeters, nanosecond X-ray diodes (XRDs) with different filters, and a foil radiation calorimeter with a time resolution of 2 μs. The azimuthal anisotropy of energy losses was measured for different wire array configurations and different shapes of the high-voltage electrode. The presence of strong initial azimuthal inhomogeneity of the wire mass distribution (sectioned arrays), as well as the use of conical electrodes instead of plane ones, does not increase the azimuthal inhomogeneity of the total energy losses. For cylindrical wire arrays, energy losses in the radial direction are compared with those along the pinch axis. According to XRD and calorimetric measurements, the radiation yield per unit solid angle along the pinch axis is two to three times lower than that in the radial direction. In the axial direction, the energy flux density of the expanding plasma is two to three times lower than the radiation intensity. The measured radiation yield across the pinch is 2.5-5 kJ/sr, while that along the pinch axis is 1-2 kJ/sr. The results obtained by means of XRDs agree to within measurement errors with those obtained using the radiation calorimeter. It is found that the energy per unit solid angle carried by the expanding plasma in the radial direction does not exceed 10% of the soft X-ray yield. Analysis of the structure of time-integrated pinhole images and signals from the radial and axial XRDs shows that radiation emitted in the radial direction from the hot central region of the pinch is partially screened by the less dense surrounding plasma halo, whereas radiation emitted in the axial direction is a

  4. Magnesium sacrificial anode behavior at elevated temperature

    International Nuclear Information System (INIS)

    Othman, Mohsen Othman

    2006-01-01

    Magnesium sacrificial anode coupled to mild steel was tasted in sodium chloride and tap water environments at elevated temperatures. The anode failed to protect the mild steel specimens in tap water environment at all temperatures specified. This was partly due to low conductivity of this medium. The temperature factor did not help to activate the anode in this medium. In sodium chloride environment the anode demonstrated good protection for steel cathodes. The weight loss was high for magnesium in sodium chloride environment particularly beyond 60 degree centigrade. In tap water environment the weight loss was negligible for the anode. It also suffered localized shallow pitting corrosion. Magnesium anode cannot be utilized where high temperature is involved particularly in high conductivity mediums. Protection of structures containing high resistivity waters is not feasible using sacrificial anode system. (author)

  5. Virtual Instrument Systems in Reality (VISIR) for Remote Wiring and Measurement of Electronic Circuits on Breadboard

    Science.gov (United States)

    Tawfik, M.; Sancristobal, E.; Martin, S.; Gil, R.; Diaz, G.; Colmenar, A.; Peire, J.; Castro, M.; Nilsson, K.; Zackrisson, J.; Hakansson, L.; Gustavsson, I.

    2013-01-01

    This paper reports on a state-of-the-art remote laboratory project called Virtual Instrument Systems in Reality (VISIR). VISIR allows wiring and measuring of electronic circuits remotely on a virtual workbench that replicates physical circuit breadboards. The wiring mechanism is developed by means of a relay switching matrix connected to a PCI…

  6. Structural Investigations of GaAs/AIAs quantum wires and quantum dots

    NARCIS (Netherlands)

    Darhuber, A.A.; Bauer, G.; Wang, P.D.; Song, Y.P.; Sotomayor Torres, C.M.; Holland, M.C.

    1995-01-01

    We have investigated periodic arrays of dry etched 150 nm and 175 nm wide, (110) oriented GaAs/AlAs quantum wires and quantum dots by means of reciprocal-space mapping using triple-axis X-ray diffractometry. From the X-ray data the lateral periodicity of wires and dots, the etch depth and the angle

  7. Technical innovation: Wire guided ductography

    International Nuclear Information System (INIS)

    Aslam, Muhammad Ovais; Ramadan, Salwa; Al-Adwani, Muneera

    2012-01-01

    To introduce an easy and improved technique for performing ductography using inexpensive easily available intravenous cannula. Guide wire: Prolene/Surgipro 3-0 (Polypropylene mono filament non-absorbable surgical suture). A plastic 26 G intravenous cannula. Disposable syringe 2 ml. Non-ionic contrast (low density like Omnipaque 240 mg I/I). The guide wire (Prolene 3-0) is introduced into the orifice of the duct heaving discharge and 26 G intravenous plastic cannula is then passed over the guide wire. The cannula is advanced in the duct over guide wire by spinning around it. When the cannula is in place the guide wire is removed. Any air bubbles present in the hub of the cannula can be displaced by filling the hub from bottom upwards with needle attached to contrast filled syringe. 0.2–0.4 ml non-ionic contrast is gently injected. Injection is stopped if the patient has pain or burning. Magnified cranio-caudal view is obtained with cannula tapped in place and gentle compression is applied with the patient sitting. If duct filling is satisfactory a 90* lateral view is obtained. A successful adaptation of the technique for performing ductography is presented. The materials required for the technique are easily available in most radiology departments and are inexpensive, thus making the procedure comfortable for the patient and radiologist with considerable cost effectiveness.

  8. Californium Recovery from Palladium Wire

    Energy Technology Data Exchange (ETDEWEB)

    Burns, Jon D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2014-08-01

    The recovery of 252Cf from palladium-252Cf cermet wires was investigated to determine the feasibility of implementing it into the cermet wire production operation at Oak Ridge National Laboratory’s Radiochemical Engineering Development Center. The dissolution of Pd wire in 8 M HNO3 and trace amounts of HCl was studied at both ambient and elevated temperatures. These studies showed that it took days to dissolve the wire at ambient temperature and only 2 hours at 60°C. Adjusting the ratio of the volume of solvent to the mass of the wire segment showed little change in the kinetics of dissolution, which ranged from 0.176 mL/mg down to 0.019 mL/mg. A successful chromatographic separation of 153Gd, a surrogate for 252Cf, from Pd was demonstrated using AG 50x8 cation exchange resin with a bed volume of 0.5 mL and an internal diameter of 0.8 cm.

  9. Ultra-High Density Single Nanometer-Scale Anodic Alumina Nanofibers Fabricated by Pyrophosphoric Acid Anodizing

    Science.gov (United States)

    Kikuchi, Tatsuya; Nishinaga, Osamu; Nakajima, Daiki; Kawashima, Jun; Natsui, Shungo; Sakaguchi, Norihito; Suzuki, Ryosuke O.

    2014-12-01

    Anodic oxide fabricated by anodizing has been widely used for nanostructural engineering, but the nanomorphology is limited to only two oxides: anodic barrier and porous oxides. Therefore, the discovery of an additional anodic oxide with a unique nanofeature would expand the applicability of anodizing. Here we demonstrate the fabrication of a third-generation anodic oxide, specifically, anodic alumina nanofibers, by anodizing in a new electrolyte, pyrophosphoric acid. Ultra-high density single nanometer-scale anodic alumina nanofibers (1010 nanofibers/cm2) consisting of an amorphous, pure aluminum oxide were successfully fabricated via pyrophosphoric acid anodizing. The nanomorphologies of the anodic nanofibers can be controlled by the electrochemical conditions. Anodic tungsten oxide nanofibers can also be fabricated by pyrophosphoric acid anodizing. The aluminum surface covered by the anodic alumina nanofibers exhibited ultra-fast superhydrophilic behavior, with a contact angle of less than 1°, within 1 second. Such ultra-narrow nanofibers can be used for various nanoapplications including catalysts, wettability control, and electronic devices.

  10. Selective formation of porous layer on n-type InP by anodic etching combined with scratching

    International Nuclear Information System (INIS)

    Seo, Masahiro; Yamaya, Tadafumi

    2005-01-01

    The selective formation of porous layer on n-type InP (001) surface was investigated by using scratching with a diamond scriber followed by anodic etching in deaerated 0.5M HCl. Since the InP specimen was highly doped, the anodic etching proceeded in the dark. The potentiodynamic polarization showed the anodic current shoulder in the potential region between 0.8 and 1.3V (SHE) for the scratched area in addition to the anodic current peak at 1.7V (SHE) for the intact area. The selective formation of porous layer on the scratched are was brought by the anodic etching at a constant potential between 1.0 and 1.2V (SHE) for a certain time. The nucleation and growth of etch pits on intact area, however, took place when the time passed the critical value. The cross section of porous layer on the scratched area perpendicular to the [1-bar 10] or [110] scratching direction had a V-shape, while the cross section of porous layer on the scratched area parallel to the [1-bar 10] or [110] scratching direction had a band structure with stripes oriented to the [1-bar 11] or [11-bar 1] direction. Moreover, nano-scratching at a constant normal force in the micro-Newton range followed by anodic etching showed the possibility for selective formation of porous wire with a nano-meter width

  11. Selective formation of porous layer on n-type InP by anodic etching combined with scratching

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Masahiro [Graduate School of Engineering, Hokkaido University, Kita-13 Jo, Nishi-8 Chome, Kita-ku, Sapporo 060-8628 (Japan)]. E-mail: seo@elechem1-mc.eng.hokudai.ac.jp; Yamaya, Tadafumi [Graduate School of Engineering, Hokkaido University, Kita-13 Jo, Nishi-8 Chome, Kita-ku, Sapporo 060-8628 (Japan)

    2005-11-10

    The selective formation of porous layer on n-type InP (001) surface was investigated by using scratching with a diamond scriber followed by anodic etching in deaerated 0.5M HCl. Since the InP specimen was highly doped, the anodic etching proceeded in the dark. The potentiodynamic polarization showed the anodic current shoulder in the potential region between 0.8 and 1.3V (SHE) for the scratched area in addition to the anodic current peak at 1.7V (SHE) for the intact area. The selective formation of porous layer on the scratched are was brought by the anodic etching at a constant potential between 1.0 and 1.2V (SHE) for a certain time. The nucleation and growth of etch pits on intact area, however, took place when the time passed the critical value. The cross section of porous layer on the scratched area perpendicular to the [1-bar 10] or [110] scratching direction had a V-shape, while the cross section of porous layer on the scratched area parallel to the [1-bar 10] or [110] scratching direction had a band structure with stripes oriented to the [1-bar 11] or [11-bar 1] direction. Moreover, nano-scratching at a constant normal force in the micro-Newton range followed by anodic etching showed the possibility for selective formation of porous wire with a nano-meter width.

  12. Wired and Wireless Camera Triggering with Arduino

    Science.gov (United States)

    Kauhanen, H.; Rönnholm, P.

    2017-10-01

    Synchronous triggering is an important task that allows simultaneous data capture from multiple cameras. Accurate synchronization enables 3D measurements of moving objects or from a moving platform. In this paper, we describe one wired and four wireless variations of Arduino-based low-cost remote trigger systems designed to provide a synchronous trigger signal for industrial cameras. Our wireless systems utilize 315 MHz or 434 MHz frequencies with noise filtering capacitors. In order to validate the synchronization accuracy, we developed a prototype of a rotating trigger detection system (named RoTriDeS). This system is suitable to detect the triggering accuracy of global shutter cameras. As a result, the wired system indicated an 8.91 μs mean triggering time difference between two cameras. Corresponding mean values for the four wireless triggering systems varied between 7.92 and 9.42 μs. Presented values include both camera-based and trigger-based desynchronization. Arduino-based triggering systems appeared to be feasible, and they have the potential to be extended to more complicated triggering systems.

  13. FPGA based fast synchronous serial multi-wire links synchronization

    Science.gov (United States)

    Pozniak, Krzysztof T.

    2013-10-01

    The paper debates synchronization method of multi-wire, serial link of constant latency, by means of pseudo-random numbers generators. The solution was designed for various families of FPGA circuits. There were debated synchronization algorithm and functional structure of parameterized transmitter and receiver modules. The modules were realized in VHDL language in a behavioral form.

  14. On the Humidity Sensitivity of Hot-Wire Measurements

    DEFF Research Database (Denmark)

    Larsen, Søren Ejling; Busch, N. E.

    1980-01-01

    The influence of humidity changes on hot-wire measurements is discussed. Indications are that the humidity sensitivity parameters obtained by the authors in an earlier paper should be changed. This means, however, that the agreement between predicted and measured sensitivities ceases to exist...

  15. Reactions on carbon anodes in aluminium electrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Eidet, Trygve

    1997-12-31

    The consumption of carbon anodes and energy in aluminium electrolysis is higher than what is required theoretically. This thesis studies the most important of the reactions that consume anode materials. These reactions are the electrochemical anode reaction and the airburn and carboxy reactions. The first part of the thesis deals with the kinetics and mechanism of the electrochemical anode reaction using electrochemical impedance spectroscopy. The second part deals with air and carboxy reactivity of carbon anodes and studies the effects of inorganic impurities on the reactivity of carbon anodes in the aluminium industry. Special attention is given to sulphur since its effect on the carbon gasification is not well understood. Sulphur is always present in anodes, and it is expected that the sulphur content of available anode cokes will increase in the future. It has also been suggested that sulphur poisons catalyzing impurities in the anodes. Other impurities that were investigated are iron, nickel and vanadium, which are common impurities in anodes which have been reported to catalyze carbon gasification. 88 refs., 92 figs., 24 tabs.

  16. Recovery Of Valuable Metals In Tin-Based Anodic Slimes By Carbothermic Reaction

    OpenAIRE

    Han Chulwoong; Kim Young-Min; Son Seong Ho; Choi Hanshin; Kim Tae Bum; Kim Yong Hwan

    2015-01-01

    This study investigated the recovery of anodic slimes by carbothermic reaction in the temperature range of 973~1,273K and amount of carbon as a function of time. Tin anodic slime samples were collected from the bottom of the electrolytic cells during the electro-refining of tin. The anodic slimes are consisted of high concentrated tin, silver, copper and lead oxides. The kinetics of reduction were determined by means of the weight-loss measurement technique. In order to understand in detail o...

  17. Effect of Applied Potential on Fatigue Life of Electropolished Nitinol Wires

    Science.gov (United States)

    Sivan, Shiril; Di Prima, Matthew; Weaver, Jason D.

    2017-09-01

    Nitinol is used as a metallic biomaterial in medical devices due to its shape memory and pseudoelastic properties. The clinical performance of nitinol depends on factors which include the surface finish, the local environment, and the mechanical loads to which the device is subjected. Preclinical evaluations of device durability are performed with fatigue tests while electrochemical characterization methods such as ASTM F2129 are employed to evaluate corrosion susceptibility by determining the rest potential and breakdown potential. However, it is well established that the rest potential of a metal surface can vary with the local environment. Very little is known regarding the influence of voltage on fatigue life of nitinol. In this study, we developed a fatigue testing method in which an electrochemical system was integrated with a rotary bend wire fatigue tester. Samples were fatigued at various strain levels at electropotentials anodic and cathodic to the rest potential to determine if it could influence fatigue life. Wires at potentials negative to the rest potential had a significantly higher number of cycles to fracture than wires held at potentials above the breakdown potential. For wires for which no potential was applied, they had fatigue life similar to wires at negative potentials.

  18. Wire electric-discharge machining and other fabrication techniques

    Science.gov (United States)

    Morgan, W. H.

    1983-01-01

    Wire electric discharge machining and extrude honing were used to fabricate a two dimensional wing for cryogenic wind tunnel testing. Electric-discharge cutting is done with a moving wire electrode. The cut track is controlled by means of a punched-tape program and the cutting feed is regulated according to the progress of the work. Electric-discharge machining involves no contact with the work piece, and no mechanical force is exerted. Extrude hone is a process for honing finish-machined surfaces by the extrusion of an abrasive material (silly putty), which is forced through a restrictive fixture. The fabrication steps are described and production times are given.

  19. Performance of lithium alloy/lithium and calcium/lithium anodes in thionyl chloride cells

    Energy Technology Data Exchange (ETDEWEB)

    Keister, P.; Greenwood, J.M.; Holmes, C.F.; Mead, R.T.

    1985-08-01

    A laminar composite anode construction comprising an inner metal completely surrounded by Li foil was studied as a means of obtaining an end-of-life indicator in a thionyl chloride cell. Inner metals of Ca, 14-2.9 at.% Ca in Li alloys, and 6.7-2.1 at.% Mg in Li alloys were evaluated. Discharge characteristics of cells using these sandwich anodes as well as cells containing the inner anode material alone were determined. It was concluded that cells made with inner anode materials of Ca and Ca/Li alloys containing more than 7 at.% Ca showed promise as a means of obtaining a reliable end-of-life indication. (orig.).

  20. Bacterial colonization on coated and uncoated orthodontic wires: A prospective clinical trial.

    Science.gov (United States)

    Raji, Seyed Hamid; Shojaei, Hasan; Ghorani, Parinaz Saeidi; Rafiei, Elahe

    2014-11-01

    The advantages of coated orthodontic wires such as esthetic and their effects on reduced friction, corrosion and allergic reaction and the significant consequences of plaque accumulation on oral health encouraged us to assess bacterial colonization on these wires. A total of 18 (9 upper and 9 lower) epoxy resin coated 16 × 22 nickel-titanium wires (Spectra, GAC, USA) and 18 (9 upper and 9 lower) non-coated 16 × 22 nickel-titanium wires (Sentalloy, GAC, USA) with isolated packages were selected and sterilized before application. The samples were divided randomly between upper and lower arches in 18 patients and hence that every patient received one coated and one uncoated wire at the same time. Samples were removed and cut in equal lengths after 3 weeks and placed in phosphate buffered saline buffer. After separation of bacteria in trypsin and ethylenediaminetetraacetic acid solution, the diluted solution was cultured in blood agar and bacterial colony forming units were counted. Finally, the data was analyzed using the paired t-test and the significance was set at 0.05. Mean of bacterial colonization on uncoated wires was more than that of coated wires (P < 0.001). Bacterial plaque accumulation on epoxy resin coated nickel-titanium orthodontic wires is significantly lower than uncoated nickel-titanium wires.

  1. The effect of surface treatment and clinical use on friction in NiTi orthodontic wires.

    Science.gov (United States)

    Wichelhaus, Andrea; Geserick, Marc; Hibst, Raimund; Sander, Franz G

    2005-10-01

    Since the low friction of NiTi wires allows a rapid and efficient orthodontic tooth movement, the aim of this research was to investigate the friction and surface roughness of different commercially available superelastic NiTi wires before and after clinical use. The surface of all of the wires had been pre-treated by the manufacturer. Forty superelastic wires (Titanol Low Force, Titanol Low Force River Finish Gold, Neo Sentalloy, Neo Sentalloy Ionguard) of diameter 0.016 x 0.022 in. were tested. The friction for each type of NiTi archwire ligated into a commercial stainless steel bracket was determined with a universal testing machine. Having ligated the wire into the bracket, it could then be moved forward and backwards along a fixed archwire whilst a torquing moment was applied. The surface roughness was investigated using a profilometric measuring device on defined areas of the wire. Statistical data analysis was conducted by means of the Wilcoxon test. The results showed that initially, the surface treated wires demonstrated significantly (p < 0.01) less friction than the non-treated wires. The surface roughness showed no significant difference between the treated and the non-treated surfaces of the wires. All 40 wires however showed a significant increase in friction and surface roughness during clinical use. Whilst the Titanol Low Force River Finish Gold (Forestadent, Pforzheim, Germany) wires showed the least friction of all the samples and consequently should be more conservative on anchorage, the increase in friction of all the surface treated wires during orthodontic treatment almost cancels out this initial effect on friction. It is therefore recommended that surface treated NiTi orthodontic archwires should only be used once.

  2. Hot fuel examination facility element spacer wire-wrap machine

    International Nuclear Information System (INIS)

    Tobias, D.A.; Sherman, E.K.

    1989-01-01

    Nondestructive examinations of irradiated experimental fuel elements conducted in the Argonne National Laboratory Hot Fuel Examination Facility/North (HFEF/N) at the Idaho National Engineering Laboratory include laser and contact profilometry (element diameter measurements), electrical eddy-current testing for cladding and thermal bond defects, bow and length measurements, neutron radiography, gamma scanning, remote visual exam, and photography. Profilometry was previously restricted to spiral profilometry of the element to prevent interference with the element spacer wire wrapped in a helix about the Experimental Breeder Reactor II (EBR-II)-type fuel element from end to end. By removing the spacer wire prior to conducting profilometry examination, axial profilometry techniques may be used, which are considerably faster than spiral techniques and often result in data acquisition more important to experiment sponsors. Because the element must often be reinserted into the nuclear reactor (EBR-II) for additional irradiation, however, the spacer wire must be reinstalled on the highly irradiated fuel element by remote means after profilometry of the wireless elements. The element spacer wire-wrap machine developed at HFEF is capable of helically wrapping fuel elements with diameters up to 1.68 cm (0.660 in.) and 2.44-m (96-in.) lengths. The machine can accommodate almost any desired wire pitch length by simply inserting a new wrapper gear module

  3. Infrared radiation properties of anodized aluminum

    Energy Technology Data Exchange (ETDEWEB)

    Kohara, S. [Science Univ. of Tokyo, Noda, Chiba (Japan). Dept. of Materials Science and Technology; Niimi, Y. [Science Univ. of Tokyo, Noda, Chiba (Japan). Dept. of Materials Science and Technology

    1996-12-31

    The infrared radiation heating is an efficient and energy saving heating method. Ceramics have been used as an infrared radiant material, because the emissivity of metals is lower than that of ceramics. However, anodized aluminum could be used as the infrared radiant material since an aluminum oxide film is formed on the surface. In the present study, the infrared radiation properties of anodized aluminum have been investigated by determining the spectral emissivity curve. The spectral emissivity curve of anodized aluminum changed with the anodizing time. The spectral emissivity curve shifted to the higher level after anodizing for 10 min, but little changed afterwards. The infrared radiant material with high level spectral emissivity curve can be achieved by making an oxide film thicker than about 15 {mu}m on the surface of aluminum. Thus, anodized aluminum is applicable for the infrared radiation heating. (orig.)

  4. Cold atoms in microscopic traps: from wires to chips

    International Nuclear Information System (INIS)

    Cassettari, D.

    2000-05-01

    This thesis reports on the experimental demonstration of magnetic guides, traps and beam splitters for neutral atoms using current carrying wires. A straight wire allows to create two basic guide configurations: the magnetic field generated by the wire alone produces a guide where atoms in a strong field seeking state perform orbits around the wire (Kepler guide); by adding an external magnetic field, atoms in a weak field seeking state are guided at the location where the external field and the field generated by the wire cancel out (side guide). Furthermore, bending the wire in various shapes allows to modify the side guide potential and hence to create a large variety of three dimensional traps. A relevant property of these potentials is that higher trapping gradients are obtained by decreasing the current flowing in the wires. As the trap is compressed, it also moves closer to the wire. This feature has allowed us to create microscopic potentials by using thin wires designed on a surface (atom chip) by means of high resolution microfabrication techniques. Wires mounted on a surface have the advantage of being more robust and able to sustain larger currents due to their thermal coupling with the substrate. In our experiment we have developed methods to load these traps and guides with laser cooled atoms. Our first investigations have been performed with free standing wires which we have used to study the Kepler guide, the side guide and a three dimensional Ioffe-Pritchard trap. In the latter we have achieved the trapping parameters required in the experiments with Bose-Einstein condensates with much reduced power consumption. In a second time we have replaced the free standing wires with an atom chip, which we have used to compress the atomic cloud in potentials with trap frequencies above 100 kHz and ground state sizes below 100 nm. Such potentials are especially interesting for quantum information proposals of performing quantum gate operations with controlled

  5. Fabrication of tungsten wire needles

    International Nuclear Information System (INIS)

    Roder, A.

    1983-02-01

    Fine point needles for field emissoin are conventionally produced by electrolytically or chemically etching tungsten wire. Points formed in this manner have a typical tip radius of about 0.5 microns and a cone angle of some 30 degrees. The construction of needle matrix detector chambers has created a need for tungsten needles whose specifications are: 20 mil tungsten wire, 1.5 inch total length, 3 mm-long taper (resulting in a cone angle of about 5 degrees), and 25 micron-radius point (similar to that found on sewing needles). In the process described here for producing such needles, tungsten wire, immersed in a NaOH solution and in the presence of an electrode, is connected first to an ac voltage and then to a dc supply, to form a taper and a point on the end of the wire immersed in the solution. The process parameters described here are for needles that will meet the above specifications. Possible variations will be discussed under each approprite heading

  6. Fabrication of porous anodic alumina films by using two-step anodization process

    International Nuclear Information System (INIS)

    Xu Zhan; Zhou Bin; Xu Xiang; Wang Xiaoli; Wu Di; Shen Jun

    2006-01-01

    This article introduces the fabrication of the porous anodic alumina films which have ordered pore arrangement by using a two-step anodization process. The films have a parallel channel structure which nanopore diameter can be 20-100 nm, and depth can reach 50 μm. The change of pore structure in the first and second anodization, moving the alumina layer, widening process was analysed. The effect of the parameters such as different electrolytes, anodization temperature and the voltage on the nanopore structure was studied. The surface and profile structure through FE-SEM (field emission scanning electron microscope), the element composition in tiny area of the anodic aluminum oxide (AAO) surface were studied. The result indicates the pore diameter of AAO which is anodized in oxalic acid solution is larger than which anodized in sulfuric acid solution. The anodization temperature and voltage can enlarge the nanopore diameter of AAO in a range. (authors)

  7. Anode Sheath Switching in a Carbon Nanotube Arc Plasma

    International Nuclear Information System (INIS)

    Fetterman, Abe; Raitses, Yevgeny; Keidar, Michael

    2008-01-01

    The anode ablation rate is investigated as a function of anode diameter for a carbon nanotube arc plasma. It is found that anomalously high ablation occurs for small anode diameters. This result is explained by the formation of a positive anode sheath. The increased ablation rate due to this positive anode sheath could imply greater production rate for carbon nanotubes.

  8. Corrosion resistance of titanium-containing dental orthodontic wires in fluoride-containing artificial saliva

    International Nuclear Information System (INIS)

    Lee, T.-H.; Wang, C.-C.; Huang, T.-K.; Chen, L.-K.; Chou, M.-Y.; Huang, H.-H.

    2009-01-01

    This study was to investigate the corrosion resistance of different Ti-containing dental orthodontic wires (including Ni-Ti, Ni-Ti-Cu, Ti-Mo-Zr-Sn, and Ti-Nb alloys) in acidic fluoride-containing artificial saliva using cyclic potentiodynamic polarization curve measurements. Different NaF concentrations (0%, 0.2%, and 0.5%), simulating the fluoride contents in commercial toothpastes, were added to the artificial saliva. Surface characterization was analyzed using X-ray photoelectron spectrometry. Cyclic potentiodynamic polarization curves showed that the presence of fluoride ions, especially 0.5% NaF, was detrimental to the protective ability of the TiO 2 -based film on the Ti-containing wires. This might lead to a decrease in the corrosion resistance of the tested alloys, i.e. an increase in the corrosion rate and anodic current density and a decrease in the passive film breakdown potential. Among the tested Ti-containing wires, the Ni-Ti and Ni-Ti-Cu wires containing mainly TiO 2 on surface film were more susceptible to fluoride-enhanced corrosion, while the Ti-Mo-Zr-Sn and Ti-Nb wires containing MoO 3 /ZrO 2 /SnO and Nb 2 O 5 , respectively, along with TiO 2 on surface film were pitting corrosion resistant and showed a lower susceptibility to fluoride-enhanced corrosion. The difference in corrosion resistance of the tested commercial Ti-containing dental orthodontic wires was significantly dependent on the passive film characteristics on wires' surface.

  9. Corrosion resistance of titanium-containing dental orthodontic wires in fluoride-containing artificial saliva

    Energy Technology Data Exchange (ETDEWEB)

    Lee, T.-H. [Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan (China); Department of Dentistry, Chung Shan Medical University Hospital, Taichung 402, Taiwan (China); Wang, C.-C. [Department of Dental Laboratory Technology, Min-Hwei College of Health Care Management, Tainan County 736, Taiwan (China); Huang, T.-K. [College of Dental Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan (China); Chen, L.-K. [Department of Dentistry, Taipei City Hospital, Taipei 115, Taiwan (China); Chou, M.-Y. [Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan (China); Department of Dentistry, Chung Shan Medical University Hospital, Taichung 402, Taiwan (China); Huang, H.-H., E-mail: hhhuang@ym.edu.t [Department of Dentistry, Taipei City Hospital, Taipei 115, Taiwan (China); Department of Dentistry, National Yang-Ming University, Taipei 112, Taiwan (China); Institute of Oral Biology, National Yang-Ming University, Taipei 112, Taiwan (China)

    2009-11-20

    This study was to investigate the corrosion resistance of different Ti-containing dental orthodontic wires (including Ni-Ti, Ni-Ti-Cu, Ti-Mo-Zr-Sn, and Ti-Nb alloys) in acidic fluoride-containing artificial saliva using cyclic potentiodynamic polarization curve measurements. Different NaF concentrations (0%, 0.2%, and 0.5%), simulating the fluoride contents in commercial toothpastes, were added to the artificial saliva. Surface characterization was analyzed using X-ray photoelectron spectrometry. Cyclic potentiodynamic polarization curves showed that the presence of fluoride ions, especially 0.5% NaF, was detrimental to the protective ability of the TiO{sub 2}-based film on the Ti-containing wires. This might lead to a decrease in the corrosion resistance of the tested alloys, i.e. an increase in the corrosion rate and anodic current density and a decrease in the passive film breakdown potential. Among the tested Ti-containing wires, the Ni-Ti and Ni-Ti-Cu wires containing mainly TiO{sub 2} on surface film were more susceptible to fluoride-enhanced corrosion, while the Ti-Mo-Zr-Sn and Ti-Nb wires containing MoO{sub 3}/ZrO{sub 2}/SnO and Nb{sub 2}O{sub 5}, respectively, along with TiO{sub 2} on surface film were pitting corrosion resistant and showed a lower susceptibility to fluoride-enhanced corrosion. The difference in corrosion resistance of the tested commercial Ti-containing dental orthodontic wires was significantly dependent on the passive film characteristics on wires' surface.

  10. [Mechanics analysis of fracture of orthodontic wires].

    Science.gov (United States)

    Wang, Yeping; Sun, Xiaoye; Zhang, Longqi

    2003-03-01

    Fracture problem of orthodontic wires was discussed in this paper. The calculation formulae of bending stress and tensile stress were obtained. All main factors that affect bending stress and tensile stress of orthodontic wires were analyzed and discussed. It was concluded that the main causes of fracture of orthodontic wires were fatigue and static disruption. Some improving proposals for preventing fracture of orthodontic wires were put forward.

  11. Anodizing And Sealing Aluminum In Nonchromated Solutions

    Science.gov (United States)

    Emmons, John R.; Kallenborn, Kelli J.

    1995-01-01

    Improved process for anodizing and sealing aluminum involves use of 5 volume percent sulfuric acid in water as anodizing solution, and 1.5 to 2.0 volume percent nickel acetate in water as sealing solution. Replaces process in which sulfuric acid used at concentrations of 10 to 20 percent. Improved process yields thinner coats offering resistance to corrosion, fatigue life, and alloy-to-alloy consistency equal to or superior to those of anodized coats produced with chromated solutions.

  12. 49 CFR 236.74 - Protection of insulated wire; splice in underground wire.

    Science.gov (United States)

    2010-10-01

    ... underground wire. 236.74 Section 236.74 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RULES, STANDARDS, AND INSTRUCTIONS GOVERNING... wire; splice in underground wire. Insulated wire shall be protected from mechanical injury. The...

  13. 49 CFR 234.241 - Protection of insulated wire; splice in underground wire.

    Science.gov (United States)

    2010-10-01

    ... underground wire. 234.241 Section 234.241 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION GRADE CROSSING SIGNAL SYSTEM SAFETY... of insulated wire; splice in underground wire. Insulated wire shall be protected from mechanical...

  14. Detection of a buried wire with two resistively loaded wire antennas

    NARCIS (Netherlands)

    Vossen, S.H.J.A.; Tijhuis, A.G.; Lepelaars, E.S.A.M.; Zwamborn, A.P.M.

    2002-01-01

    The use of two identical straight thin-wire antennas for the detection of a buried wire is analyzed with the aid of numerical calculations. The buried wire is located below an interface between two homogeneous half-spaces. The detection setup, which is formed by a transmitting and a receiving wire,

  15. One century of Kirschner wires and Kirschner wire insertion techniques : A historical review

    NARCIS (Netherlands)

    Franssen, Bas B. G. M.; Schuurman, Arnold H.; Van der Molen, Aebele Mink; Kon, Moshe

    A century ago, in 1909, Martin Kirschner (1879-942) introduced a smooth pin, presently known as the Kirschner wire (K-wire). The K-wire was initiallly used for skeletal traction and is now currently used for many different goals. The development of the K-wire and its insertion devices were mainly

  16. Pre-wired systems prove their worth.

    Science.gov (United States)

    2012-03-01

    The 'new generation' of modular wiring systems from Apex Wiring Solutions have been specified for two of the world's foremost teaching hospitals - the Royal London and St Bartholomew's Hospital, as part of a pounds sterling 1 billion redevelopment project, to cut electrical installation times, reduce on-site waste, and provide a pre-wired, factory-tested, power and lighting system. HEJ reports.

  17. 49 CFR 393.28 - Wiring systems.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 5 2010-10-01 2010-10-01 false Wiring systems. 393.28 Section 393.28 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL MOTOR CARRIER SAFETY... NECESSARY FOR SAFE OPERATION Lamps, Reflective Devices, and Electrical Wiring § 393.28 Wiring systems...

  18. Getting "Wired" for McLuhan's Cyberculture.

    Science.gov (United States)

    McMurdo, George

    1995-01-01

    Examines the introduction of the computing magazine, "Wired", into the United Kingdom's (UK) market. Presents conversations with the founder and editorial staff of the UK edition, and discusses the accessibility of "Wired" via the World Wide Web. Describes 10 articles from United States "Wired" back-issues and…

  19. Sliding mechanics of coated composite wires and the development of an engineering model for binding.

    Science.gov (United States)

    Zufall, S W; Kusy, R P

    2000-02-01

    A tribological (friction and wear) study, which was designed to simulate clinical sliding mechanics, was conducted as part of an effort to determine the suitability of poly(chloro-p-xylylene) coatings for composite orthodontic archwires. Prototype composite wires, having stiffnesses similar to those of current initial and intermediate alignment wires, were tested against stainless steel and ceramic brackets in the passive and active configurations (with and without angulation). Kinetic coefficient of friction values, which were determined to quantify sliding resistances as functions of the normal forces of ligation, had a mean that was 72% greater than uncoated wire couples at 0.43. To improve analysis of the active configuration, a mathematical model was developed that related bracket angulation, bracket width, interbracket distance, wire geometry, and wire elastic modulus to sliding resistance. From this model, kinetic coefficients of binding were determined to quantify sliding resistances as functions of the normal forces of binding. The mean binding coefficient was the same as that of uncoated wire couples at 0.42. Although penetrations through the coating were observed on many specimens, the glass-fiber reinforcement within the composite wires was undamaged for all conditions tested. This finding implies that the risk of glass fiber release during clinical use would be eliminated by the coating. In addition, the frictional and binding coefficients were still within the limits outlined by conventional orthodontic wire-bracket couples. Consequently, the coatings were regarded as an improvement to the clinical acceptability of composite orthodontic archwires.

