WorldWideScience

Sample records for wipp experimental waste

  1. Pretest characterization of WIPP experimental waste

    International Nuclear Information System (INIS)

    Johnson, J.; Davis, H.

    1991-01-01

    The Waste Isolation Pilot Plant (WIPP) near Carlsbad, New Mexico, is an underground repository designed for the storage and disposal of transuranic (TRU) wastes from US Department of Energy (DOE) facilities across the country. The Performance Assessment (PA) studies for WIPP address compliance of the repository with applicable regulations, and include full-scale experiments to be performed at the WIPP site. These experiments are the bin-scale and alcove tests to be conducted by Sandia National Laboratories (SNL). Prior to conducting these experiments, the waste to be used in these tests needs to be characterized to provide data on the initial conditions for these experiments. This characterization is referred to as the Pretest Characterization of WIPP Experimental Waste, and is also expected to provide input to other programmatic efforts related to waste characterization. The purpose of this paper is to describe the pretest waste characterization activities currently in progress for the WIPP bin-scale waste, and to discuss the program plan and specific analytical protocols being developed for this characterization. The relationship between different programs and documents related to waste characterization efforts is also highlighted in this paper

  2. Performance Demonstration Program Plan for the WIPP Experimental-Waste Characterization Program

    International Nuclear Information System (INIS)

    1991-02-01

    The Performance Demonstration Program is designed to ensure that compliance with the Quality Assurance Objective, identified in the Quality Assurance Program Plan for the WIPP Experimental-Waste Characterization Program (QAPP), is achieved. This Program Plan is intended for use by the WPO to assess the laboratory support provided for the characterization of WIPP TRU waste by the storage/generator sites. Phase 0 of the Performance Demonstration Program encompasses the analysis of headspace gas samples for inorganic and organic components. The WPO will ensure the implementation of this plan by designating an independent organization to coordinate and provide technical oversight for the program (Program Coordinator). Initial program support, regarding the technical oversight and coordination functions, shall be provided by the USEPA-ORP. This plan identifies the criteria that will be used for the evaluation of laboratory performance, the responsibilities of the Program Coordinator, and the responsibilities of the participating laboratories. 5 tabs

  3. Characterization of mixed CH-TRU waste for the WIPP Experimental Test Program conducted at ANL-W

    International Nuclear Information System (INIS)

    Dwight, C.C.; McClellan, G.C.; Guay, K.P.; Courtney, J.C.; Duff, M.J.

    1992-01-01

    Argonne National Laboratory is participating in the Department of Energy's Waste Isolation Pilot Plant (WIPP) Experimental Test Program by characterizing and repackaging mixed contact-handled transuranic waste. Characterization activities include gas sampling the waste containers, visually examining the waste contents, categorizing the contents according to their gas generation potentials, and weighing the contents. The waste is repackaged from 0.21m 3 (55 gallon) drums into instrumented steel test bins which can hold up to six drum-equivalents in volume. Eventually the loaded test bins will be shipped to WIPP where they will be evaluated during a five-year test program. Three test bins of inorganic solids (primarily glass) were prepared between March and September 1991 and are ready for shipment to WIPP. The characterization activities confirmed process knowledge of the waste and verified the nondestructive examinations; the gas sample analyses showed the target constituents to be within allowable regulatory limits. A new waste characterization chamber is being developed at ANL-W which will improve worker safety, decrease the potential for contamination spread, and increase the waste characterization throughput. The new facility is expected to begin operations by Fall 1992. A comprehensive summary of the project is contained herein

  4. Characterization of mixed CH-TRU waste for the WIPP Experimental Test Program conducted at ANL-W

    Energy Technology Data Exchange (ETDEWEB)

    Dwight, C.C.; McClellan, G.C.; Guay, K.P. [Argonne National Lab., Idaho Falls, ID (United States); Courtney, J.C. [Louisiana State Univ., Baton Rouge, LA (United States); Duff, M.J. [Consolidated Technical Services, Inc., Walkersville, MD (United States)

    1992-02-01

    Argonne National Laboratory is participating in the Department of Energy`s Waste Isolation Pilot Plant (WIPP) Experimental Test Program by characterizing and repackaging mixed contact-handled transuranic waste. Characterization activities include gas sampling the waste containers, visually examining the waste contents, categorizing the contents according to their gas generation potentials, and weighing the contents. The waste is repackaged from 0.21m{sup 3} (55 gallon) drums into instrumented steel test bins which can hold up to six drum-equivalents in volume. Eventually the loaded test bins will be shipped to WIPP where they will be evaluated during a five-year test program. Three test bins of inorganic solids (primarily glass) were prepared between March and September 1991 and are ready for shipment to WIPP. The characterization activities confirmed process knowledge of the waste and verified the nondestructive examinations; the gas sample analyses showed the target constituents to be within allowable regulatory limits. A new waste characterization chamber is being developed at ANL-W which will improve worker safety, decrease the potential for contamination spread, and increase the waste characterization throughput. The new facility is expected to begin operations by Fall 1992. A comprehensive summary of the project is contained herein.

  5. Characterization of mixed CH-TRU waste for the WIPP Experimental Test Program conducted at ANL-W

    Energy Technology Data Exchange (ETDEWEB)

    Dwight, C.C.; McClellan, G.C.; Guay, K.P. (Argonne National Lab., Idaho Falls, ID (United States)); Courtney, J.C. (Louisiana State Univ., Baton Rouge, LA (United States)); Duff, M.J. (Consolidated Technical Services, Inc., Walkersville, MD (United States))

    1992-01-01

    Argonne National Laboratory is participating in the Department of Energy's Waste Isolation Pilot Plant (WIPP) Experimental Test Program by characterizing and repackaging mixed contact-handled transuranic waste. Characterization activities include gas sampling the waste containers, visually examining the waste contents, categorizing the contents according to their gas generation potentials, and weighing the contents. The waste is repackaged from 0.21m{sup 3} (55 gallon) drums into instrumented steel test bins which can hold up to six drum-equivalents in volume. Eventually the loaded test bins will be shipped to WIPP where they will be evaluated during a five-year test program. Three test bins of inorganic solids (primarily glass) were prepared between March and September 1991 and are ready for shipment to WIPP. The characterization activities confirmed process knowledge of the waste and verified the nondestructive examinations; the gas sample analyses showed the target constituents to be within allowable regulatory limits. A new waste characterization chamber is being developed at ANL-W which will improve worker safety, decrease the potential for contamination spread, and increase the waste characterization throughput. The new facility is expected to begin operations by Fall 1992. A comprehensive summary of the project is contained herein.

  6. Basic data report for drillhole WIPP 11 (Waste Isolation Pilot Plant - WIPP)

    International Nuclear Information System (INIS)

    1982-02-01

    Seismic reflection data from petroleum industry sources showed anomalous reflectors in the Castile Formation over a small area about 3 miles north of the center of the Waste Isolation Pilot Plant (WIPP) site. Additional corroborative seismic reflection data were collected as part of WIPP investigations, and WIPP 11 was drilled to investigate the anomaly. WIPP 11 was drilled near the northwest corner of Section 9, T.22.S., R.31E. it penetrated, in descending order, sand dune deposits and the Gatuna Formation (29'), Santa Rosa Sandstone (132'), Dewey Lake Red Beds (502'), Rustler Formation (288'), Salado Formation (1379'), and most of the Castile Formation (1240'). Beds within the lower part of the Salado, and the upper anhydrite of the Castile, are thinner than normal; these beds are displaced upward structurally by the upper Castile halite which is highly thickened (about 968'). The lowest halite is thin (51') and the basal anhydrite was not completely penetrated. Subsequent seismic and borehole data has shown WIPP 11 to be in a structural complex now identified as the disturbed zone. The WIPP is a demonstration facility for the disposal of transuranic (TRU) waste from defense programs. The WIPP will also provide a research facility to investigate the interactions between bedded salt and high level waste, though there are no plans at this time to dispose of high level waste or spent fuel at WIPP

  7. Technical basis for external dosimetry at the Waste Isolation Pilot Plant (WIPP)

    International Nuclear Information System (INIS)

    Bradley, E.W.; Wu, C.F.; Goff, T.E.

    1993-01-01

    The WIPP External Dosimetry Program, administered by Westinghouse Electric Corporation, Waste Isolation Division, for the US Department of Energy (DOE), provides external dosimetry support services for operations at the Waste Isolation Pilot Plant (WIPP) Site. These operations include the receipt, experimentation with, storage, and disposal of transuranic (TRU) wastes. This document describes the technical basis for the WIPP External Radiation Dosimetry Program. The purposes of this document are to: (1) provide assurance that the WIPP External Radiation Dosimetry Program is in compliance with all regulatory requirements, (2) provide assurance that the WIPP External Radiation Dosimetry Program is derived from a sound technical base, (3) serve as a technical reference for radiation protection personnel, and (4) aid in identifying and planning for future needs. The external radiation exposure fields are those that are documented in the WIPP Final Safety Analysis Report

  8. The WIPP journey to waste receipt

    International Nuclear Information System (INIS)

    Barnes, G.J.; Whatley, M.E.

    1997-01-01

    In the early 1970s the federal government selected an area in southeastern New Mexico containing large underground salt beds as potentially suitable for radioactive waste disposal. An extensive site characterization program was initiated by the federal government. This site became the Waste Isolation Pilot Plant, better known as WIPP. It is now 1997, over two decades after the initial selection of the New Mexico site as a potential radioactive waste repository. Numerous scientific studies, construction activities, and environmental compliance documents have been completed. The US Department of Energy (DOE) has addressed all relevant issues regarding the safety of WIPP and its ability to isolate radioactive waste from the accessible environment. Throughout the last two decades up to the present time, DOE has negotiated through a political, regulatory, and legal maze with regard to WIPP. New regulations have been issued, litigation initiated, and public involvement brought to the forefront of the DOE decision-making process. All of these factors combined to bring WIPP to its present status--at the final stages of working through the licensing requirements for receipt of transuranic (TRU) waste for disposal. Throughout its history, the DOE has stayed true to Congress' mandates regarding WIPP. Steps taken have been necessary to demonstrate to Congress, the State of New Mexico, and the public in general, that the nation's first radioactive waste repository will be safe and environmentally sound. DOE's compliance demonstrations are presently under consideration by the cognizant regulatory agencies and DOE is closer than ever to waste receipt. This paper explores the DOE's journey towards implementing a permanent disposal solution for defense-related TRU waste, including major Congressional mandates and other factors that contributed to program changes regarding the WIPP project

  9. Test Plan: WIPP bin-scale CH TRU waste tests

    International Nuclear Information System (INIS)

    Molecke, M.A.

    1990-08-01

    This WIPP Bin-Scale CH TRU Waste Test program described herein will provide relevant composition and kinetic rate data on gas generation and consumption resulting from TRU waste degradation, as impacted by synergistic interactions due to multiple degradation modes, waste form preparation, long-term repository environmental effects, engineered barrier materials, and, possibly, engineered modifications to be developed. Similar data on waste-brine leachate compositions and potentially hazardous volatile organic compounds released by the wastes will also be provided. The quantitative data output from these tests and associated technical expertise are required by the WIPP Performance Assessment (PA) program studies, and for the scientific benefit of the overall WIPP project. This Test Plan describes the necessary scientific and technical aspects, justifications, and rational for successfully initiating and conducting the WIPP Bin-Scale CH TRU Waste Test program. This Test Plan is the controlling scientific design definition and overall requirements document for this WIPP in situ test, as defined by Sandia National Laboratories (SNL), scientific advisor to the US Department of Energy, WIPP Project Office (DOE/WPO). 55 refs., 16 figs., 19 tabs

  10. Basic data report for drillhole WIPP 12 (Waste Isolation Pilot Plant-WIPP)

    International Nuclear Information System (INIS)

    1982-10-01

    WIPP 12 is a borehole drilled in eastern Eddy County, New Mexico, to investigate the stratigraphy, structure and lithology in the WIPP area. WIPP 12 was drilled in section 17, T22S,R31E, between November 9 and December 7, 1978. The hole was drilled to a depth of 2785.8 ft. It encountered from top to bottom, 16.2 ft of sand, 3 ft of Mescalero Caliche and 9.6 ft of the Gatuna Formation, all of Quaternary age; 138.2 ft of the Triassic Santa Rosa Formation, 483 ft of the Dewey Lake Red Beds, 326 ft of the Rustler Formation, 1771.5 ft of the Salado Formation, and 48.3 ft of the Castile Formation, all of Permian age. Cores or cuttings were obtained for the entire hole. A suite of geophysical logs, including neutron gamma and density curves, was run to the full depth of WIPP 12. The borehole demonstrated that the elevation of the top of the Castile is about 160' above the same horizon in ERDA 9. The WIPP is a demonstration facility for the disposal of transuranic (TRU) waste from defense programs. The WIPP will also provide a research facility to investigate the interactions between bedded salt and high level wastes

  11. Basic data report for deepening of drillhole WIPP 13 (Waste Isolation Pilot Plant-WIPP)

    International Nuclear Information System (INIS)

    1982-10-01

    WIPP 13 is a borehole drilled in eastern Eddy County, New Mexico, in section 17, T22S,R31E, in order to investigate a subsurface seismic disturbed zone. The first 1035 ft of the borehole were drilled in July and August 1978. The deepening of WIPP 13 was performed in 1979 between August and October. This report documents the deepening of WIPP 13 to 3861.8 ft. Only rocks of the Permian, Salado and Castile Formations were penetrated in the deepening. Cores were obtained for some portions of the hole and cuttings were collected from some of the sections which were not cored (see Table 1). A suite of geophysical logs was run to provide information on lithology, structure and geochemistry. The WIPP is a demonstration facility for the disposal of transuranic (TRU) waste from defense programs. The WIPP will also provide a research facility to investigate the interactions between bedded salt and high level wastes

  12. Basic data report for drillhole WIPP 32 (Waste Isolation Pilot Plant - WIPP)

    International Nuclear Information System (INIS)

    1980-11-01

    WIPP 32 is an exploratory borehole drilled to examine the subsurface at a small topographic high in Nash Draw. The borehole is located in east-central Eddy County, New Mexico, in NE 1/4 SE 1/4 Sec. 33, T.22S., R.29E. and was drilled in August, 1979. The hole was drilled to a depth of 390 feet, and encountered, from top to bottom, the Rustler Formation (166') and the upper Salado Formation (224'). Core was taken from 4 to 353 feet. Geophysical logs were run the full length of the hole to measure formation properties. The WIPP is to demonstrate (through limited operations) disposal technology for transuranic defense wastes. The WIPP will also provide facilities to research interactions between high-level waste and salt

  13. WIPP [Waste Isolation Pilot Plant] test phase plan: Performance assessment

    International Nuclear Information System (INIS)

    1990-04-01

    The U.S. Department of Energy (DOE) is responsible for managing the disposition of transuranic (TRU) wastes resulting from nuclear weapons production activities of the United States. These wastes are currently stored nationwide at several of the DOE's waste generating/storage sites. The goal is to eliminate interim waste storage and achieve environmentally and institutionally acceptable permanent disposal of these TRU wastes. The Waste Isolation Pilot Plant (WIPP) in southeastern New Mexico is being considered as a disposal facility for these TRU wastes. This document describes the first of the following two major programs planned for the Test Phase of WIPP: Performance Assessment -- determination of the long-term performance of the WIPP disposal system in accordance with the requirements of the EPA Standard; and Operations Demonstration -- evaluation of the safety and effectiveness of the DOE TRU waste management system's ability to emplace design throughput quantities of TRU waste in the WIPP underground facility. 120 refs., 19 figs., 8 tabs

  14. Shipment and Disposal of Solidified Organic Waste (Waste Type IV) to the Waste Isolation Pilot Plant (WIPP)

    International Nuclear Information System (INIS)

    D'Amico, E. L; Edmiston, D. R.; O'Leary, G. A.; Rivera, M. A.; Steward, D. M.

    2006-01-01

    In April of 2005, the last shipment of transuranic (TRU) waste from the Rocky Flats Environmental Technology Site to the WIPP was completed. With the completion of this shipment, all transuranic waste generated and stored at Rocky Flats was successfully removed from the site and shipped to and disposed of at the WIPP. Some of the last waste to be shipped and disposed of at the WIPP was waste consisting of solidified organic liquids that is identified as Waste Type IV in the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC) document. Waste Type IV waste typically has a composition, and associated characteristics, that make it significantly more difficult to ship and dispose of than other Waste Types, especially with respect to gas generation. This paper provides an overview of the experience gained at Rocky Flats for management, transportation and disposal of Type IV waste at WIPP, particularly with respect to gas generation testing. (authors)

  15. Basic data report for drillhole WIPP 13 (Waste isolation pilot plant - WIPP)

    International Nuclear Information System (INIS)

    1979-10-01

    The borehole WIPP-13 was drilled in the SW 1/4 section 17, T22S, R31E of eastern Eddy County during July and August, 1978, to investigate the nature of a resistivity anomaly. The stratigraphic section was normal, consisting of 13 feet of Quaternary deposits (including artificial fill for drill pad), 53 feet of the Triassic Santa Rosa Sandstone, 451 feet of Dewey Lake Red Beds, 269 feet of the Rustler Formation and 179 feet of the upper member of the Salado Formation. Consecutive cores were taken from 570 to 595, 656 to 729, and 827 to 878 feet. Cuttings were collected at 10-foot intervals throughout the rest of the hole. Geophysical logs were run to aid in interpretation of the stratigraphy. The WIPP is to demonstrate (through limited operations) disposal technology for transuranic (TRU) defense wastes. Eventual conversion of the facility to a repository for TRU defense wastes is anticipated. The WIPP will also provide research facilities for interactions between high-level waste and salt

  16. Basic data report for drillhole WIPP 19 (Waste Isolation Pilot Plant-WIPP)

    International Nuclear Information System (INIS)

    1980-03-01

    WIPP 19 is an exploratory borehole whose objective was to determine the nature of the near-surface formations after seismic information indicated a possible fault. The borehole is located in section 20, T.22S., R.31E., in eastern Eddy County, New Mexico, and was drilled between April 6 and May 4, 1978. The hole was drilled to a depth of 1038.2 feet and encountered, from top to bottom, surficial Holocene deposits (7', including artificial fill for drill pad), the Mescalero caliche (7'), the Santa Rosa Sandstone (82'), the Dewey Lake Red Beds (494'), the Rustler Formation (315'), and the upper portion of the Salado Formation (143'). Cuttings were collected at 10-foot intervals. A suite of geophysical logs was run to measure acoustic velocities, density, and radioactivity. On the basis of comparison with other geologic sections drilled in the area, the WIPP 19 section is a normal stratigraphic sequence and it does not show structural disruption. The WIPP is to demonstrate (through limited operations) disposal technology for transuranic defense wastes. The WIPP will also provide facilities to research interactions between high-level waste and salt

  17. Basic data report for drillhole WIPP 21 (Waste Isolation Pilot Plant - WIPP)

    International Nuclear Information System (INIS)

    1980-03-01

    WIPP 21 is an exploratory borehole whose objective is to determine the nature of the near-surface formations after seismic information indicated a possible fault. The borehole is located in section 20, T.22S., R.31E., in eastern Eddy County, New Mexico, and was drilled between May 24 and 26, 1978. The hole was drilled to a depth of 1046 feet and encountered, from top to bottom, surficial Holocene deposits (6', including artificial fill for drill pad), the Mescalero caliche (6'), the Santa Rosa Sandstone (34'), the Dewey Lake Red Beds (487'), the Rustler Formation (308'), and the upper portion of the Salado Formation (178'). Cuttings were collected at 10-foot intervals. A suite of goephysical logs was run to measure acoustic velocities, density, and radioactivity. On the basis of comparison with other geologic sections drilled in the area, the WIPP 21 section is a normal stratigraphic sequence and it does not show structural disruption. The WIPP is to demonstrate (through limited operations) disposal technology for transuranic defense wastes. The WIPP will also provide facilities to research interactions between high-level waste and salt

  18. Basic data report for drillhole WIPP 18 (Waste Isolation Pilot Plant - WIPP)

    International Nuclear Information System (INIS)

    1980-03-01

    WIPP 18 is an exploratory borehole whose objective is to determine the nature of the near-surface formations after seismic information indicated a possible fault. The borehole is located in section 20, T.22S., R.31E., in eastern Eddy County, New Mexico, and was drilled between March 14 and 30, 1978. The hole was drilled to a depth of 1060 feet and encountered, from top to bottom, surficial Holocene deposits (5', including artificial fill for drill pad), the Mescalero caliche (4'), the Santa Rosa Sandstone (129'), the Dewey Lake Red Beds (475'), the Rustler Formation (315'), and the upper portion of the Salado Formation (132'). Cuttings were collected at 10-foot intervals. A suite of geophysical logs was run to measure acoustic velocities, density, and radioactivity. On the basis of comparison with other geologic sections drilled in the area, the WIPP 18 section is a normal stratigraphic sequence and it does not show structural disruption. The WIPP is to demonstrate (through limited operations) disposal technology for transuranic defense wastes. The WIPP will also provide facilities to research interactions between high-level waste and salt

  19. Basic data report for Drillhole WIPP 22 (Waste Isolation Pilot Plant, WIPP)

    International Nuclear Information System (INIS)

    1980-03-01

    WIPP 22 is an exploratory borehole whose objective is to determine the nature of the near-surface formations after seismic information indicated a possible fault. The borehole is located in section 20, T.22S., R.31E., in eastern Eddy County, New Mexico, and was drilled between March 14 and 30, 1978. The hole was drilled to a depth of 1448 feet and encountered, from top to bottom, surficial Holocene deposits (6', including artificial fill for drill pad), the Mescalero caliche (7'), the Santa Rosa Sandstone (68'), the Dewey Lake Red Beds (492'), the Rustler Formation (311'), and the upper portion of the Salado Formation (565'). Cuttings were collected at 10-foot intervals. A suite of geophysical logs was run to measure acoustic velocities, density, and radioactivity. On the basis of comparison with other geologic sections drilled in the area, the WIPP 22 section is a normal stratigraphic sequence and it does not show structural disruption. The WIPP is to demonstrate (through limited operations) disposal technology for transuranic defense wastes. The WIPP will also provide facilities to research interactions between high-level waste and salt

  20. Basic data report for drillhole WIPP 26 (Waste Isolation Pilot Plant - WIPP)

    International Nuclear Information System (INIS)

    1979-08-01

    WIPP 26 was drilled in Nash Draw (SE 1/4 NE 1/4, sec. 29, T22S, R30E) in Eddy County, New Mexico, to determine subsurface stratigraphy and examine dissolution features above undisturbed salt in the Salado Formation. Determination of dissolution rates will refine previous estimates and provide short-term (geologically) rates for WIPP risk assessments. The borehole encountered, from top to bottom, surficial deposits (10 ft with full materials for pad), Rustler Formation (299 ft), and the upper 194 ft of the Salado Formation. A dissolution residue, 11 ft thick, is at the top of the Salado Formation overlying halite-rich beds. In addition to obtaining nearly continuous core from the surface to total depth (503 ft), geophysical logs were taken to measure acoustic velocities, density, radioactivity, and formation resistivity. An interpretive report on dissolution in Nash Draw will be based on combined borehole basin data, surface mapping, and laboratory analyses of Nash Draw rocks and fluids. The WIPP is to demonstrate (through limited operations) disposal technology for transuranic defense wastes and to then be converted to a repository. The WIPP will also provide research facilities for interactions between high-level waste and salt

  1. WIPP's Hazardous Waste Facility Permit Renewal Application

    International Nuclear Information System (INIS)

    Most, W.A.; Kehrman, R.F.

    2009-01-01

    Hazardous waste permits issued by the New Mexico Environment Department (NMED) have a maximum term of 10-years from the permit's effective date. The permit condition in the Waste Isolation Pilot Plant's (WIPP) Hazardous Waste Facility Permit (HWFP) governing renewal applications, directs the Permittees to submit a permit application 180 days prior to expiration of the Permit. On October 27, 1999, the Secretary of the NMED issued to the United States Department of Energy (DOE), the owner and operator of WIPP, and to Washington TRU Solutions LLC (WTS), the Management and Operating Contractor and the cooperator of WIPP, a HWFP to manage, store, and dispose hazardous waste at WIPP. The DOE and WTS are collectively known as the Permittees. The HWFP is effective for a fixed term not to exceed ten years from the effective date of the Permit. The Permittees may renew the HWFP by submitting a new permit application at least 180 calendar days before the expiration date, of the HWFP. The Permittees are not proposing any substantial changes in the Renewal Application. First, the Permittees are seeking the authority to dispose of Contact-Handled and Remote-Handled TRU mixed waste in Panel 8. Panels 4 through 7 have been approved in the WIPP Hazardous Waste Facility Permit as it currently exists. No other change to the facility or to the manner in which hazardous waste is characterized, managed, stored, or disposed is being requested. Second, the Permittees also seek to include the Mine Ventilation Rate Monitoring Plan, as Attachment Q in the HWFP. This Plan has existed as a separate document since May 2000. The NMED has requested that the Plan be submitted as part of the Renewal Application. The Permittees have been operating to the Mine Ventilation Rate Monitoring Plan since the Plan was submitted. Third, some information submitted in the original WIPP RCRA Part B Application has been updated, such as demographic information. The Permittees will submit this information in the

  2. The integrated in situ testing program for the Waste Isolation Pilot Plant (WIPP)

    International Nuclear Information System (INIS)

    Matalucci, R.V.

    1987-03-01

    The US Department of Energy (DOE) is developing the Waste Isolation Pilot Plant (WIPP) Project in southeastern New Mexico as a research and development (R and D) facility for examining the response of bedded (layered) salt to the emplacement of radioactive wastes generated from defense programs. The WIPP Experimental Program consists of a technology development program, including laboratory testing and theoretical analysis activities, and an in situ testing program that is being done 659 m underground at the project site. This experimental program addresses three major technical areas that concern (1) thermal/structural interactions, (2) plugging and sealing, and (3) waste package performance. To ensure that the technical issues involved in these areas are investigated with appropriate emphasis and timing, an in situ testing plan was developed to integrate the many activities and tasks associated with the technical issues of waste disposal. 5 refs., 4 figs

  3. Basic data report for Drillhole WIPP 28 (Waste Isolation Pilot Plant - WIPP)

    International Nuclear Information System (INIS)

    1979-08-01

    WIPP 28 was drilled in Nash Draw (NE 1/4, sec. 18, T.21S., R.31E.) in Eddy County, New Mexico, to determine subsurface stratigraphy and examine dissolution features above undisturbed salt in the Salado Formation. Determination of dissolution rates will refine previous estimates and provide short-term (geologically) rates for WIPP risk assessments. The borehole encountered, from top to bottom, Mescalero caliche (12 ft with fill material for pad), Dewey Lake Red Beds (203 ft), Rustler Formation (316 ft), and the upper 270 ft of the Salado Formation. A dissolution residue, 58 ft thick, is at the top of the Salado Formation overlying halite-rich beds. In addition to obtaining nearly continuous core from the surface to total depth (801 ft), geophysical logs were taken to measure acoustic velocities, density, radioactivity, and formation resistivity. An interpretive report on dissolution in Nash Draw will be based on combined borehole basin data, surface mapping, and laboratory analyses of Nash Draw rocks and fluids. The WIPP is to demonstrate (through limited operations) disposal technology for transuranic defense wastes and to then be converted to a repository. The WIPP will also provide research facilities for interactions between high-level waste and salt

  4. Basic data report for drillhole WIPP 25 (Waste Isolation Pilot Plant - WIPP)

    International Nuclear Information System (INIS)

    1979-09-01

    WIPP 25 was drilled on the eastern edge of Nash Draw (SW 1/4, Sec. 15, T22S, R30E) in Eddy County, New Mexico, to determine subsurface stratigraphy and examine dissolution features above undisturbed salt in the Salado Formation. Determination of dissolution rates will refine previous estimates and provide short-term (geologically) rates for WIPP risk assessments. The borehole encountered, from top to bottom, Pleistocene sediments (17 ft with fill material for pad), Dewey Lake Red Beds (215 ft, Rustler Formation (333 ft, and 90 ft of the upper Salado Formation. A dissolution residue, 37 ft thick, is at the top of the Salado Formation overlying halite-rich beds. In addition to obtaining nearly continuous core from the surface to total depth (655 ft, geophysical logs were taken to measure acoustic velocities, density, radioactivity, and formation resistivity. An interpretive report on dissolution in Nash Draw will be based on combined borehole basin data, surface mapping, and laboratory analyses of Nash Draw rocks and fluids. The WIPP is to demonstrate (through limited operations) disposal technology for transuranic defense wastes and to then be converted to a repository. The WIPP will also provide research facilities for interactions between high-level waste and salt

  5. Quality Assurance Program Plan for the Waste Isolation Pilot Plant Experimental-Waste Characterization Program

    International Nuclear Information System (INIS)

    1991-01-01

    This Quality Assurance Program Plan (QAPP) identifies the quality of data necessary to meet the specific objectives associated with the Department of Energy (DOE) Waste Isolation Pilot Plant (WIPP) Experimental-Waste Characterization Program (the Program). This experimental-waste characterization program is only one part of the WIPP Test Phase, both in the short- and long-term, to quantify and evaluate the characteristics and behavior of transuranic (TRU) wastes in the repository environment. Other parts include the bin-scale and alcove tests, drum-scale tests, and laboratory experiments. In simplified terms, the purpose of the Program is to provide chemical, physical, and radiochemical data describing the characteristics of the wastes that will be emplaced in the WIPP, while the remaining WIPP Test Phase is directed at examining the behavior of these wastes in the repository environment. 50 refs., 35 figs., 33 tabs

  6. Resource conservation and recovery act draft hazardous waste facility permit: Waste Isolation Pilot Plant (WIPP)

    International Nuclear Information System (INIS)

    1993-08-01

    Volume I contains the following attachments for Module II: waste analysis plan; quality assurance program plan for the Waste Isolation Pilot Plant (WIPP) Experiment Waste Characterization Program(QAPP); WIPP Characterization Sampling and Analysis Guidance Manual (Plan)(SAP); and no migration Determination Requirement Summary (NMD)

  7. Leveraging Radioactive Waste Disposal at WIPP for Science

    Science.gov (United States)

    Rempe, N. T.

    2008-12-01

    Salt mines are radiologically much quieter than other underground environments because of ultra-low concentrations of natural radionuclides (U, Th, and K) in the host rock; therefore, the Waste Isolation Pilot Plant (WIPP), a government-owned, 655m deep geologic repository that disposes of radioactive waste in thick salt near Carlsbad, New Mexico, has for the last 15 years hosted highly radiation-sensitive experiments. Incidentally, Nature started her own low background experiment 250ma ago, preserving viable bacteria, cellulose, and DNA in WIPP salt. The Department of Energy continues to make areas of the WIPP underground available for experiments, freely offering its infrastructure and access to this unique environment. Even before WIPP started disposing of waste in 1999, the Room-Q alcove (25m x 10m x 4m) housed a succession of small experiments. They included development and calibration of neutral-current detectors by Los Alamos National Laboratory (LANL) for the Sudbury Neutrino Observatory, a proof-of-concept by Ohio State University of a flavor-sensitive neutrino detector for supernovae, and research by LANL on small solid- state dark matter detectors. Two currently active experiments support the search for neutrino-less double beta decay as a tool to better define the nature and mass of the neutrino. That these delicate experiments are conducted in close vicinity to, but not at all affected by, megacuries of radioactive waste reinforces the safety argument for the repository. Since 2003, the Majorana collaboration is developing and testing various detector designs inside a custom- built clean room in the Room-Q alcove. Already low natural background readings are reduced further by segmenting the germanium detectors, which spatially and temporally discriminates background radiation. The collaboration also demonstrated safe copper electro-forming underground, which minimizes cosmogenic background in detector assemblies. The largest currently used experimental

  8. WIPP: construction and progress on a successful nuclear waste repository

    International Nuclear Information System (INIS)

    Cooper, W.R.; Sankey, C.A.

    1985-01-01

    The Department of Energy is constructing the Waste Isolation Pilot Plant (WIPP) in Southeastern New Mexico. The facility will retrievably store transuranic waste from defense activities of the United States and conduct experiments with Defense high-level waste which will be retrieved at the end of the experiments. This paper describes the progress and the present status of activities at WIPP. 4 refs

  9. Geotechnical Perspectives on the Waste Isolation Pilot Plant (WIPP)

    International Nuclear Information System (INIS)

    Francke, Chris T.; Hansen, Frank D.; Knowles, M. Kathyn; Patchet, Stanley J.; Rempe, Norbert T.

    1999-01-01

    The Waste Isolation Pilot Plant (WIPP) is the first nuclear waste repository certified by the United States Environmental Protection Agency. Success in regulatory compliance resulted from an excellent natural setting for such a repository, a facility with multiple, redundant safety systems, and from a rigorous, transparent scientific and technical evaluation. The WIPP story, which has evolved over the past 25 years, has generated a library of publications and analyses. Details of the multifaceted program are contained in the cited references. Selected geotechnical highlights prove the eminent suitability of the WIPP to serve its congressionally mandated purpose

  10. Basic data report for Drillhole WIPP 14 (Waste Isolation Pilot Plant - WIPP)

    International Nuclear Information System (INIS)

    1982-08-01

    Borehole WIPP 14 is an exploratory well drilled in eastern Eddy County, New Mexico, in section 9, T22S,R31E. The borehole was drilled to a depth of 1000.0 ft measured from ground level. It penetrated, from top to bottom, 15.4 ft of Quaternary sands, 125.6 ft of the Triassic Santa Rosa Sandstone, and in the Permian strata, 497.7 ft of the Dewey Lake Red Beds, 312.9 ft of the Rustler Formation and 48.4 ft of the Upper Salado Formation. Seven hundred feet of the well were cored, at consecutive and nonconsecutive 10-ft intervals to a depth of 925.5 ft. Cuttings were collected where core was not taken. Density, gamma ray neutron and caliper logs were run the full depth of the hole. The WIPP is a demonstration facility for the disposal of transuranic (TRU) waste from defense programs. The WIPP will also provide a research facility to investigate the interactions between bedded salt and high level wastes

  11. Preliminary identification of interfaces for certification and transfer of TRU waste to WIPP

    International Nuclear Information System (INIS)

    Whitty, W.J.; Ostenak, C.A.; Pillay, K.K.S.

    1982-02-01

    This study complements the national program to certify that newly generated and stored, unclassified defense transuranic (TRU) wastes meet the Waste Isolation Pilot Plant (WIPP) Waste Acceptance Criteria. The objectives of this study were to identify (1) the existing organizational structure at each of the major waste-generating and shipping sites and (2) the necessary interfaces between the waste shippers and WIPP. The interface investigations considered existing waste management organizations at the shipping sites and the proposed WIPP organization. An effort was made to identify the potential waste-certifying authorities and the lines of communication within these organizations. The long-range goal of this effort is to develop practicable interfaces between waste shippers and WIPP to enable the continued generation, interim storage, and eventual shipment of certified TRU wastes to WIPP. Some specific needs identified in this study include: organizational responsibility for certification procedures and quality assurance (QA) program; simple QA procedures; and specification and standardization of reporting forms and procedures, waste containers, and container labeling, color coding, and code location

  12. Waste Isolation Pilot Plant (WIPP) startup plan

    International Nuclear Information System (INIS)

    1988-03-01

    To allow the Waste Isolation Pilot Plant (WIPP) to transition from a Major System Acquisition to an operating demonstration facility, the Acquisition Executive and the Energy System Acquisition Advisory Board (ESAAB) must concur in the facility's readiness to receive waste. This action, designated in DOE Order 4700.1 as Key Decision Four, concludes with the Chairman of the ESAAB issuing a Record of Decision. Since the meeting leading to the Record of Decision is scheduled for August 1988, plans must be made to ensure all activities contributing to that decision are completed in a clear and well-coordinated process. To support that effort, this Start-Up Plan was prepared to identify and track key events necessary to verify WIPP's readiness to receive waste; this provides a management/scheduling/tracking tool for the DOE WIPP Project Office (WPO) and a tracking mechanism for the DOE Albuquerque Operations Office (DOE-AL) and for DOE Headquarters (DOE-HQ); and describe the process to ensure readiness is documented by providing relevant data and reports to the cognizant decision makers. The methods by which these two purposes are achieved are discussed in further detail in the remainder of this plan

  13. Technical issues for WIPP

    International Nuclear Information System (INIS)

    Hunter, T.O.

    1979-01-01

    Emplacement of wastes in the WIPP will include experiments on various waste types which will provide essential data on waste-rock interaction and repository response. These experiments will include evolution of the synergistic effects of both heat production, radiation, and actual waste forms. While these studies will provide essential data on the validity of waste isolation in bedded salt, they will be preceded by a broad-based experimental program which will resolve many of the current technical issues providing not only an assessment of the safety of performing such experiments but also the technical basis for assurance that the appropriate experiments are performed. Data and predictive modeling techniques, which are currently available, can bound the consequences associated with these technical issues. Predictions of the impact on public safety based on these analyses indicate that safe waste disposal in WIPP salt beds is achievable; however, a major use of WIPP will be to conduct realistic experiments with HLW forms to address some of the unresolved details of these waste/salt interactions

  14. An evaluation of the proposed tests with radioactive waste at WIPP

    International Nuclear Information System (INIS)

    Chaturvedi, L.; Silva, M.

    1992-01-01

    This paper discusses the Waste Isolation Pilot Plant (WIPP) a planned repository for permanent disposal of transuranic (TRU) radiative waste that has resulted from the defense activities of the U.S. Government over the past 50 years. Only the waste that is currently stored in an easily retrievable mode at ten U.S. Department of Energy (DOE) laboratories around the country will be shipped to WIPP. The waste consists of various kinds of trash including paper, rubber, rags and metal that is contaminated with radionuclides with very long half-lives. The decision to dispose of the waste permanently will be made based on projections of the behavior of the waste and the repository of 10,000 years or more. DOE has proposed shipping a limited amount of waste to WIPP for a five year Test Phase to demonstrating compliance with the U.S. Environmental Protection Agency (EPA) Standard for long-term isolation

  15. Contamination control aspects of attaching waste drums to the WIPP Waste Characterization Chamber

    International Nuclear Information System (INIS)

    Rubick, L.M.; Burke, L.L.

    1998-01-01

    Argonne National Laboratory West (ANL-W) is verifying the characterization and repackaging of contact-handled transuranic (CH-TRU) mixed waste in support of the Waste Isolation Pilot Program (WIPP) project located in Carlsbad, New Mexico. The WIPP Waste Characterization Chamber (WCC) was designed to allow opening of transuranic waste drums for this process. The WCC became operational in March of 1994 and has characterized approximately 240 drums of transuranic waste. The waste drums are internally contaminated with high levels of transuranic radionuclides. Attaching and detaching drums to the glove box posed serious contamination control problems. Prior to characterizing waste, several drum attachment techniques and materials were evaluated. An inexpensive HEPA filter molded into the bagging material helps with venting during detachment. The current techniques and procedures used to attach and detach transuranic waste drums to the WCC are described

  16. Waste Isolation Pilot Plant (WIPP) conceptual design report. Part I: executive summary. Part II: facilities and system

    International Nuclear Information System (INIS)

    1977-06-01

    The pilot plant is developed for ERDA low-level contact-handled transuranic waste, ERDA remote-handled intermediate-level transuranic waste, and for high-level waste experiments. All wastes placed in the WIPP arrive at the site processed and packaged; no waste processing is done at the WIPP. All wastes placed into the WIPP are retrievable. The proposed site for WIPP lies 26 miles east of Carlsbad, New Mexico. This document includes the executive summary and a detailed description of the facilities and systems

  17. Assessment of allowable transuranic activity levels for WIPP wastes

    International Nuclear Information System (INIS)

    1987-12-01

    This study provides a technical evaluation for the establishment of an upper limit on the transuranic content of waste packages to be received. To accomplish this, the predicted radiological performance of WIPP is compared to the radiological performance requirements applicable to WIPP. These performance requirements include radiation protection standards for both routine facility operations and credible operational accidents. These requirements are discussed in Chapter 2.0. From the margin between predicted performance and the performance requirements, the maximum allowable transuranic content of waste packages can then be inferred. Within the resulting compliance envelope, a waste acceptance criterion can be established that delineates the allowable level of transuranic radioactivity content for contact handled (CH) and remote handled (RH) waste packages. 13 refs., 8 tabs

  18. WIPP conceptual design report. Addendum C. Cost worksheets for Waste Isolation Pilot Plant (WIPP)

    International Nuclear Information System (INIS)

    1977-04-01

    The cost worksheets for the Waste Isolation Pilot Plant (WIPP) are presented. A summary cost estimate, cost estimate for surface facilities, and cost estimate for shafts and underground facilities are included

  19. WASTE ISOLATION PILOT PLANT (WIPP): THE NATIONS' SOLUTION TO NUCLEAR WASTE STORAGE AND DISPOSAL ISSUES

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, Tammy Ann [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-07-17

    In the southeastern portion of my home state of New Mexico lies the Chihuahauan desert, where a transuranic (TRU), underground disposal site known as the Waste Isolation Pilot Plant (WIPP) occupies 16 square miles. Full operation status began in March 1999, the year I graduated from Los Alamos High School, in Los Alamos, NM, the birthplace of the atomic bomb and one of the nation’s main TRU waste generator sites. During the time of its development and until recently, I did not have a full grasp on the role Los Alamos was playing in regards to WIPP. WIPP is used to store and dispose of TRU waste that has been generated since the 1940s because of nuclear weapons research and testing operations that have occurred in Los Alamos, NM and at other sites throughout the United States (U.S.). TRU waste consists of items that are contaminated with artificial, man-made radioactive elements that have atomic numbers greater than uranium, or are trans-uranic, on the periodic table of elements and it has longevity characteristics that may be hazardous to human health and the environment. Therefore, WIPP has underground rooms that have been carved out of 2,000 square foot thick salt formations approximately 2,150 feet underground so that the TRU waste can be isolated and disposed of. WIPP has operated safely and successfully until this year, when two unrelated events occurred in February 2014. With these events, the safety precautions and measures that have been operating at WIPP for the last 15 years are being revised and improved to ensure that other such events do not occur again.

  20. Certifying the Waste Isolation Pilot Plant: Lessons Learned from the WIPP Experience

    International Nuclear Information System (INIS)

    Anderson, D.R.; Chu, Margaret S.Y.; Froehlich, Gary K.; Howard, Bryan A.; Howarth, Susan M.; Larson, Kurt W.; Pickering, Susan Y.; Swift, Peter N.

    1999-01-01

    In May 1998, the US Environmental Protection Agency (EPA) certified the US Department of Energy's (DOE) Waste Isolation Pilot Plant (WIPP) as being in compliance with applicable long-term regulations governing the permanent disposal of spent nuclear fuel, high-level, and transuranic radioactive wastes. The WIPP is the first deep geologic repository in the US to have successfully demonstrated regulatory compliance with long-term radioactive waste disposal requirements. The first disposal of TRU waste at WIPP occurred on March 26, 1999. Many of the lessons learned during the WIPP Project's transition from site characterization and experimental research to the preparation of a successful application may be of general interest to other repository programs. During a four-year period (1992 to 1996), the WIPP team [including the DOE Carlsbad Area Office (CAO), the science advisor to CAO, Sandia National Laboratories (SNL), and the management and operating contractor of the WIPP site, Westinghouse Electric Corporation (WID)] met its aggressive schedule for submitting the application without compromising the integrity of the scientific basis for the long-term safety of the repository. Strong leadership of the CAO-SNL-WID team was essential. Within SNL, a mature and robust performance assessment (PA) allowed prioritization of remaining scientific activities with respect to their impact on regulatory compliance. Early and frequent dialog with EPA staff expedited the review process after the application was submitted. Questions that faced SNL are familiar to geoscientists working in site evaluation projects. What data should be gathered during site characterization? How can we know when data are sufficient? How can we know when our understanding of the disposal system is sufficient to support our conceptual models? What constitutes adequate ''validation'' of conceptual models for processes that act over geologic time? How should we use peer review and expert judgment? Other

  1. Construction of the thermal/structural interactions in situ tests at the Waste Isolation Pilot Plant (WIPP)

    Energy Technology Data Exchange (ETDEWEB)

    Munson, D.E.; Matalucci, R.V. [Sandia National Lab., Albuquerque, NM (United States); Hoag, D.L.; Blankenship D.A. [RE/SPEC Inc., Albuquerque, NM (United States)] [and others

    1997-02-01

    The Department of Energy has constructed the Waste Isolation Pilot Plant (WIPP) to develop the technology for the disposal of radioactive waste from defense programs. Sandia National Laboratories has the responsibility for experimental activities at the WIPP and has emplaced several large-scale Thermal/Structural Interactions (TSI) in situ tests to validate techniques used to predict repository performance. The construction of the tests relied heavily on earlier excavations at the WIPP site to provide a basis for selecting excavation, surveying, and instrumentation methods, and achievable construction tolerances. The tests were constructed within close tolerances to provide consistent room dimensions and accurate placement of gages. This accuracy has contributed to the high quality of data generated which in turn has facilitated the comparison of test results to numerical predictions. The purpose of this report is to detail the construction activities of the TSI tests.

  2. Construction of the thermal/structural interactions in situ tests at the Waste Isolation Pilot Plant (WIPP)

    International Nuclear Information System (INIS)

    Munson, D.E.; Matalucci, R.V.; Hoag, D.L.; Blankenship D.A.

    1997-02-01

    The Department of Energy has constructed the Waste Isolation Pilot Plant (WIPP) to develop the technology for the disposal of radioactive waste from defense programs. Sandia National Laboratories has the responsibility for experimental activities at the WIPP and has emplaced several large-scale Thermal/Structural Interactions (TSI) in situ tests to validate techniques used to predict repository performance. The construction of the tests relied heavily on earlier excavations at the WIPP site to provide a basis for selecting excavation, surveying, and instrumentation methods, and achievable construction tolerances. The tests were constructed within close tolerances to provide consistent room dimensions and accurate placement of gages. This accuracy has contributed to the high quality of data generated which in turn has facilitated the comparison of test results to numerical predictions. The purpose of this report is to detail the construction activities of the TSI tests

  3. WIPP conceptual design report. Addendum A. Design calculations for Waste Isolation Pilot Plant (WIPP)

    International Nuclear Information System (INIS)

    1977-04-01

    The design calculations for the Waste Isolation Pilot Plant (WIPP) are presented. The following categories are discussed: general nuclear calculations; radwaste calculations; structural calculations; mechanical calculations; civil calculations; electrical calculations; TRU waste surface facility time and motion analysis; shaft sinking procedures; hoist time and motion studies; mining system analysis; mine ventilation calculations; mine structural analysis; and miscellaneous underground calculations

  4. Environmental management assessment of the Waste Isolation Pilot Plant (WIPP), Carlsbad, New Mexico

    International Nuclear Information System (INIS)

    1993-07-01

    This document contains the results of the Environmental Management Assessment of the Waste Isolation Pilot Plant (WIPP). This Assessment was conducted by EH-24 from July 19 through July 30, 1993 to advise the Secretary of Energy of the adequacy of management systems established at WIPP to ensure the protection of the environment and compliance with Federal, state, and DOE environmental requirements. The mission of WIPP is to demonstrate the safe disposal of transuranic (TRU) waste. During this assessment, activities and records were reviewed and interviews were conducted with personnel from the management and operating contractors. This assessment revealed that WIPP's environmental safety and health programs are satisfactory, and that all levels of the Waste Isolation Division (WID) management and staff consistently exhibit a high level of commitment to achieve environmental excellence

  5. History of geophysical studies at the Waste Isolation Pilot Plant (WIPP), southeastern New Mexico

    International Nuclear Information System (INIS)

    Borns, D.J.

    1997-01-01

    A variety of geophysical methods including the spectrum of seismic, electrical, electromagnetic and potential field techniques have supported characterization, monitoring and experimental studies at the Waste Isolation Pilot Plant (WIPP). The geophysical studies have provided significant understanding of the nature of site deformation, tectonics and stability. Geophysical methods have delineated possible brine reservoirs beneath the underground facility and have defined the disturbed rock zone that forms around underground excavations. The role of geophysics in the WIPP project has evolved with the project. The early uses were for site characterization to satisfy site selection criteria or factors. As the regulatory framework for WIPP grew since 1980, the geophysics program supported experimental and field programs such as Salado hydrogeology and underground room systems and excavations. In summary, the major types of issues that geophysical studies addressed for WIPP are: Site Characterization; Castile Brine Reservoirs; Rustler/Dewey Lake Hydrogeology; Salado Hydrogeology; and Excavation Effects. The nature of geophysics programs for WIPP has been to support investigation rather than being the principal investigation itself. The geophysics program has been used to define conceptual models (e.g., the Disturbed Rock Zone-DRZ) or to test conceptual models (e.g., high transmissivity zones in the Rustler Formation). The geophysics program primarily supported larger characterization and experimental programs. Funding was not available for the complete documentation and interpretation. Therefore, a great deal of the geophysics survey information resides in contractor reports

  6. Use of Performance Assessment in Support of Waste Isolation Pilot Plant (WIPP) Programmatic Activity Planning

    International Nuclear Information System (INIS)

    BASABILVAZO, GEORGE; JOW, HONG-NIAN; LARSON, KURT W.; MARIETTA, MELVIN G.

    1999-01-01

    The Waste Isolation Pilot Plant (WIPP) is being developed by the U.S. Department of Energy (DOE) for the geologic (deep underground) disposal of transuranic (TRU) waste. A Compliance Certification Application (CCA) of the WIPP for such disposal was submitted to the U.S. Environmental Protection Agency (EPA) in October 1996, and was approved by EPA in May 1998. In June 1998, two separate, but related, lawsuits were filed, one against DOE and one against EPA. On March 22, 1999, the court ruled in favor of DOE, and on March 26, 1999, DOE formally began disposal operations at the WIPP for non-mixed (non-hazardous) TRU waste. Before the WIPP can begin receiving mixed (hazardous) TRU waste, a permit from the State of New Mexico for hazardous waste disposal needs to be issued. It is anticipated that the State of New Mexico will issue a hazardous waste permit by November 1999. It is further anticipated that the EPA lawsuit will be resolved by July 1999. Congress (Public Law 102-579, Section 8(f)) requires the WIPP project to be recertified by the EPA at least as frequently as once every five years from the first receipt of TRU waste at the WIPP site. As part of the DOE's WIPP project recertification strategy, Sandia National Laboratories (SNL) has used systems analysis and performance assessment to prioritize its scientific and engineering research activities. Two 1998 analyses, the near-field systems analysis and the annual sensitivity analysis, are discussed here. Independently, the two analyses arrived at similar conclusions regarding important scientific activities associated with the WIPP. The use of these techniques for the recent funding allocations at SNL's WIPP project had several beneficial effects. It increased the level of acceptance among project scientists that management had fairly and credibly compared alternatives when making prioritization decisions. It improved the ability of SNL and its project sponsor, the Carlsbad Area Office of the DOE, to

  7. The Waste Isolation Pilot Plant (WIPP) integrated project management system

    International Nuclear Information System (INIS)

    Olona, D.; Sala, D.

    1993-01-01

    The Waste Isolation Pilot Plant (WIPP), located 26 miles east of Carlsbad, New Mexico, is a research and development project of the Department of Energy (DOE), tasked with the mission of demonstrating the safe disposal of transuranic (TRU) radioactive wastes. This unique project was authorized by Congress in 1979 in response to the national need for long-term, safe methods for disposing of radioactive by-products from our national defense programs. The WIPP was originally established in December of 1979, by Public Law 96-164, DOE National Security and Military Applications of Nuclear Energy Authorization Act of 1980. Since the inception of the WIPP Project, work has continued to prepare the facility to receive TRU wastes. Studies continue to be conducted to demonstrate the safety of the WIPP facility in accordance with federal and state laws, state agreements, environmental regulations, and DOE Orders. The objectives of implementing an integrated project management system are to assure compliance with all regulatory and federal regulations, identify areas of concern, provide justification for funding, provide a management tool for control of program workscope, and establish a project baseline from which accountability and performance will be assessed. Program management and project controls are essential for the success of the WIPP Project. The WIPP has developed an integrated project management system to establish the process for the control of the program which has an expected total dollar value of $2B over the ten-year period from 1990-2000. The implementation of this project management system was motivated by the regulatory requirements of the project, the highly public environment in which the project takes place, limited funding and resources, and the dynamic nature of the project. Specific areas to be addressed in this paper include strategic planning, project organization, planning and scheduling, fiscal planning, and project monitoring and reporting

  8. 9+ years of disposal experience at the Waste Isolation Pilot Plant (WIPP)

    International Nuclear Information System (INIS)

    Rempe, Norbert T.; Nelson, Roger A.

    2008-01-01

    With almost a decade of operating experience, the Waste Isolation Pilot Plant (WIPP) has established an enviable record by clearly demonstrating that a deep geologic repository for unconditioned radioactive waste in rock salt can be operated safely and in compliance with very complex regulations. WIPP has disposed of contact-handled transuranic (TRU) waste since 1999 and remote-handled TRU waste since 2007. Emplacement methods range from directly stacking unshielded 0.21-4.5 m 3 containers inside disposal rooms to remotely inserting highly radioactive 0.89 m 3 canisters into horizontally drilled holes (shield plugs placed in front of canisters protect workers inside active disposal rooms). More than 100 000 waste containers have been emplaced, and one-third of WIPP's authorized repository capacity of 175,000 m 3 has already been consumed. Principal surface operations are conducted in the waste handling building, which is divided into CH and RH waste handling areas. Four vertical shafts extend from the surface to the disposal horizon, 655 m below the surface in a 1000 m thick sequence of Permian bedded salt. The waste disposal area of about 0.5 km 2 is divided into ten panels, each consisting of seven rooms. Vertical closure (creep) rates in disposal rooms range up to 10 cm per year. While one panel is being filled with waste, the next one is being mined. Mined salt is raised to the surface in the salt shaft, and waste is lowered down the waste shaft. Both of these shafts also serve as principal access for personnel and materials. Underground ventilation is divided into separate flow paths, allowing simultaneous mining and disposal. A filter building near the exhaust shaft provides the capability to filter the exhaust air (in reduced ventilation mode) through HEPA filters before release to the atmosphere. WIPP operations have not exposed employees or the public to radiation doses beyond natural background variability. They consistently meet or exceed regulatory

  9. Position paper on flammability concerns associated with TRU waste destined for WIPP

    International Nuclear Information System (INIS)

    1991-04-01

    The Waste Isolation Pilot Plant (WIPP), in southeastern New Mexico,is an underground repository, designed for the safe geologic disposal of transuranic (TRU) wastes generated from defense-related activities of the US Department of Energy (DOE). The WIPP storage rooms are mined in a bedded salt (halite) formation, and are located 2150 feet below the surface. After the disposal of waste in the storage rooms, closure of the repository is expected to occur by creep (plastic flow) of the salt formation, with the waste being permanently isolated from the surrounding environment. This paper has evaluated the issue of flammability concerns associated with TRU waste to be shipped to WIPP, including a review of possible scenarios that can potentially contribute to the flammability. The paper discusses existing regulations that address potential flammability concerns, presents an analysis of previous flammability-related incidents at DOE sites with respect to the current regulations, and finally, examines the degree of assurance these regulations provide in safeguarding against flammability concerns during transportation and waste handling. 50 refs., 7 figs., 7 tabs

  10. Quality Assurance Program Plan for the Waste Isolation Pilot Plant Experimental-Waste Characterization Program

    International Nuclear Information System (INIS)

    1991-01-01

    This Quality Assurance Program Plan (QAPP) identifies the quality of data necessary to meet the specific objectives associated with the Department of Energy (DOE) Waste Isolation Pilot Plant (WIPP) Experimental-Waste Characterization Program (the Program). DOE plans to conduct experiments in the WIPP during a Test Phase of approximately 5 years. These experiments will be conducted to reduce the uncertainties associated with the prediction of several processes (e.g., gas generation) that may influence repository performance. The results of the experiments will be used to assess the ability of the WIPP to meet regulatory requirements for the long-term protection of human health and the environment from the disposal of TRU wastes. 37 refs., 25 figs., 18 tabs

  11. Modification of the ventilation system at Waste Isolation Pilot Plant (WIPP)

    International Nuclear Information System (INIS)

    Sethi, S.C.

    1987-01-01

    The WIPP (Waste Isolation Pilot Plant) Project near Carlsbad, New Mexico, is a research and development project sponsored by the US Department of Energy, designed to demonstrate the safe disposal of radioactive waste. A mine (repository) is being developed 2,150 feet below the surface in a thick salt bed, which will serve as the disposal medium. The underground ventilation system for the WIPP project was originally designed based on a fixed project scope. The design criteria and ventilation requirements were developed for the performance of various activities as then envisioned towards the achievement of this goal. However, in light of new information and actual site-specific experience at WIPP leading to a clearer definition of the scope-related programs and activities, it was realized that the existing ventilation system may need to be modified

  12. Analytical technology in support of the Waste Isolation Pilot Plant (WIPP)

    International Nuclear Information System (INIS)

    Villareal, R.

    1994-01-01

    The need for long-term disposal of defense-related transuranic (TRU) wastes became apparent as the DOE recognized the environmental consequences of maintaining waste storage facilities designed for short or interim storage periods, not long-term storage. In 1979, Congress authorized the Waste Isolation Pilot Plant (WIPP), a research and development facility and full-scale pilot plant, to demonstrate the safe management, storage, and disposal of TRU wastes. Environmental Protection Agency (EPA) regulations governing disposal of TRU wastes in 40 CFR 191 require that TRU waste disposal systems be designed to limit migration of radionuclides to the accessible environment for 10,000 years based on performance assessment results. The actinide source-term waste test program (STTP) is an experiment designed to quantitatively measure the time-dependent concentrations of plutonium, uranium, neptunium, thorium, and americium in TRU wastes immersed in brines that simulate the chemistry that may occur in WIPP disposal rooms, partially or completely contacted with brines. The total concentration of each actinide in brine is the sum of its dissolved and colloidally suspended components, as determined by variables including pcH, oxidation-reduction potential (Eh), chelating and complexing agents, sorption capacity, and colloidal suspension capabilities. To determine the effect of influencing variables on the concentration of actinides in WIPP brines, several TRU waste types will be characterized and loaded into specially designed noncorrosive test containers filled with brine containing additives to enhance the action of each influencing variable. The test container brine and headspace gases will be analyzed

  13. Retrieval of canistered experimental waste at the waste isolation pilot plant

    International Nuclear Information System (INIS)

    Stinebaugh, R.E.

    1979-07-01

    To assess the suitability of bedded salt for nuclear waste disposal, an extensive experimental program will be implemented at the Waste Isolation Pilot Plant. In order to evaluate experimental results, it will be necessary to recover certain of these experiments for postmortem examination and analysis. This document describes the equipment and procedures used to effect recovery of one category of WIPP experiments

  14. History of geophysical studies at the Waste Isolation Pilot Plant (WIPP), southeastern New Mexico

    International Nuclear Information System (INIS)

    Borns, D.J.

    1997-01-01

    A variety of geophysical methods including the spectrum of seismic, electrical, electromagnetic and potential field techniques have used support characterization, monitoring and experimental studies at the Waste Isolation Pilot Plant (WIPP). The geophysical studies have provided significant understanding of the nature of site deformation, tectonics and stability. Geophysical methods have delineated possible brine reservoirs beneath the underground facility and have defined the disturbed rock zone that forms around underground excavations. The role of geophysics in the WIPP project has evolved with the project. The early uses were for site characterization to satisfy site selection criteria or factors. As the regulatory framework for WIPP grew since 1980, the geophysics program was focused on support of experimental and field programs such as Salado hydrogeology and underground room systems and excavations. In summary, the major types of issues that geophysical studies addressed for WIPP are: Issue 1: Site Characterization; Issue 2: Castile Brine Reservoirs; Issue 3: Rustler /Dewey Lake Hydrogeology; Issue 4: Salado Hydrogeology; and Issue 5: Excavation Effects. The nature of geophysics program for WIPP has been to support investigation rather than being the principal investigation itself. The geophysics program has been used to define conceptual models (e.g., the Disturbed Rock Zone-DRZ) or to test conceptual models (e.g., high transmissivity zones in the Rustler Formation). An effect of being a support program is that as new project priorities arose the funding for the geophysics program was limited and withdrawn. An outcome is that much of the geophysics survey information resides in contractor reports since final interpretation reports were not funded

  15. WIPP Facility Work Plan for Solid Waste Management Units

    International Nuclear Information System (INIS)

    2000-01-01

    This Facility Work Plan (FWP) has been prepared as required by Module VII,Section VII.M.1 of the Waste Isolation Pilot Plant (WIPP) Hazardous Waste Permit, NM4890139088-TSDF (the Permit); (NMED, 1999a). This work plan describes the programmatic facility-wide approach to future investigations at Solid Waste Management Units (SWMUs) and Areas of Concern (AOCs) specified in the Permit. This FWP addresses the current Permit requirements. It uses the results of previous investigations performed at WIPP and expands the investigations as required by the Permit. As an alternative to the Resource Conservation and Recovery Act (RCRA) Facility Investigation (RFI) specified in Module VII of the Permit, current New Mexico Environment Department (NMED) guidance identifies an Accelerated Corrective Action Approach (ACAA) that may be used for any SWMU or AOC (NMED, 1998). This accelerated approach is used to replace the standard RFI Work Plan and Report sequence with a more flexible decision-making approach. The ACAA process allows a Facility to exit the schedule of compliance contained in the Facility's's Hazardous and Solid Waste Amendments (HSWA) permit module and proceed on an accelerated time frame. Thus, the ACAA process can be entered either before or after an RFI Work Plan. According to NMED's guidance, a facility can prepare an RFI Work Plan or Sampling and Analysis Plan (SAP) for any SWMU or AOC (NMED, 1998). Based on this guidance, a SAP constitutes an acceptable alternative to the RFI Work Plan specified in the Permit. The scope of work for the RFI Work Plan or SAP is being developed by the Permittees. The final content of the RFI Work Plan or SAP will be coordinated with the NMED for submittal on May 24, 2000. Specific project-related planning information will be included in the RFI Work Plan or SAP. The SWMU program at WIPP began in 1994 under U.S. Environmental Protection Agency (EPA) regulatory authority. NMED subsequently received regulatory authority from EPA. A

  16. WIPP Facility Work Plan for Solid Waste Management Units

    Energy Technology Data Exchange (ETDEWEB)

    Washington TRU Solutions LLC

    2000-02-25

    This Facility Work Plan (FWP) has been prepared as required by Module VII,Section VII.M.1 of the Waste Isolation Pilot Plant (WIPP) Hazardous Waste Permit, NM4890139088-TSDF (the Permit); (NMED, 1999a). This work plan describes the programmatic facility-wide approach to future investigations at Solid Waste Management Units (SWMUs) and Areas of Concern (AOCs) specified in the Permit. This FWP addresses the current Permit requirements. It uses the results of previous investigations performed at WIPP and expands the investigations as required by the Permit. As an alternative to the Resource Conservation and Recovery Act (RCRA) Facility Investigation (RFI) specified in Module VII of the Permit, current New Mexico Environment Department (NMED) guidance identifies an Accelerated Corrective Action Approach (ACAA) that may be used for any SWMU or AOC (NMED, 1998). This accelerated approach is used to replace the standard RFI Work Plan and Report sequence with a more flexible decision-making approach. The ACAA process allows a Facility to exit the schedule of compliance contained in the Facility’s Hazardous and Solid Waste Amendments (HSWA) permit module and proceed on an accelerated time frame. Thus, the ACAA process can be entered either before or after an RFI Work Plan. According to NMED’s guidance, a facility can prepare an RFI Work Plan or Sampling and Analysis Plan (SAP) for any SWMU or AOC (NMED, 1998). Based on this guidance, a SAP constitutes an acceptable alternative to the RFI Work Plan specified in the Permit. The scope of work for the RFI Work Plan or SAP is being developed by the Permittees. The final content of the RFI Work Plan or SAP will be coordinated with the NMED for submittal on May 24, 2000. Specific project-related planning information will be included in the RFI Work Plan or SAP. The SWMU program at WIPP began in 1994 under U.S. Environmental Protection Agency (EPA) regulatory authority. NMED subsequently received regulatory authority from EPA

  17. Environmental Impact Statement: Waste Isolation Pilot Plant (WIPP): Executive summary

    International Nuclear Information System (INIS)

    1980-10-01

    The purpose of this document is to provide a summary of the environmental impact statement for the Waste Isolation Pilot Plant (WIPP) project. The Draft Environmental Impact Statement for the WIPP was published by the US Department of Energy (DOE) in April 1979. This document was reviewed and commented on by members of the general public, private organizations, and governmental agencies. The Final Environmental Impact Statement was subsequently published in October, 1980. This summary is designed to assist decision-maker and interested individuals in reviewing the material presented in the environmental impact statement for the WIPP project. To make this material widely available, this summary is published in both Spanish and English. Additional, more detailed information concerning the environmental and safety consequences of the WIPP project is available in the Final Environmental Impact Statement. Written comments and public hearing comments on the Draft Environmental Impact Statement are available for review. 27 refs., 4 figs., 7 tabs

  18. Geomechanical applications for the Waste Isolation Pilot Plant (WIPP) project

    International Nuclear Information System (INIS)

    Matalucci, R.V.; Hunter, T.O.

    1981-01-01

    The Waste Isolation Pilot Plant (WIPP) is a research and development facility in bedded salt addressing the technical issues associated with the demonstration of disposal of radioactive waste from the defense programs of the USA. The geomechanical program includes laboratory experimentation, constitutive model and computer code development, and in-situ experimentation. Various material models, including creep for salt, and techniques for predicting room response under thermal and mechanical loads have been developed and are being applied to experiment and facility designs. A Benchmark II study has been conducted to compare the capabilities of nine structural codes to predict response of underground configuration under ambient temperature and with a thermal load of 7.5 W/m 2 . Parametric studies are being conducted to evaluate optimum room configurations. A series of in situ experiments is the next step towards validating models and predictive techniques. These experiments will be conducted in a facility in southeastern New Mexico mined at a depth of 659 m

  19. Experimental program plan for the Waste Isolation Pilot Plant

    Energy Technology Data Exchange (ETDEWEB)

    1994-01-01

    The US Department of Energy has prepared this Experimental Program Plan for the Waste Isolation Pilot Plant (EPP) to provide a summary of the DOE experimental efforts needed for the performance assessment process for the WIPP, and of the linkages of this process to the appropriate regulations. The Plan encompasses a program of analyses of the performance of the planned repository based on scientific studies, including tests with transuranic waste at laboratory sites, directed at evaluating compliance with the principal regulations governing the WIPP. The Plan begins with background information on the WIPP project, the requirements of the LWA (Land Withdrawal Act), and its objective and scope. It then presents an overview of the regulatory requirements and the compliance approach. Next are comprehensive discussions of plans for compliance with disposal regulations, followed by the SWDA (Solid Waste Disposal Act) and descriptions of activity programs designed to provide information needed for determining compliance. Descriptions and justifications of all currently planned studies designed to support regulatory compliance activities are also included.

  20. Experimental program plan for the Waste Isolation Pilot Plant

    International Nuclear Information System (INIS)

    1994-01-01

    The US Department of Energy has prepared this Experimental Program Plan for the Waste Isolation Pilot Plant (EPP) to provide a summary of the DOE experimental efforts needed for the performance assessment process for the WIPP, and of the linkages of this process to the appropriate regulations. The Plan encompasses a program of analyses of the performance of the planned repository based on scientific studies, including tests with transuranic waste at laboratory sites, directed at evaluating compliance with the principal regulations governing the WIPP. The Plan begins with background information on the WIPP project, the requirements of the LWA (Land Withdrawal Act), and its objective and scope. It then presents an overview of the regulatory requirements and the compliance approach. Next are comprehensive discussions of plans for compliance with disposal regulations, followed by the SWDA (Solid Waste Disposal Act) and descriptions of activity programs designed to provide information needed for determining compliance. Descriptions and justifications of all currently planned studies designed to support regulatory compliance activities are also included

  1. Waste Isolation Pilot Plant in situ experimental program for HLW

    International Nuclear Information System (INIS)

    Molecke, M.A.

    1977-01-01

    The Waste Isolation Pilot Plant (WIPP) will be a facility to demonstrate the environmental and operational safety of storing radioactive wastes in a deep geologic bedded salt facility. The WIPP will be located in southeastern New Mexico, approximately 30 miles east of the city of Carlsbad. The major focus of the pilot plant operation involves ERDA defense related low and intermediate-level transuranic wastes. The scope of the project also specifically includes experimentation utilizing commercially generated high-level wastes, or alternatively, spent unreprocessed fuel elements. WIPP HLW experiments are being conducted in an inter-related laboratory, bench-scale, and in situ mode. This presentation focuses on the planned in situ experiments which, depending on the availability of commercially reprocessed waste plus delays in the construction schedule of the WIPP, will begin in approximately 1985. Such experiments are necessary to validate preceding laboratory results and to provide actual, total conditions of geologic storage which cannot be adequately simulated. One set of planned experiments involves emplacing bare HLW fragments into direct contact with the bedded salt environment. A second set utilizes full-size canisters of waste emplaced in the salt in the same manner as planned for a future HLW repository. The bare waste experiments will study in an accelerated manner waste-salt bed-brine interactions including matrix integrity/degradation, brine leaching, system chemistry, and potential radionuclide migration through the salt bed. Utilization of full-size canisters of HLW in situ permits us to demonstrate operational effectiveness and safety. Experiments will evaluate corrosion and compatibility interactions between the waste matrix, canister and overpack materials, getter materials, stored energy, waste buoyancy, etc. Using full size canisters also allows us to demonstrate engineered retrievability of wastes, if necessary, at the end of experimentation

  2. Actinide chemistry research supporting the Waste Isolation Pilot Plant (WIPP): FY94 results

    Energy Technology Data Exchange (ETDEWEB)

    Novak, C.F. [ed.

    1995-08-01

    This document contains six reports on actinide chemistry research supporting the Waste Isolation Pilot Plant (WIPP). These reports, completed in FY94, are relevant to the estimation of the potential dissolved actinide concentrations in WIPP brines under repository breach scenarios. Estimates of potential dissolved actinide concentrations are necessary for WIPP performance assessment calculations. The specific topics covered within this document are: the complexation of oxalate with Th(IV) and U(VI); the stability of Pu(VI) in one WIPP-specific brine environment both with and without carbonate present; the solubility of Nd(III) in a WIPP Salado brine surrogate as a function of hydrogen ion concentration; the steady-state dissolved plutonium concentrations in a synthetic WIPP Culebra brine surrogate; the development of a model for Nd(III) solubility and speciation in dilute to concentrated sodium carbonate and sodium bicarbonate solutions; and the development of a model for Np(V) solubility and speciation in dilute to concentrated sodium Perchlorate, sodium carbonate, and sodium chloride media.

  3. Actinide chemistry research supporting the Waste Isolation Pilot Plant (WIPP): FY94 results

    International Nuclear Information System (INIS)

    Novak, C.F.

    1995-08-01

    This document contains six reports on actinide chemistry research supporting the Waste Isolation Pilot Plant (WIPP). These reports, completed in FY94, are relevant to the estimation of the potential dissolved actinide concentrations in WIPP brines under repository breach scenarios. Estimates of potential dissolved actinide concentrations are necessary for WIPP performance assessment calculations. The specific topics covered within this document are: the complexation of oxalate with Th(IV) and U(VI); the stability of Pu(VI) in one WIPP-specific brine environment both with and without carbonate present; the solubility of Nd(III) in a WIPP Salado brine surrogate as a function of hydrogen ion concentration; the steady-state dissolved plutonium concentrations in a synthetic WIPP Culebra brine surrogate; the development of a model for Nd(III) solubility and speciation in dilute to concentrated sodium carbonate and sodium bicarbonate solutions; and the development of a model for Np(V) solubility and speciation in dilute to concentrated sodium Perchlorate, sodium carbonate, and sodium chloride media

  4. WIPP Waste Characterization: Implementing Regulatory Requirements in the Real World

    International Nuclear Information System (INIS)

    Cooper Wayman, J.D.; Goldstein, J.D.

    1999-01-01

    It is imperative to ensure compliance of the Waste Isolation Pilot Project (WIPP) with applicable statutory and regulatory requirements. In particular, compliance with the waste characterization requirements of the Resource Conservation and Recovery Act (RCRA) and its implementing regulation found at 40 CFR Parts 262,264 and 265 for hazardous and mixed wastes, as well as those of the Atomic Energy Act of 1954, as amended, the Reorganization Plan No. 3 of 1970, the Nuclear Waste Policy Act of 1982, as amended, and the WIPP Land Withdrawal Act, as amended, and their implementing regulations found at 40 CFR Parts 191 and 194 for non-mixed radioactive wastes, are often difficult to ensure at the operational level. For example, where a regulation may limit a waste to a certain concentration, this concentration may be difficult to measure. For example, does the definition of transuranic waste (TRU) as 100 nCi/grain of alpha-emitting transuranic isotopes per gram of waste mean that the radioassay of a waste must show a reading of 100 plus the sampling and measurement error for the waste to be a TRU waste? Although the use of acceptable knowledge to characterize waste is authorized by statute, regulation and DOE Orders, its implementation is similarly beset with difficulty. When is a document or documents sufficient to constitute acceptable knowledge? What standard can be used to determine if knowledge is acceptable for waste characterization purposes? The inherent conflict between waste characterization regulatory requirements and their implementation in the real world, and the resolution of this conflict, will be discussed

  5. Project Management Plan for the Idaho National Engineering Laboratory Waste Isolation Pilot Plant Experimental Test Program

    International Nuclear Information System (INIS)

    Connolly, M.J.; Sayer, D.L.

    1993-11-01

    EG ampersand G Idaho, Inc. and Argonne National Laboratory-West (ANL-W) are participating in the Idaho National Engineering Laboratory's (INEL's) Waste Isolation Pilot Plant (WIPP) Experimental Test Program (WETP). The purpose of the INEL WET is to provide chemical, physical, and radiochemical data on transuranic (TRU) waste to be stored at WIPP. The waste characterization data collected will be used to support the WIPP Performance Assessment (PA), development of the disposal No-Migration Variance Petition (NMVP), and to support the WIPP disposal decision. The PA is an analysis required by the Code of Federal Regulations (CFR), Title 40, Part 191 (40 CFR 191), which identifies the processes and events that may affect the disposal system (WIPP) and examines the effects of those processes and events on the performance of WIPP. A NMVP is required for the WIPP by 40 CFR 268 in order to dispose of land disposal restriction (LDR) mixed TRU waste in WIPP. It is anticipated that the detailed Resource Conservation and Recovery Act (RCRA) waste characterization data of all INEL retrievably-stored TRU waste to be stored in WIPP will be required for the NMVP. Waste characterization requirements for PA and RCRA may not necessarily be identical. Waste characterization requirements for the PA will be defined by Sandia National Laboratories. The requirements for RCRA are defined in 40 CFR 268, WIPP RCRA Part B Application Waste Analysis Plan (WAP), and WIPP Waste Characterization Program Plan (WWCP). This Project Management Plan (PMP) addresses only the characterization of the contact handled (CH) TRU waste at the INEL. This document will address all work in which EG ampersand G Idaho is responsible concerning the INEL WETP. Even though EG ampersand G Idaho has no responsibility for the work that ANL-W is performing, EG ampersand G Idaho will keep a current status and provide a project coordination effort with ANL-W to ensure that the INEL, as a whole, is effectively and

  6. Successes and Experiences of the WIPP Project

    International Nuclear Information System (INIS)

    Chu, Margaret S.Y.; Weart, Wendell D.