  20. Mapping the Galvanic Corrosion of Three Metals Coupled with a Wire Beam Electrode: The Influence of Temperature and Relative Geometrical Position

    Science.gov (United States)

    Liu, Yun-Fei; Liu, Shu-Fa; Duan, Jin-Zhuo

    2018-01-01

    The local electrochemical properties of galvanic corrosion for three coupled metals in a desalination plant were investigated with three wire-beam electrodes as wire sensors: aluminum brass (HAl77-2), titanium (TA2), and 316L stainless steel (316L SS). These electrodes were used with artificial seawater at different temperatures. The potential and current–density distributions of the three-metal coupled system are inhomogeneous. The HAl77-2 wire anodes were corroded in the three-metal coupled system. The TA2 wires acted as cathodes and were protected; the 316L SS wires acted as secondary cathodes. The temperature and electrode arrangement have important effects on the galvanic corrosion of the three-metal coupled system. The corrosion current of the HAl77-2 increased with temperature indicating enhanced anode corrosion at higher temperature. In addition, the corrosion of HAl77-2 was more significant when the HAl77-2 wires were located in the middle of the coupled system than with the other two metal arrangement styles. PMID:29495617

  1. Mapping the Galvanic Corrosion of Three Metals Coupled with a Wire Beam Electrode: The Influence of Temperature and Relative Geometrical Position.

    Science.gov (United States)

    Ju, Hong; Yang, Yuan-Feng; Liu, Yun-Fei; Liu, Shu-Fa; Duan, Jin-Zhuo; Li, Yan

    2018-02-28

    The local electrochemical properties of galvanic corrosion for three coupled metals in a desalination plant were investigated with three wire-beam electrodes as wire sensors: aluminum brass (HAl77-2), titanium (TA2), and 316L stainless steel (316L SS). These electrodes were used with artificial seawater at different temperatures. The potential and current-density distributions of the three-metal coupled system are inhomogeneous. The HAl77-2 wire anodes were corroded in the three-metal coupled system. The TA2 wires acted as cathodes and were protected; the 316L SS wires acted as secondary cathodes. The temperature and electrode arrangement have important effects on the galvanic corrosion of the three-metal coupled system. The corrosion current of the HAl77-2 increased with temperature indicating enhanced anode corrosion at higher temperature. In addition, the corrosion of HAl77-2 was more significant when the HAl77-2 wires were located in the middle of the coupled system than with the other two metal arrangement styles.

  2. Mapping the Galvanic Corrosion of Three Metals Coupled with a Wire Beam Electrode: The Influence of Temperature and Relative Geometrical Position

    Directory of Open Access Journals (Sweden)

    Hong Ju

    2018-02-01

    Full Text Available The local electrochemical properties of galvanic corrosion for three coupled metals in a desalination plant were investigated with three wire-beam electrodes as wire sensors: aluminum brass (HAl77-2, titanium (TA2, and 316L stainless steel (316L SS. These electrodes were used with artificial seawater at different temperatures. The potential and current–density distributions of the three-metal coupled system are inhomogeneous. The HAl77-2 wire anodes were corroded in the three-metal coupled system. The TA2 wires acted as cathodes and were protected; the 316L SS wires acted as secondary cathodes. The temperature and electrode arrangement have important effects on the galvanic corrosion of the three-metal coupled system. The corrosion current of the HAl77-2 increased with temperature indicating enhanced anode corrosion at higher temperature. In addition, the corrosion of HAl77-2 was more significant when the HAl77-2 wires were located in the middle of the coupled system than with the other two metal arrangement styles.

  3. Sample of superconducting wiring from the LHC

    CERN Multimedia

    The high magnetic fields needed for guiding particles around the Large Hadron Collider (LHC) ring are created by passing 12’500 amps of current through coils of superconducting wiring. At very low temperatures, superconductors have no electrical resistance and therefore no power loss. The LHC is the largest superconducting installation ever built. The magnetic field must also be extremely uniform. This means the current flowing in the coils has to be very precisely controlled. Indeed, nowhere before has such precision been achieved at such high currents. Magnet coils are made of copper-clad niobium–titanium cables — each wire in the cable consists of 9’000 niobium–titanium filaments ten times finer than a hair. The cables carry up to 12’500 amps and must withstand enormous electromagnetic forces. At full field, the force on one metre of magnet is comparable to the weight of a jumbo jet. Coil winding requires great care to prevent movements as the field changes. Friction can create hot spots wh...

  4. Anodization process produces opaque, reflective coatings on aluminum

    Science.gov (United States)

    1965-01-01

    Opaque, reflective coatings are produced on aluminum articles by an anodizing process wherein the anodizing bath contains an aqueous dispersion of finely divided insoluble inorganic compounds. These particles appear as uniformly distributed occlusions in the anodic deposit on the aluminum.

  5. Process and electrolyte for applying barrier layer anodic coatings

    International Nuclear Information System (INIS)

    Dosch, R.G.; Prevender, T.S.

    1975-01-01

    Various metals may be anodized, and preferably barrier anodized, by anodizing the metal in an electrolyte comprising quaternary ammonium compound having a complex metal anion in a solvent containing water and a polar, water soluble organic material. (U.S.)

  6. Clinical bending of nickel titanium wires

    Directory of Open Access Journals (Sweden)

    Stephen Chain

    2015-01-01

    Full Text Available Since the evolution and the involvement of Nickel Titanium wires in the field of Orthodontics. The treatment plan has evolved with the use of low force Nickel Titanium wires. Because of their high springback, low stiffness, they are the key initial wires in leveling and alignment but have poor formability. Since poor formability limits its ability to create variable arch forms thus; limits the form of treatment. We have devised a method to bend the Nickel Titanium wires to help in our inventory but also customized the wire according to the treatment.

  7. Energy Deposition in a Septum Wire

    CERN Document Server

    Ferioli, G; Knaus, P; Koopman, J; CERN. Geneva. SPS and LHC Division

    2001-01-01

    The present note describes a machine development (MD) aimed to confirm experimentally the need for protection of the extraction wire septum ZS in SPS long straight section LSS6 during LHC operation. Single wires identical to the ones mounted on the extraction septum were fixed on a fast wire scanner and put into the beam path. The beam heated the wire until it broke after a measured number of turns. The maximum single shot intensity the septum wires could withstand was thus calculated and compared with simulation results.

  8. Electrochemical properties of Sn/C nanoparticles fabricated by redox treatment and pulsed wire evaporation method

    Science.gov (United States)

    Song, Ju-Seok; Cho, Gyu-Bong; Ahn, Jou-Hyeon; Cho, Kwon-Koo

    2017-09-01

    Tin (Sn) based anode materials are the most promising anode materials for lithium-ion batteries due to their high theoretical capacity corresponding to the formation of Li4.4Sn composition (Li4.4Sn, 994 mAh/g). However, the applications of tin based anodes to lithium-ion battery system are generally limited by a large volume change (>260%) during lithiation and delithiation cycle, which causes pulverize and poor cycling stability. In order to overcome this shortcoming, we fabricate a Sn/C nanoparticle with a yolk-shell structure (Sn/void/C) by using pulsed wire evaporation process and oxidation/reduction heat treatment. Sn nanoparticles are encapsulated by a conductive carbon layer with structural buffer that leaves enough room for expansion and contraction during lithium insertion/desertion. We expect that the yolk-shell structure has the ability to accommodate the volume changes of tin and leading to an improved cycle performance. The Sn/Void/C anode with yolk-shell structure shows a high specific capacity of 760 mAh/g after 50 cycles.

  9. Electrodeposition of nickel nano wire arrays

    International Nuclear Information System (INIS)

    Nur Ubaidah Saidin; Kok Kuan Ying; Ng Inn Khuan; Nurazila Mat Zali; Siti Salwa Zainal Abidin

    2010-01-01

    Synthesis, characterization and assembly of one-dimensional nickel nano wires prepared by template directed electrodeposition are discussed in this paper. Parallel arrays of high aspect ratio nickel nano wires were electrodeposited using electrolytes with different cations and pH. The nano wires were characterized using X-ray diffractometry and scanning electron microscopy. It was found that the orientations of the electro deposited Ni nano wires were governed by the deposition current and the electrolyte conditions. Free standing nickel nano wires can be obtained by dissolving the template. Due to the magnetic nature of the nano wires, magnetic alignment was employed to assemble and position the free standing nano wires in the device structure. (author)

  10. The effects of sterilization on the tensile strength of orthodontic wires.

    Science.gov (United States)

    Staggers, J A; Margeson, D

    1993-01-01

    The purpose of this study was to evaluate the effect of sterilization on the tensile strength of 0.016" beta-titanium, nickel titanium and stainless steel wires. Three common methods of sterilization--autoclaving, dry heat and ethylene oxide--were evaluated in three test trials involving zero, one and five sterilization cycles. For each of the test trials, five pieces each of 0.016" TMA, 0.016" Sentalloy and 0.016" Tru-chrome stainless steel wires were sterilized using a standard autoclave. Five other pieces of each of the same wires were sterilized in a dryclave, while an additional five pieces of each of the three wire types were sterilized using ethylene oxide. The ultimate tensile strengths of the wires were then determined using an Instron Universal Testing Machine. The data were compared for statistical differences using analysis of variance. The results showed that dry heat sterilization significantly increased the tensile strength of TMA wires after one cycle, but not after five cycles. Autoclaving and ethylene oxide sterilization did not significantly alter the tensile strength of TMA wires. Dry heat and autoclave sterilization also significantly increased the tensile strength of Sentalloy wires, but the mean strength after five sterilization cycles was not significantly different than after one cycle. Ethylene oxide sterilization of Sentalloy wires did not significantly alter the tensile strengths of that wire. There were no significant differences in the tensile strengths of the stainless steel wires following zero, one or five cycles for any of the sterilization methods.

  11. Modifications in straight wire treatment.

    Science.gov (United States)

    Cardona, Alvin

    2010-01-01

    Orthodontic treatments have been modified with each new generation of clinicians. Today the emphasis is on facial esthetics and healthy temporomandibular joints. With orthopedic treatment, we can develop dental arches to get the necessary space to align the teeth and we can reach adequate function and esthetics, all within relatively good stability. By combining two-phase treatment with low friction fixed orthodontics and super elastic wires we produce light but continuous forces and we can provide better treatment than before. These types of forces cause physiological and functional orthopedic orthodontic reactions. The purpose of this article is to demonstrate our fixed orthopedic and orthodontic approach called "Modified Straight Wire" or "Physiologic Arch Technique." This technique is very successful with our patients because it can exert slow and continuous forces with minimal patient cooperation.

  12. Growth behavior of anodic oxide formed by aluminum anodizing in glutaric and its derivative acid electrolytes

    Science.gov (United States)

    Nakajima, Daiki; Kikuchi, Tatsuya; Natsui, Shungo; Suzuki, Ryosuke O.

    2014-12-01

    The growth behavior of anodic oxide films formed via anodizing in glutaric and its derivative acid solutions was investigated based on the acid dissociation constants of electrolytes. High-purity aluminum foils were anodized in glutaric, ketoglutaric, and acetonedicarboxylic acid solutions under various electrochemical conditions. A thin barrier anodic oxide film grew uniformly on the aluminum substrate by glutaric acid anodizing, and further anodizing caused the film to breakdown due to a high electric field. In contrast, an anodic porous alumina film with a submicrometer-scale cell diameter was successfully formed by ketoglutaric acid anodizing at 293 K. However, the increase and decrease in the temperature of the ketoglutaric acid resulted in non-uniform oxide growth and localized pitting corrosion of the aluminum substrate. An anodic porous alumina film could also be fabricated by acetonedicarboxylic acid anodizing due to the relatively low dissociation constants associated with the acid. Acid dissociation constants are an important factor for the fabrication of anodic porous alumina films.

  13. Vibrating wire for beam profile scanning

    Directory of Open Access Journals (Sweden)

    S. G. Arutunian

    1999-12-01

    Full Text Available A method that measures the transverse profile (emittance of the bunch by detecting radiation arising at the scattering of the bunch on scanning wire is widely used. In this work information about bunch scattering is obtained by measuring the oscillation frequency of the tightened scanning wire. In such a way, the system of radiation (or secondary particles extraction and measurement can be removed. The entire unit consists of a compact fork with tightened wire and a scanning system. Normal oscillation frequency of a wire depends on wire tension, its geometric parameters, and, in a second approximation, its elastic characteristics. Normal oscillations are generated by interaction of an alternating current through the wire with magnetic field of a permanent magnet. In this case, it is suggested that the magnetic field of the accelerator (field of dipole magnets or quadrupole magnets be used for excitation of oscillations. The dependence of oscillation frequency on beam scattering is determined by several factors, including changes of wire tension caused by transverse force of the beam and influence of beam self-field. Preliminary calculations show that the influence of wire heating will dominate. We have studied strain gauges on the basis of vibrating wire from various materials (tungsten, beryl bronze, and niobium zirconium alloys. A scheme of normal oscillation generation by alternating current in autogeneration circuit with automatic frequency adjustment was selected. A special method of wire fixation and elimination of transverse degrees of freedom allows us to achieve relative stability better than 10^{-5} during several days at a relative resolution of 10^{-6}. Experimental results and estimates of wire heating of existing scanners show that the wire heats up to a few hundred grades, which is enough for measurements. The usage of wire of micrometer thickness diminishes the problem of wire thermalization speed during the scanning of the bunch.

  14. Pin Wire Coating Trip Report

    International Nuclear Information System (INIS)

    Spellman, G P

    2004-01-01

    A meeting to discuss the current pin wire coating problems was held at the Reynolds plant in Los Angeles on 2MAR04. The attendance list for Reynolds personnel is attached. there was an initial presentation which gave a brief history and the current status of pin wire coating at Reynolds. There was a presentation by Lori Primus on the requirements and issues for the coating. There was a presentation by Jim Smith of LANL on the chemistry and to some extent process development done to date. There was a long session covering what steps should be taken in the short term and, to a lesser extent, the long term. The coating currently being used is a blend of two polymers, polyethersulfone and polyparabanic acid (PPA) and some TiO2 filler. This system was accepted and put into production when the pin wire coating was outsourced to another company in 1974. When that company no longer was interested, the wire coating was brought in-house to Reynolds. At that time polyparabanic acid was actually a commercial product available from Exxon under the trade name Tradlon. However, it appears that the material used at Reynolds was synthesized locally. Also, it appears that a single large batch was synthesized in that time period and used up to 1997 when the supply ran out. The reason for the inclusion of TiO2 is not known although it does act as a rheological thickener. However, a more controlled thickening can be obtained with materials such as fumed silica. This material would have less likelihood of causing point imperfections in the coatings. Also, the mixing technique being used for all stages of the process is a relatively low shear ball mill process and the author recommends a high shear process such as a three roll paint mill, at least for the final mixing. Since solvent is added to the powder at Reynolds, it may be that they need to have the paint mill there

  15. Recovery Of Valuable Metals In Tin-Based Anodic Slimes By Carbothermic Reaction

    Directory of Open Access Journals (Sweden)

    Han Chulwoong

    2015-06-01

    Full Text Available This study investigated the recovery of anodic slimes by carbothermic reaction in the temperature range of 973~1,273K and amount of carbon as a function of time. Tin anodic slime samples were collected from the bottom of the electrolytic cells during the electro-refining of tin. The anodic slimes are consisted of high concentrated tin, silver, copper and lead oxides. The kinetics of reduction were determined by means of the weight-loss measurement technique. In order to understand in detail of carbothermic reaction, thermodynamic calculation was carried out and compared with experiments. From thermodynamic calculation and experiment, it was confirmed that Sn-based anodic slime could be reduced by controlling temperature and amount of carbon. However, any tendency between the reduction temperature and carbon content for the reduction reaction was not observed.

  16. Anode protection system for shutdown of solid oxide fuel cell system

    Science.gov (United States)

    Li, Bob X; Grieves, Malcolm J; Kelly, Sean M

    2014-12-30

    An Anode Protection Systems for a SOFC system, having a Reductant Supply and safety subsystem, a SOFC anode protection subsystem, and a Post Combustion and slip stream control subsystem. The Reductant Supply and safety subsystem includes means for generating a reducing gas or vapor to prevent re-oxidation of the Ni in the anode layer during the course of shut down of the SOFC stack. The underlying ammonia or hydrogen based material used to generate a reducing gas or vapor to prevent the re-oxidation of the Ni can be in either a solid or liquid stored inside a portable container. The SOFC anode protection subsystem provides an internal pressure of 0.2 to 10 kPa to prevent air from entering into the SOFC system. The Post Combustion and slip stream control subsystem provides a catalyst converter configured to treat any residual reducing gas in the slip stream gas exiting from SOFC stack.

  17. Self-Ordered Nanoporous Alumina Templates Formed by Anodization of Aluminum in Oxalic Acid

    Science.gov (United States)

    Vida-Simiti, Ioan; Nemes, Dorel; Jumate, Nicolaie; Thalmaier, Gyorgy; Sechel, Niculina

    2012-10-01

    Anodic aluminum oxide (AAO) membranes with highly ordered nanopores serve as ideal templates for the formation of various nanostructured materials. The procedure of the template preparation is based on a two-step self-organized anodization of aluminum. In the current study, AAO templates were fabricated in 0.3 M oxalic acid under the anodizing potential range of 30-60 V at an electrolyte temperature of ~5°C. The AAO templates were analyzed using scanning electron microscopy, x-ray diffraction, Fourier-transform infrared spectroscopy, and differential thermal analysis. The as obtained layers are amorphous; the mean pore size is between 40 nm and 75 nm and increases with the increase of the anodization potential. Well-defined pores across the whole aluminum template, a pore density of ~1010 pores/cm2, and a tendency to form a porous structure with hexagonal symmetry were observed.

  18. The kinetics of anodic dissolution of rhenium in aqueous electrolyte solutions

    International Nuclear Information System (INIS)

    Atanasyants, A.G.; Kornienko, V.A.

    1986-01-01

    The kinetics of anodic rhenium dissolution was investigated by means of potentiodynamic and potentiostatic polarization curves recorded at temperature from 293 to 333 K in different media (NaOH, KOH, NaCl, NaBr, HCl, H 2 SO 4 ) using the rotating disc technique. It is shown that the kinetics of anodic rhenium dissolution and effective activation energy depend not only on the composition and pH value of the solutions but also on the structure of the dissolving rhenium surface. The investigation of the anodic behaviour of the rhenium monocrystal revealed the existence of anisotropy of the monocrystal electrochemical properties. The experimental results point to an important role of adsorption processes in anodic rhenium dissolution. Rhenium dissolution proceeds with formation of intermediate surface adsorption complexes between the metal and the components of the solution

  19. High carrier mobility of CoPc wires based field-effect transistors using bi-layer gate dielectric

    Directory of Open Access Journals (Sweden)

    Murali Gedda

    2013-11-01

    Full Text Available Polyvinyl alcohol (PVA and anodized Al2O3 layers were used as bi-layer gate for the fabrication of cobalt phthalocyanine (CoPc wire base field-effect transistors (OFETs. CoPc wires were grown on SiO2 surfaces by organic vapor phase deposition method. These devices exhibit a field-effect carrier mobility (μEF value of 1.11 cm2/Vs. The high carrier mobility for CoPc molecules is attributed to the better capacitive coupling between the channel of CoPc wires and the gate through organic-inorganic dielectric layer. Our measurements also demonstrated the way to determine the thicknesses of the dielectric layers for a better process condition of OFETs.

  20. Effects of Alclad Layer and Anodizing Time on Sulfuric Acid Anodizing and Film Properties of 2E12 Aluminum Alloy

    OpenAIRE

    CHEN Gao-hong; HU Yuan-sen; YU Mei; LIU Jian-hua; LI Guo-ai

    2017-01-01

    Alclad and unclad 2E12 aerospace aluminum alloy were treated by sulfuric acid anodic oxidation. The effects of alclad layer and anodizing time on the anodization behaviour and corrosion resistance of anodic oxide layer on 2E12 aluminum alloy were studied. Surface and cross-section morphology of anodic oxide films were observed by scanning electron microscopy. The electrochemical properties of anodic oxide films were analyzed by potentiodynamic polarization curve and electrochemical impedance ...

  1. Study of corrosion behavior of carbon steel under seawater film using the wire beam electrode method

    International Nuclear Information System (INIS)

    Liu, Zaijian; Wang, Wei; Wang, Jia; Peng, Xin; Wang, Yanhua; Zhang, Penghui; Wang, Haijie; Gao, Congjie

    2014-01-01

    Corrosion behavior of carbon steel under seawater film with various thickness was investigated by the wire beam electrode (WBE) method. It was found that the corrosion rate of carbon steel increased significantly under thin seawater film than it was immersed in seawater. The current variation under seawater film indicated that the thickness of diffusion layer of oxygen was about 500 μm, and the maximal current appeared around 40 μm, at which corrosion rate transited from cathodic control to anodic control. The results suggest that WBE method is helpful to study the corrosion process under thin electrolyte film

  2. Tests of crossed-wire position sensitive photomultipliers for scintillating fiber particle tracking

    International Nuclear Information System (INIS)

    Perdrisat, C.F.; Koechner, D.; Majewski, S.; Pourang, R.; Wilson, C.D.; Zorn, C.

    1995-01-01

    Several applications of two Hamamatsu position sensitive photomultiplier tubes to the detection of high energy particles with scintillating fibers are discussed. The PMTs are of the multiwire anode grid design, type R2486 and R4135. These tubes were tested with both single samples and arrays of 2 and 3 mm diameter scintillating fibers. Measurements of position resolution of the PMTs using either the charge digitization or the delay line readout techniques were made. The results indicate an intrinsic inability of the technique to reconstruct the actual position of a fiber on the photocathode when its location falls halfway between two grid wires. A way to overcome this limit is suggested. (orig.)

  3. Measurement of the geometric parameters of power contact wire based on binocular stereovision

    Science.gov (United States)

    Pan, Xue-Tao; Zhang, Ya-feng; Meng, Fei

    2010-10-01

    In the electrified railway power supply system, electric locomotive obtains power from the catenary's wire through the pantograph. Under the action of the pantograph, combined with various factors such as vibration, touch current, relative sliding speed, load, etc, the contact wire will produce mechanical wear and electrical wear. Thus, in electrified railway construction and daily operations, the geometric parameters such as line height, pull value, the width of wear surface must be under real-timely and non-contact detection. On the one hand, the safe operation of electric railways will be guaranteed; on the other hand, the wire endurance will be extended, and operating costs reduced. Based on the characteristics of the worn wires' image signal, the binocular stereo vision technology was applied for measurement of contact wire geometry parameters, a mathematical model of measurement of geometric parameters was derived, and the boundaries of the wound wire abrasion-point value were extracted by means of sub-pixel edge detection method based on the LOG operator with the least-squares fitting, thus measurements of the wire geometry parameters were realized. Principles were demonstrated through simulation experiments, and the experimental results show that the detection methods presented in this paper for measuring the accuracy, efficiency and convenience, etc. are close to or superior to the traditional measurements, which has laid a good foundation for the measurement system of geometric parameters for the contact wire of the development of binocular vision.

  4. Clinical Efficiency of Two Sequences of Orthodontic Wires to Correct Crowding of the Lower Anterior Teeth

    Directory of Open Access Journals (Sweden)

    Cláudia Maria de Castro Serafim

    2015-01-01

    Full Text Available This study compared time to correction of mandibular anterior crowding using two arch wire sequences, one with conventional nickel-titanium (NiTi arch wires and the other with conventional and NiTi heat-activated arch wires. Twenty-two boys and girls (mean age: 16.68 ± 2.66 with moderate crowding (3–6 mm were assigned randomly to one of two groups and followed up for five months (six assessments when arch wires were changed. Time to crowding correction was analyzed statistically using the Kaplan-Meier method. Data were collected during the five-month follow-up, and time to correction was compared between groups using the log rank test. At the end of follow-up, mandibular crowding was corrected in 100% of the cases in the group treated with the sequence that included NiTi heat-activated arch wires, whereas about 30% of those treated with NiTi arch wires were not completely corrected. There was a significant difference in time to complete treatment between groups (log rank = 5.996; p<0.05. In the group treated with the sequence that included heat-activated wires, alignment and leveling of mandibular anterior teeth were completed earlier than in the group treated only with conventional NiTi arch wires. Clinical trial registration is found at RBR-7g5zng.

  5. Investigation of surface treatment of conductive wire in cylindrical atmospheric pressure plasmas

    International Nuclear Information System (INIS)

    Ye Rubin; Kagohashi, Tsutomu; Zheng Wei

    2009-01-01

    Polyethylene insulated electric wire was treated in He and Ar dielectric barrier discharge atmospheric pressure plasmas generated in a quartz tube wound with tubular electrodes. The wire was put penetrating through the high voltage and the grounded electrodes, improving the discharge and facilitating uniform surface treatment. In this work, the influences of conductivity of the wire on the effects of surface treatment and discharge behavior were investigated. Surface properties of the wire samples were analyzed by means of surface energy measurement and X-ray photoelectron spectroscopy. In order to reveal the mechanism for treating the conductive wire, I-V discharge waveforms were measured and time-resolved plasma images were taken. It was demonstrated that the conductive wire was involved in the discharge process, reducing the breakdown voltage significantly and enhancing the discharge. It shows that the discharge mode was strongly dependent on the conductivity of a wire. Intensive surface discharges developed along the conductive wire were found to be mainly responsible for noticeable improvement in the treatment effect.

  6. Shape Effect of Electrochemical Chloride Extraction in Structural Reinforced Concrete Elements Using a New Cement-Based Anodic System

    Directory of Open Access Journals (Sweden)

    Jesús Carmona

    2015-05-01

    Full Text Available This article shows the research carried out by the authors focused on how the shape of structural reinforced concrete elements treated with electrochemical chloride extraction can affect the efficiency of this process. Assuming the current use of different anode systems, the present study considers the comparison of results between conventional anodes based on Ti-RuO2 wire mesh and a cement-based anodic system such as a paste of graphite-cement. Reinforced concrete elements of a meter length were molded to serve as laboratory specimens, to closely represent authentic structural supports, with circular and rectangular sections. Results confirm almost equal performances for both types of anode systems when electrochemical chloride extraction is applied to isotropic structural elements. In the case of anisotropic ones, such as rectangular sections with no uniformly distributed rebar, differences in electrical flow density were detected during the treatment. Those differences were more extreme for Ti-RuO2 mesh anode system. This particular shape effect is evidenced by obtaining the efficiencies of electrochemical chloride extraction in different points of specimens.

  7. Shape Effect of Electrochemical Chloride Extraction in Structural Reinforced Concrete Elements Using a New Cement-Based Anodic System

    Science.gov (United States)

    Carmona, Jesús; Climent, Miguel-Ángel; Antón, Carlos; de Vera, Guillem; Garcés, Pedro

    2015-01-01

    This article shows the research carried out by the authors focused on how the shape of structural reinforced concrete elements treated with electrochemical chloride extraction can affect the efficiency of this process. Assuming the current use of different anode systems, the present study considers the comparison of results between conventional anodes based on Ti-RuO2 wire mesh and a cement-based anodic system such as a paste of graphite-cement. Reinforced concrete elements of a meter length were molded to serve as laboratory specimens, to closely represent authentic structural supports, with circular and rectangular sections. Results confirm almost equal performances for both types of anode systems when electrochemical chloride extraction is applied to isotropic structural elements. In the case of anisotropic ones, such as rectangular sections with no uniformly distributed rebar, differences in electrical flow density were detected during the treatment. Those differences were more extreme for Ti-RuO2 mesh anode system. This particular shape effect is evidenced by obtaining the efficiencies of electrochemical chloride extraction in different points of specimens.

  8. Discharge modes at the anode of a vacuum arc

    International Nuclear Information System (INIS)

    Miller, H.C.

    1982-01-01

    The two most common anode modes in a vacuum arc are the low current mode, where the anode is basically inert; and the high current mode with a fully developed anode spot. This anode spot is very bright, has a temperature near the boiling point of the anode material, and is a copious source of vapor and energetic ions. However, other anode modes can exist. A low current vacuum arc with electrodes of readily sputterable material will emit a flux of sputtered atoms from the anode. An intermediate currents an anode footpoint can form. This footpoint is luminous, but much cooler than a true anode spot. Finally, a high current mode can exist where several small anode spots are present instead of a single large anode spot

  9. Characterization of the frictional losses and heat transfer of oscillatory viscous flow through wire-mesh regenerators

    Directory of Open Access Journals (Sweden)

    A.A. Boroujerdi

    2015-12-01

    Full Text Available In this paper, new relations for calculating heat transfer and pressure drop characteristics of oscillatory flow through wire-mesh screen regenerator such as Darcy permeability, Forchheimer’s inertial coefficient, and heat transfer area per unit volume, as a function of the wire diameter are presented. According to the derived relations, thinner wires have higher pressure drop and higher heat transfer rate. The relations are applicable for all regenerative cryocoolers. Embedding the new relations into a numerical model, three Stirling-type orifice pulse tube cryocoolers with three regenerators different in length and diameter but same volume in a variety of wire diameters, have been modeled. The results achieved by the model reveal that the local heat transfer coefficient decreases with increase of the wire diameter and the length-to-diameter ratio. In addition, it was shown that the mean absolute gas–solid wire temperature difference is a linear function of wire diameter in the range investigated. The results show that for larger length-to-diameter ratios, Forchheimer’s effect will dominate frictional losses, and the variations of the frictional losses are proportional to the inverse of the wire diameter. Wire diameter has been optimized to maximize the coefficient of performance of the cryocooler. Shorter regenerators have thinner optimum wires.

  10. Perovskites synthesis to SOFC anodes

    International Nuclear Information System (INIS)

    Wendler, L.P.; Chinelatto, A.L.; Chinelatto, A.S.A.; Ramos, K.

    2012-01-01

    Perovskite structure materials containing lanthanum have been widely applied as solid oxide fuel cells (SOFCs) electrodes, due to its electrical properties. Was investigated the obtain of the perovskite structure LaCr 0,5 Ni 0,5 O 3 , by Pechini method, and its suitability as SOFC anode. The choice of this composition was based on the stability provided by chromium and the catalytic properties of nickel. After preparing the resins, the samples were calcined at 300 deg C, 600 deg C, 700 deg C and 850 deg C. The resulting powders were characterized by X-ray diffraction to determine the existing phases. Furthermore, were performed other analysis, like X-ray fluorescence, He pycnometry, specific surface area by BET isotherm and scanning electronic microscopy (author)

  11. Fixation of Trochanteric Fragments in Cementless Bipolar Hemiarthroplasty of Unstable Intertrochanteric Fracture: Cerclage Wiring.

    Science.gov (United States)

    Lee, Young-Kyun; Park, Chan Ho; Koo, Kyung-Hoi

    2017-12-01

    Bipolar hemiarthroplasty (HA) is an option for the treatment of unstable intertrochanteric fracture in elderly patients. There is a raising concern regarding cable-grip related complications for the fixation of trochanteric fragments. Therefore, the aim of this study was to evaluate outcome of cementless HA with fixation for the trochanteric fragments using monofilament wires in unstable intertrochanteric fracture. We reviewed 92 cementless bipolar HAs using a grit-blasted long stem design for unstable intertrochanteric fractures in 91 elderly patients with a mean age of 81.7 years. During the arthroplasty, trochanteric fracture fragments were fixed using 1 or 2 vertical wires and transverse wires. We evaluated the clinical outcomes such as abductor power, ambulatory ability and wire-related complications, and radiologic outcomes including the union of the trochanteric fragment and subsidence of stem. Sixty-two patients were followed for a minimum of 2 years (mean, 59 months) postoperatively. The mean abductor power and Koval category was 4.1 (range, 3 to 5) and 4.6 (range, 1 to 6). The wire was broken in 3 hips (4.8%) and the nonunion of the greater trochanter occurred in 1 hips (1.6%). Two stems subsided by 3 mm and 8 mm, respectively, during postoperative 6 weeks, after which the subsidence was not progressive. Cerclage wiring of the trochanter using monofilament wire leads to acceptable outcome in cementless HA for senile patients with unstable intertrochanteric fracture. Cerclage wiring using a monofilament wire is recommended for the fixation of trochanteric fragments.

  12. Wire- and cathode pulses in a counter of square cross section with a thin wire as central conductor operating in limited streamer mode

    Science.gov (United States)

    Carli, Ch.; Erd, Ch.; Leder, G.; Pernicka, M.; Regler, M.; Schnizer, B.

    1989-11-01

    Streamer tubes are becoming increasingly important in high-energy physics experiments. They are used as drift tubes for the localisation of charged-particle tracks, and also as sampling devices in sandwich calorimeters with cathode readout only. The streamer pulses carry charges which are several orders of magnitude larger than pulses from proportional chambers; this provides a good signal-to-noise ratio and makes them appropriate for a wide field of applications in highly compact detectors. The signals induced on the cathodes are also important for measuring — in addition to the anode wire - a second coordinate, and for resolving ambiguities in track recognition. When connecting the signals from two opposite cathodes to the two inputs of a differential amplifier, a left/right bit could be added after suitable buffering via the same signal line as used for time digitalisation. Another essential feature is the association of time information from the anode wire and the cathode. For the streamer tube used in this experiment the pulses induced on the cathode on either side of the particle, and on the anode, are measured by a fast analog-to-digital converter. A simple two-dimensional model ρ( r, θ) at t = 0, without any time-dependent effects other than a constant electron drift velocity of 50 μm/ns, is used to compare the charge distribution in a streamer with the measurements of the pulse lengths at the two opposite cathode strips. First the field generated by a static voltage is calculated. Then the effect of a "space charge" is evaluated. The Green's function of the square domain is a prerequisite for determining the field and the surface charge distribution on the electrodes. It is obtained from that of a concentric circular counter by a conformal mapping. Representations of Green's functions are calculated by series expansions.

  13. Electrochemical synthesis of magnetic nanostructures using anodic aluminum oxide templates

    Science.gov (United States)

    Gong, Jie

    In this dissertation, template electrodeposition was employed to fabricate high quality magnetic nanostructures suited for the reliable investigation of novel spintronics phenomena such as CIMS, BMR, and CPP-GMR. Several critical aspects/steps relating to the synthesis process were investigated in this work. In order to obtain high quality magnetic nanostructures, free-standing and Si-supported anodic aluminum oxide templates with closely controlled pore diameters, lengths, as well as constriction sizes, were synthesized by anodization, followed by appropriate post-processing. The pore opening size on the barrier layer can be controlled down to 5 nm by ion beam etching. After optimization of the compositional, structural, and magnetic properties of homogeneous FeCoNiCu layers electrodeposited under different conditions, the pulsed deposition process of FeCoNI/Cu multilayers on n-Si was studied. The influence of Cu deposition potential and Fe2+ concentration on microstructure, chemical and electrochemical properties, magnetic properties, and hence magnetotransport properties were assessed. The dissolution of the FM layer during potential transition was minimized in order to control interface sharpness. Combined with the systematic sublayer thickness and FM layer composition optimization, unprecedented GMR sensitivity of 0.11%/Oe at 5-15 Oe was obtained. Growth of multilayer nanowires was performed, and contact to a single wire was attempted using an electrochemical technique. We succeeded in addressing a small number of nanowires and measured a CPP-GMR of 17%. Template electrodeposition thus provides a promising way to repeatably fabricate prototypes for spin dependent transport studies.