    2000-01-01

    In May 1998, the US Environmental Agency (EPA) certified the US Department of Energy's (DOE) Waste Isolation Pilot Plant (WIPP) as being in compliance with all of the applicable regulations governing the permanent disposal of spent nuclear fuel, high-level waste, and transuranic radioactive waste. The WIPP, a transuranic waste repository, is the first deep geologic repository in the US to have successfully demonstrated regulatory compliance with long-term radioactive waste disposal regulations and be certified to receive wastes. Many lessons were learned throughout the 25-year history of the WIPP--from site selection to the ultimate successful certification. The experiences and lessons learned from the WIPP may be of general interest to other repository programs in the world. The lessons learned include all facets of a repository program: programmatic, managerial, regulatory, technical, and social. This paper addresses critical issues that arose during the 25 years of WIPP history and how they influenced the program

  7. An HVAC [heating, ventilation, and air-conditioning] fault-tree analysis for WIPP [Waste Isolation Pilot Plant] integrated risk assessment

    International Nuclear Information System (INIS)

    Kirby, P.N.; Iacovino, J.M.

    1990-01-01

    In order to evaluate the public health risk of potential radioactive releases from operation of the Waste Isolation Pilot Plant (WIPP), a probabilistic risk assessment of waste-handling operations was conducted. One major aspect of this risk assessment involved fault-tree analysis of the plant heating, ventilation, and air-conditioning (HVAC) systems, which constitute the final barrier between waste-handling operations and the environment. The WIPP site is designed to receive and store two types of waste: contact-handled transuranic (CH TRU) wastes to be shipped in 208-ell drums and remote-handled (RH) TRU wastes to be shipped in shielded casks. The identification of accident sequences for CH waste operations revealed no identified accidents that could release significant radioactive particulates to the environment without a failure in the HVAC systems. When the HVAC fault-tree results were combined with other critical system fault trees and the analysis of waste-handling accident sequences, the approximation of the overall WIPP plant risk due to airborne releases was determined to be 2.6 x 10 -7 fatalities per year for the population within a 50-mile radius of the WIPP site. This risk was demonstrated to be well below the risk of fatality from other voluntary and involuntary activities for the population within the vicinity of the WIPP

  8. Strategy for investigation of fluid migration in evaporites (Waste Isolation Pilot Plant - WIPP)

    International Nuclear Information System (INIS)

    Lambert, S.J.; Shefelbine, H.C.

    1980-03-01

    The proposed strategy for WIPP project investigations of fluid migration in evaporites focuses upon a quantitative evaluation of each of several processes. Potential short- and long-term problems arising from fluid migration are complication of waste retrieval and mobilization of waste nuclides. The strategy will attempt to determine the degree to which these potentials are realized with respect to five hypothetical types of waste-rock interactions: movement of waste containers, migration of nuclides, formation of radioactive brine pocket, radiolytic generation of gas, and degradation of waste container. Of eight identified processes whose combinations could lead to the five types of interactions, only five are to be quantitatively investigated by the studies of fluid migration per se: presence of fluids, fluid mobilization toward heat-producing and contact-handled waste, encounter of fluids with influence of waste form, reversal of direction of fluid mobilization, and entrainment of nuclides in fluids. Methods of investigation entail an iterative combination of laboratory experimentation and mathematical modeling

  9. Expert (Peer) Reviews at the Waste Isolation Pilot Plant (WIPP): Making Complex Information and Decision Making Transparent

    International Nuclear Information System (INIS)

    Eriksson, Leif G.

    2001-01-01

    On the 18th of May 1998, based on the information provided by the United Sates Department of Energy (DOE) in support of the 1996 Waste Isolation Pilot Plant (WIPP) Compliance Certification Application, the U.S. Environmental Protection Agency certified the proposed deep geological repository for disposal of long-lived, defense-generated, transuranic radioactive waste at the WIPP site in New Mexico, United States of America, was compliant with all applicable radioactive waste disposal regulations. Seven domestic and one joint international peer reviews commissioned by the DOE were instrumental in making complex scientific and engineering information, as well as the related WIPP decision-making process, both credible and transparent to the majority of affected and interested parties and, ultimately, to the regulator

  10. Expert (Peer) Reviews at the Waste Isolation Pilot Plant (WIPP): Making Complex Information and Decision Making Transparent

    Energy Technology Data Exchange (ETDEWEB)

    Eriksson, Leif G. [GRAM, Inc., Albuquerque, NM (United States)

    2001-07-01

    On the 18th of May 1998, based on the information provided by the United Sates Department of Energy (DOE) in support of the 1996 Waste Isolation Pilot Plant (WIPP) Compliance Certification Application, the U.S. Environmental Protection Agency certified the proposed deep geological repository for disposal of long-lived, defense-generated, transuranic radioactive waste at the WIPP site in New Mexico, United States of America, was compliant with all applicable radioactive waste disposal regulations. Seven domestic and one joint international peer reviews commissioned by the DOE were instrumental in making complex scientific and engineering information, as well as the related WIPP decision-making process, both credible and transparent to the majority of affected and interested parties and, ultimately, to the regulator.

  11. Resource Conservation and Recovery Act Part B permit application [for the Waste Isolation Pilot Plant (WIPP)

    International Nuclear Information System (INIS)

    1993-01-01

    This volume contains Appendix D2, engineering design basis reports. Contents include: Design considerations for the waste hoist of the Waste Isolation Pilot Plant (WIPP); A site-specific study of wind and tornado probabilities at the WIPP Site in southeast New Mexico; Seismic evaluation report of underground facilities; and calculations for analysis of wind loads and tornado loads for WHB, seismic calculations, calculations for VOC-10 monitoring system, and for shaft at station A

  12. EVALUATION OF RISKS AND WASTE CHARACTERIZATION REQUIREMENTS FOR THE TRANSURANIC WASTE EMPLACED IN WIPP DURING 1999

    International Nuclear Information System (INIS)

    Channell, J.K.; Walker, B.A.

    2000-01-01

    Specifically this report: 1. Compares requirements of the WAP that are pertinent from a technical viewpoint with the WIPP pre-Permit waste characterization program, 2. Presents the results of a risk analysis of the currently emplaced wastes. Expected and bounding risks from routine operations and possible accidents are evaluated; and 3. Provides conclusions and recommendations

  13. The development of the Waste Isolation Pilot Plant (WIPP) project's public affairs program

    International Nuclear Information System (INIS)

    Walter, L.H.

    1988-01-01

    The Waste Isolation Pilot Plant (WIPP) offers a perspective on the value of designing flexibility into a public affairs program to enable it to grow with and complement a project's evolution from construction through to operations. This paper discusses how the WIPP public affairs program progressed through several stages to its present scope. During the WIPP construction phase, the public affairs program laid a foundation for Project acceptance in the community. A speaker's bureau, a visitors program, and various community outreach and support programs emphasized the educational and socioeconomic benefits of having this controversial project in Carlsbad. Then, in this past year as the project entered a preoperational status, the public affairs program emphasis shifted to broaden the positive image that had been created locally. In this stage, the program promoted the project's positive elements with the various state agencies, government officials, and federal organizations involved in our country's radioactive waste management and transportation program. Currently, an even broader, more aggressive public affairs program is planned. During this stage public affairs will be engaged in a comprehensive institutional and outreach program, explaining and supporting WIPP's mission in each of the communities and agencies affected by the operation of the country's first geologic repository

  14. WIPP R and D in situ test program

    International Nuclear Information System (INIS)

    Tyler, L.D.

    1987-01-01

    The Waste Isolation Pilot Plant (WIPP) is a Department of Energy (DOE) RandD Facility for the purpose of developing the technology needed for the safe disposal of the United States' defense-related radioactive waste. The in situ test program focus is to provide the models and data to demonstrate the facility performance for isolation of waste at WIPP. The program is defined for the WIPP sealing system, thermal-structural interactions and waste package performance. A number of integrated large-scale underground tests have been operational since 1983 and are ongoing. The tests address the issues of both systems design and long-term isolation performance of the WIPP repository

  15. Resource Conservation and Recovery Act, Part B Permit Application [for the Waste Isolation Pilot Plant (WIPP)]. Chapter E, Appendix E1, Chapter L, Appendix L1: Volume 12, Revision 3

    Energy Technology Data Exchange (ETDEWEB)

    1993-01-01

    The Waste Isolation Pilot Plant (WIPP) Project was authorized by the US Department of Energy 5 (DOE) National Security and Military Applications of the Nuclear Energy Authorization Act of 1980 (Public Law 96-164). Its legislative mandate is to provide a research and development facility to demonstrate the safe disposal of radioactive waste resulting from national defense programs and activities. To fulfill this mandate, the WIPP facility has been designed to perform scientific investigations of the behavior of bedded salt as a repository medium and the interactions between the soft and radioactive wastes. In 1991, DOE proposed to initiate a experimental Test Phase designed to demonstrate the performance of the repository. The Test Phase activities involve experiments using transuranic (TRU) waste typical of the waste planned for future disposal at the WIPP facility. Much of this TRU waste is co-contaminated with chemical constituents which are defined as hazardous under HWMR-7, Pt. II, sec. 261. This waste is TRU mixed waste and is the subject of this application. Because geologic repositories, such as the WIPP facility, are defined under the Resource Conservation and Recovery Act (RCRA) as land disposal facilities, the groundwater monitoring requirements of HWMR-7, PLV, Subpart X, must be addressed. HWMR-7, Pt. V, Subpart X, must be addressed. This appendix demonstrates that groundwater monitoring is not needed in order to demonstrate compliance with the performance standards; therefore, HWMR-7, Pt.V, Subpart F, will not apply to the WIPP facility.

  16. WIPP 2004 Site Environmental Report

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2005-09-30

    The mission of Waste Isolation Pilot Plant (WIPP) is to safely and permanently dispose of transuranic (TRU) radioactive waste generated by the production of nuclear weapons and other activities related to the national defense of the United States (U.S.). In 2004, 8,839 cubic meters (m3) of TRU waste were emplaced at WIPP. From the first receipt of waste in March 1999 through the end of 2004, 25,809 m3 of TRU waste had been emplaced at WIPP. The U.S. Department of Energy (DOE) Carlsbad Field Office (CBFO) and Washington TRU Solutions LLC (WTS) are dedicated to maintaining high quality management of WIPP environmental resources. DOE Order 450.1, Environmental Protection Program; DOE Order 231.1A, Environment, Safety, and Health Reporting; and DOE Order 5400.5, Radiation Protection of the Public and Environment, require that the environment at and near DOE facilities be monitored to ensure the safety and health of the public and the environment. This Waste Isolation Pilot Plant 2004 Site Environmental Report (SER) summarizes environmental data from 2004 that characterize environmental management performance and demonstrate compliance with applicable federal and state regulations. This report was prepared in accordance with DOE Order 231.1A, and Guidance for the Preparation of DOE Annual Site Environmental Reports (ASERs) for Calendar Year 2004 (DOE, 2005). The order and the guidance require that DOE facilities submit an annual SER to the DOE Headquarters Office of the Assistant Secretary for Environment, Safety, and Health. The WIPP Hazardous Waste Facility Permit (HWFP) further requires that the SER be provided to the New Mexico Environment Department (NMED).

  17. WIPP 2004 Site Environmental Report

    International Nuclear Information System (INIS)

    2005-01-01

    The mission of Waste Isolation Pilot Plant (WIPP) is to safely and permanently dispose of transuranic (TRU) radioactive waste generated by the production of nuclear weapons and other activities related to the national defense of the United States (U.S.). In 2004, 8,839 cubic meters (m3) of TRU waste were emplaced at WIPP. From the first receipt of waste in March 1999 through the end of 2004, 25,809 m3 of TRU waste had been emplaced at WIPP. The U.S. Department of Energy (DOE) Carlsbad Field Office (CBFO) and Washington TRU Solutions LLC (WTS) are dedicated to maintaining high quality management of WIPP environmental resources. DOE Order 450.1, Environmental Protection Program; DOE Order 231.1A, Environment, Safety, and Health Reporting; and DOE Order 5400.5, Radiation Protection of the Public and Environment, require that the environment at and near DOE facilities be monitored to ensure the safety and health of the public and the environment. This Waste Isolation Pilot Plant 2004 Site Environmental Report (SER) summarizes environmental data from 2004 that characterize environmental management performance and demonstrate compliance with applicable federal and state regulations. This report was prepared in accordance with DOE Order 231.1A, and Guidance for the Preparation of DOE Annual Site Environmental Reports (ASERs) for Calendar Year 2004 (DOE, 2005). The order and the guidance require that DOE facilities submit an annual SER to the DOE Headquarters Office of the Assistant Secretary for Environment, Safety, and Health. The WIPP Hazardous Waste Facility Permit (HWFP) further requires that the SER be provided to the New Mexico Environment Department (NMED).

  18. Champion for radioactive waste disposal host of the WIPP: Carlsbad, New Mexico

    International Nuclear Information System (INIS)

    Rempe, N.T.

    1995-01-01

    The city of Carlsbad, New Mexico, volunteered to host the United States' first final repository for radioactive waste. Carlsbad citizens and their leaders understood that after decades of accumulating waste, the time had come to close the nuclear cycle. They therefore agreed to support the Waste Isolation Pilot Plant (WIPP), provided the project would not endanger its neighbors or the environment. The southeastern New Mexico area offers several advantages for deep geologic waste disposal: The regional geology is well understood. Massive salt beds are an excellent repository medium. Decades of potash mining experience inspired confidence in that concept. In underground nuclear test in the salt had caused no harm. And the city was seeking opportunities to diversify its economic base. Through the growth of the project, beginning in 1971, Carlsbad has demonstrated unwavering commitment, patience, and persistence. Without these attitudes, the WIPP would certainly not be where it is today and most likely would not exist at all. Civic leaders made the critical difference as the project weathered repeated challenges. With the support of their constituents, they foiled anti-nuclear obstructionism and advanced the project at every turn, frequently on their own time and at their own expense. The WIPP is now scheduled to start disposal in 1998, after a ten-year delay from its originally intended opening date. If it still has a realistic chance to start operations before the end of the century, the credit must in no small measure go to the city and the citizens of Carlsbad, New Mexico

  19. NMT-7 plan for producing certifiable TRU debris waste for WIPP

    International Nuclear Information System (INIS)

    Montoya, A.J.

    1997-12-01

    Analysis of waste characterization data for debris items generated during a recent six month period indicates that the certifiability of TRUPACT II payload containers packaged at the Los Alamos National Laboratory Plutonium Facility (TA-55) can be increased from approximately 52% of solid waste payload containers to 78% by applying the simple strategies of screening out high decay heat items and sorting remaining items to maintain nuclear material loading at levels below WIPP waste acceptance limits. Implementation of these strategies will have negative impacts on waste minimization and waste management operations that must also be considered

  20. Summary of research and development activities in support of waste acceptance criteria for WIPP

    International Nuclear Information System (INIS)

    Hunter, T.O.

    1979-11-01

    The development of waste acceptance criteria for the Waste Isolation Pilot Plant (WIPP) is summarized. Specifications for acceptable waste forms are included. Nine program areas are discussed. They are: TRU characterization, HLW interactions, thermal/structural interactions, nuclide migration, permeability, brine migration, borehole plugging, operation/design support, and instrumentation development. Recommendations are included

  1. The WIPP RCRA Part B permit application for TRU mixed waste disposal

    International Nuclear Information System (INIS)

    Johnson, J.E.

    1995-01-01

    In August 1993, the New Mexico Environment Department (NMED) issued a draft permit for the Waste Isolation Pilot Plant (WIPP) to begin experiments with transuranic (TRU) mixed waste. Subsequently, the Department of Energy (DOE) decided to cancel the on-site test program, opting instead for laboratory testing. The Secretary of the NMED withdrew the draft permit in 1994, ordering the State's Hazardous and Radioactive Waste Bureau to work with the DOE on submittal of a revised permit application. Revision 5 of the WIPP's Resource Conservation and Recovery Act (RCRA) Part B Permit Application was submitted to the NMED in May 1995, focusing on disposal of 175,600 m 3 of TRU mixed waste over a 25 year span plus ten years for closure. A key portion of the application, the Waste Analysis Plan, shifted from requirements to characterize a relatively small volume of TRU mixed waste for on-site experiments, to describing a complete program that would apply to all DOE TRU waste generating facilities and meet the appropriate RCRA regulations. Waste characterization will be conducted on a waste stream basis, fitting into three broad categories: (1) homogeneous solids, (2) soil/gravel, and (3) debris wastes. Techniques used include radiography, visually examining waste from opened containers, radioassay, headspace gas sampling, physical sampling and analysis of homogeneous wastes, and review of documented acceptable knowledge. Acceptable knowledge of the original organics and metals used, and the operations that generated these waste streams is sufficient in most cases to determine if the waste has toxicity characteristics, hazardous constituents, polychlorinated biphenyls (PBCs), or RCRA regulated metals

  2. Nuclear waste repository transparency technology test bed demonstrations at WIPP

    International Nuclear Information System (INIS)

    Betsill J, David; Elkins, Ned Z.; Wu, Chuan-Fu; Mewhinney, James D.; Aamodt, Paul

    2000-01-01

    Secretary of Energy, Bill Richardson, has stated that one of the nuclear waste legacy issues is ''The challenge of managing the fuel cycle's back end and assuring the safe use of nuclear power.'' Waste management (i.e., the back end) is a domestic and international issue that must be addressed. A key tool in gaining acceptance of nuclear waste repository technologies is transparency. Transparency provides information to outside parties for independent assessment of safety, security, and legitimate use of materials. Transparency is a combination of technologies and processes that apply to all elements of the development, operation, and closure of a repository system. A test bed for nuclear repository transparency technologies has been proposed to develop a broad-based set of concepts and strategies for transparency monitoring of nuclear materials at the back end of the fuel/weapons cycle. WIPP is the world's first complete geologic repository system for nuclear materials at the back end of the cycle. While it is understood that WIPP does not currently require this type of transparency, this repository has been proposed as realistic demonstration site to generate and test ideas, methods, and technologies about what transparency may entail at the back end of the nuclear materials cycle, and which could be applicable to other international repository developments. An integrated set of transparency demonstrations was developed and deployed during the summer, and fall of 1999 as a proof-of-concept of the repository transparency technology concept. These demonstrations also provided valuable experience and insight into the implementation of future transparency technology development and application. These demonstrations included: Container Monitoring Rocky Flats to WIPP; Underground Container Monitoring; Real-Time Radiation and Environmental Monitoring; Integrated level of confidence in the system and information provided. As the world's only operating deep geologic

  3. Instrumentation of the thermal/structural interactions in situ tests at the Waste Isolation Pilot Plant (WIPP)

    Energy Technology Data Exchange (ETDEWEB)

    Munson, D.E. [Sandia National Labs., Albuquerque, NM (United States). Repository Isolation Systems Div.; Hoag, D.L.; Blankenship, D.A.; DeYonge, W.F.; Schiermeister, D.M. [RE/SPEC, Inc., Albuquerque, NM (United States); Jones, R.L.; Baird, G.T. [Tech Reps, Inc., Albuquerque, NM (United States)

    1997-04-01

    The Department of Energy has constructed the Waste Isolation Pilot Plant (WIPP) to develop the technology for the disposal of radioactive waste from defense programs. Sandia National Laboratories had the responsibility for the experimental activities at the WIPP and fielded several large-scale Thermal/Structural Interactions (TSI) in situ tests to validate techniques used to predict repository performance. The instrumentation of these tests involved the placement of over 4,200 gages including room closure gages, borehole extensometers, stress gages, borehole inclinometers, fixed reference gages, borehole strain gages, thermocouples, thermal flux meters, heater power gages, environmental gages, and ventilation gages. Most of the gages were remotely read instruments that were monitored by an automated data acquisition system, but manually read instruments were also used to provide early deformation information and to provide a redundancy of measurement for the remote gages. Instruments were selected that could operate in the harsh environment of the test rooms and that could accommodate the ranges of test room responses predicted by pretest calculations. Instruments were tested in the field prior to installation at the WIPP site and were modified to improve their performance. Other modifications were made to gages as the TSI tests progressed using knowledge gained from test maintenance. Quality assurance procedures were developed for all aspects of instrumentation including calibration, installation, and maintenance. The instrumentation performed exceptionally well and has produced a large quantity of quality information.

  4. Instrumentation of the thermal/structural interactions in situ tests at the Waste Isolation Pilot Plant (WIPP)

    International Nuclear Information System (INIS)

    Munson, D.E.; Jones, R.L.; Baird, G.T.

    1997-04-01

    The Department of Energy has constructed the Waste Isolation Pilot Plant (WIPP) to develop the technology for the disposal of radioactive waste from defense programs. Sandia National Laboratories had the responsibility for the experimental activities at the WIPP and fielded several large-scale Thermal/Structural Interactions (TSI) in situ tests to validate techniques used to predict repository performance. The instrumentation of these tests involved the placement of over 4,200 gages including room closure gages, borehole extensometers, stress gages, borehole inclinometers, fixed reference gages, borehole strain gages, thermocouples, thermal flux meters, heater power gages, environmental gages, and ventilation gages. Most of the gages were remotely read instruments that were monitored by an automated data acquisition system, but manually read instruments were also used to provide early deformation information and to provide a redundancy of measurement for the remote gages. Instruments were selected that could operate in the harsh environment of the test rooms and that could accommodate the ranges of test room responses predicted by pretest calculations. Instruments were tested in the field prior to installation at the WIPP site and were modified to improve their performance. Other modifications were made to gages as the TSI tests progressed using knowledge gained from test maintenance. Quality assurance procedures were developed for all aspects of instrumentation including calibration, installation, and maintenance. The instrumentation performed exceptionally well and has produced a large quantity of quality information

  5. WIPP and the local communities

    International Nuclear Information System (INIS)

    Krenz, D.L.; Sankey, C.A.

    1986-01-01

    The Waste Isolation Pilot Plant (WIPP) is located 26 miles southeast of Carlsbad, New Mexico in southeastern New Mexico. Other neighboring communities include Lovington, Hobbs and Loving, New Mexico. In March 1983, the Site and Preliminary Design Validation (SPDV) phase of the project was completed. Full scale facility construction began in July of that year. Overall site construction is scheduled to be complete in December 1986. Construction completion will be followed by pre-operational and safety check-out in 1987, prior to receiving the first nuclear waste which is targeted for receipt on or after October 1988. WIPP has had a significant impact on the local communities. Many local people have been hired by the Department of Energy (DOE), Westinghouse Electric, and U.S. Army Corps of Engineers contractors, as well as associated sub-contractors. As of December 31, 1985, 64% of the 643 people working at WIPP were hired from an 80-mile or less radius of the WIPP site. The majority of local residents support WIPP. As declining potash and mining industries negatively impacted the economic condition of Southeastern New Mexico, WIPP brought jobs and new business opportunities to the area

  6. WIPP: why are we waiting?

    International Nuclear Information System (INIS)

    Barker, K.

    1991-01-01

    Rooms cut into salt almost half a mile below the state of New Mexico could become the United States' first underground repository for defence generated transuranic waste. The Department of Energy (DoE) was hoping to ship the first waste to the Waste Isolation Pilot Plant (WIPP) this August, but the $800 million project has faced bureaucratic delays and a definite date has yet to be set. The state of New Mexico established the Environmental Evaluation Group (EEG) to perform an independent technical evaluation of the project with respect to potential radiation exposure for people or environmental degradation in the area around the WIPP site. The Waste Isolation Pilot Plant has two objectives: to perform scientific investigations into the behaviour of salt rock and its interactions with transuranic and mixed waste under a variety of conditions; and to demonstrate that transuranic waste can be safely handled, transported and stored in a geologic repository. The EEG is unhappy about proposed in-repository tests to assess the long term performance of WIPP. (author)

  7. WIPP operations planning: an overview

    International Nuclear Information System (INIS)

    Miskimin, P.A.; Cossel, S.C.; Plung, D.L.

    1985-01-01

    The Waste Isolation Pilot Plant (WIPP) is the first-of-a-kind facility for emplacement of radioactive waste in a geologic repository. The concern for safe and efficient operations - coupled with the domestic and international significance of this project - necessitates that WIPP be a ''model plant.'' To develop WIPP as a model plant, a unique planning methodology was employed to identify, evaluate, incorporate, and implement these elements that together will form the best possible overall operation. The resulting improvements in communication among project participants and the smooth transition being made from construction are equally attributable to the methodology employed and the operating program plan developed. 1 fig

  8. WIPP conceptual design report. Addendum G. Accident analysis for Waste Isolation Pilot Plant

    International Nuclear Information System (INIS)

    Shefelbine, H.C.; Metcalf, J.H.

    1977-06-01

    The types of accidents or risks pertinent to the Waste Isolation Pilot Plant (WIPP) are presented. Design features addressing these risks are discussed. Also discussed are design features that protect the public

  9. Key Past and Present Hydrologic Issues at the Waste Isolation Pilot Plant (WIPP)

    International Nuclear Information System (INIS)

    Lappin, Allen R.; McKenna, Sean A.; Davies, Peter B.

    2000-01-01

    In May 1998, the U.S; Environmental Protection Agency (EPA) certified the U.S. Department of Energy's (DOE) Waste Isolation Pilot Plant (WIPP) to be in compliance with applicable portions of regulations governing the permanent disposal of radioactive wastes. The step was accomplished after 24 years of effort by Sandia National Laboratories, extending from initial site selection, through extensive site characterization and under-ground experimentalization to evaluation and demonstration of regulatory compliance. The strong focus on regulatory compliance extended over approximately five years, culminating in DOE's submittal of a Compliance Certification Application (CCA) in October, 1996. Specific lessons learned from the WIPP'S transition from site characterization/experimental research to a successful regulatory compliance application may be of general interest to participants in other repository problems. In summary, the three examples considered in this paper indicate that: It is critical that site-characterization and performance-assessment (PA) activities in a repository project advance through multiple iterative interactions. This is because there are parallel paths of evolution-within a projecy On one hand, there is a natural development in the conceptual understanding of the site and repository geology, hydrology, and geochemistry over time, as well as a normal increase in the roles of regulatory/safety issues relative to technical issues. On the other hand there is ongoing evolution in numerical-modeling, experimental, and PA techniques, as well as in understanding of the insights gained from these activities. However, even if conceptual models do not change, the modeling and documentation techniques and detailed logic supporting these models will change; as additional relevant information is collected within or outside the project. Some issues related to general site-characterization or site-suitability will remain of interest, even after initial

  10. Analysis of Waste Isolation Pilot Plan (WIPP) Underground and MGO Samples by the Savannah River National Laboratory (SRNL)

    Energy Technology Data Exchange (ETDEWEB)

    Young, J. [Savannah River Site (SRS), Aiken, SC (United States); Ajo, H. [Savannah River Site (SRS), Aiken, SC (United States); Brown, L. [Savannah River Site (SRS), Aiken, SC (United States); Coleman, C. [Savannah River Site (SRS), Aiken, SC (United States); Crump, S. [Savannah River Site (SRS), Aiken, SC (United States); Diprete, C. [Savannah River Site (SRS), Aiken, SC (United States); Diprete, D. [Savannah River Site (SRS), Aiken, SC (United States); Ekechukwu, A. [Savannah River Site (SRS), Aiken, SC (United States); Gregory, C. [Savannah River Site (SRS), Aiken, SC (United States); Jones, M. [Savannah River Site (SRS), Aiken, SC (United States); Missimer, D. [Savannah River Site (SRS), Aiken, SC (United States); O' Rourke, P. [Savannah River Site (SRS), Aiken, SC (United States); White, T. [Savannah River Site (SRS), Aiken, SC (United States)

    2014-12-31

    Analysis of the recent WIPP samples are summarized in this report; WIPP Cam Filters 4, 6, 9 (3, 7, 11 were analyzed with FAS-118 in a separate campaign); WIPP Drum Lip R16 C4; WIPP Standard Waste Box R15 C5; WIPP MgO R16 C2; WIPP MgO R16 C4; WIPP MgO R16 C6; LANL swipes of parent drum; LANL parent drum debris; LANL parent drum; IAEA Swipe; Unused “undeployed” Swheat; Unused “undeployed” MgO; and Masselin cloth “smears”. Analysis showed that the MgO samples were very pure with low carbonate and water content. Other samples showed the expected dominant presence of Mg, Na and Pb. Parent drum debris sample was mildly acidic. Interpretation of results is not provided in this document, but rather to present and preserve the analytical work that was performed. The WIPP Technical Analysis Team is responsible for result interpretation which will be written separately.

  11. Summary report for the WIPP [Waste Isolation Pilot Plant] technology development program for isolation of radioactive waste

    International Nuclear Information System (INIS)

    Tyler, L.D.; Matalucci, R.V.; Molecke, M.A.; Munson, D.E.; Nowak, E.J.; Stormont, J.C.

    1988-04-01

    The technology experiments have been managed in three broad categories: Thermal/Structural Interactions (TSI), Plugging and Sealing Performance and Design (PandS), and Waste Package Performance (WPP). The history and major progress in each of these areas is summarized in this report. The TSI program has established the fact that the WIPP salt creep rate, and therefore closure of WIPP rooms, is about three times more rapid than our best models predicted prior to the tests. Studies to resolve this discrepancy are well advanced; in the interim, good agreement between predicitions and observation is obtained by empirical adjustment of the elastic constants. The closure of backfilled waste room to about five percent void volume is predicted to take less than 100 years, the time during which active controls may be assumed to prevent human intrusion. The waste package program has revealed that migration of interstitial brine to excavations in the WIPP salt occurs at a significantly greater rate than assumed by earlier investigations. A satisfactory model to explain the data utilizes darcy flow in very low permeability salt which is driven by a pore pressure gradient caused when the excavation creates an atmospheric pressure boundary. This model, coupled with room closure predictions and backfill design using a salt/bentonite clay mixture, indicates that the rate of brine seepage will not result in a fluid or slurry state in the room, but rather in a compacted solid. 373 refs., 20 figs., 9 tabs

  12. WIPP conceptual design report. Addendum M. Computer system and data processing requirements for Waste Isolation Pilot Plant (WIPP)

    International Nuclear Information System (INIS)

    Young, R.

    1977-06-01

    Data-processing requirements for the Waste Isolation Pilot Plant (WIPP) dictate a computing system that can provide a wide spectrum of data-processing needs on a 24-hour-day basis over an indeterminate time. A computer system is defined as a computer or computers complete with all peripheral equipment and extensive software and communications capabilities, including an operating system, compilers, assemblers, loaders, etc., all applicable to real-world problems. The computing system must be extremely reliable and easily expandable in both hardware and software to provide for future capabilities with a minimum impact on the existing applications software and operating system. The computer manufacturer or WIPP operating contractor must provide continuous on-site computer maintenance (maintain an adequate inventory of spare components and parts to guarantee a minimum mean-time-to-repair of any portion of the computer system). The computer operating system or monitor must process a wide mix of application programs and languages, yet be readily changeable to obtain maximum computer usage. The WIPP computing system must handle three general types of data processing requirements: batch, interactive, and real-time. These are discussed. Data bases, data collection systems, scientific and business systems, building and facilities, remote terminals and locations, and cables are also discussed

  13. Status and Growth of Underground Science at WIPP

    Science.gov (United States)

    Rempe, Norbert T.

    2008-10-01

    The science community is increasingly taking advantage of research opportunities in the government-owned Waste Isolation Pilot Plant (WIPP), 655m underground near Carlsbad, NM. Discoveries so far include viable bacteria, cellulose, and DNA in 250 million-year old salt, preserved in an ultra-low background-radiation setting. Supplementing the overburden's shielding against cosmic radiation, terrestrial background from the host formation is less than five percent that of average crustal rock. In the past, WIPP accommodated development and testing of neutral current detectors for the Sudbury Neutrino Observatory and dark matter research, and it currently hosts two experiments pursuing neutrino-less double-beta decay. That scientists can listen to whispers from the universe in proximity to megacuries of radioactive waste lends, of course, credibility to the argument that WIPP itself is very safe. Almost a century of regional petroleum and potash extraction history and more than three decades of WIPP studies have generated a comprehensive body of knowledge on geology, mining technology, rock mechanics, geochemistry, and other disciplines relevant to underground science. Existing infrastructure is being used and can be expanded to fit experimental needs. WIPP's exemplary safety and regulatory compliance culture, low excavating and operating cost, and the high probability of the repository operating at least another 40 years make its available underground space attractive for future research and development. Recent proposals include low-photon energy counting to study internal dose received decades ago, investigations into ultra-low radiation dose response in cell cultures and laboratory animals (e.g., hormesis vs. linear no-threshold) and detectors for dark matter, solar and supernova neutrinos, and proton decay. Additional proposals compatible with WIPP's primary mission are welcome.

  14. Politics and technology in repository siting: military versus commercial nuclear wastes at WIPP 1972-1985

    International Nuclear Information System (INIS)

    Downey, G.L.

    1985-01-01

    During the 1970s, attempts by the federal government to develop a comprehensive system for disposing of nuclear wastes in geologic repositories were plagued by two related political problems; (1) whether or not military and commercial wastes should be buried together in the same repository, and (2) how to define the host state's role in the repository siting mechanism. This article explains why these two problems were connected by showing how they proved to be of decisive importance in the development of the Waste Isolation Pilot Plant (WIPP) project in Carlsbad, New Mexico. Although WIPP was initially conceived as a wholly military facility, The Department of Energy triggered a three-year dispute over the project's scope by proposing in 1978 to include commercial wastes in the repository. The key issue in the dispute concerned the political legitimacy of decision-making mechanisms for repository siting, which depend upon the extent to which they both adequately represent the interests of affected groups and meet an indistinct technical/political criterion of acceptable safety. DOE's ill-fated proposal to mix military and commercial disposal at WIPP demonstrated that the two rely on somewhat different conditions for their legitimacy. The agency overlapped the legitimate authorities of the federal and state governments and gave itself the hopeless task of negotiating a new boundary between them. 50 references, 3 figures

  15. WIPP fire hazards and risk analysis

    International Nuclear Information System (INIS)

    1991-05-01

    The purpose of this analysis was to conduct a fire hazards risk analysis of the Transuranic (TRU) contact-handled waste receipt, emplacement, and disposal activities at the Waste Isolation Pilot Plant (WIPP). The technical bases and safety envelope for these operations are defined in the approved WIPP Final Safety Analysis Report (FSAR). Although the safety documentation for the initial phase of the Test Program, the dry bin scale tests, has not yet been approved by the Department of Energy (DOE), reviews of the draft to date, including those by the Advisory Committee on Nuclear Facility Safety (ACNFS), have concluded that the dry bin scale tests present no significant risks in excess of those estimated in the approved WIPP FSAR. It is the opinion of the authors and reviewers of this analysis, based on sound engineering judgment and knowledge of the WIPP operations, that a Fire Hazards and Risk Analysis specific to the dry bin scale test program is not warranted prior to first waste receipt. This conclusion is further supported by the risk analysis presented in this document which demonstrates the level of risk to WIPP operations posed by fire to be extremely low. 15 refs., 41 figs., 48 tabs

  16. WIPP Status and Plans - 2013 - 13379

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, R.A.; Franco, J. [U.S. Department of Energy, PO Box 3090, Carlsbad, NM 88220 (United States)

    2013-07-01

    An up-to-date look at the many aspects of America's only deep geologic long-lived radioactive waste repository is presented in this paper. WIPP's mission includes coordination of all Department of Energy (DOE) sites to prepare, package and characterize defense transuranic waste for final shipment and emplacement in WIPP. The Waste Isolation Pilot Plant (WIPP) is completing its 14. year of operations. Five of the ten planned disposal panels have been filled and sealed from ventilation, with about half of the legislated volume capacity consumed. About 11,000 shipments have been made successfully, traveling more than 40 million kilometers across the nation's highways. A fleet of new Type B shipping packages, the TRUPACT-III, has been added to the transportation capability, with an ongoing campaign to de-inventory large waste items from the Savannah River Site, while minimizing size reduction and repackaging. A new shipping and emplacement method for remote handled waste in shielded containers has been approved for disposal, and will significantly improve operational efficiency. Remote handled waste packaged in these shielded containers will be shipped, handled and emplaced as contact handled waste. Also described is a new criticality control over-pack container, which will improve efficiency when shipping high fissile-content waste streams consisting of Special Nuclear Material declared as waste from nuclear weapons sites. The paper describes the importance of the infrastructure at WIPP to ensure disposal site availability for defense transuranic waste sites across the weapons complex. With the facility reaching its original design lifetime, there are many infrastructure maintenance and improvements being planned and performed. (authors)

  17. Potential problems from shipment of high-curie content contact-handled transuranic (CH-TRU) waste to WIPP

    International Nuclear Information System (INIS)

    Neill, R.H.; Channell, J.K.

    1983-08-01

    There are about 1000 drums of contact-handled transuranic (CH-TRU) wastes containing more than 100 Ci/drum of Pu-238 that are stored at the Savannah River Plant and at the Los Alamos National Laboratory. Studies performed at DOE laboratories have shown that large quantities of gases are generated in stored drums containing 100 Ci of 238 Pu. Concentrations of hydrogen gas in the void space of the drums are often found to be high enough to be explosive. None of the analyses in the DOE WIPP Final Environmental Impact Statement, Safety Analysis Report, and Preliminary Transportation Analysis have considered the possibility that the generation of hydrogen gas by radiolysis may create an explosive or flammable hazard that could increase the frequency and severity of accidental releases of radionuclides during transportation or handling. These high 238 Pu concentration containers would also increase the estimated doses received by individuals and populations from transportation, WIPP site operations, and human intrusion scenarios even if the possibility of gas-enhanced releases is ignored. The WIPP Project Office has evaluated this effect on WIPP site operations and is suggesting a maximum limit of 140 239 Pu equivalent curies (P-Ci) per drum so that postulated accidental off-site doses will not be larger than those listed in the FEIS. The TRUPACT container, which is being designed for the transportation of CH-TRU wastes to WIPP, does not appear to meet the Nuclear Regulatory Commission regulations requiring double containment for the transportation of plutonium in quantities >20 Ci. A 20 alpha Ci/shipment limit would require about 200,000 shipments for the 4 million curies of alpha emitters slated for WIPP

  18. Achieving WIPP certification for software. A white paper

    International Nuclear Information System (INIS)

    Matthews, S.D.; Adams, K.; Twitchell, K.E.

    1998-07-01

    The NMT-1 and NMT-3 organizations within the Chemical and Metallurgical Research (CMR) facility at the Los Alamos National Laboratory (LANL) is working to achieve Waste Isolation Pilot Plant (WIPP) certification to enable them to transport their TRU waste to WIPP. In particular, the NMT-1 management is requesting support from the Idaho National Engineering and Environmental Laboratory (INEEL) to assist them in making the Laboratory Information Management System (LIMS) software WIPP certifiable. Thus, LIMS must be compliant with the recognized software quality assurance (SQA) requirements stated within the QAPD. Since the Idaho National Engineering and Environmental Laboratory (INEEL) has achieved WIPP certification, INEEL personnel can provide valuable assistance to LANL by sharing lessons learned and recommendations. Thus, this white paper delineates the particular software quality assurance requirements required for WIPP certification

  19. On the road to WIPP: Or remote packaging of transuranic waste

    International Nuclear Information System (INIS)

    Ledbetter, J.M.; Field, L.R.

    1994-01-01

    At the Los Alamos National Laboratory (LANL) Hot Cell facility, highly productive programs in reactor research spanning three decades have generated appreciable quantities of legacy waste. Hot cell capability had become virtually useless due to the storage of this waste. As a result of concentrated efforts by LANL staff, in cooperation with Westinghouse Waste Isolation Pilot Plant (WIPP), a solution was arrived at that allowed the facility to become productive once again. Equipment has been designed and fabricated to remotely handle 55-gal. waste drums, load waste canisters, perform canister weld closure, leak test welds, grapple the waste canister and transport the canister to an interim storage site. It is our contention that the technology and acquired equipment produced from this effort should be used to further benefit other DOE sites

  20. The WIPP transportation system: Demonstrated readiness

    International Nuclear Information System (INIS)

    Ward, T.R.; Spooner, R.

    1991-01-01

    The Department of Energy (DOE) has developed an integrated transportation system to transport transuranic (TRU) waste from ten widely-dispersed generator sites to the Waste Isolation Pilot Plant (WIPP). The system consists of a Type B container, a specially- designed trailer, a lightweight tractor, the DOE ''TRANSCOM'' vehicle tracking system, and uniquely qualified and highly-trained drivers. In June of 1989, the National Academy of Sciences reviewed the transportation system and concluded that: ''The system proposed for transportation of TRU waste to WIPP is safer than that employed for any other hazardous material in the United States today and will reduce risk to very low levels'' (emphasis added). The next challenge facing the DOE was demonstrating that this system was ready to transport the TRU waste to the WIPP site efficiently and in the safest manner possible. Not only did the DOE feel that is was necessary to convince itself that the system was safe, but also representatives of the 20 states through which it would travel

  1. The WIPP transportation system: Demonstrated readiness

    International Nuclear Information System (INIS)

    Ward, T.R.; Spooner, R.

    1991-01-01

    The Department of Energy (DOE) has developed an integrated transportation system to transport transuranic (TRU) waste from ten widely-dispersed generator sites to the Waste Isolation Pilot Plant (WIPP). The system consists of a Type B container, a specially-designed trailer, a lightweight tractor, the DOE ''TRANSCOM'' vehicle tracing system, and uniquely qualified and highly-trained drivers. In June of 1989, the National Academy of Sciences reviewed the transportation system and concluded that: ''The system proposed for transportation of TRU waste to WIPP is safer than that employed for any other hazardous material in the United States today and will reduce risk to very low levels.'' The next challenge facing the DOE was demonstrating that this system was ready to transport the TRU waste to the WIPP site in the safest manner possible. Not only did the DOE feel that it was necessary to convince itself that the system was safe, but also representatives of the 23 states through which it traveled

  2. Grouts and concretes for the Waste Isolation Pilot Project (WIPP)

    International Nuclear Information System (INIS)

    Wakeley, L.D.

    1990-01-01

    The Structures Laboratory of the U.S. Army Engineer Waterways Experiment Station has conducted research on cement-based composites for the Waste Isolation Pilot Project (WIPP) since 1977, in cooperation with Sandia National Laboratories. Field testing requirements guided initial development of grouts. Concurrent and later laboratory studies explored the chemical stability and probable durability of these mixtures. Beginning in 1985, a series of small-scale seal performance tests at the WIPP prompted development of an expansive salt-saturated concrete. Important lessons learned from this ongoing work include: (1) carefully tailored mixtures can tolerate phase changes involving Ca, Al, and SO 4 , without loss of structural integrity; (2) handling and placement properties are probably more crucial to the mixtures than is exact phase composition; and (3) for the environment of a geologic repository, demonstrated chemical durability will be the best indicator of long-term performance

  3. Science to compliance: The WIPP success story

    International Nuclear Information System (INIS)

    Howarth, S.M.; Chu, M.S.; Shephard, L.E.

    1997-01-01

    The Waste Isolation Pilot Plant (WIPP) in southeast New Mexico has been studied as a transuranic waste repository for the past 23 years. During this time, an extensive site characterization, design, construction, and experimental program was completed to provide in-depth understanding of the dominant processes that are most likely to influence the containment of radionuclides for 10,000 years. The success of the program, however, is defined by the regulator in the context of compliance with performance criteria, rather than by the in-depth technical understanding typical of most scientific programs. The WIPP project was successful in making a transformation from science to compliance by refocusing and redirecting programmatic efforts toward the singular goal of meeting regulatory compliance requirements while accelerating the submittal of the Compliance Certification Application (CCA) by two months from the April 1994 Disposal Decision Plan (DDP) date of December 1996, and by reducing projected characterization costs by more than 40%. This experience is unparalleled within the radioactive waste management community and has contributed to numerous lessons learned from which the entire community can benefit

  4. Systems analysis, long-term radionuclide transport, and dose assessments, Waste Isolation Pilot Plant (WIPP), southeastern New Mexico, September 1989

    International Nuclear Information System (INIS)

    Lappin, A.R.; Hunter, R.L.; Davies, P.B.; Borns, D.J.; Reeves, M.; Pickens, J.; Iuzzolino, H.J.

    1990-12-01

    This study supports the Waste Isolation Pilot Plant (WIPP) Final Supplemental Environmental Impact Statement and has two main objectives. First, it describes current ideas about the characteristics and potential impacts of the disturbed-rock zone (DRZ) known to develop with time around excavations at the WIPP horizon. Second, it presents new calculations of radionuclide migration within and from the WIPP repository for steady-state undisturbed conditions and for two cases that consider human intrusion into the repository. At the WIPP, the presence of a DRZ has been confirmed by geophysical studies, gas-flow tests, and direct observations. The DRZ will allow gas or brine from waste-emplacement panels to bypass panel seals and flow into adjacent portions of the underground workings unless preventive measures are taken. Revised calculations of the undisturbed performance of the repository indicate that no radionuclides will be released into the Culebra Dolomite within the regulatory period of 10,000 years. The human-intrusion calculations included here assume a connection between the WIPP repository, an occurrence of pressurized brine within the underlying Castile Formation, and the overlying Culebra Dolomite. 61 refs., 40 figs., 16 tabs

  5. Salt impact studies at WIPP effects of surface storage of salt on microbial activity

    International Nuclear Information System (INIS)

    Rodriguez, A.L.

    1988-01-01

    The Waste Isolation Pilot Plant (WIPP) currently under construction in southeastern New Mexico is a research and development facility to demonstrate the safe disposal of transuranic waste in a deep geological formation (bedded salt). The Ecological Monitoring Program at WIPP is designed to detect and measure changes in the local ecosystem which may be the result of WIPP construction activities. The primary factor which may affect the system prior to waste emplacement is windblown salt from discrete stockpiles. Both vegetation and soil microbial processes should reflect changes in soil chemistry due to salt importation. Control and experimental (potentially affected) plots have been established at the site, and several parameters are measured quarterly in each plot as part of the soil microbial sampling subprogram. This subprogram was designed to monitor a portion of the biological community which can be affected by changes in the chemical properties at the soil surface

  6. WIPP: Lessons learned for state/DOE consultation and cooperation

    International Nuclear Information System (INIS)

    Neill, R.H.

    1986-01-01

    WIPP is intended to be a repository for permanent disposal of 6,200,000 cu ft of transuranic waste generated from the nation's defense programs. The waste is not fixed, up to 1% can be respirable and it is stored in conventional 17-C Type A Carbon steel drums with a design life of 20 years. (Storage began in 1970). The waste form is not fused in an insoluble glass matrix and there is no commitment by DOE for getters. The question arises of the need and desirability to perform experiments with high level wastes at WIPP. The original purpose in the Oct 1980 WIPP FIES stated ''...the experiments are not so much concerned with the WIPP itself, as they are with planning future high level waste repositories. They are to answer technical questions about the disposal of high level waste in bedded salt and to provide a valid demonstration of the concepts involved.'' The purpose of this paper is to provide information for RH TRU disposal and to generate scientific knowledge that may be helpful to others and not to demonstrate high level waste disposal

  7. WIPP performance assessment: impacts of human intrusion

    International Nuclear Information System (INIS)

    Anderson, D.R.; Hunter, R.L.; Bertram-Howery, S.G.; Lappin, A.R.

    1989-01-01

    The Waste Isolation Pilot Plant (WIPP) in southeastern New Mexico is a research and development facility that may become the USA's first and only mined geologic repository for transuranic waste. Human intrusion into the WIPP repository after closure has been shown by preliminary sensitivity analyses and calculations of consequences to be an important, and perhaps the most important, factor in long-term repository performance

  8. MIIT: International in-situ testing of nuclear waste glasses-performance of SRS simulated waste glass after 5 years of burial at the waste isolation pilot plant (WIPP)

    International Nuclear Information System (INIS)

    Wicks, G.G.; Lodding, A.R.; Macedo, P.B.; Clark, D.E.

    1993-01-01

    In July of 1986, the first in-situ test involving burial of simulated high-level waste [HLW] forms conducted in the United States was started. This program, called the Materials Interface Interactions Test or MIIT, comprises the largest, most cooperative field-testing venture in the international waste management community. Included in the study are over 900 waste form samples comprising 15 different systems supplied by seven nations. Also included are about 300 potential canister or overpack metal samples along with more than 500 geologic and backfill specimens. There are almost 2000 relevant interactions that characterize this effort which has been conducted in the bedded salt site at the Waste Isolation Pilot Plant (WIPP), near Carlsbad, New Mexico. The MIIT program represents a joint effort managed by the Savannah River Technology Center (SRTC) in Aiken, S.C., and Sandia National Laboratories (SNL) in Albuquerque, N.M.. and sponsored by the US Department of Energy. Involved in MIIT are participants from national and federal laboratories, universities, and representatives from laboratories in France, Germany, Canada, Belgium, Japan, Sweden, the United Kingdom, and the United States. In July of 1991, the experimental portion of the 5-year MIIT study was completed on schedule. During this time interval, many in-situ measurements were performed, thousands of brine analyses conducted, and hundreds of waste glass and package components exhumed and evaluated after 6 mo., 1 yr., 2 yr. and 5 yr. burial periods. Although analyses are still in progress, the performance of SRS waste glass based on all data currently available has been seen to be excellent thus far. Initial analyses and assessment of Savannah River (SR) waste glass after burial in WIPP at 90 degrees C for 5 years is presented

  9. Disposal of TRU Waste from the PFP in pipe overpack containers to WIPP Including New Security Requirements

    International Nuclear Information System (INIS)

    HOPKINS, A.M.

    2003-01-01

    The Department of Energy is responsible for the safe management and cleanup of the DOE complex. As part of the cleanup and closure of the Plutonium Finishing Plant (PFP) located on the Hanford site, the nuclear material inventory was reviewed to determine the appropriate disposition path. Based on the nuclear material characteristics, the material was designated for stabilization and packaging for long term storage and transfer to the Savannah River Site, or a decision for discard was made. The discarded material was designated as waste material and slated for disposal to the Waste Isolation Pilot Plant (WIPP). Prior to preparing any residue wastes for disposal at the WIPP, several major activities need to be completed. As detailed a processing history as possible of the material including origin of the waste must be researched and documented. A technical basis for termination of safeguards on the material must be prepared and approved. Utilizing process knowledge and processing history, the material must be characterized, sampling requirements determined, acceptable knowledge package and waste designation completed prior to disposal. All of these activities involve several organizations including the contractor, DOE, state representatives and other regulators such as EPA. At PFP, a process has been developed for meeting the many, varied requirements and successfully used to prepare several residue waste streams including Rocky Flats incinerator ash, hanford incinerator ash and Sand, Slag and Crucible (SS and C) material for disposal. These waste residues are packed into Pipe Overpack Containers for shipment to the WIPP

  10. Basic data report for drillhole AEC 8 (Waste Isolation Pilot Plant - WIPP)

    International Nuclear Information System (INIS)

    1983-01-01

    AEC 8 was originally drilled in 1974 to a depth of 3028 ft by Oak Ridge National Laboratory as part of the initial investigations of a site for radioactive waste disposal. In 1976, Sandia National Laboratories deepened the borehole from the top of the Castile Formation into the Bell Canyon Formation to test the hydraulic properties of the Bell Canyon. The borehole encountered in descending order Holocene sands (20 ft), Mescalero caliche (6 ft), Santa Rosa Sandstone (143 ft), Dewey Lake Redbeds (491 ft), Rustler Formation (322 ft), Salado Formation (1990 ft), Castile Formation (1335 ft), and the upper Bell Canyon Formation (603 ft). The borehole stratigraphy is in normal order and there is no significant deformation. An extensive suite of geophysical logs provides information on the lithology and stratigraphy. The potentiometric surfaces of Bell Canyon fluid-bearing zones are 550 ft (for the zone at 4821 ft to 4827 ft) and 565 ft below land surface (for the zone at 4844 to 4860 ft). The WIPP is a demonstration facility for the disposal of transuranic (TRU) waste from defense programs. The WIPP will also provide a research facility to investigate the interactions between bedded salt and high level wastes

  11. WIPP Recertification - An Environmental Evaluation Group Perspective

    International Nuclear Information System (INIS)

    Allen, L. E.; Silva, M. K.

    2003-01-01

    The Waste Isolation Pilot Plant (WIPP), a repository for defense transuranic (TRU) waste, was built and is operated by the U.S. Department of Energy (DOE). The WIPP Land Withdrawal Act (LWA) required initial certification of compliance of the WIPP by the U.S. Environmental Protection Agency (EPA). In addition, a recertification decision is required by the LWA every five years, dated from the initial receipt of TRU waste. The first TRU waste shipment arrived at the WIPP on March 26, 1999, and therefore the first recertification application is due from DOE to EPA by March 25, 2004. The Environmental Evaluation Group (EEG) provides technical oversight of the WIPP project on behalf of the State of New Mexico. The EEG considers the first recertification as a precedent setting event. Therefore, the EEG began the identification of recertification issues immediately following the initial certification decision. These issues have evolved since that time, based on discussions with the DOE and EEG's understanding of DOE's ongoing research. Performance assessment is required by the EPA certification and its results are needed to determine whether the facility remains in compliance at the time of the recertification application. The DOE must submit periodic change reports to the EPA which summarize activities and conditions that differ from the compliance application. Also, the EPA may request additional information from the DOE that may pertain to continued compliance. These changes and new information must be considered for recertification performance assessment

  12. MIIT: International in-situ testing of nuclear-waste glasses: Performance of SRS simulated waste glass after five years of burial at the Waste Isolation Pilot Plant (WIPP)

    International Nuclear Information System (INIS)

    Wicks, G.G.; Lodding, A.R.; Macedo, P.B.; Clark, D.E.

    1991-01-01

    In July of 1986, the first in-situ test involving burial of simulated high-level waste (HLW) forms conducted in the United States was started. This program, called the Materials Interface Interactions Test or MIIT, comprises the largest, most cooperative field-testing venture in the international waste management community. In July of 1991, the experimental portion of the 5-year MIIT study was completed on schedule. During this time interval, many in-situ measurements were performed, thousands of brine analyses conducted, and hundreds of waste glass and package components exhumed and evaluated after 6 mo., 1 yr., 2 yr. and 5 yr. burial periods. Although analyses are still in progress, the performance of SRS waste glass based on all data currently available has been seen to be excellent thus far. Initial analyses and assessment of Savannah River (SR) waste glass after burial in WIPP at 90 degrees C for 5 years are presented in this document

  13. Constitutive representation of damage development and healing in WIPP salt

    International Nuclear Information System (INIS)

    Chan, K.S.; Bodner, S.R.; Fossum, A.F.; Munson, D.E.

    1994-01-01

    There has been considerable interest in characterizing and modeling the constitutive behavior of rock salt with particular reference to long-term creep and creep failure. The interest is motivated by the projected use of excavated rooms in salt rock formations as repositories for nuclear waste. It is presumed that closure of those rooms by creep ultimately would encapsulate the waste material, resulting in its effective isolation. A continuum mechanics approach for treating damage healing is formulated as part of a constitutive model for describing coupled creep, fracture, and healing in rock salt. Formulation of the healing term is, described and the constitutive model is evaluated against experimental data of rock salt from the Waste Isolation Pilot Plant (WIPP) site. The results indicate that healing anistropy in WIPP salt can be modeled with an appropriate power-conjugate equivalent stress, kinetic equation, and evolution equation for damage healing

  14. WIPP conceptual design report. Addendum F. HVAC systems energy analysis for Waste Isolation Pilot Plant

    International Nuclear Information System (INIS)

    1977-04-01

    This report presents the results of a technical and economic analysis of alternative methods of meeting the heating, ventilating, and air conditioning requirements of the Waste Isolation Pilot Plant (WIPP) facilities proposed to be constructed in southeastern New Mexico. This report analyzes a total of ten WIPP structures to determine the most energy and economic efficient means of providing heating, ventilating, and air conditioning services. Additional analyses were performed to determine the merits of centralized versus dispersed refrigeration and heating facilities, and of performing supplemental domestic hot water heating with solar panels

  15. The WIPP research and development program: providing the technical basis for defense waste disposal

    International Nuclear Information System (INIS)

    Hunter, Th.O.

    1983-01-01

    The Waste Isolation Pilot Plant (WIPP), located in southeastern New Mexico, is being developed by the US Department of Energy as a research and development facility to demonstrate the safe disposal of radioactive wastes from the defense programs of the United States. Underground workings are at a depth of 660 in a bedded-salt formation. Site investigations began in the early 1970s and are culminating with the completion of the Site and Preliminary Design Validation (SPDV) program in 1983 in which two shafts and several thousand feet of underground drifts are being constructed. The underground facility will be used for in situ tests and demonstrations that address technical issues associated with the disposal of transuranic and defense high-level wastes (DHLW) in bedded salt. These tests are based on several years of laboratory tests, field tests in mines, and analytical modeling studies. They primarily address repository development in bedded salt, including thermal-structural interactions plugging and sealing, and facility operations; and waste package interactions, including the effects of the waste on local rock salt and the evaluation of waste package materials. In situ testing began in the WIPP with the initiation of the SPDV program in 1981. In 1983, a major series of tests will begin to investigate the response of the rock salt without the use of any radioactivity

  16. Waste Isolation Pilot Plant (WIPP) fact sheet

    International Nuclear Information System (INIS)

    1993-01-01

    Pursuant to the Solid Waste Disposal Act, as amended by the Resource Conservation and Recovery Act (RCRA), as amended (42 USC 6901, et seq.), and the New Mexico Hazardous Waste Act (Section 74-4-1 et seq., NMSA 1978), Permit is issued to the owner and operator of the US DOE, WIPP site (hereafter called the Permittee(s)) to operate a hazardous waste storage facility consisting of a container storage unit (Waste Handling Building) and two Subpart X miscellaneous below-ground storage units (Bin Scale Test Rooms 1 and 3), all are located at the above location. The Permittee must comply with all terms and conditions of this Permit. This Permit consists of the conditions contained herein, including the attachments. Applicable regulations cited are the New Mexico Hazardous Waste Management Regulations, as amended 1992 (HWMR-7), the regulations that are in effect on the date of permit issuance. This Permit shall become effective upon issuance by the Secretary of the New Mexico Environment Department and shall be in effect for a period of ten (10) years from issuance. This Permit is also based on the assumption that all information contained in the Permit application and the administrative record is accurate and that the activity will be conducted as specified in the application and the administrative record. The Permit application consists of Revision 3, as well as associated attachments and clarifying information submitted on January 25, 1993, and May 17, 1993

  17. WIPP Facility Work Plan for Solid Waste Management Units

    Energy Technology Data Exchange (ETDEWEB)

    Washington TRU Solutions LLC

    2001-02-25

    This 2001 Facility Work Plan (FWP) has been prepared as required by Module VII, Section VII.M.1 of the Waste Isolation Pilot Plant (WIPP) Hazardous Waste Facility Permit, NM4890139088-TSDF (the Permit); (NMED, 1999a), and incorporates comments from the New Mexico Environment Department (NMED) received on December 6, 2000 (NMED, 2000a). This February 2001 FWP describes the programmatic facility-wide approach to future investigations at Solid Waste Management Units (SWMUs) and Areas of Concern (AOCs) specified in the Permit. The permittees are evaluating data from previous investigations of the SWMUs and AOCs against the newest guidance proposed by the NMED. Based on these data, the permittees expect that no further sampling will be required and that a request for No Further Action (NFA) at the SWMUs and AOCs will be submitted to the NMED. This FWP addresses the current Permit requirements. It uses the results of previous investigations performed at WIPP and expands the investigations as required by the Permit. As an alternative to the Resource Conservation and Recovery Act (RCRA) Facility Investigation (RFI) specified in Module VII of the Permit, current NMED guidance identifies an Accelerated Corrective Action Approach (ACAA) that may be used for any SWMU or AOC (NMED, 1998). This accelerated approach is used to replace the standard RFI Work Plan and Report sequence with a more flexible decision-making approach. The ACAA process allows a Facility to exit the schedule of compliance contained in the Facility’s Hazardous and Solid Waste Amendments (HSWA) permit module and proceed on an accelerated time frame. Thus, the ACAA process can be entered either before or after an RFI Work Plan. According to the NMED's guidance, a facility can prepare an RFI Work Plan or Sampling and Analysis Plan (SAP) for any SWMU or AOC (NMED, 1998). Based on this guidance, a SAP constitutes an acceptable alternative to the RFI Work Plan specified in the Permit.

  18. Seismic reflection data report: Waste Isolation Pilot Plant (WIPP) site, Southeastern New Mexico

    International Nuclear Information System (INIS)

    Hern, J.L.; Powers, D.W.; Barrows, L.J.

    1978-12-01

    Three seismic reflection (Vibroseis) surveys conducted from 1976 through 1978 by Sandia Laboratories to support investigations for the Waste Isolation Pilot Plant (WIPP) are described. Volume I describes the purpose, field parameters, and data processing parameters. Volume II contains uninterpreted processed lines and shotpoint maps. Data interpretations will be the subject of the subsequent reports. The data collected during these three surveys total 77 line miles; 72 line miles of this are on or very near the WIPP site. The first of the surveys (1976 SAN) covered 25 line miles and was conducted similarly to previous petroleum industry surveys in the area. 1976 SAN supplemented existing petroleum industry data. The two subsequent surveys (1977 X and 1978 Y) used shorter geophone spacings (110'), higher signal frequencies (up to 100 Hz), and higher data sampling rates (2 ms.) to better define the shallow zone (less than 4000') of primary interest. 1977 X contained 47 line miles on or near the WIPP site and over several structural features northwest of the site. 1978 Y contains 5 line miles over a one square mile area near the center of the WIPP site. These data show increasing discrimination of shallow reflectors as data collection parameters were modified. Data tables of recording and processing parameters are included. A fourth Vibroseis survey was conducted at the WIPP site in 1978 by Grant Geophysical Company for Bechtel; the data are not in final form and are not included. Petroleum industry data and an inconclusive weight-drop survey, conducted in 1976, are also not included in this report

  19. WIPP - Pre-Licensing and Operations: Developer and Regulator Perspectives

    International Nuclear Information System (INIS)

    Peake, Tom; Patterson, R.

    2014-01-01

    The Waste Isolation Pilot Plant (WIPP) is a disposal system for defense-related transuranic (TRU) radioactive waste. Developed by the Department of Energy (DOE), WIPP is located in Southeastern New Mexico: radioactive waste is disposed of 2,150 feet underground in an ancient layer of salt with a total capacity of 6.2 million cubic feet of waste. Congress authorized the development and construction of WIPP in 1980 for the express purpose of providing a research and development facility to demonstrate the safe disposal of radioactive wastes resulting from the defense activities and programs of the United States. This paper makes a historical review of the site development, site operations (waste disposal operations started in 1999), communications between US EPA and DOE, the chronology of pre-licensing and pre-operations, the operational phase and the regulatory challenges, and the lessons learned after 12 years of operations

  20. WIPP Pecos Management Reports

    Science.gov (United States)

    These reviews and evaluations compiled by Pecos Management Services, Inc. encompass the current and future WIPP activities in the program areas of TRU waste characterization, transportation, and disposal.

  1. WIPP waste package testing on simulated DHLW: emplacement

    International Nuclear Information System (INIS)

    Molecke, M.A.

    1984-01-01

    Several series of simulated (nonradioactive) defense high-level waste (DHLW) package tests have been emplaced in the WIPP, a research and development facility authorized to demonstrate the safe disposal of defense-related wastes. The primary purpose of these 3-to-7 year duration tests is to evaluate the in situ materials performance of waste package barriers (canisters, overpacks, backfills, and nonradioactive DHLW glass waste form) for possible future application to a licensed waste repository in salt. This paper describes all test materials, instrumentation, and emplacement and testing techniques, and discusses progress of the various tests. These tests are intended to provide information on materials behavior (i.e., corrosion, metallurgical and geochemical alterations, waste form durability, surface interactions, etc.), as well as comparison between several waste package designs, fabrications details, and actual costs. These experiments involve 18 full-size simulated DHLW packages (approximately 3.0 m x 0.6 m diameter) emplaced in vertical boreholes in the salt drift floor. Six of the test packages contain internal electrical heaters (470 W/canister), and were emplace under approximately reference DHLW repository conditions. Twelve other simulated DHLW packages were emplaced under accelerated-aging or overtest conditions, including the artificial introduction of brine, and a thermal loading approximately three to four times higher than reference. Eight of these 12 test packages contain 1500 W/canister electrical heaters; the other four are filled with DHLW glass. 9 refs., 1 fig

  2. The WIPP Water Quality Sampling Program

    International Nuclear Information System (INIS)

    Uhland, D.; Morse, J.G.; Colton, D.

    1986-01-01

    The Waste Isolation Pilot Plant (WIPP), a Department of Energy facility, will be used for the underground disposal of wastes. The Water Quality Sampling Program (WQSP) is designed to obtain representative and reproducible water samples to depict accurate water composition data for characterization and monitoring programs in the vicinity of the WIPP. The WQSP is designed to input data into four major programs for the WIPP project: Geochemical Site Characterization, Radiological Baseline, Environmental Baseline, and Performance Assessment. The water-bearing units of interest are the Culebra and Magneta Dolomite Members of the Rustler Formation, units in the Dewey Lake Redbeds, and the Bell Canyon Formation. At least two chemically distinct types of water occur in the Culebra, one being a sodium/potassium chloride water and the other being a calcium/magnesium sulfate water. Water from the Culebra wells to the south of the WIPP site is distinctly fresher and tends to be of the calcium/magnesium sulfate type. Water in the Culebra in the north and around the WIPP site is distinctly fresher and tends to be of the sodium/potassium chloride type and is much higher in total dissolved solids. The program, which is currently 1 year old, will continue throughout the life of the facility as part of the Environmental Monitoring Program

  3. Radioactive waste disposal: Waste isolation pilot plants (WIPP). (Latest citations from the NTIS Bibliographic database). Published Search

    International Nuclear Information System (INIS)

    1993-09-01

    The bibliography contains citations concerning the Waste Isolation Pilot Plant (WIPP), a geologic repository located in New Mexico for transuranic wastes generated by the U.S. Government. Articles follow the development of the program from initial site selection and characterization through construction and testing, and examine research programs on environmental impacts, structural design, and radionuclide landfill gases. Existing plants and facilities, pilot plants, migration, rock mechanics, economics, regulations, and transport of wastes to the site are also included. The Salt Repository Project and the Crystalline Repository Project are referenced in separate bibliographies. (Contains a minimum of 228 citations and includes a subject term index and title list.)

  4. Geotechnical evaluation of the proposed WIPP site in southeast New Mexico

    International Nuclear Information System (INIS)

    Weart, W.D.

    1978-10-01

    The Department of Energy is proposing to demonstrate the acceptability of geologic disposal of radioactive waste by locating a Waste Isolation Pilot Plant (WIPP) in the salt beds 26 miles east of Carlsbad, New Mexico. The WIPP will serve as a permanent repository for defense generated transuranic contaminated waste and will also be used as a facility in which experiments and demonstrations with all radioactive waste types can be conducted. The present area being proposed for the WIPP is the second such location in the Delaware Basin for which new site data have been developed; the first site proved geologically unacceptable. Ecologic and socioeconomic aspects have been investigated and extensive geophysical, geological and hydrologic studies have been conducted to allow an evaluation of site acceptability. Geotechnical aspects of site characterization are examined. These studies are now sufficiently complete that the site can be recommended for further development of the WIPP

  5. Analysis of borehole inclusion stress measurement concepts proposed for use in the Waste Isolation Pilot Plant (WIPP)

    International Nuclear Information System (INIS)

    Morgan, H.S.

    1984-01-01

    The Waste Isolation Pilot Plant (WIPP) is being developed in southeastern New Mexico by the United States Department of Energy as a research and development (RandD) facility to demonstrate the safe disposal in salt of radioactive wastes resulting from defense activities. As part of the WIPP RandD program, a series of in situ tests will be performed to determine the behavior of drifts and storage rooms in the creeping salt medium. Data obtained in these tests will be used to evaluate and improve numerical models used to compute the structural response of these drifts and rooms. Stress has been proposed as one of the parameters to be measured in the tests, and borehole inclusion stressmeters have been included in the instrumentation package

  6. A comparison of real-time radiography results and visual characterization results with emphasis on WIPP WAC and TRAMPAC compliance issues

    International Nuclear Information System (INIS)

    Hailey, S.M.

    1994-01-01

    Visual characterization provides a means of confirming the real-time radiography (RTR) certification process and process knowledge. RTR and visual characterization have been conducted on thirty-three drums containing transuranic (TRU) waste in support of the Waste Isolation Pilot Plant (WIPP) Experimental Test Program (WETP) at the Idaho National Engineering Laboratory. Argonne National Laboratory - West (ANL-W) detected a small can of liquid in one of these drums during the visual examination, resulting in a WIPP Waste Acceptance Criteria (WIPP-WAC) miscertification. The remaining thirty-two drums were certified correctly by the RTR system at the Stored Waste Examination Pilot Plant (SWEPP) for WIPP-WAC and TRUPACT-II Authorized Methods for Payload Control (TRAMPAC) requirements. TRAMPAC contains restrictions on the weights of specific materials allowed in the waste, based on the shipping category. Items on the restricted list for a given shipping category are allowed in quantities less than 1 percent of the weight of the waste. RTR can estimate the weights of certain broad categories in homogeneous waste forms, however, the capability to estimate weights at the 1 percent level is not presently realistic. Process knowledge forms the basis of conformance to these weight requirements. Visual characterization suggests process knowledge is not completely adequate at this level

  7. Review of the WIPP draft application to show compliance with EPA transuranic waste disposal standards

    Energy Technology Data Exchange (ETDEWEB)

    Neill, R.H.; Chaturvedi, L.; Clemo, T.M. [and others

    1996-03-01

    The purpose of the New Mexico Environmental Evaluation Group (EEG) is to conduct an independent technical evaluation of the Waste Isolation Pilot Plant (WIPP) Project to ensure the protection of the public health and safety and the environment. The WIPP Project, located in southeastern New Mexico, is being constructed as a repository for the disposal of transuranic (TRU) radioactive wastes generated by the national defense programs. The EEG was established in 1978 with funds provided by the U.S. Department of Energy (DOE) to the State of New Mexico. Public Law 100-456, the National Defense Authorization Act, Fiscal Year 1989, Section 1433, assigned EEG to the New Mexico Institute of Mining and Technology and continued the original contract DE-AC04-79AL10752 through DOE contract DE-AC04-89AL58309. The National Defense Authorization Act for Fiscal Year 1994, Public Law 103-160, continues the authorization. EEG performs independent technical analyses of the suitability of the proposed site; the design of the repository, its planned operation, and its long-term integrity; suitability and safety of the transportation systems; suitability of the Waste Acceptance Criteria and the generator sites` compliance with them; and related subjects. These analyses include assessments of reports issued by the DOE and its contractors, other federal agencies and organizations, as they relate to the potential health, safety and environmental impacts from WIPP. Another important function of EEG is the independent environmental monitoring of background radioactivity in air, water, and soil, both on-site and off-site.

  8. Review of the WIPP draft application to show compliance with EPA transuranic waste disposal standards

    International Nuclear Information System (INIS)

    Neill, R.H.; Chaturvedi, L.; Clemo, T.M.

    1996-03-01

    The purpose of the New Mexico Environmental Evaluation Group (EEG) is to conduct an independent technical evaluation of the Waste Isolation Pilot Plant (WIPP) Project to ensure the protection of the public health and safety and the environment. The WIPP Project, located in southeastern New Mexico, is being constructed as a repository for the disposal of transuranic (TRU) radioactive wastes generated by the national defense programs. The EEG was established in 1978 with funds provided by the U.S. Department of Energy (DOE) to the State of New Mexico. Public Law 100-456, the National Defense Authorization Act, Fiscal Year 1989, Section 1433, assigned EEG to the New Mexico Institute of Mining and Technology and continued the original contract DE-AC04-79AL10752 through DOE contract DE-AC04-89AL58309. The National Defense Authorization Act for Fiscal Year 1994, Public Law 103-160, continues the authorization. EEG performs independent technical analyses of the suitability of the proposed site; the design of the repository, its planned operation, and its long-term integrity; suitability and safety of the transportation systems; suitability of the Waste Acceptance Criteria and the generator sites' compliance with them; and related subjects. These analyses include assessments of reports issued by the DOE and its contractors, other federal agencies and organizations, as they relate to the potential health, safety and environmental impacts from WIPP. Another important function of EEG is the independent environmental monitoring of background radioactivity in air, water, and soil, both on-site and off-site

  9. WIPP conceptual design report. Addendum D. A report to Holmes and Narver, Inc., Anaheim, California on alternative energy sources for Waste Isolation Pilot Plant, Carlsbad, New Mexico

    International Nuclear Information System (INIS)

    1977-03-01

    This report presents the results of a technical and economic analysis of alternative methods of meeting the energy needs of a proposed Waste Isolation Pilot Plant (WIPP) to be located in southeastern New Mexico. The WIPP is a facility for underground storage of radioactive wastes in a deep salt bed. The report analyzes a total of sixteen possible methods for meeting WIPP energy requirements, consisting of purchased electricity and on-site generation in various combinations from full purchased to full on-site

  10. Proposed waste isolation pilot project (WIPP) and impacts in the state of New Mexico: a socio-economic analysis. Final report

    International Nuclear Information System (INIS)

    Cummings, R.D.; Burness, H.S.; Norton, R.D.

    1981-04-01

    This document is a final report for research conducted concerning the socio-economic impacts in the State of New Mexico that might attend the construction and operation of the proposed Waste Isolation Pilot Plant (WIPP). The proposed site for the WIPP, known as the Los Medanos site, is in Southeastern New Mexico's Eddy County, some 25 miles east of Carlsbad, New Mexico and some 40 miles from Hobbs, New Mexico, in adjacent Lea County. The purpose as set out in the US Department of Energy's environmental impact statements is for storage of TRU waste from the US defense program and the construction of a research and development area for experiments concerning the isolation of all types of nuclear waste in salt. The intended purpose of the study is to identify, measure (when possible) and assess the range of potential socio-economic impacts in the State that may be attributable to the WIPP. Every effort has been made by the authors to approach this task in an objective manner. In efforts to provide an objective analysis of the WIPP, however, particular attention was required in providing a comprehensive review of potential impacts. This means that however unlikely an impact might seem, the authors have purposely avoided pre-judging the potential magnitude of the impact and have applied their best efforts to measure it. On the other hnd, this study is not intended to provide a definitive calculation regarding the net balance of WIPP-related benefits and costs. To help ensure objectivity, two advisory boards, Technical Advisory Board and Public Advisory Board, were formed at the outset of the project for the purpose of providing periodic reviews of research efforts

  11. WIPP Sampling and Analysis Plan for Solid Waste Management Units and Areas of Concern

    International Nuclear Information System (INIS)

    2000-01-01

    This Sampling and Analysis Plan (SAP) has been prepared to fulfill requirements of Module VII, Section VII.M.2 and Table VII.1, requirement 4 of the Waste Isolation Pilot Plant (WIPP) Hazardous Waste Permit, NM4890139088-TSDF (the Permit); (NMED [New Mexico Environment Department], 1999a). This SAP describes the approach for investigation of the Solid Waste Management Units (SWMU) and Areas of Concern (AOC) specified in the Permit. This SAP addresses the current Permit requirements for a RCRA Facility Investigation(RFI) investigation of SWMUs and AOCs. It uses the results of previous investigations performed at WIPP and expands the investigations as required by the Permit. As an alternative to the RFI specified in Module VII of the Permit, current NMED guidance identifies an Accelerated Corrective Action Approach (ACAA) that may be used for any SWMU or AOC (NMED, 1998). This accelerated approach is used to replace the standard RFI work plan and report sequence with a more flexible decision-making approach. The ACAA process allows a facility to exit the schedule of compliance contained in the facility's Hazardous and Solid Waste Amendments (HSWA) permit module and proceed on an accelerated time frame. Thus, the ACAA process can beentered either before or after a RFI work plan. According to NMED's guidance, a facility can prepare a RFI work plan or SAP for any SWMU or AOC (NMED, 1998).