  14. Comparison of PIV and Hot-Wire statistics of turbulent boundary layer

    International Nuclear Information System (INIS)

    Dróżdż, A; Uruba, V

    2014-01-01

    The paper shows a cross checking of turbulent boundary layer measurements using large field of view PIV and hot-wire anemometry techniques. The time-resolved PIV method was used for the experiments. The measuring plane was oriented perpendicularly to the wall and parallel to the mean flow. Hot wire measurement has been performed using the special probe with perpendicular hot wire. The HW point measurements were performed in the same place as PIV experiments. The hot-wire probe has the wire length of l + < 20 in considered range of Reynolds numbers. Various evaluation methods were applied on PIV data. The profiles of statistical characteristics of streamwise velocity components were evaluated from the data. Mean values, standard deviations as well as skewness and kurtosis coefficients were compared for a few values of Re θ . Reynolds number ranges from 1000 to 5500. The result shows that with the increasing Reynolds number the attenuation of fluctuations maximum in PIV measurements occurs with respect to Hot-Wire measurements, however representation of velocity fluctuations using the PIV method is satisfactory. The influence of wall-normal fluctuation component on Hot-Wire near wall peak was also investigated.

  15. Anode plasma and focusing reb diodes

    International Nuclear Information System (INIS)

    Goldstein, S.A.; Swain, D.W.; Hadley, G.R.; Mix, L.P.

    1975-01-01

    The use of electrical, optical, x-ray, and particle diagnostics to characterize the production of anode plasma and to monitor its influence on beam generation and focusing is reviewed. Studies using the Nereus accelerator show that after cathode turn-on, deposition of several kJ/gm on the anode is necessary before ions from hydrocarbons, adsorbed gases, and heavier metallic species are detected. The actual time at which ions are liberated depends on several factors, one of which is the specific heat of the anode substrate. Once formed, anode ions cross the A-K gap (with an energy equal to the diode voltage) and interact with the cathode to produce an axially peaked beam profile, a ''pinch'' which does not follow the critical current criterion. Experiments with externally generated anode plasma show that this type of pinch can be attracted to localized areas on the anode. Preliminary observations on Hydra indicate the anode plasma composition is similar to that on Nereus. The effect of this plasma on pinch dynamics currently is under investigation

  16. Anode baking process optimization through computer modelling

    Energy Technology Data Exchange (ETDEWEB)

    Wilburn, D.; Lancaster, D.; Crowell, B. [Noranda Aluminum, New Madrid, MO (United States); Ouellet, R.; Jiao, Q. [Noranda Technology Centre, Pointe Claire, PQ (Canada)

    1998-12-31

    Carbon anodes used in aluminum electrolysis are produced in vertical or horizontal type anode baking furnaces. The carbon blocks are formed from petroleum coke aggregate mixed with a coal tar pitch binder. Before the carbon block can be used in a reduction cell it must be heated to pyrolysis. The baking process represents a large portion of the aluminum production cost, and also has a significant effect on anode quality. To ensure that the baking of the anode is complete, it must be heated to about 1100 degrees C. To improve the understanding of the anode baking process and to improve its efficiency, a menu-driven heat, mass and fluid flow simulation tool, called NABSIM (Noranda Anode Baking SIMulation), was developed and calibrated in 1993 and 1994. It has been used since then to evaluate and screen firing practices, and to determine which firing procedure will produce the optimum heat-up rate, final temperature, and soak time, without allowing unburned tar to escape. NABSIM is used as a furnace simulation tool on a daily basis by Noranda plant process engineers and much effort is expended in improving its utility by creating new versions, and the addition of new modules. In the immediate future, efforts will be directed towards optimizing the anode baking process to improve temperature uniformity from pit to pit. 3 refs., 4 figs.

  17. Correlated electron phenomena in ultra-low disorder quantum wires

    International Nuclear Information System (INIS)

    Reilly, D.J.; Facer, G.R.; Dzurak, A.S.; Kane, B.E.; Clark, R.G.; Lumpkin, N.E.

    1999-01-01

    Full text: Quantum point contacts in the lowest disorder HEMTs display structure at 0.7 x 2e 2 /h, which cannot be interpreted within a single particle Landauer model. This structure has been attributed to a spontaneous spin polarisation at zero B field. We have developed novel GaAs/AlGaAs enhancement mode FETs, which avoid the random impurity potential present in conventional MODFET devices by using epitaxially grown gates to produce ultra-low-disorder QPCs and quantum wires using electron beam lithography. The ballistic mean free path within these devices exceeds 160 μm 2 . Quantum wires of 5 μm in length show up to 15 conductance plateaux, indicating that these may be the lowest-disorder quantum wires fabricated using conventional surface patterning techniques. These structures are ideal for the study of correlation effects in QPCs and quantum wires as a function of electron density. Our data provides strong evidence that correlation effects are enhanced as the length of the 1D region is increased and also that additional structure moves close to 0.5 x 2e 2 /h, the value expected for an ideal spin-split 1D level

  18. Self-Catalyzed CdTe Wires

    Directory of Open Access Journals (Sweden)

    Tom Baines

    2018-04-01

    Full Text Available CdTe wires have been fabricated via a catalyst free method using the industrially scalable physical vapor deposition technique close space sublimation. Wire growth was shown to be highly dependent on surface roughness and deposition pressure, with only low roughness surfaces being capable of producing wires. Growth of wires is highly (111 oriented and is inferred to occur via a vapor-solid-solid growth mechanism, wherein a CdTe seed particle acts to template the growth. Such seed particles are visible as wire caps and have been characterized via energy dispersive X-ray analysis to establish they are single phase CdTe, hence validating the self-catalysation route. Cathodoluminescence analysis demonstrates that CdTe wires exhibited a much lower level of recombination when compared to a planar CdTe film, which is highly beneficial for semiconductor applications.

  19. Phosphorus in antique iron music wire.

    Science.gov (United States)

    Goodway, M

    1987-05-22

    Harpsichords and other wire-strung musical instruments were made with longer strings about the beginning of the 17th century. This change required stronger music wire. Although these changes coincided with the introduction of the first mass-produced steel (iron alloyed with carbon), carbon was not found in samples of antique iron harpsichord wire. The wire contained an amount of phosphorus sufficient to have impeded its conversion to steel, and may have been drawn from iron rejected for this purpose. The method used to select pig iron for wire drawing ensured the highest possible phosphorus content at a time when its presence in iron was unsuspected. Phosphorus as an alloying element has had the reputation for making steel brittle when worked cold. Nevertheless, in replicating the antique wire, it was found that lowcarbon iron that contained 0.16 percent phosphorus was easily drawn to appropriate gauges and strengths for restringing antique harpsichords.

  20. Electromagnetic Behaviour of Metallic Wire Structures

    CERN Document Server

    Chui, S T

    2013-01-01

    Despite the recent development and interest in the photonics of metallic wire structures, the relatively simple concepts and physics often remain obscured or poorly explained to those who do not specialize in the field. Electromagnetic Behaviour of Metallic Wire Structures provides a clear and coherent guide to understanding these phenomena without excessive numerical calculations.   Including both background material and detailed derivations of the various different formulae applied, Electromagnetic Behaviour of Metallic Wire Structures describes how to extend basic circuit theory relating to voltages, currents, and resistances of metallic wire networks to include situations where the currents are no longer spatially uniform along the wire. This lays a foundation for a deeper understanding of the many new phenomena observed in meta-electromagnetic materials.   Examples of applications are included to support this new approach making Electromagnetic Behaviour of Metallic Wire Structures a comprehensive and ...

  1. Electro-mechanics of drift tube wires

    International Nuclear Information System (INIS)

    Milburn, R.H.

    1997-01-01

    The position and stability of the sense wires in very long drift tubes are affected by both gravitational and electrostatic forces, as well as by the wire tension. For a tube to be used as an element of a high-resolution detector all these forces and their effects must be understood in appropriately precise detail. In addition, the quality control procedures applied during manufacture and detector installation must be adequate to ensure that the internal wire positions remain within tolerances. It may be instructive to practitioners to review the simple theory of a taut wire in the presence of anisotropic gravitational and electrostatic fields to illustrate the conditions for stability, the equilibrium wire displacement from straightness, and the effect of the fields on the mechanical vibration frequencies. These last may be used to monitor the wire configuration externally. A number of practical formulae result and these are applied to illustrative examples. (orig.)

  2. Effect of RuCl{sub 3} Concentration on the Lifespan of Insoluble Anode for Cathodic Protection on PCCP

    Energy Technology Data Exchange (ETDEWEB)

    Cho, H. W.; Kim, Y. S. [Materials Research Center for Energy and Clean Technology, School of Materials Science and Engineering, Andong National University, Andong (Korea, Republic of); Chang, H. Y.; Lim, B. T.; Park, H. B. [Power Engineering Research Institute, KEPCO Engineering and Construction Company, Seongnam (Korea, Republic of)

    2015-08-15

    Prestressed Concrete steel Cylinder Pipe (PCCP) is extensively used as seawater pipes for cooling in nuclear power plants. The internal surface of PCCP is exposed to seawater, while the external surface is in direct contact with underground soil. Therefore, materials and strategies that would reduce the corrosion of its cylindrical steel body and external steel wiring need to be employed. To prevent against the failure of PCCP, operators provided a cathodic protection to the pre-stressing wires. The efficiency of cathodic protection is governed by the anodic performance of the system. A mixed metal oxide (MMO) electrode was developed to meet criteria of low over potential and high corrosion resistance. Increasing coating cycles improved the performance of the anode, but cycling should be minimized due to high materials cost. In this work, the effects of RuCl{sub 3} concentration on the electrochemical properties and lifespan of MMO anode were evaluated. With increasing concentration of RuCl{sub 3}, the oxygen evolution potential lowered and polarization resistance were also reduced but demonstrated an increase in passive current density and oxygen evolution current density. To improve the electrochemical properties of the MMO anode, RuCl{sub 3} concentration was increased. As a result, the number of required coating cycles were reduced substantially and the MMO anode achieved an excellent lifespan of over 80 years. Thus, we concluded that the relationship between RuCl{sub 3} concentration and coating cycles can be summarized as follows: No. of coating cycle = 0.48{sup *}[RuCl{sub 3} concentration, M]{sup -0.97}.

  3. Anodic oxidation of bis(9,9-. beta. -cyanoethyl)fluorene: an efficient way for synthesizing a new functionalizable conducting polymer

    Energy Technology Data Exchange (ETDEWEB)

    Le Deit, H.; Rault-Berthelot, J.; Simonet, J. (Lab. d' Electrochimie Organique, Univ. de Rennes 1, 35 (France))

    1992-06-01

    The title compound can be easily polymerized by anodic means in CH{sub 2}Cl{sub 2} leading to a new polyfluorene possessing nitrile groups potentially functionalizable by classical chemical means. (orig.).

  4. IEE wiring regulations explained and illustrated

    CERN Document Server

    Scaddan, Brian

    2013-01-01

    The IEE Wiring Regulations Explained and Illustrated, Second Edition discusses the recommendations of the IEE Regulations for the Electrical Equipment of Buildings for the safe selection or erection of wiring installations. The book emphasizes earthing, bonding, protection, and circuit design of electrical wirings. The text reviews the fundamental requirements for safety, earthing systems, the earth fault loop impedance, and supplementary bonding. The book also describes the different types of protection, such as protection against mechanical damage, overcurrent, under voltage (which prevents

  5. Radiofrequency Wire Recanalization of Chronically Thrombosed TIPS

    Energy Technology Data Exchange (ETDEWEB)

    Majdalany, Bill S., E-mail: bmajdala@med.umich.edu [University of Michigan Health System, Division of Interventional Radiology, Department of Radiology (United States); Elliott, Eric D., E-mail: eric.elliott@osumc.edu [The Ohio State University Wexner Medical Center, Division of Interventional Radiology, Department of Radiology (United States); Michaels, Anthony J., E-mail: Anthony.michaels@osumc.edu; Hanje, A. James, E-mail: James.Hanje@osumc.edu [The Ohio State University Wexner Medical Center, Division of Gastroenterology and Hepatology, Department of Medicine (United States); Saad, Wael E. A., E-mail: wsaad@med.umich.edu [University of Michigan Health System, Division of Interventional Radiology, Department of Radiology (United States)

    2016-07-15

    Radiofrequency (RF) guide wires have been applied to cardiac interventions, recanalization of central venous thromboses, and to cross biliary occlusions. Herein, the use of a RF wire technique to revise chronically occluded transjugular intrahepatic portosystemic shunts (TIPS) is described. In both cases, conventional TIPS revision techniques failed to revise the chronically thrombosed TIPS. RF wire recanalization was successfully performed through each of the chronically thrombosed TIPS, demonstrating initial safety and feasibility in this application.

  6. Minimisation of the wire position uncertainties of the new CERN vacuum wire scanner

    CERN Document Server

    AUTHOR|(CDS)2069346; Barjau Condomines, A

    In the next years the luminosity of the LHC will be significantly increased. This will require a much higher accuracy of beam profile measurement than actually achievable by the current wire scanner. The new fast wire scanner is foreseen to measure small emittance beams throughout the LHC injector chain, which demands a wire travelling speed up to 20 ms-1 and position measurement accuracy of the order of a few microns. The vibrations of the mechanical parts of the system, and particularly the vibrations of the thin carbon wire, were identified as the major error sources of wire position uncertainty. Therefore the understanding of the wire vibrations is a high priority for the design and operation of the new device. This document presents the work performed to understand the main causes of the wire vibrations observed in one of the existing wire scanner and the new proposed design.

  7. Hot wire radicals and reactions

    International Nuclear Information System (INIS)

    Zheng Wengang; Gallagher, Alan

    2006-01-01

    Threshold ionization mass spectroscopy is used to measure radical (and stable gas) densities at the substrate of a tungsten hot wire (HW) reactor. We report measurements of the silane reaction probability on the HW and the probability of Si and H release from the HW. We describe a model for the atomic H release, based on the H 2 dissociation model. We note major variations in silicon-release, with dependence on prior silane exposure. Measured radical densities versus silane pressure yield silicon-silane and H-silane reaction rate coefficients, and the dominant radical fluxes to the substrate

  8. DETECTORS: Vienna - beyond the wire

    International Nuclear Information System (INIS)

    Krammer, Manfred; Regler, Meinhard

    1995-01-01

    In 1986, at the fourth Vienna Wire Chamber Conference, Georges Charpak, the inventor of the multiwire proportional chamber, had confidently announced ''Les funérailles des chambres à fils''. Was this the writing on the wall for the conference series as well as this type of detector technology? The demand for detector innovation, coupled with imaginative thinking on the part of the organizers, have kept the Vienna venue at the forefront of the physics calendar. An additional boost to the success of the series was certainly the Nobel Prize awarded to Georges Charpak in 1992. While the major topic naturally is still wire chambers, alternative technologies are also covered. However in fields like calorimetry or ring imaging Cherenkovs, a sample of only a few prominent detectors were presented, giving some participants the impression of a biased selection. The fact that silicon detectors, electronics and track reconstruction strategies were, with the exception of the invited talks, restricted to poster presentations led to the same conclusion. As a result the organizing committee saw that it will have to revise its brief for the next conference. The conference opened with philosophical thoughts by Nobel Prizewinner Georges Charpak. The first day at Vienna is traditionally devoted to applications of gaseous detectors outside high energy physics. L. Shektman gave an overview of wire chambers for medical imaging. Further applications in medicine and in other fields like biology and space science were described by subsequent speakers. The exciting idea of flying a spectrometer on a balloon to study the fraction of electrons and positrons in cosmic rays attracted a lot of attention. The next day covered wire chambers in general. V. Polychronakos presented applications of cathode strip chambers in muon spectrometers for experiments at CERN's LHC proton-proton detector. Certainly the challenges of LHC for detector development dominated many

  9. Development of layered anode structures supported over Apatite-type Solid Electrolytes

    Directory of Open Access Journals (Sweden)

    Pandis P.

    2016-01-01

    Full Text Available Apatite-type lanthanum silicates (ATLS materials have attracted interest in recent literature as solid electrolytes for SOFCs. The fabrication of an ATLS based fuel cell with the state-of-art electrodes (NiO/YSZ as anode and LSCF or LSM as cathode can show degradation after long operation hours due to Si diffusion mainly towards the anode. In this work, we report a “layer-by-layer anodic electrodes” fabrication by means of spin coating and physical spraying. The overall aim of this work is the successful fabrication of such a layered structure including suitable blocking layers towards the inhibition of Si interdiffusion from the apatite electrolyte to the anode. The results showed that the deposition of 3 layers of LFSO/GDC (3μm, NiO/GDC (4μm and the final NiO/YSZ anode layer provided a stable half-cell, with no solid state reaction occurring among the electrodes and no Si diffusion observed towards the anode after thermal treatment at 800°C for 120h.

  10. Wire alignment system for ATF LINAC

    International Nuclear Information System (INIS)

    Hayano, H.; Takeda, S.; Matsumoto, H.; Matsui, T.

    1994-01-01

    A wire based alignment system is adopted to make less than 40μm precision alignment for injector linac of Accelerator Test Facility (ATF). The system consists of two stretched SUS wires, pickup coils and active mover stages. The position of pickup coils in a mount which will be installed into LINAC stages is set to the calculated wire position prior to installation. All of LINAC stages are then moved to keep the calculated position by the active mover. The test results of wire position detection in a long term are described. (author)

  11. Aircraft Wiring Support Equipment Integration Laboratory (AWSEIL)

    Data.gov (United States)

    Federal Laboratory Consortium — Purpose:The Aircraft Wiring Support Equipment Integration Laboratory (AWSEIL) provides a variety of research, design engineering and prototype fabrication services...

  12. Nickel contaminated titanium weld wire study

    International Nuclear Information System (INIS)

    Coffin, G.R.; Sumstine, R.L.

    1979-01-01

    Attachment of thermocouples to fuel rod welding problems at Exxon Nuclear Company and INEL prompted an investigation study of the titanium filler wire material. It was found that the titanium filler wire was contaminated with nickel which was jacketed on the wire prior to the drawing process at the manufacturers. A method was developed to 100% inspect all filler wire for future welding application. This method not only indicates the presence of nickel contamination but indicates quantity of contamination. The process is capable of high speed inspection necessary for various high speed manufacturing processes

  13. submitter Dynamical Models of a Wire Scanner

    CERN Document Server

    Barjau, Ana; Dehning, Bernd

    2016-01-01

    The accuracy of the beam profile measurements achievable by the current wire scanners at CERN is limited by the vibrations of their mechanical parts. In particular, the vibrations of the carbon wire represent the major source of wire position uncertainty which limits the beam profile measurement accuracy. In the coming years, due to the Large Hadron Collider (LHC) luminosity upgrade, a wire traveling speed up to 20 $m s^{−1}$ and a position measurement accuracy of the order of 1 μm will be required. A new wire scanner design based on the understanding of the wire vibration origin is therefore needed. We present the models developed to understand the main causes of the wire vibrations observed in an existing wire scanner. The development and tuning of those models are based on measurements and tests performed on that CERN proton synchrotron (PS) scanner. The final model for the (wire + fork) system has six degrees-of-freedom (DOF). The wire equations contain three different excitation terms: inertia...

  14. Anodic behavior of Al-Zn-In sacrificial anodes at different concentration of zinc and indium

    Energy Technology Data Exchange (ETDEWEB)

    Keyvani, Ahmad [Shahrekord Univ. (Iran, Islamic Republic of). Dept. of Materials Engineering; Tehran Univ. (Iran, Islamic Republic of). School of Metallurgy and Materials; Saremi, Mohsen [Tehran Univ. (Iran, Islamic Republic of). School of Metallurgy and Materials; Saeri, Mohammad Reza [Shahrekord Univ. (Iran, Islamic Republic of). Dept. of Materials Engineering

    2012-12-15

    Al-Zn-In anodes show better performance due to the beneficial effects of Zn and In on prevention of aluminum passivity and producing a homogeneous structure for uniform corrosion of the anodes. However, there are different views about the optimum concentration of each element in the anode. In this study, the anodic behavior of Al-Zn-In alloy with different concentrations of zinc from 1 to 6wt.% and indium from 0.01 to 0.05wt.% are studied. The NACE efficiency test and polarization are used in 3wt.% NaCl solution for corrosion characterization. The results showed that zinc and indium change the anode potential to more active potentials and improve the microstructure uniformity of anodes. The latter leads to more uniform corrosion. Optimum concentrations of zinc (5wt.%) and indium (0.02wt.%) were found in this respect. (orig.)

  15. Anodization of Aluminium using a fast two-step process

    Indian Academy of Sciences (India)

    283.6 eV. Keywords. Anodization; phosphoric acid; anodization time; anodized aluminium oxide; aluminium. ... of anodization.5–7 The AAO layer has a large band gap, good ..... transmittance increases as the anodised membrane is heated to ...

  16. Effect of sealing on the morphology of anodized aluminum oxide

    International Nuclear Information System (INIS)

    Hu, Naiping; Dong, Xuecheng; He, Xueying; Browning, James F.; Schaefer, Dale W.

    2015-01-01

    Highlights: • We explored structural change of anodizing aluminum oxide induced by sealing. • All sealing methods decrease pore size as shown by X-ray/neutron scattering. • Cold sealing and hot water sealing do not alter the aluminum oxide framework. • Hot nickel acetate sealing both fills the pores and deposits on air oxide interface. • Samples with hot nickel acetate sealing outperform other sealing methods. - Abstract: Ultra-small angle X-ray scattering (USAXS), small-angle neutron scattering (SANS), X-ray reflectometry (XRR) and neutron reflectometry (NR) were used to probe structure evolution induced by sealing of anodized aluminum. While cold nickel acetate sealing and hot-water sealing decrease pore size, these methods do not alter the cylindrical porous framework of the anodic aluminum oxide layer. Hot nickel acetate both fills the pores and deposits on the air surface (air–oxide interface), leading to low porosity and small mean pore radius (39 Å). Electrochemical impedance spectroscopy and direct current polarization show that samples sealed by hot nickel acetate outperform samples sealed by other sealing methods

  17. An evaluation of two types of nickel-titanium wires in terms of micromorphology and nickel ions' release following oral environment exposure.

    Science.gov (United States)

    Ghazal, Abdul Razzak A; Hajeer, Mohammad Y; Al-Sabbagh, Rabab; Alghoraibi, Ibrahim; Aldiry, Ahmad

    2015-01-01

    This study aimed to compare superelastic and heat-activated nickel-titanium orthodontic wires' surface morphology and potential release of nickel ions following exposure to oral environment conditions. Twenty-four 20-mm-length distal cuts of superelastic (NiTi Force I®) and 24 20-mm-length distal cuts of heat-activated (Therma-Ti Lite®) nickel-titanium wires (American Orthodontics, Sheboygan, WI, USA) were divided into two equal groups: 12 wire segments left unused and 12 segments passively exposed to oral environment for 1 month. Scanning electron microscopy and atomic force microscopy were used to analyze surface morphology of the wires which were then immersed in artificial saliva for 1 month to determine potential nickel ions' release by means of atomic absorption spectrophotometer. Heat-activated nickel-titanium (NiTi) wires were rougher than superelastic wires, and both types of wires released almost the same amount of Ni ions. After clinical exposure, more surface roughness was recorded for superelastic NiTi wires and heat-activated NiTi wires. However, retrieved superelastic NiTi wires released less Ni ions in artificial saliva after clinical exposure, and the same result was recorded regarding heat-activated wires. Both types of NiTi wires were obviously affected by oral environment conditions; their surface roughness significantly increased while the amount of the released Ni ions significantly declined.

  18. Optimum Exploration for the Self-Ordering of Anodic Porous Alumina Formed via Selenic Acid Anodizing

    OpenAIRE

    Akiya, Shunta; Kikuchi, Tatsuya; Natsui, Shungo; Suzuki, Ryosuke O.

    2015-01-01

    Improvements of the regularity of the arrangement of anodic porous alumina formed by selenic acid anodizing were investigated under various operating conditions. The oxide burning voltage increased with the stirring rate of the selenic acid solution, and the high applied voltage without oxide burning was achieved by vigorously stirring the solution. The regularity of the porous alumina was improved as the anodizing time and surface flatness increased. Conversely, the purity of the 99.5–99.999...

  19. Microbial fuel cells with an integrated spacer and separate anode and cathode modules

    KAUST Repository

    He, Weihua

    2016-01-01

    A new type of scalable MFC was developed based on using alternating graphite fiber brush array anode modules and dual cathode modules in order to simplify construction, operation, and maintenance of the electrodes. The modular MFC design was tested with a single (two-sided) cathode module with a specific surface area of 29 m2 m−3 based on a total liquid volume (1.4 L; 20 m2 m−3 using the total reactor volume of 2 L), and two brush anode modules. Three different types of spacers were used in the cathode module to provide structural stability, and enhance air flow relative to previous cassette (combined anode–cathode) designs: a low-profile wire spacer; a rigid polycarbonate column spacer; and a flexible plastic mesh spacer. The best performance was obtained using the wire spacer that produced a maximum power density of 1100 ± 10 mW m−2 of cathode (32 ± 0.3 W m−3 based on liquid volume) with an acetate-amended wastewater (COD = 1010 ± 30 mg L−1), compared to 1010 ± 10 mW m−2 for the column and 650 ± 20 mW m−2 for the mesh spacers. Anode potentials were unaffected by the different types of spacers. Raw domestic wastewater produced a maximum of 400 ± 8 mW m−2 under fed batch conditions (wire-spacers), which is one of the highest power densities for this fuel. Over time the maximum power was reduced to 300 ± 10 mW m−2 and 275 ± 7 mW m−2 for the two anode compartments, with only slightly less power of 250 ± 20 mW m−2 obtained under continuous flow conditions. In fixed-resistance tests, the average COD removal was 57 ± 5% at a hydraulic retention time of 8 h. These results show that this modular MFC design can both simplify reactor construction and enable relatively high power generation from even relatively dilute wastewater.

  20. Effect of Anode Dielectric Coating on Hall Thruster Operation

    International Nuclear Information System (INIS)

    Dorf, L.; Raitses, Y.; Fisch, N.J.; Semenov, V.

    2003-01-01

    An interesting phenomenon observed in the near-anode region of a Hall thruster is that the anode fall changes from positive to negative upon removal of the dielectric coating, which is produced on the anode surface during the normal course of Hall thruster operation. The anode fall might affect the thruster lifetime and acceleration efficiency. The effect of the anode coating on the anode fall is studied experimentally using both biased and emissive probes. Measurements of discharge current oscillations indicate that thruster operation is more stable with the coated anode

  1. FE modeling of Cu wire bond process and reliability

    NARCIS (Netherlands)

    Yuan, C.A.; Weltevreden, E.R.; Akker, P. van den; Kregting, R.; Vreugd, J. de; Zhang, G.Q.

    2011-01-01

    Copper based wire bonding technology is widely accepted by electronic packaging industry due to the world-wide cost reduction actions (compared to gold wire bond). However, the mechanical characterization of copper wire differs from the gold wire; hence the new wire bond process setting and new bond

  2. THERMO-MECHANICALLY PROCESSED ROLLED WIRE FOR HIGH-STRENGTH ON-BOARD WIRE

    Directory of Open Access Journals (Sweden)

    V. A. Lutsenko

    2011-01-01

    Full Text Available It is shown that at twisting of wire of diameter 1,83 mm, produced by direct wire drawing of thermomechanically processed rolled wire of diameter 5,5 mm of steel 90, metal stratification is completely eliminated at decrease of carbon, manganese and an additional alloying of chrome.

  3. Surface photovoltage and photoluminescence spectroscopy of self-assembled InAs/InP quantum wires

    International Nuclear Information System (INIS)

    Donchev, V; Ivanov, T S; Borisov, K; Angelova, T; Cros, A; Cantarero, A; Fuster, D; Shtinkov, N; Gonzalez, Y; Gonzalez, L

    2010-01-01

    The optical properties of InAs/InP multi-layer quantum wire (QWR) structures of various spacer thicknesses have been investigated by means of room temperature surface photovoltage and photoluminescence spectroscopy. Combined with empirical tight binding calculations, the spectra have revealed transitions assigned to QWR families with heights equal to integer number of 5, 6 and 7 monolayers. From the comparison of the experimental and theoretical results the atomic concentration of phosphorus in the wires has been estimated.

  4. Surface photovoltage and photoluminescence spectroscopy of self-assembled InAs/InP quantum wires

    Science.gov (United States)

    Donchev, V.; Ivanov, T. S.; Angelova, T.; Cros, A.; Cantarero, A.; Shtinkov, N.; Borisov, K.; Fuster, D.; González, Y.; González, L.

    2010-02-01

    The optical properties of InAs/InP multi-layer quantum wire (QWR) structures of various spacer thicknesses have been investigated by means of room temperature surface photovoltage and photoluminescence spectroscopy. Combined with empirical tight binding calculations, the spectra have revealed transitions assigned to QWR families with heights equal to integer number of 5, 6 and 7 monolayers. From the comparison of the experimental and theoretical results the atomic concentration of phosphorus in the wires has been estimated.

  5. Low voltage aluminium anodes. Optimization of the insert-anode bond

    Energy Technology Data Exchange (ETDEWEB)

    Le Guyader, Herve; Debout, Valerie; Grolleau, Anne-Marie [DCN Cherbourg, Departement 2EI, Place Bruat, BP 440, 50104 Cherbourg-Octeville (France); Pautasso, Jean-Pierre [DGA/CTA 16 bis, avenue Prieur de la Cote D' Or, 94 114 Arcueil Cedex (France)

    2004-07-01

    Zinc or Al/Zn/In sacrificial anodes are widely used to protect submerged marine structures from corrosion. Their Open Circuit Potential range from - 1 V vs. Ag/AgCl for Zn anodes to -1.1 V vs. Ag/AgCl for Al/Zn/In. These potentials are sufficiently electronegative as to reduce the threshold for stress corrosion cracking and/or hydrogen embrittlement, KISCC, especially in the presence of high strength alloys. In the 90's, an extensive research programme was initiated by DGA/DCN to implement a new low voltage material. Laboratory and full scale marine tests performed on industrial castings, as previously reported, led to the development of a new patented Al- 0.1%Ga alloy having a working potential of - 0.80 to - 0.83 V vs. Ag/AgCl. This alloy was also evaluated at full scale at the Naval Research Laboratory anode qualification site in Key West, Fl, and gave satisfactory results. Around 500 cylindrical AlGa anodes were then installed on a submerged marine structure replacing the classical zinc anode. A first inspection, carried out after a few months of service, showed that some of the anodes had not operated as expected, which led to further investigations. The examinations performed indicated that the problem was due to a bad metallurgical compatibility between the insert and the sacrificial materials inducing a poor bond between the anode and the plain rod insert. Progressive loss of contact between the anode and the structure to be protected was then induced by penetration of sea water and corrosion at the anode-insert interface. This phenomenon was aggravated by seawater pressure. Additional studies were therefore launched with two aims: (1) find temporary remedies for the anodes already installed on the structure; (2) correct the anode original design and/or manufacturing process to achieve the maximum performance on new anodes lots. This paper describes the various solutions investigated to improve the insert-anode bond: design of the anode, rugosity and

  6. Electronic properties of electrolyte/anodic alumina junction during porous anodizing

    Energy Technology Data Exchange (ETDEWEB)

    Vrublevsky, I. [Department of Microelectronics, Belarusian State University of Informatics and Radioelectronics, 6 Brovka Street, Minsk 220013 (Belarus)]. E-mail: nil-4-2@bsuir.edu.by; Jagminas, A. [Institute of Chemistry, A. Gostauto 9, LT-01108 Vilnius (Lithuania); Schreckenbach, J. [Institut fuer Chemie, Technische Universitaet Chemnitz, Chemnitz D-09107 (Germany); InnoMat GmbH, Chemnitz (Germany); Goedel, Werner A. [Institut fuer Chemie, Technische Universitaet Chemnitz, Chemnitz D-09107 (Germany)

    2007-03-15

    The growth of porous oxide films on aluminum (99.99% purity), formed in 4% phosphoric acid was studied as a function of the anodizing voltage (23-53 V) using a re-anodizing technique and transmission electron microscopy (TEM) study. The chemical dissolution behavior of freshly anodized and annealed at 200 deg. C porous alumina films was studied. The obtained results indicate that porous alumina has n-type semiconductive behavior during anodizing in 4% phosphoric acid. During anodising, up to 39 V in the barrier layer of porous films, one obtains an accumulation layer (the thickness does not exceed 1 nm) where the excess electrons have been injected into the solid producing a downward bending of the conductive and valence band towards the interface. The charge on the surface of anodic oxide is negative and decreases with growing anodizing voltage. At the anodizing voltage of about 39 V, the charge on the surface of anodic oxide equals to zero. Above 39 V, anodic alumina/electrolyte junction injects protons from the electrolyte. These immobile positive charges in the surface layer of oxide together with an ionic layer of hydroxyl ions concentrated near the interface create a field, which produces an upward bending of the bands.

  7. EFFECT OF PHOSPHORIC ACID CONCENTRATION AND ANODIZING TIME ON THE PROPERTIES OF ANODIC FILMS ON TITANIUM

    Directory of Open Access Journals (Sweden)

    DIMAS L. TORRES

    2015-07-01

    Full Text Available In this study, it was investigated the influence of electrolyte concentration and anodizing time on the electrochemical behaviour and morphology of anodic films formed on commercially pure Ti. Electrochemical methods and surface analyses were used to characterize the films. It was found that the electrolyte concentration and anodizing time affect the growth and protective characteristics of films in a physiologic medium. It was possible to observe their non-uniformity on Ti substrates under the tested conditions. In potentiodynamic profiles, it was observed that passivation current values are affected by an anodizing time increase. Variations in impedance spectra were associated with an increase of defects within the film.

  8. Structural Engineering of Nanoporous Anodic Alumina Photonic Crystals by Sawtooth-like Pulse Anodization.

    Science.gov (United States)

    Law, Cheryl Suwen; Santos, Abel; Nemati, Mahdieh; Losic, Dusan

    2016-06-01

    This study presents a sawtooth-like pulse anodization approach aiming to create a new type of photonic crystal structure based on nanoporous anodic alumina. This nanofabrication approach enables the engineering of the effective medium of nanoporous anodic alumina in a sawtooth-like manner with precision. The manipulation of various anodization parameters such as anodization period, anodization amplitude, number of anodization pulses, ramp ratio and pore widening time allows a precise control and fine-tuning of the optical properties (i.e., characteristic transmission peaks and interferometric colors) exhibited by nanoporous anodic alumina photonic crystals (NAA-PCs). The effect of these anodization parameters on the photonic properties of NAA-PCs is systematically evaluated for the establishment of a fabrication methodology toward NAA-PCs with tunable optical properties. The effective medium of the resulting NAA-PCs is demonstrated to be optimal for the development of optical sensing platforms in combination with reflectometric interference spectroscopy (RIfS). This application is demonstrated by monitoring in real-time the formation of monolayers of thiol molecules (11-mercaptoundecanoic acid) on the surface of gold-coated NAA-PCs. The obtained results reveal that the adsorption mechanism between thiol molecules and gold-coated NAA-PCs follows a Langmuir isotherm model, indicating a monolayer sorption mechanism.