  12. WIPP Project Records Management Handbook

    International Nuclear Information System (INIS)

    1991-01-01

    The Waste Isolation Pilot Plant (WIPP) Records Management Handbook provides the WIPP Project Records Management personnel with a tool to use to fulfill the requirements of the WIPP Records Program and direct their actions in the important area of records management. The handbook describes the various project areas involved in records management, and how they function. The handbook provides the requirements for Record Coordinators and Master Record Center (MRC) personnel to follow in the normal course of file management, records scheduling, records turnover, records disposition, and records retrieval. More importantly, the handbook provides a single reference which encompasses the procedures set fourth in DOE Order 1324.2A, ''Records Disposition'' ASME NQA-1, ''Quality Assurance Program Requirements for Nuclear Facilities'' and DOE-AL 5700.6B, ''General Operations Quality Assurance.'' These documents dictate how an efficient system of records management will be achieved on the WIPP Project

  13. Rustler Formation in the waste handling and exhaust shafts, Waste Isolation Pilot Plant (WIPP) site, southeastern New Mexico

    International Nuclear Information System (INIS)

    Holt, R.M.; Powers, D.W.

    1987-01-01

    The Permian Rustler Formation was recently examined in detail in two shafts at the WIPP site: the waste handling shaft (waste shaft) and the exhaust shaft. Fresh exposures of the Rustler in the shafts exhibited abundant primary sedimentary structures. The abundance of primary sedimentary structures observed in the shafts is unequaled in previously described sections. Data are reported here in their stratigraphic context as an initial basis for evaluation of depositional environments of the Rustler and reevaluating the role of dissolution in the formation of the Rustler. 10 refs

  14. Site selection and evaluation studies of the Waste Isolation Pilot Plant (WIPP), Los Medanos, Eddy County, NM

    International Nuclear Information System (INIS)

    Griswold, G.B.

    1977-12-01

    Bedded-salt deposits of the Salado Formation have been selected for evaluation for a proposed Waste Isolation Pilot Plant (WIPP) to be located in Eddy County, NM, approximately 26 mi east of Carlsbad. Site selection and evaluation studies that included geologic mapping, geophysical surveys, drilling, and resource appraisal were conducted over and under the prospective location. The lower portion of the Salado meets essential criteria for waste isolation. Beds chosen for waste storage lie 2074 to 2730 ft below the surface. High-purity salt exists at these depths, and the geologic structure revealed by geophysical surveys indicates that these beds are essentially flat. Additional geophysical surveys are now under way. The initial interpretation of the new data indicates that more structure may exist in the salt beds in the northern portion of the site area. Full evaluation of potentially commercial deposits of potash and natural gas within the WIPP site will be reported by separate studies, as will be the hydrologic details of the region

  15. Resource conservation and recovery act draft hazardous waste facility permit: Waste Isolation Pilot Plant (WIPP)

    International Nuclear Information System (INIS)

    1993-08-01

    Volume IV contains the following attachments for Module IV: VOC monitoring plan for bin-room tests (Appendix D12); bin emission control and VOC monitoring system drawings; bin scale test room ventilation drawings; WIPP supplementary roof support system, underground storage area, room 1, panel 1, DOE/WIPP 91-057; and WIPP supplementary roof support system, room 1, panel 1, geotechnical field data analysis bi-annual report, DOE/WIPP 92-024

  16. Conclusions regarding geotechnical acceptability of the WIPP site

    International Nuclear Information System (INIS)

    Weart, W.D.

    1983-01-01

    The Waste Isolation Pilot Plant (WIPP) was authorized by Congress in 1980 as an unlicensed research and development (R and D) facility to demonstrate the safe disposal of radioactive wastes arising from the defense activities and programs of the United States. WIPP is now being constructed in southeast New Mexico, using salt beds about 655 m below the surface of the ground. Construction of the full WIPP facility will not commence until a preliminary underground excavation phase, called Site and Preliminary Design Validation (SPDV), is satisfactorily concluded in the summer of 1983. This SPDV program permits confirmation of subsurface geology, in drifts at planned facility depth that extend for 1555 m in a north-south direction, and in the two vertical shafts that provide access to these drifts. The subsurface studies are nearing completion, and it is therefore appropriate to draw conclusions regarding the geotechnical acceptability of the WIPP site. Four geotechnical elements are discussed: dissolution, deformation, hydrologic regime, and natural resources

  17. WIPP shaft seal system parameters recommended to support compliance calculations

    International Nuclear Information System (INIS)

    Hurtado, L.D.; Knowles, M.K.; Kelley, V.A.; Jones, T.L.; Ogintz, J.B.; Pfeifle, T.W.

    1997-12-01

    The US Department of Energy plans to dispose of transuranic waste at the Waste Isolation Pilot Plant (WIPP), which is sited in southeastern New Mexico. The WIPP disposal facility is located approximately 2,150 feet (650 m) below surface in the bedded halite of the Salado Formation. Prior to initiation of disposal activities, the Department of Energy must demonstrate that the WIPP will comply with all regulatory requirements. Applicable regulations require that contaminant releases from the WIPP remain below specified levels for a period of 10,000 years. To demonstrate that the WIPP will comply with these regulations, the Department of Energy has requested that Sandia National Laboratories develop and implement a comprehensive performance assessment of the WIPP repository for the regulatory period. This document presents the conceptual model of the shaft sealing system to be implemented in performance assessment calculations conducted in support of the Compliance Certification Application for the WIPP. The model was developed for use in repository-scale calculations and includes the seal system geometry and materials to be used in grid development as well as all parameters needed to describe the seal materials. These calculations predict the hydrologic behavior of the system. Hence conceptual model development is limited to those processes that could impact the fluid flow through the seal system

  18. WIPP shaft seal system parameters recommended to support compliance calculations

    Energy Technology Data Exchange (ETDEWEB)

    Hurtado, L.D.; Knowles, M.K. [Sandia National Labs., Albuquerque, NM (United States); Kelley, V.A.; Jones, T.L.; Ogintz, J.B. [INTERA Inc., Austin, TX (United States); Pfeifle, T.W. [RE/SPEC, Inc., Rapid City, SD (United States)

    1997-12-01

    The US Department of Energy plans to dispose of transuranic waste at the Waste Isolation Pilot Plant (WIPP), which is sited in southeastern New Mexico. The WIPP disposal facility is located approximately 2,150 feet (650 m) below surface in the bedded halite of the Salado Formation. Prior to initiation of disposal activities, the Department of Energy must demonstrate that the WIPP will comply with all regulatory requirements. Applicable regulations require that contaminant releases from the WIPP remain below specified levels for a period of 10,000 years. To demonstrate that the WIPP will comply with these regulations, the Department of Energy has requested that Sandia National Laboratories develop and implement a comprehensive performance assessment of the WIPP repository for the regulatory period. This document presents the conceptual model of the shaft sealing system to be implemented in performance assessment calculations conducted in support of the Compliance Certification Application for the WIPP. The model was developed for use in repository-scale calculations and includes the seal system geometry and materials to be used in grid development as well as all parameters needed to describe the seal materials. These calculations predict the hydrologic behavior of the system. Hence conceptual model development is limited to those processes that could impact the fluid flow through the seal system.

  19. WIPP Sampling and Analysis Plan for Solid Waste Management Units and Areas of Concern

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2000-05-23

    This Sampling and Analysis Plan (SAP) has been prepared to fulfill requirements of Module VII, Section VII.M.2 and Table VII.1, requirement 4 of the Waste Isolation Pilot Plant (WIPP) Hazardous Waste Permit, NM4890139088-TSDF (the Permit); (NMED [New Mexico Environment Department], 1999a). This SAP describes the approach for investigation of the Solid Waste Management Units (SWMU) and Areas of Concern (AOC) specified in the Permit. This SAP addresses the current Permit requirements for a RCRA Facility Investigation(RFI) investigation of SWMUs and AOCs. It uses the results of previous investigations performed at WIPP and expands the investigations as required by the Permit. As an alternative to the RFI specified in Module VII of the Permit, current NMED guidance identifies an Accelerated Corrective Action Approach (ACAA) that may be used for any SWMU or AOC (NMED, 1998). This accelerated approach is used to replace the standard RFI work plan and report sequence with a more flexible decision-making approach. The ACAA process allows a facility to exit the schedule of compliance contained in the facility's Hazardous and Solid Waste Amendments (HSWA) permit module and proceed on an accelerated time frame. Thus, the ACAA process can beentered either before or after a RFI work plan. According to NMED's guidance, a facility can prepare a RFI work plan or SAP for any SWMU or AOC (NMED, 1998).

  20. Evaluation of the WIPP Project`s compliance with the EPA radiation protection standards for disposal of transuranic waste

    Energy Technology Data Exchange (ETDEWEB)

    Neill, R.H.; Chaturvedi, L.; Rucker, D.F.; Silva, M.K.; Walker, B.A.; Channell, J.K.; Clemo, T.M. [Environmental Evaluation Group, Albuquerque, NM (United States)]|[Environmental Evaluation Group, Carlsbad, NM (United States)

    1998-03-01

    The US Environmental Protection Agency`s (EPA) proposed rule to certify that the Waste Isolation Pilot Plant (WIPP) meets compliance with the long-term radiation protection standards for geologic repositories (40CFR191 Subparts B and C), is one of the most significant milestones to date for the WIPP project in particular, and for the nuclear waste issue in general. The Environmental Evaluation Group (EEG) has provided an independent technical oversight for the WIPP project since 1978, and is responsible for many improvements in the location, design, and testing of various aspects of the project, including participation in the development of the EPA standards since the early 1980s. The EEG reviewed the development of documentation for assessing the WIPP`s compliance by the Sandia National Laboratories following the 1985 promulgation by EPA, and provided many written and verbal comments on various aspects of this effort, culminating in the overall review of the 1992 performance assessment. For the US Department of Energy`s (DOE) compliance certification application (CCA), the EEG provided detailed comments on the draft CCA in March, 1996, and additional comments through unpublished letters in 1997 (included as Appendices 8.1 and 8.2 in this report). Since the October 30, 1997, publication of the EPA`s proposed rule to certify WIPP, the EEG gave presentations on important issues to the EPA on December 10, 1997, and sent a December 31, 1997 letter with attachments to clarify those issues (Appendix 8.3). The EEG has raised a number of questions that may have an impact on compliance. In spite of the best efforts by the EEG, the EPA reaction to reviews and suggestions has been slow and apparently driven by legal considerations. This report discusses in detail the questions that have been raised about containment requirements. Also discussed are assurance requirements, groundwater protection, individual protection, and an evaluation of EPA`s responses to EEG`s comments.

  1. The legal, regulatory and safety basis for opening WIPP

    International Nuclear Information System (INIS)

    Dials, G.E.

    1997-01-01

    Current laws in the United States of America direct the U.S. Department of Energy (DOE) to site, design, operate, and decommission a deep geological repository for safe disposal of transuranic radioactive waste (TRUW) at the Waste Isolation Pilot Plant (WIPP) site. In 1993, the DOE established the Carlsbad Area Office (CAO) to integrate the nation's management of TRUW and to open the WIPP site for safe disposal of TRUW in compliance with applicable laws and regulations. The CAO submitted the final Compliance Certification Application (CCA) in 1996, and is on schedule to open WIPP in November 1997, about three years earlier than scheduled before the establishment of the CAO. The performance assessment (PA) embodied in the CCA demonstrates that WIPP meets the EPA's regulatory requirements for radioactive releases for the 10,000 year regulatory period in both the undisturbed and disturbed (human intrusion) scenarios. Detailed planning, compliance-based research and development (R and D), teamwork among project participants and early and open iterative interactions with the regulators, oversight groups and other interested parties in the certification/permitting process are key components of the progress in the safe disposal of long-lived radioactive wastes. (author)

  2. Summary of site-characterization studies conducted from 1983 through 1987 at the Waste Isolation Pilot Plant (WIPP) site, southeastern New Mexico

    International Nuclear Information System (INIS)

    Lappin, A.R.

    1988-01-01

    The Waste Isolation Pilot Plant (WIPP) is being excavated at a depth of approximately 655 m in bedded halites. Site-characterization activities at the WIPP site began in 1976. Characterization activities since 1983 have had the objective of updating the conceptual model for the geologic and hydrologic behavior of the WIPP site and vicinity. This paper discusses aspects of the general conceptual model significant to both site characterization and performance assessment. The geological and hydrologic behavior of the WIPP site and vicinity is transient, and has been transient since at least deposition of the Permian Salado Formation containing the underground workings of the WIPP facility. The Salado Formation deforms regionally in response to gravity, but is very low in permeability, except within approximately two meters of the WIPP facility. The Culebra Dolomite Member of the Rustler Formation dominates the hydrology at the WIPP site. Hydrologic measurements, geologic studies, major-element and minor-element distributions in Culebra fluids, and the results of isotopic studies (stable-isotope, radiocarbon, uranium-disequilibrium, and 87 Sr/ 86 Sr) are consistent with the interpretations that, although the Culebra dominates flow within the Rustler at the WIPP site and Rustler karst is not present, there has been limited vertical fluid movement within the Rustler and between the Rustler and the overlying Dewey Lake Red Beds

  3. Summary of 1988 WIPP [Waste Isolation Pilot Plant] Facility horizon gas flow measurements

    International Nuclear Information System (INIS)

    Stormont, J.C.

    1990-11-01

    Numerous gas flow measurements have been made at the Waste Isolation Pilot Plant (WIPP) Facility horizon during 1988. All tests have been pressure decay or constant pressure tests from single boreholes drilled from the underground excavations. The test fluid has been nitrogen. The data have been interpreted as permeabilities and porosities by means of a transient numerical solution method. A closed-form steady-state approximation provides a reasonable order-of-magnitude permeability estimate. The effective resolution of the measurement system is less than 10 -20 m 2 . Results indicate that beyond 1 to 5 m from an excavation, the gas flow is very small and the corresponding permeability is below the system resolution. Within the first meter of an excavation, the interpreted permeabilities can be 5 orders of magnitude greater than the undisturbed or far-field permeability. The interpreted permeabilities in the region between the undisturbed region and the first meter from an excavation are in the range of 10 -16 to 10 -20 m 2 . Measurable gas flow occurs to a greater depth into the roof above WIPP excavations of different sizes and ages than into the ribs and floor. The gas flows into the formation surrounding the smallest excavation tested are consistently lower than those at similar locations surrounding larger excavations of comparable age. Gas flow measured in the interbed layers near the WIPP excavations is highly variable. Generally, immediately above and below excavations, relatively large gas flow is measured in the interbed layers. These results are consistent with previous measurements and indicate a limited disturbed zone surrounding WIPP excavations. 31 refs., 99 figs., 5 tabs

  4. Numerical simulation of ground-water flow in the Culebra dolomite at the Waste Isolation Pilot Plant (WIPP) site: Second interim report

    Energy Technology Data Exchange (ETDEWEB)

    LaVenue, A.M.; Haug, A.; Kelley, V.A.

    1988-03-01

    This hydrogeologic modeling study has been performed as part of the regional hydrologic characterization of the Waste Isolation Pilot Plant (WIPP) Site in southeastern New Mexico. The study resulted in an estimation of the transmissivity distrubution, hydraulic potentials, flow field, and fluid densities in the Culebra Dolomite Member of the Permian Rustler Formation at the WIPP site. The three-dimensional finite-difference code SWIFT-II was employed for the numerical modeling, using variable-fluid-density and a single-porosity formulation. The modeled area includes and extends beyond the WIPP controlled zone (Zone 3). The work performed consisted of modeling the hydrogeology of the Culebra using two approaches: (1) steady-state modeling to develop the best estimate of the undisturbed head distribution, i.e., of the situation before sinking if the WIPP shafts, which began in 1981; and (2) superimposed transient modeling of local hydrologic responses to excavation of the three WIPP shafts at the center of the WIPP site, as well as to various well tests. Boundary conditions (prescribed constant fluid pressures and densities) were estimated using hydraulic-head and fluid-density data obtained from about 40 wells at and near the WIPP site. The transient modeling used the calculated steady-state freshwater heads as initial conditions. 107 refs., 112 figs., 22 tabs.

  5. Numerical simulation of ground-water flow in the Culebra dolomite at the Waste Isolation Pilot Plant (WIPP) site: Second interim report

    International Nuclear Information System (INIS)

    LaVenue, A.M.; Haug, A.; Kelley, V.A.

    1988-03-01

    This hydrogeologic modeling study has been performed as part of the regional hydrologic characterization of the Waste Isolation Pilot Plant (WIPP) Site in southeastern New Mexico. The study resulted in an estimation of the transmissivity distrubution, hydraulic potentials, flow field, and fluid densities in the Culebra Dolomite Member of the Permian Rustler Formation at the WIPP site. The three-dimensional finite-difference code SWIFT-II was employed for the numerical modeling, using variable-fluid-density and a single-porosity formulation. The modeled area includes and extends beyond the WIPP controlled zone (Zone 3). The work performed consisted of modeling the hydrogeology of the Culebra using two approaches: (1) steady-state modeling to develop the best estimate of the undisturbed head distribution, i.e., of the situation before sinking if the WIPP shafts, which began in 1981; and (2) superimposed transient modeling of local hydrologic responses to excavation of the three WIPP shafts at the center of the WIPP site, as well as to various well tests. Boundary conditions (prescribed constant fluid pressures and densities) were estimated using hydraulic-head and fluid-density data obtained from about 40 wells at and near the WIPP site. The transient modeling used the calculated steady-state freshwater heads as initial conditions. 107 refs., 112 figs., 22 tabs

  6. The WIPP transportation system -- ''Safer than any other''

    International Nuclear Information System (INIS)

    Ward, T.R.; Spooner, R.

    1991-01-01

    The Department of Energy (DOE) has developed an integrated transportation system to transport transuranic (TRU) waste from ten widely dispersed generator sites to the Waste Isolation Pilot Plant (WIPP). The system consists of a Type B container, a specially designed trailer, a lightweight tractor, the DOE TRANSCOM satellite-based vehicle tracking system, and uniquely qualified and highly trained drivers. The DOE has demonstrated that this system is ready to transport the TRU waste to the WIPP site efficiently and safely. Since the system was put in place in November 1988, it has been repeatedly upgraded and enhanced to incorporate additional safety measures. In June of 1989, the National Academy of Sciences (NAS) reviewed the transportation system and concluded that ''the system proposed for transportation of TRU waste to WIPP is safer than that employed for any other hazardous material in the United States today and will reduce risk to very low levels'' (emphasis added). The NAS conclusion was made before the DOE implemented the Enhanced Driver Training Course for carrier drivers. The challenge facing the DOE was to examine the transportation system objectively and determine what additional improvements could be made to further enhance safety

  7. Groundwater flow in the Rustler Formation, Waste Isolation Pilot Plant (WIPP), southeast New Mexico (SENM). Interim report

    International Nuclear Information System (INIS)

    Gonzalez, D.D.

    1983-03-01

    In hypothetical breach scenarios for the WIPP, the Culebra Dolomite in the Rustler Formation has historically been considered the aquifer most likely to play a significant role in transporting radioisotopes to the biosphere. Recently, it was determined that breach scenarios involving connection of aquifers above and below the Salado Formation where waste emplacement is planned would not result in an upward flow of water into the Rustler aquifers. Considerable hydrologic investigation has focused on the Culebra, since some scenarios might result in contamination of this aquifer. In such events the Culebra would provide more rapid transport of radioisotopes from the WIPP than any of the other aquifers in the WIPP area. Hydrologic tests conducted in three-well arrays at four different locations near the WIPP are described. Tracer tests at the H-6 wells northwest of the WIPP indicated an effective porosity of 0.007 in the principal direction of flow and a dispersivity of 33 ft. At the H-2 wells, 1-1/4 mi W-SW of the center of the WIPP site, the effective porosity in the principal flow direction is 0.18 and the dispersivity is 17 ft. Anisotropy of transmissivity was determined from pumping tests at the H-4, H-5, and H-6 wells. The principal direction of transmissivity is roughly NW-SE at all three locations. The ratio of the major-to-minor transmissivity components varies only from 2.1 to 2.7, even though the transmissivity itself varies three orders of magnitude among the three locations. This information, coupled with transmissivity and head potential data, indicates that flow patterns near the WIPP site are toward the southeast. Present estimates for flow rates are 1 to 10 ft/y. Values of transmissivity for the Culebra vary six orders of magnitude over the extent of the study area, decreasing monotonically from 10 3 ft 2 /d in Nash Draw to 10 - 3 ft 2 /d on the east side of the WIPP site

  8. Hanford Tank Waste to WIPP - Maximizing the Value of our National Repository Asset

    Energy Technology Data Exchange (ETDEWEB)

    Tedeschi, Allan R.; Wheeler, Martin

    2013-11-11

    Preplanning scope for the Hanford tank transuranic (TRU) waste project was authorized in 2013 by the Department of Energy (DOE) Office of River Protection (ORP) after a project standby period of eight years. Significant changes in DOE orders, Hanford contracts, and requirements at the Waste Isolation Pilot Plant (WIPP) have occurred during this time period, in addition to newly implemented regulatory permitting, re-evaluated waste management strategies, and new commercial applications. Preplanning has identified the following key approaches for reactivating the project: qualification of tank inventory designations and completion of all environmental regulatory permitting; identifying program options to accelerate retrieval of key leaking tank T-111; planning fully compliant implementation of DOE Order 413.3B, and DOE Standard 1189 for potential on-site treatment; and re-evaluation of commercial retrieval and treatment technologies for better strategic bundling of permanent waste disposal options.

  9. Hanford Tank Waste to WIPP - Maximizing the Value of our National Repository Asset

    International Nuclear Information System (INIS)

    Tedeschi, Allan R.; Wheeler, Martin

    2013-01-01

    Preplanning scope for the Hanford tank transuranic (TRU) waste project was authorized in 2013 by the Department of Energy (DOE) Office of River Protection (ORP) after a project standby period of eight years. Significant changes in DOE orders, Hanford contracts, and requirements at the Waste Isolation Pilot Plant (WIPP) have occurred during this time period, in addition to newly implemented regulatory permitting, re-evaluated waste management strategies, and new commercial applications. Preplanning has identified the following key approaches for reactivating the project: qualification of tank inventory designations and completion of all environmental regulatory permitting; identifying program options to accelerate retrieval of key leaking tank T-111; planning fully compliant implementation of DOE Order 413.3B, and DOE Standard 1189 for potential on-site treatment; and re-evaluation of commercial retrieval and treatment technologies for better strategic bundling of permanent waste disposal options

  10. Evaluation of the WIPP Project's compliance with the EPA radiation protection standards for disposal of transuranic waste

    International Nuclear Information System (INIS)

    Neill, R.H.; Chaturvedi, L.; Rucker, D.F.; Silva, M.K.; Walker, B.A.; Channell, J.K.; Clemo, T.M.

    1998-03-01

    The US Environmental Protection Agency's (EPA) proposed rule to certify that the Waste Isolation Pilot Plant (WIPP) meets compliance with the long-term radiation protection standards for geologic repositories (40CFR191 Subparts B and C), is one of the most significant milestones to date for the WIPP project in particular, and for the nuclear waste issue in general. The Environmental Evaluation Group (EEG) has provided an independent technical oversight for the WIPP project since 1978, and is responsible for many improvements in the location, design, and testing of various aspects of the project, including participation in the development of the EPA standards since the early 1980s. The EEG reviewed the development of documentation for assessing the WIPP's compliance by the Sandia National Laboratories following the 1985 promulgation by EPA, and provided many written and verbal comments on various aspects of this effort, culminating in the overall review of the 1992 performance assessment. For the US Department of Energy's (DOE) compliance certification application (CCA), the EEG provided detailed comments on the draft CCA in March, 1996, and additional comments through unpublished letters in 1997 (included as Appendices 8.1 and 8.2 in this report). Since the October 30, 1997, publication of the EPA's proposed rule to certify WIPP, the EEG gave presentations on important issues to the EPA on December 10, 1997, and sent a December 31, 1997 letter with attachments to clarify those issues (Appendix 8.3). The EEG has raised a number of questions that may have an impact on compliance. In spite of the best efforts by the EEG, the EPA reaction to reviews and suggestions has been slow and apparently driven by legal considerations. This report discusses in detail the questions that have been raised about containment requirements. Also discussed are assurance requirements, groundwater protection, individual protection, and an evaluation of EPA's responses to EEG's comments

  11. Los Alamos National Laboratory Develops ''Quick to WIPP'' Strategy

    International Nuclear Information System (INIS)

    Jones, R.; Allen, G.; Kosiewicz, S.; Martin, B.; LANL; Nunz, J.; Biedscheid, J.; Sellmer, T.; Willis, J.; Orban, J.; Liekhus, K.; Djordjevic, S.

    2003-01-01

    The Cerro Grande forest fire in May of 2000 and the terrorist events of September 11, 2001 precipitated concerns of the vulnerability of legacy contact-handled (CH), high-wattage transuranic (TRU) waste stored at Los Alamos National Laboratory (LANL). An analysis of the 9,100 cubic meters of stored CH-TRU waste revealed that 400 cubic meters or 4.5% of the inventory represented 61% of the risk. The analysis further showed that this 400 cubic meters was contained in only 2,000 drums. These facts and the question ''How can the disposition of this waste to the Waste Isolation Pilot Plant (WIPP) be accelerated?'' formed the genesis of LANL's Quick to WIPP initiative

  12. Hanford to WIPP - What a Trip: The Road from Hanford is now Open

    International Nuclear Information System (INIS)

    FRENCH, M.S.

    2001-01-01

    The road leading from Hanford's Waste Receiving and Processing (WRAP) Facility to the Waste Isolation Pilot Plant (WJPP) in New Mexico developed a few bumps and detours over the past year, but it has now been successfully traversed. There were challenges obtaining Carlsbad Area Office and New Mexico Department of Ecology certification of the Hanford characterization program. After months of work, when initial certification appeared imminent, the issuance of the WIPP Hazardous Waste Permit changed the Waste Analysis Plan (WAP) required for characterizing waste for acceptance at WIPP. After a ceremony dedicating the ''Washington'' room at WIPP, the inaugural shipment from WRAP to WIPP was scheduled for June 2000. This first shipment was planned based on shipping a number of containers that had been characterized before the issuance of the WIPP Mixed Waste Permit. However, the New Mexico Department of Ecology initially declined to accept the characterization data generated before the permit was issued, necessitating revision to the planned shipment. Because of the difficulties inherent in scheduling the TRUPACT-II transport and coordination with all of the states through which the shipment would pass, it was decided to proceed with the first shipment in early July with only the drums that had been characterized after Hanford compliance with the new WIPP WAP requirements had been certified. Following the initial shipment, previously certified containers were recertified using a process approved through negotiation with the New Mexico Environment Department, and additional full shipments have been successfully completed. This paper will present an overview of the challenges overcome and lessons learned in obtaining certification, coordination with the involved states, and eventual successful1 implementation of a routine shipping program

  13. Resource Conservation and Recovery Act, Part B Permit Application [for the Waste Isolation Pilot Plant (WIPP)]. Volume 4, Chapter D, Appendix D1 (beginning), Revision 3

    Energy Technology Data Exchange (ETDEWEB)

    Lappin, A. R.

    1993-03-01

    The Waste Isolation Pilot Plant (WIPP), which is designed for receipt, handling, storage, and permanent isolation of defense-generated transuranic wastes, is being excavated at a depth of approximately 655 m in bedded halites of the Permian Salado Formation of southeastern New Mexico. Site-characterization activities at the present WIPP site began in 1976. Full construction of the facility began in 1983, after completion of ``Site and Preliminary Design Validation`` (SPDV) activities and reporting. Site-characterization activities since 1983 have had the objectives of updating or refining the overall conceptual model of the geologic, hydrologic, and structural behavior of the WIPP site and providing data adequate for use in WIPP performance assessment. This report has four main objectives: 1. Summarize the results of WIPP site-characterization studies carried out since the spring of 1983 as a result of specific agreements between the US Department of Energy and the State of New Mexico. 2. Summarize the results and status of site-characterization and facility-characterization studies carried out since 1983, but not specifically included in mandated agreements. 3. Compile the results of WIPP site-characterization studies into an internally consistent conceptual model for the geologic, hydrologic, geochemical, and structural behavior of the WIPP site. This model includes some consideration of the effects of the WIPP facility and shafts on the local characteristics of the Salado and Rustler Formations. 4. Discuss the present limitations and/or uncertainties in the conceptual geologic model of the WIPP site and facility. The objectives of this report are limited in scope, and do not include determination of whether or not the WIPP Project will comply with repository-performance criteria developed by the US Environmental Protection Agency (40CFR191).

  14. WIPP conceptual design report. Addendum L. Mine safety code review for Waste Isolation Pilot Plant (WIPP)

    International Nuclear Information System (INIS)

    1977-06-01

    An initial review of New Mexico and Federal mining standards and regulations has been made to determine their applicability to the WIPP conceptual design. These standards and regulations are reviewed point by point and the enclosed listing includes comments and recommendations for those which will affect the design and/or eventual operations of WIPP. The majority of the standards, both federal and state, are standard safe mining practices. Those standards are listed which are thought should be emphasized for development of the design; also those that would increase the hazard risk by strict compliance. Because the WIPP facility is different in many respects from mines for which the regulations were intended, strict compliance in some respects would provide an increased hazard, while in other instances the regulations are less strict than is desirable. These are noted in the attached review

  15. Probability of failure of the waste hoist brake system at the Waste Isolation Pilot Plant (WIPP)

    International Nuclear Information System (INIS)

    Greenfield, M.A.; Sargent, T.J.; Stanford Univ., CA

    1998-01-01

    In its most recent report on the annual probability of failure of the waste hoist brake system at the Waste Isolation Pilot Plant (WIPP), the annual failure rate is calculated to be 1.3E(-7)(1/yr), rounded off from 1.32E(-7). A calculation by the Environmental Evaluation Group (EEG) produces a result that is about 4% higher, namely 1.37E(-7)(1/yr). The difference is due to a minor error in the US Department of Energy (DOE) calculations in the Westinghouse 1996 report. WIPP's hoist safety relies on a braking system consisting of a number of components including two crucial valves. The failure rate of the system needs to be recalculated periodically to accommodate new information on component failure, changes in maintenance and inspection schedules, occasional incidents such as a hoist traveling out-of-control, either up or down, and changes in the design of the brake system. This report examines DOE's last two reports on the redesigned waste hoist system. In its calculations, the DOE has accepted one EEG recommendation and is using more current information about the component failures rates, the Nonelectronic Parts Reliability Data (NPRD). However, the DOE calculations fail to include the data uncertainties which are described in detail in the NPRD reports. The US Nuclear Regulatory Commission recommended that a system evaluation include mean estimates of component failure rates and take into account the potential uncertainties that exist so that an estimate can be made on the confidence level to be ascribed to the quantitative results. EEG has made this suggestion previously and the DOE has indicated why it does not accept the NRC recommendation. Hence, this EEG report illustrates the importance of including data uncertainty using a simple statistical example

  16. Basic data report for Drillhole AEC 7 (Waste Isolation Pilot Plant - WIPP)

    International Nuclear Information System (INIS)

    1983-01-01

    AEC 7 is a borehole drilled in western Lea County, New Mexico, in section 31, T.21S.,R.32E. AEC 7 was drilled to 3918 feet in 1974 by Oak Ridge National Laboratory; Sandia deepened the hole to 4732 ft in 1979. The borehole provided stratigraphic and lithologic information in the initial and final drilling. The borehole was used extensively for tests of borehole plugs and plugging operations. AEC 7 penetrated, in descending order, Holocene sands and Mescalero caliche (8 ft), Santa Rosa Sandstone (109 ft), Dewey Lake Red Beds (542 ft), Rustler Formation (325 ft), Salado Formation (2014 ft), Castile Formation (1521 ft), and the upper Bell Canyon Formation (197 ft). Cores were obtained from much of the borehole. An extensive suite of geophysical logs provides information on stratigraphy, lithology, and structure. Beds were in normal stratigraphic sequence and without structural deformation except in the lower Castile. Anhydrite II and Halite II appear to be repeated in the borehole. This section was penetrated during deepening by Sandia; the structural complication is consistent with deformation found nearby in ERDA 6. The potential site on which AEC 7 is located was abandoned in 1976 after ERDA 6 was drilled. The WIPP is a demonstration facility for the disposal of transuranic (TRU) waste from defense programs. The WIPP will also provide a research facility to investigate the interactions between bedded salt and high level wastes

  17. Probabilistic modelling of gas generation in nuclear waste repositories under consideration of new studies performed at the WIPP

    International Nuclear Information System (INIS)

    Niemeyer, M.; Wilhelm, S.; Poppei, J.

    2012-01-01

    consequences for calculations in long-term safety analyses are discussed. Recent experimental studies from WIPP have provided new quantitative results concerning the rates of microbial degradation under aerobic and anaerobic conditions. In addition to the methodology and selected results, this contribution provides a comparison to the experimental results from WIPP and an evaluation of the results under consideration of the previously used degradation rates. (authors)

  18. New Mexico Environmental Evaluation Group - experience in reviewing WIPP

    International Nuclear Information System (INIS)

    Neill, R.H.

    1983-01-01

    The purpose of the New Mexico Environmental Evaluation Group is to conduct an independent evaluation of the potential radiation exposure to people from WIPP--a radioactive waste facility intended to permanently dispose transuranic radioactive waste generated from the nation's nuclear weapons program. The concept of a State review of a proposed radioactive waste facility has been endorsed by both Federal and State legislative and executive agencies, and the experiences and interactions of the past four years to solve problems of this first-of-a-kind radioactive waste facility has led to many innovations in conflict resolution. The multidisciplinary Group's position is neither pro nor anti-WIPP and results are published and given broad dissemination to insure technical and public scrutiny of its work

  19. Supplement analysis of transuranic waste characterization and repackaging activities at the Idaho National Engineering Laboratory in support of the Waste Isolation Pilot Plant test program

    International Nuclear Information System (INIS)

    1991-03-01

    This supplement analysis has been prepared to describe new information relevant to waste retrieval, handling, and characterization at the Idaho National Engineering Laboratory (INEL) and to evaluate the need for additional documentation to satisfy the National Environmental Policy Act (NEPA). The INEL proposes to characterize and repackage contact-handled transuranic waste to support the Waste Isolation Pilot Plant (WIPP) Test Phase. Waste retrieval, handling and processing activities in support of test phase activities at the WIPP were addressed in the Supplemental Environmental Impact Statement (SEIS) for the WIPP. To ensure that test-phase wastes are properly characterized and packaged, waste containers would be retrieved, nondestructively examined, and transported from the Radioactive Waste Management Complex (RWMC) to the Hot-Fuel Examination Facility for headspace gas analysis, visual inspections to verify content code, and waste acceptance criteria compliance, then repackaging into WIPP experimental test bins or returned to drums. Following repackaging the characterized wastes would be returned to the RWMC. Waste characterization would help DOE determine WIPP compliance with US Environmental Protection Agency regulations governing disposal of transuranic waste and hazardous waste. Additionally, this program supports onsite compliance with Resource Conservation and Recovery Act (RCRA) requirements, compliance with the terms of the No-Migration Variance at WIPP, and provides data to support future waste shipments to WIPP. This analysis will help DOE determine whether there have been substantial changes made to the proposed action at the INEL, or if preparation of a supplement to the WIPP Final Environmental Impact Statement (DOE, 1980) and SEIS (DOE, 1990a) is required. This analysis is based on current information and includes details not available to the SEIS

  20. Basic data report for drillhole ERDA 6 (Waste Isolation Pilot Plant - WIPP)

    International Nuclear Information System (INIS)

    1983-01-01

    ERDA 6 was drilled in eastern Eddy County, New Mexico, to investigate a candidate site for a nuclear waste repository. The site was subsequently rejected on the basis of geological data. ERDA 6 was drilled in the NE 1/4 SE 1/4, section 35, T21S,R31E. The borehole encountered, from top to bottom, 17 ft of Quaternary deposits, 55 ft of the Triassic Santa Rosa Sandstone, 466 ft of the Dewey Lake Red Beds, 273 ft of the Rustler Formation, 1785.5 ft of the Salado Formation and 374.5 ft of the upper Castile Formation, all of Permian age. Cores or drill cuttings were taken throughout the hole. A suite of wireline geophysical logs was run to a depth of 883 ft to facilitate the recognition and correlation of rock units, to assure identification of major lithologies and to provide depth determinations independent of drill-pipe measurements. The site at ERDA 6 was rejected because the structure of the lower Salado and the Castile is too severe to develop a repository along a single set of beds. The borehole also intersected a reservoir of pressurized brine and gas at about 2710'. The pore volume for the reservoir was estimated to be in the range from about 200,000 to about 2 million barrels. ERDA 6 was re-entered in 1981 by the Department of Energy (DOE) for the purpose of further testing the brine reservoir. Those tests are described in separate reports by the DOE and its contractors. The WIPP is a demonstration facility for the disposal of transuranic (TRU) waste from defense programs. The WIPP will also provide a research facility to investigate the interactions between bedded salt and high level wastes

  1. Basic data report for drillhole ERDA 6 (Waste Isolation Pilot Plant - WIPP)

    Energy Technology Data Exchange (ETDEWEB)

    1983-01-01

    ERDA 6 was drilled in eastern Eddy County, New Mexico, to investigate a candidate site for a nuclear waste repository. The site was subsequently rejected on the basis of geological data. ERDA 6 was drilled in the NE 1/4 SE 1/4, section 35, T21S,R31E. The borehole encountered, from top to bottom, 17 ft of Quaternary deposits, 55 ft of the Triassic Santa Rosa Sandstone, 466 ft of the Dewey Lake Red Beds, 273 ft of the Rustler Formation, 1785.5 ft of the Salado Formation and 374.5 ft of the upper Castile Formation, all of Permian age. Cores or drill cuttings were taken throughout the hole. A suite of wireline geophysical logs was run to a depth of 883 ft to facilitate the recognition and correlation of rock units, to assure identification of major lithologies and to provide depth determinations independent of drill-pipe measurements. The site at ERDA 6 was rejected because the structure of the lower Salado and the Castile is too severe to develop a repository along a single set of beds. The borehole also intersected a reservoir of pressurized brine and gas at about 2710'. The pore volume for the reservoir was estimated to be in the range from about 200,000 to about 2 million barrels. ERDA 6 was re-entered in 1981 by the Department of Energy (DOE) for the purpose of further testing the brine reservoir. Those tests are described in separate reports by the DOE and its contractors. The WIPP is a demonstration facility for the disposal of transuranic (TRU) waste from defense programs. The WIPP will also provide a research facility to investigate the interactions between bedded salt and high level wastes.

  2. Basic data report for drillhole ERDA 9 (Waste Isolation Pilot Plant WIPP)

    International Nuclear Information System (INIS)

    1983-01-01

    ERDA 9 was drilled in eastern Eddy County, New Mexico, to investigate and test salt beds for the disposal of nuclear wastes. The hole was placed near the SE corner of section 20, T22S,R31E. It was drilled between April 28 and June 4, 1976, to a depth of 2889 ft (measured from a kelly bushing altitude of 3,420.4 ft MSL). The borehole encountered, from top to bottom, Holocene deposits (including artificial fill) of 22 ft, the Pleistocene Mescalero Caliche (5 ft) and Gatuna Formation (27 ft), 9 ft of the Triassic Santa Rosa Sandstone, and 487 ft of the Dewey Lake Red Beds, 290 ft of the Rustler Formation, 1976 ft of the Salado Formation and 53 ft of the Castile Formation, all of Permian age. Cuttings were collected at 5-ft intervals for the land surface to a depth of 1090 ft, and consecutive cores were taken to a depth of 2876.6 ft. A suite of wireline geophysical logs was run the full length of the borehole to measure distribution of radioactive elements and hydrogen, and variations in rock density and elastic velocity. On the basis of the borehole findings and related hydrological and geophysical programs, the site was judged suitable to pursue the extensive geological characterization program which followed. The core from ERDA 9 provided a suite of samples extensively tested for rock mechanics, physical properties, and mineralogy. Drill-stem tests in ERDA 9 indicated no significant fluids or permeability in the Salado beds of interest. The WIPP is a demonstration facility for the disposal of transuranic (TRU) waste from defense programs. The WIPP will also provide a research facility to investigate the interactions between bedded salt and high level wastes

  3. Process Experimental Pilot Plant

    International Nuclear Information System (INIS)

    Henze, H.

    1986-01-01

    The Process Experimental Pilot Plant (PREPP) at the Idaho National Engineering Laboratory (INEL) was built to convert transuranic contaminated solid waste into a form acceptable for disposal at the Waste Isolation Pilot Plant (WIPP), located near Carlsbad, New Mexico. There are about 2.0 million cubic ft of transuranic waste stored at the Transuranic Storage Area of the INEL's Radioactive Waste Management Complex (RWMC). The Stored Waste Examination Pilot Plant (SWEPP) located at the RWMC will examine this stored transuranic waste to determine if the waste is acceptable for direct shipment to and storage at WIPP, or if it requires shipment to PREPP for processing before shipment to WIPP. The PREPP process shreds the waste, incinerates the shredded waste, and cements (grouts) the shredded incinerated waste in new 55-gal drums. Unshreddable items are repackaged and returned to SWEPP. The process off-gas is cleaned prior to its discharge to the atmosphere, and complies with the effluent standards of the State of Idaho, EPA, and DOE. Waste liquid generated is used in the grouting operation

  4. Resource Conservation and Recovery Act Part B permit application [for the Waste Isolation Pilot Plant (WIPP)]. Volume 7: Revision 1.0

    Energy Technology Data Exchange (ETDEWEB)

    1992-07-01

    This permit application (Vol. 7) for the WIPP facility contains appendices related to the following information: Ground water protection; personnel; solid waste management; and memorandums concerning environmental protection standards.

  5. Site evaluation for the Waste Isolation Pilot Plant (WIPP)

    International Nuclear Information System (INIS)

    Hill, L.R.

    1979-01-01

    Preliminary site selection activities for the WIPP are complete now; these consisted primarily of national and regional studies over the past fifteen years, and resulted in selection of the WIPP study area for geological characterization. The work of geological characterization should be considered to have begun with the drilling of ERDA 9 at the center of the WIPP study area and the initiation of seismic reflection work on the site. That geological characterization, which is primarily oriented to provide specific data concerning the present geology of the site, was virtually complete in December, 1978, when the Geological Characterization Report was submitted to the Department of Energy; much basic information has been gathered indicating no major technical problems with the site as it is now understood. Studies of long-term processes which might affect a repository or have an effect on safety analyses will now be the major geotechnical activity for the WIPP site evaluation team, some of these activities are already underway. These studies will deal with the age of significant features and the rates and processes which produce those features. The information so gained will be useful in increasing the confidence in evaluation of the safety of a repository

  6. The evolution of the Waste Isolation Pilot Plant (WIPP) project's public affairs program

    International Nuclear Information System (INIS)

    Walter, L.H.

    1988-01-01

    As a first-of-a-kind facility, the Waste Isolation Pilot Plant (WIPP) presents a unique perspective on the value of designing a public affairs program that grown with and complements a project's evolution from construction to operations. Like the project itself, the public affairs programs progressed through several stages to its present scope. During the construction phase, foundations were laid in the community. Then, in this past year as the project entered a preoperational status, emphasis shifted to broaden the positive image that had been created locally. In this stage, public affairs presented the project's positive elements to the various state agencies, government officials, and federal organizations involved in our country's radioactive waste management program. Most recently, and continuing until receipt of the first shipment of waste in October 1988, an even broader, more aggressive public affairs program is planned

  7. Preliminary performance assessment for the Waste Isolation Pilot Plant, December 1992. Volume 3, Model parameters: Sandia WIPP Project

    Energy Technology Data Exchange (ETDEWEB)

    1992-12-29

    This volume documents model parameters chosen as of July 1992 that were used by the Performance Assessment Department of Sandia National Laboratories in its 1992 preliminary performance assessment of the Waste Isolation Pilot Plant (WIPP). Ranges and distributions for about 300 modeling parameters in the current secondary data base are presented in tables for the geologic and engineered barriers, global materials (e.g., fluid properties), and agents that act upon the WIPP disposal system such as climate variability and human-intrusion boreholes. The 49 parameters sampled in the 1992 Preliminary Performance Assessment are given special emphasis with tables and graphics that provide insight and sources of data for each parameter.

  8. Department of Energy Operation Quality Assurance Program for the Waste Isolation Pilot Plant (WIPP) Project (Carlsbad, New Mexico)

    International Nuclear Information System (INIS)

    1987-12-01

    The purpose of this plan is to describe the Quality Assurance (QA)reverse arrow Program to be established and implemented by the US Department of Energy (DOE) Waste Isolation Pilot Plant (WIPP) Project Office (WPO) and by the Project Participants: the Scientific Advisor (Sandia National Laboratory) and the Management and Operating Contractor (Westinghouse Electric Corporation). This plan addresses the Pre-Operational and Operational phases of the WIPP Project not addressed under the construction phase. This plan also requires the QA Programs for DOE and Project Participants to be structured so as to comply with this plan and ANSI-ASME NQA-1. The prime responsibility for Operational Quality Assurance rests with the DOE WIPP Project Office and is implemented through the combined efforts of the Scientific Advisor and the Management and Operating Contractor. Overviews of selected operational and testing activities will be are conducted in accordance with prescribed requirements and that adequate documentation of these activities is maintained. 4 figs

  9. The WIPP institutional program for states' involvement in WIPP transportation planning, and operations

    International Nuclear Information System (INIS)

    Leonard, R.

    1991-01-01

    The Supplemental Stipulated Agreement of 1982 between the state of New Mexico and the Department of Energy (DOE) committed the DOE to emergency response training in New Mexico. In 1988, the state of New Mexico and the DOE entered into a two-year agreement providing $203,017 for financial assistance and $67,000 for equipment to enhance the state's emergency response capability. In 1990, this agreement was extended for an additional two years providing $226,088 for financial assistance and $39,000 for emergency response equipment. Also, in 1988 an agreement between the Western Governors' Association and the United States Department of Transportation provided $1.0 million to seven western states (Colorado, Idaho, New Mexico, Oregon, Utah, Washington, and Wyoming) to identify and implement programs to help ensure the safe transportation of transuranic waste from western points of origin to the Waste Isolation Pilot Plant (WIPP). As part of this process, the Western Governors' Association and the seven states prepared the Report to Congress, Transport of Transuranic Wastes to the Waste Isolation Pilot Plant: State Concerns and Proposed Solutions. In July 1990, a five-year cooperative agreement between the Western Governors' Association and the DOE was signed providing $1.515 million in funding to seven states along the Hanford/WIPP route. This continued the work started under the Department of Transportation's cooperative agreement

  10. Performance assessment in support of compliance certification application for the WIPP project

    International Nuclear Information System (INIS)

    Jow, H.N.; Anderson, D.R.; Marietta, M.; Helton, J.; Basabilvazo, G.

    1998-03-01

    The Waste Isolation Pilot Plant (WIPP) is being developed by the US Department of Energy for the geologic (deep underground) disposal of transuranic (TRU) waste. A Compliance Certification Application (CCA) of the WIPP (1) for such disposal was submitted to the US Environmental Protection Agency (EPA) in October, 1996, and is currently under review, with a decision anticipated in late 1997. An important component of the CCA is a performance assessment (PA) for the WIPP carried out by Sandia National Laboratories. The final outcome of the PA is a complementary cumulative distribution function (CCDF) for radionuclide releases from the WIPP to the accessible environment and an assessment of the confidence with which this CCDF can be estimated. This paper describes the computational process used to develop the CCDF. The results of uncertainty and sensitivity analysis are also presented

  11. Prospects for regional groundwater contamination due to karst landforms in Mescalero caliche at the WIPP site near Carlsbad, New Mexico

    International Nuclear Information System (INIS)

    Phillips, R.H.

    1987-01-01

    Plutonium from nuclear weapons production will be permanently buried in Permian salt beds at the Waste Isolation Pilot Plant (WIPP), located in the Nash Draw watershed. Overlying the salt beds are cavernous Rustler dolomite aquifers, the most likely flow paths for contaminated water from WIPP to the biosphere. Overlying the Rustler are sandstones, siltstones, Mescalero caliche, and windblown sand. The WIPP site contains thousands of closed topographic depressions. If some are karst features, the ability of WIPP to isolate nuclear waste cannot be demonstrated. A water balance and geochemical analysis of the Nash Draw watershed and nearby brine springs were undertaken to determine: (1) which Rustler aquifers discharge where, and in what quantities; (2) the rates of evapotranspiration and natural groundwater recharge; (3) the most likely discharge point for contaminated water from WIPP. Laguna Grande, a natural salt lake in Nash Draw, is the outlet for the Rustler dolomite aquifers and for plutonium contaminations from WIPP. The recharge time for the Rustler may be only 6 to 8 years. WIPP is unsuitable for nuclear waste isolation because: (1) Rustler groundwater flow paths and travel times are inherently unpredictable; (2) caliche and sandstones allow rainwater recharge of the Rustler; (3) pressurized brine underneath WIPP can carry dissolved waste up the WIPP shafts to the Rustler; (4) geologic barriers between the brine and WIPP are unreliable; and (5) WIPP is vulnerable to human intrusion

  12. In situ testing of titanium and mild steel nuclear waste containers at the WIPP site

    International Nuclear Information System (INIS)

    Molecke, M.A.

    1990-01-01

    An overview of the Waste Isolation Pilot Plant (WIPP) in situ tests on the corrosion of titanium and mild steel for high level waste containers is presented. The tests at Sandia have moved out of the laboratory into a test underground facility in order to evaluate the performance of the waste package material. The tests are being performed under both near-reference and accelerated salt repository conditions. Some containers are filled with high level waste glass (non-radioactive); others contain electric heaters. Backfill material is either bentonite/sand or crushed salt. In other tests metals and glasses are exposed directly to brine. The tests are designed to study the corrosion and metallurgy of the canister and overpack materials; the feasibility and performance of backfill materials; and near-field effects such as brine migration

  13. WIPP facility representative program plan

    International Nuclear Information System (INIS)

    1994-01-01

    This plan describes the Department of Energy (DOE), Carlsbad Area Office (CAO) facility representative (FR) program at the Waste Isolation Pilot Plant (WIPP). It provides the following information: (1) FR and support organization authorities and responsibilities; (2) FR program requirements; and (3) FR training and qualification requirements

  14. Waste acceptance criteria for the Waste Isolation Pilot Plant

    International Nuclear Information System (INIS)

    1996-04-01

    The Waste Isolation Pilot Plant (WIPP) Waste Acceptance Criteria (WAC), DOE/WIPP-069, was initially developed by a U.S. Department of Energy (DOE) Steering Committee to provide performance requirements to ensure public health and safety as well as the safe handling of transuranic (TRU) waste at the WIPP. This revision updates the criteria and requirements of previous revisions and deletes those which were applicable only to the test phase. The criteria and requirements in this document must be met by participating DOE TRU Waste Generator/Storage Sites (Sites) prior to shipping contact-handled (CH) and remote-handled (RH) TRU waste forms to the WIPP. The WIPP Project will comply with applicable federal and state regulations and requirements, including those in Titles 10, 40, and 49 of the Code of Federal Regulations (CFR). The WAC, DOE/WIPP-069, serves as the primary directive for assuring the safe handling, transportation, and disposal of TRU wastes in the WIPP and for the certification of these wastes. The WAC identifies strict requirements that must be met by participating Sites before these TRU wastes may be shipped for disposal in the WIPP facility. These criteria and requirements will be reviewed and revised as appropriate, based on new technical or regulatory requirements. The WAC is a controlled document. Revised/changed pages will be supplied to all holders of controlled copies

  15. WIPP gets thumbs up; Ward Valley time runs out

    International Nuclear Information System (INIS)

    Anon.

    1996-01-01

    Legislation passed in late September clears the way for the Department of Energy to begin shipment of national defense transuranic (TRU) radioactive waste to the Waste Isolation Pilot Plant (WIPP), near Carlsbad, NM, as early as November 1997. On September 23, President Clinton signed the Fiscal Year 1997 Defense Authorization Bill, which contained amendments to the 1992 WIPP Land Withdrawal Act. The implementation of the law will help the DOE in its cleanup sites nationwide, and will enhance public health and safety by providing for the disposal of the waste in a 2150-ft underground salt formation, far away from population centers. Key components of the legislation include the following: (1) The US Environmental Protection Agency (EPA) will continue as primary regulator of WIPP. (2) The EPA will have one year to review the Compliance Certification Application, which the DOE was to submit by October 31, 1996. Upon EPA certification (expected in October 1997), the DOE will begin shipping transuranic waste in November 1997. (3) A six-month waiting period for waste shipments has been removed (previously, the DOE was required to wait 180 days after the Energy Secretary's decision to begin disposal operations). (4) New Mexico will receive $20 million immediately, and annually for 14 years, with the funds to be used for infrastructure and road improvements in the state

  16. WIPP/SRL Program - characterization of samples for burial in WIPP

    International Nuclear Information System (INIS)

    Holtzscheiter, R.C.; Wicks, G.G.

    1984-01-01

    The laboratory studies described in this report characterize the performance and homogeneity of waste glass from a 2-ft-dia glass slice taken from a full-scale 2 ft by 10 ft canister filled with glass at TNX. The leaching performance of glass samples extracted from the slice was determined as a function of radial position and will be used in support of existing programs. The waste glass produced at TNX and used for the burial tests in WIPP was very homogeneous. The extent of glass leaching in brine (using standard MCC-1 leach tests and based on boron extraction) was 15X less than that of leaching in deionized water

  17. Mineralogy in the Waste Isolation Pilot Plant (WIPP) facility stratigraphic horizon

    International Nuclear Information System (INIS)

    Stein, C.L.

    1985-09-01

    Forty-six samples were selected for this study from two cores, one extending 50 ft up through the roof of the WIPP facility and the other penetrating 50 ft below the facility floor. These samples, selected from approximately every other foot of core length, represent the major lithologies present in the immediate vicinity of the WIPP facility horizon: ''clean'' halite, polyhalitic halite, argillaceous halite, and mixed polyhalitic-argillaceous halite. Samples were analyzed for non-NaCl mineralogy by determining weight percents of water- and EDTA-insoluble residues, which were then identified by x-ray diffraction. In general, WIPP halite contains at most 5 wt % non-NaCl residue. The major mineral constituents are quartz, magnesite, anhydrite, gypsum, polyhalite, and clays. Results of this study confirm that, in previous descriptions of WIPP core, trace mineral quantities have been visually overestimated by approximately an order of magnitude. 9 refs., 5 figs., 5 tabs

  18. Resource Conservation and Recovery Act: Part B, Permit application [for the Waste Isolation Pilot Plant (WIPP)]. Volume 1, Revison 1.0

    Energy Technology Data Exchange (ETDEWEB)

    1992-03-01

    This report contains information related to the permit application for the WIPP facility. Information is presented on solid waste management; personnel safety; emergency plans; site characterization; applicable regulations; decommissioning; and ground water monitoring requirements.

  19. Technical evaluation of WIPP by the New Mexico environmental evaluation group

    International Nuclear Information System (INIS)

    Neill, R.

    1988-01-01

    The Waste Isolation Pilot Plant (WIPP) is a repository under construction in southeastern New Mexico for the disposal of 14.1 million curies of defense transuranic (TRU) waste. The US Department of Energy (DOE) plans to start storing waste in the underground facility in October 1988 for a 5-yr research and demonstration period. Since the State of New Mexico had a number of concerns in 1978 regarding the impact on health and safety of the proposed WIPP facility for disposal of radioactive waste, the DOE agreed to fund an independent technical review and evaluation of the planned repository, resulting in the creation of the Environmental Evaluation Group (EEG). This full-time multidisciplinary group has published 39 major reports to date, testified before the New Mexico Legislature and the US Congress, and has disseminated the results of analyses to DOE, the governor, the legislature, the Congress, the scientific community, and the general public. While the disposal of radioactive defense mill tailings and defense high-level wastes are both subject to US Nuclear Regulatory Commission (NRC) licensing, Congress specifically chose not to have defense TRU waste disposal licensed by the NRC. This has placed a heavy burden on EEG as the only full-time technical review agency on WIPP, but without regulatory authority

  20. WIPP [Waste Isolation Pilot Plant]/SRL in situ tests: Part 2, Pictorial history of MIIT [Materials Interface Interactions Tests] and final MIIT matrices, assemblies, and sample listings

    International Nuclear Information System (INIS)

    Wicks, G.G.; Weinle, M.E.; Molecke, M.A.

    1987-01-01

    In situ testing of Savannah River Plant [SRP] waste glass is an important component in ensuring technical and public confidence in the safety and effective performance of the wasteforms. Savannah River Laboratory [SRL] is currently involved in joint programs involving field testing of SRP waste in Sweden, Belgium, and the United Kingdom. Most recently, this in situ effort has been expanded to include the first field tests to be conducted in the United States, involving burial of a variety of simulated nuclear waste systems. This new effort, called the Materials Interface Interactions Tests or MIIT, is a program jointly conducted by Sandia National Laboratory/Waste Isolation Pilot Plant [WIPP] and SRL. Over 1800 samples, supplied by the United States, France, West Germany, Belgium, Canada, Japan, and the United Kingdom, were buried approximately 650m below the earth's surface in the salt geology at WIPP, near Carlsbad, New Mexico. The MIIT program is one of the largest cooperative efforts ever undertaken in the waste management field; the data produced from these tests are designed to benefit a wide cross-section of the waste management community. An earlier document provided an overview of the WIPP MIIT program and described its place in the waste glass assessment program at Savannah River. This document represents the second in this series and its objectives include: (1) providing a pictorial history of assembly and installation of wasteforms, metals, and geologic samples in WIPP; (2) providing 'finalized and completed' sample matrices for the entire 7-part MIIT program; (3) documenting final sample assemblies by the use of schematic drawings, including each sample, its orientation, and its environment; and (4) providing a complete listing of all samples and the means for managing analyses and resulting data

  1. INTRAVAL Phase 2 WIPP 1 test case report: Modeling of brine flow through halite at the Waste Isolation Pilot Plant site

    International Nuclear Information System (INIS)

    Beauheim, R.L.

    1997-05-01

    This report describes the WIPP 1 test case studied as part of INTRAVAL, an international project to study validation of geosphere transport models. The WIPP 1 test case involved simulation of measured brine-inflow rates to boreholes drilled into the halite strata surrounding the Waste Isolation Pilot Plant repository. The goal of the test case was to evaluate the use of Darcy's law to describe brine flow through halite. The general approach taken was to try to obtain values of permeability and specific capacitance that would be: (1) consistent with other available data and (2) able to provide reasonable simulations of all of the brine-inflow experiments performed in the Salado Formation. All of the teams concluded that the average permeability of the halite strata penetrated by the holes was between approximately 10 -22 and 10 -21 m 2 . Specific capacitances greater than 10 -10 Pa -1 are inconsistent with the known constitutive properties of halite and are attributed to deformation, possibly ongoing, of the halite around the WIPP excavations. All project teams found that Darcy-flow models could replicate the experimental data in a consistent and reasonable manner. Discrepancies between the data and simulations are attributed to inadequate representation in the models of processes modifying the pore-pressure field in addition to the experiments themselves, such as ongoing deformation of the rock around the excavations. Therefore, the conclusion from the test case is that Darcy-flow models can reliably be used to predict brine flow to WIPP excavations, provided that the flow modeling is coupled with measurement and realistic modeling of the pore-pressure field around the excavations. This realistic modeling of the pore-pressure field would probably require coupling to a geomechanical model of the stress evolution around the repository

  2. WIPP Facility Work Plan for Solid Waste Management Units and Areas of Concern

    International Nuclear Information System (INIS)

    2001-01-01

    This 2001 Facility Work Plan (FWP) has been prepared as required by Module VII, Section VII.M.1 of the Waste Isolation Pilot Plant (WIPP) Hazardous Waste Facility Permit, NM4890139088-TSDF (the Permit); (NMED, 1999a), and incorporates comments from the New Mexico Environment Department (NMED) received on December 6, 2000 (NMED, 2000a). This February 2001 FWP describes the programmatic facility-wide approach to future investigations at Solid Waste Management Units (SWMUs) and Areas of Concern (AOCs) specified in the Permit. The permittees are evaluating data from previous investigations of the SWMUs and AOCs against the newest guidance proposed by the NMED. Based on these data, the permittees expect that no further sampling will be required and that a request for No Further Action (NFA) at the SWMUs and AOCs will be submitted to the NMED. This FWP addresses the current Permit requirements. It uses the results of previous investigations performed at WIPP and expands the investigations as required by the Permit. As an alternative to the Resource Conservation and Recovery Act (RCRA) Facility Investigation (RFI) specified in Module VII of the Permit, current NMED guidance identifies an Accelerated Corrective Action Approach (ACAA) that may be used for any SWMU or AOC (NMED, 1998). This accelerated approach is used to replace the standard RFI Work Plan and Report sequence with a more flexible decision-making approach. The ACAA process allows a Facility to exit the schedule of compliance contained in the Facility's Hazardous and Solid Waste Amendments (HSWA) permit module and proceed on an accelerated time frame. Thus, the ACAA process can be entered either before or after an RFI Work Plan. According to the NMED's guidance, a facility can prepare an RFI Work Plan or Sampling and Analysis Plan (SAP) for any SWMU or AOC (NMED, 1998). Based on this guidance, a SAP constitutes an acceptable alternative to the RFI Work Plan specified in the Permit.

  3. Radioactive waste disposal: Waste Isolation Pilot Plants (WIPP). March 1978-November 1989 (Citations from the NTIS data base). Report for Mar 78-Nov 89

    International Nuclear Information System (INIS)

    1990-01-01

    This bibliography contains citations concerning the Waste Isolation Pilot Plant (WIPP), a geologic repository located in New Mexico for transuranic wastes generated by the U.S. Government. Articles follow the development of the program from initial site selection and characterization through construction and testing, along with research programs on environmental impacts, structural design, and radionuclide landfill gases. Existing plants and facilities, pilot plants, migration, rock mechanics, economics, regulations, and transport of wastes to the site are also included. The Salt Repository Project and the Crystalline Repository Project are referenced in related published bibliographies. (Contains 184 citations fully indexed and including a title list.)

  4. Hanford Site Transuranic (TRU) Waste Certification Plan

    International Nuclear Information System (INIS)

    GREAGER, T.M.

    2000-01-01

    As a generator of transuranic (TRU) and TRU mixed waste destined for disposal at the Waste Isolation Pilot Plant (WIPP), the Hanford Site must ensure that its TRU waste meets the requirements of US. Department of Energy (DOE) 0 435.1, ''Radioactive Waste Management,'' and the Contact-Handled (CH) Transuranic Waste Acceptance Criteria for the Waste Isolation Pilot Plant (WIPP-WAC). WIPP-WAC requirements are derived from the WIPP Technical Safety Requirements, WIPP Safety Analysis Report, TRUPACT-II SARP, WIPP Land Withdrawal Act, WIPP Hazardous Waste Facility Permit, and Title 40 Code of Federal Regulations (CFR) 191/194 Compliance Certification Decision. The WIPP-WAC establishes the specific physical, chemical, radiological, and packaging criteria for acceptance of defense TRU waste shipments at WIPP. The WPP-WAC also requires that participating DOE TRU waste generator/treatment/storage sites produce site-specific documents, including a certification plan, that describe their program for managing TRU waste and TRU waste shipments before transferring waste to WIPP. Waste characterization activities provide much of the data upon which certification decisions are based. Waste characterization requirements for TRU waste and TRU mixed waste that contains constituents regulated under the Resource Conservation and Recovery Act (RCRA) are established in the WIPP Hazardous Waste Facility Permit Waste Analysis Plan (WAP). The Hanford Site Quality Assurance Project Plan (QAPjP) (HNF-2599) implements the applicable requirements in the WAP and includes the qualitative and quantitative criteria for making hazardous waste determinations. The Hanford Site must also ensure that its TRU waste destined for disposal at WPP meets requirements for transport in the Transuranic Package Transporter-11 (TRUPACT-11). The US. Nuclear Regulatory Commission (NRC) establishes the TRUPACT-11 requirements in the Safety Analysis Report for the TRUPACT-II Shipping Package (TRUPACT-11 SARP). In

  5. Permeability of natural rock salt from the Waste Isolation Pilot Plant (WIPP) during damage evolution and healing

    International Nuclear Information System (INIS)

    Pfeifle, T.W.; Hurtado, L.D.

    1998-06-01

    The US Department of Energy has developed the Waste Isolation Pilot Plant (WIPP) in the bedded salt of southeastern New Mexico to demonstrate the safe disposal of radioactive transuranic wastes. Four vertical shafts provide access to the underground workings located at a depth of about 660 meters. These shafts connect the underground facility to the surface and potentially provide communication between lithologic units, so they will be sealed to limit both the release of hazardous waste from and fluid flow into the repository. The seal design must consider the potential for fluid flow through a disturbed rock zone (DRZ) that develops in the salt near the shafts. The DRZ, which forms initially during excavation and then evolves with time, is expected to have higher permeability than the native salt. The closure of the shaft openings (i.e., through salt creep) will compress the seals, thereby inducing a compressive back-stress on the DRZ. This back-stress is expected to arrest the evolution of the DRZ, and with time will promote healing of damage. This paper presents laboratory data from tertiary creep and hydrostatic compression tests designed to characterize damage evolution and healing in WIPP salt. Healing is quantified in terms of permanent reduction in permeability, and the data are used to estimate healing times based on considerations of first-order kinetics

  6. Hanford site transuranic waste certification plan

    International Nuclear Information System (INIS)

    GREAGER, T.M.

    1999-01-01

    As a generator of transuranic (TRU) and TRU mixed waste destined for disposal at the Waste Isolation Pilot Plant (WIPP), the Hanford Site must ensure that its TRU waste meets the requirements of U.S. Department of Energy (DOE) Order 5820.2A, ''Radioactive Waste Management, and the Waste Acceptance Criteria for the Waste Isolation Pilot Plant' (DOE 1996d) (WIPP WAC). The WIPP WAC establishes the specific physical, chemical, radiological, and packaging criteria for acceptance of defense TRU waste shipments at WIPP. The WIPP WAC also requires that participating DOE TRU waste generator/treatment/storage sites produce site-specific documents, including a certification plan, that describe their management of TRU waste and TRU waste shipments before transferring waste to WIPP. The Hanford Site must also ensure that its TRU waste destined for disposal at WIPP meets requirements for transport in the Transuranic Package Transporter41 (TRUPACT-11). The U.S. Nuclear Regulatory Commission (NRC) establishes the TRUPACT-I1 requirements in the ''Safety Analysis Report for the TRUPACT-II Shipping Package'' (NRC 1997) (TRUPACT-I1 SARP)

  7. WIPP: a perspective from ten years of operating success - 16189

    International Nuclear Information System (INIS)

    Gregory, Phillip C.

    2009-01-01

    The Waste Isolation Pilot Plant (WIPP), located 35 miles east of Carlsbad, New Mexico, USA is the first and, to the author's knowledge, only facility in the world for the permanent disposal of defense related transuranic (TRU) waste. Soon after plutonium was first synthesized in 1940 by a team of scientists at the University of California Berkeley Laboratory, the need to find a permanent repository for plutonium contaminated waste was recognized due to the more than 24,000 year half-life of Plutonium-239 ( 239 Pu). In 1957 the National Academy of Sciences published a report recommending deep geological burial in bedded salt as a possible solution. However, more than 50 years passed before the solution was achieved when in 1999 WIPP received the first shipment of TRU waste from Los Alamos National Laboratory. Ten years later, more than 7,600 shipments of TRU waste have been disposed of in rooms mined in an ancient salt bed more than 2,000 feet underground. This paper provides a brief history of WIPP with an overview of the technical, regulatory, and political hurdles that had to be overcome before the idea of a permanent disposal facility became reality. The paper focuses primarily on the safe, uneventful transportation program that has moved 100,000- plus containers of TRU waste from various U.S. Department of Energy (DOE) generator and/or storage sites across the Unites States to southeastern New Mexico. (author)

  8. WIPP WAC Equivalence Support Measurements for Low-Level Sludge Waste at Los Alamos National Laboratory - 12242

    Energy Technology Data Exchange (ETDEWEB)

    Gruetzmacher, Kathleen M.; Bustos, Roland M.; Ferran, Scott G.; Gallegos, Lucas E. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Lucero, Randy P. [Pajarito Scientific Corporation, Santa Fe, New Mexico 87507 (United States)

    2012-07-01

    Los Alamos National Laboratory (LANL) uses the Nevada National Security Site (NNSS) as an off-site disposal facility for low-level waste (LLW), including sludge waste. NNSS has issued a position paper that indicates that systems that are not certified by the Carlsbad Field Office (CBFO) for Waste Isolation Pilot Plant (WIPP) disposal of Transuranic (TRU) waste must demonstrate equivalent practices to the CBFO certified systems in order to assign activity concentration values to assayed items without adding in the Total Measurement Uncertainty (TMU) when certifying waste for NNSS disposal. Efforts have been made to meet NNSS requirements to accept sludge waste for disposal at their facility. The LANL LLW Characterization Team uses portable high purity germanium (HPGe) detector systems for the nondestructive assay (NDA) of both debris and sludge LLW. A number of performance studies have been conducted historically by LANL to support the efficacy and quality of assay results generated by the LANL HPGe systems, and, while these detector systems are supported by these performance studies and used with LANL approved procedures and processes, they are not certified by CBFO for TRU waste disposal. Beginning in 2009, the LANL LLW Characterization Team undertook additional NDA measurements of both debris and sludge simulated waste containers to supplement existing studies and procedures to demonstrate full compliance with the NNSS position paper. Where possible, Performance Demonstration Project (PDP) drums were used for the waste matrix and PDP sources were used for the radioactive sources. Sludge drums are an example of a matrix with a uniform distribution of contaminants. When attempting to perform a gamma assay of a sludge drum, it is very important to adequately simulate this uniform distribution of radionuclides in order to accurately model the assay results. This was accomplished by using a spiral radial source tube placement in a sludge drum rather than the standard

  9. Disposal phase experimental program plan

    International Nuclear Information System (INIS)

    1997-01-01

    The Waste Isolation Pilot Plant (WIPP) facility comprises surface and subsurface facilities, including a repository mined in a bedded salt formation at a depth of 2,150 feet. It has been developed to safely and permanently isolate transuranic (TRU) radioactive wastes in a deep geological disposal site. On April 12, 1996, the DOE submitted a revised Resource Conservation and Recovery Act (RCRA) Part B permit application to the New Mexico Environment Department (NMED). The DOE anticipates receiving an operating permit from the NMED; this permit is required prior to the start of disposal operations. On October 29, 1996, the DOE submitted a Compliance Certification Application (CCA) to the US Environmental Protection Agency (EPA) in accordance with the WIPP land Withdrawal Act (LWA) of 1992 (Public Law 102-579) as amended, and the requirements of Title 40 of the Code of Federal Regulations (40 CFR) Parts 191 and 194. The DOE plans to begin disposal operations at the WIPP in November 1997 following receipt of certification by the EPA. The disposal phase is expected to last for 35 years, and will include recertification activities no less than once every five years. This Disposal Phase Experimental Program (DPEP) Plan outlines the experimental program to be conducted during the first 5-year recertification period. It also forms the basis for longer-term activities to be carried out throughout the 35-year disposal phase. Once the WIPP has been shown to be in compliance with regulatory requirements, the disposal phase gives an opportunity to affirm the compliance status of the WIPP, enhance the operations of the WIPP and the national TRU system, and contribute to the resolution of national and international nuclear waste management technical needs. The WIPP is the first facility of its kind in the world. As such, it provides a unique opportunity to advance the technical state of the art for permanent disposal of long-lived radioactive wastes

  10. The Waste Isolation Pilot Plant Performance Assessment Program

    International Nuclear Information System (INIS)

    Myers, J.; Coons, W.E.; Eastmond, R.; Morse, J.; Chakrabarti, S.; Zurkoff, J.; Colton, I.D.; Banz, I.

    1986-01-01

    The Waste Isolation Pilot Plant (WIPP) Performance Assessment Program involves a comprehensive analysis of the WIPP project with respect to the recently finalized Environmental Protection Agency regulations regarding the long-term geologic isolation of radioactive wastes. The performance assessment brings together the results of site characterization, underground experimental, and environmental studies into a rigorous determination of the performance of WIPP as a disposal system for transuranic radioactive waste. The Program consists of scenario development, geochemical, hydrologic, and thermomechanical support analyses and will address the specific containment and individual protection requirements specified in 40 CFR 191 sub-part B. Calculated releases from these interrelated analyses will be reported as an overall probability distribution of cumulative release resulting from all processes and events occurring over the 10,000 year post-closure period. In addition, results will include any doses to the public resulting from natural processes occurring over the 1,000 year post-closure period. The overall plan for the WIPP Performance Assessment Program is presented along with approaches to issues specific to the WIPP project

  11. Milestones for disposal of radioactive waste at the Waste Isolation Pilot Plant (WIPP) in the United States

    International Nuclear Information System (INIS)

    Rechard, R.P.

    1998-04-01

    Since its identification as a potential deep geologic repository in about 1973, the regulatory assessment process for the Waste Isolation Pilot Plant (WIPP) in New Mexico has developed over the past 25 years. National policy issues, negotiated agreements, and court settlements over the first half of the project had a strong influence on the amount and type of scientific data collected. Assessments and studies before the mid 1980s were undertaken primarily (1) to satisfy needs for environmental impact statements, (2) to develop general understanding of selected natural phenomena associated with nuclear waste disposal, or (3) to satisfy negotiated agreements with the State of New Mexico. In the last third of the project, federal compliance policy and actual regulations were sketched out, but continued to evolve until 1996. During this eight-year period, four preliminary performance assessments, one compliance performance assessment, and one verification performance assessment were performed

  12. Milestones for disposal of radioactive waste at the Waste Isolation Pilot Plant (WIPP) in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Rechard, R.P.

    1998-04-01

    Since its identification as a potential deep geologic repository in about 1973, the regulatory assessment process for the Waste Isolation Pilot Plant (WIPP) in New Mexico has developed over the past 25 years. National policy issues, negotiated agreements, and court settlements over the first half of the project had a strong influence on the amount and type of scientific data collected. Assessments and studies before the mid 1980s were undertaken primarily (1) to satisfy needs for environmental impact statements, (2) to develop general understanding of selected natural phenomena associated with nuclear waste disposal, or (3) to satisfy negotiated agreements with the State of New Mexico. In the last third of the project, federal compliance policy and actual regulations were sketched out, but continued to evolve until 1996. During this eight-year period, four preliminary performance assessments, one compliance performance assessment, and one verification performance assessment were performed.

  13. A probabilistic analysis of a catastrophic transuranic waste hoist accident at the WIPP

    International Nuclear Information System (INIS)

    Greenfield, M.A.; Sargent, T.J.; Stanford Univ., CA

    1993-06-01

    This report builds upon the extensive and careful analyses made by the DOE of the probability of failure of the waste hoist, and more particularly on the probability of failure of a major component, the hydraulic brake system. The extensive fault tree analysis prepared by the DOE was the starting point of the present report. A key element of this work is the use of probability distributions rather than so-called point estimates to describe the probability of failure of an element. One of the authors (MAG) developed the expressions for the probability of failure of the brake system. The second author (TJS) executed the calculations of the final expressions for failure probabilities. The authors hope that this work will be of use to the DOE in its evaluation of the safety of the waste hoist, a key element at the WIPP

  14. Preservation of artifacts in salt mines as a natural analog for the storage of transuranic wastes at the WIPP repository

    International Nuclear Information System (INIS)

    Martell, M.A.; Hansen, F.; Weiner, R.