  9. Spin correlations in quantum wires

    Science.gov (United States)

    Sun, Chen; Pokrovsky, Valery L.

    2015-04-01

    We consider theoretically spin correlations in a one-dimensional quantum wire with Rashba-Dresselhaus spin-orbit interaction (RDI). The correlations of noninteracting electrons display electron spin resonance at a frequency proportional to the RDI coupling. Interacting electrons, upon varying the direction of the external magnetic field, transit from the state of Luttinger liquid (LL) to the spin-density wave (SDW) state. We show that the two-time total-spin correlations of these states are significantly different. In the LL, the projection of total spin to the direction of the RDI-induced field is conserved and the corresponding correlator is equal to zero. The correlators of two components perpendicular to the RDI field display a sharp electron-spin resonance driven by the RDI-induced intrinsic field. In contrast, in the SDW state, the longitudinal projection of spin dominates, whereas the transverse components are suppressed. This prediction indicates a simple way for an experimental diagnostic of the SDW in a quantum wire. We point out that the Luttinger model does not respect the spin conservation since it assumes the infinite Fermi sea. We propose a proper cutoff to correct this failure.

  10. Bird on a (live) wire

    Energy Technology Data Exchange (ETDEWEB)

    Farr, M.

    2003-09-30

    Bird mortality as a result of contact with power lines is discussed. U. S. statistics are cited, according to which 174 million birds annually die as a result of contact with power lines, specifically when birds touch two phases of current at the same time. Raptors are particularly vulnerable to power-line electrocution due to their habit of perching on the highest vantage point available as they survey the ground for prey. Hydro lines located in agricultural areas, with bodies of water on one side and fields on the other, also obstruct flight of waterfowl as dusk and dawn when visibility is low. Various solutions designed to minimize the danger to birds are discussed. Among these are: changing the configuration of wires and cross arms to make them more visible to birds in flight and less tempting as perches, and adding simple wire markers such as flags, balloons, and coloured luminescent clips that flap and twirl in the wind. There is no evidence of any coordinated effort to deal with this problem in Ontario. However, a report is being prepared for submission to Environment Canada outlining risks to birds associated with the growing number of wind turbine power generators (negligible compared with power lines and communications towers), and offering suggestions on remedial measures. The Fatal Light Awareness Program (FLAP) also plans to lobby the Canadian Wildlife Service to discuss the possibility of coordinating efforts to monitor, educate about and ultimately reduce this form of bird mortality.

  11. Structural and Electrochemical Investigation during the First Charging Cycles of Silicon Microwire Array Anodes for High Capacity Lithium Ion Batteries

    Directory of Open Access Journals (Sweden)

    Helmut Föll

    2013-02-01

    Full Text Available Silicon microwire arrays embedded in Cu present exceptional performance as anode material in Li ion batteries. The processes occurring during the first charging cycles of batteries with this anode are essential for good performance. This paper sheds light on the electrochemical and structural properties of the anodes during the first charging cycles. Scanning Electron Microscopy, X-ray diffractommetry, and fast Fourier transformation impedance spectroscopy are used for the characterization. It was found that crystalline phases with high Li content are obtained after the first lithiation cycle, while for the second lithiation just crystalline phases with less Li are observable, indicating that the lithiated wires become amorphous upon cycling. The formation of a solid electrolyte interface of around 250 nm during the first lithiation cycle is evidenced, and is considered a necessary component for the good cycling performance of the wires. Analog to voltammetric techniques, impedance spectroscopy is confirmed as a powerful tool to identify the formation of the different Si-Li phases.

  12. Masking of aluminum surface against anodizing

    Science.gov (United States)

    Crawford, G. B.; Thompson, R. E.

    1969-01-01

    Masking material and a thickening agent preserve limited unanodized areas when aluminum surfaces are anodized with chromic acid. For protection of large areas it combines well with a certain self-adhesive plastic tape.

  13. Electrometallurgy of copper refinery anode slimes

    Science.gov (United States)

    Scott, J. D.

    1990-08-01

    High-selenium copper refinery anode slimes form two separate and dynamically evolving series of compounds with increasing electrolysis time. In one, silver is progressively added to non-stoichiometric copper selenides, both those originally present in the anode and those formed subsequently in the slime layer, and in the other, silver-poor copper selenides undergo a dis-continuous crystallographic sequence of anodic-oxidative transformations. The silver-to-selenium molar ratio in the as-cast anode and the current density of electrorefining can be used to construct predominance diagrams for both series and, thus, to predict the final bulk “mineralogy” of the slimes. Although totally incorrect in detail, these bulk data are sufficiently accurate to provide explanations for several processing problems which have been experienced by Kidd Creek Division, Falconbridge Ltd., in its commercial tankhouse. They form the basis for a computer model which predicts final cathode quality from chemical analyses of smelter feed.

  14. Pilot demonstration of cerium oxide coated anodes

    Energy Technology Data Exchange (ETDEWEB)

    Gregg, J.S.; Frederick, M.S.; Shingler, M.J.; Alcorn, T.R.

    1992-10-01

    Cu cermet anodes were tested for 213 to 614 hours with an in-situ deposited CEROX coating in a pilot cell operated by Reynolds Manufacturing Technology Laboratory. At high bath ratio ([approximately]1.5) and low current density (0.5 A/cm[sup 2]), a [ge]1 mm thick dense CEROX coating was deposited on the anodes. At lower bath ratios and higher current density, the CEROX coating was thinner and less dense, but no change in corrosion rate was noted. Regions of low current density on the anodes and sides adjacent to the carbon anode sometimes had thin or absent CEROX coatings. Problems with cracking and oxidation of the cermet substrates led to higher corrosion rates in a pilot cell than would be anticipated from lab scale results.

  15. EDITORIAL More than a wire More than a wire

    Science.gov (United States)

    Demming, Anna

    2010-10-01

    Nanowires are the natural evolution of the connections in circuits when scaled down to nanometre sizes. On closer inspection, of course, the role of nanowires in developing new technologies is much more than just a current-bearing medium. By sizing the diameters of these objects down to the nanoscale, their properties become increasingly sensitive to factors such as the gas composition, temperature and incident light of their surrounding environment, as well as defects and variations in diameter. What becomes important in modern electronics innovations is not just what is connected, but how. Nanowires had already begun to attract the attention of researchers in the early 1990s as advances in imaging and measurement devices invited researchers to investigate the properties of these one-dimensional structures [1, 2]. This interest has sparked ingenious ways of fabricating nanowires such as the use of a DNA template. A collaboration of researchers at Louisiana Tech University in the US hs provided an overview of various methods to assemble conductive nanowires on a DNA template, including a summary of different approaches to stretching and positioning the templates [3]. Work in this area demonstrates a neat parallel for the role of DNA molecules as the building blocks of life and the foundations of nanoscale device architectures. Scientists at HP Labs in California are using nanowires to shrink the size of logic arrays [4]. One aspect of electronic interconnects that requires particular attention at nanoscale sizes is the effect of defects. The researchers at HP Labs demonstrate that their approach, which they name FPNI (field-programmable nanowire interconnect), is extremely tolerant of the high defect rates likely to be found in these nanoscale structures, and allows reduction in size and power without significantly sacrificing the clock rate. Another issue in scaling down electronics is the trend for an increasing resistivity with decreasing wire width. Researchers

  16. Anodizing of aluminum with improved corrosion properties

    International Nuclear Information System (INIS)

    John, P.; Khan, I.U.

    2010-01-01

    Anodizing of aluminum was studied in sulphuric/oxalic/boric acid electroiyte system. The corrosion resistance of the anodic oxide coating of aluminum was determined by potentiodynamic polarization test and scanning electron microscope (SEM) was used to investigate the surface morphology before and after corrosion test. It was found that the oxide coating obtained by this method showed better corrosion resistance with no significant difference in surface morphology. (author)

  17. Lithium Ion Battery Anode Aging Mechanisms

    Science.gov (United States)

    Agubra, Victor; Fergus, Jeffrey

    2013-01-01

    Degradation mechanisms such as lithium plating, growth of the passivated surface film layer on the electrodes and loss of both recyclable lithium ions and electrode material adversely affect the longevity of the lithium ion battery. The anode electrode is very vulnerable to these degradation mechanisms. In this paper, the most common aging mechanisms occurring at the anode during the operation of the lithium battery, as well as some approaches for minimizing the degradation are reviewed. PMID:28809211

  18. Anodic growth of titanium dioxide nanostructures

    DEFF Research Database (Denmark)

    2010-01-01

    Disclosed is a method of producing nanostructures of titanium dioxide (TiO 2 ) by anodisation of titanium (Ti) in an electrochemical cell, comprising the steps of: immersing a non-conducting substrate coated with a layer of titanium, defined as the anode, in an electrolyte solution...... an electrical contact to the layer of titanium on the anode, where the electrical contact is made in the electrolyte solution...

  19. The Meaning of Meaning, Etc.

    Science.gov (United States)

    Nilsen, Don L. F.

    This paper attempts to dispel a number of misconceptions about the nature of meaning, namely that: (1) synonyms are words that have the same meanings, (2) antonyms are words that have opposite meanings, (3) homonyms are words that sound the same but have different spellings and meanings, (4) converses are antonyms rather than synonyms, (5)…

  20. Solution synthesis of lead seeded germanium nanowires and branched nanowire networks and their application as Li-ion battery anodes

    Science.gov (United States)

    Flynn, Grace; Palaniappan, Kumaranand; Sheehan, Martin; Kennedy, Tadhg; Ryan, Kevin M.

    2017-06-01

    Herein, we report the high density growth of lead seeded germanium nanowires (NWs) and their development into branched nanowire networks suitable for application as lithium ion battery anodes. The synthesis of the NWs from lead seeds occurs simultaneously in both the liquid zone (solution-liquid-solid (SLS) growth) and solvent rich vapor zone (vapor-liquid-solid (VLS) growth) of a high boiling point solvent growth system. The reaction is sufficiently versatile to allow for the growth of NWs directly from either an evaporated catalyst layer or from pre-defined nanoparticle seeds and can be extended to allowing extensive branched nanowire formation in a secondary reaction where these seeds are coated onto existing wires. The NWs are characterized using TEM, SEM, XRD and DF-STEM. Electrochemical analysis was carried out on both the single crystal Pb-Ge NWs and the branched Pb-Ge NWs to assess their suitability for use as anodes in a Li-ion battery. Differential capacity plots show both the germanium wires and the lead seeds cycle lithium and contribute to the specific capacity that is approximately 900 mAh g-1 for the single crystal wires, rising to approximately 1100 mAh g-1 for the branched nanowire networks.

  1. Quantitative Analysis of Oxygen Gas Exhausted from Anode through In Situ Measurement during Electrolytic Reduction

    Directory of Open Access Journals (Sweden)

    Eun-Young Choi

    2017-01-01

    Full Text Available Quantitative analysis by in situ measurement of oxygen gas evolved from an anode was employed to monitor the progress of electrolytic reduction of simulated oxide fuel in a molten Li2O–LiCl salt. The electrolytic reduction of 0.6 kg of simulated oxide fuel was performed in 5 kg of 1.5 wt.% Li2O–LiCl molten salt at 650°C. Porous cylindrical pellets of simulated oxide fuel were used as the cathode by loading a stainless steel wire mesh cathode basket. A platinum plate was employed as the anode. The oxygen gas evolved from the anode was exhausted to the instrumentation for in situ measurement during electrolytic reduction. The instrumentation consisted of a mass flow controller, pump, wet gas meter, and oxygen gas sensor. The oxygen gas was successfully measured using the instrumentation in real time. The measured volume of the oxygen gas was comparable to the theoretically calculated volume generated by the charge applied to the simulated oxide fuel.

  2. Anodic stripping voltammetry of mercury, zinc, cadmium, and lead in a rice farm ecosystem

    International Nuclear Information System (INIS)

    Del Mundo, F.R.; Vicente-Beckett, V.A.

    1990-01-01

    Analytical procedures based on differential pulse anodic stripping voltammetry were developed and applied to the analysis of some trace metals in a rice farm ecosystem. A gold wire served as working electrode for the analysis of mercury in 0.1M HNO 3 ; a hanging mercury drop electrode was used for the simultaneous analyses of zinc, cadmium, and lead in 0.1M sodium acetate buffer (pH 4.5). Mercury was pre-concentrated for five minutes at + 0.20 V vs SCE. The area of the anodic stripping peaks varied linearly over the concentration range 3x10 -10 -2x10 -8 M Hg(II); the limit of detection was 0.06 ppb or 3x10 -10 M Hg(II). The simultaneous analytical method involved pre-electrolysis at -1.2 V vs SCE for ten minutes. The heights of the individual anodic stripping peaks varied linearly with concentration in a mixture of the ions over the concentration range 0.020-0.10 ppm for each ion; the limits of detection were 0.004 ppm, 0.01 ppm, and 0.01 ppm for Cd, Pb, Zn, respectively. The developed procedures were used to determine the baseline levels of these metals in soil, water, and rice plant samples from a one-hectare traditional rice farm in San Pedro, Laguna. (auth.). 26 refs.; 4 tabs.; 6 figs

  3. Differential Pulse Anodic Stripping Voltammetry for Mercury Determination

    Directory of Open Access Journals (Sweden)

    Vereștiuc Paul C.

    2015-07-01

    Full Text Available In the present work voltammetric investigations have been performed on HgCl2 aqueous solutions prepared from a Cz 9024 reagent. Carbon paste electrode (CPE, eriochrome black T modified carbon paste electrode (MCPE/EBT and KCl 1M as background electrolyte, were involved within the experimental procedures. Cyclic voltammetry (CV has been performed in order to compare the behaviour of the two electrodes in both K3[Fe(CN6] and mercury calibration aqueous solution. Differential pulse anodic stripping voltammetry (DPASV was used to determine the most suitable parameters for mercury determination. All experiments were performed at 25 ± 1 ℃, using an electrochemical cell with three-electrodes connected to an Autolab PG STAT 302N (Metrohm-Autolab potentiostat that is equipped with Nova 1.11 software. The measured potential values were generated by using the silver chloride electrode (AgClE as reference and a platinum wire electrode as auxiliary. A series of time depending equations for the pre-concentration and concentration steps were established, with the observation that a higher sensitivity can be obtained while increasing the pre-concentration time. DPASV were drawn using the CPE in 11.16 % coriander, as mercury complex, the voltamograms signals indicating mercury oxidation, with signal intensity increasing in time.

  4. Fluorescent silver nanoparticles via exploding wire technique

    Indian Academy of Sciences (India)

    Pure silver nanoparticles in double distilled water were generated via simple physical method using pure (99.9%) silver wires with 0.2 mm diameter. These wires have been exploded in water by bringing them into sudden contact with pure (99.9%) silver plate when subjected to a potential difference of 36 V DC. High current.

  5. WIRED magazine announces rave awards nominees

    CERN Document Server

    2002-01-01

    WIRED Magazine has anounced the nominees for its fourth annual WIRED Rave Awards, celebrating innovation and the individuals transforming commerce and culture. Jeffrey Hangst of the University of Aarhus has been nominated in the science category, for his work on the ATHENA Experiment, CERN (1/2 page).

  6. 75 FR 4584 - Wire Decking From China

    Science.gov (United States)

    2010-01-28

    ... Decking From China AGENCY: United States International Trade Commission. ACTION: Scheduling of the final... subsidized and less-than-fair-value imports from China of wire decking, provided for in subheadings 9403.90... China of wire decking, and that such [[Page 4585

  7. Lansce Wire Scanning Diagnostics Device Mechanical Design

    International Nuclear Information System (INIS)

    Rodriguez Esparza, Sergio; Batygin, Yuri K.; Gilpatrick, John D.; Gruchalla, Michael E.; Maestas, Alfred J.; Pillai, Chandra; Raybun, Joseph L.; Sattler, F.D.; Sedillo, James Daniel; Smith, Brian G.

    2011-01-01

    The Accelerator Operations and Technology Division at Los Alamos National Laboratory operates a linear particle accelerator which utilizes 110 wire scanning diagnostics devices to gain position and intensity information of the proton beam. In the upcoming LANSCE improvements, 51 of these wire scanners are to be replaced with a new design, up-to-date technology and off-the-shelf components. This document outlines the requirements for the mechanical design of the LANSCE wire scanner and presents the recently developed linac wire scanner prototype. Additionally, this document presents the design modifications that have been implemented into the fabrication and assembly of this first linac wire scanner prototype. Also, this document will present the design for the second, third, and fourth wire scanner prototypes being developed. Prototypes 2 and 3 belong to a different section of the particle accelerator and therefore have slightly different design specifications. Prototype 4 is a modification of a previously used wire scanner in our facility. Lastly, the paper concludes with a plan for future work on the wire scanner development.

  8. Lansce Wire Scanning Diagnostics Device Mechanical Design

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez Esparza, Sergio [Los Alamos National Laboratory; Batygin, Yuri K. [Los Alamos National Laboratory; Gilpatrick, John D. [Los Alamos National Laboratory; Gruchalla, Michael E. [Los Alamos National Laboratory; Maestas, Alfred J. [Los Alamos National Laboratory; Pillai, Chandra [Los Alamos National Laboratory; Raybun, Joseph L. [Los Alamos National Laboratory; Sattler, F. D. [Los Alamos National Laboratory; Sedillo, James Daniel [Los Alamos National Laboratory; Smith, Brian G. [Los Alamos National Laboratory

    2011-01-01

    The Accelerator Operations & Technology Division at Los Alamos National Laboratory operates a linear particle accelerator which utilizes 110 wire scanning diagnostics devices to gain position and intensity information of the proton beam. In the upcoming LANSCE improvements, 51 of these wire scanners are to be replaced with a new design, up-to-date technology and off-the-shelf components. This document outlines the requirements for the mechanical design of the LANSCE wire scanner and presents the recently developed linac wire scanner prototype. Additionally, this document presents the design modifications that have been implemented into the fabrication and assembly of this first linac wire scanner prototype. Also, this document will present the design for the second, third, and fourth wire scanner prototypes being developed. Prototypes 2 and 3 belong to a different section of the particle accelerator and therefore have slightly different design specifications. Prototype 4 is a modification of a previously used wire scanner in our facility. Lastly, the paper concludes with a plan for future work on the wire scanner development.

  9. Pretinning Nickel-Plated Wire Shields

    Science.gov (United States)

    Igawa, J. A.

    1985-01-01

    Nickel-plated copper shielding for wires pretinned for subsequent soldering with help of activated rosin flux. Shield cut at point 0.25 to 0.375 in. (6 to 10 mm) from cut end of outer jacket. Loosened end of shield straightened and pulled toward cut end. Insulation of inner wires kept intact during pretinning.

  10. Steer-by-wire innovations and demonstrator

    NARCIS (Netherlands)

    Lupker, H.A.; Zuurbier, J.; Verschuren, R.M.A.F.; Jansen, S.T.H.; Willemsen, D.M.C.

    2002-01-01

    Arguments for 'by-wire' systems include production costs, packaging and traffic safety. Innovations concern both product and development process e.g. combined virtual engineering and Hardware-in-the-loop testing. Three Steer-by-wire systems are discussed: a steering system simulator used as a

  11. Flywheel system using wire-wound rotor

    Science.gov (United States)

    Chiao, Edward Young; Bender, Donald Arthur; Means, Andrew E.; Snyder, Philip K.

    2016-06-07

    A flywheel is described having a rotor constructed of wire wound onto a central form. The wire is prestressed, thus mitigating stresses that occur during operation. In another aspect, the flywheel incorporates a low-loss motor using electrically non-conducting permanent magnets.

  12. Wire compensation: Performance, SPS MDs, pulsed system

    CERN Document Server

    Dorda, U

    2008-01-01

    A wire compensation (BBLR) scheme has been proposed in order to improve the long range beam-beam performance of the nominal LHC and its phase 1 and phase 2 upgrades[1]. In this paper we present experimental experience of the CERN SPS wires (BBLR) and report on progress with the RF BBLR.

  13. Feasibility studies on the direct wire readout on wire scanners in electron accelerators; Durchfuehrbarkeitsstudien zur direkten Drahtauslese an Wirescannern in Elektronen-Beschleunigern

    Energy Technology Data Exchange (ETDEWEB)

    Markert, Michael

    2010-10-15

    This bachelor thesis deals essentially with the signal processing of a so-called wire scanner, a special monitor, which comes to application in the beam diagnostics of particle accelerators. In this direct wire readout the voltage signal, which is induced by the particle beam in the measurement wire of the wire scanner, shall be directly read out. The aim of this thesis is to show fundamental considerations and perform studies, which study, whether and how in the future by means of a suited data transmission as well as readout electronics conclusion on the most important parameters of the beam, like position and profile, are possible. The measurement system presented here is divided in three main components: Signal measurement, signal preparation, and signal stretching. A suited test facility was developed and is presented in detail, in which then all components, like for instance the transmission cables, the wire-scanner fork, and the developed measurement circuit, are studied, which are of importance for a faultless signal transmission and presentation. Extensive measurements on the single components, as well as calculations for the signal transmission on and in the wire scanner were performed, whereby a good agreement could be found. Thereafter a comparison and a selection of the component used in this project were made. Furthermore improvement proposals, new constructions, and outlooks are presented, which could be of importance in further works.

  14. Method of preparing composite superconducting wire

    International Nuclear Information System (INIS)

    Verhoeven, J. D.; Finnemore, D. K.; Gibson, E. D.; Ostenson, J. E.; Schmidt, F. A.

    1985-01-01

    An improved method of preparing composite multifilament superconducting wire of Nb 3 Sn in a copper matrix which eliminates the necessity of coating the drawn wire with tin. A generalized cylindrical billet of an alloy of copper containing at least 15 weight percent niobium, present in the copper as discrete, randomly distributed and oriented dendritic-shaped particles, is provided with at least one longitudinal opening which is filled with tin to form a composite drawing rod. The drawing rod is then drawn to form a ductile composite multifilament wire containing a filament of tin. The ductile wire containing the tin can then be wound into magnet coils or other devices before heating to diffuse the tin through the wire to react with the niobium forming Nb 3 Sn. Also described is an improved method for making large billets of the copper-niobium alloy by consumable-arc casting

  15. Wiring Damage Analyses for STS OV-103

    Science.gov (United States)

    Thomas, Walter, III

    2006-01-01

    This study investigated the Shuttle Program s belief that Space Transportation System (STS) wiring damage occurrences are random, that is, a constant occurrence rate. Using Problem Reporting and Corrective Action (PRACA)-derived data for STS Space Shuttle OV-103, wiring damage was observed to increase over the vehicle s life. Causal factors could include wiring physical deterioration, maintenance and inspection induced damage, and inspection process changes resulting in more damage events being reported. Induced damage effects cannot be resolved with existent data. Growth analysis (using Crow-AMSAA, or CA) resolved maintenance/inspection effects (e.g., heightened awareness) on all wire damages and indicated an overall increase since Challenger Return-to-Flight (RTF). An increasing failure or occurrence rate per flight cycle was seen for each wire damage mode; these (individual) rates were not affected by inspection process effects, within statistical error.

  16. Effect of temperature on the anodizing process of aluminum alloy AA 5052

    Science.gov (United States)

    Theohari, S.; Kontogeorgou, Ch.

    2013-11-01

    The effect of temperature (10-40 °C) during the anodizing process of AA 5052 for 40 min in 175 g/L sulfuric acid solution at constant voltage (15 V) was studied in comparison with pure aluminum. The incorporated magnesium species in the barrier layer result in the further increase of the minimum current density passed during anodizing, as the temperature increases, by about 42% up to 30 °C and then by 12% up to 40 °C. Then during the anodizing process for 40 min a blocking effect on oxide film growth was gradually observed as the temperature increased until 30 °C. The results of EDAX analysis on thick films reveal that the mean amount of the magnesium species inside the film is about 50-70% less than that in the bulk alloy, while it is higher at certain locations adjacent to the film surface at 30 °C. The increase of anodizing temperature does not influence the porosity of thin films (formed for short times) on pure aluminum, while it reduces it on the alloy. At 40 °C the above mentioned blocking effects disappear. It means that the presence of magnesium species causes an impediment to the effect of temperature on iss, on the film thickness and on the porosity of thin films, only under conditions where film growth takes place without significant loss of the anodizing charge to side reactions.

  17. Wiring of electronic evaluation circuits

    International Nuclear Information System (INIS)

    Bauer, R.; Svoboda, Z.

    1977-01-01

    The wiring is described of electronic evaluation circuits for the automatic viewing of photographic paper strip negatives on which line tracks with an angular scatter relative to the spectrograph longitudinal axis were recorded during the oblique flight of nuclear particles during exposure in the spectrograph. In coincidence evaluation, the size of the angular scatter eventually requires that evaluation dead time be increased. The equipment consists of minimally two fixed registers and a block of logic circuits whose output is designed such as will allow connection to equipment for recording signals corresponding to the number of tracks on the film. The connection may be implemented using integrated circuits guaranteeing high operating reliability and life. (J.B.)

  18. Single wire drift chamber design

    International Nuclear Information System (INIS)

    Krider, J.

    1987-01-01

    This report summarizes the design and prototype tests of single wire drift chambers to be used in Fermilab test beam lines. The goal is to build simple, reliable detectors which require a minimum of electronics. Spatial resolution should match the 300 μm rms resolution of the 1 mm proportional chambers that they will replace. The detectors will be used in beams with particle rates up to 20 KHz. Single track efficiency should be at least 99%. The first application will be in the MT beamline, which has been designed for calibration of CDF detectors. A set of four x-y modules will be used to track and measure the momentum of beam particles

  19. Tailoring defect structure and optical absorption of porous anodic aluminum oxide membranes

    International Nuclear Information System (INIS)

    Yan Hongdan; Lemmens, Peter; Wulferding, Dirk; Shi, Jianmin; Becker, Klaus Dieter; Lin, Chengtian; Lak, Aidin; Schilling, Meinhard

    2012-01-01

    Defects influence the optical and electronic properties of nanostructured materials that may be relevant for applications. In self-organized anodic aluminum oxide (AAO) templates we have investigated the effect of annealing, doping and nanoscale metal deposition. Optical absorption spectroscopy has been used as a sensitive probe for the defect density in AAO templates. The electronic spectra are found to be dominated by bands which originate from oxygen-deficient color centers (F + , F and F 2 ). In annealing studies, the integrated absorption of the bands changes non-monotonically with annealing temperature and annealing time. This demonstrates that the concentration of defects can be optimized to tailor the optical properties of the AAO. Metallic Au wires are deposited in the template to establish a plasmonic template or array. The investigations provide an interesting insight into the interplay of reactivity and diffusivity on nanoscales. - Highlights: ► Preparation of metal wire arrays in oxide templates with tailored plasmonic properties. ► Oxygen defects are characterized using optical absorption and fluorescence. ► Optical absorption spectra are assigned to energy levels of oxygen vacancies (color centers). ► Annealing and electrodeposition of Au wires minimize defects maintaining the morphology.

  20. Pulsed wire discharge apparatus for mass production of copper nanopowders.

    Science.gov (United States)

    Suematsu, H; Nishimura, S; Murai, K; Hayashi, Y; Suzuki, T; Nakayama, T; Jiang, W; Yamazaki, A; Seki, K; Niihara, K

    2007-05-01

    A pulsed wire discharge (PWD) apparatus for the mass production of nanopowders has been developed. The apparatus has a continuous wire feeder, which is operated in synchronization with a discharging circuit. The apparatus is designed for operation at a maximum repetition rate of 1.4 Hz at a stored energy of 160 J. In the present study, Cu nanopowder was synthesized using the PWD apparatus and the performance of the apparatus was examined. Cu nanopowder of 2.0 g quantity was prepared in N(2) gas at 100 kPa for 90 s. The particle size distribution of the Cu nanopowder was analyzed by transmission electron microscopy and the mean surface diameter was determined to be 65 nm. The ratio of the production mass of the powder to input energy was 362 g/kW h.

  1. Electronic commerce: wiring the coal industry for new data technology

    Energy Technology Data Exchange (ETDEWEB)

    Carter, R.A.

    1998-07-01

    Industry pundits predict that coal by wire may some day replace much of the industry`s long-distance shipping requirements and their attendant costs, but data by wire, also known as electronic commerce (EC) can today offer coal producers and customers the means to gather and send large volumes of data cheaply and quickly. EC`s major components - electronic data interchange (EDI), bar-coding, smart codes, radio frequency `D`, and the internet - can reduce costs in equipment-intensive industries such as mining. The US National Mining Association sponsored a forum to discuss these alternatives at its 1998 Electronic Commerce Summit held in Tuscon, Arizona, 18-20 May. A report is given of discussions at the forum and contacts are given for sources of EDI information.

  2. EEG-NIRS based assessment of neurovascular coupling during anodal transcranial direct current stimulation--a stroke case series.

    Science.gov (United States)

    Dutta, Anirban; Jacob, Athira; Chowdhury, Shubhajit Roy; Das, Abhijit; Nitsche, Michael A

    2015-04-01

    A method for electroencephalography (EEG) - near-infrared spectroscopy (NIRS) based assessment of neurovascular coupling (NVC) during anodal transcranial direct current stimulation (tDCS). Anodal tDCS modulates cortical neural activity leading to a hemodynamic response, which was used to identify impaired NVC functionality. In this study, the hemodynamic response was estimated with NIRS. NIRS recorded changes in oxy-hemoglobin (HbO2) and deoxy-hemoglobin (Hb) concentrations during anodal tDCS-induced activation of the cortical region located under the electrode and in-between the light sources and detectors. Anodal tDCS-induced alterations in the underlying neuronal current generators were also captured with EEG. Then, a method for the assessment of NVC underlying the site of anodal tDCS was proposed that leverages the Hilbert-Huang Transform. The case series including four chronic (>6 months) ischemic stroke survivors (3 males, 1 female from age 31 to 76) showed non-stationary effects of anodal tDCS on EEG that correlated with the HbO2 response. Here, the initial dip in HbO2 at the beginning of anodal tDCS corresponded with an increase in the log-transformed mean-power of EEG within 0.5Hz-11.25Hz frequency band. The cross-correlation coefficient changed signs but was comparable across subjects during and after anodal tDCS. The log-transformed mean-power of EEG lagged HbO2 response during tDCS but then led post-tDCS. This case series demonstrated changes in the degree of neurovascular coupling to a 0.526 A/m(2) square-pulse (0-30 s) of anodal tDCS. The initial dip in HbO2 needs to be carefully investigated in a larger cohort, for example in patients with small vessel disease.

  3. Anodized aluminum on LDEF: A current status of measurements on chromic acid anodized aluminum

    International Nuclear Information System (INIS)

    Golden, J.L.

    1992-01-01

    Chromic acid anodize was used as the exterior coating for aluminum surfaces on LDEF to provide passive thermal control. Chromic acid anodized aluminum was also used as test specimens in thermal control coatings experiments. The following is a compilation and analysis of the data obtained thus far

  4. Anodized aluminum on LDEF: A current status of measurements on chromic acid anodized aluminum

    Science.gov (United States)

    Golden, Johnny L.

    1992-01-01

    Chromic acid anodize was used as the exterior coating for aluminum surfaces on LDEF to provide passive thermal control. Chromic acid anodized aluminum was also used as test specimens in thermal control coatings experiments. The following is a compilation and analysis of the data obtained thus far.

  5. Anode pattern formation in atmospheric pressure air glow discharges with water anode

    NARCIS (Netherlands)

    Verreycken, T.; Bruggeman, P.J.; Leys, C.

    2009-01-01

    Pattern formation in the anode layer at a water electrode in atmospheric pressure glow discharges in air is studied. With increasing current a sequence of different anode spot structures occurs from a constricted homogeneous spot in the case of small currents to a pattern consisting of small

  6. Measurement of wire deflection on loading may indicate union in Ilizarov constructs, an in vitro model.

    Science.gov (United States)

    Lineham, Beth; Stewart, Todd; Harwood, Paul

    2018-02-02

    No entirely reliable method exists for assessing union during Ilizarov treatment. Premature removal results in potential treatment failure; hence, alternative methods warrant investigation. Wire deflection might provide an indication of fracture site deformation on weight bearing, indicating progress towards union. This study aimed to test a method for assessing wire deflection within an Ilizarov frame. (1) To assess the repeatability of our novel measurement method in measuring wire deflection within an Ilizarov frame in vitro. (2) To compare the amount of wire deflection in an unstable model with that in an intact bone model. (3) To assess accuracy of this method by comparing wire deflection measured with overall machine extension. Tests were performed on clinical grade-tensioned fine wire 4-ring Ilizarov constructs stabilising a simulated fracture, with and without an unstable defect. Models were sequentially loaded to 700 N using an Instron testing machine. A digital depth gauge attached to the superior ring measured relative wire displacement at the ring closest to the fracture. Tests were repeated 3 times. (1) Both unstable and stable bone models produced highly repeatable load deformation curves (R 2  = 0.98 and 0.99). (2) In the unstable model, wires tensioned at 882 and 1274 N produced mean maximum deflections of 2.41 and 2.69 mm compared with 0.05 and 0.04 mm in the intact bone model (significant p measurable difference in wire deflection between stable and unstable situations exists using this method which appears accurate and repeatable, with clear correlation between displacement and load and displacement and machine extension. This approach might be clinically applicable, and further clinical testing is required.

  7. Bioactivity and osteointegration of hydroxyapatite-coated stainless steel and titanium wires used for intramedullary osteosynthesis.

    Science.gov (United States)

    Popkov, Arnold V; Gorbach, Elena N; Kononovich, Natalia A; Popkov, Dmitry A; Tverdokhlebov, Sergey I; Shesterikov, Evgeniy V

    2017-08-01

    A lot of research was conducted on the use of various biomaterials in orthopedic surgery. Our study investigated the effects of nanostructured calcium-phosphate coating on metallic implants introduced into the bone marrow canal. Stainless steel or titanium 2-mm wires (groups 1 and 2, respectively), and hydroxyapatite-coated stainless steel or titanium wires of the same diameter (groups 3 and 4, respectively) were introduced into the tibial bone marrow canal of 20 dogs (each group = 5 dogs). Hydroxyapatite coating was deposited on the wires with the method of microarc oxidation. Light microscopy to study histological diaphyseal transverse sections, scanning electron microscopy to study the bone marrow area around the implant and an X-ray electron probe analyzer to study the content of calcium and phosphorus were used to investigate bioactivity and osteointegration after a four weeks period. Osteointegration was also assessed by measuring wires' pull-off strength with a sensor dynamometer. Bone formation was observed round the wires in the bone marrow canal in all the groups. Its intensity depended upon the features of wire surfaces and implant materials. Maximum percentage volume of trabecular bone was present in the bone marrow canals of group 4 dogs that corresponded to a mean of 27.1 ± 0.14%, while it was only 6.7% in group 1. The coating in groups 3 and 4 provided better bioactivity and osteointegration. Hydroxyapatite-coated titanium wires showed the highest degree of bone formation around them and greater pull-off strength. Nanostructured hydroxyapatite coating of metallic wires induces an expressed bone formation and provides osteointegration. Hydroxyapatite-coated wires could be used along with external fixation for bone repair enhancement in diaphyseal fractures, management of osteogenesis imperfecta and correction of bone deformities in phosphate diabetes.

  8. New High-Energy Nanofiber Anode Materials

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xiangwu [North Carolina State Univ., Raleigh, NC (United States); Fedkiw, Peter [North Carolina State Univ., Raleigh, NC (United States); Khan, Saad [North Carolina State Univ., Raleigh, NC (United States); Huang, Alex [North Carolina State Univ., Raleigh, NC (United States); Fan, Jiang [North Carolina State Univ., Raleigh, NC (United States)

    2013-11-15

    The overall goal of the proposed work was to use electrospinning technology to integrate dissimilar materials (lithium alloy and carbon) into novel composite nanofiber anodes, which simultaneously had high energy density, reduced cost, and improved abuse tolerance. The nanofiber structure allowed the anodes to withstand repeated cycles of expansion and contraction. These composite nanofibers were electrospun into nonwoven fabrics with thickness of 50 μm or more, and then directly used as anodes in a lithium-ion battery. This eliminated the presence of non-active materials (e.g., conducting carbon black and polymer binder) and resulted in high energy and power densities. The nonwoven anode structure also provided a large electrode-electrolyte interface and, hence, high rate capacity and good lowtemperature performance capability. Following are detailed objectives for three proposed project periods. During the first six months: Obtain anodes capable of initial specific capacities of 650 mAh/g and achieve ~50 full charge/discharge cycles in small laboratory scale cells (50 to 100 mAh) at the 1C rate with less than 20 percent capacity fade; In the middle of project period: Assemble, cycle, and evaluate 18650 cells using proposed anode materials, and demonstrate practical and useful cycle life (750 cycles of ~70% state of charge swing with less than 20% capacity fade) in 18650 cells with at least twice improvement in the specific capacity than that of conventional graphite electrodes; At the end of project period: Deliver 18650 cells containing proposed anode materials, and achieve specific capacities greater than 1200 mAh/g and cycle life longer than 5000 cycles of ~70% state of charge swing with less than 20% capacity fade.

  9. Novel tree-like WO3 nanoplatelets with very high surface area synthesized by anodization under controlled hydrodynamic conditions

    OpenAIRE

    Fernández Domene, Ramón Manuel; Sánchez Tovar, Rita; SEGURA SANCHIS, ELENA; Garcia-Anton, Jose

    2016-01-01

    In the present work, a new WO3 nanostructure has been obtained by anodization in a H2SO4/NaF electrolyte under controlled hydrodynamic conditions using a Rotating Disk Electrode (RDE) configuration. Anodized samples were analyzed by means of Field Emission Scanning Electronic Microscopy (FESEM), Confocal Raman Microscopy and photoelectrochemical measurements. The new nanostructure, which consists of nanoplatelets clusters growing in a tree-like manner, presents a very high surface area expose...

  10. Kirschner Wire Migration to the Cervical Spine: A Complication of Clavicular Fixation in a Child

    Directory of Open Access Journals (Sweden)

    KK Tan

    2007-05-01

    Full Text Available We report a case of a broken K-wire migrating to the cervical spine from the right clavicle in a 9-year-old child. The initial diagnosis, fracture of the clavicle with an acromioclavicular joint dislocation, was treated by open reduction and K-wiring. One K-wire broke and migrated to the neck, posterolateral to the C6 vertebra. The K-wire was removed percutaneously under image intensif ication. Acromioclavicular joint dislocation in children is rare since the distal clavicle does not ossify until the age of 18 or 19 years meaning that almost all closed fractures of the clavicle in children can be treated non- operatively.

  11. Porous and mesh alumina formed by anodization of high purity aluminum films at low anodizing voltage

    Energy Technology Data Exchange (ETDEWEB)

    Abd-Elnaiem, Alaa M., E-mail: alaa.abd-elnaiem@science.au.edu.eg [KACST-Intel Consortium Center of Excellence in Nano-manufacturing Applications (CENA), Riyadh (Saudi Arabia); Physics Department, Faculty of Science, Assiut University, Assiut 71516 (Egypt); Mebed, A.M. [Physics Department, Faculty of Science, Assiut University, Assiut 71516 (Egypt); Department of Physics, Faculty of Science, Al-Jouf University, Sakaka 2014 (Saudi Arabia); El-Said, Waleed Ahmed [Department of Chemistry, Faculty of Science, Assiut University, Assiut 71516 (Egypt); Abdel-Rahim, M.A. [Physics Department, Faculty of Science, Assiut University, Assiut 71516 (Egypt)

    2014-11-03

    Electrochemical oxidation of high-purity aluminum (Al) films under low anodizing voltages (1–10) V has been conducted to obtain anodic aluminum oxide (AAO) with ultra-small pore size and inter-pore distance. Different structures of AAO have been obtained e.g. nanoporous and mesh structures. Highly regular pore arrays with small pore size and inter-pore distance have been formed in oxalic or sulfuric acids at different temperatures (22–50 °C). It is found that the pore diameter, inter-pore distance and the barrier layer thickness are independent of the anodizing parameters, which is very different from the rules of general AAO fabrication. The brand formation mechanism has been revealed by the scanning electron microscope study. Regular nanopores are formed under 10 V at the beginning of the anodization and then serve as a template layer dominating the formation of ultra-small nanopores. Anodization that is performed at voltages less than 5 V leads to mesh structured alumina. In addition, we have introduced a simple one-pot synthesis method to develop thin walls of oxide containing lithium (Li) ions that could be used for battery application based on anodization of Al films in a supersaturated mixture of lithium phosphate and phosphoric acid as matrix for Li-composite electrolyte. - Highlights: • We develop anodic aluminum oxide (AAO) with small pore size and inter-pore distance. • Applying low anodizing voltages onto aluminum film leads to form mesh structures. • The value of anodizing voltage (1–10 V) has no effect on pore size or inter-pore distance. • Applying anodizing voltage less than 5 V leads to mesh structured AAO. • AAO can be used as a matrix for Li-composite electrolytes.

  12. Anodizing color coded anodized Ti6Al4V medical devices for increasing bone cell functions

    Directory of Open Access Journals (Sweden)

    Webster TJ

    2013-01-01

    Full Text Available Alexandra P Ross, Thomas J WebsterSchool of Engineering and Department of Orthopedics, Brown University, Providence, RI, USAAbstract: Current titanium-based implants are often anodized in sulfuric acid (H2SO4 for color coding purposes. However, a crucial parameter in selecting the material for an orthopedic implant is the degree to which it will integrate into the surrounding bone. Loosening at the bone–implant interface can cause catastrophic failure when motion occurs between the implant and the surrounding bone. Recently, a different anodization process using hydrofluoric acid has been shown to increase bone growth on commercially pure titanium and titanium alloys through the creation of nanotubes. The objective of this study was to compare, for the first time, the influence of anodizing a titanium alloy medical device in sulfuric acid for color coding purposes, as is done in the orthopedic implant industry, followed by anodizing the device in hydrofluoric acid to implement nanotubes. Specifically, Ti6Al4V model implant samples were anodized first with sulfuric acid to create color-coding features, and then with hydrofluoric acid to implement surface features to enhance osteoblast functions. The material surfaces were characterized by visual inspection, scanning electron microscopy, contact angle measurements, and energy dispersive spectroscopy. Human osteoblasts were seeded onto the samples for a series of time points and were measured for adhesion and proliferation. After 1 and 2 weeks, the levels of alkaline phosphatase activity and calcium deposition were measured to assess the long-term differentiation of osteoblasts into the calcium depositing cells. The results showed that anodizing in hydrofluoric acid after anodizing in sulfuric acid partially retains color coding and creates unique surface features to increase osteoblast adhesion, proliferation, alkaline phosphatase activity, and calcium deposition. In this manner, this study

  13. Porous and mesh alumina formed by anodization of high purity aluminum films at low anodizing voltage

    International Nuclear Information System (INIS)

    Abd-Elnaiem, Alaa M.; Mebed, A.M.; El-Said, Waleed Ahmed; Abdel-Rahim, M.A.

    2014-01-01

    Electrochemical oxidation of high-purity aluminum (Al) films under low anodizing voltages (1–10) V has been conducted to obtain anodic aluminum oxide (AAO) with ultra-small pore size and inter-pore distance. Different structures of AAO have been obtained e.g. nanoporous and mesh structures. Highly regular pore arrays with small pore size and inter-pore distance have been formed in oxalic or sulfuric acids at different temperatures (22–50 °C). It is found that the pore diameter, inter-pore distance and the barrier layer thickness are independent of the anodizing parameters, which is very different from the rules of general AAO fabrication. The brand formation mechanism has been revealed by the scanning electron microscope study. Regular nanopores are formed under 10 V at the beginning of the anodization and then serve as a template layer dominating the formation of ultra-small nanopores. Anodization that is performed at voltages less than 5 V leads to mesh structured alumina. In addition, we have introduced a simple one-pot synthesis method to develop thin walls of oxide containing lithium (Li) ions that could be used for battery application based on anodization of Al films in a supersaturated mixture of lithium phosphate and phosphoric acid as matrix for Li-composite electrolyte. - Highlights: • We develop anodic aluminum oxide (AAO) with small pore size and inter-pore distance. • Applying low anodizing voltages onto aluminum film leads to form mesh structures. • The value of anodizing voltage (1–10 V) has no effect on pore size or inter-pore distance. • Applying anodizing voltage less than 5 V leads to mesh structured AAO. • AAO can be used as a matrix for Li-composite electrolytes

  14. One-pot synthesis of Fe{sub 3}O{sub 4}/Fe/MWCNT nanocomposites via electrical wire pulse for Li ion battery electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Duk-Hee; Seo, Seung-Deok; Lee, Gwang-Hee [School of Civil, Environmental and Architectural Engineering, Korea University, 145, Anam-Ro, Seongbuk-Gu, Seoul 136-713 (Korea, Republic of); Hong, Hyun-Seon [Advanced Materials and Processing Center, Institute for Advanced Engineering, Yongin 449-863 (Korea, Republic of); Kim, Dong-Wan, E-mail: dwkim1@korea.ac.kr [School of Civil, Environmental and Architectural Engineering, Korea University, 145, Anam-Ro, Seongbuk-Gu, Seoul 136-713 (Korea, Republic of)

    2014-09-01

    Highlights: • Synthesis of Fe{sub 3}O{sub 4}/Fe/MWCNT nanocolloids using an electrical wire explosion process. • Electrical connection of Fe{sub 3}O{sub 4} to a current collector by the conducting networks. • Improved electrochemical performance of Fe{sub 3}O{sub 4}/Fe/MWCNT nanocomposite electrodes. - Abstract: Nanocomposites containing Fe{sub 3}O{sub 4}/Fe/multiwalled carbon nanotubes (MWCNT) were prepared via an electrical wire pulse process (a top-down approach) using Fe wire and dispersed, functionalized MWCNT in deionized water (DIW) at room temperature. The structural and electrochemical characteristics of the resulting nanocomposites were investigated in detail. When used as an anode for Li ion batteries, the Fe{sub 3}O{sub 4}/Fe/MWCNT nanocomposites exhibited greater cycle stability and rate performance than plain Fe{sub 3}O{sub 4}/Fe composites, with a capacity of 460 mA h g{sup −1} at a rate of 168 mA g{sup −1} after 50 cycles. The enhanced performance was attributed to superior electrical conductivity and buffering effect of the MWCNTs on volume changes of the anodes. This process is a promising facile method for lithium ion battery anode material synthesis.

  15. Embroidered Copper Microwire Current Collector for Improved Cycling Performance of Silicon Anodes in Lithium-Ion Batteries.

    Science.gov (United States)

    Breitung, Ben; Aguiló-Aguayo, Noemí; Bechtold, Thomas; Hahn, Horst; Janek, Jürgen; Brezesinski, Torsten

    2017-10-12

    Si holds great promise as an alloying anode material for Li-ion batteries with improved energy density because of its high theoretical specific capacity and favorable operation voltage range. However, the large volume expansion of Si during electrochemical reaction with Li and the associated adverse effects strongly limit its prospect for application. Here, we report on the use of three-dimensional instead of flat current collectors for high-capacity Si anodes in an attempt to mitigate the loss of electrical contact of active electrode regions as a result of structural disintegration with cycling. The current collectors were produced by technical embroidery and consist of interconnected Cu wires of diameter <150 µm. In comparison to Si/Li cells using a conventional Cu foil current collector, the embroidered microwire network-based cells show much enhanced capacity and reversibility due to a higher degree of tolerance to cycling.

  16. LANSCE wire scanning diagnostics device mechanical design

    International Nuclear Information System (INIS)

    Rodriguez Esparza, Sergio

    2010-01-01

    The Los Alamos Neutron Science Center (LANSCE) is one of the major experimental science facilities at the Los Alamos National Laboratory (LANL). The core of LANSCE's work lies in the operation of a powerful linear accelerator, which accelerates protons up to 84% the speed oflight. These protons are used for a variety of purposes, including materials testing, weapons research and isotopes production. To assist in guiding the proton beam, a series of over one hundred wire scanners are used to measure the beam profile at various locations along the half-mile length of the particle accelerator. A wire scanner is an electro-mechanical device that moves a set of wires through a particle beam and measures the secondary emissions from the resulting beam-wire interaction to obtain beam intensity information. When supplemented with data from a position sensor, this information is used to determine the cross-sectional profile of the beam. This measurement allows beam operators to adjust parameters such as acceleration, beam steering, and focus to ensure that the beam reaches its destination as effectively as possible. Some of the current wire scanners are nearly forty years old and are becoming obsolete. The problem with current wire scanners comes in the difficulty of maintenance and reliability. The designs of these wire scanners vary making it difficult to keep spare parts that would work on all designs. Also many of the components are custom built or out-dated technology and are no longer in production.

  17. LANSCE wire scanning diagnostics device mechanical design

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez Esparza, Sergio [Los Alamos National Laboratory

    2010-01-01

    The Los Alamos Neutron Science Center (LANSCE) is one of the major experimental science facilities at the Los Alamos National Laboratory (LANL). The core of LANSCE's work lies in the operation of a powerful linear accelerator, which accelerates protons up to 84% the speed oflight. These protons are used for a variety of purposes, including materials testing, weapons research and isotopes production. To assist in guiding the proton beam, a series of over one hundred wire scanners are used to measure the beam profile at various locations along the half-mile length of the particle accelerator. A wire scanner is an electro-mechanical device that moves a set of wires through a particle beam and measures the secondary emissions from the resulting beam-wire interaction to obtain beam intensity information. When supplemented with data from a position sensor, this information is used to determine the cross-sectional profile of the beam. This measurement allows beam operators to adjust parameters such as acceleration, beam steering, and focus to ensure that the beam reaches its destination as effectively as possible. Some of the current wire scanners are nearly forty years old and are becoming obsolete. The problem with current wire scanners comes in the difficulty of maintenance and reliability. The designs of these wire scanners vary making it difficult to keep spare parts that would work on all designs. Also many of the components are custom built or out-dated technology and are no longer in production.

  18. Vacuum arc anode plasma. I. Spectroscopic investigation

    International Nuclear Information System (INIS)

    Bacon, F.M.

    1975-01-01

    A spectroscopic investigation was made of the anode plasma of a pulsed vacuum arc with an aluminum anode and a molybdenum cathode. The arc was triggered by a third trigger electrode and was driven by a 150-A 10-μs current pulse. The average current density at the anode was sufficiently high that anode spots were formed; these spots are believed to be the source of the aluminum in the plasma investigated in this experiment. By simultaneously measuring spectral emission lines of Al I, Al II, and Al III, the plasma electron temperature was shown to decrease sequentially through the norm temperatures of Al III, Al II, and Al I as the arc was extinguished. The Boltzmann distribution temperature T/subD/ of four Al III excited levels was shown to be kT/subD//e=2.0plus-or-minus0.5 V, and the peak Al III 4D excited state density was shown to be about 5times10 17 m -3 . These data suggest a non-local-thermodynamic-equilibrium (non-LTE) model of the anode plasma when compared with the Al 3+ production in the plasma. The plasma was theoretically shown to be optically thin to the observed Al III spectral lines

  19. Properties and Structure of the LiCl-films on Lithium Anodes in Liquid Cathodes

    DEFF Research Database (Denmark)

    Mogensen, Mogens Bjerg; Hennesø, Erik

    2016-01-01

    Lithium anodes passivated by LiCl layers in different types of liquid cathodes (catholytes) based on LiAlCl4 in SOCl2 or SO2 have been studied by means of impedance spectroscopy. The impedance spectra have been fitted with two equivalent circuits using a nonlinear least squares fit program...

  20. Wire-rope emplacement of diagnostics systems

    International Nuclear Information System (INIS)

    Burden, W.L.

    1982-01-01

    The study reported here was initiated to determine if, with the Cable Downhole System (CDS) currently under development, there is an advantage to using continuous wire rope to lower the emplacement package to the bottom of the hole. A baseline design using two wire ropes as well as several alternatives are discussed in this report. It was concluded that the advantages of the wire-rope emplacement system do not justify the cost of converting to such a system, especially for LLNL's maximum emplacement package weights

  1. Plastic deformation of 2D crumpled wires

    International Nuclear Information System (INIS)

    Gomes, M A F; Donato, C C; Brito, V P; Coelho, A S O

    2008-01-01

    When a single long piece of elastic wire is injected through channels into a confining two-dimensional cavity, a complex structure of hierarchical loops is formed. In the limit of maximum packing density, these structures are described by several scaling laws. In this paper this packing process is investigated but using plastic wires which give rise to completely irreversible structures of different morphology. In particular, the plastic deformation from circular to oblate configurations of crumpled wires is experimentally studied, obtained by the application of an axial strain. Among other things, it is shown that in spite of plasticity, irreversibility and very large deformations, scaling is still observed.

  2. Fast wire scanner for intense electron beams

    Directory of Open Access Journals (Sweden)

    T. Moore

    2014-02-01

    Full Text Available We have developed a cost-effective, fast rotating wire scanner for use in accelerators where high beam currents would otherwise melt even carbon wires. This new design uses a simple planetary gear setup to rotate a carbon wire, fixed at one end, through the beam at speeds in excess of 20  m/s. We present results from bench tests, as well as transverse beam profile measurements taken at Cornell’s high-brightness energy recovery linac photoinjector, for beam currents up to 35 mA.

  3. Resonant tunneling of electrons in quantum wires

    International Nuclear Information System (INIS)

    Krive, I.V.; Shekhter, R.I.; Jonson, M.; Krive, I.V.

    2010-01-01

    We considered resonant electron tunneling in various nanostructures including single wall carbon nanotubes, molecular transistors and quantum wires formed in two-dimensional electron gas. The review starts with a textbook description of resonant tunneling of noninteracting electrons through a double-barrier structure. The effects of electron-electron interaction in sequential and resonant electron tunneling are studied by using Luttinger liquid model of electron transport in quantum wires. The experimental aspects of the problem (fabrication of quantum wires and transport measurements) are also considered. The influence of vibrational and electromechanical effects on resonant electron tunneling in molecular transistors is discussed.

  4. Fabrication of FFTF fuel pin wire wrap

    International Nuclear Information System (INIS)

    Epperson, E.M.

    1980-06-01

    Lateral spacing between FFTF fuel pins is required to provide a passageway for the sodium coolant to flow over each pin to remove heat generated by the fission process. This spacing is provided by wrapping each fuel pin with type 316 stainless steel wire. This wire has a 1.435mm (0.0565 in.) to 1.448mm (0.0570 in.) diameter, contains 17 +- 2% cold work and was fabricated and tested to exacting RDT Standards. About 500 kg (1100 lbs) or 39 Km (24 miles) of fuel pin wrap wire is used in each core loading. Fabrication procedures and quality assurance tests are described

  5. Problems associated with iridium-192 wire implants

    International Nuclear Information System (INIS)

    Arnott, S.J.; Law, J.; Ash, D.; Flynn, A.; Paine, C.H.; Durrant, K.R.; Barber, C.D.; Dixon-Brown, A.

    1985-01-01

    Three incidents are reported, from different radiotherapy centres, in which an implanted iridium-192 wire remained in the tissues of a patient after withdrawal of the plastic tubing in which it was contained. In each case the instrument used to cut the wire had probably formed a hook on the end of the wire which caused it to catch in the tissues. Detailed recommendations are made for avoiding such incidents in the future, the most important of which is that the patient should be effectively monitored after the supposed removal of all radioactive sources. (author)

  6. Investigation of wire motion in superconducting magnets

    International Nuclear Information System (INIS)

    Ogitsu, T.; Tsuchiya, K.; Devred, A.

    1990-09-01

    The large Lorentz forces occuring during the excitation of superconducting magnets can provoke sudden motions of wire, which eventually release enough energy to trigger a quench. These wire motions are accompanied by two electromagnetic effects: an induced emf along the moved wire, and a local change in flux caused by the minute dislocation of current. Both effects cause spikes in the coil voltage. Voltage data recorded during the excitation of a superconducting quadrupole magnet which early exhibit such events are here reported. Interpretations of the voltage spikes in terms of energy release are also presented, leading to insights on the spectrum of the disturbances which occur in real magnets. 15 refs

  7. Carbon-Coated SnO2 Nanorod Array for Lithium-Ion Battery Anode Material

    Directory of Open Access Journals (Sweden)

    Ji Xiaoxu

    2010-01-01

    Full Text Available Abstract Carbon-coated SnO2 nanorod array directly grown on the substrate has been prepared by a two-step hydrothermal method for anode material of lithium-ion batteries (LIBs. The structural, morphological and electrochemical properties were investigated by means of X-ray diffraction (XRD, scanning electron microscopy (SEM, transmission electron microscopy (TEM and electrochemical measurement. When used as anodes for LIBs with high current density, as-obtained array reveals excellent cycling stability and rate capability. This straightforward approach can be extended to the synthesis of other carbon-coated metal oxides for application of LIBs.

  8. The aluminum anode in deep ocean environments

    International Nuclear Information System (INIS)

    Schreiber, C.F.

    1989-01-01

    Results of field and mini-plant studies are presented for A1 + 0.045% Hg + 0.1% Si + 0.45% Zn* and A1 + 0.015% In + 0.1% Si + 3% Zn** anodes in varying depths of natural seawater. Current capacity and potential information are presented. In addition to information on anode current capacity and potential, polarization curves were obtained on both aluminum alloys using potentiostatic techniques at a simulated ocean depth of 1090 ft. (332 m). These data were compared with similarly run experiments at ocean surface pressures. As a basis of comparison, zinc anodes (U.S. Mil-A-18001H) were included as a companion alloy. Information gained on zinc is sufficient to accurately represent the behavior of this alloy. Results conclude that conditions of high pressure (and low temperature) associated with the alloys under test did not alter their galvanic behavior from that noted at the ocean surface

  9. Infrared radiative properties of anodized aluminium

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, V.C.; Sharma, A.

    1983-10-01

    Measurements of anodic film thicknesses and their total hemispherical thermal emittance for various current densities (0.55-3.85 ampere/dm/sup 2/), anodizing times (1-20 min), and oxalic acid concentrations (1-6 wt.%) show a linear relationship between the film thickness and the total hemispherical thermal emittance (epsilon). Changes in oxalic acid concentration (2-4 wt.%) have no significant effect on the film growth-rate and the rate at which epsilon increases with increasing anodizing time. Measurements of epsilon for wavelengths from 3 to 30 ..mu..m show that the film growth-rate has a marked effect on the I.R. radiative properties of aluminum.

  10. Anodic oxidation of Ta/Fe alloys

    International Nuclear Information System (INIS)

    Mato, S.; Alcala, G.; Thompson, G.E.; Skeldon, P.; Shimizu, K.; Habazaki, H.; Quance, T.; Graham, M.J.; Masheder, D.

    2003-01-01

    The behaviour of iron during anodizing of sputter-deposited Ta/Fe alloys in ammonium pentaborate electrolyte has been examined by transmission electron microscopy, Rutherford backscattering spectroscopy, glow discharge optical emission spectroscopy and X-ray photoelectron spectroscopy. Anodic films on Ta/1.5 at.% Fe, Ta/3 at.% Fe and Ta/7 at.% Fe alloys are amorphous and featureless and develop at high current efficiency with respective formation ratios of 1.67, 1.60 and 1.55 nm V -1 . Anodic oxidation of the alloys proceeds without significant enrichment of iron in the alloy in the vicinity of the alloy/film interface and without oxygen generation during film growth, unlike the behaviour of Al/Fe alloys containing similar concentrations of iron. The higher migration rate of iron species relative to that of tantalum ions leads to the formation of an outer iron-rich layer at the film surface

  11. An Insoluble Titanium-Lead Anode for Sulfate Electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Ferdman, Alla

    2005-05-11

    The project is devoted to the development of novel insoluble anodes for copper electrowinning and electrolytic manganese dioxide (EMD) production. The anodes are made of titanium-lead composite material produced by techniques of powder metallurgy, compaction of titanium powder, sintering and subsequent lead infiltration. The titanium-lead anode combines beneficial electrochemical behavior of a lead anode with high mechanical properties and corrosion resistance of a titanium anode. In the titanium-lead anode, the titanium stabilizes the lead, preventing it from spalling, and the lead sheathes the titanium, protecting it from passivation. Interconnections between manufacturing process, structure, composition and properties of the titanium-lead composite material were investigated. The material containing 20-30 vol.% of lead had optimal combination of mechanical and electrochemical properties. Optimal process parameters to manufacture the anodes were identified. Prototypes having optimized composition and structure were produced for testing in operating conditions of copper electrowinning and EMD production. Bench-scale, mini-pilot scale and pilot scale tests were performed. The test anodes were of both a plate design and a flow-through cylindrical design. The cylindrical anodes were composed of cylinders containing titanium inner rods and fitting over titanium-lead bushings. The cylindrical design allows the electrolyte to flow through the anode, which enhances diffusion of the electrolyte reactants. The cylindrical anodes demonstrate higher mass transport capabilities and increased electrical efficiency compared to the plate anodes. Copper electrowinning represents the primary target market for the titanium-lead anode. A full-size cylindrical anode performance in copper electrowinning conditions was monitored over a year. The test anode to cathode voltage was stable in the 1.8 to 2.0 volt range. Copper cathode morphology was very smooth and uniform. There was no

  12. Fast ion transport at solid-solid interfaces in hybrid battery anodes

    Science.gov (United States)

    Tu, Zhengyuan; Choudhury, Snehashis; Zachman, Michael J.; Wei, Shuya; Zhang, Kaihang; Kourkoutis, Lena F.; Archer, Lynden A.

    2018-04-01

    Carefully designed solid-electrolyte interphases are required for stable, reversible and efficient electrochemical energy storage in batteries. We report that hybrid battery anodes created by depositing an electrochemically active metal (for example, Sn, In or Si) on a reactive alkali metal electrode by a facile ion-exchange chemistry lead to very high exchange currents and stable long-term performance of electrochemical cells based on Li and Na electrodes. By means of direct visualization and ex situ electrodeposition studies, Sn-Li anodes are shown to be stable at 3 mA cm-2 and 3 mAh cm-2. Prototype full cells in which the hybrid anodes are paired with high-loading LiNi0.8Co0.15Al0.05O2(NCA) cathodes are also reported. As a second demonstration, we create and study Sn-Na hybrid anodes and show that they can be cycled stably for more than 1,700 hours with minimal voltage divergence. Charge storage at the hybrid anodes is reported to involve a combination of alloying and electrodeposition reactions.

  13. Structural study of anodic films formed on aluminum in nitric acid electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Yakovleva, N.M.; Anicai, L.; Yakovlev, A.N.; Dima, L.; Khanina, E.Ya.; Buda, M.; Chupakhina, E.A

    2002-09-02

    The paper presents the results of investigations of porous Al anodic films formed in HNO{sub 3} electrolytes carried out by means of electrochemical techniques and X-ray diffraction as well as scanning electron microscopy (SEM). It was assumed that both electrochemical formation of a porous oxide and anodic dissolution of metal take place at Al/oxide interface at the same time. The analysis of short-range order (SRO) parameters for relatively high current density, 1x10{sup 3} A/m{sup 2}, and anodizing time, 10 min, leads to the conclusion that films mainly consist of amorphous alumina with {gamma}'-Al{sub 2}O{sub 3}-like SRO and a small amount ({approx}10%) of amorphous aluminum oxyhydroxide. SEM investigation of the films revealed strong dependence of the surface relief on different applied forming conditions. This marked change in the surface relief is discussed taking into account the relatively complex behavior of Al during anodization in HNO{sub 3} electrolytes, that involves both electrochemical growth and dissolution processes of anodic film associated with an electrochemical dissolution of aluminum substrate.

  14. Structural study of anodic films formed on aluminum in nitric acid electrolyte

    International Nuclear Information System (INIS)

    Yakovleva, N.M.; Anicai, L.; Yakovlev, A.N.; Dima, L.; Khanina, E.Ya.; Buda, M.; Chupakhina, E.A.

    2002-01-01

    The paper presents the results of investigations of porous Al anodic films formed in HNO 3 electrolytes carried out by means of electrochemical techniques and X-ray diffraction as well as scanning electron microscopy (SEM). It was assumed that both electrochemical formation of a porous oxide and anodic dissolution of metal take place at Al/oxide interface at the same time. The analysis of short-range order (SRO) parameters for relatively high current density, 1x10 3 A/m 2 , and anodizing time, 10 min, leads to the conclusion that films mainly consist of amorphous alumina with γ'-Al 2 O 3 -like SRO and a small amount (∼10%) of amorphous aluminum oxyhydroxide. SEM investigation of the films revealed strong dependence of the surface relief on different applied forming conditions. This marked change in the surface relief is discussed taking into account the relatively complex behavior of Al during anodization in HNO 3 electrolytes, that involves both electrochemical growth and dissolution processes of anodic film associated with an electrochemical dissolution of aluminum substrate

  15. Porous aluminum room temperature anodizing process in a fluorinated-oxalic acid solution

    Science.gov (United States)

    Dhahri, S.; Fazio, E.; Barreca, F.; Neri, F.; Ezzaouia, H.

    2016-08-01

    Anodizing of aluminum is used for producing porous insulating films suitable for different applications in electronics and microelectronics. Porous-type aluminum films are most simply realized by galvanostatic anodizing in aqueous acidic solutions. The improvement in application of anodizing technique is associated with a substantial reduction of the anodizing voltage at appropriate current densities as well as to the possibility to carry out the synthesis process at room temperature in order to obtain a self-planarizing dielectric material incorporated in array of super-narrow metal lines. In this work, the anodizing of aluminum to obtain porous oxide was carried out, at room temperature, on three different substrates (glass, stainless steel and aluminum), using an oxalic acid-based electrolyte with the addition of a relatively low amount of 0.4 % of HF. Different surface morphologies, from nearly spherical to larger porous nanostructures with smooth edges, were observed by means of scanning electron microscopy. These evidences are explained by considering the formation, transport and adsorption of the fluorine species which react with the Al3+ ions. The behavior is also influenced by the nature of the original substrate.

  16. Morphological evolution of porous nanostructures grown from a single isolated anodic alumina nanochannel

    Science.gov (United States)

    Chen, Shih-Yung; Chang, Hsuan-Hao; Lai, Ming-Yu; Liu, Chih-Yi; Wang, Yuh-Lin

    2011-09-01

    Porous anodic aluminum oxide (AAO) membranes have been widely used as templates for growing nanomaterials because of their ordered nanochannel arrays with high aspect ratio and uniform pore diameter. However, the intrinsic growth behavior of an individual AAO nanochannel has never been carefully studied for the lack of a means to fabricate a single isolated anodic alumina nanochannel (SIAAN). In this study, we develop a lithographic method for fabricating a SIAAN, which grows into a porous hemispherical structure with its pores exhibiting fascinating morphological evolution during anodization. We also discover that the mechanical stress affects the growth rate and pore morphology of AAO porous structures. This study helps reveal the growth mechanism of arrayed AAO nanochannels grown on a flat aluminum surface and provides insights to help pave the way to altering the geometry of nanochannels on AAO templates for the fabrication of advanced nanocomposite materials.

  17. Morphological evolution of porous nanostructures grown from a single isolated anodic alumina nanochannel

    International Nuclear Information System (INIS)

    Chen, Shih-Yung; Wang, Yuh-Lin; Chang, Hsuan-Hao; Lai, Ming-Yu; Liu, Chih-Yi

    2011-01-01

    Porous anodic aluminum oxide (AAO) membranes have been widely used as templates for growing nanomaterials because of their ordered nanochannel arrays with high aspect ratio and uniform pore diameter. However, the intrinsic growth behavior of an individual AAO nanochannel has never been carefully studied for the lack of a means to fabricate a single isolated anodic alumina nanochannel (SIAAN). In this study, we develop a lithographic method for fabricating a SIAAN, which grows into a porous hemispherical structure with its pores exhibiting fascinating morphological evolution during anodization. We also discover that the mechanical stress affects the growth rate and pore morphology of AAO porous structures. This study helps reveal the growth mechanism of arrayed AAO nanochannels grown on a flat aluminum surface and provides insights to help pave the way to altering the geometry of nanochannels on AAO templates for the fabrication of advanced nanocomposite materials.