    1998-01-01

    Use of nature's laboratory for scientific analysis of complex systems is a largely untapped resource for understanding long-term disposal of hazardous materials. The Waste Isolation Pilot Plant (WIPP) in the US is a facility designed and approved for storage of transuranic waste in a salt medium. Isolation from the biosphere must be ensured for 10,000 years. Natural analogs provide a means to interpret the evolution of the underground disposal setting. Investigations of ancient sites where manmade materials have experienced mechanical and chemical processes over millennia provide scientific information unattainable by conventional laboratory methods. This paper presents examples of these pertinent natural analogs, provides examples of features relating to the WIPP application, and identifies potential avenues of future investigations. This paper cites examples of analogical information pertaining to the Hallstatt salt mine in Austria and Wieliczka salt mine in Poland. This paper intends to develop an appreciation for the applicability of natural analogs to the science and engineering of a long-term disposal facility in geomedia

  15. The WIPP research and development test program

    International Nuclear Information System (INIS)

    Tyler, L.D.

    1985-01-01

    The WIPP (Waste Isolation Pilot Plant) is a DOE RandD Facility for the purpose of developing the technology needed for the safe disposal of the United States defense-related radioactive waste. The in-situ test program is defined for the thermal-structural interactions, plugging and sealing, and waste package interactions in a salt environment. An integrated series of large-scale underground tests address the issues of both systems and long-term isolation performance of a repository

  16. Resource conservation and recovery act draft hazardous waste facility permit: Waste Isolation Pilot Plant (WIPP). Attachments: Volume 4 of 4

    Energy Technology Data Exchange (ETDEWEB)

    1993-08-01

    Volume IV contains the following attachments for Module IV: VOC monitoring plan for bin-room tests (Appendix D12); bin emission control and VOC monitoring system drawings; bin scale test room ventilation drawings; WIPP supplementary roof support system, underground storage area, room 1, panel 1, DOE/WIPP 91-057; and WIPP supplementary roof support system, room 1, panel 1, geotechnical field data analysis bi-annual report, DOE/WIPP 92-024.

  17. Compilation of historical radiological data collected in the vicinity of the WIPP site

    International Nuclear Information System (INIS)

    Bradshaw, P.L.; Louderbough, E.T.

    1987-01-01

    The Radiological Baseline Program (RBP) at the Waste Isolation Pilot Plant (WIPP) has been implemented to characterize the radiological conditions at the site prior to receipt of radioactive wastes. Because southeastern New Mexico was the site of an underground nuclear test in 1961, various sampling programs have intermittently monitored background and elevated radiation levels in the vicinity of the WIPP. In addition, radiological characterization of the site region was performed during the 1970's in support of the WIPP Environmental Impact Statement. The historical data are drawn primarily from monitoring activities of the US Public Health Service (PHS), the Environmental Protection Agency (EPA), US Geological Survey (USGS) and Sandia National Laboratories, Albuquerque (SNLA). Information on air and water quality, meat, milk, biota and vegetation is included in the report. This survey is intended to provide a source of reference for historical data on radiological conditions in the vicinity of the WIPP site prior to the establishment of a systematic Radiological Baseline Program. 31 refs., 1 fig

  18. Waste retrieval plan for the Waste Isolation Pilot Plant

    International Nuclear Information System (INIS)

    1993-03-01

    The US DOE has prepared this plan to meet the requirements of Public Law 102579, the Waste Isolation Pilot Plant (WIPP) LWA, The purpose. is to demonstrate readiness to retrieve from the WIPP underground transuranic radioactive waste that will be used for testing should retrieval be needed. The WIPP, a potential geologic repository for transuranic wastes generated in national-defense activities, has been constructed in southeastern New Mexico. Because the transuranic wastes will remain radioactive for a very long time, the WIPP must reasonably ensure safe performance over thousands of years. The DOE therefore decided to develop the facility in phases, to preclude premature decisions and to conduct the performance assessments needed to demonstrate long-term safety. Surface facilities for receiving waste have been built, and considerable underground excavation, 2150 feet below the surface, has been completed. The next step is a test phase, including underground experiments called ''bin tests'' and ''alcove test(s)'' with contact-handled transuranic waste. The objective of these waste tests is to collect relevant data about the gas-generation potential and volatile organic compound (VOC) source term of the waste for developing a basis for demonstrating long term safety by compliance with the applicable disposal regulations (40 CFR 191, 264 and 268). The test phase will end when a decision is made to begin disposal in the WIPP or to terminate the project if regulatory compliance cannot be determined and demonstrated. Authorization to receive transuranic waste at the WIPP for the test phase is given by the WIPP LWA provided certain requirements are met

  19. Permeability of WIPP Salt During Damage Evolution and Healing

    International Nuclear Information System (INIS)

    BODNER, SOL R.; CHAN, KWAI S.; MUNSON, DARRELL E.

    1999-01-01

    The presence of damage in the form of microcracks can increase the permeability of salt. In this paper, an analytical formulation of the permeability of damaged rock salt is presented for both initially intact and porous conditions. The analysis shows that permeability is related to the connected (i.e., gas accessible) volumetric strain and porosity according to two different power-laws, which may be summed to give the overall behavior of a porous salt with damage. This relationship was incorporated into a constitutive model, known as the Multimechanism Deformation Coupled Fracture (MDCF) model, which has been formulated to describe the inelastic flow behavior of rock salt due to coupled creep, damage, and healing. The extended model was used to calculate the permeability of rock salt from the Waste Isolation Pilot Plant (WIPP) site under conditions where damage evolved with stress over a time period. Permeability changes resulting from both damage development under deviatoric stresses and damage healing under hydrostatic pressures were considered. The calculated results were compared against experimental data from the literature, which indicated that permeability in damaged intact WIPP salt depends on the magnitude of the gas accessible volumetric strain and not on the total volumetric strain. Consequently, the permeability of WIPP salt is significantly affected by the kinetics of crack closure, but shows little dependence on the kinetics of crack removal by sintering

  20. Effects of microbial processes on gas generation under expected WIPP repository conditions: Annual report through 1992

    International Nuclear Information System (INIS)

    Francis, A.J.; Gillow, J.B.

    1993-09-01

    Microbial processes involved in gas generation from degradation of the organic constituents of transuranic waste under conditions expected at the Waste Isolation Pilot Plant (WIPP) repository are being investigated at Brookhaven National Laboratory. These laboratory studies are part of the Sandia National Laboratories -- WIPP Gas Generation Program. Gas generation due to microbial degradation of representative cellulosic waste was investigated in short-term ( 6 months) experiments by incubating representative paper (filter paper, paper towels, and tissue) in WIPP brine under initially aerobic (air) and anaerobic (nitrogen) conditions. Samples from the WIPP surficial environment and underground workings harbor gas-producing halophilic microorganisms, the activities of which were studied in short-term experiments. The microorganisms metabolized a variety of organic compounds including cellulose under aerobic, anaerobic, and denitrifying conditions. In long-term experiments, the effects of added nutrients (trace amounts of ammonium nitrate, phosphate, and yeast extract), no nutrients, and nutrients plus excess nitrate on gas production from cellulose degradation

  1. WIPP documentation plan

    International Nuclear Information System (INIS)

    Plung, D.L.; Montgomery, T.T.; Glasstetter, S.R.

    1986-01-01

    In support of the programs at the Waste Isolation Pilot Plant (WIPP), the Publications and Procedures Section developed a documentation plan that provides an integrated document hierarchy; further, this plan affords several unique features: 1) the format for procedures minimizes the writing responsibilities of the technical staff and maximizes use of the writing and editing staff; 2) review cycles have been structured to expedite the processing of documents; and 3) the numbers of documents needed to support the program have been appreciably reduced

  2. Preliminary assessment of RTR and visual characterization for selected waste categories

    International Nuclear Information System (INIS)

    Ziegler, D.L.

    1992-01-01

    The first transuranic (TRU) waste shipped to the Waste Isolation Pilot Plant (WIPP) will be for the WIPP Experimental Program. The purpose of the Experimental Program is to determine the gas generation rates and potential for gas generation by the waste after it has been permanently stored at the WIPP. The first phase of these tests will be performed at WIPP with test bins that have been filled and sealed in accordance with the test plan for bin scale tests. A second phase of the testing, the Alcove Test, will involve drummed waste placed in sealed rooms within WIPP. A preliminary test was conducted at the Rocky Flats Plant (RFP) to evaluate potential methods for use in the characterization of waste. The waste material types to be identified were as defined in the bin-scale test plan -- Cellulosics, Plastic, Rubber, Corroding Metal/Steel, Corroding Metal/Aluminum, Non-corroding Metal, Solid Inorganic, Inorganic Sludges, other organics and Cements. A total of 19 drums representing eleven different waste types (Rocky Flats Plant -- Identification Description Codes (IDC)) and seven different TRUCON Code materials were evaluated. They included Dry Combustibles, Wet Combustibles, Plastic, light Metal, Glass (Non-Raschig Ring). Raschig Rings, M g O crucibles, HEPA Filters, Insulation, Leaded Dry Box Gloves, and Graphite. These Identification Description Codes were chosen because of their abundance on plant, as well as the variability in drum loading techniques. The goal of this test was to evaluate the effectiveness of RTR inspection and visual inspection as characterization methods for waste. In addition, gas analysis of the head space was conducted to provide an indication of the types of gas generated

  3. Waste Isolation Pilot Plant simulated RH TRU waste experiments: Data and interpretation pilot

    International Nuclear Information System (INIS)

    Molecke, M.A.; Argueello, G.J.; Beraun, R.

    1993-04-01

    The simulated, i.e., nonradioactive remote-handled transuranic waste (RH TRU) experiments being conducted underground in the Waste Isolation Pilot Plant (WIPP) were emplaced in mid-1986 and have been in heated test operation since 9/23/86. These experiments involve the in situ, waste package performance testing of eight full-size, reference RH TRU containers emplaced in horizontal, unlined test holes in the rock salt ribs (walls) of WIPP Room T. All of the test containers have internal electrical heaters; four of the test emplacements were filled with bentonite and silica sand backfill materials. We designed test conditions to be ''near-reference'' with respect to anticipated thermal outputs of RH TRU canisters and their geometrical spacing or layout in WIPP repository rooms, with RH TRU waste reference conditions current as of the start date of this test program. We also conducted some thermal overtest evaluations. This paper provides a: detailed test overview; comprehensive data update for the first 5 years of test operations; summary of experiment observations; initial data interpretations; and, several status; experimental objectives -- how these tests support WIPP TRU waste acceptance, performance assessment studies, underground operations, and the overall WIPP mission; and, in situ performance evaluations of RH TRU waste package materials plus design details and options. We provide instrument data and results for in situ waste container and borehole temperatures, pressures exerted on test containers through the backfill materials, and vertical and horizontal borehole-closure measurements and rates. The effects of heat on borehole closure, fracturing, and near-field materials (metals, backfills, rock salt, and intruding brine) interactions were closely monitored and are summarized, as are assorted test observations. Predictive 3-dimensional thermal and structural modeling studies of borehole and room closures and temperature fields were also performed

  4. Studies of transuranic waste storage under conditions expected in the Waste Isolation Pilot Plant (WIPP). Interim summary report, October 1, 1977-June 15, 1979

    International Nuclear Information System (INIS)

    Kosiewicz, S.T.; Barraclough, B.L.; Zerwekh, A.

    1980-01-01

    The major focus of the program has been on the gas generation potential of organic wastes produced by radiolytic and thermal degradation under simulated WIPP storage conditions. The effects of TRU contamination level, temperature, waste type, pressure, and exposure time on radiolysis are presented. In addition, results from preliminary experiments on processed sludge dewatering are discussed. A summary is presented here of the results of a detailed study of all retrievably stored TRU wastes present at LASL before January 1, 1978. The data indicate a gross volume for the LASL inventory of 1610 m 3 with a total weight of nearly 1.24 x 10 6 kg (1240 metric tonnes). The dominant radionuclide contents of the waste are plutonium (primarily 238 Pu) and americium

  5. WIPP Facility Work Plan for Solid Waste Management Units and Areas of Concern

    International Nuclear Information System (INIS)

    2002-01-01

    This 2002 Facility Work Plan (FWP) has been prepared as required by Module VII, Permit Condition VII.U.3 of the Waste Isolation Pilot Plant (WIPP) Hazardous Waste Facility Permit, NM4890139088-TSDF (the Permit) (New Mexico Environment Department [NMED], 1999a), and incorporates comments from the NMED received on December 6, 2000 (NMED, 2000a). This February 2002 FWP describes the programmatic facility-wide approach to future investigations at Solid Waste Management Units (SWMU) and Areas of Concern (AOC) specified in the Permit. The Permittees are evaluating data from previous investigations of the SWMUs and AOCs against the most recent guidance proposed by the NMED. Based on these data, and completion of the August 2001 sampling requested by the NMED, the Permittees expect that no further sampling will be required and that a request for No Further Action (NFA) at the SWMUs and AOCs will be submitted to the NMED. This FWP addresses the current Permit requirements. It uses the results of previous investigations performed at WIPP and expands the investigations as required by the Permit. As an alternative to the Resource Conservation and Recovery Act (RCRA) Facility Investigation (RFI) specified in Module VII of the Permit, current NMED guidance identifies an Accelerated Corrective Action Approach (ACAA) that may be used for any SWMU or AOC (NMED, 1998). This accelerated approach is used to replace the standard RFI Work Plan and Report sequence with a more flexible decision-making approach. The ACAA process allows a facility to exit the schedule of compliance contained in the facility's Hazardous and Solid Waste Amendments (HSWA) permit module and proceed on an accelerated time frame. Thus, the ACAA processcan be entered either before or after an RFI Work Plan. According to the NMED's guidance, a facility can prepare an RFI Work Plan or Sampling and Analysis Plan (SAP) for any SWMU or AOC (NMED, 1998). Based on this guidance, a SAP constitutes an acceptable

  6. Milestones for disposal of radioactive waste at the Waste Isolation Pilot Plant (WIPP) in the United States

    International Nuclear Information System (INIS)

    RECHARD, ROBERT P.

    2000-01-01

    The opening of the Waste Isolation Pilot Plant on March 26, 1999, was the culmination of a regulatory assessment process that had taken 25 years. National policy issues, negotiated agreements, and court settlements during the first 15 years of the project had a strong influence on the amount and type of scientific data collected up to this point. Assessment activities before the mid 1980s were undertaken primarily (1) to satisfy needs for environmental impact statements, (2) to satisfy negotiated agreements with the State of New Mexico, or (3) to develop general understanding of selected natural phenomena associated with nuclear waste disposal. In the last 10 years, federal compliance policy and actual regulations were sketched out, and continued to evolve until 1996. During this period, stochastic simulations were introduced as a tool for the assessment of the WIPP's performance, and four preliminary performance assessments, one compliance performance assessment, and one verification performance assessment were performed

  7. Geochemistry of Salado formation brines recovered from the Waste Isolation Pilot Plant (WIPP) repository

    International Nuclear Information System (INIS)

    Abitz, R.; Myers, J.; Drez, P.; Deal, D.

    1990-01-01

    Intergranular brines recovered from the repository horizon of the Waste Isolation Pilot Plant (WIPP) have major- and trace-element compositions that reflect seawater evaporation and diagenetic processes. Brines obtained from repository drill holes are heterogeneous with respect to composition but their compositional fields are distinct from those obtained from fluid inclusions in WIPP halite. The heterogeneity of brine compositions within the drill-hole population indicates a lack of mixing and fluid homogenization within the salt at the repository level. Compositional differences between intergranular (drill hole) and intragranular (fluid inclusions) brines is attributed to isolation of the latter from diagenetic fluids that were produced from dehydration reactions involving gypsum and clay minerals. Modeling of brine-rock equilibria indicates that equilibration with evaporite minerals controls the concentrations of major elements in the brine. Drill-hole brines are in equilibrium with the observed repository minerals halite, anhydrite, magnesite, polyhalite and quartz. The equilibrium model supports the derivation of drill-hole brines from near-field fluid, rather than large-scale vertical migration of fluids from the overlying Rustler or underlying Castile Formations. 13 refs., 6 figs., 6 tabs

  8. Geochemistry of Salado Formation brines recovered from the Waste Isolation Pilot Plant (WIPP) repository

    International Nuclear Information System (INIS)

    Abitz, R.; Myers, J.; Drez, P.; Deal, D.

    1990-01-01

    Intergranular brines recovered from the repository horizon of the Waste Isolation Pilot Plant (WIPP) have major- and trace-element compositions that reflect seawater evaporation and diagenetic processes. Brines obtained from repository drill holes are heterogenous with respect to composition, but their compositional fields are distinct from those obtained from fluid inclusions in WIPP halite. The heterogeneity of brine compositions within the drill-hole population indicates a lack of mixing and fluid homogenization within the salt at the repository level. Compositional differences between intergranular (drill hole) and intragranular (fluid inclusions) brines is attributed to isolation of the latter from diagenetic fluids that were produced from dehydration reactions involving gypsum and clay minerals. Modeling of brine-rock equilibria indicates that equilibration with evaporite minerals controls the concentrations of major elements in the brine. Drill-hole brines are in equilibrium with the observed repository minerals halite, anhydrite, magnesite, polyhalite and quartz. The equilibrium model supports the derivation of drill-hole brines from near-field fluid, rather than large-scale vertical migration of fluids from the overlying Rustler or underlying Castile Formations. 13 refs., 6 figs., 6 tabs

  9. Basic data report for drillhole WIPP 15 (Waste Isolation Pilot Plant-WIPP)

    International Nuclear Information System (INIS)

    1981-11-01

    WIPP 15 is a borehole drilled in Marformation.h, 1978, in section 18, T.23S., R. 35E. of south-central Lea County. The purpose of WIPP 15 was to examine fill in San Simon Sink in order to extract climatic information and to attempt to date the collapse of the sink. The borehole was cored to total depth (810.5 feet) and encountered, from top to bottom, Quaternary calcareous clay, marl and sand, the claystones and siltstones of the Triassic Santa Rosa Formation. Neutron and gamma ray geophysical logs were run to measure density and radioactivity. The sink was about 547 feet of Quaternary fill indicating subsidence and deposition. Diatomaceous beds exposed on the sink margin yielded samples dated by 14 C at 20,570 +- 540 years BP and greater than 32,000 years BP; these beds are believed stratigraphically equivalent to ditomaceous beds at 153 to 266 feet depth in the core. Aquatic fauna and flora from the upper 98 feet of core indicate a pluvial period (probably Tohokan) followed by an arid or very arid time before the present climate was established. Aquifer pump tests performed in the Quaternary sands and clays show transmissivities to be as high as 600 feet squared per day. As the water quality was good, the borehole was released to the lessee as a potential water well

  10. Basic data report for drillhole WIPP 15 (Waste Isolation Pilot Plant-WIPP)

    Energy Technology Data Exchange (ETDEWEB)

    1981-11-01

    WIPP 15 is a borehole drilled in Marformation.h, 1978, in section 18, T.23S., R. 35E. of south-central Lea County. The purpose of WIPP 15 was to examine fill in San Simon Sink in order to extract climatic information and to attempt to date the collapse of the sink. The borehole was cored to total depth (810.5 feet) and encountered, from top to bottom, Quaternary calcareous clay, marl and sand, the claystones and siltstones of the Triassic Santa Rosa Formation. Neutron and gamma ray geophysical logs were run to measure density and radioactivity. The sink was about 547 feet of Quaternary fill indicating subsidence and deposition. Diatomaceous beds exposed on the sink margin yielded samples dated by /sup 14/C at 20,570 +- 540 years BP and greater than 32,000 years BP; these beds are believed stratigraphically equivalent to ditomaceous beds at 153 to 266 feet depth in the core. Aquatic fauna and flora from the upper 98 feet of core indicate a pluvial period (probably Tohokan) followed by an arid or very arid time before the present climate was established. Aquifer pump tests performed in the Quaternary sands and clays show transmissivities to be as high as 600 feet squared per day. As the water quality was good, the borehole was released to the lessee as a potential water well.

  11. Source term estimation and the isotopic ratio of radioactive material released from the WIPP repository in New Mexico, USA

    International Nuclear Information System (INIS)

    Thakur, P.

    2016-01-01

    After almost 15 years of operations, the Waste Isolation Pilot Plant (WIPP) had one of its waste drums breach underground as a result of a runaway chemical reaction in the waste it contained. This incident occurred on February 14, 2014. Moderate levels of radioactivity were released into the underground air. A small portion of the contaminated underground air also escaped to the surface through the ventilation system and was detected approximately 1 km away from the facility. According to the source term estimation, the actual amount of radioactivity released from the WIPP site was less than 1.5 mCi. The highest activity detected on the surface was 115.2 μBq/m 3 for 241 Am and 10.2 μBq/m 3 for 239+240 Pu at a sampling station located 91 m away from the underground air exhaust point and 81.4 μBq/m 3 of 241 Am and 5.8 μBq/m 3 of 239+240 Pu at a monitoring station located approximately 1 km northwest of the WIPP facility. The dominant radionuclides released were americium and plutonium, in a ratio that matches the content of the breached drum. Air monitoring across the WIPP site intensified following the first reports of radiation detection underground to determine the extent of impact to WIPP personnel, the public, and the environment. In this paper, the early stage monitoring data collected by an independent monitoring program conducted by the Carlsbad Environmental Monitoring & Research Center (CEMRC) and an oversight monitoring program conducted by the WIPP's management and operating contractor, the Nuclear Waste Partnership (NWP) LLC were utilized to estimate the actual amount of radioactivity released from the WIPP underground. The Am and Pu isotope ratios were measured and used to support the hypothesis that the release came from one drum identified as having breached that represents a specific waste stream with this radionuclide ratio in its inventory. This failed drum underwent a heat and gas producing reaction that overpowered its vent and

  12. Mechanical compaction of Waste Isolation Pilot Plant simulated waste

    International Nuclear Information System (INIS)

    Butcher, B.M.; Thompson, T.W.; VanBuskirk, R.G.; Patti, N.C.

    1991-06-01

    The investigation described in this report acquired experimental information about how materials simulating transuranic (TRU) waste compact under axial compressive stress, and used these data to define a model for use in the Waste Isolation Pilot Plant (WIPP) disposal room analyses. The first step was to determine compaction curves for various simultant materials characteristic of TRU waste. Stress-volume compaction curves for various combinations of these materials were than derived to represent the combustible, metallic, and sludge waste categories. Prediction of compaction response in this manner is considered essential for the WIPP program because of the difficulties inherent in working with real (radioactive) waste. Next, full-sized 55-gallon drums of simulated combustible, metallic, and sludge waste were axially compacted. These results provided data that can be directly applied to room consolidation and data for comparison with the predictions obtained in Part 1 of the investigation. Compaction curves, which represent the combustible, metallic, and sludge waste categories, were determined, and a curve for the averaged waste inventory of the entire repository was derived. 9 refs., 31 figs., 12 tabs

  13. Environmental monitoring and cooperative resource management at the WIPP site

    International Nuclear Information System (INIS)

    1992-01-01

    This poster session by the Environmental Monitoring Section of the US DOE Waste Isolation Pilot Plant is to demonstrate that the DOE is committed to sound environmental management. This WIPP poster session demonstrates radiological as well as nonradiological environmental monitoring activities conducted routinely at the WIPP. And how data collected prior to the WIPP being operational is used to establish a preoperational baseline for environmental studies in which the samples collected during the operational phase will be compared. Cooperative Resource Management is a relatively new concept for governments agencies. It allows two or more agencies the ability to jointly share in funding a program or project and yet both agencies can benefit from the outcome. These programs are usually a biological type study. The WIPP cooperative agreement between the US BLM, DOE and its contractors is to continue the ongoing documentation of the diversity of the Chihuahuan desert

  14. Waste Isolation Pilot Plant (WIPP) site gravity survey and interpretation

    International Nuclear Information System (INIS)

    Barrows, L.J.; Fett, J.D.

    1983-04-01

    A portion of the WIPP site has been extensively surveyed with high-precision gravity. The main survey (in T22S, R31E) covered a rectangular area 2 by 4-1/3 mi encompassing all of WIPP site Zone II and part of the disturbed zone to the north of the site. Stations were at 293-ft intervals along 13 north-south lines 880 ft apart. The data are considered accurate to within a few hundredths of a milligal. Long-wavelength gravity anomalies correlate well with seismic time structures on horizons below the Castile Formation. Both the gravity anomalies and the seismic time structures are interpreted as resulting from related density and velocity variations within the Ochoan Series. Shorter wavelength negative gravity anomalies are interpreted as resulting from bulk density alteration in the vicinity of karst conduits. The WIPP gravity survey was unable to resolve low-amplitude, long-wavelength anomalies that should result from the geologic structures within the disturbed zone. It did indicate the degree and character of karst development within the surveyed area

  15. Rationale for the H-19 and H-11 tracer tests at the WIPP site

    International Nuclear Information System (INIS)

    Beauheim, R.L.; Meigs, L.C.; Davies, P.B.

    1996-01-01

    The Waste Isolation Pilot Plant (WIPP) is a repository for transuranic wastes constructed in bedded Permian-age halite in the Delaware Basin, a sedimentary basin in southeastern New Mexico, USA. A drilling scenario has been identified during performance assessment (PA) that could lead to the release of radionuclides to the Culebra Dolomite Member of the Rustler Formation, the most transmissive water-saturated unit above the repository horizon. Were this to occur, the radionuclides would need to be largely contained within the Culebra (or neighboring strata) within the WIPP-site boundary through the period lasting for 10,000 years after repository closure for WIPP to remain in compliance with applicable regulations on allowable releases. Thus, processes affecting transport of radionuclides within the Culebra are of importance to PA

  16. WIPP [Waste Isolation Pilot Plant] intermediate scale borehole test: A pretest analysis

    International Nuclear Information System (INIS)

    Argueello, J.G.

    1991-01-01

    A three-dimensional finite element structural analysis of the Intermediate Scale Borehole Test at the Waste Isolation Pilot Plant (WIPP) has been performed. The analysis provides insight into how a relatively new excavation in a creeping medium responds when introduced into an existing pillar which has been undergoing stress redistribution for 5.7 years. The stress field of the volume of material in the immediate vicinity of the borehole changes significantly when the hole is drilled. Closure of the hole is predicted to be larger in the vertical direction than in the horizontal direction, leading to an ovaling of the hole. The relatively high stresses near the hole persist even at the end of the simulation, 2 years after the hole is drilled. 12 ref., 10 figs

  17. A methodology of uncertainty/sensitivity analysis for PA of HLW repository learned from 1996 WIPP performance assessment

    International Nuclear Information System (INIS)

    Lee, Y. M.; Kim, S. K.; Hwang, Y. S.; Kang, C. H.

    2002-01-01

    The WIPP (Waste Isolation Pilot Plant) is a mined repository constructed by the US DOE for the permanent disposal of transuranic (TRU) wastes generated by activities related to defence of the US since 1970. Its historical disposal operation began in March 1999 following receipt of a final permit from the State of NM after a positive certification decision for the WIPP was issued by the EPA in 1998, as the first licensed facility in the US for the deep geologic disposal of radioactive wastes. The CCA (Compliance Certification Application) for the WIPP that the DOE submitted to the EPA in 1966 was supported by an extensive Performance Assessment (PA) carried out by Sandia National Laboratories (SNL), with so-called 1996 PA. Even though such PA methodologies could be greatly different from the way we consider for HLW disposal in Korea largely due to quite different geologic formations in which repository are likely to be located, a review on lots of works done through the WIPP PA studies could be the most important lessons that we can learn from in view of current situation in Korea where an initial phase of conceptual studies on HLW disposal has been just started. The objective of this work is an overview of the methodology used in the recent WIPP PA to support the US DOE WIPP CCA ans a proposal for Korean case

  18. Characterization of mixed CH-TRU waste at Argonne-West

    International Nuclear Information System (INIS)

    Dwight, C.C.; Guay, K.P.; Courtney, J.C.; Higgins, P.J.

    1993-01-01

    Argonne National Laboratory is participating in the Department of Energy's Waste Isolation Pilot Plant (WIPP) Experimental Test Program by characterizing and repackaging mixed contact-handled transuranic waste. Argonne's initial activities in the Program were described last year at Waste Management '92. Since then, additional waste has been characterized and repackaged, resulting in six bins ready for shipment to WIPP upon the initiation of the bin tests. Lessons learned from these operations are being factored in the design and installation of a new characterization facility, the Enhanced Waste Characterization Facility (EWCF). The objectives of the WIPP Experimental Test Program have also undergone change since last year leading to an accelerated effort to factor sludge sampling capability into the EWCF. Consequently, the initiation of non-sludge operations in the waste characterization chamber has been delayed to Summer 1993 while the sludge sampling modifications are incorporated into the facility. Benefits in operational flexibility, effectiveness, and efficiency and reductions in potential facility and personnel contamination and exposure are expected from the enhanced waste characterization facility within the Hot Fuel Examination Facility at Argonne-West. This paper summarizes results and lessons learned from recent characterization and repackaging efforts and future plans for characterization. It also describes design features and status of the EWCF

  19. Implications of the presence of petroleum resources on the integrity of the WIPP

    International Nuclear Information System (INIS)

    Silva, M.K.

    1994-06-01

    The Waste Isolation Pilot Plant (WIPP) is a facility of the US Department of Energy (DOE), designed and constructed for the permanent disposal of transuranic (TRU) defense waste. The WIPP is surrounded by reserves of potash, crude oil, and natural gas. These are attractive targets for exploratory drilling which could disrupt the integrity of the transuranic waste repository. The performance assessment calculations published to date have identified future drilling for oil and gas reserves as an event that may disrupt the repository and may release radionuclides in excess of the standards. Therefore, the probability of inadvertent human intrusion into the repository by drilling and its impact on the integrity of the repository must be carefully assessed. This report evaluates: (1) the studies funded by the DOE to examine the crude oil potential in the immediate vicinity of the WIPP; (2) the use of an elicitation exercise to predict future drilling rates for use in the calculation of the repository performance; and (3) the observed limitations of institutional controls. This report identifies the following issues that remain to be resolved: (1) the limited performance of blowout preventers after drilling into high pressure zones immediately adjacent to the WIPP Site Boundary; (2) reported problems with waterflooding operations in southeastern New Mexico; (3) reported water level rises in several wells completed in the Rustler Formation, south of the WIPP Site, possibly due to oil and gas wells or leaking injection wells; and (4) reports of inadequate well abandonment practices on BLM leases and the continued absence of enforceable regulations

  20. WIPP site and vicinity geological field trip

    International Nuclear Information System (INIS)

    Chaturvedi, L.

    1980-10-01

    The Environmental Evaluation Group (EEG) is conducting an assessment of the radiological health risks to people from the Waste Isolation Pilot Plant (WIPP). As a part of this work, EEG is making an effort to improve the understanding of those geological issues concerning the WIPP site which may affect the radiological consequences of the proposed repository. One of the important geological issues to be resolved is the timing and the nature of the dissolution processes which may have affected the WIPP site. EEG organized a two-day conference of geological scientists, titled Geotechnical Considerations for Radiological Hazard Assessment of WIPP on January 17-18, 1980. During this conference, it was realized that a field trip to the site would further clarify the different views on the geological processes active at the site. The field trip of June 16-18, 1980 was organized for this purpose. This report provides a summary of the field trip activities along with the participants post field trip comments. Important field stops are briefly described, followed by a more detailed discussion of critical geological issues. The report concludes with EEG's summary and recommendations to the US Department of Energy for further information needed to more adequately resolve concerns for the geologic and hydrologic integrity of the site

  1. Preservation of artifacts in salt mines as a natural analog for the storage of transuranic wastes at the WIPP repository

    Energy Technology Data Exchange (ETDEWEB)

    Martell, M.A.; Hansen, F.; Weiner, R.

    1998-10-01

    Use of nature`s laboratory for scientific analysis of complex systems is a largely untapped resource for understanding long-term disposal of hazardous materials. The Waste Isolation Pilot Plant (WIPP) in the US is a facility designed and approved for storage of transuranic waste in a salt medium. Isolation from the biosphere must be ensured for 10,000 years. Natural analogs provide a means to interpret the evolution of the underground disposal setting. Investigations of ancient sites where manmade materials have experienced mechanical and chemical processes over millennia provide scientific information unattainable by conventional laboratory methods. This paper presents examples of these pertinent natural analogs, provides examples of features relating to the WIPP application, and identifies potential avenues of future investigations. This paper cites examples of analogical information pertaining to the Hallstatt salt mine in Austria and Wieliczka salt mine in Poland. This paper intends to develop an appreciation for the applicability of natural analogs to the science and engineering of a long-term disposal facility in geomedia.

  2. HVAC fault tree analysis for WIPP integrated risk assessment

    International Nuclear Information System (INIS)

    Kirby, P.; Iacovino, J.

    1990-01-01

    In order to evaluate the public health risk from operation of the Waste Isolation Pilot Plant (WIPP) due to potential radioactive releases, a probabilistic risk assessment of waste handling operations was conducted. One major aspect of this risk assessment involved fault tree analysis of the plant heating, ventilation, and air conditioning (HVAC) systems, which comprise the final barrier between waste handling operations and the environment. 1 refs., 1 tab

  3. WIPP Compliance Certification Application calculations parameters. Part 1: Parameter development

    International Nuclear Information System (INIS)

    Howarth, S.M.

    1997-01-01

    The Waste Isolation Pilot Plant (WIPP) in southeast New Mexico has been studied as a transuranic waste repository for the past 23 years. During this time, an extensive site characterization, design, construction, and experimental program was completed, which provided in-depth understanding of the dominant processes that are most likely to influence the containment of radionuclides for 10,000 years. Nearly 1,500 parameters were developed using information gathered from this program; the parameters were input to numerical models for WIPP Compliance Certification Application (CCA) Performance Assessment (PA) calculations. The CCA probabilistic codes frequently require input values that define a statistical distribution for each parameter. Developing parameter distributions begins with the assignment of an appropriate distribution type, which is dependent on the type, magnitude, and volume of data or information available. The development of the parameter distribution values may require interpretation or statistical analysis of raw data, combining raw data with literature values, scaling of lab or field data to fit code grid mesh sizes, or other transformation. Parameter development and documentation of the development process were very complicated, especially for those parameters based on empirical data; they required the integration of information from Sandia National Laboratories (SNL) code sponsors, parameter task leaders (PTLs), performance assessment analysts (PAAs), and experimental principal investigators (PIs). This paper, Part 1 of two parts, contains a discussion of the parameter development process, roles and responsibilities, and lessons learned. Part 2 will discuss parameter documentation, traceability and retrievability, and lessons learned from related audits and reviews

  4. WIPP site and vicinity geological field trip

    International Nuclear Information System (INIS)

    Chaturvedi, L.

    1980-10-01

    The Environmental Evaluation Group is conducting an assessment of the radiological health risks to people from the Waste Isolation Pilot Plant. As a part of this work, EEG is making an effort to improve the understanding of those geological issues concerning the WIPP site which may affect the radiological consequences of the proposed repository. One of the important geological issues to be resolved is the timing and the nature of the dissolution processes which may have affected the WIPP site. EEG organized a two-day conference of geological scientists, on January 17-18, 1980. On the basis of the January conference and the June field trip, EEG has formed the following conclusions: (1) it has not been clearly established that the site or the surrounding area has been attacked by deep dissolution to render it unsuitable for the nuclear waste pilot repository; (2) the existence of an isolated breccia pipe at the site unaccompanied by a deep dissolution wedge, is a very remote possibility; (3) more specific information about the origin and the nature of the brine reservoirs is needed. An important question that should be resolved is whether each encounter with artesian brine represents a separate pocket or whether these occurrences are interconnected; (4) Anderson has postulated a major tectonic fault or a fracture system at the Basin margin along the San Simon Swale; (5) the area in the northern part of the WIPP site, identified from geophysical and bore hole data as the disturbed zone, should be further investigated to cleary understand the nature and significance of this structural anomaly; and (6) a major drawback encountered during the discussions of geological issues related to the WIPP site is the absence of published material that brings together all the known information related to a particular issue

  5. WIPP/SRL in-situ tests

    International Nuclear Information System (INIS)

    Mamsey, W.G.

    1990-01-01

    The Materials Interface Interactions Test (MIIT) is the only in-situ program involving the burial of simulated high-level waste forms operating in the United States. Fifteen glass and waste form compositions and their proposed package materials, supplied by 7 countries, are interred in salt at the Waste Isolation Pilot Plant (WIPP) in Carlsbad, New Mexico. A joint effort between Sandia National Laboratories and Savannah River Laboratory, MIIT is the largest international cooperative in-situ venture yet undertaken. The objective of the current study is to document the waste form compositions used in the MIIT program and then to examine compositional correlations based on structural considerations, bonding energies, and surface layer formation. These correlations show important similarities between the many different waste glass compositions studied world wide and suggest that these glasses would be expected to perform well and in a similar manner

  6. WIPP radiation dosimetry program

    International Nuclear Information System (INIS)

    Wu, C.F.

    1991-01-01

    Radiation dosimetry is the process by which various measurement results and procedures are applied to quantify the radiation exposure of an individual. Accurate and precise determination of radiation dose is a key factor to the success of a radiation protection program. The Waste Isolation Pilot Plant (WIPP), a Department of Energy (DOE) facility designed for permanent repository of transuranic wastes in a 2000-foot-thick salt bed 2150 feet underground, has established a dosimetry program developed to meet the requirements of DOE Order 5480.11, ''Radiation Protection for Occupational Workers''; ANSI/ASME NQA-1, ''Quality Assurance Program Requirements for Nuclear Facilities''; DOE Order 5484.1, ''Environmental Protection, Safety, and Health Protection Information Reporting Requirements''; and other applicable regulations

  7. Assessment of Contaminated Brine Fate and Transport in MB139 at WIPP

    Energy Technology Data Exchange (ETDEWEB)

    Kuhlman, Kristopher L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Applied Systems Analysis and Research Dept.; Malama, Bwalya [Sandia National Lab., Carlsbad, NM (United States). Performance Assessment Dept.

    2014-07-01

    Following the radionuclide release event of February 14, 2014 at the Waste Isolation Pilot Plant (WIPP), actinide contamination has been found on the walls and floor in Panel 7 as a result of a release in Room 7 of Panel 7. It has been proposed to decontaminate Panel 7 at the WIPP by washing contaminated surfaces in the underground with fresh water. A cost-effective cleanup of this contamination would allow for a timely return to waste disposal operations at WIPP. It is expected that the fresh water used to decontaminate Panel 7 will flow as contaminated brine down into the porosity of the materials under the floor – the run-of-mine (ROM) salt above Marker Bed 139 (MB139) and MB139 itself – where its fate will be controlled by the hydraulic and transport properties of MB139. Due to the structural dip of MB139, it is unlikely that this brine would migrate northward towards the Waste-Handling Shaft sump. A few strategically placed shallow small-diameter observation boreholes straddling MB139 would allow for monitoring the flow and fate of this brine after decontamination. Additionally, given that flow through the compacted ROM salt floor and in MB139 would occur under unsaturated (or two-phase) conditions, there is a need to measure the unsaturated flow properties of crushed WIPP salt and salt from the disturbed rock zone (DRZ).

  8. The Wipp Disposal Decision Plan: the Successful Road Map for Transparent and Credible Decision-Making

    International Nuclear Information System (INIS)

    Eriksson, Leif G.

    2001-01-01

    The Waste Isolation Pilot Plant (WIPP) deep geological repository for long-lived, transuranic radioactive waste (TRUW) opened on the 26th of March 1999. Beginning on the 4th of April 1994, the United States Department of Energy (DOE), implemented the WIPP Disposal Decision Plan (DDP), which embodied the five-year vision and intents of the then DOE Manager of the Carlsbad Area Office (CAO), presently the Carlsbad Field Office (CBFO). The successful design and implementation of the DDP ensured good science, enhanced regulator and stake holder (affected and interested parties) interactions and acceptance of programmatic decisions, which resulted in the certification of the WIPP TRUW repository by the U.S. Environmental Protection Agency (EPA) on the 18th of May 1998, almost three years earlier than projected in November 1993. The present paper contains three sections: A concise background information on the CBFO's TRUW disposal program, incl. the legal framework, current status, and author-envisioned challenges and solutions; A description of the main components and attributes of the WIPP DDP. A summary of the lessons learned during and after the 1994 through 1998 implementation of the WIPP DDP

  9. The Wipp Disposal Decision Plan: the Successful Road Map for Transparent and Credible Decision-Making

    Energy Technology Data Exchange (ETDEWEB)

    Eriksson, Leif G. [GRAM, Inc., Albuquerque, NM (United States)

    2001-07-01

    The Waste Isolation Pilot Plant (WIPP) deep geological repository for long-lived, transuranic radioactive waste (TRUW) opened on the 26th of March 1999. Beginning on the 4th of April 1994, the United States Department of Energy (DOE), implemented the WIPP Disposal Decision Plan (DDP), which embodied the five-year vision and intents of the then DOE Manager of the Carlsbad Area Office (CAO), presently the Carlsbad Field Office (CBFO). The successful design and implementation of the DDP ensured good science, enhanced regulator and stake holder (affected and interested parties) interactions and acceptance of programmatic decisions, which resulted in the certification of the WIPP TRUW repository by the U.S. Environmental Protection Agency (EPA) on the 18th of May 1998, almost three years earlier than projected in November 1993. The present paper contains three sections: A concise background information on the CBFO's TRUW disposal program, incl. the legal framework, current status, and author-envisioned challenges and solutions; A description of the main components and attributes of the WIPP DDP. A summary of the lessons learned during and after the 1994 through 1998 implementation of the WIPP DDP.

  10. A coupled mechanical/hydrologic model for WIPP shaft seals

    International Nuclear Information System (INIS)

    Ehgartner, B.

    1991-06-01

    Effective sealing of the Waste Isolation Pilot Plant (WIPP) shafts will be required to isolate defense-generated transuranic wastes from the accessible environment. Shafts penetrate water-bearing hard rock formations before entering a massive creeping-salt formation (Salado) where the WIPP is located. Short and long-term seals are planned for the shafts. Short-term seals, a composite of concrete and bentonite, will primarily be located in the hard rock formations separating the water-bearing zones from the Salado Formation. These seals will limit water flow to the underlying long-term seals in the Salado. The long-term seals will consist of lengthly segments of initially unsaturated crushed salt. Creep closure of the shaft will consolidate unsaturated crushed salt, thereby reducing its permeability. However, water passing through the upper short-term seals and brine inherent to the salt host rock itself will eventually saturate the crushed salt and consolidation could be inhibited. Before saturating, portions of the crushed salt in the shafts are expected to consolidate to a permeability equivalent to the salt host rock, thereby effectively isolating the waste from the overlying water-bearing formations. A phenomenological model is developed for the coupled mechanical/hydrologic behavior of sealed WIPP shafts. The model couples creep closure of the shaft, crushed salt consolidation, and the associated reduction in permeability with Darcy's law for saturated fluid flow to predict the overall permeability of the shaft seal system with time. 17 refs., 6 figs., 1 tab

  11. Remote-handled transuranic waste study

    International Nuclear Information System (INIS)

    1995-10-01

    The Waste Isolation Pilot Plant (WIPP) was developed by the US Department of Energy (DOE) as a research and development facility to demonstrate the safe disposal of transuranic (TRU) radioactive wastes generated from the Nation's defense activities. The WIPP disposal inventory will include up to 250,000 cubic feet of TRU wastes classified as remote handled (RH). The remaining inventory will include contact-handled (CH) TRU wastes, which characteristically have less specific activity (radioactivity per unit volume) than the RH-TRU wastes. The WIPP Land Withdrawal Act (LWA), Public Law 102-579, requires a study of the effect of RH-TRU waste on long-term performance. This RH-TRU Waste Study has been conducted to satisfy the requirements defined by the LWA and is considered by the DOE to be a prudent exercise in the compliance certification process of the WIPP repository. The objectives of this study include: conducting an evaluation of the impacts of RH-TRU wastes on the performance assessment (PA) of the repository to determine the effects of Rh-TRU waste as a part of the total WIPP disposal inventory; and conducting a comparison of CH-TRU and RH-TRU wastes to assess the differences and similarities for such issues as gas generation, flammability and explosiveness, solubility, and brine and geochemical interactions. This study was conducted using the data, models, computer codes, and information generated in support of long-term compliance programs, including the WIPP PA. The study is limited in scope to post-closure repository performance and includes an analysis of the issues associated with RH-TRU wastes subsequent to emplacement of these wastes at WIPP in consideration of the current baseline design. 41 refs

  12. Idaho National Engineering Laboratory code assessment of the Rocky Flats transuranic waste

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-01

    This report is an assessment of the content codes associated with transuranic waste shipped from the Rocky Flats Plant in Golden, Colorado, to INEL. The primary objective of this document is to characterize and describe the transuranic wastes shipped to INEL from Rocky Flats by item description code (IDC). This information will aid INEL in determining if the waste meets the waste acceptance criteria (WAC) of the Waste Isolation Pilot Plant (WIPP). The waste covered by this content code assessment was shipped from Rocky Flats between 1985 and 1989. These years coincide with the dates for information available in the Rocky Flats Solid Waste Information Management System (SWIMS). The majority of waste shipped during this time was certified to the existing WIPP WAC. This waste is referred to as precertified waste. Reassessment of these precertified waste containers is necessary because of changes in the WIPP WAC. To accomplish this assessment, the analytical and process knowledge available on the various IDCs used at Rocky Flats were evaluated. Rocky Flats sources for this information include employee interviews, SWIMS, Transuranic Waste Certification Program, Transuranic Waste Inspection Procedure, Backlog Waste Baseline Books, WIPP Experimental Waste Characterization Program (headspace analysis), and other related documents, procedures, and programs. Summaries are provided of: (a) certification information, (b) waste description, (c) generation source, (d) recovery method, (e) waste packaging and handling information, (f) container preparation information, (g) assay information, (h) inspection information, (i) analytical data, and (j) RCRA characterization.

  13. A formal expert judgment procedure for performance assessments of the Waste Isolation Pilot Plant

    International Nuclear Information System (INIS)

    Trauth, K.M.; Guzowski, R.V.; Hora, S.C.

    1994-09-01

    The Waste Isolation Pilot Plant (WIPP) is an experimental facility located in southeastern New Mexico. It has been designed to determine the feasibility of the geologic disposal of defense-generated transuranic waste in a deep bedded-salt formation. The WIPP was also designed for disposal and will operate in that capacity if approved. The WIPP Performance Assessment Department at Sandia National Laboratories has been conducting analyses to assess the long-term performance of the WIPP. These analyses sometimes require the use of expert judgment. This Department has convened several expert-judgment panels and from that experience has developed an internal quality-assurance procedure to guide the formal elicitation of expert judgment. This protocol is based on the principles found in the decision-analysis literature

  14. A formal expert judgment procedure for performance assessments of the Waste Isolation Pilot Plant

    Energy Technology Data Exchange (ETDEWEB)

    Trauth, K.M. [Sandia National Labs., Albuquerque, NM (United States); Guzowski, R.V. [Science Applications International Corp., Albuquerque, NM (United States); Hora, S.C. [Univ. of Hawaii, Hilo, HI (United States). Business Administration & Economics Div.

    1994-09-01

    The Waste Isolation Pilot Plant (WIPP) is an experimental facility located in southeastern New Mexico. It has been designed to determine the feasibility of the geologic disposal of defense-generated transuranic waste in a deep bedded-salt formation. The WIPP was also designed for disposal and will operate in that capacity if approved. The WIPP Performance Assessment Department at Sandia National Laboratories has been conducting analyses to assess the long-term performance of the WIPP. These analyses sometimes require the use of expert judgment. This Department has convened several expert-judgment panels and from that experience has developed an internal quality-assurance procedure to guide the formal elicitation of expert judgment. This protocol is based on the principles found in the decision-analysis literature.

  15. A formal expert judgment procedure for performance assessments of the Waste Isolation Pilot Plant

    International Nuclear Information System (INIS)

    Trauth, K.M.; Guzowski, R.V.; Hora, S.C.

    1993-01-01

    The Waste Isolation Pilot Plant (WIPP) is an experimental facility located in southeastern New Mexico. It has been designed to determine the feasibility of the geologic disposal of defense-generated transuranic waste in a deep bedded-salt formation. The WIPP was also designed for disposal and will operate in that capacity if approved. The WIPP Performance Assessment Department at Sandia National Laboratories has been conducting analyses to assess the long-term performance of the WIPP. These analyses sometimes require the use of expert judgment. This Department has convened several expert-judgment panels and from that experience has developed an internal quality-assurance procedure to guide the formal elicitation of expert judgment. This protocol is based on the principles found in the decision-analysis literature

  16. Resource Conservation and Recovery Act, Part B Permit Application [for the Waste Isolation Pilot Plant (WIPP)]. Volume 6, Chapter D, Appendices D4--D13: Revision 1.0

    Energy Technology Data Exchange (ETDEWEB)

    1991-12-31

    This report (Vol. 6) for the WIPP facility contains appendices on the following information: Site characterization; general geology; ecological monitoring; and chemical compatibility of waste forms and container materials.

  17. Contact-Handled Transuranic Waste Acceptance Criteria for the Waste Isolation Pilot Plant

    International Nuclear Information System (INIS)

    2005-01-01

    The purpose of this document is to summarize the waste acceptance criteria applicable to the transportation, storage, and disposal of contact-handled transuranic (CH-TRU) waste at the Waste Isolation Pilot Plant (WIPP). These criteria serve as the U.S. Department of Energy's (DOE) primary directive for ensuring that CH-TRU waste is managed and disposed of in a manner that protects human health and safety and the environment.The authorization basis of WIPP for the disposal of CH-TRU waste includes the U.S.Department of Energy National Security and Military Applications of Nuclear EnergyAuthorization Act of 1980 (reference 1) and the WIPP Land Withdrawal Act (LWA;reference 2). Included in this document are the requirements and associated criteriaimposed by these acts and the Resource Conservation and Recovery Act (RCRA,reference 3), as amended, on the CH-TRU waste destined for disposal at WIPP.|The DOE TRU waste sites must certify CH-TRU waste payload containers to thecontact-handled waste acceptance criteria (CH-WAC) identified in this document. Asshown in figure 1.0, the flow-down of applicable requirements to the CH-WAC istraceable to several higher-tier documents, including the WIPP operational safetyrequirements derived from the WIPP CH Documented Safety Analysis (CH-DSA;reference 4), the transportation requirements for CH-TRU wastes derived from theTransuranic Package Transporter-Model II (TRUPACT-II) and HalfPACT Certificates ofCompliance (references 5 and 5a), the WIPP LWA (reference 2), the WIPP HazardousWaste Facility Permit (reference 6), and the U.S. Environmental Protection Agency(EPA) Compliance Certification Decision and approval for PCB disposal (references 7,34, 35, 36, and 37). The solid arrows shown in figure 1.0 represent the flow-down of allapplicable payload container-based requirements. The two dotted arrows shown infigure 1.0 represent the flow-down of summary level requirements only; i.e., the sitesmust reference the regulatory source

  18. Contact-Handled Transuranic Waste Acceptance Criteria for the Waste Isolation Pilot Plant

    Energy Technology Data Exchange (ETDEWEB)

    Washington TRU Solutions LLC

    2005-12-29

    The purpose of this document is to summarize the waste acceptance criteria applicable to the transportation, storage, and disposal of contact-handled transuranic (CH-TRU) waste at the Waste Isolation Pilot Plant (WIPP). These criteria serve as the U.S. Department of Energy's (DOE) primary directive for ensuring that CH-TRU waste is managed and disposed of in a manner that protects human health and safety and the environment.The authorization basis of WIPP for the disposal of CH-TRU waste includes the U.S.Department of Energy National Security and Military Applications of Nuclear EnergyAuthorization Act of 1980 (reference 1) and the WIPP Land Withdrawal Act (LWA;reference 2). Included in this document are the requirements and associated criteriaimposed by these acts and the Resource Conservation and Recovery Act (RCRA,reference 3), as amended, on the CH-TRU waste destined for disposal at WIPP.|The DOE TRU waste sites must certify CH-TRU waste payload containers to thecontact-handled waste acceptance criteria (CH-WAC) identified in this document. Asshown in figure 1.0, the flow-down of applicable requirements to the CH-WAC istraceable to several higher-tier documents, including the WIPP operational safetyrequirements derived from the WIPP CH Documented Safety Analysis (CH-DSA;reference 4), the transportation requirements for CH-TRU wastes derived from theTransuranic Package Transporter-Model II (TRUPACT-II) and HalfPACT Certificates ofCompliance (references 5 and 5a), the WIPP LWA (reference 2), the WIPP HazardousWaste Facility Permit (reference 6), and the U.S. Environmental Protection Agency(EPA) Compliance Certification Decision and approval for PCB disposal (references 7,34, 35, 36, and 37). The solid arrows shown in figure 1.0 represent the flow-down of allapplicable payload container-based requirements. The two dotted arrows shown infigure 1.0 represent the flow-down of summary level requirements only; i.e., the sitesmust reference the regulatory source

  19. Pretest parametric calculations for the heated pillar experiment in the WIPP In-Situ Experimental Area

    International Nuclear Information System (INIS)

    Branstetter, L.J.

    1983-03-01

    Results are presented for a pretest parametric study of several configurations and heat loads for the heated pillar experiment (Room H) in the Waste Isolation Pilot Plant (WIPP) In Situ Experimental Area. The purpose of this study is to serve as a basis for selection of a final experiment geometry and heat load. The experiment consists of a pillar of undisturbed rock salt surrounded by an excavated annular room. The pillar surface is covered by a blanket heat source which is externally insulated. A total of five thermal and ten structural calculations are described in a four to five year experimental time frame. Results are presented which include relevant temperature-time histories, deformations, rock salt stress component and effective stress profiles, and maximum stresses in anhydrite layers which are in close proximity to the room. Also included are predicted contours of a conservative post-processed measure of potential salt failure. Observed displacement histories are seen to be highly dependent on pillar and room height, but insensitive to other geometrical variations. The use of a tensile cutoff across slidelines is seen to produce more accurate predictions of anhydrite maximum stress, but to have little effect on rock salt stresses. The potential for salt failure is seen to be small in each case for the time frame of interest, and is only seen at longer times in the center of the room floor

  20. A review of WIPP [Waste Isolation Pilot Plant] repository clays and their relationship to clays of adjacent strata

    International Nuclear Information System (INIS)

    Krumhansl, J.L.; Kimball, K.M.; Stein, C.L.

    1990-12-01

    The Salado Formation is a thick evaporite sequence located in the Permian Delaware Basin of southeastern New Mexico. This study focuses on the intense diagenetic alteration that has affected the small amounts of clay, feldspar, and quartz washed into the basin during salt deposition. These changes are of more than academic interest since this formation also houses the WIPP (Waste Isolation Pilot Plant). Site characterization concerns warrant compiling a detailed data base describing the clays in and around the facility horizon. An extensive sampling effort was undertaken to address these programmatic issues as well as to provide additional insight regarding diagenetic mechanisms in the Salado. Seventy-five samples were collected from argillaceous partings in halite at the stratigraphic level of the Waste Isolation Pilot Plant (WIPP). These were compared with twenty-eight samples from cores of the Vaca Triste member of the Salado, a thin clastic unit at the top of the McNutt potash zone, and with a clay-rich sample from the lower contact of the Culebra Dolomite (in the overlying Rustler Formation). These settings were compared to assess the influence of differences in brine chemistry (i.e., halite and potash facies, normal to hypersaline marine conditions) and sediment composition (clays, sandy silt, dolomitized limestone) on diagenetic processes. 44 refs., 11 figs., 5 tabs

  1. Potential microbial impact on transuranic wastes under conditions expected in the Waste Isolation Pilot Plant (WIPP). Annual report, October 1, 1978-September 30, 1979

    International Nuclear Information System (INIS)

    Barnhart, B.J.; Campbell, E.W.; Martinez, E.; Caldwell, D.E.; Hallett, R.

    1980-07-01

    Previous results were confirmed showing elevated frequencies of radiation-resistant bacteria in microorganisms isolated from shallow transuranic (TRU) burial soil that exhibits nanocurie levels of beta and gamma radioactivity. Research to determine whether plutonium could be methylated by the microbially produced methyl donor, methylcobalamine, was terminated when literature and consulting radiochemists confirmed that other alkylated transuranic elements are extremely short-lived in the presence of oxygen. Emphasis was placed on investigation of the dissolution of plutonium dioxide by complex formation between plutonium and a polyhydroxamate chelate similar to that produced by microorganisms. New chromatographic and spectrophotometric evidence supports previous results showing enhanced dissolution of alpha radioactivity when 239 Pu dioxide was mixed with the chelate Desferol. Microbial degradation studies of citrate, ethylenediamine tetraacetate (EDTA), and nitrilo triacetate (NTA) chelates of europium are in progress. Current results are summarized. All of the chelates were found to degrade. The average half-life for citrate, NTA, and EDTA was 3.2, 8.0, and 28 years, respectively. Microbial CO 2 generation is also in progress in 72 tests on several waste matrices under potential WIPP isolation conditions. The mean rate of gas generation was 5.97 μg CO 2 /g waste/day. Increasing temperature increased rates of microbial gas generation across treatments of brine, varying water content, nutrient additions, and anaerobic conditions. No microbial growth was detected in experiments to enumerate and identify the microorganisms in rocksalt cores from the proposed WIPP site. This report contains the year's research results and recommendations derived for the design of safe storage of TRU wastes under geologic repository conditions

  2. Resource Conservation and Recovery Act, Part B permit application [for the Waste Isolation Pilot Plant (WIPP)]. Volume 4, Revision 1.0

    Energy Technology Data Exchange (ETDEWEB)

    1991-12-31

    The US Department of Energy is currently constructing the Waste Isolation Pilot near Carlsbad, New Mexico. The full-scale pilot plant will demonstrate the feasibility of the safe disposal of defense-related nuclear waste in a bedded salt formation at a depth of 2160 feet below the surface. WIPP will provide for the permanent storage of 25,000 cu ft of remote-handled (RH) transuranic waste and 6,000,000 cu ft of contact-handled (CH) transuranic waste. This paper covers the major mechanical/structural design considerations for the waste hoist and its hoist tower structure. The design of the hoist system and safety features incorporates state-of-the-art technology developed in the hoist and mining industry to ensure safe operation for transporting nuclear waste underground. Also included are design specifications for VOC-10 monitoring system.

  3. Evaluation of the suitability of the WIPP site

    International Nuclear Information System (INIS)

    Neill, R.H.; Channell, J.K.; Chaturvedi, L.; Little, M.S.; Rehfeldt, K.; Spiegler, P.

    1983-05-01

    Determination of the suitability of the site for WIPP is only the first major phase in the evaluation of the radiological impact of the repository on the public health and safety. The Environmental Evaluation Group (EEG) will continue to independently review the design of the facility, the operational procedures, the criteria for packaging and shipment of the waste, the plans, procedures and results of the WIPP experiments, emergency preparedness, adherence to EPA and pertinent NRC regulations, and other important features of the project. EEG has concluded from existing evidence that the Los Medanos site for the WIPP project has been characterized in sufficient detail to warrant confidence in the validation of the site for the permanent emplacement of approximately 6 million cubic feet of defense transuranic waste. This conclusion is based on the assumption that the maximum surface dose rate for the unshielded remote-handled transuranic waste canisters will be 100 rem/hr with a maximum radionuclide concentration of 23 Ci/liter. The Site and Preliminary Design Validation program, through the drilling of two shafts to the selected repository level at 2160 ft below the surface and excavation of about 9000 ft of tunnels, has confirmed the interpretations made about the subsurface geological conditions at the site. For an assessment of the potential radiation effects of the nuclear waste repository on the public health and safety, it is necessary to understand the regional geological and hydrological setting. Much work has been done to understand these conditions and to address several specific issues which have arisen as a result of such studies. However, it is almost inevitable that some questions remain unanswered at a given time in the decision-making process. EEG has identified work which still needs to be done at the Los Medanos site in order to improve confidence in the worst case scenario models of possible breaches of the repository

  4. Blending mining and nuclear industries at the Waste Isolation Pilot Plant

    International Nuclear Information System (INIS)

    Walls, J.R.

    1990-01-01

    At the Waste Isolation Pilot Plant (WIPP) traditional procedures for underground mining activities have been significantly altered in order to assure underground safety and project adherence to numerous regulatory requirements. Innovative techniques have been developed for WIPP underground procedures, mining equipment, and operating environments. The mining emphasis at WIPP is upon the quality of the excavation, not (as in conventional mines) on the production of ore. The WIPP is a United States Department of Energy (DOE) project that is located 30 miles southeast of Carlsbad, New Mexico, where the nation's first underground engineered nuclear repository is being constructed. The WIPP site was selected because of its location amidst a 607 meter thick salt bed, which provides a remarkably stable rock formation for the permanent storage of nuclear waste. The underground facility is located 655 meters below the earth's surface, in the Salado formation, which comprises two-hundred million year old halites with minor amounts of clay and anhydrites. When completed, the WIPP underground facility will consist of two components: approximately 81 square kilometers of experimental areas, and approximately 405 square kilometers of repository. 3 figs

  5. WIPP conceptual design report. Addendum J. Support equipment in the high level waste facility of the Waste Isolation Pilot Plant

    International Nuclear Information System (INIS)

    Rieb, M.J.; Foley, R.S.

    1977-04-01

    The Aerojet Manufacturing Company (AMCO) received a contract in November 1976 to provide consulting services in assisting Holmes and Narver, Incorporated with the conceptual designs, cost estimates, and schedules of equipment used to handle waste casks, to decontaminate waste canisters and to overpack damaged or highly contaminated waste canisters for the Waste Isolation Pilot Plant (WIPP). Also, the layout of the hot cell in which canister handling, overpack and decontamination takes place was to be reviewed along with the time and motion study of the cell operations. This report has been prepared to present the results of the efforts and contains all technical and planning data developed during the program. The contents of this report are presented in three sections: (1) comments on the existing design criteria, equipment conceptual designs, hot cell design and time and motion studies of projected hot cell activities; (2) design descriptions of the equipment concepts and justification for varying from the existing concept (if a variation occurred). Drawings of each concept are provided in Appendix A. These design descriptions and drawings were used as the basis for the cost estimates; and (3) schedule projections and cost estimates for the equipment described in Section 2. Detail cost estimate backup data is provided in Appendix B

  6. Waste Isolation Pilot Plant 2005 Site Environmental Report

    Energy Technology Data Exchange (ETDEWEB)

    Washington Regulatory and Environmental Services

    2006-10-13

    The purpose of this report is to provide information needed by the DOE to assess WIPP's environmental performance and to make WIPP environmental information available to stakeholders and members of the public. This report has been prepared in accordance with DOE Order 231.1A and DOE guidance. This report documents WIPP's environmental monitoring programs and their results for 2004. The WIPP Project is authorized by the DOE National Security and Military Applications of Nuclear Energy Authorization Act of 1980 (Pub. L. 96-164). After more than 20 years of scientific study and public input, WIPP received its first shipment of waste on March 26, 1999. Located in southeastern New Mexico, WIPP is the nation's first underground repository permitted to safely and permanently dispose of TRU radioactive and mixed waste (as defined in the WIPP LWA) generated through defense activities and programs. TRU waste is defined, in the WIPP LWA, as radioactive waste containing more than 100 nanocuries (3,700 becquerels [Bq]) of alpha-emitting TRU isotopes per gram of waste, with half-lives greater than 20 years except for high-level waste, waste that has been determined not to require the degree of isolation required by the disposal regulations, and waste the U.S. Nuclear Regulatory Commission (NRC) has approved for disposal. Most TRU waste is contaminated industrial trash, such as rags and old tools; sludges from solidified liquids; glass; metal; and other materials from dismantled buildings. TRU waste is eligible for disposal at WIPP if it has been generated in whole or in part by one or more of the activities listed in the Nuclear Waste Policy Act of 1982 (42 United States Code [U.S.C.] §10101, et seq.), including naval reactors development, weapons activities, verification and control technology, defense nuclear materials production, defense nuclear waste and materials by-products management,defense nuclear materials security and safeguards and security

  7. Regulatory basis for the Waste Isolation Pilot Plant performance assessment

    International Nuclear Information System (INIS)

    Howard, Bryan A.; Crawford, M.B.; Galson, D.A.; Marietta, Melvin G.

    2000-01-01

    The Waste Isolation Pilot Plant (WIPP) is the first operational repository designed for the safe disposal of transuranic (TRU) radioactive waste from the defense programs of the US Department of Energy (DOE). The US Environmental Protection Agency (EPA) is responsible for certifications and regulation of the WIPP facility for the radioactive components of the waste. The EPA has promulgated general radioactive waste disposal standards at 40 CFR Part 191. and WIPP-specific criteria to implement and interpret the generic disposal standards at 40 CFR Part 194. In October 1996. the DOE submitted its Compliance Certification Application (CCA) to the EPA to demonstrate compliance with the disposal standards at Subparts B and C of 40 CFR Part 191. This paper summarizes the development of the overall legal framework for radioactive waste disposal at the WIPP, the parallel development of the WIPP performance assessment (PA), and how the EPA disposal standards and implementing criteria formed the basis for the CCA WIPP PA. The CCA resulted in a certification in May 1998 by the EPA of the WIPP'S compliance with the EPA's disposal standard, thus enabling the WIPP to begin radioactive waste disposal

  8. Environmental impact statement for initiation of transuranic waste disposal at the waste isolation pilot plant

    International Nuclear Information System (INIS)

    Johnson, H.E.; Whatley, M.E.

    1996-01-01

    WIPP's long-standing mission is to demonstrate the safe disposal of TRU waste from US defense activities. In 1980, to comply with NEPA, US DOE completed its first environmental impact statement (EIS) which compared impacts of alternatives for TRU waste disposal. Based on this 1980 analysis, DOE decided to construct WIPP in 1981. In a 1990 decision based on examination of alternatives in a 1990 Supplemental EIS, DOE decided to continue WIPP development by proceeding with a testing program to examine WIPP's suitability as a TRU waste repository. Now, as DOE's Carlsbad Area Office (CAO) attempts to complete its regulatory obligations to begin WIPP disposal operations, CAO is developing WIPP's second supplemental EIS (SEIS-II). To complete the SEIS-II, CAO will have to meet a number of challenges. This paper explores both the past and present EISs prepared to evaluate the suitability of WIPP. The challenges in completing an objective comparison of alternatives, while also finalizing other critical-path compliance documents, controlling costs, and keeping stakeholders involved during the decision-making process are addressed

  9. Basic data report for drillhole WIPP 27 (Waste Isolation Pilot Plant)

    International Nuclear Information System (INIS)

    1979-10-01

    WIPP 27 was drilled in Eddy County, New Mexico (NM 1/4 sec. 21, T21S, R30E) to investigate evaporite dissolution features and to determine the stratigraphy of surface and near-surface formations. The borehole encountered, from top to bottom, 79 feet of Quaternary deposits, 73 feet of the Rustler Formation, and 171 feet of the upper portion of the Salado Formation. Consecutive cores were obtained for the entire depth of WIPP 27. Geophysical logs measure acoustic velocities, density, radioactivity, and formation resistivity. An interpretive report on dissolution in Nash Draw will be based on combined borehole data, surface mapping and laboratory analyses of Nash Draw rocks and fluids

  10. Waste Isolation Pilot Plant 2003 Site Environmental Report

    Energy Technology Data Exchange (ETDEWEB)

    Washington Regulatory and Environmental Services

    2005-09-03

    The purpose of this report is to provide information needed by the DOE to assess WIPP's environmental performance and to convey that performance to stakeholders and members of the public. This report has been prepared in accordance with DOE Order 231.1A and DOE guidance. This report documents WIPP's environmental monitoring programs and their results for 2003. The WIPP Project is authorized by the DOE National Security and Military Applications of Nuclear Energy Authorization Act of 1980 (Pub. L. 96-164). After more than 20 years of scientific study and public input, WIPP received its first shipment of waste on March 26, 1999. Located in southeastern New Mexico, WIPP is the nation's first underground repository permitted to safely and permanently dispose of TRU radioactive and mixed waste (as defined in the WIPP LWA) generated through the research and production of nuclear weapons and other activities related to the national defense of the United States. TRU waste is defined in the WIPP LWA as radioactive waste containing more than 100 nanocuries (3,700 becquerels [Bq]) of alpha-emitting transuranic isotopes per gram of waste, with half-lives greater than 20 years. Exceptions are noted as high-level waste, waste that has been determined not to require the degree of isolation required by the disposal regulations, and waste the U.S. Nuclear Regulatory Commission (NRC) has approved for disposal. Most TRU waste is contaminated industrial trash, such as rags and old tools, and sludges from solidified liquids; glass; metal; and other materials from dismantled buildings. A TRU waste is eligible for disposal at WIPP if it has been generated in whole or in partby one or more of the activities listed in the Nuclear Waste Policy Act of 1982 (42 United States Code [U.S.C.] §10101, et seq.), including naval reactors development, weapons activities, verification and control technology, defense nuclear materials production, defense nuclear waste and materials by

  11. Waste Isolation Pilot Plant 2003 Site Environmental Report

    International Nuclear Information System (INIS)

    2005-01-01

    The purpose of this report is to provide information needed by the DOE to assess WIPP's environmental performance and to convey that performance to stakeholders and members of the public. This report has been prepared in accordance with DOE Order 231.1A and DOE guidance. This report documents WIPP's environmental monitoring programs and their results for 2003. The WIPP Project is authorized by the DOE National Security and Military Applications of Nuclear Energy Authorization Act of 1980 (Pub. L. 96-164). After more than 20 years of scientific study and public input, WIPP received its first shipment of waste on March 26, 1999. Located in southeastern New Mexico, WIPP is the nation's first underground repository permitted to safely and permanently dispose of TRU radioactive and mixed waste (as defined in the WIPP LWA) generated through the research and production of nuclear weapons and other activities related to the national defense of the United States. TRU waste is defined in the WIPP LWA as radioactive waste containing more than 100 nanocuries (3,700 becquerels [Bq]) of alpha-emitting transuranic isotopes per gram of waste, with half-lives greater than 20 years. Exceptions are noted as high-level waste, waste that has been determined not to require the degree of isolation required by the disposal regulations, and waste the U.S. Nuclear Regulatory Commission (NRC) has approved for disposal. Most TRU waste is contaminated industrial trash, such as rags and old tools, and sludges from solidified liquids; glass; metal; and other materials from dismantled buildings. A TRU waste is eligible for disposal at WIPP if it has been generated in whole or in partby one or more of the activities listed in the Nuclear Waste Policy Act of 1982 (42 United States Code [U.S.C.] 10101, et seq.), including naval reactors development, weapons activities, verification and control technology, defense nuclear materials production, defense nuclear waste and materials by

  12. Progress in long-lived radioactive waste management and disposal at the waste isolation pilot plant

    International Nuclear Information System (INIS)

    Triay, I.R.; Matthews, M.L.; Eriksson, L.G.

    2001-01-01

    The Salado Formation is buried more than 350 m beneath the sands and cacti of the Chihuahuan Desert and hosts the Waste Isolation Pilot Plant (WIPP) deep geological repository at a depth of approximately 650 m. Since the WIPP repository is at least 10 years ahead of any other repository development for long-lived radioactive waste, other radioactive waste management organizations and institutions could benefit both scientifically and politically from sharing the lessons learned at WIPP. Benefits would include using existing expertise and facilities to cost-effectively address and solve program-specific issues and to train staff. The characteristics of the WIPP repository and infrastructure are described in this paper. (author)

  13. Progress in long-lived radioactive waste management and disposal at the waste isolation pilot plant

    Energy Technology Data Exchange (ETDEWEB)

    Triay, I R; Matthews, M L [U.S. Dept. of Energy Carlsbad Field Office, New Mexico (United States); Eriksson, L G [GRAM, Inc., Albuquerque, NM (United States)

    2001-07-01

    The Salado Formation is buried more than 350 m beneath the sands and cacti of the Chihuahuan Desert and hosts the Waste Isolation Pilot Plant (WIPP) deep geological repository at a depth of approximately 650 m. Since the WIPP repository is at least 10 years ahead of any other repository development for long-lived radioactive waste, other radioactive waste management organizations and institutions could benefit both scientifically and politically from sharing the lessons learned at WIPP. Benefits would include using existing expertise and facilities to cost-effectively address and solve program-specific issues and to train staff. The characteristics of the WIPP repository and infrastructure are described in this paper. (author)

  14. The Revised WIPP Passive Institutional Controls Program - A Conceptual Plan - 13145

    International Nuclear Information System (INIS)

    Patterson, Russ; Klein, Thomas; Van Luik, Abraham

    2013-01-01

    The Department of Energy/Carlsbad Field Office (DOE/CBFO) is responsible for managing all activities related to the disposal of TRU and TRU-mixed waste in the geologic repository, 650 m below the land surface, at WIPP, near Carlsbad, New Mexico. The main function of the Passive Institutional Controls (PIC's) program is to inform future generations of the long-lived radioactive wastes buried beneath their feet in the desert. For the first 100 years after cessation of disposal operations, the rooms are closed and the shafts leading underground sealed, WIPP is mandated by law to institute Active Institutional Controls (AIC's) with fences, gates, and armed guards on patrol. At this same time a plan must be in place of how to warn/inform the future, after the AIC's are gone, of the consequences of intrusion into the geologic repository disposal area. A plan was put into place during the 1990's with records management and storage, awareness triggers, permanent marker design concepts and testing schedules. This work included the thoughts of expert panels and individuals. The plan held up under peer review and met the requirements of the U.S. Environmental Protection Agency (EPA). Today the NEA is coordinating a study called the 'Preservation of Records, Knowledge and Memory (RK and M) Across Generations' to provide the international nuclear waste repository community with a guide on how a nuclear record archive programs should be approached and developed. CBFO is cooperating and participating in this project and will take what knowledge is gained and apply that to the WIPP program. At the same time CBFO is well aware that the EPA and others are expecting DOE to move forward with planning for the future WIPP PIC's program; so a plan will be in place in time for WIPP's closure slated for the early 2030's. The DOE/CBFO WIPP PIC's program in place today meets the regulatory criteria, but complete feasibility of implementation is questionable, and may not be in conformance

  15. Reference stratigraphy and rock properties for the Waste Isolation Pilot Plant (WIPP) project

    International Nuclear Information System (INIS)

    Krieg, R.D.