  18. Hardening and softening mechanisms of pearlitic steel wire under torsion

    International Nuclear Information System (INIS)

    Zhao, Tian-Zhang; Zhang, Shi-Hong; Zhang, Guang-Liang; Song, Hong-Wu; Cheng, Ming

    2014-01-01

    Highlights: • Mechanical behavior of pearlitic steel wire is studied using torsion. • Work hardening results from refinement lamellar pearlitic structure. • Softening results from recovery, shear bands and lamellar fragmentations. • A microstructure based analytical flow stress model is established. - Abstract: The mechanical behaviors and microstructure evolution of pearlitic steel wires under monotonic shear deformation have been investigated by a torsion test and a number of electron microscopy techniques including scanning electron microscopy (SEM) and transmission electron microscopy (TEM), with an aim to reveal the softening and hardening mechanisms of a randomly oriented pearlitic structure during a monotonic stain path. Significantly different from the remarkable strain hardening in cold wire drawing, the strain hardening rate during torsion drops to zero quickly after a short hardening stage. The microstructure observations indicate that the inter-lamellar spacing (ILS) decreases and the dislocations accumulate with strain, which leads to hardening of the material. Meanwhile, when the strain is larger than 0.154, the enhancement of dynamic recovery, shear bands (SBs) and cementite fragmentations results in the softening and balances the strain hardening. A microstructure based analytical flow stress model with considering the influence of ILS on the mean free path of dislocations and the softening caused by SBs and cementite fragmentations, has been established and the predicted flow shear curve meets well with the measured curve in the torsion test

  19. Surface characterization of nickel titanium orthodontic arch wires

    Science.gov (United States)

    Krishnan, Manu; Seema, Saraswathy; Tiwari, Brijesh; Sharma, Himanshu S.; Londhe, Sanjay; Arora, Vimal

    2015-01-01

    Background Surface roughness of nickel titanium orthodontic arch wires poses several clinical challenges. Surface modification with aesthetic/metallic/non metallic materials is therefore a recent innovation, with clinical efficacy yet to be comprehensively evaluated. Methods One conventional and five types of surface modified nickel titanium arch wires were surface characterized with scanning electron microscopy, energy dispersive analysis, Raman spectroscopy, Atomic force microscopy and 3D profilometry. Root mean square roughness values were analyzed by one way analysis of variance and post hoc Duncan's multiple range tests. Results Study groups demonstrated considerable reduction in roughness values from conventional in a material specific pattern: Group I; conventional (578.56 nm) > Group V; Teflon (365.33 nm) > Group III; nitride (301.51 nm) > Group VI (i); rhodium (290.64 nm) > Group VI (ii); silver (252.22 nm) > Group IV; titanium (229.51 nm) > Group II; resin (158.60 nm). It also showed the defects with aesthetic (resin/Teflon) and nitride surfaces and smooth topography achieved with metals; titanium/silver/rhodium. Conclusions Resin, Teflon, titanium, silver, rhodium and nitrides were effective in decreasing surface roughness of nickel titanium arch wires albeit; certain flaws. Findings have clinical implications, considering their potential in lessening biofilm adhesion, reducing friction, improving corrosion resistance and preventing nickel leach and allergic reactions. PMID:26843749

  20. Anodizing color coded anodized Ti6Al4V medical devices for increasing bone cell functions.

    Science.gov (United States)

    Ross, Alexandra P; Webster, Thomas J

    2013-01-01

    Current titanium-based implants are often anodized in sulfuric acid (H(2)SO(4)) for color coding purposes. However, a crucial parameter in selecting the material for an orthopedic implant is the degree to which it will integrate into the surrounding bone. Loosening at the bone-implant interface can cause catastrophic failure when motion occurs between the implant and the surrounding bone. Recently, a different anodization process using hydrofluoric acid has been shown to increase bone growth on commercially pure titanium and titanium alloys through the creation of nanotubes. The objective of this study was to compare, for the first time, the influence of anodizing a titanium alloy medical device in sulfuric acid for color coding purposes, as is done in the orthopedic implant industry, followed by anodizing the device in hydrofluoric acid to implement nanotubes. Specifically, Ti6Al4V model implant samples were anodized first with sulfuric acid to create color-coding features, and then with hydrofluoric acid to implement surface features to enhance osteoblast functions. The material surfaces were characterized by visual inspection, scanning electron microscopy, contact angle measurements, and energy dispersive spectroscopy. Human osteoblasts were seeded onto the samples for a series of time points and were measured for adhesion and proliferation. After 1 and 2 weeks, the levels of alkaline phosphatase activity and calcium deposition were measured to assess the long-term differentiation of osteoblasts into the calcium depositing cells. The results showed that anodizing in hydrofluoric acid after anodizing in sulfuric acid partially retains color coding and creates unique surface features to increase osteoblast adhesion, proliferation, alkaline phosphatase activity, and calcium deposition. In this manner, this study provides a viable method to anodize an already color coded, anodized titanium alloy to potentially increase bone growth for numerous implant applications.

  1. X-ray tube rotating anode

    International Nuclear Information System (INIS)

    Friedel, R.

    1979-01-01

    The anode disk of the X-ray rotating anode is blackened on the surface outside the focal spot tracks in order to improve the heat radiation. In particular the side opposite the focal spot tracks is provided with many small holes, the ratio of depth to cross-section ('pit ratio') being as large as possible: ranging from 2:1 to 10:1. They are arranged so densely that the radiating surface will nearly have the effect of a black body. (RW) [de

  2. Wire Bonder: Kulicke and Soffa Model 4526

    Data.gov (United States)

    Federal Laboratory Consortium — Description:CORAL Name: Wire BonderNeeds Description.Scientific Opportunities / Applications:Wedge bonderSemi-automatic and manual modesIndependent Z-axis control,...

  3. t matrix of metallic wire structures

    International Nuclear Information System (INIS)

    Zhan, T. R.; Chui, S. T.

    2014-01-01

    To study the electromagnetic resonance and scattering properties of complex structures of which metallic wire structures are constituents within multiple scattering theory, the t matrix of individual structures is needed. We have recently developed a rigorous and numerically efficient equivalent circuit theory in which retardation effects are taken into account for metallic wire structures. Here, we show how the t matrix can be calculated analytically within this theory. We illustrate our method with the example of split ring resonators. The density of states and cross sections for scattering and absorption are calculated, which are shown to be remarkably enhanced at resonant frequencies. The t matrix serves as the basic building block to evaluate the interaction of wire structures within the framework of multiple scattering theory. This will open the door to efficient design and optimization of assembly of wire structures

  4. Diamond wire cutting of heat exchangers

    International Nuclear Information System (INIS)

    Beckman, T.R.; Bjerler, J.

    1991-01-01

    With the change-out of equipment at nuclear power plants comes large quantities of low level contaminated metallic waste. Of particular concern are large heat exchangers, preheaters and steam generators. These bulky items consume huge volumes of burial space. The need for volume reduction and recycling of these metals has created new demands for 'how' to cut heat exchangers into useful sizes for decontamination, melting or compaction. This paper reviews the cutting solution provided by a diamond wire system, with particular regard for cutting of a Ringhals Preheater Bundle at Studsvik Nuclear in 1989. The background of diamond wire sawing is discussed and basic components of wire sawing are explained. Other examples of wire cutting decommissioned components are also given. (author)

  5. Copyright and Wire Broadcasting Under Belgian Law

    Science.gov (United States)

    Namurois, Albert

    1975-01-01

    A discussion of a case whereby substantial damages, if not criminal proceedings, will sanction, according to circumstances, both television organizations and those who in certain conditions distribute their programs by wire or communicate them to the public. (Author/HB)

  6. Temperature Dependent Wire Delay Estimation in Floorplanning

    DEFF Research Database (Denmark)

    Winther, Andreas Thor; Liu, Wei; Nannarelli, Alberto

    2011-01-01

    Due to large variations in temperature in VLSI circuits and the linear relationship between metal resistance and temperature, the delay through wires of the same length can be different. Traditional thermal aware floorplanning algorithms use wirelength to estimate delay and routability. In this w......Due to large variations in temperature in VLSI circuits and the linear relationship between metal resistance and temperature, the delay through wires of the same length can be different. Traditional thermal aware floorplanning algorithms use wirelength to estimate delay and routability....... In this work, we show that using wirelength as the evaluation metric does not always produce a floorplan with the shortest delay. We propose a temperature dependent wire delay estimation method for thermal aware floorplanning algorithms, which takes into account the thermal effect on wire delay. The experiment...

  7. Angular response of hot wire probes

    International Nuclear Information System (INIS)

    Di Mare, L; Jelly, T O; Day, I J

    2017-01-01

    A new equation for the convective heat loss from the sensor of a hot-wire probe is derived which accounts for both the potential and the viscous parts of the flow past the prongs. The convective heat loss from the sensor is related to the far-field velocity by an expression containing a term representing the potential flow around the prongs, and a term representing their viscous effect. This latter term is absent in the response equations available in the literature but is essential in representing some features of the observed response of miniature hot-wire probes. The response equation contains only four parameters but it can reproduce, with great accuracy, the behaviour of commonly used single-wire probes. The response equation simplifies the calibration the angular response of rotated slanted hot-wire probes: only standard King’s law parameters and a Reynolds-dependent drag coefficient need to be determined. (paper)

  8. Controlling the anodizing conditions in preparation of an nanoporous anodic aluminium oxide template

    Science.gov (United States)

    Nazemi, Azadeh; Abolfazl, Seyed; Sadjadi, Seyed

    2014-12-01

    Porous anodic aluminium oxide (AAO) template is commonly used in the synthesis of one-dimensional nanostructures, such as nanowires and nanorods, due to its simple fabrication process. Controlling the anodizing conditions is important because of their direct influence on the size of AAO template pores; it affects the size of nanostructures that are fabricated in AAO template. In present study, several alumina templates were fabricated by a two-step electrochemical anodization in different conditions, such as the time of first process, its voltage, and electrolyte concentration. The effect of these factors on pore diameters of AAO templates was investigated using scanning electron microscopy (SEM).

  9. A new, bright and hard aluminum surface produced by anodization

    Science.gov (United States)

    Hou, Fengyan; Hu, Bo; Tay, See Leng; Wang, Yuxin; Xiong, Chao; Gao, Wei

    2017-07-01

    Anodized aluminum (Al) and Al alloys have a wide range of applications. However, certain anodized finishings have relatively low hardness, dull appearance and/or poor corrosion resistance, which limited their applications. In this research, Al was first electropolished in a phosphoric acid-based solution, then anodized in a sulfuric acid-based solution under controlled processing parameters. The anodized specimen was then sealed by two-step sealing method. A systematic study including microstructure, surface morphology, hardness and corrosion resistance of these anodized films has been conducted. Results show that the hardness of this new anodized film was increased by a factor of 10 compared with the pure Al metal. Salt spray corrosion testing also demonstrated the greatly improved corrosion resistance. Unlike the traditional hard anodized Al which presents a dull-colored surface, this newly developed anodized Al alloy possesses a very bright and shiny surface with good hardness and corrosion resistance.

  10. 2d-LCA - an alternative to x-wires

    Science.gov (United States)

    Puczylowski, Jaroslaw; Hölling, Michael; Peinke, Joachim

    2014-11-01

    The 2d-Laser Cantilever Anemometer (2d-LCA) is an innovative sensor for two-dimensional velocity measurements in fluids. It uses a micostructured cantilever made of silicon and SU-8 as a sensing element and is capable of performing mesurements with extremly high temporal resolutions up to 150 kHz. The size of the cantilever defines its spatial resolution, which is in the order of 150 μm only. Another big feature is a large angular range of 180° in total. The 2d-LCA has been developed as an alternative measurement method to x-wires with the motivation to create a sensor that can operate in areas where the use of hot-wire anemometry is difficult. These areas include measurements in liquids and in near-wall or particle-laden flows. Unlike hot-wires, the resolution power of the 2d-LCA does not decrease with increasing flow velocity, making it particularly suitable for measurements in high speed flows. Comparative measurements with the 2d-LCA and hot-wires have been carried out in order to assess the performance of the new anemometer. The data of both measurement techniques were analyzed using the same stochastic methods including a spectral analysis as well as an inspection of increment statistics and structure functions. Furthermore, key parameters, such as mean values of both velocity components, angles of attack and the characteristic length scales were determined from both data sets. The analysis reveals a great agreement between both anemometers and thus confirms the new approach.

  11. Usability of cement paste containing carbon nanofibres as an anode in electrochemical chloride extraction from concrete

    Directory of Open Access Journals (Sweden)

    Moral, B. del

    2013-03-01

    Full Text Available In the application of the electrochemical chloride extraction (ECE technique, traditionally, the Ti-RuO2 wire netting has been used as the external anode. This article provides the results of the research based on the use of conductive cement paste with addition of carbon nanofibers (CNF as anodes and its application in ECE. The tests were developed in concrete specimens previously contaminated with chloride. The efficiencies achieved were compared with those obtained using a traditional anode (Ti-RuO2 and cement pastes with the addition of other carbonaceous materials. The results show the feasibility of using conductive cement paste with CNF as the anode in the electrochemical extraction of chlorides in concrete, finding similar efficiencies to those obtained with traditional Ti-RuO2 wire netting but with the added advantage that it can be adapted to complex structural geometries as it can be applied as a paste.

    En la aplicación de la técnica de extracción electroquímica de cloruros (EEC, tradicionalmente se ha venido empleando como ánodo externo una malla de Ti-RuO2. En este artículo se aportan los resultados de investigaciones basadas en la utilización de ánodos formados por pasta de cemento conductora con adición de nanofibras de carbono (NFC y su aplicación en EEC. Las experiencias se desarrollaron en probetas de hormigón contaminado previamente con cloruro. Las eficiencias alcanzadas se compararon con las obtenidas empleando un ánodo tradicional (Ti-RuO2 así como pastas de cemento con adición de otros materiales carbonosos. Los resultados muestran la viabilidad en la utilización de la pasta de cemento conductora con NFC como ánodo en la aplicación en EEC en hormigón, encontrándose eficiencias similares a las obtenidas con la tradicional malla de Ti-RuO2 pero teniendo la ventaja añadida sobre ésta de que es posible adaptarla a geometrías estructurales complejas al ser aplicada en forma de pasta.

  12. 47 CFR 32.2321 - Customer premises wiring.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Customer premises wiring. 32.2321 Section 32... Customer premises wiring. (a) This account shall include all amounts transferred from the former Account 232, Station Connections, inside wiring subclass. (b) Embedded Customer Premises Wiring is that...

  13. 29 CFR 1926.404 - Wiring design and protection.

    Science.gov (United States)

    2010-07-01

    .... Receptacles on a two-wire, single-phase portable or vehicle-mounted generator rated not more than 5kW, where the circuit conductors of the generator are insulated from the generator frame and all other grounded... wiring shall be grounded: (i) Three-wire DC systems. All 3-wire DC systems shall have their neutral...

  14. Automatic reel controls filler wire in welding machines

    Science.gov (United States)

    Millett, A. V.

    1966-01-01

    Automatic reel on automatic welding equipment takes up slack in the reel-fed filler wire when welding operation is terminated. The reel maintains constant, adjustable tension on the wire during the welding operation and rewinds the wire from the wire feed unit when the welding is completed.

  15. Modelling aluminium wire bond reliability in high power OMP devices

    NARCIS (Netherlands)

    Kregting, R.; Yuan, C.A.; Xiao, A.; Bruijn, F. de

    2011-01-01

    In a RF power application such as the OMP, the wires are subjected to high current (because of the high power) and high temperature (because of the heat from IC and joule-heating from the wire itself). Moreover, the wire shape is essential to the RF performance. Hence, the aluminium wire is

  16. Load-Deflection and Friction Properties of PEEK Wires as Alternative Orthodontic Wires.

    Science.gov (United States)

    Tada, Yoshifumi; Hayakawa, Tohru; Nakamura, Yoshiki

    2017-08-09

    Polyetheretherketone (PEEK) is now attracting attention as an alternative to metal alloys in the dental field. In the present study, we evaluated the load-deflection characteristics of PEEK wires in addition to their frictional properties. Three types of PEEK wires are used: two sizes of rectangular shape, 0.016 × 0.022 in² and 0.019 × 0.025 in² (19-25PEEK), and rounded shape, diameter 0.016 in (16PEEK). As a control, Ni-Ti orthodontic wire, diameter 0.016 in, was used. The three-point bending properties were evaluated in a modified three-point bending system for orthodontics. The static friction between the orthodontic wire and the bracket was also measured. The load-deflection curves were similar among Ni-Ti and PEEK wires, except for 16PEEK with slot-lid ligation. The bending force of 19-25PEEK wire was comparable with that of Ni-Ti wire. 19-25PEEK showed the highest load at the deflection of 1500 μm ( p 0.05). No significant difference was seen in static friction between all three PEEK wires and Ni-Ti wire ( p > 0.05). It is suggested that 19-25PEEK will be applicable for orthodontic treatment with the use of slot-lid ligation.

  17. Audio wiring guide how to wire the most popular audio and video connectors

    CERN Document Server

    Hechtman, John

    2012-01-01

    Whether you're a pro or an amateur, a musician or into multimedia, you can't afford to guess about audio wiring. The Audio Wiring Guide is a comprehensive, easy-to-use guide that explains exactly what you need to know. No matter the size of your wiring project or installation, this handy tool provides you with the essential information you need and the techniques to use it. Using The Audio Wiring Guide is like having an expert at your side. By following the clear, step-by-step directions, you can do professional-level work at a fraction of the cost.

  18. Tracking with wire chambers at the SSC

    International Nuclear Information System (INIS)

    Hanson, G.G.; Gundy, M.C.; Palounek, A.P.T.

    1989-07-01

    Limitations placed on wire chambers by radiation damage and rate requirements in the SSC environment are reviewed. Possible conceptual designs for wire chamber tacking systems that meet these requirements are discussed. Computer simulation studies of tracking in such systems are presented. Simulations of events from interesting physics at the SSC, including hits from minimum bias background events, are examined. Results of some preliminary pattern recognition studies are given. 13 refs., 11 fig., 1 tab

  19. Charge Transport Along Phenylenevinylene Molecular Wires

    OpenAIRE

    2006-01-01

    Abstract A model to calculate the mobility of charges along molecular wires is presented. The model is based on the tight-binding approximation and combines a quantum mechanical description of the charge with a classical description of the structural degrees of freedom. It is demonstrated that the average mobility of charge carriers along molecular wires can be obtained by time-propagation of states which are initially localised. The model is used to calculate the mobility of charg...

  20. A Magnetic Sensor with Amorphous Wire

    Directory of Open Access Journals (Sweden)

    Dongfeng He

    2014-06-01

    Full Text Available Using a FeCoSiB amorphous wire and a coil wrapped around it, we have developed a sensitive magnetic sensor. When a 5 mm long amorphous wire with the diameter of 0.1 mm was used, the magnetic field noise spectrum of the sensor was about 30 pT/ÖHz above 30 Hz. To show the sensitivity and the spatial resolution, the magnetic field of a thousand Japanese yen was scanned with the magnetic sensor.

  1. Deformable wire array: fiber drawn tunable metamaterials

    DEFF Research Database (Denmark)

    Fleming, Simon; Stefani, Alessio; Tang, Xiaoli

    2017-01-01

    By fiber drawing we fabricate a wire array metamaterial, the structure of which can be actively modified. The plasma frequency can be tuned by 50% by compressing the metamaterial; recovers when released and the process can be repeated.......By fiber drawing we fabricate a wire array metamaterial, the structure of which can be actively modified. The plasma frequency can be tuned by 50% by compressing the metamaterial; recovers when released and the process can be repeated....

  2. Tracking with wire chambers at high luminosities

    International Nuclear Information System (INIS)

    Hanson, G.G.

    1989-12-01

    Radiation damage and rate limitations impose severe constraints on wire chambers at the SSC. Possible conceptual designs for wire chamber tracking systems that satisfy these constraints are discussed. Computer simulation studies of tracking in such systems are presented. Simulations of events from interesting physics at the SSC, including hits from minimum bias background events, are examined. Results of some preliminary pattern recognition studies are given. 11 refs., 10 figs

  3. COBRA-IV wire wrap data comparisons

    International Nuclear Information System (INIS)

    Donovan, T.E.; George, T.L.; Wheeler, C.L.

    1979-02-01

    Thermal hydraulic analyses of hexagonally packed wire-wrapped fuel assemblies are complicated by the induced crossflow between adjacent subchannels. The COBRA-IV computer code simultaneously solves the hydrodynamics and thermodynamics of fuel assemblies. The modifications and the results are presented which are predicted by the COBRA-IV calculation. Comparisons are made with data measured in five experimental models of a wire-wrapped fuel assembly

  4. Novel use of the "buddy"wire.

    LENUS (Irish Health Repository)

    O'Hare, A

    2008-12-29

    Summary: During interventional procedures the tortuosity of the vasculature hampers catheter stability. The buddy wire may be used to aid and maintain vascular access.We describe a case of acute subarachnoid haemorrhage secondary to dissecting aneurysm of the vertebral artery.We discuss the value of the buddy wire during balloon occlusion of the vertebral artery not as it is typically used, but to actually prevent the balloon repeatedly entering the posterior inferior cerebellar artery during the procedure.

  5. Self-ordered Porous Alumina Fabricated via Phosphonic Acid Anodizing

    OpenAIRE

    Akiya, Shunta; Kikuchi, Tatsuya; Natsui, Shungo; Sakaguchi, Norihito; Suzuki, Ryosuke O.

    2016-01-01

    Self-ordered periodic porous alumina with an undiscovered cell diameter was fabricated via electrochemical anodizing in a new electrolyte, phosphonic acid (H3PO3). High-purity aluminum plates were anodized in phosphonic acid solution under various operating conditions of voltage, temperature, concentration, and anodizing time. Phosphonic acid anodizing at 150-180 V caused the self-ordering behavior of porous alumina, and an ideal honeycomb nanostructure measuring 370-440 nm in cell diameter w...

  6. Cyclic Fatigue Resistance of Novel Rotary Files Manufactured from Different Thermal Treated Nickel-Titanium Wires in Artificial Canals.

    Science.gov (United States)

    Karataşlıoglu, E; Aydın, U; Yıldırım, C

    2018-02-01

    The aim of this in vitro study was to compare the static cyclic fatigue resistance of thermal treated rotary files with a conventional nickel-titanium (NiTi) rotary file. Four groups of 60 rotary files with similar file dimensions, geometries, and motion were selected. Groups were set as HyFlex Group [controlled memory wire (CM-Wire)], ProfileVortex Group (M-Wire), Twisted File Group (R-Phase Wire), and OneShape Group (conventional NiTi wire)] and tested using a custom-made static cyclic fatigue testing apparatus. The fracture time and fragment length of the each file was also recorded. Statistical analysis was performed using one-way analysis of variance and Tukey's test at the 95% confidence level (P = 0.05). The HyFlex group had a significantly higher mean cyclic fatigue resistance than the other three groups (P Wire alloy represented the best performance in cyclic fatigue resistance, and NiTi alloy in R-Phase had the second highest fatigue resistance. CM and R-Phase manufacturing technology processed to the conventional NiTi alloy enhance the cyclic fatigue resistance of files that have similar design and size. M-wire alloy did not show any superiority in cyclic fatigue resistance when compared with conventional NiTi wire.

  7. Studies of implosion processes of nested tungsten wire-array Z-pinch

    International Nuclear Information System (INIS)

    Ning Cheng; Ding Ning; Liu Quan; Yang Zhenhua

    2006-01-01

    Nested wire-array is a kind of promising structured-load because it can improve the quality of Z-pinch plasma and enhance the radiation power of X-ray source. Based on the zero-dimensional model, the assumption of wire-array collision, and the criterion of optimized load (maximal load kinetic energy), optimization of the typical nested wire-array as a load of Z machine at Sandia Laboratory was carried out. It was shown that the load has been basically optimized. The Z-pinch process of the typical load was numerically studied by means of one-dimensional three-temperature radiation magneto-hydrodynamics (RMHD) code. The obtained results reproduce the dynamic process of the Z-pinch and show the implosion trajectory of nested wire-array and the transfer process of drive current between the inner and outer array. The experimental and computational X-ray pulse was compared, and it was suggested that the assumption of wire-array collision was reasonable in nested wire-array Z-pinch at least for the current level of Z machine. (authors)

  8. Application of Hot-wire Method for Measuring Thermal Conductivity of Fine Ceramics

    Directory of Open Access Journals (Sweden)

    Shangxi WANG

    2016-11-01

    Full Text Available Ceramic substrate is preferred in high density packaging due to its high electrical resistivity and moderate expansion coefficient. The thermal conductivity is a key parameter for packaging substrates. There are two common methods to measure the thermal conductivity, which are the hot-wire method and the laser-flash method. Usually, the thermal conductivities of porcelain is low and meet the measurement range of hot-wire method, and the measured value by hot-wire method has little difference with that by laser-flash method. In recent years, with the requirement of high-powered LED lighting, some kinds of ceramic substrates with good thermal conductivity have been developed and their thermal conductivity always measured by the means of laser flash method, which needs expensive instrument. In this paper, in order to detect the thermal conductivity of fine ceramic with convenience and low cost, the feasibility of replacing the laser flash method with hot wire method to measure thermal conductivity of ceramic composites was studied. The experiment results showed that the thermal conductivity value of fine ceramics measured by the hot-wire method is severely lower than that by the laser-flash method. However, there is a positive relationship between them. It is possible to measure the thermal conductivity of fine ceramic workpiece instantly by hot-wire method via a correction formula.DOI: http://dx.doi.org/10.5755/j01.ms.22.4.12543

  9. Induced Voltage in an Open Wire

    Science.gov (United States)

    Morawetz, K.; Gilbert, M.; Trupp, A.

    2017-07-01

    A puzzle arising from Faraday's law has been considered and solved concerning the question which voltage will be induced in an open wire with a time-varying homogeneous magnetic field. In contrast to closed wires where the voltage is determined by the time variance of the magnetic field and the enclosed area, in an open wire we have to integrate the electric field along the wire. It is found that the longitudinal electric field with respect to the wave vector contributes with 1/3 and the transverse field with 2/3 to the induced voltage. In order to find the electric fields the sources of the magnetic fields are necessary to know. The representation of a spatially homogeneous and time-varying magnetic field implies unavoidably a certain symmetry point or symmetry line which depend on the geometry of the source. As a consequence the induced voltage of an open wire is found to be the area covered with respect to this symmetry line or point perpendicular to the magnetic field. This in turn allows to find the symmetry points of a magnetic field source by measuring the voltage of an open wire placed with different angles in the magnetic field. We present exactly solvable models of the Maxwell equations for a symmetry point and for a symmetry line, respectively. The results are applicable to open circuit problems like corrosion and for astrophysical applications.

  10. Superconducting wires and methods of making thereof

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Xingchen; Sumption, Michael D.; Peng, Xuan

    2018-03-13

    Disclosed herein are superconducting wires. The superconducting wires can comprise a metallic matrix and at least one continuous subelement embedded in the matrix. Each subelement can comprise a non-superconducting core, a superconducting layer coaxially disposed around the non-superconducting core, and a barrier layer coaxially disposed around the superconducting layer. The superconducting layer can comprise a plurality of Nb.sub.3Sn grains stabilized by metal oxide particulates disposed therein. The Nb.sub.3Sn grains can have an average grain size of from 5 nm to 90 nm (for example, from 15 nm to 30 nm). The superconducting wire can have a high-field critical current density (J.sub.c) of at least 5,000 A/mm.sup.2 at a temperature of 4.2 K in a magnetic field of 12 T. Also described are superconducting wire precursors that can be heat treated to prepare superconducting wires, as well as methods of making superconducting wires.

  11. Impedance Characterisation of the SPS Wire Scanner

    CERN Document Server

    AUTHOR|(CDS)2091911; Prof. Sillanpää, Mika

    As a beam diagnostic tool, the SPS wire scanner interacts with the proton bunches traversing the vacuum pipes of the Super Proton Synchrotron particle accelerator. Following the interaction, the bunches decelerate or experience momentum kicks off-axis and couple energy to the cavity walls, resonances and to the diagnostic tool, the scanning wire. The beam coupling impedance and, in particular, the beam induced heating of the wire motivate the characterisation and redesign of the SPS wire scanner. In this thesis, we characterise RF-wise the low frequency modes of the SPS wire scanner. These have the highest contribution to the impedance. We measure the cavity modes in terms of resonance frequency and quality factor by traditional measurement techniques and data analysis. We carry out a 4-port measurement to evaluate the beam coupling to the scanning wire, that yields the spectral heating power. If combined with the simulations, one is able to extract the beam coupling impedance and deduce the spectral dissipa...

  12. Si Wire-Array Solar Cells

    Science.gov (United States)

    Boettcher, Shannon

    2010-03-01

    Micron-scale Si wire arrays are three-dimensional photovoltaic absorbers that enable orthogonalization of light absorption and carrier collection and hence allow for the utilization of relatively impure Si in efficient solar cell designs. The wire arrays are grown by a vapor-liquid-solid-catalyzed process on a crystalline (111) Si wafer lithographically patterned with an array of metal catalyst particles. Following growth, such arrays can be embedded in polymethyldisiloxane (PDMS) and then peeled from the template growth substrate. The result is an unusual photovoltaic material: a flexible, bendable, wafer-thickness crystalline Si absorber. In this paper I will describe: 1. the growth of high-quality Si wires with controllable doping and the evaluation of their photovoltaic energy-conversion performance using a test electrolyte that forms a rectifying conformal semiconductor-liquid contact 2. the observation of enhanced absorption in wire arrays exceeding the conventional light trapping limits for planar Si cells of equivalent material thickness and 3. single-wire and large-area solid-state Si wire-array solar cell results obtained to date with directions for future cell designs based on optical and device physics. In collaboration with Michael Kelzenberg, Morgan Putnam, Joshua Spurgeon, Daniel Turner-Evans, Emily Warren, Nathan Lewis, and Harry Atwater, California Institute of Technology.

  13. Cadmium plated steel caps seal anodized aluminum fittings

    Science.gov (United States)

    Padden, J.

    1971-01-01

    Cadmium prevents fracturing of hard anodic coating under torquing to system specification requirements, prevents galvanic coupling, and eliminates need for crush washers, which, though commonly used in industry, do not correct leakage problem experienced when anodized aluminum fittings and anodized aluminum cap assemblies are joined.

  14. Multilayer tape cast SOFC – Effect of anode sintering temperature

    DEFF Research Database (Denmark)

    Hauch, Anne; Birkl, Christoph; Brodersen, Karen

    2012-01-01

    Multilayer tape casting (MTC) is considered a promising, cost-efficient, up-scalable shaping process for production of planar anode supported solid oxide fuel cells (SOFC). Multilayer tape casting of the three layers comprising the half cell (anode support/active anode/electrolyte) can potentially...

  15. Electrolytic reduction runs of 0.6 kg scale-simulated oxide fuel in a Li2O-LiCl molten salt using metal anode shrouds

    Science.gov (United States)

    Choi, Eun-Young; Lee, Jeong; Heo, Dong Hyun; Lee, Sang Kwon; Jeon, Min Ku; Hong, Sun Seok; Kim, Sung-Wook; Kang, Hyun Woo; Jeon, Sang-Chae; Hur, Jin-Mok

    2017-06-01

    Ten electrolytic reduction or oxide reduction (OR) runs of a 0.6 kg scale-simulated oxide fuel in a Li2O-LiCl molten salt at 650 °C were conducted using metal anode shrouds. During this procedure, an anode shroud surrounds a platinum anode and discharges hot oxygen gas from the salt to outside of the OR apparatus, thereby preventing corrosion of the apparatus. In this study, a number of anode shrouds made of various metals were tested. Each metallic anode shroud consisted of a lower porous shroud for the salt phase and an upper nonporous shroud for the gas phase. A stainless steel (STS) wire mesh with five-ply layer was a material commonly used for the lower porous shroud for the OR runs. The metals tested for the upper nonporous shroud in the different OR runs are STS, nickel, and platinum- or silver-lined nickel. The lower porous shroud showed no significant damage during two consecutive OR runs, but exhibited signs of damage from three or more runs due to thermal stress. The upper nonporous shrouds made up of either platinum- or silver-lined nickel showed excellent corrosion resistance to hot oxygen gas while STS or nickel without any platinum or silver lining exhibited poor corrosion resistance.

  16. 75 FR 60480 - In the Matter of Certain Bulk Welding Wire Containers and Components Thereof and Welding Wire...

    Science.gov (United States)

    2010-09-30

    ... Welding Wire Containers and Components Thereof and Welding Wire; Notice of Commission Determination To... within the United States after importation of certain bulk welding wire containers, components thereof, and welding wire by reason of infringement of certain claims of United States Patent Nos. 6,260,781; 6...

  17. Quantifying the effect of anode surface roughness on diagnostic x-ray spectra using Monte Carlo simulation

    Energy Technology Data Exchange (ETDEWEB)

    Mehranian, A.; Ay, M. R.; Alam, N. Riyahi; Zaidi, H. [Department of Medical Physics and Biomedical Engineering, Tehran University of Medical Sciences, P.O. Box 14155-6447, Tehran (Iran, Islamic Republic of) and Research Center for Science and Technology in Medicine, Tehran University of Medical Sciences, P.O. Box 14185-615, Tehran (Iran, Islamic Republic of); Department of Medical Physics and Biomedical Engineering, Tehran University of Medical Sciences, P.O. Box 14155-6447, Tehran (Iran, Islamic Republic of); Research Center for Science and Technology in Medicine, Tehran University of Medical Sciences, P.O. Box 14185-615, Tehran (Iran, Islamic Republic of) and Research Institute for Nuclear Medicine, Tehran University of Medical Sciences, P.O. Box 14155-6447, Tehran (Iran, Islamic Republic of); Department of Medical Physics and Biomedical Engineering, Tehran University of Medical Sciences, P.O. Box 14155-6447, Tehran (Iran, Islamic Republic of); Division of Nuclear Medicine, Geneva University Hospital, CH-1211 Geneva (Switzerland) and Geneva Neuroscience Center, Geneva University, CH-1205 Geneva (Switzerland)

    2010-02-15

    Purpose: The accurate prediction of x-ray spectra under typical conditions encountered in clinical x-ray examination procedures and the assessment of factors influencing them has been a long-standing goal of the diagnostic radiology and medical physics communities. In this work, the influence of anode surface roughness on diagnostic x-ray spectra is evaluated using MCNP4C-based Monte Carlo simulations. Methods: An image-based modeling method was used to create realistic models from surface-cracked anodes. An in-house computer program was written to model the geometric pattern of cracks and irregularities from digital images of focal track surface in order to define the modeled anodes into MCNP input file. To consider average roughness and mean crack depth into the models, the surface of anodes was characterized by scanning electron microscopy and surface profilometry. It was found that the average roughness (R{sub a}) in the most aged tube studied is about 50 {mu}m. The correctness of MCNP4C in simulating diagnostic x-ray spectra was thoroughly verified by calling its Gaussian energy broadening card and comparing the simulated spectra with experimentally measured ones. The assessment of anode roughness involved the comparison of simulated spectra in deteriorated anodes with those simulated in perfectly plain anodes considered as reference. From these comparisons, the variations in output intensity, half value layer (HVL), heel effect, and patient dose were studied. Results: An intensity loss of 4.5% and 16.8% was predicted for anodes aged by 5 and 50 {mu}m deep cracks (50 kVp, 6 deg. target angle, and 2.5 mm Al total filtration). The variations in HVL were not significant as the spectra were not hardened by more than 2.5%; however, the trend for this variation was to increase with roughness. By deploying several point detector tallies along the anode-cathode direction and averaging exposure over them, it was found that for a 6 deg. anode, roughened by 50 {mu}m deep

  18. Empolder and application of LiveWire program

    International Nuclear Information System (INIS)

    Zhang Bo; Li Jing; Wang Xiaoming

    2007-01-01

    LiveWire is a specific module of Netscape Web server to actualize CGI function; through LiveWire application program one can create dynamic web page on web site. This article introduces how to write LiveWire application code, have to compile, debug and manage LiveWire application programs, and how to apply LiveWire application program on Netscape Web server to create a dynamic web page. (authors)

  19. Supplemental Analysis Survey of C&P Telephone Inside Wiring.

    Science.gov (United States)

    1986-10-01

    telephone company facilities in 1984. In 1985, among other actions favorable to deregulation and detariffing of inside wiring, the FCC proposed to detariff ...installation of inside wiring, detariff the maintenance of all inside wiring, treat all inside wiring as customer premise equipment and pass ownership...85-148, 50 Fed. let. 13991 (April 9, 1985), pToposing to detariff the installation of simple inside wiring and also to detariff the maintenance of all

  20. Expansion of plasma of electrically exploding single copper wire under 4.5 kA-9.5 kA/wire

    International Nuclear Information System (INIS)

    Li Yexun; Yang Libing; Sun Chengwei

    2003-01-01

    The experimental system for electrically exploding single metal wire has been designed and manufactured. Expansion of the dense plasma column formed from an electrically exploding Cu wire of diameter 30 μm has been studied with a high-speed photographer to obtain the time-dependent radius (R-t) curve. The experimental results demonstrate that the mean expansion rate of the dense plasma column is 1.94 μm/ns, 2.6 μm/ns and 3.75 μm/ns according to the peak pulse current 4.5 kA, 7 kA and 9.5 kA respectively. The results can be beneficial to giving a profound understanding of the early stage of wire-array Z-pinch physics and to improvement on their design

  1. Variation of nanopore diameter along porous anodic alumina channels by multi-step anodization.

    Science.gov (United States)

    Lee, Kwang Hong; Lim, Xin Yuan; Wai, Kah Wing; Romanato, Filippo; Wong, Chee Cheong

    2011-02-01

    In order to form tapered nanocapillaries, we investigated a method to vary the nanopore diameter along the porous anodic alumina (PAA) channels using multi-step anodization. By anodizing the aluminum in either single acid (H3PO4) or multi-acid (H2SO4, oxalic acid and H3PO4) with increasing or decreasing voltage, the diameter of the nanopore along the PAA channel can be varied systematically corresponding to the applied voltages. The pore size along the channel can be enlarged or shrunken in the range of 20 nm to 200 nm. Structural engineering of the template along the film growth direction can be achieved by deliberately designing a suitable voltage and electrolyte together with anodization time.