    1984-01-01

    A stratigraphic description of the country rock near the working horizon at the Waste Isolation Pilot Plant (WIPP) is presented along with a set of mechanical and thermal properties of materials involved. Data from 41 cores and shafts are examined. The entire stratigraphic section is found to vary in elevation in a regular manner, but individual layer thicknesses and relative separation between layers are found to have no statistically significant variation over the one mile north to south extent of the working horizon. The stratigraphic description is taken to be relative to the local elevation of Anhydrite b. The material properties have been updated slightly from those in the July 1981 Reference Stratigraphy. This reference stratigraphy/properties document is intended primarily for use in thermal/structural analyses. This document supercedes the July 1981 stratigraphy/properties document. 31 references, 7 figures

  16. Review of the scientific and technical criteria for the Waste Isolation Pilot Plant (WIPP)

    International Nuclear Information System (INIS)

    1984-01-01

    The panel has evaluated the scientific and technical adequacy of work being done on the Waste Isolation Pilot Plant (WIPP) project to satisfy the charge to the panel set out in Chapter 1. The panel concluded that the scientific work has been carried out with a high degree of professional competence. The panel notes that the geology revealed by shaft sinking and excavation of drifts and the preliminary measurements generally confirm the geologic expectations derived from surface explorations and boreholes. The purity and volume of the salt, the absence of brine pockets at the repository horizon in the areas excavated, the absence of breccia pipes and of toxic gases, and the nearly horizontal bedding of the salt indicate that a repository can be constructed that will meet the geologic criteria for site selection. Thus, the important issues about the geology at the site have been resolved, but there remain some issues about the hydrology and design of the facility that should be resolved before large-scale transuranic (TRU) waste emplacement begins. The panel's conclusions and recommendations regarding the following studies are presented: site selection and characterization; in-situ tests and experiments; waste acceptance criteria; design and construction of underground facilities; and performance assessment. 65 references, 17 figures, 3 tables

  17. Waste Isolation Pilot Plant Annual Site Environmental Report for 2005

    International Nuclear Information System (INIS)

    2006-01-01

    The purpose of this report is to provide information needed by the DOE to assess WIPP's environmental performance and to make WIPP environmental information available to stakeholders and members of the public. This report has been prepared in accordance with DOE Order 231.1A and DOE guidance. This report documents WIPP's environmental monitoring programs and their results for 2004. The WIPP Project is authorized by the DOE National Security and Military Applications of Nuclear Energy Authorization Act of 1980 (Pub. L. 96-164). After more than 20 years of scientific study and public input, WIPP received its first shipment of waste on March 26, 1999. Located in southeastern New Mexico, WIPP is the nation's first underground repository permitted to safely and permanently dispose of TRU radioactive and mixed waste (as defined in the WIPP LWA) generated through defense activities and programs. TRU waste is defined, in the WIPP LWA, as radioactive waste containing more than 100 nanocuries (3,700 becquerels [Bq]) of alpha-emitting TRU isotopes per gram of waste, with half-lives greater than 20 years except for high-level waste, waste that has been determined not to require the degree of isolation required by the disposal regulations, and waste the U.S. Nuclear Regulatory Commission (NRC) has approved for disposal. Most TRU waste is contaminated industrial trash, such as rags and old tools; sludges from solidified liquids; glass; metal; and other materials from dismantled buildings. TRU waste is eligible for disposal at WIPP if it has been generated in whole or in part by one or more of the activities listed in the Nuclear Waste Policy Act of 1982 (42 United States Code [U.S.C.] 10101, et seq.), including naval reactors development, weapons activities, verification and control technology, defense nuclear materials production, defense nuclear waste and materials by-products management,defense nuclear materials security and safeguards and security investigations, and defense

  18. In-Situ Testing and Performance Assessment of a Redesigned WIPP Panel Closure - 13192

    Energy Technology Data Exchange (ETDEWEB)

    Klein, Thomas [URS-Professional Solutions, 4021 National Parks Highway Carlsbad, NM 88220 (United States); Patterson, Russell [Department of Energy-Carlsbad Field Office, 4021 National Parks Highway Carlsbad, NM 88220 (United States); Camphouse, Chris; Herrick, Courtney; Kirchner, Thomas; Malama, Bwalya; Zeitler, Todd [Sandia National Laboratories-Carlsbad, 4100 National Parks Highway Carlsbad, NM 88220 (United States); Kicker, Dwayne [SM Stoller Corporation-Carlsbad, 4100 National Parks Highway Carlsbad, NM (United States)

    2013-07-01

    There are two primary regulatory requirements for Panel Closures at the Waste Isolation Pilot Plant (WIPP), the nation's only deep geologic repository for defense related Transuranic (TRU) and Mixed TRU waste. The Federal requirement is through 40 CFR 191 and 194, promulgated by the U.S. Environmental Protection Agency (EPA). The state requirement is regulated through the authority of the Secretary of the New Mexico Environment Department (NMED) under the New Mexico Hazardous Waste Act (HWA), New Mexico Statutes Annotated (NMSA) 1978, chap. 74-4-1 through 74-4-14, in accordance with the New Mexico Hazardous Waste Management Regulations (HWMR), 20.4.1 New Mexico Annotated Code (NMAC). The state regulations are implemented for the operational period of waste emplacement plus 30 years whereas the federal requirements are implemented from the operational period through 10,000 years. The 10,000 year federal requirement is related to the adequate representation of the panel closures in determining long-term performance of the repository. In Condition 1 of the Final Certification Rulemaking for 40 CFR Part 194, the EPA required a specific design for the panel closure system. The U.S. Department of Energy (DOE) Carlsbad Field Office (CBFO) has requested, through the Planned Change Request (PCR) process, that the EPA modify Condition 1 via its rulemaking process. The DOE has also requested, through the Permit Modification Request (PMR) process, that the NMED modify the approved panel closure system specified in Permit Attachment G1. The WIPP facility is carved out of a bedded salt formation 655 meters below the surface of southeast New Mexico. Condition 1 of the Final Certification Rulemaking specifies that the waste panels be closed using Option D which is a combination of a Salado mass concrete (SMC) monolith and an isolation/explosion block wall. The Option D design was also accepted as the panel closure of choice by the NMED. After twelve years of waste handling

  19. Petrographic study of evaporite deformation near the Waste Isolation Pilot Plant (WIPP)

    International Nuclear Information System (INIS)

    Borns, D.J.

    1983-06-01

    The Delaware Basin of southeastern New Mexico contains about 1000 m of layered evaporites. Areas in the northern Delaware Basin, bordering the Capitan reef, have anomalous seismic reflection characteristics, such as loss in reflector continuity. Core from holes within this zone exhibits complex mesoscopic folds and extension structures. On a larger scale, anticlines and synclines are indicated by structure contours based on boreholes. The deformation is probably gravity-driven. Such a process is initiated by basin tilting during either a Mesozoic or Cenozoic period of uplift. Small-scale structures suggest that deformation was episodic with an early, syndepositional stage of isoclinal folding. Later, open-to-tight asymmetric folding is more penetrative and exhibits a sense of asymmetry opposite to that of the earlier isoclinal folding. The younger folds are associated with development of zonal crenulation cleavage and microboundinage of more competent carbonate layers. At the same time, halite beds developed dimensional fabrics and convolute folds in anhydrite stringers. Late-stage, near-vertical fractures formed in competent anhydrite layers. Microscopic textures exhibit rotated anhydrite porphyroblasts, stress shadow growth, and microboundinage. Except during late-stage deformation, anhydrite and halite recrystallized synkinematically. Drastic strength reduction in anhydrites through dynamic recrystallization occurs experimentally near 200 0 C. However, evaporites of the WIPP site never experienced temperatures > 40 0 C. Microscopic fabrics and P, T history of the evaporites suggest that pressure solution was the active mechanism during deformation of evaporites at the WIPP site

  20. Laboratory creep and mechanical tests on salt data report (1975-1996): Waste Isolation Pilot Plant (WIPP) thermal/structural interactions program

    Energy Technology Data Exchange (ETDEWEB)

    Mellegard, K.D. [RE/SPEC Inc., Rapid City, SD (United States); Munson, D.E. [Sandia National Labs., Albuquerque, NM (United States)

    1997-02-01

    The Waste Isolation Pilot Plant (WIPP), a facility located in a bedded salt formation in Carlsbad, New Mexico, is being used by the U.S. Department of Energy to demonstrate the technology for safe handling and disposal of transuranic wastes produced by defense activities in the United States. In support of that demonstration, mechanical tests on salt were conducted in the laboratory to characterize material behavior at the stresses and temperatures expected for a nuclear waste repository. Many of those laboratory test programs have been carried out in the RE/SPEC Inc. rock mechanics laboratory in Rapid City, South Dakota; the first program being authorized in 1975 followed by additional testing programs that continue to the present. All of the WIPP laboratory data generated on salt at RE/SPEC Inc. over the last 20 years is presented in this data report. A variety of test procedures were used in performance of the work including quasi-static triaxial compression tests, constant stress (creep) tests, damage recovery tests, and multiaxial creep tests. The detailed data is presented in individual plots for each specimen tested. Typically, the controlled test conditions applied to each specimen are presented in a plot followed by additional plots of the measured specimen response. Extensive tables are included to summarize the tests that were performed. Both the tables and the plots contain cross-references to the technical reports where the data were originally reported. Also included are general descriptions of laboratory facilities, equipment, and procedures used to perform the work.

  1. Assessment of near-surface dissolution at and near the Waste Isolation Pilot Plant (WIPP), southeastern New Mexico

    International Nuclear Information System (INIS)

    Bachman, G.O.

    1985-07-01

    The area at and near the WIPP site was examined for evidence of karst development on the geomorphic surface encompassing the site. Certain surficial depressions of initial concern were identified as blowouts in sand dune fields (shallow features unrelated to karstification). An ancient stream system active more than 500,000 yr ago contained more water than any system since. During that time (Gatuna, Middle Pleistocene), many karst features such as Clayton Basin and Nash Draw began to form in the region. Halite was probably dissolved from parts of the Rustler Formation at that time. Dissolution of halite and gypsum from intervals encountered in Borehole WIPP-33 west of the WIPP site occurred during later Pleistocene time (i.e., <450,000 yr ago). However, there is no evidence of active near-surface dissolution within a belt to the east of WIPP-33 in the vicinity of the WIPP shaft. 26 refs., 11 figs., 1 tab

  2. Transporting transuranic waste to the Waste Isolation Pilot Plant: Risk and cost perspectives

    International Nuclear Information System (INIS)

    Biwer, B. M.; Gilette, J. L.; Poch, L. A.; Suermann, J. F.

    1999-01-01

    The Waste Isolation Pilot Plant (WIPP) is an authorized US Department of Energy (DOE) research and development facility constructed near the city of Carlsbad in southeastern New Mexico. The facility is intended to demonstrate the safe disposal of transuranic (TRU) radioactive waste resulting from US defense activities. Under the WIPP Land Withdrawal Act of 1992 (LWA), federal lands surrounding the WIPP facility were withdrawn from all public use and the title of those lands was transferred to the Secretary of Energy. The DOE's TRU waste is stored, and in some cases is still being generated, at 10 large-quantity and 13 small-quantity sites across the US. After applicable certification requirements have been met, the TRU waste at these sites will be sent to the WIPP to initiate the disposal phase of the facility, which according to current planning is projected to last for approximately 35 years

  3. WIPP Regulatory Compliance Strategy and Management Plan for demonstrating compliance to long-term disposal standards

    International Nuclear Information System (INIS)

    1994-05-01

    The primary purpose of this document is to provide a strategy by which the WIPP will demonstrate its ability to perform as a deep geologic repository. The document communicates the DOE's understanding of the regulations related to long-term repository performance; and provides the most efficient strategy that intergrates WIPP Project elements, ensures the sufficiency of information, and provides flexibility for changes in the TRU waste generation system to facilitate the disposal of defense-generated TRU wastes. In addition, this document forms a focal point between the DOE and its various external regulators as well as other stakeholders for the purpose of arriving at compliance decisions that consider all relevant input

  4. Carlsbad Area Office Waste Isolation Division Transition Plan

    International Nuclear Information System (INIS)

    1994-01-01

    In October 1993, the US Department of Energy (DOE) announced the Revised Test Strategy for the Waste Isolation Pilot Plant (WIPP). The new strategy involves conducting additional radioactive waste tests in laboratories instead of the underground at the WIPP. It will likely result in an acceleration of regulatory compliance activities needed for a disposal decision, which could result in permanent disposal of transuranic waste earlier than the previous test program and regulatory compliance strategy. The Revised Test Strategy changes the near-term program activities for the WIPP site. The revised strategy deletes radioactive waste tests at the WIPP, prior to completing all activities for initiating disposal operations, and consequently the need to maintain readiness to receive waste in the near-term. However, the new strategy enables the DOE to pursue an earlier disposal decision, supported by an accelerated regulatory compliance strategy. With the new strategy, the WIPP must prepare for disposal operations in early 1998. This Westinghouse Waste Isolation Division (WID) Transition Plan addresses the WID programmatic, budgetary, and personnel changes to conform to the Revised Test Strategy, and to support the accelerated compliance strategy and earlier disposal operations at the WIPP

  5. Quarter-scale modeling of room convergence effects on CH [contact-handled] TRU drum waste emplacements using WIPP [Waste Isolation Pilot Plant] reference design geometries

    International Nuclear Information System (INIS)

    VandeKraats, J.

    1987-11-01

    This study investigates the effect of horizontal room convergence on CH waste packages emplaced in the WIPP Reference Design geometry (rooms 13 feet high by 33 feet wide, with minus 3/8 inch screened backfill emplaced over and around the waste packages) as a function of time. Based on two tests, predictions were made with regard to full-scale 6-packs emplaced in the Reference Design geometry. These are that load will be transmitted completely through the stack within the first five years after waste emplacement and all drums in all 6-packs will be affected; that virtually all drums will show some deformation eight years after emplacement; that some drums may breach before the eighth year after emplacement has elapsed; and that based on criteria developed during testing, it is predicted that 1% of the drums emplaced will be breached after 8 years and, after 15 years, approximately 12% of the drums are predicted to be breached. 8 refs., 41 figs., 3 tabs

  6. Scientific studies in support of the Waste Isolation Pilot Plant (WIPP) repository

    International Nuclear Information System (INIS)

    Chu, M.S.Y.; Weart, W.D.

    1996-01-01

    The DOE submitted a Compliance Certification Application for WIPP in october, 1996. A critical part of this application was a Performance Assessment which predicts the cumulative radioactive release to the accessible environment over a time period of 10,000 years. Comparison of this predicted release to the EPA standard shows a comfortable margin of compliance. The scientific understanding that was critical to developing this assessment spans a broad range of geotechnical disciplines, and required a thorough understanding of the site's geology and hydrology. Evaluation of the geologic processes which are active in the site region establishes that there will be no natural breach of site integrity for millions of years, far longer than the 10,000 year regulatory period. Inadvertent human intrusion is, therefore, the only credible scenario to lead to potential radioactive release to the accessible environment. To substantiate this conclusion and to quantify these potential releases from human intrusion, it has been necessary to develop an understanding of the following processes: salt creep and shaft seal efficacy; gas generation from organic decomposition of waste materials and anoxic corrosion of metals in the waste and waste packages; solubilities for actinides in brine; fluid flow in Salado formation rocks, and hydrologic transport of actinides in the overlying dolomite aquifers. Other issues which had to be evaluated to allow definition of breach scenarios were brine reservoir occurrences and their associated reservoir parameters, consequences of mining over the repository, and drilling for natural resources in the vicinity of the repository. Results of all these studies will be briefly summarized in this paper

  7. Comparative study of Waste Isolation Pilot Plant (WIPP) transportation alternatives

    International Nuclear Information System (INIS)

    1994-02-01

    WIPP transportation studies in the Final Supplement Environmental Impact Statement for WIPP are the baseline for this report. In an attempt to present the most current analysis, this study incorporates the most relevant data available. The following three transportation options are evaluated for the Disposal Phase, which is assumed to be 20 years: Truck shipments, consisting of a tractor and trailer, with three TRUPACT-IIs or one RH-72B; Regular commercial train shipments consisting of up to three railcars carrying up to 18 TRUPACT-IIs or up to six RH-72Bs; Dedicated train shipments consisting of a locomotive, an idle car, railcars carrying 18 TRUPACT-IIs or six RH-72Bs, another idle car, and a caboose or passenger car with an emergency response specialist. No other cargo is carried. This report includes: A consideration of occupational and public risks and exposures, and other environmental impacts; A consideration of emergency response capabilities; and An extimation of comparative costs

  8. Comparative study of Waste Isolation Pilot Plant (WIPP) transportation alternatives

    Energy Technology Data Exchange (ETDEWEB)

    1994-02-01

    WIPP transportation studies in the Final Supplement Environmental Impact Statement for WIPP are the baseline for this report. In an attempt to present the most current analysis, this study incorporates the most relevant data available. The following three transportation options are evaluated for the Disposal Phase, which is assumed to be 20 years: Truck shipments, consisting of a tractor and trailer, with three TRUPACT-IIs or one RH-72B; Regular commercial train shipments consisting of up to three railcars carrying up to 18 TRUPACT-IIs or up to six RH-72Bs; Dedicated train shipments consisting of a locomotive, an idle car, railcars carrying 18 TRUPACT-IIs or six RH-72Bs, another idle car, and a caboose or passenger car with an emergency response specialist. No other cargo is carried. This report includes: A consideration of occupational and public risks and exposures, and other environmental impacts; A consideration of emergency response capabilities; and An extimation of comparative costs.

  9. Review of the draft supplement to the WIPP environmental impact statement DOE/EIS-0026-S-2

    International Nuclear Information System (INIS)

    Neill, R.H.; Channell, J.K.; Spiegler, P.; Chaturvedi, L.

    1997-04-01

    New Mexico Environmental Evaluation Group's (EEG) review of the WIPP Disposal Phase Draft Supplemental Environmental Impact Statement (SEIS-II) concentrated on the radiological aspects of the Proposed Action, including transportation. The alternatives were reviewed in less detail. Some calculations were checked, mostly for the Proposed Action. Because of time constraints, there was little review of Hazardous Chemicals, Economics, or other Environmental Assessments. SEIS-II was written as a pre-decision document with the Alternatives all plausible and eligible to be selected. Also, the inventory of TRU waste for disposal went well beyond that portion of TRU waste that has been historically considered to be the WIPP inventory. This broadened scope is probably appropriate for an EIS but it is confusing to the reviewer who is aware of the statutory limits of wastes that are allowed to come to WIPP at the present time. EEG has attempted to keep the broadened scope of SEIS-II in mind during their review. The more important issues discussed within are: alternatives; related documents; transportation; questionable assumptions; use of the 75th percentile values; family farm scenario and inhalation doses; modification of BRAGFLO volumes; emplacement of remotely handled TRU wastes; conversion error; and remotely handled TRU casks

  10. The WIPP transportation system: Dedicated to safety

    International Nuclear Information System (INIS)

    Ward, T.; McFadden, M.

    1993-01-01

    When developing a transportation system to transport transuranic (TRU) waste from ten widely-dispersed generator sites, the Department of Energy (DOE) recognized and addressed many challenges. Shipments of waste to the Waste Isolation Pilot Plant (WIPP) were to cover a twenty-five year period and utilize routes covering over twelve thousand miles in twenty-three states. Enhancing public safety by maximizing the payload, thus reducing the number of shipments, was the primary objective. To preclude the requirement for overweight permits, the DOE started with a total shipment weight limit of 80,000 pounds and developed an integrated transportation system consisting of a Type ''B'' package to transport the material, a lightweight tractor and trailer, stringent driver requirements, and a shipment tracking system referred to as ''TRANSCOM''

  11. Preliminary safety assessment of the WIPP facility

    International Nuclear Information System (INIS)

    Balestri, R.J.; Torres, B.W.; Pahwa, S.B.; Brannen, J.P.

    1979-01-01

    This paper summarizes the efforts to perform a safety assessment of the Waste Isolation Pilot Plant (WIPP) facility being proposed for southeastern New Mexico. This preliminary safety assessment is limited to a consequence assessment in terms of the dose to a maximally exposed individual as a result of introducing the radionuclides into the biosphere. The extremely low doses to the organs as a result of the liquid breach scenarios are contrasted with the background radiation

  12. Transuranic waste management program and facilities

    International Nuclear Information System (INIS)

    Clements, T.L. Jr.; Cook, L.A.; Stallman, R.M.; Hunter, E.K.

    1986-01-01

    Since 1954, defense-generated transuranic (TRU) waste has been received at the Radioactive Waste Management Complex (RWMC) at the Idaho National Engineering Laboratory (INEL). Prior to 1970, approximately 2.2 million cubic feet of transuranic waste were buried in shallow-land trenches and pits at the RWMC. Since 1970, an additional 2.1 million cubic feet of waste have been retrievably stored in aboveground engineered confinement. A major objective of the Department of Energy (DOE) Nuclear Waste Management Program is the proper management of defense-generated transuranic waste. Strategies have been developed for managing INEL stored and buried transuranic waste. These strategies have been incorporated in the Defense Waste Management Plan and are currently being implemented with logistical coordination of transportation systems and schedules for the Waste Isolation Pilot Plant (WIPP). The Stored Waste Examination Pilot Plant (SWEPP) is providing nondestructive examination and assay of retrievably stored, contact-handled TRU waste. Construction of the Process Experimental Pilot Plant (PREPP) was recently completed, and PREPP is currently undergoing system checkout. The PRFPP will provide processing capabilities for contact-handled waste not meeting WIPP-Waste Acceptance Criteria (WAC). In addition, ongoing studies and technology development efforts for managing the TRU waste such as remote-handled and buried TRU waste, are being conducted

  13. Transuranic Waste Management Program and Facilities

    International Nuclear Information System (INIS)

    Clements, T.L. Jr.; Cook, L.A.; Stallman, R.M.; Hunter, E.K.

    1986-02-01

    Since 1954, defense-generated transuranic (TRU) waste has been received at the Radioactive Waste Management Complex (RWMC) at the Idaho National Engineering Laboratory (INEL). Prior to 1970, approximately 2.2 million cubic feet of transuranic waste were buried in shallow-land trenches and pits at the RWMC. Since 1970, an additional 2.1 million cubic feet of waste have been retrievably stored in aboveground engineered confinement. A major objective of the Department of Energy (DOE) Nuclear Waste Management Program is the proper management of defense-generated transuranic waste. Strategies have been developed for managing INEL stored and buried transuranic waste. These strategies have been incorporated in the Defense Waste Management Plan and are currently being implemented with logistical coordination of transportation systems and schedules for the Waste Isolation Pilot Plant (WIPP). The Stored Waste Examination Pilot Plant (SWEPP) is providing nondestructive examination and assay of retrievably stored, contact-handled TRU waste. Construction of the Process Experimental Pilot Plant (PREPP) was recently completed, and PREPP is currently undergoing system checkout. The PREPP will provide processing capabilities for contact-handled waste not meeting WIPP-Waste Acceptance Criteria (WAC). In addition, ongoing studies and technology development efforts for managing the TRU waste such as remote-handled and buried TRU waste, are being conducted

  14. Well bore Flow Treatment Used to Predict Radioactive Brine Releases to the Surface from Future Drilling Penetrations into the Waste Isolation Pilot Plant (WIPP), New Mexico, USA

    International Nuclear Information System (INIS)

    Brien, D.G.O.; Stoelzel, D.M.; Hadgu, T.

    1999-01-01

    The Waste Isolation Pilot Plant (WIPP) is the U.S. Department of Energy's (DOE) mined geologic repository in southeastern New Mexico, USA.This site is designed for the permanent burial of transuranic radioactive waste generated by defense related activities.The waste produces gases when exposed to brine. This gas generation may result in increased pressures over time. Therefore, a future driller that unknowingly penetrates through the site may experience a blowout. This paper describes the methodology used to predict the resultant volumes of contaminated brine released

  15. Waste Isolation Pilot Plant Site Environmental Report for calendar year 1989

    International Nuclear Information System (INIS)

    1989-01-01

    This is the 1989 Site Environmental Report (SER) for the Waste Isolation Pilot Plant (WIPP) in southeastern New Mexico. The WIPP is a government owned and contractor-operated facility. The WIPP project is operated by Westinghouse Electric Corporation for the US Department of Energy (DOE). The mission of the WIPP is to provide a research and development facility to demonstrate the safe disposal of transuranic (TRU) waste generated by the defense activities of the US Government. This report provides a comprehensive description of environmental activities at the WIPP during calendar year 1989. The WIPP facility will not receive waste until all concerns affecting opening the WIPP are addressed to the satisfaction of the Secretary of Energy. Therefore, this report describes the status of the preoperational activities of the Radiological Environmental Surveillance (RES) program, which are outlined in the Radiological Baseline Program for the Waste Isolation Pilot Plant (WTSD-TME-057). 72 refs., 13 figs., 20 tabs

  16. Waste Isolation Pilot Plant Strategic Plan

    International Nuclear Information System (INIS)

    1993-03-01

    The purpose of the Waste Isolation Pilot Plant (WIPP) Strategic Plan is to provide decision makers, project participants, and the public with a high-level overview of the objectives, issues, and strategiesthat impact a decision on the suitability of WIPP as a permanent, safe disposal facility for transuranic (TRU) waste that has resulted from defense activities. This document is a component of an integrated planning process and is a key management tool that is coordinated and consistent with the Secretary's Disposal Decision Plan and the Environmental Restoration and Waste Management (EM) Five-Year Plan. This documentsupports other US Department of Energy (DOE) planning efforts, including the TRU Waste Program. The WIPP Strategic Plan addresses the WIPP Program Test Phase, Disposal Decision, Disposal Phase, and Decommissioning Phase (decontamination and decommissioning). It describes the actions and activities that the DOE will conduct to ensure that WIPP will comply with applicable, relevant, and appropriate requirements of the US Environmental Protection Agency (EPA), State of New Mexico, and other applicable federal and state regulations. It also includes the key assumptions under which the strategy was developed. A comprehensive discussion of the multitude of activities involved in the WIPP Program cannot be adequately presented in this document. The specific details of these activities are presented in other, more detailed WIPP planningdocuments

  17. Performance Demonstration Program Plan for Nondestructive Assay of Drummed Wastes for the TRU Waste Characterization Program

    International Nuclear Information System (INIS)

    2009-01-01

    Each testing and analytical facility performing waste characterization activities for the Waste Isolation Pilot Plant (WIPP) participates in the Performance Demonstration Program (PDP) to comply with the Transuranic Waste Acceptance Criteria for the Waste Isolation Pilot Plant (WAC) (DOE/WIPP-02-3122) and the Quality Assurance Program Document (QAPD) (CBFO-94-1012). The PDP serves as a quality control check for data generated in the characterization of waste destined for WIPP. Single blind audit samples are prepared and distributed to each of the facilities participating in the PDP. The PDP evaluates analyses of simulated headspace gases, constituents of the Resource Conservation and Recovery Act (RCRA), and transuranic (TRU) radionuclides using nondestructive assay (NDA) techniques.

  18. HANFORD SITE RIVER PROTECTION PROJECT (RPP) TRANSURANIC (TRU) TANK WASTE IDENTIFICATION and PLANNING FOR REVRIEVAL TREATMENT and EVENTUAL DISPOSAL AT WIPP

    International Nuclear Information System (INIS)

    KRISTOFZSKI, J.G.; TEDESCHI, R.; JOHNSON, M.E.; JENNINGS, M

    2006-01-01

    The CH2M HILL Manford Group, Inc. (CHG) conducts business to achieve the goals of the Office of River Protection (ORP) at Hanford. As an employee owned company, CHG employees have a strong motivation to develop innovative solutions to enhance project and company performance while ensuring protection of human health and the environment. CHG is responsible to manage and perform work required to safely store, enhance readiness for waste feed delivery, and prepare for treated waste receipts for the approximately 53 million gallons of legacy mixed radioactive waste currently at the Hanford Site tank farms. Safety and environmental awareness is integrated into all activities and work is accomplished in a manner that achieves high levels of quality while protecting the environment and the safety and health of workers and the public. This paper focuses on the innovative strategy to identify, retrieve, treat, and dispose of Hanford Transuranic (TRU) tank waste at the Waste Isolation Pilot Plant (WIPP)

  19. Actinide Solubility and Speciation in the WIPP [PowerPoint

    International Nuclear Information System (INIS)

    Reed, Donald T.

    2015-01-01

    The presentation begins with the role and need for nuclear repositories (overall concept, international updates (Sweden, Finland, France, China), US approach and current status), then moves on to the WIPP TRU repository concept (design, current status--safety incidents of February 5 and 14, 2014, path forward), and finally considers the WIPP safety case: dissolved actinide concentrations (overall approach, oxidation state distribution and redox control, solubility of actinides, colloidal contribution and microbial effects). The following conclusions are set forth: (1) International programs are moving forward, but at a very slow and somewhat sporadic pace. (2) In the United States, the Salt repository concept, from the perspective of the long-term safety case, remains a viable option for nuclear waste management despite the current operational issues/concerns. (3) Current model/PA prediction (WIPP example) are built on redundant conservatisms. These conservatisms are being addressed in the ongoing and future research to fill existing data gaps--redox control of plutonium by Fe(0, II), thorium (analog) solubility studies in simulated brine, contribution of intrinsic and biocolloids to the mobile concentration, and clarification of microbial ecology and effects.

  20. Actinide Solubility and Speciation in the WIPP [PowerPoint

    Energy Technology Data Exchange (ETDEWEB)

    Reed, Donald T. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-11-02

    The presentation begins with the role and need for nuclear repositories (overall concept, international updates (Sweden, Finland, France, China), US approach and current status), then moves on to the WIPP TRU repository concept (design, current status--safety incidents of February 5 and 14, 2014, path forward), and finally considers the WIPP safety case: dissolved actinide concentrations (overall approach, oxidation state distribution and redox control, solubility of actinides, colloidal contribution and microbial effects). The following conclusions are set forth: (1) International programs are moving forward, but at a very slow and somewhat sporadic pace. (2) In the United States, the Salt repository concept, from the perspective of the long-term safety case, remains a viable option for nuclear waste management despite the current operational issues/concerns. (3) Current model/PA prediction (WIPP example) are built on redundant conservatisms. These conservatisms are being addressed in the ongoing and future research to fill existing data gaps--redox control of plutonium by Fe(0, II), thorium (analog) solubility studies in simulated brine, contribution of intrinsic and biocolloids to the mobile concentration, and clarification of microbial ecology and effects.

  1. Bibliography of reports by US Geological Survey personnel pertaining to underground nuclear testing and radioactive waste disposal at the Nevada Test Site, and radioactive waste disposal at the WIPP Site, New Mexico, January 1, 1979-December 31, 1979

    International Nuclear Information System (INIS)

    Glanzman, V.M.

    1980-01-01

    This bibliography presents reports released to the public between January 1, 1979, and December 31, 1979, by personnel of the US Geological Survey. Reports include information on underground nuclear testing and waste management projects at the NTS (Nevada Test Site) and radioactive waste projects at the WIPP (Waste Isolation Pilot Plant) site, New Mexico. Reports on Project Dribble, Tatum Dome, Mississippi, previously prepared as administrative reports and released to the public as 474-series reports during 1979 are also included in this bibliography

  2. Simulations of the pipe overpack to compute constitutive model parameters for use in WIPP room closure calculations

    International Nuclear Information System (INIS)

    Park, Byoung Yoon; Hansen, Francis D.

    2004-01-01

    The regulatory compliance determination for the Waste Isolation Pilot Plant includes the consideration of room closure. Elements of the geomechanical processes include salt creep, gas generation and mechanical deformation of the waste residing in the rooms. The WIPP was certified as complying with regulatory requirements based in part on the implementation of room closure and material models for the waste. Since the WIPP began receiving waste in 1999, waste packages have been identified that are appreciably more robust than the 55-gallon drums characterized for the initial calculations. The pipe overpack comprises one such waste package. This report develops material model parameters for the pipe overpack containers by using axisymmetrical finite element models. Known material properties and structural dimensions allow well constrained models to be completed for uniaxial, triaxial, and hydrostatic compression of the pipe overpack waste package. These analyses show that the pipe overpack waste package is far more rigid than the originally certified drum. The model parameters developed in this report are used subsequently to evaluate the implications to performance assessment calculations

  3. Construction quality assurance program plan for the WIPP project, Carlsbad, NM

    International Nuclear Information System (INIS)

    1987-05-01

    The purpose of this plan is to describe the Quality Assurance (QA) Program to be established and implemented by the US Department of Energy (DOE) Waste Isolation Pilot Plant (WIPP) Project Office (WPO) and by the Major Project Participants: the Architect-Engineer (Bechtel), the Construction Manager (US Army Corps of Engineers), the Scientific Advisor (Sandia National Laboratory), and the Management and Operating Contractor (Westinghouse Electric Corporation). This plan addresses the construction, including site evaluation, design, and turnover phases of WIPP. Other work in progress during the same period is controlled by DOE documents applicable to that work effort. The prime responsibility for ensuring the quality of construction rests with the DOE WIPP Project Office and is implemented through the combined efforts of the Construction Manager, the Construction Contractors, the Management and Operating Contractor, and the Architect-Engineer. Inspection and burden of proof of acceptability rests with the Construction Contractor as defined by the technical provisions of the contract and as otherwise specified by the DOE WIPP Project Office on an individual work-package basis. To the maximum extent possible, acceptance of work will be based upon first-hand witnessing by the Construction Manager and other representatives of the DOE organization

  4. Final environmental impact statement. Waste Isolation Pilot Plant

    International Nuclear Information System (INIS)

    1980-10-01

    In accordance with the National Environmental Policy Act (NEPA) of 1969, the US Department of Energy (DOE) has prepared this document as environmental input to future decisions regarding the Waste Isolation Pilot Plant (WIPP), which would include the disposal of transuranic waste, as currently authorized. The alternatives covered in this document are the following: (1) Continue storing transuranic (TRU) waste at the Idaho National Engineering Laboratory (INEL) as it is now or with improved confinement. (2) Proceed with WIPP at the Los Medanos site in southeastern New Mexico, as currently authorized. (3) Dispose of TRU waste in the first available repository for high-level waste. The Los Medanos site would be investigated for its potential suitability as a candidate site. This is administration policy and is the alternative preferred by the DOE. (4) Delay the WIPP to allow other candidate sites to be evaluated for TRU-waste disposal. This environmental impact statement is arranged in the following manner: Chapter 1 is an overall summary of the analysis contained in the document. Chapters 2 and 4 set forth the objectives of the national waste-management program and analyze the full spectrum of reasonable alternatives for meeting these objectives, including the WIPP. Chapter 5 presents the interim waste-acceptance criteria and waste-form alternatives for the WIPP. Chapters 6 through 13 provide a detailed description and environmental analysis of the WIPP repository and its site. Chapter 14 describes the permits and approvals necessary for the WIPP and the interactions that have taken place with Federal, State, and local authorities, and with the general public in connection with the repository. Chapter 15 analyzes the many comments received on the DEIS and tells what has been done in this FEIS in response. The appendices contain data and discussions in support of the material in the text

  5. Final environmental impact statement. Waste Isolation Pilot Plant

    Energy Technology Data Exchange (ETDEWEB)

    1980-10-01

    In accordance with the National Environmental Policy Act (NEPA) of 1969, the US Department of Energy (DOE) has prepared this document as environmental input to future decisions regarding the Waste Isolation Pilot Plant (WIPP), which would include the disposal of transuranic waste, as currently authorized. The alternatives covered in this document are the following: (1) Continue storing transuranic (TRU) waste at the Idaho National Engineering Laboratory (INEL) as it is now or with improved confinement. (2) Proceed with WIPP at the Los Medanos site in southeastern New Mexico, as currently authorized. (3) Dispose of TRU waste in the first available repository for high-level waste. The Los Medanos site would be investigated for its potential suitability as a candidate site. This is administration policy and is the alternative preferred by the DOE. (4) Delay the WIPP to allow other candidate sites to be evaluated for TRU-waste disposal. This environmental impact statement is arranged in the following manner: Chapter 1 is an overall summary of the analysis contained in the document. Chapters 2 and 4 set forth the objectives of the national waste-management program and analyze the full spectrum of reasonable alternatives for meeting these objectives, including the WIPP. Chapter 5 presents the interim waste-acceptance criteria and waste-form alternatives for the WIPP. Chapters 6 through 13 provide a detailed description and environmental analysis of the WIPP repository and its site. Chapter 14 describes the permits and approvals necessary for the WIPP and the interactions that have taken place with Federal, State, and local authorities, and with the general public in connection with the repository. Chapter 15 analyzes the many comments received on the DEIS and tells what has been done in this FEIS in response. The appendices contain data and discussions in support of the material in the text.

  6. Evaluation of the proposed WIPP site in southeast New Mexico

    International Nuclear Information System (INIS)

    Weart, W.D.

    1979-01-01

    Five years of earth science characterization of the proposed Waste Isolation Pilot Plant (WIPP) site provide a high level of assurance that the area is satisfactory for development of a geologic repository. Ecological investigations and socioeconomic studies have indicated only relatively benign impacts will occur from construction, operation and long-term aspects of the repository

  7. Evaluation of the proposed WIPP site in southeast New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Weart, W.D.

    1979-01-01

    Five years of earth science characterization of the proposed Waste Isolation Pilot Plant (WIPP) site provide a high level of assurance that the area is satisfactory for development of a geologic repository. Ecological investigations and socioeconomic studies have indicated only relatively benign impacts will occur from construction, operation and long-term aspects of the repository.

  8. Test phase plan for the Waste Isolation Pilot Plant

    International Nuclear Information System (INIS)

    1993-03-01

    The US Department of Energy (DOE) has prepared this Test Phase Plan for the Waste Isolation Pilot Plant to satisfy the requirements of Public Law 102-579, the Waste Isolation Pilot Plant (WIPP) Land Withdrawal Act (LWA). The Act provides seven months after its enactment for the DOE to submit this Plan to the Environmental Protection Agency (EPA) for review. A potential geologic repository for transuranic wastes, including transuranic mixed wastes, generated in national-defense activities, the WIPP is being constructed in southeastern New Mexico. Because these wastes remain radioactive and chemically hazardous for a very long time, the WIPP must provide safe disposal for thousands of years. The DOE is developing the facility in phases. Surface facilities for receiving waste have been built and considerable underground excavations (2150 feet below the surface) that are appropriate for in-situ testing, have been completed. Additional excavations will be completed when they are required for waste disposal. The next step is to conduct a test phase. The purpose of the test phase is to develop pertinent information and assess whether the disposal of transuranic waste and transuranic mixed waste in the planned WIPP repository can be conducted in compliance with the environmental standards for disposal and with the Solid Waste Disposal Act (SWDA) (as amended by RCRA, 42 USC. 6901 et. seq.). The test phase includes laboratory experiments and underground tests using contact-handled transuranic waste. Waste-related tests at WIPP will be limited to contact-handled transuranic and simulated wastes since the LWA prohibits the transport to or emplacement of remote-handled transuranic waste at WIPP during the test phase

  9. Assessment of gas flammability in transuranic waste container

    International Nuclear Information System (INIS)

    Connolly, M.J.; Loehr, C.A.; Djordjevic, S.M.; Spangler, L.R.

    1995-01-01

    The Safety Analysis Report for the TRUPACT-II Shipping Package [Transuranic Package Transporter-II (TRUPACT-II) SARP] set limits for gas generation rates, wattage limits, and flammable volatile organic compound (VOC) concentrations in transuranic (TRU) waste containers that would be shipped to the Waste Isolation Pilot Plant (WIPP). Based on existing headspace gas data for drums stored at the Idaho National Engineering Laboratory (INEL) and the Rocky Flats Environmental Technology Site (RFETS), over 30 percent of the contact-handled TRU waste drums contain flammable VOC concentrations greater than the limit. Additional requirements may be imposed for emplacement of waste in the WIPP facility. The conditional no-migration determination (NMD) for the test phase of the facility required that flame tests be performed if significant levels of flammable VOCs were present in TRU waste containers. This paper describes an approach for investigating the potential flammability of TRU waste drums, which would increase the allowable concentrations of flammable VOCS. A flammability assessment methodology is presented that will allow more drums to be shipped to WIPP without treatment or repackaging and reduce the need for flame testing on drums. The approach includes experimental work to determine mixture lower explosive limits (MLEL) for the types of gas mixtures observed in TRU waste, a model for predicting the MLEL for mixtures of VOCS, hydrogen, and methane, and revised screening limits for total flammable VOCs concentrations and concentrations of hydrogen and methane using existing drum headspace gas data and the model predictions

  10. The waste isolation pilot plant: A new regulatory environment

    International Nuclear Information System (INIS)

    Frei, M.W.; Schneider, S.P.; Saris, E.C.; Austin, P.W.

    1993-01-01

    The US Department of Energy (DOE) is ready to embark on a multiyear test program, using radioactive waste, at the Waste Isolation Pilot Plant (WIPP). The WIPP is a deep geologic repository, constructed in ancient salt beds in southeastern New Mexico. It was authorized by Congress in 1979 as a research and development facility to demonstrate safe disposal of the nation's defense transuranic (TRU) waste. Nonradioactive testing in the repository has been under way for several years. The DOE is now ready to begin underground experiments at WIPP with small amounts of TRU waste. Radioactive waste testing in an actual repository environment will reduce uncertainties associated with predictions of long-term repository performance. However, the authority for DOE to begin this new phase of the test program no longer resides within the department. The WIPP is now subject to a new level of regulatory oversight by the Environmental Protection Agency (EPA) and other federal agencies, as set forth by Public Law 102-579, the WIPP Land Withdrawal Act, signed by the President on October 30, 1992. This paper discusses the act's new regulatory requirements for WIPP

  11. PASS: a component of Desk Top PA for the WIPP

    International Nuclear Information System (INIS)

    Crawford, M.B.; Wilmot, R.D.; Galson, D.A.; Swift, P.N.; Fewell, M.E.

    1998-01-01

    There is a growing recognition internationally of the need to demonstrate comprehensiveness in order to build confidence in performance assessments (PAs) for radioactive waste disposal projects. This has resulted in a number of methodologies being developed to formalize the process of defining and documenting the decision basis that underlies a PA. Such methodologies include process influence diagrams and the rock engineering system (RES) matrix. However, these methodologies focus mainly on the conceptualization of the disposal system and do not provide a ready framework to document the decisions behind the model development and parameterization of the PA system. The Performance Assessment Support System (PASS) is a flexible electronic tool designed to increase the transparency and traceability of decision making in the entire PA process. An application of PASS has been developed for the Waste Isolation Pilot Plant (WIPP) where it forms an important component of Desk Top PA, a PC-based PA computational environment under development at Sandia National Laboratories to document, plan, and support management decisions and to assess performance for the WIPP recertification process. This desk-top PA environment is also aimed at providing scientifically-based decision support for assessing the performance of nuclear and hazardous waste management and environmental clean-up systems

  12. Resource Conservation and Recovery Act, Part B Permit Application [for the Waste Isolation Pilot Plant (WIPP)]. Volume 5, Chapter D, Appendix D1 (conclusion), Revision 3

    Energy Technology Data Exchange (ETDEWEB)

    Cook, Neville G.W.; Heuze, Francois E.; Miller, Hamish D.S.; Thoms, Robert L.

    1993-03-01

    The reference design for the underground facilities at the Waste Isolation Pilot Plant was developed using the best criteria available at initiation of the detailed design effort. These design criteria are contained in the US Department of Energy document titled Design Criteria, Waste Isolation Pilot Plant (WIPP). Revised Mission Concept-IIA (RMC-IIA), Rev. 4, dated February 1984. The validation process described in the Design Validation Final Report has resulted in validation of the reference design of the underground openings based on these criteria. Future changes may necessitate modification of the Design Criteria document and/or the reference design. Validation of the reference design as presented in this report permits the consideration of future design or design criteria modifications necessitated by these changes or by experience gained at the WIPP. Any future modifications to the design criteria and/or the reference design will be governed by a DOE Standard Operation Procedure (SOP) covering underground design changes. This procedure will explain the process to be followed in describing, evaluating and approving the change.

  13. No-migration variance petition for the Waste Isolation Pilot Plant

    Energy Technology Data Exchange (ETDEWEB)

    Carnes, R.G.; Hart, J.S. (Benchmark Environmental Corp., Albuquerque, NM (USA)); Knudtsen, K. (International Technology Corp., Albuquerque, NM (USA))

    1990-01-01

    The Waste Isolation Pilot Plant (WIPP) is a US Department of Energy (DOE) project to provide a research and development facility to demonstrate the safe disposal of radioactive waste resulting from US defense activities and programs. The DOE is developing the WIPP facility as a deep geologic repository in bedded salt for transuranic (TRU) waste currently stored at or generated by DOE defense installations. Approximately 60 percent of the wastes proposed to be emplaced in the WIPP are radioactive mixed wastes. Because such mixed wastes contain a hazardous chemical component, the WIPP is subject to requirements of the Resource Conservation and Recovery Act (RCRA). In 1984 Congress amended the RCRA with passage of the Hazardous and Solid Waste Amendments (HSWA), which established a stringent regulatory program to prohibit the land disposal of hazardous waste unless (1) the waste is treated to meet treatment standards or other requirements established by the Environmental Protection Agency (EPA) under {section}3004(n), or (2) the EPA determines that compliance with the land disposal restrictions is not required in order to protect human health and the environment. The DOE WIPP Project Office has prepared and submitted to the EPA a no-migration variance petition for the WIPP facility. The purpose of the petition is to demonstrate, according to the requirements of RCRA {section}3004(d) and 40 CFR {section}268.6, that to a reasonable degree of certainty, there will be no migration of hazardous constituents from the WIPP facility for as long as the wastes remain hazardous. This paper provides an overview of the petition and describes the EPA review process, including key issues that have emerged during the review. 5 refs.

  14. No-migration variance petition for the Waste Isolation Pilot Plant

    International Nuclear Information System (INIS)

    Carnes, R.G.; Hart, J.S.; Knudtsen, K.

    1990-01-01

    The Waste Isolation Pilot Plant (WIPP) is a US Department of Energy (DOE) project to provide a research and development facility to demonstrate the safe disposal of radioactive waste resulting from US defense activities and programs. The DOE is developing the WIPP facility as a deep geologic repository in bedded salt for transuranic (TRU) waste currently stored at or generated by DOE defense installations. Approximately 60 percent of the wastes proposed to be emplaced in the WIPP are radioactive mixed wastes. Because such mixed wastes contain a hazardous chemical component, the WIPP is subject to requirements of the Resource Conservation and Recovery Act (RCRA). In 1984 Congress amended the RCRA with passage of the Hazardous and Solid Waste Amendments (HSWA), which established a stringent regulatory program to prohibit the land disposal of hazardous waste unless (1) the waste is treated to meet treatment standards or other requirements established by the Environmental Protection Agency (EPA) under section 3004(n), or (2) the EPA determines that compliance with the land disposal restrictions is not required in order to protect human health and the environment. The DOE WIPP Project Office has prepared and submitted to the EPA a no-migration variance petition for the WIPP facility. The purpose of the petition is to demonstrate, according to the requirements of RCRA section 3004(d) and 40 CFR section 268.6, that to a reasonable degree of certainty, there will be no migration of hazardous constituents from the WIPP facility for as long as the wastes remain hazardous. This paper provides an overview of the petition and describes the EPA review process, including key issues that have emerged during the review. 5 refs

  15. Analysis report for WIPP colloid model constraints and performance assessment parameters

    Energy Technology Data Exchange (ETDEWEB)

    Mariner, Paul E.; Sassani, David Carl

    2014-03-01

    An analysis of the Waste Isolation Pilot Plant (WIPP) colloid model constraints and parameter values was performed. The focus of this work was primarily on intrinsic colloids, mineral fragment colloids, and humic substance colloids, with a lesser focus on microbial colloids. Comments by the US Environmental Protection Agency (EPA) concerning intrinsic Th(IV) colloids and Mg-Cl-OH mineral fragment colloids were addressed in detail, assumptions and data used to constrain colloid model calculations were evaluated, and inconsistencies between data and model parameter values were identified. This work resulted in a list of specific conclusions regarding model integrity, model conservatism, and opportunities for improvement related to each of the four colloid types included in the WIPP performance assessment.

  16. Evaluation of proposed panel closure modifications at WIPP

    Energy Technology Data Exchange (ETDEWEB)

    Allen, Lawrence E.; Silva, Matthew K.; Channell, James K.; Abel, John F.; Morgan, Dudley R.

    2001-12-31

    A key component in the design of the WIPP repository is the installation of concrete structures as panel seals in the intake and exhaust drifts after a panel has been filled with waste containers. As noted in the EPA final rule, the panel seal closure system is intended to block brine flow between the waste panels at the WIPP. On April 17, 2001, the DOE proposed seven modifications to the EPA concerning the design of the panel closure system. EPA approval of these modifications is necessary since the details of the panel design are specified in EPA’s final rule as a condition for WIPP certification. However, the EPA has not determined whether a rulemaking would be required for these proposed design modifications. On September 4, 2001, the DOE withdrew the request, noting that it would be resubmitted on a future date. The Environmental Evaluation Group (EEG) contracted with two engineers, Dr. John Abel and Dr. Rusty Morgan, to evaluate the proposed modifications. The EEG has accepted the conclusions and recommendations from these two experts: 1) replacement of Salado Mass Concrete with a generic salt-based concrete; 2) replacement of the explosion wall with a construction wall; 3) replacement of freshwater grouting with salt-based grouting; 4) option to allow surface or underground mixing; and 5) option to allow up to one year for completion of closure. The proposed modification to allow local carbonate river rock as aggregate is acceptable pending demonstration that no problems will exist in the resulting concrete. The proposed modification to give the contractor discretion in removal of steel forms is not supported. Instead, several recommendations are made to specifically reduce the number of forms left, thereby reducing potential migration pathways.

  17. Waste acceptance and waste loading for vitrified Oak Ridge tank waste

    International Nuclear Information System (INIS)

    Harbour, J.R.; Andrews, M.K.

    1997-01-01

    The Office of Science and Technology of the DOE has funded a joint project between the Oak Ridge National Laboratory (ORNL) and the Savannah River Technology Center (SRTC) to evaluate vitrification and grouting for the immobilization of sludge from ORNL tank farms. The radioactive waste is from the Gunite and Associated Tanks (GAAT), the Melton Valley Storage Tanks (MVST), the Bethel Valley Evaporator Service Tanks (BVEST), and the Old Hydrofractgure Tanks (OHF). Glass formulation development for sludge from these tanks is discussed in an accompanying article for this conference (Andrews and Workman). The sludges contain transuranic radionuclides at levels which will make the glass waste form (at reasonable waste loadings) TRU. Therefore, one of the objectives for this project was to ensure that the vitrified waste form could be disposed of at the Waste Isolation Pilot Plant (WIPP). In order to accomplish this, the waste form must meet the WIPP Waste Acceptance Criteria (WAC). An alternate pathway is to send the glass waste forms for disposal at the Nevada Test Site (NTS). A sludge waste loading in the feed of 6 wt percent will lead to a waste form which is non-TRU and could potentially be disposed of at NTS. The waste forms would then have to meet the requirements of the NTS WAC. This paper presents SRTC''s efforts at demonstrating that the glass waste form produced as a result of vitrification of ORNL sludge will meet all the criteria of the WIPP WAC or NTS WAC

  18. WIPP Hydrology Program: Waste Isolation Pilot Plant, southeastern New Mexico, Hydrologic Data Report No. 5: Parts, A-WIPP-13 multipad test; B-H-4c, P-17, ERDA-9, and Cabin Baby-1 slug tests; C-Engle and Carper well pumping tests; D-WIPP-12, H-14, and H-15 drill-stem tests; E-Water-level data

    International Nuclear Information System (INIS)

    Stensrud, W.A.; Bame, M.A.; Lantz, K.D.; LaVenue, A.M.; Palmer, J.B.; Saulnier, G.J. Jr.

    1987-01-01

    Part A of this report describes the objectives, scope, design, equipment, and methodology for a long-term pumping test conducted at the Waste Isolation Pilot Plant (WIPP) in southeastern New Mexico. The test was conducted to provide technical assistance as part of the ongoing hydrologic characterization of the WIPP site. The test is referred to as the northern multipad pumping test, because it was designed to create a hydraulic stress over a wide area of the northern half of the WIPP site. The fluid-pressure and water-level recovery in both pumping and observation wells were monitored for a minimum of 72 days. The test interval was the Culebra Dolomite Member of the Rustler Formation. Twenty-three observation wells completed in the Culebra dolomite were monitored at least once a month as part of the regional water-level monitoring program. Severl wells completed in the Magenta Dolomite Member of the Rustler Formation were monitored during the test to assess the possibility of Magenta-Culebra communication in the expected area of influence of this test. The succeeding sections of this part of Hydrologic Data Report No. 5 present detailed descriptions of the test objectives, pretest data collection, test equipment and test-well configuration, the observation-well network, and test results. 3 refs., 147 figs., 107 tabs

  19. Characterizing cemented TRU waste for RCRA hazardous constituents

    International Nuclear Information System (INIS)

    Yeamans, D.R.; Betts, S.E.; Bodenstein, S.A.

    1996-01-01

    Los Alamos National Laboratory (LANL) has characterized drums of solidified transuranic (TRU) waste from four major waste streams. The data will help the State of New Mexico determine whether or not to issue a no-migration variance of the Waste Isolation Pilot Plant (WIPP) so that WIPP can receive and dispose of waste. The need to characterize TRU waste stored at LANL is driven by two additional factors: (1) the LANL RCRA Waste Analysis Plan for EPA compliant safe storage of hazardous waste; (2) the WIPP Waste Acceptance Criteria (WAC) The LANL characterization program includes headspace gas analysis, radioassay and radiography for all drums and solids sampling on a random selection of drums from each waste stream. Data are presented showing that the only identified non-metal RCRA hazardous component of the waste is methanol

  20. Cookoff Modeling of a WIPP waste drum (68660)

    Energy Technology Data Exchange (ETDEWEB)

    Hobbs, Michael L. [Sandia National Laboratories, Albuquerque, NM (United States)

    2014-11-24

    A waste drum located 2150 feet underground may have been the root cause of a radiation leak on February 14, 2014. Information provided to the WIPP Technical Assessment Team (TAT) was used to describe the approximate content of the drum, which included an organic cat litter (Swheat Scoop®, or Swheat) composed of 100% wheat products. The drum also contained various nitrate salts, oxalic acid, and a nitric acid solution that was neutralized with triethanolamine (TEA). CTH-TIGER was used with the approximate drum contents to specify the products for an exothermic reaction for the drum. If an inorganic adsorbent such as zeolite had been used in lieu of the kitty litter, the overall reaction would have been endothermic. Dilution with a zeolite adsorbent might be a useful method to remediate drums containing organic kitty litter. SIERRA THERMAL was used to calculate the pressurization and ignition of the drum. A baseline simulation of drum 68660 was performed by assuming a background heat source of 0.5-10 W of unknown origin. The 0.5 W source could be representative of heat generated by radioactive decay. The drum ignited after about 70 days. Gas generation at ignition was predicted to be 300-500 psig with a sealed drum (no vent). At ignition, the wall temperature increases modestly by about 1°C, demonstrating that heating would not be apparent prior to ignition. The ignition location was predicted to be about 0.43 meters above the bottom center portion of the drum. At ignition only 3-5 kg (out of 71.6 kg total) has been converted into gas, indicating that most of the material remained available for post-ignition reaction.

  1. The 1996 performance assessment for the Waste Isolation Pilot Plant

    International Nuclear Information System (INIS)

    Anderson, D.R.; Jow, H.N.; Marietta, M.G.; Chu, M.S.Y.; Shephard, L.E.; Helton, J.C.; Basabilvazo, G.

    1998-01-01

    The Waste Isolation Pilot Plant (WIPP) is under development by the US Department of Energy (DOE) for the geologic disposal of transuranic (TRU) waste that has been generated at government defense installations in the United States. The WIPP is located in an area of low population density in southeastern New Mexico. Waste disposal will take place in excavated chambers in a bedded salt formation approximately 655 m below the land surface. This presentation describes a performance assessment (PA) carried out at Sandia National Laboratories (SNL) to support the Compliance Certification Application (CCA) made by the DOE to the US Environmental Protection Agency (EPA) in October, 1996, for the certification of the WIPP for the disposal of TRU waste. Based on the CCA supported by the PA described in this presentation, the EPA has issued a preliminary decision to certify the WIPP for the disposal of TRU waste. At present (April 1998), it appears likely that the WIPP will be in operation by the end of 1998

  2. The Environmental Protection Agency's waste isolation pilot plant certification process: The steps leading to our decision

    International Nuclear Information System (INIS)

    Wene, C.; Kruger, M.

    1999-01-01

    On May 13, 1998, the United States Environmental Protection Agency (EPA) issued its 'final certification decision' to certify that the U. S. Department of Energy's (DOE) Waste Isolation Pilot Plant (WIPP) will comply with the radioactive waste disposal regulations set and the WIPP Compliance Criteria set forth at 40 CFR Parts 191 (US EPA, 1993) and 194 (US EPA, 1996) respectively. The WIPP will be the nation's first deep underground disposal facility for transuranic (TRU) radioactive waste generated as a result of defence activities. Since WIPP is a first-of-a-kind facility EPA's regulatory program contains an abundance of unique technical questions, as well as controversial policy considerations and legal issues. This paper presents the process that EPA undertook to reach its final decision. Oversight of the WIPP facility by EPA is governed by the WIPP Land Withdrawal Act (WIPP LWA), passed initially by Congress in 1992 and amended in 1996. The LWA required EPA to evaluate whether the WIPP will comply with Subparts B and C of 40 CFR Part 191, known as the disposal regulations. The EPA's final certification of compliance will allow the emplacement of radioactive waste in the WIPP to begin, provided that all other applicable health and safety standards have been met. The certification also allows Los Alamos National Laboratory (LANL) to strip TRU waste from specific waste streams for disposal at the WIPP. However, the certification is subject to several conditions, most notably that EPA must approve site-specific waste characterisation measures and quality assurance plans before allowing sites other than LANL to ship waste for disposal at the WIPP

  3. WIPP Hydrology Program Waste Isolation Pilot Plant southeastern New Mexico. Hydrologic data report No. 2

    International Nuclear Information System (INIS)

    1985-12-01

    This report contains basic hydrologic data for aquifer tests and water-level measurements conducted at the Waste Isolation Pilot Plant (WIPP) site over the period 1983 through November 1985. Part A summarizes data collected during a series of pumping and slug tests conducted during 1983 and 1984 in wells at the H-2 and H-9 hydropads, and in well H-12. Water-level data collected in 1983 and 1984 at the H-2 hydropads and Appendixes tabulate water-level, drawdown, millivolt, and pressure data collected with automated Data Acquisition Systems (DAS's) during the aquifer tests for both the test wells and the observation wells, and water-level data collected with electric water-level sounders. Part B is a detailed presentation of pumping tests conducted at the H-11 hydropad in May and June, 1985. Part B discusses the automated DAS, water-level measurement devices, the discharge measurement system, well and equipment configurations, and provides plots of pressure or water-level response in both the pumping and observation wells. Pressure data collected with the DAS, depth to water collected with the water-level sounders in observation wells, and measured pumping rate data are tabulated. Part C presents January through November, 1985 water-level data collected from wells in the observation-well network at and near the WIPP site. The types of devices utilized are discussed and the water-level plots obtained from the water-level data for the Magenta, the Culebra, the Rustler-Salado contact zone, the Bell Canyon Formation, and the Salado/Castile Formations are presented. Water levels are tabulated

  4. The waste isolation pilot plant transuranic waste repository: A case study in radioactive waste disposal safety and risk

    Energy Technology Data Exchange (ETDEWEB)

    Eriksson, Leif G. [GRAM, Inc., Albuquerque, NM (United States)

    1999-12-01

    The Waste Isolation Pilot Plant (WIPP) deep geological defense-generated transuranic radioactive waste (TRUW) repository in the United States was certified on the 13 of May 1998 and opened on the 26 of March 1999. Two sets of safety/performance assessment calculations supporting the certification of the WIPP TRUW repository show that the maximum annual individual committed effective dose will be 32 times lower than the regulatory limit and that the cumulative amount of radionuclide releases will be at least 10 times, more likely at least 20 times, lower than the regulatory limits. Yet, perceptions remain among the public that the WIPP TRUW repository imposes an unacceptable risk.

  5. The waste isolation pilot plant transuranic waste repository: A case study in radioactive waste disposal safety and risk

    International Nuclear Information System (INIS)

    Eriksson, Leif G.

    1999-01-01

    The Waste Isolation Pilot Plant (WIPP) deep geological defense-generated transuranic radioactive waste (TRUW) repository in the United States was certified on the 13 of May 1998 and opened on the 26 of March 1999. Two sets of safety/performance assessment calculations supporting the certification of the WIPP TRUW repository show that the maximum annual individual committed effective dose will be 32 times lower than the regulatory limit and that the cumulative amount of radionuclide releases will be at least 10 times, more likely at least 20 times, lower than the regulatory limits. Yet, perceptions remain among the public that the WIPP TRUW repository imposes an unacceptable risk

  6. The Stored Waste Examination Pilot Plant program at the INEL

    International Nuclear Information System (INIS)

    McKinley, K.B.; Anderson, B.C.; Clements, T.L.; Hinckley, J.P.; Mayberry, J.L.; Smith, T.H.

    1983-01-01

    Since 1970, defense transuranic waste has been placed into 20-year retrievable storage at the Radioactive Waste Management Complex at the Idaho National Engineering Laboratory (INEL). A major objective of the U.S. Department of Energy (DOE) Nuclear Waste Management Program is to remove all retrievably stored transuranic waste from the INEL. The January 1981 DOE Record of Decision on the Waste Isolation Pilot Plant (WIPP) stated, ''The WIPP facility will dispose of defense transuranic waste stored retrievably at the Idaho National Engineering Laboratory.'' After retrieval and before shipment, processing may be necessary to prepare the waste for acceptance, handling, and enhanced long-term isolation in the WIPP. However, some of the waste is certifiable to the WIPP waste acceptance criteria without container opening or waste processing. To minimize costs, the Stored Waste Examination Pilot Plant (SWEPP) is being developed to certify INEL stored transuranic waste without container opening or waste processing. The SWEPP certification concept is based on records assessment, nondestructive examination techniques, assay techniques, health physics examinations, and limited opening of containers at another facility for quality control

  7. Certification document for newly generated contact-handled transuranic waste

    International Nuclear Information System (INIS)

    Box, W.D.; Setaro, J.

    1984-01-01

    The US Department of Energy has requested that all national laboratories handling defense waste develop and augment a program whereby all newly generated contact-handled transuranic (TRU) waste be contained, stored, and then shipped to the Waste Isolation Pilot Plant (WIPP) in accordance with the requirements set forth in WIPP-DOE-114. The program described in this report delineates how Oak Ridge National Laboratory intends to comply with these requirements and lists the procedures used by each generator to ensure that their TRU wastes are certifiable for shipment to WIPP

  8. Analysis of Waste Isolation Pilot Plant Samples: Integrated Summary Report

    Energy Technology Data Exchange (ETDEWEB)

    Britt, Phillip F [ORNL

    2015-03-01

    Analysis of Waste Isolation Pilot Plant Samples: Integrated Summary Report. Summaries of conclusions, analytical processes, and analytical results. Analysis of samples taken from the Waste Isolation Pilot Plant (WIPP) near Carlsbad, New Mexico in support of the WIPP Technical Assessment Team (TAT) activities to determine to the extent feasible the mechanisms and chemical reactions that may have resulted in the breach of at least one waste drum and release of waste material in WIPP Panel 7 Room 7 on February 14, 2014. This report integrates and summarizes the results contained in three separate reports, described below, and draws conclusions based on those results. Chemical and Radiochemical Analyses of WIPP Samples R-15 C5 SWB and R16 C-4 Lip; PNNL-24003, Pacific Northwest National Laboratory, December 2014 Analysis of Waste Isolation Pilot Plant (WIPP) Underground and MgO Samples by the Savannah River National Laboratory (SRNL); SRNL-STI-2014-00617; Savannah River National Laboratory, December 2014 Report for WIPP UG Sample #3, R15C5 (9/3/14); LLNL-TR-667015; Lawrence Livermore National Laboratory, January 2015 This report is also contained in the Waste Isolation Pilot Plant Technical Assessment Team Report; SRNL-RP-2015-01198; Savannah River National Laboratory, March 17, 2015, as Appendix C: Analysis Integrated Summary Report.

  9. Compliance status report for the Waste Isolation Pilot Plant

    Energy Technology Data Exchange (ETDEWEB)

    1994-03-31

    The US Department of Energy (DOE) is responsible for the disposition of transuranic (TRU) waste generated through national defense-related activities. Approximately 53,700 m{sup 2} of these wastes have been generated and are currently stored at government defense installations across the country. The Waste Isolation Pilot Plant (WIPP), located in southeastern New Mexico, has been sited and constructed to meet the criteria established by the scientific and regulatory community for the safe, long-term disposal of TRU and TRU-mixed wastes. This Compliance Status Report (CSR) provides an assessment of the progress of the WIPP Program toward compliance with long-term disposal regulations, set forth in Title 40 CFR 191 (EPA, 1993a), Subparts B and C, and Title 40 CFR {section}268.6 (EPA, 1993b), in order to focus on-going and future experimental and engineering activities. The CSR attempts to identify issues associated with the performance of the WIPP as a long-term repository and to focus on the resolution of these issues. This report will serve as a tool to focus project resources on the areas necessary to ensure complete, accurate, and timely submittal of the compliance application. This document is not intended to constitute a statement of compliance or a demonstration of compliance.

  10. A sensitivity analysis of the WIPP disposal room model: Phase 1

    Energy Technology Data Exchange (ETDEWEB)

    Labreche, D.A.; Beikmann, M.A. [RE/SPEC, Inc., Albuquerque, NM (United States); Osnes, J.D. [RE/SPEC, Inc., Rapid City, SD (United States); Butcher, B.M. [Sandia National Labs., Albuquerque, NM (United States)

    1995-07-01

    The WIPP Disposal Room Model (DRM) is a numerical model with three major components constitutive models of TRU waste, crushed salt backfill, and intact halite -- and several secondary components, including air gap elements, slidelines, and assumptions on symmetry and geometry. A sensitivity analysis of the Disposal Room Model was initiated on two of the three major components (waste and backfill models) and on several secondary components as a group. The immediate goal of this component sensitivity analysis (Phase I) was to sort (rank) model parameters in terms of their relative importance to model response so that a Monte Carlo analysis on a reduced set of DRM parameters could be performed under Phase II. The goal of the Phase II analysis will be to develop a probabilistic definition of a disposal room porosity surface (porosity, gas volume, time) that could be used in WIPP Performance Assessment analyses. This report documents a literature survey which quantifies the relative importance of the secondary room components to room closure, a differential analysis of the creep consolidation model and definition of a follow-up Monte Carlo analysis of the model, and an analysis and refitting of the waste component data on which a volumetric plasticity model of TRU drum waste is based. A summary, evaluation of progress, and recommendations for future work conclude the report.

  11. Comparative analysis of nine structural codes used in the second WIPP benchmark problem

    International Nuclear Information System (INIS)

    Morgan, H.S.; Krieg, R.D.; Matalucci, R.V.

    1981-11-01

    In the Waste Isolation Pilot Plant (WIPP) Benchmark II study, various computer codes were compared on the basis of their capabilities for calculating the response of hypothetical drift configurations for nuclear waste experiments and storage demonstration. The codes used by participants in the study were ANSALT, DAPROK, JAC, REM, SANCHO, SPECTROM, STEALTH, and two different implementations of MARC. Errors were found in the preliminary results, and several calculations were revised. Revised solutions were in reasonable agreement except for the REM solution. The Benchmark II study allowed significant advances in understanding the relative behavior of computer codes available for WIPP calculations. The study also pointed out the possible need for performing critical design calculations with more than one code. Lastly, it indicated the magnitude of the code-to-code spread in results which is to be expected even when a model has been explicitly defined

  12. Waste Isolation Pilot Plant (WIPP) research and development program: in situ testing plan, March 1982

    International Nuclear Information System (INIS)

    Matalucci, R.V.; Christensen, C.L.; Hunter, T.O.; Molecke, M.A.; Munson, D.E.

    1982-12-01

    The WIPP in southeast New Mexico is being developed as an R and D facility to demonstrate the safe disposal of radioactive defense wastes in bedded salt. The tests are done first without radioactive materials and then with transuranic (TRU) waste and Defense High-Level Waste (DHLW). The thermal/structural itneraction experiments include (a) geomechanical evaluations of access drifts, vertical shafts, and isothermal TRU disposal rooms during the Site and Preliminary Validation Program, (b) tests that represent the reference DHLW room configuraton (5.5 m x 5.5 m) and areal thermal loading of 12 W/m 2 , (c) an overtest of the DHLW congfiguration heated to about four times the reference thermal loading; (d) geomechanical evaluations of various room widths up to 9.1 m, variable pillar widths, and a long-drift intersection, (e) an 11-m-dia axisymmetric heated pillar test, and (f) miscellaneous tests to determine stress field and clay seam sliding resistance. The plugging and sealing experiments include (a) salt permeability tests, (b) tests to determine effects of size and scale on behavior of plugs and to determine backfill material behavior and emplacement techniques, and (c) a plug test matrix to evaluate candidate sealing materials. Waste package interaction experiments include (a) simulated-waste package tests that use several design options and engineered barrier materials under reference and accelerated DHLW environments, (b) confirmatory brine migration tests, (c) TRU drum durability tests in dry and wet conditions, (d) options for radiation-source tests using cesium capsules, and (e) actual DHLW tests using up to 40 canisters for technical demonstrations and for addressing concerns of wasteform chemistry, leaching, and near-field radionuclide migration

  13. Sandia WIPP calibration traceability

    Energy Technology Data Exchange (ETDEWEB)

    Schuhen, M.D. [Sandia National Labs., Albuquerque, NM (United States); Dean, T.A. [RE/SPEC, Inc., Albuquerque, NM (United States)

    1996-05-01

    This report summarizes the work performed to establish calibration traceability for the instrumentation used by Sandia National Laboratories at the Waste Isolation Pilot Plant (WIPP) during testing from 1980-1985. Identifying the calibration traceability is an important part of establishing a pedigree for the data and is part of the qualification of existing data. In general, the requirement states that the calibration of Measuring and Test equipment must have a valid relationship to nationally recognized standards or the basis for the calibration must be documented. Sandia recognized that just establishing calibration traceability would not necessarily mean that all QA requirements were met during the certification of test instrumentation. To address this concern, the assessment was expanded to include various activities.

  14. Sandia WIPP calibration traceability

    International Nuclear Information System (INIS)

    Schuhen, M.D.; Dean, T.A.

    1996-05-01

    This report summarizes the work performed to establish calibration traceability for the instrumentation used by Sandia National Laboratories at the Waste Isolation Pilot Plant (WIPP) during testing from 1980-1985. Identifying the calibration traceability is an important part of establishing a pedigree for the data and is part of the qualification of existing data. In general, the requirement states that the calibration of Measuring and Test equipment must have a valid relationship to nationally recognized standards or the basis for the calibration must be documented. Sandia recognized that just establishing calibration traceability would not necessarily mean that all QA requirements were met during the certification of test instrumentation. To address this concern, the assessment was expanded to include various activities

  15. Management of remote-handled defense transuranic wastes

    International Nuclear Information System (INIS)

    Ebra, M.A.; Pierce, G.D.; Carson, P.H.

    1988-01-01

    Transuranic (TRU) wastes generated by defense-related activities are scheduled for emplacement at the Waste Isolation Pilot Plant (WIPP) in New Mexico beginning in October 1988. After five years of operation as a research and development facility, the WIPP may be designated as a permanent repository for these wastes, if it has been demonstrated that this deep, geologically stable formation is a safe disposal option. Defense TRU wastes are currently stored at various Department of Energy (DOE) sites across the nation. Approximately 2% by volume of currently stored TRU wastes are defined, on the basis of dose rates, as remote-handled (RH). RH wastes continue to be generated at various locations operated by DOE contractors. They require special handling and processing prior to and during emplacement in the WIPP. This paper describes the strategy for managing defense RH TRU wastes

  16. Simultaneous Thermal Analysis of WIPP and LANL Waste Drum Samples: A Preliminary Report

    Energy Technology Data Exchange (ETDEWEB)

    Wayne, David M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-10-19

    On Friday, February 14, 2014, an incident in P7R7 of the WIPP underground repository released radioactive material into the environment. The direct cause of the event was a breached transuranic (TRU) waste container, subsequently identified as Drum 68660. Photographic and other evidence indicates that the breach of 68660 was caused by an exothermic event. Subsequent investigations (Britt, 2015; Clark and Funk, 2015; Wilson et al., 2015; Clark, 2015) indicate that the combination of nitrate salts, pH neutralizing chemicals, and organic-based adsorbent represented a potentially energetic mixture. The materials inside the breached steel drum consisted of remediated, 30- to 40-year old, Pu processing wastes from LANL. The contents were processed and repackaged in 2014. Processing activities at LANL included: 1) neutralization of acidic liquid contents, 2) sorption of the neutralized liquid, and 3) mixing of acidic nitrate salts with an absorber to meet waste acceptance criteria. The contents of 68660 and its sibling, 68685, were derived from the same parent drum, S855793. Drum S855793 originally contained ten plastic bags of acidic nitrate salts, and four bags of mixed nitrate and oxalate salts generated in 1985 by Pu recovery operations. These salts were predominantly oxalic acid, hydrated nitrate salts of Mg, Ca, and Fe, anhydrous Na(NO3), and minor amounts of anhydrous and hydrous nitrate salts of Pb, Al, K, Cr, and Ni. Other major components include sorbed water, nitric acid, dissolved nitrates, an absorbent (Swheat Scoop®) and a neutralizer (KolorSafe®). The contents of 68660 are described in greater detail in Appendix E of Wilson et al. (2015)

  17. Simultaneous Thermal Analysis of WIPP and LANL Waste Drum Samples: A Preliminary Report

    International Nuclear Information System (INIS)

    Wayne, David M.

    2015-01-01

    On Friday, February 14, 2014, an incident in P7R7 of the WIPP underground repository released radioactive material into the environment. The direct cause of the event was a breached transuranic (TRU) waste container, subsequently identified as Drum 68660. Photographic and other evidence indicates that the breach of 68660 was caused by an exothermic event. Subsequent investigations (Britt, 2015; Clark and Funk, 2015; Wilson et al., 2015; Clark, 2015) indicate that the combination of nitrate salts, pH neutralizing chemicals, and organic-based adsorbent represented a potentially energetic mixture. The materials inside the breached steel drum consisted of remediated, 30- to 40-year old, Pu processing wastes from LANL. The contents were processed and repackaged in 2014. Processing activities at LANL included: 1) neutralization of acidic liquid contents, 2) sorption of the neutralized liquid, and 3) mixing of acidic nitrate salts with an absorber to meet waste acceptance criteria. The contents of 68660 and its sibling, 68685, were derived from the same parent drum, S855793. Drum S855793 originally contained ten plastic bags of acidic nitrate salts, and four bags of mixed nitrate and oxalate salts generated in 1985 by Pu recovery operations. These salts were predominantly oxalic acid, hydrated nitrate salts of Mg, Ca, and Fe, anhydrous Na(NO 3 ), and minor amounts of anhydrous and hydrous nitrate salts of Pb, Al, K, Cr, and Ni. Other major components include sorbed water, nitric acid, dissolved nitrates, an absorbent (Swheat Scoop®) and a neutralizer (KolorSafe®). The contents of 68660 are described in greater detail in Appendix E of Wilson et al. (2015)

  18. Test plan: Potash Core Test. WIPP experimental program borehole plugging

    International Nuclear Information System (INIS)

    Christensen, C.L.