  2. The Analysis of the High Speed Wire Drawing Process of High Carbon Steel Wires Under Hydrodynamic Lubrication Conditions

    Directory of Open Access Journals (Sweden)

    Suliga M.

    2015-04-01

    Full Text Available In this work the analysis of the wire drawing process in hydrodynamic dies has been done. The drawing process of φ5.5 mm wire rod to the final wire of φ1.7 mm was conducted in 12 passes, in drawing speed range of 5-25 m/s. For final wires of φ1.7 mm the investigation of topography of wire surface, the amount of lubricant on the wire surface and the pressure of lubricant in hydrodynamic dies were determined. Additionally, in the work selected mechanical properties of the wires have been estimated.

  3. Hybrid anode for semiconductor radiation detectors

    Science.gov (United States)

    Yang, Ge; Bolotnikov, Aleksey E; Camarda, Guiseppe; Cui, Yonggang; Hossain, Anwar; Kim, Ki Hyun; James, Ralph B

    2013-11-19

    The present invention relates to a novel hybrid anode configuration for a radiation detector that effectively reduces the edge effect of surface defects on the internal electric field in compound semiconductor detectors by focusing the internal electric field of the detector and redirecting drifting carriers away from the side surfaces of the semiconductor toward the collection electrode(s).

  4. Linear sweep anodic stripping voltammetry: Determination of ...

    Indian Academy of Sciences (India)

    The aim of this work is to determine Cr(VI) in water resources by anodic stripping voltammetry using SPE-. AuNPs modified electrode .... surface area about 4 fold). 3.2 Optimization of Parameters ..... in water samples. The above system offers a.

  5. Growth of anodic films on niobium

    International Nuclear Information System (INIS)

    Gomes, M.A.B.; Bulhoes, L.O.S.

    1988-01-01

    The analysis of the response of the galvanostatic growth of anodic films on niobium metal in aqueous solutions is shown. The first spark voltage showed a dependence upon value of current density that could be explained as the incorporation of anions into the film. (M.J.C.) [pt

  6. Spinal Anodes for Lithium-Ion Batteries

    CSIR Research Space (South Africa)

    Ferg, E

    1994-11-01

    Full Text Available , and layered LiCoO2. The electrochemical data demonstrated that Li+ ions will shuttle between two transition-metal host structures (anode and cathode) at a reasonably high voltage with a concomitant change in the oxidation state of the transition metal cations...

  7. Anodic electrochemical treatment of amorphous alloys

    International Nuclear Information System (INIS)

    Isaev, N.I.; Yakovlev, V.B.; Osipov, Eh.K.; Isaev, A.V.; Trofimova, E.A.; Vasil'ev, V.Yu.

    1983-01-01

    The aim of the investigation is to reveal peculiarities of the process of anodic oxidation and properties of anode oxide films, formed on the surface of amorphous alloys. Amorphous alloys on the base of rectifying metals of Zr-Ni, Zr-Cu-Ni, Zr-Al-Ni, Zr-Cu-Sn, Zr-Al, Zr-Mo systems are studied. Electrolytes which do not dissolve or weakly dissolve oxide film, such as boric acid electrolyte (40-45 g/l H 3 BO 3 and 18 cm 3 /l of the 25% aqueous NH 4 OH solution) and 20% H 2 SO 4 solution, are used for oxidation. Results of investigations, carried out on amorphous alloys, contaning noticeable quantities of non-rectifying components - Cu, Ni, Sn, Fe, Mo etc - have shown that non-rectifying components harden a process of anodic oxidation and decrease the current efficiency. Amorphous alloys, containing only rectifying components are oxidated in anodic way, the regularities of film growth being similar to those obtained for crystalline materials

  8. Low temperature anodic bonding to silicon nitride

    DEFF Research Database (Denmark)

    Weichel, Steen; Reus, Roger De; Bouaidat, Salim

    2000-01-01

    Low-temperature anodic bonding to stoichiometric silicon nitride surfaces has been performed in the temperature range from 3508C to 4008C. It is shown that the bonding is improved considerably if the nitride surfaces are either oxidized or exposed to an oxygen plasma prior to the bonding. Both bu...

  9. Anode materials for lithium-ion batteries

    Science.gov (United States)

    Sunkara, Mahendra Kumar; Meduri, Praveen; Sumanasekera, Gamini

    2014-12-30

    An anode material for lithium-ion batteries is provided that comprises an elongated core structure capable of forming an alloy with lithium; and a plurality of nanostructures placed on a surface of the core structure, with each nanostructure being capable of forming an alloy with lithium and spaced at a predetermined distance from adjacent nanostructures.

  10. Phenomenological studies of electron-beam transport in wire-plasma channels

    International Nuclear Information System (INIS)

    Lockwood, G.J.; Beezhold, W.

    1980-01-01

    Multiple electron-beam transport in air through plasma channels is an important method for delivering many intense beams to a bremsstrahlung converter system. This paper reports work intended to optimize this transport technique with emphasis on transport through curved channels and on transport efficiencies. Curved-channel transport allows accelerators such as Sandia's PROTO II and PBFA I facilities to be used as flash x-ray sources for weapon effects simulation without reconfiguring the diodes or developing advanced converters. The formation mechanisms of wire-initiated plasma channels in air were examined and the subsequent transport efficiencies of relativistic electron beams through various-length straight and curved plasma channels were determined. Electron transport efficiency through a channel was measured to be 80 to 100% of a zero length channel for 40 cm long straight channels and for curved channels which re-directed the electron beam through an angle of 90 0 . Studies of simultaneous e-beam transport along two curved channels closely spaced at the converter showed that transport efficiency remained at 80 to 100%. However, it was observed that the two e-beams were displaced towards each other. Transport efficiency was observed to depend only weakly on parameters such as wire material, wire length and shape, diode anode aperture, e-beam injection time, and wire-channel applied voltage. For off-center injection conditions the electron beam strongly perturbed the plasma channel in periodic or regularly spaced patterns even though the total energy lost by the electron beam remained small. Plasma-channel transport, when all experimental parameters have been optimized for maximum transport efficiency, is a workable method for directing electron beams to a converter target

  11. Quantitative relationship between nanotube length and anodizing current during constant current anodization

    International Nuclear Information System (INIS)

    Zhang, Yulian; Cheng, Weijie; Du, Fei; Zhang, Shaoyu; Ma, Weihua; Li, Dongdong; Song, Ye; Zhu, Xufei

    2015-01-01

    Highlights: • Ti anodization was performed by constant current rather than constant voltage. • The nanotube length was controlled by ionic current rather than dissolution current. • Electronic current can be estimated by the nanotube length and the anodizing current. • Dissolution reaction hardly contributes electric current across the barrier layer. - Abstract: The growth kinetics of anodic TiO 2 nanotubes (ATNTs) still remains unclear. ATNTs are generally fabricated under potentiostatic conditions rather than galvanostatic ones. The quantitative relationship between nanotube length and anodizing current (J total ) is difficult to determine, because the variable J total includes ionic current (J ion ) (also called oxide growth current J grow =J ion ) and electronic current (J e ), which cannot be separated from each other. One successful approach to achieve this objective is to use constant current anodization rather than constant voltage anodization, that is, through quantitative comparison between the nanotube length and the known J total during constant current anodization, we can estimate the relative magnitudes of J grow and J e . The nanotubes with lengths of 1.24, 2.23, 3.51 and 4.70 μm, were formed under constant currents (J total ) of 15, 20, 25 and 30 mA, respectively. The relationship between nanotube length (y) and anodizing current (x =J total =J grow +J e ) can be expressed by a fitting equation: y=0.23(x-10.13), from which J grow (J grow = x -10.13) and J e (∼10.13 mA) could be inferred under the present conditions. Meanwhile, the same conclusion could also be deduced from the oxide volume data. These results indicate that the nanotube growth is attributed to the oxide growth current rather than the dissolution current.

  12. Effects of Alclad Layer and Anodizing Time on Sulfuric Acid Anodizing and Film Properties of 2E12 Aluminum Alloy

    Directory of Open Access Journals (Sweden)

    CHEN Gao-hong

    2017-07-01

    Full Text Available Alclad and unclad 2E12 aerospace aluminum alloy were treated by sulfuric acid anodic oxidation. The effects of alclad layer and anodizing time on the anodization behaviour and corrosion resistance of anodic oxide layer on 2E12 aluminum alloy were studied. Surface and cross-section morphology of anodic oxide films were observed by scanning electron microscopy. The electrochemical properties of anodic oxide films were analyzed by potentiodynamic polarization curve and electrochemical impedance spectroscopy. The results show that the protective anodic oxide layers are formed on alclad and unclad 2E12 aluminum alloy. The film thickness increases with anodizing time extending. The copper rich second phase particles lead to more cavity defects and even micro cracks on anodic oxide films of unclad 2E12 aluminum alloy. The anodic oxide films on alclad 2E12 aluminum alloy are thicker and have fewer cavity defects, resulting in better corrosion resistance. The films obtained after 30min and 45min anodic oxidation treatment exhibit lower corrosion current and higher impedance of the porous layer than other anodizing time.

  13. Self-ordering behavior of nanoporous anodic aluminum oxide (AAO) in malonic acid anodization

    International Nuclear Information System (INIS)

    Lee, W; Nielsch, K; Goesele, U

    2007-01-01

    The self-ordering behavior of anodic aluminum oxide (AAO) has been investigated for anodization of aluminum in malonic acid (H 4 C 3 O 4 ) solution. In the present study it is found that a porous oxide layer formed on the surface of aluminum can effectively suppress catastrophic local events (such as breakdown of the oxide film and plastic deformation of the aluminum substrate), and enables stable fast anodic oxidation under a high electric field of 110-140 V and ∼100 mA cm -2 . Studies on the self-ordering behavior of AAO indicated that the cell homogeneity of AAO increases dramatically as the anodization voltage gets higher than 120 V. Highly ordered AAO with a hexagonal arrangement of the nanopores could be obtained in a voltage range 125-140 V. The current density (i.e., the electric field strength (E) at the bottom of a pore) is an important parameter governing the self-ordering of the nanopores as well as the interpore distance (D int ) for a given anodization potential (U) during malonic acid anodization

  14. Ion Release and Galvanic Corrosion of Different Orthodontic Brackets and Wires in Artificial Saliva.

    Science.gov (United States)

    Tahmasbi, Soodeh; Sheikh, Tahereh; Hemmati, Yasamin B

    2017-03-01

    To investigate the galvanic corrosion of brackets manufactured by four different companies coupled with stainless steel (SS) or nickel-titanium (NiTi) wires in an artificial saliva solution. A total of 24 mandibular central incisor Roth brackets of four different manufacturers (American Orthodontics, Dentaurum, Shinye, ORJ) were used in this experimental study. These brackets were immersed in artificial saliva along with SS or NiTi orthodontic wires (0.016'', round) for 28 days. The electric potential difference of each bracket/ wire coupled with a saturated calomel reference electrode was measured via a voltmeter and recorded constantly. Corrosion rate (CR) was calculated, and release of ions was measured with an atomic absorption spectrometer. Stereomicroscope was used to evaluate all samples. Then, samples with corrosion were further assessed by scanning electron microscope and energy-dispersive X-ray spectroscopy. Two-way analysis of variance was used to analyze data. Among ions evaluated, release of nickel ions from Shinye brackets was significantly higher than that of other brackets. The mean potential difference was significantly lower in specimens containing a couple of Shinye brackets and SS wire compared with other specimens. No significant difference was observed in the mean CR of various groups (p > 0.05). Microscopic evaluation showed corrosion in two samples only: Shinye bracket coupled with SS wire and American Orthodontics bracket coupled with NiTi wire. Shinye brackets coupled with SS wire showed more susceptibility to galvanic corrosion. There were no significant differences among specimens in terms of the CR or released ions except the release of Ni ions, which was higher in Shinye brackets.

  15. Impedance Analysis of Silicon Nanowire Lithium Ion Battery Anodes

    KAUST Repository

    Ruffo, Riccardo

    2009-07-02

    The impedance behavior of silicon nanowire electrodes has been investigated to understand the electrochemical process kinetics that influences the performance when used as a high-capacity anode in a lithium ion battery. The ac response was measured by using impedance spectroscopy in equilibrium conditions at different lithium compositions and during several cycles of charge and discharge in a half cell vs. metallic lithium. The impedance analysis shows the contribution of both surface resistance and solid state diffusion through the bulk of the nanowires. The surface process is dominated by a solid electrolyte layer (SEI) consisting of an inner, inorganic insoluble part and several organic compounds at the outer interface, as seen by XPS analysis. The surface resistivity, which seems to be correlated with the Coulombic efficiency of the electrode, grows at very high lithium contents due to an increase in the inorganic SEI thickness. We estimate the diffusion coefficient of about 2 × 10 -10 cm 2/s for lithium diffusion in silicon. A large increase in the electrode impedance was observed at very low lithium compositions, probably due to a different mechanism for lithium diffusion inside the wires. Restricting the discharge voltage to 0.7 V prevents this large impedance and improves the electrode lifetime. Cells cycled between 0.07 and 0.70 V vs. metallic lithium at a current density of 0.84 A/g (C/5) showed good Coulombic efficiency (about 99%) and maintained a capacity of about 2000 mAh/g after 80 cycles. © 2009 American Chemical Society.

  16. Creation of subsonic macro-and microjets facilities and automated measuring system (AMS-2) for the spatial - temporal hot - wire anemometric visualization of jet flow field

    Science.gov (United States)

    Sorokin, A. M.; Grek, G. R.; Gilev, V. M.; Zverkov, I. D.

    2017-10-01

    Macro-and microjets facilities for generation of the round and plane subsonic jets are designed and fabricated. Automated measuring system (AMS - 2) for the spatial - temporal hot - wire anemometric visualization of jet flow field is designed and fabricated. Coordinate device and unit of the measurement, collecting, storage and processing of hot - wire anemometric information were integrated in the AMS. Coordinate device is intended for precision movement of the hot - wire probe in jet flow field according to the computer program. At the same time accuracy of the hot - wire probe movement is 5 microns on all three coordinates (x, y, z). Unit of measurement, collecting, storage and processing of hot - wire anemometric information is intended for the hot - wire anemometric measurement of the jet flow field parameters (registration of the mean - U and fluctuation - u' characteristics of jet flow velocity), their accumulation and preservation in the computer memory, and also carries out their processing according to certain programms.

  17. Mountain Plains Learning Experience Guide: Electrical Wiring. Course: Electrical Wiring Rough-In.

    Science.gov (United States)

    Arneson, R.; And Others

    One of two individualized courses included in an electrical wiring curriculum, this course covers electrical installations that are generally hidden within the structure. The course is comprised of four units: (1) Outlet and Switch Boxes, (2) Wiring, (3) Service Entrance, and (4) Signal and Low Voltage Systems. Each unit begins with a Unit…

  18. Effect of discrete wires on the implosion dynamics of wire array Z pinches

    International Nuclear Information System (INIS)

    Lebedev, S. V.; Beg, F. N.; Bland, S. N.; Chittenden, J. P.; Dangor, A. E.; Haines, M. G.; Kwek, K. H.; Pikuz, S. A.; Shelkovenko, T. A.

    2001-01-01

    A phenomenological model of wire array Z-pinch implosions, based on the analysis of experimental data obtained on the mega-ampere generator for plasma implosion experiments (MAGPIE) generator [I. H. Mitchell , Rev. Sci. Instrum. 67, 1533 (1996)], is described. The data show that during the first ∼80% of the implosion the wire cores remain stationary in their initial positions, while the coronal plasma is continuously jetting from the wire cores to the array axis. This phase ends by the formation of gaps in the wire cores, which occurs due to the nonuniformity of the ablation rate along the wires. The final phase of the implosion starting at this time occurs as a rapid snowplow-like implosion of the radially distributed precursor plasma, previously injected in the interior of the array. The density distribution of the precursor plasma, being peaked on the array axis, could be a key factor providing stability of the wire array implosions operating in the regime of discrete wires. The modified ''initial'' conditions for simulations of wire array Z-pinch implosions with one-dimension (1D) and two-dimensions (2D) in the r--z plane, radiation-magnetohydrodynamic (MHD) codes, and a possible scaling to a larger drive current are discussed

  19. Modeling and simulation of the fluid flow in wire electrochemical machining with rotating tool (wire ECM)

    Science.gov (United States)

    Klocke, F.; Herrig, T.; Zeis, M.; Klink, A.

    2017-10-01

    Combining the working principle of electrochemical machining (ECM) with a universal rotating tool, like a wire, could manage lots of challenges of the classical ECM sinking process. Such a wire-ECM process could be able to machine flexible and efficient 2.5-dimensional geometries like fir tree slots in turbine discs. Nowadays, established manufacturing technologies for slotting turbine discs are broaching and wire electrical discharge machining (wire EDM). Nevertheless, high requirements on surface integrity of turbine parts need cost intensive process development and - in case of wire-EDM - trim cuts to reduce the heat affected rim zone. Due to the process specific advantages, ECM is an attractive alternative manufacturing technology and is getting more and more relevant for sinking applications within the last few years. But ECM is also opposed with high costs for process development and complex electrolyte flow devices. In the past, few studies dealt with the development of a wire ECM process to meet these challenges. However, previous concepts of wire ECM were only suitable for micro machining applications. Due to insufficient flushing concepts the application of the process for machining macro geometries failed. Therefore, this paper presents the modeling and simulation of a new flushing approach for process assessment. The suitability of a rotating structured wire electrode in combination with an axial flushing for electrodes with high aspect ratios is investigated and discussed.

  20. Hydrogen anode for nitrate waste destruction. Revision 2

    International Nuclear Information System (INIS)

    Hobbs, D.T.; Kalu, E.E.; White, R.E.

    1996-01-01

    Large quantities of radioactive and hazardous wastes have been generated from nuclear materials production during the past fifty years. Processes are under evaluation to separate the high level radioactive species from the waste and store them permanently in the form of durable solids. The schemes proposed will separate the high level radioactive components, cesium-137 and strontium-90, into a small volume for incorporation into a glass wasteform. The remaining low-level radioactive waste contain species such as nitrites and nitrates that are capable of contaminating ground water. Electrochemical destruction of the nitrate and nitrite before permanent storage has been proposed. Not only will the electrochemical processing destroy these species, the volume of the waste could also be reduced. The use of a hydrogen gas-fed anode and an acid anolyte in an electrochemical cell used to destroy nitrate was demonstrated. A mixed Na 2 SO 4 /H 2 SO 4 anolyte was shown to favor the nitrate cell performance, and the generation of a higher hydroxide ion concentration in the catholyte. The suggested scheme is an apparent method of sodium sulfate disposal and a possible means through which ammonia (to ammonium sulfate, fertilizer) and hydrogen gas could be recycled through the anode side of the reactor. This could result in a substantial savings in the operation of a nitrate destruction cell

  1. Theory of wire number scaling in wire-array Z pinches

    International Nuclear Information System (INIS)

    Desjarlais, M.P.; Marder, B.M.

    1999-01-01

    Pulsed-power-driven Z pinches, produced by imploding cylindrical arrays of many wires, have generated very high x-ray radiation powers (>200 TW) and energies (2 MJ). Experiments have revealed a steady improvement in Z-pinch performance with increasing wire number at fixed total mass and array radius. The dominant mechanism acting to limit the performance of these devices is believed to be the Rayleigh-Taylor instability which broadens the radially imploding plasma sheath and consequently reduces the peak radiation power. A model is presented which describes an amplification over the two-dimensional Rayleigh-Taylor growth rate brought about by kink-like forces on the individual wires. This amplification factor goes to zero as the number of wires approaches infinity. This model gives results which are in good agreement with the experimental data and provides a scaling for wire-array Z pinches. copyright 1999 American Institute of Physics

  2. Evolution of cementite morphology in pearlitic steel wire during wet wire drawing

    International Nuclear Information System (INIS)

    Zhang Xiaodan; Godfrey, Andrew; Hansen, Niels; Huang Xiaoxu; Liu Wei; Liu Qing

    2010-01-01

    The evolution of the cementite phase during wet wire drawing of a pearlitic steel wire has been followed as a function of strain. Particular attention has been given to a quantitative characterization of changes in the alignment and in the dimensions of the cementite phase. Scanning electron microscope observations show that cementite plates become increasingly aligned with the wire axis as the drawing strain is increased. Measurements in the transmission electron microscope show that the cementite deforms plastically during wire drawing , with the average thickness of the cementite plates decreasing from 19 nm (ε = 0) to 2 nm (ε = 3.7) in correspondence with the reduction in wire diameter. The deformation of the cementite is strongly related to plastic deformation in the ferrite, with coarse slip steps, shear bands and cracks in the cementite plates/particles observed parallel to either {110} α or {112} α slip plane traces in the ferrite.

  3. Evolution of cementite morphology in pearlitic steel wire during wet wire drawing

    DEFF Research Database (Denmark)

    Zhang, Xiaodan; Godfrey, Andrew; Hansen, Niels

    2010-01-01

    The evolution of the cementite phase during wet wire drawing of a pearlitic steel wire has been followed as a function of strain. Particular attention has been given to a quantitative characterization of changes in the alignment and in the dimensions of the cementite phase. Scanning electron...... microscope observations show that cementite plates become increasingly aligned with the wire axis as the drawing strain is increased. Measurements in the transmission electron microscope show that the cementite deforms plastically during wire drawing , with the average thickness of the cementite plates...... decreasing from 19 nm (ε = 0) to 2 nm (ε = 3.7) in correspondence with the reduction in wire diameter. The deformation of the cementite is strongly related to plastic deformation in the ferrite, with coarse slip steps, shear bands and cracks in the cementite plates/particles observed parallel to either {110...

  4. Study of the effect of the doped poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) polymeric anode on the organic light-emitting diode performances

    Energy Technology Data Exchange (ETDEWEB)

    De Girolamo Del Mauro, Anna, E-mail: anna.degirolamo@enea.it; Nenna, Giuseppe; Villani, Fulvia; Minarini, Carla

    2012-06-01

    Bottom-emitting organic diode devices with polymeric anode were fabricated and their performances were compared to devices with different anodes. The highly transparent (transmittance Almost-Equal-To 90%) and conductive (700 S/cm) anode was poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) processed from aqueous solution and modified by addition of dimethyl sulfoxide (DMSO). The electro-optical characteristics of the DMSO-doped PEDOT:PSS based device and devices with architectures based on undoped PEDOT:PSS and/or indium tin oxide (ITO) were investigated and the effects of the different anodes were analyzed by means of electrical responses in static and dynamic regimes. The efficiency of the device with the proposed polymeric anode was comparable to that of ITO based device but reduced with respect to the device including PEDOT:PSS as hole-injection layer. These results were correlated to the film morphological properties and discussed in terms of interfacial state density modification. - Highlights: Black-Right-Pointing-Pointer Doped Poly(3,4-ethylenedioxythiophene):Poly(styrenesulfonate) is proposed as anode. Black-Right-Pointing-Pointer Transparent and conductive polymeric anode is used in organic light-emitting diodes. Black-Right-Pointing-Pointer Efficiency of polymeric anode device is comparable to device with indium tin oxide. Black-Right-Pointing-Pointer Lower optical switch-on and higher luminance are observed. Black-Right-Pointing-Pointer Interface state density is modified by addition of the dopant in polymeric electrode.

  5. Sulfur poisoning of Ni/Gadolinium-doped ceria anodes: A long-term study outlining stable solid oxide fuel cell operation

    Science.gov (United States)

    Riegraf, Matthias; Zekri, Atef; Knipper, Martin; Costa, Rémi; Schiller, Günter; Friedrich, K. Andreas

    2018-03-01

    This work presents an analysis of the long-term behavior of nickel/gadolinium-doped ceria (CGO) anode-based solid oxide fuel cells (SOFC) under sulfur poisoning conditions. A parameter study of sulfur-induced irreversible long-term degradation of commercial, high-performance single cells was carried out at 900 °C for different H2/N2/H2S fuel gas atmospheres, current densities and Ni/CGO anodes. The poisoning periods of the cells varied from 200 to 1500 h. The possibility of stable long-term Ni/CGO anode operation under sulfur exposure is established and the critical operating regime is outlined. Depending on the operating conditions, two degradation phenomena can be observed. Small degradation of the ohmic resistance was witnessed for sulfur exposure times of approximately 1000 h. Moreover, degradation of the anode charge transfer resistance was observed to be triggered by the combination of a small anodic potential step and high sulfur coverage on Ni. The microstructural evolution of altered Ni/CGO anodes was examined post-mortem by means of SEM and FIB/SEM, and is correlated to the anode performance degradation under critical operating conditions, establishing Ni depletion, porosity increase and a tripe phase boundary density decrease in the anode functional layer. It is shown that short-term sulfur poisoning behavior can be used to assess long-term stability.

  6. Electroless Formation of Hybrid Lithium Anodes for Fast Interfacial Ion Transport

    KAUST Repository

    Choudhury, Snehashis; Tu, Zhengyuan; Stalin, Sanjuna; Vu, Duylinh; Fawole, Kristen; Gunceler, Deniz; Sundararaman, Ravishankar; Archer, Lynden A.

    2017-01-01

    Rechargeable batteries based on metallic anodes are of interest for fundamental and application-focused studies of chemical and physical kinetics of liquids at solid interfaces. Approaches that allow facile creation of uniform coatings on these metals to prevent physical contact with liquid electrolytes, while enabling fast ion transport, are essential to address chemical instability of the anodes. Here, we report a simple electroless ion-exchange chemistry for creating coatings of indium on lithium. By means of joint density functional theory and interfacial characterization experiments, we show that In coatings stabilize Li by multiple processes, including exceptionally fast surface diffusion of lithium ions and high chemical resistance to liquid electrolytes. Indium coatings also undergo reversible alloying reactions with lithium ions, facilitating design of high-capacity hybrid In-Li anodes that use both alloying and plating approaches for charge storage. By means of direct visualization, we further show that the coatings enable remarkably compact and uniform electrodeposition. The resultant In-Li anodes are shown to exhibit minimal capacity fade in extended galvanostatic cycling when paired with commercial-grade cathodes.

  7. Electroless Formation of Hybrid Lithium Anodes for Fast Interfacial Ion Transport

    KAUST Repository

    Choudhury, Snehashis

    2017-08-17

    Rechargeable batteries based on metallic anodes are of interest for fundamental and application-focused studies of chemical and physical kinetics of liquids at solid interfaces. Approaches that allow facile creation of uniform coatings on these metals to prevent physical contact with liquid electrolytes, while enabling fast ion transport, are essential to address chemical instability of the anodes. Here, we report a simple electroless ion-exchange chemistry for creating coatings of indium on lithium. By means of joint density functional theory and interfacial characterization experiments, we show that In coatings stabilize Li by multiple processes, including exceptionally fast surface diffusion of lithium ions and high chemical resistance to liquid electrolytes. Indium coatings also undergo reversible alloying reactions with lithium ions, facilitating design of high-capacity hybrid In-Li anodes that use both alloying and plating approaches for charge storage. By means of direct visualization, we further show that the coatings enable remarkably compact and uniform electrodeposition. The resultant In-Li anodes are shown to exhibit minimal capacity fade in extended galvanostatic cycling when paired with commercial-grade cathodes.

  8. Electroless formation of hybrid lithium anodes for fast interfacial ion transport

    Energy Technology Data Exchange (ETDEWEB)

    Choudhury, Snehashis; Stalin, Sanjuna; Vu, Duylinh; Fawole, Kristen; Archer, Lynden A. [School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY (United States); Tu, Zhengyuan [Department of Material Science and Engineering, Cornell University, Ithaca, NY (United States); Gunceler, Deniz [Department of Physics, Cornell University, Ithaca, NY (United States); Sundararaman, Ravishankar [Material Science and Engineering, Rensselaer Polytechnic Institute, Troy, NY (United States)

    2017-10-09

    Rechargeable batteries based on metallic anodes are of interest for fundamental and application-focused studies of chemical and physical kinetics of liquids at solid interfaces. Approaches that allow facile creation of uniform coatings on these metals to prevent physical contact with liquid electrolytes, while enabling fast ion transport, are essential to address chemical instability of the anodes. Here, we report a simple electroless ion-exchange chemistry for creating coatings of indium on lithium. By means of joint density functional theory and interfacial characterization experiments, we show that In coatings stabilize Li by multiple processes, including exceptionally fast surface diffusion of lithium ions and high chemical resistance to liquid electrolytes. Indium coatings also undergo reversible alloying reactions with lithium ions, facilitating design of high-capacity hybrid In-Li anodes that use both alloying and plating approaches for charge storage. By means of direct visualization, we further show that the coatings enable remarkably compact and uniform electrodeposition. The resultant In-Li anodes are shown to exhibit minimal capacity fade in extended galvanostatic cycling when paired with commercial-grade cathodes. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  9. X-ray grazing incidence study of inhomogeneous strain relaxation in Si/SiGe wires

    International Nuclear Information System (INIS)

    Hesse, A.; Zhuang, Y.; Holy, V.; Stangl, J.; Zerlauth, S.; Schaeffler, F.; Bauer, G.; Darowski, N.; Pietsch, U.

    2003-01-01

    The elastic strain relaxation in a series of dry-etched periodic multilayer Si/SiGe wire samples with different etching depths was investigated systematically by means of grazing incidence diffraction (GID). The samples were patterned by holographic lithography and reactive ion etching from a Si/SiGe superlattice grown by molecular beam epitaxy. Scanning electron microscopy and atomic force microscopy were employed to obtain information on the shape of the wires. The inhomogeneous strain distribution in the etched wires and in the non-etched part of the multilayers was derived by means of finite element calculations which were used as an input for simulations of the scattered X-ray intensities in depth dependent GID. The theoretical calculations for the scattered intensities are based on distorted-wave Born approximation. The unperturbed scattering potential was chosen with a reduced optical density corresponding to the ratio of wire width and wire period, in order to reflect the main interaction between the incident X-rays and the patterned samples. The calculations are in good agreement with the experimental data demonstrating the variation of strain relaxation with depth

  10. Structural comparison of anodic nanoporous-titania fabricated from single-step and three-step of anodization using two paralleled-electrodes anodizing cell

    Directory of Open Access Journals (Sweden)

    Mallika Thabuot

    2016-02-01

    Full Text Available Anodization of Ti sheet in the ethylene glycol electrolyte containing 0.38wt% NH4F with the addition of 1.79wt% H2O at room temperature was studied. Applied potential of 10-60 V and anodizing time of 1-3 h were conducted by single-step and three-step of anodization within the two paralleled-electrodes anodizing cell. Their structural and textural properties were investigated by X-ray diffraction (XRD and scanning electron microscopy (SEM. After annealing at 600°C in the air furnace for 3 h, TiO2-nanotubes was transformed to the higher proportion of anatase crystal phase. Also crystallization of anatase phase was enhanced as the duration of anodization as the final step increased. By using single-step of anodization, pore texture of oxide film was started to reveal at the applied potential of 30 V. Better orderly arrangement of the TiO2-nanotubes array with larger pore size was obtained with the increase of applied potential. The applied potential of 60 V was selected for the three-step of anodization with anodizing time of 1-3 h. Results showed that the well-smooth surface coverage with higher density of porous-TiO2 was achieved using prolonging time at the first and second step, however, discontinuity tube in length was produced instead of the long-vertical tube. Layer thickness of anodic oxide film depended on the anodizing time at the last step of anodization. More well arrangement of nanostructured-TiO2 was produced using three-step of anodization under 60 V with 3 h for each step.

  11. Methods for making anodes for lithium ion batteries

    Science.gov (United States)

    Xu, Wu; Canfield, Nathan L.; Zhang, Ji-Guang; Liu, Wei; Xiao, Jie; Wang, Deyu; Yang, Z. Gary

    2015-05-26

    Methods for making composite anodes, such as macroporous composite anodes, are disclosed. Embodiments of the methods may include forming a tape from a slurry including a substrate metal precursor, an anode active material, a pore-forming agent, a binder, and a solvent. A laminated structure may be prepared from the tape and sintered to produce a porous structure, such as a macroporous structure. The macroporous structure may be heated to reduce a substrate metal precursor and/or anode active material. Macroporous composite anodes formed by some embodiments of the disclosed methods comprise a porous metal and an anode active material, wherein the anode active material is both externally and internally incorporated throughout and on the surface of the macroporous structure.

  12. Spectroscopic measurements of anode plasma with cryogenic pulsed ion sources

    International Nuclear Information System (INIS)

    Yoneda, H.; Urata, T.; Ohbayashi, K.; Kim, Y.; Horioka, K.; Kasuya, K.

    1987-01-01

    In ion beam diodes, electromagnetic wave is coupled to ion beam. Ion is extracted from anode plasma, which is produced early in the power pulse. However, exact mechanism of anode plasma production, expansion and ion extraction process is unknown. In particularly, anode plasma expansion is seemed to be one of the reasons of rapid impedance collapse of the diode, which is serious problem in high power experiments. Some experimental results showed that anode plasma expansion velocity was about 5 times larger than that inferred from simple thermal velocity. Several explanations for these results were proposed; for example, electron collisionarity in anode plasma, fast neutral gas particle, diamagnetism. To solve this question, it is necessary to measure the characteristic of anode plasma with space and time resolution. The authors made spectroscopic measurements to investigate variety of electron temperature, electron density, expansion velocity of anode plasma with various ion sources

  13. New crosslinked polyvinyl chloride insulated wire by electron beam irradiation

    International Nuclear Information System (INIS)

    Takahata, Norio; Shingyouchi, Kazuo; Sato, Masakatsu; Sasaki, Hidemi; Terunuma, Haruji

    1978-01-01

    The polyvinyl chloride-coated wires crosslinked by electron beam irradiation have made rapid progress as electric and electronic wiring material and grown to hold a firm position in this field. In response to the requirements for wires with the advance of electronic equipments, Hitachi Cable Ltd. developed a peculiar graft polymer consisting of chlorinated polyethylene and polyvinyl chloride. To this polymer, the characteristics of a very wide range from toughness to flexibility can be given, and the crosslinked polyvinyl chloride wires utilizing these characteristics were put in practical use. Many kinds of the wires were developed as follows; 105 deg. C rating crosslinked vinyl-coated wires authorized by UL and CSA standards, crosslinked vinyl-coated wires with excellent flexibility, high strength crosslinked vinyl-coated wires with thin coating and crosslinked vinyl-coated wires for automobiles. They are expected to be developed into other new fields and applications. (Kobatake, H.)

  14. Micro Wire-Drawing: Experiments And Modelling

    International Nuclear Information System (INIS)

    Berti, G. A.; Monti, M.; Bietresato, M.; D'Angelo, L.

    2007-01-01

    In the paper, the authors propose to adopt the micro wire-drawing as a key for investigating models of micro forming processes. The reasons of this choice arose in the fact that this process can be considered a quasi-stationary process where tribological conditions at the interface between the material and the die can be assumed to be constant during the whole deformation. Two different materials have been investigated: i) a low-carbon steel and, ii) a nonferrous metal (copper). The micro hardness and tensile tests performed on each drawn wire show a thin hardened layer (more evident then in macro wires) on the external surface of the wire and hardening decreases rapidly from the surface layer to the center. For the copper wire this effect is reduced and traditional material constitutive model seems to be adequate to predict experimentation. For the low-carbon steel a modified constitutive material model has been proposed and implemented in a FE code giving a better agreement with the experiments

  15. Wire scanner software and firmware issues

    International Nuclear Information System (INIS)

    Gilpatrick, John Doug

    2008-01-01

    The Los Alamos Neutron Science Center facility presently has 110 slow wire scanning profile measurement instruments located along its various beam lines. These wire scanners were developed and have been operating for at least 30 years. While the wire scanners solved many problems to operate and have served the facility well they have increasingly suffered from several problems or limitations, such as maintenance and reliability problems, antiquated components, slow data acquisition, and etc. In order to refurbish these devices, these wire scanners will be replaced with newer versions. The replacement will consist of a completely new beam line actuator, new cables, new electronics and brand new software and firmware. This note describes the functions and modes of operation that LabVIEW VI software on the real time controller and FPGA LabVIEW firmware will be required. It will be especially interesting to understand the overall architecture of these LabVIEW VIs. While this note will endeavor to describe all of the requirements and issues for the wire scanners, undoubtedly, there will be missing details that will be added as time progresses.

  16. EVALUATION OF INDUCTANCE WITH ELECTRICAL WIRES

    Directory of Open Access Journals (Sweden)

    V. Kudry

    2016-08-01

    Full Text Available In this paper proved the possibility of developing passive electronic inductive elements based replace metal wire that is wound inductor, the wire is made of electret. The relative permeability of the electret S  10 000, several orders of magnitude greater than the permeability of conventional insulation materials, i < 10, resulting current in the wire acquires properties bias current. The essence of innovation is to replace the source of of magnetic induction flow that pervades the core of the coil. According to the theory of electrodynamics, current bias, in contrast to conduction current, generated no movement of charge along the wire, but the change of the charge in the local volume.Equivalence bias current and conduction current is manifested in the possibility of forming a magnetic field. The flow through magnetic induction coil core regardless of the current it generates, creates voltage at its ends.The paper also shows the numeric characteristics that determine the effective frequency range, specified the reason why electric a wire with і < 10 can not generate magnetic flux through the core and serve as a passive reactive component.

  17. Sensitive and simple method for measuring wire tensions

    International Nuclear Information System (INIS)

    Atac, M.; Mishina, M.

    1982-08-01

    Measuring tension of wires in drift chambers and multiwire proportional chambers after construction is an important process because sometimes wires get loose after soldering, crimping or glueing. One needs to sort out wires which have tensions below a required minimum value to prevent electrostatic instabilities. There have been several methods reported on this subject in which the wires were excited either with sinusoidal current under magnetic field or with sinusoidal voltage electrostatically coupled to the wire, searching for a resonating frequency with which the wires vibrate mechanically. Then the vibration is detected either visually, optically or with magnetic pick-up directly touching the wires. Any of these is only applicable to the usual multiwire chamber which has open access to the wire plane. They also need fairly large excitation currents to induce a detectable vibration to the wires. Here we report a very simple method that can be used for any type of wire chamber or proportional tube system for measuring wire tension. Only a very small current is required for the wire excitation to obtain a large enough signal because it detects the induced emf voltage across a wire. A sine-wave oscillator and a digital voltmeter are sufficient devices aside from a permanent magnet to provide the magnetic field around the wire. A useful application of this method to a large system is suggested

  18. Synthesis by anodic-spark deposition of Ca- and P-containing films on pure titanium and their biological response

    Energy Technology Data Exchange (ETDEWEB)

    Banakh, Oksana, E-mail: oksana.banakh@he-arc.ch [Haute Ecole Arc Ingénierie (HES-SO), Eplatures-Grise 17, CH-2300 La Chaux-de-Fonds (Switzerland); Journot, Tony; Gay, Pierre-Antoine; Matthey, Joël; Csefalvay, Catherine [Haute Ecole Arc Ingénierie (HES-SO), Eplatures-Grise 17, CH-2300 La Chaux-de-Fonds (Switzerland); Kalinichenko, Oleg [Ukrainian State University of Chemical Technology (SHEI), Gagarin av. 8, Dnepropetrovsk, UA-49005 (Ukraine); Sereda, Olha [Centre Suisse d’Electronique et de Microtechnique (CSEM), Rue Jaquet-Droz 1, CH-2000 Neuchâtel (Switzerland); Moussa, Mira; Durual, Stéphane [Laboratory of Biomaterials, University of Geneva, rue Barthelemy Menn 19, CH-1205 Geneva (Switzerland); Snizhko, Lyubov [Ukrainian State University of Chemical Technology (SHEI), Gagarin av. 8, Dnepropetrovsk, UA-49005 (Ukraine)

    2016-08-15

    Highlights: • ​CP-4 Ti was treated by anodic spark oxidation in the electrolyte containing Ca and P ions by varying process time and electrolyte concentration. • Ca/P ratio in layers is 0.23–0.47, much lower than in hydroxyapatites (1.67). It means coatings should be resorbable in a biological medium • After immersion in SBF, Ca and P content in layers decrease. Ca and P loss occurs faster in thin layers than in thicker coatings. • The biological response of the samples suggests their excellent biocompatibility and even stimulating effects on osteoblasts proliferation. - Abstract: The purpose of this work is to characterize the anodized layers formed on titanium by anodic-spark deposition in an electrolyte containing Ca and P ions, Ca{sub 3}(PO{sub 4}){sub 2}, studied for the first time. The oxidation experiments were performed at different periods of time and using different concentrations of electrolyte. The influence of the process parameters (time of electrolysis and electrolyte concentration) on the surface morphology and chemical composition of the anodized layers was studied. It has been found that it is possible to incorporate Ca and P into the growing layer. A response of the anodized layers in a biological medium was evaluated by their immersion in a simulated body fluid. An enrichment of titanium and a simultaneous loss of calcium and phosphorus in the layer after immersion tests indicate that these coatings should be bioresorbable in a biological medium. Preliminary biological assays were performed on some anodized layers in order to assess their biocompatibility with osteoblast cells. The cell proliferation on one selected anodized sample was assessed up to 21 days after seeding. The preliminary results suggest excellent biocompatibility properties of anodized coatings.

  19. Synthesis by anodic-spark deposition of Ca- and P-containing films on pure titanium and their biological response

    International Nuclear Information System (INIS)

    Banakh, Oksana; Journot, Tony; Gay, Pierre-Antoine; Matthey, Joël; Csefalvay, Catherine; Kalinichenko, Oleg; Sereda, Olha; Moussa, Mira; Durual, Stéphane; Snizhko, Lyubov

    2016-01-01

    Highlights: • ​CP-4 Ti was treated by anodic spark oxidation in the electrolyte containing Ca and P ions by varying process time and electrolyte concentration. • Ca/P ratio in layers is 0.23–0.47, much lower than in hydroxyapatites (1.67). It means coatings should be resorbable in a biological medium • After immersion in SBF, Ca and P content in layers decrease. Ca and P loss occurs faster in thin layers than in thicker coatings. • The biological response of the samples suggests their excellent biocompatibility and even stimulating effects on osteoblasts proliferation. - Abstract: The purpose of this work is to characterize the anodized layers formed on titanium by anodic-spark deposition in an electrolyte containing Ca and P ions, Ca_3(PO_4)_2, studied for the first time. The oxidation experiments were performed at different periods of time and using different concentrations of electrolyte. The influence of the process parameters (time of electrolysis and electrolyte concentration) on the surface morphology and chemical composition of the anodized layers was studied. It has been found that it is possible to incorporate Ca and P into the growing layer. A response of the anodized layers in a biological medium was evaluated by their immersion in a simulated body fluid. An enrichment of titanium and a simultaneous loss of calcium and phosphorus in the layer after immersion tests indicate that these coatings should be bioresorbable in a biological medium. Preliminary biological assays were performed on some anodized layers in order to assess their biocompatibility with osteoblast cells. The cell proliferation on one selected anodized sample was assessed up to 21 days after seeding. The preliminary results suggest excellent biocompatibility properties of anodized coatings.

  20. Novel corrosion experiments using the wire beam electrode: (III) Measuring electrochemical corrosion parameters from both the metallic and electrolytic phases

    International Nuclear Information System (INIS)

    Tan, Yong-Jun; Liu, Tie; Aung, Naing Naing

    2006-01-01

    The wire beam electrode (WBE) and the scanning reference electrode technique (SRET) have been applied in a novel combination to measure, for the first time, electrochemical parameters simultaneously from both the metallic and electrolytic phases of a corroding metal surface. The objective of this work is to demonstrate the application of this combined WBE-SRET method in obtaining unique information on localised corrosion mechanism, by investigating typical corrosion processes occurring over a mild steel WBE surface exposed to the classic Evans solution. The WBE method was used to map current and potential distributions in the metallic phase, and the SRET was used to map current or potential distribution in the electrolytic phase. It has been found that the combined WBE-SRET method is able to gain useful information on macro-cell electrochemical corrosion processes that involve macro-scale separation of anodes and cathodes. In such macro-cell corrosion systems, maps measured using WBE and SRET were found to correlate with each other and both methods were able to detect the locations of anodic sites. However the movement of the scanning probe during SRET measurements was found to affect the SRET detection of cathodic sites. In micro-cell corrosion systems where the separation of anodic and cathodic sites were less distinct, SRET measurement was found to be insensitive in detecting anodic and cathodic sites, while the WBE method was still able to produce results that correlated well with observed corrosion behaviour. Results obtained from this work suggest that the WBE-SRET method is applicable for understanding the initiation, propagation and electrochemical behaviour of localised corrosion anodes and cathodes, and also their dependence on externally controllable variables, such as solution pH changes and the existence of surface coatings

  1. Size-dependent physicochemical and mechanical interactions in battery paste anodes of Si-microwires revealed by Fast-Fourier-Transform Impedance Spectroscopy

    Science.gov (United States)

    Hansen, Sandra; Quiroga-González, Enrique; Carstensen, Jürgen; Adelung, Rainer; Föll, Helmut

    2017-05-01

    Perfectly aligned silicon microwire arrays show exceptionally high cycling stability with record setting (high) areal capacities of 4.25 mAh cm-2. Those wires have a special, modified length and thickness in order to perform this good. Geometry and sizes are the most important parameters of an anode to obtain batteries with high cycling stability without irreversible losses. The wires are prepared with a unique etching fabrication method, which allows to fabricate wires of very precise sizes. In order to investigate how good randomly oriented silicon wires perform in contrast to the perfect order of the array, the wires are embedded in a paste. This study reveals the fundamental correlation between geometry, mechanics and charge transfer kinetics of silicon electrodes. Using a suitable RC equivalent circuit allows to evaluate data from cyclic voltammetry and simultaneous FFT-Impedance Spectroscopy (FFT-IS), yielding in time-resolved resistances, time constants, and their direct correlation to the phase transformations. The change of the resistances during lithiation and delithiation correlates to kinetics and charge transfer mechanisms. This study demonstrates how the mechanical and physiochemical interactions at the silicon/paste interface inside the paste electrodes lead to void formation around silicon and with it to material loss and capacity fading.

  2. Electrochemical behavior of adrenaline at the carbon atom wire modified electrode

    Energy Technology Data Exchange (ETDEWEB)

    Xue Kuanhong [Chemistry Department, Nanjing Normal University, Jiangsu Engineering Research Center for Bio-medical Function Materials, 122 NingHai Road, Nanjing, JiangSu 210097 (China)], E-mail: khxue@njnu.edu.cn; Liu Jiamei [Chemistry Department, Nanjing Normal University, Jiangsu Engineering Research Center for Bio-medical Function Materials, 122 NingHai Road, Nanjing, JiangSu 210097 (China); Wei Ribing [Chemistry Department, Nanjing Normal University, Jiangsu Engineering Research Center for Bio-medical Function Materials, 122 NingHai Road, Nanjing, JiangSu 210097 (China); Chen Shaopeng [Chemistry Department, Nanjing Normal University, Jiangsu Engineering Research Center for Bio-medical Function Materials, 122 NingHai Road, Nanjing, JiangSu 210097 (China)

    2006-09-11

    Electrochemical behavior of adrenaline at an electrode modified by carbon atom wires (CAWs), a new material, was investigated by cyclic voltammetry combined with UV-vis spectrometry, and forced convection method. As to the electrochemical response of redox of adrenaline/adrenalinequinone couple in 0.50 M H{sub 2}SO{sub 4}, at a nitric acid treated CAW modified electrode, the anodic and cathodic peak potentials E {sub pa} and E {sub pc} shifted by 87 mV negatively and 139 mV in the positive direction, respectively, and standard heterogeneous rate constant k {sup 0} increased by 16 times compared to the corresponding bare electrode, indicating the extraordinary activity of CAWs in electrocatalysis for the process.

  3. Electrochemical behavior of adrenaline at the carbon atom wire modified electrode

    Science.gov (United States)

    Xue, Kuan-Hong; Liu, Jia-Mei; Wei, Ri-Bing; Chen, Shao-Peng

    2006-09-01

    Electrochemical behavior of adrenaline at an electrode modified by carbon atom wires (CAWs), a new material, was investigated by cyclic voltammetry combined with UV-vis spectrometry, and forced convection method. As to the electrochemical response of redox of adrenaline/adrenalinequinone couple in 0.50 M H 2SO 4, at a nitric acid treated CAW modified electrode, the anodic and cathodic peak potentials Epa and Epc shifted by 87 mV negatively and 139 mV in the positive direction, respectively, and standard heterogeneous rate constant k0 increased by 16 times compared to the corresponding bare electrode, indicating the extraordinary activity of CAWs in electrocatalysis for the process.

  4. Electrochemical behavior of adrenaline at the carbon atom wire modified electrode

    International Nuclear Information System (INIS)

    Xue Kuanhong; Liu Jiamei; Wei Ribing; Chen Shaopeng

    2006-01-01

    Electrochemical behavior of adrenaline at an electrode modified by carbon atom wires (CAWs), a new material, was investigated by cyclic voltammetry combined with UV-vis spectrometry, and forced convection method. As to the electrochemical response of redox of adrenaline/adrenalinequinone couple in 0.50 M H 2 SO 4 , at a nitric acid treated CAW modified electrode, the anodic and cathodic peak potentials E pa and E pc shifted by 87 mV negatively and 139 mV in the positive direction, respectively, and standard heterogeneous rate constant k 0 increased by 16 times compared to the corresponding bare electrode, indicating the extraordinary activity of CAWs in electrocatalysis for the process

  5. Electrochemical characteristics of nanostructured silicon anodes for lithium-ion batteries

    International Nuclear Information System (INIS)

    Astrova, E. V.; Li, G. V.; Rumyantsev, A. M.; Zhdanov, V. V.

    2016-01-01

    High-aspect periodic structures with thin vertical walls are studied as regards their applicability as negative electrodes of lithium-ion batteries. The nanostructures are fabricated from single-crystal silicon using photolithography, electrochemical anodization, and subsequent anisotropic shaping. The capacity per unit of the visible surface area of the electrode and the specific internal surface area are compared for structures of varied architecture: 1D (wires), 2D (zigzag walls), and 3D structures (walls forming a grid). Main attention is given to testing the endurance of anodes based on zigzag and grid structures, performed by galvanostatic cycling in half-cells with a lithium counter electrode. The influence exerted by the geometric parameters of the structures and by the testing mode on the degradation rate is determined. It is shown that the limiting factor of the lithiation and delithiation processes is diffusion. The endurance of an electrode dramatically increases when the charging capacity is limited to ∼1000 mA h/g. In this case, nanostructures with 300-nm-thick walls, which underwent cyclic testing at a rate of 0.36C, retain a constant discharge capacity and a Coulomb efficiency close to 100% for more than 1000 cycles.

  6. Electrochemical characteristics of nanostructured silicon anodes for lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Astrova, E. V., E-mail: east@mail.ioffe.ru; Li, G. V.; Rumyantsev, A. M.; Zhdanov, V. V. [Russian Academy of Sciences, Ioffe Physical–Technical Institute (Russian Federation)

    2016-02-15

    High-aspect periodic structures with thin vertical walls are studied as regards their applicability as negative electrodes of lithium-ion batteries. The nanostructures are fabricated from single-crystal silicon using photolithography, electrochemical anodization, and subsequent anisotropic shaping. The capacity per unit of the visible surface area of the electrode and the specific internal surface area are compared for structures of varied architecture: 1D (wires), 2D (zigzag walls), and 3D structures (walls forming a grid). Main attention is given to testing the endurance of anodes based on zigzag and grid structures, performed by galvanostatic cycling in half-cells with a lithium counter electrode. The influence exerted by the geometric parameters of the structures and by the testing mode on the degradation rate is determined. It is shown that the limiting factor of the lithiation and delithiation processes is diffusion. The endurance of an electrode dramatically increases when the charging capacity is limited to ∼1000 mA h/g. In this case, nanostructures with 300-nm-thick walls, which underwent cyclic testing at a rate of 0.36C, retain a constant discharge capacity and a Coulomb efficiency close to 100% for more than 1000 cycles.

  7. A new route to process diamond wires

    Directory of Open Access Journals (Sweden)

    Marcello Filgueira

    2003-06-01

    Full Text Available We propose an original route to process diamond wires, denominated In Situ Technology, whose fabrication involves mechanical conformation processes, such as rotary forging, copper tubes restacking, and thermal treatments, such as sintering and recrystallisation of a bronze 4 wt.% diamond composite. Tensile tests were performed, reaching an ultimate tensile strength (UTS of 230 MPa for the diameter of Æ = 1.84 mm. Scanning electron microscopy showed the diamond crystals distribution along the composite rope during its manufacture, as well as the diamond adhesion to the bronze matrix. Cutting tests were carried out with the processed wire, showing a probable performance 4 times higher than the diamond sawing discs, however its probable performance was about 5 to 8 times less than the conventional diamond wires (pearl system due to the low abrasion resistance of the bronze matrix, and low adhesion between the pair bronze-diamond due to the use of not metallised diamond single crystals.

  8. Longitudinal magnetic bistability of electroplated wires

    International Nuclear Information System (INIS)

    Kurlyandskaya, G.V.; Garcia-Miquel, H.; Vazquez, M.; Svalov, A.V.; Vas'kovskiy, V.O.

    2002-01-01

    Fe 20 Ni 74 Co 6 and Fe 20 Ni 64 Co 16 1 μm thick magnetic tubes electroplated onto Cu 98 Be 2 conductive wire have been investigated in as-deposited state, after heat treatment under longitudinal magnetic field for 1 h at 330 deg. C, and after rf-sputtering deposition of the additional 2 μm Fe 19 Ni 81 layer. Heat treatments and an additional layer deposition modify the shape of hysteresis loops. Magnetically bistable behaviour, observed after the field annealing at a temperature of 330 deg. C, is studied as a function of the length of the samples. This is the first report by our knowledge on the bistable behaviour of the electroplated wires. The bistability of these wires is promising for applications such as tagging or pulse generator applications

  9. Cockpit canopy shattering using exploding wire techniques

    International Nuclear Information System (INIS)

    Novac, B M; Smith, I R; Downs, P R; Marston, P; Fahey, D

    2007-01-01

    This paper presents the principal experimental results provided by a preliminary investigation into the possibility of using exploding wire (EW) techniques to shatter the plastic cockpit canopy of a modern jet aircraft. The data provided forms the basis for a qualitative understanding of the physics of interaction between the plasma produced by an EW and the surrounding elasto-plastic material in which the wire is embedded. To optimize the shock-wave 'clean cutting' effect, the significance of the material, the dimensions of the exploding wire and the amplitude of the current and voltage pulses are all considered. This leads to important conclusions concerning both the characteristics of the EW and the optimum arrangement of the electrical circuit, with the single most important optimization factor being the peak electrical power input to the EW, rather than the dissipated Joule energy. A full-scale system relevant to an actual cockpit canopy shattering is outlined and relevant results are presented and discussed

  10. Graphene wire medium: Homogenization and application

    DEFF Research Database (Denmark)

    Andryieuski, Andrei; Chigrin, Dmitry N.; Lavrinenko, Andrei

    2012-01-01

    In this contribution we analyze numerically the optical properties of the graphene wire medium, which unit cell consists of a stripe of graphene embedded into dielectric. We propose a simple method for retrieval of the isofrequency contour and effective permittivity tensor. As an example of the g......In this contribution we analyze numerically the optical properties of the graphene wire medium, which unit cell consists of a stripe of graphene embedded into dielectric. We propose a simple method for retrieval of the isofrequency contour and effective permittivity tensor. As an example...... of the graphene wire medium application we demonstrate a reconfigurable hyperlens for the terahertz subwavelength imaging capable of resolving two sources with separation λ0/5 in the far-field....

  11. Rotor Embedded with Shape Memory Alloy Wires

    Directory of Open Access Journals (Sweden)

    K. Gupta

    2000-01-01

    Full Text Available In the present analysis, the fundamental natural frequency of a Jeffcott and a two-mass rotor with fibre reinforced composite shaft embedded with shape memory alloy (SMA wires is evaluated by Rayleigh's procedure. The flexibility of rotor supports is taken into account. The effect of three factors, either singly or in combination with each other, on rotor critical speed is studied. The three factors are: (i increase in Young's modulus of SMA (NITINOL wires when activated, (ii tension in wires because of phase recovery stresses, and (iii variation of support stiffness by three times because of activation of SMA in rotor supports. It is shown by numerical examples that substantial variation in rotor critical speeds can be achieved by a combination of these factors which can be effectively used to avoid resonance during rotor coast up/down.

  12. Emulating Wired Backhaul with Wireless Network Coding

    DEFF Research Database (Denmark)

    Thomsen, Henning; De Carvalho, Elisabeth; Popovski, Petar

    2014-01-01

    In this paper we address the need for wireless network densification. We propose a solution wherein the wired backhaul employed in heterogeneous cellular networks is replaced with wireless links, while maintaining the rate requirements of the uplink and downlink traffic of each user. The first...... of the two-way protocol. The transmit power is set high enough to enable successive decoding at the small cell base station where the downlink data to the user is first decoded and its contribution removed from the received signal followed by the uplink data from the user. The decoding of the second layer......, the uplink traffic to the user, remains identical to the one performed in a wired system. In the broadcast phase, the decoding of the downlink traffic can also be guaranteed to remain identical. Hence, our solution claims an emulation of a wired backhaul with wireless network coding with same performance. We...

  13. The Fine Wire Technique for Flexor Tenolysis.

    Science.gov (United States)

    Rosenblum, Matthew K; Baltodano, Pablo A; Weinberg, Maxene H; Whipple, Lauren A; Gemmiti, Amanda L; Whipple, Richard E

    2017-11-01

    Flexor tenolysis surgery for flexor digitorum profundus and superficialis adhesions is a common procedure performed by hand surgeons. Releasing these adhered tendons can greatly improve hand function and improve quality of life. Recent evidence, however, has shown that the outcomes of tenolysis surgeries are often suboptimal and can result in relapsing adhesions or even tendon ruptures. This article describes a new technique with potential for reduced complication rates: The Fine Wire Technique for Flexor Tenolysis (FWT). Following FWT, the patient detailed in this article had an excellent recovery of function and no complications: including tendon rupture, infection, hematomas, or any other complications. She reported a major improvement from her preoperative functionality and continues to have this level of success. The wire's thinness allows for a swift tenolysis. The FWT is a new option available to the hand surgeon associated with good functional results. The wire is readily available to the clinician and is also inexpensive.

  14. Ultrasonic cleaning of electrodes of wire chambers

    International Nuclear Information System (INIS)

    Krasnov, V.A.; Kurepin, A.B.; Razin, V.I.

    1980-01-01

    A technological process of cleaning electrodes and working volume surfaces of wire chambers from contaminations by the simultaneous mechanical action of the energy of ultrasonic oscillations and the chemical action of detergents is discussed. A device for cleaning wire electrodes of proportional chambers of 0.3x0.4 m is described. The device uses two ultrasonic generators with a total power of 0.5 kW. As a detergent use is made of a mixture of ethyl alcohol, gasoline and freon. In the process of cleaning production defects can be detected in the wire chambers which makes it possible to timely remove the defects. Measurements of the surface resistance of fiberglass laminate of printed drift chamber electrodes at a voltage of 2 kV showed that after completing the cleaning process the resistance increases 15-20%

  15. A comparison of a 'J' wire and a straight wire in successful antegrade cannulation of the superficial femoral artery

    International Nuclear Information System (INIS)

    Gay, D.A.T.; Edwards, A.J.; Puckett, M.A.; Roobottom, C.A.

    2005-01-01

    AIMS: To evaluate the success of two different types of wire in common use in their ability to successfully cannulate the superficial femoral artery (SFA) using antegrade puncture. METHODS: 50 consecutive patients in whom antegrade infra-inguinal intervention was planned, underwent common femoral arterial puncture and then cannulation with either a standard 3 mm 'J' wire or a floppy tipped straight wire (William Cook--Europe). The frequency with which each type of wire entered the SFA or profunda femoris artery without image guidance was recorded. Further analysis was also made of the success of manipulation of the wire into the SFA following profunda cannulation and the use of alternative guide wires. RESULTS: In 19 out of 25 (76%) patients the 'J' wire correctly entered the SFA without image guidance. Only 5 out of 25 (25%) of straight wires entered the SFA with the initial pass (p<0.0001). Following further manipulation with the same wire all except 1 'J' wire was successfully negotiated into the SFA. The same was true for only 9 of the remaining straight wires with 11 patients requiring an alternative guide wire. CONCLUSIONS: When performing antegrade cannulation of the SFA a 'J' wire is more likely to be successful than a straight guide wire

  16. Manchester Coding Option for SpaceWire: Providing Choices for System Level Design

    Science.gov (United States)

    Rakow, Glenn; Kisin, Alex

    2014-01-01

    This paper proposes an optional coding scheme for SpaceWire in lieu of the current Data Strobe scheme for three reasons. First reason is to provide a straightforward method for electrical isolation of the interface; secondly to provide ability to reduce the mass and bend radius of the SpaceWire cable; and thirdly to provide a means for a common physical layer over which multiple spacecraft onboard data link protocols could operate for a wide range of data rates. The intent is to accomplish these goals without significant change to existing SpaceWire design investments. The ability to optionally use Manchester coding in place of the current Data Strobe coding provides the ability to DC balanced the signal transitions unlike the SpaceWire Data Strobe coding; and therefore the ability to isolate the electrical interface without concern. Additionally, because the Manchester code has the clock and data encoded on the same signal, the number of wires of the existing SpaceWire cable could be optionally reduced by 50. This reduction could be an important consideration for many users of SpaceWire as indicated by the already existing effort underway by the SpaceWire working group to reduce the cable mass and bend radius by elimination of shields. However, reducing the signal count by half would provide even greater gains. It is proposed to restrict the data rate for the optional Manchester coding to a fixed data rate of 10 Megabits per second (Mbps) in order to make the necessary changes simple and still able to run in current radiation tolerant Field Programmable Gate Arrays (FPGAs). Even with this constraint, 10 Mbps will meet many applications where SpaceWire is used. These include command and control applications and many instruments applications with have moderate data rate. For most NASA flight implementations, SpaceWire designs are in rad-tolerant FPGAs, and the desire to preserve the heritage design investment is important for cost and risk considerations. The

  17. Josephson junctions of multiple superconducting wires

    Science.gov (United States)

    Deb, Oindrila; Sengupta, K.; Sen, Diptiman

    2018-05-01

    We study the spectrum of Andreev bound states and Josephson currents across a junction of N superconducting wires which may have s - or p -wave pairing symmetries and develop a scattering matrix based formalism which allows us to address transport across such junctions. For N ≥3 , it is well known that Berry curvature terms contribute to the Josephson currents; we chart out situations where such terms can have relatively large effects. For a system of three s -wave or three p -wave superconductors, we provide analytic expressions for the Andreev bound-state energies and study the Josephson currents in response to a constant voltage applied across one of the wires; we find that the integrated transconductance at zero temperature is quantized to integer multiples of 4 e2/h , where e is the electron charge and h =2 π ℏ is Planck's constant. For a sinusoidal current with frequency ω applied across one of the wires in the junction, we find that Shapiro plateaus appear in the time-averaged voltage across that wire for any rational fractional multiple (in contrast to only integer multiples in junctions of two wires) of 2 e /(ℏ ω ) . We also use our formalism to study junctions of two p -wave and one s -wave wires. We find that the corresponding Andreev bound-state energies depend on the spin of the Bogoliubov quasiparticles; this produces a net magnetic moment in such junctions. The time variation of these magnetic moments may be controlled by an external voltage applied across the junction. We discuss experiments which may test our theory.

  18. Simultaneous Multiple Preoperative Localizations of Small Pulmonary Lesions Using a Short Hook Wire and Suture System

    International Nuclear Information System (INIS)

    Iguchi, Toshihiro; Hiraki, Takao; Gobara, Hideo; Fujiwara, Hiroyasu; Matsui, Yusuke; Sugimoto, Seiichiro; Toyooka, Shinichi; Oto, Takahiro; Miyoshi, Shinichiro; Kanazawa, Susumu

    2015-01-01

    PurposeThe aim of the study was to retrospectively evaluate simultaneous multiple hook wire placement outcomes before video-assisted thoracoscopic surgery (VATS).Materials and MethodsThirty-eight procedures were performed on 35 patients (13 men and 22 women; mean age, 59.9 years) with 80 lung lesions (mean diameter 7.9 mm) who underwent simultaneous multiple hook wire placements for preoperative localizations. The primary endpoints were technical success, complications, procedure duration, and VATS outcome; secondary endpoints included comparisons between technical success rates, complication rates, and procedure durations of the 238 single-placement procedures performed. Complications were also evaluated.ResultsIn 35 procedures including 74 lesions, multiple hook wire placements were technically successful; in the remaining three procedures, the second target placement was aborted because of massive pneumothorax after the first placement. Although complications occurred in 34 procedures, no grade 3 or above adverse event was observed. The mean procedure duration was 36.4 ± 11.8 min. Three hook wires dislodged during patient transport to the surgical suite. Seventy-four successfully marked lesions were resected. Six lesions without hook wires were successfully resected after detection by palpation with an additional mini-thoracotomy or using subtle pleural changes as a guide. The complication rates and procedure durations of multiple-placement procedures were significantly higher (P = 0.04) and longer (P < 0.001) than those in the single-placement group, respectively, while the technical success rate was not significantly different (P = 0.051).ConclusionsSimultaneous multiple hook wire placements before VATS were clinically feasible, but increased the complication rate and lengthened the procedure time

  19. Simultaneous Multiple Preoperative Localizations of Small Pulmonary Lesions Using a Short Hook Wire and Suture System

    Energy Technology Data Exchange (ETDEWEB)

    Iguchi, Toshihiro, E-mail: iguchi@ba2.so-net.ne.jp; Hiraki, Takao, E-mail: takaoh@tc4.so-net.ne.jp; Gobara, Hideo, E-mail: gobara@cc.okayama-u.ac.jp; Fujiwara, Hiroyasu, E-mail: hirofujiwar@gmail.com; Matsui, Yusuke, E-mail: wckyh140@yahoo.co.jp [Okayama University Medical School, Department of Radiology (Japan); Sugimoto, Seiichiro, E-mail: sei1675sugi@yahoo.co.jp; Toyooka, Shinichi, E-mail: shintoyooka@gmail.com; Oto, Takahiro, E-mail: yellowpeachoto@hotmail.com; Miyoshi, Shinichiro, E-mail: smiyoshi@md.okayama-u.ac.jp [Okayama University Medical School, Department of General Thoracic Surgery (Japan); Kanazawa, Susumu, E-mail: susumu@cc.okayama-u.ac.jp [Okayama University Medical School, Department of Radiology (Japan)

    2015-08-15

    PurposeThe aim of the study was to retrospectively evaluate simultaneous multiple hook wire placement outcomes before video-assisted thoracoscopic surgery (VATS).Materials and MethodsThirty-eight procedures were performed on 35 patients (13 men and 22 women; mean age, 59.9 years) with 80 lung lesions (mean diameter 7.9 mm) who underwent simultaneous multiple hook wire placements for preoperative localizations. The primary endpoints were technical success, complications, procedure duration, and VATS outcome; secondary endpoints included comparisons between technical success rates, complication rates, and procedure durations of the 238 single-placement procedures performed. Complications were also evaluated.ResultsIn 35 procedures including 74 lesions, multiple hook wire placements were technically successful; in the remaining three procedures, the second target placement was aborted because of massive pneumothorax after the first placement. Although complications occurred in 34 procedures, no grade 3 or above adverse event was observed. The mean procedure duration was 36.4 ± 11.8 min. Three hook wires dislodged during patient transport to the surgical suite. Seventy-four successfully marked lesions were resected. Six lesions without hook wires were successfully resected after detection by palpation with an additional mini-thoracotomy or using subtle pleural changes as a guide. The complication rates and procedure durations of multiple-placement procedures were significantly higher (P = 0.04) and longer (P < 0.001) than those in the single-placement group, respectively, while the technical success rate was not significantly different (P = 0.051).ConclusionsSimultaneous multiple hook wire placements before VATS were clinically feasible, but increased the complication rate and lengthened the procedure time.

  20. X-ray reciprocal space mapping of GaAs.AIAs quantum wires and quantum dots

    NARCIS (Netherlands)

    Darhuber, A.A.; Koppensteiner, E.; Bauer, G.; Wang, P.D.; Song, Y.P.; Sotomayor Torres, C.M.; Holland, M.C.

    1995-01-01

    Periodic arrays of 150 and 175 nm-wide GaAs–AlAs quantum wires and quantum dots were investigated, fabricated by electron beam lithography, and SiCl4/O2 reactive ion etching, by means of reciprocal space mapping using triple axis x-ray diffractometry. From the x-ray data the lateral periodicity of