    1979-09-01

    The Potash Core Test will utilize a WIPP emplaced plug to obtain samples of an in-situ cured plug of known mix constituents for bench scale testing. An earlier effort involved recovery at the salt horizon of Plug 217, a 17 year old plug in a potash exploration hole for bond testing, but the lack of particulars in the emplacement precluded significant determination of plug performance

  19. Environmental Assessment for the Above Ground Storage Capability at the Waste Isolation Pilot Plant. Draft

    Energy Technology Data Exchange (ETDEWEB)

    None

    2017-12-01

    The Waste Isolation Pilot Plant (WIPP) is the nation’s only approved repository for the disposal of defense related/defense generated transuranic (TRU) and mixed hazardous TRU waste (henceforth called TRU waste). The mission of the WIPP Project is to realize the safe disposal of TRU waste from TRU waste generator sites in the Department of Energy waste complex. The WIPP Project was authorized by Title II, Section 213(a) of Public Law 96-164 (U. S. Congress 1979). Congress designated the WIPP facility “for the express purpose of providing a research and development facility to demonstrate the safe disposal of radioactive wastes resulting from the defense activities and programs of the United States exempted from regulation by the Nuclear Regulatory Commission (NRC).” The WIPP facility is operated by the U. S. Department of Energy (DOE). Transuranic waste that is disposed in the WIPP facility is defined by Section 2(18) the WIPP Land Withdrawal Act of 1992 (LWA) (U. S. Congress, 1992) as: “waste containing more than 100 nanocuries of alpha-emitting transuranic isotopes per gram of waste, with half-lives greater than 20 years, except for: (A) high-level radioactive waste; (B) waste that the Secretary has determined, with the concurrence of the Administrator, does not need the degree of isolation required by the disposal regulations; or (C) waste that the NRC has approved for disposal on a case-by-case basis in accordance with part 61 of title 10, Code of Federal Regulations (CFR).

  20. U.S. Department of Energy Implementation of Chemical Evaluation Requirements for Transuranic Waste Disposal at the Waste Isolation Pilot Plant

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Alison [USDOE Office of Environmental Management (EM), Washington, DC (United States); Barkley, Michelle [USDOE Office of Environmental Management (EM), Washington, DC (United States); Poppiti, James [USDOE Office of Environmental Management (EM), Washington, DC (United States)

    2017-07-01

    This report summarizes new controls designed to ensure that transuranic waste disposed at the Waste Isolation Pilot Plant (WIPP) does not contain incompatible chemicals. These new controls include a Chemical Compatibility Evaluation, an evaluation of oxidizing chemicals, and a waste container assessment to ensure that waste is safe for disposal. These controls are included in the Chapter 18 of the Documented Safety Analysis for WIPP (1).

  1. U.S. Department of Energy Implementation of Chemical Evaluation Requirements for Transuranic Waste Disposal at the Waste Isolation Pilot Plant

    International Nuclear Information System (INIS)

    Moon, Alison; Barkley, Michelle; Poppiti, James

    2017-01-01

    This report summarizes new controls designed to ensure that transuranic waste disposed at the Waste Isolation Pilot Plant (WIPP) does not contain incompatible chemicals. These new controls include a Chemical Compatibility Evaluation, an evaluation of oxidizing chemicals, and a waste container assessment to ensure that waste is safe for disposal. These controls are included in the Chapter 18 of the Documented Safety Analysis for WIPP (1).

  2. The waste isolation pilot plant regulatory compliance program

    International Nuclear Information System (INIS)

    Mewhinney, J.A.; Kehrman, R.F.

    1996-01-01

    The passage of the WIPP Land Withdrawal Act of 1992 (LWA) marked a turning point for the Waste Isolation Pilot Plant (WIPP) program. It established a Congressional mandate to open the WIPP in as short a time as possible, thereby initiating the process of addressing this nation's transuranic (TRU) waste problem. The DOE responded to the LWA by shifting the priority at the WIPP from scientific investigations to regulatory compliance and the completion of prerequisites for the initiation of operations. Regulatory compliance activities have taken four main focuses: (1) preparing regulatory submittals; (2) aggressive schedules; (3) regulator interface; and (4) public interactions

  3. Report of biological investigations at the Los Medanos Waste Isolation Pilot Plant (WIPP) area of New Mexico during FY 1978

    International Nuclear Information System (INIS)

    Best, T.L.; Neuhauser, S.

    1980-03-01

    The US Department of Energy is considering the construction of a Waste Isolation Pilot Plant (WIPP) in Eddy County, NM. This location is approximately 40 km east of Carlsbad, NM. Biological studies during FY 1978 were concentrated within a 5-mi radius of drill hole ERDA 9. Additional study areas have been established at other sites in the vicinity, e.g., the Gnome site, the salt lakes and several stations along the Pecos River southward from Carlsbad, NM, to the dam at Red Bluff Reservoir in Texas. The precise locations of all study areas are presented and their biology discussed

  4. Report of biological investigations at the Los Medanos Waste Isolation Pilot Plant (WIPP) area of New Mexico during FY 1978

    Energy Technology Data Exchange (ETDEWEB)

    Best, T.L.; Neuhauser, S. (eds.)

    1980-03-01

    The US Department of Energy is considering the construction of a Waste Isolation Pilot Plant (WIPP) in Eddy County, NM. This location is approximately 40 km east of Carlsbad, NM. Biological studies during FY 1978 were concentrated within a 5-mi radius of drill hole ERDA 9. Additional study areas have been established at other sites in the vicinity, e.g., the Gnome site, the salt lakes and several stations along the Pecos River southward from Carlsbad, NM, to the dam at Red Bluff Reservoir in Texas. The precise locations of all study areas are presented and their biology discussed.

  5. Rock mechanics activities at the Waste Isolation Pilot Plant

    International Nuclear Information System (INIS)

    Francke, C.; Saeb, S.

    1996-01-01

    The application of rock mechanics at nuclear waste repositories is a true multidisciplinary effort. A description and historical summary of the Waste Isolation Pilot Plant (WIPP) is presented. Rock mechanics programs at the WIPP are outlined, and the current rock mechanics modeling philosophy of the Westinghouse Waste Isolation Division is discussed

  6. Comparison between disign criteria and observed structural performance of underground openings at WIPP

    International Nuclear Information System (INIS)

    Cook, R.F.; Francke, C.

    1989-01-01

    This paper discusses the observed structural performance of the underground excavations at the Waste Isolation Pilot Plant (WIPP) in relation to design criteria. The criteria were established at an early stage of the project to define the functional and structural requirements that were to be addressed in the design of the facility. For the underground structural response, the criteria defined the requirements for the shaft and shaft liner design, mine design, waste emplacement, retrievability and instrumentation. The observed structural performance of the underground is determined by the field data that have been collected since excavations were started at the WIPP site. The observations include field measurements of rock and water conditions, as well as maintenance records. The data provide input to design confirmation, performance assessment and form the basis for the design of new underground structures. For this paper, the field data have been compared with the design criteria applicable to ground control to demonstrate that the requirements of the design are met

  7. Proposed Changes to EPA's Transuranic Waste Characterization Approval Process

    International Nuclear Information System (INIS)

    Joglekar, R.D.; Feltcorn, E.M.; Ortiz, A.M.

    2003-01-01

    This paper describes the changes to the waste characterization (WC) approval process proposed in August 2002 by the U.S. Environmental Protection Agency (EPA or the Agency or we). EPA regulates the disposal of transuranic (TRU) waste at the Waste Isolation Pilot Plant (WIPP) repository in Carlsbad, New Mexico. EPA regulations require that waste generator/storage sites seek EPA approval of WC processes used to characterize TRU waste destined for disposal at WIPP. The regulations also require that EPA verify, through site inspections, characterization of each waste stream or group of waste streams proposed for disposal at the WIPP. As part of verification, the Agency inspects equipment, procedures, and interviews personnel to determine if the processes used by a site can adequately characterize the waste in order to meet the waste acceptance criteria for WIPP. The paper discusses EPA's mandate, current regulations, inspection experience, and proposed changes. We expect that th e proposed changes will provide equivalent or improved oversight. Also, they would give EPA greater flexibility in scheduling and conducting inspections, and should clarify the regulatory process of inspections for both Department of Energy (DOE) and the public

  8. Waste Isolation Pilot Plant Safety Analysis Report. Volume 5

    International Nuclear Information System (INIS)

    1986-01-01

    This Safety Analysis Report (SAR) has been prepared by the US Department of Energy (DOE) to support the construction and operation of the Waste Isolation Pilot Plant (WIPP) in southeastern New Mexico. The WIPP facility is designed to receive, inspect, emplace, and store unclassified defense-generated transuranic wastes in a retrievable fashion in an underground salt medium and to conduct studies and perform experiments in salt with high-level wastes. Upon the successful completion of these studies and experiments, WIPP is designed to serve as a permanent facility. The first chapter of this report provides a summary of the location and major design features of WIPP. Chapters 2 through 5 describe the site characteristics, design criteria, and design bases used in the design of the plant and the plant operations. Chapter 6 discusses radiation protection; Chapters 7 and 8 present an accident analysis of the plant and an assessment of the long-term waste isolation at WIPP. The conduct of operations and operating controls and limits are discussed in Chapters 9 and 10. The quality assurance programs are described in Chapter 11

  9. Waste Isolation Pilot Plant Safety Analysis Report. Volume 4

    International Nuclear Information System (INIS)

    1986-01-01

    This Safety Analysis Report (SAR) has been prepared by the US Department of Energy (DOE) to support the construction and operation of the Waste Isolation Pilot Plant (WIPP) in southeastern New Mexico. The WIPP facility is designed to receive, inspect, emplace, and store unclassified defense-generated transuranic wastes in a retrievable fashion in an underground salt medium and to conduct studies and perform experiments in salt with high-level wastes. Upon the successful completion of these studies and experiments, WIPP is designed to serve as a permanent facility. The first chapter of this report provides a summary of the location and major design features of WIPP. Chapters 2 through 5 describe the site characteristics, design criteria, and design bases used in the design of the plant and the plant operations. Chapter 6 discusses radiation protection; Chapters 7 and 8 present an accident analysis of the plant and an assessment of the long-term waste isolation at WIPP. The conduct of operations and operating controls and limits are discussed in Chapters 9 and 10. The quality assurance programs are described in Chapter 11

  10. Waste Isolation Pilot Plant Safety Analysis Report. Volume 1

    International Nuclear Information System (INIS)

    1986-01-01

    This Safety Analysis Report (SAR) has been prepared by the US Department of Energy (DOE) to support the construction and operation of the Waste Isolation Pilot Plant (WIPP) in southeastern New Mexico. The WIPP facility is designed to receive, inspect, emplace, and store unclassified defense-generated transuranic wastes in a retrievable fashion in an underground salt medium and to conduct studies and perform experiments in salt with high-level wastes. Upon the successful completion of these studies and experiments, WIPP is designed to serve as a permanent facility. The first chapter of this report provides a summary of the location and major design features of WIPP. Chapters 2 through 5 describe the site characteristics, design criteria, and design bases used in the design of the plant and the plant operations. Chapter 6 discusses radiation protection: Chapters 7 and 8 present an accident analysis of the plant and an assessment of the long-term waste isolation at WIPP. The conduct of operations and operating control and limits are discussed in Chapters 9 and 10. The quality assurance programs are described in Chapter 11

  11. Waste Isolation Pilot Plant Safety Analysis Report. Volume 2

    International Nuclear Information System (INIS)

    1986-01-01

    This Safety Analysis Report (SAR) has been prepared by the US Department of Energy (DOE) to support the construction and operation of the Waste Isolation Pilot Plant (WIPP) in southeastern New Mexico. The WIPP facility is designed to receive, inspect, emplace, and store unclassified defense-generated transuranic wastes in a retrievable fashion in an underground salt medium and to conduct studies and perform experiments in salt with high-level wastes. Upon the successful completion of these studies and experiments, WIPP is designed to serve as a permanent facility. The first chapter of this report provides a summary of the location and major design features of WIPP. Chapters 2 through 5 describe the site characteristics, design criteria, and design bases used in the design of the plant and the plant operations. Chapter 6 discusses radiation protection; Chapters 7 and 8 present an accident analysis of the plant and an assessment of the long-term waste isolation at WIPP. The conduct of operations and operating controls and limits are discussed in Chapters 9 and 10. The quality assurance programs are described in Chapter 11

  12. Draft plan for the Waste Isolation Pilot Plant test phase: Performance assessment and operations demonstration

    International Nuclear Information System (INIS)

    1989-04-01

    The mission of the Waste Isolation Pilot Plant (WIPP) Project is to provide a research and development facility to demonstrate the safe disposal of transuranic (TRU) radioactive wastes resulting from United States defense programs. With the Construction Phase of the WIPP facility nearing completion, WIPP is ready to initiate the next phase in its development, the Test Phase. The purpose of the Test Phase is to collect the necessary scientific and operational data to support a determination whether to proceed to the Disposal Phase and thereby designate WIPP a demonstration facility for the disposal of TRU wastes. This decision to proceed to the Disposal Phase is scheduled for consideration by September 1994. Development of the WIPP facility is the responsibility of the United States Department of Energy (DOE), whose Albuquerque Operations Office has designated the WIPP Project Office as Project Manager. This document describes the two major programs to be conducted during the Test Phase of WIPP: (1) Performance Assessment for determination of compliance with the Environmental Protection Agency Standard and (2) Operations Demonstration for evaluation of the safety and effectiveness of the DOE TRU waste management system's ability to emplace design throughput quantities of TRU waste in the WIPP facility. 42 refs., 38 figs., 14 tabs

  13. WIPP site and vicinity geological field trip. A report of a field trip to the proposed Waste Isolation Pilot Plant project in Southeastern New Mexico, June 16 to 18, 1980

    Energy Technology Data Exchange (ETDEWEB)

    Chaturvedi, L

    1980-10-01

    The Environmental Evaluation Group is conducting an assessment of the radiological health risks to people from the Waste Isolation Pilot Plant. As a part of this work, EEG is making an effort to improve the understanding of those geological issues concerning the WIPP site which may affect the radiological consequences of the proposed repository. One of the important geological issues to be resolved is the timing and the nature of the dissolution processes which may have affected the WIPP site. EEG organized a two-day conference of geological scientists, on January 17-18, 1980. On the basis of the January conference and the June field trip, EEG has formed the following conclusions: (1) it has not been clearly established that the site or the surrounding area has been attacked by deep dissolution to render it unsuitable for the nuclear waste pilot repository; (2) the existence of an isolated breccia pipe at the site unaccompanied by a deep dissolution wedge, is a very remote possibility; (3) more specific information about the origin and the nature of the brine reservoirs is needed. An important question that should be resolved is whether each encounter with artesian brine represents a separate pocket or whether these occurrences are interconnected; (4) Anderson has postulated a major tectonic fault or a fracture system at the Basin margin along the San Simon Swale; (5) the area in the northern part of the WIPP site, identified from geophysical and bore hole data as the disturbed zone, should be further investigated to cleary understand the nature and significance of this structural anomaly; and (6) a major drawback encountered during the discussions of geological issues related to the WIPP site is the absence of published material that brings together all the known information related to a particular issue.

  14. Overview of the Quality Assurance Program Applied to the Performance Assessment of the Waste Isolation Pilot Plant

    International Nuclear Information System (INIS)

    Pickering, S.Y.

    1999-01-01

    The Waste Isolation Pilot Plant (WIPP) is the first deep geologic repository for radioactive waste disposal in the world to be certified by a regulator. Rigorous, nuclear-industry quality assurance (QA) requirements were imposed by the US Environmental Protection Agency. As the Scientific Advisor to the US Department of Energy, Sandia National Laboratories applied these standards to the experimental studies and performance assessment used in the certification process. The QA program ensured that activities conducted by SNL were traceable, transparent, reviewed, reproducible, and retrievable. As a result, regulators and stakeholders were able to evaluate and ultimately certify and accept the WIPP

  15. Assessment of LANL transuranic mixed waste management documentation

    International Nuclear Information System (INIS)

    Davis, K.D.; Hoevemeyer, S.S.; McCance, C.H.; Jennrich, E.A.; Lund, D.M.

    1991-04-01

    The objective of this report is to present findings from the evaluation of the Los Alamos National Laboratory (LANL) TRU Mixed Waste Acceptance Criteria to determine its compliance with applicable DOE requirements. The driving requirements for s TRU Mixed Waste Acceptance Criteria are essentially those contained in the ''TRU Waste Acceptance Criteria for the Waste Isolation Pilot Plant'' or WIPP WAC (DOE Report WIPP-DOE-069), 40 CFR 261-270, and DOE Order 5820.2A (Radioactive Waste Management), specifically Chapter II which is entitled ''Management of Transuranic Waste''. The primary purpose of the LANL WAC is the establishment of those criteria that must be met by generators of TRU mixed waste before such waste can be accepted by the Waste Management Group. An annotated outline of a genetic TRU mixed waste acceptance criteria document was prepared from those requirements contained in the WIPP WAC, 40 CFR 261-270, and 5820.2A, and is based solely upon those requirements

  16. Can we talk? Communications management for the Waste Isolation Pilot Plant, a complex nuclear waste management project

    International Nuclear Information System (INIS)

    Goldstein, S.A.; Pullen, G.M.; Brewer, D.R.

    1995-01-01

    Sandia Nuclear Waste Management Program is pursuing for DOE an option for permanently disposing radioactive waste in deep geologic repositories. Included in the Program are the Waste Isolation Pilot Plant (WIPP) Project for US defense program mixed waste the Yucca Mountain Project (YMP) for spent power reactor fuel and vitrified high-level waste, projects for other waste types, and development efforts in environmental decision support technologies. WIPP and YMP are in the public arena, of a controversial nature, and provide significant management challenges. Both projects have large project teams, multiple organization participants, large budgets, long durations, are very complex, have a high degree of programmatic risk, and operate in an extremely regulated environment requiring legal defensibility. For environmental projects like these to succeed, SNL's Program is utilizing nearly all areas in PMI's Project Management Body of Knowledge (PMBOK) to manage along multiple project dimensions such as the physical sciences (e.g., geophysics and geochemistry; performance assessment; decision analysis) management sciences (controlling the triple constraint of performance, cost and schedule), and social sciences (belief systems; public participation; institutional politics). This discussion focuses primarily on communication challenges active on WIPP. How is the WIPP team meeting the challenges of managing communications?'' and ''How are you approaching similar challenges?'' will be questions for a dialog with the audience

  17. Processing and certification of defense transuranic waste at the INEL

    International Nuclear Information System (INIS)

    Clements, T.L. Jr.; Cargo, C.H.; McKinley, K.B.; Smith, T.H.; Anderson, B.C.

    1984-01-01

    Since 1970, defense-generated transuranic waste has been placed into 20-year retrievable storage at the Radioactive Waste Management Complex at the Idaho National Engineering Laboratory (INEL). A major objective of the US Department of Energy (DOE) Nuclear Waste Management Program is to remove all retrievably stored transuranic waste form the INEL. To support this objective, the Stored Waste Examination Pilot Plant (SWEPP) and the Process Experimental Pilot Plant (PREPP) are currently being constructed. SWEPP will certify waste, using nondestructive examination techniques, for shipment to the Waste Isolation Pilot Plant (WIPP). PREPP will process uncertifiable waste into a certifiable waste form. 3 references

  18. Potential release scenario and radiological consequence evaluation of mineral resources at WIPP

    International Nuclear Information System (INIS)

    Little, M.S.

    1982-05-01

    This report has reviewed certain of the natural resources which may be found at the site of the nuclear waste repository being considered for southeastern New Mexico, and discussed the scenarios which have been used to estimate the radiological consequences from the mining of these resources several hundred years after the radioactive waste has been emplaced. It has been concluded that the radiological consequences of the mining of potash or hydrocarbons (mostly natural gas) are probably bounded by the consequences of hydrologic breach scenarios already considered by the US Department of Energy, and by reports of EEG. These studies conclude that the resultant doses would not constitute a significant threat to public health. This report also evaluates the radiological consequences of solution mining of halite at the WIPP site. Although such mining in the Delaware Basin and particularly at the WIPP site, is not likely at the present time, significant economic, social or climatic changes a few hundred years after emplacement may make these resources more attractive. The DOE did not consider such mining at the site credible

  19. Hydraulic Characterization Activities in Support of the Shaft-Seals Fluid-Flow Modeling Integration into the WIPP EPA Compliance Certification Application

    International Nuclear Information System (INIS)

    Knowles, M.K.; Hurtado, L.D.; Dale, Tim

    1997-12-01

    The Waste Isolation Pilot Plant (WIPP) is a planned geologic repository for permanent disposal of transuranic waste generated by the U.S. Department of Energy. Disposal regions consist of panels and drifts mined from the bedded salt of the Salado Formation at a depth of approximately 650 m below the surface. This lithology is part of the 225 million year old Delaware Basin, and is geographically located in southeastern New Mexico. Four shafts service the facility needs for air intake, exhaust, waste handling, and salt handling. As the science advisor for the project, Sandia National Laboratories developed the WIPP shaft sealing system design. This design is a fundamental component of the application process for facility licensing, and has been found acceptable by stakeholders and regulatory agencies. The seal system design is founded on results obtained from laboratory and field experiments, numerical modeling, and engineering judgment. This paper describes a field test program to characterize the fluid flow properties in the WIPP shafts at representative seal locations. This work was conducted by Duke Engineering and Services under contract to Sandia National Laboratories in support of the seal system design

  20. 2002 WIPP Environmental Monitoring Plan

    Energy Technology Data Exchange (ETDEWEB)

    Washington TRU Solutions LLC

    2002-09-30

    DOE Order 5400.1, General Environmental Protection Program, requires each DOE | facility to prepare an environmental management plan (EMP). This document is | prepared for WIPP in accordance with the guidance contained in DOE Order 5400.1; DOE Order 5400.5, Radiation Protection of the Public and Environment; applicable sections of Environmental Regulatory Guide for Radiological Effluent Monitoring and Environmental Surveillance (DOE/EH-0173T; DOE, 1991); and the Title 10 Code of Federal Regulations (CFR) Part 834, ''Radiation Protection of the Public and Environment'' (draft). Many sections of DOE Order 5400.1 have been replaced by DOE Order 231.1, which is the driver for the annual Site Environmental Report (SER) and the guidance source for preparing many environmental program documents. The WIPP Project is operated by Westinghouse TRU Solutions (WTS) for the DOE. This plan defines the extent and scope of WIPP's effluent and environmental | monitoring programs during the facility's operational life and also discusses WIPP's quality assurance/quality control (QA/QC) program as it relates to environmental monitoring. In addition, this plan provides a comprehensive description of environmental activities at WIPP including: A summary of environmental programs, including the status of environmental monitoring activities A description of the WIPP Project and its mission A description of the local environment, including demographics An overview of the methodology used to assess radiological consequences to the public, including brief discussions of potential exposure pathways, routine and accidental releases, and their consequences Responses to the requirements described in the Environmental Regulatory Guide for Radiological Effluent Monitoring and Environmental Surveillance.

  1. Chemistry of brines in salt from the Waste Isolation Pilot Plant (WIPP), southeastern New Mexico: a preliminary investigation

    International Nuclear Information System (INIS)

    Stein, C.L.; Krumhansl, J.L.

    1986-03-01

    We present here analyses of macro- and microscopic (intracrystalline) brines observed within the WIPP facility and in the surrounding halite, with interpretations regarding the origin and history of these fluids and their potential effect(s) on long-term waste storage. During excavation, several large fluid inclusions were recovered from an area of highly recrystallized halite in a thick salt bed at the repository horizon (2150 ft below ground level). In addition, 52 samples of brine ''weeps'' were collected from walls of recently excavated drifts at the same stratigraphic horizon from which the fluid inclusion samples are assumed to have been taken. Analyses of these fluids show that they differ substantially in composition from the inclusion fluids and cannot be explained by mixing of the fluid inclusion populations. Finally, holes in the facility floor that filled with brine were sampled but with no stratographic control; therefore it is not possible to interpret the compositions of these brines with any accuracy, except insofar as they resemble the weep compositions but with greater variation in both K/Mg and Na/Cl ratios. However, the Ca and SO 4 values for the floor holes are relatively close to the gypsum saturation curve, suggesting that brines filling floor holes have been modified by the presence of gypsum or anhydrite, possibly even originating in one or more of the laterally continuous anhydrite units referred to in the WIPP literature as marker beds. In conclusion, the wide compositional variety of fluids found in the WIPP workings suggest that (1) an interconnected hydrologic system which could effectively transport radonuclides away from the repository does not exist; (2) brine migration studies and experiments must consider the mobility of intergranular fluids as well as those in inclusions; and (3) near- and far-field radionuclide migration testing programs need to consider a wide range of brine compositions rather than a few reference brines

  2. Transuranic waste baseline inventory report. Revision No. 3

    International Nuclear Information System (INIS)

    1996-06-01

    The Transuranic Waste Baseline Inventory Report (TWBIR) establishes a methodology for grouping wastes of similar physical and chemical properties from across the U.S. Department of Energy (DOE) transuranic (TRU) waste system into a series of open-quotes waste profilesclose quotes that can be used as the basis for waste form discussions with regulatory agencies. The purpose of Revisions 0 and 1 of this report was to provide data to be included in the Sandia National Laboratories/New Mexico (SNL/NM) performance assessment (PA) processes for the Waste Isolation Pilot Plant (WIPP). Revision 2 of the document expanded the original purpose and was also intended to support the WIPP Land Withdrawal Act (LWA) requirement for providing the total DOE TRU waste inventory. The document included a chapter and an appendix that discussed the total DOE TRU waste inventory, including nondefense, commercial, polychlorinated biphenyls (PCB)-contaminated, and buried (predominately pre-1970) TRU wastes that are not planned to be disposed of at WIPP

  3. The Herfa-Neurode hazardous waste repository in bedded salt as an operating model for safe mixed waste disposal

    International Nuclear Information System (INIS)

    Rempe, N.T.

    1991-01-01

    For 18 years, The Herfa-Neurode underground repository has demonstrated the environmentally sound disposal of hazardous waste in a former potash mine. Its principal characteristics make it an excellent analogue to the Waste Isolation Pilot Plant (WIPP). The Environmental Protection Agency has ruled in its first conditional no-migration determination that is reasonably certain that no hazardous constituents of the mixed waste, destined for the WIPP during its test phase, will migrate from the site for up to ten years. Knowledge of and reference to the Herfa-Neurode operating model may substantially improve the no-migration variance petition for the WIPP's disposal phase and thereby expedite its approval. 2 refs., 1 fig., 1 tab

  4. TRU waste inventory collection and work-off plans for the centralization of TRU waste characterization at INL - on your mark - get set - 9410

    International Nuclear Information System (INIS)

    Mctaggert, Jerri Lynne; Lott, Sheila; Gadbury, Casey

    2009-01-01

    The U.S. Department of Energy (DOE) amended the Record of Decision (ROD) for the Waste Management Program: Treatment and Storage ofTransuranic Waste to centralize transuranic (TRU) waste characterization/certification from fourteen TRU waste sites. This centralization will allow for treatment, characterization and certification ofTRU waste from the fourteen sites, thirteen of which are sites with small quantities ofTRU waste, at the Idaho National Laboratory (INL) prior to shipping the waste to the Waste Isolation Pilot Plant (WIPP) for disposal. Centralization ofthis TRU waste will avoid the cost ofbuilding treatment, characterization, certification, and shipping capabilities at each ofthe small quantity sites that currently do not have existing facilities. Advanced Mixed Waste Treatment Project (AMWTP) and Idaho Nuclear Technology and Engineering Center (INTEC) will provide centralized shipping facilities, to WIPP, for all ofthe small quantity sites. Hanford, the one large quantity site identified in the ROD, has a large number ofwaste in containers that are overpacked into larger containers which are inefficient for shipment to and disposal at WIPP. The AMWTP at the INL will reduce the volume ofmuch of the CH waste and make it much more efficient to ship and dispose of at WIPP. In addition, the INTEC has a certified remote handled (RH) TRU waste characterization/certification program at INL to disposition TRU waste from the sites identified in the ROD.

  5. Hazard and consequence analysis for waste emplacement at the Waste Isolation Pilot Plant

    International Nuclear Information System (INIS)

    Gerstner, D.M.; Clayton, S.G.; Farrell, R.F.; McCormick, J.A.; Ortiz, C.; Standiford, D.L.

    1996-01-01

    The Carlsbad Area Office established and analyzed the safety bases for the design and operations as documented in the WIPP Safety Analysis Report (SAR). Additional independent efforts are currently underway to assess the hazards associated with the long-term (10,000 year) isolation period as required by 40 CFR 191. The structure of the WIPP SAR is unique due to the hazards involved, and the agreement between the State of New Mexico and the DOE regarding SAR content and format. However, the hazards and accident analysis philosophy as contained in DOE-STD-3009-94 was followed as closely as possible, while adhering to state agreements. Hazards associated with WIPP waste receipt, emplacement, and disposal operations were systematically identified using a modified Hazard and Operability Study (HAZOP) technique. The WIPP HAZOP assessed the potential internal, external, and natural phenomena events that can cause the identified hazards to develop into accidents. The hazard assessment identified deviations from the intended design and operation of the waste handling system, analyzed potential accident consequences to the public and workers, estimated likelihood of occurrence, and evaluated associated preventative and mitigative features. It was concluded from the assessment that the proposed WIPP waste emplacement operations and design are sufficient to ensure safety of the public, workers, and environment, over the 35 year disposal phase

  6. An analysis of the annual probability of failure of the waste hoist brake system at the Waste Isolation Pilot Plant (WIPP)

    Energy Technology Data Exchange (ETDEWEB)

    Greenfield, M.A. [Univ. of California, Los Angeles, CA (United States); Sargent, T.J.

    1995-11-01

    The Environmental Evaluation Group (EEG) previously analyzed the probability of a catastrophic accident in the waste hoist of the Waste Isolation Pilot Plant (WIPP) and published the results in Greenfield (1990; EEG-44) and Greenfield and Sargent (1993; EEG-53). The most significant safety element in the waste hoist is the hydraulic brake system, whose possible failure was identified in these studies as the most important contributor in accident scenarios. Westinghouse Electric Corporation, Waste Isolation Division has calculated the probability of an accident involving the brake system based on studies utilizing extensive fault tree analyses. This analysis conducted for the U.S. Department of Energy (DOE) used point estimates to describe the probability of failure and includes failure rates for the various components comprising the brake system. An additional controlling factor in the DOE calculations is the mode of operation of the brake system. This factor enters for the following reason. The basic failure rate per annum of any individual element is called the Event Probability (EP), and is expressed as the probability of failure per annum. The EP in turn is the product of two factors. One is the {open_quotes}reported{close_quotes} failure rate, usually expressed as the probability of failure per hour and the other is the expected number of hours that the element is in use, called the {open_quotes}mission time{close_quotes}. In many instances the {open_quotes}mission time{close_quotes} will be the number of operating hours of the brake system per annum. However since the operation of the waste hoist system includes regular {open_quotes}reoperational check{close_quotes} tests, the {open_quotes}mission time{close_quotes} for standby components is reduced in accordance with the specifics of the operational time table.

  7. An analysis of the annual probability of failure of the waste hoist brake system at the Waste Isolation Pilot Plant (WIPP)

    International Nuclear Information System (INIS)

    Greenfield, M.A.; Sargent, T.J.

    1995-11-01

    The Environmental Evaluation Group (EEG) previously analyzed the probability of a catastrophic accident in the waste hoist of the Waste Isolation Pilot Plant (WIPP) and published the results in Greenfield (1990; EEG-44) and Greenfield and Sargent (1993; EEG-53). The most significant safety element in the waste hoist is the hydraulic brake system, whose possible failure was identified in these studies as the most important contributor in accident scenarios. Westinghouse Electric Corporation, Waste Isolation Division has calculated the probability of an accident involving the brake system based on studies utilizing extensive fault tree analyses. This analysis conducted for the U.S. Department of Energy (DOE) used point estimates to describe the probability of failure and includes failure rates for the various components comprising the brake system. An additional controlling factor in the DOE calculations is the mode of operation of the brake system. This factor enters for the following reason. The basic failure rate per annum of any individual element is called the Event Probability (EP), and is expressed as the probability of failure per annum. The EP in turn is the product of two factors. One is the open-quotes reportedclose quotes failure rate, usually expressed as the probability of failure per hour and the other is the expected number of hours that the element is in use, called the open-quotes mission timeclose quotes. In many instances the open-quotes mission timeclose quotes will be the number of operating hours of the brake system per annum. However since the operation of the waste hoist system includes regular open-quotes reoperational checkclose quotes tests, the open-quotes mission timeclose quotes for standby components is reduced in accordance with the specifics of the operational time table

  8. Development of a gas-generation model for the Waste Isolation Pilot Plant

    International Nuclear Information System (INIS)

    Brush, L.H.; Storz, L.J.; Garner, J.W.

    1993-01-01

    Design-basis transuranic (TRU) waste to be emplaced in the Waste Isolation Pilot Plant (WIPP) in southeastern New Mexico may generate significant quantities of gas, which may affect the performance of the WIPP with respect to regulations for radioactive and/or chemically hazardous waste constituents. We are developing a model to predict gas generation in WIPP disposal rooms during and after filling and sealing. Currently, the model includes: (1) oxic and anoxic corrosion of steels and other Fe-base alloys, including passivation and depassivation; (2) microbial degradation of cellulosics with O 2 , NO 3 - , FeO(OH), SO 4 2- , or CO 2 as the electron acceptor; (3) α radiolysis of brine; (4) consumption of CO 2 and, perhaps, H 2 S by Ca(OH) 2 (in cementitious materials) and CaO (a potential backfill additive). The code simulates these processes and interactions among them by converting reactants (steels, cellulosics, etc.) to gases and other products at experimentally observed or estimated rates and plotting temporal reaction paths in three-dimensional phase diagrams for solids in the Fe-H 2 O-CO 2 -H 2 -H 2 S system

  9. New Mexicans debate nuclear waste disposal

    International Nuclear Information System (INIS)

    Lepkowski, W.

    1979-01-01

    A brief survey of the background of the Waste Isolation Plant (WIPP) at Carlsbad, New Mexico and the forces at play around WIPP is presented. DOE has plans to establish by 1988 an underground repository for nuclear wastes in the salt formations near Carlsbad. Views of New Mexicans, both pro and con, are reviewed. It is concluded that DOE will have to practice public persuasion to receive approval for the burial of wastes in New Mexico

  10. Terminating Safeguards on Excess Special Nuclear Material: Defense TRU Waste Clean-up and Nonproliferation - 12426

    Energy Technology Data Exchange (ETDEWEB)

    Hayes, Timothy [Los Alamos National Laboratory, Carlsbad Operations Group (United States); Nelson, Roger [Department Of Energy, Carlsbad Operations Office (United States)

    2012-07-01

    The Department of Energy (DOE) and the National Nuclear Security Administration (NNSA) manages defense nuclear material that has been determined to be excess to programmatic needs and declared waste. When these wastes contain plutonium, they almost always meet the definition of defense transuranic (TRU) waste and are thus eligible for disposal at the Waste Isolation Pilot Plant (WIPP). The DOE operates the WIPP in a manner that physical protections for attractiveness level D or higher special nuclear material (SNM) are not the normal operating condition. Therefore, there is currently a requirement to terminate safeguards before disposal of these wastes at the WIPP. Presented are the processes used to terminate safeguards, lessons learned during the termination process, and how these approaches might be useful for future defense TRU waste needing safeguards termination prior to shipment and disposal at the WIPP. Also described is a new criticality control container, which will increase the amount of fissile material that can be loaded per container, and how it will save significant taxpayer dollars. Retrieval, compliant packaging and shipment of retrievably stored legacy TRU waste has dominated disposal operations at WIPP since it began operations 12 years ago. But because most of this legacy waste has successfully been emplaced in WIPP, the TRU waste clean-up focus is turning to newly-generated TRU materials. A major component will be transuranic SNM, currently managed in safeguards-protected vaults around the weapons complex. As DOE and NNSA continue to consolidate and shrink the weapons complex footprint, it is expected that significant quantities of transuranic SNM will be declared surplus to the nation's needs. Safeguards termination of SNM varies due to the wide range of attractiveness level of the potential material that may be directly discarded as waste. To enhance the efficiency of shipping waste with high TRU fissile content to WIPP, DOE designed an

  11. Development of the Conceptual Models for Chemical Conditions and Hydrology Used in the 1996 Performance Assessment for the Waste Isolation Pilot Plant

    International Nuclear Information System (INIS)

    LARSON, KURT W.

    2000-01-01

    The Waste Isolation Pilot Plant (WIPP) is a US Department of Energy (DOE) facility for the permanent disposal of defense-related transuranic (TRU) waste. US Environmental Protection Agency (EPA) regulations specify that the DOE must demonstrate on a sound basis that the WIPP disposal system will effectively contain long-lived alpha-emitting radionuclides within its boundaries for 10,000 years following closure. In 1996, the DOE submitted the ''40 CFR Part 191 Compliance Certification Application for the Waste Isolation Pilot Plant'' (CCA) to the EPA. The CCA proposed that the WIPP site complies with EPA's regulatory requirements. Contained within the CCA are descriptions of the scientific research conducted to characterize the properties of the WIPP site and the probabilistic performance assessment (PA) conducted to predict the containment properties of the WIPP disposal system. In May 1998, the EPA certified that the TRU waste disposal at the WIPP complies with its regulations. Waste disposal operations at WIPP commenced on March 28, 1999. The 1996 WIPP PA model of the disposal system included conceptual and mathematical representations of key hydrologic and geochemical processes. These key processes were identified over a 22-year period involving data collection, data interpretation, computer models, and sensitivity studies to evaluate the importance of uncertainty and of processes that were difficult to evaluate by other means. Key developments in the area of geochemistry were the evaluation of gas generation mechanisms in the repository; development of a model of chemical conditions in the repository and actinide concentrations in brine; selecting MgO backfill and demonstrating its effects experimentally; and determining the chemical retardation capability of the Culebra. Key developments in the area of hydrology were evacuating the potential for groundwater to dissolve the Salado Formation (the repository host formation), development of a regional model for

  12. Development of the conceptual models for chemical conditions and hydrology used in the 1996 performance assessment for the Waste Isolation Pilot Plant

    International Nuclear Information System (INIS)

    Larson, K.W.

    2000-01-01

    The Waste Isolation Pilot Plant (WIPP) is a US Department of Energy (DOE) facility for the permanent disposal of defense-related transuranic (TRU) waste. US Environmental Protection Agency (EPA) regulations specify that the DOE must demonstrate on a sound basis that the WIPP disposal system will effectively contain long-lived alpha-emitting radionuclides within its boundaries for 10,000 years following closure. In 1996, the DOE submitted the 40 CFR Part 191 Compliance Certification Application for the Waste Isolation Pilot Plant (CCA) to the EPA. The CCA proposed that the WIPP site complies with EPA's regulatory requirements. Contained within the CCA are descriptions of the scientific research conducted to characterize the properties of the WIPP site and the probabilistic performance assessment (PA) conducted to predict the containment properties of the WIPP disposal system. In May 1998, the EPA certified that the TRU waste disposal at the WIPP complies with its regulations. Waste disposal operations at WIPP commenced on 28 March 1999. The 1996 WIPP PA model of the disposal system included conceptual and mathematical representations of key hydrologic and geochemical processes. These key processes were identified over a 22-year period involving data collection, data interpretation, computer models, and sensitivity studies to evaluate the importance of uncertainty and of processes that were difficult to evaluate by other means. Key developments in the area of geochemistry were the evaluation of gas generation mechanisms in the repository; development of a model of chemical conditions in the repository and actinide concentrations in brine; selecting MgO backfill and demonstrating its effects experimentally; and, determining the chemical retardation capability of the Culebra. Key developments in the area of hydrology were evaluating the potential for groundwater to dissolve the Salado Formation (the repository host formation); development of a regional model for

  13. Tracing early breccia pipe studies, Waste Isolation Pilot Plant, southeastern New Mexico: A study of the documentation available and decision-making during the early years of WIPP

    Energy Technology Data Exchange (ETDEWEB)

    Power, D.W. [HC 12, Anthony, TX (United States)

    1996-01-01

    Breccia pipes in southeastern New Mexico are local dissolution-collapse features that formed over the Capitan reef more than 500,000 years ago. During early site studies for the Waste Isolation Pilot Plant (WIPP), the threat to isolation by these features was undetermined. Geophysical techniques, drilling, and field mapping were used beginning in 1976 to study breccia pipes. None were found at the WIPP site, and they are considered unlikely to be a significant threat even if undetected. WIPP documents related to breccia pipe studies were assembled, inspected, and analyzed, partly to present a history of these studies. The main objective is to assess how well the record reflects the purposes, results, and conclusions of the studies from concept to decision-making. The main record source was the Sandia WIPP Central File (SWCF). Early records (about 1975 to 1977) are very limited, however, about details of objectives and plans predating any investigation. Drilling programs from about 1977 were covered by a broadly standardized statement of work, field operations plan, drilling history, and basic data report. Generally standardized procedures for peer, management, and quality assurance review were developed during this time. Agencies such as the USGS conducted projects according to internal standards. Records of detailed actions for individual programs may not be available, though a variety of such records were found in the SWCF. A complete written record cannot be reconstructed. With persistence, a professional geologist can follow individual programs, relate data to objectives (even if implied), and determine how conclusions were used in decision-making. 83 refs.

  14. Tracing early breccia pipe studies, Waste Isolation Pilot Plant, southeastern New Mexico: A study of the documentation available and decision-making during the early years of WIPP

    International Nuclear Information System (INIS)

    Power, D.W.

    1996-01-01

    Breccia pipes in southeastern New Mexico are local dissolution-collapse features that formed over the Capitan reef more than 500,000 years ago. During early site studies for the Waste Isolation Pilot Plant (WIPP), the threat to isolation by these features was undetermined. Geophysical techniques, drilling, and field mapping were used beginning in 1976 to study breccia pipes. None were found at the WIPP site, and they are considered unlikely to be a significant threat even if undetected. WIPP documents related to breccia pipe studies were assembled, inspected, and analyzed, partly to present a history of these studies. The main objective is to assess how well the record reflects the purposes, results, and conclusions of the studies from concept to decision-making. The main record source was the Sandia WIPP Central File (SWCF). Early records (about 1975 to 1977) are very limited, however, about details of objectives and plans predating any investigation. Drilling programs from about 1977 were covered by a broadly standardized statement of work, field operations plan, drilling history, and basic data report. Generally standardized procedures for peer, management, and quality assurance review were developed during this time. Agencies such as the USGS conducted projects according to internal standards. Records of detailed actions for individual programs may not be available, though a variety of such records were found in the SWCF. A complete written record cannot be reconstructed. With persistence, a professional geologist can follow individual programs, relate data to objectives (even if implied), and determine how conclusions were used in decision-making. 83 refs

  15. Analysis of the potential formation of a Breccia chimney beneath the WIPP repository

    International Nuclear Information System (INIS)

    Spiegler, P.

    1982-05-01

    This report evaluates the potential formation of a Breccia pipe beginning at the Bell Canyon aquifer beneath the WIPP repository and the resulting release of radioactivity to the surface. Rock mechanics considerations indicate that the formation of a Breccia pipe by collapse of a cavern is not reasonable. Even if rock mechanics is ignored, the overlying strata act as a barrier and would prevent the release of radioactivity to the biosphere. Gradual formation of a Breccia pipe is so slow that the plutonium-239 in the waste (one of the most important long-lived components) would decay during formation. If Bell Lake and San Simon Sinks are the surface manifestation of a regional deep dissolution wedge, such a wedge is too far removed to represent pipe forming activity near the WIPP site. The formation of a Breccia pipe under the WIPP repository is highly unlikely. If it did occur, the concentration of plutonium-239 in brine reaching the surface would be less than the maximum permissible concentration in water specified in the Code of Federal Regulation Title 10, part 20

  16. Stochastic analysis of radionuclides travel times at the waste isolation pilot plant (WIPP), in New Mexico (U.S.A.)

    International Nuclear Information System (INIS)

    Capilla Roma, J. E.; Gomez-Hernandez, J. J.; Sahuquillo Herraiz, A.

    1999-01-01

    Multiple equally likely transmissivity fields that honor piezo metric head measurements are generated as input to a Monte-Carlo exercise, for the stochastic analysis of travel times in the Culebra dolomite overlaying the Waste Isolation Pilot Plant (WIPP) in New Mexico, USA. Results of the analysis show the importance of modeling variable-density flow as accurately as possible, and of including as much information as possible in the simulations of alternative scenarios. Results also unveil a channel of high transmissivity when transmissivity fields are conditioned to piezo metric data. This channel leads to important reductions of travel time from the WIPP area to the south boundary. The uncertainty of the boundary conditions is analyzed searching for alternative boundary conditions can be obtained that improve the reproduction of piezo metric data and yield a reduction of the minimum travel times to the south boundary. Results of the Monte-Carlo exercise are compared with those from a deterministic analysis showing the limitations of the latter method when trying to estimate extreme values or characterizing the uncertainty of their predictions. The report ends with a brief study on the impact of the small transmissivity measurements at location P-18, showing that its value is not consistent with the model of spatial variability inferred from the data and that it has an important effect on model predictions. (Author)

  17. Stochastic analysis of radionuclides travel times at the waste isolation pilot plant (WIPP), in New Mexico (U. S. A. )

    Energy Technology Data Exchange (ETDEWEB)

    Capilla Roma, J E; Gomez-Hernandez, J J; Sahuquillo Herraiz, A [Universidad Politecnia de Valencia (Spain)

    1999-12-15

    Multiple equally likely transmissivity fields that honor piezo metric head measurements are generated as input to a Monte-Carlo exercise, for the stochastic analysis of travel times in the Culebra dolomite overlaying the Waste Isolation Pilot Plant (WIPP) in New Mexico, USA. Results of the analysis show the importance of modeling variable-density flow as accurately as possible, and of including as much information as possible in the simulations of alternative scenarios. Results also unveil a channel of high transmissivity when transmissivity fields are conditioned to piezo metric data. This channel leads to important reductions of travel time from the WIPP area to the south boundary. The uncertainty of the boundary conditions is analyzed searching for alternative boundary conditions can be obtained that improve the reproduction of piezo metric data and yield a reduction of the minimum travel times to the south boundary. Results of the Monte-Carlo exercise are compared with those from a deterministic analysis showing the limitations of the latter method when trying to estimate extreme values or characterizing the uncertainty of their predictions. The report ends with a brief study on the impact of the small transmissivity measurements at location P-18, showing that its value is not consistent with the model of spatial variability inferred from the data and that it has an important effect on model predictions. (Author)

  18. Waste Isolation Pilot Plant contact-handled transuranic waste preoperational checkout: Final report

    International Nuclear Information System (INIS)

    1988-07-01

    This report documents the results of the WIPP CH TRU Preoperational Checkout which was completed between June 8 and June 14, 1988 during which period, a total of 10 TRUPACT shipping containers were processed from site receipt through emplacement of the simulated waste packages in the underground storage area. Since the design of WIPP includes provisions to unload an internally contaminated TRUPACT, in the controlled environment of the Overpack and Repair Room, one TRUPACT was partially processed through this sequence of operations to verify this portion of the waste handling process as part of the checkout. The successful completion of the CH TRU Preoperational Checkout confirmed the acceptability of WIPP operating procedures, personnel, equipment, and techniques. Extrapolation of time-line data using a computer simulation model of the waste handling process has confirmed that WIPP operations can achieve the design throughput capability of 500,000 ft 3 /year, if required, using two waste handling shifts. The single shift throughput capability of 273,000 ft 3 /year exceeds the anticipated operating receival rate of about 230,000 ft 3 /year. At the 230,000 ft 3 /year rate, the combined CH TRU annual operator dose and the average individual dose (based on minimum crew size) is projected to be 13.7 rem and 0.7 rem, respectively. 6 refs., 27 figs., 3 tabs

  19. Background radiation measurements at the Waste Isolation Pilot Plant (WIPP) Site, Carlsbad, New Mexico

    International Nuclear Information System (INIS)

    Minnema, D.M.; Brewer, L.W.

    1983-09-01

    A series of background radiation measurements was performed at the Waste Isolation Pilot Plant (WIPP) Site, Carlsbad, New Mexico. The survey consisted of gross gamma and gamma spectral measurements of the radiation fields, soil and salt grab sample gamma analysis, and radon and working level measurements. The survey included locations at the surface and also within the mine itself. Background radiation levels on the surface were measured to average 7.65 microR/hour, and 0.7 microR/hour within the mine. Radon and working levels were at or below detection levels at all locations, and the radon concentration was estimated to be about 0.01 pCi/liter on the surface based on spectral measurements. The spectral measurements were performed using an intrinsic germanium spectrometer, and calculations from the spectra indicated that potassium-40 contributed about 28% to the surface level dose rates, natural uranium daughters contributed about 64%, and cesium-137 from weapons testing fallout contributed about 8%. In the mine potassium-40 was the only identifiable contributor to the dose rate

  20. Results from simulated contact-handled transuranic waste experiments at the Waste Isolation Pilot Plant

    International Nuclear Information System (INIS)

    Molecke, M.A.; Sorensen, N.R.; Krumhansl, J.L.

    1993-01-01

    We conducted in situ experiments with nonradioactive, contact-handled transuranic (CH TRU) waste drums at the Waste Isolation Pilot Plant (WIPP) facility for about four years. We performed these tests in two rooms in rock salt, at WIPP, with drums surrounded by crushed salt or 70 wt % salt/30 wt % bentonite clay backfills, or partially submerged in a NaCl brine pool. Air and brine temperatures were maintained at ∼40C. These full-scale (210-L drum) experiments provided in situ data on: backfill material moisture-sorption and physical properties in the presence of brine; waste container corrosion adequacy; and, migration of chemical tracers (nonradioactive actinide and fission product simulants) in the near-field vicinity, all as a function of time. Individual drums, backfill, and brine samples were removed periodically for laboratory evaluations. Waste container testing in the presence of brine and brine-moistened backfill materials served as a severe overtest of long-term conditions that could be anticipated in an actual salt waste repository. We also obtained relevant operational-test emplacement and retrieval experience. All test results are intended to support both the acceptance of actual TRU wastes at the WIPP and performance assessment data needs. We provide an overview and technical data summary focusing on the WIPP CH TRU envirorunental overtests involving 174 waste drums in the presence of backfill materials and the brine pool, with posttest laboratory materials analyses of backfill sorbed-moisture content, CH TRU drum corrosion, tracer migration, and associated test observations

  1. Final Hanford Site Transuranic (TRU) Waste Characterization QA Project Plan

    International Nuclear Information System (INIS)

    GREAGER, T.M.

    2000-01-01

    The Quality Assurance Project Plan (QAPjP) has been prepared for waste characterization activities to be conducted by the Transuranic (TRU) Project at the Hanford Site to meet requirements set forth in the Waste Isolation Pilot Plan (WIPP) Hazardous Waste Facility Permit, 4890139088-TSDF, Attachment B, including Attachments B1 through B6 (WAP) (DOE, 1999a). The QAPjP describes the waste characterization requirements and includes test methods, details of planned waste sampling and analysis, and a description of the waste characterization and verification process. In addition, the QAPjP includes a description of the quality assurance/quality control (QA/QC) requirements for the waste characterization program. Before TRU waste is shipped to the WIPP site by the TRU Project, all applicable requirements of the QAPjP shall be implemented. Additional requirements necessary for transportation to waste disposal at WIPP can be found in the ''Quality Assurance Program Document'' (DOE 1999b) and HNF-2600, ''Hanford Site Transuranic Waste Certification Plan.'' TRU mixed waste contains both TRU radioactive and hazardous components, as defined in the WLPP-WAP. The waste is designated and separately packaged as either contact-handled (CH) or remote-handled (RH), based on the radiological dose rate at the surface of the waste container. RH TRU wastes are not currently shipped to the WIPP facility

  2. Performance demonstration program plan for RCRA constituent analysis of solidified wastes

    International Nuclear Information System (INIS)

    1995-06-01

    Performance Demonstration Programs (PDPS) are designed to help ensure compliance with the Quality Assurance Objectives (QAOs) for the Waste Isolation Pilot Plant (WIPP). The PDPs are intended for use by the Department of Energy (DOE) Carlsbad Area Office (CAO) to assess and approve the laboratories and other measurement facilities supplying services for the characterization of WIPP TRU waste. The PDPs may also be used by CAO in qualifying laboratories proposing to supply additional analytical services that are required for other than waste characterization, such as WIPP site operations. The purpose of this PDP is to test laboratory performance for the analysis of solidified waste samples for TRU waste characterization. This performance will be demonstrated by the successful analysis of blind audit samples of simulated, solidified TRU waste according to the criteria established in this plan. Blind audit samples (hereinafter referred to as PDP samples) will be used as an independent means to assess laboratory performance regarding compliance with the QAOs. The concentration of analytes in the PDP samples will address levels of regulatory concern and will encompass the range of concentrations anticipated in actual waste characterization samples. Analyses that are required by the WIPP to demonstrate compliance with various regulatory requirements and which are included in the PDP must be performed by laboratories that demonstrate acceptable performance in the PDP. These analyses are referred to as WIPP analyses and the samples on which they are performed are referred to as WIPP samples for the balance of this document

  3. EPA's Review of DOE's Inventory Tracking for TRU Wastes at Waste Control Specialists

    Science.gov (United States)

    On April 9, 2014, EPA's Waste Isolation Pilot Plant (WIPP) waste characterization team visited Waste Control Specialists (WCS) to determine whether DOE was meeting EPA's waste inventory tracking requirements at 40 CFR 194.24(c)(4).

  4. Can we talk? Communications management for the Waste Isolation Pilot Plant, a complex nuclear waste management project

    Energy Technology Data Exchange (ETDEWEB)

    Goldstein, S.A.; Pullen, G.M.; Brewer, D.R.

    1995-07-01

    Sandia Nuclear Waste Management Program is pursuing for DOE an option for permanently disposing radioactive waste in deep geologic repositories. Included in the Program are the Waste Isolation Pilot Plant (WIPP) Project for US defense program mixed waste the Yucca Mountain Project (YMP) for spent power reactor fuel and vitrified high-level waste, projects for other waste types, and development efforts in environmental decision support technologies. WIPP and YMP are in the public arena, of a controversial nature, and provide significant management challenges. Both projects have large project teams, multiple organization participants, large budgets, long durations, are very complex, have a high degree of programmatic risk, and operate in an extremely regulated environment requiring legal defensibility. For environmental projects like these to succeed, SNL`s Program is utilizing nearly all areas in PMI`s Project Management Body of Knowledge (PMBOK) to manage along multiple project dimensions such as the physical sciences (e.g., geophysics and geochemistry; performance assessment; decision analysis) management sciences (controlling the triple constraint of performance, cost and schedule), and social sciences (belief systems; public participation; institutional politics). This discussion focuses primarily on communication challenges active on WIPP. How is the WIPP team meeting the challenges of managing communications?`` and ``How are you approaching similar challenges?`` will be questions for a dialog with the audience.

  5. Transuranic waste management at Savannah River - past, present, and future

    International Nuclear Information System (INIS)

    D'Ambrosia, J.

    1985-01-01

    The major objective of the TRU program at Savannah River is to support the TRU National Program, which is dedicated to preparing waste for, and emplacing waste in, the Waste Isolation Pilot Plant, (WIPP). Thus, the Savannah River Program also supports WIPP operations. The Savannah River site specific goals to phase out the indefinite storage of TRU waste, which has been the mode of waste management since 1974, and to dispose of Savannah River's Defense TRU waste

  6. Joint state of Colorado-US Department of Energy WIPP Shipment Exercise Program: TRANSAX '90

    International Nuclear Information System (INIS)

    1990-01-01

    In July 1990, the United States Secretary of Energy requested the DOE conduct a transportation emergency exercise before the end of CY 1990. The tasking was subsequently directed to the Director of DOE's Office of Environmental Restoration and Waste Management (EM) to plan and conduct an exercise, based on a Waste Isolation Pilot Plant (WIPP) shipment scenario. The state of Colorado was asked to participate. Colorado, in turn, invited the DOE to integrate the exercise into its own series of WIPP-related tabletop and field exercises for which the state had already begun planning. The result was a joint USDOE/Colorado full-scale (orientation) exercise called Transportation Accident Exercise 1990 (TRANSAX '90). The state of Colorado's exercise program was a follow-on to previously conducted classroom training. The program would serve to identify and resolve outstanding issues concerning inspections of the WIPP shipment transporter as it entered and passed through the state on the designated Interstate 25 transportation corridor; criteria for movement under various adverse weather and road conditions; and emergency response to accidents occurring in an urban or rural environment. The USDOE designed its participation in the exercise program to test selected aspects of the DOE Emergency Management System relating to response to and management of DOE off-site transportation emergencies involving assistance to state and local emergency response personnel. While a number of issues remain under study for ultimate resolution, others have been resolved and will become the basis for emergency operations plans, SOPs, mutual aid agreements, and checklist upgrades. Concurrently, the concentrated efforts at local, state, and federal levels in dealing with WIPP- related activities during this exercise program development have given renewed impetus to all parties as the beginning of actual shipments draws nearer. Three tabletop scenarios are discussed in this report

  7. Mobile/portable transuranic waste characterization systems at Los Alamos National Laboratory and a model for their use complex-wide

    International Nuclear Information System (INIS)

    Derr, E.D.; Harper, J.R.; Zygmunt, S.J.; Taggart, D.P.; Betts, S.E.

    1997-01-01

    Los Alamos National Laboratory has implemented mobile and portable characterization and repackaging systems to characterize TRU waste in storage for ultimate shipment and disposal at the Waste Isolation Pilot Plant (WIPP) near Carlsbad, NM. These mobile systems are being used to characterize and repackage waste to meet the full requirements of the WIPP Waste Acceptance Criteria (WAC) and the WIPP Characterization Quality Assurance Program Plan (QAPP). Mobile and portable characterization and repackaging systems are being used to supplement the capabilities and throughputs of existing facilities. Utilization of mobile systems is a key factor that is enabling LANL to: (1) reduce its TRU waste work-off schedule from 36 years to 8.5 years; (2) eliminate the need to construct a $70M+ TRU waste characterization facility; (3) have waste certified for shipment to WIPP when WIPP opens; (4) continue to ship TRU waste to WIPP at the rate of 5000 drums per year; and, (5) reduce overall costs by more than $200M. Aggressive implementation of mobile and portable systems throughout the DOE complex through a centralized-distributed services model will result in similar advantages complex-wide

  8. Mobile/portable transuranic waste characterization systems at Los Alamos National Laboratory and a model for their use complex-wide

    International Nuclear Information System (INIS)

    Derr, E.D.; Harper, J.R.; Zygmunt, S.J.; Taggart, D.P.; Betts, S.E.

    1997-01-01

    Los Alamos National Laboratory (LANL) has implemented mobile and portable characterization and repackaging systems to characterize transuranic (TRU) waste in storage for ultimate shipment and disposal at the Waste Isolation Pilot Plant (WIPP) near Carlsbad, NM. These mobile systems are being used to characterize and repackage waste to meet the full requirements of the WIPP Waste Acceptance Criteria (WAC) and the WIPP Characterization Quality Assurance Program Plan (QAPP). Mobile and portable characterization and repackaging systems are being used to supplement the capabilities and throughputs of existing facilities. Utilization of mobile systems is a key factor that is enabling LANL to (1) reduce its TRU waste work-off schedule from 36 years to 8.5 years; (2) eliminate the need to construct a $70M+ TRU waste characterization facility; (3) have waste certified for shipment to WIPP when WIPP opens; (4) continue to ship TRU waste to WIPP at the rate of 5000 drums per year; and (5) reduce overall costs by more than $200M. Aggressive implementation of mobile and portable systems throughout the Department of Energy complex through a centralized-distributed services model will result in similar advantages complex-wide

  9. Transuranic waste transportation issues in the United States

    International Nuclear Information System (INIS)

    Channell, J.K.; Rodgers, J.C.; Neill, R.H.

    1988-01-01

    The United States Department of Energy (DOE) expects to begin disposal of defence transuranic wastes at the Waste Isolation Pilot Plant (WIPP) in Southeastern New Mexico before the end of 1988. Approximately 25,000 truck shipments involving 35 million vehicle kilometers will be required to transport about 175,000 m 3 of contact-handled transuranic waste. Up to 5,000 shipments of remote-handled transuranic waste (RH-TRU) will also be shipped to WIPP in shielded casks. This paper addresses the shipment of CH-TRU wastes

  10. Final environmental impact statement. Waste Isolation Pilot Plant

    International Nuclear Information System (INIS)

    1980-10-01

    This volume contains the appendices for the Final Environmental Impact Statement for the Waste Isolation Pilot Plant (WIPP). Alternative geologic environs are considered. Salt, crystalline rock, argillaceous rock, and tuff are discussed. Studies on alternate geologic regions for the siting of WIPP are reviewed. President Carter's message to Congress on the management of radioactive wastes and the findings and recommendations of the interagency review group on nuclear waste management are included. Selection criteria for the WIPP site including geologic, hydrologic, tectonic, physicochemical compatability, and socio-economic factors are presented. A description of the waste types and the waste processing procedures are given. Methods used to calculate radiation doses from radionuclide releases during operation are presented. A complete description of the Los Medanos site, including archaeological and historic aspects is included. Environmental monitoring programs and long-term safety analysis program are described

  11. TRU Waste Inventory Collection and Work-Off Plans for the Centralization of TRU Waste Characterization/Certification at INL - On Your Mark - Get Set

    International Nuclear Information System (INIS)

    McTaggart, J.; Lott, S.

    2009-01-01

    The U.S. Department of Energy (DOE) amended the Record of Decision (ROD) for the Waste Management Program: Treatment and Storage of Transuranic Waste to centralize transuranic (TRU) waste characterization/certification from fourteen TRU waste sites. This centralization will allow for treatment, characterization and certification of TRU waste from the fourteen sites, thirteen of which are sites with small quantities of TRU waste, at the Idaho National Laboratory (INL) prior to shipping the waste to the Waste Isolation Pilot Plant (WIPP) for disposal. Centralization of this TRU waste will avoid the cost of building treatment, characterization, certification, and shipping capabilities at each of the small quantity sites that currently do not have existing facilities. Advanced Mixed Waste Treatment Project (AMWTP) and Idaho Nuclear Technology and Engineering Center (INTEC) will provide centralized shipping facilities, to WIPP, for all of the small quantity sites. Hanford, the one large quantity site identified in the ROD, has a large number of waste in containers that are over-packed into larger containers which are inefficient for shipment to and disposal at WIPP. The AMWTP at the INL will reduce the volume of much of the CH waste and make it much more efficient to ship and dispose of at WIPP. In addition, the INTEC has a certified remote handled (RH) TRU waste characterization/certification program at INL to disposition TRU waste from the sites identified in the ROD. (authors)

  12. Waste Isolation Pilot Plant Safety Analysis Report

    International Nuclear Information System (INIS)

    1995-11-01

    The following provides a summary of the specific issues addressed in this FY-95 Annual Update as they relate to the CH TRU safety bases: Executive Summary; Site Characteristics; Principal Design and Safety Criteria; Facility Design and Operation; Hazards and Accident Analysis; Derivation of Technical Safety Requirements; Radiological and Hazardous Material Protection; Institutional Programs; Quality Assurance; and Decontamination and Decommissioning. The System Design Descriptions'' (SDDS) for the WIPP were reviewed and incorporated into Chapter 3, Principal Design and Safety Criteria and Chapter 4, Facility Design and Operation. This provides the most currently available final engineering design information on waste emplacement operations throughout the disposal phase up to the point of permanent closure. Also, the criteria which define the TRU waste to be accepted for disposal at the WIPP facility were summarized in Chapter 3 based on the WAC for the Waste Isolation Pilot Plant.'' This Safety Analysis Report (SAR) documents the safety analyses that develop and evaluate the adequacy of the Waste Isolation Pilot Plant Contact-Handled Transuranic Wastes (WIPP CH TRU) safety bases necessary to ensure the safety of workers, the public and the environment from the hazards posed by WIPP waste handling and emplacement operations during the disposal phase and hazards associated with the decommissioning and decontamination phase. The analyses of the hazards associated with the long-term (10,000 year) disposal of TRU and TRU mixed waste, and demonstration of compliance with the requirements of 40 CFR 191, Subpart B and 40 CFR 268.6 will be addressed in detail in the WIPP Final Certification Application scheduled for submittal in October 1996 (40 CFR 191) and the No-Migration Variance Petition (40 CFR 268.6) scheduled for submittal in June 1996. Section 5.4, Long-Term Waste Isolation Assessment summarizes the current status of the assessment

  13. Waste Isolation Pilot Plant Safety Analysis Report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-11-01

    The following provides a summary of the specific issues addressed in this FY-95 Annual Update as they relate to the CH TRU safety bases: Executive Summary; Site Characteristics; Principal Design and Safety Criteria; Facility Design and Operation; Hazards and Accident Analysis; Derivation of Technical Safety Requirements; Radiological and Hazardous Material Protection; Institutional Programs; Quality Assurance; and Decontamination and Decommissioning. The System Design Descriptions`` (SDDS) for the WIPP were reviewed and incorporated into Chapter 3, Principal Design and Safety Criteria and Chapter 4, Facility Design and Operation. This provides the most currently available final engineering design information on waste emplacement operations throughout the disposal phase up to the point of permanent closure. Also, the criteria which define the TRU waste to be accepted for disposal at the WIPP facility were summarized in Chapter 3 based on the WAC for the Waste Isolation Pilot Plant.`` This Safety Analysis Report (SAR) documents the safety analyses that develop and evaluate the adequacy of the Waste Isolation Pilot Plant Contact-Handled Transuranic Wastes (WIPP CH TRU) safety bases necessary to ensure the safety of workers, the public and the environment from the hazards posed by WIPP waste handling and emplacement operations during the disposal phase and hazards associated with the decommissioning and decontamination phase. The analyses of the hazards associated with the long-term (10,000 year) disposal of TRU and TRU mixed waste, and demonstration of compliance with the requirements of 40 CFR 191, Subpart B and 40 CFR 268.6 will be addressed in detail in the WIPP Final Certification Application scheduled for submittal in October 1996 (40 CFR 191) and the No-Migration Variance Petition (40 CFR 268.6) scheduled for submittal in June 1996. Section 5.4, Long-Term Waste Isolation Assessment summarizes the current status of the assessment.

  14. Second reference calculation for the WIPP

    International Nuclear Information System (INIS)

    Branstetter, L.J.

    1985-03-01

    Results of the second reference calculation for the Waste Isolation Pilot Plant (WIPP) project using the dynamic relaxation finite element code SANCHO are presented. This reference calculation is intended to predict the response of a typical panel of excavated rooms designed for storage of nonheat-producing nuclear waste. Results are presented that include relevant deformations, relative clay seam displacements, and stress and strain profiles. This calculation is a particular solution obtained by a computer code, which has proven analytic capabilities when compared with other structural finite element codes. It is hoped that the results presented here will be useful in providing scoping values for defining experiments and for developing instrumentation. It is also hoped that the calculation will be useful as part of an exercise in developing a methodology for performing important design calculations by more than one analyst using more than one computer code, and for defining internal Quality Assurance (QA) procedures for such calculations. 27 refs., 15 figs

  15. CHARACTERIZATION OF CURRENTLY GENERATED TRANUSRANIC WASTE AT THE LOS ALAMOS NATIONAL LABORATORY'S PLUTONIUM PRODUCTION FACILITY

    International Nuclear Information System (INIS)

    Dodge, Robert L.; Montoya, Andy M.

    2003-01-01

    By the time the Waste Isolation Pilot Plant (WIPP) completes its Disposal Phase in FY 2034, the Department of Energy (DOE) will have disposed of approximately 109,378 cubic meters (m3) of Transuranic (TRU) waste in WIPP (1). If DOE adheres to its 2005 Pollution Prevention Goal of generating less than 141m3/yr of TRU waste, approximately 5000 m3 (4%) of that TRU waste will be newly generated (2). Because of the overwhelming majority (96%) of TRU waste destined for disposal at WIPP is legacy waste, the characterization and certification requirements were developed to resolve those issues related to legacy waste. Like many other DOE facilities Los Alamos National Laboratory (LANL) has a large volume (9,010m3) of legacy Transuranic Waste in storage (3). Unlike most DOE facilities LANL will generate approximately 140m3 of newly generated TRU waste each year3. LANL's certification program was established to meet the WIPP requirements for legacy waste and does not take advantage of the fundamental differences in waste knowledge between newly generated and legacy TRU waste

  16. Waste Isolation Pilot Plant Dry Bin-Scale Integrated Systems Checkout Plan

    International Nuclear Information System (INIS)

    1991-04-01

    In order to determine the long-term performance of the Waste Isolation Pilot Plant (WIPP) disposal system, in accordance with the requirements of the US Environmental Protection Agency (EPA) Standard 40 CFR 191, Subpart B, Sections 13 and 15, two performance assessment tests will be conducted. The tests are titled WIPP Bin-Scale Contact Handled (CH) Transuranic (TRU) Waste Tests and WIPP In Situ Alcove CH TRU Waste Tests. These tests are designed to measure the gas generation characteristics of CH TRU waste. Much of the waste will be specially prepared to provide data for a better understanding of the interactions due to differing degradation modes, waste forms, and repository environmental affects. The bin-scale test is designed to emplace nominally 146 bins. The majority of the bins will contain various forms of waste. Eight bins will be used as reference bins and will contain no waste. This checkout plan exercises the systems, operating procedures, and training readiness of personnel to safely carry out those specifically dedicated activities associated with conducting the bin-scale test plan for dry bins only. The plan does not address the entire WIPP facility readiness state. 18 refs., 6 figs., 3 tabs

  17. Experimental plan for tracer testing in the Culebra Dolomite at the WIPP site

    International Nuclear Information System (INIS)

    Beauheim, R.L.; Davies, P.B.

    1992-01-01

    This Experimental Plan provides a conceptual description of a proposed series of tracer tests to be conducted in the Culebra Dolomite Member of the Rustler Formation at the WIPP site. The new tracer tests are intended to address deficiencies that have been identified both in the performance and interpretation of previously conducted tracer tests' Tracer tests were conducted at the H-2 hydropad in 1980, at the H-6 hydropad in 1981, 1982, and 1983, at the H-4 hydropad from 1982 to 1984, at the H-3 hydropad in 1984, and at the H-11 hydropad in 1988. These tests were all performed over the entire 7-m thickness of the Culebra and, therefore, provided no information on the effects of vertical heterogeneity within the Culebra on transport. In addition, each of the previous tracer tests provided data only from 1 to 3 flow paths, allowing calibration of interpretive models but not validation of those models. The tracer tests at the H-3, H-6, and H-11 hydropads have been interpreted using a double-porosity continuum model (SWIFT 11) in which advective transport occurs through a uniform network of fractures while diffusion of tracer from the fractures to the porosity in the rock matrix causes a physical retardation of the transport. External reviewers, particularly participants in the international INTRAVAL program, have suggested that alternative mechanisms, such as fracture channeling, could explain the observed physical retardation and have recommended that additional tracer tests be designed and performed to distinguish among these mechanisms. The previous tracer tests also provided no information on chemical-retardation processes within the Culebra, which have been shown through performance-assessment calculations to have a large impact on cumulative releases of radionuclides from the WIPP to the accessible environment

  18. Waste Isolation Pilot Plant 1999 Site Environmental Report

    Energy Technology Data Exchange (ETDEWEB)

    Evans, Roy B.; Adams, Amy; Martin, Don; Morris, Randall C.; Reynolds, Timothy D.; Warren, Ronald W.

    2000-09-30

    The U.S. Department of Energy's (DOE)Carlsbad Area Office and the Westinghouse Waste Isolation Division (WID) are dedicated to maintaining high quality management of Waste Isolation Pilot Plant (WIPP) environmental resources. DOE Order 5400.1, General Environmental Protection Program, and DOE Order 231.1, Environmental, Safety, and Health Reporting, require that the environment at and near DOE facilities be monitored to ensure the safety and health of the public and the environment. This Waste Isolation Pilot Plant 1999 Site Environmental Report summarizes environmental data from calendar year 1999 that characterize environmental management performance and demonstrate compliance with federal and state regulations. This report was prepared in accordance with DOE Order 5400.1, DOE Order 231.1, the Environmental Regulatory Guide for Radiological Effluent Monitoring and Environmental Surveillance (DOE/EH- 0173T), and the Waste Isolation Pilot Plant Environmental Protection Implementation Plan (DOE/WIPP 96-2199). The above orders and guidance documents require that DOE facilities submit an Annual Site Environmental Report to DOE Headquarters, Office of the Assistant Secretary for Environment, Safety, and Health. The purpose of this report is to provide a comprehensive description of operational environmental monitoring activities, to provide an abstract of environmental activities conducted to characterize site environmental management performance to confirm compliance with environmental standards and requirements, and to highlight significant programs and efforts of environmental merit at WIPP during calendar year 1999. WIPP received its first shipment of waste on March 26, 1999. In 1999, no evidence was found of any adverse effects from WIPP on the surrounding environment. Radionuclide concentrations in the environment surrounding WIPP were not statistically higher in 1999 than in 1998.

  19. Los Alamos Plutonium Facility newly generated TRU waste certification

    International Nuclear Information System (INIS)

    Gruetzmacher, K.; Montoya, A.; Sinkule, B.; Maez, M.

    1997-01-01

    This paper presents an overview of the activities being planned and implemented to certify newly generated contact handled transuranic (TRU) waste produced by Los Alamos National Laboratory's (LANL's) Plutonium Facility. Certifying waste at the point of generation is the most important cost and labor saving step in the WIPP certification process. The pedigree of a waste item is best known by the originator of the waste and frees a site from expensive characterization activities such as those associated with legacy waste. Through a cooperative agreement with LANLs Waste Management Facility and under the umbrella of LANLs WIPP-related certification and quality assurance documents, the Plutonium Facility will be certifying its own newly generated waste. Some of the challenges faced by the Plutonium Facility in preparing to certify TRU waste include the modification and addition of procedures to meet WIPP requirements, standardizing packaging for TRU waste, collecting processing documentation from operations which produce TRU waste, and developing ways to modify waste streams which are not certifiable in their present form

  20. Technical requirements for the actinide source-term waste test program

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, M.L.F.; Molecke, M.A.

    1993-10-01

    This document defines the technical requirements for a test program designed to measure time-dependent concentrations of actinide elements from contact-handled transuranic (CH TRU) waste immersed in brines similar to those found in the underground workings of the Waste Isolation Pilot Plant (WIPP). This test program wig determine the influences of TRU waste constituents on the concentrations of dissolved and suspended actinides relevant to the performance of the WIPP. These influences (which include pH, Eh, complexing agents, sorbent phases, and colloidal particles) can affect solubilities and colloidal mobilization of actinides. The test concept involves fully inundating several TRU waste types with simulated WIPP brines in sealed containers and monitoring the concentrations of actinide species in the leachate as a function of time. The results from this program will be used to test numeric models of actinide concentrations derived from laboratory studies. The model is required for WIPP performance assessment with respect to the Environmental Protection Agency`s 40 CFR Part 191B.

  1. Technical requirements for the actinide source-term waste test program

    International Nuclear Information System (INIS)

    Phillips, M.L.F.; Molecke, M.A.

    1993-10-01

    This document defines the technical requirements for a test program designed to measure time-dependent concentrations of actinide elements from contact-handled transuranic (CH TRU) waste immersed in brines similar to those found in the underground workings of the Waste Isolation Pilot Plant (WIPP). This test program wig determine the influences of TRU waste constituents on the concentrations of dissolved and suspended actinides relevant to the performance of the WIPP. These influences (which include pH, Eh, complexing agents, sorbent phases, and colloidal particles) can affect solubilities and colloidal mobilization of actinides. The test concept involves fully inundating several TRU waste types with simulated WIPP brines in sealed containers and monitoring the concentrations of actinide species in the leachate as a function of time. The results from this program will be used to test numeric models of actinide concentrations derived from laboratory studies. The model is required for WIPP performance assessment with respect to the Environmental Protection Agency's 40 CFR Part 191B

  2. Characterization of the MVST waste tanks located at ORNL

    Energy Technology Data Exchange (ETDEWEB)

    Keller, J.M.; Giaquinto, J.M.; Meeks, A.M.

    1996-12-01

    During the fall of 1996 there was a major effort to sample and analyze the Active Liquid Low-Level Waste (LLLW) tanks at ORNL which include the Melton Valley Storage Tanks (MVST) and the Bethel Valley Evaporator Service Tanks (BVEST). The characterization data summarized in this report was needed to address waste processing options, address concerns of the performance assessment (PA) data for the Waste Isolation Pilot Plant (WIPP), evaluate the characteristics with respect to the waste acceptance criteria (WAC) for WIPP and Nevada Test Site (NTS), address criticality concerns, and meet DOT requirements for transporting the waste. This report only discusses the analytical characterization data for the MVST waste tanks. The isotopic data presented in this report support the position that fissile isotopes of uranium and plutonium were ``denatured`` as required by administrative controls. In general, MVST sludge was found to be both hazardous by RCRA characteristics and the transuranic alpha activity was well about the limit for TRU waste. The characteristics of the MVST sludge relative to the WIPP WAC limits for fissile gram equivalent, plutonium equivalent activity, and thermal power from decay heat, were estimated from the data in this report and found to be far below the upper boundary for any of the remote-handled transuranic waste requirements for disposal of the waste in WIPP.

  3. Characterization of the MVST waste tanks located at ORNL

    International Nuclear Information System (INIS)

    Keller, J.M.; Giaquinto, J.M.; Meeks, A.M.

    1996-12-01

    During the fall of 1996 there was a major effort to sample and analyze the Active Liquid Low-Level Waste (LLLW) tanks at ORNL which include the Melton Valley Storage Tanks (MVST) and the Bethel Valley Evaporator Service Tanks (BVEST). The characterization data summarized in this report was needed to address waste processing options, address concerns of the performance assessment (PA) data for the Waste Isolation Pilot Plant (WIPP), evaluate the characteristics with respect to the waste acceptance criteria (WAC) for WIPP and Nevada Test Site (NTS), address criticality concerns, and meet DOT requirements for transporting the waste. This report only discusses the analytical characterization data for the MVST waste tanks. The isotopic data presented in this report support the position that fissile isotopes of uranium and plutonium were ''denatured'' as required by administrative controls. In general, MVST sludge was found to be both hazardous by RCRA characteristics and the transuranic alpha activity was well about the limit for TRU waste. The characteristics of the MVST sludge relative to the WIPP WAC limits for fissile gram equivalent, plutonium equivalent activity, and thermal power from decay heat, were estimated from the data in this report and found to be far below the upper boundary for any of the remote-handled transuranic waste requirements for disposal of the waste in WIPP

  4. Waste Isolation Pilot Plant disposal phase final supplemental environmental impact statement. Volume 3: Comment response document

    International Nuclear Information System (INIS)

    1997-09-01

    The purpose of the Waste Isolation Pilot Plant Disposal Final Supplemental Environmental Impact Statement (SEIS-II) is to provide information on environmental impacts regarding the Department of Energy''s (DOE) proposed disposal operations at WIPP. The Proposed Action describes the treatment and disposal of the Basic inventory of TRU waste over a 35-year period. The Action Alternatives proposed the treatment of the Basic Inventory and an Additional Inventory as well as the transportation of the treated waste to WIPP for disposal over a 150- to 190-year period. The three Action Alternatives include the treatment of TRU waste at consolidation sites to meet WIPP planning-basic Waste Acceptance Criteria, the thermal treatment of TRU waste to meet Land Disposal Restrictions, and the treatment of TRU waste by a shred and grout process. SEIS-II evaluates environmental impacts resulting from the various treatment options; the transportation of TRU waste to WIPP using truck, a combination of truck and regular rail service, and a combination of truck and dedicated rail service; and the disposal of this waste in the repository. Evaluated impacts include those to the general environment and to human health. Additional issues associated with the implementation of the alternatives are discussed to provide further understanding of the decisions to be reached and to provide the opportunity for public input on improving DOE''s Environmental Management Program. This volume provides responses to public comments on the Draft SEIS-II. Comments are related to: Alternatives; TRU waste; DOE credibility; Editorial; Endorsement/opposition; Environmental justice; Facility accidents; Generator site operations; Health and safety; Legal and policy issues; NEPA process; WIPP facilities; WIPP waste isolation performance; Purpose and need; WIPP operations; Site characterization; Site selection; Socioeconomics; and Transportation

  5. Reevaluating NIMBY: Evolving Public Fear and Acceptance in Siting a Nuclear Waste Facility

    Energy Technology Data Exchange (ETDEWEB)

    Jenkins-Smith, Hank C.; Silva, Carol L.; Nowlin, Matthew C.; deLozier, Grant (Dept. of Political Science, Univ. of Oklahoma, Norman, OK (United States))

    2010-09-15

    The not-in-my-backyard (NIMBY) syndrome has long been the focus of academic and policy research. We test several competing hypothesis concerning the sources of NIMBY sentiments, including demographics, proximity, political ideology and partisanship, and the unfolding policy process over time. To test these hypotheses we use survey data collected in New Mexico dealing with risk perceptions and acceptance related to the Waste Isolation Pilot Project (WIPP), a permanent storage site for radioactive waste located near Carlsbad, New Mexico. WIPP became operational and received its first shipment of waste on March 26, 1999. This study tracks the changes of risk perception and acceptance over a decade, using measures taken from 35 statewide surveys of New Mexico citizens spanning the 11-year period from fall 1990 to summer 2001. This time span includes periods before and after WIPP became operational. We find that acceptance of WIPP is greater among those in the most proximate counties to WIPP. Surprisingly, and contrary to expectations drawn from the broader literature, acceptance is also greater among those who live closest to the nuclear waste transportation route. We also find that ideology, partisanship, government approval and broader environmental concerns influence support for WIPP acceptance. Finally, the sequence of procedural steps taken toward formal approval of WIPP by government agencies proved to be important to public acceptance, the most significant being the opening of the WIPP facility itself

  6. Reevaluating NIMBY: Evolving Public Fear and Acceptance in Siting a Nuclear Waste Facility

    International Nuclear Information System (INIS)

    Jenkins-Smith, Hank C.; Silva, Carol L.; Nowlin, Matthew C.; de Lozier, Grant

    2010-09-01

    The not-in-my-backyard (NIMBY) syndrome has long been the focus of academic and policy research. We test several competing hypothesis concerning the sources of NIMBY sentiments, including demographics, proximity, political ideology and partisanship, and the unfolding policy process over time. To test these hypotheses we use survey data collected in New Mexico dealing with risk perceptions and acceptance related to the Waste Isolation Pilot Project (WIPP), a permanent storage site for radioactive waste located near Carlsbad, New Mexico. WIPP became operational and received its first shipment of waste on March 26, 1999. This study tracks the changes of risk perception and acceptance over a decade, using measures taken from 35 statewide surveys of New Mexico citizens spanning the 11-year period from fall 1990 to summer 2001. This time span includes periods before and after WIPP became operational. We find that acceptance of WIPP is greater among those in the most proximate counties to WIPP. Surprisingly, and contrary to expectations drawn from the broader literature, acceptance is also greater among those who live closest to the nuclear waste transportation route. We also find that ideology, partisanship, government approval and broader environmental concerns influence support for WIPP acceptance. Finally, the sequence of procedural steps taken toward formal approval of WIPP by government agencies proved to be important to public acceptance, the most significant being the opening of the WIPP facility itself

  7. Conclusions from working group 2 - the analyses of the WIPP-2 experiments

    International Nuclear Information System (INIS)

    Jackson, C.P.

    1995-01-01

    The INTRAVAL WIPP-2 test case is based on data from site investigations carried out at the Waste Isolation Pilot Plant (WIPP) in New Mexico, USA. The site has been chosen as a potential location for a radioactive waste repository. Extensive investigations have been carried out, focused mainly on groundwater flow and transport in the Culebra Dolomite, the main pathway for transport of radionuclides off the site by groundwater in the case of an accidental borehole intrusion into the repository. Five teams studied the test case. Two teams addressed issues involved in the treatment of heterogeneity. Stochastic models and a Monte Carlo approach were used. One team quantified the increased uncertainty resulting from fewer data and explored the issues involved in validation of stochastic models. A second team developed a new method for conditioning stochastic models on head data. Two other teams examined issues relating to the choice of conceptual models. Two-dimensional vertical cross-section models were used to explore the importance of vertical flow. The fifth team advocate the use of a variety of models to highlight the most important processes and parameters. Conclusions from each team experiment are analysed. (J.S.). 4 refs., 11 figs

  8. Oak Ridge National Laboratory Transuranic Waste Certification Program

    International Nuclear Information System (INIS)

    Smith, J.H.; Bates, L.D.; Box, W.D.; Aaron, W.S.; Setaro, J.A.

    1988-08-01

    The US Department of Energy (DOE) has requested that all DOE facilities handling defense transuranic (TRU) waste develop and implement a program whereby all TRU waste will be contained, stored, and shipped to the Waste Isolation Pilot Plant (WIPP) in accordance with the requirements set forth in the DOE certification documents WIPP-DOE-069, 114, 120, 137, 157, and 158. The program described in this report describes how Oak Ridge National Laboratory (ORNL) intends to comply with these requirements and the techniques and procedures used to ensure that ORNL TRU wastes are certifiable for shipment to WIPP. This document describes the program for certification of newly generated (NG) contact-handled transuranic (CH-TRU) waste. Previsions have been made for addenda, which will extend the coverage of this document to include certification of stored CH-TRU and NG and stored remote-handled transuranic (RH-TRU) waste, as necessary. 24 refs., 11 figs., 4 tabs

  9. Final environmental impact statement. Waste Isolation Pilot Plant

    Energy Technology Data Exchange (ETDEWEB)

    1980-10-01

    This volume contains the appendices for the Final Environmental Impact Statement for the Waste Isolation Pilot Plant (WIPP). Alternative geologic environs are considered. Salt, crystalline rock, argillaceous rock, and tuff are discussed. Studies on alternate geologic regions for the siting of WIPP are reviewed. President Carter's message to Congress on the management of radioactive wastes and the findings and recommendations of the interagency review group on nuclear waste management are included. Selection criteria for the WIPP site including geologic, hydrologic, tectonic, physicochemical compatability, and socio-economic factors are presented. A description of the waste types and the waste processing procedures are given. Methods used to calculate radiation doses from radionuclide releases during operation are presented. A complete description of the Los Medanos site, including archaeological and historic aspects is included. Environmental monitoring programs and long-term safety analysis program are described. (DMC)

  10. Hydraulic fracturing tests in anhydrite interbeds in the WIPP, Marker Beds 139 and 140

    Energy Technology Data Exchange (ETDEWEB)

    Howard, C L [RE/SPEC Inc., Albuquerque, NM (United States); Wawersik, W. R.; Carlson, L. V.; Henfling, J. A.; Borns, D. J.; Beauheim, R. L.; Roberts, R. M.

    1997-05-01

    Hydraulic fracturing tests were integrated with hydrologic tests to estimate the conditions under which gas pressure in the disposal rooms in the Waste Isolation Pilot Plant, Carlsbad, NM (WIPP) will initiate and advance fracturing in nearby anhydrite interbeds. The measurements were made in two marker beds in the Salado formation, MB139 and MB140, to explore the consequences of existing excavations for the extrapolation of results to undisturbed ground. The interpretation of these measurements is based on the pressure-time records in two injection boreholes and several nearby hydrologic observation holes. Data interpretations were aided by post-test borehole video surveys of fracture traces that were made visible by ultraviolet illumination of fluorescent dye in the hydraulic fracturing fluid. The conclusions of this report relate to the upper- and lower-bound gas pressures in the WIPP, the paths of hydraulically and gas-driven fractures in MB139 and MB140, the stress states in MB139 and MB140, and the probable in situ stress states in these interbeds in undisturbed ground far away from the WIPP.

  11. Operations Program Plan for the Waste Isolation Pilot Plant

    International Nuclear Information System (INIS)

    1990-09-01

    This document, Revision 4 of the Operations Program Plan, has been developed as the seven-year master plan for operating of the Waste Isolation Pilot Plant (WIPP). Subjects covered include public and technical communications; regulatory and environmental programs; startup engineering; radiation handling, surface operations, and underground operations; waste certification and waste handling; transportation development; geotechnical engineering; experimental operations; engineering program; general maintenance; security program; safety, radiation, and regulatory assurance; quality assurance program; training program; administration activities; management systems program; and decommissioning. 243 refs., 19 figs., 25 tabs. (SM)

  12. 76 FR 33277 - Proposed Approval of the Central Characterization Project's Remote-Handled Transuranic Waste...

    Science.gov (United States)

    2011-06-08

    ... disposal of TRU radioactive waste. As defined by the WIPP Land Withdrawal Act (LWA) of 1992 (Pub. L. 102... certification of the WIPP's compliance with disposal regulations for TRU radioactive waste [63 Federal Register... radioactive remote-handled (RH) transuranic (TRU) waste characterization program implemented by the Central...

  13. Waste Isolation Pilot Plant Transuranic Waste Baseline inventory report. Volume 1. Revision 1

    International Nuclear Information System (INIS)

    1995-02-01

    This document provides baseline inventories of transuranic wastes for the WIPP facility. Information on waste forms, forecasting of future inventories, and waste stream originators is also provided. A diskette is provided which contains the inventory database

  14. Waste Isolation Pilot Plant Transuranic Waste Baseline inventory report. Volume 1. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-02-01

    This document provides baseline inventories of transuranic wastes for the WIPP facility. Information on waste forms, forecasting of future inventories, and waste stream originators is also provided. A diskette is provided which contains the inventory database.

  15. Regional water balance for the Waste Isolation Pilot Plant (WIPP) site and surrounding area

    International Nuclear Information System (INIS)

    Hunter, R.L.

    1985-12-01

    The WIPP water-balance study area defined here comprises approx.2000 mi 2 in Eddy and Lea Counties, southeastern New Mexico. Inflows to the study area are precipitation (roughly 1.47 x 10 6 ac-ft/y), surface water (roughly 1.1 x 10 5 ac-ft/y), water imported by municipalities and industries (roughly 3 x 10 4 ac-ft/y), and ground water (volume not estimated). Outflows from the area are evapotranspiration (roughly 1.5 x 10 6 ac-ft/y), surface water (roughly 1.2 x 10 5 ac-ft/y), and possibly some ground water. The volume of surface and ground water in storage in Nash Draw has increased since the beginning of potash refining. Regional ground-water flow in aquifers above the Salado Formation is from the northeast to the southwest, although this pattern is interrupted by Clayton Basin, Nash Draw, and San Simon Swale. The Pecos River is the only important perennial stream. Most of the area has no integrated surface-water drainage. The available data suggest that approx.1600 mi 2 of the study area are hydrologically separate from Nash Draw and the WIPP site. Ground water north of Highway 180 apparently discharges into Clayton Basin and evaporates. Water in San Simon Swale apparently percolates downward and flows to the southeast. Data are inadequate to create a water budget for the Nash Draw-WIPP site hydrologic system alone, although an attempt to do so can provide guidance for further study

  16. MIIT: International in-situ testing of simulated HLW forms - performance of SRS simulated waste glass after 6 mos., 1 yr., 2 yrs. and 5 yrs. of burial at WIPP

    International Nuclear Information System (INIS)

    Wicks, G.G.; Lodding, A.R.; Macedo, P.B.; Clark, D.E.

    1991-01-01

    The first field test, involving burial of simulated high-level waste (HLW) forms and package components, to be conducted in the United States, was begun in July of 1986. This program, called the Materials Interface Interactions Test or MIIT, comprises the largest cooperative field-testing venture in the international waste management community. Included in the study are over 900 waste form samples comprising 15 different systems supplied by 7 countries. Also included are about 300 potential canister or overpack metal samples along with more than 500 geologic and backfill specimens. There are almost 2000 relevant interactions that characterize this effort which is being conducted in the bedded salt site at the Waste Isolation Pilot Plant (WIPP), near Carlsbad, New Mexico. The MIIT program represents a joint effort managed by Sandia National Laboratories in Albuquerque, N.M., and Savannah River Laboratory in Aiken, S.C. and sponsored by the US Department of Energy. Also involved in MIIT are participants from various laboratories and universities in France, Germany, Belgium, Canada, Japan, Sweden, the United Kingdom, and the United States. In July of 1991, the experimental portion of the 5-yr. MIIT program was completed. Although only about 5% of all MIIT samples have been assessed thus far, there are already interesting findings that have emerged. The present paper will discuss results obtained for SRS 165/TDS waste glass after burial of 6 mo., 1 yr. and 2 yrs., along with initial analyses of 5 yr. samples

  17. Assessment of LANL transuranic waste management documentation

    International Nuclear Information System (INIS)

    Davis, K.D.; Hoevemeyer, S.S.; McCance, C.H.; Jennrich, E.A.; Lund, D.M.

    1991-04-01

    This report presents the findings that resulted from the evaluation of the Los Alamos National Laboratory (LANL) TRU Waste Characterization Procedures, conducted to determine their compliance with applicable DOE requirements. The driving requirements for the procedures appear to be contained in DOE Order 5820.2A; specific reference is made to Chapter II of that document. In addition, the WIPP-WAC sets forth specific waste forms and establishes the basis for LANL's TRU Waste Acceptance Criteria; any characterization plan must utilize procedures that address the requirements of the WIPP-WAC in order to ensure compliance with it. The purpose of the characterization procedures is to provide details to waste generators and/or waste certifiers regarding how the characterization plan is implemented for the gathering of analytical and/or knowledge-of-process information to allow certification of the waste. An annotated outline was developed from those criteria found in Sections 4.0 and 5.0 of the WIPP-WAC. The annotated outline of elements that should be addressed in characterization procedures is provided

  18. Performance assessment requirements for the identification and tracking of transuranic waste intended for disposal at the Waste Isolation Pilot Plant

    Energy Technology Data Exchange (ETDEWEB)

    Snider, C.A. [Department of Energy, Carlsbad, NM (United States); Weston, W.W. [Westinghouse Electric Corp., Carlsbad, NM (United States)

    1997-11-01

    To demonstrate compliance with environmental radiation protection standards for management and disposal of transuranic (TRU) radioactive wastes, a performance assessment (PA) of the Waste Isolation Pilot Plant (WIPP) was made of waste-waste and waste-repository interactions and impacts on disposal system performance. An estimate of waste components and accumulated quantities was derived from a roll-up of the generator/storage sites` TRU waste inventories. Waste components of significance, and some of negligible effect, were fixed input parameters in the model. The results identified several waste components that require identification and tracking of quantities to ensure that repository limits are not exceeded. The rationale used to establish waste component limits based on input estimates is discussed. The distinction between repository limits and waste container limits is explained. Controls used to ensure that no limits are exceeded are identified. For waste components with no explicit repository based limits, other applicable limits are contained in the WIPP Waste Acceptance Criteria (WAC). The 10 radionuclides targeted for identification and tracking on either a waste container or a waste stream basis include Am-241, Pu-238, Pu-239, Pu-240, Pu-242, U-233, U-234, U-238, Sr-90, and Cs-137. The accumulative activities of these radionuclides are to be inventoried at the time of emplacement in the WIPP. Changes in inventory curie content as a function of radionuclide decay and ingrowth over time will be calculated and tracked. Due to the large margin of compliance demonstrated by PA with the 10,000 year release limits specified, the quality assurance objective for radioassay of the 10 radionuclides need to be no more restrictive than those already identified for addressing the requirements imposed by transportation and WIPP disposal operations in Section 9 of the TRU Waste Characterization Quality Assurance Program Plan. 6 refs.

  19. Waste Isolation Pilot Plant Annual Site Enviromental Report for 2008

    International Nuclear Information System (INIS)

    2009-01-01

    The purpose of the Waste Isolation Pilot Plant Annual Site Environmental Report for 2008 (ASER) is to provide information required by U.S. Department of Energy (DOE) Order 231.1A, Environment, Safety, and Health Reporting. Specifically, the ASER presents summary environmental data to characterize site environmental management performance; summarize environmental occurrences and responses reported during the calendar year; confirm compliance with environmental standards and requirements; highlight significant facility programs and efforts; and describe how compliance and environmental improvement is accomplished through the WIPP Environmental Management System (EMS). The DOE Carlsbad Field Office (CBFO) and the management and operating contractor (MOC), Washington TRU Solutions LLC (WTS), maintain and preserve the environmental resources at the Waste Isolation Pilot Plant (WIPP). DOE Order 231.1A; DOE Order 450.1A, Environmental Protection Program; and DOE Order 5400.5, Radiation Protection of the Public and the Environment, require that the affected environment at and near DOE facilities be monitored to ensure the safety and health of the public and workers, and preservation of the environment. This report was prepared in accordance with DOE Order 231.1A, which requires that DOE facilities submit an ASER to the DOE Headquarters Chief Health, Safety, and Security Officer. The WIPP Hazardous Waste Facility Permit (HWFP) Number NM4890139088-TSDF (treatment, storage, and disposal facility) further requires that the ASER be provided to the New Mexico Environment Department (NMED). The WIPP mission is to safely dispose of transuranic (TRU) radioactive waste generated by the production of nuclear weapons and other activities related to the national defense of the United States. In 2008, 5,265 cubic meters (m3) of TRU waste were disposed of at the WIPP facility, including 5,216 m3 of contact-handled (CH) TRU waste and 49 m3 of remote-handled (RH) TRU waste. From the first

  20. Waste Isolation Pilot Plant Annual Site Enviromental Report for 2008

    Energy Technology Data Exchange (ETDEWEB)

    Washington Regulatory and Enviromnetal Services

    2009-09-21

    The purpose of the Waste Isolation Pilot Plant Annual Site Environmental Report for 2008 (ASER) is to provide information required by U.S. Department of Energy (DOE) Order 231.1A, Environment, Safety, and Health Reporting. Specifically, the ASER presents summary environmental data to characterize site environmental management performance; summarize environmental occurrences and responses reported during the calendar year; confirm compliance with environmental standards and requirements; highlight significant facility programs and efforts; and describe how compliance and environmental improvement is accomplished through the WIPP Environmental Management System (EMS). The DOE Carlsbad Field Office (CBFO) and the management and operating contractor (MOC), Washington TRU Solutions LLC (WTS), maintain and preserve the environmental resources at the Waste Isolation Pilot Plant (WIPP). DOE Order 231.1A; DOE Order 450.1A, Environmental Protection Program; and DOE Order 5400.5, Radiation Protection of the Public and the Environment, require that the affected environment at and near DOE facilities be monitored to ensure the safety and health of the public and workers, and preservation of the environment. This report was prepared in accordance with DOE Order 231.1A, which requires that DOE facilities submit an ASER to the DOE Headquarters Chief Health, Safety, and Security Officer. The WIPP Hazardous Waste Facility Permit (HWFP) Number NM4890139088-TSDF (treatment, storage, and disposal facility) further requires that the ASER be provided to the New Mexico Environment Department (NMED). The WIPP mission is to safely dispose of transuranic (TRU) radioactive waste generated by the production of nuclear weapons and other activities related to the national defense of the United States. In 2008, 5,265 cubic meters (m3) of TRU waste were disposed of at the WIPP facility, including 5,216 m3 of contact-handled (CH) TRU waste and 49 m3 of remote-handled (RH) TRU waste. From the first

  1. WIPP: Waste Isolation Pilot Plant

    International Nuclear Information System (INIS)

    1984-01-01

    The following aspects of the Waste Isolation Pilot Plant are discussed briefly: history and site selection; salt as a disposal medium; transporting waste materials; early key events; impacts on New Mexico; project organization; and site certification profile

  2. The WIPP decision plan: Charting the course for openness in the decision making process

    International Nuclear Information System (INIS)

    Hagers, J.

    1992-01-01

    In June of 1989, the Secretary of Energy requested that a plan be developed that would clearly outline the prerequisites to opening the Waste Isolation Pilot Plant (WIPP). It was to provide the basis for a decision making process that was not only visible to the public, but one which included public participation. It must also be dynamic enough to effectively deal with the changing legislative, regulatory, and technical environments. Based on a recognized need for openness, the Secretary's Draft Decision Plan was developed. The plan charted the course for ultimately making the decision to declare WIPP ready to receive waste for the start of test phase operations. It outlined to critics and supporters alike the rigorous and thorough process by which the internal decisions were made. The plan identified all internal prerequisites to the decision; charted the review cycles, and targeted the completion dates. It also outlined the processes outside the control of the Department, institutional issues, such as legislative land withdrawal, issuance of permits, and designation of transportation routes

  3. WIPP air-intake shaft disturbed-rock zone study

    International Nuclear Information System (INIS)

    Dale, T.; Hurtado, L.D.

    1996-01-01

    The disturbed-rock zone surrounding the air-intake shaft at the Waste Isolation Pilot Plant (WIPP) site was investigated to determine the extent and the permeability of the disturbed-rock zone as a function of radial distance from the 6.1 m diameter shaft, at different elevations within the Salado. Gas- and brine-permeability tests were performed in the bedded halite of the Salado formation at two levels within the air-intake shaft. The gas- and brine-permeability test results demonstrated that the radial distance to an undisturbed formation permeability of 1 x 10 -21 m 2 was less than 3.0 m

  4. Recent developments in the conceptual geologic and hydrologic understanding of the WIPP site, Southeastern New Mexico

    International Nuclear Information System (INIS)

    Lappin, A.R.

    1987-01-01

    Hydrologic and geochemical characterization of the WIPP site has progressed significantly since the 1980 WIPP Final Environmental Impact Statement. In 1980, the entire Rustler Formation was modeled as a single hydrologic unit, assumed to be isotropic, single-porosity, and completely confined. Variability within the Rustler was evaluated only on the basis of testing at individual wells. In the 1983 WIPP Site and Preliminary Design Validation effort, the Salado Formation, in which the WIPP facility is being constructed, was assumed to be anhydrous, except for fluid inclusions and mineralogically bound water. Recent hydrologic and tracer testing at the WIPP indicates: 1) The local importance of dual-porosity behavior in hydraulic response and transport in parts of the Culebra Dolomite Member of the Rustler Formation; 2) the presence of distinct high- and low-transmissivity regions within the Culebra; and 3) the possible importance of vertical fluid flow within the Rustler. Recent analyses indicate that fluids encountered in the WIPP facility and in experimental brine-migration studies are grain-boundary fluids, chemically distinct from fluid inclusions. Fluid-inclination compositions appear to have been determined shortly after the halite deposition. Because of the times required for diagenetic reactions controlling their compositions, the grain-boundary fluids within the Salado probably have a residence time of several million years

  5. Evolution of a Waste Information System

    International Nuclear Information System (INIS)

    Speed, D.

    2009-01-01

    Managing information has become a pervasive task in our society and business activities. This is especially true in the arena of government facilities and nuclear materials. Accomplishing the required tasks is not sufficient in the new millennium; plans are made, reviewed and approved, specifications for materials are developed, materials are procured and delivered, inspected, invoices are audited and paid. Activities are conducted to procedures with embedded quality checks and a final turn-over inspection is performed. In order to make the most efficient use of our human capital, we turn to machines to assist us in managing the information flood. How best to address this task? This is new territory - there was no prior art at this level. The challenge is to exercise an appropriate level of control, and at the same time, add value. The key to accomplishing this goal is having a good team with a carefully engineered processes applying an appropriate level of automation. At the Waste Isolation Pilot Plant (WIPP), information is managed about the facility, its performance (environmental monitoring), mining operations, facility services, cyber security, human resources, business processes, and waste information. This paper addresses experience gained with the management of waste information over the first decade of operation. The WIPP Waste Information System (WWIS) was created to fill both a gatekeeper function to screen waste for disposal at Waste Isolation Pilot Plant (WIPP) and the official record of the properties of the waste contained in the WIPP transuranic waste repository. The WWIS has been a very successful system as the monitor of waste acceptance criteria and data integrity; it is an integral part of the success of the WIPP operation. The WWIS is now in its thirteenth year of operation. This period has included close regulatory scrutiny as a part of determining facility readiness for initial waste acceptance, and more than 40 significant software revisions

  6. Annual site environmental monitoring report for the Waste Isolation Pilot Plant, Calendar year 1985

    International Nuclear Information System (INIS)

    Reith, C.; Prince, K.; Fischer, T.; Rodriguez, A.; Uhland, D.; Winstanley, D.

    1986-04-01

    This is the first Annual Site Environmental Monitoring Report for the Waste Isolation Pilot Plant (WIPP) in southeastern New Mexico. The WIPP project is operated by the US Department of Energy (DOE) for the purpose of providing a research and development facility to demonstrate the safe disposal of radioactive wastes generated by the defense activities of the U.S. Government. The report provides a comprehensive description of environmental activities at WIPP during Calendar Year 1985, including: a description of the WIPP project and its mission; a description of the local environment, including demographics; a summary of environmental program information, including an update on the status of environmental permits and compliance activities; a presentation of the findings of the Radiological Baseline Program (RBP), which is a program to characterize radionuclide activities in the environment around the WIPP site; and a summary of findings of the Ecological Monitoring Program (EMP), which examines non-radiological impacts of WIPP construction on the surrounding ecosystem. The WIPP facility is under construction, and will not receive radioactive wastes before October 1988. Therefore, this report describes the status of preoperational (as opposed to operational) environmental activities. 29 refs., 17 figs., 22 tabs

  7. Fluid injection for salt water disposal and enhanced oil recovery as a potential problem for the WIPP: Proceedings of a June 1995 workshop and analysis

    International Nuclear Information System (INIS)

    Silva, M.K.

    1996-08-01

    The Waste Isolation Pilot Plant (WIPP) is a facility of the U.S. Department of Energy (DOE), designed and constructed for the permanent disposal of transuranic (TRU) defense waste. The repository is sited in the New Mexico portion of the Delaware Basin, at a depth of 655 meters, in the salt beds of the Salado Formation. The WIPP is surrounded by reserves and production of potash, crude oil and natural gas. In selecting a repository site, concerns about extensive oil field development eliminated the Mescalero Plains site in Chaves County and concerns about future waterflooding in nearby oil fields helped eliminate the Alternate II site in Lea County. Ultimately, the Los Medanos site in Eddy County was selected, relying in part on the conclusion that there were no oil reserves at the site. For oil field operations, the problem of water migrating from the injection zone, through other formations such as the Salado, and onto adjacent property has long been recognized. In 1980, the DOE intended to prohibit secondary recovery by waterflooding in one mile buffer surrounding the WIPP Site. However, the DOE relinquished the right to restrict waterflooding based on a natural resources report which maintained that there was a minimal amount of crude oil likely to exist at the WIPP site, hence waterflooding adjacent to the WIPP would be unlikely. This document presents the workshop presentations and analyses for the fluid injection for salt water disposal and enhanced oil recovery utilizing fluid injection and their potential effects on the WIPP facility

  8. Guidelines for developing certification programs for newly generated TRU waste

    International Nuclear Information System (INIS)

    Whitty, W.J.; Ostenak, C.A.; Pillay, K.K.S.; Geoffrion, R.R.

    1983-05-01

    These guidelines were prepared with direction from the US Department of Energy (DOE) Transuranic (TRU) Waste Management Program in support of the DOE effort to certify that newly generated TRU wastes meet the Waste Isolation Pilot Plant (WIPP) Waste Acceptance Criteria. The guidelines provide instructions for generic Certification Program preparation for TRU-waste generators preparing site-specific Certification Programs in response to WIPP requirements. The guidelines address all major aspects of a Certification Program that are necessary to satisfy the WIPP Waste Acceptance Criteria and their associated Compliance Requirements and Certification Quality Assurance Requirements. The details of the major element of a Certification Program, namely, the Certification Plan, are described. The Certification Plan relies on supporting data and control documentation to provide a traceable, auditable account of certification activities. Examples of specific parts of the Certification Plan illustrate the recommended degree of detail. Also, a brief description of generic waste processes related to certification activities is included

  9. Los Alamos National Laboratory transuranic waste characterization and certification program - an overview of capabilities and capacity

    International Nuclear Information System (INIS)

    Rogers, P.S.Z.; Sinkule, B.J.; Janecky, D.R.; Gavett, M.A.

    1997-01-01

    The Los Alamos National Laboratory (LANL) has full capability to characterize transuranic (TRU) waste for shipment to and disposal at the Waste Isolation Pilot Plant (WIPP) for its projected opening. LANL TRU waste management operations also include facilities to repackage both drums of waste found not to be certifiable for WIPP and oversized boxes of waste that must be size reduced for shipment to WIPP. All characterization activities and repackaging are carried out under a quality assurance program designed to meet Carlsbad Area Office (CAO) requirements. The flow of waste containers through characterization operations, the facilities used for characterization, and the electronic data management system used for data package preparation and certification of TRU waste at LANL are described

  10. Reversing nuclear opposition: evolving public acceptance of a permanent nuclear waste disposal facility.

    Science.gov (United States)

    Jenkins-Smith, Hank C; Silva, Carol L; Nowlin, Matthew C; deLozier, Grant

    2011-04-01

    Nuclear facilities have long been seen as the top of the list of locally unwanted land uses (LULUs), with nuclear waste repositories generating the greatest opposition. Focusing on the case of the Waste Isolation Pilot Plant (WIPP) in southern New Mexico, we test competing hypotheses concerning the sources of opposition and support for siting the facility, including demographics, proximity, political ideology, and partisanship, and the unfolding policy process over time. This study tracks the changes of risk perception and acceptance of WIPP over a decade, using measures taken from 35 statewide surveys of New Mexico citizens spanning an 11-year period from fall 1990 to summer 2001. This time span includes periods before and after WIPP became operational. We find that acceptance of WIPP is greater among those whose residences are closest to the WIPP facility. Surprisingly, and contrary to expectations drawn from the broader literature, acceptance is also greater among those who live closest to the nuclear waste transportation route. We also find that ideology, partisanship, government approval, and broader environmental concerns influence support for WIPP acceptance. Finally, the sequence of procedural steps taken toward formal approval of WIPP by government agencies proved to be important to gaining public acceptance, the most significant being the opening of the WIPP facility itself. © 2010 Society for Risk Analysis.

  11. Characterization of the BVEST waste tanks located at ORNL

    International Nuclear Information System (INIS)

    Keller, J.M.; Giaquinto, J.M.; Meeks, A.M.

    1997-01-01

    During the fall of 1996 there was a major effort to sample and analyze the Active Liquid Low-Level Waste (LLLW) tanks at ORNL which include the Melton Valley Storage Tanks (MVST) and the Bethel Valley Evaporator Service Tanks (BVEST). The characterization data summarized in this report was needed to address waste processing options, address concerns dealing with the performance assessment (PA) data for the Waste Isolation Pilot Plant (WIPP), evaluate the waste characteristics with respect to the waste acceptance criteria (WAC) for WIPP and Nevada Test Site (NTS), address criticality concerns, and meet DOT requirements for transporting the waste. This report discusses the analytical characterization data for the supernatant and sludge in the BVEST waste tanks W-21, W-22, and W-23. The isotopic data presented in this report supports the position that fissile isotopes of uranium and plutonium were denatured as required by the administrative controls stated in the ORNL LLLW waste acceptance criteria (WAC). In general, the BVEST sludge was found to be hazardous based on RCRA characteristics and the transuranic alpha activity was well above the 100 nCi/g limit for TRU waste. The characteristics of the BVEST sludge relative to the WIPP WAC limits for fissile gram equivalent, plutonium equivalent activity, and thermal power from decay heat were estimated from the data in this report and found to be far below the upper boundary for any of the remote-handled transuranic waste (RH-TRU) requirements for disposal of the waste in WIPP

  12. QA lessons learned for parameter control from the WIPP Project

    International Nuclear Information System (INIS)

    Richards, R.R.

    1998-01-01

    This paper provides a summary of lessons learned from experiences on the Waste Isolation Pilot Plant (WJPP) Project in implementation of quality assurance controls surrounding inputs for performance assessment analysis. Since the performance assessment (PA) process is inherent in compliance determination for any waste repository, these lessons-learned are intended to be useful to investigators, analysts, and Quality Assurance (QA) practitioners working on high level waste disposal projects. On the WIPP Project, PA analyses for regulatory-compliance determination utilized several inter-related computer programs (codes) that mathematically modeled phenomena such as radionuclide release, retardation, and transport. The input information for those codes are the parameters that are the subject of this paper. Parameters were maintained in a computer database, which was then queried electronically by the PA codes whenever input was needed as the analyses were run

  13. Los Alamos National Laboratory accelerated tru waste workoff strategies

    International Nuclear Information System (INIS)

    Kosiewicz, S.T.; Triay, I.R.; Rogers, P.Z.; Christensen, D.V.

    1997-01-01

    During 1996, the Los Alamos National Laboratory (LANL) developed two transuranic (TRU) waste workoff strategies that were estimated to save $270 - 340M through accelerated waste workoff and the elimination of a facility. The planning effort included a strategy to assure that LANL would have a significant quantity (3000+ drums) of TRU waste certified for shipment to the Waste Isolation Pilot Plant (WIPP) beginning in April of 1998, when WIPP was projected to open. One of the accelerated strategies can be completed in less than ten years through a Total Optimization of Parameters Scenario (open-quotes TOPSclose quotes). open-quotes TOPSclose quotes fully utilizes existing LANL facilities and capabilities. For this scenario, funding was estimated to be unconstrained at $23M annually to certify and ship the legacy inventory of TRU waste at LANL. With open-quotes TOPSclose quotes the inventory is worked off in about 8.5 years while shipping 5,000 drums per year at a total cost of $196M. This workoff includes retrieval from earthen cover and interim storage costs. The other scenario envisioned funding at the current level with some increase for TRUPACT II loading costs, which total $16M annually. At this funding level, LANL estimates it will require about 17 years to work off the LANL TRU legacy waste while shipping 2,500 drums per year to WIPP. The total cost will be $277M. This latter scenario decreases the time for workoff by about 19 years from previous estimates and saves an estimated $190M. In addition, the planning showed that a $70M facility for TRU waste characterization was not needed. After the first draft of the LANL strategies was written, Congress amended the WIPP Land Withdrawal Act (LWA) to accelerate the opening of WIPP to November 1997. Further, the No Migration Variance requirement for the WIPP was removed. This paper discusses the LANL strategies as they were originally developed. 1 ref., 3 figs., 2 tabs

  14. Scientific, institutional, regulatory, political, and public acceptance of the waste isolation pilot plant transuranic waste repository

    International Nuclear Information System (INIS)

    Eriksson, L.G.

    2000-01-01

    The recent successful certification and opening of a first-of-a-kind, deep geological repository for safe disposal of long-lived, transuranic radioactive waste (TRUW) at the Waste Isolation Pilot Plant (WIPP) site, New Mexico, United States of America (USA), embody both long-standing local and wide-spread, gradually achieved, scientific, institutional, regulatory, political, and public acceptance. The related historical background and development are outlined and the main contributors to the successful siting, certification, and acceptance of the WIPP TRUW repository, which may also serve as a model to success for other radioactive waste disposal programs, are described. (author)

  15. A historical review of Waste Isolation Pilot Plant backfill development

    International Nuclear Information System (INIS)

    Krumhansl, James L.; Molecke, Martin A.; Papenguth, Hans W.; Brush, Laurence H.

    2000-01-01

    Backfills have been part of Sandia National Laboratories' [Sandia's] Waste Isolation Pilot Plant [WIPP] designs for over twenty years. Historically, backfill research at Sandia has depended heavily on the changing mission of the WIPP facility. Early testing considered heat producing, high level, wastes. Bentonite/sand/salt mixtures were evaluated and studies focused on developing materials that would retard brine ingress, sorb radionuclides, and withstand elevated temperatures. The present-day backfill consists of pure MgO [magnesium oxide] in a pelletized form and is directed at treating the relatively low contamination level, non-heat producing, wastes actually being disposed of in the WIPP. Its introduction was motivated by the need to scavenging CO 2 [carbon dioxide] from decaying organic components in the waste. However, other benefits, such as a substantial desiccating capacity, are also being evaluated. The MgO backfill also fulfills a statutory requirement for assurance measures beyond those needed to demonstrate compliance with the US Environmental Protection Agency [EPA] regulatory release limits. However, even without a backfill, the WIPP repository design still operates within EPA regulatory release limits

  16. Waste Isolation Pilot Plant remote-handled transuranic waste disposal strategy

    International Nuclear Information System (INIS)

    1995-01-01

    The remote-handled transuranic (RH-TRU) waste disposal strategy described in this report identifies the process for ensuring that cost-effective initial disposal of RH-TRU waste will begin in Fiscal Year 2002. The strategy also provides a long-term approach for ensuring the efficient and sustained disposal of RH-TRU waste during the operating life of WIPP. Because Oak Ridge National Laboratory stores about 85 percent of the current inventory, the strategy is to assess the effectiveness of modifying their facilities to package waste, rather than constructing new facilities. In addition, the strategy involves identification of ways to prepare waste at other sites to supplement waste from Oak Ridge National Laboratory. DOE will also evaluate alternative packagings, modes of transportation, and waste emplacement configurations, and will select preferred alternatives to ensure initial disposal as scheduled. The long-term strategy provides a systemwide planning approach that will allow sustained disposal of RH-TRU waste during the operating life of WIPP. The DOE's approach is to consider the three relevant systems -- the waste management system at the generator/storage sites, the transportation system, and the WIPP disposal system -- and to evaluate the system components individually and in aggregate against criteria for improving system performance. To ensure full implementation, in Fiscal Years 1996 and 1997 DOE will: (1) decide whether existing facilities at Oak Ridge National Laboratory or new facilities to package and certify waste are necessary; (2) select the optimal packaging and mode of transportation for initial disposal; and (3) select an optimal disposal configuration to ensure that the allowable limits of RH-TRU waste can be disposed. These decisions will be used to identify funding requirements for the three relevant systems and schedules for implementation to ensure that the goal of initial disposal is met

  17. Documentation of acceptable knowledge for LANL Plutonium Facility transuranic waste streams

    International Nuclear Information System (INIS)

    Montoya, A.J.; Gruetzmacher, K.; Foxx, C.; Rogers, P.S.Z.

    1998-01-01

    Characterization of transuranic waste from the LANL Plutonium Facility for certification and transportation to WIPP includes the use of acceptable knowledge as specified in the WIPP Quality Assurance Program Plan. In accordance with a site-specific procedure, documentation of acceptable knowledge for retrievably stored and currently generated transuranic waste streams is in progress at LANL. A summary overview of the transuranic waste inventory is complete and documented in the Sampling Plan. This document also includes projected waste generation, facility missions, waste generation processes, flow diagrams, times, and material inputs. The second part of acceptable knowledge documentation consists of assembling more detailed acceptable knowledge information into auditable records and is expected to require several years to complete. These records for each waste stream must support final assignment of waste matrix parameters, EPA hazardous waste numbers, and radionuclide characterization. They must also include a determination whether waste streams are defense waste streams for compliance with the WIPP Land Withdrawal Act. The LANL Plutonium Facility's mission is primarily plutonium processing in basic special nuclear material (SNM) research activities to support national defense and energy programs. It currently has about 100 processes ranging from SNM recovery from residues to development of plutonium 238 heat sources for space applications. Its challenge is to characterize and certify waste streams from such diverse and dynamic operations using acceptable knowledge. This paper reports the progress on the certification of the first of these waste streams to the WIPP WAC

  18. Waste Isolation Pilot Plant RH TRU waste preoperational checkout: Final report

    International Nuclear Information System (INIS)

    1988-06-01

    This report documents the results of the Waste Isolation Pilot Plant (WIPP) Remote-Handled Transuranic (RH TRU) Waste Preoperational Checkout. The primary objective of this checkout was to demonstrate the process of handling RH TRU waste packages, from receipt through emplacement underground, using equipment, personnel, procedures, and methods to be used with actual waste packages. A further objective was to measure operational time lines to provide bases for confirming the WIPP design through put capability and for projecting operator radiation doses. Successful completion of this checkout is a prerequisite to the receipt of actual RH TRU waste. This checkout was witnessed in part by members of the Environmental Evaluation Group (EEG) of the state of New Mexico. Further, this report satisfies a key milestone contained in the Agreement for Consultation and Cooperation with the state of New Mexico. 4 refs., 26 figs., 4 tabs

  19. The WIPP PC based data collection program for real time data capture from the Eberline Alpha Air Monitor

    International Nuclear Information System (INIS)

    Hofer, D.A.; Clayton, S.G.

    1991-01-01

    The Waste Isolation Pilot Plant (WIPP) needed the capability to evaluate the performance of the Eberline Alpha Continuous Air Monitors (CAMs). An additional goal was to characterize and document the Radon background activity at various locations above and below ground at the WIPP. A PC based data collection system was developed to continuously collect information used to evaluate the CAMs' performance and document the operability of the Alpha monitoring program at the WIPP. To accomplish the stated objectives, Westinghouse Radiation Monitoring Systems Engineering modified an existing Eberline CAM supervision and control program to include real time data collection. The paper will address the specific hardware requirements for program usage, the functional structure of the program, and the actions required for an operator to generate graphical output. The utilization of the information generated and the future plans for the expansion and networking of the data collection system also be presented

  20. Audit Report on 'Waste Processing and Recovery Act Acceleration Efforts for Contact-Handled Transuranic Waste at the Hanford Site'

    International Nuclear Information System (INIS)

    2010-01-01

    The Department of Energy's Office of Environmental Management's (EM), Richland Operations Office (Richland), is responsible for disposing of the Hanford Site's (Hanford) transuranic (TRU) waste, including nearly 12,000 cubic meters of radioactive contact-handled TRU wastes. Prior to disposing of this waste at the Department's Waste Isolation Pilot Plant (WIPP), Richland must certify that it meets WIPP's waste acceptance criteria. To be certified, the waste must be characterized, screened for prohibited items, treated (if necessary) and placed into a satisfactory disposal container. In a February 2008 amendment to an existing Record of Decision (Decision), the Department announced its plan to ship up to 8,764 cubic meters of contact-handled TRU waste from Hanford and other waste generator sites to the Advanced Mixed Waste Treatment Project (AMWTP) at Idaho's National Laboratory (INL) for processing and certification prior to disposal at WIPP. The Department decided to maximize the use of the AMWTP's automated waste processing capabilities to compact and, thereby, reduce the volume of contact-handled TRU waste. Compaction reduces the number of shipments and permits WIPP to more efficiently use its limited TRU waste disposal capacity. The Decision noted that the use of AMWTP would avoid the time and expense of establishing a processing capability at other sites. In May 2009, EM allocated $229 million of American Recovery and Reinvestment Act of 2009 (Recovery Act) funds to support Hanford's Solid Waste Program, including Hanford's contact-handled TRU waste. Besides providing jobs, these funds were intended to accelerate cleanup in the short term. We initiated this audit to determine whether the Department was effectively using Recovery Act funds to accelerate processing of Hanford's contact-handled TRU waste. Relying on the availability of Recovery Act funds, the Department changed course and approved an alternative plan that could increase costs by about $25 million

  1. Waste Isolation Pilot Plant Overview

    Energy Technology Data Exchange (ETDEWEB)

    Weaver, Douglas James [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-03-27

    The mission of Waste Isolation Pilot Plant (WIPP) is to demonstrate the safe, environmentally sound, cost effective, permanent disposal of Transuranic (TRU) waste left from production of nuclear weapons.

  2. Transuranic (TRU) waste management at Savannah River - past, present and future

    International Nuclear Information System (INIS)

    D'Ambrosia, J.T.

    1985-01-01

    Defense TRU waste at Savannah River (SR) results from the Department of Energy's (DOE) national defense activities, including the operation of production reactors and fuel reprocessing plants and research and development activities. TRU waste is material declared as having negligible economic value, contaminated with alpha-emitting radionuclides of atomic number greater than 92, and half-lives longer than 20 years, in concentrations greater than 100 nCi/g. TRU waste has been retrievably stored at SR since 1974 awaiting disposal. The Waste Isolation Pilot Plant (WIPP), now under construction in New Mexico, is a research and development facility for demonstrating the safe disposal of defense TRU waste, including that in storage at SR. The major objective of the TRU program at SR is to support the TRU National Program, which is dedicated to preparing waste for, and emplacing waste in, the WIPP. Thus, the SR Program also supports WIPP operations. The SR Site specific goals are to phase out the indefinite storage of TRU waste, which has been the mode of waste management since 1974, and to dispose of SR's Defense TRU waste

  3. Continued oversight of the Waste Isolation Pilot Plant

    International Nuclear Information System (INIS)

    Peake, R. Thomas

    2014-01-01

    The United States Environmental Protection Agency (EPA) developed environmental standards applicable to the disposal of defence-related transuranic wastes at the US Department of Energy's (DOE) Waste Isolation Pilot Plant (WIPP). By statute, EPA also serves as the regulator and implements these standards at WIPP, which has been in operation since 1999. The general environmental standards are set forth in the Agency's 40 Code of Federal Regulations (CFR), Part 191 Environmental Radiation Protection Standards for the Management and Disposal of Spent Nuclear Fuel, High-Level and Transuranic Radioactive Wastes (US NARA, 1985). These standards are implemented by site-specific compliance criteria at 40 CFR 194 (US NARA, 1996). The repository waste area is ∼650 meters below ground surface in a thick bedded salt formation that dips from west to east at ∼1 deg.. WIPP is located in the Chihuahuan Desert of south-eastern New Mexico, where the annual precipitation averages between 25 and 40 centimetres and there is high evapotranspiration. Much of the area around WIPP is federal land, managed by the Bureau of Land Management, and the area is sparsely populated. The transuranic waste disposed of at WIPP consists of materials such as radioactive sludges, soils and laboratory materials (e.g. chemical mixtures, contaminated glove boxes, paper and glass). Wastes are typically not treated unless necessary for shipping purposes (e.g. to limit hydrogen build-up). The waste is contaminated with plutonium, americium and other radionuclides, including some caesium and strontium. Transuranic waste is defined as waste with radionuclides heavier than uranium containing more than 3 700 Bq (100 nanocuries) of alpha-emitting transuranic isotopes per gram of waste; isotopes must have half-lives greater than 20 years. The WIPP Land Withdrawal Act limits the total disposal volume to ∼177 000 cubic meters (6.2 million cubic feet) and creates two categories of waste based on operational

  4. An appraisal of the 1992 preliminary performance assessment for the Waste Isolation Pilot Plant

    International Nuclear Information System (INIS)

    Lee, W.W.L.; Chaturvedi, L.; Silva, M.K.; Weiner, R.; Neill, R.H.

    1994-09-01

    The purpose of the New Mexico Environmental Evaluation Group is to conduct an independent technical evaluation of the Waste Isolation Pilot Plant (WIPP) Project to ensure the protection of the public health and safety and the environment. The WIPP Project, located in southeastern New Mexico, is being constructed as a repository for the disposal of transuranic (TRU) radioactive wastes generated by the national defense programs. The Environmental Evaluation Group (EEG) has reviewed the WIPP 1992 Performance Assessment (Sandia WIPP Performance Assessment Department, 1992). Although this performance assessment was released after the October 1992 passage of the WIPP Land Withdrawal Act (PL 102-579), the work preceded the Act. For individual and ground-water protection, calculations have been done for 1000 years post closure, whereas the US Environmental Protection Agency's Standards (40 CFR 191) issued in 1993 require calculations for 10,000 years. The 1992 Performance Assessment continues to assimilate improved understanding of the geology and hydrogeology of the site, and evolving conceptual models of natural barriers. Progress has been made towards assessing WIPP's compliance with the US Environmental Protection Agency's Standards (40 CFR 191). The 1992 Performance Assessment has addressed several items of major concern to EEG, outlined in the July 1992 review of the 1991 performance assessment (Neill et al., 1992). In particular, the authors are pleased that some key results in this performance assessment deal with sensitivity of the calculated complementary cumulative distribution functions (CCDF) to alterative conceptual models proposed by EEG -- that flow in the Culebra be treated as single-porosity fracture-flow; with no sorption retardation unless substantiated by experimental data

  5. Waste Generator Instructions: Key to Successful Implementation of the US DOE's 435.1 for Transuranic Waste Packaging Instructions (LA-UR-12-24155) - 13218

    International Nuclear Information System (INIS)

    French, David M.; Hayes, Timothy A.; Pope, Howard L.; Enriquez, Alejandro E.; Carson, Peter H.

    2013-01-01

    In times of continuing fiscal constraints, a management and operation tool that is straightforward to implement, works as advertised, and virtually ensures compliant waste packaging should be carefully considered and employed wherever practicable. In the near future, the Department of Energy (DOE) will issue the first major update to DOE Order 435.1, Radioactive Waste Management. This update will contain a requirement for sites that do not have a Waste Isolation Pilot Plant (WIPP) waste certification program to use two newly developed technical standards: Contact-Handled Defense Transuranic Waste Packaging Instructions and Remote-Handled Defense Transuranic Waste Packaging Instructions. The technical standards are being developed from the DOE O 435.1 Notice, Contact-Handled and Remote-Handled Transuranic Waste Packaging, approved August 2011. The packaging instructions will provide detailed information and instruction for packaging almost every conceivable type of transuranic (TRU) waste for disposal at WIPP. While providing specificity, the packaging instructions leave to each site's own discretion the actual mechanics of how those Instructions will be functionally implemented at the floor level. While the Technical Standards are designed to provide precise information for compliant packaging, the density of the information in the packaging instructions necessitates a type of Rosetta Stone that translates the requirements into concise, clear, easy to use and operationally practical recipes that are waste stream and facility specific for use by both first line management and hands-on operations personnel. The Waste Generator Instructions provide the operator with step-by-step instructions that will integrate the sites' various operational requirements (e.g., health and safety limits, radiological limits or dose limits) and result in a WIPP certifiable waste and package that can be transported to and emplaced at WIPP. These little known but widely productive Waste

  6. Waste Isolation Pilot Plant Groundwater Protection Management Program Plan

    International Nuclear Information System (INIS)

    1993-01-01

    The DOE has mandated in DOE Order 5400.1 that its operations will be conducted in an environmentally safe manner. The Waste Isolation Pilot Plant (WIPP) will comply with DOE Order 5400.1 and will conduct its operations in a manner that ensures the safety of the environment and the public. This document outlines how the WIPP will protect and preserve groundwater within and surrounding the WIPP facility. Groundwater protection is just one aspect of the WIPP environmental protection effort. The WIPP groundwater surveillance program is designed to determine statistically if any changes are occurring in groundwater characteristics within and surrounding the WIPP facility. If a change is noted, the cause will be determined and appropriate corrective action initiated

  7. Unresolved issues for the disposal of remote-handled transuranic waste in the Waste Isolation Pilot Plant

    International Nuclear Information System (INIS)

    Silva, M.K.; Neill, R.H.

    1994-09-01

    The purpose of the Waste Isolation Pilot Plant (WIPP) is to dispose of 176,000 cubic meters of transuranic (TRU) waste generated by the defense activities of the US Government. The envisioned inventory contains approximately 6 million cubic feet of contact-handled transuranic (CH TRU) waste and 250,000 cubic feet of remote handled transuranic (RH TRU) waste. CH TRU emits less than 0.2 rem/hr at the container surface. Of the 250,000 cubic feet of RH TRU waste, 5% by volume can emit up to 1,000 rem/hr at the container surface. The remainder of RH TRU waste must emit less than 100 rem/hr. These are major unresolved problems with the intended disposal of RH TRU waste in the WIPP. (1) The WIPP design requires the canisters of RH TRU waste to be emplaced in the walls (ribs) of each repository room. Each room will then be filled with drums of CH TRU waste. However, the RH TRU waste will not be available for shipment and disposal until after several rooms have already been filled with drums of CH TRU waste. RH TRU disposal capacity will be loss for each room that is first filled with CH TRU waste. (2) Complete RH TRU waste characterization data will not be available for performance assessment because the facilities needed for waste handling, waste treatment, waste packaging, and waste characterization do not yet exist. (3) The DOE does not have a transportation cask for RH TRU waste certified by the US Nuclear Regulatory Commission (NRC). These issues are discussed along with possible solutions and consequences from these solutions. 46 refs

  8. Waste Isolation Pilot Plant disposal phase final supplemental environmental impact statement. Summary

    International Nuclear Information System (INIS)

    1997-09-01

    The purpose of the Waste Isolation Pilot Plant Disposal Final Supplemental Environmental Impact Statement (SEIS-II) is to provide information on environmental impacts regarding the Department of Energy''s (DOE) proposed disposal operations at WIPP. The Proposed Action describes the treatment and disposal of the Basic inventory of TRU waste over a 35-year period. The Action Alternatives proposed the treatment of the Basic Inventory and an Additional Inventory as well as the transportation of the treated waste to WIPP for disposal over a 150- to 190-year period. The three Action Alternatives include the treatment of TRU waste at consolidation sites to meet WIPP planning-basic Waste Acceptance Criteria, the thermal treatment of TRU waste to meet Land Disposal Restrictions, and the treatment of TRU waste by a shred and grout process. SEIS-II evaluates environmental impacts resulting from the various treatment options; the transportation of TRU waste to WIPP using truck, a combination of truck and regular rail service, and a combination of truck and dedicated rail service; and the disposal of this waste in the repository. Evaluated impacts include those to the general environment and to human health. Additional issues associated with the implementation of the alternatives are discussed to provide further understanding of the decisions to be reached and to provide the opportunity for public input on improving DOE''s Environmental Management Program

  9. Audit of selected aspects of the Waste Isolation Pilot Plant cost structure, Carlsbad, New Mexico

    International Nuclear Information System (INIS)

    1994-01-01

    The Department of Energy's (DOE) Waste Isolation Pilot Plant (WIPP), located near Carlsbad, New Mexico, is a research and development facility intended to demonstrate that transuranic waste from the Government's defense activities can be safely disposed of in a deep geologic formation. The Fiscal Year 1994 budget for WIPP is about $185 million and includes funding for the operation of WIPP and for experiments being done by other DOE facilities. DOE's current plan is for WIPP to begin receiving transuranic waste in June 1998. This audit was requested by the Assistant Secretary for Environmental Management because two recent reports, one issues by the Office of Inspector General (OIG), were critical of the staffing and cost-effectiveness of WIPP, and because of recent mission changes at WIPP. The audit team consisted of representatives from the DOE, auditors from the OIG, and technical specialists hired by the OIG to assist in the audit. The purpose of the audit was to determine whether WIPP was appropriately staffed to meet programmatic requirements in the most cost-effective manner. The Secretary of Energy expected DOE facilities to benchmark their performance against other facilities to strive for best in class status, and the Westinghouse management and operating contract for WIPP required the facility to be operated in a cost-effective manner. However, the authors determined that Westinghouse did not use benchmarks and that WIPP could be managed more cost-effectively, with fewer personnel, while maintaining its current level of excellence. They concluded that the WIPP staffing level could be significantly reduced with a decrease in costs at WIPP of about $11.4 million per year

  10. Plutonium interaction with a bacterial strain isolated from the waste isolation pilot plant (WIPP) environment

    International Nuclear Information System (INIS)

    Strietelmeier, B.A.; Kraus, S.M.; Leonard, P.A.; Triay, I.R.

    1996-01-01

    This work was conducted as part of a series of experiments to determine the association and interaction of various actinides with bacteria isolated from the WIPP site. The majority of bacteria that exist at the site are expected to be halophiles, or extreme halophiles, due to the high concentration of salt minerals at the location. Experiments were conducted to determine the toxicity of plutonium-n-239, neptunium-237 and americium-243 to several species of these halophiles and the results were reported elsewhere. As an extension of these experiments, we report an investigation of the type of association that occurs between 239 Pu and the isolate WIPP-1A, isolated by staff at Brookhaven National Laboratory, when grown in a high-salt, defined medium. Using scanning electron microscopy (SEM) techniques, we demonstrate a surface association of the 239 Pu with the bacterial cells

  11. Continuous monitoring of natural ventilation pressure at the Waste Isolation Pilot Plant

    International Nuclear Information System (INIS)

    Loomis, I.M.; Wallace, K.G.

    1993-01-01

    The Waste Isolation Pilot Plant (WIPP) is a US Department of Energy research and development facility designed to demonstrate the permanent, safe disposal of US defense-generated transuranic waste. The waste storage horizon is 655 m (2150 ft) below surface in bedded salt. To date the WIPP project has not emplaced any waste. There are three intake shafts used to supply air to the underground. All air is exhausted through a single return shaft. The total design airflow during normal operations is 200 m 3 /s (424,000 cfm). The ventilation system is designed to provide separate air splits to construction, experimental, and storage activities. Separation is achieved by isolating the storage circuit from the construction or experimental circuits with bulkheads. Any air leakage must be towards the storage area of the facility. Field studies have shown that the pressure differential necessary to maintain the correct leakage direction is susceptible to the effects of natural ventilation; therefore, extensive studies and analyses have been conducted to quantify the natural ventilation effects on the WIPP underground airflow system. A component of this work is a monitoring system designed to measure the air properties necessary for calculation of the natural ventilation pressure (NVP). This monitoring system consists of measuring dry bulb temperature, relative humidity, and barometric pressure at strategic location on surface and underground. The psychometric parameters of the air are measured every fifteen minutes. From these data, trends can be determined showing the impact of NVP on the ventilation system during diurnal variations in surface climate. Both summer and winter conditions have been studied. To the author's knowledge this is the first reported instance of automatic and continuous production of time and temperature variant NVPs. This paper describes the results of the initial monitoring study

  12. Pressure and density measurements of selected fluid-bearing zones at the Waste Isolation Pilot Plant (WIPP)

    International Nuclear Information System (INIS)

    Winstanley, D.; Carrasco, R.; Zurkoff, J.

    1986-01-01

    A field effort is presently being conducted at the Waste Isolation Pilot Plant (WIPP) to collect accurate pressure and density information from the Culebra and Magenta dolomite members of the Rustler formation. The spatial variation of fluid density that occurs in these water-bearing units requires the use of numerical models to accurately solve for flow direction and velocity. The groundwater regime is a vital element in possible release scenarios of radionuclide-bearing fluid from the repository. Field tests were conducted on four wells utilizing a testing apparatus composed of two pressure and temperature monitoring systems and a point water sampler. Pressure versus depth plots are linear with a correlation coefficient of 0.999 or greater. Comparison of the calculated density and measured density of water obtained at depth agree within 2 percent of density measurements obtained after continuous pumping of the formation for several days before sampling. The temperature gradients ranged from 0.4 0 to 0.6 0 C per 100 feet. The data presented here are preliminary and serve as developmental information for the detailed operating plan currently under preparation

  13. Roadmap for disposal of Electrorefiner Salt as Transuranic Waste.

    Energy Technology Data Exchange (ETDEWEB)

    Rechard, Robert P. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Trone, Janis R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Kalinina, Elena Arkadievna [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Wang, Yifeng [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hadgu, Teklu [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Sanchez, Lawrence C. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-12-01

    The experimental breeder reactor (EBR-II) used fuel with a layer of sodium surrounding the uranium-zirconium fuel to improve heat transfer. Disposing of EBR-II fuel in a geologic repository without treatment is not prudent because of the potentially energetic reaction of the sodium with water. In 2000, the US Department of Energy (DOE) decided to treat the sodium-bonded fuel with an electrorefiner (ER), which produces metallic uranium product, a metallic waste, mostly from the cladding, and the salt waste in the ER, which contains most of the actinides and fission products. Two waste forms were proposed for disposal in a mined repository; the metallic waste, which was to be cast into ingots, and the ER salt waste, which was to be further treated to produce a ceramic waste form. However, alternative disposal pathways for metallic and salt waste streams may reduce the complexity. For example, performance assessments show that geologic repositories can easily accommodate the ER salt waste without treating it to form a ceramic waste form. Because EBR-II was used for atomic energy defense activities, the treated waste likely meets the definition of transuranic waste. Hence, disposal at the Waste Isolation Pilot Plant (WIPP) in southern New Mexico, may be feasible. This report reviews the direct disposal pathway for ER salt waste and describes eleven tasks necessary for implementing disposal at WIPP, provided space is available, DOE decides to use this alternative disposal pathway in an updated environmental impact statement, and the State of New Mexico grants permission.

  14. Mechanical Modeling of a WIPP Drum Under Pressure

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Jeffrey A. [Sandia National Laboratories, Albuquerque, NM (United States)

    2014-11-25

    Mechanical modeling was undertaken to support the Waste Isolation Pilot Plant (WIPP) technical assessment team (TAT) investigating the February 14th 2014 event where there was a radiological release at the WIPP. The initial goal of the modeling was to examine if a mechanical model could inform the team about the event. The intention was to have a model that could test scenarios with respect to the rate of pressurization. It was expected that the deformation and failure (inability of the drum to contain any pressure) would vary according to the pressurization rate. As the work progressed there was also interest in using the mechanical analysis of the drum to investigate what would happen if a drum pressurized when it was located under a standard waste package. Specifically, would the deformation be detectable from camera views within the room. A finite element model of a WIPP 55-gallon drum was developed that used all hex elements. Analyses were conducted using the explicit transient dynamics module of Sierra/SM to explore potential pressurization scenarios of the drum. Theses analysis show similar deformation patterns to documented pressurization tests of drums in the literature. The calculated failure pressures from previous tests documented in the literature vary from as little as 16 psi to 320 psi. In addition, previous testing documented in the literature shows drums bulging but not failing at pressures ranging from 69 to 138 psi. The analyses performed for this study found the drums failing at pressures ranging from 35 psi to 75 psi. When the drums are pressurized quickly (in 0.01 seconds) there is significant deformation to the lid. At lower pressurization rates the deformation of the lid is considerably less, yet the lids will still open from the pressure. The analyses demonstrate the influence of pressurization rate on deformation and opening pressure of the drums. Analyses conducted with a substantial mass on top of the closed drum demonstrate that the

  15. Waste Generator Instructions: Key to Successful Implementation of the US DOE's 435.1 for Transuranic Waste Packaging Instructions (LA-UR-12-24155) - 13218

    Energy Technology Data Exchange (ETDEWEB)

    French, David M. [LANL EES-12, Carlsbad, NM, Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545 (United States); Hayes, Timothy A. [LANL EES-12, Carlsbad, NM, Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545 (United States); Pope, Howard L. [Aspen Resources Ltd., Inc., P.O. Box 3038, Boulder, CO 80307 (United States); Enriquez, Alejandro E. [LANL NCO-4, Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545 (United States); Carson, Peter H. [LANL NPI-7, Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545 (United States)

    2013-07-01

    In times of continuing fiscal constraints, a management and operation tool that is straightforward to implement, works as advertised, and virtually ensures compliant waste packaging should be carefully considered and employed wherever practicable. In the near future, the Department of Energy (DOE) will issue the first major update to DOE Order 435.1, Radioactive Waste Management. This update will contain a requirement for sites that do not have a Waste Isolation Pilot Plant (WIPP) waste certification program to use two newly developed technical standards: Contact-Handled Defense Transuranic Waste Packaging Instructions and Remote-Handled Defense Transuranic Waste Packaging Instructions. The technical standards are being developed from the DOE O 435.1 Notice, Contact-Handled and Remote-Handled Transuranic Waste Packaging, approved August 2011. The packaging instructions will provide detailed information and instruction for packaging almost every conceivable type of transuranic (TRU) waste for disposal at WIPP. While providing specificity, the packaging instructions leave to each site's own discretion the actual mechanics of how those Instructions will be functionally implemented at the floor level. While the Technical Standards are designed to provide precise information for compliant packaging, the density of the information in the packaging instructions necessitates a type of Rosetta Stone that translates the requirements into concise, clear, easy to use and operationally practical recipes that are waste stream and facility specific for use by both first line management and hands-on operations personnel. The Waste Generator Instructions provide the operator with step-by-step instructions that will integrate the sites' various operational requirements (e.g., health and safety limits, radiological limits or dose limits) and result in a WIPP certifiable waste and package that can be transported to and emplaced at WIPP. These little known but widely

  16. Waste Isolation Pilot Plant: Draft Supplement Environmental Impact Statement

    International Nuclear Information System (INIS)

    1989-04-01

    The US Department of Energy (DOE) has prepared this supplement to the 1980 Final Environmental Impact Statement (FEIS) for the Waste Isolation Pilot Plant (WIPP) in order to assess the environmental impacts that may occur from the continued development of the WIPP as a minced geologic repository for transuranic (TRU) waste. Since the publication of the FEIS in October 1980, new data collected at the WIPP have led to changes in the understanding of the hydrogeologic characteristics of the area and their potential implications for the long-term performance of the WIPP. In addition, there have been changes in the FEIS Proposed Action and new regulatory requirements. This supplement to the FEIS (SEIS) evaluates the environmental consequences of the Proposed Action as modified since 1980 in light of new data and assumptions. The new information pertains mainly to the geologic and hydrologic systems at the WIPP site and their effect on the long-term performance of the WIPP. The SEIS includes new data indicating that: the permeability of the Salado Formation, the geologic formation in which the WIPP underground facilities are located, is lower than previously believed; the moisture content of the Salado Formation and the consequent brine inflow is higher than previously believed; a higher transmissivity zone is present in the Rustler Formation in the southeastern portion of the WIPP site; and ''salt creep'' (convergence) in the repository occurs faster than previously believed. Volume 2 contains 11 appendices

  17. TRU Waste Sampling Program: Volume I. Waste characterization

    International Nuclear Information System (INIS)

    Clements, T.L. Jr.; Kudera, D.E.

    1985-09-01

    Volume I of the TRU Waste Sampling Program report presents the waste characterization information obtained from sampling and characterizing various aged transuranic waste retrieved from storage at the Idaho National Engineering Laboratory and the Los Alamos National Laboratory. The data contained in this report include the results of gas sampling and gas generation, radiographic examinations, waste visual examination results, and waste compliance with the Waste Isolation Pilot Plant-Waste Acceptance Criteria (WIPP-WAC). A separate report, Volume II, contains data from the gas generation studies

  18. TRU waste certification and TRUPACT-2 payload verification

    International Nuclear Information System (INIS)

    Hunter, E.K.; Johnson, J.E.

    1990-01-01

    The Waste Isolation Pilot Plant (WIPP) established a policy that requires each waste shipper to verify that all waste shipments meet the requirements of the Waste Acceptance Criteria (WAC) prior to being shipped. This verification provides assurance that transuranic (TRU) wastes meet the criteria while still retained in a facility where discrepancies can be immediately corrected. Each Department of Energy (DOE) TRU waste facility planning to ship waste to the Waste Isolation Pilot Plant (WIPP) is required to develop and implement a specific program including Quality Assurance (QA) provisions to verify that waste is in full compliance with WIPP's WAC. This program is audited by a composite DOE and contractor audit team prior to granting the facility permission to certify waste. During interaction with the Nuclear Regulatory Commission (NRC) on payload verification for shipping in TRUPACT-II, a similar system was established by DOE. The TRUPACT-II Safety Analysis Report (SAR) contains the technical requirements and physical and chemical limits that payloads must meet (like the WAC). All shippers must plan and implement a payload control program including independent QA provisions. A similar composite audit team will conduct preshipment audits, frequent subsequent audits, and operations inspections to verify that all TRU waste shipments in TRUPACT-II meet the requirements of the Certificate of Compliance issued by the NRC which invokes the SAR requirements. 1 fig

  19. Backfill barriers for nuclear waste repositories in salt

    Energy Technology Data Exchange (ETDEWEB)

    Nowak, E J; Odoj, R; Merz, E [eds.

    1981-06-01

    Backfill materials were evaluated for containment of radionuclides, chemical modification of brine, and sensitivity to hydrothermal conditions. Experimental conditions were relevant to nuclear waste isolation in bedded salt. They were based on geologic conditions at the site of the Waste Isolation Pilot Plant (WIPP) in southeastern New Mexico, USA. Conclusions are: backfill mixtures surrounding the waste form and canister can provide a neutral or slightly acidic, potentially reducing environment, prevent convective aqueous flow, and act as an effective radionuclide migration barrier; bentonite is likely to remain hydrothermally stable but potentially sensitive to waste package interactions which could alter the pH, the ratio of dissolved ions, or the sorption properties of radionuclide species; effects of irradiation from high level waste should be investigated.

  20. Comparison between predicted and measured south drift closures at the WIPP using a transient creep model for salt

    International Nuclear Information System (INIS)

    Munson, D.E.; Fossum, A.F.

    1986-01-01

    The US Department of Energy is constructing and operating the Waste Isolation Pilot Plant (WIPP), a research and development facility near Carlsbad, New Mexico, to determine whether or not defense-generated high-level radioactive waste can be stored safely in bedded salt. The goal of the WIPP modeling program is to develop the capability to predict room responses from one site to another without a priori knowledge of the actual room responses. Data from one of the early WIPP excavations, called the South Drift, have already been used to form an initial evaluation of computational models for predicting room closures as a result of salt creep. In that study, a significant unresolved discrepancy existed between predicted and measured room closures. It was suggested that future studies address alternate forms of the constitutive law. In this paper, an alternate form of the creep model for salt is used that is founded upon the deformation-mechanism map for the micromechanical deformation processes. This model embodies both steady-state and transient creep. Also, quasi-static plasticity is incorporated into the complete constitutive model for salt. The conclusion is drawn that the combination of the mechanistic creep model, plasticity, and flow potential can approximate the late time South Drift deformation. Further improvement of the model fit of plasticity in the future is expected to further improve the simulation

  1. Waste Receiving and Processing Facility Module 1: Volume 1, Preliminary Design report

    International Nuclear Information System (INIS)

    1992-03-01

    The Preliminary Design Report (Title 1) for the Waste Receiving and Processing (WRAP) Module 1 provides a comprehensive narrative description of the proposed facility and process systems, the basis for each of the systems design, and the engineering assessments that were performed to support the technical basis of the Title 1 design. The primary mission of the WRAP 1 Facility is to characterize and certify contact-handled (CH) waste in 55-gallon drums for disposal. Its secondary function is to certify CH waste in Standard Waste Boxes (SWBs) for disposal. The preferred plan consist of retrieving the waste and repackaging as necessary in the Waste Receiving and Processing (WRAP) facility to certify TRU waste for shipment to the Waste Isolation Pilot Plant (WIPP) in New Mexico. WIPP is a research and development facility designed to demonstrate the safe and environmentally acceptable disposal of TRU waste from National Defense programs. Retrieved waste found to be Low-Level Waste (LLW) after examination in the WRAP facility will be disposed of on the Hanford site in the low-level waste burial ground. The Hanford Site TRU waste will be shipped to the WIPP for disposal between 1999 and 2013

  2. Reaching out to multiple stake holders E.P.A.'s public outreach and communications program for the waste isolation pilot plant

    International Nuclear Information System (INIS)

    Ferguson, R.; Malina, C.

    2001-01-01

    In October 1992, Congress enacted the Waste Isolation Pilot Plant (WIPP) Land Withdrawal Act which gave the U.S. Environmental Protection Agency (EPA) significant new responsibilities for overseeing the U.S. Department of Energy's (DOE) activities at the WIPP. The WIPP, which is designed to safely contain radioactive waste for at least 10 000 years, is located near Carlsbad, New Mexico, and is the world's first geological disposal facility for transuranic waste. In May 1998, EPA determined that the WIPP will safely contain transuranic waste, which is generated as a result of the U.S. nuclear weapons program, because DOE demonstrated that the facility will comply with the Agency's radioactive waste disposal standards. EPAS's decision allowed the DOE to begin disposing radioactive waste in the WIPP. As of October 2000, the WIPP has received over 75 shipments of transuranic radioactive waste. In implementing its new responsibilities, EPA committed to conducting an open public process that includes interaction with all interested parties. EPA believes that a successful communications and consultation program facilitates the regulatory oversight process and promotes sound public policy decisions. As a first step in meeting its commitment to an open public process, EPA conducted a public consultation and communication 'needs assessment'. The purpose of this assessment was to obtain input from citizen and environmental groups and the public on their key concerns about EPA's role and responsibilities at the WIPP, as well as to determine the best methods for communicating with them. Throughout the WIPP certification process, EPA provided opportunities for public involvement beyond those required in typical U.S. regulatory programs. Doing this, we believe, increased the public's understanding of EPA's role and responsibilities with respect to the WIPP project, enabled the public to make informed decisions about the project by increasing their knowledge about radiation and it

  3. Will America's nuclear waste be laid to rest

    Energy Technology Data Exchange (ETDEWEB)

    Charles, D

    1991-12-14

    The Waste Isolation Pilot Plant (WIPP) in New Mexico, was designed to store waste from the United States (U.S.) nuclear weapons production in deep repositories under the naturally occurring salt beds. However no waste can be put into the repository until safety checks, designed as nuclear reactor safety standards, have been satisfactorily completed to the U.S. congress's satisfaction. While political controversy reigns the WIPP structure stands empty and steel drums of radioactive waste remain at the U.S. nuclear weapons factories. Proponents say costly capital investment is being wasted, opponents that people and the environment would be at risk of contamination if safety standards were not understood and adhered to. (UK).

  4. WIPP Magnesium Oxide (MgO) - Planned Change Request

    Science.gov (United States)

    On April 10, 2006, the DOE submitted a planned change request pertaining to the amount of MgO emplaced in the WIPP repository. MgO is an engineered barrier that DOE included as part of the original WIPP Certification Decision.

  5. Waste Isolation Pilot Plant safety analysis report

    International Nuclear Information System (INIS)

    1997-03-01

    The United States Department of Energy (DOE) was authorized by Public Law 96-164 to provide a research and development facility for demonstrating the safe permanent disposal of transuranic (TRU) wastes from national defense activities and programs of the United States exempted from regulations by the US Nuclear Regulatory Commission (NRC). The Waste Isolation Pilot Plant (WIPP), located in southeastern New Mexico near Carlsbad, was constructed to determine the efficacy of an underground repository for disposal of TRU wastes. In accordance with the 1981 and 1990 Records of Decision (ROD), the development of the WIPP was to proceed with a phased approach. Development of the WIPP began with a siting phase, during which several sites were evaluated and the present site selected based on extensive geotechnical research, supplemented by testing. The site and preliminary design validation phase (SPDV) followed the siting phase, during which two shafts were constructed, an underground testing area was excavated, and various geologic, hydrologic, and other geotechnical features were investigated. The construction phase followed the SPDV phase during which surface structures for receiving waste were built and underground excavations were completed for waste emplacement

  6. Evaporite dissolution relevant to the WIPP site, northern Delaware Basin, southeastern New Mexico

    International Nuclear Information System (INIS)

    Lambert, S.J.

    1982-01-01

    Evaluation of the threat of natural dissolution of host evaporites to the integrity of the Waste Isolation Pilot Plant (WIPP) in southeastern New Mexico has taken into consideration (1) the volume of missing rock salt, (2) the occurrence (or not) of characteristic dissolution brines, (3) geomorphic features, some of which are unrelated to dissolution, and (4) the time intervals over which dissolution may have been active. Even under the assumption that all missing halite was originally present and has been removed by dissolution, there is no evidence of active preferential removal of the lower Salado Formation halite by any geologically reasonable process. The geologic record contains evidence of dissolution in the Triassic and Jurassic; to constrain all removal of basinal halite to the late Cenozoic yields an unrealistically high rate of removal. Application to the lower Salado of a stratabound mechanism known to be active in Nash Draw, a near-surface feature within the Basin, allows a minimum survival time of 2,500,000 years to be predicted for the subsurface facility for storage of radioactive waste at WIPP. This calculation is based on an analysis of all known dissolution features in the Delaware Basin, and takes into account the wetter (pluvial) climate during the past 600,000 years. 2 figures, 1 table

  7. Development of Pflotran Code for Waste Isolation Pilot Plant Performance Assessment

    Science.gov (United States)

    Zeitler, T.; Day, B. A.; Frederick, J.; Hammond, G. E.; Kim, S.; Sarathi, R.; Stein, E.

    2017-12-01

    The Waste Isolation Pilot Plant (WIPP) has been developed by the U.S. Department of Energy (DOE) for the geologic (deep underground) disposal of transuranic (TRU) waste. Containment of TRU waste at the WIPP is regulated by the U.S. Environmental Protection Agency (EPA). The DOE demonstrates compliance with the containment requirements by means of performance assessment (PA) calculations. WIPP PA calculations estimate the probability and consequence of potential radionuclide releases from the repository to the accessible environment for a regulatory period of 10,000 years after facility closure. The long-term performance of the repository is assessed using a suite of sophisticated computational codes. There is a current effort to enhance WIPP PA capabilities through the further development of the PFLOTRAN software, a state-of-the-art massively parallel subsurface flow and reactive transport code. Benchmark testing of the individual WIPP-specific process models implemented in PFLOTRAN (e.g., gas generation, chemistry, creep closure, actinide transport, and waste form) has been performed, including results comparisons for PFLOTRAN and existing WIPP PA codes. Additionally, enhancements to the subsurface hydrologic flow mode have been made. Repository-scale testing has also been performed for the modified PFLTORAN code and detailed results will be presented. Ultimately, improvements to the current computational environment will result in greater detail and flexibility in the repository model due to a move from a two-dimensional calculation grid to a three-dimensional representation. The result of the effort will be a state-of-the-art subsurface flow and transport capability that will serve WIPP PA into the future for use in compliance recertification applications (CRAs) submitted to the EPA. Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of

  8. Quality Assistance Objectives for Nondestructive Assay at the Waste Receiving and Processing (WRAP) Facility

    International Nuclear Information System (INIS)

    CANTALOUB, M.G.

    2000-01-01

    The Waste Receiving and Processing (WRAP) facility, located on the Word Site in southeast Washington, is a key link in the certification of transuranic (TRU) waste for shipment to the Waste Isolation Pilot Plant (WIPP). Waste characterization is one of the vital functions performed at WRAP, and nondestructive assay (NDA) measurements of TRU waste containers is one of two required methods used for waste characterization. The Waste Acceptance Criteria for the Waste Isolation Pilot Plant, DOE/WIPP-069 (WIPP-WAC) delineates the quality assurance objectives which have been established for NDA measurement systems. Sites must demonstrate that the quality assurance objectives can be achieved for each radioassay system over the applicable ranges of measurement. This report summarizes the validation of the WRAP NDA systems against the radioassay quality assurance objectives or QAOs. A brief description of the each test and significant conclusions are included. Variables that may have affected test outcomes and system response are also addressed

  9. Conceptual structure of performance assessments conducted for the Waste Isolation Pilot Plant

    International Nuclear Information System (INIS)

    Helton, J.C.; Marietta, M.G.; Rechard, R.P.

    1993-04-01

    The Waste Isolation Pilot Plant (WIPP) in southeastern New Mexico is being developed by the US Department of Energy as a disposal facility for transuranic waste. In support of this project, Sandia National Laboratories is conducting an ongoing performance assessment (PA) for the WIPP. The ordered triple representation for risk proposed by Kaplan and Garrick is used to provide a clear conceptual structure for this PA. This presentation describes how the preceding representation provides a basis in the WIPP PA for (1) the definition of scenarios and the calculation of scenario probabilities and consequences, (2) the separation of subjective and stochastic uncertainties, (3) the construction of the complementary cumulative distribution functions required in comparisons with the US Environmental Protection Agency's standard for the geologic disposal of radioactive waste (i.e., 40 CFR Part 191, Subpart B), and (4) the performance of uncertainty and sensitivity studies. Results obtained in a preliminary PA for the WIPP completed in December of 1991 are used for illustration

  10. Quality assurance criteria for Waste Isolation Pilot Plant performance assessment modeling

    International Nuclear Information System (INIS)

    1995-07-01

    The US Department of Energy (DOE) is developing the Waste Isolation Pilot Plant (WIPP) as a deep geologic repository for transuranic (TRU) and TRU-mixed wastes generated by DOE Defense Program activities. Regulatory agencies, including the Environmental Protection Agency (EPA) and New Mexico Environment Department, will be forced to rely upon system modeling to determine the potential compliance of the WIPP facility with federal regulations. Specifically, long-term modeling efforts are focused on compliance with 40 CFR Part 268, ''Land Disposal Restrictions,'' and 40 CFR Part 191, ''Environmental Radiation Protection Standards for Management and Disposal of Spent Nuclear Fuel, High-Level, and Transuranic Radioactive Wastes.'' DOE plans to use the similar conceptual models and numerical codes to demonstrate compliance under both of these regulations. Sandia National Laboratories (SNL) has been developing a system model that will be used to demonstrate potential waste migration from the WIPP facility. Because the geologic system underlying the WIPP site is not completely understood, the software code to model the system must be developed to exacting standards for its predictions to be reliable and defensible. This is a complex model that consists of many submodules used to describe various migration pathways and processes that affect potential waste migration

  11. Expert judgement on inadvertent human intrusion into the Waste Isolation Pilot Plant

    International Nuclear Information System (INIS)

    Hora, S.C.; von Winterfeldt, D.; Trauth, K.M.

    1991-12-01

    Four expert-judgment teams have developed analyses delineating possible future societies in the next 10,000 years in the vicinity of the Waste Isolation Pilot Plant (WIPP). Expert-judgment analysis was used to address the question of future societies because neither experimentation, observation, nor modeling can resolve such uncertainties. Each of the four, four-member teams, comprised of individuals with expertise in the physical, social, or political sciences, developed detailed qualitative assessments of possible future societies. These assessments include detailed discussions of the underlying physical and societal factors that would influence society and the likely modes of human-intrusion at the WIPP, as well as the probabilities of intrusion. Technological development, population growth, economic development, conservation of information, persistence of government control, and mitigation of danger from nuclear waste were the factors the teams believed to be most important. Likely modes of human-intrusion were categorized as excavation, disposal/storage, tunneling, drilling, and offsite activities. Each team also developed quantitative assessments by providing probabilities of various alternative futures, of inadvertent human intrusion, and in some cases, of particular modes of intrusion. The information created throughout this study will be used in conjunction with other types of information, including experimental data, calculations from physical principles and computer models, and perhaps other judgments, as input to ''performance assessment.'' The more qualitative results of this study will be used as input to another expert panel considering markers to deter inadvertent human intrusion at the WIPP

  12. Waste Isolation Pilot Plant Biennial Environmental Compliance Report

    Energy Technology Data Exchange (ETDEWEB)

    Washinton TRU Solutions LLC

    2002-09-30

    This Biennial Environmental Compliance Report (BECR) documents environmental regulatory compliance at the Waste Isolation Pilot Plant (WIPP), a facility designed for the safe disposal of transuranic (TRU) radioactive waste, for the reporting period of April 1, 2000, to March 31, 2002. As required by the WIPP Land Withdrawal Act (LWA)(Public Law [Pub. L.] 102-579, as amended by Pub. L. 104-201), the BECR documents U.S. Department of Energy (DOE) Carlsbad Field Office's (CBFO) compliance with applicable environmental protection laws and regulations implemented by agencies of the federal government and the state of New Mexico. In the prior BECR, the CBFO and the management and operating contractor (MOC)committed to discuss resolution of a Letter of Violation that had been issued by the New Mexico Environment Department (NMED) in August 1999, which was during the previous BECR reporting period. This Letter of Violation alleged noncompliance with hazardous waste aisle spacing, labeling, a nd tank requirements. At the time of publication of the prior BECR, resolution of the Letter of Violation was pending. On July 7, 2000, the NMED issued a letter noting that the aisle spacing and labeling concerns had been adequately addressed and that they were rescinding the violation alleging that the Exhaust Shaft Catch Basin failed to comply with the requirements for a hazardous waste tank. During the current reporting period, WIPP received a Notice of Violation and a compliance order alleging the violation of the New Mexico Hazardous Waste Regulations and the WIPP Hazardous Waste Facility Permit (HWFP).

  13. Waste Isolation Pilot Plant Biennial Environmental Compliance Report

    International Nuclear Information System (INIS)

    Washinton TRU Solutions LLC

    2002-01-01

    This Biennial Environmental Compliance Report (BECR) documents environmental regulatory compliance at the Waste Isolation Pilot Plant (WIPP), a facility designed for the safe disposal of transuranic (TRU) radioactive waste, for the reporting period of April 1, 2000, to March 31, 2002. As required by the WIPP Land Withdrawal Act (LWA)(Public Law [Pub. L.] 102-579, as amended by Pub. L. 104-201), the BECR documents U.S. Department of Energy (DOE) Carlsbad Field Office's (CBFO) compliance with applicable environmental protection laws and regulations implemented by agencies of the federal government and the state of New Mexico. In the prior BECR, the CBFO and the management and operating contractor (MOC)committed to discuss resolution of a Letter of Violation that had been issued by the New Mexico Environment Department (NMED) in August 1999, which was during the previous BECR reporting period. This Letter of Violation alleged noncompliance with hazardous waste aisle spacing, labeling, a nd tank requirements. At the time of publication of the prior BECR, resolution of the Letter of Violation was pending. On July 7, 2000, the NMED issued a letter noting that the aisle spacing and labeling concerns had been adequately addressed and that they were rescinding the violation alleging that the Exhaust Shaft Catch Basin failed to comply with the requirements for a hazardous waste tank. During the current reporting period, WIPP received a Notice of Violation and a compliance order alleging the violation of the New Mexico Hazardous Waste Regulations and the WIPP Hazardous Waste Facility Permit (HWFP)

  14. Documentation of acceptable knowledge for Los Alamos National Laboratory Plutonium Facility TRU waste stream

    International Nuclear Information System (INIS)

    Montoya, A.J.; Gruetzmacher, K.M.; Foxx, C.L.; Rogers, P.Z.

    1998-03-01

    Characterization of transuranic waste from the LANL Plutonium Facility for certification and transportation to WIPP includes the use of acceptable knowledge as specified in the WIPP Quality Assurance Program Plan. In accordance with a site specific procedure, documentation of acceptable knowledge for retrievably stored and currently generated transuranic waste streams is in progress at LANL. A summary overview of the TRU waste inventory is complete and documented in the Sampling Plan. This document also includes projected waste generation, facility missions, waste generation processes, flow diagrams, times, and material inputs. The second part of acceptable knowledge documentation consists of assembling more detailed acceptable knowledge information into auditable records and is expected to require several years to complete. These records for each waste stream must support final assignment of waste matrix parameters, EPA hazardous waste numbers, and radionuclide characterization. They must also include a determination whether waste streams are defense waste streams for compliance with the WIPP Land Withdrawal Act. The LANL Plutonium Facility's mission is primarily plutonium processing in basic special nuclear material (SNM) research activities to support national defense and energy programs. It currently has about 100 processes ranging from SNM recovery from residues to development of plutonium 238 heat sources for space applications. Its challenge is to characterize and certify waste streams from such diverse and dynamic operations using acceptable knowledge. This paper reports the progress on the certification of the first of these waste streams to the WIPP WAC

  15. Waste Isolation Pilot Plant Groundwater Protection Management Program Plan

    International Nuclear Information System (INIS)

    2005-01-01

    The DOE established the Groundwater Monitoring Program (GMP) (WP 02-1) to monitor groundwater resources at WIPP. In the past, the GMP was conducted to establish background data of existing conditions of groundwater quality and quantity in the WIPP vicinity, and to develop and maintain a water quality database as required by regulation. Today the GMP is conducted consistent with 204.1.500 NMAC (New Mexico Administrative Code), 'Adoption of 40 CFR [Code of Federal Regulations] Part 264,'specifically 40 CFR 264.90 through 264.101. These sections of 20.4.1 NMAC provide guidance for detection monitoring of groundwater that is, or could be, affected by waste management activities at WIPP. Detection monitoring at WIPP is designed to detect contaminants in the groundwater long before the general population is exposed. Early detection will allow cleanup efforts to be accomplished before any exposure to the general population can occur. Title 40 CFR Part 264, Subpart F, stipulates minimum requirements of Resource Conservation and Recovery Act of 1976 (42 United States Code [U.S.C.] 6901 et seq.) (RCRA) groundwater monitoring programs including the number and location of monitoring wells; sampling and reporting schedules; analytical methods and accuracy requirements; monitoring parameters; and statistical treatment of monitoring data. This document outlines how WIPP intends to protect and preserve groundwater within the WIPP Land Withdrawal Area (WLWA). Groundwater protection is just one aspect of the WIPP environmental protection effort. An overview of the entire environmental protection effort can be found in DOE/WIPP 99-2194, Waste Isolation Pilot Plant Environmental Monitoring Plan. The WIPP GMP is designed to statistically determine if any changes are occurring in groundwater characteristics within and surrounding the WIPP facility. If a change is noted, the cause will then be determined and the appropriate corrective action(s) initiated.

  16. Waste Isolation Pilot Plant Groundwater Protection Management Program Plan

    Energy Technology Data Exchange (ETDEWEB)

    Washington Regulatory and Environmental Services

    2005-07-01

    The DOE established the Groundwater Monitoring Program (GMP) (WP 02-1) to monitor groundwater resources at WIPP. In the past, the GMP was conducted to establish background data of existing conditions of groundwater quality and quantity in the WIPP vicinity, and to develop and maintain a water quality database as required by regulation. Today the GMP is conducted consistent with 204.1.500 NMAC (New MexicoAdministrative Code), "Adoption of 40 CFR [Code of Federal Regulations] Part 264,"specifically 40 CFR §264.90 through §264.101. These sections of 20.4.1 NMAC provide guidance for detection monitoring of groundwater that is, or could be, affected by waste management activities at WIPP. Detection monitoring at WIPP is designed to detect contaminants in the groundwater long before the general population is exposed. Early detection will allow cleanup efforts to be accomplished before any exposure to the general population can occur. Title 40 CFR Part 264, Subpart F, stipulates minimum requirements of Resource Conservation and Recovery Act of 1976 (42 United States Code [U.S.C.] §6901 et seq.) (RCRA) groundwater monitoring programs including the number and location of monitoring wells; sampling and reporting schedules; analytical methods and accuracy requirements; monitoring parameters; and statistical treatment of monitoring data. This document outlines how WIPP intends to protect and preserve groundwater within the WIPP Land Withdrawal Area (WLWA). Groundwater protection is just one aspect of the WIPP environmental protection effort. An overview of the entire environmental protection effort can be found in DOE/WIPP 99-2194, Waste Isolation Pilot Plant Environmental Monitoring Plan. The WIPP GMP is designed to statistically determine if any changes are occurring in groundwater characteristics within and surrounding the WIPP facility. If a change is noted, the cause will then be determined and the appropriate corrective action(s) initiated.

  17. The influence of salt aerosol on alpha radiation detection by WIPP continuous air monitors

    International Nuclear Information System (INIS)

    Bartlett, W.T.; Walker, B.A.

    1996-01-01

    Alpha continuous air monitors (CAMs) will be used at the Waste Isolation Pilot Plant (WIPP) to measure airborne transuranic radioactivity that might be present in air exhaust or in work-place areas. WIPP CAMs are important to health and safety because they are used to alert workers to airborne radioactivity, to actuate air-effluent filtration systems, and to detect airborne radioactivity so that the radioactivity can be confined in a limited area. In 1993, the Environmental Evaluation Group (EEG) reported that CAM operational performance was affected by salt aerosol, and subsequently, the WIPP CAM design and usage were modified. In this report, operational data and current theories on aerosol collection were reviewed to determine CAM quantitative performance limitations. Since 1993, the overall CAM performance appears to have improved, but anomalous alpha spectra are present when sampling-filter salt deposits are at normal to high levels. This report shows that sampling-filter salt deposits directly affect radon-thoron daughter alpha spectra and overall monitor efficiency. Previously it was assumed that aerosol was mechanically collected on the surface of CAM sampling filters, but this review suggests that electrostatic and other particle collection mechanisms are more important than previously thought. The mechanism of sampling-filter particle collection is critical to measurement of acute releases of radioactivity. 41 refs

  18. Basic Data Report for Drillholes on the H-19 Hydropad (Waste Isolation Pilot Plant--WIPP)

    International Nuclear Information System (INIS)

    Mercer, J.W.; Cole, D.L.; Holt, R.M.

    1998-01-01

    Seven holes were drilled and wells (H-19b0, H-19b2, H-19b3, H-19b4, H-19b5, H-19b6, and H-19b7) were constructed on the H-19 hydropad to conduct field activities in support of the Culebra Transport Program. These wells were drilled and completed on the Waste Isolation Pilot Plant (WIPP) site during February to September 1995. An eighth hole, H-19b1, was drilled but had to be abandoned before the target depth was reached because of adverse hole conditions. The geologic units penetrated at the H-19 location include surficial deposits of Holocene age, rocks from the Dockum Group of Upper Triassic age, the Dewey Lake Redbeds, and Rustler Formation of the Permian age. The Rustler Formation has been further divided into five informal members which include the Forty-niner Member, Magenta Member, Tamarisk Member, Culebra Dolomite Member, and an unnamed lower member. The Rustler Formation, particularly the Culebra Dolomite Member, is considered critical for hydrologic site characterization. The Culebra is the most transmissive saturated unit above the WIPP repository and, as such, is considered to be the most likely pathway for radionuclide transport to the accessible environment in the unlikely event the repository is breached. Seven cores from the Culebra were recovered during drilling activities at the H-19 hydropad and detailed descriptions of these cores were made. On the basis of geologic descriptions, four hydrostratigraphic units were identified in the Culebra cores and were correlated with the mapping units from the WFP air intake shaft. The entire length of H-19b1 was cored and was described in detail. During coring of H-19b1, moisture was encountered in the upper part of the Dewey Lake Redbeds. A 41-ft-thick section of this core was selected for detailed description to qualify the geologic conditions related to perched water in the upper Dewey Lake. In addition to cuttings and core, a suite of geophysical logs run on the drillholes was used to identify and

  19. Basic Data Report for Drillholes on the H-19 Hydropad (Waste Isolation Pilot Plant--WIPP)

    Energy Technology Data Exchange (ETDEWEB)

    Mercer, J.W.; Cole, D.L.; Holt, R.M.

    1998-10-09

    Seven holes were drilled and wells (H-19b0, H-19b2, H-19b3, H-19b4, H-19b5, H-19b6, and H-19b7) were constructed on the H-19 hydropad to conduct field activities in support of the Culebra Transport Program. These wells were drilled and completed on the Waste Isolation Pilot Plant (WIPP) site during February to September 1995. An eighth hole, H-19b1, was drilled but had to be abandoned before the target depth was reached because of adverse hole conditions. The geologic units penetrated at the H-19 location include surficial deposits of Holocene age, rocks from the Dockum Group of Upper Triassic age, the Dewey Lake Redbeds, and Rustler Formation of the Permian age. The Rustler Formation has been further divided into five informal members which include the Forty-niner Member, Magenta Member, Tamarisk Member, Culebra Dolomite Member, and an unnamed lower member. The Rustler Formation, particularly the Culebra Dolomite Member, is considered critical for hydrologic site characterization. The Culebra is the most transmissive saturated unit above the WIPP repository and, as such, is considered to be the most likely pathway for radionuclide transport to the accessible environment in the unlikely event the repository is breached. Seven cores from the Culebra were recovered during drilling activities at the H-19 hydropad and detailed descriptions of these cores were made. On the basis of geologic descriptions, four hydrostratigraphic units were identified in the Culebra cores and were correlated with the mapping units from the WFP air intake shaft. The entire length of H-19b1 was cored and was described in detail. During coring of H-19b1, moisture was encountered in the upper part of the Dewey Lake Redbeds. A 41-ft-thick section of this core was selected for detailed description to qualify the geologic conditions related to perched water in the upper Dewey Lake. In addition to cuttings and core, a suite of geophysical logs run on the drillholes was used to identify and

  20. Characterization optimization for the National TRU waste system

    International Nuclear Information System (INIS)

    Basabilvazo, George T.; Countiss, S.; Moody, D.C.; Jennings, S.G.; Lott, S.A.

    2002-01-01

    On March 26, 1999, the Waste Isolation Pilot Plant (WIPP) received its first shipment of transuranic (TRU) waste. On November 26, 1999, the Hazardous Waste Facility Permit (HWFP) to receive mixed TRU waste at WIPP became effective. Having achieved these two milestones, facilitating and supporting the characterization, transportation, and disposal of TRU waste became the major challenges for the National TRU Waste Program. Significant challenges still remain in the scientific, engineering, regulatory, and political areas that need to be addressed. The National TRU Waste System Optimization Project has been established to identify, develop, and implement cost-effective system optimization strategies that address those significant challenges. Fundamental to these challenges is the balancing and prioritization of potential regulatory changes with potential technological solutions. This paper describes some of the efforts to optimize (to make as functional as possible) characterization activities for TRU waste.

  1. Independent monitoring of a release from the waste isolation pilot plant in New Mexico, USA. Results and purpose

    Energy Technology Data Exchange (ETDEWEB)

    Thakur, Punam; Ballard, Sally [Carlsbad Environmental Monitoring and Research Center, Carlsbad, NM (United States)

    2015-07-01

    The Waste Isolation Pilot Plant (WIPP) is a transuranic (TRU) waste repository operated by the U.S. Department of Energy (DOE). The repository is emplacing defense-related transuranic (TRU) wastes into a bedded salt formation approximately 655 m (2150 ft.) below the surface of the Earth. Located near Carlsbad, New Mexico, an area with less than 30,000 people, the WIPP facility is licensed to accept TRU waste with activity concentrations of alpha-emitting isotopes >3700 Bq/m{sup 3} (> 100 nCi/g) and half-life >20 years. The upper waste acceptance limit is 0.85 TBq/liter (<23 Ci/liter) of total activity and 10 Sv/hr dose rate on contact. The repository, which opened in March 1999 will eventually contain the equivalent of ∝176,000 m{sup 3} of TRU waste. The vast majority of the waste disposed in the WIPP repository is ''contact-handled'' waste, meaning it has a surface dose rate less than 2 mSv per hour. Local acceptance of WIPP is in part due to an independent environmental monitoring program that began before and continues after WIPP began receiving nuclear waste. This independent monitoring is being conducted by the Carlsbad Environmental Monitoring and Research Center (CEMRC), which is associated with New Mexico State University. CEMRC is funded by DOE through a grant process that respects its independence in carrying out and reporting the results of environmental monitoring at and near the WIPP site. The primary focus of CEMRC monitoring is on airborne radioactive particulate; however other pathways are also monitored. Pre-disposal baseline data of various anthropogenic radionuclides present in the WIPP environment is essential for the proper evaluation of the WIPP integrity. These data are compared against disposal phase data to assess whether or not there is any radiological impact from the presence of WIPP on workers and on the regional public. The program has capabilities to detect radionuclides rapidly in case of accidental releases

  2. The effect of vibration on alpha radiolysis of transuranic (TRU) waste

    International Nuclear Information System (INIS)

    Zerwekh, A.; Kosiewicz, S.; Warren, J.

    1993-01-01

    This paper reports on previously unpublished scoping work related to the potential for vibration to redistribute radionuclides on transuranic (TRU) waste. If this were to happen, the amount of gases generated, including hydrogen, could be increased above the undisturbed levels. This could be an important consideration for transport of TRU wastes either at DOE sites or from them to a future repository, e.g., the Waste Isolation Pilot Plant (WIPP). These preliminary data on drums of real waste seem to suggest that radionuclide redistribution does not occur. However improvements in the experimental methodology are suggested to enhance safety of future experiments on real wastes as well as to provide more rigorous data

  3. Test Plan Addendum No. 1: Waste Isolation Pilot Plant bin-scale CH TRU waste tests

    International Nuclear Information System (INIS)

    Molecke, M.A.; Lappin, A.R.

    1990-12-01

    This document is the first major revision to the Test Plan: WIPP Bin-Scale CH TRU Waste Tests. Factors that make this revision necessary are described and justified in Section 1, and elaborated upon in Section 4. This addendum contains recommended estimates of, and details for: (1) The total separation of waste leaching/solubility tests from bin-scale gas tests, including preliminary details and quantities of leaching tests required for testing of Levels 1, 2, and 3 WIPP CH TRU wastes; (2) An initial description and quantification of bin-scale gas test Phase 0, added to provide a crucial tie to pretest waste characterization representatives and overall test statistical validation; (3) A revision to the number of test bins required for Phases 1 and 2 of the bin gas test program, and specification of the numbers of additional bin tests required for incorporating gas testing of Level 2 wastes into test Phase 3. Contingencies are stated for the total number of test bins required, both positive and negative, including the supporting assumptions, logic, and decision points. (4) Several other general test detail updates occurring since the Test Plan was approved and published in January, 1990. Possible impacts of recommended revisions included in this Addendum on WIPP site operations are called out and described. 56 refs., 12 tabs

  4. Waste Isolation Pilot Plant disposal phase: Draft supplemental Environmental Impact Statement

    International Nuclear Information System (INIS)

    1996-11-01

    Purpose of this SEIS-II is to provide information on environmental impacts regarding DOE's proposed disposal operations at WIPP. To that end, SEIS-II was prepared to assess the potential impacts of continuing the phased development of WIPP as a geologic repository for the safe disposal of transuranic (TRU) waste. SEIS-II evaluates a Proposed Action, three Action Alternatives, and two No Action Alternatives. The Proposed Action describes the treatment and disposal of the Basic Inventory of TRU waste over a 35-year period. SEIS-II evaluates environmental impacts resulting from the various treatment options; transportation of TRU waste to WIPP using truck, a combination of truck and regular rail service, and a combination of truck and dedicated rail service; and the disposal of this waste in the repository. Evaluated impacts include those to the general environment and to human health. Additional issues associated with implementation of the alternatives are discussed

  5. Application of probabilistic methods to accident analysis at waste management facilities

    International Nuclear Information System (INIS)

    Banz, I.

    1986-01-01

    Probabilistic risk assessment is a technique used to systematically analyze complex technical systems, such as nuclear waste management facilities, in order to identify and measure their public health, environmental, and economic risks. Probabilistic techniques have been utilized at the Waste Isolation Pilot Plant (WIPP) near Carlsbad, New Mexico, to evaluate the probability of a catastrophic waste hoist accident. A probability model was developed to represent the hoisting system, and fault trees were constructed to identify potential sequences of events that could result in a hoist accident. Quantification of the fault trees using statistics compiled by the Mine Safety and Health Administration (MSHA) indicated that the annual probability of a catastrophic hoist accident at WIPP is less than one in 60 million. This result allowed classification of a catastrophic hoist accident as ''not credible'' at WIPP per DOE definition. Potential uses of probabilistic techniques at other waste management facilities are discussed

  6. Thermal cycling and vibration response for PREPP concrete waste forms

    International Nuclear Information System (INIS)

    Nielson, R.M.; Welch, J.M.

    1983-06-01

    The Process Experimental Pilot Plant (PREPP) will process those transuranic wastes which do not satisfy the Waste Isolation Pilot Plant (WIPP) Waste Acceptance Criteria. Since these wastes will contain considerable quantities of combustible materials, incineration will be an integral part of the treatment process. Four basic types of PREPP ash wastes have been identified. The four types are designated high metal box waste, combustible waste, average waste, and inorganic sludge. In this process, the output of the incinerator is a mixture of ash and shredded noncombustible material (principally metals) which is separated into two sizes, -1/4 inch (under-size waste) and reverse arrow 1/4 inch (oversize waste). These wastes are solidified with hydraulic cement in 55-gallon drums. Simulated PREPP waste forms prepared by Colorado School of Mines Research Institute were subjected to thermal cycling and vibration testing to demonstrate compliance with the WIPP immobilization criterion. Although actual storage and transport conditions are expected to vary somewhat from those utilized in the testing protocol, the generation of only very small amounts of particulate suggests that the immobilization criterion should be routinely met for similar waste form formulations and production procedures. However, the behavior of waste forms containing significant quantities of off-gas scrubber sludge or considerably higher waste loadings may differ. Limited thermal cycling and vibration testing of prototype waste forms should be conducted if the final formulations or production methods used for actual waste forms differ appreciably from those tested in this study. If such testing is conducted, consideration should be given to designing the experiment to accommodate a larger number of thermal cycles more representative of the duration of storage expected

  7. Waste Isolation Pilot Plant 2001 Site Environmental Report

    Energy Technology Data Exchange (ETDEWEB)

    Westinghouse TRU Solutions, Inc.

    2002-09-20

    The United States (U.S.) Department of Energy's (DOE) Carlsbad Field Office (CBFO) and Westinghouse TRU Solutions LLC (WTS) are dedicated to maintaining high quality management of Waste Isolation Pilot Plant (WIPP) environmental resources. DOE Order 5400.1, General Environmental Protection Program, and DOE Order 231.1, Environmental, Safety, and Health Reporting, require that the environment at and near DOE facilities be monitored to ensure the safety and health of the public and the environment. This Waste Isolation Pilot Plant 2001 Site Environmental Report summarizes environmental data from calendar year (CY) 2001 that characterize environmental management performance and demonstrate compliance with federal and state regulations. This report was prepared in accordance with DOE Order 5400.1, DOE Order 231.1, the Environmental Regulatory Guide for Radiological Effluent Monitoring and Environmental Surveillance (DOE/EH- 0173T), and the Waste Isolation Pilot Plant Environmental Protection Implementation Plan (DOE/WIPP 96-2199). The above Orders and guidance documents require that DOE facilities submit an annual site environmental report to DOE Headquarters, Office of the Assistant Secretary for Environment, Safety, and Health; and the New Mexico Environment Department (NMED). The purpose of this report is to provide a comprehensive description of operational environmental monitoring activities, to provide an abstract of environmental activities conducted to characterize site environmental management performance to confirm compliance with environmental standards and requirements, and to highlight significant programs and efforts of environmental merit at WIPP during CY 2001. WIPP received its first shipment of waste on March 26, 1999. In 2001, no evidence was found of any adverse effects from WIPP on the surrounding environment.

  8. Waste Isolation Pilot Plant 2001 Site Environmental Report

    International Nuclear Information System (INIS)

    Westinghouse TRU Solutions, Inc.

    2002-01-01

    The United States (U.S.) Department of Energy's (DOE) Carlsbad Field Office (CBFO) and Westinghouse TRU Solutions LLC (WTS) are dedicated to maintaining high quality management of Waste Isolation Pilot Plant (WIPP) environmental resources. DOE Order 5400.1, General Environmental Protection Program, and DOE Order 231.1, Environmental, Safety, and Health Reporting, require that the environment at and near DOE facilities be monitored to ensure the safety and health of the public and the environment. This Waste Isolation Pilot Plant 2001 Site Environmental Report summarizes environmental data from calendar year (CY) 2001 that characterize environmental management performance and demonstrate compliance with federal and state regulations. This report was prepared in accordance with DOE Order 5400.1, DOE Order 231.1, the Environmental Regulatory Guide for Radiological Effluent Monitoring and Environmental Surveillance (DOE/EH- 0173T), and the Waste Isolation Pilot Plant Environmental Protection Implementation Plan (DOE/WIPP 96-2199). The above Orders and guidance documents require that DOE facilities submit an annual site environmental report to DOE Headquarters, Office of the Assistant Secretary for Environment, Safety, and Health; and the New Mexico Environment Department (NMED). The purpose of this report is to provide a comprehensive description of operational environmental monitoring activities, to provide an abstract of environmental activities conducted to characterize site environmental management performance to confirm compliance with environmental standards and requirements, and to highlight significant programs and efforts of environmental merit at WIPP during CY 2001. WIPP received its first shipment of waste on March 26, 1999. In 2001, no evidence was found of any adverse effects from WIPP on the surrounding environment

  9. The influence of salt aerosol on alpha radiation detection by WIPP continuous air monitors

    Energy Technology Data Exchange (ETDEWEB)

    Bartlett, W.T.; Walker, B.A. [Environmental Evaluation Group, Albuquerque, NM (United States)

    1997-08-01

    Waste Isolation Pilot Plant (WIPP) alpha continuous air monitor (CAM) performance was evaluated to determine if CAMs could detect accidental releases of transuranic radioactivity from the underground repository. Anomalous alpha spectra and poor background subtraction were observed and attributed to salt deposits on the CAM sampling filters. Microscopic examination of salt laden sampling filters revealed that aerosol particles were forming dendritic structures on the surface of the sampling filters. Alpha CAM detection efficiency decreased exponentially as salt deposits increased on the sampling filters, suggesting that sampling-filter salt was performing like a fibrous filter rather than a membrane filter. Aerosol particles appeared to penetrate the sampling-filter salt deposits and alpha particle energy was reduced. These findings indicate that alpha CAMs may not be able to detect acute releases of radioactivity, and consequently CAMs are not used as part of the WIPP dynamic confinement system. 12 refs., 12 figs., 1 tab.

  10. Mobile/Modular Deployment Project-Enhancing Efficiencies within the National Transuranic Waste Program

    International Nuclear Information System (INIS)

    Triay, I.R.; Basabilvazo, G.B.; Countiss, S.; Moody, D.C.; Behrens, R.G.; Lott, S.A.

    2002-01-01

    In 1999, the National Transuranic (TRU) Waste Program (NTP) achieved two significant milestones. First, the Waste Isolation Plant (WIPP) opened in March for the permanent disposal of TRU waste generated by, and temporarily stored at, various sites supporting the nation's defense programs. Second, the Hazardous Waste Facility Permit, issued by the New Mexico Environment Department, for WIPP became effective in November. While the opening of WIPP brought to closure a number of scientific, engineering, regulatory, and political challenges, achieving this major milestone led to a new set of challenges-how to achieve the Department of Energy's (DOE's) NTP end-state vision: All TRU waste from DOE sites scheduled for closure is removed All legacy TRU waste from DOE sites with an ongoing nuclear mission is disposed 0 All newly generated TRU waste is disposed as it is generated The goal is to operate the national TRU waste program safely, cost effectively, in compliance with applicable regulations and agreements, and at full capacity in a fully integrated mode. The existing schedule for TRU waste disposition would achieve the NTP vision in 2034 at an estimated life-cycle cost of $16B. The DOE's Carlsbad Field Office (CBFO) seeks to achieve this vision early-by at least 10 years- while saving the nation an estimated $48 to $6B. CBFO's approach is to optimize, or to make as functional as possible, TRU waste disposition. That is, to remove barriers that impede waste disposition, and increase the rate and cost efficiency of waste disposal at WIPP, while maintaining safety. The Mobile/Modular Deployment Project (MMDP) is the principal vehicle for implementing DOE's new commercial model of using best business practices of national authorization basis, standardization, and economies of scale to accelerate the completion of WIPP's mission. The MMDP is one of the cornerstones of the National TRU Waste System Optimization Project (1). The objective of the MMDP is to increase TRU

  11. Basic data report for drillhole H-12 (Waste Isolation Pilot Plant-WIPP)

    International Nuclear Information System (INIS)

    Mercer, J.W.; Snyder, R.P.

    1990-01-01

    Drillhole H-12 was drilled where hydraulic data were needed to better establish flow characteristics existing south-southeast of the WIPP site. The fluid-bearing zones of interest are the Magenta and Culebra dolomite units of the Rustler Formation. Dissolution of halite in the Rustler Formation has occurred in the uppermost member, but has not yet begun in the lower halite-bearing members. Cuttings and cores were taken at selected intervals and geophysical logs were run over the entire depth of the hole. 3 refs., 2 figs., 3 tabs

  12. Alternative disposal options for transuranic waste

    International Nuclear Information System (INIS)

    Loomis, G.G.

    1994-01-01

    Three alternative concepts are proposed for the final disposal of stored and retrieved buried transuranic waste. These proposed options answer criticisms of the existing U.S. Department of Energy strategy of directly disposing of stored transuranic waste in deep, geological salt formations at the Waste Isolation Pilot Plant (WIPP) in Carlsbad, New Mexico. The first option involves enhanced stabilization of stored waste by thermal treatment followed by convoy transportation and internment in the existing WIPP facility. This concept could also be extended to retrieved buried waste with proper permitting. The second option involves in-state, in situ internment using an encapsulating lens around the waste. This concept applies only to previously buried transuranic waste. The third option involves sending stored and retrieved waste to the Nevada Test Site and configuring the waste around a thermonuclear device from the U.S. or Russian arsenal in a specially designed underground chamber. The thermonuclear explosion would transmute plutonium and disassociate hazardous materials while entombing the waste in a national sacrifice area

  13. Report on the emergency response training and equipment activities through fiscal year 1992 for the transportation of transuranic waste to the Waste Isolation Pilot Plant

    International Nuclear Information System (INIS)

    1992-11-01

    The Waste Isolation Pilot Plant (WIPP) is a research and development facility with the mission of demonstrating the safe shipment, emplacement, and retrieval of radioactive transuranic (TRU) wastes resulting from the defense activities and programs of the United States. It is the only long-term storage facility constructed for TRU waste. This report provides the status on the Department of Energy (DOE) efforts as of September 30, 1992, regarding emergency response training provided to local, state, and tribal governments for waste shipments to the WIPP, as required by section 16(c)(1)(A) of the Waste Isolation Pilot Plant Land Withdrawal Act (Public Law 102-579). This is an update to the April 1992 report (DOE/WIPP 92003) which provided status through 1991. This report will be updated and issued annually. Because of a growing public awareness of transportation-activities involving nuclear materials, this report was prepared to provide a status of the DOE's activities in this regard, as well as the cooperative efforts between the DOE and state and tribal governments

  14. Estimates of the solubilities of waste element radionuclides in waste isolation pilot plant brines: A report by the expert panel on the source term

    International Nuclear Information System (INIS)

    Hobart, D.E.; Bruton, C.J.; Trauth, K.M.; Anderson, D.R.

    1996-05-01

    Evaluation of the long-term performance of the WIPP includes estimation of the cumulative releases of radionuclide elements to the accessible environment. Nonradioactive lead is added because of the large quantity expected in WIPP wastes. To estimate the solubilities of these elements in WIPP brines, the Panel used the following approach. Existing thermodynamic data were used to identify the most likely aqueous species in solution through the construction of aqueous speciation diagrams. Existing thermodynamic data and expert judgment were used to identify potential solubility-limiting solid phases. Thermodynamic data were used to calculate the activities of the radionuclide aqueous species in equilibrium with each solid. Activity coefficients of the radionuclide-bearing aqueous species were estimated using Pitzer's equations. These activity coefficients were then used to calculate the concentration of each radionuclide at the 0.1 and 0.9 fractiles. The 0.5 fractile was chosen to represent experimental data with activity coefficient corrections as described above. Expert judgment was used to develop the 0.0, 0.25, 0.75, and 1.0 fractiles by considering the sensitivity of solubility to the potential variability in the composition of brine and gas, and the extent of waste contaminants, and extending the probability distributions accordingly. The results were used in the 1991 and 1992 performance assessment calculations. 68 refs

  15. Estimates of the solubilities of waste element radionuclides in waste isolation pilot plant brines: A report by the expert panel on the source term

    Energy Technology Data Exchange (ETDEWEB)

    Hobart, D.E. [Sandia National Labs., Albuquerque, NM (United States)]|[Glenn T. Seaborg Inst. for Transactinium Science, Livermore, CA (United States); Bruton, C.J. [Sandia National Labs., Albuquerque, NM (United States)]|[Lawrence Livermore National Lab., CA (United States). Earth Sciences Dept.; Millero, F.J. [Sandia National Labs., Albuquerque, NM (United States)]|[Univ. of Miami, FL (United States). Rosenstiel School of Marine and Atmospheric Science; Chou, I.M. [Sandia National Labs., Albuquerque, NM (United States)]|[Geological Survey, Reston, VA (United States); Trauth, K.M.; Anderson, D.R. [Sandia National Labs., Albuquerque, NM (United States)

    1996-05-01

    Evaluation of the long-term performance of the WIPP includes estimation of the cumulative releases of radionuclide elements to the accessible environment. Nonradioactive lead is added because of the large quantity expected in WIPP wastes. To estimate the solubilities of these elements in WIPP brines, the Panel used the following approach. Existing thermodynamic data were used to identify the most likely aqueous species in solution through the construction of aqueous speciation diagrams. Existing thermodynamic data and expert judgment were used to identify potential solubility-limiting solid phases. Thermodynamic data were used to calculate the activities of the radionuclide aqueous species in equilibrium with each solid. Activity coefficients of the radionuclide-bearing aqueous species were estimated using Pitzer`s equations. These activity coefficients were then used to calculate the concentration of each radionuclide at the 0.1 and 0.9 fractiles. The 0.5 fractile was chosen to represent experimental data with activity coefficient corrections as described above. Expert judgment was used to develop the 0.0, 0.25, 0.75, and 1.0 fractiles by considering the sensitivity of solubility to the potential variability in the composition of brine and gas, and the extent of waste contaminants, and extending the probability distributions accordingly. The results were used in the 1991 and 1992 performance assessment calculations. 68 refs.

  16. Waste Isolation Pilot Plant: Site environmental report for calendar year 1991

    International Nuclear Information System (INIS)

    1991-01-01

    The US Department of Energy (DOE) Waste Isolation Pilot Plant (WIPP) Operational Environmental Monitoring Plan (OEMP) monitors a comprehensive set of parameters in order to detect any potential environmental Impacts and establish baselines for future quantitative environmental Impact evaluations. Surface water and groundwater, air, soil, and biotics are measured for background radiation. Nonradiological environmental monitoring activities include air quality, water quality, soil properties, meteorological, and the status of the local biological community. Ecological studies focus on the immediate area surrounding the site with emphasis on the salt storage pile, whereas baseline radiological surveillance covers a broader geographic area Including nearby ranches, villages, and cities. Since the WIPP is still in a preoperational state, and no waste has been received; certain elements required by DOE Order 5400.1 are not presented In this report. The most significant addition to the 1991 report is the inclusion of the first four appendices, the Radiological Baseline Program (DOE/WIPP 92-037), the Salt Impact Studies (DOE/WIPP 92-038), the Disturbed Land Reclamation Techniques (DOE/WIPP 92-039), and the Background Water Characterization for the WIPP (DOE/WIPP 92-013). These appendices are independently published and available to interested parties by the DOE reference number. These summaries will not be published in future ASER'S. They will, however, be referenced as a basis for evaluating similar data collected during the Test and subsequent Operational phases of the WIPP

  17. Summary of scientific investigations for the Waste Isolation Pilot Plant

    International Nuclear Information System (INIS)

    Weart, W.D.

    1996-01-01

    The scientific issues concerning disposal of radioactive wastes in salt formations have received 40 years of attention since the National Academy of Sciences (NAS) first addressed this issue in the mid-50s. For the last 21 years, Sandia National Laboratories (SNL) have directed site specific studies for the Waste Isolation Pilot Plant (WIPP). This paper will focus primarily on the WIPP scientific studies now in their concluding stages, the major scientific controversies regarding the site, and some of the surprises encountered during the course of these scientific investigations. The WIPP project's present understanding of the scientific processes involved continues to support the site as a satisfactory, safe location for the disposal of defense-related transuranic waste and one which will be shown to be in compliance with Environmental Protection Agency (EPA) standards. Compliance will be evaluated by incorporating data from these experiments into Performance Assessment (PA) models developed to describe the physical and chemical processes that could occur at the WIPP during the next 10,000 years under a variety of scenarios. The resulting compliance document is scheduled to be presented to the EPA in October 1996 and all relevant information from scientific studies will be included in this application and the supporting analyses. Studies supporting this compliance application conclude the major period of scientific investigation for the WIPP. Further studies will be of a ''confirmatory'' and monitoring nature

  18. Annual stability evaluation of Waste Isolation Pilot Plant

    International Nuclear Information System (INIS)

    1993-06-01

    A stability evaluation of the underground workings of the Waste Isolation Pilot Plant (WIPP) was completed by the US Bureau of Mines' WIPP evaluation committee. This work included a critical evaluation of the processes employed at WIPP to ensure stability, an extensive review of available deformation measurements, a 3-day site visit, and interviews with the Department of Energy (DOE) and Westinghouse staff. General ground control processes are in place at WIPP to minimize the likelihood that major stability problems will go undetected. To increase confidence in both short- and long-term stability throughout the site (underground openings and shafts), ground stability monitoring systems, mine layout design, support systems and data analyses must be continuously improved. Such processes appear to be in place at WIPP and are discussed in this paper

  19. Basic data report for drillholes at the H-11 complex (Waste Isolation Pilot Plant-WIPP)

    International Nuclear Information System (INIS)

    Mercer, J.W.; Snyder, R.P.

    1990-05-01

    Drillholes H-11b1, H-11b2, and H-11b3 were drilled from August to December 1983 for site characterization and hydrologic studies of the Culebra Dolomite Member of the Upper Permian Rustler Formation at the Waste Isolation Pilot Plant (WIPP) site in southeastern New Mexico. In October 1984, the three wells were subjected to a series of pumping tests designed to develop the wells, provide information on hydraulic communication between the wells, provide hydraulic properties information, and to obtain water samples for quality of water measurements. Based on these tests, it was determined that this location would provide an excellent pad to conduct a convergent-flow non-sorbing tracer test in the Culebra dolomite. In 1988, a fourth hole (H-11b4) was drilled at this complex to provide a tracer-injection hole for the H-11 convergent-flow tracer test and to provide an additional point at which the hydraulic response of the Culebra H-11 multipad pumping test could be monitored. A suite of geophysical logs was run on the drillholes and was used to identify different lithologies and aided in interpretation of the hydraulic tests. 4 refs., 6 figs., 6 tabs

  20. Basic data report for drillholes at the H-11 complex (Waste Isolation Pilot Plant-WIPP)

    Energy Technology Data Exchange (ETDEWEB)

    Mercer, J.W. (Sandia National Labs., Albuquerque, NM (USA)); Snyder, R.P. (Geological Survey, Denver, CO (USA))

    1990-05-01

    Drillholes H-11b1, H-11b2, and H-11b3 were drilled from August to December 1983 for site characterization and hydrologic studies of the Culebra Dolomite Member of the Upper Permian Rustler Formation at the Waste Isolation Pilot Plant (WIPP) site in southeastern New Mexico. In October 1984, the three wells were subjected to a series of pumping tests designed to develop the wells, provide information on hydraulic communication between the wells, provide hydraulic properties information, and to obtain water samples for quality of water measurements. Based on these tests, it was determined that this location would provide an excellent pad to conduct a convergent-flow non-sorbing tracer test in the Culebra dolomite. In 1988, a fourth hole (H-11b4) was drilled at this complex to provide a tracer-injection hole for the H-11 convergent-flow tracer test and to provide an additional point at which the hydraulic response of the Culebra H-11 multipad pumping test could be monitored. A suite of geophysical logs was run on the drillholes and was used to identify different lithologies and aided in interpretation of the hydraulic tests. 4 refs., 6 figs., 6 tabs.

  1. Performance Demonstration Program Plan for RCRA Constituent Analysis of Solidified Wastes

    International Nuclear Information System (INIS)

    2006-01-01

    The Performance Demonstration Program (PDP) for Resource Conservation and Recovery Act (RCRA) constituents distributes test samples for analysis of volatile organic compounds (VOCs), semivolatile organic compounds (SVOCs), and metals in solid matrices. Each distribution of test samples is termed a PDP cycle. These evaluation cycles provide an objective measure of the reliability of measurements performed for transuranic (TRU) waste characterization. The primary documents governing the conduct of the PDP are the Quality Assurance Program Document (QAPD; DOE/CBFO-94-1012) and the Waste Isolation Pilot Plant (WIPP) Waste Analysis Plan (WAP) contained in the Hazardous Waste Facility Permit (NM4890139088-TSDF) issued by the New Mexico Environment Department. The WAP requires participation in the PDP; the PDP must comply with the QAPD and the WAP. This plan implements the general requirements of the QAPD and the applicable requirements of the WAP for the RCRA PDP. Participating laboratories demonstrate acceptable performance by successfully analyzing single-blind performance evaluation samples (subsequently referred to as PDP samples) according to the criteria established in this plan. PDP samples are used as an independent means to assess laboratory performance regarding compliance with the WAP quality assurance objectives (QAOs). The concentrations of analytes in the PDP samples address levels of regulatory concern and encompass the range of concentrations anticipated in waste characterization samples. The WIPP requires analyses of homogeneous solid wastes to demonstrate compliance with regulatory requirements. These analyses must be performed by laboratories that demonstrate acceptable performance in this PDP. These analyses are referred to as WIPP analyses, and the samples on which they are performed are referred to as WIPP samples. Participating laboratories must analyze PDP samples using the same procedures used for WIPP samples.

  2. Preliminary radiological analysis of the transportation of contact-handled transuranic waste within the state of New Mexico. Revision 1

    International Nuclear Information System (INIS)

    Tappen, J.; Fredrickson, C.; Daer, G.

    1985-06-01

    This analysis assesses the potential radiological impacts on the citizens of New Mexico from the transport of CH-TRU waste to WIPP by rail or by truck. Assuming exclusive use of the truck transport mode, the combined annual exposure to the public from accident-free shipment of waste is estimated to be 3.3 person-rem/year. It is estimated that a theoretical member of the public receiving maximum exposure to the combined truck shipments of CH-TRU waste to WIPP would receive an annual whole body dose equivalent of 0.000016 rem. Such an exposure is insignificant in comparison to the average annual whole body dose equivalent to an individual living in the Colorado Plateau area of between 0.075 and 0.140 rem from natural occurring radiation. The combined annual radiological risk to the public living along the new Mexico truck routes to WIPP from potential accidents is projected as 0.031 person-rem/year. Assuming exclusive use of the rail transport mode, the combined annual exposure to the public from accident-free shipment of waste is estimated to be 1.2 person-rem/year. A theoretical member of the public receiving combined maximum exposure to rail shipments of CH-TRU waste to WIPP would receive an annual whole body dose equivalent of 0.000012 rem. The combined annual radiological risk to the public living along the New Mexico rail routes to WIPP from potential accidents is projected as 0.0022 person-rem/year. An estimate of the radiological impacts in a year of maximum waste receipt can be made by multiplying the above results for rail or truck by 2. This estimate is based upon the WIPP design waste throughput rate of 500,000 ft 3 per year. An estimate of the radiological impacts of CH-TRU waste transport to WIPP over the facility life can be made by multiplying the above results by 25

  3. No-migration variance petition for the Waste Isolation Pilot Plant

    International Nuclear Information System (INIS)

    Duff, M.; Carnes, R.; Hart, J.; Hansen, R.

    1991-01-01

    The US Department of Energy (DOE) is petitioning the US Environmental Protection Agency (EPA) to allow the emplacement of hazardous wastes subject to the Resource Conservation and Recovery Act (RCRA) land disposal restrictions in the Waste Isolation Pilot Plant (WIPP). The basis of the petition is that there will be no migration of hazardous constituents from the repository for as long as the wastes remain hazardous. The EPA regulations in 40 CFR Section 268.6 identify specific criteria that must be addressed in making a demonstration of no migration. EPA's approval of this petition will allow the WIPP facility to accept wastes otherwise prohibited or restricted from land disposal. 5 refs

  4. Waste Receiving and Processing (WRAP) facility engineering study

    International Nuclear Information System (INIS)

    Christie, M.A.; Cammann, J.W.; McBeath, R.S.; Rode, H.H.

    1985-01-01

    A new Hanford waste management facility, the Waste Receiving and Processing (WRAP) facility (planned to be operational by FY 1994) will receive, inspect, process, and repackage contact-handled transuranic (CH-TRU) contaminated solid wastes. The wastes will be certified according to the waste acceptance criteria for disposal at the Waste Isolation Pilot Plant (WIPP) geologic repository in southeast New Mexico. Three alternatives which could cost effectively be applied to certify Hanford CH-TRU waste to the WIPP Waste Acceptance Criteria (WIPP-WAC) have been examined in this updated engineering study. The alternatives differed primarily in the reference processing systems used to transform nonconforming waste into an acceptable, certified waste form. It is recommended to include the alternative of shredding and immobilizing nonconforming wastes in cement (shred/grout processing) in the WRAP facility. Preliminary capital costs for WRAP in mid-point-of-construction (FY 1991) dollars were estimated at $45 million for new construction and $37 million for modification and installation in an existing Hanford surplus facility (231-Z Building). Operating, shipping, and decommissioning costs in FY 1986 dollars were estimated at $126 million, based on a 23-y WRAP life cycle (1994 to 2017). During this period, the WRAP facility will receive an estimated 38,000 m 3 (1.3 million ft 3 ) of solid CH-TRU waste. The study recommends pilot-scale testing and evaluation of the processing systems planned for WRAP and advises further investigation of the 231-Z Building as an alternative to new facility construction

  5. The Geologic and Hydrogeologic Setting of the Waste Isolation Pilot Plant

    International Nuclear Information System (INIS)

    Swift, P.N.; Corbet, T.F.

    1999-01-01

    The Waste Isolation Pilot Plant (WIPP) is a mined repository constructed by the US Department of Energy for the permanent disposal of transuranic wastes generated since 1970 by activities related to national defense. The WIPP is located 42 km east of Carlsbad, New Mexico, in bedded salt (primarily halite) of the Late Permian (approximately 255 million years old) Salado Formation 655 m below the land surface. Characterization of the site began in the mid-1970s. Construction of the underground disposal facilities began in the early 1980s, and the facility received final certification from the US Environmental Protection Agency in May 1998. Disposal operations are planned to begin following receipt of a final permit from the State of New Mexico and resolution of legal issues. Like other proposed geologic repositories for radioactive waste, the WIPP relies on a combination of engineered and natural barriers to isolate the waste from the biosphere. Engineered barriers at the WIPP, including the seals that will be emplaced in the access shafts when the facility is decommissioned, are discussed in the context of facility design elsewhere in this volume. Physical properties of the natural barriers that contribute to the isolation of radionuclides are discussed here in the context of the physiographic, geologic, and hydrogeologic setting of the site

  6. Hanford site as it relates to an alternative site for the Waste Isolation Pilot Plant: an environmental description

    Energy Technology Data Exchange (ETDEWEB)

    Fecht, K.R. (ed.)

    1978-12-01

    The use of basalt at Hanford as an alternative for the Waste Isolation Pilot Plant (WIPP) would require that the present Basalt Waste Isolation Program (BWIP) at Hanford be expanded to incorporate the planned WIPP functions, namely the permanent storage of transuranic (TRU) wastes. This report discusses: program costs, demography, ecology, climatology, physiography, hydrology, geology, seismology, and historical and archeological sites. (DLC)

  7. Hanford site as it relates to an alternative site for the Waste Isolation Pilot Plant: an environmental description

    International Nuclear Information System (INIS)

    Fecht, K.R.

    1978-12-01

    The use of basalt at Hanford as an alternative for the Waste Isolation Pilot Plant (WIPP) would require that the present Basalt Waste Isolation Program (BWIP) at Hanford be expanded to incorporate the planned WIPP functions, namely the permanent storage of transuranic (TRU) wastes. This report discusses: program costs, demography, ecology, climatology, physiography, hydrology, geology, seismology, and historical and archeological sites

  8. Defense transuranic waste program strategy document

    International Nuclear Information System (INIS)

    1982-07-01

    This document summarizes the strategy for managing transuranic (TRU) wastes generated in defense and research activities regulated by the US Department of Energy. It supercedes a document issued in July 1980. In addition to showing how current strategies of the Defense Transuranic Waste Program (DTWP) are consistent with the national objective of isolating radioactive wastes from the biosphere, this document includes information about the activities of the Transuranic Lead Organization (TLO). To explain how the DTWP strategy is implemented, this document also discusses how the TLO coordinates and integrates the six separate elements of the DTWP: (1) Waste Generation Site Activities, (2) Storage Site Activities, (3) Burial Site Activities, (4) Technology Development, (5) Transportation Development, and (6) Permanent Disposal. Storage practices for TRU wastes do not pose short-term hazards to public health and safety or to the environment. Isolation of TRU wastes in a deep-mined geologic repository is considered the most promising of the waste disposal alternatives available. This assessment is supported by the DOE Record of Decision to proceed with research and development work at the Waste Isolation Pilot Plant (WIPP) in southeastern New Mexico - a deep-mined geologic research and development project. In support of the WIPP research project and the permanent disposal of TRU waste, the DTWP strategy for the near term will concentrate on completion of procedures and the design and construction of all facilities necessary to certify newly-generated (NG) and stored TRU wastes for emplacement in the WIPP. In addition, the strategy involves evaluating alternatives for disposing of some transuranic wastes by methods which may allow for on-site disposal of these wastes and yet preserve adequate margins of safety to protect public health and the environment

  9. Bentonite as a waste isolation pilot plant shaft sealing material

    International Nuclear Information System (INIS)

    Daemen, J.; Ran, Chongwei

    1996-12-01

    Current designs of the shaft sealing system for the Waste Isolation Pilot Plant (WIPP) propose using bentonite as a primary sealing component. The shaft sealing designs anticipate that compacted bentonite sealing components can perform through the 10,000-year regulatory period and beyond. To evaluate the acceptability of bentonite as a sealing material for the WIPP, this report identifies references that deal with the properties and characteristics of bentonite that may affect its behavior in the WIPP environment. This report reviews published studies that discuss using bentonite as sealing material for nuclear waste disposal, environmental restoration, toxic and chemical waste disposal, landfill liners, and applications in the petroleum industry. This report identifies the physical and chemical properties, stability and seal construction technologies of bentonite seals in shafts, especially in a saline brine environment. This report focuses on permeability, swelling pressure, strength, stiffness, longevity, and densification properties of bentonites

  10. Bentonite as a waste isolation pilot plant shaft sealing material

    Energy Technology Data Exchange (ETDEWEB)

    Daemen, J.; Ran, Chongwei [Univ. of Nevada, Reno, NV (United States)

    1996-12-01

    Current designs of the shaft sealing system for the Waste Isolation Pilot Plant (WIPP) propose using bentonite as a primary sealing component. The shaft sealing designs anticipate that compacted bentonite sealing components can perform through the 10,000-year regulatory period and beyond. To evaluate the acceptability of bentonite as a sealing material for the WIPP, this report identifies references that deal with the properties and characteristics of bentonite that may affect its behavior in the WIPP environment. This report reviews published studies that discuss using bentonite as sealing material for nuclear waste disposal, environmental restoration, toxic and chemical waste disposal, landfill liners, and applications in the petroleum industry. This report identifies the physical and chemical properties, stability and seal construction technologies of bentonite seals in shafts, especially in a saline brine environment. This report focuses on permeability, swelling pressure, strength, stiffness, longevity, and densification properties of bentonites.

  11. Hydraulic Testing of Salado Formation Evaporites at the Waste Isolation Pilot Plant Site: Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Beauheim, Richard L.; Domski, Paul S.; Roberts, Randall M.

    1999-07-01

    This report presents interpretations of hydraulic tests conducted in bedded evaporates of the Salado Formation from May 1992 through May 1995 at the Waste Isolation Pilot Plant (WIPP) site in southeastern New Mexico. The WIPP is a US Department of Energy research and development facility designed to demonstrate safe disposal of transuranic wastes from the nation's defense programs. The WIPP disposal horizon is located in the lower portion of the Permian Salado Formation. The hydraulic tests discussed in this report were performed in the WIPP underground facility by INTERA inc. (now Duke Engineering and Services, Inc.), Austin, Texas, following the Field Operations Plan and Addendum prepared by Saulnier (1988, 1991 ) under the technical direction of Sandia National Laboratories, Albuquerque, New Mexico.

  12. Hydraulic Testing of Salado Formation Evaporites at the Waste Isolation Pilot Plant Site: Final Report

    International Nuclear Information System (INIS)

    Beauheim, Richard L.; Domski, Paul S.; Roberts, Randall M.

    1999-01-01

    This report presents interpretations of hydraulic tests conducted in bedded evaporates of the Salado Formation from May 1992 through May 1995 at the Waste Isolation Pilot Plant (WIPP) site in southeastern New Mexico. The WIPP is a US Department of Energy research and development facility designed to demonstrate safe disposal of transuranic wastes from the nation's defense programs. The WIPP disposal horizon is located in the lower portion of the Permian Salado Formation. The hydraulic tests discussed in this report were performed in the WIPP underground facility by INTERA inc. (now Duke Engineering and Services, Inc.), Austin, Texas, following the Field Operations Plan and Addendum prepared by Saulnier (1988, 1991 ) under the technical direction of Sandia National Laboratories, Albuquerque, New Mexico

  13. Sodium-Bearing Waste Treatment Alternatives Implementation Study

    Energy Technology Data Exchange (ETDEWEB)

    Charles M. Barnes; James B. Bosley; Clifford W. Olsen

    2004-07-01

    The purpose of this document is to discuss issues related to the implementation of each of the five down-selected INEEL/INTEC radioactive liquid waste (sodium-bearing waste - SBW) treatment alternatives and summarize information in three main areas of concern: process/technical, environmental permitting, and schedule. Major implementation options for each treatment alternative are also identified and briefly discussed. This report may touch upon, but purposely does not address in detail, issues that are programmatic in nature. Examples of these include how the SBW will be classified with respect to the Nuclear Waste Policy Act (NWPA), status of Waste Isolation Pilot Plant (WIPP) permits and waste storage availability, available funding for implementation, stakeholder issues, and State of Idaho Settlement Agreement milestones. It is assumed in this report that the SBW would be classified as a transuranic (TRU) waste suitable for disposal at WIPP, located in New Mexico, after appropriate treatment to meet transportation requirements and waste acceptance criteria (WAC).

  14. Assessment of the potential for karst in the Rustler Formation at the WIPP site

    International Nuclear Information System (INIS)

    Lorenz, John Clay

    2006-01-01

    This report is an independent assessment of the potential for karst dissolution in evaporitic strata of the Rustler Formation at the Waste Isolation Pilot Plant (WIPP) site. Review of the available data suggests that the Rustler strata thicken and thin across the area in depositional patterns related to lateral variations in sedimentary accommodation space and normal facies changes. Most of the evidence that has been offered for the presence of karst in the subsurface has been used out of context, and the different pieces are not mutually supporting. Outside of Nash Draw, definitive evidence for the development of karst in the Rustler Formation near the WIPP site is limited to the horizon of the Magenta Member in drillhole WIPP-33. Most of the other evidence cited by the proponents of karst is more easily interpreted as primary sedimentary structures and the localized dissolution of evaporitic strata adjacent to the Magenta and Culebra water-bearing units. Some of the cited evidence is invalid, an inherited baggage from studies made prior to the widespread knowledge of modern evaporite depositional environments and prior to the existence of definitive exposures of the Rustler Formation in the WIPP shafts. Some of the evidence is spurious, has been taken out of context, or is misquoted. Lateral lithologic variations from halite to mudstone within the Rustler Formation under the WIPP site have been taken as evidence for the dissolution of halite such as that seen in Nash Draw, but are more rationally explained as sedimentary facies changes. Extrapolation of the known karst features in Nash Draw eastward to the WIPP site, where conditions are and have been significantly different for half a million years, is unwarranted. The volumes of insoluble material that would remain after dissolution of halite would be significantly less than the observed bed thicknesses, thus dissolution is an unlikely explanation for the lateral variations from halite to mudstone and siltstone

  15. Assessment of the potential for karst in the Rustler Formation at the WIPP site.

    Energy Technology Data Exchange (ETDEWEB)

    Lorenz, John Clay

    2006-01-01

    This report is an independent assessment of the potential for karst dissolution in evaporitic strata of the Rustler Formation at the Waste Isolation Pilot Plant (WIPP) site. Review of the available data suggests that the Rustler strata thicken and thin across the area in depositional patterns related to lateral variations in sedimentary accommodation space and normal facies changes. Most of the evidence that has been offered for the presence of karst in the subsurface has been used out of context, and the different pieces are not mutually supporting. Outside of Nash Draw, definitive evidence for the development of karst in the Rustler Formation near the WIPP site is limited to the horizon of the Magenta Member in drillhole WIPP-33. Most of the other evidence cited by the proponents of karst is more easily interpreted as primary sedimentary structures and the localized dissolution of evaporitic strata adjacent to the Magenta and Culebra water-bearing units. Some of the cited evidence is invalid, an inherited baggage from studies made prior to the widespread knowledge of modern evaporite depositional environments and prior to the existence of definitive exposures of the Rustler Formation in the WIPP shafts. Some of the evidence is spurious, has been taken out of context, or is misquoted. Lateral lithologic variations from halite to mudstone within the Rustler Formation under the WIPP site have been taken as evidence for the dissolution of halite such as that seen in Nash Draw, but are more rationally explained as sedimentary facies changes. Extrapolation of the known karst features in Nash Draw eastward to the WIPP site, where conditions are and have been significantly different for half a million years, is unwarranted. The volumes of insoluble material that would remain after dissolution of halite would be significantly less than the observed bed thicknesses, thus dissolution is an unlikely explanation for the lateral variations from halite to mudstone and siltstone

  16. Safety evaluation report of the Waste Isolation Pilot Plant safety analysis report: Contact-handled transuranic waste disposal operations

    International Nuclear Information System (INIS)

    1997-02-01

    DOE 5480.23, Nuclear Safety Analysis Reports, requires that the US Department of Energy conduct an independent, defensible, review in order to approve a Safety Analysis Report (SAR). That review and the SAR approval basis is documented in this formal Safety Evaluation Report (SER). This SER documents the DOE's review of the Waste Isolation Pilot Plant SAR and provides the Carlsbad Area Office Manager, the WIPP SAR approval authority, with the basis for approving the safety document. It concludes that the safety basis documented in the WIPP SAR is comprehensive, correct, and commensurate with hazards associated with planned waste disposal operations

  17. Coupled multiphase flow and closure analysis of repository response to waste-generated gas at the Waste Isolation Pilot Plant (WIPP)

    Energy Technology Data Exchange (ETDEWEB)

    Freeze, G.A.; Larson, K.W. [INTERA Inc., Austin, TX (United States); Davies, P.B. [Sandia National Laboratories, Albuquerque, NM (United States)

    1995-10-01

    A long-term assessment of the Waste Isolation Pilot Plant (WIPP) repository performance must consider the impact of gas generation resulting from the corrosion and microbial degradation of the emplaced waste. A multiphase fluid flow code, TOUGH2/EOS8, was adapted to model the processes of gas generation, disposal room creep closure, and multiphase (brine and gas) fluid flow, as well as the coupling between the three processes. System response to gas generation was simulated with a single, isolated disposal room surrounded by homogeneous halite containing two anhydrite interbeds, one above and one below the room. The interbeds were assumed to have flow connections to the room through high-permeability, excavation-induced fractures. System behavior was evaluated by tracking four performance measures: (1) peak room pressure; (2) maximum brine volume in the room; (3) total mass of gas expelled from the room; and (4) the maximum gas migration distance in an interbed. Baseline simulations used current best estimates of system parameters, selected through an evaluation of available data, to predict system response to gas generation under best-estimate conditions. Sensitivity simulations quantified the effects of parameter uncertainty by evaluating the change in the performance measures in response to parameter variations. In the sensitivity simulations, a single parameter value was varied to its minimum and maximum values, representative of the extreme expected values, with all other parameters held at best-estimate values. Sensitivity simulations identified the following parameters as important to gas expulsion and migration away from a disposal room: interbed porosity; interbed permeability; gas-generation potential; halite permeability; and interbed threshold pressure. Simulations also showed that the inclusion of interbed fracturing and a disturbed rock zone had a significant impact on system performance.

  18. Coupled multiphase flow and closure analysis of repository response to waste-generated gas at the Waste Isolation Pilot Plant (WIPP)

    International Nuclear Information System (INIS)

    Freeze, G.A.; Larson, K.W.; Davies, P.B.

    1995-10-01

    A long-term assessment of the Waste Isolation Pilot Plant (WIPP) repository performance must consider the impact of gas generation resulting from the corrosion and microbial degradation of the emplaced waste. A multiphase fluid flow code, TOUGH2/EOS8, was adapted to model the processes of gas generation, disposal room creep closure, and multiphase (brine and gas) fluid flow, as well as the coupling between the three processes. System response to gas generation was simulated with a single, isolated disposal room surrounded by homogeneous halite containing two anhydrite interbeds, one above and one below the room. The interbeds were assumed to have flow connections to the room through high-permeability, excavation-induced fractures. System behavior was evaluated by tracking four performance measures: (1) peak room pressure; (2) maximum brine volume in the room; (3) total mass of gas expelled from the room; and (4) the maximum gas migration distance in an interbed. Baseline simulations used current best estimates of system parameters, selected through an evaluation of available data, to predict system response to gas generation under best-estimate conditions. Sensitivity simulations quantified the effects of parameter uncertainty by evaluating the change in the performance measures in response to parameter variations. In the sensitivity simulations, a single parameter value was varied to its minimum and maximum values, representative of the extreme expected values, with all other parameters held at best-estimate values. Sensitivity simulations identified the following parameters as important to gas expulsion and migration away from a disposal room: interbed porosity; interbed permeability; gas-generation potential; halite permeability; and interbed threshold pressure. Simulations also showed that the inclusion of interbed fracturing and a disturbed rock zone had a significant impact on system performance

  19. Performance in the WIPP nondestructive assay performance demonstration program

    Energy Technology Data Exchange (ETDEWEB)

    Marcinkiewicz, C.J. [Consolidated Technical Services, Inc., Frederick, MD (United States); Connolly, M.J.; Becker, G.K. [Lockheed Martin Idaho Technologies Company, Idaho Falls, ID (United States)

    1997-11-01

    Measurement facilities performing nondestructive assay (NDA) of wastes intended for disposal at the United States Department of Energy (DOE) Waste Isolation Pilot Plant (WIPP) are required to demonstrate their ability to meet specific Quality Assurance Objectives (QAOs). This demonstration is performed, in part, by participation in the NDA Performance Demonstration Program (PDP). The PDP is funded and managed by the Carlsbad Area Office (CAO) of DOE and is conducted by the Idaho National Engineering Laboratory. It tests the characteristics of precision, system bias and/or total uncertainty through the measurement of variable, blind combinations of simulated waste drums and certified radioactive standards. Each facility must successfully participate in the PDP using each different type of measurement system planned for use in waste characterization. The first cycle of the PDP using each different type of measurement system planned for use in waste characterization. The first cycle of the PDP was completed in July 1996 and the second is scheduled for completion by December 1996. Seven sites reported data in cycle 1 for 11 different measurement systems. This paper describes the design and operation of the PDP and provides the performance data from cycle 1. It also describes the preliminary results from cycle 2 and updates the status and future plans for the NDA PDP. 4 refs., 9 figs., 11 tabs.

  20. Transuranic waste characterization sampling and analysis methods manual. Revision 1

    International Nuclear Information System (INIS)

    Suermann, J.F.

    1996-04-01

    This Methods Manual provides a unified source of information on the sampling and analytical techniques that enable Department of Energy (DOE) facilities to comply with the requirements established in the current revision of the Transuranic Waste Characterization Quality Assurance Program Plan (QAPP) for the Waste Isolation Pilot Plant (WIPP) Transuranic (TRU) Waste Characterization Program (the Program) and the WIPP Waste Analysis Plan. This Methods Manual includes all of the testing, sampling, and analytical methodologies accepted by DOE for use in implementing the Program requirements specified in the QAPP and the WIPP Waste Analysis Plan. The procedures in this Methods Manual are comprehensive and detailed and are designed to provide the necessary guidance for the preparation of site-specific procedures. With some analytical methods, such as Gas Chromatography/Mass Spectrometry, the Methods Manual procedures may be used directly. With other methods, such as nondestructive characterization, the Methods Manual provides guidance rather than a step-by-step procedure. Sites must meet all of the specified quality control requirements of the applicable procedure. Each DOE site must document the details of the procedures it will use and demonstrate the efficacy of such procedures to the Manager, National TRU Program Waste Characterization, during Waste Characterization and Certification audits